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Preface 

It is our hope that this book will serve both as a textbook for graduate courses on 
stability of structures and a reference volume for engineers and scientists. We 
assume the student has a background in mathematics and mechanics only at the 
level of the B.S. degree in civil or mechanical engineering, though in the last four 
chapters we assume a more advanced background. We cover subjects relevant to 
civil, structural, mechanical, aerospace, and nuclear engineering, as well as 
materials science, although in the first half of the book we place somewhat more 
emphasis on the civil engineering applications than on others. We include many 
original derivations as well as some new research results not yet published in 
periodicals. 

Our desire is to achieve understanding rather than just knowledge. We try to 
proceed in each problem from special to general, from simple to complex, 
treating each subject as concisely as we can and at the lowest possible level of 
mathematical apparatus we know, but not so low as to sacrifice efficiency of 
presentation. We include a large number (almost 700) of exercise problems. 
Solving many of them is, in our experience, essential for the student to master the 
subject. 

In some curricula, the teaching of stability is fragmented into courses on 
structural mechanics, design of steel structures, design of concrete structures, 
structural dynamics, plates and shells, finite elements, plasticity, viscoelasticity, 
and continuum mechanics. Stability theory, however, stands at the heart of 
structural and continuum mechanics. Whoever understands it understands 
mechanics. The methods of stability analysis in various applications are similar, 
resting on the same principles. A fundamental understanding of these principles, 
which is not easy to acquire, is likely to be sacrificed when stability is taught by 
bits, in various courses. Therefore, in our opinion, it is preferable to teach 
stability in a single course, which should represent the core of the mechanics 
program in civil, mechanical, and aerospace engineering. 

Existing textbooks of structural stability, except for touching on elastoplastic 
columns, deal almost exclusively with elastic stability. The modern stability 
problems of fracture and damage, as well as the thermodynamic principles of 
stability of irreversible systems, have not been covered in textbooks. Even the 
catastrophe theory, as general is it purports to be, has been limited to systems 
that possess a potential, which implies elastic behavior. Reflecting recent research 
results, we depart from tradition, devoting about half of the book to nonelastic 
stability. 

Various kinds of graduate courses can be fashioned from this book. The 
first-year quarter-length course for structural engineering students may, for 
example, consist of Sections 1.2-1.7, 2.1-2.4, 2.8, 3.1, 3.2, 3.5, 3.6, 4.2-4.6, 
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5.1-5.4, 6.1-6.3, 7.1-7.3, 7.5, 7.8, 8.1, 8.3, and 8.4, although about one-third of 
these sections can be covered in one quarter only partly. A semester-length 
course can cover them fully and may be expanded by Sections 1.8, 1.9, 2.7, 3.3, 
4.5, 4.6. 5.5, 7.4, 7.8, 8.2, and 8.6. The first-year course for mechanical and 
aerospace engineers may, for example, be composed of Sections 1.1-1.5, 1. 7, 1. 9, 
2.1-2.3, 3.1-3.7, 4.2-4.6, 5.1-5.4, 6.1-6.3, 7.1-7.3, 7.5, 7.8, 8.1-8.3, and 
9.1-9.3, again with some sections covered only partly. A second-year sequel for 
structural engineering students, dealing with inelastic structural stability, can, for 
example, consist of Sections 8.1-8.6, 9.1-9.6, 10.1-10.4, 13.2-13.4, and 13.6, 
preceded as necessary by a review of some highlights from the first course. 
Another possible second-year sequel, suitable for students in theoretical and 
applied mechanics, is a course on material modeling and stability, which can be 
set up from Sections 11.1-11.7, 10.1-10.6, 13.1-13.4, 13.8-13.10, and 12.1-12.5 
supplemented by a detailed explanation of a few of the constitutive models 
mentioned in Section 13.11. A course on Stability of Thin-Wall Structures 
(including plates and shells) can consist of a review of Sections 1.1-1.8 and 
detailed presentation of Chapters 6 and 7. A course on Inelastic Columns can be 
based on a review of Sections 1.1-1.8 and detailed presentation of Chapters 8 and 
9. A course on Stability of Multidimensional Structures can be based on a review 
of Sections 1.1-1.9 and detailed presentation of Chapters 7 and 11. A course on 
Energy Approach to Structural Stability can be based on a review of Sections 
1.1-1.8 and detailed presentation of Chapters 4, 5, and 10. A course on Buckling 
of Frames can be based on Chapters 1, 2, and 3. Chapter 3, along with Section 
8.6, can serve as the basis for a large part of a course on Dynamic Stability. 

The present book grew out of lecture notes for a course on stability of 
structures that Professor Bafant has been teaching at Northwestern University 
every year since 1969. An initial version of these notes was completed during 
Ba.Zant's Guggenheim fellowship in 1978, spent partly at Stanford and Caltech. 
Most of the final version of the book was written during Professor Cedolin's 
visiting appointment at Northwestern between 1986 and 1988, when he enriched 
the text with his experience from teaching a course on structural analysis at 
Politecnico di Milano. Most of the last six chapters are based on Bafant's lecture 
notes for second-year graduate courses on inelas•ic structural stability, on 
material modeling principles, and on fracture of concrete, rock, and ceramics. 
Various drafts of the last chapters were finalized in connection with Bafant's stay 
as NATO Senior Guest Scientist at the Ecole Normale Superieure, Cachan, 
France, and various sections of the book were initially presented by Bafant 
during specialized intensive courses and guest seminars at the Royal Institute of 
Technology (Cement och Betonginstitutet, CBI), Stockholm; Ecole des Ponts et 
Chaussees, Paris; Politecnico di Milano; University of Cape Town; University of 
Adelaide; University of Tokyo; and Swiss Federal Institute of Technology. 
Thanks go to Northwestern University and the Politecnico di Milano for 
providing environments conducive to scholarly pursuits. Professor Bafant had the 
good fortune to receive financial support from the U.S. National Science 
Foundation and the Air Force Office of Scientific Research, through grants to 
Northwestern University; this funding supported research on which the last six 
chapters are partly based. Professor Ba.Zant wishes to express his thanks to his 
father, Zden~k J. Bafant, Professor Emeritus of Foundation Engineering at the 
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Czech Technical University (CVUT) in Prague and to his grandfather, Zdenek 
Baiant, late Professor of Structural Mechanics at CVUT, for having introduced 
him to certain stability problems of structural and geotechnical engineering. 

We are indebted for many detailed and very useful comments to Leone 
Corradi and Giulio Maier, and for further useful comments to several colleagues 
who read parts of the text: Professors J. P. Cordebois, S. Dei Poli, Eduardo 
Dvorkin, Theodore V. Galambos, Richard Kohoutek, Franco Mola, Brian 
Moran, and Jaime Planas. Finally, we extend our thanks to M. Tabbara, R. 
Gettu, and M. T. Kazemi, graduate research assistants at Northwestern Univer
sity, for checking some parts of the manuscript and giving various useful 
comments, to Vera Fisher for her expert typing of the manuscript, and to 
Giuseppe Martinelli for his impeccable drawings. 

Evanston, Ill. 
October, 1989 

Z. P. B. and L. C. 
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Introduction 

One of the principal objectives of theoretical research in any 
department of knowledge is to find the point of view from 
which the subject appears in its greatest simplicity. 

-J. Willard Gibbs 
(acceptance letter of Rumford Medal, 1881) 

Failures of many engineering structures fall into one of two simple categories: (1) 
material failure and (2) structural instability. The first type of failure, treated in 
introductory courses on the strength of materials and structural mechanics, can 
usually be adequately predicted by analyzing the structure on the basis of 
equilibrium conditions or equations of motion that are written for the initial, 
undeformed configuration of the structure. By contrast, the prediction of failures 
due to structural instability requires equations of equilibrium or motion to be 
formulated on the basis of the deformed configuration of the structure. Since the 
deformed configuration is not known in advance but depends on the deflections to 
be solved, the problem is in principle nonlinear, although frequently it can be 
linearized in order to facilitate analysis. 

Structural failures caused by failure of the material are governed, in the 
simplest approach, by the value of the material strength or yield limit, which is 
independent of structural geometry and size. By contrast, the load at which a 
structure becomes unstable can be, in the simplest approach, regarded as 
independent of the material strength or yield limit; it depends on structural 
geometry and size, especially slenderness, and is governed primarily by the 
stiffness of the material, characterized, for example, by the elastic modulus. 
Failures of elastic structures due to structural instability have their primary cause 
in geometric effects: the geometry of deformation introduces nonlinearities that 
amplify the stresses calculated on the basis of the initial undeformed configuration 
of the structure. 

The stability of elastic structures is a classical problem which forms the 
primary content of most existing textbooks. We will devote about half the present 
treatise to this topic (Part I, Chapters 1-7). 

We begin our study of structural stability with the analysis of buckling of 
elastic columns and frames, a bread-and-butter problem for structural engineers. 
Although this is a classical research field, we cover in some detail various recent 
advances dealing with the analysis of very large regular frames with many 
members, which are finding increasing applications in tall buildings as well as 
certain designs for space structures. 

The study of structural stability is often confusing because the definition of 
structural stability itself is unstable. Various definitions may serve a useful 

xxi 



xxii INTRODUCTION 

purpose for different problems. However, one definition of stability-the dynamic 
definition-is fundamental and applicable to all structural stability problems. 
Dynamic stability analysis is essential for structures subjected to nonconservative 
loads, such as wind or pulsating forces. Structures loaded in this manner may 
falsely appear to be stable according to static analysis while in reality they fail 
through vibrations of ever increasing amplitude or some other accelerated 
motion. Because of the importance of this problem in modern structural 
engineering we will include a thorough treatment of the dynamic approach to 
stability in Chapter 3. We will see that the static approach yields correct critical 
loads only for conservative structural systems, but even for these it cannot answer 
the question of stability completely. 

The question of stability may be most effectively answered on the basis of the 
energy criterion of stability, which follows from the dynamic definition if the 
system is conservative. We will treat the energy methods for discrete and 
discretized systems in Chapter 4 and those for continuous structures in Chapter 5, 
in which we will also focus on the approximate energy methods that simplify the 
stability analysis of continuous structures. 

In Chapters 6 and 7 we will apply the equilibrium and energy methods to 
stability analysis of more complicated thin structures such as thin-wall beams, the 
analysis of which can still be made one-dimensionally, and of two-dimensional 
structures such as plates and shells. Because many excellent detailed books deal 
with these problems, and also because the solution of these problems is tedious, 
requiring lengthy derivations and mathematical exercises that add little to the 
basic understanding of the behavior of the structure, we limit the treatment of 
these complex problems to the basic, prototype situations. At the same time we 
emphasize special features and approaches, including an explanation of the direct 
and indirect variational methods, the effect of imperfections, the postcritical 
behavior, and load capacity. In our computer era, the value of the complicated 
analytical solutions of shells and other thin-wall structures is diminishing, since 
the solutions can be obtained by finite elements, the treatment of which is outside 
the scope of the present treatise. 

While the first half of the book (Part I, Chaps. 1-7) represents a fairly 
classical choice of topics and coverage for a textbook on structural stability, the 
second half of the book (Part II, Chaps. 8-13), devoted to inelastic and damage 
theories of structural stability, attempts to synthesize the latest trends in research. 
Inelastic behavior comprises not only plasticity (or elastoplasticity), treated in 
Chapters 8 and 10, but also creep (viscoelastic as well as viscoplastic), treated in 
in Chapter 9, while damage comprises not only strain-softening damage, treated 
in Chapter 13, but also fracture, which represents the special or limiting cas~ of 
localized damage, treated in Chapter 12. Whereas the chapters dealing with 
plasticity and creep present for the most part relatively well-established theories, 
Chapters 10-13, dealing with thermodynamic concepts and finite strain effects in 
three dimensions, as well as fracture, damage, and friction, present mostly fresh 
results of recent researches that might in the future be subject to reinterpretations 
and updates. 

Inelastic behavior tends to destabilize structures and generally blurs the 
aforementioned distinction between material failures and stability failures. Its 
effect can be twofold: (1) it can merely reduce the critical load, while instability is 
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still caused by nonlinear geometric effects and cannot occur in their absence-this 
is typical of plasticity and creep (with no softening or damage); or (2) it can cause 
instability by itself, even in the absence of nonlinear geometric effects in the 
structure-this is typical of fracture, strain-softening damage, and friction and 
currently represents a hot research subject. An example of this behavior is 
fracture mechanics. In this theory (outlined in Chapter 12), structural failure is 
treated as a consequence of unstable crack propagation, the instability being 
caused by the global structural action (in which the cause of instability is the 
release of energy from the structure into the crack front) rather than the 
nonlinear geometric effects. 

Stability analysis of structures that are not elastic is complicated by the fact 
that the principle of minimum potential energy, the basic tool for elastic 
structures, is inapplicable. Stability can, of course, be analyzed dynamically, but 
that too is complicated, especially for inelastic behavior. However, as we will see 
in Chapter 10, energy analysis of stability is possible on the basis of the second 
law of thermodynamics. To aid the reader, we will include in Chapter 10 a 
thorough discussion of the necessary thermodynamic principles and will then 
apply them in a number of examples. 

Irreversibility, which is the salient characteristic of nonelastic behavior, 
produces a new phenomenon: the bifurcation of equilibrium path need not be 
associated with stability loss but can typically occur in a stable manner and at a 
load that is substantially smaller than the stability limit. This phenomenon, which 
is not found in elastic structures, will come to light in Chapter 8 (dealing with 
elastoplastic columns) and will reappear in Chapters 12 and 13 in various 
problems of damage and fracture. A surprising feature of such bifurcations is that 
the states on more than one postbifurcation branch of the equilibrium path can be 
stable, which is impossible for elastic structures or reversible systems in general. 
To determine the postbifurcation path that will actually be followed by the 
structure, we will need to introduce in Chapter 10 a new concept of stable path, 
which, as it turns out, must be distinct from the concept of stable state. We will 
present a general thermodynamic criterion that makes it possible to identify the 
stable path. 

The stability implications of the time-dependent material behavior, broadly 
termed creep, also include some characteristic phenomena, which will be 
explained in Chapter 9. In dealing with imperfect viscoelastic structures under 
permanent loads, we will have to take into account the asymptotic deflections as 
the time tends to infinity, and we will see that the long-time (asymptotic) critical 
load is less than the instantaneous (elastic) critical load. In imperfect viscoelastic 
structures, the deflections can approach infinity at a finite critical time, and can 
again do so under a load that is less than the instantaneous critical load. For creep 
buckling of concrete structures, we will further have to take into account the 
profound effect of age on creep exhibited by this complex material. 

The most important consequence of the instabilities caused by fracture or 
damage rather than by geometric effects is that they produce size effect, that is, 
the structure size affects the nominal stress at failure. By contrast, no size effect 
exists according to the traditional concepts of strength, yield limit, and yield 
surface in the stress or strain space. Neither does it according to elastic stability 
theory. The most severe and also the simplest size effect is caused by failures due 
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to propagation of a sharp fracture where the fracture process happens at a point. 
A less severe size effect, which represents a transition from failures governed by 
strength or yield criteria to failures governed by instability of sharp fractures, is 
produced by instability modes consisting either of propagation of a fracture with a 
large fracture process zone (Chap. 12) or of damage localization (Chap. 13). As a 
special highlight of the present treatise, these modern problems are treated in 
detail in the last two chapters. 

The practical design of metallic or concrete columns and other structures is an 
important topic in any stability course. In this text, the code specifications and 
design approaches are dispersed through a number of chapters instead of being 
presented compactly in one place. This presentation is motivated by an effort to 
avoid a cookbook style and present each aspect of design only after the pertinent 
theory has been thoroughly explained, but not later than that. It is for this 
reason, and also because fundamental understanding of inelastic behavior is 
important, that the exposition of column design is not completed until Chapters 8 
and 9, which also include detailed critical discussions of the current practice. 

The guiding principle in the presentation that follows is to advance by 
induction, from special and simple to general and complex. This is one reason 
why we choose not to start the book with general differential equations in three 
dimensions and thermodynamic principles, which would then be reduced to 
special cases. (The general three-dimensional differential equations governing 
stability with respect to nonlinear geometric effects do not appear in the book 
until Chap. 11.) There is also another reason-the three-dimensional analysis of 
stability is not necessary for slender or thin structures made of structural materials 
such as steel or concrete, which are relatively stiff. It is only necessary for dealing 
with incremental deformations of massive inelastic structures or structures made 
of highly anisotropic or composite materials which can be strained to such a high 
level that some of the tangential moduli of the material are reduced to values that 
are of the same order of magnitude as the stresses. 

As another interesting phenomenon, which we will see in Chapter 11, various 
possible choices of the finite-strain tensor lead to different expressions for the 
critical loads of massive bodies. It turns out that the stability formulations 
corresponding to different choices of the finite-strain tensor are all equivalent, but 
for each such formulation the tangential moduli tensor of the material has a 
different physical meaning and must be determined from experimental data in a 
different manner. If this is not done, then three-dimensional finite-strain stability 
analysis makes no sense. 

As we live in the new era of computers, stability of almost any given structure 
could, at least in principle, be analyzed by geometrically nonlinear finite element 
codes with incremental loading. This could be done in the presence of complex 
nonlinear behavior of the material as well. Powerful though this approach is, the 
value of simple analytical solutions that can be worked out by hand must not be 
underestimated. This book attempts to concentrate on such solutions. It is these 
solutions that enhance our understanding and also must be used as test cases for 
the finite element programs. 
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1 
Buckling of Elastic Columns 
by Equilibrium Analysis 

Under an axial compressive load, a column that is sufficiently slender will fail due 
to deflection to the side rather than crushing of the material. This phenomenon, 
called buckling, is the simplest prototype of structural stability problems, and it is 
also the stability problem that was historically the first to be solved ( cf. 
Timoshenko, 1953). 

The essential characteristic of the buckling failures is that the failure load 
depends primarily on the elastic modulus and the cross-section stiffness, and it is 
almost independent of the material strength or yield limit. It is quite possible that 
a doubling of the material strength will achieve a less than 1 percent increase in 
the failure load, all other properties of the column being the same. 

After a brief recall of the elements of the theory of bending, we analyze, as an 
introductory problem, a simply supported (pin-ended) column, first solved by 
Euler as early as 1744. Next we generalize our solution to arbitrary columns 
treated as beams with general end-support conditions and possible elastic 
restraints at ends. We seek to determine critical loads as the loads for which 
deflected equilibrium positions of the column are possible. 

Subsequently we examine the effect of inevitable imperfections, such as initial 
curvature, load eccentricity, or small disturbing loads. We discover that even if 
they are extremely small, they still cause failure since they produce very large 
destructive deflections when the critical load is approached. Taking advantage of 
our solution of the behavior of columns with imperfections, we further discuss the 
method of experimental determination of critical loads. We also, of course, 
explain the corresponding code specifications for the design of columns, although 
we avoid dwelling on numerous practical details that belong to a course on the 
design of concrete or steel structures rather than a course on stability. However, 
those code specifications that are based on inelastic stability analysis will have to 
be postponed until Chapter 8. Furthermore, we show that for certain columns the 
usual bending theory is insufficient, and a generalized theory that takes into 
account the effect of shear must be used. We conclude the first chapter by 
analysis of large deflections for which, in contrast to all the preceding analysis, a 
nonlinear theory is required. 

In stability analysis of elastic structures, the equilibrium conditions must be 
formulated on the basis of the final deformed shape of the structure. When this is 
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done under the assumption of small deflections and small rotations, we speak of 
second-order theory, while the usual analysis of stresses and deformations in 
which the equilibrium conditions are formulated on the basis of the initial, 
undeformed shape of the structure represents the first-order theory. The 
first-order theory is linear, whereas the second-order theory takes into account 
the leading nonlinear terms due to changes of structural geometry at the start of 
buckling. All the critical load analyses of elastic structures that follow fall into the 
category of the second-order theory. 

1.1 THEORY Of BENDING 

Because of its practical importance, stability of beam structures subjected to 
bending will occupy a major part of this text. In the theory of bending we 
consider beams that are sufficiently slender, that is, the ratio of their length to the 
cross-section dimensions is sufficiently large (for practical purposes over about 
10: 1). For such slender beams, the theory of bending represents a very good 
approximation to the exact solution according to three-dimensional elasticity. 
This theory, first suggested by Bernoulli in 1705 and systematically developed by 
Navier in 1826 is based on the following fundamental hypothesis: 

During deflection, the plane normal cross sections of the beam remain (1) 
plane and (2) normal to the deflected centroidal axis of the beam, and (3) the 
transverse normal stresses are negligible. 

The Bemoulli-Navier hypothesis, which is applicable not only to elastic 
beams but also to inelastic beams, provided that they are sufficiently slender, 
implies that the axial normal strains are E = -zIp, where z = transverse 
coordinate measured from the centroid of the cross section (Fig. 1.1), and 
p = curvature radius of the deflected centroidal axis of the beam, called the 
deflection curve. At the beginning we will deal only with linearly elastic beams; 
then the Bemoulli-Navier hypothesis implies that the axial normal stress is 
a = EE = - Ez I p and E = Young's elastic modulus. 

Substituting this into the expression for the bending moment (Fig. 1.1) 

M=-[azdA 

where A= cross-section area (and the moment is taken about the centroid) one 
gets M = Ef z2 dAip or 

M=Ellp (1.1.1) 
where 1 = f z2 dA = centroidal moment of inertia of the cross section. (For more 
details, see, e.g., Popov, 1968, or Crandall and Dahl, 1972.) In terms of 

Figure 1.1 Bending of a straight bar according to Bemoulli-Navier hypothesis. 



BUCKUNG OF ElASTIC COLUMNS BY EQUIUBRIUM ANALYSIS 5 

deflection w (transverse displacement of the cross section), the curvature may be 
expressed as 

(1.1.2) 

in which the primes denote derivatives with respect to the length coordinate x of 
the beam, that is, w" = d2w/dx2

• In most of our considerations we shall assume 
that the slope of the deflection curve w(x) is small, and then we may use the 
linearized approximation 

1 
-==w" 
p 

(1.1.3) 

If lw'l is less than 0.08, then the error in curvature is within about 1 percent. 
Equation 1.1.1 then becomes 

M=Elw" (1.1.4) 

which is the well-known differential equation of bending for small deflections. In 
writing the equilibrium equations for the purpose of buckling analysis, however, 
displacements w, even if considered small, cannot be neglected, that is, M must 
be calculated with respect to the deformed configuration. 

Part 2 of the Bemoulli-Navier hypothesis implies that the shear deformations 
are neglected. Sometimes this may be unacceptable, and we will analyze the 
effect of shear later. 

Problems 

1.1.1 For a simply supported beam of length I with sinusoidal w(x), calculate the 
percentage of error in 1/p and Mat midspan if Wmax/1=0.001, 0.01, 0.1, 0.3 
(subscript "max" labels the maximum value). 

1.1.2 Derive Equations 1.1.1 and 1.1.2. 

1.2 EULER LOAD, ADJACENT EQUILIBRIUM, AND BIFURCATION 

Let us now consider a pin-ended column of length I shown in Figure 1.2 (also 
called the hinged or simply supported column). The column is loaded by axial 
load P, considered positive when it causes compression. We assume the column 
to be perfect, which means that it is perfectly straight before the load is applied, 

a) 

,t p 

p 

Figure 1.2 Euler column under (a) imposed axial load and (b) imposed axial displacement. 
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and the load is perfectly centric. For the sake of generality, we also consider a 
lateral distributed load p(x), although for deriving the critical loads we will set 
p=O. 

The undeflected column is obviously in equilibrium for any load P. For large 
enough load, however, the equilibrium is unstable, that is, it cannot last. We now 
seek conditions under which the column can deflect from its initial straight 
position and still remain in equilibrium. If the load keeps constant direction 
during deflection, as is true of gravity loads, the bending moment on the deflected 
column (Fig. 1.2a) is M = -Pw + M0(x) where M0(x) is the bending moment 
caused by a lateral load p(x), which may be calculated in the same way as for a 
simply supported beam without an axial load, and - Pw is an additional moment 
that is due to deflection and is the source of buckling. Substituting Equations 
1.1.1 and 1.1.3 into the preceding moment expression, we obtain Elw" = - Pw + 
M0 or 

2 Mo 
w"+k w=

EI 
with k 2 =!.._ 

EI 
(1.2.1) 

This is an ordinary linear differential equation. Its boundary conditions are 

w =0 at x =0 w =0 at x =I (1.2.2) 

Consider now that p = 0 or M0 = 0. Equations 1.2.1 and 1.2.2 then define a 
linear eigenvalue problem (or characteristic value problem). To permit a simple 
solution, assume that the bending rigidity EI is constant. The general solution for 
P>O (compression) is 

w = A sin kx + B cos kx (1.2.3) 

in which A and B are arbitrary constants. The boundary conditions in Equation 
1.2.2 require that 

B=O A sin kl =0 (1.2.4) 

Now we observe that the last equation allows a nonzero deflection (at P > 0) if 
and only if kl = 1r, 21t, 31t, ..•. Substituting for k we have Pl2

/ EI = 1t2, 41t2, 

91t2
, ••• , from which 

n21t2 

Pcr.=pEI (n = 1, 2, 3, ... ) (1.2.5) 

The eigenvalues Per.• called critical loads, denote the values of load P for which a 
nonzero deflection of the perfect column is possible. The deflection shapes at 
critical loads, representing the eigenmodes, are given by 

. n1rx 
w=q sm

n I (1.2.6) 

where qn are arbitrary constants. The lowest critical load is the first eigenvalue 
(n = 1); it is denoted as Per,= PE and is given by 

1t2 

PE =If EI (1.2.7) 
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It is also called the Euler load, after the Swiss mathematician Leonhard Euler, 
who obtained this formula in 1744. It is interesting that in his time it was only 
known that M is proportional to curvature; the fact that the proportionality 
constant is El was established much later (by Navier). The Euler load represents 
the failure load only for perfect elastic columns. As we shall see later, for real 
columns that are imperfect, the Euler load is a load at which deflections become 
very large. 

Note that at Per. the solution is not unique. This seems at odds with the 
well-known result that the solutions to problems of classical linear elasticity are 
unique. However, the proof of uniqueness in linear elasticity is contingent upon 
the assumption that the initial state is stress-free, which is not true in our case, 
and that the conditions of equilibrium are written on the basis of the geometry of 
the undeformed structure, whereas we determined the bending moment taking 
the deflection into account. The theory that takes into account the effect of 
deflections (i.e., change of geometry) on the equilibrium conditions is called the 
second-order theory, as already said. 

At critical loads, the straight shape of the column, which always represents an 
equilibrium state for any load, has adjacent equilibrium states, the deflected 
shapes. The method of determining the critical loads in this manner is sometimes 
called the method of adjacent equilibrium. Note that at critical loads the column 
is in equilibrium for any q, value, as illustrated by the equilibrium load-deflection 
diagram of P versus w in Figure 1.3. The column in neutral equilibrium behaves 
the same way as a ball lying on a horizontal plane (Fig. 1.3). 

In reality, of course, the deflection cannot become arbitrarily large because we 
initially assumed small deflections. When finite deflections of the column are 
solved, it is found that the branch of the P-w diagram emanating from the critical 
load point is curved upward and has a horizontal tangent at the critical load (Sec. 
1.9). 

At critical loads, the primary equilibrium path (vertical) reaches a bifurcation 
point (branching point) and branches (bifurcates) into secondary (horizontal) 
equilibrium paths. This type of behavior, found in analyzing a perfect beam, is 
called the buckling of bifurcation type. Not all static buckling problems are of this 
type, as we shall see, and bifurcation buckling is not necessarily implied by the 
existence of adjacent equilibrium. 

It is interesting to note that axial displacements do not enter the solution. 

p 

w 

0 

Figure 1.3 Neutral equilibrium at critical load. 
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Thus, the critical load is the same for columns whose hinges slide axially during 
buckling (Fig. 1.2a) or are fixed (Fig. 1.2b). (This will be further clarified by the 
complete diagram of load vs. load-point displacement in Sec. 1.9.) 

Dividing Equation 1.2.7 by the cross-section area A, we obtain the critical 
stress 

(1.2.8) 

in which r =ViTA= radius of inertia (or radius of gyration) ot the cross section. 
The ratio 1/r is called the slenderness ratio of the column. It represents the basic 
nondimensional parameter for the buckling behavior of the column. The plot of 
oE versus (1/r) is called Euler's hyperbola (Fig. 1.4). This plot is obviously 
meaningful only as long as the values of oE do not exceed the compression 
strength or yield limit of the material, /y. Thus, buckling can actually occur only 
for columns whose slenderness ratio exceeds a certain minimum value: 

I=n @ 
r '//, 

(1.2.9) 

Substituting the typical values of Young•s modulus and the compression strength 
or the yield limit for various materials, we obtain the minimal slenderness ratios 
as 86 for steel, 90 for concrete, 50 for aluminum, and 13 for glass fiber-reinforced 
plastics. Indeed, for the last type of material, buckling failures are the 
predominant ones. 

For real columns, due to inelastic effects and imperfections, the plot of the 
axial stress versus the slenderness ratio exhibits a gradual transition from the 
horizontal line to the Euler hyperbola, as indicated by the dashed line in Figure 
1.4. Consequently, buckling phenomena already become practically noticeable at 
about one-half of the aforementioned slenderness ratios (see Chap. 8). 

Up to this point we have not reached any conclusion about stability. However, 
the fact that for critical loads the deflection is indeterminate, and can obviously 
become large, is certainly unacceptable to a designer. A certain degree of safety 
against reaching the lowest critical load must evidently be assured. 

Problems 

1.2.1 Sketch the load-deflection diagram of the column considered and the 
critical state; explain neutral equilibrium and adjacent equilibrium. 

Fipre 1.4 Buckling stress as a function of slenderness. 
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a) t b) r 

ll 
Figure 1.5 Exercise problems on critical loads of free-standing columns. 

1.2.2 If a timber column has slenderness 15:1, compression strength 1; = 
1000 psi, and E = 300,000 psi, does it fail by buckling or by material failure? 

1.2.3 Solve for the critical load of a free-standing column of height l (Fig. l.Sa). 
1.2.4 Do the same for a free-standing column with a hinge and rotational spring 

of stiffness Cat the base (Fig. l.Sb). Study the dependence of Per on El/Cl 
and consider the limit case EI I Cl-+ 0. 

1.3 DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS 

In the foregoing solution we determined the bending moment directly from the 
applied load. However, this is impossible in general, for example, if the column 
has one or both ends fixed. Unknown bending moment M1 and shear force V1 

then occur at the fixed end, and the bending moments in the column cannot be 
determined from equilibrium. Therefore, we need to establish a general 
differential equation for beams subjected to axial compression, called beam
columns. 

Consider the equilibrium of a segment of the deftected column shown in 
Figure 1.6a. The conditions of force equilibrium and of moment equilibrium 
about the top support point are 

V(x)- VI+ r p(x*) dx* = 0 

M(x) + Pw(x)- M1 + Vx + f p(x*)x* dx* = 0 
(1.3.1) 

Differentiating Equations 1.3.1, we obtain V' + p = 0 and M' + Pw' + V + V'x + 
px = 0 from which 

V'=-p M'+Pw'=-V (1.3.2) 

These relations represent the differential equations of equilibrium of beam
columns in terms of internal forces M and V. The term Pw' can be neglected only 
if P «Per,, which is the case of the classical (first-order) theory. The quantities 
w', M', V, and p are small (infinitesimal), and so Pw' is of the same order of 
magnitude as M' and V unless P « Per,· 

In the special case of a negligible axial force (P = 0), Equations 1.3.2 reduce 
to the relations well known from bending theory. 

Alternatively, the differential equations of equilibrium can be derived by 
considering an infinitesimal segment of the beam, of length dx (Fig. 1.6b). Taking 
into account the increments dM and dV over the segment length dx, we get the 
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dw 

z 

_k 
p I ~~dM 

0,...,.• 

Figure 1.6 Equilibrium of (a) a segment of a statically indeterminate column and (b, c) of 
an infinitesimal element. 

following conditions of equilibrium of transverse forces and of moments about the 
centroid of the cross section at the end of the deflected segment: 

(V + dV)- V + p dx = 0 

(M +dM) -M + Vdx +Pdw- (pdx)(~) =0 
(1.3.3) 

Dividing these equations by dx, and considering that dx ~ 0, we obtain again 
Equations 1.3.2. 

Note that the shear force V is defined in such a way that its direction remains 
normal to the initial beam axis, that is, does not rotate during deflection (and 
remains horizontal in Fig. 1.6). Sometimes a shear force Q that remains normal 
to the deflected beam axis is introduced (Fig. 1.6c). For this case the conditions of 
equilibrium yield Q = V cos 8 + P sin 8 = V + Pw' and -N = P cos 8-
V sin 8 = P- Vw' (where N =axial force, positive if tensile and 8 =slope of the 
deflected beam axis). Substituting the expression for Q in the second of 
Equations 1.3.2 one obtains 

M'=-Q (1.3.4) 

which has the same form as in the first-order theory. Equation 1.3.4 could be 
derived directly from the moment equilibrium condition of the forces shown in 
Figure 1.6c. 

Differentiating the second of Equations 1.3.2 and substituting in the first one, 
we eliminate V; M" + (Pw')' = p. Furthermore, substituting M = Elw" we get 

(Elw")" + (Pw')' = p (1.3.5) 
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This is the general differential equation for the deflections of a beam-column. It is 
an ordinary linear differential equation of the fourth order. 

Alternatively, one could write the force equilibrium condition with the 
cross-section resultants shown in Figure 1.6c, which gives p dx + dQ + d(Nw') = 
0. Substituting Equation 1.3.4 as well as the relations M = Elw" and -N = P 
(valid for small rotations), one obtains again Equation 1.3.5. A generalization of 
N is customarily used for plates (Sec. 7.2). 

Note that two integrations of Equation 1.3.5 for P = const. yield Elw" + 
Pw = Cx + D + f f p dx dx, where C, D are integration constants. The right-hand 
side represents the bending moment M0(x), and so this equation is equivalent to 
the second-order differential (Eq. 1.2.1). However, if the column is not statically 
determinate, then M0 is not known. 

The term that makes Equations 1.3.2 and 1.3.5 the second-order theory is the 
term Pw', which is caused by formulating equilibrium on the deflected column. If 
this term is deleted, one obtains the familiar equations of the classical (first-order) 
theory, that is, M' = - V and ( Elw")" = p. This theory is valid only if P « Per, 
(this will be more generally proven by Fig. 2.2, which shows that the column 
stiffness coefficients are not significantly affected by P as long as IPI s O.lPE)· 
When P «Per,, the term Pw' is second-order small compared with M, w', and V, 
and therefore negligible (this is how the term "second-order theory" originated). 

The terms Pw' and (Pw')' would be nonlinear for a column that forms part of 
a larger structure, for which not only w but both w and P are unknown. The 
problem becomes linear when Pis given, which is the case for columns statically 
determinate with regard to axial force. However, even if P is unknown, the 
problem may be treated as approximately linear provided that the deflections and 
rotations are so small that the variation of P during deflection is negligible (see 
Sec. 1.9). P may then be considered as constant during the deflection. In this 
manner we then get a linearized formulation. 

To make simple solutions possible, consider that the axial (normal) force P 
and the bending rigidity EI are constant along the beam. The differential 
equation then has constant coefficients, and the fundamental solutions of the 
associated homogeneous equation (p = 0) may be sought in the form w = eA.r. 
Upon substitution into Equations 1.3.5 we see that eA.r cancels out and we obtain 
the characteristic equation E/}.4 + p;..,Z = 0, or A2(A2 + k2

) = 0. The roots are 
). = ik, -ik, 0, 0 provided that P > 0 (compression). Since sin kx and cos kx are 
linear combinations of e;kx and e-ikx, the general solution of Equations 1.3.5 for 
constant EI and P is 

w(x) =A sin kx + B cos kx + Cx + D + wP(x) (P>O) (1.3.6) 

in which A, B, C, and Dare arbitrary constants and wp(x) is a particular solution 
corresponding to the transverse distributed loads p(x). 

For columns in structures, it is sometimes also necessary to take into account 
the effect of an axial tensile force P < 0 on the deflections. In that case the 
characteristic equation is )._2()..2 - k2

) = 0, with k2 =!pi/ El. The general solution 
then is 

w(x) =A sinh kx + B cosh kx + Cx + D + wp(x) (P<O) (1.3.7) 
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The basic types of boundary conditions are 

Fixed end: w=O w' =0 

Hinge: w = 0 M = 0 or w" = 0 

Free end: M = 0 

Sliding restraint: w' = 0 

V=O 

V=O 

or (Eiw")' + Pw' = 0 
(1.3.8) 

When we seek critical loads, we set p = 0. The boundary conditions are 
homogeneous, and the boundary-value problem defined by Equations 1.3.5 and 
1.3.8 becomes an eigenvalue problem. 

Generally, there exists (for p = 0) an infinite series of critical loads, and the 
load-deflection diagram is of the kind shown in Figure 1.3. At critical loads, one 
has bifurcation of the equilibrium path and neutral equilibrium. 

When the bending rigidity El or the axial force P vary along the beam, 
approximate solutions are in general necessary. This may be accomplished, for 
example, by the finite difference or the finite element method, which leads to an 
algebraic eigenvalue problem for a system of homogeneous algebraic equations. 
Solutions in terms of orthogonal series expansions are also possible, and normally 
very efficient, especially for hand calculations. 

Problems 

1.3.1 Without referring to the text, derive the differential equations of equi
librium of a beam-column and the general solution for w(x), using the 
cross-section resultants the directions of which do not rotate during deflection 
(Fig. 1.6b). 

1.3.2 Do the same as in Problem 1.3.1 but use the cross-section resultants the 
directions of which rotate during deflection (Fig. 1.6c). 

1.3.3 Explain why, for small rotations w' and large P, Q ::1= V while (-N) = P. 
Hint: Is the Q- V first-order small in w', that is, proportional to w', and 
IN!- P second-order small, that is, proportional to w'2? Note that w, w', M, 
V, and Q are considered small (infinitesimal) while Pis finite. 

1.3.4 Write the finite difference equations that approximate Equations 1.3.5 and 
1.3.8 for case of variable EI(x). 

1.3.5 Find the general solution of the beam-column equation for variable EI and 
P such that El =a+ bx, P =a+ b(x + tanx) where a, b =constants. Hint: Is 
w =sin x a solution? 

1.4 CRITICAL LOADS OF PERFECT COLUMNS WITH VARIOUS 
END RESTRAINTS 

Let us now examine the solution of critical loads for perfect columns with various 
simple end restraints shown in Figure 1.7. As an example, consider a column with 
one end fixed (restrained, built-in) and one end hinged (pinned), sometimes 
called propped-end column, (Fig. 1.7a). Let p = 0. Because the general solution 
has four arbitrary constants, four boundary conditions are needed. They are of 
two kinds, kinematic and static. The kinematic ones are w = 0 and w' = 0 at x =I, 
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and w = 0 at x = 0. The remaining boundary condition is static: M = 0 or 
Elw" = 0 or w" = 0 at x = 0 (axial coordinate xis measured from the free end; see 
Fig. 1.7). In terms of Equation 1.3.6 (with wP = 0), these boundary conditions are 

For x =0: 

For x = /: 

B+D=O 

-Bk2 =0 

A sin kl + B cos kl + Cl + D = 0 

Ak cos kl - Bk sin kl + C = 0 

(1.4.1) 

This is a system of four linear homogeneous algebraic equations for the unknowns 
A, B, C, and D. This system, representing an algebraic eigenvalue problem, can 
have a nonzero solution only when the determinant of the equation system 
vanishes. This condition may be reduced, after some algebraic rearrangements, to 
the equation sin kl - kl cos kl = 0. Because cos kl = 0 does not solve this equa
tion, we may divide it by cos kl and get 

tan kl = kl (1.4.2) 
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This is a transcendental algebraic equation. The approximate values of the roots 
may be located graphically as the intersection points of curves y = u and y = tan u 
(u = kl) (see Fig. 1.8). Using the iterative Newton method, one can then 
determine the roots with any desired accuracy. The smallest positive root (Fig. 
1.8) is u=k/=4.4934, and noting that k=VP/El, we find that the smallest 
critical load is 

Per= (0.699/)2 El (1.4.3) 

The shape of the buckled column may be obtained by eliminating B, C, and D 
from Equation 1.4.1. This yields 

w = A(sin kx - kx cos kl) (1.4.4) 

where A is an arbitrary constant (limited, of course, by the range of small 
deflections). Solving x for which w" = 0, we find that there is an inflection point at 
x = 0.699/. Note that, after buckling, the reaction at the base is no longer aligned 
with the beam axis (Fig. 1.7a), but has the eccentricity (M)x=tl Per= 
(Elw")x=tl Per= -A sin kl = 0. 916A, and its line of action runs through the 
deflected inflection point, as well as the column top, as expected. 

Columns with other end restraints shown in Figure 1. 7 can be solved in a 
similar manner. Aside from the simple boundary conditions listed in Equations 
1.3.8 and illustrated by Figure 1.7c, d, f, g, one can have elastically restrained 
ends. Such restraints can sometimes be used as approximations for the behavior 
of columns as parts of larger structures, the action of the rest of the structure 
upon the column being replaced by an equivalent spring. An end supported 
elastically in the transverse direction (Fig. 1. 7b) is described by the boundary 
conditions M = 0 and V = -C3 w. A hinge that slides freely but is elastically 
restrained against rotation (Fig. 1.7e) is characterized by the boundary conditions 
V = 0 and M = C 1 w 1 • A hinged end elastically restrained against rotation (Fig. 
1. 7h) is characterized by the boundary conditions w = 0 and M = C 1 w 1 , where C 1 

is the spring stiffness. 
The buckling modes of a column under different boundary conditions are 

demonstrated in Figure 1.9, which portrays one of the teaching models developed 
at Northwestern University (1969). Intermediate supports are used to obtain 
higher buckling modes. 

Figure 1.8 Determination of critical states for fixed-hinged columns. 
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Fipre 1.9 Northwestern University (1969) teaching models: buckling of axially com
pressed columns with various end restraints. 
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Instead of solving for constants A, B, C, and D from a system of four 
algebraic equations for each particular type of column, one can determine the 
critical loads more expediently using the idea of the so-called effective length, L 
(also called the free length, the reduced length, or the buckling length). This 
approach is based on the fact that any segment of the column between two 
adjacent inflection points of the deflection curve is equivalent to a pin-ended 
column of length L equal to the distance between these two inflection points. This 
is because M = 0 ( w" = 0) at the inflection points. Since the expression in 
Equation 1.3.6 for the general solution can be extended beyond the length 
domain of the column, one can also consider inflection points of this extended 
deflection curve that lie outside the column. This needs to be done when two 
inflection points within the actual column length do not exist. The critical load of 
any column may now be written in the form 

(1.4.5) 

As an example, comparison with Equation. 1.4.3 suggests that the effective 
length for the fixed-hinge column (Fig. 1.7a) should be L = 0.6991 where lis the 
actual length of the column. Differentiating Equation 1.4.4, we find w" = 
-Ak2 sin kx, which becomes 0 for x = L when kL = 1e. From this L/1 = 1e/kl = 
JC/4.4934 = 0.699. This confirms the effective length approach. 

Equation 1.3.6 (with wP = 0) represents a transversely shifted and rotated sine 
curve. Thus the effective length L can be intuitively figured out by trying to 
sketch a sine curve that fulfills the given boundary conditions. This is illustrated 
for various columns in Figure 1.7. For the fixed-fixed column (Fig. 1.7g), the 
inflection points are obviously at quarter-length points. Therefore, L = l/2, from 
which Per

1 
= 4JC2EI/f. For the fixed-free column (Fig. 1.7c), one inflection point 

is at the free end (M = 0), and the other one may be located by extending the 
deflection curve downward; L = 21, from which Per1 = JC2EI/412

• Similarly, for the 
column with a fixed end and a sliding restraint (Fig. 1.7f), extension of the 
deflection curve shows that L =I, and so the first critical load is the Euler load. 
For a column with one hinge and one sliding restraint (Fig. 1.7d), extension of 
the deflection curve shows that the effective length is L = 21, and so Per1 = 
JC2EI/4f. For the column with rotational springs (Fig. 1.7h), the bending 
moments at the ends oppose rotation, which causes the inflection point to shift 
away from the ends, as compared with a pin-ended column; consequently, 
l/2 < L < l, which means that PE < Per1 < 4PE. Similarly, for the column in Figure 
1.7e, we conclude that Per

1 
< PE/4. For the column in Figure 1.7b, we conclude 

that Per1 > PE/4. 
A useful approximate formula for columns whose ends do not move and are 

restrained against rotation by springs of spring constants C1 and Cz was 
developed by Newmark (1949): 

(1.4.6) 

The error of this formula is generally less than 4 percent. 
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The most general supports of a column are obtained when one end is 
supported by a hinge and is restrained by a rotational spring of spring constant 
C~> and the other end can rotate and move laterally, being restrained by a 
rotational spring and a lateral spring of spring constants C2 and C3 (Fig. 1.7j). 
One extreme case of this column is the fixed-end column, which is obtained when 
C1, C2 , and C3 all become infinite. Another extreme case is obtained when C" 
C2 , and C3 all tend to zero. In this case the column becomes a mechanism, and its 
critical load Per, vanishes. Therefore, the first (smallest) critical load of a column 
of constant cross section is bounded as 

(1.4.7) 

This inequality also applies for a column as part of a frame. The reason is that the 
replacement of the action of the rest of a frame onto the column by elastic springs 
cannot increase the critical load, as we will explain later (Sec. 2.4), although 
usually such a replacement leads to a higher critical load than the actual one. 

In some structural systems the axial load may rotate during buckling. Some 
problems of this type may be nonconservative, which we will discuss later. 
However, even for conservative problems of this type one must be careful to give 
proper consideration to the lateral force component of an inclined load P, since 
such a component generally affects buckling and may cause a significant reduction 
of the critical load. Consider, for example, the case that the load P passes 
through a fixed point C (Fig. 1.10a) at a distance c from the free end of a 
cantilever, as would happen, for example, if a cable were stretched between the 
free end of the cantilever and the fixed point. The boundary condition for shear 
at the free end (x = 0) becomes V = -Elw"'- Pw' = P!l./c. The other boundary 
conditions are for x = 0: M = Elw" = 0; and for x = 1: w = 0 and w' = 0. 
Substituting Equation 1.3.6 and requiring that, for x = 0, w =fl., one obtains 
tan kl = k/(1- ell) as the condition for the critical load: The solution is tabulated 
in Timoshenko and Gere (1961, p. 57) and gives a critical load that is higher than 

a) c) 

c 

c 

p 

_./l 
Pp 

c 

Figare 1.10 Conservative systems in which axial load rotates during buckling. 
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PE/4. It is also interesting to note that, in the case e = l, the critical load becomes 
equal to PE, because the moment at the base becomes zero, and the conditions 
are the same as for a beam with hinged ends. 

In the case that the fixed point C is situated above the free end (Fig. 1.10b ), 
the boundary condition on shear becomes V = - P 11/ e and the critical load is 
given by tan kl = kl(1 +ell). In this case the critical load becomes smaller than 
PE/4, and for the case e =I we find Pc. = 0.138PE. 

The solution can be found more directly if one uses a coordinate axis i, which 
coincides with the direction of the applied force P, that is, is inclined by 1/J = !l./e 
(Fig. 1.10b ). Relative to axis i, the deflection curve is w = A sin ki, and for i = l 
(base), one has i =A sin kl =fl.+ &1/e, from which A= &(1 + 1/e)/sin kl. The 
slope at the base relative to axis i is w' = !l./e, which yields Ak cos kl = !l./e, and 
substituting the value found for A one obtains again k/(1 +ell)= tan kl. 

A situation in which a free-standing column is subjected to this second type of 
load is depicted in Figure 1.10c and was analyzed by Lind (1977) (see also Prob. 
1.4.5). One may be tempted in this case to say that P a:, equals PE/4, but this 
would neglect the fact that the reaction of the beam upon the fixed-base leg is 
inclined rather than vertical because of the horizontal component of the axial 
force in the pin-ended column (Fig. 1.10c). 

Problems 

1.4.1 For the fixed-hinged column, a lateral reaction component develops at the 
sliding hinge and causes the line of the force-resultant at the hinge to pass 
through the inflection point of the deflection curve. Prove it. 

1.4.2 Find the critical load of the systems in Figure 1. 7b, e, h, j with the 
following values of the spring constants C1 = El/1, C2 = El/21, C3 = 12£1/13

• 

Find also the inflection points of the deflection curves and verify the validity of 
Equation 1.4.5. 

1.4.3 Find the critical load of the system in Figure l.lla in which the lo!id is 
applied through a frictionless plunger. Note that the load point is fixed, that 

a) 

~p 

tir' 
2 w· 

c) 

Figure 1.11 Exercise problems on critical loads of systems loaded through (a) a plunger, 
(b) a roller, and (c) a rigid member. 
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is, does not move with the column top, but the load direction rotates with the 
column top. So the boundary conditions are M(O) = -Pw(O) and V(O) = 
-Pw'(O), which is equivalent to Q(O) = 0. The load resultant Pis a follower 
force, since its direction follows the rotation of the column top. Yet load Pis 
conservative because the lateral displacement is zero. 

1.4.4 Find the critical load of the system in Figure l.llb, assuming that the roller 
on top rolls perfectly without friction and without slip. Note that the load P 
acting on the column top moves by distance w(0)/2 if the deflection on top is 
w(O). So one boundary condition on top is M(O) = -Pw(0)/2. Since the load 
P transmitted by the roller has inclination w'(0)/2, the second boundary 
condition on top is V(O) = -Pw'(0)/2. 

1.4.5 Find the critical load of the system in Figure l.llc. 
1.4.6 Find the value of c for the frame of Figure l.lOc in the case that the 

pin-ended leg is shorter than 1. Does the critical load increase or decrease in 
this case? Show that if the pin-ended leg is placed above the horizontal beam, 
the situation for the free-standing column becomes that of Figure l.lOa. 

1.4.7 Find the critical load of the systems in Figure 1.12a-e. 

a) 2P b) 2P 

Figure 1.12 Exercise problems on critical loads of structures with rigid members. 

1.4.8 Solve the critical loads of the beams in Figure 1.13 in which the rigid bars 
are attached to the beam ends (see Ziegler, 1968). Note that the columns are 
under tension or, if loaded by a couple, under no axial force. 

a) b) c) d) e) f) g) 

p 

p 

Figure 1.13 Exercise problems on critical loads of beams loaded through rigid bars at 
ends. 

1.5 IMPERFECT COLUMNS AND THE SOUTHWELL PLOT 

The perfect column which we have studied so far is an idealized model. In reality, 
several kinds of inevitable imperfections must be considered. For example, 
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columns may be subjected to unintended small lateral loads; or they may be 
initially curved rather than perfectly straight; or the axial load may be slightly 
eccentric; or disturbing moments and shear forces may be applied at column 
ends, which is essentially equivalent to an eccentric or inclined axial load. Unlike 
beams subjected to transverse loads and small axial forces, columns are quite 
sensitive to imperfections, although not as much as shells. 

Lateral Disturbing Load 

As the simplest prototype case, consider again the pin-ended column (Fig. 1.14a). 
We assume the column to be perfectly straight in the initial stress-free state but 
subjected to lateral distributed loads p(x) and to end moments M 1 and M2 • We 
imagine these loads to be applied first, as the first stage of loading. As the second 
stage of loading, we then add the axial load P. 

The coordinates of the deformed center line of the column under the action of 
p, Mv and M2 are denoted as .zo(x), and the associated bending moments as 
M0(x) (Fig. 1.14a). Subsequent application of the axial load P increases the 
deflection ordinates to z(x) (see Fig. 1.14a); this causes the bending moments to 
change to M(x) = M0(x)- Pz(x). Now we may substitute M = Elz", and this 
yields the differential equation 

2 Mo z"+k z=
EI 

(1.5.1) 

in which k2 = PI El. Note that if load P were applied first, and loads p(x ), M~> 
and M2 subsequently, the differential equation as well as the final deflection z(x) 
would be the same because elastic behavior is path-independent. 

b) 
<D 

P=O P>O 

c) d) 

Figure 1.14 Buckling of imperfect columns: (a) lateral loads, (b) initial curvature, (c, d) 
axial load eccentricity. 
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Let us assume again that k is constant and expand the initial bending moments 
in a Fourier sine series: 

co nnx 
Mo(x) = ~1 Qo. sin -

1
- (1.5.2) 

in which I is the length of the column, and Q0• = 2f~ M0(x) sin (nnx/1) dx/1 are 
Fourier coefficients, which can be determined from the given distribution M0(x) 
(see, e.g., Rektorys, 1969; Pearson, 1974; Churchill, 1963). We may then seek 
the solution also in the form of a Fourier sine series: 

co nnx 
z(x) = L q, sin -

1
-

n=t 
(1.5.3) 

in' which q, are unknown coefficients. Note that each term of the last equation 
satisfies the boundary conditions z(O) = z(l) = 0. Substituting Equations 1.5.2 and 
1.5.3 into Equation 1.5.1, we obtain 

co [ ( )2 Q ] 2 nn 0 • nnx L k q,- - q,--· stn-=0 
rr=t I El I 

(1.5.4) 

Since this equation must be satisfied for any value of x, and since the functions 
sin (nnx/1) are linearly independent, the bracketed terms must vanish. This 
provides 

(1.5.5) 

Let us now relate this result to the deflection .zo(x) extstmg before the 
application of the axial load P. The initial deflection .zo(x) may be expanded, 
similarly to Equation 1.5.3, in Fourier sine series with coefficients q0., which are 
obtained from Equation 1.5.5 by setting P = 0, that is, q0• = -Q0j(n2PE)· From 
this relation and Equation 1.5.5 we conclude that 

1 
(1.5.6) 

in which Per.= n2n2El/P =the nth critical load of the perfect column. 

Initial Curvature or Load Eccentricity 

Consider now another type of imperfection-the initial curvature (crookedness) 
characterized by the initial shape zo(x) (Fig. 1.14b). Application of axial load P 
produces deflections w, and the ordinates of the deflection curve become 
z = Zo + w (Fig. 1.14b). For a pin-ended column, we have, from the equilibrium 
conditions, M = - Pz. At the same time, the bending moment is produced by a 
change in curvature, which equals w" (not z"), and so M = Elw" = El(z"- z0) = 
- Pz. This leads to the differential equation 

(1.5.7) 

We see that the previously solved Equation 1.5.1 is identical to this equation if we 
set M0 = Elz0. Therefore, there is no need to carry out a separate analysis for the 
case of initial curvature. The results are the same as those for lateral disturbing 
loads, which we have already discussed. 
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Equation 1.5.7 was derived by Thomas Young (1807), who was the first to 
take into account the presence of imperfections. 

Note that in formulating the conditions of equilibrium for the deformed 
structure, we use displacements with regard to the initial undeflected (but axially 
deformed) state; that is., w = z - .zo, where z and Zo are the initial and final 
coordinates of a material point, both z and Zo being expressed in the initial 
coordinate system. In the general theory of finite strain this is called the 
Lagrangian coordinate description, which contrasts with the Eulerian description 
in which the local coordinates move with the points of the structure. Except for 
some instances in Chapter 11, in this book we use exclusively the Lagrangian 
coordinate description, which is more convenient for stability analysis than the 
Eulerial description. 

Another type of imperfection is the eccentricity of the axial load applied at the 
end. This case may be treated as a special case of initial curvature such that the 
beam axis is straight between the ends and bas right-angle bends at the ends (Fig. 
1.14c). Expanding this distribution of Zo into a Fourier sine series, the previous 
solution may be applied. Alternatively, an eccentrically loaded column is 
equivalent to a centrically loaded perfect column with disturbing moments 
M1 = Mo(O) = -P/e1 and M2 = M0(/) = -P/e2 applied at the ends, which is a case 
we have already solved (Eq. 1.5.1) (e1 and e2 are the end eccentricities). 

Behavior Near the Critical Load 

Figure 1.15a illustrates the diagrams of load P versus maximum deflection w for 
various values of q01 characterizing the imperfection (only the first sinusoidal 
component is considered in the calculation). As the initial imperfection tends to 
zero, or q0.-+ 0, the load-deflection diagram asymptotically approaches that of a 
perfect column with a bifurcation point at the first critical load. 

Since a small imperfection of the most general type (Q0, -=/= 0 or q0, * 0 for 
i = 1, 2, ... ) can never be excluded, we must conclude from Equation 1.5.5 or 
1.5.6 that the deflection tends to infinity at P-+ Per• no matter how small the 
initial imperfection is (it would be unreasonable to assv.me that q01 is exactly 
zero). This leads us to conclude that columns must fail at the first critical load and 
that load values higher than the first critical load cannot be reached. 

We must also conclude that in a static experiment one can never realize the 

a) P/Pe b) 

P/Pe 

0 

Figure 1.15 Behavior of column with initial curvature given by (a) first sinusoidal 
component and (b) second sinusoidal component. 
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critical load. However, it should not be concluded that the imperfection analysis 
always yields the same maximum load as the bifurcation analysis (critical state). 
Counterexamples will be given in Section 4.5. Note also that if lateral disturbing 
loads are large, the column material will fail before the critical load is reached. 

When the amplitude q01 of the first sinusoidal component of the imperfection 
is thought to be zero, the dominant term in Equation 1.5.6 is q2 = qOz/[1 -
(P/4PE)], as plotted in Figure 1.15b (curve 012). Although the assumption that 
any imperfection is exactly zero is physically unreasonable, one might think that 
for this assumption the column would not fail for P < 4PE. Not so, however. At 
P = PE =Per., the solution of the homogeneous differential equation for homoge
neous boundary conditions may be superimposed, and this indicates that at 
P = PE the equilibrium path bifurcates at point 1 shown in Figure 1.15b. Thus 
arbitrary deflection becomes possible at P = PE, and P < PE must be required to 
prevent it. 

These conclusions are, of course, limited to the small-deflection theory. If a 
nonlinear, finite-deflection theory is used, the deflection does not approach 
infinity at P- Per·· Rather, it simply becomes large, and from a practical 
viewpoint usually unacceptably large. 

The foregoing analysis brings to light the importance of the first critical load. 
We are not sure what are the type and value of the initial imperfection; however, 
as long as they are small we do not need to know their precise values since they 
make little difference for the load at which the column fails. To illustrate this 
point better, consider some value of P near the first critical load, say P = 0.95Pcr,· 
Then Equation 1.5.6 becomes 

qt = 20qo1 q2 = 1.31q0z q3 = 1.12qo, q4 = 1.06qo4 • • • (1.5.8) 

We see that the first term of the Fourier series expansion dominates, and the 
other terms are unimportant. So the precise shape of the initial bending moment 
distribution or curvature need not be known closely if the behaviour under 
overload is of interest. This is a comforting finding since the initial imperfections 
are not well known in practice. We may also conclude that for practical purposes 
it is sufficient to consider only the first Fourier series component, that is, an initial 
bending moment or curvature distributed according to a sinusoidal half-wave. It 
then follows that, near the first critical load, 

max z = 1J max Zo max M = 1J max Mo (1.5.9) 
in which 

1 
IJ=-~-:--

1- (PIPer.) 
(1.5.10) 

Factor IJ is called the magnification factor because it indicates the ratio by which 
the initial deflections due to initial bending moments are magnified by the axial 
load. Factor IJ was discovered by Thomas Young (1807). The same magnification 
rule applies to initial curvature, in which case it is called Perry's rule 
(Timoshenko and Gere, 1961, p. 32). 

The magnification factor (Eqs. 1.5.9 and 1.5.10) is utilized in the current 
structural engineering code specifications, including those of the American 
Institute of Steel Construction (AISC) and the American Concrete Institute 
(ACI). 
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Another simple formula was used in codes for the case of equal eccentricities 
e1 = e2 = e at both ends. In this case it is convenient to measure the axial 
coordinate x from the midlength point (Fig. 1.14d). Deflection ordinates z(x) are 
measured from the line of the axial load P. Due to symmetry, A = C = 0 in 
Equation 1.3.6, and z(x) = B cos kx +D. The boundary conditions at x = ±112 
require that z = e and M = - Pe. This yields two equations for B and 
D: B cos (k/12) + D = e and -Elk2B cos (~/2) = -Pe. Their solution yields D = 
0 and B = e sec (kl/2). Noting that kl = n PIPE, we thus obtain the well-known 
secant formula 

maxz =esec(~ ~J (1.5.11) 

It is interesting to check that the asymptotic form of this formula at P- PE is 
equivalent to the use of the magnification factor in Equation 1.5.9 (except for the 
factor nl4). Denoting ; = 1- PIPE, we confirm it by the following 
approximations: 

m:xz =cos(~ ~)=sin(~-~~)=~-~~ 
= ~(1 - \f'f=1) = ~(1 - 1 + ~) = ~(1- ~) 

2 2 2 4 PE 
(1.5.12) 

in which we exploit the fact that ; - 0 and that the argument of the sine is very 
small. 

Although our analysis has been limited to pin-ended columns, similar 
conclusions may be obtained for all types of columns with various end restraints. 

Southwell Plot 

Unavoidable imperfections must be taken into account in evaluating the results of 
buckling tests. Every column has some initial curvature or eccentricity, and so 
z = Zo + w. The initial imperfection is, however, difficult to measure, and one 
needs a method of determining the critical load independently of .zo. Now, which 
quantity is easier to measure, deflection w or ordinate z? Deflection w, since it 
suffices to install a deflection gauge and its change of reading gives w. 
Determination of the deflection ordinate z would require measuring the distance 
from the point on the abstract line of the load axis, which is impractical. 

To determine the critical load, we measure deflection w at various values of 
load P close to Per,· For these values the magnification factor, Equations 1.5.9 and 
1.5.10, should be applicable as a good approximation, regardless of the shape of 
initial imperfections. So we have z = z0 + w = z01[1- (PI Per,)]. Rearranging, we 
get w=(z0 +w)PIPer,, from which 

w 1 Z0 -=-w+
p Per1 Per1 

(1.5.13) 

Denoting Y = w I P, A = 11 Per,, B = .zol Per,, we see that this equation can be 
written as Y = Aw + B, which represents the equation of a straight line of slope A 
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and ¥-intercept Bin the plot of Yversus w. This plot is called the Southwell plot; 
see Figure 1.16 (Southwell, 1932). We measure deflections w at various values of 
load P and plot the values of w/P versus w. We obtain a series of data points 
whose middle portion is essentially straight, except for the scatter of measure
ments. To eliminate the statistical scatter, we pass a straight regression line 
(visually, or better, by using the method of least squares) through the middle 
portion of the data points. The inverse slope of the regression line is the first 
critical load, and the Y -intercept gives information on the magnitude of 
imperfections. 

The data points at the lower left of the Southwell plot normally deviate from 
the regression line upward, since for small PI Per, the higher harmonics in 
Equation 1.5.3 have a nonnegligible effect (note the calculation in Eq. 1.5.8). The 
upper right range of data points normally deviates from the regression line also 
upward, which is usually caused by large deflections at which Equation 1.5.13 
does not apply, as it is limited to the linear small-deflection theory. The smaller 
the imperfection, the longer is the linear range (and the better is the estimate of 
Per} 

The foregoing observations underscore for the experimentalist the importance 
of minimizing imperfections of test columns. If the imperfections are larger, Per, 
will not be approached closely before the deflection becomes so large that either 
the material breaks or the linearized small-deflection theory, on which the 
Southwell plot is based, is no longer valid. 

The Southwell plot is applicable not only to columns, but also to many other 
buckling problems, which we will study later. However, for structures such as 
plates or shells, as well as some frames, significant deviation from the Southwell 
plot is caused by postcritical behavior, which we will study in Chapters 4 and 7. 
The load may start to either increase or decrease soon after the first significant 
lateral deflections near the critical load take place. In these cases of postcritical 
reserve or postcritical loss of carrying capacity, which are especially marked for 
plates and shells (Chap. 7), the Southwell plot deviates from the straight line 
quite significantly at the upper right end of the plot. Such deviations make the 
Southwell plot useless for plates. A modification of the Southwell plot that can 
take these postcritical deflections approximately into account was proposed by 
Spencer and Walker (1975) (see Eq. 7.4.18). For a discussion of other deviations, 

w 

0 
0 

Figure 1.16 Southwell plot for the evaluation of critical loads of imperfect columns. 
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see Roorda (1967). To mitigate the effect of higher harmonics, and thus to extend 
the linear range, Lundquist (1938) proposed a modified plot of (w- w')/(P- P') 
versus (w- w') where (P', w') is a certain suitably chosen "pivot" state (see also 
Taylor and Hirst, 1989, with extensions to imperfection increase due to cyclic 
loading). For further discussions, see also Leicester (1970) (extension to lateral 
buckling of beams, Chap. 6) and Allen and Bulson (1980). 

Problems 

l.S.l Consider a pin-ended column with initial curvature expressed by the first 
term of a Fourier series .zo(x) = q01 sin (nx/1). Find the values of shear forces 
V and Qat the ends (according to their definition in Sec. 1.3). 

1.5.2 Consider a pin-ended column with a lateral load p = const., and find the 
deflec~ion through the first five components of the Fourier series. Do the same 
for the case p = 0 but the axial loads P at the ends have an eccentricity e on 
the same side on the beam. In both cases construct the diagram of PI Pcr

1 

versus the ratio w(l/2)/w0(l/2) where w0(l/2) is the deflection at midlength if 
the axial load P were absent. 

1.5.3 Solve columns whose one end is supported on a hinge that slides on a plane 
of small inclination {3, as shown in Figure 1.17a. An interesting aspect of this 
problem is the postcritical behavior, which is characterized by a decrease of 
the maximum load with increasing imperfection (see Sec. 2.6, Prob. 2.6.7, and 
Sec. 4.5). 

p # 

Figure 1.17 Exercise problems on critical loads (a) of columns with a hinge sliding on an 
inclined support, and (b) of a system with a rigid member. 

1.5.4 Solve P cr1 for the column in Figure 1.17b, with a/1 = 0.05, 0.3, 1, 3, 10, 
1000. 

1.S.S Consider a free-standing column of height h. 
(a) Solve deflections in the presence of M0(x), first sinusoidal M0(x), then 
general. 
(b) Do the same for w0(x ). 
(c) Verify the magnification factor for this column. 

1.5.6 Stochastic imperfection. A hinged column has a sinusoidal initial shape 
whose amplitude a is uncertain and a normal probability distribution with 
mean ii and standard deviation sa. For P = 0.5PE, 0. 7 PE, and 0.9PE, determine 
the mean and standard deviation of max M. 
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1.5.7 Do the same as Problem 1.5.6; however, not only a but also E, P, and 
minimum allowable compressive stress Uat ( < 0) .are uncertain, all with normal 
distributions. The means and standard deviations of a, E, P, and U01 are ii, E, 
P, U01 , S0 , sE, sP, S0 • Formulate the problem and discuss the numerical 
method of calculation of the probability of failure. 

1.6 CODE SPECIFICATIONS FOR BEAM-COLUMNS 

Before World War II, most code specifications were based on the secant formula 
(Eq. 1.5.11). Presently, most codes, including that of the American Institute for 
Steel Construction (AISC) for steel structures and that of the American Concrete 
Institute (ACI) for concrete structures, are based on the magnification factor (Eq. 
1.5.10). A typical problem is the buckling analysis of columns as parts of frame 
structures. The analysis is carried out approximately in two stages. In the first 
stage, called first-order analysis, one solves the frame in the usual manner, 
without regard to buckling. This means that the equilibrium conditions are 
written for the undeftected structure, on the basis of its initial geometry (and the 
so-called P-ll. effects are ignored, ll. being deflection w). The first-order analysis 
yields bending moments called the primary bending moments. In the second stage 
of analysis, called the second-order analysis, the deflections (i.e., the P-ll. effects) 
are taken into account when the equilibrium conditions are written. This 
second-order analysis may be iterated to improve accuracy. In regular practice, 
however, the second-order analysis is replaced, in an approximate sense, by the 
use of the magnification factor in the following form: 

M - Cm M 
max- 1 - (P /Per,) o.,.. (1.6.1) 

in which Mom .. is the maximum primary moment within the column and Cm is 
a coefficient that takes into account the distribution of primary moments along 
the column. For the constant loading moment we already found in Equation 
1.5.12 that Cm = H/4. If the calculated primary moments happen to be negligible, 
a certain minimum value of M0_, corresponding to minimum imperfections, is 
prescribed by some codes (e.g., ACI). 

In most cases, the distribution of bending moments in a column in a frame is 
linear according to the first-order analysis (Fig. 1.14c). We restrict our attention 
to braced frames in which column ends do not move. So we may consider a 
pin-ended column with moments M1 and M2 applied at the ends. The larger end 
moment we denote as M2 , that is, M2 2!:. M1• According to Equation 1.3.6, the 
distribution of bending moments after the axial load P is superimposed on the 
initial bending moment has the form 

M(x) = Elw"(x) = C1 sin kx + C2 cos kx (1.6.2) 

in which C1 and C2 are arbitrary constants. The boundary conditions are M = M1 
at x = 0, and M = M2 at x =I, from which 

C 
_M2-M1coskl .- sin kl 

(1.6.3) 
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We need to find the maximum moment Mmax· To this end, we evaluate 
dMidx = C1k cos kx- C2k sin lex, and set it equal to 0. This yields tan kx = 
CdC2, from which 

. kx C1 
SID =....; 2 2 cl +C2 

C2 
coskx=-y 2 2 cl +C2 

(1.6.4) 

Now, Mmax can occur either within the column length, in which case the above 
equations apply, or at the end, in which case Mmax = M2 • Therefore, substituting 
Equation 1.6.4 into 1.6.2, 

(1.6.5) 

This result should be approximately equivalent to Equation 1.6.1, from which 
we may obtain the expression 

Cm = ( 1 - ~)(max(M2, VC~ + C~)) 
Per. M2 

(1.6.6) 

This is a nondimensional expression which depends on MdM2 and PIPe,.· 
The curves of coefficient Cm versus ratio M11 M2 have been plotted for various 

values of the ratio of PIPer.· This plot, taken from the work of Wang and Salmon 
(1979), is shown in Figure 1.18. This figure also shows the plot of the expression 
Cm = [0.3(M1IM2)

2 + 0.4(MdM2) + 0.3j112
, proposed by Massonet (1959). In or

der to simplify practical analysis, a line approximately representing the bundle of 
the Cm curves has been drawn (see Fig, 1.18). This line is described by the 
following simple formula: 

Cm=0.6+0.4M1 {sl.O 
M2 ~0.4 

(1.6.7) 

in which the inequalities mean that the value of Cm should be taken as 0.4 if it 
comes out to be less than 0.4, and as 1.0 if it comes out to be greater than 1.0. 
This last equation is now used in the current AISC (1978, -1986) and ACI (1977) 
codes for columns braced against lateral sway. It should be noted that the 

Cm 

1.0 

08 

06 

04 ------- -----

02 

+1.0 +0.5 

~Jp Mt 1 M2 ~M, 
i!M• 

p 

-0.5 -1.0 

Figure 1.18 Equivalent-moment factor Cm for beam with unequal end moments. (After C. 
Massonet, 1959; see also Wang and Salmon, 1979.) 



BUCKLING OF ELASnC COLUMNS BY EQUILIBRIUM ANALYSIS 29 

limitation Cm ~ 0.4 applies for a range of values Mtf M2 in which the initial double 
curvature of the beam reverses on approach to critical load to a single curvature 
(Fig. 1.15b). In that case the concept of magnification factor does not give a good 
approximation. 

For the relatively infrequent cases when primary bending moments M0(x) are 
caused by a lateral load on the column, the AISC and ACI codes prescribe 
Cm=l. 

Equation 1.6. 7 is permitted only for braced frames, since we assumed the 
column ends do not move. Consider now that one column end moves (Fig. 
1.19a); this is typical of unbraced frames, which buckle with a sidesway. For the 
column base, consider a hinged support, which is the most unfavorable 
assumption yielding the maximum effective length L. The primary bending 
moment before applying the axial load Pis M0(x) (Fig. 1.19a). Application of 
axial load P would cause an additional (second-order) bending moment Pw so 
that the total moment is M = M0 + Pw. According to the magnification factor, 
w = w01[1- (P1Pcr

1
)], in which w0 is the deflection due to applied lateral load 

alone, that is, for P = 0 (primary deflection). We want to express the final 
moment in the form of Equation 1.6.1, and so we have the condition 

Pwo ( Cm ) 
Mo + 1 - PIP cr

1 
= Mo 1 - PI Per

1 

(1.6.8) 

Solving this equation we get 

Cm = 1- (1- Pcr
1 

Wo)(_!_) 
Mo Perl 

(1.6.9) 

which is valid for all columns with one end hinged and an arbitrary support at the 
other end. Equation 1.6.9 is generally applicable only for columns which initially 

a) 
• ,, ~ 

1 \AM w. dw 

,~.(Q 

d) II' p p 

p 

Figure 1.19 Primary bending caused by lateral load. 
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bend in a single curvature. For initial double curvature the magnification factor 
does not work well. 

Consider now in particular that there is no load between column ends, and 
primary bending is caused by lateral load V applied at the column top (Fig. 
1.19a). Then the maximum of M0 occurs at the column top, M0 =VI. The primary 
deflection at the column top is the deflection corresponding to the triangular 
bending moment distribution shown in Figure 1.19a, and by virtual work or the 
moment-area theorem, we have w0 = Vl3I3El. Substitution into Equation 1.6.9 
then yields the equation 

Cm = 1- (1- n
2

)( ~) = 1-0.18~ (1.6.10) 
12 Per1 Per1 

which is suggested in sec. 1.6.1 of the AISC Commentary. ACI is more 
conservative, requiring Cm = 1 for any load P on sway columns. On the other 
hand, AISC specification 1.6.1 permits using Cm = 0.85, which is unconservative 
except for the case when PI Per

1 
> ~. that is, the range in which buckling is 

important. 
As for columns subjected to lateral loads (Fig. 1.19b, c), one may assume the 

most unfavorable case of hinged supports. Then our starting equation M = 
M0 + Pw again applies, and with an identical derivation Cm is again found to be 
given by Equation 1.6.10. 

To sum up, the practical analysis procedure consists of the following steps: (1) 
analyze the primary bending moments M0 by the first-order theory, (2) find the 
first critical load Per1 for the column in the perfect structure (we shall complete the 
discussion of this in the next chapter), and (3) apply the magnification factor with 
the correction coefficient Cm. 

Many aspects of code specifications have to do with inelastic material 
behavior. It is not possible to do them justice until the basic theory of inelastic 
buckling is presented. See Sections 8.4, 8.5, and 10.3. 

Problems 

1.6.1 Solve the cases of Figure 1.19a-c directly from the differential equation (for 
the distributed load assume p = const.). 

1.6.2 Derive the exact value of Cm for a pinned column with a parabolic p(x) and 
various values of PI Per· 

1.6.3 Do the same as Problem 1.6.2 but for a fixed-fixed column. 
1.6.4 Do the same as Problem 1.6.2 but for a uniform load eccentricity e. 
1.6.5 Derive expressions similar to Equations 1.6.8 and 1.6.9 for the column of 

Figure 1.19a for a distributed lateral load p = const. (Fig. 1.19d). 
1.6.6 Consider the case of a column with nonrotating ends but sidesway (Fig. 

1.19e). Derive expressions similar to Equations 1.6.8 and 1.6.9 for the cases 
V = const. and p = const. Solve directly from the differential equations. 

1.7 EFFECT OF SHEAR AND SANDWICH BEAMS 

When a column buckles, the axial load causes not only bending moments in the 
cross sections, but also shear forces. The deformations due to shear forces are 
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neglected in the classical bending theory, since the cross sections are assumed to 
remain normal to the deflected beam axis. This assumption is usually adequate; 
however, there are some special cases when it is not. 

Pin-Ended Columns 

The shear deformations can be taken into account in a generalization of the 
classical bending theory called Timoshenko beam theory. In this theory (whose 
generalizations for plates and sandwich plates were made by Reissner, Mindlin, 
and others), the assumption that the plane cross sections remain normal to the 
deflected beam axis is relaxed, that is, the slope 8 of the deflected beam axis is no 
longer required to be equal to the rotation 1/J of the cross section (see Fig. 1.20a). 
The difference of these two rotations is the shear angle y, which may be 
expressed as 

Q 
y=8-1jJ=

GAo 
(1.7.1) 

in which Q represents the shear force that is normal to the deflected beam axis 
and rotates as the beam deflects (introduced in Sec. 1.3). 

Furthermore, G is the elastic shear modulus, and A 0 = A/m, where A is the 
area of the cross section and m is the shear correction coefficient. This coefficient 
takes into account the nonuniform distribution of the shear stresses throughout 
the cross section (m would equal 1 if this distribution were uniform). As shown in 
mechanics of materials textbooks, for a rectangular cross section m = 1. 2, for a 
solid circular cross section m = 1.11, for a thin-walled tube m = 1. 65, and for an 
1-beam bent in the plane of the web m =A/A..,, where Aw is the area of the web 
(Timoshenko and Goodier, 1973; Dym and Shames, 1973). 

The axial normal strains are given as e = - z'ljJ' since 1jJ' dx represents a 
relative rotation of two cross sections lying a distance dx apart. Substituting this 

(J 
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Figure 1.20 (a) Beam element with shear deformation, (b) Influence of shear deformation 
on critical stress. 
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into the bending moment expression M =-J Eez dA, one obtains 

M 
1J1' =

EI 
(1.7.2) 

We have already shown (Eq. 1.3.4) that Q = -M'. Inserting this and 8 = w' 
into Equation 1. 7.1, we have 

M' 
w'-1jJ=--

GAo 
(1.7.3) 

This equation and Equation 1.7.2 represent two basic differential equations of the 
problem. Differentiating the last relation and substituting Equation 1.7.2, 
variable 1J1 can be eliminated and it follows that 

M ( M')' 
w"= EI+ GA

0 
(1.7.4) 

This equation means that the total curvature w" is a sum of the flexural curvature 
and the curvature due to shear. This fact may, alternatively, be introduced as the 
starting assumption. 

Consider now a pin-ended column. In this case we have M = -Pw, and 
Equation 1.7.4 becomes 

, (Pw')' -Pw w = -- +--
GAo EI 

(1.7.5) 

Furthermore, if the bending rigidity EI, the shear rigidity GA0 , and the axial load 
are constant, Equation 1.7.5 yields 

2 p 
where k = E/(1- P/GAo) (1.7.6) 

The boundary conditions are w = 0 at x = 0 and x =I. We see that the differential 
equation and the boundary conditions are the same as for buckling without shear 
(Sec. 1.2). The general solution is w =A sin kx + B cos kx, and the boundary 
conditions require that B = 0 and kl = nn (n = 1, 2, ... ) if A should be nonzero. 
Thus k 2 = (nn/1)2

• If this is substituted into Equation 1.7.6, the resulting equation 
may be solved for P, which furnishes the formula 

P~. P~.n 
Pcrn = 1 + (P~.)GA0) = 1 + n2m[n/(l/r))2(E/G) 

(1.7.7) 

due to Engesser (1889, 1891). Here ~ •• = n2PE =critical load when bending is 
neglected. We see that again the smallest critical load occurs for n = 1. When 
slenderness, 1/r, is sufficiently large, the shear strains become negligible, and the 
classical Euler solution is recovered. 

From Equation 1.7.7 we observe that shear strains decrease the critical load. 
The smaller the ratio G/mE, the larger is the shear effect in buckling. Also, the 
smaller the slenderness, 1/r, the larger is the shear effect. Therefore, the shear 
correction becomes significant for short columns (smalll/r), but only if the yield 
stress /y is so high that the short column still fails due to buckling rather than 
yield. The critical stress for n = 1 is, from Equation 1.7.7, ocr,= o~J(1 + 
~,m/G) in which ~ •• = ~.JA = n 2E/(l/r)2 =critical stress without the effect of 
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shear. This equation yields the plot in Figure 1.20b. We note that as the 
slenderness tends to zero, the critical stress tends to a finite value while with the 
neglect of shear it tends to infinity. 

Evaluating the ratio /y/ E for typical metals, (e.g., 0.002 for structural steel), 
and noting that the largest possible value of oe is [y, we find that the correction 
due to shear is generally negligible ( < 1 percent). So it is for reinforced concrete 
columns. However, for compression members made of an orthotropic material 
that has a high elastic modulus in the axial direction and a low shear modulus, the 
shear correction can be quite large. This is often the case for fiber composites 
based on a polymer matrix. Other practical cases in which the shear correction is 
important are the built-up columns and tall building frames that will be discussed 
later (Sees. 2.7 and 2.9). 

Generalization 

Our solution in Equation 1. 7.5 is based on introducing M = - Pw, which is valid 
only for pin-ended columns. In general, we must express M from Equation 1.7.2. 
Then, substituting this into the differential equilibrium equations (Eq. 1.3.3) and 
into Equation 1.7.3, we obtain the following equilibrium equations: 

(Eltp')" + (Pw')' = p 

(E/tp')' + GA0(w' -tp) = 0 
(1.7.8) 

which correspond to what is called Timoshenko beam theory (Timoshenko, 
1921). Equation 1.7.8 represents a system of two simultaneous linear ordinary 
differential equations for functions w(x) and tp(x). If EI, GA0 , and P are all 
constant, the general solution for p = 0 can be sought in the form w = CeAx, 
1jJ = DeAx. Substitution into Equation 1.7.8 yields a system of two linear equations 
for C and D, which are homogeneous if p = 0. They have a solution if and only if 
their determinant vanishes. This represents a characteristic equation which yields 
.A?= -k2 where e is again given by Equation 1.7.6. The general solution for 
p=Onowis 

1J1 = C2 - {3C3k sin kx + {3C4k cos kx 

(1.7.9) 

with {3 = 1 - PI GA0 • The boundary conditions are w = 0, 1jJ = 0 for a fixed end, 
w = 0, tp' = 0 for a hinged end, and tp' = 0, tp" + pew• = 0 for a free end. The 
solutions show that Equation 1. 7. 7 for n = 1 (in which ~.. is no longer equal 
to n2Pe) is still valid for all the situations in which V = 0 for all x (Corradi, 
1978; see also Ziegler, 1968, p. 51). In particular this is so for fixed and free 
standing coiunms (as well as wiumns with sliding restraints; Fig. 1.7f). For a 
fixed-hinged column, however, the critical load is given by the equation {Jkl = 
tan kl (with k defined by Eq. 1.7.6). Since {3 < 1, the critical load is smaller 
than that predicted by Equation 1. 7. 7, and the difference from Equation 1. 7. 7 
is about the same as that between Equation 1.7.7 and Per• for no shear (see 
Prob. 1. 7 .3). 

All the foregoing formulations rest on Equation 1. 7.1 in which the shear angle 
y is intuitively written as a function of the variable direction shear force Q rather 
than the fixed shear direction force V. That this must indeed be so can be 
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rigorously shown on the basis of an energy formulation with finite strain, utilizing 
the calculus of variations (an approach which will be discussed in Sec. 11.6). In 
such an analysis, it can be shown that our use of shear force Q normal to the 
deflection curve is associated with the use of the classical Lagrangian (or Green's) 
finite-strain tensor. Other definitions of the finite-strain tensor are possible, and if 
they are used to calculate the strain energy, the resulting differential equations 
differ somewhat from Equation 1.7.8 (see, e.g. Eq. 11.6.11 proposed by Haringx, 
1942, for helical springs), and Q has a different meaning (e.g., it could represent 
a shear force inclined at angle 1J1, i.e., in the direction of the rotated cross-section 
plane). Careful analysis shows, however, that the various possible definitions of 
finite strain as well as Q correspond to different definitions of elastic moduli E 
and Gin finite strain, and that all these formulations are physically equivalent (as 
proven in Bafant, 1971). Distinctions among such approaches are unimportant if 
the strains are small. 

Sandwich Beams and Panels 

The shear beam theory can also be used to analyze cylindrical bending of 
sandwich beams or panels, whose applications are especially important in the 
aerospace industry, and are presently growing in structural engineering as well. 
Sandwich beams are composite beams, which consist of a soft core of thickness c 
(Fig. 1.21), for example, a hardened polymeric foam or honeycomb, bonded to 
stiff faces (skins) of thicknesses f. The contribution of the longitudinal normal 
stresses in the core is negligible compared with those in the skins. Consequently, 
the shear stress is nearly uniform through the thickness of the core. Since the 
skins are thin, the shear stresses in the core carry nearly all the shear force, and 
the shear deformation of the core is very important. The skins alone behave as 
ordinary beams whose cross sections remain normal, but the cross section of the 
core does not remain normal. 

Rotation 1J1 (Fig. 1.21) is defined by longitudinal displacements of the skin 
centroids, which slightly differs from the rotation 1Jic of the core cross section. 
Writing !(c + f)y =!ere where Yc =shear strain in the core and y =average shear 
strain, we have, per unit width of plate (see Fig. 1.21), Q!Gcc = Yc = (1 + 
f/c)y = (1 + f/c)(8- 1/1), that is, 

a) 
b 

! l ,· 
Still okino lleceol 

~Nf 

F1pre 1.21 Sandwich-beam deformation under bending and shear. 

(1.7.10) 



BUCKLING OF ELASTIC COLUMNS BY EQUILIBRIUM ANALYSIS 35 

where Ge = elastic shear modulus of the core. The bending moment per unit 
width of the plate is M = NJ<c +f)+ 2M1 where N1 = (E/f)!(c + f)tp' and 
M1 = f-J3E/w". So 

(1.7.11) 

where E/ = E11(1- vj) =elastic modulus of the faces (skins) for uniaxial strain 
(v1 =Poisson ratio). E/ must be used instead of E1 since in a wide panel the 
lateral strains Ey must be zero, or else the bending could not be cylindrical, and 
curvature would arise also in the lateral direction y (cf. Chap. 7). 

The differential equation for w(x) is obtained by differentiating Equation 
1.7.10 where Q = -M' and 0 = w', expressing from this tp' and substituting it 
into Equation 1.7.11. The result, for constant cross section, is identical to 
Equation 1.7.4 in which EI=EJ<l1 +11) and GAo=GcAJ(l+I11I!)· So the 
solution is similar. If the faces are thin, that is, f « c(Ir-~ 0), Equations 1. 7.1 and 
1. 7.2 apply directly, with GA0 = Gee, EI = E/fc212. 

Problems 

1.7.1 Derive in detail Equation 1.7.9 giving the general solution of Equations 
1.7.8 (with p = 0). 

1.7.2 Using Equation 1.7.9, show that Equation 1.7.7 still gives correct Per1 for 
(a) a fixed column, (b) a free-standing column, and (c) a column with a sliding 
restraint (Fig. 1. 7f). 

1.7.3 For a fixed-hinged beam, the expression for Per
1 

that takes shear into 
account differs from Equation 1. 7. 7. Calculate Pcr

1 
for {3 = 1 - PI GA0 = 0. 9, 

0.8, 0.7, 0.6, 0.5, using the result of Problem 1.7.1. Hint: The graphic solution 
illustrated in Figure 1.8 is still valid, although the straight line now has slope 
{3. 

1.7.4 Solve the critical axial load (per unit width) of a simply supported sandwich 
panel in cylindrical bending (Fig. 1.21a). Express the results in a nondimen
sional form and discuss the effects of Gel E1 and elf. 

1.8 PRESSURIZED PIPES AND PRESTRESSED COLUMNS 

Pressurized Pipes 

It is instructive to consider a variant to the column problem-a pressurized pipe. 
We consider, for example, the steel pipes shown in Figure 1.22a, b filled with 
water and loaded axially by a frictionless piston, with applied force, P = phA 
where Ph = hydrostatic pressure in water and A = area of the interior cross section 
of the pipe. At first thought, one is tempted to say that this column will never 
buckle since the pipe carries no axial stresses due to P. Indeed, patent 
applications for such columns have been submitted. How wonderful would that 
be! We could make this column, say lOcm in diameter, lOOm long, support on it 
a building, and it would never buckle. 
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a) b) 

c) d) 

r ·I 
e) f) 

Figure 1.22 Buckling of hydraulic column supports and pressurized pipes. 

In reality these columns do buckle, and the critical value of the axial force on 
the piston is exactly the same as it is when the pipe is empty and an axial force is 
applied to the pipe. This fact can be demonstrated in various ways. 

The easiest demonstration is to consider the differential equilibrium conditions 
for the composite of the pipe and the fluid. The forces acting on an element of 
this composite of length dx are sketched in Figure 1.22c. Taking the conditions of 
equilibrium of horizontal forces and of moments above the center of the lower 
end cross section, we obtain the differential equilibrium equations V' = 0, 
M' + phAw' =-V, which are the same as Equations 1.3.2 we deduced before 
provided we set P = phA. Then, introducing M = Elw" and eliminating V, we 
obtain the differential equation E/w1v + phAw" = 0, which implies that for a pipe 
with pin-ended supports (Fig. 1.22b) the critical pressure Per in water is given by 
PcrA = Ebr2/12. 

As another demonstration, we may consider the pipe separately from water 
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(Fig. 1.22d). The pipe has no axial load, but it is loaded laterally by the pressure 
of water. Now, if the pipe deflects as shown in Figure 1.22d the area of the 
internal wall of the pipe on the left of the deflected axis becomes larger than the 
area on the right, causing a net resultant p per unit length applied radially from 
water to the pipe. The value of this resultant may be calculated most easily by 
considering equilibrium of a slice of the water column (without steel walls) of 
length ds (Fig. 1.22d). The condition of equilibrium of radial forces is p, ds
Ph dA da = 0, with da = ds I p, in which p =curvature radius of the center line of 
the column of water. This yields the well-known expression for the radial force 
p, = phA/ p, which is, for small rotations, equal in magnitude to the lateral 
distributed force applied on the steel pipe of bending stiffness El. The bending 
equation for the pipe, without water, is Elw1v =p, and substitutingp = -phA/p, 
where 1/p = w" (for a positive curvature, p is negative), we obtain again the 
governing equation Elw1v + phAw" = 0, which is identical to the beam column 
equation if phA = P. 

Based on these considerations, it is clear that, for example, the fixed-end pipe 
of length I, connecting two rigid and rigidly supported tanks (Fig. 1.22e), can 
buckle, and if the Poisson ratio v of pipe material is 0, the buckling pressure Per 
at the level of the pipe satisfies the equation PerA = 4Ebr2/l2

• For nonzero v, one 
must note that pressurization of the pipe generates axial force N, = 2vpA in the 
pipe. Thus the critical pressure p must be solved from the relation PerA-
2vperA = 4Ebr2/F. 

By contrast, if the system of the two tanks with the pipe is statically 
determinate, for example, when one of the tanks can freely displace laterally on 
rollers, no pressure can cause the pipe to buckle. The reason is that in this case 
the steel pipe does not have zero axial force but transmits an axial tensile force 
that is exactly equal in magnitude and opposite to the force transmitted by the 
column of water inside the pipe, with the consequence that the net resulting axial 
force in the composite of pipe and water is exactly zero. 

Column supports of the type shown in Figure 1.22a, b are actually used in 
mining, particularly, in very deep gold mines in the Transvaal. (They are very 
stocky, operating far below the critical load, and are provided with valves which 
leak liquid when a certain limit pressure is exceeded, thus endowing the column 
with an infinite yield plateau.) 

Prestressed Columns 

A situation that is analogous and mathematically equivalent to a pressurized pipe 
arises in a prestressed column (Fig. 1.23). The prestressed tendon in a prestressed 
concrete column is analogous to the pressurized column of water in a pipe, except 
that the force in it is tensile rather than compressive, and the reaction of the 
tendon is always applied to the concrete part of the column. At first it might seem 
that the axial compressive force F applied on the concrete part of the column by 
the prestressing anchors at the end of the column would cause buckling when 
F =Per,, for example, when F = Ebr2 /12 for a pin-ended column. Not so, 
however. The prestressing force F has in fact no effect on the column buckling, 
and the prestressed column buckles only due to its externally applied axial load P 
(however, this is not true for inelastic columns; see Sec. 8.5). This is obvious if 
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p p 

Fipre 1.23 Buckling of prestressed columns. 

one realizes that in the composite cross section of tendon and concrete, the 
tensile force in the tendon, F, is exactly canceled by the compressive force -Fin 
the concrete part of the cross section, with the result that the net axial force in the 
composite cross section is zero. 

Another way to look at the prestressed column problem is to consider the 
concrete part of the column separately from the tendon, in which case the 
concrete part is loaded by axial force P + F at the ends, and also by the radial 
distributed forces p, = F I p applied from the tendon onto the concrete due to 
column curvature 1/p = w"(x) as the column deflects (Fig. 1.23). The differential 
equation for the deflections w(x) of the concrete part of the column is 
(Elw")" + (P + F)w" = p in which P is the externally applied axial force. Now, 
for small rotations, p = -p, = Fw" (since for a negative curvature pis negative). 
Upon substitution into the preceding differential equation one thus obtains 
(Elw")" + Pw" = 0, which is the same as the differential equation of a column 
loaded only by axial load P, and is independent of the prestressing force F. 

Our preceding analysis is contingent upon the assumption that the tendon is 
snugly embedded in concrete without any free play. In post-tensioning construc
tion this is achieved by grouting. If a post-tensioned tendon is left ungrouted, 
then the axial reaction from the tendon anchors may cause small buckling 
deflections. However, as the deflection grows, the tendon comes in contact with 
concrete, and a radial distributed force develops, limiting further increase of 
deflections. 

Problems 

1.8.1 Discuss the behavior of a concrete hinged column which is prestressed by a 
straight tendon of constant eccentricity e. The prestress force is F, and a 
center axial load P is applied on the column. 

1.8.2 Discuss the behavior of a simply supported pipe with initial curvature 
w0(x ). Axial load P is applied on a piston that has constant frictional force P1. 

1.8.3 Analyze a prestressed free-standing column--<alculate the lateral reactions 
of the tendon, and from them show that the column cannot buckle. 

1.9 LARGE DEFLECTIONS 

All our considerations so far have been limited to the linearized, small-deflection 
theory (second-order theory), which applies only for infinitely small deformations 
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from an initial stressed state of the structure. This is sufficient for most practical 
purposes in structural engineering; nevertheless, a full understanding of the 
column behavior calls for a nonlinear finite-deflection theory. Although the initial 
nonlinear behavior is more easily determined by an approximate energy approach 
(see Sec. 5.9), an exact equilibrium solution is possible for some columns, and we 
will demonstrate it now. 

Solution of Rotations by Elliptic Integrals (Elastica) 

Consider again the pin-ended column shown in Figure 1.24. We assume that the 
length of the deflected centroidal axis of the column remains the same, I. Instead 
of deflection w it is more convenient to work with the slope angle 0. Since 
ds = p d(J where s is the length coordinate measured from the column end along 
the deflection curve and p is the curvature radius, the curvature is given as 
1lp = d8lds. Now using primes to denote derivatives with regard to s rather than 
x, we have M = E/8'. This must equal -P(w +e) according to the equilibrium 
condition, e representing the load eccentricity at the end (Fig. 1.24). 
Differentiating with regard to s and noting that dw Ids = sin 8, we obtain for the 
function 8(s) the differential equation 

E/8"= -Psin 8 (1.9.1) 

It so happens that this nonlinear second-order differential equation can be 
easily solved. The solution we are going to present was given in 1859 by Kirchhoff 
after he obtained Equation 1.9.1 and noticed that it is mathematically identical to 
the equation that describes large oscillations of a pendulum, which was solved 
earlier by Lagrange (this was called a kinetic analogy of columns; Love, 1927). 
We assume EI to be constant. It is expedient to set sin 8 = 2 sin (812) cos (812), 
multiply Equation 1.9.1 by 8', and then, upon noting that 8'8"=!(8'2

)', and 
that [sin2 (812)]' = 8' sin (812) cos (812), we may integrate Equation 1.9.1 to get 

(1.9.2) 

in which c is an undetermined integration constant. Denoting as 00 the slope at 
the end of the beam (s = 0), and noting that 8~ = M I El = - Pe I El, we obtain by 

® iP.W' 
I z 

_Ll -
d~ 

L 

Figure 1.24 Beam-column under large deflections. 



40 ELASTIC THEORIES 

substitution into Equation 1.9.2 

2 1 (Pe)2 
• 2 00 :rr

2 (e)2
( P) . 2 00 

c = 4k2 El +SID 2 = 4 I PE +SID 2 (1.9.3) 

Taking a square root of Equation 1.9.2 and separating the variables, we get 

±dO = 2k ds = 2:rr {P ds (1. 9.4) 
Vc2 -sin2 (0/2) I 'JJ>;. 

The plus and minus signs distinguish between buckling to the left and to the right. 
We will consider only the minus sign. It is convenient to introduce in Equation 
1.9.4 the substitution 

. 0 . 
sm 2=c SID cp dO= 2c cos cp dcp = 2c cos cp dcp 

cos (0/2) V1- c2 sin2 cp 
(1.9.5) 

The integral of Equation 1.9.4 yields a functional relation between the slope of 
the deflected column and the length coordinate s, which completely defines the 
shape of the column, a curve known as the elastica. We are interested only in the 
end rotation, and we consider from now on only the special case of centric load, 
e = 0 (even though the solution is possible for any e). Then c =sin (00/2), which 
yields sin C/>0 = 1 or C/>0 = :rr/2 as the integration limit corresponding to the end of 
the beam. Thus, integration of Equation 1.9.4 from the end of the beam (s = 0, 
cp = cp0) to midlength (s = 1/2, 0 = cp = 0) yields 

( . Oo) c=s1D 2 (1.9.6) 

This integral is recognized as the complete elliptic integral of the first kind, tables 
of which are available. Equation 1.9.6 represents a relation between P and 00 • 

Consider now the case of small end rotation 00 • Then c2 sin2 cp « 1, and so 
(1- c2 sin2 cp )-112 = 1 + k 2 sin2 cp. Upon substitution in Equation 1.9.6 we can 
easily integrate, obtaining for the integral the value (1 + c2/4):rr/2. Substituting 
this into Equation 1.9.6, setting c =sin ( 00/2) = 00/2, and neglecting higher-order 
terms in 00/2, we obtain from Equation 1.9.6 the asymptotic relation 

P=PE(1 + ~~) (1. 9. 7) 

which is valid when 00 is not too large (for 00 < 55° the error in Pis <1 percent). 
For 00 -+ 0 we have P = PE· This means that deflected equilibrium shapes at very 
small 00 are possible if P = PE. This agrees with the results of linearized theory 
(Eq. 1.3.5). The error in P for the linearized theory is less than 1 percent if 
00 < 16°. 

We conclude further from Equation 1.9.7 that with increasing deflection the 
load P increases. This is an important feature, which contrasts with some other 
buckling problems (especially shells) for which the load may decrease with 
increasing buckling deflections (see Sees. 2.6, 4.5, and 7.7). (The latter behavior 
requires the use of larger safety factors in design.) 
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Deftedions and Shortening 

Let us now calculate deflections w and the axial coordinates x' of points whose 
coordinate was x in the initial undeflected (straight) state. To this end, we 
multiply Equation 1.9.4 either by sin 8 or by (1 +cos 8). Then, noting that 
sin 8 ds = dw, (1 +cos 0) ds = ds + dt', sin 8 = 2 sin (8/2) cos (8/2), and 1 + 
cos 0 = 2[1- sin2 (8/2)], and taking only the minus sign in Equation 1.9.4, we get 

_ 2 sin (8/2) cos (8/2) d8 = 2k dw _ 2[1- sin
2 

(8/2)] d8 = 2k(ds +cit') 

w-~<~~ w-~<~~ 

Making again the substitution according to Equation 1.9.5, we obtain 

dw =- 2c sin 4>d4> 
k 

(1.9.8) 

(1.9.9) 

Integration between the limits 4>0 and 4>, which correspond to 00 and 0, yields w 
and x 'at any point of the column as functions of s and 8. Integration between the 
limits 4> = 0 and t/>0 = n/2 (fore= 0) then gives 

Wmax =~I .Jfj I' = 1(; .Jfj L'12 

V1 - c2 sin2 4> dtJ> - 1) (1. 9.10) 

in which Wmax is the maximum column deflection, which occurs at midlength, and 
I' is the length of the chord of the deflected column, I being the length of the 
deflection curve. We recognize the integral in Equation 1.9.10 to be the complete 
elliptic integral of the second kind. 

Consider again that the end slope 80 is small. Then, noting that (1-
c2 sin2 4> )112 = 1 - ~c2 sin2 4>, we get from Equations 1.9.10 the approximations 

Wmax = 8o; .Jfj U = 1-/' = 21[ 1- (1- 1~ 8~) .Jfj] (1.9.11) 

in which u represents the magnitude of axial displacement under the load P. 
From Equations 1. 9.11, 80 = 1CWmaxll, and substituting this into Equation 1. 9. 7, 
we finally obtain the asymptotic relation 

(1.9.12) 

The diagram of axial load versus maximum lateral displacement according to 
Equation 1.9.12 is plotted in Figure 1.25a. The figure shows also the exact 
solution obtained with the help of elliptic integrals. The approximate solution is 
good for maximum deflections up to 0.2 of column length, which is sufficient for 
all practical purposes. Furthermore, we note that the increase of axial load over 
P cr

1 
is less than 2 percent for deflections up to 0.11, and this is why the axial load 

after the critical state can be considered approximately constant for most practical 
purposes. Moreover, substituting Equation 1. 9.12 into the second equation in 
Equations 1.9.11 along with 80 = 1rWmaxll, we obtain 

(1.9.13) 
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Figure 1.25 Load versus lateral displacement for perfect and imperfect columns. 

It is interesting to note that this asymptotic relation for not too large 
deflections is exactly the same as if the deflection curve were sinusoidal, with a 
constant length of arc. Furthermore, expressing w~ax and substituting it in 
Equation 1.9.12, we obtain for not too large deflections of an inextensible column 
the asymptotic relation (Fig. 1.26a) 

or (1.9.14) 

a) b) 

u/2 (u+uo)/f 

c) d) 

(U+Uol/f 

Figure 1.26 Load versus axial displacement for (a) inextensible perfect columns, (b, c) 
extensible perfect columns, and (d) extensible imperfect columns. 
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where the stresses refer to the centroid at column midlength and E = u/1. So we 
see that after the bifurcation of equilibrium path, the axial load is approximately 
proportional to the axial displacement. (The present derivation of Eq. 1.9.14 was 
given by Bafant, 1985.) In Section 5.9, Equation 1.9.14 as well as Equation 1.9.7 
will be generalized to imperfect columns. 

Equation 1.9.14 holds true under the assumption of an inextensible column. 
To take into account the elastic strain increment e at neutral axis, we need to 
superimpose E = ( u - Ucr)/ E upon the strain E = u/ l = 2( PI Per - 1), obtained by 
solving Equation 1. 9 .14. This yields u = 21/l.P I P + l ll.P I EA, with ll.P = P - Per· 
Setting ll.P I P = ll.P I Per (for smallll.P « P), and solving this equation for ll.P, we 
then obtain the approximate load-shortening relation 

Per (") 
p =Per+ 2 + Per/ EA l or 

(1.9.15) 

which is valid for not too large deflections. In this relation, the axial load-point 
displacement u is measured from the critical state (that is, u = 0 at P =Per). The 
total axial displacement is u = u + u0 , where u0 = Perl! EA. 

According to Equation 1.9.15, the diagram of axial load versus load-point 
axial displacement, as well as the axial stress-strain diagram, is bilinear, as shown 
in Figure 1.26b, c. 

The axial stress-strain diagram of a perfect column, as shown in Figure 1.26c, 
looks the same as the stress-strain diagram for an elastic-plastic material. 
However, there is one crucial difference. For unloading, the elastic column 
retraces back the same path as it traced on previous loading (Fig. 1.26b), while an 
elastic-plastic material unloads along a different path. Of course, in an elastic 
material the deformations must be perfectly reversible even if the response 
diagram of the structure is nonlinear. 

Thus the stress-strain diagram of a column that buckles is approximately 
bilinear, with slope E (Young's modulus) for us Ucr, and slope ~Uer for P >Per 
and the load-axial displacement diagram slope ~Peril= ~tr2EJ/l3• These slopes 
represent the incremental (tangential) stiffnesses of the buckling column. 

It may seem surprising that the postcritical dependence of the axial load on 
the axial displacement may be linear. That this is indeed possible can be 
intuitively understood by noting that both the axial load change and the axial 
displacement are proportional to the square of the maximum deflection. 

Discussion of Results 

For normal columns, the decrease of the incremental stiffness after the critical 
state is tremendous. The ratio of the stiffness before and after buckling is 2E I ue., 
which is always larger than 2Eifu where fu =strength (ultimate stress); thus, for 
steels with yield limit f, = fu = 40,000 psi and Young's modulus E = 30 x lef psi, 
the stiffness decreases over 1500 times as the critical state is exceeded, while for a 
concrete column with fu = 5000 psi and E = 4 x 106

, the stiffness decreases over 
1600 times. For a fiber-reinforced polymer, with fu = 40,000 psi and E = 
700,000 psi, the stiffness decreases over 35 times. Nevertheless, the incremental 
stiffness after the critical state remains positive, which contrasts with some other 
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structures in which the incremental stiffness after the critical state may become 
negative (e.g., shells; Sees. 7. 7, 2.6, and 4.5). This indicates that the pin-ended 
column has a postcritical reserve strength. 

A similar solution is possible for columns with other end supports. However, 
the solutions for other types of supports can be obtained directly from the present 
solution by a procedure similar to the effective length approach as described for 
small deflections (Sec. 1.4). Thus the elastica curve for a free-standing column 
(Fig. 1.27b) is one-half of the curve for the pin-ended column (Fig. 1.27a) with 
the same load. The curve for a fixed-fixed column is obtained by adding to 
segment 12 segments 41 and 25 which are identical to 13 or 32 but inverted. The 
curve for a column with sliding ends restrained against rotation (curve 325 in Fig. 
1.27d) is obtained as one-half of curve 435 (Fig. 1.27c) for a fixed-fixed column. 
The curve for a fixed-hinged column (126 in Fig. 1.27e) is obtained by finding 
point 6 at which the tangent 16 passes through point 1 in Figure 1.27c. The 
present solution, however, cannot be applied to certain elastically restrained 
columns of columns within a frame. 

Real columns are always imperfect. Based on Equations 1.9.3 and 1.9.4, one 
can obtain an exact solution for nonzero e or an approximate (asymptotic) 
second-order solution by a similar procedure as just shown (Renzulli, 1961). The 
curves of load versus maximum lateral deflection or load versus axial displace
ment, which are obtained for various initial load eccentricities e, are illustrated in 
Figures 1.25b and 1.26d. 

The approximate large-deflection behavior can also be solved by integrating a 
differential equation in terms of w rather than 6. To this end the curvature 
expansion from Equation 1.1.2 may be introduced (Thompson and Hunt, 1973; 
Dym and Shames, 1973). However, this approach is considerably more involved. 

Our analysis leads to several important observations: 

1. In contrast to the linearized small-deflection theory, the deflection does not 
tend to infinity at Per but remains bounded at any load. 

2. After the critical state, the load increases as the deflection increases. Thus 
columns possess a postcritical reserve. This contrasts with buckling of some 
other structures, especially shells, for which the load decreases after the 
critical state. 

3. The deviations from the linearized small-deflection theory do not become 
significant until the deflections become quite large. 

Figure 1.27 Elastica curves for beams with various end supports. 
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4. Normal structural columns would suffer material yielding or fracture well 
before the finite-deflection theory becomes important, and so the linear
ized small-deflection theory suffices for design. 

Knowledge of postcritical behavior is important for evaluating the effect of 
buckling of a member within a statically indeterminate truss (see Sec. 2.5). It is 
also useful for various applications outside structural engineering. As one such 
example, the elastica solution has been used in a method of measurement of 
stress relaxation of highly flexible specimens made of a linearly viscoelastic 
material (Batant and Skupin, 1965, 1967). For such a material, one can show that 
the specimen deflected as shown in Figure 1.28 keeps a constant shape, and so it 
undergoes stress relaxation at constant strain. The relaxation ratio for stress is 
proportional to the relaxation ratio for the support reaction, and this reaction can 
be easily measured. The main advantage is that the reaction corresponding to 
large strains in bending (Fig. 1.28) is far smaller than the reaction corresponding 
to large axial strains without bending, so that the frame that provides the reaction 
is cheap to make. Thus one can economically produce many loading frames to 
test long-time relaxation (as well as strength degradation) of many specimens. 
The elastica solution is necessary to determine the stresses from the measured 
reaction (Batant and Skupin, 1967). 

Analytical solution for nonlinear finite-deflection theory of columns, such as 
outlined above, are generally much more difficult than the linearized small
deflection solutions. Today, however, all these problems can be solved easily with 
a computer using finite elements. The usefulness of the analytical nonlinear 
solutions now lies mainly in the understanding that they provide us, as well as in 
serving as a check on accuracy of finite element solutions. 

For a generalization of the solution of initial postcritical behavior to imperfect 
columns, see Sec. 5.9. 

Problems 

1.9.1 Obtain the P-wmax and P-u relations for (a) a free-standing column and (b) 
a fixed-fixed column. 

1.9.2 Study the approximate large-deflection behavior for the case that the load 
has a finite eccentricity e. 

1.9.3 Repeat the preceding solution for a free-standing column. 
1.9.4 Consider a pin-ended column whose ends cannot slide, under the effect of 

an axial thermal expansion due to temperature change fl. T. Construct the 
diagrams of P versus !iT and P versus midspan deflection w. 

1.9.5 Use the P(u) diagram to obtain the critical load and postcritical behavior of 
a column with nonsliding hinges, heated from temperature T0 to temperature 
T. Plot P(T), w(T). 

Figure 1.28 Device for long-time relaxation tests. (After Bai.ant and Skupin, 1965, 1967.) 
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1.10 SPATIAL BUCKLING OF BEAMS UNDER TORQUE AND 
AXIAL FORCE 

All the problems we have analyzed so far have been two-dimensional (planar). In 
the presence of torque, the analysis has to be generalized to three dimensions. 
Spatial buckling of twisted and compressed shafts is important for the design of 
rotors of turbines, generators, and other rotating machinery (Ziegler, 1968). 
Spatial buckling may also be important for frames. Recently, design of latticed 
struts that can be collapsed for transport by means of torsion became of interest 
for construction of an orbiting space station. 

Buckling of beams due to torque and axial load exhibits critical load 
combinations that represent equilibrium path bifurcations at which a deflection of 
a perfect shaft or beam becomes possible. The method of solution of these 
problems is a generalization of the method in Sections 1.2-1.4. 

Consider a geometrically perfect beam or shaft supported on two spherical 
hinges, loaded by axial force P and torque M, which is assumed to keep its 
direction during buckling; see Figure 1.29b, where the axial vector of torque is 
represented by a double arrow. The deflection must be expected to be a spatial 
curve characterized by displacements v(x) and w(x) in directions y and z (x, y, 
and z are Cartesian coordinates). In a cross section at x, the torque vector M, has 
bending components of magnitudes MT = M,v' and -M,w' in the z and y 
directions. Adding these components to the expressions Elw" = - Pw and 
Elv" = -Pv without the torque (Sec. 1.3), we get the differential equations 

Elw"-M,v' +Pw=O 

Elv" + M,w' + Pv = 0 
(1.10.1) 

We assume here that the bending stiffness El is the same for both y and z 
directions (the cross section need not be circular, though). Note that the change 
of torque about the deflected beam axis due to deflections v(x) and w(x) is 
second order small and therefore negligible, since it has the magnitude liT = 
M,(l- cos 8) = M,82/2 where 8 =slope of the deflection curve. For this reason 
the torsional stiffness of the beam is, curiously, irrelevant for buckling of shafts, 
and only the bending stiffness matters (this, however, contrasts with torsional 
buckling of thin-wall beams; see Chap. 6). 

a) d) 

M~l 

+ 

e) 

4 
f) 

~ 
g) 

Figure 1.29 Beam or shafts subjected to axial force and constant-direction torque. 
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The general solution of Equations 1.10.1 may be sought in the form 

w =Be'- (1.10.2) 

where i = v=I. Substituting this into Equations 1.10.1, we can eliminate e'
and obtain a system of two homogeneous linear equations 

[
p- E/(1)2 iM,(J) 2]{A} = 0 (1.10.3) 

-iM,(J) P- E/(J) B 

Deflection is possible if the determinant vanishes, which yields the characteristic 
equation E/(1)2 ± M,(J)- P = 0. Considering only +M,(J) (torque of one sign), we 
have the roots 

(1)1,2 = 2~1(-M, ± VM~+ 4EIP) (1.10.4) 

The general solution is the real or imaginary part of 

(1.10.5) 

where At. A2 , Bt. and B2 are constants, which may be complex. The boundary 
conditions for the hinged beam are v = w = 0 for both x = 0 and x = I. This yields 
for At. A2 the conditions 

(1.10.6) 

and the conditions for Bt. B2 happen to be identical. Equations 1.10.6 have a 
nonzero solution only if e1

(1)
21 = e1

(1)'
1
, that is, if (1)2/ = (1) 1/ + 2n:n, where n is an 

integer. The case n = 1, that is, (1)2 = (J)~> would require that M, = 0 (if P > 0), 
and so the first critical state is obtained for n = 1, that is, (1)2/ = (1) 1/ + 2n or 
(1)2 = (1) 1 + 2n:/l. According to Equation 1.10.4, this requires that (M~ + 
4EIP)112/2EI = n/1, which can be rearranged as 

p ( M,)2 -+- =1 
P~. M~. 

(1.10.7) 

where 

k=2 (1.10.8) 

~. is the critical load for buckling without torque, and M~. is the critical torque 
for buckling without axial force. This result was obtained by Greenhill (1883); see 
also Love (1927), Timoshenko and Gere (1%1), and Ziegler (1968). Equation 
1.10. 7 is plotted in Figure 1.29g. 

To determine the deflection curve, one obtains from Equation 1.10.3 the 
eigenvector Bt = iAtCt and B2 = iA2c2 where ci = (P- E/(J)i)/M,(J)i (j = 1, 2). 
Assuming A1 to be real, we then have from Equations 1.10.6 A2 =-At. 
B2 = -B1, and the solution is obtained as the real part of Equation 1.10.5: 

v =A 1(cos (J) 1X- cos (J)2X) w = -A1c1(sin (J) 1X- sin (J)2X) (1.10.9) 

This is obviously a spatial (nonplanar) curve. For a more detailed analysis, see 
Konopasek (1968), Grammel (1949), and Herrmann (1%7). 

The foregoing problem, however, is not as simple as it seems. The work of a 
torque vector M, which keeps its direction and is applied at either a hinged end or 
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a free end is path-dependent. To understand why, imagine that we reach the 
slope (v'2 + w'2

)
112 at the beam end by rotating the beam end tangent first by 

angle w' about axis y and then by angle v' about axis z. During these rotations M, 
does no work. However, we can reach the same final angle in other ways. For 
example, we can rotate the beam tangent by the angle (v'2 + w'2)

112 about axis y 
and bring then the beam end to the final position by rotating it about axis x. In 
that case, M, does work. Therefore, the loading is path-dependent, nonconserva
tive. When we deal with such problems in Chapter 3, we will see that static 
analysis is a priori illegitimate, and dynamic analysis is required. By chance, 
however, it so happens that for the present problem the dynamic analysis yields 
the same result as the static analysis, that is, Equation 1.10.7 happens to be 
correct. 

A shaft (Fig. 1.29c) with fixed slopes at both ends obviously represents a 
conservative problem, in which the work of M, due to v(x) and w(x) is always 
zero. In this case, there are at the ends redundant bending moments Mz about 
axis y and My about axis z, as well as horizontal reactions Qx and Qr 
Consequently, moments (Mz- Qzx) and (My- QyX) must be added to the 
right-hand sides of Equations 1.10.1. To get rid of the unknowns Mz, My, Qz, 
Qy, one may differentiate these equations twice, which yields (for constant El 
and P) 

E/w1v- M,v"' + Pw" = 0 
Elv 1v + M,w'" + Pv" = 0 

(1.10.10) 

These differential equations have a general applicability. They are of the fourth 
order, as we encountered it in Sections 1.3 and 1.4 for the fixed beam without 
torque, while the hinged beam as well as the cantilever can be handled by 
second-order equations, as in Section 1.2. 

The solution may again be considered in the form of Equations 1.10.2. 
Substitution into Equations 1.10.10 yields a characteristic equation that can be 
reduced for P = 0 to the condition tan (wl/2) = wl/2. The smallest root is 
wl/2 = 4.494. The corresponding critical torque for buckling without axial force is 
found to be again given by~. in Equation 1.10.8, with k = 2.861. For a detailed 
solution, see Ziegler (1968). 

Another conservative problem is the shaft in Figure 1.29d. The solution yields 
again Equations 1.10.8, but with k =2. However, for the shafts in Figure 1.29e, f, 
which are nonconservative, there is a surprise. The static analysis yields k = oo, 

that is, the column appears to be unconditionally stable, for any load. Dynamic 
stability analysis (see Chap. 3), on the other hand, indicates that the (undamped) 
column buckles under an arbitrarily small torque (Ziegler, 1951). This raises the 
question whether it is actually possible to apply on such columns a torque M, 
whose vector keeps its directions, and whose magnitude is constant in time. This 
question becomes rather complex if one tries to consider the hydrodynamic forces 
that produce the torque, for example, those acting on the blades of a turbine 
rotor. 

A conservative torque can be applied at free or pinned ends of a shaft by long 
cables as shown in Figure 1.30. In case (a), called semitangential torque, the 
torque vector M, tilts due to deflection angle v' but not w', and in case (b), called 
the quasitangential torque, M, tilts due to both v' and w'. Beck (1955) and 
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a) b) 

~9· 
Figure 1.30 (a) Semitangential and (b) quasitangential conservative torque. 

Ziegler (1968) show that for semitangential torque, k = 1.564, 1, and 2.168, and 
for quasi-tangential torque, k = 1, 0.5, and 1.576 for the cases in Figure 1.29b, e, 
f, respectively. This illustrates that the precise manner in which the torque is 
applied has a great influence and must be studied carefully. 

Problems 

1.10.1 Derive Equations 1.10.10 in detail, with sketches. 
1.10.2 Carry out the detailed solutions of the shafts in Figure 1.29c, d. 
1.10.3 Solve the column in Figure 1.29b for (a) semitangential or (b) quasi

tangential torque at P = 0. 
1.10.4 Equations 1.10.10 can be combined into one differential equation 

EIY1v- iM,Y"' + PY'' = 0 (1.10.11) 

in which Y = v + iw (which is a complex variable). Indeed, the real and 
imaginary parts of this equation yield Equations 1.10.10. The boundary 
conditions can be written completely in terms of Y; for a hinged end Y = 0 
and Y" = 0, and for a fixed end Y = 0, Y' = 0. Equations 1.10.11 can be solved 
by Y = Ae1

au: where A is complex. Carry out this solution for the problems in 
the text (for P = 0 this method was shown by Ziegler, 1968). 

1.10.5 P and M, are increased proportionally, at a fixed PI M, ratio. Suppose the 
beam has initial imperfection v0(x) = av1(x) and w0(x) = aw1(x) where 
a= imperfection parameter and v1(x), w1(x) =first buckling mode of perfect 
beam for this PI M, ratio. Calculate the diagrams of max v and max w versus 
M, and the magnification factor. Also discuss the behavior near the critical 
state. 

1.10.6 Formulate the differential equations for initial postcritical deflections of a 
beam under P and M, that is correct only up to second-order terms in v and w. 
Does P produce a second-order torque? Does M,? Do you need to introduce 
rotation 8(x) about the beam axis as a third unknown? Discuss how you 
would solve the problem by finite differences. 
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2 
Buckling of Elastic Frames 
by Equilibrium Analysis 

Buckling of framed structures is no doubt the most important buckling problem 
for civil and structural engineers, and it is often encountered by mechanical and 
aerospace engineers as well. Obviously, buckling of frames involves buckling of 
their individual members, and so the results of our analysis in the preceding 
chapter must be applicable. In particular, buckling of a beam-column with 
arbitrary spring supports at both ends has some essential characteristics of the 
buckling of members of a frame. Not all the essential characteristics, though. 

In a frame, the individual members interact and buckle simultaneously, the 
axial load of one member influencing not only the critical load of that member 
but also the critical loads of the adjacent members. This fact is often overlooked 
in practice and may sometimes lead to serious underestimations of the critical 
load of a frame. The problem is that a member of a frame does not quite behave 
as a column with spring supports at both ends, because the spring stiffnesses, 
which are equivalent to the elastic reaction of the rest of the frame on the 
member under consideration, are not constant but depend on the unknown 
critical load of the frame. In fact, the equivalent spring stiffnesses for the effect of 
the rest of the frame upon a given member are generally smaller than those 
calculated with the neglect of the dependence of these spring stiffnesses on the 
critical load. 

In contrast to columns, the initial axial force P in the column of a frame 
before buckling usually is not known exactly. To circumvent this difficulty, the 
linearized second-order theory is used in an approximate form. From the 
first-order theory, in which the equilibrium conditions are formulated for the 
initial undeformed shape of the structure, one obtains by the usual methods of 
frame analysis the axial forces in the columns (recall that the distribution of floor 
loads into the columns depends on the bending of floor beams). These axial 
forces in the columns are then treated as known in a subsequent second-order 
analysis. By virtue of this fact, the incremental second-order formulation becomes 
linear. In reality, of course, the distribution of the floor loads into the column is 
not constant and varies as the column buckles; however, it may be considered as 
approximately constant if the buckling deflections are small, the error being 
higher-order small. 

The analysis of buckling of frames begins with the determination of the 
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stiffness or flexibility matrices of its members. Although the method of deter
mination of these matrices is well known for arbitrary beam-columns of variable 
cross section, we will confine our attention mostly to members of constant cross 
section since their solution is easy and sufficient for instructional purposes. 
Subsequently we will apply the stiffness or flexibility matrices to solve various 
typical problems for frames and continuous beams appearing in practice, and we 
will also generalize our analysis to a form suitable for computer programming. 
Next we shall study large regular frames or lattices, which are used in tall 
buildings or planned for certain structures in space. Due to the large number of 
unknown joint rotations and displacements, we will emphasize simplified and 
approximate solutions, among which the use of finite difference calculus and of 
continuum approximations is particularly interesting. 

Furthermore, we will also discuss how the frame behaves after the critical load 
is almost reached, and we will briefly point out the important aspects of 
redundancy in frames, which lend to many structures a large postcritical reserve 
and prevent a failure of the frame when only a limited number of the members 
has buckled. We will also briefly investigate built-up columns, in which the effect 
of shear can be very important, and similar shear effects in column-type 
approximations of tall regular frames. Finally, we will present the elements of 
calculation of the critical loads of arches, a problem which is important for bridge 
design and also has some analogies in buckling of cylindrical shells. 

2.1 STIFFNESS AND FLEXIBILITY MATRICES OF BEAM-COLUMNS 

Stifness Matrix for End Rotations 

To determine the critical loads of continuous beams or framed structures, one 
needs the stiffness or flexibility matrix of the beam-column. The stiffness 
coefficients of a linearly elastic structural element represent the forces produced 
by a unit displacement. To determine the stiffness coefficients, we consider a 
perfectly straight elastic beam which is fixed at end b, • is loaded by axial 
compressive force P, and has length I (while under load P); see Figure 2.1. 

a) 

p-~-------\:~ 
"'"·Q~b 

Figure l.l (a) Fixed-hinged beam (1), subjected to axial force P (2), and subsequently to 
end rotation (3); (b) hinged-hinged beam subjected to axial force and end rotation. 
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Subsequently, let a small rotation 8a be imposed at end a. We want to calculate 
the end moment Ma that has to be applied in order to produce end rotation 80 • 

We also need to calculate the corresponding reaction moment Mb that arises at 
the fixed end b. 

In accordance with the customary sign convention in frame analysis, the end 
moments applied on the beam and the end rotations are considered positive when 
turning clockwise. This means that the moments acting upon a joint are positive 
when turning counterclockwise. As for the bending moments within the beam, we 
retain the previous sign convention according to which a positive bending 
moment is that which causes positive curvature. For the sake of simplicity, EI is 
considered as constant. The deflection curve of the beam is then given by 
Equation 1.3.6 (in which wP = 0 because p = 0). The boundary conditions are 
w = 0 and w' = -8a at x = 0, and w = 0 and w' = 0 at x =I, which yields the 
conditions 

B+D=O 

Ak+ C= -8a 

A sin kl + B cos kl + Cl + D = 0 

Ak cos kl - Bk sin kl + C = 0 

For the sake of brevity we denote 

l=kl= fp l=n fp =tr.!_ 'VEi 'V~ I* 

(2.1.1) 

(2.1.2) 

where I*= half-wavelength of the deflection curve. Eliminating C and D from 
Equations 2.1.1 we obtain the equations 

A(sin A- A)+ B(cos A- 1) = 8a1 

A(cos).- 1)- B). sin A= 8a1 

and by subtracting these two equations we get 

A= B(1- cos).-). sin).) 
sin).- ).cos). 

(2.1.3) 

(2.1.4) 

Substituting this into the second of Equations 2.1.3, we obtain an expression for 
B. Now we may note that Ma = M(O) = Elw"(O) = -Elk2B. After some trigono
metric manipulations we then obtain 

Ma = K8a 

in which K = sEI/1 = stiffness coefficient, and 

l(sin).-). cos l) 
s = --'--------'--

2 - 2 cos ). - ). sin ). 

(2.1.5) 

(2.1.6) 

The bending moment at the opposite end of the beam may be obtained as 
Mb = -M(I) (note the minus sign!). This yields Mb = -Elw"(l) = Elk2(A sin).+ 
B cos A). Dividing this expression by Ma = -Elk2B and utilizing Equation 2.1.4, 
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we obtain after some further trigonometric transformations 

Mb A-sinA 
c=-=-----

Ma sin A - A cos A 
(2.1.7) 

Parameter c is termed the carry-over factor, same as in the slope-deflection 
method. 

Having solved the bending moments caused by rotating end a while end b is 
fixed, we automatically know the answer when end b is rotated while keeping end 
a fixed. Due to symmetry, the resulting moments are Mb = KOb and Ma = cMb. 
The case when both ends are rotated may be obtained by superposition of the two 
cases in which only one end is rotated and the other end is kept fixed. 
Superposition applies because the boundary-value problem at hand is linear. Thus 
we find that Ma = KOa + KcOb, Mb = KOb + Kc84 , which may be written in matrix 
form as 

{Z:} = ~~[:c s;]{!:}· (2.1.8) 

The square matrix in this equation, together with the factor El/1, is called the 
stiffness matrix of beam-columns. This matrix was introduced by James (1935) in 
a work dealing with the moment-distribution method, Goldberg (1954), and 
Livesley and Chandler (1956). 

Considering a pin-ended column subjected to moment Ma at one end (Fig. 
2.1b), we may use a similar procedure to show that the rotations at the ends are 
given by Oa = (1/EI)'I/JsMa, Ob = -(1/El)f/JsMa, in which 

1/Js =I G- cot A) (2.1.9) 

When moments are applied at both ends of a simply supported column, 
symmetry and superposition arguments yield 

(2.1.10) 

Here the square matrix, together with the factor 1/ El, represents the flexibility 
matrix of beam-columns. The inverse of this matrix is the stiffness matrix in 
Equation 2.1.8. The flexibility coefficients were introduced in stability analysis of 
frames by von Mises and Ratzersdorfer (1926); see also Timoshenko and Gere 
(1961), Chwalla (1928), and Bafant (1943). Because functions s, c, 1/Js, and f/Js 
serve as the basis of stability analysis of frames, they are also called stability 
functions. 

Equations 2.1.6, 2.1.7, and 2.1.9 are limited to axial compression (P >0). In 
calculations of buckling of frame structures it is sometimes necessary also to take 
into account the effect of axial tension on the stiffness of a beam (P < 0). In this 
case the general solution of the differential equation for w(x) is given in terms of 
hyperbolic functions; see Equation 1.3.7. Using this expression, and proceeding 
similarly as before, one can show that for tension (P < 0, A= nV(-P)/ PE) the 
parameters s and c in Equation 2.1.8 and 1Jis and <Ps in Equation 2.1. 9 have the 
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form 
A.( A. cosh A.- sinh A.) 

s= 
2 - 2 cosh A. + A. sinh A. 

sinh A.- A. 
c=------

A. cosh A. - sinh A. 
(2.1.11a) 

(2.1.11b) 

If there is no axial load, P = 0, the deflection curve is given neither by 
trigonometric nor by hyperbolic functions, but is a cubic polynomial. The values 
of c and s must be in this case ! and 4, respectively, as is known from the 
slope-deflection method. Since s and c must be continuous functions of A., one 
may check that correct limits of sand care obtained as A.-+ 0. In determining these 
limits, one repeatedly obtains expressions of the type S and one needs to use 
L'Hospital's rule several times to verify that the correct limits are indeed 
obtained. 

Calculating the derivatives of sand sc (Eqs. 2.1.6 and 2.1.7) at A.= 0, one may 
obtain the following Taylor series expansion (e.g., Dean and Ugarte, 1968): 

s = 4 _ 2n
2 (!__) _ lln4 (!_)2 

_ ••• 

15 PE 6300 PE 

n2 ( p ) 13n4 ( p )2 
sc= 2 + 30 PE + 12,600 PE + · · · 

(2.1.12) 

which ensue by introducing A. = nV PIPE (Eq. 2.1.2). The same Taylor series 
expansion about A. = 0 is obtained from Equations 2.1.11a for P < 0. The series 
expansions in Equations 2.1.12 need to be used for very small values of PIPE, in 
order to avoid problems of numerical accuracy. The exact expressions are then 
ratios of very small numbers. 

The diagrams of parameters s, c, and scare shown in Figure 2.2a as functions 

a) 
b) 

Figure 2.2 Variation of (a) stiffness coefficients and (b) flexibility coefficients with axial 
force P. 
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of p =PIPE· Coefficients s, c, and scare also tabulated in Horne and Merchant 
(1965). The basic property that should be emphasized is that the bending 
stiffnesses of a beam-column depend on its axial load. With increasing compres
sion, s decreases, while the carry-over factor c increases. For p = 2.046, we have 
s = 0 and c-+ oo, with sc finite. The zero value of s indicates that a zero moment 
applied to the hinged end of a hinged-fixed beam can produce a finite rotation of 
the hinge, that is, an infinite flexibility. The value P = 2.046PE was already 
recognized (see Eq. 1.4.3) to be the first critical load for a fixed-hinged beam. 

The diagrams of parameters 1/Js and 4>s are shown in Figure 2.2b as functions 
of p =PIPE. For P = PE (critical load for a hinged-hinged beam) 1/Js and 4>s tend 
to infinity, thus indicating zero stiffness. 

The stability functions for beam-columns with shear deformations (Sec. 1. 7) 
have been derived by Absi (1967) and used by Bafant and Christensen (1972b). 
They are given by 

s= 
A sin A- ,1,2p cos A 

2 - 2 cos A - AP sin A 
AP- sin A 

c=--'-----
sin A - A.p cos A. 

. p 
With P = 1-- (2.1.13) 

GA0 

Stiffness Matrix for End Rotations and Relative Lateral Displacement 

For general frame analysis we need the stiffness matrix of a beam-column whose 
ends are subjected not only to rotation but also to lateral translation. Consider a 
beam which is initially parallel to the axis x and is subjected to axial load P under 
which it has length I (Fig. 2.3). Subsequently, small lateral displacements W0 and 
wb along with small rotations Oa and Ob are imposed at the ends of the beam (Fig. 
2.3). To accomplish the transformation from the initial position to the final 
position, the beam may be first deformed by imposing at its ends the rotations 

(2.1.14) 

while keeping the positions of the ends fixed, and then a small rigid body rotation 
of the whole beam by angle -6.11 (together with a translation) may be carried out 
to obtain the final position. Here, A. = wb - wa = small relative lateral displace
ment of beam ends. The rigid body translation and rotation do not affect the 

1) 

2) 

tz ~~------t----t 
p__.~a-------------~ 

3) 

Figure 2.3 Member of a frame (1), subjected to axial force P (2), and subsequently to 
general end displacements (3). 
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internal forces in the beam, and so according to Equation 2.1.8, 

EI EI[ s(1 +c) ] 
Ma = T (stf>a + sctf>b) = T sO a + sc()b + l A 

EI EI[ s(1+c) ] 
Mb = T (sctf>a + stf>b) = T sc6a +sOb+ l A 

(2.1.15) 

In these relations, there are three independent kinematic variables Oa, ()b, and A, 
but only two force variables, Ma and Mb. Thus, we need to introduce one 
additional internal force that is associated with A. This additional internal force 
is properly the shear force V since it is the shear force that does work on A. 
Writing the moment equilibrium condition of the whole beam in the deformed 
state (Fig. 2.3), we have Ma + Mb - VI - P A = 0, and substituting for Ma and Mb 
from Equations 2.1.14, we find 

V = Ma + Mb p A= EI{s(1 +c)() s(1 +c)() [2s(1 +c)_ n
2 (!_)] } 

l l l l a + l b + 12 J2 PE A 

(2.1.16) 

So far we have considered loads applied at the ends of the beam. If a lateral 
load is applied between the ends of the beam, we may utilize the principle of 
superposition. First we consider the ends of the beam to be rotated and displaced, 
and subsequently, holding the ends fixed, we apply the lateral load. This load 
produces fixed-end moments M~ and M~ and fixed-end shear force VL. Their 
values can be calculated from the general solution (Eq. 1.3.6) by imposing the 
boundary conditions w = w' = 0 at both ends. The line of reasoning is the same as 
in the slope-deflection method; however, M~, M~, and VL depend on the ratio 
PIPE· A table of fixed-end moments and forces is given by Horne and Merchant 
(1965). 

Combining Equations 2.1.15 and 2.1.16, we acquire the following matrix 
equilibrium equation of a beam-column: 

s sc -
l 

sc s -
l 

s s s* 

I I 12 

in which we introduce the notations 

s=s(1 +c) 

(2.1.17) 

(2.1.18) 

The square matrix (with the factor El/l) represents the general stiffness matrix 
for small deformations of a beam-column. Note that this matrix is symmetric. 
Symmetry is a required property since the material behavior is assumed to be 
elastic. Note also that Oa, ()b, and A are here considered incremental displace
ments starting from the initial state of equilibrium under axial force P and 
possible lateral loads. 

A broad spectre of stiffness matrices of beam-columns is presented in Tuma's 
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torsion (simple torsion, Chap. 6), the planar and spatial sti:ffness matrices of a 
beam-column encased in an elastic foundation resisting deflection as well as 
twisting rotation (cf. Sec. 5.2), the load terms of the matrix sti:ffness equation of 
equilibrium for various typical cases of transverse loads, the modified sti:ffness 
matrices and load terms for various end supports (both planar and spatial), the 
critical load for many typical variable-section columns (tapered symmetrically or 
asymmetrically, or stepped), and various elastically restrained columns. Moreover, 
this monumental handbook presents the transfer matrices (or transport matrices) 
that relate the column matrix of forces and displacements for one cross section to 
that for another cross section. 

A more detailed discussion of the stability functions and their use in frame 
stability analysis is given by Home and Merchant (1965). The stability functions s 
and c can be generalized to dynamics, to include the effect of the axial force on 
vibration frequencies. A unified approach for matrix analysis of buckling and 
vibration problems is given by Williams (1981), and Williams and Wittrick (1983); 
also Livesley and Chandler (1956). 

Note that the theory presented so far is limited to negligible axial extensions. 
Normally this is acceptable, but not for very tall frames (Sec. 2.9). 

Problems 

2.1.1 Derive the expressions for s (Eq. 2.1.6), c (Eq. 2.1.7), 1/Js, and tl>s (Eqs. 
2.1.9). 

2.1.2 Invert the relation of Equation 2.1.10 and show that it becomes equivalent 
to Equation 2.1.8. 

2.1.3 Derive the expressions of parameters s, c, 1/Js, tl>s for the case that the 
beam is under axial tension. 

2.1.4 Find the expressions of parameters s, c, 1/Js, t/>5 , taking into account the 
effect of shear deformation (Eqs. 2.1.3). 

2.1.5 For a fixed-end beam under axial compression, find the end moments and 
shear force due to a constant lateral load. 

2.1.6 Using Equation 1.7.4, try to derive Absi's stability functions for beam
columns with shear. 

2.1.7 Calculate Ma, Mb due to 8a = 1 for a free-standing column (Fig. 2.4a). Plot 
the associated stiffness as a function of PIPE. 

2.1.8 Calculate lateral displacement and rotation at the end due to V = 1 (Fig. 
2.4b). 

Figure 2..4 Exercise problems on stiffness and flexibility coefficients of free-standing 
columns. 
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2.1.9 Calculate the stiffness for rotation on top of a free-standing column (Fig. 
2.4a) in terms of s and c functions. Then compare to the result of Problem 
2.1.7. 

2.1.10 Same as above, but for the stepwise variable I (11 and 12) (Fig. 2.4c). 
2.1.11 The so-called transfer (or transport) matrix (Pestel and Leckie, 1963) 

relates the column matrix (N, V, M, u, w, 6) at one cross section to that at 
another cross section (N =axial force, positive if tensile). (a) Derive it by 
rearrangement of the stiffness matrix equation of equilibrium, that is, of 
Kq = f; (b) also derive some of the transfer matrix elements by integration of 
the beam-column differential equation (check: Tuma, 1988). 

2.1.12 Use the transfer matrix obtained above to solve the critical load of a 
simply supported continuous beam of two equal spans. 

2.1.13 Derive the modified stiffness matrix relating all the end forces and 
displacements of columns with nonzero F, V, M at one end and at the other 
end (a) M = 0 (hinge), (b) M = V = 0 (free end), (c) V = 0 (sliding restraint); 
see Tuma (1988, p. 220). 

2.1.14 Integrating the beam-column differential equation, derive the load term in 
the matrix stiffness equation of equilibrium for (a) a distributed uniform load, 
(b) a uniform load over a half-span, (c) two concentrated loads at the third 
points, (d) a moment applied at the quarter-span (cf. Tuma 1988). 

2.2 CRITICAL LOADS OF FRAMES AND CONTINUOUS BEAMS 

We are now ready to demonstrate calculations of the critical loads of continuous 
beams and simple frames. 

Simple Structures 

Esample 1. Consider a continuous beam of two spans, shown in Figure 2.5a, 
under the axial load p.F, where F is a reference (design) load and p. is a safety 
factor (load multiplier) for which we want to calculate the critical value J.l.cr· 
Consider that, in general, small moments m2 and m3 may be applied at joints 2 
and 3. 

There are two unknown generalized displacements, rotations 62 and 63 above 
the supports. The associated conditions of equilibrium of the joints at these 
supports are M21 + M23 = m2 and M32 = m3, where M;i is now used to denote the 
end moment in beam ij at end i. Substituting from Equation 2.1.8, we obtain 

E/12 E/23 
M21 + M23 = -

1
- (s1262) + -

1
- (s2362 + s23c2363) = m2 

12 23 

E/23 
M32 = 

123 
(s23c2362 + S2363) = m3 

(2.2.1) 

in which the subscripts 21 and 23 refer to beams 21 and 23. 
Let us consider first the case m2 = m3 = 0. We have a system of two algebraic 

linear homogeneous equations for the unknown rotations 62 and 63 above 
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a) 

b) 

O(p) 

Figure 2.5 (a) Continuous beam; (b) plot of determinant of stiffness matrix as func~ion of 
load multiplier; (c) possible source of error in the determination of the critical value of the 
load multiplier. 

supports 2 and 3. Nonzero solutions exist if and only if 

D(p.) = det K(p.) = [s12G:) +s23 ]s23 - (s23c23)2 = 0 (2.2.2) 

where K(p.) =stiffness matrix= matrix of the coefficients at 81 and 82 in these 
two equations. The determinant is a function of p. since s 12 is a function of 
p12 = p.F I PE,2 and s23 and c23 are functions of P23 = p.F I PE23 • 

To obtain the smallest value of p. which satisfies Equation 2.2.2, one may 
construct the plot of D(p.) versus p. to find the approximate location of the roots 
(Fig. 2.5b). Then an accurate value of p. may be obtained by the Newton iterative 
method. Assuming a uniform moment of inertia, 112 = 123 , and 112 = 1.3/23 , one 
finds Jl.crF = 1.088PED. 

If disturbing moments m2 and m3 are present, Equation 2.2.1 is a system of 
nonhomogeneous linear equations for unknowns 82 and 83• According to 
Kramer's rule, its solutions are 8; = D;/ D(p.) (i = 2, 3) where D(p.) is the 
determinant of the left-hand-side matrix, same as before, and D; is the 
determinant of the matrix obtained when the right-hand side replaces the column 
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corresponding to 8;. The critical state is obtained when 8;-+ oo, and this occurs 
when D(ll) = 0. So the critical state condition is the same as before. 

A warning of a possible pitfall may be in order. The plot of the critical state 
determinant D(ll) versus ll often has vertical asymptotes, as illustrated in Figure 
2.5b. If the subdivisions of ll at which D(p) is evaluated are too coarse, one may 
succeed to pass through the points a smooth curve such as the dashed curve in 
Figure 2.5c, and thus miss the root lying to the left of the vertical asymptote, on 
the correct solid curve (Fig. 2.5c). But this could fool the analyst only if the roots 
/lcr

1 
and /lcr2 are very close. 

Example l. Consider now a two-span continuous beam on simple supports (Fig. 
2.6a). For this structure, the flexibility method is more efficient. While with the 
displacement method there are three unknown joint rotations 8., 82 , 83 (Fig. 
2.6a), with the flexibility method there is only one unknown, the moment M2 at 
the intermediate support (Fig. 2.6b). The primary structure is obtained by 
inserting a hinge at this support. The condition of compatibility of the rotations at 
this support reads M2( 1/Js12 l12/ E/12 + 1/Js.nl23/ E/23) = 0, in which the subscripts 12 
and 23 refer to beams 12 and 23 and 1/Js is the flexibility coefficient given by 
Equations 2.1. 9. A nonzero value of M2 is possible if and only if the coefficient of 
M2 is zero, that is, 

(2.2.3) 

Note that in the case of a single unknown, D(ll) is the determinant of a 1 x 1 
flexibility matrix. For 123 = 1.3112 and E/12 = E/23 , Equation 2.2.3 indicates the 
lowest critical value of the load multiplier to be llcrF = 1.24P~. The plot of D(p) 
versus ll is shown in Figure 2.6f. We see that the curve representing D(p) jumps 
from oo to -oo before the critical load is reached. This is due to the fact that the 
flexibility coefficient 1/Js.n of the longer beam of the primary structure jumps from 
oo to -oo. 

This example at the same time illustrates one limitation of the stiffness and 
flexibility methods. If the spans are equal, that is, 112 = 123 =I and PE

12 
= P~ = PE, 

f) 

e) ~Ji~~Jicr2F 
Figure :!.6 (a, b) Continuous beam solved by flexibility method; (c, d) case of equal spans; 
(e) presence of one-sided constraints; (f) plot of the determinant of the flexibility matrix. 
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then !JF = PE is obviously the lowest critical load, /Jcr
1
F. In this case, however, the 

ends of the beams meeting at joint 2 can rotate freely (Fig. 2.6c), and so 
compatibility is obtained for M2 = 0. But the critical load !Jcr1F = PE cannot be 
detected by the flexibility method since the determinant of the equation system 
(only one equation in this case) does not have to vanish when all unknown 
moments are zero. 

The stiffness method has an analogous limitation. It cannot detect the critical 
load /Jcr

3
F = 4PE corresponding to a fixed-end beam (Fig. 2.6d). Indeed, in this 

case the end rotations and displacements are zero, and so the associated stiffness 
matrix does not have to vanish to satisfy the equilibrium equations. 

Generally, in passing from a direct solution of the differential equations to a 
discretized formulation, we can find only the eigenstates that correspond to a 
nonzero solution of the discretized problem. So it is necessary to check the 
possibility that the first critical load might correspond to a homogeneous (zero) 
solution according to the flexibility or stiffness method. In this regard, though, the 
use of the displacement method is safer since the shape of such eigenstates is 
more easily detected with the stiffness method. 

The presence of one-sided constraints on deformation may change the 
buckling load. For example, for the case of Figure 2.6e, the lowest critical load is 
!Jcr2F = 2.046PE, which corresponds to a fixed-hinged beam. 

Example 3. Next consider an unbraced portal frame as shown in Figure 2. 7a. 
The frame is loaded by vertical loads !JF and also by a small lateral disturbing 
load f. Let the bending rigidity El be the same for all members, and the span I be 
equal to the height. There are, in general, three unknown generalized displace
ments, 11, 82 , and 63 • Due to symmetry of the frame, one may expect that 
buckling would occur either in a symmetric mode or in an antisymmetric mode. 
The general buckling mode can be obtained as a superposition of these two. 

Consider first the antisymmetric buckling mode, 62 = 83 = 8. As known from 
the slope-deflection method for frames, the conditions of equilibrium may be 
written for moments acting on the corner joint, in which case the same equation 
ensues for joints 2 and 3, and for the horizontal forces acting on the horizontal 

a) 2 3.!. 
__...r===;;2:;;=3 =-...... ~a 

Vzt V3• 

b) 

Fipre 2.7 Portal frame: (a) antisymmetric buckling mode (unbraced frame), (b) 
symmetric buckling mode (braced frame). 
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beam separated from the columns. These two conditions are: 

(2.2.4) 

Due to the consideration of the lateral disturbing force f, this system of two linear 
algebraic equations is nonhomogeneous. The stiffness coefficients that appear in 
Equations 2.2.4 are functions of the axial forces in beams 12, 23, and 34. For 
finite deformations, these forces would, in general, depend not only on the 
externally applied load IJF, but also on f and on the moments at the joints, which 
in turn are functions of 6., 6~> and 62 • We consider, however, only very small 
(infinitesimal) deviations from the initial state at which f = 6. = 6 1 = 62 = 0. 
Consequently, the stiffness coefficients are functions of IJF alone, and are 
independent of the additional axial forces produced by f, 6., 6~> and 62 , which 
are all infinitesimal. (The shear forces V2v V34 , and the moments M23 and M21 are 
also infinitesimal.) Thus, for a given load multiplier IJ, all the coefficients of these 
equations can be evaluated, and the frame rotations and displacements can be 
solved, unless the determinant of the equation is 0. If this happens, the solution 
tends to infinity (just as it does for a column under lateral load as the axial load 
approaches the critical value). Thus, the vanishing of the determinant is the 
condition of critical load. 

If there is no lateral disturbing load f, the reasoning is different but the 
conclusion is the same. In this case, the equation system is homogeneous(/= 0), 
and we seek the value of 1J for which a nonzero solution exists: again, this 
happens when the determinant vanishes. 

Evaluating the determinant of Equations 2.2.4, and noting that s23 = 4(1 + !) = 
6 (since the initial axial force in the horizontal beam is zero), we find 
D(IJ) = (s12 + 6)/2si2 - (/St2)2 = 0. Choosing various values for the load multiplier 
1J and applying the iterative Newton's method, we find that the smallest critical 
load is 1Jcr1F = 0. 744PE, where PE is the Euler load of length /. Note that for 
1J = IJcr none of the stiffness coefficients becomes zero, which means that the 
critical load of the structure does not coincide with the critical load of any single 
member. 

The symmetric buckling mode ( 62 = -63 = 6, 6. = 0) occurs only iff = 0. In 
this case one gets from moment equilibrium of the corner joint a single equation: 
(El/l)(s12 +s23 -s23c23)8=0, which is satisfied (at 6=1=0) for IJcrF=2.55PE. The 
buckling mode is shown in Figure 2.7b. The corresponding critical load governs 
only if the frame is braced against lateral sway. Otherwise the nonsymmetric 
mode occurs, since its critical load is smaller. 

We have now seen an example that a symmetric and symmetrically loaded 
structure can buckle nonsymmetrically. This contrasts with first-order theory 
(linear elasticity), for which the symmetry of structure and loads always implies 
symmetry of deformation. 

Figure 2.8 shows a teaching model of a symmetric portal frame developed at 
Northwestern University (1969). The model demonstrates the buckling modes 
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Fipre 2.8 Northwestern University (1969) teaching models: sway buckling and symmetric 
buckling of portal frame with hinged based or fixed base. 

under equal vertical loads centered on the columns. The sway (asymmetric) 
buckling is shown for the case of a hinged base. The symmetric buckling is 
obtained, for the case of a fixed base, by preventing translation of the horizontal 
beam. 

When there are several independent loads, such as .Fi and ~ in Figure 2.9a, 
one normally considers them fixed and seeks the common multiplier I" that 
produces buckling. In some design problems, though, the ratio of these loads can 
be arbitrary, and then it is of interest to solve the critical load value of multiplier 
I" for various ratios .Fi/ ~. This then allows constructing the surface of critical 
states, as illustrated in Figure 2.9b. 

A remark on the concept of "perfect." A frame may be defined to be perfect 
if it is described by a homogeneous system of equations, that is, yields an 
eigenvalue problem. Otherwise the frame is imperfect. 

Example 4. Consider the triangular frame shown in Figure 2.9c. Let the bending 
rigidity El and the length I be the same for all members and assume that the 
members are very slender so that their axial stiffnesses are much higher than their 
bending rigidities. If this is so, then the shear forces V2 t> V23 , ••• (Fig. 2.9d) in all 
members are negligible in comparison with the axial forces, and the condition of 
equilibrium at the corner joint is determinate, yielding the following axial forces 
(Fig. 2.9e): P23 = /lF tan 3fJO = llFIVJ (compression), P21 = -2/lFIVJ (tension). 
The neglect of v21 and v23 is only approximate if the frame is imperfect, but it is 
correct in the limit of very small imperfections or very slender bars. For not too 
slender members, of course, the diagram with shear forces (Fig. 2.9d) needs to be 
used. The fact that the inclined member is under tension is important, since it 
significantly increases the stiffness of this member (Eq. 2.1.11 must be used). For 
a symmetric buckling mode, for which the top joint does not rotate, the 
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Figure 2.9 (a) Unsymmetric portal frame subjected to independent loads F. and F2 ; (b) 
surface of critical states; (c, d, e) triangular frame with members 12 and 13 under tension; 
(f) variation of determinant of stiffness and flexibility matrix for continuous beam. 

conditions of equilibrium of the moments acting at the top joint and at either one 
of the lower joints yield 

El EI 
M23 + M21 = l [s230 + c23s23(-0)] + l (s21 0) = 0 

f(p.) = s23(l - Cz3) + Szt = 0 
or (2.2.5) 

in which again s23 and c23 are functions of p23 = p.F /VJ PE and s21 is a function of 
p21 = -2p.F/VJPE· Using the iterative Newton's method, we obtain llcr,F= 
4.76PE. 

Difficulties with the Flexibility Method 

As illustrated by Example 1, the elements k;i of the stiffness matrix K can never 
be infinite and its determinant gradually decreases as the load multiplier is 
increased. On the contrary, Example 2 has shown us that elements of the 
flexibility matrix of the primary structure C typically become infinite before the 
load multiplier becomes critical. The variation of det C may even be rather 
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complex; see, for example, Figure 2.9f for a three-span beam with one span 
considerably shorter than the other two. These examples reveal that the flexibility 
matrix C need not be positive definite for stable states (i.e., below Per,)· 
Consequently various iteration methods cannot be based on flexibility, because 
they would not be guaranteed to converge. 

There are also other reasons which favor the stiffness method. One is that the 
equations of this method can be set up more directly without searching first for a 
statically determinate primary structure that is required by the flexibility method. 
The other is that the second-order effects are functions of the displacements and, 
consequently, more readily accounted for if the displacements are chosen as 
unknowns. For all these reasons, computer analysis is usually done on the basis of 
the stiffness method. 

General Approach for Computer Analysis 

For computer analysis, it is more convenient to set up the equilibrium equations 
in terms of independent lateral end displacements Wa and wb rather than their 
difference 11, and to introduce separate quantities for the shear forces acting at 
either end. In some cases, such as very tall building frames, it is also necessary to 
consider axial shortening of the members, due to increments of the axial force P, 
but even if the problem does not require it, programming is easier if the axial 
displacements at member ends are treated as unequal. Thus we consider, for a 
member, six independent displacement parameters u11 u2 , ••• , u6 , forming a 
column matrix u; the associated forces acting upon the members are fi, ... , f(,, 
forming column matrix F; see Figure 2.10, which shows the usual matrix analysis 
convention for positive signs. Now substitute 11 = u5 - u2 , 8a = u3 , and 8b = u6 

into Equation 2.1.17; express Fs = V, ~ =-V, ~ = Ma, and F6 = Mb; and further 
substitute f4 = (u4- u1)EA/l = (u4- Ut)EI/r21; Fi = -(u4- Ut)EA/1 = -(u4-
u1)EI/r21. This yields, in matrix atotation, 

F=Ku+FL (2.2.6) 

Column matrix FL consists of components Ff that represent the fixed-end forces 
produced by the loads on the member and depend on the ratio PIPE. Matrix K is 
a symmetric (6 x 6) stiffness matrix of the member: 

r-2 0 0 -r -2 0 0 
s*l-2 -sr1 0 -s*l-2 -sl- 1 

K=EI s 0 sl- 1 sc 
r-2 (2.2.7) 

I sym. 0 0 

s*r2 sl- 1 

s 

To explain the meaning of the stiffness coefficients in this matrix, note that 
coefficient K23 that represents the Va value when 8a = 1 is the only nonzero 
displacement, and, according to Equation 2.1.17, this must be equal to -sEI/12 

(the negative sign is due to the difference in the sign convention for the shear 
force at end a). The term K32 that represents the Ma value when wa = 1 is the only 
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Figure 1.10 Member of a frame in the initial state (1), and after a general infinitesimal 
displacement at the ends (2). 

nonzero displacement, and, according to Equation 2.1.17, this must be equal to 
-sEI/12 because fl.= -wa. 

Note that the 6 x 6 stiffness matrix K of the beam-column is singular and 
cannot be inverted. A corresponding flexibility matrix does not exist. The reason 
is that the end displacements u 17 ••• , u6 include rigid body translations and 
rotation (which cannot be determined from the forces because the forces do no 
work on rigid body translations and rotations). On the other hand, the 3 x 3 
stiffness matrix of beam-columns is not singular and can be inverted, and so the 
corresponding 3 x 3 flexibility matrix exists (in this case the displacements are 
relative and do not include any rigid body translations or rotation). The 
singularity of the 6 x 6 stiffness matrix nevertheless causes no singularity of the 
assembled structural stiffness matrix that takes into account the boundary 
conditions. 

The initial axial forces P in frame members that are to be used in critical state 
buckling analysis, particularly the distribution of floor loads, have to be calculated 
according to the first-order theory. Note that the use of the 6 x 6 full stiffness 
matrix of a column (Eq. 2.2.6) makes it possible to calculate changes N of the 
axial loads that occur during buckling. It must be emphasized that the theory is 
valid only for very small (infinitesimal) values of N compared to the initial axial 
forces NJ = - P, that is, for INI « P. If we wanted to calculate large changes of 
the axial load, we would need to use nonlinear analysis with incremental loading. 

Matrix K of Equation 2.2. 7 also can be used for incremental loading analysis 
of load-deflection behavior of the structure. In this case the increments of 
member forces are added to the initial values, and the coordinates of member 
ends are updated after each loading step. For better accuracy, each loading step 
may be iterated, determining the stiffness coefficients in the second and further 
iterations from the midstep forces for the preceding iteration. 

Problems 

2.2.1 Same as Example 1, but 112 = 1.4123 • 

2.2.2 Same as Example 2, but 123 = 1.5112• 

2.2.3 Same as Example 3, but span 1 = 1. 2 times height h. 
2.2.4 Same as Example 4, but change the angle at the top corner from 6()0 to 90". 
2.2.5 For the continuous beam in Figure 2.5a, determine 1-'cr, from Equation 

2.2.2 (equilibrium equations). Assume that /12 = 123 , / 12 = 1.3123 • 

2.2.6 For the continuous beam in Figure 2.5a, determine 1-'cr, using flexibility 
coefficients (compatibility equations). Assume /12 = 123 , 112 = 1.3123 • 
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2.2.7 For the frame in Figure 2.7, determine Jl.cr,, Jl.cr:.• and the corresponding 
buckling modes. Repeat the analysis for /23 = 4/12• Repeat the calculation for 
the frame in Figure 2.9a assuming /12 = 134/2, /23 = 2/14 = 4/12> and Fi/ Fz = 2. 

2.2.8 Verify the solution of Example 4 and find the second critical value of the 
load multiplier (it corresponds to an antisymmetric mode: 82 = 83 , 81 ::1= 0). 

2.2.9 Suppose that the determinant characterizing the critical state gives s(2 + 
c) = 0. Does s = 0 give the critical load? (Only if simultaneously c ::1= oo.) 

2.2.10 Find the first buckling mode and critical load of the continuous beam with 
fixed ends shown in Figure 2.1la. 

d) 
,t,i;; Ic 

eEI ...f._ 
~ 

f 

e) eEI ...f. $i); Ai 8;\ 1\ 
I ~. I e, I Pa I 

~ ti-!-
c (c • .ill.) c 

Pa 
f) 

_L 
..A ;g A 

p 

£ 4 16,-
Figure 2.11 Exercise problems on critical loads of continuous beams. 

2.2.11 Using the stiffness method, find the first critical load of the beam with a 
cantilever shown in Figure 2.11b. (Find first the fixed end moment due to 
rotation (J of the fixed end of the cantilever, Fig. 2.llc. The result is 
Per,= 0.1813.7r2R//2

.) 

2.2.12 Find the first critical load of the beam with an intermediate spring support 
shown in Figure 2.lld. Assume C = 20El/ fl (the result is Per, = 
13.892:TC2El/l2 = 1.4076PE)· 



BUCKLING OF ElASTIC FRAMES BY EQUILIBRIUM ANALYSIS 71 

2.2.13 Solve Per for a three-span continuous beam (Fig. 2.11e), and then compare 
it with the Per value that is obtained when the central span is treated as an 
isolated column with rotational end springs whose stiffness constants equal the 
stiffness of the side span at zero axial force. Then find how the results change 
with the ratio 12/11 in the range (0, 1). 

Note: One may be tempted to analyze a column in a frame by replacing the 
action of the rest of the frame upon the column by equivalent springs. This 
practice, however, is incorrect and may cause a large error on the unsafe side, as 
this problem demonstrates. The reason is that the spring stiffnesses, which are 
equivalent to the rest of the frame, are actually not constant but depend on the 
unknown value of the critical load. The only exception is when the rest of the 
frame has no axial forces, as in the case of the L-frame in Figure 2.12b (Prob. 
2.2.15). 

2.2.14 Find the critical load of the two beams shown in Figure 2.1lf. (Note that 
the solutions are not the same.) 

2.2.15 Find the critical load of the L-frames in Figure 2.12a and b, assuming axial 
inextensibility for beams 12 and 23. (Per,= 1.406PE for Fig. 2.12a and 
Per, =0.144PE for Fig. 2.12b.) Compare the results with that obtained for the 
columns in Figure 2.12c and d with a spring on top whose spring stiffness is 
taken the same as the stiffness of the horizontal beam ( C = 3El I 1). 

a) r 
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b) r 

i 2" 
El 

c) p d t 
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t 

Fipre 2.U Exercise problems on critical loads of frames. 

2.2.16 Using the stiffness matrix of Equation 2.2. 7 write the incremental 
equilibrium equations for the L-frame in Figure 2.12e taking into account the 
elastic shortening of beam 12, and find the critical load Per,· Compare the 
result with that obtained assuming axial inextensibility. 
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Note: In the presence of axial shortening in the column, the L-fmme in Figure 
2.12a does not exhibit neutral equilibrium at critical load and behaves as 
imperfect since the equation system is not homogeneous. The reason is that 
support 3 resists the axial shortening of column 12. 

2.2.17 Consider the truss of Figure 2.12f with a rigid joint at 2. 
(a) Solve Per for a= 45°, 12 =It· 
(b) Same as (a) but limit ]z/ It- 0. 
(c) Same as (a) but limit Id 12-0. 
(d) Let It= 12• Find angle a for which Per,= maximum. 
(e) a= 45°. Is the cost of the truss lower if joint 2 is made a pin (a single bolt 
instead of a welded connection)? Assume (1) making the joints rigid doubles 
the cost of the truss; (2) the cost of a pin-jointed truss is proportional to its 
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Figure 2.13 Further exercise problems on critical loads of frames. 
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weight; (3) the cross sections are geometrically similar in which case the 
weight of the bars per unit length is proportional to VI. (Demonstrate this, 
too.) 

2.2.18 Solve Per for the frame in Figure 2.12g, with c = 1, 0.98, 0.90, 0.30, 0, 
assuming the frame to be (a) braced, (b) unbraced (constant EI). 

2.2.19 Solve P.:r for the frames in Figure 2.13. 
2.2.20 Solve the critical load of the structures with rigid members in Figure 

2.14a, b. Hint: Assume axial inextensibility and include in the translational 
equilibrium equation the component P !1/ a due to the inclination of the rigid 
member. 

a) b) 

p.(\ 
T 

c) Rigid p 
15. 4 ~ A A--
I· f. I '· .I a e2 I !2 I 

d) -
Figure 2.14 Exercise problems on critical loads (a-c) of structures with rigid members, 
(d, e) of continuous beams loaded through a frictionless plunger or roller, and (f, g) of 
infinite one-story frames. 

2.2.21 Solve the structure in Figure 2.14c for (a) It= 12 and (b) It= 212 • 

2.2.22 Solve the critical load of the structures in Figure 2.14d (frictionless 
contact) and in Figure 2.14e (no-slip rolling support). Hint: See Probs. 1.4.3 
and 1.4.4. 

2.2.23 Consider the infinite one-story frame in Figure 2.14f. Calculate the ratios 
()t+tf()i and lPi+1/i/Ji, which must be constant (i > 1). 

2.2.24 Solve Per for the infinite one-story frame in Figure 2.14g. 
2.2.25 Calculate the critical load Per of the arch frame in Figure 2.15a for the 

antisymmetric buckling shown, which satisfies (to the first-order) the condition 
of axial inextensibility of members (EI = const.). Note: There are two 
unknowns: () and v. One equation for () and v is obtained as the condition of 
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Figure 2.15 Exercise problems on critical loads of arch frames. 

equilibrium of the moments acting on joint 2 or 3. To obtain a second 
equation for 8 and v it is convenient to consider a single-degree-of-freedom 
mechanism as shown, in which members 12, 23, and 34 have centers of 
rotation 0 12, 0 23 , and 0 34 , and the rotations in the joints 1, 2, 3, and 4 are 
obtained as cp, -3cp, 3cp, and -cp. According to the principle of virtual work, 
equilibrium requires that M12cp - 3M21 cp + 3M34cp - M43cp = 0 in which expres
sions for end moments M12 , M21 , M34 , and M43 in terms of 8 and v need to be 
substituted (cp cancels out). Also note that this problem has much similarity 
with the buckling of a fixed arch (Sec. 2.8). 

2.2.26 Solve Per for the frame in Figure 2.15b. 

2.3 BUCKLING AS A MATRIX EIGENVALUE PROBLEM AND USE 
OF FINITE ELEMENTS 

From the examples presented we see the analysis of frame buckling by the 
stiffness method generally reduces to a linear matrix equation: 

K(Jl)U = f (2.3.1) 

in which u is the column matrix of small generalized displacement increments u; 
from the initial state, r is the column matrix of the associated small generalized 
force increments/; (which include resultants of distributed loads such as the fixed 
end forces), K is a matrix of incremental stiffness coefficients K;i (i, j = 
1, 2, ... , n) and Jl is the parameter of initial loads that are finite rather than 
infinitely small and are independent of f. The analysis by the flexibility method 
also reduces to a linear matrix equation, but from now on we will consider only 
the stiffness method since in the general case it is more easily programmed for a 
computer, as discussed in the preceding section. 
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If the determinant of matrix K approaches zero, displacements U; increase to 
infinity and any {;, no matter how small, causes infinitely large displacements 
(according to the linearized theory). This represents instability. The behavior is 
the same as that obtained for columns. Obviously, the vanishing of the 
determinant is the condition of critical load. When{; = 0, the frame in the critical 
state is in neutral equilibrium, that is, is in equilibrium for any magnitude of 
deflection in the buckling mode. In rectangular frames with negligible axial 
extensions, the case{; = 0 occurs when all the loads are vertical and are applied at 
the joints (thus causing zero-fixed-end moments), and when no disturbing loads 
act at the joints. 

Equation 2.3.1 represents a matrix eigenvalue problem, but not of the 
standard type because the coefficients K;i depend on I' nonlinearly, and I' appears 
not only in the diagonal terms. The formulation can be modified in various ways 
to get rid of the nonlinearity. One way is incremental linearization of K(#J). We 
select a certain value #Jo of load parameter I' and expand the coefficients K;i(l') in 
Taylor series about #Jo· Truncating the series after the linear terms, we have 

K(IJ )u = [Ko + (IJ - #Jo)KJ)u = 0 (2.3.2) 

where Ko and K 1 are constant matrices. Premultiplying this equation by the 
inverse matrix K! 1 we get 

(2.3.3) 

in which C = #JOI- K! 1Ko and I= identity matrix. Thus we have acquired a 
standard matrix eigenvalue problem, for whose solution efficient computer library 
subroutines are available. After solving the smallest root I' = 1J1 , we expand 
K;i(IJ) again around point 1'1 and repeat the entire computation until the results 
differ negligibly. This process converges very rapidly. 

Another way to get rid of nonlinearity, which does not require iterations but 
increases the number of unknowns and leads to a linear eigenvalue problem that 
is not of the standard form, consists in subdividing the columns of the frame into 
three or more short elements (beam segments). Then the Euler buckling load of 
these short elements, PE, is at least nine-times that of the whole column, P(;, 
while the buckling load of the frame is often :SP(; and always :S4P(;. Thus the ratio 
p =Perl PE for each member may be expected to be small (always less that ~ and 
typically about 0.1). In such a range the graphs of s, sc, etc. (see Fig. 2.2a) are 
nearly linear and a linearized expression, corresponding to the linear part of the 
Taylor series expansion about p = 0, may be used for functions s, sc, s*, and s. 
From Equations 2.1.12 and 2.1.18, we have 

s = 4 - 2Jr2 (!._) 
15 PE 

s=6- ~~ (~) 
(2.3.4) 

Substituting the values from Equations 2.3.4 into Equation 2.2. 7, we obtain 

(2.3.5) 

where K" is the linear elastic stiffness matrix of the beam at no axial force and Ka 
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represents the so-called "geometric stiffness matrix," which is given by 

0 0 0 0 0 0 

6 1 
0 

6 1 -
5 10 5 10 

Ka= _!_ 
212 

0 
1 /2 

- -- (2.3.6) 
1 15 10 30 

0 0 0 

6 I 
sym. -

5 10 
212 
-
15 

The geometric stiffness matrix is also called the "initial stress matrix" or the 
"load-geometric matrix," because it depends both on the initial load and on the 
geometry of the structure. See also Chapter 10, Equations 10.1.32 and 10.1.33 
and Chapter 11, Equation 11.8.8. 

Note that the subdivision of beams into a number of shorter elements provides 
also one way of treating a beam of variable El or variable P (P can vary due to 
own weight). For a sufficient number of elements, a smooth variation of El (or P) 
may be replaced by a stepwise variation of El (or P) (Fig. 2.16), thus enabling 
the use of beam elements of constant Eland constant P, as developed before. 

Still another effective method of solving Equation 2.3.1 is as follows. We 
select one of the displacement parameters, uk, such that we do not expect uk to 
be negligible as compared with max lu;l in the buckling mode. Then we replace 
the kth equation by the equation uk = 1 (which can be visualized as imposing a 
unit displacement upon the frame). Thus, the system of equations becomes 
nonhomogeneous and, choosing a certain value of f.', it can be solved. After 
solving it, we evaluate Qk = Kki"i• which represents a force needed to produce 
displacement uk. Now, Qk can be regarded as a function of f.', and the problem is 
to find the smallest I' which yields Qk = 0 (i.e., the smallest I' for which the force 
needed to produce the displacement is zero and the frame is in neutral 
equilibrium). This can be accomplished by choosing various values of f.' and 
applying Newton's regula falsi method. A subroutine which implements the above 
algorithm is given in Ba!ant (1974); see also Ba!ant and Estenssoro (1979). Using 
this method, buckling of frames with as many as 2000 displacement unknowns has 

p 

Figure 2.16 Column subdivided into elements of shorter length. 
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use a nonlinear optimization subroutine, such as that for the Levenberg
Marquardt algorithm, to minimize the sum of Qi as a function of Jl.. 

As we might expect, Equation 2.3.5 is the same as that used in the finite 
element method, and we now outline its well-known derivation. Since, as it 
appears from Equation 2.3.6, the terms which refer to the axial deformation are 
not affected by the second-order theory, we will consider only lateral displace
ments w and rotations q, = w' of the axis of the beam. In the finite element 
method the stiffness matrix is normally derived from the principle of virtual work, 
whose statement can be obtained directly from the differential equations of 
equilibrium (Eqs. 1.3.2) by integration over the length of the beam 

[ (V' + p) 6wdx + [ (M' + V + Pw') 6w' dx =0 (2.3.7) 

where 6w(x) is any continuous and differentiable function representing virtual 
displacements. One may now substitute 64> = 6w', integrate by parts the terms 
which contain V' and M', and denote as Rk the values of V and M at the two 
ends of the beam and as 6rk the corresponding virtual (generalized) displace
ments. This yields the following relation, representing a statement of the principle 
of virtual work: 

L
1 

M 64>' dx- l1 

Pw' 6q,dx = l1 

p 6wdx + L Rk 6rk 
0 0 0 k 

(2.3.8) 

Let us now introduce the approximation w = NT u where NT is a column 
matrix of interpolation functions and u is a column matrix of joint displacements 
(see, e.g., Gallagher, 1975). We then have w' = CTu, where C; = dN;/dx. 
Assuming the same approximation for 6w, we also have 64> = CT 6u and 
64>' = BT 6u where B; = d2N;Idx2

• Substituting these relations together with the 
constitutive relation M = Elw" = EIBr u into the left-hand side of Equation 2.3.8, 
one obtains the expression 6uTKu in which 

K= i REIDT dx -Pi ccr dx =K" +K0
• (2.3.9) 

Using a vector of shape functions N corresponding to a cubic approximation of 
the displacement distribution, w = a0 + a1x + a2x 2 + a3x3 (see, e.g. Gallagher, 
1975), one obtains for K" and K0 the same matrices already introduced in 
Equation 2.3.5. So we verify that both approaches are equivalent. 

The fact that a cubic parabola yields exactly the same s and c when PIPE is 
small can be verified by developing in Taylor series the sine and cosine functions 
which appear in the exact deflection curve (Eq. 1.3.6). One has sin x = x -
x3 /6 + ... , cos x = 1 - x 2 /2 + · · · , and we therefore see that a cubic polynomial 
approximates the deflection curve as closely as desired if P is small enough. 

Problems 

2.3.1 Solve the critical load of the beams in Figure 2.17a, b, c, d using one beam 
finite element (with stiffness matrix given by Eq. 2.3.5). Calculate the 
percentage error with respect to the exact solution. 
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Figure 1.17 Exercise problems on finite element solutions of critical loads of structures. 

2.3.2 Same as Problem 2.3.1, but use two finite elements of equal length. 
2.3.3 Solve the critical load of the continuous beam of Example 1 in Section 2.2 

(Fig. 2.5a) using one finite element for each span. Compare the result with the 
exact solution. 

2.3.4 Same as Problem 2.3.3, but use two finite elements for each span. 
2.3.5 Solve the same example as in Problem 2.3.3, using incremental lineariza

tion of K (Eq. 2.3.2). 
2.3.6 Same as Problem 2.3.3, imposing 83 = 1 to one end of the beam and 

searching for the value of P that yields a moment M3 = 0 as the reaction at the 
same end. 

2.3.7 Solve by finite elements the critical load of the beams in Figure 2.11. 
2.3.8 Solve the critical load of the frame in Figure 2.17e: (a) use the matrix in 

Equation 2.2. 7, plotting the reaction !l.F caused by imposed displacement 
!l.u = 1 as a function of P; (b) use the linearized matrix in Equation 2.3.5, 
short beam elements, and a computer library subroutine for eigenvalues. 

2.4 LARGE REGULAR FRAMES 

Large frames give rise to a large number of unknowns, and this may engender 
computational problems. However, they are, in general, regular, and this 
regularity may be exploited to greatly reduce the number of unknowns. Consider 
a large rectangular frame shown in Figure 2.18. The vertical axial forces in the 
columns vary from floor to floor; however, if the frame is very tall, then the 
change of axial force from one floor to the next is small, and locally a constant 
value of axial load P may be assumed. Similarly, the changes in column 

Large number of interior bays 
~ 

} 

Figure 1.18 Large rectangular frame. 

Same P 
assumed 
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dimensions from floor to floor may be neglected. As an approximation the frame 
may be assumed to extend in both the vertical and horizontal directions to 
infinity. 

Consider first buckling of rectangular frames that are braced against lateral 
sway. We consider columns that are remote from the bracing, and we neglect the 
axial deformations of all members. Among various possible periodic patterns of 
joint locations, the smallest critical value of P will be obtained for the pattern for 
which the curvature of the columns is the smallest, that is, the distance between 
adjacent inflection points (effective length) is the largest. The pattern of joint 
rotations that satisfies this condition is sketched in Figure 2.19a. In this pattern, 
the joint rotations, denoted as 0, are all equal and their sign alternates from joint 
to joint in both directions. The displacements of the joints are zero. So there is 
only one unknown displacement, 0. We need one equilibrium equation, which is 
provided by the condition of equilibrium of all four moments acting on one joint 
(Fig. 2.19a); M12 + M13 + M14 + M15 = 0, in which the numerical subscripts refer 
to the joints as numbered in Figure 2.19a. Expressing these moments according to 
Equation 2.1.5, and noting that s12 = s 14, s 13 = s15 , we have 

2Elt3 
m13 = -

1
- (s13- s13c13) (2.4.1) 
13 

We may set s13 = 4 and c13 = 0.5 because the axial load is zero in the horizontal 
members. Thus, if we assume that the bending rigidity as well as the length of the 
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Fipre 1.19 Regular buckling modes of large regular frames: (a) nonsway buckling of 
interior members (braced frame), (b) sway buckling of interior members (unbraced 
frame), (c) nonsway buckling of boundary members (braced frame), (d, e) approximate 
models for boundary column buckling. 
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horizontal and vertical members is the same, Equations 2.4.1 reduce to 

D(P) =st2(1- c12) + 2 = 0 

Using the iterative Newton method, we find the solution Per, = 1.6681PE· 

(2.4.2) 

The foregoing solution applies only if the frame is braced. In an unbraced 
frame, a horizontal relative displacement !:;. is possible between adjacent floors. 
The smallest curvature of columns and the longest effective length is obtained 
when all the joint rotations 8 are equal (which also implies the same sign); see 
Figure 2.19b. Assuming that the relative horizontal displacements between two 
adjacent floors are the same, we have only two unknowns, !:;. and 8. So we need 
two equations of equilibrium. One of them is the condition of equilibrium of all 
the four bending moments acting on one joint. The other one is a condition of 
equilibrium of the entire upper part of the frame above a certain floor, separated 
from the lower part of the frame by cutting the columns just below the floor (Fig. 
2.19b). Since the deformations at each point are assumed to be the same, the 
horizontal shear forces V applied from the columns onto the bottom of the floor 
are all the same. At the same time, the sum must be zero since no lateral load is 
assumed to be applied. Therefore, their horizontal shear force in each column 
must be zero. So we have the following two conditions of equilibrium: 

(2.4.3) 

where m12 = (2E/lzlllz)(s12 + S1zC1z), mn = (2Eln/113)(sn + s13c13), mh = 
-(2E/lz/l~z)S12• k12 = -(2E/lz/l~z)s12• and kh = (Eimz)s{2• Since there are no 
axial forces in the horizontal beams, we may substitute s 13 = 4 and c13 = 0.5. For a 
nonzero deformation to exist, the determinant of the foregoing two equations 
must vanish, which yields the condition 

D(P) = 28~2- siz[6 + st2(1 + c1z)] = 0 (2.4.4) 

provided that the bending rigidity and the length are the same for the columns 
and the beams. The solution by the iterative Newton method gives the first 
critical load, per, = 0.577 PE· 

It is interesting to check the limits of the critical loads for the sway and 
nonsway modes as the horizontal beams become either infinitely rigid or infinitely 
flexible. If they are infinitely rigid, /13-oo, then Eq. 2.4.1 for the nonsway frame 
yields Per, = 4PE. This is the critical load for a fixed-end column, as we expect. 
For the sway mode, Equation 2.4.4 yields the critical load Per, = PE, which is the 
critical load of a column with sliding rotational restraints at the end. If the beam 
is infinitely flexible, /13-0, Equations 2.4.1 for the nonsway mode yield 
Per,= PE, and Equation 2.4.4 for the sway mode yields Per,-o. 

We conclude, therefore, that the critical load of a column in a braced frame is 
never less than the Euler load, that is, the effective length is never longer than the 
floor height. On the other hand, for an unbraced frame the critical load of the 
column is never larger than the Euler load, that is, the effective length is never 
shorter than the floor height. 
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Fipre 2.20 Frame with elastically restrained sway. 

In the preceding examples we assumed the lateral sway of the frame to be 
either perfectly free or perfectly prevented. In most practical frames, though, we 
have an intermediate situation in which lateral sway is possible but is elastically 
resisted by a shear wall (Fig. 2.20). Denote the effective shear stiffness of such a 
wall as Kw, and the number of all columns in a floor as n. Assume that the shear 
force Vw = Kwll. of the shear wall is balanced approximately uniformly by all the 
columns. Then the resisting shear force per column is V1 = Kwll.ln, and this force 
must be included in the horizontal condition of equilibrium (adding it to the 
left-hand side of the second of Eqs. 2.4.3). (In practice the stiffness of exterior 
walls and partition walls may also contribute to the horizontal shear force VI> but 
it is on the safe side to neglect this contribution.) This yields for the critical load 
(again with the assumption that 112 = 113 =I, 112 = /13 = /) the characteristic 
equation D(P) = (s12 + s12c12 + 6)(sf2 + Kwl3 /nEI)- 2Ji2 = 0. As an example, 
assuming that Kwln = 3EI/f3, the solution of the characteristic equation yields 
p cr1 = 0.862PE· 

The preceding solution for braced and unbraced frames may be easily 
generalized to slab buildings in which the horizontal beams are replaced by a flat 
slab or a slab stiffened by horizontal beams. The stiffness of the slab, just like the 
stiffness of the horizontal beam, is not affected by the critical load P. All that is 
needed to apply our previous approach is to calculate the rotations tJ> at column 
ends when moments M = 1 are imposed at all column ends. For a braced 
building, the unit moments are applied in an alternating pattern (Fig. 2.21a), and 
for the sway buckling of a building that is not braced the applied unit moments 
are all of the same sign (Fig. 2.21b). Then one must calculate the rotation tJ> 

a) no sway b) sway 

c) 

~1 
~ 

Fipre 2.21 Deformation modes for stiffness calculations in slab buildings. 
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caused by these unit applied moments, and the effective stiffness of the rotational 
elastic restraint provided to each column by the floor slab is m13 = 1/cp. This value 
must then be substituted into Equation 2.4.1 or 2.4.3. Note that moments M 
cannot be applied as a concentrated moment applied to a point, because the 
plate-bending equation would have a singularity and would yield an infinite 
rotation cp. Therefore M must be applied by an equivalent distributed load over 
area A (Fig. 2.21c). This area must be the larger of (1) the cross section of the 
column at its end and (2) the area h2 where h =slab thickness (this is because the 
plate-bending equation does not apply at a scale <h). 

The foregoing solutions are applicable only to columns in the interior of a 
large regular framework. A different solution is required for the columns at or 
near the boundary of the regular framework (Fig. 2.19c). This is because the 
boundary joints receive only three instead of four moments, and also because the 
cross section and load of the boundary columns usually differ from those of the 
interior columns. 

A simple solution for the boundary columns is possible if a finite number of 
bays near the boundary, say, two, are isolated from the rest of the frame. This 
may be achieved by inserting either hinges or fixed supports at the joints lying on 
the third column line, as shown in Figure 2.19d, e. When hinges are used, the 
frame is obviously weakened, and the critical load will be lower than the actual 
one, that is, we obtain a lower bound. When fixed ends are inserted, the frame 
will obviously be stiffer and the critical load will be obtained larger than the 
actual one, that is, we obtain an upper bound. These two bounds are usually close 
enough for practical purposes. If closer bounds are desired, the hinges and fixed 
ends are inserted at the joints lying on the third rather than the second column 
line, or even the fourth one, etc. 

Let us assume for all the solutions of boundary column buckling that the 
frame is braced. Note also that the axial force in the boundary columns normally 
differs from that in the interior columns and may be denoted as kP where k is 
some constant give a priori. In the present solutions we assume that k = 1. 

Consider first that fixed ends are inserted in the joints on the third column line 
(Fig. 2.19d). We denote by 8 1 the joint rotations of the boundary column line and 
by 82 those on the second column line. The moment conditions of equilibrium of 
the joints of the first and second column lines are 

E/12 Eln 
-
1
- (2s12- 2s12C12)81 + -

1
- (sn81 + sncn82) = 0 

12 13 

E/12 Eln 
-
1
- (2st2- 2s12C12)82 + -

1
- (2sl382 + s13c138t) = 0 

12 13 

(2.4.5) 

Then, assuming that the bending rigidities Eland the lengths I of all members are 
the same, the condition of a vanishing determinant of these two equations is 

D(P) = (2s12- 2s12C12 + s13)(2s12- 2s12C12 + 2sn)- (sncn)2 = 0 (2.4.6) 

where, for the horizontal beams, we have s13 = 4 and c13 = 0.5, because they carry 
no axial load. From this condition, Per, = 1.550PE, which represents an upper 
bound on the actual critical load, as already explained. 

To get the lower bound, hinges may be inserted just to the left of the joints at 
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the third column line (Fig. 2.19e). So we have three unknowns, the joint 
rotations, 8~> 82 , and 83 at the first, second, and third column line. The moment 
conditions of equilibrium of the joints on the first, second, and third column lines, 
and the condition of zero moments at the hinge, yield a system of three linear 
homogeneous equations for 81 , 82 , and 83• The determinant of these equations 
vanishes if 

(2.4.7) 

Equation 2.4.7, which has been derived assuming that the bending rigidities and 
lengths of all members are the same and introducing the condition that horizontal 
members do not carry axial loads, yields Per, = 1.52SPE. This is a lower bound on 
the actual critical load. We see that the upper and lower bounds are sufficiently 
close for practical purposes. 

An exact solution to boundary column buckling can be obtained easily if the 
frame is assumed to extend to infinity away from the boundary, and if the joint 
equilibrium equations for all joints j ~ 2 are the same. In this case, the ratios of 
rotations of adjacent hinges are constant, that is, 82/81 = 83/82 = 84/83 = · · · = 
a= constant, or 82 = a81> 83 = a281• The reason is that for joints j ~ 2 the joint 
equilibrium equations represent difference equations with constant coefficients, 
the solutions of which have the general form 8i = AeAi where j = 2, 3, 4, ... , and 
A., A are, in general, complex constants (e.g., Wah and Calcote, 1970; and also 
Sec. 2.9). Consequently, the moment conditions of equilibrium of the boundary 
joints and of the first joint behind the boundary have the form: 

A18 1 + A 2(a81) = 0 8 181 + B 2(a8 1) + B3(a281) = 0 (2.4.8) 

in which A1, A 2 , 8 1 , 8 2 , and 8 3 are expressed in terms of stability functions s 
and c of the members and depend on axial load P, as well as kP. Canceling 81 

and eliminating a from these equations we get the condition 

A1 (A 1)
2 

D(P)=B1 -B2 -+B3 - =0 
Az Az 

(2.4.9) 

To determine the critical load, we need to find the value of P for which this 
expression vanishes. If the bending stiffnesses and lengths are the same for all 
members and the boundary column is subjected to the same axial load as the 
other columns, we find in this manner that Per, = 1.52SPE, a value which happens 
to coincide with the lower bound that we obtained before (but this would not 
happen, e.g., if the boundary column had a different bending rigidity or were 
subjected to a different axial force). 

By similar reasoning one can find the critical load for a boundary column in an 
unbraced frame. 

One might be tempted to assume, for the sake of simplicity, that the buckling 
of a regular frame (Fig. 2.22a) is equivalent to the buckling of a single column 
elastically supported at the ends by springs of constant stiffness (Fig. 2.22c), the 
springs modeling the resistance of both the adjacent columns and beams. 
However, this is incorrect, since one ignores the fact that the adjacent columns 
are in fact axially loaded and, consequently, their stiffness is a function of the 
unknown axial load and becomes zero for P = Per· Springs can replace only the 
action of the adjacent beams without axial forces. 



84 ELASTIC THEORIES 
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F1gure l.lZ (a) Buckling of a regular frame; (b, c, f) schemes for approximate buckling 
analysis; (d) flexible joints; (e) inelastic deformation of joint; (g) comer column buckling. 

On the other hand, it is certainly possible to replace the action of those parts 
of the frame that are not subjected to axial loads by equivalent springs. Thus it is 
possible to replace the horizontal beams in the regular frame (Fig. 2.22a) by 
rotational springs as shown in Figure 2.22b. This means that the problem of 
buckling of braced frames is equivalent to the problem of buckling of an infinite 
continuous beam. (See Probs. 2.2.13 and 2.4.6.) 

One aspect that we have so far neglected is extremely important for practical 
applications. In most frames, the joints are not perfectly rigid but flexible, that is, 
the ends of the beam column can rotate with regard to the joint (Fig. 2.22d). This 
means that one must introduce an effective rotational spring at each end of the 
beam-column to take the deformability of the connection into account (and 
possibly a shear spring needs to be introduced as well). One must then distinguish 
between the rotations of the ends of the beam-column and of the joint, and add 
to the system of equations the spring deformation relations involving these 
rotations. Otherwise the formulation of frame-buckling problems is the same and 
may be based on the stability functions s and c. Many practical examples of the 
buckling of frames with elastic connections, as well as tables of critical loads, have 
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been worked out by Fift (1964, 1974), whose work was mainly intended for 
frames assembled from precast concrete members. 

A further complication, however, often arises, due to inelastic behavior of the 
connection. All joints, including welded ones, undergo some limited plastic 
deformations (Fig. 2.22e) and in riveted or bolted joints frictional slip may also 
take place. One consequence is that cyclic lateral loads of steel building frames 
cause moment redistributions such that the bending moments in beams at the 
column joints due to vertical loads become almost zero. The problem then is how 
to determine for buckling analysis the initial bending moments and the effective 
elastic constants relating the rotations of the beam and of the column at the joint. 
For detailed analysis, see, for example, Ackroyd and Gerstle (1982, 1983), and 
Moncarz and Gerstle (1981). 

Problems 

2.4.1 Calculate Per for a regular frame in which the sway is resisted by an elastic 
shear wall of shear stiffness Kw (see Fig. 2.20). Do the calculations for various 
values of Kw such that Kwl3lnEI = 0.1, 0.5, 1, 2, 4. Check that 0.577PE <Per.
(Note that the bound 1.668PE will be exceeded for sufficiently large Kw 
because the buckling mode assumed does not approach the buckling mode for 
no-sway frames, causing the present critical load to become the second rather 
than the first critical load. Also note that for plotting Per versus Kw it is easier 
to choose various values of PIPE and calculate the corresponding Kw than vice 
versa.) 

2.4.2 Solve Per, from Equation 2.4.6. (Answer: Per, = 1.55PE.) 
2.4.3 Find the lower bound on the critical load at the boundary of a regular 

frame, assuming the same given data as in the text but the hinge is inserted at 
the joints of the third column line (see Fig. 2.19e). (Answer: Per,= 1.52PE.) 

2.4.4 Same as Problem 2.4.3, but assume the frame to extend to infinity to the 
right and obtain a solution of the type Oi = Ae.Y for j = 2, 3, 4, ... (A, A.= 
complex) using the difference calculus. Compare the result with Problem 
2.4.3. 

2.4.5 Solve Per, from Equation 2.4.9. 
2.4.6 Isolate an interior column from a regular frame by replacing with springs of 

constant C the restraint against rotation furnished at the joint by the adjacent 
floor beams (in which the axial force may be assumed to be negligible) (Fig. 
2.22f). 
(a) Consider the case of no sway (C1 = oo), What would you assume for the 
value of C? Then, assuming C = 2(2EI)Il, would you find the same value as 
Per given by Equation 2.4.2 (for the case when the bending stiffnesses and 
lengths of the horizontal and vertical members are the same)? Explain. 
(b) Consider the case of an elastic restraint against sway ( C 1 J3 I EI = 0. 1, 0. 5, 
1, 2, 4). What value would you assume for C? Compare with the results of 
Problem 2.4.1. 

2.4.7 Solve Per for the comer column buckling in Figure 2.22g, in which the joint 
rotation decays both in the horizontal and vertical directions. Formulate the 
equilibrium condition for interior joints relating Ok.i to Ok-t.i• Ok+t.i• Ok,j-t> 
and Ok.i+~> as well as the conditions for the boundary joints k = 1, j ~ 2, and 
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k ~ 2, j = 1, and the comer joint k = 1, j = 1. For j ~ 2, k ~ 2 they represent 
partial difference equations with constant coefficients and may be solved by 
8k,j = ceaiebk where a, b =complex constants (these difference equations are a 
special case of Eqs. 2.9.1 for zero axial extensions); for j = 1, k ~ 2 the 
solution has the form 8k.i = AeJ.i, and for k = 1, j = ~2, 8k,i =Be Ide where A, 
K =complex constants (A, B, C =arbitrary complex constants). 

2.5 POSTCRITICAL RESERVE IN REDUNDANT TRUSSES 

In statically indeterminate structures, buckling failure of one member does not 
usually mean collapse. The axial forces redistribute, and the loads may then be 
further increased until another member fails by buckling, and so forth until 
eventually so many members buckle that the whole structure collapses. Thus, 
statical indeterminacy generally endows structures with an additional reserve 
strength that is not available in isolated columns. 

Example of a Statically Indeterminate Truss 

The simplest case to analyze is a statically indeterminate truss. Consider the 
example of the truss in Figure 2.23a. All the members are assumed to be 
pin-ended and of the same cross section. If we analyze the truss by the force 
method, considering, for example, the force in member 23 as redundant, we note 
that members 23 and 36 have the highest axial compression, P23 = kP, where 
k = (2 + VZ)/(2 + 2VZ). When the load P reaches the value P1 = Pe

23
/k, P~ 

being the Euler load of member 23, the member buckles. In the postcritical 
behavior after buckling, the deflection of member 23 increases at approximately 
constant axial force (Fig. 2.24a), and so the length of member 23 can decrease 
quite substantially without any significant change in the axial force P23 carried by 
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Figure 1.23 Postcritical behavior of a truss (a, b, c) and its load-deflection diagram (d). 
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Figure 2.24 (a) Limited analogy between yielding and buckling of a column; (b) buckling 
mechanism; (c, d, e) truss examples for problems. 

this member (Fig. 2.23b). This behavior is quite similar to plastic yielding (Fig. 
2.24b) of the member in compression, P£23 being imagined as the yield value of 
the normal force. After members 23 and 36 buckle, which occurs simultaneously, 
the truss can be treated as a statically determinate structure since the forces in the 
two buckled members are constant and known. Stress analysis of this statically 
determinate truss shows that an equal axial com.Pression next occurs in members 
13, 35, 12, and 56; its value is P12 = (1- k/V2)P1 + (P- P1). The frame then 
becomes a mechanism. It continues to deflect at constant load and its stress state 
remains the same. Since, due to symmetry, the mechanism has four degrees of 
freedom, the ratios of the shortenings of members 13, 35, 12, and 56 are 
indeterminate and are left to chance. But that has not effect on the load
deflection diagram. (In reality, though, only one member is likely to shorten, due 
to inevitable small random differences between these members.) 

The load-deflection diagram of the truss is sketched in Figure 2.23d. It consists 
of straight-line segments of different slope, and the changes in slope correspond 
to the attainment of critical loads in individual columns. 

Generalization and Limit Analysis Method 

From this example, it is evident that significant redistributions of internal forces 
can take place in statically indeterminate structures. This problem has been 
studied in detail by Masur (1954). Since the behavior of the buckled column is 
about the same as axial yielding of the column, one may use the methods of limit 
analysis known from plasticity. In particular, the lower and upper bound 
theorems can be applied. It should be pointed, however, that the shake-down 
theorem for cyclic loading does not apply because the deformation of a buckled 
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elastic column upon loading is reversible (as long as no inelastic deformations 
take place), while the deformation of a yielded column is irreversible (see Fig. 
2.24a). 

Buckling of some compressed members may be combined with tensile (or 
compression) yielding of other members. Elaborating further on our preceding 
example, suppose that while the compressed diagonal buckles, the tensile 
diagonal fails by yielding (Fig. 2.24b). Then, by equating the work of external 
forces and the work of internal reactions for the limit load F (Wext = »'in1), one 
obtains FLq, = PuLtfJ/Vl + PcrLt/1/Vl, where Per and Pu are the critical load of 
member 23 and the yielding axial force in member 14, respectively. The result is 
F = (Pu + Pcr)Vl/2. 

In practice, the designer cannot always take advantage of the plastic-like force 
redistributions due to buckling of individual members. Often the deflections 
associated with such buckling may be too large. Or for some structures such as 
bridges the major loads are repetitive, in which case repeated buckling would 
arise, which cannot be permitted because of fatigue of the material. Frequently, 
too, the member may enter a softening regime, in which the axial load descends 
at increasing shortening (see Sees. 8.2 and 8.7). 

It must be emphasized, however, that the foregoing solution becomes 
insufficient for large deflections for which the member can develop force P 
significantly higher than PE. See the discussion of postcritical reserve in Sections 
1. 9 and 5. 9. Then a nonlinear incremental loading analysis of the truss is 
required. This case can be practically important only for very flexible (slender) 
members. 

Order of Approximation 

It is helpful to realize what is the order of approximation in this analysis. The 
classical bifurcation buckling of columns at small deflections (Sec. 1.1-1.8, 
2.1-2.4) is called the second-order theory because it takes into account bending 
moments M = Pcrw. In terms of displacements w, this represents the first order of 
approximation. For large-deflection buckling of the members of a pin-jointed 
truss, we have P = Pcr(1 + cw2

) where c =constant, w =deflection (Eq. 1.9.12). 
The bending moments are M = Pcr(1 + cw2)w, and because of the term Pcrw3 this 
formulation may be called the fourth-order theory, although in terms of w the 
formulation is of the third order. 

One is now tempted to ask: Would it suffice to use a third-order theory, that 
is, a second-order approximation in terms of w2? The answer is no. The 
second-order terms cancel out for a symmetric problem such as a pin-jointed 
column. In frames, however, this need not happen since nonsymmetry is possible. 
Then it suffices to use a third-order theory (i.e., a second-order approximation in 
w ). Such an analysis is quite different, as we see next. 

Problems 

2.5.1 With reference to the example of Figure 2.23, find the values P1 and P2 of 
the truss load that correspond to the buckling of members 23 and 21. 
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2.5.2 Solve the limit load of the trusses in Figure 2.24c, d, and e assuming the 
same PE for all members but no yielding. Determine the sequence of buckling 
of the members. 

2.5.3 Solve the truss in Figure 2.23 assuming that the height of the truss is not I 
but the diagonal has a 300 slope. (In that case the truss becomes a 
two-degree-of-freedom mechanism when member 12 buckles.) 

2.5.4 Solve the maximum load of the truss in Figure 2.23 assuming that 
PE13 = PE35 = PE56 = 1.01PE12• (In that case the truss becomes a single-degree-of
freedom mechanism when member 12 buckles.) 

2.6 POSTCRITICAL BEHAVIOR OF FRAMES 

The limit analysis as we described it in the preceding section applies only to 
pin-jointed trusses, in which there are no bending interactions among the 
members of the truss and each member buckles independently as the Euler 
column. Rigidly jointed frames, however, exhibit more intricate behavior. It 
appears that for large deflections the equilibrium value of a load is affected by the 
incremental shear forces and by the axial shortenings of members resulting from 
their deflections. The incremental shear forces induce axial force changes in the 
adjoining members meeting at an angle, thereby modifying their bending 
stiffness. These effects are second-order small if the deflection is small. Yet they 
are of a lower order than the large-deflection effects in columns, and therefore 
more important. 

This behavior leads to a new phenomenon we have not yet discussed, called 
asymmetric bifurcation. In such a bifurcation, the initial postcritical response is 
characterized by a plot of load versus deflection of a perfect frame and does not 
have a horizontal slope; rather it has a finite inclination. This phenomenon 
distinguishes frames in general (as well as shells) from typical columns, 
continuous beams, and pin-jointed trusses. It cause.s sensitivity to imperfections, 
manifested by the fact that an imperfect frame has a smaller maximum load than 
the perfect frame. 

l·Frame of Koiter and Roorda 

For the sake of illustration, consider the L-frame shown in Figure 2.25. In their 
famous, and by now classical, papers, Koiter (1967) used this example to 
illustrate asymmetric bifurcation and Roorda (1965a, b) confirmed Koiter's theo
retical predictions by experiment. Koiter's analysis was based on power series 
expansion of the potential-energy expression for the structure, which provides 
complete information for both equilibrium states and their stability. Roorda and 
Chilver (1970) showed a different method of analysis, which was based solely on 
equilibrium equations and employed the perturbation method with power series 
expansions. Although their method does not deal with stability of equilibrium 
states, it yields all the information needed for practical purposes, and was shown 
by Roorda and Chilver to agree with Koiter's previous solution. The previous 
solutions, however, still have certain shortcomings; (1) they rely solely on 
mathematical manipulations and do not provide much insight as to the source and 
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Figure 2.25 Koiter-Roorda's L-frame: (a) buckling to the left; (b) buckling to the right; (c) 
neutral equilibrium at P =Per for perfect frame (and small 6). 

mechanism of the imperfection sensitivity; and (2) they are relatively complicated 
because the nonlinear differential equations are integrated directly, without 
exploiting the existing powerful matrix method for frames. 

A simplified method for nonlinear postcritical analysis of frames has recently 
been presented by Kounadis (1985) and illustrated by the example of Koiter
Roorda's L-frame. This method relies on direct integration of the differential 
equations for the deflection curves of members and is approximate since it 
achieves simplification by relaxing in a certain intuitive manner the compatibility 
conditions at the joints. We will present here a relatively simple method that, by 
contrast, does not require integration of differential equations as it utilizes the 
stiffness matrices with stability functions, is asymptotically exact, and gives 
information on the magnitude of contributions to imperfection sensitivity from 
various mechanisms (Ba.Zant and Cedolin, 1989). 

In the frame in Figure 2.25, the bars have equal uniform bending rigidities EI, 
and the ratio of their lengths is {J. The vertical load P is applied at the corner with 
a small eccentricity e. The deformation of the frame is characterized by rotations 
8, 82 , and 83 (Fig. 2.25a, b). The column and beam are assumed to be so slender 
that their first-order axial shortenings due to axial forces are negligible. 

The deflections w produce second-order axial shortenings of the column and 
the beam. They are second-order small in terms of w or 8 and cause joint 
displacements u<2> downward and v<2> to the right (Fig. 2.25a, b). 

Due to these displacements, buckling of the column to the right (Fig. 2.25b) 
produces an incremental shear force yb in the beam which tends to make the 
axial compression force pc in the column larger than the applied load P. On the 
other hand, for buckling to the left the shear force Vb is of opposite sign and 
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tends to make r less than P (Fig. 2.25a). This favors buckling to the right. 
Second, buckling of the column to the right (Fig. 2.25b) produces a smaller 
curvature of the beam than buckling to the left (Fig. 2.25a) (since for both cases 
the joint moves down and to the right). This, too, favors column buckling to the 
right (Fig. 2.25b). Third, buckling of the column to the right (Fig. 2.25b) 
produces an incremental shear force in the column which translates into a 
compressive force in the beam, lowering its stiffness, while buckling to the left 
causes a tensile force in the beam, increasing its stiffness. This again favors 
buckling to the right. 

So we see that the response does not exhibit the same symmetry that is found 
for centrically loaded perfect columns, which are equally likely to buckle left or 
right. This asymmetry is manifested in the load-deflection diagram of imperfect 
columns and has an important consequence: It causes the maximum load to 
become less than Per· We will demonstrate it. 

Taking u<2> and v<2> into account but still considering small deflections, we 
obtain from Equation 2.1.17 the following moment equilibrium condition of the 
joint (Fig. 2.25): 

~I [ sc(J + sccc(J2- Sc ( v;
2>)] + ~: [ sb(J + sbcb(J3 + sb ( u;;>)] = - Pe (2.6.1) 

where sc, cc, and Sc are functions s, c and s for the column, depending on 
pc = pc I P'E (r =axial compressive force in the column) and P'E =Euler load of 
the column; sb, cb, and sb are functions s, c, and s for the beam, depending on 
pb = pb I P~ (Pb =axial load of the beam and P~ =Euler load of the beam). 

The moment equilibrium conditions at hinges 2 and 3 yield sc82 + sccc(J -
scv<2> I l = 0 and sb83 + sbcb(J + sbu<2> I {Jl = 0. Expressing 82 and 83 from these 
conditions and substituting them into Equation 2.6.1, one obtains 

[ sc(1 - c~) + ~ (1 - c~)] (} + sc(c~- 1)(v;
2

>) + ~ (1 - c~)( u;;>) = - ~: (2.6.2) 

The horizontal and vertical equilibrium conditions for the joint (Fig. 2.25) can 
be written as 

EI 
pb = vc =-s (1- c2)8 [2 c c (2.6.3) 

and 

(2.6.4) 

where vc and Vb are the shear forces in the column and the beam (Fig. 2.25). In 
the calculation of vc and Vb, higher-order terms have been omitted since the 
validity of our theory is limited to small displacements. 

Let us now determine u<2> and v<2>. Small deflections of the members of the 
frame may be expressed as w = 8fc(x) for the column and w = 8fb(x) for the 
beam, where x is the axial coordinate of the column or beam measured from the 
joint, .fc(x) = Ac sin kx +Be cos kx + CcX +De, k = Acll, Ac = nypc, and /b(x) = 
A~3 + B~2 + Cbx +Db. The expression adopted for fb(x) is a cubic parabola, 
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which is exact for ph = 0 and is always a sufficient approximation for the present 
since pb (unlike pc) is small (this wiD be confirmed later). The constants Ae, 
Be, ... , Db are determined from the conditions w = 0 and w' = 1 for x = 0, and 
w = 0, w" = 0 for x =I or x = {JI, where the primes denote derivatives (here with 
respect to x). This yields Ae = 1/(sin Ae- Ae cos Ae), Cc = -(Ae/1) sin Ae, Be= 
De= 0, Ab = -Cb/f, Cb =!, Bb =Db= 0. Since the beam axis may be con
sidered to be inextensible during buckling (as the axial force change is negligible) 
we have u<2> or v<2> = f (1- cos w') dx = f [1- (1- !w'2)] dx = f !w'2 dx. 
Consequently, for small 8, 

u(2) = 'lc82 Tic= [ ![/;(x)]2 dx (2.6.5a) 

v<2> = T/b82 ,b= f' Ut~<xWdx (2.6.5b) 

where coefficients 'lb and Tic are positive. Their values are found to be 'lb = 0.1{JI 
and Tic= A~(2.t~ + Ac sin 2.te- 4 sin2 Ae)/81. Substituting Equations 2.6.5a, b into 
Equation 2.6.2 one gets 

[se(l- c~) +; (1- c~) ]8 + [se(c~ -l)(~b) + sb(l- c~)(;;1) ]82 =- ~: 
(2.6.6) 

It is clear that if we would correct the deflection shapes fc(x) and fb(x) by 
taking u<2>, v<2> into account, we would introduce into Equation 2.6.6 only terms 
whose order is higher than 82 but would not change the terms with 8 and 82• 

Also note that since pb = 0 for 8 = 0, the consideration of pb :F- 0 in the 
expression of fb(x) would add a term proportional to 8 in the expression of 'lb 
(Eq. 2.6.5b), which would translate into a higher-order term in Equation 2.6.6. 

Equations 2.6.3, 2.6.4, and 2.6.6 represent a system of five equations relating 
8, P, pb, pc, Vb, ve. If ph, pc, Vb, yc are eliminated, one gets the relation of P 
to 8. For a convenient calculation of the curve P( 8), one may choose a series of 
closely spaced increasing values of pc. For each pc, one evaluates sc and Cc· Then 
using approximately the previous rather than current value of 8 in Equation 
2.6.3, one solves from it pb and then evaluates sb and cb, upon which one solves 
two values from Equation 2.6.6 (a quadratic equation), giving different portions 
of the P( 8) curve. Accuracy could be improved by iterating the procedure with 
the latest value of 8 used in Equation 2.6.3 but this is not necessary if the chosen 
pc values are very closely spaced. 

The curves P( 8) are plotted in Figure 2.26a for various values of relative 
eccentricity e/1. As expected, fore >0 the rotation 8 is negative. A crucial fact to 
note is that, for e > 0, the curve P( 8) has a maximum, while the curves that are 
obtained upon neglecting u<2> and v<2> (dashed in Fig. 2.26a) do not. As a limit 
case fore= 0, we obtain the initial postcritical response of the perfect system. 

Second-Order Solution of the l·Frame 

As already shown, the foregoing solution has only second-order (quadratic) 
accuracy in 8. Therefore, any simplifications that preserve the second-order 
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Figure 2.26 (a, b) Curves of load versus rotation; (c) curve of load versus load-point 
displacement; (d) imperfection sensitivity diagram. 

accuracy are admissible and cause no error. To this end, we expand all the 
variables in Equation 2.6.6 into a power series with respect to 8 about the critical 
state (e = 0). Then we discard all the terms of powers higher than 82

, that is, we 
solve Equation 2.6.6 with second-order accuracy in 8. Since we are expanding all 
the coefficients about the critical state, we evaluate them for the critical state 
(onset of buckling, (J = 0). At that state, u<2> = v<2> = 0, P =Per= F and 
Vb = yc = 0. Using power series expansions for functions s and c (see Dean and 
Ugarte, 1968, and Eq. 2.1.12), the second-order approximations for sb and cb 
near the critical state are 

(2.6.7) 

because pb = 0 at the critical state. 
The approximation for pb as a function of 6 can be obtained from Equation 

2.6.3 but it can be more directly reasoned from the fact that, at the onset of 
buckling, the joint is in a state of neutral equilibrium (Fig. 2.25c). Therefore, the 
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moment acting on the column must be equal to the moment acting on the beam, 
which equals 3EI I {Jl because initially pb = 0. Then, using Equation 2.6.3 one may 
calculate the shear force in the column: 

3EI 
Pb=Vc=--8 

{J/2 ' 
(2.6.8) 

From this it appears that pb > 0 (compression) if 8 < 0. So we conclude that the 
change of beam stiffness also contributes to the initial downward slope for 8 < 0. 

Substituting pb from Equations 2.6.8 into Equations 2.6.7 and then sb and cb 
into Equation 2.6.6, and neglecting terms that contain powers higher than 82

, we 
obtain 

(2.6.9) 

where X= sc(l- c~) + 31 {J and ~ = sc(c~- 1)'lbll + 31Jclfl2l + 3{JI5. Coefficient X 
depends on pc = pc I PE. For P close to Per 

X= Xcr + (F- Per)X' with X'= dxldPc (2.6.10) 

Now x = 0 for P = Pe., and so Xcr = 0. (The reason is that at the onset of buckling 
all the second-order terms in Eq. 2.6.6 or 2.6.9 disappear.) This condition also 
gives the critical load of the perfect frame: Per= p~PE, in which P~r = 1.407 for 
{J = 1. The value of x' = (dxldpc)IPE is evaluated at pc = PeriPE, and it may be 
noted that x' < 0. In view of Equation 2.6.4 we have X= x'(P- Vb- Per)· 
Taking into account Equations 2.6. 7 and neglecting third-order terms in 8, 
Equation 2.6.8 becomes 

P = Per(1 + a8) (2.6.11) 

in which 

a2= ' 5( -x )Per 

3{J 
a3 = (- ')P. X er 

(2.6.12) 

Note that in writing Equation 2.6.11 we neglected the increment a~= (Pc
Pcr)s' because (F- Per) is a small quantity, which would be multiplied by 82 

when substituted in Equation 2.6.9, and thus it would yield a third-order small 
term. In Figure 2.26b, Equation 2.6.11 is represented by a straight line of slope a, 
which is very close to the solution we previously obtained from the full equation 
system fore= 0 (and is asymptotically, i.e., for 8--+0, the same). 

There are three terms that contribute to the slope dPid8: (1) the stiffness 
change of the column caused by its axial force change due to the vertical shear 
force transmitted to it from the beam (term a 1); (2) the stiffness change of the 
beam caused by its axial force change due to the horizontal shear force 
transmitted to it from the column (term a2); and (3) the displacement of the 
comer due to axial shortenings of the beam and column caused by their 
deflections (term a3). Note that in a symmetric frame the shear forces represented 
by a1 as well as a2 would be canceled by the shear force from the opposite 
member, and term a3 would vanish also if the joint displacement is precluded by 
symmetry. 

The diagram of load versus load-point displacement u (u = u<2>) ate= 0 (Fig. 
2.25) is obtained, according to Equation 2.6.5a by substituting 8 = ±v'ii/ri:, (with 
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'lc evaluated for pc =Per), that is, 

(2.6.13) 

Equation 2.6.13 is plotted in Figure 2.26c. 
For small values of e and 8, and for values of pc not too different from Per, 

introduction of the approximations in Equations 2.6.7, 2.6.8, and 2.6.10 into 
Equation 2.6.6 and elimination of higher-order terms in 8 provides 

[ 
1 +a8 ] 

P=Pcr 1-(a/8) 
. h le 

wtt a= EI( -x') (2.6.14) 

where a represents a nondimensional imperfection. Figure 2.26b compares the 
solution of the full second-order nonlinear system of Equations 2.6.3-2.6.6 to the 
simplified second-order solution (Eq. 2.6.14). We may observe that for very small 
imperfections (ell= 0.0001, e/l = 0.001) these two second-order solutions agree 
closely. For stronger imperfections this is not so, mainly because Pis no longer 
close to p cr· 

Imperfection Sensitivity 

In Equation 2.6.14 we may now introduce the expansion 1/(1- a/8) = 1 + 
(a/8) + (a/8)2 + · · · and assume that 8 »a at maximum load. Then, neglecting 
in the resulting expression all higher than linear terms in 8, we get 

p a 
-= 1 +-+a(8 +a) 
Per 8 

(2.6.15) 

Setting dP I d8 = 0, the value of 8 at maximum P is obtained as 8m = - ...;aTa 
(only the negative root is of interest because we know the column deflects to the 
right). Substituting this into Equation 2.6.15 we obtain Pmaxl Per= 1- 2'./iiOt- aa, 
and for small imperfections a we have 

Pmax = Per(l- 2'./iiOt) (2.6.16) 

Equation 2.6.16 is plotted in Figure 2.26d. 
It is important to note that after reaching the critical state the load declines 

with increasing deflections, that is, the structure exhibits softening. The diagram 
of load P versus rotation (- 8) begins to descend with a finite slope Pera (Fig. 
2.26a). On the other hand, the diagram of the load versus the associated 
displacement, that is, the axial load-point displacement u, begins to descend with 
a vertical slope (Fig. 2.26c). 

The postcritical behavior we just illustrated is generally called asymmetric 
bifurcation, since the equilibrium path P(8) or P(u) at the critical point 
bifurcates in an asymmetric manner (symmetry would require a horizontal slope 
at Per)· An important consequence is that the imperfect column has a maximum 
load Pmax that is less than Per· The larger the imperfection, the smaller is Pmax 
(Fig. 2.26d). (Note that ACI requires the columns to be designed for approxi
mately e > 0. 011 even if the load is supposed to be centric.) Applied loads in 
buildings can often cause e to be as large as 0.31 or more. 
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The validity of Equation 2.6.16 where a is the initial slope, and especially the 
fact that Pmax declines in proportion to Va (a= imperfection), is not limited to 
this example. It represents the famous half-power law of Koiter (1945) (Sec. 4.6), 
which applies generally to all asymmetric bifurcations. This law implies a rather 
severe sensitivity of the maximum load to the magnitude of imperfection, the 
severity being manifested by the fact that the curves in Figure 2.26c, d start to 
descend with a vertical tangent (for imperfection-sensitive structures for which 
the bifurcation is symmetric, Koiter derived a ~-power law, Pmax- P.:r= am, 
which is less severe than a 112

). 

The frame we analyzed was tested by Roorda (1965a, b). Figure 2.27 shows 
his test results for two different eccentricities e, which are above and below the 
value e0 that offsets the geometric imperfections of the model (adjustment of the 
theoretical curve by horizontal shift in Fig. 2.27b is necessary due to inevitable 
imperfections of the experiment). The same figure also illustrates the results of 
the theoretical calculations of Roorda and Chilver (1970). They found the initial 
slope of the load-rotation curve to be (dP/d8)/ Per= 0.381 (at 8 = 0), which 
agreed with Roorda's experimental results (see Fig. 2.27a). The present 
calculation gives a= 0.379, which might be more accurate since the present 
method is more direct. 

If, for example, e = 0.011, then a= 0.00871, and Equation 2.6.16 with 
a= 0.379 yields Pmax = 0.885Pen that is, P drops by about 12 percent below Per. 
Calculation of this kind of drop in p max has not been the practice in the design 
of frames. 

Generalizations and Implications 

To generalize the foregoing procedure to arbitrary frames one needs to consider 
second-order joint displacements due to lateral deflections and the second-order 
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changes of the stiffness coefficients due to second-order changes of the axial 
forces in members. The solution may be expected to lead in general to a system 
of quadratic equations. 

In some frames such as the symmetric portal frame in Figure 2.28c, the axial 
shortening of columns meets with no resistance and the incremental shear force 
for asymmetric buckling in the horizontal beam has no effect on the sum of 
vertical loads. The bifurcation is, therefore, symmetric, and neutral equilibrium 
exists at the critical state (for small deflections), just as it does for columns and, 
obviously, also for continuous beams. However, if the portal frame columns have 
different lengths or different stiffnesses (Fig. 2.28d, e) or different axial loads, 
their axial shortenings u1 and u2 are different and cannot be freely accommod
ated, and the incremental shear force in the horizontal beam affects the sum of 
the loads. Then the bifurcation is asymmetric. For frames the symmetric 
bifurcation is in fact an exception rather than a rule. 

The redundancy of the frame per se is not the source of asymmetric 
bifurcation. For example, the two-bar frame in Figure 2.28a, b, which is statically 
determinate and is obtained from our previous frame by replacing the upper 
hinge support with a simple support, must also exhibit asymmetric bifurcation. 
Indeed, the column buckling to the left (Fig. 2.28a) meets in this frame also with 
less resistance than buckling to the right (Fig. 2.28b) since it produces less 
curvature in the horizontal beam, due to the fact that the vertical column shortens 
in proportion to 82

• 

Asymmetric bifurcation is also exhibited by columns if the sliding plane of a 
simple support is misaligned with the beam axis (see Probs. 1.5.3 and 2.6.7). 
Since very small misalignments are inevitable, a small bifurcation asymmetry 
must be always present. 

Order of Approximation 

We should be aware of the order of approximation in the foregoing solution. The 
highest-order terms that are contained accurately in the equilibrium equation 
(Eq. 2.6.2) are of the second-order in rotation 8. Together with the load, the 
highest-order term in Equation 2.6.2 is P82

, which is proportional to Pw2
• So, in 

view of the fact that M = Per w is called the second-order theory, the present 

., r :~ 'H+· n~ 
d) 

H 
F1pre 2.18 Frames exhibiting (a, b, d, e) asymmetric bifurcation, (c) symmetric 
bifurcation. 
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approximation (which is of the second order in deflections) can be called the 
third-order theory. 

Note that the power series expansion of beam curvature, which reads 
1/ p = w"(1 + w'2)-

312 = w"(1- ~w'2 + l]w'4
- • • • ), lacks the second-order term 

w"w'. The first term beyond the linear term w" is the term w"w'2
, which is of the 

third order, and so it affects in the joint equilibrium condition only terms of order 
83 but not of order 82

• It is for this reason that the second-order axial shortening 
can be calculated from the first-order deflection solution based on the linear 
curvature expression 1/ p = w" and the linear stability functions s and c. For the 
same reason, functions sand c (linear stiffness) are insufficient to determine initial 
postcritical behavior in symmetric bifurcations. Thus the symmetric bifurcation is 
harder to analyze than the asymmetric one. A higher-order accuracy is needed. 

We may recall from the comments in Section 2.5, that the postbuckling solution 
for columns (Sec. 1.9) as well as pin-jointed trusses can be considered as a 
fourth-order theory (or a third-order approximation in w). This is the lowest
order theory it can be since, due to symmetry of the column-buckling problem, 
the second-order terms in w cancel out. For the present L-frame, they do not 
cancel out due to nonsymmetry, and consequently the third-order terms in w are 
not needed for the initial postcritical behavior. That is why our solution method 
for asymmetric bifurcation of the L-frame is rather different and could not be 
applied in the same manner to postcritical behavior of a column. It is for this 
reason that one can get correct results calculating the shortening of the members 
(Eqs. 2.6.5a, b) on the basis of sinusoidal deflection curves, while for columns a 
higher-order approximation of the deflection curve must be used. 

For symmetric frame-buckling problems, by contrast, a fourth-order theory, 
based on the moment-curvature relation from Section 1.9, is needed to determine 
the postcritical behavior. 

Postcritical Reserve Due to Redundancy 

Similar to redundant pin-jointed trusses, which we studied in the previous 
sections, frames, of course, also exhibit postcritical reserve due to redundancy. 
For example, when a single column of a large frame buckles, the entire frame 
need not collapse, since the axial force can be transferred from this column to the 
adjacent columns. 

As long as the bifurcation asymmetry effects we just illustrated are absent (or 
at least unimportant), the postcritical behavior may again be analyzed by methods 
of elastoplastic limit analysis, similar to the procedure we demonstrated for 
pin-jointed trusses. Such analysis can indicate that significant redistributions of 
internal forces occur due to large-deflection buckling in frames. The increase of 
load capacity due to these redistributions may overshadow the effects of 
bifurcation asymmetry due to displacements u}2> and v}2> and the incremental 
shear forces. The load of the frame may still increase even if the axial force in one 
column decreases. This was demonstrated for continuous beams by Masur and 
Milbradt (1957), who showed that they can possess a much larger postcritical 
reserve than columns (see also Masur, 1970, and Powell and Klingner, 1970). If, 
however, the column force decreases with deflection significantly, then the limit 
analysis methods are inapplicable and step-by-step loading needs to be used. 
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The existence of either postcritical reserve or postcritical softening is 
important for probabilistic analysis and safety of frames. Obviously, if only one 
out of many columns in the frame fails, the adverse consequences may be quite 
limited and much less severe than the consequences of overall failure of the entire 
frame due, for example, to long-wave extensional buckling. Probabilistic analysis 
of these problems is needed. 

Finite Element Computational Procedure 
Large-deflection buckling of frames can be calculated with the help of finite 
element programs, using the technique of incremental loading (see, e.g., Bafant 
and El Nimeiri, 1973). Each beam of the structure is subdivided into beam 
elements that are so short that their curvature will remain negligible even for the 
large deflections anticipated. Even after large deflections, the incremental 
stiffness matrix of such short elements can be assumed to be the same as that for 
small deformations as indicated in the preceding text (Eq. 2.3.5). For each load 
increment the computation proceeds as follows (Bafant and El Nimeiri, 1973): 

1. Using the current axial force P in each element and current x and y 
coordinates of the end nodes of the element, generate the linearized 6 x 6 
stiffness matrix k for each beam element (Eq. 2.3.5). Then assemble these 
element stiffness matrices into the structural stiffness matrix K. Solve the 
displacement increment vector du = (du 1 , du2 , ••• f from the linear 
equation system K du = df in which df is the vector of load increments for 
the current loading step. [To obtain the postpeak response, one must 
prescribe here the load-point displacement increments, rather than the 
load increments; if matrix K happens to be singular, it means that a critical 
state (failure) has been reached.] 

2. Adding du to the old nodal coordinates, generate new coordinates of the 
nodes, and adding calculated df to the old f, obtain new reaction values. 
Using &u, calculate from K &u the increments &P of the axial forces P in 
all finite elements, and add them to the previous values of P. Unless the 
given termination condition is satisfied, return to step 1 and start 
computations for the next loading increment. 

We will return to large-deflection buckling in Section 4.9 where we will solve 
both perfect and imperfect columns by the energy approach. 

Often the response of frames at large deflections becomes inelastic, and then a 
different solution is required; see Chapters 8 and 10. 

Problems 
2.6.1 For the frame in Figure 2.25 (with p = 1) solve the critical load and then 

calculate 'lc• 'lb (Eqs. 2.6.5), a (Eqs. 2.6.12), and a (in terms of e). What are 
the relative magnitudes of 'lc and 'lb? Compare with the value a= 0.381 given 
by Roorda and Chilver. (The results are 'lbll = 0.1, 'lcll = 0.621, Per= 1.407, 
a= 0.379.) Determine Per- Pmax fore= 0.011. 

2.6.2 In Equations 2.6.11 and 2.6.12, a1 and a2 represent the effect of the 
incremental shear forces in the beam and in the column, respectively, and a3 

represents the effect of the second-order displacements of the joint. Verify 
that a 3 = 0.2160, a2 = 0.0372, and a3 = 0.1255. 
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2.6.3 Same as Problem 2.6.1 but (a) the column and beam are fixed at the ends, 
(b) the column base is hinged and the beam end is fixed, (c) vice versa. 

2.6.4 Same as Problem 2.6.1, but for the frames in Figure 2.29a, b, c. 
2.6.5 Discuss the postbuckling stiffness change for the asymmetric bifurcation of 

the frame in Figure 2.29d. 

d) p 

I 
I 
\ 

e) 

Figure 2.29 Exercise problems on postcritical behavior (a-d) of frames and (e) of hinged 
column with inclined support. 

2.6.6 Calculate the plot of curves P(8) for e = ±0.0011, e = ±0.011, e = ±0.11 
corresponding to Problem 2.6.1. 

2.6.7 Asymmetric bifurcation is also exhibited by columns if their symmetry is 
broken by a support. Show that this is the case for a hinged column in Figure 
2.29e in which the support slides on a plane of inclination fJ with respect to the 
column axis (cf. Prob. 1.5.3 and Sec. 4.5). Hint: Force equilibrium of the 
slider along the plane of sliding requires that P cos fJ =PI cos ({J + v/1), and 
sliding can occur only if PI = PE. 

2.6.8 Asymmetric bifurcation is also exhibited by asymmetric or asymmetrically 
loaded rigidly jointed trusses. Analyze the sensitivity to the eccentricity of the 
load for the trusses in Figure 2.30a, b, c. Such trusses were tested and 
analyzed by Roorda. 

a) e p b]A)P c) 
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Figure 2.30 Exercise problems on postcritical behavior of trusses. 
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Figure 2.31 Further exercise problems on postcritical behavior of frames. 

1.6.9 Show that for c =I= 1 the frame in Figure 2.31a exhibits asymmetric 
bifurcation. Assume the frame to be (a) braced, e1 = e2 = e, (b) unbraced, 
e1 = -e2 = e; and for c = 0.98, 0.95, 0.90, 0.70, 0.30, 0.00 solve (1) Per (see 
Prob. 2.2.18), (2) 8Pc.l 881 for the initial postbuckling behavior, (3) Per- P max 

for 0 = 0.011. 
1.6.10 Same as above, but for the frame in Figure 2.31b. 
1.6.11 Same as above, but for frame in Figure 2.31c. Hint: First determine the 

ratio 81+.18; = r which must be constant fori> 1. 
2.6.U Again solve Problem 2.2.25 taking now, however, axial shortenings of the 

members due to 8 and u into account. Note: This arch frame exhibits 
asymmetric bifurcation. Based on the first-order solution from Problem 
2.2.25, one may calculate the second-order approximations to axial short
enings u~2> of members 12 and 34, and u~2> of member 23. They represent 
quadratic forms in 8 and v. The effect of u~2> and u~2> is to cause the 
displacement vat joint 2 to increase to v + av, and displacement vat joint 3 
to decrease to v- av. The magnitude of avis determined from the condition 
that the horizontal projections of all the second-order displacements (Fig. 
2.32a) must have a zero sum, as dictated by the S!!J>port conditions. This yields 
the condition -_uJ2>tifi + av!Vi- u~2> + av/'\/2- u~2>t\fi = 0, from which 
av = u~2> + u~2>/v2. Replacing v with v + av and v- av for joints 2 and 3, 
respectively, in the equilibrium equations of Problem 2.2.25, we then get two 
quadratic equations relating P, 8, and v, from which the initial postcritical 
response can be calculated. 

a) 2l 'v 
~ 
~ 
u~v 

t(' "-uP1 

I 3L + 

b) 

Figure 2.32 Further exercise problems on postcritical behavior of frames. 

1.6.13 Consider the L-frame in Figure 2.32b, which represents a symmetric 
structure-load system. Applying the same method as we did for the Koiter
Roorda frame, verify that terms proportional to 82 in the joint equilibrium 
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equation cancel out. Consequently, this frame does not exhibit asymmetric 
bifurcation. Rather, it must exhibit symmetric bifurcation, for which the initial 
slope of load versus deflection is horizontal. At larger deflections the load can 
either increase (as in Sec. 1.9) or decrease. To decide it, higher-order terms 
must be included (see Sec. 4.9). 

Z.6.14 The distribution of P in the systems of Figure 2.33a, b, c, d varies with 
deflection. Is this sufficient to produce asymmetric bifurcation? Is the 
postbuckling behavior symmetric? 

c) 2P d) 2P 

Figure 2.33 Exercise problems on postcritical behavior of frames with load distribution 
varying with deflection. 

Z.6.1S Stochastic eccentricity. Load P on the L-frame of Koiter and Roorda, 
which was studied in the text, has an uncertain eccentricity e that has a normal 
probability distribution with mean e and standard deviation se. Using the final 
simplified Equation 2.6.16 determine the mean and standard deviation of 
max P (it is the problem of statistics of a function a of a random variable; see, 
e.g., Benjamin and Cornell, 1970). 

Z.6.16 Same as Problem 2.6.15, however not only the eccentricity but also the 
load P are uncertain, with log-normal distributions. The means and standard 
deviations of loge and log Pare f.le, fJp, se, and sr Formulate the problem and 
discuss the numerical method of calculation of the probability that P would 
exceed Pmax· 

2.7 BUILT -UP COLUMNS AND REGULAR FRAMES AS COLUMNS 
WITH SHEAR 

In Section 1. 7 we analyzed the buckling of columns that exhibit significant shear 
deformations. Such deformations happen to be very important when built-up 
columns are approximately analyzed as homogeneous columns. Disregard of the 
shear effect proved tragic, causing one of the greatest disasters in the history of 
bridge building. As a world record span of over 500 m was being completed over 
the St. Lawrence River in Quebec at the beginning of this century (year 1907), 
one of the compression diagonals of this truss railroad bridge (a cantilever system 
with inserted simple spans) buckled and caused total structural collapse sending 
many workers to their deaths. The critical diagonal was a built-up member and 
the source of failure was traced to a very low shear stiffness of this diagonal. 
Although Engesser's formula for the shear effect had been presented about two 
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decades before, it passed unnoticed by the bridge designers. Learning from this 
experience, the bridge was then successfully rebuilt in the 1920s and by virtue of 
this disaster it became generally accepted that built-up columns must be designed 
for buckling with shear. 

Let us now illustrate how a built-up column may be approximated by a 
homogeneous column. Consider the column shown in Figure 2.34a, consisting of 
two channel beams connected by welded batten plates. Although such a column 
would be more accurately treated as a frame, it suffices to treat it as a single 
homogeneous column if the number of panels is large. The distribution of the 
bending moment along the channel beams is then approximately periodic, 
repeated in each panel. This requires the bending moment in the channel to have 
a zero value at middistance between the batten plates. Thus, we may imagine an 
H -shaped element to be cut by cross sections at middistance between the batten 
plates (Fig. 2.34b), and we may consider that the ends of this element are 
subjected only to shear forces. Using the principle of virtual work and the 
bending moment distributions along the channel beams and the batten plates as 
shown in Figure 2.34c, one may calculate that the deflection lJ (Fig. 2.34c) caused 
by shear force Q is 

lJ = ya 
Q 

y=-
GAo 

1 ab a 2 

--=--+--
GAo 12Eib 24Eic 

(2.7.1) 

in which y is the average shear angle, a is the distance between the centroids of 
the batten plates, b is the distance between the centroids of the channel beams, 
and lc and lb are the centroidal cross-section moment of inertia of the channel 
beams and of the batten plates, respectively. The expression for GA0 in 
Equations 2. 7.1 represents the equivalent (approximate) shear stiffness of the 
built-up column. Based on this stiffness, one may then use Engesser's formula 
(Eq. 1.7.7 of Chap. 1) to obtain the critical load. 

Consider now the column shown in Figure 2.35a. Since the bending moments 
on the individual members are negligible, we may assume hinges at each node 

[ J 
a) 

4-----4 
Figure 2.34 (a) Battened column, and (b, c) subdivision in cells for approximate 
calculation of shear deformation. 
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a) 

+--4 
Figure 1.35 (a) Latticed column and (b, c) subdivision in cells for approximate calculation 
of shear deformation. 

(Fig. 2.35b) and treat the column as a truss. To calculate the equivalent shear 
deformation we isolate one cell of the truss whose length a represents the distance 
between two adjacent lacing bars, and we subject the cell to a shear force Q (Fig. 
2.35c). The relative lateral displacement {) may be calculated from the principle 
of virtual work on the basis of the axial forces in the lacing bars shown in Figure 
2.35c. Neglecting the axial deformation of the vertical members, the result is 

Q 1 1 ( d
3 

b
3

) 

{) = GA0 a GA
0 
= ab2 EAd + EA, (2.7.2) 

in which b is the distance between the centroids of the vertical members, d is the 
length of the diagonal measured to the centroids of the vertical members, and Ad 
and A, are the cross-sectional areas of the didgonal and transversal lacing bars. 

Similar expressions can be derived for other types of built-up columns or 
latticed columns; see, for example Bleich (1952) and Timoshenko and Gere 
(1961). A similar consideration of shear is also possible for columns with webs 
that are weakened by openings. 

The column with shear can also be used as a model that greatly simplifies the 
analysis of long-wave extensional buckling of large regular frames. If the 
width-to-height ratio (Fig. 2.36a) is not too high, this approach gives results that 
are very close (errors of 5 to 10 percent) to the exact solutions obtained by finite 
difference calculus or by computer analysis based on the assembly of all members 
(B8Zant and Christensen, 1972b). 

Consider a planar regular rectangular frame (Fig. 2.36b) in equilibrium under 
axial forces Py in columns and P:r in beams (usually P:r = 0). Let L:r and Ly be the 
length of horizontal and vertical members; A:r and Ay their cross-sectional area, 
and I:r, ly their cross-sectional moments of inertia (subscripts x and y refer to 
members in the horizontal and vertical directions). 

In analogy with the well-known portal method of approximate frame analysis, 
it will be assumed that the bending moments at the midlength points of all 
columns and beams are zero. This is equivalent to the assumption that the 
rotations of all joints in a given ftoor and in the two adjacent ftoors are equal. 
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Figure 2.36 (a) Frame geometry; (b) equilibrium at a typical joint; (c) comparison of 
frame critical loads obtained by various methods. (After Baiant and Christensen, 1972b.) 

Consider an imposed relative horizontal displacement yLy between the adjacent 
floors. Taking the initial forces, Py, into account and neglecting P ... , we obtain the 
moment equilibrium equations for the interior joints and the boundary joints: 
6fJkA) + 2kysyf/> - 2kysy y = 0 in which {J = 2 for an interior joint and {3 = 1 for a 
boundary joint, and k ... = EI ... I L ... , ky = Ely/ Lr Then we calculate the sum I: V of 
the corresponding shear forces V in all the columns of the floor, each of which is 
expressed (after substitution for 4>) as follows: VI y = (s; y - 2Syf/> )ky/ Ly = 
{12(ky/ Ly)/((6/sy) + 2ky/(k ... {J))}- Pr From this, the shear rigidity R of the 
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cross section of the whole frame is obtained as 

- E V mKky 
R=-=12--

y Ly 

1 - 2/m 2/m 1e
2 

( Py) 
K = (6/sy) + (kylkx) + (6/sy) + (2kylkx)- 12 PE, 

(2.7.3) 

(2. 7.4) 

in which m = the number of columns in the ftoor. The moment of inertia of the 
horizontal cross section of the whole building (neglecting the contribution of the 
values of ly) is 

i = AyL~[12 + 22 + ... + <m -1)21- mAy [LA~ - 1>f = ~ (m2 -1)AyL~ 
(2.7.5) 

According to Engesser's formula (Eq. 1.7.7), the critical value Per of the 
resultant of initial axial forces in all columns is 

- PE 
Per= mPy .. = 1 + PE/R (2.7.6) 

or 

Py .. _ [12(m -1)(ryH)
2 
+~]-1 

PE., m + 1 LyB 12K 
(2.7.7) 

in which PE = 1e
2Ei/ H 2 =Euler load for the frame taken as a single column 

without shear, B =width of frame, H =height corresponding to half-wavelength 
(Fig. 2.36a), and ry = Vly!Ar 

Equation 2. 7. 7 is not an explicit formula for Py .. • since Py .. appears in Equation 
2. 7.4 for K. In the cases of interest for long-wave buckling, however, Py .. « PE, 
and so an approximate value of Py .. may be obtained by setting Py = 0 and sy = 6 
in Equation 2. 7 .4. 

The results of this approximate analysis are shown by the dash-dot lines in 
Figure 2.36c in comparison with the exact solutions for a typical frame. It is seen 
that the predictions are surprisingly accurate and quite satisfactory for most 
design purposes, even for the cases where the actual distribution of vertical 
displacements along the ftoor is far from a linear one (although the derivation of 
Engesser's formula assumed the cross section to remain plane). 

Still more accurate values can be obtained for high values of (HI B)/(Ly/ry) by 
solving Equations 2. 7.4 and 2. 7. 7 for Py .. exactly, for example, by the regula falsi 
method. Curiously, though, for low values of (H/B)/(Ly/ry), solving Equations 
2. 7. 7 and 2. 7.4 by an iterative procedure leads to a value for Py) PE that has a 
greater error than the first approximation. 

The approximation by a column with shear is particularly useful for practical 
problems that are difficult to solve exactly by finite difference calculus, such as a 
free-standing frame in which the column cross sections and the axial forces vary 
from ftoor to ftoor. 

The consideration of shear in regular frames exemplified in the preceding 
analysis may be used also in more complex structural systems. An example is the 
buckling of a framed tube, a term used for a stiff-perimeter frame frequently used 
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in modern skyscrapers (e.g., the Sears Tower, Chicago and the World Trade 
Center, New York, the two tallest buildings in the world in the 1980's) or the 
buckling of planar frames or frame tubes that are coupled with a stiffening truss 
(e.g., John Hancock Building, Chicago) or with strong shear walls in the core of 
the building (e.g. Lake Point Tower, Chicago). In that case, one needs to write 
the differential equation for a beam-column with shear using an unknown 
distributed reaction from the stiffening shear wall, or unknown concentrated 
reaction forces from the stiffening shear wall, or unknown concentrated reaction 
forces from the large stiffening truss. These unknowns are then determined from 
the conditions of compatibility of deflections of the regular frame and the shear 
wall of the stiffening truss. 

Since even in the tallest contemporary buildings the overall critical loads are 
generally much higher than the actual loads, of main practical interest is the 
extension of the foregoing calculations to dynamics, particularly to the deter
mination of free vibration frequencies as influenced by the axial loads, in the 
presence of shear deformations in the beam-column approximating the frame. 
Accurate knowledge of the vibration frequencies is obviously important for the 
consideration of seismic loads or wind loads. 

Problems 

2.7.1 Calculate the equivalent shear stiffness for the trusses in Figure 2.37a, b. 
2. 7.2 Calculate the equivalent shear stiffness and the critical load for the 

structures in Figure 2.37c, d, e. 

a) b) c) 

f) 
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g) 

[".. / 

..... 
= 

/ t--.. 
/ ' ..... 

1/ 

e) 

Columns rigid 
against ahear 

Figure 2.37 Exercise problems on buckling of frames treated as columns with shear. 
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Z.7.3 Consider a regular frame (see Fig. 2.37£) the sway of which is opposed by a 
shear wall. Analyze it as a column with shear coupled continuously to an 
ordinary column of bending stiffness El and the same height, and impose the 
entire load on the top of the column with shear. Express the critical load. 

z. 7.4 Consider a regular frame connected at discrete points to a stiffening truss as 
shown in Figure 2.37g. Express the critical load. 

2.8 HIGH ARCHES 

From the viewpoint of buckling analysis, it is useful to distinguish two basic types 
of arches: high arches and flat arches. High arches are those for which the center 
line of the arch may be considered incompressible, and flat (or shallow) arches 
are those for which its shortening is important. We will now analyze high arches 
from the viewpoint of differential equations of equilibrium, and shallow arches we 
will treat from the viewpoint of energy in Section 4.4. i..ater, in Section 5.5, we 
will return to high arches, applying approximate energy methods. Note also that 
in Problems 2.2.25 and 2.6.12 we have already analyzed a polygonal frame that 
behaves essentially the same as an arch. 

Curvature Change 

First we must describe the geometry of deformation. Let R be the curvature 
radius of the arch, s the length coordinate measured along the curved center line, 
and w the deflection normal to the center line, positive if toward the center of 
curvature. The bending moment M is proportional to the curvature change K, and 
if the arch is sufficiently slender, the proportionality constant is EI (like for 
beams). Therefore 

M=EIK 
1 1 

K=---
R* R 

(2.8.1) 

in which R* is the curvature radius of the center line after the deflection. As an 
approximation, we can imagine that the curvature change (Fig. 2.38a) is a sum of 
the curvature change at constant deflection, which is 1/(R- w) -1/R, and the 

a) 

R 

Figure 2.38 Geometry of arch deformation. 
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curvature change due to deflection variation, which is d2w/ds2• So we have 

d
2
w ( 1 1) d

2
w w d2w w 

K=ds2 + R-w-R =ds2 +R(R-w) ds2 +R2 <2·8·2) 

where s =length coordinate of arch center line. 
However, calculating the curvature change due to w under the assumption of 

constant w has been an intuitive step. We need a more rigorous justification by 
calculating the curvature change at variable w(s ). To this end, we note (Fig. 
2.38b) that because the center line of the arch is inextensible, ds = R dt/J = 
R* dt/J* = ds*. The angle subtended by the tangents of the center line at the ends 
A' and B' of the deformed element ds* (Fig. 2.38b) is dtP* = (w' + w" ds) + 
dt/J- w' + du/ R, in which the last term represents the additional relative rotation 
between the tangents at B' and C' that is caused by axial displacement u. This 
displacement is required to satisfy the inextensibility assumption, that is, 
du = w dtfJ; see Figure 2.38b. Therefore we have 

K =_!__!= dtfJ* _! = dt/J* _.!_=_!_[dtP + (dw + d
2
w ds) _ dw + (w dtP)] _! 

R* R ds* R ds R ds ds ds2 ds R R 

= d
2
w + dt/J ( 1 + ~) _ .!_ = d

2
w + ~ 

ds2 ds R R ds2 R 2 (2.8.3) 

This is the same as Equation 2.8.2 because dtfJ/ds = 1/R. 
Substituting the linearized curvature change expression in Equation 2.8.2 into 

Equation 2.8.1, we obtain the following governing differential equation for the 
buckling of high arches: 

Approximate Theory for Perfect Arches with a Fixed 
Compression Line 

(2.8.4) 

It is expedient to analyze first a perfect system. A perfect arch is an arch in which 
the center line before buckling coincides with the compression line, which 
represents the locus of the points of the normal force resultant within the cross 
sections (and is also called the funicular line). Perfect arches are, for example, 
circular arches under uniform radial pressure, parabolic arches under a vertical 
distributed load that is uniform on a horizontal projection, and catenary arches 
under dead weight that is uniform along the arch, provided that the boundary 
conditions do not introduce significant bending moments. (For example, the 
two-hinge arch or fixed arch would need to have radially sliding supports in order 
to achieve zero bending moments upon application of uniform radial pressure; 
see Fig. 2.39a, b). Although such boundary conditions are not normally used, if 
the arch is not too slender the bending moments produced by boundary 
conditions due to center-line compression are small and can be neglected. 
Anyhow, the assumption of incompressibility of the center line implies these 
bending moments to be zero (in Fig. 2.39a, b it does not permit radial sliding of 
supports). 
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Figure 2.39 (a, b) Boundary conditions for perfect arches; (c) circular arch subjected to 
uniform radial pressure and disturbing moment m; (d) approximate and exact behavior; 
(e, f) buckling modes of hinged and fixed arches. 

A useful simplification is due to the fact that, for hinged high arches, the 
reaction resultants of the arch do not move significantly during buckling. Then 
the compression line remains fixed, that is, does not move with the cross sections 
during buckling. Consequently, the bending moment M due to buckling deflec
tions w simply isM= -Pw (Fig. 2.39c), and Equation 2.8.4 takes the form: 

(2.8.5) 

Together with the boundary conditions for w(s), Equation 2.8.5 defines a 
one-dimensional boundary-value problem for w(x ). 

The problem may be readily solved if k is constant, which occurs for a circular 
arch (R = const.) if the axial force P is constant. This case is obtained if the 
loading consists of a uniformly distributed radial load p, and then P = pR = 
const., according to the differential equation of equilibrium. For the other types 
of arches mentioned above, the axial force increases from the crown to the 
support. 

Consider now a two-hinged circular arch with incompressible center line and 
no imperfection, subjected to uniform radial pressure p (Fig. 2.39c). The 
differential equation (Eq. 2.8.5) as well as the boundary conditions at hinges 
(w = 0) may be satisfied (for P = const.) by the function w =A sin (mrs/ L) where 
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L is the length of the arch center line from one hinge to another. 
substitution in Equation 2.8.5 it then follows n21f2/L2 =1/R2 +pR/El, 
yields for the critical value of p the formula, due to Hurlbrink (1908), 

EI[ n
2
1f

2 
] 

Pcrft = RJ (L/R)z -1 (n = 2, 4, 6, ... ) 

111 

Upon 
which 

(2.8.6) 

Now there exists an interesting point particular to arches. Not every sine curve 
is admissible if the center line is assumed inextensible. This inextensibility 
condition could in no way be satisfied if the number of half-sine waves from 
support to support were odd. The number n of half-sine waves must be even, 
because deflections outward tend to extend the arch while those downward tend 
to shorten the arch, and one must exactly compensate for the other. Therefore, 
the smallest admissible value of n in Equation 2.8.6 is not n = 1 but n = 2. This 
was noted by Hurlbrink (1908), although the governing differential equation (Eq. 
2.8.5) was obtained long before him by Boussinesq (1883). 

The formula also applies for a full circular ring, in which case, however, it 
yields Per2 = 0 because L/ R = 21f. This is not surprising since, in this case, the two 
support hinges coincide and the arch no longer has a statically determinate 
support. Rather, it can freely rotate as a rigid body about the hinge; see 
Timoshenko and Gere (1961, p. 298). The lowest load that causes buckling is 
Per.= 3El/R3 (Bresse formula, cf. Timoshenko and Gere, p. 291). 

The foregoing solution may also be used for cylindrical shells, which buckle in 
a mode that is translationally symmetric along the axis of the cylinder (this can be 
assumed only if the load does not change in the direction of the axis). In this case 
the bending stiffness El must be replaced by the cylindrical stiffness of the shell 
(Chap. 7) B = Eh 3 /12(1 - v2

) where h =shell thickness and v = Poisson ratio. 

Various Types of Arches and the Effect of Imperfections 

Often the cross sections of the arch are not, before buckling, loaded centrically, 
that is, there is an initial bending moment M0(s) = - PZo(s) where z0(s) is the 
distance of the center line of the undeflected C!;tress-free) arch from the 
compression line (Fig. 2.39c). In such a case we have on the right-hand side of 
Equation 2.8.5 the term M0(s)/El instead of 0. This is the case, for example, 
when moment m ::I= 0 is applied as in Figure 2.39c. Instead of bifurcation-type 
buckling with a critical load given by Equation 2.8.6, we obtain a load-deflection 
curve that is similar to the linearized solution of imperfect columns, with the 
deflections approaching infinity as the critical load in Equation 2.8.6 is ap
proached (Fig. 2.39d). Note, however, that such behavior is obtained only if the 
arch is loaded asymmetrically. The symmetric components of loads can produce 
only finite deflections but cannot excite the first critical mode since n must be 
even (Eq. 2.8.6). 

Equation 2.8.6 can be put into the form (for n = 2) 

(2.8.7) 

in which {JL =effective length, fJ = 2/[4- (L2/1f2R2W12
, and Per= critical axial 

thrust. For L/R-+0 we have fJ = 1, which corresponds to an arch of a very low 
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rise (for which, however, Eq. 2.8.7 is invalid since the effect of axial extensibility 
becomes important). For L/R = n, we have {3 = 1.15, which corresponds to a 
semicircular arch. In view of the fact that the buckling shape (Fig. 2.39c) has an 
inflection point at the crown, it is interesting that the value of {3, lying between 1 
and 1.15, is not much different from that for a hinged column of length L/2 
({3 = 1). 

A three-hinged arch of a sufficiently high rise has an antisymmetric buckling 
shape similar to that of a two-hinged arch. As calculated by Austin (1971), 
{3 = 1.14 to 1.15. It is interesting that this is not very different from the {3 value for 
a semicircular two-hinged arch (see also Timoshenko and Gere, 1961, p. 301, in 
which the results obtained by Dinnik, 1934, are reported). For a not too deep 
three-hinged arch, however, the buckling becomes symmetric, according to the 
shape illustrated in Figure 2.39e. 

A fixed arch cannot be solved by the present procedure since the compressior: 
line moves during buckling. It is then best to solve the arch by approximate 
energy methods, which will be shown in Section 5.5. Timoshenko and Gere 
(1961, p. 299) present a solution due to Nicolai (1918), from which it appears that 
{3 = 0. 70 to 0.71 (see also Austin, 1971). Note that the effective length factor {3 is 
rather close to the value for a fixed-hinged column of length L/2. This is not 
surprising, since this type of arch buckles with an inflection point (M = 0) at the 
crown (Fig. 2.39f). 

The data presented in Timoshenko and Gere (1961) for parabolic arches 
under a vertical load uniformly distributed over the horizontal projection, as well 
as catenary arches subjected to own weight, show that the value of the effective 
length factor is very close to that which we have mentioned for circular arches 
subjected to normal load (Austin, 1971). For typical arch shapes, and for P 
defined as the critical axial thrust at quarter-points of the span, it has been found 
that 

{3 = 0.68 to 0.73 

{3 = 1.10 to 1.24 

{3 = 1.10 to 1.15 

(fixed arch) 

(two-hinged arch) 

(three-hinged arch, except catenary) 

(2.8.8) 

For the case of own weight, DaDeppo and Schmidt (1971) have shown that 
two-hinged circular arches have a critical value of the axial thrust significantly 
smaller than under normal loading. 

The case of circular arches loaded by a concentrated load at the crown has 
been analyzed by DaDeppo and Schmidt (1969). The critical thrust at the 
quarter-points, expressed by Equation 2.8.7, corresponds in this case to the 
values {3 = 1.0 to 1.14, which is about the same as for a uniformly distributed 
load. The prebuckling deformation due to the primary bending moment obviously 
cannot be neglected in this case. It leads, for a two-hinged arch, to a 
load-deflection curve of the type illustrated in Figure 2.40a. At the critical load 
the equilibrium path intersects another path that corresponds to an antisymmetric 
mode with sidesway and has a negative slope. The arch follows this second path 
after the bifurcation point, that is, the deformation ceases to be symmetric. This 
causes sensitivity to imperfections (of a similar type as illustrated in Sec. 2.6). As 
is clear from Figure 2.40a, the presence of inevitable imperfections causes the 
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Figure 2.40 (a) Hinged circular arch subjected to a concentrated load and (b) the 
load-displacement curve; fixed arch subjected to concentrated load. 

load-deflection curve to have a maximum load that is less than the critical load for 
the bifurcation point. 

On the other hand, fixed arches under concentrated load at the crown buckle 
symmetrically (Fig. 2.40b). For this case the value of the effective length factor is 
{3 = 0. 77 to 0.83, which is considerably larger than for the case of distributed 
normal loading (Schmidt and DaDeppo, 1972). 

An important fact about slender arches is that they are imperfection-sensitive. 
This means that, in contrast to columns, imperfections such as asymmetry of the 
applied load cause a decrease of the maximum load compared to the critical load 
of the perfect arch. This is due to appearance of an asymmetric deformation 
mode. The type of bifurcation in buckling of arches is called unstable symmetric 
(Fig. 2.39d). We will discuss such behavior in more detail in Section 4.5 (see also 
Thompson, 1982, p. 57). 

The symmetric buckling modes of a circular arch under radial or vertical loads 
are illustrated by the teaching model in Figure 2.41a, b developed at Northwes
tern University (1969). The results of the experiments of Roorda (1965a, b) are 
shown in Figure 2.42a, b. Figure 2.42a gives the load-rotation diagram for a 
certain value of the eccentricity. The critical load of the imperfect arch decreases 
with the eccentricity of the load, as shown by the imperfection sensitivity diagram 
in Figure 2.42b. The milder effect of the imperfection with respect to asymmetric 
bifurcation (approximating the ~-power law) is evident. We will return to this 
example in Section 4.5. 

Arches can also buckle laterally, in a bending-torsional mode. This will be 
touched on in Section 6.3; see also Timoshenko and Gere (1961), where many 
other interesting results about buckling of arches and rings are given. 

General Linearized Theory for Uniformly Compressed Circular 
Arches 

The equilibrium relation M = -Pw, which we used to derive Equation 2.8.5, is 
not applicable in general. Let us now outline a linearized formulation based on 
more general equilibrium relations. We restrict attention to the case of an 
inextensible circular arch of radius R (Fig. 2.43a) that is in equilibrium under a 
uniformly distributed radial load p, and is characterized by the absence of 
bending moments, shear forces, and displacements in the prebuckled state. 
Buckling produces the increments M, V, and N of bending moment, shear force, 
and axial force (Fig. 2.43b). For the case of radial loads whose direction remains 
constant during deflection (dead pressure), the differential equilibrium conditions 
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a) 

b) 

Figure 1.41 Northwestern University (1969) teaching models: in-plane buckling of high 
arch under normal and vertical loading. 

for the radial and tangential directions and for moments are (Oran and Reagan, 
1969) 

V'+N=O N'-V=O (2.8.9) 
(2.8.10) 

in which the prime indicates differentiation with respect to angle cp, and 
() = (u + w')IR =rotation of the arch cross section (Fig. 2.43b). Equations 2.8.9 
are the same as in the first-order theory. The rotational equilibrium equation (Eq. 



BUCKLING OF ELASTIC FRAMES BY EQUILIBRIUM ANALYSIS 

a) 

-016 -0 08 

08 

p 

Per 

\ 
' 

Experiment,/''\ 

R _!.j F- '\, 
06~ 

1- L -1 

,e,. 
0 0 08 016 

b) 

08 

-0 2 -0 I 
1 
0 

p 

Per 

115 

Adjusted 
theoretical curve 

I ... 

01 e 
T 

Figure :Z.4:Z Experimental results of Roorda (1%5a, b) compared to theory. 

2.8.10), however, has an additional term which results from the fact that the arm 
of the axial force pR (Fig. 2.43b) is proportional to 8 ds. 

We may now express V from Equation 2.8.10, in which M = EI(w" + w)/R2 

from Equation 2.8.4. Then we substitute this into V' + N = 0 and N' - V = 0. 
Realizing that the inextensibility condition requires that u' = w, and denoting 
k 2 = pR3 I El, we thus obtain 

(u1v + 2u" + u)" + k2(u1v + 2u" + u) = 0 (2.8.11) 

This is a homogeneous sixth-order differential equation for the tangential 
displacement u(f/>). Its general solution can be expressed (if k2':/: 1) as u(f/>) = 
us( q,) + uA( q,) in which us( q,) and uA( q,) are the symmetric and antisymmetric 
parts, given by 

us(q,) =A1 coskq, + A2 cos tP + A34> sin 4> 
uA( tP) = A4 sin k<P + A5 sin tP + A6tP cos tP 

c) P 

\ 
, .. ~ 

~,...,-"~ptp8 
/~ 

Pn 

b) I • 

Figure :Z.43 (a) Inextensible circular arch and (b, c) equilibrium of arch element. 

(2.8.12) 

(2.8.13) 
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Considering the case of symmetric boundary conditions, Equations 2.8.12 and 
2.8.13 yield the antisymmetric and symmetric buckling modes, respectively (note 
that antisymmetric buckling corresponds to a symmetric solution for the 
tangential displacement u ). For hinged ends, the boundary conditions are 

At <P =±a: u =0 w=u'=O 

For clamped ends, they are 

At <P =±a: u=O w=u'=O 

w 
K = w" +- = u"' = 0 Rz 

u+w' 
8=--=u"=O 

R 

(2.8.14) 

(2.8.15) 

Consider now antisymmetric buckling. The system of three homogeneous 
equations that express the boundary conditions has a nonzero solution if, for 
hinged ends, 

2(k sinkacos a- sin acoska) sin a- k(k2 -1)(a +sin a cos a) sin ka =0 
(2.8.16) 

and for clamped ends, 

2(k sin ka cos a- sin a cos ka) cos a- (k2
- 1)(a +sin a cos a) cos ka = 0 

(2.8.17) 

Expressing the critical value of the radial loads through Equation 2.8. 7, one 
obtains for a semicircular arch {3 = 1.1078 if the ends are hinged and {3 = 0.6667 if 
the ends are clamped. Comparing this with the values given by Timoshenko and 
Gere ({3 = 1.15 and {3 = 0. 70), we see that their approximate solution in these 
cases is not too inaccurate and is also on the safe side. 

The effect of elastic restraints at the ends was analyzed for circular arches by 
Oran and Reagan (1969). They also studied the effect of pressure loading, which 
differs from the loadings we examined before in that the load direction changes as 
the arch deflects in such a manner that the load vector remains normal to the 
deflected shape of the arch (normal pressure). Therefore, the load acquires in the 
buckled configuration (Fig. 2.43c) a component, p, = -p8, in the direction 
tangent to the initial undeformed center line of the arch while the normal 
component Pn = p cos 8 == p remains approximately constant. The equilibrium 
equation in the tangential direction, which replaces the second of Equations 
2.8.9, takes the form N' - V + p,R = N' - V - pR8 = 0, and the governing 
differential equation is found to be 

uv1 + (1 + kDu1v + k~u" = 0 (2.8.18) 

in which k1 = 1 + pR3 I El. For k 1 #= 0 and k 1 #= 1 the solution can be expressed as 
(Oran and Reagan, 1969) 

u5 (cp) = B1 + B2 cos <P + B3 cos k1<P 

uA(<P) = B4cp + B5 sin <P + B6 sin k1<P 

(2.8.19) 

(2.8.20) 

Considering again the case of a semicircular arch (a= n/2), and imposing the 
boundary conditions expressed by Equations 2.8.14 and 2.8.15 for the cases of 
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hinged and clamped ends, respectively, one finds f3 = 1.1547 for a hinged arch 
and f3 = 0. 7071 for a clamped arch. This is to be compared with the values 
f3 = 1.1078 and f3 = 0.6667 that we found before for the case that the loads do not 
rotate as the arch deflects. We see that the rotation of the loading produces a 
decrease of the critical load. 

We will return to this point in Section 5.5 where we will apply energy methods 
to arches. 

Problems 

2.8.1 Without using the text, derive Equation 2.8.6. 
2.8.2 Solve Pa: for a circular arch whose footings slide radially but cannot rotate 

(Fig. 2.39b). 
2.8.3 Assume that the compression line (obtained from first-order analysis) is a 

circle of radius r passing through the hinge supports, such that r =!: R. Assume 
that P, p, and rare constant during buckling, and solve the load-deflection 
diagram from Equation 2.8.4, and plot it. 

2.8.4 Sketch the forces acting on an infinitesimal element ds = R dcp of the arch 
and give a detailed derivation of Equations 2.8.9 and 2.8.10, as well as 
Equation 2.8.11. 

2.8.5 Derive Equations 2.8.16 and 2.8.17 by applying the proper boundary 
conditions. 

2.8.6 Solve antisymmetric buckling of a hinged semicircular arch under pressure 
loading, taking into account the rotation of the load vector as the arch 
deflects. Hint: Apply to the solution given by Equation 2.8.19 the boundary 
conditions given by Equations 2.8.14. The result is k1 = 2, PcrR = 3El/R2

, 

8 2 =0, B3 = B1 = B, and u = B(l +cos2cp). 
2.8.7 Same as Problem 2.8.6 but for a clamped arch. 
2.8.8 Express the boundary conditions for the case of a hinged arch with 

rotational springs attached at the ends. Find, for a semicircular arch, the 
critical value of p as a function of the spring rigidity. 

2.8.9 A stiffened arch (Fig. 2.44a) is an efficient structure, which was a trend in 
bridge design during the 1930s. Assuming that the arch as well as the vertical 
supports of the beam (the roadway) are so flexible that they can transmit only 
axial forces and are at the same time axially inextensible, set up the 
differential equations of equilibrium of an element ds of the arch coupled with 

·~ :: 
·~ 

Figure 2.44 Exercise problems on buckling of (a) stiffened and (b) tied arches. 
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an element ds of the beam. Assume the vertical supports to be infinitely 
densely distributed. [The critical loads were obtained by Dischinger (1937, 
1939); see also Oran and Reagan (1969).] 

2.8.10 Discuss buckling of a tied arch (Fig. 2.44b), in which the suspenders and 
the roadway beam are perfectly flexible, the arch is axially inextensible, and 
the beam is axially extensible (cf. Dischinger, 1937, 1939; and Austin, 1971). 

2.9 LONG-WAVE BUCKLING OF REGULAR FRAMES 

In Section 2.4, we did not find the complete solution of regular frames but used 
intuition and experience to pick the lowest buckling modes. Such an approach 
might cause one to assume an incorrect mode for the lowest critical load if the 
frame is more complicated. However, for a regular frame, in which the member 
properties and loading are repeated from joint to joint (or more generally from a 
group of joints to the next group of joints), a complete and mathematically 
rigorous solution is possible with the help of finite difference calculus; see Bleich 
and Melan (1927), Bleich (1952), Chwalla and Jokisch (1941), Dean and Ugarte 
(1968), Omid'varan (1968), Tsang (1963), Gutkowski (1963), Jordan (1965), 
Bafant and Christensen (1972b), and Wah and Calcote (1970). Interest in regular 
frames or lattices has surged recently, stimulated by some prospective applica
tions proposed for space stations. 

System of Difference Equations 

A planar regular frame (Fig. 2.45) is considered to be initially in equilibrium 
under axial forces Py in all columns and Px in all beams (although in buildings 
usually Px = 0). Subsequently the initial equilibrium is disturbed by infinitely 
small load increments r and p and moments m applied at the joint, causing the 
joints to undergo infinitely small displacements u and .v in the horizontal and 
vertical directions x and y, and small rotations t/J, positive if counterclockwise; 
see Figure 2.45. If all the members in each direction have the same properties, 
the conditions of equilibrium of incremental horizontal forces, vertical forces, and 
moments acting on interior joint r, s lead to the equations (Bafant and 

Figure 2.45 Section of large regular frame with joint and generalized displacements 
numbering. 
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Christensen, 1972b): 

E'( 2 ) kysy( x Ur+l,s- Ur,s + Ur-1,s + L t/>r.s+l- t/>r,s-1) 
y 

k s* 
+ "ff (ur,s+1- 2ur,s + Ur,s-1) + J:,s = 0 

y 

E'( ) k.,s., y Vr,s+1 - 2vr,s + Vr,s-1 - L ( t/>r+1,s- t/>r-1,s) 
X 

k.,s.,cx( 4>r+1,s- 2t/>r,s + t/>r-1,s) + 2k.,s.,t/>r,s 
k.,s., - L (vr+1,s- Vr-1,s) + kySyCy(t/>r,s+1- 2t/>r,s + t/>r.s-1) 

X 

_ kysy 
+ 2kySyt/>r,s + T (ur,s+1- Ur,s-1)- mr,s = 0 

y 

119 

(2.9.1) 

in which subscripts x and y refer to members in the horizontal and vertical 
directions, and subscripts r and s represent the joint numbers in the horizontal 
and vertical directions, r = 1, 2, ... , s = 1, 2, ... ; L.,, Ly =length of horizontal 
and vertical members; E; =EA.,/ L.,, E; = EAy/ Ly in which Ax, Ay =cross
sectional areas; k., = El.,llx, ky = Ely/ly in which I.,, ly =cross-sectional moments 
of inertia; s.,, c., and sy, cy are the stability functions of Px, Py (Eqs. 2.1.6, 2.1.7 
for axial compression, and Eqs. 2.l.lla for axial tension), and sx, s: or sy, s; the 
expressions given in Equation 2.1.18. Equations 2.9.1 have the general form: 

aour,s + alur+l.s + ai'ur.s+1 + ajur-1,s + a;ur,s-1 

+ boVr,s + blvr+1,s + bi'vr,s+1 + bjvr-l.s + b;vr,s-1 

+ Cot/>r,s + Ctt/>r+1,s + ci't/>r,s+1 + C)t/>r-l.s + c;t/>r,s-1 = -J;,s 

( v = 1, 2, 3 with t:.s = t:.s, f~.s = f~.s• f~.s = mr,s) (2. 9. 2) 

These equations are two-dimensional, linear, second-order partial difference 
equations with constant coefficients. (The fact that the coefficients are constant 
means that they do not depend on r and s, which is a property facilitating the 
solution.) The solution is entirely analogous to the solution of linear differential 
equations with constant coefficients. If the equations are nonhomogeneous, that 
is, have nonzero right-hand sides, then the general solution of these equations is 
the sum of some particular solution and a general solution of the corresponding 
homogeneous linear difference equations, for which the right-hand sides are zero, 
that is, J:.s = R.s = mr,s = 0. If one wishes to analyze the deflections of regular 
frames with imperfections, nonzero disturbing loads at the joints are considered. 
However, we will be interested only in the critical loads, and for that purpose we 
may set the disturbing joint loads equal to zero, that is, we only consider the 
homogeneous linear difference equations. Similar to the method of solution of 
linear differential equations, Equation 2.9.2 is satisfied by solutions of the type: 

u = U. e;ys r,s r 
v = V.e;ys r,s r 

A. = R e;ys 
~r.s r (2.9.3) 
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where i2 = -1; y =constant (in general complex); and Un Vn Rr =functions (in 
general complex) of the integer subscript r = 1, 2, 3, .... Indeed, noting that 
e;y(s+t) = e;yeirs, eiy(s-t> = e-ireirs, one finds that upon substitution of Equations 
2.9.3 into Equation 2.9.2 the terms eirs cancel out, that is, the dependence on sis 
eliminated, and ordinary linear homogeneous difference equations for integer 
functions Un Vn Rr are obtained (in general they can have complex coefficients). 
For the case of infinitely extending frames we considered before, Equation 2.9.2 
may always be solved by Equations 2.9.3 with 

Ur = Aeikr Vr = Beikr Rr = Ceikr (2. 9.4) 

in which k, A, B, Care, in general, complex constants. Upon substitution into 
Equations 2.9.3, the dependence on r disappears and one obtains a system of 
three homogeneous linear algebraic equations for the unknowns A, B, and C. 
The condition that the determinant of these equations must vanish to make 
nonzero deflections possible then yields an algebraic equation with coefficients in 
general complex, depending on k as well as the axial loads Px and Pr Upon 
choosing some values for Px and Py, we can solve this equation to obtain the 
corresponding k. Our objective is to find, for a given ratio Py! Px, the smallest 
value Px for which a solution k exists. This solution then represents the lowest 
critical load of the infinitely extending frame. The general solution of an infinitely 
extending frame under any loads is a linear combination of all possible solutions 
of the type of Equations 2.9.4 plus some particular solution. 

In this manner we could rigorously obtain all the buckling modes, including 
the solutions for the critical loads of the interior columns in large regular frames, 
which we previously obtained by an intuitive, semiempirical choice of the decisive 
buckling mode (Sec. 2.4). 

Solution for Tall Building Frames 

Following Bdant and Christensen (1972a, band 1973), we will now seek buckling 
solutions of wide and tall regular frames depicted in Figure 2.46a, in which the 

2H 

ft T 

c) 
UIIUI 

·~ rB-1 
d) 

p-!t 
" Ssl--6 

.. o , 

e) 

m 
1}-A. 
~A 

Fipre 2.46 (a) Geometry of frame solved; (b) long-wave buckling mode; (c) free-standing 
frame of approximately the same initial load; (d) detail of boundaries of frame solved; (e) 
alternative boundary support which could be analyzed similarly. 
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vertical members may undergo significant axial extensions or shortenings, thus 
permitting the entire building frame to buckle as a whole. Such solutions are of 
interest for the tallest skyscraper frames presently built, although further 
generalizations would be needed to take into account the spatial action, 
interaction with flow slabs, in-fill panels or walls, bracing or shear walls, etc. 
Moreover, a generalization of the solution that we will now describe can be made 
for overall long-wave vibrations of large regular frames with columns under 
significant axial forces; such solutions are of interest for the response to 
earthquake or wind loads. 

The buckling mode shown in Figure 2.46b can be characterized by the 
following simple expressions: 

Ur,s = Uc - Ur cos ys Vr,s = Vr sin ys <l>r.s = Rr sin ys (2. 9. 5) 

which may be regarded as the real part of a special case of Equations 2.9.2 and 
2.9.3. Un Vr, Rr are discrete real functions of one integer subscript, r, and Uc is a 
constant. Using Equations 2.9.5 instead of Equations 2.9.3 means that we expect 
the solution to be periodic vertically. Substituting Equations 2.9.5 into Equations 
2.9.1, we find that the trigonometric functions of s cancel out and the equations 
reduce to a system of three second-order simultaneous linear ordinary homoge
neous difference equations with constant coefficients: 

I kysy . kys; 
-Ex(Ur+1 -2Ur + Ur-1) +-L (2sm y)Rr --2(cos ')' -1)Ur =0 

Y Ly 

1 k.:Sx( ) kxs: ( ( ) Ey2(cos Y -1)Vr- L Rr+1- Rr-1 + L V,.+1- 2Vr + Vr-1) = 0 2.9.6 
JC JC 

kxsxcARr+1 - 2Rr + Rr-1) + (2kxsx + 2kysy)Rr 

( ) kysy( . ) kxsx 
+kysycy2 cos y-1 Rr +L 2sm y Ur -L(Vr+1- Vr-1) =0 

y X 

These equations have the advantage that their coefficients are real, in contrast to 
those arising from the more general substitution in Equations 2.9.3. 

Consider now the boundary conditions for the long-wave extensional buckling 
mode in Figure 2.46. The kinematic boundary conditions for the top and bottom 
boundaries of the rectangular frame may be written as 

v = 4> = 0 for s = 0 or s = 2ny, and all r 

u = 0 for s = 0 or s = 2ny, and r = c 
(2.9.7) 

ny = ;r 1 y is assumed to be an integer denoting the number of floors contained 
within the half-wavelength, H (Fig. 2.46a), and c is the subscript for the column 
line that is held against lateral sliding at the base and top of the frame, while the 
bases and tops of all other column lines are allowed to slide freely in the 
horizontal direction at bottom and top boundaries. Furthermore, Equations 2.9.5 
satisfy the condition: 

V: = 1(V: + v ) = 0 YrJ 2 Yr,.r-t Yr,s (2.9.8) 

in which 

kys; kysy( ) 
Vy,,, = U (ur,s+1 + Ur,s) + L C/>r,s + C/>r,s+l 

y y 

(2.9.9) 
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V,. represents the shear force per length Lx transmitted along a horizontal section 
of the frame passed through the neutral axis of one line of horizontal members. 
This implies that the total shear force in the horizontal cross sections of the entire 
frame is zero (this shear force corresponds to the fixed direction shear force V, 
and not to the rotating shear force Q we previously introduced for columns with 
shear). 

The boundary conditions in Equations 2.9.7 imply that the rectangular frame 
in Figure 2.46 is supported rigidly in the vertical direction at the joints of the top 
and bottom boundaries, while horizontally the joints are allowed to slide freely, 
with no friction. Furthermore, since V, represents the shear force along the 
neutral axis of the horizontal beams, the beams at the top and bottom boundaries 
are implied to have one-half of the cross-sectional area of the other members. 
Although practical frames do not normally satisfy this condition, the difference is 
unimportant because the horizontal members at the top and bottom boundaries 
are not subjected to bending (since the joint rotations on top and bottom are 
zero). So the axial strains of these horizontal members are negligible. These 
boundary conditions are illustrated in Figure 2.46d. 

It may be noted that a frame with the boundary conditions on top and bottom 
as illustrated in Figure 2.46e also could be solved exactly in a similar manner. 

The simple solution according to Equations 2.9.5 also gives approximately 
correct results for the critical load of the free-standing rectangular frame in Figure 
2.46c. This was verified by comparisons with exact solutions of frames up to 52 
stories high (Ba.Zant, Christensen, 1972a). For the free-standing frame, its height is 
taken as H /2 and represents the quarter-wavelength of the buckling mode shown 
in Figure 2.46b. The boundary conditions for the free-standing frame are not 
fulfilled on the top boundary exactly. However, they are fulfilled in the integral 
sense. The vertical force resultant and the moment resultant above the vertical 
center line of all axial forces of columns on top are zero for the solution according 
to Equations 2.9.5 at y = H /2. The deviation from the exact boundary conditions 
consists of a self-equilibrated system of vertical column forces on the top 
boundary, and according to the Saint-Venant principle this system should have 
only a local effect and should decay rapidly away from the top of the 
free-standing frame. 

The boundary conditions on the left and right sides of the rectangular frame 
are most conveniently formulated if the frame is imagined to extend beyond the 
actual boundary, adding vertical rows of fictitious joints r = 0 and r = m + 1 
outside the boundary (m is the number of column lines). This has the advantage 
that the boundary joints r = 1 and r = m = nx + 1 (nx =number of bays) can be 
treated as interior joints of the frame, for which the discrete field equations (Eqs. 
2.9.6) apply. The internal forces transmitted into the joints at r = 1 from the left 
and the joints at r = m from the right, that is, from the fictitious outside extension 
of the frame, must be made equal to the prescribed incremental loads applied at 
the left and right boundaries. This condition yields 
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(2.9.10) 

in which pL, VL, ML, pR, VR, and MR are the incremental horizontal force, 
vertical force, and moment applied at the left or the right boundary joint (Fig. 
2.46d). For the calculation of critical loads we of course consider pL = VL = 
.. ·=0. 

The difference equations (Eqs. 2.9.6) can be satisfied if Un Vn and R, are 
expressed according to Equations 2.9.4, or alternatively, U, = AeP', Us= BeP', 
and R, = CeP'. Considering then the most general linear combination of all 
possible solutions of this type, one can satisfy all the boundary conditions. 
However, it is more convenient to first reduce the difference equations from the 
second order to the first order. This may be accomplished by introducing twice as 
many unknowns, F1,, fi,, ... , &,. defined as 

Fi, =Ur-I Fs, = Rr-1 F4, = v, &, = R, 

(2.9.11) 

Substituting this into Eqs. 2.9.6 and appending three additional finite difference 
equations F1,., = F2,, FJ,., = F4,, Fs,., = &,. we then obtain the following first-order 
matrix difference equation in the canonical (standard) form: 

in which 

F1,., 0 1 0 0 0 0 Fi., 
F2,., -1 a22 0 0 0 a26 Fi, 
F3,., 0 0 0 1 0 0 FJ, 

0 0 0 0 0 1 

[ 
k s* J a22 = 2 L~;, (1- cosy)+ 1 

y JC 

2kysy . 
a =--smy 

26 L E' y JC 

F4, 
Fs, 
&, 

(2.9.12) 

(2.9.13) 
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__ 'Ex [E;L~(1- COSy)+ kxs:] 
a64- k -2 * Lx x Sx-SxSxCx 

(2.9.13) 

The solution of these equations may be found in the form 

(2.9.14) 

in which p, K 1, ••• , K 6 are arbitrary constants. Note that one can equivalently 
replace pr with efJr where f3 =In p. Substituting this in Equations 2.9.13 we obtain 
a system of linear homogeneous algebraic equations for K 11 K2 , ••• , K 6 • Their 
determinant must vanish to make a nonzero solution possible, that is, 

-p 1 0 0 0 0 

-1 a22-P 0 0 0 a26 

0 0 -p 1 0 0 
=0 (2.9.15) 

0 a42 a43 a44- p a4s a46 

0 0 0 0 -p 1 

0 a62 a63 a64 a65 a66- p 

This equation represents a standard linear eigenvalue problem. Computational 
experience has shown that the roots are normally real, and usually also distinct. 
(To avoid the need of programming for the case of double roots, the value of the 
axial load, which influences the values of the coefficients of the determinant, was 
slightly adjusted so as to avoid the occurrence of either double roots of two roots 
that are too close.) The general solution of the discrete field equation (Eq. 
2.9.12) may then be expressed as 

(i = 1, 2, ... '6) (2.9.16) 

in which p 1, p2 , ••• , p6 are the roots of the determinant (Eq. 2.9.15); 
C 1, C2, ... , C6 are arbitrary COnstantS tO be determined from the boundary 
conditions; and (K{, K~, ... , K~) is the jth eigenvector associated with root Pi· 
Always 

(2.9.17) 

Substitution of the solution in Equation 2.9.16 into the boundary conditions in 
Equations 2.9.10 for the left and right sides of the plane (with pL = pR = · · · = 
MR = 0) yields a system of six linear algebraic homogeneous equations for Ci: 

6 

L b;j(Py)Cj = 0 (i = 1, ... '6) (2.9.18) 
j=l 

in which coefficients b;i depend on the value of the axial load Py, both directly 
(through sy, cy, sx, etc.) as well as indirectly through the values of the roots 
p11 ••• , p6 (we assume that the ratio Pxl Py is prescribed, usually as zero). The 
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expressions for these coefficients are found to be 

bli = [ cxK~ + K~- (K~- K~) s:~JP; 

b'lJ = [K~ + cxK~- (K~- K~) sx ]pj+ 1 

SxLx 

[ 
· · · · SxLx] b3;= K~-K)-(K~-K~) s~ P; 

b4; = [ K~- K~- (K{ + K~) s:~x ]pj+1 

b5; = (K~- K{)(p; + pj+1
) 

{ K~p(m+t)l2 form odd 
b6

; = !(K{ + K~)p]+ml2 for m even 
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(2.9.19) 

The computation of the lowest critical load for a given frame may now 
proceed as follows. We choose a series of values of Py; for each of them we solve 
the roots p2, ••• , p6, the corresponding eigenvectors, and the coefficients b;;· 
Equations 2.9.18 can have a nonzero solution only if the determinant vanishes. 
Therefore, we calculate the value of the determinant corresponding to each value 
Py and construct the plot of the determinant value versus Py (actually, it is 
computationally more effective to plot the! power of the determinant). Then we 
search for the zero values of this plot. First one locates the approximate values of 
the roots graphically, and then one may find the accurate value of Py .. according 
to Newton's iterative procedure. 

Numerical Results and Their Discussion 

It may be shown that (for Px = 0) the critical load, normalized with respect to the 
Euler load PE of the columns, is in general a function of five nondimensional 

y 

parameters: 

!.& _ (kx Hry Ly ) 
p, - f k ' BL ' ' nx, ny 

E, y y ry 
(2.9.20) 

where r~ = radius of gyration of the column cross section. Numerical results 
characterizing the effects of various nondimensional parameters were obtained by 
Bafant and Christensen (1972b) and some of them are plotted in Figures 
2.47-2.49. 

The weakening influence of the number of floors is seen from the lines for 
HIB =constant in Figure 2.47. The effect of nx, ny is negligible if, roughly, nx or 
n > 10 for HI B > 2, or nx > 5, ny > 10 for HI B > 4. That the effect of the third 
p~rameter in Equation 2.9.20 is indeed rather small can be seen from Equations 
2.9.5. 

The value of the critical axial force for short-wave buckling modes in which 
axial extensions are negligible lies, for typical building frames without diagonal 
bracing, above 0.8PE

1 
The critical forces for the long-wave extensional buckling 
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Figure 2.47 Critical loads per column for typical frame properties. (Solid lines for constant 
number of bays, n ... ; dashed lines for constant height-to-width ratio.) Note the small effect 
of n ... , ny at H/B constant. (After Batant and Christensen, 1972b.) Dash-dot lines show 
solution according to continuous approximation. (From Batant and Christensen, 1973.) 

modes are thus of no interest when Py .. is in this range or above it. Such cases 
have not been included in Figures 2.47-2.49. (It was shown, however, that even 
in such cases the presence of axial force Py may considerably reduce the frame 
stiffness in long-wave deformation modes; this is of importance especially for 
vibration analysis. 

It is found that frames for which long-wave buckling needs to be considered 
have either small k ... l ky or are very high and slender, with members so stiff that 
short-wave budding is precluded, as is typical for stiffening frames of modern tall 
buildings. In practice, these frames are arranged as a framed tube to provide also 
torsional rigidity. 

The critical load values are also irrelevant when they exceed the plastic yield 
load of the columns, P". Lines indicating the Pu value for the frame with various 
Ly/r, values have been included in Figure 2.49 for structural steels with 60,000 psi 
yield limit. Obviously, for high-strength steels the range in which long-wave 
buckling modes are of importance is considerably wider than for low-strength 
steels. 

It is also of interest to determine the relationship of the present solutions to 
the exact solutions for buckling of free-standing frames, as in Figure 2.46. The 
critical axial loads for long-wave buckling of such frames has been solved by 
Bafant and Christensen (1972a) exactly for a few cases (frames 52 stories high). 
Comparison of numerical results indicates that the critical load of the free
standing frames about equals the critical load of the frames solved previously 
(Fig. 2.46a) if the height of the free-standing frame equals the quarter-wavelength 
of the buckling modes solved previously, that is, H /2. This agrees with intuition. 
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Figure 2.48 Distribution of amplitude of vertical joint displacements across frame width at 
buckling for various beam-to-column stiffness ratios kx/ky, frame height-to-width ratios 
H/B, and column slenderness ratios Ly/ry. (Distributions of column extensions are the 
same. For Py less than the critical load, distributions are appreciably different only if Py/ PEy 

is not small.) (After Baiant and Christensen, 1972b.) 

To sum up, the critical loads of large regular frames with uniformly distributed 
axial loads can be effectively calculated by the methods of finite difference 
calculus. This approach offers the possibility of easily treating long-wave 
extensional buckling modes in which the buckling is not local, confined to a few 
members, but the frame buckles as a whole. 

Problems 

2.9.1 Verify that Equations 2.9.3 and 2.9.4 indeed satisfy Equations 2.9.2. Also 
verify that Equation 2.9.14 satisfies Equation 2.9.12, yielding Equation 2.9.15. 
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Figure 2.49 Critical load per column as function of ratio of frame slenderness HI B to 
column slenderness Ly/ry (solid lines) (after Baiant and Christensen, 1972b). [Dashed lines 
indicate plastic yield loads for columns with various Ly/ry having yield limit of 60,000 psi. 
Dash-dot lines show results according to continuous approximation (from Baiant and 
Christensen, 1973).] 

2.9.2 Write the finite difference equations for a free-standing tall regular 
single-bay frame (Fig. 2.50a) and solve Per by the methods of finite difference 
calculus (cf. Bleich, 1952). Assume the horizontal beams to be infinitely stiff 
axially but not the columns. Compare the result with the solution of a built-up 
column as a column with shear (Sec. 2.7). 

2.9.3 Same as Problem 2.9.2, but both ends fixed (Fig. 2.50b). 

Figure 2.50 Exercise problems on long-wave buckling of regular frames. 
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2.9.4 Same as Problem 2.9.3, but the top joints slide vertically. 
2.9.5 Derive the difference equations for a regular three-dimensional frame. 

2.10 CONTINUUM APPROXIMATION FOR LARGE REGULAR 
FRAMES 

129 

Apart from the methods of finite difference calculus, the long-wave buckling and 
generally all large-scale overall behavior of very large regular frames, trusses, and 
lattices can be analyzed by approximating the structure as a continuum in which 
the joint displacements and rotations are represented by the values of some 
continuous functions evaluated at the joint locations. The smoothing of the 
structure with a macroscopic continuum always involves some error, and, 
therefore, in contrast to the solution of finite difference equations, this approach 
is never exact, although the approximation error often is negligible (Bafant and 
Christensen, 1972a). 

The replacement of the discrete structure with a continuum can also be 
advantageous in that it makes it possible to utilize various methods of numerical 
solution of partial differential equations, which are generally more developed 
than those for difference equations (e.g., when the coefficients of the difference 
equations are not constant but variable). Aside from the classical methods such as 
the trigonometric series expansion for structures with rectangular boundaries, one 
can utilize the finite element method, in which the finite elements can be quite 
large, with dimensions corresponding to many bays of a frame or many cells of a 
lattice. With this approach, the variation of member properties or the initial axial 
forces along the frame poses no particular problem. 

Transition from Difference to Differential Equations 

Although the method of continuum approximation can be generally applied to all 
types of large regular frames, trusses, and lattices, we will demonstrate it only for 
the case of a large two-dimensional regular rectangular grame, considered before. 
We consider again the frame shown in Figure 2.45. However, we now allow the 
member stiffnesses to vary from one cell of the frame to the next, either because 
of a change in the cross section of the members or change in the initial axial 
force. As a generalization of Equations 2.9.1, the conditions of equilibrium of the 
horizontal forces, vertical forces, and moments acting on joint r, s read: 

' ~~( Ex(u,+l,s- 2u,s + Ur-l,s} + L cl>r,s+l- cl>r,s-t} y 

+ k~; (ur,s+l - 2u,,s + Ur.s-l} + ~ dx{E;}(ur+l,s- Ur-t,s} 
y 

1 (kysy)< ) + 2 dy L cl>r,s+l- 2cP,,s + cl>r,s-l + 4cl>,,s 
y 

1 (kys;) ) ~ _0 + 2 dy L2 (Ur,s+l- Ur,s-l + Jx,,,
y 
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I ~~( ) Ey(vr,s+1- 2v,,s + v,,s-1)- L 4>r+1,s- 4>r-1,s 
X 

+ k~: (v,+1,s- 2v,,s + Vr-1,s) + !ay(E;)(v,,s+1- Vr,s-1) 
X (2.10.1) 

1 1 (kysy) + 2 .dy(kySyCy)( 4>r,s+1- l/>r,s-1) + 2 .dy L (ur,s+1- 2u,,s + Ur,s-1)- m,,s = 0 
y 

in which all notations are the same as before except that for the case of 
nonuniform properties we introduce the difference operators ax and .dy denoting 
the differences in the quantity to which they apply between two adjacent 
members. Also, in the case of nonuniform properties, kx, sx, ky, etc., are defined 
as the average values (attributed to joint r, s) of the corresponding quantities in 
the adjacent members. 

The finite difference expressions in Equations 2.10.1 are obviously the 
well-known second-order finite difference approximations to the first and second 
derivatives. Therefore, Equations 2.10.1 may be approximated by the partial 
differential equations 

L2 
L;(E;u,x),x + 2(kysyl/>),y + (kys;u,y),y + { (kysy),yl/>,yy + fx = 0 

L2 
L;(E;v,y),y- 2(kxsxlJ> ),x + (kxs:v.x),x-

2
x (kxsx),xl/>,xx + /y = 0 

(2.10.2) 

2kx&x(v,x- l/>)- 2kysy(u,y + l/>)- L;(kxSxCxl/>,x),x- L;(kySyCyl/>.y),y 
L2 L2 

+ 
2
x (kxsx),xV,xx- { (kysy),yU,yy + m = 0 

Here u, v, q,, fx, f,, and m represent continuous and sufficiently smooth functions 
of x and y whose values at points (x;, Yi) approximate the values of u1.i, v1.i, etc.; 
subscript x or y following a comma denotes partial derivatives, for example, 
V,x = avt ax, l/>,xx = cflq>/ ax2

; kx, Sx, Sx, Cx, E;, etc. are also understood as 
continuous and smooth functions whose values at the midspans of the members 
approximate the actual member properties. (Introduction of these continuous 
functions is meaningful only if member properties and initial axial forces vary 
sufficiently regularly from member to member.) 
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Continuum Approximation Based on Potential Energy 

An alternative approach to obtaining Equations 2.10.2 can be based on potential 
energy. The expression for the second-order approximation to the incremental 
strain energy U1 for a single member is 

1 (L1J1
2

) U1 =2[Ma(</>a -1JI) + Mb(</>b -1JI) + P(ua -ub)]- pO -
2
- (2.10.3) 

where P0 is the initial axial force, subscripts a and b refer to member ends, and 1JI 
is the rotation of the line joining the member ends, plus linear terms - P0(ub -
U0 ), ~(</>a -1JI), and M~(</>b -1JI). However, as is well known, the linear terms 
need not be taken into account since they would yield the conditions of 
equilibrium for the initial state which are assumed to be satisfied. The value 
(L1J12/2) represents, with an error 0( 1J14

), the axial extension of the member due 
to small lateral displacements V0 , vb. If Ma, Mb, and Pare expressed according to 
the stiffness matrix in Equation 2.2. 7, it follows on rearrangement that 

1 , 2 1 2 ..o L1J12 
U1 = 2 E (ub- Ua) + 2 ks(</>b- </>a) + ki(</>a -1JI)(</>b -1JI)- r--

2
- (2.10.4) 

The incremental strain energy Ux contained in a pair of horizontal members at 
joint (r, s) is a sum of two expressions of the form of Equation 2.10.4. For the 
sake of simplicity, the properties and initial axial forces of members whose 
longitudinal axes lie on the same line will now be considered as constant. Then, 
expanding the value of u, v, and 4> in joints (r + 1, s) and (r- 1, s) in a Taylor's 
series about the point (r, s) leads to the continuum approximation 

U:x = L;E;u~x + L;kxsx<f>~x + L;t:xSx</><f>.xx + 2k:xSx( </>- V,:x)2
- P~LxV~x (2.10.5) 

In Equation 2.10.5 we retain only the terms with first derivatives of u, v, and <f>, 
but with the notable exception of those higher-order terms that can be converted 
on integration by parts to terms containing only the first-order derivatives. The 
term </></>.= is of this type since, in the expression for the total energy n of the 
structure, it can be converted, upon integration by parts, to the term - <f>~x· 

The incremental strain energy Uy stored in a pair of vertical members meeting 
in the joint (r, s) can be obtained similarly. The element of the continuum 
approximation as shown in Figure 2.51 is periodically repeated in both directions. 
From this it can be seen that the strain energy corresponding to the area LxLy of 
the frame is !<Ux + Uy)· 

Fipre 2.51 Internal forces at the member midspans and their intuitive analogy with the 
stresses acting on an element of micropolar continuum. (After Baiant and Christensen, 
1972a.) 
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The total incremental potential energy of the structure, n, is approximated by 
the expression 

TI= ( ( [!(Ux+Uy)-fxu-/yv-m<P]dxdy_W8 
J(x) J(y) 2 LxLy 

(2.10.6) 

where W8 = the work of the incremental loads applied at the boundary of the 
structured body. Integrating the terms involving the products </><l>.xx and <1></>.yy by 
parts, or applying Green's theorem (e.g. Pearson, 1974), the integral in Equation 
2.10.6 takes the form: 

TI= f f Udxdy- f ( (fxu+/yv+m</>)~i -W~ 
J(x) J(y) J(x) J(y) x y 

(2.10.7) 

for which 

U = (L;E_;u~x + L;E;v~y- L;kxsxcx</>~x- L;kysycy</>~y + 2kxsx(</>- v,x)2 

+ 2kysy( </> + U,y)2
- P';LxV~x- ~LyU~y}(2LxLy)- 1 (2.10.8) 

and W~ = W8 plus a certain contour integral of terms involving products <1></>.x and 
<1></>.y· Obviously, u can be regarded as the second-order terms of the specific 
incremental strain energy of the continuum approximating the frame. The 
presence of negative terms involving -<P~x and -</>~yin Equation 2.10.8 or terms 
such as </><l>.xx and <1></>.yy in Equation 2.10.5, which can also become negative, 
raises questions regarding the conditions for positive definiteness of the total 
potential energy. Such conditions must always be met if P~ = ~ = 0. That this is 
indeed so follows from the positive definiteness of the expression in Eq. 2.10.4 for 
P'1, = P~= 0. 

The differential equilibrium equations may be derived from the first variation 
of the incremental potential n. If the first-order terms are omitted, this variation 
is 

c5TI = L L {L;E;u,x c5u,x + L;E;v,y c5v,y- L;kxSxCx</>.x c5</>,x 

- L~ySyCy</>,y c5</>,y + 2kxsx( </> - V,x)( c5</>- c5v.x) 

+ 2kysy( </> + u,y)( c5</> + c5u,y)- P~LxV,x c5v.x- ~Lyu,y c5u,y 

dxdy 
- fx c5u - /y c5v - m c5</>} L L 

X y 

(2.10.9) 

plus a certain contour integral that is relevant only for the boundary conditions. If 
the terms containing derivatives of the variations are integrated by parts (or if 
Green's theorem is used), and if the equilibrium condition c5TI = 0 is applied, one 
obtains the differential equations of equilibrium that are identical with Equations 
2.10.2 for constant member properties, as expected. 

If the incremental properties of members and initial axial forces vary from 
member to member, additional terms must be included in the strain energy 
density expression. Proceeding in the same manner as we did from Equation 
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2.10.7 to Equations 2.10.9 and 2.10.2, it can be verified that in order to obtain the 
equilibrium equations (Eqs. 2.10.2) for the case of variable properties, the strain 
energy density must be given by Equation 2.10.8 plus the term 

L;(kxix),x</J,xV,x- L;(kyiy),y</J,yU,y 
2LxLr 

Micropolar Continuum and Couple Stresses 

(2.10.10) 

It is now interesting to observe that the continuum described by Equations 2.10.2 
is a special case of the so-called micropolar continuum proposed by Eringen 
(1966). This continuum is defined as a continuum that is characterized not only by 
displacements u(x, y) and v(x, y) but also by material rotations cp(x, y), which 
are independent of the rotations ro based on u and v, that is, of ro = Hv.x- u,y)· 
Thus, the potential energy of a micropolar continuum depends not only on the 
strains "·"' v.r• and y where y = 2Exy = v,x + u.r• but also on three additional 
quantities: ro- cp, rx, and ry where rx = h + (ro- cp) = v.x- cp and ry = !y
(ro- cp) = u,y + cp. The fact that the potential-energy density in Equation 2.10.7 is 
indeed of the form U(u,x, v.r• r", ry, <P.x• <P.r) means that the continuum that 
approximates a rectangular frame is a special case of a micropolar continuum. 
Obviously, this continuum is orthotropic. 

The micropolar continuum is a special case of continua with couple stresses 
mxz, myz that exist because of the fact that the shear stresses are not symmetric, 
that is, Uxy =I= Uyx· (The fact that Uxy = Uyx for the usual continua is derived from 
the condition of moment equilibrium of an infinitesimal element under the 
condition that the moments applied to its faces are zero.) 

The Stresses Uxx, Uyy• Uxy• Uyx and the COUple Stresses mxz• myx in the 
micropolar continuum of constant properties are defined and expressed from 
Equation 2.10.8 as follows: 

_o _ au _ 0 E;u,xLx 
UiJc + (Jxx- a - (Jxx + 

U,x Ly 

au E'v L 
~ + o: = --= (Jo + Y ,y Y 

rr rr av.r rr Lx 

aU aU kxS:V.x- 2kxix</J 
(J =-=--= 

xr ar" av.x LxLr 
- - * u =au= au = krsr u.r + 2krsr<P 

rx arr au.r LxLr 

(2.10.11) 

aU -kxSxCxCf>.xLx 
m =--= 

xz aq,,x Lr 

aU -kySyCy</J.yLy 
mrz = aAt. = L 

'f',y X 

where U = U + u~u.x + ~yv.y =the total strain energy density and u~ =-
1'?:1 Ly, u~r = - P;l Lx are the initial stresses. Note that the symmetric part u(xr> 
and the antisymmetric part ulxrl of shear stress Uxr can also be expressed directly 
as (J(xy) =! au I aExy• (J(xy) =! au I a( (J) - <P ). 
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Stresses and Boundary Conditions 

It is now interesting to define the continuum counterparts of the internal forces in 
the regular frame. These forces are associated with the incremental internal 
forces in the frame members at midspan (Fig. 2.51) and include axial force N, 
shear force T, and bending moment M, which will be referred for reasons of 
convenience to the point on the straight line connecting the ends of the member 
in the deformed position (and not to the point on the deformed neutral axis). 
Therefore, 

N= E'(ub -ua) = -P 

V= k(s*(vb- Va)IL -s(f/>a + f/>b)] 
L 

Mb-Ma 1 
M= 

2 
=2ks(1-c)(q>b-4>a) 

(2.10.12) 

The end moments Ma and Mb are related to M, N, and V by the following 
equations: 

M = -M- (V + P'1/I)L 
Q 2 

Mb = M- (V + P'1/I)L 
2 

(2.10.13) 

In terms of the member properties within the framework, the continuum 
approximations of Equations 2.10.12 in the x- andy-directions are straightfor
ward and are given by 

Nx=LxE;u,x Ny = LyE;v,y 

T. = kxs:v,x- 2kxsxfl> 
x Lx 

T. = kys;u,y + 2kysyf/> 
Y L 

y 
(2.10.14) 

Mx = ~Lxkxsx(1 - Cx)f/>,x My= ~Lykysy(1- cy)f/>,y 

where Nx, Ny, I'x, Ty, Mx, and My are continuous functions whose values at 
midspan approximate the internal forces in Equations 2.10.12, and where Ty is 
taken as - Vy so that its positive direction would correspond to the usual 
continuum convention. 

Equations 2.10.11 for the stresses and couple stresses are simply related to the 
continuous approximations in Equations 2.10.14 for the internal forces at the 
midspans 

Nx (}' =
XX L 

y 

1'x (}' =xy L 
y 

2cxMx 
mxz = - Ly(1- Cx) 

(2.10.15) 

It is interesting to note that while the normal and shear forces are expressed as 
the resultants of the normal and shear stresses over lengths Ly and Lx, the 
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bending moments are not equal to the resultants Lymxz• Lxmyz of the couple 
stresses mxz and myz· (For a zero axial force, Mx = - Lymxz/2 and My = -
Lxmyz/2, so that even the sign of Mx and mxz is opposite.) Thus, the analogy that 
some authors based intuitively on the assumption that the midspan bending 
moments may be expressed as the resultants of couple stresses, that is, 
Mx = Lymxz and My= Lxmyz• is not completely correct. The reason for the 
inequality of Mx and Lymxz consists, roughly speaking, in the fact that the 
bending moment varies along the member, while Nx and 1"x are constant along the 
member. Also, the strain energy of the member due to q,,x equals !mxzq,,x rather 
than !<Mxl Ly)q,,x, whereas the energies due to Nx and 1"x equal !(Nxl Ly)u,x and 
!(l"x/Ly)(v,x- q,). 

After defining the internal forces, we can consider the boundary conditions. 
At each boundary joint of the framework, one quantity of each of the pairs 
(u,fx), (v,f,), and (q,, m) must be given. In the case of a continuum 
approximation, Equations 2.10.14 have an error of an order higher than second 
only if the functions u, v, q,, and their derivatives are evaluated at the midspan 
point of the beam. Therefore, when the applied loads fx, f,, or m at the boundary 
joint are prescribed, the simplest formulation of the boundary conditions may be 
achieved in a manner similar to that used in the solution of continuous 
boundary-value problems by the finite difference method. The gridwork is 
imagined to be extended beyond the boundary, and the hypothetical values for 
the nodes outside the physical boundary are used in such a way that the internal 
forces at the midspan points of the imagined members crossing the boundary 
transmit the prescribed forces into the actual boundary joints (Fig. 2.52). Thus, 
using Equations 2.10.12 and 2.10.13, the conditions on the left vertical and top 
horizontal boundaries of the framework are 

Nx= -P: 
1"x = v: 

B B nO Lx 
Mx=Mx +(Vx +rx1Jix)2 

Ny= -P: 

T, = - v: (2.10.16) 

My= -M:- (V: + P~1/'y) L_; 

where P8
, V 8

, and M 8 denote the prescribed incremental normal load, tangential 
load, and moment, respectively, at the actual boundary joint of the frame. By 
substitution of Equations 2.10.14, the respective conditions for the left vertical 

Ma 

Pa+ P."{t,.i'.V,t)~~~~~ 
I 

r•O r•t r•2 r•3 

Figure 2..52. Fictitious extension of the grid beyond its boundary for the formulation of the 
free boundary condition. (After Baiant and Christensen, 1972a.) 
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and top horizontal boundaries of the continuum are obtained as follows: 

LxE;u,x = -P: 

kxs:v.x- 2kxsA) = v:Lx 

Lxkxsx(1 - Cx)tP,x =2M:+ (V: + P~v.x)Lx 
L,E;v,, = -P: 

k,s;u,, + 2k,s,l/> =-v:L, 

L,k,s,(1- c,)l/>., =-2M:- (v:- P~u.,)L, 

(2.10.17) 

These conditions are imposed along the line connecting the midspan points of the 
imaginary members crossing the boundary. The continuum boundary can thus be 
imagined to be located at distances Lx/2 and L,/2 beyond the boundary joints of 
the frame. 

As an interesting digression, we may note one consequence for the problem of 
a substitute frame. Structural analysts have often been seeking a substitute frame 
that would behave approximately in the same manner as a given large regular 
frame yet would have much greater distances between the joints, thus permitting 
simpler analysis. The substitute frame was usually determined on the basis of 
some limited conditions of equivalence, but this could not guarantee the same 
behavior under all types of loading. From the viewpoint of our formulation, it is 
clear that a rational definition of a substitute frame can be based on the 
requirement that the continuum approximation of the substitute frame be the 
same as for the actual given frame. Labeling the quantities for the substitute 
frame with subscript S the condition that the coefficients of all the terms in 
Equations 2.10.2 and in the finite difference approximations of these differential 
equations based on grid steps 6x = Lxs• !iy = L,s be the same (or proportional), 
we find that the conditions of equivalence of a given frame and a substitute frame 
with members of greater lengths Lxs and L,~ are 

E;L~ = {JE;sL~s 

k.xix = fJkxsSxs 

kxs: = fJkx~: 
s 

kxSxCxL~ = fJkx~x5Cx5L~s 

E;L~ = fJE;~L~s 

k,s, = fJk,5s,~ 
k,s; = {Jk,~ ;s 

k,s,c,L~ = {Jky~y5Cy5L~s 

(2.10.18) 

in which fJ is an arbitrary parameter. This is a system of eight equations, which 
however involve only five unknowns, namely kxs• E;

5
, k,

5
, E;

5
, and fJ. Therefore 

we must conclude that a substitute frame in general does not exist. 
Obviously, the length of the members of the given frame translates into a 

certain characteristic length of the equivalent micropolar continuum, and this 
characteristic length is a fundamental property of the continuum that cannot be 
altered. In a limited sense, though, a substitute frame can be defined for those 
frames that are adequately described as a column with shear; see Section 2. 7. It 
suffices to ensure that the substitute frame with greater floor heights and wider 
bays has the same moment of inertia in its horizontal cross section and also the 
same overall horizontal shear stiffness. These two conditions can only be satisfied 
by altering the ratio of elastic constants, that is, by using Es =FE. 
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While the micropolar continuum can describe the overall behavior of large 
regular frames very closely, it is incapable of capturing local disturbances. Such 
disturbances are usually induced at the boundaries due to deviations of the 
boundary conditions from those required by the continuous approximation. It can 
be shown, however, that such disturbances decay rapidly with the distance from 
the boundary (Bafant and Christensen, 1972a). 

Numerical Results and Discussion 

The exact solutions of buckling for the continuum approximation of the large 
regular frame were obtained by an exact integration of the partial differential 
equations of the problem, in a manner that is analogous to that demonstrated in 
the preceding section for the solution by means of finite difference calculus 
(Bafant and Christensen, 1973). 

Extensive numerical comparisons of the deformations of frames and of their 
continuum approximations were given by Bafant and Christensen (1972a, b). 
Further results for the nonlocal continuum approximation are plotted in the 
figures of the previous section. The dash-dot line of Figure 2.47 represents the 
plot of the critical load for long-wave buckling versus the number of floors, nr It 
is seen that this curve is very close to the solid curve for the exact solution, except 
when the frame height-to-width ratio is very small. The results for the continuum 
approximation are also plotted in Figure 2.49 showing the dependence of the 
long-wave critical load on the height-to-width ratio of the frame; it is seen that in 
most cases the continuum solution is graphically indistinguishable, and when a 
difference is seen, it is still practically negligible. 

Bafant and Christensen's (1972a) original formulation of the continuum 
approximation to large regular frames with columns under axial forces was later 
extended by other authors to vibrations as well as to certain problems of more 
general lattices. Recently there has been an increasing interest in these 
formulations with regard to the analysis of large space lattices for certain special 
structures to be put in orbit in space. 

As a historical note, the usefulness of continuum approximations of frames 
was recognized already during the 1960s. The possibility of applying the couple 
stress medium to lattice structures and frames was discussed by Wozniak (1966) in 
rather general terms. A more specific model was presented by Banks and 
Sokolowski (1968); however, their model was not quite satisfactory because it was 
based on a classical type of couple stress continuum (Cosserat's continuum) in 
which the microrotation 4> and the macrorotation w are equal, whereas for a 
frame the continuum counterparts of these quantities (the joint rotation and the 
member chord rotation) are in general unequal. The micropolar continuum as a 
model for a rectangular gridwork with diagonals was proposed by Askar and 
Cakmak (1968). However, this model was also not quite satisfactory because 
certain essential terms were missing from the expression for the potential-energy 
density (the missing terms were 4>4>.:vo which are essential because they 
transform, upon integration by parts, to the term - 4>~,.,). A similar model for a 
spatial cubic gridwork with diagonals was investigated by Tauchert (1969) who 
assumed, similarly to Banks and Sokolowski (1968), that for a unit element of the 
continuous medium the couple stresses approximate the moments transmitted by 
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the lattice bars at their midlength. Plausible though this assumption might seem 
at first, it is nevertheless incorrect as Equations 2.10.15 demonstrate. 

To sum up, the continuum approximation by a micropolar continuum is an 
effective means to solve buckling (as well as vibrations at initial forces) of very 
large regular frames or lattices. Some problems can be solved exactly on the basis 
of the partial differential equations, while in general one can discretize the 
continuum approximation with a mesh whose step is larger than the cells of the 
frame or lattice, which enables a considerable reduction of the number of 
unknowns. 

Problems 

2.10.1 Find the trigonometric functions which solve Equations 2.10.2. 
2.10.2 Based on the finite difference equations for Problem 2.9.2, deduce the 

differential equations for the smoothing continuum for the single-bay frame. 
Then solve the critical load from this differential equation and compare it to 
the result of Problem 2.9.2. 

2.10.3 Do the same as above for Problem 2.9.3 or 2.9.4. 
2.10.4 Generalize the present formulation to three dimensions. 
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3 
Dynamic Analysis of Stability 

Failure of structures is a dynamic process, and so it is obviously more realistic to 
approach buckling and stability from the dynamic point of view. At the same 
time, it appears that a dynamic approach is necessary to define the concept of 
stability precisely. So far we have used the term stability only in a loose, intuitive 
way. 

In this chapter, we begin with the analysis of the stability of vibrations of 
structures subjected to conservative loads, such as gravity loads. Then we proceed 
to show that a completely different behavior may be encountered when the 
structure is subjected to nonconservative loads, such as wind or hydrodynamic 
forces in general, or pulsating loads produced by rotating machinery or moving 
vehicles, etc. This will lead us to state the precise fundamental definition of 
stability of motion and to consider when equivalent results for stability can be 
achieved by static analysis or energy methods, which are generally much simpler. 
Finally, we will touch the topic of nonlinear dynamic systems. They can exhibit a 
complex, apparently random response called chaos, which nevertheless shows 
some degree of order. 

3.1 VIBRATION OF COLUMNS OR FRAMES AND DIVERGENCE 

According to the D'Alembert principle, the differential equation of motion of a 
column may be obtained from the differential equation of equilibrium by 
including the transverse inertia force per unit length of column in the applied 
transverse load p. We will also consider that there may be damping that is linear 
and velocity-dependent. We will neglect the effect of rotational inertia, which 
may be appreciable only at high frequencies (Raju and Rao, 1986). Thus, we may 
set p = - ll azw I at2 

- fJ aw I at, where w = deflection, ll = mass of the column per 
unit length, {J =damping coefficient, and t =time. Then, substituting this into 
Equation 1.3.5, we get 

~ (EI azw) + ~ (Paw) _ _ azw _ fJ aw 
ax2 ax2 ax ax - /l at2 at (3.1.1) 

where x = length coordinate, El = bending stiffness, and P = axial load (positive 

144 
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if compression). When forced vibrations are studied, then, of course, the 
prescribed distributed load p(t) must be added on the right-hand side of this 
equation. 

In our calculations we will assume, for the sake of simplicity, that P, El, "'' 
and {3 are constants, in which case this equation becomes 

~w a'lw (a'lw aw) El-+P-=-Il -+2b-
ox4 ox2 ot2 at 

(3.1.2) 

where b = {3121-' =damping parameter. Equation 3.1.1 or 3.1.2 is a linear partial 
differential equation. Together with the appropriate boundary conditions at 
column ends x = 0 and x = I, and initial conditions at t = 0, we have an initial 
boundary-value problem. 

Columns 

For the sake of simple illustration let us study first the free vibration of a 
pin-ended column (Fig. 3.1a) loaded by axial force P, whose magnitude and 
direction remain constant as the column moves (this is an example of a 
conservative load). Since the boundaries of the domain in the xt plane are 
rectangular (Fig. 3.1b), the solutions of this initial boundary-value problem may 
be expected to be separable in the form w(x, t) = Y(x)f(t) =product of a function 
of x that gives the modal shape (or mode) of the vibration of the structure and a 
function oft. As the coefficients of Equation 3.1.2 are constant, we may seek the 
general solution in the form: 

.. nnx 
w(x, t) = L fn(t) sin -

1
-

n=l 
(3.1.3) 

Note that the sine functions automatically satisfy the bondary conditions for a 
pin-ended column ( w = w" = 0 at x = 0 and x = 1). Note also that Equation 3.1.3 
for t = 0 can represent any initial deformation of the beam and any initial velocity 
distribution. The initial values fn(O) and jn(O) can be found through Fourier sine 
series expansion of given w(x, 0) and w(x, 0). The Fourier cosine series is not 
included in Equation 3.1.3 since its terms do not satisfy the boundary conditions. 

a) b) 

z 

X 

F1gure 3.1 (a) Vibration mode of a pin-ended column; (b) region of (x, t) plane in which 
the solution is sought. 
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For general boundary conditions, such as fixed-end columns, one would have 
to replace Equation 3.1.3 with w = E an exp CnX where an and Cn are complex 
numbers. This would have to be done also if both even and odd derivatives with 
respect to x were present in the differential equation, but fortunately this does not 
happen for bending theory (Eq. 3.1.2). Complex-valued an and en also need to be 
used to derive the generalized s and c functions and the stiffness matrix for free 
vibrations of beam columns under axial load. Then w is also complex, and the 
actual deflection is represented by the real part of w (or alternatively the 
imaginary part of w). 

Let us try the D'Alembert substitution f,.(t) = AneA.,t in Equation 3.1.3. 
Substitution of Equation 3.1.3 into Equation 3.1.2 furnishes 

.., [( nznz ) nz1Cz ] mrx 
~1 Elf- P f + J'A~ + 2bpAn An sin -

1
- eA.,t = 0 (3.1.4) 

To satisfy this equation for all x and all t, the bracketed terms must vanish 
(otherwise this equation could be satisfied only for some x and some t). Noting 
that n2Ebc2/l2 = n2PE =Per.= nth critical load, we thus get the condition 

(3.1.5) 

Consider now that there is no damping (b = 0). The foregoing quadratic 
equation for An then has the roots: 

w = nznz [Ei ~1 - p 
An = ±iwn n [2 'J -;; p 

I' cr. 
(3.1.6) 

The corresponding general solutions for f,.(t) are the linear combinations of all 
the fundamental solutions associated with Wn or An: 

For p <Per.: f,.(t) =An cos Wnl + Bn sin Wnl 

P =Per.: /n(t) =An+ Bnt 

P >Per.: f,.(t) = Ane-A.,t + Bne-A.,t 

(3.1.7) 

(3.1.8) 

(3.1.9) 

where An and Bn are constants to be determined from the initial conditions at 
t = 0, that is, from the values f,.(O), in(O). [These values can be found by Fourier 
series expansion of given w(x, 0) and w(x, 0).] 

Types of Motion and Dependence of Natural Frequency on Load 

Of prime interest is the first natural frequency w1• Let us examine its dependence 
on the axial load P. For P = 0 we have the first natural frequency of a load-free 
beam w~ =(Ell p)lf2(n2/f). As the magnitude of the axial compressive load P 
increases, the frequency w1 according to Equation 3.1.6 decreases. The plot of P 
versus w~ is a straight line (Fig. 3.2a); and ft(t) is given by Equation 3.1.7. For 
P =Pert= first critical load, the first vibration frequency w1 vanishes (Fig. 3.2a), 
and in this case A1 = 0 is a double root of Equation 3.1.5. This means that the 
corresponding fundamental solutions are e0

'' and te0
'', or 1 and t, which yields the 

general solution in Equation 3.1.8. For P > Pert• w1 becomes an imaginary 
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Figure 3.2 (a) Dependence of frequency on axial load P; time variations of deflection at 
various P for (b) b = 0 and (c, d) b > 0 (b =damping coefficient). 

number, which means that A-1 becomes real, and so the solution consists of 
exponentials (Eq. 3.1.9). 

The types of motion obtained for various values of P are plotted in Figure 
3.2b. We see that there is a qualitative change in the type of solution as the axial 
load exceeds the first critical load. For small P <Per,, the solutions are bounded, 
and if the initial velocity (or the initial deflection) is very small, the deflection 
remains very small for all times. However, when P ~ Per,• the deflections will 
become very large no matter how small the initial velocity (or the initial 
deflection) is. Since arbitrarily small initial velocities or initial deflections 
(analogous to imperfections, with arbitrary distributions along x) cannot, in 
reality, be, prevented, that is, / 1 (0) :I: 0, j1 (0) =I= 0, the deflection for P ~ Per, will 
increase beyond any bounds, according to our linearized theory. This may be 
interpreted as failure. 

Therefore, the response of the column for P ~Per is termed unstable, and the 
condition of stability of the column is 

(3.1.10) 

The type of instability exhibited by our column, and illustrated in Figure 3.2b 
by the solution for P =Per,, is called divergence, because the column is incapable 
of vibrating and diverges to one side. The typical feature of this type of instability 
is that it occurs at co = 0. The motion is at constant velocity, at which the inertia 
forces vanish. Such motion implies the existence of neutral equilibrium at x = 0 
when J.(O) = 0, ii,(O) = 0. This explains why the static analysis gave the same 
critical load. For P >Per,, the motion is accelerated. 

The complete solution is given by the infinite sum expressed by Equation 
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3.1.3. This means that, for example, the solution for Per,:::;; P < Per2 consists of a 
diverging motion according to Equation 3.1.8 or 3.1.9 for the first mode (n = 1) 
and superimposed oscillations according to Equation 3.1.7 (for n ;:::2). These 
oscillations are of limited magnitude if the corresponding initial perturbation is 
small, but this does change the diverging character of the response caused by the 
first mode. 

Effect of Damping 

If damping is present (b > 0), the solutio.a is different, but the stability condition 
(Eq. 3.1.10) remains the same. In this case, the solution of Equation 3.1.5 for 
b < Wt is 

).n = -b ± iw~ with co~= Yeo~- b2 (3.1.11) 

in which co~= vibration frequency of the damped column. The corresponding 
fundamental solutions are of the type e-br and e±lw',.t, that is, 

w- e-br cos w~t or (3.1.12) 

These motions represent damped vibrations with envelope e-br (Fig. 3.2c). The 
deflections obviously remain very small if the initial velocity or the initial 
deflection is very small, provided that co~ is real or w? is positive, which occurs 
when COt> b (and requires that P <Per, because w 1 is real if P <Per.). 

When co~= 0 or COt= b (P <Per,), the solutions for n = 1 are of the type e-br 

and te-b', and so they are also bounded (Fig. 3.2d). When w~2 < 0 or COt< b, the 
solutions for n = 1 are of the type e-<b+wi>r and e-<b-wi)t with wi = iw~ (co'{ is real 
because in this case co; is imaginary); these solutions remain bounded only as 
long as wi<b or -w?<b2

, or b2 -w~<b2, that is, w~>O or P<Pcr, (Fig. 
3.2d). 

So we see that the stability condition of the column is not affected by linear 
damping, that is, damping has no stabilizing (or destabilizing) influence. This is 
generally true for linear systems with conservative loads, but not always true for 
systems with nonconservative loads (such as circulatory loads, as corroborated by 
certain examples). 

Thus the main effect of damping is to prevent an oscillating motion (a motion 
with alternating sign of the deflection) at loads sufficiently close to critical. In 
dynamics, the value of the damping coefficient b at which the oscillatory motion 
changes to nonoscillatory is usually called critical damping (in our case, bcr = w1). 

Here the use of the term critical has nothing to do with stability. 

Frames and Other Generalizations 

The foregoing analysis can be generalized to beams with arbitrary end supports as 
well as to frames. In the linearized, small-deflection theory, the motion can be 
sought in the form 

w(x, t) =A w(x) sin cot (3.1.13) 

in which w(x) represents what is called the modal shape or mode of the structure. 
In contrast to our solution for a simply supported column, this shape is generally 
not sinusoidal. By a procedure similar to our derivation of the stiffness matrix for 
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a beam-column, one can derive a generalized stiffness matrix for vibrations, in 
which the coefficients s and c are functions of not only p = PIPE but also of the 
vibration frequencies w; see, for example, Mohsin and Sadek {1968), Howson 
and Williams (1973), Akesson {1976), and Kohoutek {1985) {along with a 
discussion of some pitfalls). Thus, the problem of free vibrations of arbitrary 
beams or frames with axial forces in the beams generally leads to the following 
matrix eigenvalue problem: 

K{p, w)ii = 0 {3.1.14) 

in which ii is the column matrix of the modal amplitudes of generalized 
displacements (displacements and rotations at the joints of members), and K is a 
square matrix whose coefficients are generally nonlinear functions of p and w. 
Free vibrations are possible if det K = 0, and from this condition for each chosen 
p one can find the corresponding vibration frequencies w, especially the first 
frequency w1• The value of p for which w1 ceases to be real is then the first 
critical load. The condition det K = 0 must in general be solved numerically and 
the same procedure as already expounded for static buckling of frames may be 
used. 

When the beam has a variable stiffness, or the axial load is variable, a solution 
may be obtained by splitting the beam into a number of short beam elements, 
each with different I or different P. This is the approach used in the finite 
element method, and the solution based on s and c functions then becomes 
asymptotically identical to the solution based on beam finite elements with cubic 
distribution functions. As before, one advantage of the finite element approach is 
that it yields a linear eigenvalue problem (i.e., matrix K that is linearly dependent 
on small p and w ). This is achieved, though, at the cost of a greatly increased 
number of unknowns. 

Forced vibrations of structures with axial forces generally lead to the matrix 
equation of motion: 

K(p )u(t) = f{t) (3.1.15) 

where p =parameter of axial forces and u, f= column matrices of joint (or node) 
displacements and applied forces. The general solution can be composed from the 
individual modal responses based on Equation 3.1.14. 

Note that in our example we can determine stability without obtaining the 
complete solutions. The precise initial conditions are irrelevant for stability. We 
need to determine only the type of solution, that is, solve the problem 
qualitatively. This is the basic objective in most dynamic stability analyses. We 
are interested in qualitative methods for dynamics, which give only the stability 
information we need. 

The divergence type of instability that we illustrated for our column is typical 
of all conservative elastic systems. Next we will see that nonconservative systems 
may lose stability in a different manner-<lynamically. 

Problems 

3.1.1 Solve free vibrations of a massless pin-ended column with point mass m 
attached at midspan (Fig. 3.3a). Determine w1, Per,· 
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Figure 3.3 Exercise problems on free vibrations of beams and frames under conservative 
loads. 

3.1.2 Same for a fixed-end column (Fig. 3.3b). 
3.1.3 Same for a free-standing column, mass m on top (Fig. 3.3c). 
3.1.4 Solve sway vibrations of a massless portal frame, with mass mat each node 

(Fig. 3.3e). Find mt> Pert (uses and c functions). 
3.1.5 Solve vibrations of a massless two-span continuous beam in Figure 3.3d 

with a mass of rotational inertia moment I attached at tlie middle support (use 
sand c functions). 

3.1.6 Solve free vibrations of the two-column structure in Figure 3.3f, and Pert· 

3.1.7 Using Equation 3.1.14, solve the free vibration frequencies and the first 
critical load of a fixed-end beam. Hint: Start with w =sin mt(elk) with 
{3 = complex constant. After finding roots {3, use w =sin mt(A sin {31x + 
B cos {31x + CefJ)X + De-fJ)X). [Note: Instead of the exponentials, one can also 
use C sinh {32x + D cosh {32x, but then the resulting stiffness matrix loses 
accuracy when xis large; see Kohoutek (1985).] 

3.1.8 Same for a free-standing column of height I (load P travels with column 
top, remaining vertical). 

3.1.9 Using w(x, t) = E fn(t)ec,.x find the critical load of a pin-ended beam. 
3.1.10 Using w(x, t) = E a"ec..x find the generalized sand c functions (cf. Howson 

and Williams, 1973, and Akesson, 1976). 
3.1.11 A rope dancer (Fig. 3.3g) of mass m performs on an inextensible rope of 

axial stiffness EA attached to the tops of poles (free-standing columns) of 
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distributed mass /.l and stiffness El, receiving substantial axial force due to the 
dancer's weight mg. Calculate the natural frequency ro which needs to be 
outside the frequency range of the dancer's motions. 

3.2 NONCONSERVATIVE LOADS AND FLUTTER 

We will now show that a qualitatively different loss of stability can occur under 
nonconservative loads. In the preceding problem, it was stipulated that the 
direction of the load does not change as the column deflects. By contrast, in some 
cases the load direction may vary depending on the deformation of the structure. 
Let us study a simple example. 

Massless Column under Follower Load 

Consider a free-standing column that is loaded by a so-called follower force, P, a 
force that turns its direction so as to always remain tangential to the deflection 
curve at the column top (Fig. 3.4a). Follower loading is typical of wind and may 

a) 
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u 
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Figure 3.4 (a) Column loaded by a constant follower force (massless column, point mass 
at end); (b) diagram of forces at column top; (c) condition for critical load; (d) 
dependence of frequency of free vibrations upon load. 
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be generated by attaching to the column end a disk normal to the column and 
placing the column in a wind tunnel with an airstream in the x-direction. The 
same loading also may be approximately obtained by striking the disk with a 
water jet in the x-direction, or by attaching a rocket engine of thrust P at the end 
of the column. 

To make a simple solution possible, we consider that the column in Figure 
3.4a is massless while the disk at the end has mass m and may be treated as a 
mass point (i.e., its rotational inertia is negligible). We consider the linearized 
small-deflection theory and constant El. The absence of distributed mass and of 
damping along the column makes the static solution (Eq. 1.3.6) valid for the 
shape of the deflection curve, that is, 

w(x, t) = f(t)(A sin kx + B cos kx + Cx +D) (3.2.1) 

in which f(t) is a function of time t to be determined and k =(PI E/) 112
• 

To formulate the boundary condition on top, we may recall that the shear 
force is expressed as V = -M'- Pw' (Eq. 1.3.2); w now denotes the deflection 
on top, that is, w = w(O, t). Referring to the diagram of forces, including the 
inertia and damping forces, as sketched in Figure 3.4b, we obtain for mass m the 
equation of motion: mw = V + Pw' -flw or mw + {Jw = -M'- Pw' + Pw' =
M' where w = d 2w/dt2

, w = dw/dt, and f3 =damping coefficient. Substituting 
M = Elw", and writing also the remaining three boundary conditions (the second 
boundary condition at the top isM= 0 for x = 0), we have the conditions: 

For x =0: 

For x = /: 

w"=O -(Elw")' = mw + {Jw 
(3.2.2) 

w=O w'=O 

It is interesting to examine the problem first by the static approach, assuming 
that w = 0 and w = 0. Then, for EI =constant, substitution of Equation 3.2.1 into 
Equations 3.2.2 yields the boundary conditions, 

A=O B=O CI+D=O C=O (3.2.3) 

This further implies that D = 0. Thus, the column loaded by a follower force has 
no deflected equilibrium position, that is, it cannot buckle in a static manner. 
However, this does not mean that the column cannot buckle at all-a striking 
conclusion, which was incorrectly drawn in one of the first studies of this 
problem. We cannot exclude the possibility that the column could lose stability 
while in motion. 

Turning our attention to the dynamic problem, we obtain from the boundary 
conditions (Eqs. 3.2.2) 

B=O -AElk3f = -D(m/ + {Jj) 
(3.2.4) 

A sin kl + Cl + D = 0 Ak cos kl + C = 0 

Eliminating the unknown constants A and C, we get for functions f(t) the 
second-order ordinary linear differential equation 

(3.2.5) 



DYNAMIC ANALYSIS OF STABILITY 

in which we introduce the notations 

oi=-EI ( k
3 

) 

m sin u - u cos u 
{3 

b=-
2m 
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(u = kl) (3.2.6) 

Consider first that damping is negligible, that is, b = 0. A solution of Equation 
3.2.5 may be sought in the form f = eirut, which satisfies automatically Equation 
3.2.5 ( w is the vibration frequency). As long as Equations 3.2.6 yield w2 > 0, the 
column is stable because the deflections remain very small for all time if the initial 
velocity or the initial deflection is very small. However, when w2 < 0, the 
solutions are of the type f = e~ ore-~ where A.= iw real (w =imaginary); one of 
these solutions leads to arbitrarily large deflections no matter how small the initial 
velocities or initial deflections are. 

According to Equations 3.2.6, w2 changes its sign when sin u - u cos u = 0 or 
tan u = u. As shown in Figure 3.4c, the smallest positive load value for which this 
condition can be satisfied is u = 4.4934, which yields the first critical load 

EI PE 
Per, =20.19p=8.1834 (3.2.7) 

The fact that Per, is much larger than the critical load PE/ 4 for the dead load is 
due to the horizontal component of P, which is opposite to the deflection if P is 
not too large. 

Furthermore, as is clear from the graphs of functions tan u, cos u, and u in 
Figure 3.4c, w2 is positive, and the column is stable, when P <Per,, or when 
Per1 < P < Per1 , etc, where Per1 , Per1 , • • • are the load values corresponding to 
successive change of sign of w2

• On the other hand, for Per, s P s Per
1

, w2 s 0, 
which means instability. 

The plot of P versus w2
, calculated according to Equations 3.2.6, is shown in 

Figure 3.4d. It is noteworthy that w2 does not become negative by passing 
through a zero value, as it did in our previous study of column vibrations under 
dead load, but it does so by jumping from +oo to -oo. This means that neutral 
equilibrium does not exist at the critical load. The loss of stability in which the 
structure is oscillating at the critical load is called the oscillatory instability or 
flutter, and the critical load is also called the flutter load. The present example is 
a limiting case of flutter in which the frequency tends to infinity at the loss of 
stability. (The infinite value of the frequency is due to our neglect of the mass 
between the column ends.) 

It is interesting but not surprising to note that the value of Per, coincides with 
the value that would be found by static analysis for the case in which the load 
passes through a fixed point at distance c from the free end (Sec. 1.4), with c-+0. 
Note also that, for P = 0, w2 = 3El/ml3 (i.e., the limit of Eqs. 3.2.6 for y-+ 0) 
can be calculated as the frequency of a single-degree-of-freedom elastic system of 
stiffness 3E/ I 13 and mass m. 

Consider now that damping is present, that is, b > 0. Substituting f = e~ into 
Equation 3.2.5, one obtains the characteristic equation .A.2 + 2b.A. + w2 = 0, whose 
roots yield the fundamental solutions: 

e-br sin w't e-bt cos w't 
or 

e-(b-w")t 

where w' = V w2 
- b2 

where w" = Vb2
- w2 

(3.2.8) 

(3.2.9) 
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Obviously, deflections that are initially small remain small if b > w". This means 
that b2 > w"2 and finally leads to the stability condition w2 > 0, which is the same 
as before. So we see again that linear damping has no effect on the critical loads. 

Effect of Distributed Mass 

A free-standing column that has a distributed mass and is loaded on top by a 
follower force (called Beck's column) also loses stability by means of flutter 
rather than divergence (Beck, 1952). The solution is considerably more involved; 
see, for example, Timoshenko and Gere (1961, p. 152). The loss of stability, 
however, is different in that the vibration frequency at the critical state is finite, 
not infinite. We illustrate such a type of stability loss with another, simpler 
example. 

Consider the free-standing column shown in Figure 3.5a, which consists of two 
rigid bars of length l connected by hinges with rotational springs of stiffness C. 
The rigid bars are assumed to be massless, however masses m (considered as 
point masses) are attached on top and at the middle hinge. The column is loaded 
on top by a follower force P. 

The horizontal inertia forces acting at the upper and lower point masses are, 
for small deflections, ml(81 + 82) and ml81• Writing the moment equations of 
equilibrium of the entire column as a free body about its base, and of the top part 
as a free body about the middle hinge, we obtain the following system of two 
linear ordinary differential equations for 81 and 82 as functions of time t: 

ml(81 + 82)21 + ml81l + Pl(82 - 81) + C81 = 0 

ml(ii1 + 82)1 + C(82 - 81) = 0 
(3.2.10) 

If the terms with 81 and 82 are deleted, we have a system of two equilibrium 
equations. They are homogeneous and have a nonzero solution only if their 
determinant D vanishes. However, one finds that D = C2

, which cannot vanish. 
Therefore, this column again cannot lose stability in a static manner, that is, by 
neutral equilibrium. It may also be noted that the system of equilibrium equations 

a) b) 
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Fipre 3.5 (a) Free-standing two-bar column loaded by a constant follower force (massless 
bars, point masses on top and at middle hinge); (b) dependence of frequency of free 
vibrations upon load. 
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has a nonsymmetric matrix (stiffness matrix); this means that a potential energy 
does not exist, that is, the column is nonconservative. Later we will discuss it 
more. 

The dynamic solution of Equations 3.2.10 may be sought in the form 
81 = q1ei«<, 82 = q2ei«<. Indeed, upon substitution in Equations 3.2.10 the term 
e;,. cancels out. Then a system of two homogeneous linear algebraic equations for 
q 1 and q2 results: 

[
(C- PI)- 3mFw

2 
PI- 2mfw

2
]{q1} = {0} 

-c _ ml2w2 C _ ml2w2 q2 0 (3.2.11) 

Nonzero amplitudes q 1 and q2 are possible only if the determinant of this 
equation system vanishes. This leads to a quadratic equation for w2: 

(ml2w2)2- 2(3C- Pl)(ml2w2) + C2 = 0 (3.2.12) 

the solution of which is 

ml2w2 = (3C- PI)± V(3C- Pl)2 - C2 = (3C- PI)± V( 4C- PI)(2C- PI) 

(3.2.13) 

Obviously, the frequency w might not only become imaginary, as we saw it in 
our preceding examples, but it could also become complex. What does that mean 
for stability? Consider that w =a± i{J where a and fJ are real numbers. Since w 
is a root of an algebraic equation with real coefficients, the complex frequency 
must come in conjugate pairs, that is, it a+ i{J is a root of the characteristic 
equation, then a- i{J is also a root. Then e;,. = e;""e~fk, which means that the 
general solution is a linear combination of the following four solutions: 

e~fk cos at (3.2.14) 

Due to the fact that the complex roots come in conjugate pairs, we have both 
+ fJ and - fJ in these solutions. This means that one of the exponents must be 
positive regardless of the sign of {J. Two of these solutions represent then 
oscillations with an amplitude growing beyond any bounds, and the response can 
become very large no matter how small the initial velocity or the initial deflection 
may be. Hence, when the vibration frequency becomes a complex number, the 
structure loses stability. This is called Borchardt's criterion. 

Let us now finish the problem in Figure 3.5a. For P < 2C/l, there are four real 
distinct frequencies w, which implies stability. For P = 2C/l, all frequencies w are 
still real but there are double roots, which means that solutions of the type 
t sin wt and t cos wt are present: they are unbounded, which means instability. 
For 2C/l<P<4C/I, the expression under the square root in Equation 3.2.13 is 
negative, and so the roots ware complex: this implies instability of the oscillatory 
type, that is, flutter. For P?!:. 4C/I, w2 becomes again real, but negative, and so w 
is purely imaginary. This means that the deflection grows exponentially, diverging 
at monotonically increasing velocity and increasing acceleration to one side. This 
is an unstable situation. Note that a solution proportional to t is not present, 
unlike the case of a column under a dead load, and divergence does not begin with 
a state of neutral equilibrium, that is, with w = 0. The regions of instability are 
graphically represented in Figure 3.5b. 

It may also be noted that if the same column were loaded by a vertical force P 
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(which corresponds to gravity load and is conservative), then Pcr1 = 0.3820C/l (see 
Eq. 4.3.13). Our lowest critical load is Pcr1 = 2C/l, which is 5.23 times larger. 
Obviously, the directional behavior of the load has a tremendous effect. 

The last problem was studied by Herrmann and Jong (1%5) and Herrmann 
(1967b). They demonstrated with this problem that in a nonconservative system a 
small internal (viscous) damping can have a destabilizing influence, that is, it can 
lower the critical load (Thompson, 1982, p. 32). 

Elastically Supported Rigid Plate under Aerodynamic Forces 

As another example consider the stability of a massive rigid plate of unit width 
and specific mass I' per unit length, suspended on springs of stiffness C1 and C2 as 
shown in Figure 3.6. The plate, initially in a horizontal position of static 
equilibrium, is loaded by wind of velocity v, characterized by wind force resultant 
F = kv28 acting at a distance a ahead of the downwind end of the plate; 
k = constant, 8 = rotation of the plate. (The foregoing definition of F is valid only 
for very slow steady oscillations, such that wb/v « 1; see Bisplinghoff, Ashley 
and Halfman, 1955.) The location of the resultant of the aerodynamic forces on 
the plate is called in aeroelasticity the aerodynamic center. Its location does not 
depend on angle 8. For two-dimensional incompressible flow this center is located 
at a= 3b/4, while for supersonic flow it is located at a= b/2 (Dowell et al., 1978, 
p. 4). Denoting the deflection from the static equilibrium position at midpoint as 
w (Fig. 3.6), the inertia effects are characterized by vertical inertia force /lbw 
applied at the center of the plate, and inertia moment pb3ii/12. The equations of 
motion may be obtained as the equations of dynamic equilibrium of vertical 
forces and moments about the center of the plate, and they yield the following 
system of two linear ordinary differential equations for w and 8: 

in which 

wind _v-

w + a11 w +a 128 =0 
jj + a21 w + a228 = 0 

1 b/2 b/2 

(3.2.15) 

w 

Figure 3.6 Rigid plate suspended on springs and loaded bv wind of constant velocity v. 
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The loss of stability due to divergence (equivalent to static buckling) may be 
determined by setting w = 8 = 0. Equations 3.2.15 then becomes a system of two 
linear algebraic homogeneous equations, and so the loss of stability occurs when 
det a;i = 0. From this condition, the critical wind velocity for divergence may be 
solved, and it is found that (since v is real) divergence is possible only if 
C2> Ct(b/a -1). 

The dynamic solutions are found by substituting w = q1e;011 and () = q2e;011• 

This reduces Equations 3.2.15 to the following homogeneous linear algebraic 
equation for the amplitudes q 1, q2: 

[ a 11 - w
2 

a 12 ]{q1} {0} 
2 = (3.2.17) 

a21 a22 - w q2 0 

Nonzero amplitudes are possible only if the determinant of this equation system 
vanishes, which yields the condition 

2 au+ a22 (au+ a22)
2 

w = 
2 

± 
2 

- aua22 + a12a21 (3.2.18) 

Assuming that a11 + a22 > 0, the condition that w2 be real and positive requires 
that 

(
au+ a22)2 

0< aua22- a12a21 < 
2 

(3.2.19) 

The second of these inequalities reduces to (a11 - a22)2 + 4a12a21 > 0, and it is 
found that condition 3.2.19 is always satisfied if C1 < C2 (because a 12a21 > 0); in 
this case no flutter is possible. If C1 > C2 , then this condition can be violated and 
flutter is possible for a sufficiently high wind speed v, which is solved from the 
foregoing condJtion. 

The condition a11 a22 - a12a21 = 0 yields the critical velocities for divergence 
( w = 0), that is, static buckling, the case we have already solved. 

It may be noted that the condition for critical velocity is not changed if the 
initial angle of attack of the plate is different from zero. In this case () and w must 
be interpreted as incremental generalized displacements due to elastic deforma
tions of the springs; the problem is analogous to that of lateral deflection of an 
imperfect column (see Bisplinghoff et al., 1955, p. 424). 

The last problem illustrates some but not all of the essential aspects of 
instability of aircraft wings as well as suspension bridges. In wing design it is 
desirable to make flutter impossible at any velocity. This is achieved with 
C2 > C1• It can be shown that, more generally, stability of a plate whose center of 
gravity is not at midlength is achieved if the center of the spring stiffness of the 
links is behind the center of gravity. 

In relation to the suspension bridge problem, the plate in our example may be 
imagined as a section of the roadway and the springs model the suspension 
cables. A realistic analysis of a suspension bridge, however, must also take into 
account the effect of motions 6(t) and w(t) on the aerodynamic forces, as well as 
the inertia of the added mass of air that is forced to move with the plate. 

The understanding of dynamic stability of suspension bridges was greatly 
advanced by the collapse of the Tacoma bridge near Seattle in 1940 (Bowers, 
1940; Simiu and Scanlan, 1986). Shortly after the erection of the bridge, which 
was of a much lighter design than the preceding large suspension bridges (the 
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Fipre 3.7 Oscillations and collapse of Tacoma bridge. (Reprinted by permission of the 
Centro di Cinemlltografia Scientifica del Politecnico di Milano.) 

Golden Gate bridge in San Francisco, built in 1937, and the George Washington 
bridge, built earlier over the Hudson River in New York), a strong gale caused 
large torsional-flexural oscillations of the center span that produced collapse 
within a few hours. These oscillations as well as the subsequent collapse were 
recorded on a film (Fig. 3.7). Analysis of this disaster (e.g., T. von Karman, 
1940; F. B. Farquarson, 1954; Simiu and Scanlan, 1986) eventually led to a much 
better understanding of the behavior of suspension bridges and made it possible 
to design light large-span suspension bridges that are safe against aerodynamic 
instability. An example is the Humber bridge over the mouth of the Humber 
River in England, whose span (currently a world record) is 1410 m (compared 
with 853 m for the Tacoma bridge and 1280 m for the Golden Gate bridge, which 
held the world record until the Verrazzano Narrows bridge in New York, also of 
classical design, surpassed it in the 1960s; see, e.g., Leonhardt, 1982, which gives 
a good discussion of practical design aspects). 

Conservative and Nonconservative Forces 

Let us now consider the nature of the forces that produce dynamic instability. 
When a structure oscillates, its amplitude as well as its kinetic energy increases 
beyond any bounds. This energy must come from somewhere. Clearly, it is 
extracted from the load. However, if the loads are conservative and have a 
potential, the energy supplied to the structure cannot exceed the potential-energy 
loss of the applied loads due to deflection, and it is therefore bounded. Hence, 
dynamic instability (flutter) can be caused only by nonconservative loads. 

The loads on a structure are generally defined as a force field P = P(x), where 
x = (x, y, z) =position vector in Cartesian coordinates x, y, z. During the deflec-
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tion of the structure, the load vector P moves along path s consisting of 
displacement vectors ds. A load is said to be conservative if the work 
W = J! P ds from position A to position B is independent of the path taken and 
depends only on these final positions. An equivalent condition is that the closed 
path integral p P ds = p (Px dx + Py dy + Pz dz) must be zero for all closed paths. 
This is always true if a potential-energy function n = n(x, y, z) exists such that 

P. = an P. = an P. = an ( ) 
JC Y Z 3.2.20 

ax ay az 

The potential-energy function always exists if the following integrability condi
tions are satisfied: 

a~>x aPy 
-=-
ay ax 

apJC apz 
-=-
az ax 

apy apz 
-=-
az ay 

(3.2.21) 

The force field is conservative if it possesses a potential. However, it can be 
conservative even if it does not have a potential, as we will see from an example 
of a rotating shaft in Section 3.4. 

For the follower loads on a column, as well as the wind force on the plate in 
the preceding examples, a potential cannot be defined and does not exist because 
the load direction depends on the deformation of the structure. This may be 
illustrated by the sketch in Figure 3.8. Depending on the trajectory of the column 
top and its rotation history, the disk can move from its original position 1 to its 
final position 3 in infinitely many different ways, for example, those illustrated by 
a, b, and c in Figure 3.8. In the first case the disk moves first laterally and then it 
rotates, in which case no work is done. If the disk first rotates clockwise and then 
moves to the right, the work done by the load is negative, and if it first rotates 
counterclockwise, then moves to the right and again rotates clockwise, the work 
done by the load is positive. Different amounts of work are done for different 
paths leading to the same final state. 

We should caution, however, that the dependence of the load direction on the 
structure deformation does not in itself cause the load to be nonconservative. 
This is, for example, demonstrated by considering a shell under hydrostatic 
pressure. Hydrostatic pressure is a special case of follower loads always oriented 
orthogonally to the deformed surface of the shell. The work done is nevertheless 
proportional to the cross-hatched area in Figure 3.9a, which is determined fully 
by the final deflected position and does not depend on the way in which this final 
position has been reached. 

Another example of a load whose direction depends on the deformation of the 
structure is a spring load on the column shown in Figure 3.9b. This load is also 
conservative because it is a force produced by an elastic spring. Such a load, as 

Figure 3.8 Different rotation histories of a column top which correspond to different 
amounts of work done by the follower force (for the same initial and final state). 
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a) b) 
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Figure 3.9 Conservative systems with load direction dependent on deformation. 

well as the hydrostatic pressure load, cannot supply unlimited kinetic energy to 
the structure. Still other examples were shown in Figure 1.10. 

The fact that the loads are constant in magnitude and keep constant direction 
does not in itself guarantee that they are conservative. This may be illustrated by 
the example (presented in Sec. 1.10 and Fig. 1.29) of a shaft supported at the 
ends by pins and loaded by axial force P and torque M,. Such a loading is 
nonconservative, since the work of torque M, depends on the deflection path 
(Timoshenko and Gere, 1961, p. 156). Therefore, dynamic analysis of stability is 
required. This example, however, is somewhat artificial since no mechanical way 
to apply M, in this manner is known. 

The basic lesson from our preceding examples is that examination of 
equilibrium states (i.e., static analysis) is in general insufficient to determine 
stability of an elastic structure subjected to nonconservative loads. 

Equations Governing Flutter of Suspension Bridges 

Finally, to supplement the preceding discussion of the behavior of suspension 
bridges, let us state the full equations that are adequate for most practical 
purposes. The equations of motion of the bridge deck beam (Fig. 3.10) that 
vibrates flexurally and torsionally in a steady flow of air and does not exhibit 
significant warping torsion or cross-section distortion (Chap. 6) are partial 
differential equations of the form: 

(Elw,xx),xx + f.lW.n + f.lYe8,n + Cww,, + L = 0 
-(GJ8.xx),x + f.lYeW,,, + lm8,n + C,8,, + M = 0 

(3.2.22) 

in which subscripts following a comma denote partial derivatives (e.g., w.n = .w = 
ifw!at2

), 8 =rotation about beam axis; GJ =torsional stiffness (for simple or 
Saint Venant's torsion, Chap. 6), f.l =beam mass per unit length, lm =mass 
moment of inertia about the elastic axis (neutral axis for bending), Ye =distance 

Fipre 3.10 Suspension bridge. 
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of the elastic axis from the inertia axis; Cw, Cr =damping coefficients for 
bending and torsional motions; and L, M =aerodynamic lift force and torque. 
According to Simiu and Scanlan (1986) (see also Meirovitch and Ghosh, 1987): 

L = - ~ pvlz.b [ KH1(K)(~) + KH2(K)( bviJ) + K2H3(K)8] 
(3.2.23) 

in which b =width of the deck; K = bro/v-reduced frequency; ro =frequency of 
oscillations; v =wind velocity; and HI> H2 , H3 , A1, A2 , A 3 =aerodynamic 
coefficients depending on K. Further one must add the boundary condition of the 
beam; for example, w = w,x = 8 = 0 at x = 0 and x = L for fixed ends. 

Problems 

3.2.1 Solve the problem of the free-standing two-bar massless column in Figure 
3.5a for the case that the intermediate mass is 2m. 

3.2.2 Same as above, but assume that the lower and upper bars have lengths 21 
and 1. 

3.2.3 Same for a free-standing two-bar massless column with only one mass m on 
top (Fig. 3.1la). 

3.2.4 Same as Problem 3.2.1, but the load is vertical. 
3.2.5 Same as Problem 3.2.1, but the load passes through a fixed point at a 

distance a from the base, Figure 3.11b. Hint: Is P a conservative load? What is 
the limit case for a- oo? 

3.2.6 Same as Problem 3.2.1, but the load has an angle 4> = 8/2 (partial follower 
load) (Fig. 3.1lc). 

3.2.7 Show that the system of Figure 3.9b is conservative. 
3.2.8 Is the column in Figure 3.11e conservative? Hint: Refer to Problem 1.4.3. 
3.2.9 Frequency ro is given by the equation ro4

- 2(2 + P)ro2 + P(P + 6) = 0. Find 
Per,· What type of instability occurs? 

3.2.10 Show that the work done by hydrostatic pressure p (Fig. 3.9a) is equal to 
p fl. V, where fl. Vis the volume between the initial and final deflection surface. 
This volume is obviously independent of the path in which the structure got 
from the initial to the final state. Why is this sufficient to conclude that the 
load is conservative? 

3.2.11 Show that the column in Figure 3.1ld loaded by a follower force P 
exhibits no flutter and ro = 0 at the critical state (so that Per can be obtained by 
static analysis). 

3.2.12 Solve the system in Figure 3.1lf for the cases: (a) 4> = 8 (follower load); 
(b) 4> = 8/2 (partial follower load); (c) 4> = 8 fixed direction load (dead load). 

3.2.13 Solve the system in Figure 3.1lg. 
3.2.14 Consider the equations of motion of a suspension bridge deck. For the 

purpose of this exercise, assume that H1 = -0.1(v/fB); Hz =0; H3= 0; At =0; 
A2 = -0.025(v/fB)(2.0- v/fB); A3 = 0; in which f = ro/21f, and analyze 
dynamic stability. 
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a) b) d) 

p p 
p 

e) 

Figure 3.11 Exercise problems on (a-g) structures loaded by follower forces, and (h) 
flexible pipes with high-speed fluid flow. 

3.2.15 Flexible pipes can fail by ftutter due to high-speed ftow of the ftuid they 
convey. As a simple prototype problem consider the pipe in Figure 3.1lh, 
which can ftex only at two points (by angles q 1 and q2), restrained by springs 
of constant C and dampers of coefficient Cv. Let p be the ftuid mass density 
(constant, incompressible ftuid), v the ftuid velocity, R the inner radius of the 
pipe, and h the wall thickness. The pipes are subjected to external linear 
viscous damping {J. Due to inertia there is a lateral force F exerted by the ftuid 
on the pipe at the pipe bend. It is proportional to q2 - q1 and can be 
calculated as the rate of change of the momentum vector of the ftuid as it 
passes through the bend. (a) Derive the differential equations of motion for q1 

and q2 , (b) discuss the solution method, and (c) determine the stability limits. 
For detailed analysis see Sugiyama (1987). 

3.3 PULSATING LOADS AND PARAMETRIC RESONANCE 

Another type of nonconservative load is pulsating loads. Such loads often 
approximate reasonably well the action of rotating machinery such as turbines 
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and power generators on the columns of structures, or the action of moving 
vehicles on the piers of bridges. 

Axial Pulsating Load on a Column 

Consider again a pin ended column of length I (Fig. 3.12a) that has a uniform 
distributed mass 1J, a constant bending rigidity EI, and is subjected to axial 
compressive load P(t) = P0 + P, cos Ot in which Q is a given forcing frequency, 
and P0 , P, =constants. Since no restriction on constancy of axial load P needed to 
be made in deriving the differential equation of beam-columns, substitution of 
inertia force and of P(t) into Equation 3.1.2 (with no damping) provides the 
differential equation 

a4w a'lw a2w 
E/-;---4 +(Po+ P, cos Ot) - 2 = -~J a 2 (3.3.1) 

DX ax t 

For the boundary conditions of a pin-ended column, we may seek the solution in 
the form 

w(x, t) = ~1 f,.(t) sin n;x (3.3.2) 

in which fn(t) are unknown functions to be found. Substitution into Equation 

a) 

Pltl 

b) ----First order approxim•tion for small p 
-- Stobility boundary undamped (b-0) 

-- Damped ( c';: 0 05) 

p 

0.1 

1.0 Q 
w 

Figure 3.U (a) Pin-ended column under pulsating axial force; (b) limits of stability if 
damping is considered (heavy lines) or not (light lines). 
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3.3.1 yields the condition 

~1 sin n'; {1 .. + ~ (n;:)[ 1- n2~:E1 (Po+ P,cos Gt) ]r .. } = 0 (3.3.3) 

For this equation to be satisfied at any value of x, the expression in braces must 
vanish for every n. This yields the differential equation 

(3.3.4) 

in which the following notations are made: 

nznz 
Pcr.=-pEI 

P, 
p=--...;._-

2(Pcr.- Po) 
(3.3.5) 

w0 = free vibration frequency of the column for no axial load, ro = free vibration 
frequency under static load P0 , and p =excitation parameter. We have discarded 
subscripts n, that is, replaced ro,, ro~, p,, and /, by ro, ro0

, p, and f, since 
Equation 3.3.4 has the same form for all n. 

Equation 3.3.4 is an ordinary linear differential equation of second order, with 
one variable coefficient. It is known as the Mathieu differential equation, and its 
solutions are Mathieu functions. We will now indicate an approximate solution of 
the limiting response that was given by Rayleigh and can be obtained without 
relying on the theory of Mathieu functions. 

Undamped Vibration 

The motion of the column produced by the periodic load may be expected to be 
quasi-periodic, and when the amplitude increases in time, the column is unstable. 
At the limit of stability, a periodic solution may be expected: 

00 

/(t) = L (Ak cos kyt + Bk sin kyt) (3.3.6) 
k-1 

in which y =constant. Substituting this into Equation 3.3.4 and utilizing the 
relations 2 cos Gt cos kyt =cos (G + ky)t +cos (G- ky)t, 2 cos Gt sin kyt = 
sin (G + ky)t- sin (G- ky)t, we obtain 
.. 
L { ( w2

- k 2 f)(Ak cos kyt + Bk sin kyt) 
k=l 

- pro2(Ak cos (G- ky)t- Bk sin (G- ky)t] 

+ pw2(Ak cos (G + ky)t + Bk sin (G + ky)t]} = 0 (3.3. 7) 

There are six different trigonometric functions in these equations for each k. 
To satisfy these equations identically for all t, the coefficient at each trigonometric 
function would have to vanish. However, this condition would, in general, yield 
six equations for each k, while there are only two unknowns Ak and Bk. So, in 
general, we would have more unknowns than equations, which is an unsolvable 
problem. To satisfy these equations for all t (at nonzero Ak, Bk), the sine 
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functions as well as the cosine functions must be identical, that is, their arguments 
must coincide. Therefore, we must choose y such that the numbers Q - ky and 
Q + ky are all contained among the numbers ky = 0, ±y, ±2y, ±3y, .... 

One way to achieve it is to set Q - y = 0, that is, y = Q. Then the coefficient 
of cos yt must vanish, that is, w2

- y2 = 0, which implies that Q = w represents a 
critical load at which stability is lost. This critical load is the same as in static 
buckling (P, = 0). 

Another way to achieve it is to set Q - y = y, that is, y = Q/2, and it can be 
verified that this yields the smallest excitation frequency Q that causes instability. 
Then we have in Equation 3.3.7 only two types of trigonometric functions: 
cos (kQt/2) and sin (kQt/2); indeed, arguments kyt and (Q- ny)t are equal 
when n = 2 - k. But this means that identical sine or cosine functions occur in 
different brackets of Equation 3.3. 7 for different k values. Substituting y = Q/2 
into Equation 3.3.7, writing out all terms fork= 1, 2, 3 in detail (without E), and 
collecting the trigonometric functions of the same argument, we obtain a 
condition of the form 

2 Qt . Qt . 3Qt 
-pw A2 +a1 cosT+ b1 sm2+a2 cosQt + b2 sm Qt +a3 cos2+ · · · =0 

(3.3.8) 

in which 

at= [(1- p )w2
- iQ2)At- pw2A3 

(3.3.9) 

Now, to satisfy Equation 3.3.8 identically for all times t, it is necessary that A2 as 
well as the coefficient of each trigonometric function vanish. We get an infinite 
system of equations for A 1 , 8 1 , A2 , 8 2 , A3 , 8 3 , ••• , with the same number of 
equations as unknowns (Rayleigh, 1894 and 1945, pp. 82-83). 

We are not really interested in a complete solution, however. If we find some 
nonzero solution, it represents a critical state. One such solution can readily be 
obtained by setting A2 = 0 and A3 = 8 3 = 0, which has the advantage that the 
equations for A1 and 8 1 become uncoupled from the rest. Note also that even if 
we considered those solutions in which A3 and 8 3 are present, then the terms 
with A3 and 8 3 for p « 1 are higher-order smaller than the terms with A1 and 8 1• 

This justifies omission of A3 and 8 3 in more general circumstances. 
The system of equations a 1 = 0 and b 1 = 0 in this case can be satisfied for 

nonzero A 1 and 8 1 (of arbitrary magnitude) if its determinant is zero, and this 
occurs if the excitation frequency is 

(3.3.10) 

The limits of stability according to Vquation 3.3.10 are plotted in Figure 3.12b 
as continuous light curves for 2w 1 ± p and as dashed straight lines for 
2w(1 ± p /2). For a vanishing amplitude of the pulsating load, instability is 
obtained for excitation frequencies Q = 2w where w is the free vibration 
frequency corresponding to the mean load Po. 

The stability loss that occurs at other than the natural frequencies for P0 = 0 
and is determined by further parameters, such as those in Equations 3.3.5, is 
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called the parametric resonance. For columns, it occurs at double the natural 
frequency for P0 = 0. It can be any natural frequency, not just the first one. In 
general, for each natural frequency one can find infinitely many parametric 
resonance frequencies, all except one being lower than the natural frequency. It 
may be checked that g = 2w is the only destabilizing frequency of a column that 
is associated with the first natural frequency and is higher than this frequency. It 
may be interesting to note that a pulsating tensile force (P < 0) can also produce 
instability (Kohoutek, 1984). 

The diagram in Figure 3.12b is called a Strutt diagram; for its complete picture 
see, for example, Timoshenko and Gere (1961, p. 160). A more complete 
investigation can be found in Rayleigh (1894 and 1945). 

Damped Vibration 
For design engineers, it may be disturbing that according to the previous solution 
an infinitely small amplitude of the pulsating loads may destabilize the column at 
a certain frequency that is less than the static critical load. In reality, however, 
there is always damping. It is an essential feature of parametric resonance that 
damping has a strong stabilizing effect, since it keeps energy from flowing from 
the excitation into the system (Rayleigh, 1894 and 1945, p. 84). 

For linear damping, the solution may be obtained easily in the same manner 
as we demonstrated. It leads again to an equation of the type of Equation 3.3.8 in 
which, however, each of the coefficients at> a2 depends on both A 1 and 8 1• 

Instability occurs when the determinant of the equations a 1 = 0 and b1 = 0 
vanishes, which yields (for b « w) the condition 

I~ 
Q=2wV1± Vp2 -~ (3.3.11) 

The limit of stability given by this equation is approximately (for p-+ 0) a 
hyperbola, sketched with a bold line in Figure 3.12b. The lowest magnitude of p 
is obtained for the case of parametric resonance, g = 2w, for which p = 2b I w and 
so we see that a sufficiently small excitation amplitude cannot cause instability. In 
practice, a relatively small damping usually suffices to stabilize columns under 
normal excitation amplitudes. At parametric resonance, the damping is least 
effective. For the highest parametric resonant frequency, damping has a much 
stronger stabilizing influence than at lower ones, that is, it pushes the unstable 
region much farther away from the horizontal axis in the Strutt diagram of Figure 
3.12b (see Timoshenko and Gere, 1961). 

More accurate solutions can be obtained considering the coefficients of further 
trigonometric terms in Equation 3.3.8. However, if p < 0.6, the present ap
proximate solution lies within about 1 percent of the exact one. 

Another way to obtain an approximate solution of the Mathieu differential 
equation is by the perturbation method. For the general theory of Mathieu 
equations see Whittaker and Watson (1969). 

Simple Energy Analysis of Parametric Resonance 

From the energy viewpoint it is important to note that the lateral deflections 
cause second-order small axial shortening u(t) of the column. Consequently, the 
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axial load can do unbounded work on the axial shortenings if its oscillations are 
synchronous with those of u(t). For the sake of simplicity (Fig. 3.12a), let us now 
assume that 

( ) 
. . 1rX 

W X, t == a SID rot SID -
1 

(3.3.12) 

Then 
' aw 1r . 1CX w ==-==a-smcntcos-ax I I 

. aw .1rX 
w ==- = acn cos rot sm-at 1 

(3.3.13) 

The axial shortening may be calculated as u = J~ ( ds - dx) where ds2 == dx2 + dw2• 
Setting dw == w' dx and noting that (1 + w'2)

112 = ~w'2 if w' is small, we have 
u = H~ w'2 dx, which yields 

1r2a2 
u ==- (1 -cos 2rot) 

81 
(3.3.14) 

Because this equation involves sin 2cnt rather than cos 2cnt, it is now more 
convenient to assume that P == P0 + P, sin Ot. Then 

W(t) == J Pu dt ==~::en J (P0 + P, sin Ot) sin 2cnt dt 

== 1r
2;;w { P, [[cos (2ro- O)t- cos (2ro + O)t] dt + ~ (1- cos 2rot) }. 

(3.3.15) 

When Q =1=2cn, W(t) is obviously a periodic function and therefore the energy 
supplied to the structure is bounded. That must be a stable situation. Not so, 
however, when Q == 2c.o.. In this case Equation 3. 3 .15 yields for t == t, == 1rn I en 
(n == 1, 2, 3, ... ) 

(3.3.16) 

So, if no energy is absorbed by damping, the energy of the structure grows 
beyond any bound. This proves, in a much simpler manner than before, that 
Q == 2ro is an unstable situation (i.e., parametric resonance). 

Consider now damping. The energy dissipated by damping is D = 
f f p0 w dx dt where p 0 = fJw = 2bllw =damping force per unit length of column. 
Hence 

D(t) = [ [ 2b~~Q2cn2 cos2 rot sin2 7 dx dt = b~~Q2cn2{i) (t + si~!rot) (3. 3.17) 

The energy that can be stored in the column at times t, is U(t,) = W(t,)- D(t,). 
Obviously, if W(t,) < D(t,), the column cannot acquire unbounded energy, 
that is, it must be stable. This yields the stability condition IP,I < 4bllcn212/1r2cn. 
Substituting ro2 ==(1r4EI/141l)(1-P0/Pcr) according to Equations 3.3.5 for n==1, 
and noting that El1r2/l2 == Pc., the stability condition becomes 

IP,I 2b _.:...-.;.:._<- (3.3.18) 
2(Pcr- Po) en 
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(in which, of course, P0 <Pen according to the static stability condition). When 
this inequality is reversed, one finds that the value of U(t,) will increase beyond 
any bound, which is an unstable situation. 

Note that when Q = 2w, Equation 3.3.11 for the critical state reduces to 
p = ±2b/w where p = Pr/2(Pcr- P0). This confirms the correctness of Equation 
3.3.18. Also note that the larger P0 is, the smaller is the amplitude II'rl that can be 
stably sustained by the column. 

The foregoing energy approach (Bafant, 1985) does not seem to be effective 
for Q =I= 2w because the time history of motion is more complex. Other methods, 
as already shown, are necessary for a complete solution of the problem. 
Nevertheless, the foregoing energy method for parametric resonance with or 
without damping yields all the information needed for practical design purposes. 
This method can be extended easily to arbitrary columns, frames, arches, plates, 
shells, thin-wall beams, etc. (see Prob. 5.2.14, 6.2.5, 6.3.11, 6.4.6, 7.3.19 and 
7.5.7). 

To sum up: 

1. The frequency of the applit!d axial load has a great influence on stability. 
2. A large destabilizing effect, called parametric resonance, can be obtained 

when the frequency of the load is other than the natural vibration 
frequencies. 

3. Typically, as we saw it for a column, the strongest parametric resonance is 
experienced at double the first natural frequency. 

4. Damping changes the stability limits, significantly enlarging the stable 
domain (this contrasts with the examples in Sees. 3.1 and 3.2). 

Problems 

3.3.1 Define and describe the phenomenon of parametric resonance. 
3.3.2 Without referring to the text, derive the differential equation governing·the 

column response to the pulsating load. 
3.3.3 Using the energy method, show that parametric resonance occurs also when 

Q = 2w, when w,. (n = 1, 2, ... ) are all the higher natural frequencies of a 
column under constant axial load P0 • Also calculate the maximum stable 
amplitude II'rl for Q = 2w,. 

3.3.4 Using the energy method, estimate the frequency Q for parametric 
resonance and the corresponding maximum stable II'rl in the presence of 
damping for (a) a fixed-fixed column, (b) a fixed-hinged column, and (c) a 
portal frame. Assume approximate deflection shapes for this purpose. 

3.3.5 Calculate the lowest natural vibration frequency of a circular hinged arch 
under radial pressure p. 

3.3.6 Consider the axial pressure p(t) to be pulsating, and extend the 
preceding problem to parametric resonance, with and without damping. Hint: 
Calculate the second-order shortening of the arch center line due to w(s, t) 
and the work done on it by the axial force JVO due top (JVO = -pR). Compare 
this to the energy dissipated by damping due to w(s, t). 

3.3.7 The simply supported column in Figure 3.13a, having uniform El and 
uniform distributed mass f.l, is loaded by the weight of mass m through a 



DYNAMIC ANALYSIS OF STABILITY 169 

a) b) 
Mass m 

I 
c) 

e) 

f) 

L .I. 
Fipre 3.13 Exercise problems on parametric resonance. 

spring of stiffness C as shown. Neglect the first-order axial shortening of the 
column (EA....,.oo). Calculate (a) the first frequency w1 of flexural vibrations 
characterized by midspan deflection qt> and (b) the frequency w 1 of axial 
vibration of mass m characterized by q2 (at q 1 = 0). Determine the value of C 
for which parametric resonance occurs (w2 = 2w 1). Then show that a 
disturbance initially exciting only axial vibrations q2 must eventually also 
produce flexural vibrations q1 and vice versa. 

3.3.8 (a) The spring C in Figure 3.13b supports an inextensible massless 
pendulum of length L with point mass m at the end. Determine the length L 
for which lateral oscillations will arise if mass m is initially displaced purely 
vertically. (b) Do the same for the pendulum in Figure 3.13c suspended on a 
massless frame. 

3.3.9 (a) Point mass min Figure 3.13d is fixed at midspan to a massless beam of 
stiffness Elb, supported on columns of uniform distributed mass p. and stiffness 
El as shown. Calculate span L for which an initial vertical displacement of 
mass m will lead to lateral oscillations of the columns. (b) Do the same for the 
point mass m in Figure 3.13e, where both the beam and columns are massless 
(and inextensible). (c) Do the same for point mass min Figure 3.13f fixed at 
midlength to a massless string of stiffness EA (the beam, with uniform 
distributed mass p., receives significant axial force due to weight mg). 

3.3.10 The massless rigid bar column in Figure 3.14a has point mass m2 attached 
at the joint, and while 8 = 0, mass m1 is excited to oscillate vertically. 
Oscillations u at 8 = 0 is one possibility. Find the conditions that this produces 
oscillations in 8. 

3.3.11 (a) The rigid block of mass m1 in Figure 3.14b is elastically supported on a 
rigid plate of mass m2 that is supported by two massless columns. While 
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Figure 3.14 Further exercise problems on parametric resonance. 

w = 0, mass m1 is excited to oscillate vertically. Oscillations u at w = 0 are one 
possibility. Find the condition when this produces lateral oscillations w. (d) 
Do the same for the rigid block in Figure 3.14c. (c) Do the same, when mass 
m1 is supported elastically (Fig. 3.14d) on a massless rigid-jointed elastic 
portal frame with point masses m2 attached at the joint. 

3.3.12 A column of height H is rigidly joined with a beam of span L. Both have 
uniform distributed mass 1J and bending stiffness El, and are inextensible. 
While u = 0, the beam deflection w = 0 is initially excited to oscillate. 
Oscillations at u = 0 are one possibility. Find the ratio HI L for which this 
produces simultaneous lateral vibrations u of the column. 

3.3.13 Do the same as Problem 3.3.12, but the beam and column are massless, 
and point mass m is attached at the column top (Fig. 3.14f). 

3.4 OTHER TYPES OF DYNAMIC LOADS 

Other interesting, qualitatively different aspects of dynamic stability are revealed 
in problems of rotating machinery, whose vibrations must be sustained by 
structures and their foundations. Following Ziegler (1968), consider the example 
of a rigid circular disk of mass m mounted on a rotating massless elastic shaft, as 
shown in Figure 3.15. It is convenient to use rectangular coordinates x, y that 
rotate with the disk at its angular velocity ro. The deflections in the directions x 
and y are denoted as u and v, and the spring constants of the shaft in these 
directions as C 1 and C2 (we will see that even a very small difference between C 1 

and c2 due to inevitable imperfections is of interest for the solution). 
The spring and inertia forces acting on mass mare sketched in Figure 3.15b. 

Since we cannot assume the deflection to be constant, we must also includf' the 
inertia forces due to relative accelerations, in particular the centrifugal force and 
the Coriolis force. The centrifugal force components in the x- andy-directions are 
mro2u and mro2v. The Coriolis force components are 2mroiJ and - 2mrou in the x-
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Figure 3.15 (a) Rotating disk supported by massless shaft; diagrams of (b) forces, (c) 
velocities, (d) accelerations; (e) limits of stability. 

and y-directions, as shown in Figure 3.15b. These expressions can be derived 
either formally, by vector differentiation, or simply from the velocity vector 
diagrams in Figure 3.15c, d. As is apparent from these figures, the radial 
displacement liu = u lit during the time interval lit in the x-direction causes the 
magnitude of the circumferential velocity c.ox to increase by c.o liu or c.ou lit. In 
addition to this, the radial velocity vector changes direction by angle c.o lit, and so 
we have an additional velocity increment u( c.o lit) in the tangential direction. This 
combines to give the total velocity increment 2uc.o lit during lit. Therefore, the 
acceleration in they-direction is 2c.ou. By similar reasoning (Fig. 3.15c, d), the 
radial velocity iJ leads to acceleration -2c.oi.J in the x-direction. 

Thus it is found that the equations of motion of the mass disk in the rotating 
coordinates are 

-C1u + mc.o2u + 2mc.oiJ- mit= 0 

This is a system of two linear ordinary differential equations with constant 
coefficients. Seeking the solution in the form u = q 1eJ.', v = q2 eJ.t, we get for the 
unknown coefficients q 1 and q2 the following system of homogeneous linear 
algebraic equations: 

( 2 Ct 2) A - m - c.o qt - 2c.oA.q2 = 0 

2c.oA.qt + (A-2 + ~- c.o2)q2=0 

(3.4.2) 

A nonzero solution is possible only if the determinant vanishes. This yields the 



172 ElASTIC THEORIES 

condition A4 + 2aA2 + c = 0, in which we introduce the notations 

Ct + C2 2 
a= +co 

2m 
(3.4.3) 

This biquadratic equation has four roots: 
A= ± Y,...._-a_±_\f-=a=z=_=c (3.4.4) 

There is always at least a very small unavoidable difference in the values of 
the spring constants, and the smaller one may be denoted as Ct> that is, C1 < C2. 
For co2 < C1tm, as well as for CJi > C2tm, c is positive, a2- c < a2, and so all the 
roots are imaginary; this means that the shaft oscillates with a constant amplitude 
and is stable. For CJl = C1tm or co2 = C2tm, we have c = 0 and A= 0, which is a 
double root; this means that u, v - t is one fundamental solution, and so the shaft 
is unstable. For Ctfm < co2 < C2tm, we have c < 0 and two of the roots A are 
complex; then one root has a positive real part, and so the shaft is unstable. Thus, 
the region 

Ctfm :5 co2 
:5 C2tm (3.4.5) 

is the region of instability (Fig. 3.15e) and co1 = (Ctfm)112 and co2 = (C2tm)112 are 
the critical angular velocities. 

One interesting feature of this problem is that the shaft becomes stable at 
supercritical angular velocities, which exceed the angular velocities, for which the 
shaft is unstable. This contrasts with the buckling of columns under axial dead 
loads, for which all loads exceeding the first critical one cause instability. 

The fact that u, v - t at the critical states, that is, the stability limit 
corresponding to translation at constant velocity (no acceleration) implies that it 
must be possible to obtain the critical velocities by static analysis. Indeed, using 
the static approach and assuming the disk to be mounted with unavoidable 
eccentricities ei> e2, one gets the equilibrium equatons mco2(e1 + u)- C1u = 0, 
mco2( e2 + v) - C2 v = 0, from which 

e2 + v =e2 C 2 
2 -mco 

(3.4.6) 

This gives infinite deflections at the critical velocities co= (Ctfm)112 and co= 
(C2tm)112

• However, for all other angular velocities co the deflection is small and 
the shaft appears to be stable, which is false, so we have an example of a problem 
where the static method fails to give the complete answer, even though the 
instability is of static (divergence) type. The reason for the failure of the static 
approach is the neglect of the Coriolis force. Instability occurs as a translation at 
constant velocity in the rotating system, but this implies that there must be 
acceleration relative to fixed coordinates, and this acceleration is the Coriolis 
acceleration. 

With reference to the energy approach to be studied later (Chapter. 4), it may 
be noted that the present problem possesses potential energy, n = !{C1 -

mco2)u2 + !( C2 - mco2)v2, and indeed the derivatives -ant au and -ant av yield 
the correct spring forces and centrifugal forces. The existence of potential energy 
implies that the system is conservative. n ceases to be positive definite when 



DYNAMIC ANALYSIS OF STABILITY 173 

&i > C1/m, and thus we are led to conclude from the energy analysis that all 
angular velocities exceeding the first critical one would be unstable, which is 
incorrect. 

It may be checked that the same incorrect result would have been obtained 
from the dynamic method if the Coriolis force were omitted. Thus, the Coriolis 
force has a stabilizing effect on the shaft. 

The failure of the energy approach is due to the fact that the Coriolis force, 
while being conservative, does not possess a potential because it always does zero 
work (as it is always oriented normal to the direction of motion). There are other 
examples of forces that are conservative (since they do no work), yet possess no 
potential; for example e.g, the gyroscopic moments. Generally, such forces may 
have a stabilizing influence. 

Another striking feature of the rotating shaft problem, discovered by Ziegler 
(1968), is the possibility that damping may have a destabilizing influence on a 
system stabilized by the Corio lis force (or gyroscopic forces in general). Consider 
velocity-dependent linear damping forces -2mbu and -2mbv in Figure 3.15, and 
carry out the same type of analysis as before. Assuming C1 = C2 , one finds that 
the shaft is stable for w2 < C .I m and unstable for w2 > C t1 m. So, we see that 
damping cancels the stabilizing effect of the Coriolis force. However, although 
this result is mathematically correct, it contradicts experiments that all show that 
w = (Ctfm)112 is the only unstable angular velocity. The explanation is that there 
always exist further damping forces such as air drag and bearing friction, or 
nonlinear damping, and according to Ziegler (1968) their consideration removes 
the discrepancy with experiment. 

As is apparent from the preceding examples, it is important to distinguish 
various types of forces. Following Ziegler (1968), the forces on dynamic systems 
may be classified as follows: 

1. Nonstationary (or heteronomous) loads, which are specified functions of 
time. They are obviously nonconservative and always require a kinetic 
approach. Pulsating loads are an example. 

2. Stationary loads, which do not depend directly on time. 
a. Velocity-dependent loads. 

(1) Dissipative loads, which are nonconservative; they do work (dissi
pate energy) as the structure moves. 

(2) Gyroscopic loads (such as the Coriolis force or gyroscopic mo
ments), which are conservative but have no potential since they do 
no work. 

b. Velocity-independent loads. 
(1) Loads having no potential, which may be termed circulatory 

(borrowing this expression from hydrodynamics). They are 
nonconservative. 

(2) Loads having a potential, which may be termed noncirculatory. 
They are conservative. 

Note that the class of conservative loads includes two categories: (1) 
velocity-independent loads having a potential; (2) velocity-dependent gyroscopic 
loads. All other loads are nonconservative. The last class of loads occurs in the 
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classical stability problems, in which static (as well as energy methods) are always 
applicable. 

Among reactions, one may distinguish (1) nonworking reactions (i.e., 
reactions of rigid supports) and (2) dissipative reactions (e.g., reaction of a 
viscous dashpot or frictional slider). The work of reactions can never be positive 
in scleronomic systems. Scleronomic systems are systems in which the constraints 
do not depend explicitly on time (Gantmacher, 1970, p. 11), that is, the position 
vector of the reaction point may depend on a set of Lagrangian coordinates but 
not explicitly on time (Ziegler, 1968, p. 27). 

Problems 

3.4.1 Work out the solution for the rotating shaft in the presence of linear 
damping. 

3.4.2 If a shaft is subjected to axial compression force P, its critical angular 
velocity COer is, of course, reduced. The value of COer may be calculated from 
co= (C1/m)112 provided that the spring constant is evaluated taking P (and the 
support conditions) into account. This may be done in the manner shown in 
Section 2.1. Solve coer for a simply supported shaft of length I, uniform 
bending stiffness El, one central disk, and P = 0.5PE. (For a detailed analysis 
of many cases, see Ziegler, 1968.) 

3.4.3 Analyze stability of a massive beam-column (shaft) that has fixed ends, 
carries axial load P, and rotates with angular velocity Q (Fig. 3.15f). The 
column has uniform distributed mass IJ.. {Note that the centrifugal force 1J.02w 
contributes to buckling [cf. Watson and Wang, 1983; also J. Eng. Mech. 
(ASCE), 1990 in press].} 

3.5 DEFINITION OF STABILITY 

The examples in the preceding sections demonstrate that stability of structures in 
general must be defined in the dynamic sense. A static definition is in general 
insufficient. 

We consider structures with a finite number of degrees of freedom, charac
terized by generalized displacements q;(t). Except for some pathological cases, 
the behavior of continuous structures may be approximated in this manner by 
some discretization procedure, such as the finite element method, the finite 
difference method, or the truncated Fourier series expansion. The equations of 
motion of the structure, which in general may be derived as the Lagrange 
equations of motion (see, e.g., Fliigge, 1962), have the form 

(3.5.1) 

in which [M;i] =mass matrix, [C;i] =damping matrix, [K;i] =stiffness matrix, 
and {.{;}=column matrix of applied forces (i, j = 1, 2, ... , n). For reasons of 
convenience, mathematicians prefer to convert Equation 3.5.1 to a system of first 
order differential equations. This is accomplished by introducing new variables 
Y1, Y2 , ••• , YN with N = 2n, such that Y21 _ 1 = q; and Y21 = q;. The latter equa
tions, together with Equation 3.5.1, yield a system of 2n first-order differential 
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equations for the unknowns YK(t): 

[M;i){'Yzi} + [C;i]{Y2i} + (K;i]{Y2i-t} = {/;} {Y:z.-t} = {Y21 } (3.5.2) 

Multiplying by the inverse [M;ir1
, one can obtain a system of 2n first-order 

differential equations in the standard (canonical) form: 

}/. = fk(Y11 Y2, ... , YN, t) k = 1, 2, ... , N (3.5.3) 

Since the stiffness and damping coefficients may depend on displacements, 
functions fie can, in general, be nonlinear. TheN-dimensional space of variables 
Yi, ... , YN is called the phase space. 

In a general sense, one needs to decide whether a certain solution 11(t), 
which corresponds to certain given initial values 11(t0) = Y~c0 at time t = t0 

(k = 1, ... , N), is stable. In the static problems as well as in the problems of 
Sections 3.1 and 3.2, the solution 11(t) whose stability is to be examined 
consisted of a state at rest; that is, 11 = constant, although in general 11 may be 
functions of time. As illustrated by the preceding examples, the crucial question 
with regard to stability is what happens when the system is disturbed, for 
example, when the initial values 11 are changed to slightly different initial values 
11 + v~ where v~ are some small initial perturbations. The solution correspond
ing to these initial values may be written as 

Y~c(t) = l'?(t) + V~c(t) (3.5.4) 

in which functions v~c(t) represent the change of the solution caused by the change 
in the initial conditions. For most practical problems, functions fie are smooth, 
and so they may be expanded in Taylor series about ~. This yields 

N 

yk = n + VIc= F~c(r/, ... , ~. t) + L akmVm 
m=l 

1 N N cflFk 
+-'L L vv+··· 

2! m=t p=t aYm aY, m P 
(3.5.5) 

in which a~cm = a&/ aym· At the same time, by definition, we have n = 
fk(r/, ... , ~. t), and introducing this into Equation 3.5.5, we obtain the 
differential equations 

N 

ilk= L akmVm + 1/J~c(Vv ... , VN, t) k = 1, 2, ... , N (3.5.6) 
m=l 

in which 1/J~c are functions representing the second and higher terms of the Taylor 
series expansion. They have the important special property that their Taylor 
series expansions about vk = 0 contain no constant terms and no linear terms in 
vk. Equations 3.5.6, introduced by Poincare, reduce the investigation of stability 
of any solution to the investigation of stability of a zero (trivial) solution, v~c = 0. 
In the problems we have considered so far, we obtained equations of the type of 
Equations 3.5.6 directly, without having to carry out the foregoing reduction. 

Definition of Stability. If for an arbitrary positive number E there exists a 
positive number {) such that every solution with initial values 

lv~l :s; {) k = 1, ... , N (3.5. 7) 
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satisfies the inequalities 

k=l, . .. ,N (3.5.8) 

for all times t > t0 , the solution l1(t) is said to be stable (in the sense of 
Liapunov). When, in addition, lim vk = 0 for t-+ oo, the solution is said to be 
asymptotically stable. 

Simply stated, a structure (or any system) is stable if a small change in the 
initial conditions (input) leads to a small change in the solution (output, response). 

The foregoing definition of stability, due to Liapunov (1892), is generally used 
in all fields-not only structural mechanics but also biology, economics, etc. 

The meaning of the stability definition is graphically illustrated in Figure 
3.16a. For any given band of width 2e (cross-hatched), if one can find a nonzero 
positive initial deviation ~ such that the corresponding solution curve (dashed) 
remains within the band 2e, then the solution (the solid curve) is stable. On the 
other hand, if for all initial deviations 6 (<2:0) the solution deviates outside the 
band 2e (the dash-dot curve), the solution will be unstable. 

If the system is linear, then the solution is proportional to the initial 
conditions. Then stability may also be defined as follows: the structure (system) is 
stable if a finite change in initial conditions (input) does not cause an infinite 
change in the solution (output, response). 

The conditions in Equations 3.5.7 and 3.5.8 may be slightly modified, for 
example, by requiring that the vectors v2 and vk(t) be contained within 
hyperspheres of radii ~ and E in the phase space, that is, that 

and v~ + v~ + · · · + v~ < E (3.5.9) 

instead of the conditions in Equations 3.5.7 and 3.5.8 in the foregoing definition. 
The inequalities in the definition stated may be regarded as describing hypercubes 
inN-dimensional phase space. The prefix hyper refers to the fact that the phase 
space has generally more than three dimensions. 

An example illustrating the stability definition is given in Figure 3.16b. Let 
a > 0, that is, a is finite, even though it could be very small. If one gives 
0 < e <a, then the ball will move beyond position e (all the way to position a) no 
matter how small ~ is ( ~ > 0). 

As another example, consider a linear system (an oscillator) for which 
q = deviation from the static equilibrium position and q = velocity. If the system 
is damped, the motion after an imposed displacement ~ brings the system back to 

lo 

Fipre 3.16 (a) Responses of perturbed systems: stable (dashed curve) or unstable 
(dash-dot curve); (b) example of unstable system. 
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Figure 3.17 Stable (a, b) and unstable (c) responses in the phase space. 

the original position of equilibrium (Fig. 3.17a). If the system is not damped, a 
motion in which q and q are always limited ensues; see the diagram in the phase 
space in Figure 3.17b. If the stiffness of the system becomes negative, a static 
instability is produced (Fig. 3.17c) but if the damping becomes negative a 
dynamic instability is produced (Fig. 3.17c). 

As is now obvious from our discussion, we are normally not interested in 
obtaining complete solutions of the dynamic problem. We are only interested in 
the qualitative nature of the solutions for various values of the load, to the extent 
that we can judge stability. The qualitative analysis of dynamic systems owes its 
basic development to Poincare (1885, 1892) who introduced this approach in 
analyzing stability of bodies in orbit and stability of rotating fluid bodies in a 
gravity field. 

Problems 

3.5.1 On the basis of the Liapunov definition of stability, determine whether the 
balls in Figure 3.18a are stable. 

a)~ 
I~' ///Jt£9 

Y=O (plane) W Unstable 

lyesl ~ y•x• 
Stable? 
(yes) 

y-•' ~ "'"~"' (no) 

c) d) 

Figure 3.18 (a) Stable and unstable ball supports, and (b, c) exercise problems on 
Liapunov's definition of stability. 

3.5.2 Consider a single-degree-of-freedom system for which the (equilibrium) 
solution is q1 = 0. Let the motion be defined by q 1 = a(t + 1)' +be-', where a 
and b characterize the initial deviations, and r = P2 

- 3P + 2. Find the 
stability condition for P. Then for (a) E = 10-30

, P = 0.5 and (b) E = 10-30
, 

P = 1.5, try to find {J ( {J > 0). 
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3.5.3 Analyze stability of the solution q1 = t for a single-degree-of-freedom 
system. Let the perturbed motion of the system be defined by qt = t + 
aRe ei«<, where ro2 = -3 + V1- P, a = const. Consider 
(a) P = 0.5, E = 0.1-find c5 > 0 

P = 0.6, E = 10-3-find c5 > 0 
P = 0.9, E = 10-50-find c5 >0 

(b) P = 1.1, E = 10-18--<:an you find 6 > 0? 
P = 1.4, E = 10-9--<:an you find 6 > 0? 

3.5.4 For the hinged column in Figure 3.18b try to find c5 (c5 > 0) if (a) P = 0.5PE; 
(b) P=0.999PE; (c) P=PE; (d) P= 1.1PE. 

3.5.5 For the column in Figure 3.18c, try to find c5 (c5 >0) for (a) P = C/81; (b) 
P = 18C/I; (c) P = 2C/I. 

3.5.6 Do the same as in Problem 3.5.5 for the column in Figure 3.18d. 

3.6 THEOREMS OF LAGRANGE-DIRICHLET AND OF LIAPUNOV 

As we have seen, dynamics permits a more general and more fundamental 
approach to stability problems than statics. The dynamic solutions, however, are 
also much more difficult than the analysis of equilibrium states. At the same time, 
the complete dynamic solution is usually not needed for stability analysis. The 
magnitudes of the initial disturbances are normally unknown anyway. What is 
needed are only the limits of stability, that is, the critical states. 

Much effort has therefore been devoted in stability theory to finding criteria 
that make it possible to determine the limits of stability without actually having to 
solve the motion of the system. The simplest and oldest of such criteria is an 
energy criterion of stability, which was in its essence known to Torricelli in 1644 
for mechanical systems subjected to gravity loads, was presented by Lagrange in 
his Mecanique Analytique (1788), and was rigorously proven by Dirichlet in the 
early nineteenth century. 

'Theorem 3.6.1 Lagrange-Dirichlet Theorem. Assuming the total energy to 
be continuous, the equilibrium of a system containing only conservative and 
dissipative forces is stable if the potential energy of the system has a strict 
minimum (i.e., is positive definite). 

Proof The state of the system may be imagined as a point in a 2n
dimensional space with coordinates v 1 = q 11 v 2 = q11 v3 = q2 , V4 = q2 , ••• , vN = 
v2n = qn, called the phase space. The energy of the system is E = IT + T where 
IT= potential energy and T =kinetic energy. As shown before, we may assume 
without any loss of generality that the equilibrium state whose stability is 
investigated is q1 = q1 = q2 = q2 = · · · = ti2n = 0, and the corresponding energy 
value is E = 0. The condition of strict minimum means that IT ~ 0 for all points of 
the phase space sufficiently close to the origin. Figure 3.19a illustrates that a 
surface IT(q 1, ••• , qn) has a strict local minimum at the origin q 1 = · · · = qn = 0 if 
and only if the intersections with horizontal planes n = const. result in closed 
contours around the origin. For a surface that does not have a strict minimum, 
Figure 3.19b illustrates that the intersections are open curves such as hyperbolas. 
Since the kinetic energy T is always nonnegative, IT > 0 implies E > 0 for all 
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Figure 3.19 Total energy surfaces (a) with or (b) without a strict local minimum; (c-e) 
typical two-dimensional cross sections of total energy surface for positive-definite ll; cross 
sections corresponding to increasing energy values for (f) positive-definite n and (g) 
nonpositive-definite n. 

points of the phase space close to the origin. Note that the position in the phase 
space defines the kinetic energy completely since the phase space coordinates 
include the velocities. Typical two-dimensional cross sections of E are sketched in 
Figure 3.19c, d, e. In Figure 3.19c, the contour E = const. is closed because II is 
positive definite. In Figure 3.19d it is closed because E is positive definite, and in 
Figure 3.19e it is closed because T > 0 always. 

Consider now a finite hypercube of size 2£ centered in the phase space around 
the origin, that is, lvkl < E for all k, E being any given positive number. In any 
two-dimensional cross section, this hypercube appears as a square of side 2£ (Fig. 
3.19f). Among all the values of Eon the boundary of the hypercube, there exists 
one minimum value £ 1 >0 (this follows, e.g., from the Weierstrass theorem, 
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which states that every continuous function may be uniformly approximated 
within a finite region with any desired accuracy by a polynomial). Because E has 
a strict minimum, the hypersurfaces of constant E value must be closed and 
contain the origin. In the two-dimensional cross section, these hypersurfaces 
appear as the closed contours shown in Figure 3.19f. Also, the subsequent 
hypersurfaces (the subsequent contours in Fig. 3.19f) correspond to progressively 
increasing energy values E., E2 , E3 , ••• • Consequently the hypersurface E = E 1 

is contained entirely within the 2£ hypercube (within the 2£ square in Fig. 3.19f). 
Therefore, one can choose a 26 hypercube (26 square in Fig. 3.19f) in such a 
manner that it is contained entirely within the hypersurface E = E 1• For all points 
in the interior of the 26 hypercube (i.e., for lvkl < 6 for all k), we have E < E 1• 

Next we note that for a system containing only conservative and dissipative 
forces, energy E cannot increase. Therefore, if we choose an initial state (i.e., 
the initial deviations from the equilibrium position and initial velocities) within 
the 26 hypercube (26 square in Fig. 3.19f), the initial energy E0 is such that 
0 < E0 < E 1• So the energy E for all subsequent times will be bounded as 
0 < E ::5 E0 < E 1, which implies that the state of the system will always remain 
within the hypersurface E = E 1 (contour E = E 1 in Fig. 3.19f). Since the surface is 
entirely contained within the 2£ hypercube, the state of the system always 
remains within this hypercube (i.e., within the 2£ square in Fig. 3.19f). 

For further discussion see e.g. Leipholz (1970), Ziegler (1968), and Gant
macher (1970). Equivalently, one can use in this proof hyperspheres instead of 
hypercubes (Ziegler, 1968). Note that the proof depends on the fact that 
dissipative forces cannot increase the value of E. This follows from the second 
law of thermodynamics (or the dissipation inequality), which in fact serves as the 
most fundamental criterion of stability (see Sec. 10.2). In the absence of 
dissipation, the constancy of E follows simply from the principle of conservation 
of mechanical energy. 

If the dissipative forces are absent, the energy of the system will remain 
constant (E = 0) and equal to its initial value E0 which corresponds to the initial 
deviations from the equilibrium state and the initial velocities. In the phase space, 
the state will remain on the hypersurface E = E0 (and in a two-dimensional cross 
section, on the closed contour E = E0); see Figure 3.20a. 

When dissipative forces are present we have dE I dt ::50. Assuming that the 

a) 
qk States of equal 

total energy 

Possible actual 
path of the system 

b) 

..•. Alternative stable path 

Figure 3.20 Stable paths in the phase space if dissipative forces are (a) absent or (b) 
present. 
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potential energy and the nonpotential forces do not depend explicitly on time 

dE_~ (aE)v· 
d 

- LJ ~ k (3.6.1) 
I k oVk 

that is, the derivative with respect to time represents in the phase space the 
projection of the vector vk of velocities and accelerations onto the normal to the 
sudace E =constant. Thus the path of the system must either cross the surfaces 
E =constant in the direction toward the origin (Fig. 3.20b) or run along them. In 
the case that dE/dt = 0 only for qk = 0 (definite dissipative system) and that the 
equilibrium position is isolated (i.e., there are no other infinitely close equi
librium positions) the equilibrium position is asymptotically stable, that is, all the 
deviations and velocities tend to zero as the time increases (Gantmacher, 1970, 
p.176). 

Figure 3.19g illustrates that if the potential energy is not positive definite, 
stability cannot be proven. In this case the contours E =constant are not closed 
curves, and thus if the initial state is within the 2£ square in Figure 3.19g, it only 
guarantees that a subsequent state will remain in the infinite cross-hatched 
domain, which, of course, cannot fit within any finite 2c5 square. 

Simple examples of positive-definite potential-energy functions are 

3q~ + 5q~ q~ + (q2- 2q.)2 (q.- q3)4 + q~ + q~ qi- 9q~ 
(3.6.2) 

Note that there exists a number E > 0 such that, for lq11 < E, one always has 
q~- 9q~ > 0 (because q~ is higher-order small). One can denote c52ll = qi + q~, 
c53ll = -qt and then, for all q 1 and q2, c52ll > 0; see for more detail Section 4.1. 
On the other hand, the expressions 

2 4q2 q.- 2 

are not positive definite. 

qi- (q3- 3q2)2 + q~ 
q~ + (q2 + q3)9 

qi+q~ 
(3.6.3) 

As revealed by our previous dynamic solution of a rotating shaft (Sec. 3.4) as 
well as other examples, the gyroscopic forces, which are conservative but not 
derivable from a potential, can stabilize a system that would otherwise be 
unstable. However, they cannot destabilize a stable system, as implied by the 
Lagrange-Dirichlet theorem. 

The minimum of potential energy defines an equilibrium state. Therefore, the 
limits of stability of conservative systems can be analyzed statically. This is true 
whether or not dissipative forces are present. 

In the Lagrange-Dirichlet theorem, positive definiteness is a sufficient 
condition, not a necessary one. When the potential energy is not positive definite, 
the system may or may not be stable. The absence of the local minimum of the 
potential energy (absence of positive definiteness) does not necessarily imply 
instability, and examples to this effect are known. However, fot' two important 
cases Liapunov proved instability. This is stated by the following two Liapunov 
instability theorems (Gantmacher, 1970, pp. 174-176; Rektorys, 1969, p. 827; 
Kamke, 1956, p. 61). 
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Theorem 3.6.2 Liapunov's First Theorem. If the potential energy in the 
equilibrium state is not minimum and if the absence of a minimum is caused by 
the second-order terms in the Taylor series expansion of the potential energy then 
the system is unstable. (Thus, a saddle point, II= q~- q~ + q1, implies instability, 
but II = q~ + q1- q~ does not necessarily imply instability, while not guaranteeing 
stability; for ramifications see Leipholz, 1970). 

Theorem 3.6.3 Liapunov's Second Theorem. If the potential energy is 
maximum with respect to all adjacent states (local maximum) and the maximum 
is characterized by the terms of the lowest order (not necessarily the second 
order) in the Taylor series expansion of potential energy, then the system is 
unstable. (For example, II = -q~- q~ + q1 + q~ and II= -q1- q~ each implies 
instability, but II = -q~ + q~ or II = -q~ + q1 + q~ does not necessarily imply 
instability.) 

The crucial point in the proof of the Lagrange-Dirichlet theorem is the 
existence of the energy function E, serving as the test function for stability. As 
noted by Liapunov, it is possible to restate the proof of the Lagrange-Dirichlet 
theorem, using instead of the function E a continuous function 'I' that has a strict 
minimum in the equilibrium state, and that, during any motion of the system, 
does not increase, d'Pidt :$0. If, again, d'Pidt = 0 only for qk = 0 the solution is 
asymptotically stable. 

Is it possible to find more general test functions that we could apply at least to 
some nonconservative system? Some such test functions, which are positive 
definite and are called the Liapunov functions, have been found. One of them 
was given by Liapunov in the following theorem (Liapunov, 1892): 

Theorem 3.6.4 If one can find for a given system a positive-definite function 
'P(t, vk) such that its total derivative 

d'P = a\1' + " a\1' vk 
d 

~ (3.6.4) 
t at k avk 

is either identically zero or negative semidefinite (d'P ldt :$ 0), then the state 
vk = 0 is stable. Furthermore, if d'P I dt is negative definite (d'P I dt < 0) and 'I' can 
be made less than any positive number, (i.e., 'P-+0 at the origin), then the 
solution is asymptotically stable. 

Proof The proof is analogous to that of the Lagrange-Dirichlet theorem 
(Leipholz, 1970, p. 77) and its main point is illustrated in Figure 3.21. When 'I' is 
positive definite then the surfaces 'I' = constant are closed around the origin (Fig. 
3.21) and for '1'1 < '1'2 the surface 'I'= '1'1 lies entirely within the surface 'I'= '1'2• 

Obviously Ek (a'Piavk)vk = v ·grad '1', which represents in the phase space the 
projection of the vector v onto the normal of the surface 'I' = constant (Fig. 
3.21). Thus, the path of the system (curve pin Fig. 3.21) must either cross all the 
surfaces 'I'= constant in the direction toward the origin, in which case v · grad 'I' 
must be negative, or it must run along one of such surfaces, in which case v • grad 
'I' = 0. For the special case that a\1' I at = 0 (i.e., surfaces 'I' = const. do not vary 
in time) it is then clear that the trajectory of subsequent states will keep 
approaching the origin or remain at a fixed surface 'I' = const. Thus, for any given 
2E square in Figure 3.21, one can find a contour 'I'= '1'3 lying entirely within the 



DYNAMIC ANALYSIS Of STABILITY 183 

_ __., 
v, 

Figure 3.21 Cross sections of positive-definite test function 'I' and path of stable system. 

2e square, and so by choosing the initial state A within a 2c5 square that fits within 
the contour \II= \113 , it is ensured that the state of the system cannot get outside 
the region \II= \113 , and therefore not outside the 2e square. If a\11 I at< 0, the 
surfaces \II= const. shrink in time, and so the movement toward the origin cannot 
be slower than for aw I at = const., which implies stability. If aw I at > o, the 
surfaces 'I' = const. expand in time, however by requiring that d'l' I dt s; 0 one 
ensures that the movement toward the origin relative to the expanding surfaces 
prevails, thus ensuring stability. Finally, the asymptotic stability is ensured if 'I' is 
diminishing during the motion of the system (d'l'ldt-O) and w-o implies 
reaching the origin in the limit. 

Evidently, the Lagrange-Dirichlet theorem is a special case of Liapunov's first 
theorem such that 'I' = E = total energy. 

In conclusion we should emphasize that the Lagrange-Dirichlet theorem 
permits only dissipative forces that do not destroy the existence of the 
potential-energy function n (q 11 ••• , qn) from which all conservative forces are 
derived by differentiation. Dissipative phenomena such as material creep, 
plasticity, damage, or fracture generally make potential energy nonexistent, and 
thus the Lagrange-Dirichlet theorem is not applicable. However, as we will see 
in Chapter 10, static stability analysis can then be conducted on the basis of 
thermodynamic criteria. 

Problems 

3.6.1 In two dimensions sketch typical contours of surfaces n = const. when n is 
(a) positive definite, (b) negative definite, (c) positive semidefinite, and (d) 
indefinite. 

3.6.2 State and prove (with a sketch) the Lagrange-Dirichlet theorem without 
referring to the text. 

3.6.3 Indicate the type of definiteness of the following expressions: 2q~ + 3q~. 
(q,- 2q~) + q~. q~- 4q,q2 + 3q~. (2q,- q3)4- q~ + q~. (q,- q2)2 + q~ + q;, 
q~ + 4qt q~- q~ + q~. 2q~ + q~ + q~. q~- 2q~- (q, - q2)4. 
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3.7 STABILITY CRITERIA FOR DYNAMIC SYSTEMS 

Practically all problems of stability of structures are nonlinear. To make the 
solution feasible, they usually need to be linearized. For a certain class of 
problems, specified by the following theorem due to Poincare and Liapunov, the 
linearization is legitimate and is certain to give correct results as far as the 
stability limits are concerned. 

'lbeorem 3.7.1 The nonlinear system (Eq. 3.5.6) in which the nonlinear 
terms 1/Jk for sufficiently small vk admit a Taylor series expansion that contains 
nonlinear terms is stable if the linearized system ( 1/Jk = 0) is stable. 

For a proof, see Leipholz (1970, p. 81) or Gantmacher (1970, p. 193). The 
converse of this theorem is not necessarily true. 

The method of stability analysis of a linear system has already been illustrated 
by several examples (Sees. 3.1-3.4). Generally, the solution is sought in the form 
qk = QkeAt where Qk are constants (or vk = AkeAt), and substitution into the 
equations of motion (Eq. 3.5.6 with 1/Jk = 0) then yields the characteristic 
equation, an algebraic equation in A. If the problem is formulated in terms of the 
first-order differential equations in the standard (canonical) form (Eq. 3.5.6 with 
1/Jk = 0), the characteristic equation defines a standard linear matrix eigenvalue 
problem for a real matrix: 

au- A a 12 a 13 

a21 a22 - A a23 (N=2n) (3.7.1) 

aN1 aN2 aN3 

The roots are in general complex, appearing in conjugate pairs A= a± ib, and 
the corresponding fundamental solutions then are of the form e'" cos bt and 
e« sin bt if the roots are distnct. In the case of multiple roots, of multiplicity r, 
solutions te« cos bt, ... , t'-1e« sin bt are also present. It has been made clear by 
the preceding examples that a change in initial conditions will become arbitrarily 
magnified with time when a > 0. Hence, the stability condition is 

ReA<O or lm m <0 (3.7.2) 

in which m = iA = ~ b + ia = frequency. In the case of multiple roots, the case 
a = 0 is unstable. Equation 3. 7.2 must hold for all roots to ensure stability. 

According to the theorem of Poincare and Liapunov, Equation 3.7.2 is a 
sufficient stability condition for the actual, nonlinear system. Furthermore, if 
ReA> 0 for at least one root, the actual, nonlinear system is unstable. 

No general theorem is available for the case when the critical state is 
characterized by A = 0 ( m = 0) for some root and Re A ~ 0 for all roots. The 
question of stability of the actual nonlinear system is then decided by the 
nonlinear terms 1/Jk in Equation 3.5.6. 

Figure 3.22 illustrates the behavior of the roots in the Gauss plane when the 
load P is varied. When the root passes into the right half-plane Re A > 0 through 
the origin (A= 0), stability is lost by divergence (i.e., by buckling), and the 
critical load then may be obtained by static analysis because the inertia forces at 
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Figure 3.22 Stability conditions expressed through the behavior of roots A. in the Gauss 
plane. 

incipient instability vanish. When the roots leave the stable half-plane (left 
half-plane) through the imaginary axis, that is, at a point other than the origin, 
stability is lost by flutter, and then static analysis of the critical loads is generally 
inapplicable. 

Every conservative system (with forces derivable from a potential) exhibits 
static instability (buckling, divergence). This is because the condition of minimum 
potential energy defines an equilibrium state (Leipholz, 1970). 

By expanding the determinant in Equation 3.7.1 one may bring the charac
teristic equation to the form 

(3.7.3) 

whose coefficients p 0 , ••• , PN are not all zero. If the characteristic equation for A 
is neither quadratic nor biquadratic, simple explicit expressions for the roots are 
unavailable. However, the precise values of the roots are not needed; one only 
needs to know the sign of the real parts of all roots. There exist certain methods 
that can decide this question without actually solving the roots. One such method 
utilizes the following matrix, called the Hurwitz matrix: 

p~ Po 0 0 0 0 0 
' ' 0 0 0 P3 -p~ PI Po 

' ' Ps P4 'P3, P2 PI Po 0 (3.7.4) 
' ' ' ' ' ' H= ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 0 0 ' 'PN 

in which 0 is substituted for all the terms whose subscript exceeds N. 
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Theorem 3.7.2 Hurwitz Theorem. The necessary and sufficient condition for 
all the roots of Equation 3.7.1 to have negative real parts is that all the principal 
minors of the Hurwitz matrix (Eq. 3.7.4), that is, 

P1 Po 0 
~3 = PJ Pz P1 

Ps P4 PJ 

must be positive. (For the proof, see Leipholz, 1970, pp. 33 and 37.) An 
equivalent criterion was derived earlier by Routh (Gantmacher, 1970, p. 199). 

As an example, in the case of a fourth-degree polynomial one has 

H= [;; :: ;1 ;o] 
0 P4 PJ Pz 
0 0 0 P4 

(3.7.6) 

and the conditions of stability are P1 > 0, PtPz- PoPJ > 0, (P1Pz- PoPJ)PJ
p~p4 > 0, p4 > 0. Note also that for the evaluation of the determinants in 
Equations 3.7.5, it is best to expand them always with respect to the last row, 
because then the preceding determinant appears as one of the minors used in the 
expansion. 

Another useful method of examining stability is due to Nyquist and Michailov 
(Leipholz, 1970, p. 27). One considers the mapping of the complex plane (Gauss 
plane ReA., Im A.) into the complex plane (Ref, lmf) given by the polynomial 
f(A.) in Equation 3.7.3. In the mapped plane, the image of all roots coincides with 
the origin. Therefore, if in the complex plane of A. all the roots lie to the left of 
the imaginary axis, in the complex f plane the origin must also lie to the left of the 
image of the imaginary axis. Choosing various y values in an increasing sequence, 
and evaluatingf(A.) from Equation 3.7.3 for all values A.= iy, one can trace from 
individual points (such as points 1 through 9 illustrated in Fig. 3.23) the curve that 
is the image of the imaginary axis. If the origin remains to the left of this curve 
(proceeding from y = -oo toy= +oo), the system is stable. 

lm!#..J 

9 

8 

S Re!#..J 

4 

3 

2 

lm (fl 

7 

Re!fl 

Fipre 3.23 Mapping of imaginary axis of Gauss plane and of roots A for stable system. 
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A caveat with respect to linearization needs to be mentioned. In some stability 
problems, such as shell buckling, it is insufficient to investigate infinitely small 
variations in the initial conditions, and small but finite imperfections of the system 
must be taken into account, in order to obtain physically relevant results. The 
linearized stability analysis still yields the correct critical loads, but they are 
insufficient to predict the actual behavior which is dominated by finite imperfec
tions, as it will be shown in Chapter 7. 

Problems 

3.7.1 Verify the stability of the solution of the example presented in Section 3.4 
(disk mounted on shaft) using the Routh-Hurwitz condition. 

3.7.2 Analyze stability of the nonlinear dynamic system: 

2ml2(iit + iiz) + mtzqt + Pl(qz- qt) + Cqt(l + kqt) = 0 
mtz(qt + iiz) + C(qz- qt) + Ck(qz- qt)2 = 0 

in which m, I, k are positive constants. (Note: This system gives the motion of 
the column with two rigid bars and two point masses that was described before 
by Eqs. 3.2.10, but the springs are now nonlinear.) 

3. 7.3 Analyze stability of a massless free-standing column with a point mass on 
top loaded by a follower force P that varies with the slope 8 as P = P0 cos 8 
(Po= const.). 

3.7.4 Same P as above, but for a free-standing column consisting of two rigid 
bars connected by springs, with point masses at the joint and on top. 

3. 7 .S Can a conservative system with forces derivable from a potential lose 
stability by flutter? Is dynamic analysis necessary? 

3.8 STABILITY OF CONTINUOUS ELASTIC SYSTEMS 

In generalizing Liapunov's stability definition to continuous structures it would be 
unreasonable to require that the displacements, strains, and strain rates caused by 
an infinitely small disturbance (less than c5) remain infinitely small (less than e) at 
all points of the structure. This is clarified, for example, by the example (due to J. 
D. Achenbach of Northwestern University) of an elastic sphere that is subjected 
on its surface to a disturbance (pressure jump) generating a radial pressure wave 
(Fig. 3.24a). When this wave reaches the center of the sphere, a finite strain is 

a)0ingular b)~..,. point ,..,, Sin~ular 
~poont 

o- - --x -.J;-istress 

~ tUE Singularity 
~ubsequent -~ l wavefronts 

X 
Times t 3 t 2 t, 

Figare 3.24 Pressure wave (a) in elastic sphere and (b) in elastic solid with sharp crack or 
sharp notch. 
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produced even if the disturbance is infinitely small. Similarly, when the tip of a 
sharp crack (or a sharp acute comer) (Fig. 3.24b) in an elastic solid is hit by a 
plane wave of an infinitely small amplitude, finite displacements, strains, and 
strain rates are produced within an infinitely small neighborhood of the crack tip 
(or comer). If the body is in its natural (unstressed) state prior to the disturbance, 
obviously it would be senseless to consider these states as unstable, just because 
of the response in one isolated, singular point. Therefore, stability of continuous 
bodies can be meaningfully defined only in a certain average sense. Thus, the 
definition of stability must employ a certain metric (or norm) of a function space, 
applied to the displacements as continuous functions of location. 

Consider a structure with one continuous displacement variable w = w(x, y; t) 
that describes a deviation from a certain basic state whose stability is to be 
examined. Following Movchan (1956) and others (e.g., Herrmann and Nemat
Nasser, 1966; Fu and Nemat-Nasser 1970) one defines a certain metric p(w, t) 
such that p(O, t) = 0, and pis a positive-definite continuous function of timet (w 
being continuous). For t = t0 one may in general consider a different metric 
p0(w, t) of the same properties asp, and such that p continuously depends on p0 • 

An example of an acceptable metric is p = f v w2(x, t) dV and p0 = f v w2(:x:, t0) dV. 
Liapunov's definition of stability may now be extended as follows: 

The state w = 0 is stable if, for an arbitrary positive E, there exists a positive 6 
such that p(w, t) < E for all t > t0 if p0(w, t0) < 6. 

Using this definition, Movchan proved a theorem which states the condition 
whose fulfillment guarantees stability: 

Theorem 3.8.1 The state w = 0 is stable (with respect to me tries p0 and p) if 
there exists some positive-definite functional Cl>(w, t) (called the Liapunov 
functional) such that 4- :s; 0 for all t :s; t0 and Cl> tends to zero as Po tends to zero, 
that is, if for any positive £ 1 one can find a positive 61 such that Cl>(w, t0) < £ 1 if 
60(w, t0) < 61• (The proof is analogous to that of Lagrange-Dirichlet theorem.) 

Similar to the Lagrange-Dirichlet stability theorem, a physically meaningful 
choice of the Liapunov functional is energy. For a structure with nonconservative 
loads, such as follower forces (Sec. 3.2), one cannot choose the total energy, 
E = 11 + T, because nonconservative loads may supply further energy W to the 
structure, that is, E may increase. However, because of the law of conservation of 
mechanical energy, 11 + T must increase (in absence of dissipation) precisely by 
the amount W. So the energy functional 

ei>=I1+T-W with W= LpwdVdt (3.8.1) 

(where V denotes the volume of the structure and p is the distributed applied 
load) remains constant, that is, el> = 0. Furthermore, Cl> obviously tends to zero as 
w tends to zero, and so the assumptions of Movchan's theorem are satisfied. Since 
the kinetic energy T is always positive definite, one may exclude it from Cl>, 
setting 

«<>* =n- w (3.8.2) 

and state the energy criterion of stability as follows: 
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If <I>* is a positive-definite functional, the stability of an elastic system with 
nonconservative loads is ensured. 

A special case of this theorem for the case when only conservative loads are 
present (W = 0) represents an extension of the Lagrange-Dirichlet theorem to 
continuous structures. For nonconservative loads a positive-definite n does not 
ensure stability, as has been shown by Ziegler (1952) via an example. 

Note that the foregoing energy criterion states only a sufficient condition of 
stability, and not the necessary one. Stability might exist even when ~· is not 
positive definite, and even when it is outright negative definite. For example, the 
gyroscopic loads, which are conservative but do no work, can stabilize a structure 
that would otherwise be unstable (Sec. 3.4), and the foregoing energy criterion 
says nothing about this possibility. Nevertheless, the criterion does imply that the 
gyroscopic forces cannot destabilize a structure that is otherwise stable, same as 
implied by the Lagrange-Dirichlet theorem for discrete systems. 

Problems 

3.8.1 State various other possible metrics (norms) that can be used to define 
stability of a continuous structure. 

3.8.2 Is p = f w3 dV an acceptable metric? 
3.8.3 Is p =max lwl an acceptable metric? If not, give some examples which 

demonstrate it. 

3.9 NONLINEAR OSCILLATIONS AND CHAOS 

Our previous dynamic analysis has been confined to linear or linearized systems. 
Nonlinear structural behavior may arise due to geometric nonlinearity of large 
deflections as well as nonlinear material behavior (Chaps. 8-13). Nonlinear 
dynamic systems show a much richer and intricate specter of behavior. During the 
last few decades it became apparent that nonlinear dynamic systems can exhibit 
not only a simple dynamic response such as periodic oscillation or divergence but 
also a complex response which is nonperiodic and appears to be random, despite 
the deterministic nature of the system with its loads. Such a response, called 
chaos, nevertheless shows a certain degree of order, and so it would be incorrect 
to treat it by methods of random dynamics. Therefore, considerable attention has 
recently been devoted to the study of the order in chaos (see, e.g., the books by 
Thompson and Stewart, 1986; Thompson, 1982; Moon, 1986; Schuster, 1989; 
Guckenheimer and Holmes, 1983; and the papers by Moon and Holmes, 1983; 
and by Thompson, 1989). 

The typical responses of a single-degree-of-freedom oscillator are illustrated in 
Figure 3.25, which shows the histories of deflection q(t) and the trajectories in the 
phase space (q, q). The motion of an undamped, unforced, linear oscillator is of 
the type q =A sin wt, q =Aw cos wt; from this we see that q2 + (q/w)2 =A2

, and 
so the trajectory in the phase space is an ellipse (Fig. 3.25a). A typical property 
of damperl, unforced, linear oscillators is that the trajectories are attracted to the 
point of equilibrium, provided the equilibrium is stable. This point in the phase 
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Fipre 3.25 Typical responses of a single-degree-of-freedom oscillator: (a) linear, un
damped, and unforced; (b) linear, damped, and unforced; (c) linear, damped, and forced; 
(d) nonlinear, damped, and forced (reproduced, with permission, from Thompson and 
Stewart, 1986). 

space is then called a point attractor. The attractor can be a focus (Fig. 3.25b-1) if 
damping is light, subcritical, or a node (Fig. 3.25b-2) if the damping is strong, 
supercritical. The trajectories for the damped, forced oscillator are attracted to 
the trajectory of the steady-state cyclic motion, which is called a cycle attractor 
(Fig. 3.25c). 

For a nonlinear oscillator, by contrast, the time history as well as the 
phase-space trajectory may happen to appear chaotic, attracted to no simple 
trajectory. Nevertheless, in some cases the trajectory is not completely random 
but upon closer scrutiny is found to be attracted to something, called the strange 
(or chaotic) attractor. (More often, though, the response is periodic, with a 
period equal to that of the forcing function or its multiple.) The strange attractor 
describes a hidden order in the chaotic response. It is typical of chaotic response 
that a very small change in the initial conditions produces a trajectory that 
exponentially diverges from the original trajectory (Fig. 3.25d); this means that 
the system is unstable and the response in time is unpredictable. 

Chaotic response may be experimentally demonstrated, for example, on a 
buckled beam loaded by a constant axial force P 2:: Per and magnetically excited 
by a sinusoidal lateral force; see Figure 3.26 (Moon and Holmes, 1979). The 
nonlinearity stems from large deflections that cause the restoring force to be 
equivalent to a spring of a quadratically varying secant stiffness, C = C1 + C2q

2 
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Figure 3.26 Buckled beam excited by sinusoidal lateral force. 

where c., C2 =given coefficients, depending on P. Thus the equation of motion 
has the form 

or 
i:j + kq + c.q + C2q3 = f3 cos Ot 

i:i + kq + c.q3 = p cos ot 

(3.9.1) 

(3.9.2) 

where k =damping coefficient, Equation 3.9.2, called the Doffing equation, is the 
special case for which there is no linear stiffness, that is, C 1 = 0. This happens to 
the column at P =Per· Equation 3.9.1, with C1 < 0, applies for P >Per· The 
corresponding surfaces of potential energy n have the shapes shown in Figure 
3.26, described as II= a1q

2 + a2q4 where a2 > 0 while a1 = 0 at P =Per and a1 < 0 
at P >Per· This means that the surface II(q) for P =Per has a nearly flat portion at 
the origin, which agrees with the fact that linear analysis for small deflections 
yields a zero natural frequency (Sec. 3.1). However, taking into account the 
quartic term in II(q) one finds that bounded finite oscillations at P =Per are 
possible. Understanding is helped by noting that a ball forced to roll on these 
surfaces oscillates in the same manner as the column.) 

For Equations 3.9.1 and 3.9.2, as well as in general, the order in a chaotic 
response becomes apparent by plotting in the phase plane a map of the discrete 
states of the system at periodic instants t = T, 2T, 3T, ... where T =period of 
the forcing action. This map, called Poincare map, was introduced already at the 
tum of the century by Poincare who studied the subsequent positions of an 
orbiting body at intersections with one plane. 

To construct a Poincare map of this or other systems, one needs to calculate 
the mapping Y;+t = /(Y;) which yields the new intersection point Y;+t in terms of 
the previous one, Y; (i = 1, 2, 3, ... =subscript denoting here subsequent dis
crete times) (Y =phase space vector of displacements q and their rates q). This 
mapping is generally nonlinear, exhibiting linear and quadratic terms. Quadratic 
mappings f(Y;), also called iterates of quadratic polynomials, have been studied 
intensely. An important mapping is Henon's mapping: X;+t = Y; + 1- ax~, Yi+t = 
bx; (where x; = Y;, y; = Y;), which may be shown to include transformations by 
folding, contracting, and rotating. 

After the initial transients are damped out, the Poincare maps of chaotic 
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systems (or quadratic iterates) typically consist of discrete points all of which are 
located on regular and repetitive patterns. An example of such a pattern, 
obtained for Henon mappings by Thompson (1982), is shown in Figure 
3.27a, b,c. 

The subsequent iterates do not lie next to each other but jump randomly over 
the patterns in this map. Part (b) of Figure 3.27 is an enlargement of the 
rectangular region C from part (a), and part (c) is an enlargement of the 
rectangular region D from part (b). Upon subsequent refinements, finer and finer 
self-similar patterns emerge, ad infinitum. This is called a fractal structure. (An 
example of such maps are Cantor sets.) The fractal structure does not have to 
consist just of lines as in Figure 3.27. Beautiful intricate multidimensional 
patterns, reproduced with self-similarity at subsequent refinements of scale, have 
been demonstrated for various chaotic systems or quadratic mappings. 

Solutions that start at an arbitrary state may be attracted to a point attractor 
or a cycle attractor as illustrated for linear systems, or to a strange attractor, such 
as exemplified in Figure 3.27. There can be a multitude of attractors for a given 
nonlinear dynamic system, and then one may construct regions in the mapping 
space, called the attractor basins. Each basin includes all the starting states for 
which the solution is attracted to the same attractor. 

To sum up, nonlinear deterministic systems under periodic excitation may 
exhibit chaotic response that appears to be random but in reality has a certain 
orderly structure. Determination of this structure is the objective of the theory of 
chaos. 
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Problems 

3.9.1 Explain the meaning of a strange attractor. 
3.9.2 Construct the Poincare map for the steady-state motion of a single-degree

of-freedom oscillator such as a massless cantilever column with mass m on 
top, loaded on top by a constant vertical force, and periodic lateral force 
f = fo sin rot on top. Consider P < Pe., and also discuss the cases P = Per and 
P >Per· Finally, referring to Section 1.9, discuss the change in the governing 
equation due to large deflections. 

3.9.3 For Henon mapping with a= 1.4 and b = 0.3, the point q = 0.63135448 and 
q = 0.18940634 was found to correspond to a state at which the initial 
transients are already damped out. Using your computer calculate the 
subsequent iterates and plot them on the Poincare map. In this manner, a plot 
of the strange attractor is obtained (cf. Thompson, 1982, p. 146). 
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4 
Energy Methods 

In this chapter we analyze conservative structural systems, which constitute the 
majority of applications in structural engineering practice. According to the 
Lagrange-Dirichlet theorem, which we proved in the preceding chapter, stability 
of these systems can be determined by energy methods. Static analysis, which we 
exclusively used in Chapters 1 and 2, represents a part of the energy approach, 
however a part that cannot answer the question of stability. Statics can only yield 
equilibrium states, which may be stable or unstable. Of course the question of 
failure of conservative and dissipative systems can be answered by the static 
method provided that imperfections are taken into account. However, solutions 
of perfect structures, for example, structures with no initial curvature, are 
generally simpler than the analysis of structures with imperfections, and the fact 
that energy analysis can decide stability of a perfect system represents one 
important advantage of the energy approach. Compared to the dynamic analysis, 
which serves as the fundamental test of stability, the static energy analysis 
generally brings about a great simplification. 

First we will use the energy approach to analyze the stability of discretized 
elastic systems. Then we will study stability of equilibrium states of the structure 
after the first critical state is passed (postcritical behavior). We shall see that there 
exist diverse types of postcritical behavior, which leads to an important 
classification of conservative stability problems. 

4.1 POSITIVE-DEFINITE MATRICES, EIGENVALUES, AND 
EIGENVECTORS 

For the reader's convenience, this section reviews the basic results that we will 
need from the algebra of quadratic forms (e.g., Franklin, 1968, Rektorys, 1969; 
Korn and Korn, 1968; Courant and Hilbert, 1962; Zurmuhl, 1958; Pearson, 1974; 
Smirnov, 1970; Hohn, 1958; Shilov, 1977; Gantmacher, 1959; Faddeev and 
Faddeeva, 1963). A general quadratic form with coefficients K;; is written as 

n n 

2ll = L L K;;q;q; = qTKq (4.1.1) 
izl j=l 
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in which q =column matrix (vector) of the generalized displacements q,, 
superscript T is used to denote the transpose of a matrix, K =matrix of the 
quadratic form = (n x n) square matrix with elements K1i. In application to elastic 
structures, matrix K is real and represents the stiffness matrix of the structure 
with regard to its generalized displacements, and n is the potential energy. 

Matrix K is said to be nonsingular (or regular, invertible) if a matrix C exists 
such that CK = KC =I, where I= identity matrix (that is, a matrix with 1's on the 
main diagonal, and O's everywhere else). Cis said to be the inverse of K, and it is 
denoted by K-1

• If K has no inverse, K is said to be singular. A matrix is singular 
if and only if det K = 0. 

In a conservative system (see Sec. 3.2), n must be equal to the work J Ed1 dq1 

done by the loads to reach the current state (cf. Eq. 3.2.20). This work expression 
is path-independent if and only if it represents a total differential, that is, 
o/;/oqi = otfoq1 (see also the integrability conditions in Eq. 3.2.21). Substituting 
the stiffne:;s definition K1i = of;/ oqi, we conclude that the potential energy exists if 
and only if ~n ~n 

K,i=--=--=Ki1 (4.1.2) 
aq, aqi aqi aq, 

that is, the stiffness matrix is symmetric. 
In CJ,apters 10 and 13 we will see that friction or damage can make the 

stiffness matrix K nonsymmetric. Then the potential energy does not exist and the 
value of the quadratic form is independent of the antisymmetric part of K because 
qTKq = qTKq where K = ~(K + KT) =symmetric part of matrix K. In this chapter 
we will consider only symmetric stiffness matrices. 

Matrix K is said to be positive definite when the associated quadratic form n 
is positive definite. A quadratic form is said to be positive definite when it has a 
strict minimum, that is, when n > 0 for all ql> q2, ... 'qn except ql = q2 = ... = 
qn = 0. An example is ll = q~ + 5q~. Another example is ll = q~- 2q1q2 + 2q~ = 
(q 1 - q2)

2 + q~. A quadratic form is positive semidefinite when ll;::::: 0 for all q1 

while n = 0 for some nonzero q1• The simplest example is n = q~ provided that 
we deal with a two-dimensional space, n = ll(q~> q2). Another example is 
ll = q~ + 4q1q2 + 4q~ = (q 1 + 2q2)2, which vanishes for q 1 = -2q2. A quadratic 
form is indefinite when n > 0 for some q1 and n < 0 for some other q1 (then of 
course there also exist nonzero q1 for which n = 0, because ll(q) is a continuous 
function). An example is n = q~- 3q~. Other examples are n = q~ + 6q 1q2 + 
4q~ = (q1 + 3q2f- 5q~ both in the (q~> q2) and (q~> q2, q3) spaces, and n = 
q~ + q~ + q~ + 2qlq2- 2qlq3 = (qt + q2)2 + (ql- qJ)2- q~. n is negative definite 
when - n is positive definite, and it is negative semidefinite when - n is positive 
semidefinite. As one can check from the previous examples, the matrices of 
positive-semidefinite and negative-semidefinite quadratic forms are singular, 
while the matrices of positive-definite and negative-definite quadratic forms are 
regular (nonsingular). The matrices of indefinite forms can be regular or singular. 
Examples of quadratic surfaces n = ll(q~> q2) of various types are shown in 
Figure 4.1. 

To decide whether n = q~- 4q1q2 + 5q~ is positive definite, one may realize 
that this can be written as n = y~ + y~ where Yt = qt- 2q2 and Y2 = q2; obviously, 
this expression is positive definite. On the other hand, n = q~- 4qtq2 + 3q~ is not 
positive definite because n = (q1 - 2q2)

2- q~. So one can decide positive 
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Figure 4.1 Potential-energy surfaces in two dimensions: (a) stable; (b-f) unstable. 
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definiteness by introducing new variables Y; = Ei B;iqi or y = Bq. If 8 is a 
nonsingular matrix, the inverse q = Ty where T = s-1 exists; this is called a 
regular linear substitution (or linear transformation). The quadratic form 
transforms as 

where 
211 = qTKq = (TyfKTy = yTK*y 

K*=TTKT 

is the transformed matrix. Equation 4.1.3 leads to the following theorem: 

(4.1.3) 

(4.1.4) 

neorem 4.1.1 Matrix K is positive definite (or positive semidefinite, 
indefinite, singular), if and only if matrix K* is. 

Proof According to Equation 4.1.3, the quadratic forms of K and K* are 
equal, and if T is nonsingular, then for every q one can find a corresponding y, 
and for every y one can find a corresponding q. So, if among K and K* one is 
always positive, the other must be, too. 

Theorem 4.1.1 permits us to choose any independent linear combinations of 
displacements as the independent variables in stability analysis. 

Positive definiteness of a matrix can be decided by its eigenvalues (also called 
proper values or characteristic values). The homogeneous equation (K - Al)q = 0 
has a nonzero solution if and only if det (K- AI) = 0. The roots of this equation 
are the eigenvalues A1, ~ •••• ,An of matrix K. Normally we number them so 
that A1 ::::; ~ ::5 • • • ::::; An. In general, q and A may be complex numbers. Since the 
determinant is an nth-degree polynomial in A with roots A, it must have the form 
det (K- AI)= (A1 - A)(A2 - A) · · · (An -A). Substituting in this equation A= 0, we 
get Vieta's rule: 

(4.1.5) 

and comparing the coefficients at An- 1 on both sides of the equation, we also get 
the relation A1 + ~ + · · · + An = K 11 + K22 + · · · + Knn = tr K. From Equation 
4.1.5 it follows that K is singular if and only if at least one eigenvalue is zero. 

Deorem 4.1.2 All eigenvalues of a real symmetric matrix are real. 

neorem 4.1.3 A real symmetric matrix is positive definite (or positive 
semidefinite, indefinite) if and only if all its eigenvalues are positive (or 
nonnegative, or of different signs). 
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Proof If K is real symmetric positive definite, then qTKq > 0 for any vector 
q. If q is an eigenvector, we may substitute Kq = Aq, which yields qT(Aq) > 0 or 
A(qT q) > 0. Because qT q = lq112 + lq212 + · · · + lq,l2 > 0 (which is valid even if q is 
complex), we conclude that A> 0. This proves that the condition in Theorem 
4.1.3 is necessary. To prove that it is also sufficient, consider any vector q, which 
may be represented as a linear combination of all eigenvectors q(i>, that is, 
q = c1q<•> + · · · + c,q<"> (because q<i) are linearly independent, cf. Theorem 
4.1.4). Multiplying by K, we get Kq = c1Kq0 > + · · · + c,Kq<"> = c1A1q<•> + · · · + 
c,A,q<">, and qTKq = (c1q<•>r + · · · + c,q<">

7
)(c1A1q<•> + · · · + c,A,q<">) = 

dA1q< 1>7 q<1> + · · · + c~A,g<">7q<"> because q<;>rq<i) = 0 when i-:/= j (according to 
Theorem 4.1.4). As q<i)T q<i) > 0 for all i, positiveness of all A; suffices for the last 
sum to be positive. 

Corollary From Theorem 4.1.3 and Equation 4.1.5 we know that detK>O 
is a necessary condition of positive definiteness. But it is not sufficient. 

As revealed by Equations 2.3.2 and 2.3.5, the stiffness matrix of an elastic 
structure linearized with respect to load parameter A has the form 

K=M-AN (4.1.6) 

where M and N are constant square real symmetric nonsingular matrices. The 
(generalized) eigenvalues A= A, (r = 1, ... , n) are those for which the equation 
Kq = 0 has a nonzero solution. The (generalized) eigenvector q<'> associated with 
A, is the nonzero solution of K<'>q<'> = 0 where K(r) = K(A,) = M- A,N. The 
generalized linear eigenvalue problem (M - AN)q = 0 can be transformed to the 
standard eigenvalue problem by multiplying this equation by N- 1 from the left: 
this yields (D- AI)q = 0 where D = N-1M. Obviously the eigenvalues A remain 
the same, and so do the eigenvectors. (An alternative conversion to a standard 
eigenvalue problem is to multiply by M- 1

, which yields (M- 1N- lll)q = 0 where 
ll=l/A.) 

Theorem 4.1.4 The eigenvectors corresponding to two different eigenvalues 
are mutually orthogonal. 

Proof The eigenvectors q<r> and q<s> of the generalized eigenvalue problem 
are the nonzero solutions of the equations (M - A,N)q<'> = 0 and (M - AsN)q<s> = 
0. We multiply these equations from the left by q<s>TN- 1 and q<r>TN- 1, 

respectively, and subtracting them we get q<s>Toq<r> - q<r>Toq<s> = A,q<r)T q<s> -
Asq<s>T q<r> where D = N-1M. Both terms on the left-hand side are equal because 
q<s>Toq<r> = (q<s>Toq<'>)T = q<r)TDT q<s> and DT =D. Also q<r)T q<s> = q<s)T q<'>. So 
we conclude that (A,- As)q<r>T q<s> = 0. Thus, if A,- As-:/= 0, we must have 
q<r)T q<s> = 0, that is, vectors q<'> and q<s> are orthogonal. (Note that this is true not 
only for the standard eigenvalue problem, but also for the generalized one.) 

Consider now the linear transformation q = Qy (that is, T = Q) such that 
Q;, = q~'>, that is Q = [ q<1>, ... , q<">] = square matrix whose columns are the 
eigenvectors q<r> represented as column matrices. The eigenvectors satisfy the 
equations K<'>q<'> = 0 in which the right-hand side is a zero column matrix. 
Combining similar equations for all the eigenvectors, we have 
[K<1>q<1>, ... , K<">q<">] = (0, ... , 0), and substituting K<r> = M- A,N we get 

(Mq(l>, ... , Mq<">] = [A1Nq(l>, ... , A,Nq<">] (4.1.7) 
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Multiplying this equation from the left by QrN-1
, we get 

QTN-lMQ = [q(l)' • • • 'q(n)]T[Atq(l)' • • • 'Anq(n)] 
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(4.1.8) 

Now we may note that q<r)T q<s> = 0 if Ar =I= As and 1 if Ar = As (here we assume the 
eigenvectors to be normalized). It follows that 

[

At 0 · · · 0] 
QTDQ= 0 ~ · · · 0 

0 0 • • • An 

(4.1.9) 

For the standard eigenvalue problem we have N = N- 1 = I, M = D = K, and 
QrDQ = QrKQ = K* (Eq. 4.1.4), and thus the following theorem ensues: 

1beorem 4.1.5 The linear substitution q = Qy in which the columns of 
matrix Q are the normalized eigenvectors of K transforms a real symmetric 
quadratic form to 

2II = qrKq = AtY~ + A2Y~ +···+AnY~ (4.1.10) 

Coronary For the generalized eigenvalue problem (N =I= 1), the matrix 
QTKQ is not diagonal. 

Note that Equation 4.1.10 can also be used as an alternative proof of Theorem 
4.1.3. 

Furthermore, one can introduce new variables Z; by substituting Y; = z;lv'i)J if 
A; =I= 0 andy;= Z; if A;= 0. This leads to the following theorem: 

1beorem 4.1.6 Any real symmetric quadratic form can be transformed to the 
form 

2II = - z~ - · · · - zi + z!, + · · · + z~ 
(called the canonical form) where 0 s k s m s n. 

(4.1.11) 

The transformation q = Tz, which leads from Equation 4.1.1 to Equation 
4.1.11, is not unique, but the numbers of plus and minus signs in Equation 4.1.11 
are (Sylvester's law of inertia). 

It may be useful to note a subtle difference between (1) looking for the 
(generalized) eigenvalues and (2) expressing II as a sum of squares. In the former 
problem we look for the eigenvalues Ar for which the equation Kq = 0 or 
(M- AN)q = 0 admits nonzero q. In the latter problem, II is to be expressed for a 
given load parameter A = A.o; to this end, we need to find the eigenvalues A.o = A.o, 
and eigenvectors q = q![> for which the equation (Ko - Aol)q = 0 with Ko = M -
AoN admits nonzero q. Then 2II = Er Ao,Y~ in which y = Qc) 1q and Oo is the 
matrix of eigenvectors q![> of matrix Ko. For the special case where N =I, we 
have A.a.= Ar- A.a. but not for general N. 

The magnitudes of vectors y and q = Ry are the same if and only if RT = R- 1
, 

because qr q = (Ry)T(Ry) = yTRTRy = yrR- 1Ry = yrly = yr y. In that case 
matrix R is said to be unitary and the transformation orthogonal (it can be 
geometrically interpreted as a rotation in an n-dimensional space). The trans
formed matrix K' = R- 1KR is said to be similar to K. 

1beorem 4.1.7 Similar matrices have the same eigenvalues, that is, the 
eigenvalues are invariant during orthogonal transformations (rotations). 



204 ElASTIC THEORIES 

Proof Let A be an eigenvalue of K', that is K'y = ).y or R-1KRy = 1.y. 
Multiply this by R from the left: (RR-1)K(Ry) = 1.(Ry). Denoting Ry = q, we 
then have Kq = ).q, which means that if A is an eigenvalue of K' it is also an 
eigenvalue of K. The reverse holds true as well, since the foregoing procedure 
can be reversed. 

For students of mechanics of materials it may be interesting to note that 
invariance of the principal stresses during coordinate rotations, and the fact that 
their values are real, are special cases of Theorems 4.1.7 and 4.1.2. 

Corollary The determinant and trace of a matrix, or any other function of 
the eigenvalues, are invariant. 

Theorem 4.1.8 The inverse of a positive-definite real symmetric matrix is 
also positive definite. 

Proof If a real symmetric matrix K is positive definite, then every eigen
value ). satisfying the equation (K - ).I)q = 0 is positive. Also, the inverse matrix 
K-1 must exist. Premultiplying this equation by -). - 1K- 1 from the left, we 
get ( -). - 1K-1K + K-1I)q = 0, and noting that K- 1K =I, K-11 = K-1

, we have 
(K-1 

- ). -
1I)q = 0. Now, from the fact that all the possible values of ). - 1 are 

positive, it follows K-1 is positive definite. 

CoroDary If ). is an eigenvalue of stiffness matrix K, then ). - 1 is an 
eigenvalue of the corresponding compliance matrix C = K-1 provided that K is 
nonsingular. Thus, if det K-+0 (1.-+0), then det C-+oo (because 1/1.-+oo). 

From the relation (K-1
-). -

11)q = 0 and Eq. 4.1.5 it further follows that 
det K- 1 = 1.111.21 

• • • 1.;1 = 1/(1.11.2 • • • ).,.), that is, det K-1 = 1/det K. 

The consequence for structural mechanics is that if a quadratic form 
describing the potential energy is positive definite, so is the quadratic form for the 
associated complementary energy. Or, if the stiffness matrix is positive definite, 
so is the associated flexibility matrix (Hobo, 1958, p. 257). 

Theorem 4.1.9 If both A and K are positive definite, so are AK and A - 1K. 

Proof If K is positive definite, then all the eigenvalues ). for which the 
equation Kq = ).q has a nonzero solution are positive. Multiplying this equation 
by qr A from the left we get qr(AK)q = qr A).q = ).(qr Aq). Here).> 0 and also, 
if A is positive definite, qr Aq > 0 for any q =# 0. Therefore qr(AK)q > 0 for any 
q =# 0. Furthermore, according to Theorem 4.1.8, A - 1 is also positive definite, 
and replacing A by A - 1 in the foregoing argument we find that qr (A - 1K)q > 0 
for any q:#O. 

A convenient test of positive definiteness is given by the following theorem: 

Theorem 4.1.10 Sylvester's Criterion. A real symmetric matrix K;; is positive 

de:.·~~::: om: ~[::1pri:~~]: :inoB are ~~:·[":,:is,: : : K,.] > 
0 

K21 K22 
K,. 1 K,.,. 

(4.1.12) 
CoroUary If K is positive definite, so is any submatrix with coincident 

diagonal. 
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This means that if the structure is stable (i.e., its potential energy has a strict 
minimum) and we fix some of the displacements, then the structure remains 
stable (i.e., its potential energy will still have a strict minimum; see Sec. 4.2). 
This observation is, of course, clear on physical grounds. It can in fact be used to 
prove Theorem 4.1.10 physically (Ba!ant, 1985), as follows: 

Proof of 'Theorem 4.1.10 We imagine that we fix qn = 0. The stiffness matrix 
of the structure is thereby reduced from n x n to (n - 1) x (n - 1), and its 
determinant changes from Dn to Dn_1• Now, because the structure must remain 
stable (i.e., cannot be destabilized), if we fix one displacement we must have 
Dn-1 >0 on the basis of Equation 4.1.5 and Theorem 4.1.3. (Conversely, if 
Dn-1 :sO, the structure with qn fixed is unstable.) Furthermore, if we fix also 
qn-1 = 0, by the same physical argument we conclude that Dn_2 > 0, etc., until we 
get D1 >0, which completes the physical proof of Theorem 4.1.10. (A purely 
mathematical version of this proof, without mechanical interpretation, is also 
possible.) 

Now the algebraic proof. That Dn > 0 is a necessary condition we already 
know. For n = 1, Theorem 4.1.10 is obvious. For n = 2, the proof is easy. We 
have 2II = K11q~ + 2K12q 1q2 + K22q~, which can be transformed to 

2II K ( 
K12 )

2 K11K22- K~2 2 
= 11 q1 +-K q2 + K q2 

11 11 
(4.1.13) 

Obviously, II is positive definite if and only if K 11 > 0 and K 11 K22 - K~2 > 0. 
It is also easy to verify the fact that K;i cannot be positive definite if any of the 

principal minors Dk is zero. Let y1 , y2 , ••• , Yk be one eigenvector of the minor Dk 
(k :s n), and set q1 = Y~> q2 = Y2· ... , qk = Yk• qk+1 = qk+2 = · · · = qn = 0. If the 
determinant Dk vanishes, then ~f= 1 K;iqi = 0 fori= 1, 2, ... , k and ~i=1 K;iqi = 0 
for i = 1, 2, ... , n. Hence 2II = ~7~1 ~i=1 K;iq;qi = ~7-1 q;(~i-1 K;iqi) = 0. This 
means that K;i is not positive definite. 

For n > 2, the algebraic proof of Theorem 4.1.10 is more involved and can be 
made on the basis of Jacobi's theorem (Zurmiihl, 1958) or by induction on the 
basis of Courant's minimax principle (Franklin, 1968, p. 152). In a more 
elementary way Theorem 4.1.10 for a general n can be algebraically proven as 
follows (e.g., Simitses, 1976, pp. 11-12). Introduce a new variable: 

~ Ku ~ KiP . h K(1> K 
Y1 = q1 + £.J -K q; = q1 + £.J K(l) q; Wit ij = ij 

i=2 11 i=2 11 
(4.1.14) 

Then it is easy to check that 
1 1 n n 

II=- KWyt +- L L K~J>q;qj 
2 2;=2 j=2 

(4.1.15) 

in which 
K\1> K~~> - K(~> K\~> 

K(~) = 1 ,, lr I (4.1.16) 
,, KW 

Now, by choosing q2 = 1 and y1 = q3 = · · · = qn = 0, we have II = K¥'! (2, w~ich 
must be positive. So the numerator of Equ~tion 4.1.16 .must be positive. (st.nce 
KW > 0). This means that D2 = K 11 K22 - K 12 > o •.. that Is, the second pnnctpal 
minor D

2 
of the n x n matrix K;i must be pos1t1ve. Subsequently, one may 
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introduce consecutive substitutions 
n 

Yk =qk + L q;(K~~>tKW) (4.1.17) 
obtaining 

1-k+l 

1 1 1 n n 
n=-KWy~+ ... +-KWyi+- L L K~r~>qiqj 

2 2 2 i=k+l j=k+l 
(4.1.18) 

with 
K<k-t)K(k-1) _ K<~-t>K<~-t> K<k> _ tt 11 t. t1 

11 - K<k-t> 
11 

(4.1.19) 

and, in the same manner as before, one obtains 

Dk = K\1+ 1>K~+t>- K\~+ 1 >1 >0 (4.1.20) 
Dk defined in this manner represents the kth principal minor since it consists of a 
sum of products of k elements of a k x k matrix such that each product has one 
and only one element from each row and each column, and involves all possible 
such terms with the signs corresponding to the definition of a determinant. 

1beorem 4.1.11 For symmetric matrices K, the number of positive (or 
negative) pivots is equal to the number of positive (or negative) eigenvalues (see, 
e.g., Strang, 1980, 1986). 

Problems 

4.1.1 Is the form 3q~ -12q1q2 + 9q~ positive definite? (see also Problem 3.6.3). 
4.1.2 (a) Determine for which P-values the structure with the stiffness matrix 

Ku = 2- P, Kzz = 3- P, K12 = K21 =Vi is stable. (b) Do the same for 
Ku = 9- P, K22=6- P, K1z= K21 = 3Vi.. 

4.1.3 (a) Prove that all the diagonal elements K 11 of a positive-definite matrix K 
are positive. Hint: Consider the sign of n for the case when q1 = 1 with all 
other q1 = 0. (b) Prove Theorems 4.1.2 and 4.1.3. 

4.1.4 A nonsymmetric matrix K can be decomposed as K = K + A where matrix 
K is symmetric (Kr = K) and matrix A is antisymmetric (AT= -A). Noting 
that qr Aq = !(qr Aq + (qr Aq)r], prove that qr Aq is always zero. This, of 
course, means that qrKq = qrKq, as already said. 

4.1.5 For systems with friction or damage, the stiffness matrix K can be 
nonsymmetric (see Sec. 10.4 and Chap. 13). As an example, consider a system 
with two displacements qt> q2 such that Ku = 2- P, K12 = 3, K21 = 1, K22 = 4. 
Let K be the symmetric part of K. Show that the state of neutral equilibrium 
(for which there exists an eigenvector q1 satisfying the equations[;= E1 Kuq1 = 
0, i = 1, 2), occurs for Per= l, while the critical state of stability limit (for 
which K, rather then K, becomes singular) occurs for Per= 1, which is less 
than Per· Further show that the eigenvectors of K and K, corresponding to Per 
and Pen respectively, are (4, -1) and (2, -1) (they differ from each other). 
Then, noting that the energy function 2ft= E [;q; = E; E1 K;1q;q1 = 
E1 E1 K11q1q1 = (q 1 + 2q2)

2 + (1- P)q~ (representing the work done on the 
system but not the potential energy), find one nonzero vector (q 1, q2) such 
that 2ft< 0 at P = ~ (which is smaller than Per)· Finally verify that for 
P =Per= 1, one can find a nonzero vector (q 1, q2) (eigenvector of K) that is 
orthogonal to the corresponding force vector[;= E; K11q1, that is, E; k;q; = 0, 
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thus causing fi to vanish even though the vector (/1, h) is always nonzero at 
P=l. 

4.1.6 Determine for which P-values the structure with the stiffness matrix 
K11 = 4- P, K22 = 6- P, K12 = 3, K21 = 5 is stable. 

4.1.7 In the foregoing problems the eigenvalues of K were real, but for a 
nonsymmetric matrix K they can also be complex. Show that this is the case 
for K 11 = 1-P, K 22 = 2- P, K 12 = -K21 = 1. Show that the limit of stability is 
P =Per= 1, and that there is no state of neutral equilibrium. (See also Prob. 
10.4.4.) 

4.2 POHNTIAL ENERGY FOR DISCREn ELASTIC SYSHMS 

A discrete system is a system with a finite number, n, of degrees of freedom, 
characterized by the generalized displacements q 1, • • • , q n (kinematic variables) 
that may represent actual displacements or rotations, or parameters of some 
deformation modes. Continuous structures such as beams, which do not represent 
a discrete system, may usually be approximated by a discrete system using some 
discretization procedure, such as the finite element method or expansion of the 
displacement distribution into a Fourier series. So the theory of discrete systems 
has a rather general applicability. 

The Lagrange-Dirichlet theorem reduces the stability analysis to a test of 
positive definiteness (or existence of a strict minimum) of the energy function of 
the structure-load system, called the potential energy, n. The dissipative forces 
(permitted by the Lagrange-Dirichlet theorem) must be such that n is a function 
of the generalized displacements q., ... , qn in the vicinity of the equilibrium 
state under consideration, such that the variation of n with q., ... , qn be 
path-independent, that is, reversible. Consequently, the loads must have a 
potential (i.e., must be conservative), at least in the vicinity of the equilibrium 
state, and dissipative forces, if present, may depend only on velocities 
q., ... , tin, which is the case for damping; they vanish when static deformations 
are analyzed. 

Strudure·Load System 

The potential energy n consists of the (elastic) strain energy U and the work of 
loads W. If we consider that an equilibrium state of the structure is changed to 
another, adjacent equilibrium state in response to a change in the given loads 
(e.g., a change of the weight that is carried by the structure), then we must have 
AU= A W, or AU- A W = 0, according to the principle of conservation of 
energy. It follows that if the loads are not changed (e.g., the weights carried by 
the structure remain constant), then the net change of energy of the structure
load system is AU- AW. Therefore, the potential energy is defined as 

n = u - w ( 4. 2.1) 

For the case of constant loads, called dead loads, we have W = Ek Pkqk where 
P. =load associated with qk (k = 1, 2, ... , n). For variable loads, W = 
Ekk J Pk(qk) dqk where Pk(qk) are functions specified .inde~ndently ~f the 
properties of the structure (see al~ Eq. 4.3 .. 20 and the d~scusston belo~ tt). An 
example of a variable conservative load IS the attractive or repulstve force 



- ELASTIC THEORIES 

between two electric charges or between two magnets, for which Pk = ak(rk - q) - 2 

where ak, rk =constants, or the force produced by hydrostatic pressure of a heavy 
liquid, for which Pk = ak(rk - q ). In the following we will tacitly assume dead 
loads unless specified otherwise. 

The fact that positive definiteness of ~0 guarantees stability can also be 
proven [independently of the Lagrange-Dirichlet theorem (Theorem 3.6.1)} on 
the basis of the second law of thermodynamics. If the change of state is 
isothermal, ~0 represents the Helmholtz free energy of the structure-load 
system, and if the change of state is isentropic, ~0 represents the total energy of 
the structure-load system. For details see Chapter 10. 

Second Variation of Potential Energy 

The loading may in general be considered to change as a function of some control 
parameter A, which may represent the load (A = P), or the parameter of a system 
of loads, or the prescribed displacement, or the parameter of a system of 
prescribed displacements. Let lJq., ... , lJqn be small variations of the generalized 
displacements from the equilibrium state assumed to occur at constant A. 
Assuming 0 to be a smooth function (i.e., continuous and with continuous 
derivatives up to a sufficient order), function 0 may be expanded into a Taylor 
series about the equilibrium state; this provides 

~0 = O(q 1 + {)q., ... , qn + lJqn; A)- O(q., ... , qn; A) 

(4.2.2) 
in which 

lJO=_!_ i ao(q., ... , qn;A) lJq; 620 =_!_ i i ~O(q~> ... , qn;A) lJq;lJqi 
11 1=1 aql 21 1=1 j=1 aql aqj 

~ (4.2.3) 
J0: 3 _ 1 ~ ~ ~ crO(qh ... , qn; A) .s: JO: JO: 
(} 0-- Ll LJ Ll uqluqjuqk 

3! 1=1 j=1 k=1 aql aqj aqk 

{)O, {)20, {)30, . . . are called the first, second, third, etc., variations of the 
potential energy. The conditions of equilibrium are 

{)O = 0 for any lJq; or ao;aql = 0 for each i (4.2.4) 

According to the Lagrange-Dirichlet theorem, the equilibrium state is stable for 
those values of the control parameter A for which 

620 > 0 for any lJq1, lJqi (4.2.5) 

When, for some A value, 620 = 0 for some lJq1, lJqi and 620 > 0 for some other 
{)q1, lJqi, the system may be, but need not be, unstable for that A value, 
depending on the higher-order variations of 0. When 620 = 0 identically for all 
lJq1, {)qi the system might or might not be stable, and it will be stable if also 
{)

30 = 0 and 640 > 0 for all lJq1, {)qi. When, for some A value, 620 < 0 for some 
{)q1, lJqi, the system is unstable for that A value. This follows from Liapunov's 
stability theorem (Theorem 3.6.2), which states that the system is unstable if the 
potential energy is not positive definite, and the lack of positive definiteness is 
indicated by the second-order terms in the expansion of the function 0 (Sec. 3.6). 

In one dimension q11 the condition of stability is illustrated in Figure 4.2. The 
potential energy of a ball in a gravity field is proportional to its vertical 
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Figure 4.1 Ball in a gravity field with single degree of freedom: (a-f, h) different 
conditions of stability of equilibrium position; (g) variations of potential energy for stable 
system represented in (d). 

coordinate. It should be also noted that the foregoing conditions of stability (Eq. 
4.2.5) are based only on the variations of potential energy ll in an infinitely small 
neighborhood of the equilibrium state. In Figure 4.2g the various surfaces bll, 
<52ll, <53ll, <54ll are shown for the case of Figure 4.2d. <52ll describes the actual 
potential surface only asymptotically, in an infinitely small neighborhood of the 
equilibrium state. 

Of course stability can also be defined in the large. For example, the unstable 
state in Figure 4.2e may be characterized as stable in the large. The stable state in 
Figure 4.2h is called metastable if a stable state of lower ll exists at a finite but 
small distance away (a finite but small disturbance then changes the state of the 
system). 

Critical State 

At the limit of stability, the second variation ceases to be positive definite. This 
requires that the first variation of <52ll must tum to zero, and so the condition for 
the stability limit, called the critical state, may be written as 

s[s2n( 1)) 0 ~ a(f>
2
ll) {)q. =0 for all f>q; 

U U qJ> • • • > qn; /1. = or .£... a(S. ) I ; uq; 

or 

0 for all i (4.2.6) 



210 ELASTIC THEORIES 

This is called the Trefftz criterion. (Note that c5( c52n) is not the third variation, 
c53n.) 

If the structural system is linear, then the potential energy is a quadratic form, 
and if q1 = · · · = q, = 0 is the equilibrium state, then n = c52n, that is, the second 
variation of the potential energy coincides with the potential energy itself. Thus, 
for a structural system that is linear and for which q; = 0 represents the 
equilibrium state, the critical state condition in Equation 4.2.6 reduces to 

c5n=O or 
an L- c5q; = 0 for all c5q; 

; aq; 
or an= 0 for all i 

aq; 
(4.2.7) 

This condition has the appearance of an equilibrium condition, although it is, in 
fact, an implementation of the Trefftz criterion (Eq. 4.2.6). Calculation of critical 
states according to Equation 4.2.7 is also known as the method of adjacent 
equilibrium. 

The equation c5n(qi> ... , q,; .A)= 0 is equivalent to the equilibrium condi
tions formulated directly as we did it in Chapters 1 and 2. The solution of this 
equation is the equilibrium state q1(.A), ... , q,(.A) as a function of the control 
parameter A. The critical value Acr is solved from the eigenvalue problem defined 
by the equation c5[c52n(qi> ... , q,; .A))= 0. This equation, however, coincides 
with the equation c5n(q 1 , ••• , q,; .A)= 0 if the equilibrium state is q1 = · · • = 
q, = 0 because then c5q1 = q 1 and c5 2n = n. The direction of motion at the critical 
state is characterized by the eigenvector qp>, ... , q~1 > obtained by solving the 
eigenvalue problem. 

It should be noted that when, for certain .A, c52n < 0 occurs for some q;, the 
direction of dynamic motion is not determined by the ratio q1 :q2 : • • • :q, for 
which c52n is minimized (at fixed .A) with respect to q 1 , q2 , ••• , q,; rather, it can 
be determined only by dynamic analysis that includes inertia forces, viscous 
forces, etc. This direction is generally not the same as the static instability mode 
for Acr· 

An Example 

Consider now a simple example: a rigid bar of length l restrained at one end with 
a spring of stiffness C, loaded by force P of constant vertical direction (Fig. 4.3a) 
(.A= P). The angle q may be taken as the generalized displacement, and if for 

a) b) p 

Figure 4.3 Single-degree-of-freedom systems. 
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q = 0 the spring is free of stress, q = 0 is an equilibrium position, which we want 
to investigate for stability. The change of the potential energy of the system from 
the position q = 0 (Fig. 4.3a) is an= n = !C6q2

- P6'1 = !Cq2 
- P/(1 - cos q) 

( 6q = q) where 'I is the vertical displacement of the load. Expanding in a Taylor 
series, one obtains 6'1 = 1(1- cos 6q) = L(!6q2 -146q4 + · · · ). So we have 6ll = 
0 (as required if q = 0 is an equilibrium position), 62ll = !(C- Pl)6q2

, 63ll = 0, 
64ll = -i4Pl6q4

, •••• The condition of stability is 62ll > 0, that is, P < Cll, and 
the critical load Per = C I I. The same answer would be obtained from the Trefftz 
criterion, since the condition 6(62ll) = (C- Pl)6q = 0 yields Per= Cll (because 
6q=FO). 

Alternatively, one may set n = 0 for q = 0 and express the potential energy of 
the system as n = !Cq2

- P/(1- cosq) = !Cq2
- PL[(q2l2) + · · ·). Then the equi

librium condition is 6ll = (C- Pl)q6q = 0 for any 6q, which gives q = 0 for 
P =F C I I. The second variation 62ll = ( C - Pl)6q 2 gives the same stability 
condition as before, that is, P < C/1. 

Note that if one would ignore the geometric effect of lateral deflection on the 
work of axial load, we would get the incorrect equilibrium condition Cq6q = 0. 
This is equivalent to neglecting in the expression of n the term Pi( 1 - cos q) = 
Plq2l2, which is quadratic and of the same order as the strain energy !Cq2

• 

Obviously, the second-order theory must include in the potential-energy expres
sion all the terms up to the second order in displacements. 

Effect of Higher-Order Derivatives of n 

For nonlinear systems, the determination of stability gets more complicated as it 
depends on higher than second derivatives of n. When 62ll = 0 for some path 
and 62ll > 0 for all others, the system can be stable or unstable depending on 
higher variations. For polynomial expressions without cross terms, such as q 1q2 

(exemplified in Eqs. 3.6.3), the assessment of stability is straightforward, but not 
when cross terms are present. While for a quadratic surface it suffices to check the 
change of n for all the radial paths away from the origin (constant ratio of q;), 
paths of curved projection need to be also considered for a higher-order surface. 

Figure 4.4 shows an example (adapted from Thompson and Hunt, 1984) of a 
quartic polynomial for n, which is curious by the fact that n is not positive 
definite even though n initially rises along every radial path (constant q 1lq2) from 
the origin. The reason is that there exist paths with a curved projection onto the 
q1q2 plane (of the type q2 = -kq~. k =constant> 0) for which a negative n is 
reached. Therefore the condition ll,1111 > 0 does not guarantee stability in this 
case (the subscripts preceded by a comma denote partial differentiation). It turns 
out that stability requires that ll,1111 - 3(ll.112)

2lll.22 > 0 (see Thompson and 
Hunt, 1984, p. 23). 

Difficulties with Complementary Energy 

For any stiffness matrix K corresponding to displacements q; of a kinematically 
determinate structure, one can define the associated flexibility matrix C 
corresponding to the associated forces/;, which are such that E /; dq; is the work 
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n 

q. 

Fipre 4.4 Higher-order surface that represents unstable behavior due to motion along 
curved nonradial path. 

(the meaning of stiffness coefficients K;i and the associated flexibility coefficients 
C;i is illustrated in Fig. 4.5). Matrix C defines the quadratic form of complemen
tary energy of the structure, U* = ~fT Cf. 

Since f= Kq and q = Cf, we have C = K- 1
• Because the inverse of a real 

symmetric positive-definite matrix is also positive definite (Theorem 4.1.8), 
positive definiteness of either c52ll or c52U* ( = ~ c5fT Cc5f) implies stability. Then 
c52U* as a function of/; (not q;) has a strict minimum. In this sense, the methods 
of potential energy and complementary energy appear as two dual approaches, as 
do the associated principles of virtual displacements ( c5 n = 0) or virtual forces 
(c50* = 0); see, for example, Washizu (1975), or Argyris and Kelsey (1960). 

a) b) 
p p 

,,( q,.o c •• 

,.( 
q··l 

Figure 4.5 Definition of stiffness coefficients (b) and flexibility coefficients (c) for a 
continuous beam (a). 
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This duality, however, does not apply for the flexibility method of calculation 
of critical loads of redundant (statically indeterminate) beams or frames. In this 
method, one uses another flexibility matrix C, which represents the flexibility 
matrix of the primary structure, that is, a structure obtained by releasing the 
redundant forces X1 (through imaginary cuts). For the primary structure, X1 may 
be regarded as applied (external) forces, and so one can also define fi* = 
!Xrcrx =complementary energy of the primary structure with respect to X 1• 

Now it is important to realize that fi* is not associated with K (because X1 and q1 

are not associated by work). Therefore, C :f= K-1
• 

When the load (or load parameter) P is varied, det K, det C, and det C 
change. Det K can never become infinite before reaching the first critical load, 
because it would imply rigid response. It can become infinite only at critical loads 
for which the buckling mode involves some zero displacements, e.g., the stiffness 
matrix for end rotations of a beam when the load corresponds to buckling of a 
fixed-fixed beam; see Figure 2.5. Det C first becomes infinite at the first critical 
load. On the other hand, det C = 0 at the first critical load because at neutral 
equilibrium the redundants X 1 can change at no change of loads. However, det C 
typically becomes infinite and jumps from oo to -oo at some load (or loads) 
P1 <Per, (=first critical load of the structure), see Figures 2.6f and 2.9 (cf. Prob. 
4.2.7). This is caused by the fact that parts of the primary structure reach and 
exceed their own critical load P1 before Per, is reached. Indeed, in that case the 
stiffness matrix of that part becomes singular, and therefore the determinant of 
the compliance matrix of that part (as well as some flexibility coefficient of that 
part) becomes infinite. This must make det C also infinite because the C1i are the 
sums of the flexibilities of all the parts of the primary structure. 

Consequently, it is possible (and in fact typical) that fi• loses positive 
definiteness before Per, is reached (see the profiles of All and afi• in Fig. 4.6). 

Figure 4.6 Typical profiles of potential energy n and of complementary energy fi• of the 
primary structure. 
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So we conclude that the flexibility method, which is based on the flexibility matrix 
C of the primary structure, cannot be used to determine stability. 

That positive definiteness of fi* cannot decide stability of the actual structure 
is actually also a direct consequence of the fact that fi* represents the 
complementary energy of the primary structure rather than the actual structure. 
This is further reflected in the fact that complementary energy of the primary 
structure is used to enforce conditions of compatibility rather than equilibrium. 

The condition det C = 0 can of course be used to determine Pa1 (see Sec. 2.2). 
However, this approach is not advisable for any structure with more than a few 
unknowns, because the graph of det C versus P typically has many jumps 
between oo and -oo (Fig. 2.9). By contrast, det K cannot exhibit such behavior (as 
we illustrated in more detail in Sec. 2.2). 

To sum up, the complementary energy of the primary structure as a function 
of the redundants can, and typically does, lose positive definiteness while the 
actual structure is still stable. 

Overturning Instability of a Block: Discontinuous U' 

The preceding stability conditions apply only if function II(q1, ••• , qn) is 
continuous and has a continuous derivative. This is true for most elastic structures, 
but not for some systems of bodies in contact that can separate (lose contact). For 
example, consider stability of a rigid block (e.g., a retaining wall or a building) of 
weight P that rests on a rigid base and is loaded by a constant horizontal force H 
(e.g., dead load exerted by earth pressure or water pressure) applied at height a 
as shown in Figure 4.7a. We assume the block cannot slip; but it can lift from the 
base and thus it can lose stability by overturning. The work done on the block 
during overturning is W = Mq where M = Ha - Pb and q = dq = small rotation 
about comer 0. So the potential energy of the block is 

{
-Mq = (Pb- Ha)q 

II= 
00 

for q 2::0 

for q ~0 

b) c) d) 

t--Ll 
e) 

r _n~ L4'" n··· ~0 q q 
Stable Critical 

Unstable 

I)~ 

(4.2.8) 

Fipre 4.7 (a-d) Stability of rigid block; (e) rigid block on elastic base, and (f, g) buckling 
of column with one-sided constraints (exercise problems). 
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Here we considered the rigid base to be the limiting case of an elastic base 
(Fig. 4.7e) with stiffness approaching infinity, in which case n for negative 
rotation immediately becomes infinite. According to the Lagrange-Dirichlet 
theorem (Theorem 3.6.1), the block is stable if ll>O for any possible 6q ¢0. 
This means that the block is stable if Pb - Ha > 0, critical if Pb - Ha = 0, and 
unstable if Pb - Ha < 0. The system behaves the same way as a ball rolling on the 
potential surfaces shown in Figure 4. 7b, c, d. Conceptually it is interesting to note 
that (1) equilibrium exists without c5n = 0; (2) the condition of stability is c5n > 0 
(or ll' = ant aq > 0) for dq > 0, but not c52ll > 0 (or ~"' aq2 > 0); and (3) 
n, ll', and ~ll/ aq2 are discontinuous at q = 0, and the derivatives ll' and 
~ntaq2 are one-sided, defined only for q-o+ (that is, q-O at q ~0); see 
Figure 4. 7b, c, d. 

Problems 

4.2.1 Similar to the example in Figure 4.3a, determine the equilibrium and 
stability conditions for the rigid-bar column in Figure 4.3b. Also apply the 
Trefftz criterion. 

4.2.2 Same as Problem 4.2.1 for the two-bar column in Figure 4.3c. 
4.2.3 Without referring to the text explain why the complementary energy of the 

primary structure does not decide stability. 
4.2.4 Discuss stability against overturning of the elastically supported block in 

Figure 4.7e, which can lift from the springs. Plot n versus q. 
4.2.5 Figure 4. 7f shows a perfect Euler column for which buckling to the left is 

prevented by a rigid block. Plot n versus deflection and show that the limit of 
stability is PE, that is, the same without the block, despite discontinuity of 
ll(q). 

4.2.6 However, the behavior is different if the column has an initial crookedness 
toward the block (Fig. 4.7g). Show that in that case the column buckles in two 
half-waves and can support loads up to 4PE. 

4.2.7 A fixed-free column, whose first critical load is Per,= Ebr2/(0.699/)2
, may 

be considered as a system with one degree of freedom-the end rotation 4'1• 

So detK=Ku=sEI/1 (Sec. 2.1), det C=1/K11 • The statically determinate 
primary system is a hinged column, with end rotations 4'1, 4'2 , and C is a 2 x 2 
matrix given by Equation 2.1.10. Using the graphs of stability functions 
s, ll's, 1/Js in Figure 2.2, show that (a) det K first becomes infinite at the critical 
load P:r=4Ebr2

//
2 of a fixed-fixed column (i.e., P:r>Pcr,), (b) det C first 

becomes infinite at Per,, and (c) det C first becomes infinite at the critical load 
• - 2 2 • -of a hmged column, P1 = PE = Ebr /1 (1.e., P1 <Per,)· Also plot det C, det K, 

and det C as functions of P. 
4.2.8 Similar to Problem 4.2. 7, plot det K, det C, and det C as a function of P for 

a (a) fixed column whose primary system is taken as a free-standing column, 
(b) fixed-hinged column whose primary system is taken as (1) a hinged column 
or (2) a free-standing column, and (c) simply supported continuous beam
column of two equal spans whose primary system consists of two simply 
supported columns. 
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4.3 BIFURCATION BUCKLING AT SMALL DEFLECTIONS 

Consider again the prototype buckling problem of the hinged elastic column, with 
a sliding support at one end (Fig. 4.8). Let the column be perfect (which implies 
it is perfectly straight), and let El be constant. In Chapter 1 we saw (Fig. 1.3) that 
the equilibrium path of this column in the plot of P versus max w bifurcates, and 
for this reason we speak of bifurcation buckling to distinguish this type of 
buckling from other types at which there is no bifurcation (see Sec. 4.4). 

Calculation of Potential Energy of Beam-Columns 

Let us now calculate the potential energy of a perfectly straight column, possibly 
with a lateral disturbing load p(x). At zero load, the initial length of the column 
is 10 • Then we increase the axial compressive load until (at column length l, state 
2 in Fig. 4.8) we reach the value P, at which the column instantly (but statically) 
buckles. The load remains constant during buckling (according to the linearized 
small-deflection theory), that is, the load in the buckled state is P' = P (state 3 in 
Fig. 4.8). This implies that (for small deflections) the axial strain at neutral axis 
remains constant during buckling, that is, the length of the arc of the deflected 
neutral axis does not change. Therefore, the axial load P moves during buckling 
axially by the distance 

L
l 1 L/ 

= [(1 + w'2)
112 -1] dx =- w'2 dx 

0 2 0 
(4.3.1) 

in which we introduce the approximation (1 + w'2)
112 = 1 + !w'2 , since we assume 

w' to be small (linearized bending theory). The strain energy of the column per 
unit length (i.e., the bending energy) is !Mw", in which M = Elw". Thus the 
potential energy of the column relative to the state just before buckling (state 2 in 

<D 
P:O p 

f. 
ds w' 

dx&
8 

w(x) dw 

Fipre 4.8 Pin-ended column (1) subjected to axial force (2), and lateral deflection due to 
buckling (3). 
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Fig. 4.8) is 

D=U-W ill il with U ~= - Elw"2 dx W = P Iii+ pw dx 
0 2 0 

217 

(4.3.2) 

in which W includes the potential energy of constant lateral disturbing loads p(x), 
which might be present. Expand now the deflection curve w(x) and the lateral 
disturbing load p(x): 

.. n:rrx 
w(x)= L qnsin-

1
-

n=l 
p(x) = n~/" sin n;x (4.3.3) 

in which Pn and qn are Fourier coefficients. Substituting this into Equation 4.3.2 
with Iii according to Equation 4.3.1, we have 

El it ( nz1Cz n1fx)z pit ( n1f n:rrx)z 
0=- - Lqn-2-sin- dx-- Lqn-cos- dx 

2o n I I 2on l l 

-I: (~Pn sin n';)(~ qn sin n;x) dx (4.3.4) 

Squaring the sums, we obtain terms of the type sin (n:rrx/1) sin (m:rrx/1), which are 
to be integrated from 0 to I (m, n = 1, 2, 3, ... ). The integration, however, is 
greatly simplified by the fact that the integral of all terms for which m :1= n 
vanishes (which is a general property of orthogonal functions). Then, noting that 
f~sin2 (n:rrx/l)dx=l/2, and that n21C2El/l2 =Pa.=nth critical load, we may 
reduce Equation 4.3.4 to the form: 

Ell n4
1C

4 PI n21e2 l 
O{ql> • • • 'qn)=4 ~Tq~-4 ~fq~-2 ~pnqn 

or 

(4.3.5) 

Equilibrium and Stability 

The first variation of Equation 4.3.5 yields the equilibrium state, and by setting 
ant aqn = 0 we obtain c50 = En [2qnn2

1f
2(Pcr.- P)/41-lpn/2] c5qn = 0 for any 

c5qn, from which 

1 
(4.3.6) 

This is the same as obtained before by the static method (Eq. 1.5.6), and involves 
the previously derived magnification factor (Eq. 1.5.10). 

Stability is determined by the second variation of potential energy c52D, which 
is represented by the first term in Equation 4.3.5. Note that in this problem the 
lateral disturbing load p(x) has no effect on the stability limits, because we use 
here a linearized theory for which n is a quadratic function, and the lateral load 
affects only the linear terms. However, c520 coincides with n only if the system is 
perfect, that is, if p 1 = · · · = Pn = 0. The second variation consists of a sum of 
squares, and represents a quadratic form in its standard (canonical) form. Thus 
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the column is stable if the coefficients at all q~ are positive and is unstable if at 
least one of these coefficients is negative or zero. Obviously, for P < Per1, all the 
coefficients are positive. So the column is stable below the first critical load, while 
for P 2: Per•• the column is unstable, the case P = Per1 representing the loss of 
stability. Thus we confirm by energy analysis the result which we already 
established by dynamic analysis-the most general and fundamental approach. 

The fact that the potential energy is obtained in the form of a sum of squares, 
that is, that the matrix of the quadratic form is diagonal, is a consequence of the 
fact that the deflection expansion in Equations 4.3.3 happens to represent a linear 
combination of the fundamental buckling modes. (This would not be so if El 
were variable.) The buckling modes, representing the eigenstates of the eigen
value problem of buckling, always represent a system of orthogonal functions, 
whether one deals with a column of arbitrary end restraints, a column of variable 
cross section, or a continuous beam or frame. Therefore, it is generally 
advantageous to represent the deflection curve as a linear combination of the 
fundamental buckling modes w<n>(x ), and if this is done, then the potential 
energy is always obtained in the form of a sum of squares, which makes the 
stability analysis trivial. In this manner, the foregoing stability analysis could be 
generalized to arbitrary elastic structures. 

Role of Axial Strain and Shortening Due to Deflections 

We may now recall that in the previous chapters we formulated the equilibrium 
conditions without taking into account the axial shortening ll.l (e.g., in deriving 
Eq. 2.1.16 for V). Why is it, then, that now we must take ll.l into account? The 
reason is that ll.l is quadratic in w. This makes it possible to neglect ll.l in the 
equilibrium equations since they are linear in w, provided the deflections are 
small. The incremental expression for an, however, has no linear terms. Its 
lowest-order terms are quadratic, and so the term P ll.l, which is neglected in the 
first-order theory, must be taken into consideration here. 

In certain problems, the finite strain £ at beam axis during buckling can be 
nonzero. With second-order accuracy, we may write 

E = e + e<2> = u' + ~w'2 (4.3. 7) 
in which e = u' = au/ ax =first-order linearized strain at beam axis (u =axial 
displacement), and e<2> = ~w'2 =the second-order strain at beam axis. This strain 
represents the approximation (ds- dx)/dx = ((1 + w'2)

112 dx- dx]/dx = ~w'2 (see 
Fig. 4.8) where ds is the length of the arc of the deflected beam axis whose 
projection onto the original (undeflected, straight) beam axis is dx. The 
approximation is sufficient for small enough rotation w '. In the previously 
considered problems, we had £ = 0 at beam axis during buckling. 

So far we solved column buckling assuming the column top to be axially 
sliding during buckling, so that £ = 0. However, if the column is axially 
restrained, then E #: 0 during buckling. To solve such problems, it is important to 
realize that the term - P J~ ~w'2 dx no longer represents the work of the load. 
However, it still represents a part of potential energy that depends on P and is 
neglected in the first-order theory (a similar situation typically occurs for plates, 
see Sec. 7.2). To illustrate it, consider the pin-ended (hinged) column in Figure 
4.9a where the axial force is produced before buckling (i.e., at w = 0) by an 
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Figure 4.9 (a) Pin-ended column (1) subjected to axial (controlled) displacement (2) and 
lateral deflection due to buckling (3); (b, c) first- and second-order variations of strain 
energy and strain energy density due to elongation at beam axis; (d) difference in 
postbuckling behavior for load and displacement controls. 

enforced axial displacement, but during buckling the axial displacement at the 
end is prevented, that is, both end hinges are fixed axially (Fig. 4.9a). This 
situation may be imagined to characterize an ideal buckling test in which the 
crosshead of the testing machine is moved at a small velocity; the end of the 
column is displaced slowly, the axial force P grows, and then the column suddenly 
buckles during a time interval that is so short that the axial displacement of the 
crosshead during the buckling is negligible. In this case the incremental strain 
energy density during buckling, ~Elw"2, must be augmented by the term 
(Ne + ~Ne2) where E is the incremental axial strain during buckling at column 
axis, and N = -P =axial force, positive for tension (Fig. 4.9b). The first-order 
strain, e = du/dx, is zero in this case, same as for axially sliding hinges. But the 
second-order strain is nonzero, that is, E = e<2

) = ~w'2 =I= 0. Since E is second-order 
small the term ~Pe2 is fourth-order small and negligible compared to Pe. So the 
incremental strain energy of the column for small deflections is 

an= [ [!Elw"2 + ( -P)(!w'2
)) dx = n (4.3.8) 

But this at the same time represents the total energy n since the incremental 
work W of the end load P is in this case zero. So we conclude that the 
potential-energy expression is the same as for the Euler column (an axially sliding 
hinge at the end, i.e., simple support), and so the stability limits (as well as the 
differential equation for small deflections w) for the columns in Figures 4.8 and 
4.9 are exactly the same. A difference is, of course, encountered for finite 
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postbuckling deflections (Fig. 4.9d) (e.g., because of the term !Ne2
, that we 

neglected). 

Calculation of n from the Work of Initial and Incremental Stresses 

Instead of expressing directly the energy density (!Elw"2 + Ne) per unit length of 
column, one can begin with the energy density per unit volume. Let us illustrate 
this alternative but equivalent procedure for the case of a column with axially 
fixed hinges and a lateral distributed loadp(x). The column may be either perfect 
or imperfect. If imperfect w represents the increment of z(x) from the initial 
ordinate z0(x) (which is assumed to be negligibly small), and the initial bending 
moment M 0 is nonzero (superscript 0 is used throughout the text, e.g., in Sec. 
6.1, as a label for initial equilibrium states). We have 

All= [L (<f+~u)e1 dAdx- [pwdx= [L (u0e1 +~Ee~)dAdx 

- [pwdx <f=-~-~ z (4.3.9) 

where (Fig. 4.9c) <f =initial axial stresses before buckling, ~=bending 
moment in the initial equilibrium state caused by p, by the applied end moments 
(also considered to be dead loads), and by P, Et = E- a( -w' Z )/ax= E- w"z = 
increment of normal strain from the initial equilibrium state for a generic point of 
the cross section, and u = EE =the corresponding stress increment. P must now 
be understood as the initial value of the axial compression force (reaction at 
column top). During buckling the axial force is now changing. Its change is 
-EAE, and the corresponding energy is taken into account by the term !Ee2

• 

With regard to variational analysis, the new equilibrium state represents a state to 
which the adjacent non-equilibrium states are compared in terms of minimization 
of ll. Using for E the expression given by Equation 4.3. 7, assuming p to be a dead 
load (i.e., constant), and integrating, we get from Equation 4.3.9: 

All= [ L [-~ + ~ z )( -w"z +~w'2) +~Ew"2z2] dAdx- [pwdx 

= L' [! Ew"2J z2 dA + p w"J z dA - .!.._ w'2J dA 
0 2 A A A 2A A 

+ ~
0 

w" L z2 
dA-~

0 

w'2L z dA] dx- [ pw dx 

= [ (!Elw112
- !Pw'2 + M0 w") dx- [ pw dx = [ !(Elw"2

- Pw'2) dx = 62ll 

(4.3.10) 

Here we used the relations f z2 dA =I, f z dA = 0, and fdA =A, assuming axis 
x to be centroidal. The last expression in Equation 4.3.10 is obtained upon noting 
that, due to initial equilibrium, f M 0w" dx =- f M 0'w' dx = f V0w' dx =
f V0

' w dx = f pw dx because either M0 or w' and either V0 or w are zero at the 
ends, and M 0

' = V 0
• We neglect here the contribution to M 0 due to Pz0 as 

higher-order small because for the initial state Zo is assumed to be small. 
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This last derivation demonstrated a procedure that has the most general 
applicability. We will use it again, for example, for thin-walled beams (Sec. 6.1). 

Example with Two Degrees of Freedom 

As another example, consider the column shown in Figure 4.10a consisting of 
two perfectly rigid bars of length I, connected at hinges by rotational springs of 
spring stiffness C. The deflected state of the column is defined by the inclination 
angles of the bars, q 1 and q2 • These angles are assumed to be small. In general 
the column may be imperfect, with the initial state at load P = 0 given by angles 
q1 = a 1 and q2 = a 2• The same column was studied in Section 3.2; here, however, 
the load remains vertical, that is, is conservative. The potential energy II(qt. q2) 

may be expressed as II = U - W where 

U(qt. qz) = !C(qt- «t)2 + !C(qz- qt - «z + «t)2 

(4.3.11) 

( U = strain energy, W = work of load P). 
In the last equation we introduced the approximation cos q 1 = 1- !q~ and 

cos a 2 = 1- !a~, which is acceptable for small angles. Note that, even though the 
angles are small, we cannot substitute cos q 1 = 1 and cos a 2 = 1, because the 
energy is quadratic and must be approximated correctly at least up to the terms of 
second order in q 1• By differentiating, we obtain the conditions of equilibrium: 

..!_ an = (2- Pl)qt - qz- 2at + «z = 0 
caql c 

(4.3.12) 

When the structure is perfect, that is, a 1 = a 2 = 0, a deflected equilibrium state is 
possible if and only if the determinant of the equation system vanishes. This 

a) b) c) 
p 

------~~~~-------.q· 
or maximum 
deflection 

Figure 4.10 (a) Imperfect column consisting of two rigid bars, (b, c) buckling modes, and 
(d) equilibrium paths. 
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yields the condition (Pl/C)2
- 3(PI/C) + 1 = 0, from which one may solve: 

P. = 3 =F y'5 (~) = {0.3820C/I 
erl,l 2 I 2.6180C/I (4.3.13) 

By substituting these critical values into either the first or the second equation in 
Equations 4.3.12, one obtains for the eigenstates, that is, the buckling modes, 

( q1) = ( - 1 ± v'S) 0.6180 or -1.6180 
q2 er1.2 2 

(4.3.14) 

The buckling modes defined by these ratios are sketched in Figure 4.10b, c. 
By eliminating q1 from Equations 4.3.12, one can solve Pas a function of q2, 

for various values of the initial imperfection. This yields the equilibrium path 
shown in Figure 4.10d. Only the equilibrium path of the perfect system exhibits 
bifurcation. For the imperfect system, the equilibrium paths do not reach the 
critical load value at any finite deflection. 

It may be checked that the same equations of equilibrium and the same 
critical loads are obtained by either the virtual work method or by writing the 
equilibrium conditions on the basis of free-body diagrams. However, this 
equilibrium approach does not answer the question of stability. To answer it, we 
must consider the second variation c52ll, which happens to coincide in the present 
case with n, provided the structure is perfect. The matrix of the second variation 
2 c52ll = K 11 c5qf + 2K12 c5q1 c5q2 + K22 c5q~ is obtained by differentiating Equations 
4.3.12: 

K12 1 ~n 
-=- -1 c caql aq2 

(4.3.15) 

Note that for our structure these coefficients give the second variation for both 
the perfect and imperfect cases, and so the stability regions of the perfect and 
imperfect structures are the same (this is generally true for linear theory, for 
which the energy is quadratic, but it is not generally true for nonlinear theory; see 
Sees. 4.4-4.6). According to Theorem 4.1.10, the structure is stable if and only if 

2- PI -1 
c 

PI >O 
1- c -1 

which may be rewritten as 

We may now distinguish three cases: 

and 

and 

PI 
2-->0 c 

PI 
2-->0 c 

(4.3.16) 

(4.3.17) 

1. P <Per,, in which case both conditions in Equations 4.3.17 are satisfied. 
2. Per, :s; P :5 Per

1
, in which case the first condition in Equations 4.3.17 is 

violated, and so the system is unstable. 
3. P > Pcr

1 
in which case the first condition in Equations 4.3.17 is fulfilled, but 

the second one is violated, and so the system is unstable. 
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Overall, the system is stable if and only if P <Per,, whether it is perfect or 
imperfect. 

There are certain advantages to stability analysis in which the buckled shape is 
expressed as a linear combination of the buckling modes (eigenmodes) qfk> 
(k = 1, ... , n) whose amplitudes Yk are taken as the kinematic variables. Using 
again the example in Figure 4.10a, and expressing q1 and q2 as a linear 
combination of the buckling modes (Eq. 4.3.14), we have 

qt = Ytq\1> + Yzq\2> = Yt( -1 + VS) + Yz( -1- VS) 
(4.3.18) 

which is in fact the orthogonal transformation q = Ty or q; = E, y,qf'> introduced 
in Section 4.1. Substituting into Equations 4.3.11 (with a 1 = a2 = 0), we get 

c u = 2 [4(5- 2VS)y~ + 4(5 + 2VS)y~J 

PI w = 2 [2(5- VS)y~ + 2(5 + VS)y~J 
(4.3.19) 

Note that the cross product y1 y2 is absent from these expressions. The absence of 
cross products from the expression for n is, of course, a general property of 
eigenmodes, and their amplitudes Yk are therefore called the orthogonal 
coordinates. The potential energy becomes a sum of squares, and thus the 
question of stability can be decided easily. We have n = U- W = B 1 y~ + B2 y~, 
and so the stability conditions are B 1 > 0 and 8 2 > 0. This immediately yields the 
critical values in Equation 4.3.13 with the same stable domain as we obtained it 
from Equations 4.3.17. 

In the plane (q 1, q2) (Fig. 4.11a) the coordinates y1 and y2 can be represented 
by observing that y1 = 0 (axis y2) corresponds to the line q 1/q2 = ( -1- VS)/2 and 
y2 = 0 (axis y1) corresponds to the line q1/q2 = ( -1 + VS)/2. The axes y1 and y2 

are the principal axes of the quadratic surface of potential energy, as illustrated in 
Figure 4.11b-f for various load intervals. For a system with two degrees of 
freedom (Fig. 4.10a), these surfaces are a convex elliptic paraboloid for P <Per, 
(Fig. 4.1lb), a cylinder with horizontal axis for P =Per, and P =Per, (Fig. 
4.11c, e), a hyperbolic paraboloid (saddle surface) for Per,< P <Per, (Fig. 4.11d), 
and a concave elliptic paraboloid for P > Per, (Fig. 4.llf). 

The expression for n = U- W according to Equation 4.3.19 can, of course, be 
obtained from the eigenvalues Per, and Per, and eigenvectors according to 
Equation 4.1.3. The reason that this is a sum of squares is that the stiffness matrix 
in Equation 4.3.15 happens to involve P only in the diagonal terms. In other 
problems this is not the case in general, and then the use of eigenvectors in 
substitution q = Ty does not yield n as a sum of squares. However, if the 
eigenvalue problem is first converted to the standard form, a sum of squares 
always results (see Sec. 4.1). 

A salient property of bifurcation buckling of symmetric structures, as 
illustrated by our preceding examples of perfect structures, is that the symmetry 
of response breaks down. In physics and other fields of science, the breakdown of 
symmetry of response typically leads to instability, and the bifurcation theory may 
be developed from this viewpoint. 
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Fipre 4.11 (a) Orthogonal coordinates and (b-f) surfaces of potential energy for various 
values of P. 

Some Fundamental Aspects of Potential Energy 

As pointed out in Section 4.2, the derivation of the Lagrange-Dirichlet theorem 
shows that n represents the energy of the entire structure-load system (in 
thermodynamics, n is the Helmholtz free energy if the conditions are isothermal 
and the total energy if the conditions are isentropic; see Sec. 10.1). As stated in 
Equation 4.2.1 the principle of conservation of energy implies that n = U - W 
(where we write ll, U, W, instead of All, AU, A W because ll, U, W is 
considered to be zero in the initial state); U =strain energy of the structure, and 
W = work of the loads, Pk (k = 1, 2, ... , n ), that is, 

W = ~ J Pk(wk) dwk (4.3.20) 

where wk = load-point displacements and Pk = given functions of wk. Obviously, 
Pk = aw I awk = -ail> I awk where «<> = - W = potential energy of the loads. Now a 
crucial point is that «<> is defined independently of the structure and is a function 
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of wk (considered as load-point coordinates in space). Potential 4l exists only if 
aPkt awi = a~t awk for all k, j; this is necessary to ensure that forces Pk are 
conservative, as required by the Lagrange-Dirichlet theorem (Theorem 3.6.1). 

For the special case of dead loads (Pk = const.), W = E Pkwk. In that case the 
load is exerted by gravity and may be imagined to be applied by an object whose 
weight is Pk (as in Fig. 4.12). Then 4l =-W =change of gravitational potential 
energy of the object when it is lowered by distance wk. 

For the sake of simple illustration, the potential energy of a rigid ball of mass 
m moving on a rigid curved surface (Fig. 4.12a) is n = -Pw (not -!Pw!), 
w =displacement of the ball in the direction of force P, P = mg, g =acceleration 
of gravity (Fig. 4.12a); indeed P = -antaw. The potential energy of a weightless 
block resting on a spring of stiffness C is n = !Cu2 where u = shortening of the 
spring (Fig. 4.12b); this satisfies the condition that F = Cu =ant au= force in the 
spring. The potential energy of a system of mass m moving on massless curved 
block that is supported by a spring of stiffness C is n = - Pw + !Cu2 where 
P = mg (Fig. 4.12c); this satisfies the conditions P = -antaw, F = Cu =ant au. 
If a weightless block supported on a spring of stiffness C is loaded by a force P( w) 
that is defined as a function of displacement w (Fig. 4.12d), the potential energy 
of the system is n =-f P(w) dw + !Cu2

; again P(w) = -antaw, F = Cu = 
ant au. For the special case of dead load, that is, for P = constant, this last case 
reduces to the previous one (Fig. 4.12c). Finally, if the spring is nonlinear, then 
n =-f P(w) dw + f F(u) du where F(u) =force in the spring. 

The strain energy is generally calculated as 

U= LJ a:dedV (4.3.21) 

where a= stress tensor, £ = strain tensor, V = volume of structure (and : denotes 
a tensor product contracted on two indices a: de = CJ;i dE;i ). For the special case of 
uniaxial linear elasticity ( CJ = E E) this yields 

u = i ! CJE dV = i ! EE2 dV = i u2 dV 
v2 v2 v2E 

(4.3.22) 

where f u dE= iuE represents the triangular area under the stress-strain diagram. 
There is another viewpoint that often makes things puzzling to inquisitive 

students. Does not the reaction from the loading device increase gradually from 
zero during the load application? Yes, it does. So, should not the work of load be 

a) b) c) d) 

Figure 4.U Ball on (a) rigid block and (b, c) block resting on springs; (d) weightless block 
resting on springs loaded by a force. 
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~Pkwk instead of Pkwk for a linear increase of reaction, or J Pk(u) du in general? 
[u is the axial displacement increasing from 0 to wk, and Pk(u) are the reaction 
values increasing from 0 to the final value Pk as the load is applied.] 

No, it should not. As we said, a constant load may always be imagined to be 
exerted by some object of weight Pk. If the object is positioned in contact with 
the undeflected structure and then suddenly released, the reaction it receives 
from the structure does not, of course, become immediately equal to its weight, 
but increases gradually as the structure deflects. The difference between this 
reaction and the weight accelerates the object and is manifested as the inertia 
force. Clearly, the analysis would have to be done dynamically if the process of 
development of the reaction from the structure onto the object were to be taken 
into account. The rapid application of a mass onto an elastic structure is analyzed 
in a course on dynamics, and it is found that, at the deflection wk equal to the 
static deflection, the structure also has kinetic energy, which is exactly equal to 
Pkwk- ~Pkwk. So there is no contradiction with the previous viewpoint. 

Problems 

4.3.1 Write the expression of the potential energy n for (a) a free-standing 
column, (b) a fixed-end column, (c) a two-span continuous beam of equal 
spans; and expand the deflection curve and lateral disturbing load in a Fourier 
series. Consider also an eccentricity in the applied axial load. Write the 
expressions for the first and second variations of n and find the critical loads. 
Determine the deflected shapes. Verify that the principle of virtual work gives 
the same equations as the first variation. 

4.3.2 Solve the stability conditions of the same column as in Figure 4.10a except 
that (a) the top bar length is 21, (b) the spring constant of the base spring is 
2C. 

4.3.3 Do the same for the column in Figure 4.13a. 
4.3.4 Do the same for the column in Figure 4.13b. 
4.3.5 Do the same for the column in Figure 4.13c. 
4.3.6 Do the same for the column in Figure 4.13d. 
4.3.7 Do the same for the column in Figure 4.13e (where Pis a spring force). 
4.3.8 Do the same for the system in Figure 4.13f. 
4.3.9 Do the same for the system in Figure 4.13g. 
4.3.10 Draw Figure 4.10d to scale. 
4.3.11 Show that the potential energy n = U - W calculated from Equations 

4.3.19 is equivalent to the form n = A1 y~ + A.2 y~ in which A1 and A.z are the 
eigenvalues of the matrix K of coefficients of the quadratic form n (Theorem 
4.1.5, Sec. 4.1). 

4.3.12 Draw Figure 4.11 to scale. 
4.3.13 Thermal buckling. An elastic column with two hinges that cannot slide 

axially (Fig. 4.13h) is heated by liT. Express its potential energy and show 
that the stability limit is the same as for a column on which the thermal force 
is applied externally. Express the stability limit in terms of liT. See also 
Problem 1.9.5. Note: a= E(E- E") where E" =a liT, a= thermal expansion 
coefficient; W = 0, n = U = J ( a2/2E) dV = J !E( E - £")2 dV and substitute 
E = -zw'(x). (The postcritical behavior is, however, very different.) 
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a) b) c) 

h) i) 

Figure 4.13 Exercise problems on bifurcation buckling at small deflections. 

4.3.14 Magnetic forces (variable load). A hinged column is loaded by a magnet 
that is attached to its top and is attracted to another fixed magnet at initial 
distance r (Fig. 4.13i), such that the attractive force, directed toward the 
opposite end, is P = a(r- u)-2 where a, r =constants and u =axial displace
ment. Calculate Per, from potential energy and also verify Per, by equilibrium 
analysis using P(u) from Equation 1.9.14. Show that Per,= Pe unless r is very 
small. How small must r be to make Per, s 0.8Pe? (Hint: The second derivative 
of the potential energy of the load is nonzero and equal to -dP/du.) 

4.3.15 Do the same, but force Pis exerted by a spring of stiffness C whose lower 
end is moved away until Per, is reached but is fixed during buckling (Fig. 
4.13j). This case can be solved in two ways: (1) as a column loaded by a 
variable force, or (2) as a single elastic system comprising both the column 
and the spring. Show that both ways yield the same result. 

4.3.16 Derive Equations 4.3.19 on the basis of eigenvalues and eigenvectors as 
presented in Section 4.1. 

4.4 SNAPTHROUGH AND FLAT ARCHES 

So far we have dealt with problems that can be cast in a linear form. However, 
for some problems, such as stability of fiat arches, linearization would deprive the 
formulation of certain essential features that lead to instability and failure. We 
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first illustrate these different features with an example of a truss, then we extend 
the analysis to fiat arches and finally analyze the effects of imperfections and of 
interaction with bifurcation buckling. 

Von Mises Truss 

As the first illustration, consider the simple two-bar truss (von Mises truss) shown 
in Figure 4.14a. The bars are elastic, characterized by axial stiffness 
EA/(L/cos a), and the Euler load of each bar is assumed to be so large that the 
bars never buckle. The initial length of each bar is L/cos a, with L being the 
half-span and a the initial inclination angle of the bars. Noting that the axial 
strain of the bars is E = (L cos a/cos q- L)/ L, we find the potential energy: 

EAL (cos a )
2 

n(q)=U-Pw=-- ---1 -PL(tana-tanq) (4.4.1) 
cosq cosq 

By differentiation, we obtain the equilibrium condition: 

:n =--;,.- [2EA(cos a tan q- sin q) + P] = 0 
{;q cos q 

from which we can calculate 

P = 2EA(sin q- cos a tan q) 

The equilibrium path according to this equation is plotted in Figure 4.14b. 

(4.4.2) 

(4.4.3) 

To decide the question of stability of equilibrium states, we need to calculate 
the second derivative of n. Evaluating ern/ oq2 (at constant P) from Equation 
4.4.2 and substituting Equation 4.4.3 for P, we obtain 

ern 2EAL 3 
- 2 =--4 -(cos a-cos q) (for equilibrium states) (4.4.4) 
aq cos q 

p b) 
4 

c) 

p 

Figure 4.14 (a) Two-bar truss, (b) equilibrium path, (c) variation of potential energy at 
various points on equilibrium path, and (d) potential-energy curves for various constant 
values of P. 
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The truss is stable if and only if this expression is positive. This yields the 
condition that q > q0 or q :s: -q0 where 

cosq0 =(cosa)113 (4.4.5) 

For -q0 :s: q :s: q0 the truss is unstable. 
It is interesting to compare the critical state values q0 with the q value 

corresponding to the limit points (the maximum and minimum points) of the 
equilibrium diagram in Figure 4.14b. Calculating the derivative aPtaq from 
Equation 4.4.3 and setting ap I aq = 0, we find that the q values for the limit 
points are -q0 and +q0 , with q0 given by Equation 4.4.5. Thus we see that the 
stable equilibrium states lie on the ~librium diagram in Figure 4.14b on the 
segments of positive slope (segments 501 and 234), while the unstable equilibrium 
states lie on the segment of negative slope (segment 12). This result is not by 
chance. Later we will see that generally, for single-degree-of-freedom systems, a 
positive slope of the equilibrium path implies stability, and a negative slope 
instability. Figure 4.14c illustrates, for various points on the equilibrium path, the 
variation of the potential energy with q at P = constant. 

The equilibrium path can be followed also in the plot of the potential energy 
n versus the generalized displacement q (Fig. 4.14d), in which load Pis plotted in 
the third spatial direction. The resulting surface is represented through the curves 
of constant load, which have horizontal tangents for the equilibrium states. These 
states are stable if the curve is convex (i.e., positive second derivative of TI) and 
unstable if not convex. The limit point (a critical state) is, on these curves, the 
inflection point with a horizontal tangent. 

Let us now discuss what happens when the von Mises truss is loaded in a 
load-controlled manner. First the stable equilibrium path 01 is followed, until the 
critical state point 1 is reached. When the load is increased an infinitesimal 
amount above the peak point value, there is suddenly no adjacent equilibrium 
state and the only equilibrium state possible is a finite distance apart; it is the 
state corresponding to point 3 in Figure 4.14b. Therefore, the structure snaps 
through from point 1 to point 3, as indicated by the dashed horizontal line in 
Figure 4.14b. So an infinitely small change of load causes a finite change of 
deflection, which is defined as an unstable situation. The snapthrough path 13 
does not represent equilibrium states, and therefore it happens dynamically, in 
the presence of inertia forces which are equal to the vertical deviation from the 
equilibrium path in Figure 4.14b. The work done by the inertia forces is equal to 
the area 1231 in Figure 4.14b (see also Sec. 4.8). This work goes into kinetic 
energy, causing the movement along the horizontal path 13 to be accelerated, 
with the kinetic energy at point 3 equal to the area 1231. If there were rio 
damping, the structure would then oscillate about point 3 indefinitely, but in 
reality these oscillations will be damped and the structure will ultimately come to 
equilibrium at point 3. When the load is further increased, the stable path 34 is 
followed. 

When the load P is decreased, the structure follows path 432 in Figure 4.14b, 
until a critical state is reached at point 2. If the load is further decreased by an 
infinitesimal amount, there is suddenly no adjacent equilibrium state and the 
structure will snap through to point 5. This snapthrough will again be dynamic, 
and the work corresponding to area 2152 will be converted to kinetic energy and 
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then dissipated as heat. Due to damping, the structure will eventually co~ to 
equilibrium at point 5. If the load is further decreased, the stable segment 56 is 
followed. 

From this discussion we see that segment 12, which has a negative slope, can 
never be reached under load control. Nevertheless, it can be reached in a stable 
manner under displacement control. We will discuss it in more detail later (Sec. 
4.8). 

Even though the structure is perfectly elastic, it exhibits hysteresis. The 
energy lost during a complete load-unload cycle, which goes first into kinetic 
energy of vibrations and is ultimately dissipated as heat due to ever-present 
damping, is given by the area 132501. 

Note that in contrast to the previous examples, the snapthrough instability 
does not involve any bifurcation of the equilibrium path. 

The snapthrough instability is also called the limit-point instability, or snap 
instability. This term, however, does not make a clear distinction from the 
snapdown instability that occurs under displacement control and will be examined 
later (Sec. 4.8). Structural behavior with a negative tangential stiffness, that is, 
declining load-deflection diagram, is also called softening. 

Consider now what simplification is possible when the angles q and a are 
small. Then one may set cos a== 1- fil/2 and 1/cos q == 1 + q2/2, tan q == q and 
tan a == a. Equation 4.4.1 reduces to 

EAL n =- (q2
- a2)2

- PL( a- q) 
4 

(4.4.6) 

which is a fourth-degree polynomial. A quadratic approximation, however, would 
lose the essential feature of this problem. The equilibrium condition ant aq = 0 
yields 

(4.4.7) 

The stability condition aznt aq2 > 0, which may be again shown to be equivalent 
to the condition aP I aq > 0, yields the regions of stable equilibrium: 

a 
q>-

0 
or 

-a 
q<-

0 
(stable) (4.4.8) 

The behavior obtained by this small-angle approximation is obviously similar, and 
for very small angles asymptotically equivalent, to our previous exact result. 

The essential aspect of snapthrough buckling is that it leads to a nonlinear 
problem that cannot be meaningfully linearized. For very small angles q and a, 
all the quartic and cubic terms in Equation 4.4.6 could be dropped, making n 
quadratic. But then the equilibrium condition ant aq = 0 would yield a linear 
equation between P and q that does not formulate an eigenvalue problem and 
yields no critical load. This linear equation would describe the tangent of the 
equilibrium path at q = 0, which is obviously useless for determining failure. 
Likewise, linearization could be carried out about the initial state q = a 0 , but this 
would yield a linear equation that describes the tangent to the equilibrium path at 
the initial state and is, therefore, useless for predicting failure. So we see that 
there are buckling problems that are inherently nonlinear and cannot be 
linearized even if the deflections are very small. We will see more problems of 
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this kind in this and the following sections. The nonlinearity aspect is essential in 
the buckling of axially loaded cylindrical shells (see Sec. 7.5). 

Flat Arches 

The snapthrough instability is exhibited by Oat (or shallow) arches, that is, arches 
whose rise is small compared to the span. Timoshenko (1935) and Biezeno (1938) 
presented solutions for the cases of distributed and concentrated load, respec
tively, and Marguerre (1938) discussed some implications for the theory of 
buckling. Fung and Kaplan (1952) considered various types of arches and of 
lateral load. Hoff and Bruce (1953) analyzed the problem dynamically, and Masur 
and Lo (1972) gave a general discussion of the problem including imperfection 
analysis. Nonlinear material behavior was considered by Franciosi, Augusti, and 
Sparacio (1964) and loading through an elastic foundation was studied by Simitses 
(1973). Experimental results were reported by Roorda (1965). 

As experiments as well as theoretical studies confirm, Oat arches may be 
assumed to fail in a symmetric mode, whose basic characteristic is the shortening 
of the center line of the arch. This contrasts with the behavior of high arches (also 
called deep arches, see Sec. 2.8), for which the center-line shortening is 
negligible, making the asymmetry of bending the paramount feature. Analysis of 
high arches, on the other hand, must include the curvature term w I R2 (Eq. 
2.8.2), which is negligible for flat arches (since R is large). 

Consider a two-hinge arch whose initial shape before loading is 

( ) 
• 1CX 

Zo x =a sm-
1
- (4.4.9) 

where I= length of the span (Fig. 4.15a) and a= rise of the arch; a «I since the 
arch is flat. The arch is loaded by a vertical distributed load p. The solution is 

b) 

q. 0-q. -q 

d) 
P, 

Imperfection p2jp, 

Figure 4.15 (a) Flat arch subjected to symmetric loading, (b) equilibrium paths, (c) 
symmetric and antisymmetric disturbances, and (d) imperfection sensitivity. 
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simple if the distributed load is sinusoidal: 

P 
. .1U 

p= sm-
1 

The deflection ordinate may be sought in the form: 

• lrX 
z=qasm-

1 

The potential energy of the ftat arch may be expressed as 

in which Eland EA are considered to be constant along x, and 

2 
Ak " II lt (1 ) • .1fX u =z -z0 =fa -q sm-

1 

(4.4.10) 

(4.4.11) 

(4.4.12) 

(4.4.13a) 

ll.l = r' ydx2 + dz2 - r' Vdx2 + dz~=! r' (z'2 - z~2) dx = 1r

2

a
2 

(q2 -1) 
Jo Jo 2Jo 41 

(4.4.13b) 

ll.k represents the change of curvature of the arch, and ll.l the change of length of 
the center line of the arch (for the case of nonuniform EI, see Simitses and Rapp, 
1977). (We neglect the term w/R2 that we included in the curvature change 
expression for high arches, Eq. 2.8.2; the reason is that for ftat arches R2 may be 
assumed to be very large.) Substituting Equations 4.4.9 to 4.4.11 and 4.4.13 into 
Equation 4.4.12, and integrating, one obtains 

n
4
EI 2[1 2 n 2 2 ] a ( ) =-a -(1-q) +-(1-q) --P/1-q 

U3 2 4 2 
(4.4.14) 

in which we introduce the notation n = Aa2/41 = a2/4r2 = nondimensional para
meter of arch slenderness, r = radius of gyration. Differentiating, we obtain for 
the equilibium states the condition: 

an n
4
El 2 3] a 1 0 -=---a (l+(n-1)q-nq +-P = 

aq U3 2 
(4.4.15) 

which furnishes 

lt4 
P = J4 Ela£1 + (n - 1)q - nq3

) (4.4.16) 
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The diagram of P(q) may, but need not, have limit points (Fig. 4.15b). The 
condition of the limit points is aP I aq = 0, which yields n - 1 - 3nq2 = 0 or 

q = ±qo= ± 
n 

(4.4.17) 

The equilibrium diagram has limit points only if n > 1, that is, if the ratio of the 
rise of the arch to the radius of gyration is not too small. 

The equilibrium is stable if 

~n Ebc4 

aq2 =-
2
p a2(n- 1- 3nq2

) > o (4.4.18) 

This is satisfied if n -1- 3nq2 < 0 or q~- q2 > 0, or (q0 - q)(q0 + q) < 0. So we 
get the stability condition: 

Either q >qo or (4.4.19) 

For -q0 ::S q ::S q0 , the arch is unstable. It is again easy to check that the states 
q = ±q0 are identical to the maximum and minimum points of the equilibrium 
curve of P versus q. 

The equilibrium path of the system can be obtained also from the principle of 
virtual work. Another method, used by Timoshenko and Gere (1961), is to apply 
equilibrium conditions to a primary system in which one hinge is allowed to slide 
horizontally and then restore compatibility by introducing the statically inde
terminate horizontal thrust in the arch. 

When the distributed load p is uniform, p = p 0 , Equation 4.4.10 may be 
approximately replaced by the first term of the Fourier sine expansion of uniform 
load, which is p = [4P sin (3CX/l))/1f. The rest of the analysis is similar. It is found 
that the resulting solution is only 0.38 percent less than an accurate solution for 
the critical value of a uniform load. More sinusoidal Fourier components may be 
considered to obtain more accurate solutions, for any p(x ). But the first term has 
dominant influence. 

Except for the fact that for n < 1 there are no limit points (no critical states) 
and the response is always stable (Fig. 4.15b), the behavior of the present system 
is entirely analogous to the von Mises truss. Especially, the ftat arch exhibits 
snapthrough buckling (Fig. 4.15b, path 12), and the snapthrough leads to 
hysteretic energy dissipation due to spontaneous conversions of potential energy 
into kinetic energy and then into heat. 

Eftect of Imperfections 

The main difference from high arches is that shortening of the arch center line is 
important while antisymmetric bending is not. This may be verified by replacing 
Equations 4.4.10 and 4.4.11 by more general expressions: 

• 3CX • 23CX 
p = P1 smT+ P2sm-

1
- (4.4.20a) 

() 
.3CX .23CX 

Z X = q1a SID -
1 

+ q2a SID -
1
- (4.4.20b) 
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in which the added ( antisymmetric) sine terms may be regarded as imperfections 
perturbing symmetry (see Fig. 4.15c); P1 and P2 are given parameters for 
symmetric and antisymmetric loading (in general, the first two components of a 
Fourier series expansion), and q., q2 are the generalized displacements charac
terizing the symmetric and antisymmetric deformation. Substituting Equations 
4.4.20a and 4.4.20b, along with Equations 4.4.9, 4.4.13a, and 4.4.13b, into 
Equation 4.4.12 and integrating, one gets the potential-energy expression: 

II= ~I[~ (qt- 1)2 + ~ (1- qn2] + Pt( ~)(qt- 1) + P2( ~)q2 + 4Biq~ 
+ 2nBiq~ + Bln(q~- 1)q~ (4.4.21) 

in which B = n 4Ela2/l4
• The equilibrium conditions then are 

:I~~= qt- 1-n(1- qnqt + P1(i) + 4nq 1q~ = 0 (4.4.22a) 

:l ~~ = P2(i) + 4(4- n + 4nq~ + nqDq2 = 0 (4.4.22b) 

Solution of these equations yields the equilibrium paths P1(q 11 q2) and P2(q., q2). 
A question of concern is whether a small inevitable imperfection of load 

represented by the load asymmetry parameter P2 can greatly reduce the critical 
load of the arch. Consider, therefore, that P2 and q2 are very small while P1 and 
q1 are finite. In Equation 4.4.22b the term 4nq~ may then be neglected, and so 
this equation yields q2 = -fo(q1)P2 where fo(q 1) is a function of q 1• Substituting 
this into Equation 4.4.22a, we find that P1 = ft(q 1)-f2(q 1)P~, where ft(q 1) and 
f2(q1) are positive functions and / 1(q 1) represents the previous solution for 
symmetric load (P2 = 0), that is, Equation 4.4.16. This is valid for all q11 including 
the critical value. Thus we may conclude that if P2 is small, then the change in 
load-carrying capacity for the symmetric load component is second-order small 
(Fig. 4.15d). This is a rather weak imperfection sensitivity. It means that, in 
stability analysis of flat arches, one does not need to worry about inevitable small 
asymmetric load components. (By contrast, later we will see buckling problems in 
which a small imperfection of magnitude ; causes a critical load reduction that is 
proportional to ; 112 or ; 213

, which represents a much more severe sensitivity to 
imperfections.) 

Another type of imperfection of interest for snapthrough is an initial dynamic 
disturbance. Imagine that kinetic energy liT equal to the cross-hatched area in 
Figure 4.16a is initially imparted to the flat arch. Then the arch can snap through 
along the horizontal path AB at load Per- liP, which is lower than the static 
critical load Per. Near the critical points, the equilibrium curve may be 
approximated as a parabola. For a parabola the area A1C, and thus also liT, is 
proportional to lip312, and so the lowering of the critical load, liP, due to initial 
dynamic disturbance is proportional to liT213

• This means it is proportional to 
v413

, v being the initial downward velocity of the arch at the apex. This is not a 
very strong imperfection sensitivity; if v is very small, the load reduction is 
higher-order small, that is, -v413

). 

There is one particular dynamic path (Fig. 4.16b) for which the cross-hatched 
areas A1C and C2B are exactly equal. For that path there is no energy loss. 
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Figure 4.16 (a, b) Horizontal snapthrough due to dynamic disturbance; (c) similarity to 
pressure-volume diagram for real gases; (d, e) variation of potential energy at constant P. 

The horizontal snapthrough has an analogy in the pressure-volume diagram 
according to the van der Waals equation for real gases (Fig. 4.16c; see, e.g., 
"Thermodynamics," in Guggenheim, Enc. Brit., 1980). In this diagram, due to 
inevitable disturbances in a gas, the real behavior usually consists of a horizontal 
snapthrough which cuts equal areas below and above as shown in Figure 4.16c, 
and is therefore equivalent in energy to the curved diagram. (Note that this 
pressure-volume diagram is also analogous to a strain-softening material; Chap. 
13.) 

For a state (q0 , P0) that occurs just before reaching Per (Fig. 4.16d) the 
potential-energy curve (at P = const.) has the shape shown in Figure 4.16e, and 
the structure behaves as a ball rolling on this curve. In physics and chemistry, 
such a situation is called metastable. It is a special case of stability in which a small 
disturbance can lead to another stable state that exists nearby, at a finite distance 
away, and has a lower potential energy (or, more generally, a lower value of 
some thermodynamic potential). 

Other Examples of Snapthrough 

Snapthrough buckling is exhibited by other types of arches or trusses; for 
example, the tied arch or tied truss (Fig. 4.17a, b) with simple supports, or a fiat 
fixed arch (Fig. 4.17c), for which the choice of the deflected shape must respect 
the condition of zero rotation at the supports. The long strip of a fiat cylindrical 
shell, uniformly loaded, also exhibits snapthrough buckling and our solution for 
the fiat arch may be directly applied. Snapthrough buckling is also exhibited by a 
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Fipre 4.17 Examples of systems which exhibit snapthrough buckling: (a) tied arch, (b) 
tied truss, (c) flat fixed arch, and (d) shell under hydrostatic pressure. 

flat spherical dome shell under hydrostatic pressure (Fig. 4.17d). Snapthrough 
buckling of rectangular panels of cylindrical shells of finite length requires a 
rather sophisticated analysis, but the behavior is similar. 

Other examples of snapthrough instability are found in various switches (e.g., 
the standard wall switch for electric lights). Safety ski bindings involve a 
mechanism that behaves in the same manner as snapthrough buckling (e.g., 
Bahnt, 1960; and Bahnt's Patent No. 97175 of safety ski binding, Czecho
slovakia, 1959). 

Problems 

4.4.1 Find the critical load of the structural systems in Figure 4.18a, b, c assuming 
that the axial force in the bars is less than the Euler load. For Figure 4.18b 
solve for (a) C > 0, EA finite ( <oo); and (b) C = 0, EA finite. For Figure 4.18c 
solve (a) II= II(O) and P = P(8); (b) critical loads; (c) stable regions, (d) 
limit cases: (1) C-+ 0, Ac > 0; (2) C > 0, Ac-+ 0. 

4.4.2 Find the critical load of a ftat tied bridge arch. 
4.4.3 Find the value of arch rise a such that critical loads from fiat arch theory 

and high arch theory become the same. Do this for (a) a hinged arch (Fig. 
4.18d) and (b) a tied arch (Fig. 4.18e). 

4.4.4 For the low portal frame of a large span in Figure 4.18f, calculate 
II= II(w), P = P(w) by virtual work. Hint: Solve the stiffness of the L-shape 
segment first. Plot the result and discuss stability. 

4.4.5 Do a similar analysis for the overpass-type frame in Figure 4.18g. Hint: 
Solve stitfnesses, then proceed as in Problem 4.4.4. 

4.4.6 Solve II(w), P(w) for the four-bar pyramidal roof truss in Figure 4.18h. 
4.4. 7 Do the same for the three-bar pyramidal roof truss in Figure 4.18i. 
4.4.8 Solve the critical load of a fixed cylindrical shell panel that is shallow (i.e., 

its rise above the chord of the arc is not high) and is loaded by water pressure, 
as shown in Figure 4.18j. Assume .zo=ax(l-x) and w=bx2(1-x)2 where 
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Fipre 4.18 Exercise problems on snapthrough buckling. 
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Figure 4.19 Further exercise problems on snapthrough buckling. 
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a, b = constants. (Note that the work of load is p fl. V, where p = water 
pressure and fl. V = volume of water displaced by deflection.) 

4.4.9 For what values of A 2/A 1 and a does the system in Figure 4.19a exhibit 
snapthrough? 

4.4.10 For the systems in Figure 4.19b, c find for which a the critical load for 
snapthrough becomes equal to the critical load for bifurcation buckling of this 
frame. (Note: Mode interaction then produces intricate postcritical behavior.) 

4.4.11 The systems in Figure 4.19d, e, f, g consist of axially inextensible bars in 
which the axial force is less than the Euler load. Solve the P( 8) diagram. Find 
the critical load. Discuss stability. 

4.4.12 Find the critical load for snapthrough for the rigidly jointed frames in 
Figure 4.19h, i. Hint: Snapthrough analysis requires taking into account the 
effect of axial shortening of the members on their rotation. 

4.5 lARGE-DEFLECTION POSTCRITICAL BEHAVIOR AND TYPES 
Of BIFURCATION 

Our analysis of bifurcating systems (Sec. 4.3) has so far been limited to the 
linearized formulation for small deflections. Under that simplification, the stable 
regions of the perfect and imperfect systems are the same because the second 
variations c52II for both systems are given by identical expressions. Not so, 
however, for the nonlinear, finite-deflection theory. The stable regions of the 
imperfect and perfect systems then need not be the same. 

Symmetric Stable Bifurcation: Example 

Consider first the column shown in Figure 4.20a, consisting of a perfectly rigid 
bar of length L held upright by means of a rotational spring of stiffness C 
(analyzed by Augusti, 1961). The load P remains constant and vertical, and the 
column initially has a small inclination angle a (for a= 0 the column is perfect, 
and we studied this case in Sec. 4.2). Let q =inclination angle of the bar. The 
potential energy is 

II= U- W = !C(q- a)2
- PL(cos a- cos q) (4.5.1) 

Its derivatives are 

an= C(q- a)- PLsinq aq 
azn 
- 2 = C-PLcosq aq 

Setting ant aq = 0, we have the equilibrium condition: 

C(q- a) 
P=L sinq 

(4.5.2) 

(4.5.3) 

The equilibrium diagrams P( 8) are plotted (as the solid and dashed curves) in 
Figure 4.20b for various values of the initial imperfection, a. Setting aznt aq2 = 
0, we find that the critical states lie on the curve (dash-dot curve in Fig. 4.20b): 

c 
Pcr=L cosq 

(4.5.4) 
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F1pre 4.20 (a) Rigid-bar column with rotational spring at base, (b) equilibrium path, (c) 
imperfection sensitivity diagram, (d) variation of potential energy at constant P, and (e) 
load-displacement diagrams. 

The critical load of a perfect column (a = 0) is P~ = C I L = lim P.,. for q-+ 0, or 
limP (Eq. 4.5.3) for q-+ 0. 

Examine now stability of the equilibrium states. Substituting the equilibrium 
value of P (Eq. 4.5.3) into Equations 4.5.2, we get 

azrr 
aq2 = C[1- (q- a)cotq) (4.5.5) 

The column is stable if azn; aq2 > 0. So the stability condition is tan q > q - a if 
a< q < 1r /2 and tan q < q - a if -n /2 < q < 0. This may be related to the slope 
of the equilibrium diagram, which is given by 

aP c( 1 ) -=- -.- [1- (q- a)cotq] 
aq L smq 

(4.5.6) 

Consider now that a > 0. The equilibrium curves are then the curve families 
at bottom right and top left in Figure 4.20b. From Equation 4.5.6 we conclude 
that, for q > a, the equilibrium curves for a> 0 in Figure 4.20b are stable when 
their slope is positive, while for q < 0 they are stable when their slope is negative. 
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The point of zero slope on each curve represents the critical state (Eq. 4.5.4). 
According to Equation 4.5.5, the value of qat the critical state is related to a by 
the transcendental equation q - tan q = a. Note that this column can be stable for 
loads higher than the critical load ~r of the perfect column. Also, critical states 
exist for P > P~ even if the system is imperfect (see the dash-dot curve 
connecting the critical states in Fig. 4.20b). 

Repeating the same derivation for a < 0 one gets symmetrical results-the 
curve families at bottom left and top right in Figure 4.20b. It may be concluded 
that for q > 0 stability is always associated with positive slopes, and for q < 0 with 
negative ones. 

Although, for this column, the critical states other than the one for the perfect 
structure cannot be reached under load control, it is interesting to determine the 
dependence of the critical load on the initial imperfection a (Fig. 4.20c). The 
diagram for this dependence is generally called the imperfection sensitivity 
diagram. According to the condition ifll/ aq2 = 0 and Equation 4.5.5, the critical 
states are characterized by q- a= tan q. For small values of q (and a), we have 
tan q == q + !q3

, cos q == 1- iq2
, and substituting these expressions into Equation 

4.5.4 we obtain 

(for small a) (4.5.7) 

The perfect column has a point of bifurcation at P = P~., and for P > ~r it 
follows a rising postbuckling path. Therefore this type of bifurcation is called 
stable. It is also symmetric, because the postbuckling path is symmetric with q. 
The critical state for the perfect column is in this case stable since for 
P=C/L=~ and a=O we have ll=C(iq2 -1+cosq)=q4C/4!>0. [This 
illustrates that stability at the critical state is decided by fourth-order terms in the 
expansion of n. However, if the solution were done only with second-order 
accuracy, as is usually the case for more complex structures, then the critical state 
appears to be a neutral equilibrium state (ll = 0 for any q ). ] 

The shape of the potential-energy function near the equilibrium state at 
various stages of loading is sketched for the case a = 0 in Figure 4.20d. Positive 
curvature indicates stability. 

With regard to Chapter 3 on dynamics (Sees. 3.5-3.6), Figure 4.20d shows for 
various levels of load P the diagrams of constant total energy E = n + T (where 
T =kinetic energy) plotted in the phase space (q, q). These diagrams show the 
trajectories followed by the motion of the column if it is undamped. A set of 
closed trajectories shrinking into a point indicates stability (points A, B, C in Fig. 
4.20d), and the lack of closed contours around a point indicates instability (point 
D in Fig. 4.20d). 

It is also important to understand the diagram of load P versus load-point 
displacement u. We have (Fig. 4.20a) u=L(cosa-cosq). Restricting attention 
to small angles q and a, we may set cos q = 1 - q2 /2, cos a = 1 - a2 /2, which 
yields q = ±(a2 + 2u/ L)112

• Substituting this approximation, which is accurate up 
to terms of third order in q, and also the approximation sin q = q- tq3

, we 
obtain from Equation 4.5.3 

PL 1 =f a(a2 + 2u/ L)-112 

c= 1-1(a2+2u/L) 
(4.5.8) 
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For the perfect column we have 

PL 1 1u 
-= =1+--c 1-u/3L 3L 

(4.5.9) 

The diagrams of these relations are plotted in Figure 4.20e. We see that in the 
plot of load versus load-point displacement, the initial postcritical response is 
given by a straight line of slope KP = apt au = a'lll/ au2 > 0. On the other hand, 
the force associated with q by work is not P, but a disturbing applied moment m 
(since m dq =work). The tangential stiffness associated with q is Km = am/ aq = 
&ntaq2

• Note that Km = 0 at the critical state (q = 0) (this is a special case of the 
condition det K = 0). This means that there is a neutral equilibrium at the critical 
state. This further implies that applying an arbitrarily small disturbance m causes 
at critical state a finite rotation q. However, this is detectable neither in the P(q) 
nor in the P(u) plot because m =0 for these plots. The fact that aptaq =0 for 
q = 0 (and m = 0) is not the cause of neutral equilibrium because P and q are not 
associated by work. 

To obtain only the behavior near the bifurcation point, the potential energy in 
Equation 4.5.1 may be approximated by a polynomial. It is interesting to note 
that it does not suffice to substitute in Equation 4.5 .1 cos q == 1 - ~q2, cos a = 
1- ~a2; one can check that such simplification yields only the critical load 
P;.. = C/ L of the perfect system (from &n/ aq2 = 0) but nothing about the 
postcritical behavior. One must include at least the next higher-order term in the 
approximation of n, that is, set cos q == 1 - ~q2 + i4q\ cos a== 1 - ~al + i4a4 in 
Equation 4.5.1, and then 

(4.5.10) 

One may now follow the same procedure as before to obtain the asymptotic 
approximations for equilibrium paths P(q, a) and critical states Per(«) (see 
problem assignment). A salient property of the stable symmetric bifurcation is 
that the polynomial expansion of n contains no cubic term and has a positive 
quartic term. 

The behavior of the rigid-bar column supported by a rotational spring (Fig. 
4.20a) is entirely analogous to the large-deflection behavior of an elastic column 
as solved in Section 1.9. The equilibrium diagrams obtained (Fig. 1.25) were 
similar to those in Figure 4.20b, and it can be shown in general that the rising 
portions of these diagrams are stable, the declining portions are unstable, and the 
critical states are characterized by a horizontal tangent (see our later general 
discussion of equilibrium curves). The load-point displacement diagram (Fig. 
1.26) was also similar to the one in Figure 4.20e. 

Symmetric Unstable Bifurcation: Example 

The fact that the critical states of the imperfect column occur at loads higher than 
P;.. for the perfect system is particular to this example and is not verified in 
general. To illustrate it, consider a slightly different column, as shown in Figure 
4.21a, in which the rotational spring at the base is replaced by a horizontal, 
vertically sliding spring of stiffness C. Unlike before, the resisting moment of the 
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Figure 4.21 (a) Rigid-bar column with horizontal spring at top, (b) equilibrium path, (c) 
imperfection sensitivity diagram, (d) variation of potential energy at constant P, and (e) 
load-displacement diagrams. 

spring force about the hinge at the base is not proportional to the rotation at the 
base, because the force arm of the spring decreases as the column deflects. The 
potential energy is 

11 = !CL2(sin q- sin a)2
- PL(cos a- cos q) (4.5.11) 

By differentiation: 

~~ = CL2(sin q- sin a) cos q- PL sin q 

~q~ = CL2(cos 2q +sin a sin q)- PL cos q 

Setting 811/ aq = 0, we obtain the equilibrium condition: 

( 
sin«) P=CL 1--.- cosq 
smq 

(4.5.12) 

(4.5.13) 

The equilibrium diagrams P( 8) for various values of the initial imperfection a are 
plotted in Figure 4.21b. Setting az111 8q2 = 0, we find that the critical states lie on 
the curve (dash-dot curve in Fig. 4.21b): 

P. = CL cos 2q + sin a sin q 
cr cosq 

(4.5.14) 
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The critical load of a perfect column (a = 0) is ~. = CL = lim Per for q- 0, or 
limP (Eq. 4.5.13) for q- 0. 

Examine now stability of the equilibrium states. Substituting P from Equation 
4.5.13 into Equations 4.5.12 we get 

~11 CL
2 
(. • 3 ) 

-;-2 = -.- SID a- SID q 
r;;;q SID q 

(4.5.15) 

It may be noted that the condition of positiveness of this expression is identical 
(for o ~ q ~ 90") to the condition ap I aq > o. Thus, as is generally true, the rising 
portions of the equilibrium curves in Figure 4.21b are stable, the declining 
portions are unstable, and the critical states occur at the limit points, that is, the 
points with a horizontal tangent. From Equation 4.5.15 the critical states are 
characterized by the condition sin qer =(sin a)113

• 

In one respect the behavior of the present column is markedly different from 
that in Figure 4.20a. The critical states of the imperfect system occur at loads less 
than the critical load of the perfect system. The larger the imperfection, the 
smaller is the critical load. For such systems, it is important to quantify the 
dependence of the critical load Per of the imperfect system on the magnitude a of 
the imperfection. Substituting sin q =sin qcr =(sin a)113 and cos q =cos qcr = [1-
(sin a)213r12 into Equation 4.5.13, we obtain for the critical load of the imperfect 
column the equation 

Per= CL(1-(sin a)213](1- (sin a)213r12 = CL(1- ~~) (4.5.16) 

in which the last expression applies to sufficiently small imperfections a. Note 
that the critical load decrease is proportional to the ~ power of the imperfection, 
a behavior which is typical of many systems (see Sec. 4.6). Therefore, the tangent 
of the imperfection sensitivity diagram Pcr(a) (Fig. 4.21c) has a vertical 
downward slope at a = 0. This means that the critical load decreases very rapidly 
with only a very small imperfection. 

Structures for which the critical load (i.e., maximum load) decreases at 
increasing imperfection are called imperfection sensitive (Fig. 4.21c) while those 
with the opposite behavior (Fig. 4.20c) are called imperfection insensitive. The 
imperfection sensitivity diagram Per(a) always begins with a vertical downward 
slope (see Eq. 4.6.6). If the drop of Per is large for typical imperfection values in 
practice, the structure is said to be strongly imperfection sensitive. For columns 
and frames, the drop of Per due to actual imperfections is usually quite small, 
even though the imperfection sensitivity diagram may be starting with a vertical 
tangent. For example, a typical unavoidable imperfection for a column may be 
a= 0.05, for which Equation 4.5.16 indicates that the critical load is reduced by 
4.6 percent, not a very large reduction. For shells, however, a typical inevitable 
imperfection may cause a 60 to 80 percent reduction of the critical load 
(Chap. 7). 

The equilibrium curve emanating from the bifurcation decreases with dis
placement symmetrically and for this reason the bifurcation is termed unstable 
symmetric. Unlike the previous example, the bifurcation state itself is unstable, 
according to the exact solution. The reason: For P = CL = ~ and a = 0 we have 
11 = CL2(! sin2 q +cos q- 1), and upon expanding sin q and cos q in a power 
series we get 11 = -lCL 2q4

, which is not positive definite. On the other hand, at 
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P = ~r the tangential stiffness associated with q is Km = ffn/ aq2 = 0; this means 
that one finds neutral equilibrium at the critical state. The shape of the 
potential-energy function near the equilibrium state at various stages of loading is 
sketched for the case cr = 0 in Figure 4.21d. 

It is interesting to calculate again the diagram of load P versus load-point 
displacement w. Considering q and cr to be small, noting that u = L(cos cr
cos q), and introducing the approximation (sin q)-1 = (1 + tq2)/q, which is 
accurate up to the third-order terms in q, we obtain from Equation 4.5.13 

p ( ")[ sin cr ( q
2
)] CL = coscr-L 1-q 1+6" ( 2u)l/2 

with q = ± ~+1: (4.5.17) 

For the perfect column (cr = 0), this reduces to 

p u 
CL =1-L (4.5.18) 

These equations are plotted in Figure 4.21e. It is noteworthy that the initial 
postbuckling response of the perfect column consists of an inclined straight line 
with negative slope. This contrasts with the previous case of a rigid bar supported 
by a rotational spring, for which the postbuckling slope was positive. 

To determine only the behavior near the bifurcation, n can be approximated 
by a polynomial. As before, it does not suffice to use a quadratic approximation 
for cosq and sinq in Equation 4.5.11 (this would yield only P~ but no 
information on the postcritical behavior). Rather, the approximation must be at 
least of the fourth degree, and Equation 4.5.11 yields 

(4.5.19) 

Asymptotically, this is the same type of behavior as is obtained by the preceding 
procedure (see also problem assignment). For obtaining unstable symmetric 
bifurcation, it is essential that the cubic term (q3

) vanishes when cr = 0, and that 
the quartic term (q4

) is negative near the critical load; this is so because 
-f;.PLq4

- tCL2q4 = 'i.L(P- 4~)q4 and CL = ~- Note that even though Equa
tion 4.5.19 contains the cubic term crq3

, this term has a negligible effect here 
because the linear term crq (which is much larger if q is small) is also present. 

Asymmetric Bifurcation: Example 

In the preceding examples the equilibrium curves were symmetric with regard to 
the undeftected equilibrium state at which bifurcation takes place. However, 
asymmetric equilibrium curves near the bifurcation point are also possible and 
quite frequent for frames (see Sec. 2.6) as well as shells. Consider the column 
shown in Figure 4.22a, in which a rigid bar supported by a hinge is held upright 
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Figure 4.22 (a) Rigid-bar column with inclined spring, (b) equilibrium path, (c) imperfec
tion sensitivity diagram, (d) variation of potential energy at constant P, and (e) 
load-displacement diagrams. 

by a laterally sliding spring of stiffness C and constant inclination angle 45°. The 
column is generally imperfect, with initial inclination angle a. The extension of 
the spring is v = L cos (45°- a)- L cos (45°- q), and so the potential-energy 
expression is 

c 
IT ="2L2(cos (45°- q)- cos (45°- aW- PL(cos a- cosq) (4.5.20) 

from which 

an= CL2U cos2q- sin (45°- q) cos (45°- a)]- PLsin q aq 

az~ = CL2(cos (45°- a) cos (45°- q)- sin 2q]- PL cos q aq 
Setting ant aq = 0, we obtain the equilibrium curves: 

P= ~L Ucos2q-sin(45°-q)cos(45°-a)] 
smq 

(4.5.21) 

(4.5.22) 

These equilibrium curves are plotted for various values of the initial imperfection 
angle a in Figure 4.22b, and in view of our previous experience one may be 
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stricken by the fact that these curves are asymmetric. The curve on which the 
initial states lie is obtained from Equations 4.5.21 by setting an2 I aq2 = 0, which 
yields (dash-dot curve in Fig. 4.22b): 

P. CL[
cos (45°- a) cos (45°- q) 

2 
. ] 

cr= - smq 
cosq 

(4.5.23) 

The critical load of pedect column (a = 0) is P~, = CL/2 = lim Per for q- 0, or 
limP (Eq. 4.5.22) for q-o. 

Stability is characterized by the condition 

:~ = CL2[cos(45°- q) cos (45°- a)- sin 2q]- PL cosq >0 (4.5.24) 

and substituting here for P from Equation 4.5.22 we can check that the condition 
~ll/ aq2 > o is (for positive q) equivalent to the condition ap I aq > o. Thus, as is 
generally true, the rising portions of the equilibrium curves in Figure 4.22b are 
stable, the declining portions are unstable, and for a :1= 0 the points with 
horizontal tangents represent the critical states. For a= 0 (pedect column), the 
bifurcation point, representing the critical state, is characterized by vanishing 
tangential stiffness Km = am/ aq = 0, despite the fact there is no horizontal 
equilibrium path in the P(q) plot. Indeed, Km = ~ll/ aq2 = CL2(cos 45° cos 45°-
0) - ~L = 0. Consequently, an arbitrarily small disturbing moment m produces 
at the critical state a finite rotation q, but this is manifested neither in P(u) nor 
in P(q) plots (Fig. 4.22b, e) because m = 0 for these plots. 

Note that an initial inclination of the column to the right causes a decrease in 
the critical load, while to the left it causes an increase in the critical load, 
compared to ~.. This type of behavior is called asymmetric bifurcation. While 
symmetric bifurcations are divided into impedection insensitive and impedection 
sensitive, asymmetric bifurcation is obviously always impedection sensitive. 

The reason for the asymmetry of this bifurcation is the fact that the arm of the 
spring reaction force increases as the column deflects to the left, and decreases as 
it deflects to the right. An equivalent behavior can be obtained with a rotational 
spring (Fig. 4.20) with nonlinear properties, such that the incremental spring 
stiffness C varies with the rotation. 

Let us now examine the impedection sensitivity of the asymmetric bifurcation 
of our column. Restricting our attention to small angles q and a, we may 
substitute sin ( 45°- q) = sin 45° cos q -cos 45° sin q = (1 - q - iq2)/V2, cos 2q = 
1- 2q2

, etc., into Equation 4.5.22. Then, after rearranging and discarding all 
terms of higher than second order in a and q, we obtain the approximate 
equilibrium diagram for small deflections 

p = CL (t _ ~ q _ ~) 
2 2 q 

(4.5.25) 

Then, setting dP/dq = 0 we get for the critical states the relation qcr = (2a/3)112
, 

and substituting this into Equation 4.5.25, we obtain the relation 

(4.5.26) 
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Equation 4.5.26 yields the imperfection sensitivity diagram plotted in Figure 
4.22c. Again, the initial slope of this diagram is vertical. The fact that Equation 
4.5.26 involves a !-power law rather than a j-power law, which we found before, 
reveals that the imperfection sensitivity of this asymmetric bifurcation is stronger 
than in our previously analyzed symmetric unstable bifurcation. For imperfection 
angle a= 0.01, Equation 4.5.26 indicates a drop of maximum load by 24.5 
percent and, for a= 0.001, by 7.8 percent, which is certainly quite significant for 
design. (A significant drop was also demonstrated for a certain frame in Sec. 2.6.) 
These effects are in the current practice lumped into a uniform safety factor. But 
obviously distinction properly should be made between imperfection-sensitive and 
imperfection-insensitive frames. 

The shape of the potential-energy function near the equilibrium states at 
various stages of loading is sketched for the case a = 0 in Figure 4.22d. 

To calculate the diagram of load P versus load-point displacement u, we 
restrict our attention to small angles q and the perfect column (a = 0). 
Introducing the approximations cos q = 1- q2/2, sin q = q(1- q2/6), cot q = 
(1- q2/3)/q, we acquire from Equation 4.5.22 the relation P = (CL/2)(1- 3q/2). 
Then, by substituting q = ±(2u/L)112 according to Equation 4.5.17, we obtain 

p 3 (2")112 
CL/2= 1 =f2 L (4.5.27) 

This equation is plotted in Figure 4.22e. We see that the initial postcritical 
response of the perfect column is not a straight inclined line, but a curve that 
starts downward with a vertical slope if the column deflects to one side (q > 0), 
and upward with a vertical slope if the column deflects to the other side. This 
behavior obviously produces, for the relationship of load versus load-point 
displacement, an extreme imperfection sensitivity. 

To determine the initial postcritical behavior near bifurcation, we may write 
cos (45°- q) =(cos q +sin q)/'V2 and approximate cos q, sin q, cos a, sin a in 
Equation 4.5.20 forTI by fourth-order polynomials: 

n = c~ 
2 

[ ( 1 - ~
2 

+ ~;) - ( 1 - ~
2 

+ ;;) + ( q - ~) - (a - :) r 
[( 

a2 a4) ( q2 q4)] 
- PL 1 - 2 + 24 - 1 - 2 + 24 

CL2 PL 
=4(q2 + a2-q3 + q2a+qa2-2qa- ~) +2(a2 -q2) (4.5.28) 

The essential property of this polynomial approximation that causes the bifurca
tion to be asymmetric is that is contains the cubic term q3

• All terms of degree 
higher than cubic in q and a have been dropped from Equation 4.5.28, since they 
are not essential. 

L-Shaped Rigid-Bar Frame 

Asymmetric bifurcation is exhibited by many types of frames. For example the 
L-shaped frame analyzed by Koiter (1967) and already solved in Section 2.6 
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behaves in the same manner as the column in Figure 4.22. This kind of behavior 
can be easily illustrated with a simple model consisting of two rigid segments 
joined by elastic springs of stiffness C1 and C2 (Fig. 4.23a). The frame may be 
imperfect, due to initial inclination q = a. To obtain the postcritical behavior, the 
equilibrium conditions must take into account (similar to Sec. 2.6) the load-point 
displacement u due to lateral deflection v. Same as in Equation 4.5.17 we have 
u = H(q2

- al)/2, where H =frame height. This displacement affects the relative 
rotation (8- 80) in the hinge restrained by spring C2 ; (8- 80) = (q- a)+(</>
<Po)= 2(q- a)+ u/(L/2). The moment equilibrium condition at this hinge can be 
written as C2(8- 80 ) = V(L/2) cos q,, in which Vis the vertical reaction at the 
sliding support and cos q, == 1 - q2 /2. The moment equilibrium condition at the 
base gives C1(q- a)- PqH + V[qH + L(1- q2 /2)] = 0. By substitution for V 
and elimination of 8- 80 with the help of the preceding relation, one obtains the 
load-rotation relation: 

a) 
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-- S.cond·order 
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(4.5.29) 

-a 

Figure 4.13 (a) L-shaped rigid-bar frame, (b) equilibrium paths, (c) load-displacement 
diagrams, and (d) imperfection sensitivity diagram. 
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This relation is plotted in Figure 4.23b for various values of the imperfection a. 
Figure 4.23c shows the curves P(u). Figure 4.23d shows the imperfection 
sensitivity diagram obtained from the maximum points of the P( 6) curves, and it 
may be checked that this diagram follows the a 112-power law, that is, the 
reduction in the maximum load is quite significant, even for a small imperfection 
such as a= 0.01 rad. The calculations presented are second-order accurate. This 
problem, however, is easy to solve exactly even for finite (large) deflections, in 
which case cos y, tan y, and sin y in the foregoing relations are not replaced by 
approximations. This solution yields the light curves in Figure 4.23b. 

Rigid-Bar Arc:h 
An important example of symmetric bifurcation is the inextensional buckling of 
arches, analyzed already is Section 2.8. In this case a good model can again be 
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Figure 4.24 (a) Rigid-bar arch; (b, e) equilibrium paths; (c, f) load-deflection diagrams; 
and (d, g) imperfection sensitivity diagram. 
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obtained by considering an angle frame made of rigid bars, in which hinges are 
inserted at quarterpoints; see Figure 4.24a. The relative rotation of the hinges is 
restrained by springs. To obtain the post critical behavior, one must consider the 
load-point displacement u due to the lateral deflection caused by rotation 8 (Fig. 
4.24a). If one neglects the terms of higher than second order, the displacement of 
the rigid joint (vertex) may be assumed to be vertical. Its projections parallel and 
normal to the initial direction of the bars (which form an angle fJ with the 
horizontal) are, respectively, !i = 2L(1- cos 8) = L82 and 6 = !i/tan fJ = 
L82/tan {J. If 8 is the rotation of the rigid joint, the rotations at the supporting 
hinges are 81 = 8 + 6/ L = 8 + 82/tan fJ and 82 = 8- 6/ L = 8- 82/tan {J. The 
relative rotations at the hinges with springs are '111 = 8 + 81 and '112 = (J + 62• 

Global equilibrium requires that V1 + V2 = P, H1 = H2 and 4V1L cos fJ = 
P(2L cos fJ + e). Then one substitutes these equations into the moment equi
librium equations for the hinges with springs, which are C\111 = V1 L cos {J1 -

H1L sin P~t C\112 =-V2L cos fJ2 + H1L sin {J2, in which {J 1 = fJ- 81> {J2 = fJ + 62. 
This provides the following equation for the relation of P and 8: 

(4.5.30) 

in which 

h = [1- 82(! + -
1
-)] sin fJ 

2 tan2 fJ (4.5.31) 

(J ( (J2) g2 =- 1-- + 8 sin fJ 
2L 2 

The results are plotted in Figure 4.24b, for the frame with fJ = 30", for various 
values of the ratio e/s where e is the eccentricity of the load and s is the span. 
Figure 4.24c shows the curves of the load versus the load-point displacement. 
Figure 4.24d shows the imperfection sensitivity diagram, whose asymptotic form 
for small e agrees with the ~-power law (as it must; see Sec. 4.6). For a more 
shallow angle frame ({J = 10"), for which the assumption of inextensibility still 
holds, the curves P(q), Per( e) are shown in Figure 4.24e, g. They are seen to be 
similar to those measured and analyzed for an angle frame by Roorda (1965). 
They are also similar to those measured and analyzed by Roorda (1965) for a 
shallow arch, already shown in Section 2.8. The postcritical P(u) diagram for the 
perfect angle frame, shown in Figure 4.24f, is a straight line, which agrees with 
that measured and analyzed by Roorda (1971) for a shallow prestressed arch. 

Nonlinear Springs and Polynomial Approximation of Potential 
Energy 

The physical property that causes asymmetric bifurcation in Figure 4.22 is (as 
already pointed out) the fact that the linearly elastic extensional spring installed 
nonhorizontally behaves, relative to the buckling mode, as a nonlinear rotational 
spring. Indeed, the elastic restraint against rotation of the rigid column about the 
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base can be characterized by dM = (; dq, where M is the moment of the spring 
force about the pivot and (; is the incremental rotational spring stiffness. From 
the geometry in Figure 4.25a (perfect system, a= 0) we have M = CL2[cos (y
q)- cosy) sin (y- q), dM/dq = (; = (CL2/2)[2 cos2 y cos q- 2 cos 2y cos 2q + 
sin 2y(sin q- 2 sin 2q)), and, for small rotations q, this can be written as 

C = C1 - C2q (4.5.32) 

in which C1, C2 =constants; C1 =CL2(cos2 y-cos2y), C2 =(3CL2/2)sin2y, 
constants for fixed y. For the imagined nonlinear rotational spring, we have, by 
integration, M = f C dq or 

(4.5.33) 

Now the potential energy of the system is calculated as n = f M dq- PL(1-
cosq), which yields 

1( p) 2 1 3 ll=- 1-- C1q --Czq 
2 Per 6 

(4.5.34) 

The salient property of this polynomial expression for potential energy is that, 
unlike linear systems, it is not quadratic but cubic in the deflection parameter q. 
The cubic form of the potential-energy expression, which is typical for certain 
shells, always leads to asymmetric bifurcation and the associated strong imperfec
tion sensitivity. 

Note that the tangential stiffness Km=amtaq=cfntaq 2 =(1-P/Pc,)C1 -

a) p p 

_..Cz variable 
"' incremental 

stiffness 
=b.?fm'7777.r 

b) 

Fipre 4.25 Equivalence between linear extensional springs and nonlinear rotational 
springs. 
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C2q (where m =disturbing applied moment) vanishes at the bifurcation point, 
which means that one has neutral equilibrium at q = 0 (for perfect column). 

For the case of symmetric bifurcations, Km = am/ aq = aznt aq2 = 
(1- P/Pa)C1 + C3q2 (where Cto C3 are constants) and positiveness (or negative
ness) of C3 means stable (or unstable) bifurcation. 

The existence of neutral equilibrium means that an arbitrarily small applied 
moment m causes a finite rotation q. But this is detectable in the plots of neither 
P(q) nor P(u) because these are taken at m =0. 

For the special case when the linear spring is horizontal (Fig. 4.25b) we have 
for the equivalent rotational spring C2 = 0. This means that the cubic term in the 
potential-energy expression vanishes. Then one must include the higher-order 
term (quartic form). From the geometry in Figure 4.25b, we have M = 
CL 2 sin q cos q, dM I dq = C = CL 2 cos 2q, and, for a small rotation q, 

(4.5.35) 

where C1 = CL2 and C3 = 2CL2
• We see that the nonlinearity of the effective 

rotational spring lacks the linear term, and the leading term is quadratic. By 
integration, the effective rotational spring is characterized by 

(4.5.36) 

By further integration, the potential-energy expression is expressed by the 
polynomial: 

(4.5.37) 

We see that in this case the potential-energy polynomial lacks the cubic term and 
the leading term, which causes nonlinear postcritical behavior, is quartic. This 
property, already shown in Equations 4.5.10 and 4.5.19 for rigid columns with a 
linear spring at the base or on top, is typical of all symmetric bifurcations. 

If the quartic term is negative ( c3 < 0), the symmetric bifurcation is 
imperfection sensitive, as is true of this example. If it is positive, the symmetric 
bifurcation is imperfection insensitive and exhibits a postcritical reserve. The 
foregoing properties, resulting from cubic or quartic terms in n, are applicable 
generally. They apply to all kinds of phenomena in physics and science where 
instabilities can be characterized by a potential (Thompson and Hunt, 1984). 
Classification and qualitative analysis of various types of instabilities on the basis 
of the potential polynomial is the subject of catastrophy theory (Sec. 4.7). 

Two Degrees of Freedom: Example 

Consider now an example of a two-degree-of-freedom system (Fig. 4.26a). The 
rigid-bar column loaded vertically by constant load P is supported on a 
horizontally sliding hinge and is held upright by two horizontal springs of stiffness 
C. The inclination angle of the bar is q 1 , and the horizontal displacement of the 
hinge is q2 • The initial imperfection is characterized by the initial angle of 
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Flpre 4.26 (a) Sliding rigid-bar column, (b) equilibrium paths, and (c) imperfection 
sensitivity. 

inclination, a (Fig. 4.26a). The potential energy of this column is 

n =¥(q2 + L sinq1 - Lsin a)2 +¥q~+ PL(cosq1 - cos a) 

The equilibrium conditions are given by 

0,1 = CLcosq1(q2 + L sinq1 - L sin a)- PL sin q 1 = 0 

0,2 = C(q2 + L sin qt- L sin a)+ Cq2 = 0 

Eliminating q2 , we obtain for the equilibrium path the equation 

CL ( sin a) P=-cosq1 1--.-
2 SID qt 

(4.5.38) 

(4.5.39) 

(4.5.40) 

These equilibrium paths are plotted for various values of initial imperfection a in 
Figure 4.26b. 

To analyze stability, we calculate the second partial derivatives of n: 
0,11 = C(L cos q1)

2
- C(q2 + L sin q 1 - L sin a)L sin q 1 - PL cos q 1 

(4.5.41) 
D,tz = CL cos qt D,n = 2C 

where D,;i = crntaq1 aqi = K;i =tangential stiffness matrix. These expressions 
form the matrix of the second variation c52ll = ~(0, 11 c5q~ + 20,12 c5q1 c5q2 + 
n.22 c5q~). 

For this matrix to be positive, one diagonal coefficient must be positive, which 
is guaranteed by n,22 = 2C (Eqs. 4.5.41), and the determinant D of the matrix 
must be positive (Theorem 4.1.10). The latter condition reduces, after some 
algebraic manipulations, to the condition (sin a- sin3 q 1)/sin q1 > 0. For 
sin q1 > 0 this yields the stability condition: 

sin q1 <(sin a)113 (0 < qt < n/2) (4.5.42) 

which means that the critical states q 1.,. are given by the condition sin q 1 = 
(sin a)113

• Substitution into Equation 4.5.40 yields the critical load as a function of 
the imperfection a: 

(4.5.43) 
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A plot of this equation is the imperfection sensitivity diagram; see Figure 4.26c. 
For small imperfections, Per= !CL(1- ~ern). Note again that for this structure 
the critical load markedly decreases with imperfection a; for a= 0.01, the 
maximum load drops by 7.0 percent compared with the perfect system. Also note 
that at the bifurcation point (P =Per, a= 0, q = 0), det K = det [ll,;i) = 0, which 
is in fact a necessary condition of all bifurcations (see also Sec. 10.4). 

The initial postbuckling behavior could be obtained upon approximating 
Equation 4.5.38 with a fourth-degree polynomial in q11 q2 , and a. 

One could construct other examples of two-degree-of-freedom systems that 
exhibit symmetric imperfection-insensitive bifurcation, asymmetric bifurcation, 
and snapthrough. 

Umit Points of Equilibrium Paths 

Our foregoing determination of stability limits based on calculation of the 
determinant D of the second variation can be quite tedious. A shortcut is possible 
by realizing that at the maximum points of the equilibrium path P(q1) the 
determinant D must vanish or else these points would not be critical states (in 
view ofthe fact that ~ll/oq~>O, Eqs. 4.5.41). 

Another reason for the limit point to be a critical state is that the vector 
(6q 11 6q2) can be nonzero at (jp = 0. Thus, by differentiating Equation 4.5.40 we 
have 

dP CL ( . . 1 ) -=- -smq1 +sm a-.-2-dq1 2 SID ql 
(4.5.44) 

Setting this equal to zero, we indeed get the same conditions for the criticai states 
as before, namely, sin q1.,. =(sin a)113 (Eq. 4.5.42). At all other points of each 
equilibrium path P(q1) at fixed imperfection a, determinant Dis nonzero, and so 
it must be positive everywhere on one side of the critical point and negative 
everywhere on the other side of the critical point. Then, from the fact that the 
determinant of 620 is positive in the initial state P = 0, it follows that the states 
0 < q 1 < q 1.,. are stable, and the states q 1 > q 1.,. are unstable. 

We saw in the previous example that at the critical states the determinant of 
the matrix of the second variation vanishes. This property is true in general, that 
is, there cannot be a critical state in which the determinant does not change sign. 
To show it, the potential energy may be written in the form n = U - PW where 
P = load or load parameter and W = work per unit load. Equilibrium requires 
that ll,; = lf,; - P~; = 0 (subscripts preceded by a comma denote partial deriva
tives). From this, the equilibrium load-deflection diagram is defined by P = 
U.;/~;. The load variation along the equilibrium diagram may be expressed as 

6P = "" P. 6q· = W'-:2(w."" U .. Jl.,.. - PW. "" W .. Jl.,..) £J ·I I ,I ·' kJ •'I "'fJ •' kJ •'I "'fJ 
j j j 

- -1~ =W. n .. ()q. 
•' ·'I I 

(4.5.45) 
j 
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Now it is obvious that if 6P = 0 while at least one among 6q1 vectors is nonzero, 
then at least one of the principal minors of the matrix II,;1 must vanish or else the 
right-hand side of Equation 4.5.45 could never vanish. Similarly, if 6P::i=O for all 
6q1, then all principal minors of matrix II,;1 must be nonzero. 

In view of the foregoing analysis, the critical states on an equilibrium path 
without bifurcation can be determined as the maximum points of the equilibrium 
paths of load versus deflection. These points may be obtained by static analysis, 
for example, from the principle of virtual work. 

Bifurcation Criterion in Terms of the Tangential Stifness Matrix 
As illustrated for several preceding examples, the tangential stiffness vanishes at 
the bifurcation point regardless of whether the bifurcation is symmetric or 
asymmetric. For systems with many degrees of freedom, one can similarly show 
that for bifurcation points always det K = 0 where K = tangential stiffness matrix 
(see also Sec. 10.4). This means that K 6q = 0 for some admissible eigenvector 
6q* = 6q, that is, the bifurcation point of elastic structures always represents a 
state of neutral equilibrium (this is not generally true for inelastic structures 
because the eigenvector 6q* may be inadmissible according to the unloading 
criteria, see Sec. 10.4). Thus, the condition 

det K = det [II,;1] = 0 (at q=O) (4.5.46) 

in general may be used to detect the bifurcation point, whether symmetric or 
asymmetric. 

For a general derivation of Equation 4.5.46, we observe that the fundamental 
(primary, main) path at given increments 6P is characterized by 6q = 0. At the 
bifurcation point suddenly a path with 6q ::!= 0 becomes possible for a given 
increment 6P. Generally K 6q = 61. Now we have 6/1 = 6/z = · · · = 6f,. = 0 (that 
is, 6f = 0), since 6P does not represent any of the loads 6/; (i.e., is not associated 
by work with any q;); 6P is merely a parameter on which K depends. Therefore 
the matrix equation K 6q = 0 must have a nonzero solution at the bifurcation 
point. Hence det K = 0 (i.e., matrix K is singular, its lowest eigenvalue is zero). 
The eigenvector 6q* of matrix K determines the initial path direction (Fig. 
4.27}-not in any Pq; plane (i.e., not the slope dP/dq;) but in then-dimensional 
space of qt> ... , q,. (in all but the last of our examples this was a one
dimensional space). To determine the increment 6P associated with 6q = 6q*, 

Figure 4.27 Initial path direction at bifurcation. 
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one must of course consider equilibrium in the adjacent states, as documented by 
our examples. 

As will be seen in Section 10.3, for inelastic columns an important difference 
is that the axial shortening does not depend on deflection, but is independent, 
and must be taken as one of the {Jq1• Thus 6P does work on one of the {Jq1• 

Consequently, neutral equilibrium need not exist at bifurcation. 

Classification of Elementary Instabilities of Elastic Structures 

We have encountered in this book examples of various elementary types of 
instabilities of elastic structures. They may be classified as follows: 

I. Dynamic (energy approach is insufficient) 
II. Static (D exists, energy approach is sufficient) 

A. Snapthrough (limit point) 
B. Bifurcation 

1. Asymmetric bifurcation 
2. Symmetric bifurcation 

a. Stable (imperfection insensitive) 
b. Unstable (imperfection sensitive) 

Problems 

4.5.1 Calculate equilibrium paths P(8, a), critical loads Pcr(a), function P(u), 
and Pcr(a) for the polynomial approximation of n in Equation 4.5.10 for a 
rigid column with a rotational spring at the base (Fig. 4.20a) and analyze 
stability. 

4.5.2 Do the same as above but for Equaton 4.5.19 for a rigid column with a 
horizontal spring on top (Fig. 4.21a) 

4.5.3 Do the same as above, but for Equation 4.5.28 for a rigid column with an 
inclined spring on top (Fig. 4.22a) 

4.5.4 Do the same as above, but for the two-degree-of-freedom column in Figure 
4.26a (approximate Eq. 4.5.38 by a fourth-degree polynomial). 

4.5.5 Solve P(q), Pcr(a), P(u), and analyze stability for the structures in Figure 
4.28a, b, c, d, e, f. 

4.5.6 For the inextensible columns in Figure 4.28g, h solve P(u). Hint: u = 
J~ (w'2/2) dx. 

4.5.7 Consider the rigid column in Figure 4.28i with both a rotational spring C1 at 
the base and a horizontal spring C2 on top. Analyze stability. For a certain 
combination of C1 and C2 , the fourth-order terms in the polynomial 
expansion of D vanish. Find this combination and analyze stability. (Note: A 
polynomial approximation of n must in this case include all terms up to sixth 
degree in q.) 

4.5.8 Do the same for a column with an initially horizontal spring on top attached 
to a fixed point at a distance a (Fig. 4.28j). For a certain a value, the 
fourth-degree terms in n vanish. Find such a and analyze stability. 
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a) p b) p c) P d) 

L 

c 

L 

i) 

Figure 4.28 Exercise problems on large-deflection buckling of columns. 

4.5.9 Do the same but for a column with a sliding horizontal spring attached at 
height a below the top (Fig. 4.28k). For a certain a, the fourth-degree terms in 
II vanish. Find such a and analyze stability. 

4.5.10 For the column in Figure 4.28a with P = 90°, solve P(q) and P(u) for any 
a and L. For which ratio a/ L is the slope dP I du = 0 (if any)? Correlate the 
answer to the polynomial expansion in II. 

4.5.11 For the (nonrigid) elastic column in Figure 4.28h with p = 0", (a) 
calculate dP I du. (b) For which ~ and 11 do you get dP I du = 0? ( ~ = a/ L, 
11 = El/CaL2

). 

4.5.12 Using a computer graphics package, plot the surfaces II= II(qt> P) for the 
one-degree-of-freedom structures in Figures 4.14a, 4.20a, 4.21a, 4.22a, 4.28a 
and II= II(qt> q2) for the two-degree-of-freedom structures in Figures 4.26a 
and 4.28e, f. Discuss instability on the basis of the shape of these surfaces. 

4.5.13 Determine by the principle of virtual work the equilibrium path of (a) a 
flat arch; (b) an imperfect Euler column; (c) a rigid bar with elastic restraint. 
Compare it with potential-energy analysis. 

4.5.14 The column in Figure 4.29a has a pin and a support sliding on a plane of 
inclination p. The column is imperfect, with initial curvature Zo = 
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a) p c) 

z 

d) 
Sliding 

c \Cabletp Perfect neutr•l 
equilibrium lot large 

e) 

' deflectione) 

~ ... ~ ~p 1 Globolly ------t::: otoble 

deflection 

F1pre 4.29 Exercise problems on large-deflection buckling. 

al sin ( JtX II)( a « 1); determine P max and the power law for sensitivity to 
imperfection a. Calculate Pmaxl PE for a= 0.01 if fJ = 1°, 5°, 45°. (See first 
Prob. 2.6. 7, which deals with the postcritical behavior of the perfect column.) 

4.5.15 Determine the postcritical response and the imperfection sensitivity 
diagram of the inclined L-frame in Figure 4.29b. Compare the results with 
Roorda's experimental results (Roorda, 1971). 

4.5.16 Precompressed arch. A straight beam is shortened by u0 to form an arch 
of height f. (Fig. 4.29c). Then load p(x) = p 0 sin (JtX/1) is applied. Calculate 
the diagram of p0 versus max w at constant u0 (the base held fixed during 
buckling). 

4.5.17 Solve the P(q) diagrams for the structures in Figure 4.29d, e. Note: The 
shapes of the diagrams that should be obtained are also shown in these 
figures; the column in Figure 4.29d exhibits perfect neutral equilibrium [a 
horizontal P(q) diagram] at large deflections, and the column in Figure 4.29e 
exhibits rehardening and may therefore be said to be globally stable, while 
being locally unstable near the critical point. 

4.5.18 Solve exactly (for large deflections) the P(q) and P(u) diagrams for the 
structure in Figure 4.23a. 

4.5.19 (a) Derive Equations 4.5.30 and 4.5.31 in detail and plot P(6) and Pmax 
versus e I L for fJ = 45°, roo. (b) Using the same procedure, analyze the 
rigid-bar L-frame in Figure 4.30a. This structure is actually the same as the 
rigid-bar arch in Figure 4.24, except that the direction of load P is now 
different. Check that the critical load (fore= 0) is Per= 4C/ L. This value can 
be found by writing the condition of neutral equilibrium in the deformed 
configuration for small 6. (Caution: Even for small 6 there are small 
additional horizontal reactions at the supports, proportional to 6, because the 
structure is redundant.) Figure 4.30b shows the results. 
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Figure 4.30 Equilibrium paths of rigid-bar L-frame (exercise problem). 

4.5.20 Solve P(q), P(u), and the imperfection sensitivity for the L-frame in 
Figure 4.31a in which the load has eccentricity e and (a) a= 0, C1 = 0, C2 > 0, 
H=L; (b) a=O, C2 =2Ct. H=L; (c) a=O, C2 =Ct. H=2L. Solve the 
problem also for a= a 1 (small imperfection). 

4.5.21 Same as Problem 4.5.20 for the L-frames in Figure 4.3lb, c, e. 
4.5.22 Same as Problem 4.5.20 for the asymmetric portal frame made of rigid 

segments shown in Figure 4.31d (consider either C1 = C2 = C3 or C1 = C3 = 0). 

d) e) f) 

p! l/2 
~e 

ptt= 
l/2 pti-L/2 l/2 

.LL/l 
l l 

c, 

g) 
P-Same i) 

line of 
action p 

c c 

Figure 4.31 Exercise problems on equilibrium paths (a-e, g-i) of rigid-bar frames and (f) 
of two-bar frame. 
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4.5.23 Solve the postcritical behavior of the frame in Figure 4.31£, in which one 
support slides on a plane of inclination /l 

4.5.24 Solve the postcritical behavior of the two-bar columns in Figure 4.3lg, h. 
4.5.25 Analyze the postcritical behavior of the model frames in Figure 4.32 made 

of rigid bars that are rigid in flexure but elastic axially (with stiffness EA). At 
the joints the bars are connected by pins and are restrained by springs. 

Fipre 4.32 Exercise problems on large-deflection buckling of frames with infinite bending 
rigidity of members. 

4.5.26 Determine the P(u) and P(q) diagrams for various imperfections a, the 
types of bifurcation and imperfection sensitivity of the rigid columns in Figure 
4.33a-e (/3 = 45° or 90"); in c, d, e the spring C2 is precompressed exactly to 
the critical load but during subsequent buckling its end is held fixed. Consider 
I= 2L. Then consider I = - L. Also check the limit cases I-+ oo and I-+ -oo, 
which are equivalent for gravity load. 

b) 

~ 
Fipre 4.33 Exercise problems on equilibrium paths of rigid-bar columns. 

4.5.2'7 Using the results from Section 1.9, determine the P(u) and P(wmax) 
diagrams and the type of bifurcation for the column in Figure 4.34a, 
considering Zo = 0 (perfect column). (Later, after studying Sec. 5. 9, we will be 



ENERGY METHODS 261 

Figure 4.34 Exercise problems on equilibrium paths of beam-columns. 

able to consider also Zo :1= 0.) Repeat for the columns in Figure 
4.34b. c, d, e, f, g. 

4.5.28 Equation 4.5.9 may be written as P = Pcr(l + u/3L). The same equation 
applies to the simply supported rigid-bar column in Figure 4.3c with a 
spring-stiffened hinge at midspan. A similar equation, namely P = Pcr(l + 
u/21), was derived before for an elastic beam-column (Eq. 1.9.14). The 
relation between end rotation 8 and axial displacement u for the rigid-bar 
column is u = L(l- cos 8) = L82/2, and for the elastic sinusoidally deflected 
column it is u = 182/4, which is again similar except for a factor. Considering, 
for example, a hinged symmetric portal frame, check whether these simila
rities could be exploited for approximate analysis of the postcritical behavior 
of complex trusses or frames. For example, an elastic frame may be replaced 
by an assembly of rigid segments with hinges placed at the estimated 
max M-points, as shown in Figure 4.31i. Obviously, the postcritical behavior 
of such an assembly of rigid segments could be analyzed more easily, and if 
one would assume that P = Pcr(l + u/2L) and u = L82/4 instead of the correct 
relations for rigid-bar members, the results are likely to be very close to those 
for the exact solution of the elastic frame. Could this similarity be further 
extended for the effect of imperfections? 

4.5.29 Check for the L-shaped rigid-bar frame (Fig. 4.23) that the tangential 
stiffness K = iflnt 8q2 at the point of asymmetric bifurcation vanishes. 

4.5.30 (a) For the perfect column with nonlinear spring (Fig. 4.25) calculate 
rotations q due to vertical load P and disturbing moment m. Then evaluate 
K = amtaq = iflll/8q2

, KP =aPt au= ifliT/8u2 (where u =load-point dis
placement) and discuss the question of neutral equilibrium with its relation to 
the P(u), P(q), m(q) diagrams. (b) Repeat for the columns in Figure 
4.28a, b, c. 

4.5.31 For the column in Figure 4.26a (Eq. 4.5.38), obtain the eigenvectors and 
express n as a sum of squares of orthogonal coordinates Yk according to 
Equations 4.1.3. 

4.6 KOlTER'S THEORY, IMPERFECTION SENSITIVITY, AND 
INTERACTION Of MODES 

As we have seen, structures exhibit various types of bifurcation and imperfection 
sensitivity. A completely general theory of the initial (linearized) postbuckling 
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behavior in bifurcation-type problems was formulated by Koiter (1945) in 
Holland during the second world war. His famous doctoral thesis in Dutch had 
not become widely known and appreciated until its English translation appeared 
in 1967 (Koiter, 1967). By examining all possible forms of the potential-energy 
surface near a bifurcation point, and exploiting the physically required smooth
ness properties, Koiter generally proved that 

1. The equilibrium at the critical state is stable if load P for the adjacent 
postcritical equilibrium states is higher than the bifurcation load Per. The 
postcritical states are stable and the structure is imperfection insensitive 
(Fig. 4.20b). 

2. The equilibrium at the critical state of the perfect structure is unstable if 
there exist adjacent postcritical equilibrium states for which load Pis lower 
than the bifurcation load Per of the perfect structure. Imperfections cause 
the load at which the structure becomes unstable to be smaller than Per 
(Figs. 4.21b, 4.22b). 

Koiter also proved in general that, among the unstable bifurcations, the 
asymmetric ones have a much higher imperfection sensitivity than the unstable 
symmetric ones. The behavior can be characterized by the angle fJ of the initial 
postbifurcation load-deflection diagram shown in Figure 4.35. If angle fJ is 
positive, the bifurcation is stable and the structure is imperfection insensitive. If fJ 
is negative, the bifurcation is unstable, the structure is imperfection sensitive, and 
the larger the magnitude of the negative angle {J, the higher is the imperfection 
sensitivity. The imperfection sensitivity becomes very strong when, after bifurca
tion, not only load P but both the load and the deflection decrease. We will see 
examples of such behavior, now called snapback, in Section 4.8. This type of 
postbifurcation behavior is typical of axially compressed or bent cylindrical shells 
as well as compressed spherical domes under transverse distributed loading. 

In his general theory, Koiter (1945, 1967) also studied interaction of various 
buckling modes occurring at the same load, which can occur in frames and is 
particularly important for cylindrical shells. He conceived the notion of a 
multidimensional space with one axis for the load and one axis for the amplitude 
of each possible buckling mode. He found how to determine in this space the 
equilibrium paths on the basis of the first derivatives of the total potential-energy 
function, as well as how to determine the stability of the states on these paths on 
the basis of the second derivatives of the potential-energy function. As one 
powerful general result, Koiter established that at least one stable equilibrium 

Load P 

Displacement u 

Figure 4.35 Postbifurcation load-deflection diagram. 
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path must emanate from a bifurcation point. Koiter's theory was later refined by 
Hutchinson and others, particularly with reference to shell buckling; see 
Hutchinson (1967), Hutchinson and Koiter (1970), Stein (1968), Budiansky 
(1974), Thompson and Hunt (1973), and Croll and Walker (1972). 

General Validity of Koiter's 1-Power and 1-Power Laws 

To analyze imperfection sensitivity in full generality, Koiter studied the asympto
tic form of a smooth potential-energy function ll(q, A, a) where a= small 
imperfection parameter and A= load parameter. This parameter may characterize 
either a single load (A= PI~) or a system of loads. As exemplified by Equations 
4.5.19, 4.5.28, 4.5.34, and 4.5.37, the polynomial approximation of function n 
for small q and a may in general be written in the form (Bahnt and Cedolin, 
1989): 

ll(q, A, a)= (c1 - a1 a)q + (c2- a2a)q2 + (c,. - a,.a)q" -Au 

u = b2(q2- a-2) + b4(q4- a 4) 
(4.6.1) 

where ch a1, c2, a2, c,., a,., b2 , b4, n =constants, and u =generalized 
displacement defined so that A.u would represent the work of loading. In our 
previous examples we saw that n = 3 for the asymmetric bifurcation and n = 4 for 
the symmetric bifurcation. Generally we will assume that n = 3 or 4. It may be 
checked by generalization of what follows that inclusion of terms with alq, 
alq2

, ••• would not change the result. The reason is that near the bifurcation 
a« q, so that alq « aq, alq2 « aq2

, etc. 
The condition of equilibrium is 

an ( ( n 1 3 aq = Ct- a1a + 2 c2 - a2a- b2A.)q + n c,.- a,.a)q - - 4b4A.q = 0 (4.6.2) 

and (according to Eq. 4.5.45) the condition of maximum load on the equilibrium 
path (i.e., critical load of an imperfect system) is 

a2n 
- 2 = 2(c2- a2a- b2A.) + n(n- 1)(c,.- a,.a)q"-2

- 12b4A.q2 = 0 (4.6.3) 
aq 

Since a=O, q =0 is an equilibrium state (anlaq =0), we must have c1 =0, and 
if this state is also the bifurcation point, the condition aznl aq2 = 0 (at a= q = 0) 
must reduce to A.= A.~. for the perfect system. This yields A.~.b2 = c2. We may 
always define A. so that A.~. = 1; then b2 = c2 and 1 - A. is small near the critical 
state of a perfect structure. For a single load, A = PI~ •. 

Consequently, Equations 4.6.2 and 4.6.3 can be put in the form: 

(1 + k3q2)-1
( 1- kt ~- kzq"-2

) =A 

(1 + 3k3q2)-1[1- (n - 1)k2q"-2
] =A 

(4.6.4) 

in which k 1 =a1/2c2 , k 2 =nc,.l2c2 , k3 =2b4lc2*-0 if n=4 and k3=0 if n=3. 
The case n = 3 follows from the fact that the terms in q2 are of higher order. 
Since the terms k 3q2 are small with respect to 1, one can set (1 + k3q2)-1 = 
[1- k3q2 + (k3q2)2- · · ·], (1 + 3k3q2)- 1 = [1- 3k3q2 + (3k3q2)2- · · ·] in Equa-
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tions 4.6.4. Then, multiplying the expressions on the left-hand sides, and 
neglecting higher-order terms, one gets 

A= 1- kt(~)- (k2 + k3)q"-2 

A= 1- [(n - 1)k2 + 3k3]q"-2 
(4.6.5) 

where k3 = 0 if n = 3 and k3 -:1= 0 if not. The derivation of Equations 4.6.5 took 
into account the fact that, if n = 4, the terms with q"-2 and q2 in the original 
equations may be combined. Eliminating A from Equations 4.6.5, one finds the 
values of q for the critical points of the imperfect column to be given by 
qcr=({k1/[(n-2)k2+2k3]}a)11<n-t>. Then substituting this into the second of 
Equations 4.6.5, one gets the following basic result: 

A=l-- m=--(a)m n-2 
a0 n-1 

(4.6.6) 

where ao = const. = [(n- 2)k2 + 2k3]kl1[(n- 1)k2 + 3k3r 1'm and A= Pmaxl ~.for 
the case of a single load. 

The smaller the exponent m, the stronger is the imperfection sensitivity. In 
particular, for n = 3 we have m = ~ (asymmetric bifurcation), and for n = 4 we 
have m = ~ (unstable symmetric bifurcation). These are the famous Koiter's 
~-power and ~-power laws, which we already illustrated and discussed in the 
preceding section (Eqs. 4.5.16 and 4.5.26; Figs. 4.21b, c, 4.22b, c, 
4.23b, d, 4.24b, d, and 4.26b, c). For the ~-power law the imperfection sensitivity 
is stronger than for the ~-power law. 

Equation 4.6.6, of course, makes sense only if a0 exists, that is, if k 1 + k3 > 0 
for n = 4 and if k 1k2 > 0 for n = 3. If not, it means that there is no solution for 
P max; this occurs either for the stable symmetric bifurcation (if n = 4) or for 
buckling to one of the sides (right or left) in the case of asymmetric bifurcation 
(n = 3). 

Equation 4.6.6 could also be extended to structures for which n > 4. 
Equation 4.6.6 represents the celebrated results of Koiter's dissertation, 

indicating the type of imperfection sensitivity. These results (which were derived 
here by a considerably simpler procedure than that presented before) apply to 
any elastic structure, not just frames. Briefly, these results may be summarized as 
follows (Koiter, 1945, sec. 4.5.5). 

If the equilibrium of the perfect system at the critical state is unstable and the 
instability is caused by an odd power n of q in the potential-energy expression, 
then the structure exhibits asymmetric bifurcation. If the instability is caused by 
an even power n of q, then the structure exhibits unstable symmetric bifurcation. 
Both cases involve imperfection sensitivity in which the maximum load rapidly 
decreases with increasing imperfection parameter a. The decrease of maximum 
load is stronger, the smaller the value of n; it happens only for one sign of a if n 
is odd and for both signs of a if n is even. 

Interaction of Buckling Modes 

Optimizing the weight of a structure from the viewpoint of the first critical load of 
the perfect structure usually produces a design for which the critical loads for 
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several buckling modes coincide. This causes interaction of buckling modes that 
leads to increased imperfection sensitivity, in which either the coefficient that 
multiplies a"' is increased or the exponent m is decreased. We will illustrate it by 
two examples. (For a general analysis see, e.g., Thompson and Hunt, 1973). 

Consider first Augusti's (1964) column shown in Figure 4.36a; see also 
Thompson and Hunt (1973, p. 242), Thompson and Supple (1973), Supple (1967), 
and Chilver (1967). It is a rigid free-standing column of length L, which can 
deflect in any spatial direction characterized by angles q 1, q2 with the vertical. It 
is supported by springs of stiffness C1 and C2. Initial imperfections are given by 
angles q1 = a 1 and q2 = a 2. Consider q1, q2, a~> a 2 to be small. Then the angles 
of the bar with x andy axes are approximately 90°- q1 and 000- q2 , respectively, 
and denoting as q, the angle of the bar with the z axis we have cos2 (900 - q 1) + 
cos2 (000- q2) + cos2 q, = 1. From this, cos q, = (1- sin2 q 1 - sin2 q2)

112
• The verti

cal displacement of the load is L(1- cos q, ). Therefore, the potential energy is 

ll(qt, q2, P, a)= !Ct(qt- at)2 + !C2(q2- a2)2 

- PL[1- (1 - sin2 q1 - sin2 q2)112
] 

from which, for the case a 1 = a 2 =a, 

n = UCtq~ + C2q~- PL(q~ + q~- fiq1- fiq~ + !q~qm 
- a(Ctqt + C2q2) 

(4.6.7) 

(4.6.8) 

because sin q = q - q3/6 and (1 + 6)112 = 1 + !6 - !62 if q and 6 are small. Setting 
ll.1 = 0, ll.2 = 0, and a= 0, we get the critical loads P.,rt = C1/ L and P.,r2 = C2/ L. 
If one critical load, say Pert• is much less than the other, one may assume q2 = 0, 
and the problem becomes identical to the one we already solved in Section 4.2 
(Fig. 4.3a). This problem is imperfection insensitive. 

The optimum design that takes into account only the critical load is obtained 
for C1 = C2 = C, Pert= P.,r2 =Per. Consider now this special case, in which the 
buckling modes q1 and q2 interact. The equilibrium equations are ll.1 = 0 and 
ll,2 = 0, and for the perfect column (a= 0) the condition of existence of a 

Figure 4.36 (a) Rigid free-standing column in space (Augusti's column, 1964}, and (b, c) 
its modifications. 
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nonzero solution of these homogeneous equations is found to require that 
q2 = ±q1• This means that the column buckles along the plane of symmetry, as 
might have been expected in view of the symmetry of the problem when Ct = C2 • 

When a1 = a 2 = a =I= 0, the buckling direction may be expected to be very 
close to or on the plane of symmetry ( q2 = q 1). Moreover, by writing out in detail 
the equations 0.1 = 0 and 0,2 = 0, which are nonlinear, we find they are 
symmetric and are satisfied by q2 = q1 = q, and one finds PL = C(1- a/q)(1 + 
q3 /3). By the physical nature of the problem, this solution should be unique. This 
justifies that, for a =I= 0, we may set q1 = q2 = q in Equation 4.6.8, which furnishes 

(4.6.9) 

At maximum load we must have D,qq = 0, which yields q2 =Perl P -1 where 
Per= c I L. Equilibrium requires that ll,q = 0, which yields the relation Per( q -
a)= P(q + q3/3). Substituting Per= P(1 + q2

), this relation becomes q3
- a

aq2 = q3 /3. Here the term aq2 may be neglected, being higher-order small, and 
so q2 = (3a/2)213 at P = Pmax· Recalling that q2 = Perl P - 1, we thus obtain the 
result 

Pmax = 1- (~ a)213 
Per 2 

(4.6.10) 

This is again the ~-power law. For initial angle a= 0.01, the drop of maximum 
load is by 6.1 percent. 

Now the important phenomenon to note is that interaction of buckling modes 
q1 and q2 conspires to produce imperfection sensitivity although each mode 
taking place alone exhibits no imperfection sensitivity, as we recall from Equation 
4.5.7 and Figure 4.20c. Such an increase of sensitivity to imperfections is typical 
when critical loads coincide and modes interact. 

As another example, let us look at the reticulated (lattice) strut (built-up 
column) shown in Figure 4.37 (Koiter and Kuiken, 1971; Thompson and Hunt, 
1973, p. 277). The longitudinal bars (flanges), distance 2b apart, have axial 

a)Local b)Giobal c)Compound d) 

~ 

p 

t 
Fipre 4.37 Reticulated (lattice) strut buckling according to (a) local, (b) global, and (c) 
compound modes; (d) plot of maximum load P versus ratio between global and local 
critical loads. 
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stiffness EA1 and bending stiffness Eft. The bracing is pin-jointed but the flanges 
are continuous through the joints. We may distinguish two basic buckling modes: 
local and global; see Figure 4.37. The flange deflection for these modes and the 
initial imperfection may be assumed as 

• 1CX 
Wt =q1 sm

a 
• !CX 

.zo=aasm
a 

(4.6.11) 

where q 1, q2 =modal amplitudes, a= imperfection parameter, L =strut length, 
and a = length of each bracing cell. The load on the strut is 2P, causing axial 
force P in each flange. In the local mode (Fig. 4.37a) the flange may be 
considered to buckle as an infinite continuous beam of spans a, in a sinusoidal 
curve with zero bending moments (inflection points) at the joints. Thus, the local 
and global critical loads are 

1C2 

PL=--zEI, 
a 

(4.6.12) 

Consider first the local buckling alone (q2 = 0), which is equivalent to an 
Euler column of length a. According to the magnification factor (Eq. 1.5.10), 
aa + q 1 = aal(1- PI PL), that is, q1 = aaP /(PL- P), and so the axial displace
ment u1 per length a is 

1 La ' ' 2 '2] 1f
2 

2 n
2
aZaP(2PL- P) 

u1 =:z 
0 

[(z0 +w1) -z0 dx=4a(q 1 +2q1aa)= 4(PL-P)2 (4.6.13) 

The lateral deflection w1 increases the axial compliance of the flange to the 
following value: 

(4.6.14) 

Now, taking simultaneous global buckling into account, load 2P on the strut 
with nonzero w2 can be approximately taken as the Euler load of a column with 
bending stiffness 2b2EAi- Therefore 2P=2b2EAin2IL2

• Substituting Equation 
4.6.14 we get the relation 

1 PL L2a2 

'):- Pa = 2b2(1- Al (4.6.15) 

If PL < Pa (but close to P0 ) and A is close to 1, the left-hand side of this equation 
is approximately 1- Pd P0 , and solving for 1 -A we get 

( 
p )112 

where a0 = Vlk 1 1- p: , b ,, 
kt =-=- (4.6.16) 

L a 

where we introduced the radius of gyration of the flange r1 = (11 I A1 )
112, and took 

into account the fact that the present analysis is made only for PL close to Pa for 
which r]A11a2 =Ath21 L2

, that is, r11a = bl L (which means the slenderness of the 
flange and of the strut are nearly equal). If PL = P0 , and A is close to 1, the 
left-hand side of Equation 4.6.15 is approximately 1- A, and so we get 

where a 1 =Vi kt (4.6.17) 
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If PL > Pa (but close to Pa) and P is close to Pa, we may substitute 
1- A= 1- Pa!PL and obtain from Equation 4.6.15 

~= 1- (..!)2 
Pa a2 

(4.6.18) 

The typical plot of maximum load P versus P a! PL for a strut of the same cross 
section is shown in Figure 4.37d. For PL > Pa (but close to Pa). the reticulated 
strut has a mild imperfection sensitivity, characterized by exponent 2. For PL < Pa 
(but close to Pa), the strut has a strong imperfection sensitivity, characterized by 
exponent 1. For PL = Pa, that is, when the local and global critical loads coincide, 
the strut has a severe imperfection sensitivity, characterized by exponent ! . In 
this case, which represents the optimum design based on critical load alone, the 
drop of maximum load for a= 0.01 and L/2b = 20 is 53 percent. This is a very 
large loss of capacity indeed! 

From the foregoing analysis it is, of course, not clear whether the approxima
tions made have been of a sufficiently high order, in particular, whether the uses 
of sinusoidal deflection curves in Equations 4.6.11 of w2 , of the magnification 
factor in Equation 4.6.13, and of the global critical load based on EAi have been 
sufficiently accurate. Comparison with the complete analysis made by Koiter and 
Kuiken (1971), however, indicates that the results are correct, and therefore the 
accuracy of these approximations has been sufficient. In other problems, if there 
is uncertainty about the sufficiency of the order of approximation, one should 
preferably use Koiter's general method for compound bifurcation (branching) 
points. This method is based on the potential-energy expression and utilizes 
orthogonalized buckling modes (cf. Eqs. 4.3.18 and 4.3.19), but is considerably 
more involved than the analysis just presented. 

In the present context, it may be noted that some codes (e.g., Italian) impose 
a maximum slenderness Am of the members in the built-up columns; for example, 
Am :5 50 for Figure 4.40. It so happens that this is enough to avoid the drop of 
critical load due to interactive buckling. 

Problems of mode interaction abound for thin-wall structures. Some are not 
imperfection sensitive, for example, the buckling modes of web-stiffening ribs and 
the rib-stiffened plate as a whole (Fig. 4.38). Usually however, mode interaction 
causes severe imperfection sensitivity. In most cases, it is naive to optimize the 
design of such structures so that the local and global critical loads are the same or 
close (this is called naive optimization). Such situations were identified to have 
been significant contributing factors of several collapses in steel box-girder 
bridges (see, e.g., Dowling, 1975). 

Koiter's theory is further discussed in Section 7. 7. 

Problems 

4.6.1 Without referring to the text, discuss imperfection sensitivity diagrams for 
various types of buckling. 

4.6.2 Analyze imperfection sensitivity for n according to Equation 4.6.1 with 
n=5. 

4.6.3 Knowing that q2 = q 1 = q, Augusti's column for large deflection can easily 
be solved exactly. In that case it is better to use the angle q, of the bar with the 
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Fipre 4.38 Local and global buckling modes of web-stiffening ribs and rib-stiffened 
plates. 

vertical axis, and, instead of Equation 4.6.7, we may write (exactly) 
TI = C(q- a)2

- PL(l- cost/>), in which tan t/> =Vi. tan q. 
4.6.4 Analyze interaction of modes qt> q2 and imperfection sensitivity for the 

three-dimensional buckling of the columns in Figure 4.36b, c, which represent 
generalizations of the two-dimensional columns in Figures 4.21 and 4.22 and 
are modifications of Augusti's column. 

4.6.5 Analyze buckling mode interaction and imperfection sensitivity for the 
reticulated struts in Figure 4.39a, b for P0 < PL, P0 = PL, and P0 >PL. 

Fipre 4.39 Reticulated trusses; Exercise problems on interaction of buckling modes. 

4.6.6 Analyze interaction of the shear and bending modes for Figure 4.40. This 
structure approximates either a built-up column with plates or a tall building 
frame. Pay particular attention to the case when the critical loads for the shear 
and bending modes coincide (which would represent a naive optimum design). 
Solve it by a smeared, continuum approach (valid for large L/a), which is 
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a) b) Shear c )Bending d) Combined 

2P 2P 

~ 

Figure 4.40 Battened column: Exercise problem on interaction of buckling modes. 

equivalent to a column with shear or a sandwich plate, which we treated in 
Section 1. 7, but at small deflections only. 

4.6.7 Calculate the potential-energy polynomial ll(q 11 q2 , P, a) for the reticu
lated strut in Figure 4.37 making the same order of approximations as we did 
in Equations 4.6.13 to 4.6.15. Repeat it for Figures 4.39 and 4.40. 

4.6.8 Analyze load-deflection paths and stability of Bergan's truss (Bergan, 1979, 
1982); see Figure 4.41. This structure, which has two degrees of freedom, 
exhibits both bifurcation and snapthrough, and for a certain combination of 
spring stiffnesses both can occur simultaneously. As a generalization, the 
lateral spring may be nonlinear. 

Figure 4.41 Exercise problem on Bergan's truss. 

4.7 CATASTROPHE THEORY AND BREAKDOWN OF SYMMETRY 
In the preceding sections we have seen that the type of elastic instability is 
completely determined by the form of the potential-energy function. In fact, what 
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matters are the basic topological characteristics of the potential surface. This is 
the viewpoint taken in catastrophe theory. 

This theory, developed by Thorn (1975), Zeeman (1977), Poston and Stewart 
(1978), Smale (1967), Arnold (1963, 1972), Andronov and Pontryagin (1937), and 
others, classifies instabilities, called more generally catastrophes, from a strictly 
qualitative viewpoint. It seeks to identify properties that are common to various 
catastrophes known in the fields of structural mechanics, astrophysics, atomic 
lattice theory, hydrodynamics, phase transitions, biological reactions, psychology 
of aggression, spacecraft control, population dynamics, prey-predator ecology, 
neural activity of brain, economics, etc. Simply, the theory deals with the basic 
mathematical aspects common to all these problems. 

As shown by Thorn (1975), the number of possible types of instability is 
determined by the number of essential parameters that can be independently 
controlled, such as the loads (called the active control parameters) or imperfec
tion magnitudes (called the passive control parameters). If there is only a single 
control parameter A, we can observe only one type of catastrophe called the fold. 
In buckling it can take the form of either snapthrough (limit-point instability) or 
asymmetric bifurcation, for which the typical potential surfaces for problems with 
one generalized displacement q are shown in Figure 4.42a, b and the equilibrium 
curves are shown in Figure 4.44. If there are two independent control parameters 
A1 and ~. for example, the load P and the imperfection magnitude a, we can 
observe not only the fold catastrophe (Fig. 4.44), but also another type of 
catastrophe called the cusp, which corresponds to the symmetric bifurcations (see 

a) Sn•pthrough 
( limit point) 

n 

b) Asymmetric 
bifurcation 

(perfect column 
a•O) 

i" 

q 

2 

Figure 4A2 Surface O(q, .\)with fold catastrophes. 
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Fig. 4.43 and 4.45). If there are three independent control parameters, we can, in 
addition, observe three more catastrophes called the swallowtail, the hyperbolic 
umbilic, and the elliptic umbilic. 

Using topological concepts, Thorn (1975) proved a remarkable property: For 
systems with only one control parameter, one can observe only one type of 
catastrophe; for systems vvith up to two control parameters, one can observe only 
two types of catastrophes; for systems with up to three control parameters, one 
can observe only five types of catastrophes; and for systems with up to four 
control parameters, one can observe at most seven types of catastrophes. These 
catastrophes, listed in Table 4.7.1, are called elementary. Those with up to three 
control parameters have already been mentioned, and those with four independ
ent control parameters include the butterfly and the parabolic umbilic. 

The potential functions for the elementary catastrophes can be reduced by 
coordinate transformations to the basic forms listed in Table 4.7.1. This table also 
lists one additional catastrophe, the double cusp, which has eight control 
parameters and has been identified in various buckling problems with interacting 
modes. The practical advantage of the classification of instabilities is that their 
analysis can be systematized and the entire behavior near the critical state 
understood as soon as the potential-energy function is formulated. 

a) Stable 
SJ(mmetric 
bofurcation 

b) Unstable 
symmetric 
bifurcation 

q 

Figure 4.43 Surfaces II(q, A) with cusp catastrophes at point A. 
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Figure 4.44 Asymmetric bifurcation: equilibrium curves q(A) for fold catastrophes at 
various values of imperfection a (the surface is quadratic near P.,..-a hyperbolic 
paraboloid). 

Note that the first four catastrophes in Table 4.7.1 involve only one variable 
q, representing the amplitude of the buckling mode. The remaining three 
elementary catastrophes have two independent variables q1 and q2 (generalized 
coordinates), representing the amplitudes of two interacting buckling modes. 
Generally the greater the number of independently controlled parameters, the 
more pathologic the type of instability can get. The equilibrium surfaces for the 
higher-order catastrophes are quite complicated, as we see from the example of a 
hyperbolic umbilic in Figure 4.46 adapted from Thompson and Hunt (1984, 
p.129). 

Interaction of simultaneous buckling modes is the feature that produces the 
more complicated types of catastrophes (instabilities) numbered 5-8 in Table 
4. 7 .1. Two examples of such interactions have already been given in Section 4.6. 
As other examples, mode interaction arises when the flanges of a column buckle 
at the same critical load as the column as a whole; or when the critical loads for 
the overall buckling of a rib-stiffened panel and for the local buckling of either 
the plate panels or the ribs happen to coincide (Byskov and Hutchinson, 1977; 
Thompson and Hunt 1977, 1984; Thompson, 1982; Hunt 1983), see Figure 4.38; 
or when the stiffness of a beam on an elastic foundation and the foundation 
modulus are such that the critical loads for such buckling modes coincide 
(Hansen, 1977; Wicks, 1987); or when the web of a box girder buckles at the 
same critical load as the top plate or the box overall. 

As already noted in Section 4.6, optimum design in which the structure has 
the minimum possible weight to resist the lowest critical load typically leads to 
interaction of simultaneous buckling modes. Such optimum designs were labeled 
naive (Koiter and Skaloud, 1963; Thompson, 1969; Tvergaard, 1973; Thompson 
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Figure 4.45 Equilibrium surfaces q(A.11 ~) for cusp catastrophes showing contours of 
constant imperfection a and lines of critical states (the surface is cubic near~). 

and Hunt, 1973) because they are not really optimum as the interaction of 
simultaneous buckling modes is found to increase the imperfection sensitivity, 
often to a high degree. For the double cusp catastrophe, this was documented by 
Hui's (1986) analysis of beams on nonlinear elastic foundations (see also Wicks, 
1987). The optimum design should have sufficiently different critical loads for 
various modes. Otherwise, optimization produces severe imperfection sensitivity, 
which has been a contributing factor in some failures of box girder bridges. 

Interaction of many simultaneous buckling modes that have the same or 
nearly the same critical load is typical for compressed cylindrical or spherical 
shells and is the source of their enormous imperfection sensitivity. In some 
structures, however, for example, rib-stiffened plates, interaction of buckling 
modes need not cause imperfection sensitivity (Magnus and Poston 1977). 



Table 4.7.1 Seven Elementary Catastrophes (Thorn, 1975; Zeeman, 1977) Having Up to Four Control Parameters, and One Catastrophe 
with More Parameters 

No. of 
Type of Control No. of 
Catastrophe Parameters Variables Potential-Energy Expression 

(1) Fold 1 1 q3+Aq 

(2) Cusp 2 1 q4 + A2q2 + A1q 

(3) Swallowtail 3 1 qs + A3q3 + A2q2 + Atq } 

(4) Butterfly 4 1 q6 + A4q4 + A2q3 + A2q2 + Atq 

(5) Hyperbolic 3 2 q~ + q~ + A1q2q1- A2q2- A3q1 
umbilic 

( 6) Elliptic 3 2 q~- 3q2q~ + AJ(q~ + qD- A2q2- A3q1 
umbilic 

(7) Parabolic 4 2 q~~ + q1 + Atq~ + A2q~- A3q2- A4qt 
umbilic 

(8) Double cusp 8 2 q1 + q~ + Atq~q~ + A2(q~ + 2q~q2) 

+ A3(q~ + 2qtq~) + A4q: + Asq~ 

+A6qtq2+A,qt +Asq2 

"Thompson and Hunt (1977, 1984), Thompson (1982); Hunt (1983). 
b Hui and Hansen (1980 and 1981). 
cHansen (lm). 
d Byskov and Hutchinson (1977). 
• Magnus and Poston (1977). 
,Poston and Stewart (1978) 
'Sridharan (1983). 
h Hui (1984). 
; Hui (1986). 

Structural Instability 

Limit point (snapthrough), 
asymmetric bifurcation 

Stable symmetric bifurcation, 
unstable symmetric bifurcation 

Beams on nonlinear elastic 
foundationc 

Rib-stiffened plate, • 
beam on elastic foundationc 

Beam on quadratic 
Interaction of foundationc 
simultaneous 

Pressurized shallow spherical shell, b buckling 
plate on elastic foundationb modes 
Nonlinear beams on elastic foundation,; qt and q2 
stiffened cylindrical shells,d 
compressed plates, e,f thin-wall 
angle columnsh 
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p 

Figure 4.46 Equilibrium surface P(A.., A.2) for hyperbolic umbilic catastrophe. (From 
Elastic Instability Phenomena, by J. M. T. Thompson and G. W. Hunt, copyright 1984, 
John Wiley and Sons. Reprinted by permission of John Wiley and Sons, Ltd.). 

The term elementary means that the potential function has been reduced to its 
most elementary form that retains the essential qualitative features of the 
catastrophe. Thus, merely adding various higher-order terms in q, qlt q2 , A, or A; 
to the expressions in Table 4.7.1 does not cause different behavior. For example, 
it has been shown that the control parameters need to appear in the potential 
function only linearly. This tells us, for example, that it was legitimate to delete 
the terms with cr and a 4 from Equations 4.6.1. Likewise, for n = 3 Table 4.7.1 
(line 1) indicates the fold catastrophe and shows that it would have been 
legitimate to set c1 = c2 = a2 = a3 = b2 = b4 = 0. For n = 4, Table 4.7.1 (line 2) 
indicates the cusp catastrophe and shows that it would have been legitimate to set 
c 1 = a2 = a4 = 0. The fact that these parameters are nonessential can be proven by 
certain topological concepts called determinacy and unfolding (Poston and 
Stewart, 1978), applied to the surface of equilibrium states in the space of control 
parameters (A1, ~ •••• ). Considerations of determinacy decide which terms in q, 
qlt q2 are needed and which can be omitted. Considerations of unfolding do the 
same for the control parameters, thus reducing the stability problem to its 
simplest form, with the minimum possible number of control parameters. 

As an elementary illustration of topological arguments in stability, let us show 
a topological proof of the following theorem (Thompson, 1970): An initially 
stable equilibrium path P(q) rising monotonically with the load becomes unstable 
if and only if it (1) intersects another equilibrium path (bifurcation) or (2) attains 
a horizontal tangent (limit point, snapthrough). Graphically, this theorem 
prohibits the situation shown in Figure 4.47c. 

To give a proof, following Thompson (1970) we consider the plane (P, q) 
where, by definition, the values of II,q are zero for the points on the equilibrium 
path. If the states on this path are stable, II,q is negative to the left of the path 
and positive to the right of the path, as shown in Figure 4.47. First assume that 
curve P(q) is always rising (Fig. 4.47a). If the path becomes unstable at some 
point such as B, and P(q) is still rising, then Il,q must be positive on the left and 
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negative on the right of the path. Obviously, between 0 and B there must be a 
point A, where the n.q values on the left switch from negative to positive and 
those on the right switch from positive to negative. Since n.q changes con
tinuously, we must have n.q = 0 at all points where n.q changes its sign, that is, 
those points must be equilibrium states. Planar topology now requires that the 
regions of positive and negative signs on each side must be separated by a curve, 
such as CAD in Figure 4.47, at which the sign switch takes place. This curve is an 
interacting equilibrium path. 

If curve P(q) is not always rising but reaches a limit point F, after which it 
descends, it is clear from Figure 4.47 that ll.q must be positive on the left of the 
descending segment FG and negative on the right. Indeed, if the opposite were 
true, that is, the signs of ll,q on each side of the curve switched, the regions of 
positive and negative signs on each side would have to be separated by a curve 
where ll,q = 0, that is, another equilibrium path would have to intersect, which is 
the case we already examined. 

From a mathematical viewpoint, the most fundamental characteristic of 
bifurcation of solutions is the breakdown of symmetry. For example, the perfect 
pin-ended column is in a symmetric state since it can deflect either left or right. If, 
after bifurcation, the column is deflected to the right, it can no longer deflect to 
the left and so its symmetry has broken down. 

Since bifurcation-type stability problems always represent some type of a 
breakdown of symmetry, bifurcation and stability analysis may be avoided if the 
symmetry is deliberately destroyed by introducing prescribed imperfections. This 
approach is applicable not only to elastic systems but also to inelastic systems (see 
Sees. 8.2, 8.4, and 8.5). The advantage is that for a slightly imperfect system one 
has no bifurcation, and if the imperfection tends to zero the path of the imperfect 
(nonsymmetric) system approaches the stable path of the perfect (symmetric) 
system. The disadvantage is that imperfect (nonsymmetric) systems are usually 
much harder to analyze (e.g., for elastic shells, or for inelastic structures--see 
Sees. 8.2, 8.4, and 8.5) and their analysis does not yield simple basic properties of 
the structural system, such as the bifurcation load. 

Despite the intent of catastrophe theory to be most general, its formulation 
has so far been limited to reversible systems for which a smooth potential-energy 
surface exists. To be really general, the catastrophe theory needs to be extended 
to irreversible systems, such as inelastic structures (Chaps. 8-13), for which one 
must apply more general thermodynamic stability criteria. Such criteria cor
respond to maximization on surfaces with curvature discontinuities, which 
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represent the increment of internal entropy but do not constitute a potential in 
the mathematical sense (i.e., with the attribute of path independence except in 
the small). 

Problems 

4.7.1 Without referring to the text, indicate the forms of potential-energy 
function that govern the field and cusp catastrophies and give examples for 
elastic structures. 

4. 7.2 Set up the potential-energy expression for n for the column with a 
horizontal spring on top, Figure 4.21. If impedection a is not a control 
parameter but is given, say a= 0.01, what type of catastrophe occurs, and at 
what values of q and P? 

4.7.3 Setting up the potential-energy expression for the rigid column with a 
horizontal spring on top shown Figure 4.21, decide which type of catastrophe 
takes place. Alternatively, do it for the columns in Figures 4.20 and 4.22. 

4. 7.4 Formulate the potential-energy expression up to quartic terms for the 
reticulated strut in Figure 4.37, and comparing it to the expressions in Table 
4.7.1 decide which type of catastrophe takes place. Also discuss which, if any, 
terms can be omitted. 

4.8 SNAPDOWN AT DISPlACEMENT-CONTROLLED LOADING 

Loads are often applied on structures as reactions to prescribed displacements. 
Such types of loading may be called the displacement-controlled loading. An 
example is the loading of a specimen in a typical laboratory testing machine. If 
the machine is much stiffer than the specimen, and if the movement of the 
loading crosshead is prescribed, the specimen is loaded essentially in a 
displacement-controlled manner. 

It seems plausible that the structure is always stable when the displacements 
are prescribed. This is certainly true for the von Mises truss (Fig. 4.14a), as well 
as all structures with a single degree of freedom. However, for a structure with 
n degrees of freedom, stability is guaranteed only if all the displacements 
q~> ... , qn are prescribed. If only one of them is prescribed, a state that would be 
unstable under load control may or may not be stabilized. 

Structures with Two Degrees of Freedom 

To illustrate the problem (following Batant, 1985), consider again the von Mises 
truss. However, the truss is not loaded directly but through a spring of stiffness C, 
as shown in Figure 4.48. The load-point displacement, denoted as q2 , is assumed 
to be small, and so is the initial angle a. Extension of the spring then is 
q2 - L(q1 - a). The strain energy of the spring must now be added to that we 
previously figured out for the von Mises truss (Eq. 4.4.6). Thus, the potential 
energy of the entire structure is 

EAL 2 -2)2 C[ )2 TI=-
4
-(qt-a +2 q2-L(a-qt) -Pq2 (4.8.1) 
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Figure 4.48 (a) Spring-loaded von Mises truss, and (b, c) graphic construction of 
load-displacement curve. 

The equilibrium conditions are 

ll, 1 = EAL(q~- a-2)q1 + CL[q2- L(a- q1)] = 0 

n.2= C[q2- L(a-qt)]- P =O 

(4.8.2) 

(4.8.3) 

Multiplying Equation 4.8.3 by L and adding it to Equation 4.8.2, we find that the 
equilibrium path may be described as a function of only one variable, q 1: 

P = EA(a2
- qDqt (4.8.4) 

This equation is the same as before (Eq. 4.4.7). However, q 1 is not the 
work-associated quantity for P. Rather, the work-associated quantity is q2 , whose 
relation to q1 (resulting from Eq. 4.8.3) is q2 =PIC+ L(a- q 1). Substituting in 
Equation 4.8.4, we find that the dependence of load P on load-point displacement 
q2 is 

(4.8.5) 

This equation represents a cubic equation in both P and q2 • The plots of the 
function P(q2) are shown in Figure 4.48c for various values of spring stiffness C 
at fixed EA, a, and L. These curves look different from what we have seen so 
far-for small enough values of C, the displacement growth reverses and the 
curve turns back with a positive slope-a phenomenon known as the snapback. 

The shapes of the equilibrium curves P(q2) may be more easily figured out 
graphically. Since the truss and the spring are coupled in series, they are both 
under the same load P and their deformations are added. Therefore, for any 
given P value one needs to add the corresponding q 1 value for the truss and the 
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spring displacement PIC. As illustrated in Figure 4.48b, c, this amounts to adding 
the horizontal segments a and b on the same horizontal line. This construction 
displaces the peak to the right but the points of intersection with the q2 axis do 
not displace. So the slopes of both the rising segment and the snapback become 
smaller, while the softening segment becomes steeper. The snapback happens 
only if C is smaller than a certain limit value C, that corresponds to a vertical 
tangent at q 1 = 0. From the condition (aPiaq2)-oo or (aq2laP) =0 at q 1 = 0 we 
get C = C1 = crEAl L. (The reversal of softening to a positive slope is typical of 
many stability problems, especially in the mechanics of distributed cracking; 
Chap. 13.) 

Let us now examine stability of the equilibrium paths. First consider that the 
load P is controlled, in which case we have two independent kinematic variables, 
q1 and q2• Since I1,22 = C > 0, stability is completely decided by the determinant 
D = I1,11I1,22 - 0~12 (the subscripts preceded by a comma denote derivatives, 
e.g., I1,12 = a2UI aq 1 aq2). From Equations 4.8.2 and 4.8.3 we calculate 

{
>0 

D = CEAL(3q~- cr) =0 
<0 

(stable) 

(critical) 

(unstable) 

(4.8.6) 

This is the same condition we found before for small a (see Eq. 4.4.8), and so, 
same as before, the limit points (the maximum and minimum points) of the 
curves P(q1) as well as P(q2 ) in Figure 4.48b, c represent the critical states, and 
the segment of each path between the maximum and the minimum (having a 
negative slope) is unstable while the rest of each path is stable. See also Figure 
4.49a. 

Second, consider that displacement q2 is controlled. Then q2 becomes a 
parameter, P is the reaction, and we are left with only one kinematic variable 
-displacement q11 which represents an internal displacement (internal kinematic 
variable) ofthe system. So the stability condition now is I1,11 > 0. 

Looking at it in another way, we may consider the general expression for the 
second variation 2 ~20 = I1, 11 ~q~ + 20, 12 ~q 1 ~q2 + I1,22 ~q~ and substitute in it 
~q2 = 0 (since ~q2 cannot be arbitrarily varied if the displacement q2 is 
controlled). This yields 2 ~20 = I1,11 ~qt showing again that the condition 
~20 > 0 reduces to n,ll > 0. 

From Equation 4.8.2 we get 

~ = EAL(3q~- cr) + CL2 =0 
cf {>0 
aql <O 

(stable) 

(critical) 

(unstable) 

(4.8.7) 

It is interesting to compare this condition with the condition aq2 l ap = 0. 
Differentiating Equation 4.8.5 with respect to P, and then solving for aq2 l aP, we 
obtain exactly the same condition as Equations 4.8. 7 for the critical state. 
Therefore, the critical states are the points of vertical tangent on the load
deflection path in Figure 4.48b. 

In Figure 4.49c, these critical points are projected onto the curve P(q 1). We 
see that the critical points are pushed away from the limit points of the curve 
P(q1), and the unstable portion of the equilibrium path becomes smaller. Thus, 
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Figure 4.49 (a-c) Stable and unstable segments of equilibrium paths; (d) variation of 
potential energy at constant P; (e) graphic construction of the critical points. 

displacement control has a stabilizing influence, as naturally expected. This 
example nevertheless teaches us that a displacement-controlled elastic system 
does not always have to be stable. 

The fact that the points of vertical tangent of the diagram P(q2) represent 
critical states is obvious even without consideration of energy. These points must 
be at the stability limit because there exist adjacent (infinitely close) equilibrium 
states with the same value of the control variable q2• However, the fact that the 
portion of the equilibrium path between the critical points is unstable and the rest 
of it is stable is fundamentally justified on the basis of potential energy. This fact 
is not obvious intuitively, since segment 23 of the path in Figure 4.49b has a 
positive slope. We see that under controlled displacement the equilibrium path of 
positive slope may be either stable or unstable-a point to note. 
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Figure 4.49d illustrates how the potential-energy change ~n with respect to 
the equilibrium state varies in the vicinity of the equilibrium state. Since q2 is 
controlled, it cannot vary freely, and so the nonequilibrium positions adjacent to 
those on the equilibrium curve can differ only by displacement q1 • Therefore, ~n 
can vary only as a function of q1, at fixed q2• The ~ll-plots with convex curvature 
are characteristic of the stable points on the equilibrium states, and those with 
concave curvature are characteristic of the unstable points (Fig. 4.49d). Realize 
that on all these plots of ~n versus q 1 only one point, namely that on the 
equilibrium curve, is an equilibrium state, while the other ones are not. It should 
be kept in mind that the principle of minimum potential energy n compares 
states of different deflection at the same load, and the equilibrium (stable) is that 
state for which ll is stationary (minimum). Therefore, determination of min n 
does not involve any differentiation of P (P = const.). 

When we are calculating the equilibrium path P(q2), we are looking for 
equilibrium states at various fixed values of P; but again minimization of n at 
constant P is implied at each load level (load value). Thus we have an infinite 
number of minimization problems for n for all values of P. 

Figure 4.49e illustrates a graphic construction of the critical points. The plot of 
the second derivative ll,11 versus q 1 is a parabola, and the critical points are 
obtained, according to Equations 4.8. 7, as the intersections with the horizontal 
line of ordinate CL2

• Where the parabola is below this line, the system is 
unstable. If C = 0 (the limiting case of no spring), the equilibrium path reduces to 
that which we found before for the von Mises truss. If C > C1 = EA a 2 I L, the 
parabola is always above the line, and the system is always stable (under 
displacement control). For C-oo, that is, an infinitely stiff spring, the system is 
always stable. This is also evident from the fact that L(a- q 1) = q2 , indicating 
that, in effect, displacement q 1 is controlled. 

As the structure is loaded under controlled q2 , the load P (actually a 
reaction) varies in a smooth equilibrium manner until point 2 (Fig. 4.50a) of the 
vertical tangent is reached. As the displacement q2 is further increased by an 
infinitesimal amount, there is no equilibrium state possible in the immediate 
vicinity of point 2. So, rather than pursuing the snapback curve, the structure 
must snap rapidly down to point 4 on the second stable branch-a phenomenon 
that may be generally called the snapdown. 

The vertical downward path from point 2 to point 4 (Fig. 4.50a), of course, 
cannot be an equilibrium path, and inertia forces will be present. Imagine that the 
mass m of the system is concentrated just under the hinge of the truss (Fig. 
4.50d). During the snapdown, the force P2 = P in the spring, which is related to 
relative spring displacement linearly (Fig. 4.50c), is also represented by the 
dotted line in the diagram (Fig. 4.50b) of the force on the hinge of the von Mises 
truss, denoted as Ph versus hinge displacement u1• The force difference P- P1 

will act on the mass m, imparting to it the kinetic energy W = J (P- P1) du 1 = 
J milt du1 = J milt lit dt = J Omu~f dt = !mu~. At point 4, W is exactly equal to 
the cross-hatched area 2342 in Figure 4.50b. It is also equal, due to the way the 
diagram in Figure 4.50a is constructed, to the cross-hatched area 2342 in Figure 
4.50a. During snapdown along path 24 the velocity of mass m increases; then the 
mass swings beyond point 4, is decelerated, and continues to oscillate about point 
4 at constant q2• Due to inevitable damping, the oscillation eventually ceases, and 
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Figure 4.SO (a) Snapdown at controlled displacement q2 ; (b-e) force-displacement 
diagrams for von Mises truss and spring; (d) system with concentrated point mass; (e) 
snapdown path; (f) snapdown path with no energy change. 

the system finds new equilibrium at point 4. After point 4 in Figure 4.50a, the 
system follows the stable path 46 with increasing displacement q2 • 

On subsequent unloading, the system returns along the stable path 6453. As 
the displacement is decreased below that for point 3, there is no longer any 
equilibrium state adjacent to 3, and the system snaps dynamically up to point 7 on 
the first stable branch. After oscillations about point 7 cease due to damping, 
further unloading follows the stable equilibrium along path 70. 

Similar to snapthrough, the system exhibits hysteresis even though it is 
perfectly elastic . The energy dissipated during a cycle is equal to the area 72437 
and is dissipated due to inevitable damping of the dynamic motion. Note also that 
the softening segment 12 of the stable path cannot be reached at unloading from 
the opposite branch. However, if the loading reverses to unloading at a point of 
the segment 12, then, of course, unloading follows the softening segment 12. 
(This contrasts with the behavior of strain-softening materials, in which unloading 
is always irreversible. Otherwise, though, the behavior of such a structure is 
analogous to the stress-strain diagrams of strain-softening materials.) 
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If our system, under displacement control, receives an initial disturbance, for 
example, initial velocity, it may follow other snapdown paths as shown in Figure 
4.50e. There is one particular path for which there is no net energy loss; it is path 
89 in Figure 4.50f, for which the cross-hatched areas 8C2 and C93 are exactly 
equal. Along path 8C9 the structure first decelerates from its initial velocity at 
point 8, thus reducing its initial kinetic energy by an amount equal to area 8C2. 
Along path C9 the structure accelerates and ends at point 9 with exactly the same 
velocity as the initial velocity at point 8, and the same final kinetic energy 
(because areas 82C and C39 are equal). When a structure exhibiting snapdown 
instability constitutes a part of a larger structural system and when the analysis is 
static, then the path of the snapdown subsystem must be assumed to follow the 
straight vertical path 89 with equal areas on both sides, since for this ~th there is 
no energy change. Any other snapdown paths, and particularly path 24 of Figure 
4.50a, would not be admissible for static elastic analysis because energy 
dissipation would be implied while elastic analysis presupposes no energy 
dissipation. 

Softening Specimen in a Testing Machine 
Consider now the stability of a softening specimen or structure loaded in a testing 
machine. Assume that displacement qm is controlled (Fig. 4.5la) and that the 

b) 

c) d) 

p p 
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p 

Figure 4.51 (a) Softening structure and, as an example, (b) von Mises truss with added 
spring C1 loaded in a testing machine of stiffness C; responses under (c) load control and 
(d) displacement control; (e-g) graphical construction of load-displacement diagram. 
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spring stiffness C characterizes the stiffness of the machine frame. If the structure 
to be tested has a softening response (negative incremental stiffness) with regard 
to its displacement q" (Fig. 4.51a), a certain minimum stiffness of the machine 
frame is necessary for stability. As an example, assume that the specimen is a von 
Mises truss with a spring C1 (Fig. 4.51b). When C--+0 we have load control (Fig. 
4.51c), and when C--+ oo we have displacement control (Fig. 4.51d). 

To treat the intermediate case of finite C (that is, 0 < C < oo), we can have 
either of two approaches. The basic one is to include spring C with the original 
system, that is, consider the combined system of a von Mises truss with both 
springs as one system, in which case the two springs have an equivalent stiffness 
Ceq= 11(1IC1 + 1IC). In this case we have displacement control for the combined 
system, see Figure 4.51g. Another approach is to consider only the original 
system. In this case the critical state arises when the unloading displacement rate 
duldP of the original system offsets the unloading displacement rate of the spring 
d(v- u)ldP, because then dvldP = 0 for the combined system. Since d(v
u)ldP = 1IC, the critical state condition for the original system is duldP = -1IC, 
or 

dP =-C 
du 

(4.8.8) 

Thus the critical state may be found by drawing a tangent of slope -Cas shown 
in Figure 4.51e. As is clear from the graphic construction, the critical load Per 
obtained in this manner is of course the same as that obtained by drawing a 
vertical tangent to the diagram in Figure 4.51g for the combined system. 

The condition dPidu = -C, however, is correct only if the softening specimen 
cannot be further decomposed into a system consisting of a softening element 
plus a spring (cf. Sec. 13.2). 

Generalization of Snapdown Analysis 

Consider first an elastic structure with a single degree of freedom, q 1• The 
potential energy may be written as ll(q 1) = U(q1)- PW(q 1), where Pis the load, 
U =strain energy, and W =work per unit load; U and Ware functions of q~> 
independent of P. Equilibrium is characterized by the condition 0.1 = U. 1 -

P~ 1 = 0. Since this condition must be satisfied for all points of the equilibrium 
path ll(q1), the total derivative of 0.1 along the path must be zero, that is, 
dll.tfdq 1 = 0. Hence, U. 11 - P~ 11 - P_ 1 W. 1 = 0, or 0.11 - P_ 1 lV_ 1 = 0 (notation: 
n.u = ~n1 aqD. Thus we conclude that 

dP ~nlaq~ 
-= - (4.8.9) 
dq. awlaq. 

Normally aw I oq 1 does not change sign during the deformation process, and 
so q1 may always be defined so that aw I aq. is positive. Then stability is decided 
by the sign of ~nl aq~. So a single-degree-of-freedom structure is stable if and 
only if the slope of the equilibrium curve P(q1) is positive. If the slope is 
negative, the system is unstable. A horizontal slope indicates the critical state. 

Let us now generalize the analysis to an arbitrary elastic structure with two 
generalized displacements q1, q2 • If there is a single load P (or if there are 
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several loads that depend on a single parameter P), then the potential energy 
may be written as 

(4.8.10) 

Differentiating with respect to q1 and q2, we obtain the following equations for 
the equilibrium path: 

II,2 = U.2 - Plt:2 = 0 (4.8.11) 

Let us now relate these conditions to the equilibrium path P(q2), which we 
assume to be continuous and smooth, that is, without bifurcation. The partial 
derivatives II,12 and II,22 are generally nonzero; however the total derivatives 
dii.tfdq2 and dii,2/dq2 along the equilibrium path must be zero since Equations 
4.8.11 continue to be satisfied for all points of the path P(q2). Calculating the 
total derivative of a function according to the chain rule, that is, according to the 
rule dF(qt> q2, P)/dq2 = aFtaq2 + (aFtaq1)(dq.fdq2) + (aFtaP)(dP/dq2), we 
obtain from Equations 4.8.11: 

dii,l -
-d =II 12 +II uq1 2- W1P2 = 0 q2 . . . . . 

dii,2 -
dq

2 
= II,22 + ll,2tqt,2- ~2~2 = 0 

(4.8.12) 

in which q1,2 = dq 1/dq2 =derivative of q 1 with respect to q2 along the equilibrium 
path. Eliminating the derivative from the last two equations, we obtain the 
relation II,uii,22- ~12 = P,2(Jt:2II.n -Jt:1n,21), that is, 

dP det II·· ,IJ (4.8.13) 

Under load control, a necessary and sufficient condition of stability (Theorem 
4.1.10) is that both det ll.;i > 0 (i, j = 1, 2) and ll, 11 > 0. Either det II.;i = 0 or 
II, 11 = 0 indicates the critical state. Thus we conclude that if the load is controlled 
(i.e., if q2 can vary independently), then a stationary point on the equilibrium 
curve P(q2) (a point of horizontal tangent, dP/dq2 = 0) always indicates a critical 
state, and this critical state is associated with det II,;i = 0. (This condition was 
already demonstrated for a structure with two degrees of freedom treated in Sec. 
4.5.) 

Let us further assume P to be defined so that it is associated (or conjugate) 
with q2. This means that the work of load P (at constant P) is given by Pq2, that 
is, W = q2, as was the case in our preceding example. Then Jt:2 = 1 and Jt: 1 = 0, 
and Equation 4.8.13 reduces to 

dP detn .. -= ,IJ 

dq2 II,n 
(4.8.14) 

The stability conditions det II,;i > 0 and II, 11 > 0 in this case imply that if a 
load-controlled system with two degrees of freedom is stable, then dP I dq2 > 0. 
However, the condition dP/dq2>0 implies stability only if II, 11 >0 also. When 
does n.ll become negative? 
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To answer this question, consider that displacement q2 is controlled. So 
IT,11 > 0 is then both necessary and sufficient for stability. The displacement
controlled system becomes critical when IT,11 = 0, and according to Equation 
4.8.14 this happens when dP/dq2~oo, that is, at the snapdown point of the 
equilibrium curve P(q2 ) (point 2 in Fig. 4.50a), provided that det IT,;; does not 
vanish simultaneously. Thus, IT.11 can change sign only at the snapdown point. 
Also IT,11 must vary continuously and be positive at the start of loading 
(P = q2 = 0). So IT,11 must be positive up to the snapdown point and negative 
beyond it. Also, since the snapdown point cannot occur before the peak point, 
IT,11 must be positive from the origin up to the peak point. 

So we may conclude that for a two-degree-of-freedom structure a smooth 
equilibrium path without bifurcation is (1) stable up to the peak point (maximum 
point) and unstable after it if the load is controlled, and (2) stable up to the 
snapdown point and unstable after it if the displacement is controlled. Thus, the 
conditions of horizontal or vertical tangents may be used for determining the 
critical states under load or displacement control. This is shorter for calculation 
than the second derivatives of IT. 

Let us now extend our analysis to an arbitrary system with n degrees of 
freedom and one load (or load parameter) P. The potential energy may be 
written as 

IT(q1, ... , q") = U(qt> ... , q")- PW(ql1 ... , q") 

The equilibrium conditions are 

IT ·=U--PW-=0 ,I 1 1 1 1 (i=1, ... ,n) 

(4.8.15) 

(4.8.16) 

If displacement q" is controlled, the equilibrium path may be described as P(q") 
and q;(q"). If load Pis controlled, then the equilibrium path may be described as 
q"(P) and q;(qn)· Although the derivatives IT,;" are generally nonzero, the total 
derivative along the equilibrium path, diT,;/dq", must vanish since Equation 
4.8.16 must apply for all the values q". Hence, along the equilibrium path, 

" 
n,in = L IT,;jqj,n - w:i~n = 0 

j-1 
(i=1, ... ,n) 

Recognizing that q"·" = 1, these equations may be rewritten as 
n-1 
""' n ··q· = P w.- n . .LJ ,I.J J,n ,n ,1 ,1n (i = 1, ... , n- 1) 
j=1 

(4.8.17) 

(4.8.18) 

from which we have deleted the last equation for i = n. These equations represent 
a system of n- 1 linear algebraic equations for the unknowns q 1·"' 

q2·"' ••• , qn-l,n· By Kramer's rule, the solution of these equations may be 
expressed as 

1 n-1 
""' "+" -qj,n = -D L.J ( -1)' I a;;(~n W,;- IT,;n) 

(n-1) i=1 

(j = 1, ... , n -1) (4.8.19) 

in which D<n- 1> is the determinant of the system of equations (Eq. 4.8.18) and 
represents the principal minor of the n x n matrix IT,;; (illustrated by the cross 
hatching in Fig. 4.52a). The sum represents the determinant obtained when the 
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c) 

Figure 4.52 Determinant expansions into minors. 

jth column of matrix IT,;i is replaced by the right-hand sides of Equation 4.8.18. 
This determinant is expressed in Equation 4.8.19 by its expansion into minors li;i 

obtained from matrix IT,;i when the jth column and ith row are deleted (the 
cross-hatched subdeterminant pictured in Fig. 4.52b). 

Substituting now Equation 4.8.19 into Equation 4.8.18 written fori= n (i.e., 
the last of Eqs. 4.8.17) and solving the ensuing equation for P.n we obtain 

(4.8.20) 

in which we denoted 

(4.8.21) 

Now the right-hand side of Equation 4.8.20 is equal to the determinant 
D<n> = det n.ii since it represents the expansion of this determinant into minors 
according to the nth row (Fig. 4.52c). Hence, 

dP D<n> 
- =- (4.8.22) 
dqn A(n) 

If P and qn are associated (conjugate), then W = qn, and ~n = 1, ~; = 0 for all 
i =I= n, and also A<n> = D<n-1> =principal minor of matrix IT,;i (Fig. 4.52a). Then, 
along the equilibrium path, 

dP D<n> -=-- (4.8.23) 
dqn D(n-1) 

Under load control, D<n> > 0 and D<n-1> > 0 represent necessary (albeit 
insufficient) conditions of stability (sufficient if n ::s: 2). Therefore, the initial 
branch of the equilibrium path has a positive slope as long as the system is stable 
(Fig. 4.49a). The maximum point (with a horizontal tangent) represents the 
critical state. After the maximum point, the sign of either D<n> or D<n-1> must 
change, and so the negative slope of the equilibrium path P(qn) always implies 
instability. 

Under displacement control, however, D<n> is irrelevant for stability. Stability 
requires that only the principal minors D<1>, D<2>, ... , D<n- 1) be positive. A 
vertical tangent of the equilibrium path implies that D<n- 1> = 0 (assuming that 
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D<n> ::1: 0), and so under displacement control the equilibrium path does not 
become unstable until a point of vertical downward slope is reached (Fig. 4.49b). 
This conclusion in general legitimizes the determination of stability from the 
equilibrium path and makes it unnecessary to calculate the matrix of second 
derivatives of the potential energy. 

Note that D<n> becomes negative at the maximum point, and it cannot change 
sign again because it would imply a horizontal tangent (provided D<n> varies 
continuously). Also note that D<n-I) becomes negative at the point of vertical 
downward slope. For these reasons the snapback segment that follows the point 
of vertical downward slope is unstable, even though the slope of the load
deflection curve is positive. This is an important conclusion, which is not 
intuitively obvious. 

To sum up, instability can occur not only under load control but also under 
displacement control when there are other uncontrolled displacements that can 
cause instability. Calculation of the matrix of the second variation of the potential 
energy can be bypassed by determining stability from the slope and shape of the 
equilibrium path. If there are no more than two kinematic variables, the 
equilibrium path gives complete information on stability. 

Equilibrium Paths with Bifurcations, Snapthrough, and Snapdown 

Our foregoing analysis of the stability of equilibrium paths is limited to the paths 
which do not bifurcate. We will not carry out a complete analysis of equilibrium 
paths with bifurcations, but we will at least give some illustrative examples. 

Consider a rigid bar with a hinge at the base, supported by a laterally sliding 
inclined spring, of stiffness C. We investigated this structure before (Sec. 4.5, Fig. 
4.22). However, in contrast to our previous study, we consider that load P is 
applied through a spring of spring constant C2 (Fig. 4.53a). The initial 
imperfection is characterized by the initial inclination angle of the bar, a. For 
a= 0, the structure is perfect and exhibits asymmetric bifurcation. 

The diagrams of load P versus the associated displacement q2 can be deduced 
either by simple calculations, or graphically. We pursue the latter, which is more 
instructive. We have already derived, for the perfect column, the diagram (Fig. 
4.22e, Eq. 4.5.27) of load P versus the vertical displacement u on top of the bar. 
We show this diagram again in Figure 4.53b. Now, since q2 = u + P/C2 =sum of 
the vertical displacements due to bar inclination and to spring C2, we may obtain 
the diagram P(q2) by adding the displacements of the bar top and the spring as 
shown graphically by the addition of segments a and b in Figure 4.53b and c. The 
resulting diagram of load P versus load-point displacement q2 are shown in Figure 
4.53d. The diagram P(q2) in Figure 4.53d exhibits snapback soon after its peak 
point, and if the displacement q2 is controlled the perfect structure ~ill 
experience snapdown right from the bifurcation point, along the dashed line 12 in 
Figure 4.53d. In this case the bifurcation point is a point of instability under both 
load control and displacement control. 

The diagram P(q2) for the imperfect structure can be constructed in a similar 
way. The diagrams of load versus load-point displacement can easily be calculated 
exactly, by choosing a series of values of q1 and evaluating explicitly the value of 
P (load) and of the load-point displacement q2 • The resulting diagrams are 
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Fipre 4.53 (a) Spring-loaded rigid bar with inclined spring; (b-d) graphic construction of 
load-displacement response; and (e) Roorda frame loaded through a beam. 

sketched in Figure 4.53d. Depending on the value of the imperfection and on the 
stiffness C2 of the spring, these diagrams may exhibit snapdown paths, such as 34 
in Figure 4.53d. 

The load-displacement diagram shown in Figure 4.53d is typical for axially 
compressed or bent cylindrical shells or compressed spherical shells. For such 
shells, a significant load reduction of maximum load occurs at rather small 
displacements. 

Another example that would give rise to similar diagrams is the Roorda 
frame, studied in Sections 2.6 and 4.5, if the load is applied through a spring or 
another flexible element such as a beam (Fig. 4.53e). The load versus load-point 
displacement diagram would be similar to Figure 4.53d. 

Consider again the von Mises truss with a spring from Figure 4.48, but assume 
now that the bars are so slender that they may buckle before the horizontal 
position is reached (Fig. 4.54). Assume the bars to be perfect, and the critical 
axial force of each bar to be PE. Let P8 be the axial compressive force in the bars. 
For P8 < PE, the stiffness of each bar is EA/ I where A = cross-section area of the 
bar and I= L/cos a= bar length. For P?!!:. PE, the axial force in the bar depends 
approximately linearly on the bar shortening u, but the incremental stiffness 
drops to the value Cb = PE/21, as established in Section 1.9. 

After buckling (P8 ?!!:. PE), the strain energy of the bar, nb, is equal to the 
shaded area under the axial load-shortening diagram in Figure 4.54b; nb = 
It+ PEu + !Cbu2

, where ~=constant, u =elongation of the bar (we choose 
u > 0 to mean that the bar shortens), u = L/cos a- L/cos q1 = !L( a2- qD. 
Combining this with the potential energy of the spring and of the load (Equation 
4.8.1), and assuming angles a and q1 to be small, we obtain instead of Equation 
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Figure 4.54 (a) Spring-loaded von Mises truss with slender bars; diagrams of (b) load 
versus axial shortening of bars, and (c) responses for buckled and unbuckled bars. 

4.8.1 the potential-energy expression: 

n=2~+ PEL(fil"- qD + ~b L2(tr-qD2 +~ (q2- L(a- q~W- Pq2 
(4.8.24) 

Setting ant aq 1 = 0 and ant aq2 = 0, we get a system of two equations for q1 and 
q2 , and eliminating q2 we obtain for the equilibrium path at P8 ;:::; PE the equation: 

(4.8.25) 

This relation is plotted in Figure 4.54c; together with the path for the case when 
the bars do not buckle. The transition from one path to the other occurs at the 
point where they cross; this is a bifurcation point. 

As a further approximation, we can introduce in Equation 4.8.25 P = 2PEq1 

because Cb is much smaller than the prebuckling axial stiffness of the bar, EAt I. 
The solution may be illustrated as in Figure 4.55, in which the curved equilibrium 
diagrams correspond to our previous solution for unbuckled bars. 

First consider the case of an infinitely stiff spring ( C--+ oo ). If the bars are 
sufficiently slender, that is, have a sufficiently small Euler load PE, the bars will 
buckle before the first maximum point is reached (point 1 in Fig. 4.55a). Beyond 
that poin!.LP=2PEq1; this gives the line 135, which is approximately straight. The 
segment 01 is stable, and the segments 135 are unstable under load control. So 
the system will exhibit a snapthrough from point 1 to point 6. We see that in this 
case the maximum load is reduced due to buckling of the bars. 

If the spring is sufficiently soft, the equilibrium load-deflection diagram for the 
case of unbuckled bars as well as the path after the buckling of the bars may 
exhibit a reversal (snapback), as shown in Figure 4.55b. In this case, not only the 
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Figure 4.55 Load-displacement diagrams for various choices of parameters and types of 
control. 

snapthrough occurs at a reduced load, but also the snapdown under displacement 
control occurs at a smaller displacement than it does for the case of no bar 
buckling. 

For bars with a large PE, the buckling of the bars may occur after the 
maximum point of the path for the unbuckled bars, as shown in Figure 4.55c and 
d. If Cis sufficiently large, this has no effect on either the snapthrough load or the 
snapdown displacement. However, if the spring is soft, the displacement at 
snapdown may get reduced, as shown in Figure 4.55d. 

In the construction of the diagrams in Figure 4.55 we already assumed that 
after bifurcation the path corresponding to buckled bars is stable, and the path 
corresponding to unbuckled bars is unstable. If we did not know this, we could 
alternatively also obtain this conclusion by considering II as a function of three 
displacements q 11 q2 , q3, the last one representing the maximum lateral 
deflection of the bars. 

One purpose of the last example was to illustrate more complicated 
equilibrium paths that a structural system may take. In particular we see in Figure 
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4.55b that bifurcation may occur in the reverse direction (segment 135). Such 
behavior, which is often encountered in shells, shows extreme imperfection 
sensitivity. Indeed, if the bars in Figure 4.48 were considered imperfect, for 
example, with a small initial curvature, one would obtain in Figure 4.55b the 
dash-dot equilibrium paths. For such paths, the maximum load can be greatly 
reduced compared to the bifurcation load, even if the imperfection is very small. 

For a certain slenderness of the bars, that is, for a certain value of Pe, it is 
possible that the bifurcation due to buckling of the bars occurs exactly at the 
maximum point of the equilibrium path for the unbuckled bars. Thus, two 
instabilities can occur simultaneously (Fig. 4.55e, f). Under load control, 
snapthrough would prevail over the bifurcation instability, while under displace
ment control the bifurcation instability would prevail except if the spring is 
sufficiently soft, in which case a snapdown can occur. 

Problems 

4.8.1 For the structures in Figure 4.56a, b, determine the snapdown load on the 
basis of the diagram P(q1) of load versus load-point displacement of the 
structure without the spring. 

4.8.2 For the structures in Figure 4.56c, d, determine the snapdown load. 
4.8.3 Do the same for the structures in Figure 4.57a, b, c, d, e, f, g. 
4.8.4 Do the same for the structures in Figure 4.58a, b, c, d, e, f, g. 

a} 

p 

c) 
d) 

q. 

Figure 4.56 Exercise problems on equilibrium curves and snapdown of displacement
controlled systems. 
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l!1pre 4.57 Further exercise problems on equilibrium curves and snapdown of 
displacement-controlled systems, 

4.8.5 Calculate the response curves for the imperfect structure in Figure 4.58h. 
4.8.6 Do the same for the structure in Figure 4.58i. [The resulting diagrams 

P(q2), P(q 1) are plotted for this case.) 
4.8.7 As a generalization of Bergan's truss (Prob. 4.6.8, Fig. 4.41) consider that 

the vertical load P is not applied directly but through a third spring of stiffness 
C3 • (Snapback can occur then, too.) 

4.8.8 For the structure in Figure 4.48 (Eq. 4.8.1), obtain the eigenvectors and 
express n as a sum of squares of orthogonal coordinates Yk according to 
Equation 4.1.10. 

4.9 INCREMENTAL WORK CRITERION AT EQUILIBRIUM 
DISPLACEMENTS 

The criterion of minimum potential energy is based on comparing the potential
energy value at the equilibrium state q; under consideration with the potential
energy values at all adjacent nonequilibrium states q; + ~q; with the same load. 
In many applications, however, it is more convenient, albeit equivalent, to make 
energy comparisons with adjacent equilibrium states for a slightly different load. 
This can be done if the stability criterion is reformulated in terms of the work of 
equilibrium reactions on displacements (Ba.Zant, 1985). 
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Fipre 4.58 Further exercise problems on equilibrium curves and snapdown of 
displacement-controlled systems. 

Stability Criterion 

For infinitesimal variations 6q; of generalized displacements q;, the energy 
increment from the equilibrium state q; is, according to Equation 4.2.2, if O(q;) is 
differentiable at least twice, 

(4.9.1) 

in which K;i represents the incremental (tangential) stiffness matrix of the 
structure. In Equation 4.9.1 we take note of the fact that 60 = 0 if the initial 
state is an equilibrium state. In the special case that 620 = 0, higher-order 
variations 6"0 (n > 2) must be considered to decide stability, but for 620 4:0 
they are irrelevant. (Equation 4.9.1 may be extended to structures for which 0 
does not exist and K;i is not unique; see Chap. 10. Then all possible K;i matrices 
must, of course, be considered. This occurs, e.g., when the unloading and loading 
stiffnesses differ.) 
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The potential-energy derivatives an; aq; = /; represent the generalized forces 
associated with the generalized displacements q;. Instead of considering devia
tions 6q; from equilibrium at no change of applied loads, we now consider that 
the applied loads are changed simultaneously with 6q; so that they are equal to 
the reactions, that is, equilibrium is maintained at the adjacent state q; + 6q;. 
Increments of the applied forces that must be applied to preserve equilibrium are 
obviously expressed as 

N 

6/; = L K;j 6qj 
j=l 

(4.9.2) 

The incremental work that must be done on the system to effect displacement 
variations 6q; may now be calculated, with second-order accuracy, as follows (see 
Fig. 4.59): 

In this equation we took note of the fact that, because of equilibrium in the initial 
state q;, E; /; 6q; = E; (ant aq;) 6q; = 6n = 0. We see that, same as for the 
variation of the potential energy, the second-order terms decide, that is, A 'W is a 
second-order expression (provided the structure behaves linearly at least near the 
state q;). 

We may now conclude that the incremental second-order work that must be 
done on the system in order to produce displacement variations 6q; in an 
equilibrium manner is exactly equal to the increment of the potential energy 
when passing from the initial equilibrium state q; to the state q; + 6q; in a 
nonequilibrium manner, while the load is kept constant. This means that the 
stability criterion may be restated in terms of the incremental work at equilibrium 
displacements as follows: 

If 62'W > 0 for all kinematically admissible 6q,--stable 

If 62 'W = 0 for some kinematically admissible 6q,-critical (4.9.4) 

If 62 'W < 0 for some kinematically admissible 6q,-unstable 

In other words, if the incremental work expression 62 'W at equilibrium 
displacements is positive definite then the structure is stable. This is the criterion 
of incremental work at equilibrium displacements. Although it deals only with 
equilibrium states of the system it is equivalent to the criterion of minimum 

Figure 4.59 Incremental work. 
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potential energy, which refers to nonequilibrium changes since it compares the 
equilibrium state with adjacent nonequilibrium states. This criterion is also 
equivalent to the incremental stiffness criterion, which requires that, for stability, 
the incremental (tangential) stiffness matrix K;i must be positive definite. (When 
K;i is not unique, all possible K;i must be positive definite to ensure stability.) 

When c52 'W = 0 and c53 'W ::1: 0, the critical state is unstable. When c52 'W = 
c53 'W = 0, stabillty of the critical state is decided by the sign of c54 'W. 

Example 1: Hinged column. For the sake of illustration, let us analyze again the 
stability of a perfect simply supported column having length l, bending rigidity 
El, and axial compression force P. We examine the stability of the initial 
equilibrium state w(x) = 0. For this purpose we consider the variation of 
deflections c5w(x ). To maintain equilibrium after this variation, one must apply 
the lateral distributed load: 

c5p(x) = EI c5w1v(x) + P c5w"(x) (4.9.5) 

The incremental work may be calculated as 

d 'W = [ ~ c5p(x) c5w(x) dx (4.9.6) 

It is now convenient to introduce the Fourier series expansions: 

... n1r:X 
c5p(x) = L c5fn sin-

1
-

n-1 

= nnx 
c5w = ~1 c5q" sin - 1-

(4.9.7) 

Substituting then into Equation 4.9.5 we get 

(4.9.8) 

which can be satisfied identically for all x only if the bracketed expression 
vanishes. This yields the equilibrium relation between the displacement para
meters c5q" and the associated distributed load parameters c5fn: 

e 
c5q" = n2n 2(Pcr.- P) c5f,. (4.9.9) 

Substituting this into Equation 4.9.6, we obtain 

(4.9.10) 

The column is stable if this quadradic form is positive definite. This obviously 
requires that Per. - P > 0 for all n. Thus, the stability condition is found to be 
P < P cr

1
, as we already show~d before on the basis of the potential energy (Eq. 

4.3.5). Note that this stability analysis made no use of the potential-energy 
expression for the column; it used only the equilibrium relations and the work of 
loads. Note also that, due to the linearity of Equation 4.9.5, d 'W = c52 'W, that is, 
d 'W contains no terms of order higher than 2. 
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Example 2: Rigid-bar column with two degrees of freedom. Consider the 
column consisting of two rigid bars connected by hinges and held upright by 
rotational springs of stiffness C, a problem we solved before in Section 4.3; 
see Figure 4.60. The bars have equal lengths I and are loaded by a vertical 
dead load P; the column has initial imperfections consisting of initial inclinations 
of the bars «t and a 2 (Fig. 4.60a). As generalized displacements, we choose the 
inclination angles qt and q2 of the lower and upper bars. Based on our preceding 
considerations, we must introduce disturbing forces 6ft and 6k associated with q t 
and q2; they are represented by moments 6ft, 6k applied on the lower bar and 
the upper bar at the hinges, as shown in Figure 4.60a. 

To formulate the conditions of equilibrium, we may consider, for example, 
each bar as a separate free body, as shown in Figure 4.60b. First we consider 
equilibrium at the initial state for which the axial load is P and the disturbing 
loads 6ft= 6k = 0. If the deflections of the column are assumed to be small, the 
moment conditions of equilibrium for the lower bar and the upper bar then yield 
the equations 

C(qt- «t)- C(q2- qt- «2 + «t)- Pl(qt- «t) = 0 

C(q2- qt- «2 + «t) + Plq2 = 0 
(4.9.11) 

After disturbing loads 6ft and 6k are applied, the column will find a new 
equilibrium condition characterized by generalized displacements qt + 6qt and 
q2 + 6q2. The moment conditions of equilibrium of the lower and upper bars then 
yield 

C(qt + {)qt - «t)- C(q2 + 6q2- qt- 6qt- «2 + «t)- Pl(qt + 6qt- «t)- 6ft= 0 

C(q2 + 6q2- qt- {)qt- «2 + «t) + Pl(q2 + 6q2)- 6k = 0 
(4.9.12) 

Subtracting Equations 4.9.11 from Equations 4.9.12 we obtain incremental 
equilibrium conditions which may be cast in the following matrix form: 

{6ft}= [2C- PI -C ]{6qt} 
6k -C C +PI 6q2 

(4.9.13) 

The square matrix in this equation represents the incremental stiffness matrix of 
the structure subjected to axial load P. For stability, this matrix must be positive 
definite. We may now note that this matrix is the same as the matrix of the 

Fipre 4.60 Free-standing two-bar column. 
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quadratic form ll,;i that we obtained previously (Sec. 4.3, Eqs. 4.3.16) from the 
principle of minimum potential energy. Therefore, the rest of the stability 
analysis is the same, and so are the results. 

Alternatively, we may base the stability analysis on the incremental work 
expression at equilibrium displacements: 

Stability requires that the quadratic form in this equation be positive definite. 
Obviously this yields again the same stability condition as before. 

As in Example 1, note again that in this approach to stability we have used 
only equilibrium conditions and work of loads, and made no use of the expression 
for potential energy. Also note that this approach can be extended to rigid 
columns with springs that do not possess potential energy (e.g., elastoplastic 
springs). We will deal with such problems later in Chapters 8 and 10. 

If the column is perfect (at= a 2 = 0), the moment conditions of equilibrium 
of the lower and the upper bar directly yield Equation 4.9.13. We see that in this 
problem, under the assumption of small deflections, the stability regions of the 
perfect and imperfect columns are the same. This is, of course, not true when 
angles qt and q2 are large, but the present approach can easily be generalized to 
this case (which was already solved on the basis of potential energy in Sec. 4.3). 

Example 3: Spring-loaded von Mises truss. Consider again the von Mises truss 
loaded through a spring (Fig. 4.61}-a two-degree-of-freedom system, which we 
analyzed in Section 4.8. If the spring is soft enough, the system exhibits an 
equilibrium path P(q2) with a snapback and fails by snapdown instability. On the 
snapback segment, the equilibrium curve has a positive slope, which in general is 
necessary but not sufficient for stability (except for single-degree-of-freedom 
systems). Imagine now applying small incremental moments 6ft at the support 
hinges in the direction of angle qt (Fig. 4.61a). If the system is in the snapback 
regime, the slope of the curve P(qt) is negative (Fig. 4.61b), and it is easy to see 
that this implies the slope of the curve ft(qt) to be also negative, that is, the 
incremental stiffness for the disturbing moment 6ft is negative. Thus, the 
incremental work A 'W =~6ft 6qt is negative for this particular disturbing load. 
This proves that the states on the snapback segment of the load-displacement 
curve are, despite its positive slope, unstable. Even though the incremental work 
approach is equivalent to potential-energy minimization, it is nevertheless often 
simpler, as this example illustrates. 

a) 
p ~.,c 

b) p c) 

Figure 4.61 Spring-loaded von Mises truss and its stability limits under displacement 
control. 
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Possibility of Generalization to Inelastic Systems 

The incremental work criterion at equilibrium displacements is more general than 
the criterion of minimum potential energy because it can be extended to problems 
with dissipative forces, which cannot be determined from potential energy. We 
will derive such an extension from the laws of thermodynamics in Chapter 10 
where we will deal with inelastic structures, which exhibit dissipative processes 
such as plasticity, fracture, microcracking, void nucleation and growth, and other 
kinds of damage. 

The incremental work criterion at equilibrium displacements is equivalent to 
the most fundamental thertllf)dynamic condition that the internally produced 
entropy of the system (Sec. 10.1) cannot decrease, as required by the second law 
of thermodynamics. The negativeness of 11 'W means that the system can 
spontaneously release energy, which must then be dissipated as heat. A process 
that dissipates heat increases the internal entropy of the system (precisely by 
-11 'W/Twhere T = absolute temperature). Therefore, such a process must take 
place. This means that the system cannot remain in the initial equilibrium state, 
and so the initial state is unstable. On the other hand, if 11 'W is positive and no 
work is actually done on the structure by fJ/;, the change for which 11 'W was 
calculated cannot happen because it would cause the internally produced entropy 
of the system to decrease by -11 'WIT, and so the initial state is stable. Obviously, 
these conditions do not require that a potential energy exist. For a more rigorous 
analysis, see Section 10.1. 

Problems 

4.9.1 Consider a hinged column with an axially sliding support and with initial 
curvature .zo(x) = E an sin (mcx/1). Find the stability condition under an axial 
load P using the concept of incremental work. 

4.9.1 Use the criterion of incremental work to find the stability condition for the 
systems in Figure 4.62a, b, c. 

Figure 4.61 Exercise problems on stability of rigid-bar systems. 

4.9.3 Solve the problems of Sections 4.3, 4.4, and 4.5 by the incremental work 
approach. 
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5 
Energy Analysis of Continuous Structures 
and Approximate Methods 

The energy criterion of stability, as stated in the Lagrange-Dirichlet theorem, is 
the most effective way to analyze stability of conservative structural systems. The 
use of the energy criterion for stability analysis is simpler than the fundamental 
dynamic approach. However, this is not the only use of the energy criterion. 

The energy approach is also valuable for obtaining approximate values of the 
critical loads of more complex conservative structural systems. For example, the 
exact solution of the critical load of a column of nonuniform stiffness, or a column 
with variable axial force, or a column whose buckling is resisted by a weak lateral 
spring placed between the column ends is, in principle, straightforward, however, 
computationally much more laborious. Quite accurate, yet simple approximations 
of the critical load can be obtained with the energy approach by using estimated 
approximate shapes of the deflection curve. These shapes may be chosen either 
on the basis of experience and experimental observations, or they may be taken 
the same as the exact solution of a simplified problem, for example, a column of 
uniform rather than nonuniform bending rigidity. 

It turns out that the approximate values of critical loads obtained from the 
energy criterion always represent upper bounds on the exact values. For 
structural design, however, it would be preferable to have a principle that would 
yield a lower-bound approximation to the critical load. Obviously, it would better 
serve the safety of design. Unfortunately, though, determination of close, 
generally applicable lower bounds that would be as simple to calculate as the 
Rayleigh quotient PR (Sec. 5.3) has proven to be an elusive goal and in general 
the quest has not yet succeeded, although a good lower bound of the first critical 
load can be obtained on the basis of successive approximations, provided that a 
not too poor lower bound for the second critical load is known (Sec. 5.8). The 
situation in stability is unlike that in plasticity, where both upper and lower 
bounds that give good approximations for the collapse load are available and are 
both equally easy to calculate. 

When the approximate deflection curve can be guessed so that there is only 
one unknown parameter, a good upper-bound approximation to the critical load 
can be obtained simply by evaluation of an explicit expression, known as the 
Rayleigh quotient. When the deflection shape cannot be guessed with sufficient 
accuracy, one can obtain an upper-bound approximation for the lowest critical 
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load by minimization of the potential energy with respect to several parameters of 
the assumed deflection shape. This is the essence of the Rayleigh-Ritz method. 
Similar results can be obtained on the basis of the differential equation using the 
Galerkin method. 

In the present chapter we will develop these energy approximations in detail, 
and amply illustrate them by examples. At the beginning of the chapter we will 
need to clarify the relationship between the potential-energy expression and the 
differential equation of the problem with its boundary conditions. This relation
ship is provided by the calculus of variations, and for the reader's convenience we 
will present a brief overview of this branch of mathematics. Its understanding is 
essential for approximate energy-based methods as well as for the stability 
analysis of continuous structures in general, which represents the unifying theme 
of the present chapter. 

5.1 INDIRECT VARIATIONAL METHOD AND EULER EQUATION 

The stability analysis illustrated in the preceding chapter, in which the structure is 
discrete or discretized and the expression for the second variation of potential 
energy is reduced to a quadratic form, is called the direct variational approach. In 
contrast to this approach, continuous structures can be analyzed also by an 
indirect variational method in which the structure is not discretized but 
differential equations are obtained from the minimizing condition for the 
potential energy. In general, the potential energy is a function of a function, that 
is, II= II[w(x)], which is called a functional. The conditions of a minimum (or 
maximum) of a functional are studied in the calculus of variations, and for the 
reader's convenience we now give a brief overview of this mathematical theory 
(e.g., Elsgol'ts, 1963; Fung, 1965; Courant and Hilbert, 1962; Stakgold, 1967). 

Review of the Calculus of Variations 

We are interested in determining the conditions of a minimum of fu~ctional II of 
one function w of one variable x, that is, 

II[w(x)] = f lj>(x, w, w', w") dx (5.1.1) 

Function w(x) is assumed to be continuous and have continuous first four 
derivatives in the interval 0 < x < l, and, at the boundaries x = 0 and x = l, the 
function is subjected to the appropriate boundary conditions. The problem is to 
find the function w(x) that makes the functional in Equation 5.1.1 a minimum. 

Let w(x) be the exact solution we seek (Fig. 5.1a), and consider all possible 
functions that are close to w(x ). These functions may be written as w(x) + 6w(x) 
where 6w(x) = £W(x) =variation of function w, E =variable parameter, and 
w(x) =any chosen (fixed) function that has the same continuity properties as 
w(x) and is such that the sum w + Ew satisfies the same kinematic boundary 
conditions as w. Function w(x) is then said to be kinematically admissible; see 
Figure 5.1a. Replacing w(x) by w(x) + ew(x) in Equation 5.1.1, the functional II 
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Figure 5.1 Variations of function w which represents the exact solution. 

becomes a function of parameter e alone because functions w(x) and w(x) are 
fixed. So we have 

ll(w(x) + ew(x)) = f(e) = f tj>(x, w + ew, w' + ew', w" + ew") dx (5.1.2) 

A necessary, albeit not sufficient, condition of a minimum of function f(e) is 
that df I de = 0 at e = 0. Recalling the rules for differentiation of an integral and of 
an implicit function, we then obtain from Equation 5.1.2: 

dn df(e) L' ot/> L' -=--= -dx = [t/> (x w + ew w' + ew' w" + ew")w de de 0 oe 0 ,w ' ' ' 

+ t/>,w•(X, W + ew, ... )w' + t/>.w·(X + W + ew", ... )w") dx (5.1.3) 

in which we introduce the notations t/>,w = otj>/ ow, tl>.w' = otj>/ ow', and tl>.w· = 
otj>/ ow". After setting e = 0, it is now customary to multiply this equation by e, 
which yields 

6n = 6ll(w(x)] = e[ddn] = L' [tl>,w(x, w, w', w") 6w(x) 
e E=O 0 

+ t/>,w·(X, w, w', w") c5w'(x) + t/>,w•(X, w, w', w") c5w"(x )] dx = 0 (5.1.4) 

in which 6n is called the first variation of functional n, and 

6w(x) = ew(x) 6w'(x) = ew'(x) 6w"(x) = ew"(x) (5.1.5) 

These expressions define the first variation of the function w(x) and its 
derivatives. 

It is now useful to eliminate the derivatives of 6w(x) from Equation 5.1.4. 
This may be achieved if the second term in the integrand is integrated by parts 
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once, and the third term by parts twice. The result is 

(5.1.6) 

with the notation 

d d2 

tp(x) = l/>.w- dx l/>,w' + dx2 l/>.w• 
d 

1/11 = l/>.w'- dx l/>,w• 1/12 = 4>.w• (5.1. 7) 

where the arguments x, w, w', w" are omitted for brevity. 
Equation 5.1.6 must be satisfied for any choice of function w(x) that is 

kinematically admissible, that is, for any shape of the curve of variation c5w(x). 
The word "any" is crucial. It has the consequence that (1) tp(x) = 0 for all points 
x within the interval (0, /), and (2) at each boundary (x = 0 and x = l) either 
c5w = 0 or 1J11 = 0, and either c5w' = 0 or 1/12 = 0. This consequence is known as the 
fundamental/emma of the calculus of variations (Fung, 1965). 

This lemma may be proven by demonstrating the impossibility of the opposite. 
Thus, consider that the foregoing conclusion is not true, that is, that 1jJ(x) -::/= 0, at 
least in some parts of the interval; see Figure 5.1b. Due to the continuity 
properties, function 1jJ(x) must then be nonzero in some finite intervals. 
However, one can then choose some function w that is nonzero in the same 
intervals and has always the same sign as 1/J(x). Then, if the terms in front of the 
integral are made to vanish, c5ll is positive and thus cannot be zero. But this 
violates the necessary condition of the minimum. Therefore, 1jJ(x) = 0 is the only 
possibility. Similarly, if c5w -::1= 0 at the boundary point (x = 0 or x = /), and if we 
assume that tp 1 may also be nonzero at that point (Fig. 5.lc), then the expression 
in Equation 5.1.6 can always be made nonzero by choosing the function w(x) to 
have some finite value at the boundary point. A similar argument can be made 
for the second boundary term (at x = l) in front of the integral in Equation 5.1.6. 
Thus, tp1 = 0 (or tp2 = 0) is the only possibility if c5w (or c5w') can be nonzero at 
the boundary point according to the given boundary conditions. 

Therefore, the condition of a stationary value of functional n, which 
represents the necessary, albeit not sufficient, conditions of the minimum of n, 
are as follows: 

(5.1.8) 

and for x = 0 and x = I: 

Either w=O or (5.1.9a) 

and 

Either w' =0 or l/>w·= 0 (5.1.9b) 

As an example consider the total potential energy for an axially loaded 
inextensible column. It can be obtained by adding the strain energy of bending of 
the beam (with bending rigidity El) and the work of the axial load and lateral 
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load: 

n = f UEiw'12
- P(!w'2

)- pw) dx (5.1.10) 

Evaluating the derivatives of the integrand, we have 4>.w = -p, 4>.w· = -Pw', 
4>.w· = Elw". Substituting this into Equation 5.1.8, we then get the well-known 
differential equation of equilibrium: 

(Elw")" + (Pw')' = p (5.1.11) 

while from Equations 5.1.9 for the boundary points we get 

Either w = 0 or (Elw")' - Pw' = V = 0 (5.1.12a) 

and 

Either w'=O or Elw"=M=O (5.1.12b) 

which we recognize to be the well-known boundary conditions for a beam. 
Equation 5.1.8 is called the Euler equation of the variational problem, first 

derived by Euler (who obtained it as the limiting case of finite difference 
approximations). The boundary conditions on the left of Equations 5.1.9a, b are 
called in mathematics the essential boundary conditions, and in mechanics the 
kinematic boundary conditions, while the boundary conditions on the right of 
Equations 5.1.9a, b are called in mathematics the natural boundary conditions, 
and in mechanics the static boundary conditions. 

Application to Structures Possessing a Potential Energy 

As one basic observation, we see that not every boundary condition that may 
randomly come to mind is admissible as a boundary condition if the problem is 
known to possess potential energy. The condition that the potential energy must 
be a strict minimum yields not only the differential equation of the problem but 
also the admissible forms of the boundary conditions. This observation sheds 
further light on the discussion of nonconservative loads in Section 3.2. In 
particular, this observation explains that the boundary conditions for the follower 
force are incompatible with the existence of a potential energy (since they 
disagree with the natural boundary conditions according to Eqs. 5.1.12a, b). This 
discrepancy further implies that the follower load is nonconservative, as we 
established before by other means. 

The energy functional, of course, does not have to be quadratic. For example, 
the potential-energy expression for large deflections of a simply supported 
inextensible column can be written as ll = n [!E/8'2 - P(l- cos 8)) ds where 
8 =slope of a deflected beam, which is a function of the length coordinate s 
measured along the arc of the deflected beam. Denoting the integrand as q,, we 
have 4>. 9 = -P sin 8, 4>. 9 • = E/8', and so the Euler equation yields (E/8')' + 
Psin 8 =0, which is the same as obtained before in Section 1.9 (Eq. 1.9.1). 

The Euler equation as well as the associated kinematic and static admissible 
boundary conditions are easily generalized to problems where the energy density 
function 4> depends on higher derivatives of w, to problems where it depends on 
several functions of one variable x, and to problems where it depends on one or 
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generalizations when we analyze stability of thin-walled beams and of plates. 
The Euler equation obtained in the foregoing mathematical derivation, of 

course, ensures only that the functional has a stationary value, but does not prove 
it achieves a minimum. However, when dealing with functionals such as the 
potential energy we are sure, on physical grounds, that the stable states 
correspond to a minimum rather than a maximum or no extreme at all [inflection 
point of f(e), Eq. 5.1.2). (This is also clear from the fact that the operators 
involved in the potential-energy expression for the differential equation must be 
symmetric and self-adjoint in the stable states at very small loads.) 

The Euler equation with its proper boundary conditions, which represents the 
condition that 6ll = 0, is in mechanics generally equivalent to the equilibrium 
condition. However, in the frequent special case that w(x) = 0 is an equilibrium 
state, the Euler equation (with its proper boundary conditions) is also equivalent 
to the Trefftz condition for the critical load, 45( 62ll) = 0; see Equation 4.2.6. The 
reason is that, due to the fact that 6w(x) = w(x ), we have in this special case 
62ll = n for linear problems, and 62ll = n with second-order accuracy for 
nonlinear problems. 

Review of Positive-Definite and Self-Adjoint Operators 

Before turning to practical applications in the next section, it might be useful to 
review from a course of mathematics some basic properties of positive-definite 
operators. The problem of critical load for a linear system is a special case of an 
eigenvalue problem, which is generally given by the linear differential equation 

Mw-P/:fw=O (5.1.13) 

with homogeneous boundary conditions; M and /:f are linear differential 
operators and P is the eigenvalue to be found. In the special case of column 
buckling we have (cf. Eq. 5.1.11) M = (d2/ttt2)(EI(x) d2/ttt2

) and /:f = -d2/ttt2
• 

We may define a scalar product (or inner produc!) of two functions as 
(u, w) = f~ u(x)w(x) ttt, (0, I) being the given domain. Operator M is called 
positive definite if (Mw, w) > 0 for any admissible function w (except w = 0). If 
(Mu, v) = (u, Mv), the operator is called symmetric, and if it is bounded, it is 
also called self-adjoint. Since we will consider only bounded (continuous) 
operators, these two terms become synonymous. 

'Theorem 5.1.1 If M and /:f are positive-definite operators, then all eigen
values of Equation 5.1.13 are positive. 

Proof Taking a scalar product of Equation 5.1.13 with w, we have 
((Mw- P/:fw), w) = 0 or (Mw, w)- P(/:fw, w) = 0. Because (Mw, w) > 0 and 
(l:fw, w)>O, P must be positive. 

'Theorem 5.1.2 If M and /:f are symmetric, the eigenfunctions Wm and w" 
associated with two different eigenvalues Per,. and P cr. are orthogonal in the sense 
that (Mwm, w") = 0 as well as (!Ywm, Wn) = 0. In the special case that /:f is an 
identity operator, we have (wm, wn) = 0. 
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Proof (Collatz, 1963; Courant and Hilbert, 1962) By definition Mwm -
Pcr)Ywm = 0. Taking a scalar product of these equations with Wn and wm, 
respectively, and subtracting the resulting equations, we have (.Mwm, wn)
(Mwn, Wm)- Pcr..,(fYwm, Wn) + Pcrn(/Ywn, Wm) = 0. Obviously, (/Ywn, Wm) = 
(!Ywm, wn) and (Mwm, wn) = (Mwn, wm) because of symmetry. Thus (Per..,
Pc • .)(!Ywm, Wn) = 0 and when p cr..,+ p ern• we finally obtain (!Ywm, Wn) = 0. 
Furthermore, taking again a scalar product of the equation (Mwm - P cr..,!Ywm) 
with Wn, we have (Mwm, Wn) = p cr...(!Ywm, wn) or (Mwm, Wn) = 0. 

The differential equation for column buckling (Eq. 5.1.11) may now be 
considered as a special case of the equation {..w = p, with .{.. = M - P/Y. If M and 
lY are symmetric, f.. is also symmetric, as one can readily verify. 

'Theorem 5.1.3 (e.g., Dym and Shames, 1973, p. 156) If the equation l,.w = p 
has a solution and if .{.. is a self -adjoint positive-definite operator, then the 
function which minimizes the functional 

I(w)=!(£-w, w)-(w,p) (5.1.14) 

is a solution of the differential equation and, conversely, the solution of the 
differential equation (with homogeneous boundary conditions) minimizes the 
functional. 

Proof Consider a family of functions w + 6w such that 6w = ew where E is 
an arbitrary parameter and w is any chosen function that is admissible for the 
field of definition of.{.. (which also implies that w satisfies homogeneous boundary 
conditions). Consider that w is the function that minimizes /(w), that is, 
I(w + ew) -l(w) >0 forE ::1=0. Substituting from Equation 5.1.14, we obtain 

!(L(w + ew), w + ew)- (w + ew, p)- !1.-(w, w) + (w, p) > 0 (5.1.15) 

This may be rearranged as 

U(L.w, w) + e(l,.w, w) + e(l,.w, w) + e2(l,.w, w)] 

-(w,p)-e(w,p)-~1.-(w, w)+(w,p)>O (5.1.16) 
or 

i((l,.w, w) + (f..w, w)- 2(w, p)]e + ~(L,w, w)e2 > o (E ::1=0) (5.1.17) 

Since .{.. is assumed to be a self-adjoint operator, we have (l,.w, w) = (L,w, w), 
and this provides 

((L,w, w)-(w,p))e+!(Lw, w)e2 >0 (e+O) (5.1.18) 

This is a quadratic expression of the form a1£ + a2£
2

• Clearly such an expression 
can be positive for all E +0 only if a1 = 0. Thus (L,w, w)- (w, p) = 0, which may 
be rewritten as 

((l,.w-p), w)=O (5.1.19) 

Because this equation must hold for any (admissible) w, it follows (by virtue of 
the basic lemma of the calculus of variations) that Lw- p = 0, that is, w satisfies 
the differential equation. Furthermore, to prove the converse of the theorem, we 
consider that w is a solution of the differential equations with its homogeneous 
boundary conditions and we try to prove that w minimizes /(w). To this end we 
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express I(w) by substituting L.w for p. This gives 

I(w + ew) = !(l..(w + ew), w + ew)- (l..w, w + ew) 
= -!(L.w, w) + ![(L.w, w) + ({..w, w) 

- 2(£-w, w)]e + !L(w, w)e2
. 

Using the self-adjoint property, (Lw, w) = (L.w, w), and so we have 

I(w + ew) = -!(L.w, w) + !(Lw, w)e2 (5.1.20) 

For I to be a minimum at E = 0, it is necessary that (L.w, w) > 0, that is, operator 
L. must be positive definite. Also, if L. is positive definite, I achieves a minimum 
atE =0. 

Note that the use of the self-adjoint property in this proof has replaced the use 
of integration by parts. The second term on the right-hand side of Equation 
5.1.20 is called the second variation of the functional, {J 2I = !(Lw, w)e2• The 
condition that the extreme is a minimum may be stated as {J 2I > 0, which is 
similar to Equation 4.2.5 for discrete systems. 

As an example, let us consider a beam-column with homogeneous boundary 
conditions and verify that J(w), defined by Equation 5.1.14, represents its 
potential energy, as expected. We have 

11' 1 L' L' I(w) =- w(Eiw")" dx-- P w( -w") dx- pw dx 
2 0 2 0 0 

(5.1.21) 

Integrating by parts, we get 

L'[ 1 p ] 1 I(w)= 
0 

-2w'(Elw")'-2w'2 -pw dx+ 2 [w{(Elw")'+Pww'}}~ 

Ll (1 p ) 1 1 = - Eiw"2
-- w'2 - pw dx-- (Vw)~-- (Mw')' 

0 2 2 2 2 ° (5.1.22) 

where we used -(Elw")'- Pw' = -M'- Pw' = V =shear force. The boundary 
terms [ )~ vanish due to the fact that the boundary conditions must be either 
kinematic (w = 0, w' = 0) or static (V = 0, M = 0). The remaining expression is 
indeed the potential energy of a beam-column. 

Finally, note the analogy with matrix eigenvalue problems (Sec. 4.1), for 
example, the analogy between orthogonality of eigenvectors and of eigenfunc
tions. This is not surprising, since an eigenfunction can be regarded as the limiting 
case of an infinite-dimensional eigenvector. 

Problems 

S.l.l Derive the Euler differential equation and boundary conditions for the 
energy integrand that also contains w'" and w1v. 

5.1.2 Assume an elastic but nonlinear moment-curvature relation M = EI(l
kw"2)w" where EI, k = constants, formulate the potential energy, and use the 
calculus of variations to derive the Euler differential equation for w(x) with 
the boundary conditions. Check it from the equilibrium conditions for beam 
element dx. 
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5.1.3 Solve the same problem as above but M = Elw" (El = const.) and 
deflections are large. Use the approximation M = El/p = Elw"(1- 3w'2/2) 
(Sec. 1.1) and, for the work of load P, express (ds- dx)/dx up to terms that 
are of the next higher order in w than the approximation ~ f Pw'2 dx. 
Consider that P = P0 + P1 where P0 = initial load and P1 = increment during 
buckling, and assume the column as inextensible. 

5.1.4 Do the same but assume M = EI(w" + kw1v), with El, k =constants, while 
the deflections are small and the behavior is linear. (This expression for M 
appears in some recent nonlocal continuum theories for heterogeneous 
materials, e.g., Bafant, 1984). 

5.1.5 Do the same, but assume M = EI(w" + w"'). 
5.1.6 Using the operator approach, prove that, for P < Pc., the potential energy 

n for a pin-ended beam-column has a minimum with respect to parameter E 

for any chosen w(x) (and not a maximum or an inflection point). 
5.1.7 Adding the term f ~EAu'2 dx to the expression for n, where u =axial 

displacement, show that variational calculus yields for u(x) a separate 
differential equation that reads I!;.P = -EAu' (provided the deflections are 
small and the behavior is linear). Discuss the result with respect to buckling of 
a column whose ends during buckling either slide freely or are restrained 
against sliding in the axial direction (Fig. 1.2). 

5.1.8 Formulate n for the free-standing column loaded on top by an elastic 
stretched cable anchored at the base. (a) Follow the procedure of variational 
calculus to obtain the boundary conditions on top, and check them by 
equilibrium considerations. (b) Do the same when the tendon is anchored at a 
distance a below or above the base. (c) Can you do the same if P is not 
applied by a cable but is a follower load (tangential to the column on top)? 
(d) Deduce from ll the boundary conditions of the columns in Figures 1.11 
and 1.13. 

5.1.9 Prove from the potential energy expression that a prestressed column 
(whose tendon has no lateral free play) cannot buckle. 

5.1.10 Write the potential energy for a pipe column filled with water and loaded 
by force P applied on a piston in the pipe at its end (Fig. 1.22). Derive from it 
the differential equation with boundary conditions and the critical load. 

5.1.11 (a) Express the potential energy of a beam with shear in general, and of a 
sandwich beam in particular. (b) Derive from it the differential equations and 
boundary conditions for w(x) and 1JJ(x) given in Section 1.7 (Eqs. 1.7.8). 

5.1.12 Using the potential-energy expression for a beam with shear from Problem 
5.1.11, assume a suitable deflection shape w(x), 1JJ(x) for a free cantilever 
column (Fig. 5.2) and determine the critical height h for loading by own 
weight (this is an estimate of maximum height of a tall building, wind and 
earthquake disregarded). 

Fipre 5.2 Exercise problem on cantilever column under own weight. 
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5.1.13 Formulate the potential energy for three-dimensional buckling of a doubly 
symmetric I-beam under axial load and torque, using all the assumptions from 
Section 1.10. Derive from it the differential equations for v(x) and w(x) from 
Section 1.10. 

5.2 BEAM ON ElASTIC FOUNDATION 

To illustrate applications of the calculus of variations, let us study beams on 
elastic foundations, which are widely encountered in engineering practice. They 
may be used for approximate description of the behavior of foundation beams or 
pavements resting on deformable subsoil (Fig. 5.3a, b). Ice sheets floating on 
water behave as beams or plates on elastic foundation. The beam on elastic 
foundation is also extensively used as a simplified model for the buckling of piles 
embedded in soil. Another type of problem that may be approximately treated as 
a beam on elastic foundation is the lateral buckling of the compression belt of a 
truss bridge of U-shaped cross section (belt 12 in Fig. 5.3c), provided the elastic 
reactions due to deformation of the U-shaped cross section are approximately 
treated as uniformly distributed. Axisymmetric deformations of axially com
pressed cylindrical shells (Fig. 5.3d) are also equivalent to the problem of a beam 
on elastic foundation. 

Potential Energy and Diferential Equations 

The elastic foundation is usually considered as the limiting case of an infinitely 
dense distribution of a row of springs. Denoting the spring stiffness per unit 
length of the beam, called the foundation modulus, as c, we may express the 
distributed reaction Prof the foundation against the beam as Pr(x) = -cw(x) (Fig. 
5.4a). In this formulation, called the Winkler foundation (Winkler, 1867), one 

a) 

-):# /;~:;>~, ~ 
b w C::lee sheet 

-· -~--- =-- ·-- _- - ~kw - ~ter _ -

d) 

Figure 5.3 (a) Beam on an elastic foundation; (b) ice sheet floating on water; (c) 
compression belt of a truss bridge; (d) axisymmetric deformation of a cylindrical shell. 
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Figure 5.4 (a) Beam on Winkler foundation; (b) foundation modulus c; (c-e) buckling of 
beams with various end restraints. 

assumes that the reaction p, at point x depends only on deflection w at point x 
and is independent of deflection w at adjacent points. This assumption is satisfied 
exactly for ice sheets floating on water, for which c = Pw = unit weight of water, 
as follows from Archimedes' law. For other applications, such as beams resting 
on foundation soil or on an elastic body, this assumption is not exactly satisfied, 
since p,(x) depends also on the deflections w(x') in adjacent points x'. Various 
assumptions, which introduce such dependence, have been proposed; for 
example, Wieghardt's foundation, for which p,(x) = r: .. Coe-c,lx-x'lw(x') dx' 
where c0 = constant. However, these generalized foundation models have not 
found much application, since they do not seem to give significantly better results 
for various practical applications. Particularly, for beams on soils, the non
linearity of foundation behavior causes the simple Winkler foundation to be 
usually a better model than the generalized foundations with dependence of the 
reaction on the adjacent deflections. 

The strain energy of the foundation, represented by the area under the 
p,- w diagram in Figure 5.4b, is ( -p,)w/2 = cw2/2. Together with the strain 
energy of bending of the beam (with bending rigidity £/) and the work of axial 
compression force P and of transverse distributed load p(x), the expression for 
the total potential energy of the beam-foundation system is 

ll = [ [~ (Elw"2 + cw2
- Pw'2)- pw] dx (5.2.1) 

To apply the Euler equation, we evaluate the derivatives of the integrand: 
tP.w = cw- p, t/>.w· = - Pw', tP.w· = Elw". Thus, according to the Euler equation 
(Eq. 5.1.8), the differential equation for a beam on elastic foundation is 

(Elw")" + (Pw')' + cw = p (5.2.2) 

The boundary conditions that are compatible with the existence of potential 
energy are, according to Equations 5.1.9, 

Either w=O or -(Elw")'- Pw' = V = 0 (5.2.3) 
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and 

Either w'=O or Elw"=M=O (5.2.4) 

The boundary conditions on the left are the essential ones (kinematic), and those 
on the right are the natural ones (static). We see that the foundation modulus c 
appears only in the differential equation but not in the boundary conditions. 
Boundary conditions of other forms, for example, (Elw")' = -Q = 0 (Q defined 
in Sec. 1.3), are not compatible with the existence of potential energy and cause 
the structure to be nonconservative. 

The same differential equation and boundary conditions can be easily 
obtained from equilibrium conditions of an infinitesimal element of the beam, as 
in Section 1.3. One can also obtain the differential equation from the one for 
beam columns (Eq. 5.1.11) by replacing p with the net resulting distributed load 
p-ew. 

Solution for Different Boundary Conditions 

Let us now solve a perfect beam on an elastic foundation (p = 0), with constant 
El, P, and c. The solution may be sought in the form w(x) = eAx, and substitution 
into Equation 5.2.2 yields for A the characteristic equation 

EIA4 + PA2 + c = 0 (5.2.5) 

This is a biquadratic equation, that is, a quadratic equation for A2
• It has four 

roots, given by A= iKt> -iK1, iK2, -iK2 where 

p 

r=2vcEI (5.2.6) 

Consider now periodic solutions w(x ). They are possible only if A is 
imaginary, which occurs wh~;::: 1. From Equations 5.2.6, the critical loads may 
be written asP= Per= 2yVcEI. Clearly, the smallest Per occurs for the smallest y 
that gives real values for K 1 and K2, which is y = 1. Thus, the smallest critical load 
for a periodic solution is 

(5.2.7) 

In this case A= ia, ia, -ia, -ia, that is, we have two double roots. So the 
corresponding general solution is 

w(x) = A sin ax + Bx sin ax + C cos ax + Dx cos ax (5.2.8) 

where A, B, C, D =arbitrary constants. The half-wavelength of the periodic 
terms is 

(5.2.9) 

The solution in Equation 5.2.8 can satisfy the boundary conditions when the 
beam has pin supports (w = w" = 0) at both ends (Fig. 5.4c), provided that the 
beam length is l = nL where n = positive integer (in this case B = D = 0 since 
otherwise w would not be periodic). By placing the origin x = 0 into one end, the 
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periodic solution can be written as w =A sin (JU/ L), with C = 0 (because w = 0 
at x =0). 

Note that for a beam on an elastic foundation the lowest critical load does not 
correspond to the longest wavelength permitted by boundary conditions. This 
property is different from beams and is similar to plates and shells. 

The periodic solution obviously applies also for an infinitely long beam (I-+ oo, 
n-+oo). So Equation 5.2.7 can be called the critical load of an infinitely long 
beam on an elastic foundation. 

The lengths of actual beams are often not compatible with the wavelength L 
(Fig. 5.4d) and then y is higher than 1, with the consequence that the critical load 
is higher than Equation 5.2.7 indicates. However, if we consider the beam on an 
elastic foundation to be getting infinitely long, a wavelength L = 1/n compatible 
with the end supports is getting infinitely close to the value 1C I a and so the critical 
load is approaching for 1-+oo the value indicated by Equation 5.2.7. 

The solution just obtained is applicable to ice sheets floating on water, and it 
determines the upper bound on the force than an ice sheet can exert on an 
obstacle; for example, the force of a river ice sheet on a bridge pier, or the force 
of a sea ice sheet on a fixed object such as an oil-drilling platform. However, 
these problems are in reality more complicated because the ice sheet is 
two-dimensional, and a simplification of the ice sheet to a strip of unit width is 
much too conservative. The in-plane compression force carried by ice sheets also 
influences their capability of carrying vertical loads because it reduces the 
effective bending stiffness, just like the axial load reduces the bending stiffness of 
a beam-column. River ice as well as ice sheets in the arctic are often under large 
in-plane forces, and these need to be taken into account in determining their 
carrying capacity (to decide, e.g., whether an aircraft of a certain weight can land 
on the ice sheet safely). 

Let us now outline the general solution. For the case y > 1, there are four 
distinct imaginary roots, and so the general solution has the form 

(5.2.10) 

where A, B, C, Dare arbitrary constants to be found from boundary conditions. 
For y = 1, the solution has already been given (Eq. 5.2.8). Finally, for y < 1, the 
roots). are complex: A.= p + ir, p- ir, -p + ir, -p- ir, where rand pare such 
that 2r2 = a2(1 + y), and 2p2 = a2(1- y). This fact can be checked easily: 
).

2 = (±p ± ir)2 = -a2y ± ia2~, which is obviously identical to Equation 
5.2.6. Thus, the general solution is 

w(x) =A sin rx sinh px + B cos rx sinh px + C sin rx cosh px + D cos rx cosh px 
(5.2.11) 

For the case of a beam on an elastic foundation with both ends fixed, it can be 
shown (Hetenyi, 1946) that the boundary conditions can be satisfied only with 
y > 1, and using the solution in Equation 5.2.10 one finds the characteristic 
equation to be (K11) tan (K11) = (K21) tan (K21) for symmetric buckling, and 
(K11) cot (K11) = (K21) cot (K21} for antisymmetric buckling. The roots of these 
equations can be approximately found graphically and with great accuracy by 
Newton iteration. This then yields the critical load for a beam of given length. 
Since in this case the solution (Eq. 5.2.10) is periodic, it is not surprising that the 
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critical load approaches the value given in Equation 5.2.7 as the beam length l 
approaches infinity. For finite lengths l =I= nL where L is given by Equation 5.2.9, 
Per must be, of course, larger than Equation 5.2.7, since we proved that for 
periodic modes the maximum Per occurs at y = 1. 

When both ends of the beam are free, the boundary conditions can be 
satisfied only if y < 1. Then, using Equation 5.2.11 one finds (as shown by 
Hetenyi, 1946; see also Simitses, 1976) the characteristic equation (3p2

-

~)r sinh 2pl = ±(p2
- 3r2)p sin 2rl in which the plus sign applies for symmetric 

buckling and the minus sign for antisymmetric buckling. If the beam length l 
tends to infinity, sinh 2pl- oo, while sin 2rl remains bounded; therefore, 3p2

- r2 

must approach zero, which indicates that y = !. So the critical load of an infinitely 
long beam on elastic foundation with free ends is 

(free ends) (5.2.12) 

The deflection curve (Fig. 5.4e) is a damped sine curve whose amplitude decays 
away from the ends. Therefore, the buckling is essentially confined to the end 
portions of a very long beam. To make a very long beam buckle along its entire 
length, the axial load would have to be doubled to the value given by Equation 
5.2.7. 

The wavelength of the damped sine curve is (from Eq. 5.2.11) 2L = 2n/r = 
2nV2/aVf+Y=4n/V3a, in which we have used y=!. The rate of decay can 
be quantified by considering the ratio of the sine amplitude reductions at a 
distance of one wavelength, that is, ef'X/ep(x+2L> = e-P2L = e-2nm = 1/37.6. So 
the sine curve is damped very strongly. 

As a further insight into the diiference between the infinitely long beams with 
a supported end and an unsupported (free) end, we may consider the nature of 
solution decay. The solution can be either periodic (no real exponentials present) 
or consist of exponentially modulated oscillations. The exponential functions 
grow either toward the left or toward the right. Thus, if deflections within the 
central portion of an infinitely long beam are nonzero, the solution must be 
periodic, or else the deflections at the end would be infinite. The exponentials can 
be present only if the deflections vanish everywhere except within boundary 
segments whose length depends on the rate of decay (controlled by coefficient A. 
in e*.u) and occupies an infinitely short fraction of the infinite beam length. It is 
found that the critical load for the periodic solution is higher than the critical load 
for the exponentially modulated solution. So the latter solution must correspond 
to a free end, and the periodic solutions cannot therefore correspond to a free 
end. By exclusion, it must then correspond to the remaining possibilities of 
supported ends (fixed or hinged). It also follows that, for both types of support 
(hinged or fixed) in the central part of the beam, the periodic solution is the 
same, and so the critical loads are also the same. The foregoing considerations 
illustrate how to obtain critical loads without fully solving the problem (as is often 
done for shells). 

The buckling mode that involves nonzero deflections over the entire beam 
(except for periodic nodal points) is an example of global buckling, and it occurs 
for the periodic solution with supported ends. The buckling mode for the free 
end, for which the deflections are nonzero only within limited segments near the 
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ends, is an example of local buckling and, in particular, of boundary buckling. 
Similar distinctions can be introduced for shells. 

A detailed exposition of the buckling of beams on an elastic foundation was 
presented by Hetenyi (1946). The stiffness matrix of beam-columns on an elastic 
(Winkler) foundation is presented in Tuma's (1988) handbook-not only for the 
planar case we analyzed, but also for the spatial case of a beam with torsion 
(simple torsion, Chap. 6) encased in an elastic foundation resisting not merely 
deflections but also twisting rotations. Tuma also gives the transfer (or transport) 
matrices and the loading terms of the matrix stiffness equation of equilibrium for 
many typical transverse load cases, as well as the modified stiffness matrices for 
various end supports. 

Fiber on Elastic Foundation 

An interesting limiting case of a beam on elastic foundation is a fiber on elastic 
foundation (Fig. 5.5). The fiber represents the limiting case of the beam on an 
elastic foundation for EI- 0, and thus Equation 5.2. 7 yields Per= 0. This means 
that a fiber on a Winkler-type foundation cannot carry any compressive force (a 
fiber embedded in an elastic space can, but this means that the Winkler-type 
foundation is an inadequate model for it). Nevertheless, the fiber-foundation 
system has a useful analogy for columns as we will see in the next section. The 
potential energy of this system is 

(5.2.13) 

N denotes the force in the fiber, positive if tensile, and c is the foundation 
modulus. From the condition <5n = 0 we get, upon integrating by parts (for 
I}= const.), 

<5ll1 = f (cw l>w + Nw' l>w') dx = f (cw- Nw") l>w dx + (Nw' l>w]~ (5.2.14) 

Since <5ll1 must vanish for any continuous <5w(x), the following differential 
equation of equilibrium applies: 

Nw"-cw=O (5.2.15) 

with the admissible boundary conditions: either w = 0 (kinematic) or Nw' = V = 
0 (static). The first boundary condition corresponds to a supported end of fiber, 
and the second one to a free end (V =shear force in the fiber). Note that the 

N 

w'+w'dx. 

Flpre 5.5 A fiber on an elastic foundation. 
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same differential equation results from the force diagram for element dx in Figure 
5.5. Indeed, the resultant of transverse forces is N(w' + w" dx)- Nw'- cw dx = 
0 which yields Equation 5.2.15. 

The differential equation Nw" - cw = 0 can be made mathematically equiv
alent to the equation w"- (PI El)w = 0, which we solved in Section 1.2 (for the 
same boundary conditions w = 0 at x = 0 and x = 1), if we set either EI = 1lc, 
P = -11N or EI = -1lc, P = 1IN. So, in analogy to the equation Per= Eln21r2ll2

, 

we have (1IN)cr = -(11c)n2
1r

2W or Ncr= -cl2/n2
1C

2
• The smallest INcrl results for 

n-+ oo; Ncr= 0. 

Problems 

5.2.1 Consider periodic solutions w = q sin (1rx/l). Substituting this into Equation 
5.2.2, obtain Per as function /(1) of l. Setting df ldl = 0, obtain Per.,;. and check 
that it agrees with Equation 5.2.7. 

5.2.2 Using the Euler equation of variational calculus, determine the differential 
equation for a beam on elastic foundation for which (a) cis variable, c = kx, 
and EI = const.; (b) same but c = k sin ax; (c) c = const. but EI = Rx; (d) 
c = const. but EI = R sin ax, where k, R, a= given constants; (e) do the same 
as (a), (b), (c), (d), but c = const., EI = const., and the axial load, rather than 
being applied at the ends, is introduced as a distributed axial load p 
(p = const.) (Figure 5.6a). 

5.2.3 Consider the continuous beam with n equal spans l, n being large, and 
simple supports (Fig. 5.6b). The supports rest on springs of equal spring 
constants C. A beam on elastic foundation with foundation modulus c = C II 
can approximate this continuous beam closely if the buckling half-wavelength 
is L »I, say L > 41. (a) Find the condition for C and l to permit analysis as a 
beam on elastic foundation. Give the solution of Per and w(x) (b) for n-+ oo; 
(c) for n = 10. (d) Using stability functions s and c (Chap. 2) formulate the 
algebraic equation system that gives the exact solution of this continuous 
beam for any given n. (e) Imagine the continuous beam to represent one 
compression belt of a truss bridge in Figure 5.6c, in which C is the spring 
stiffness of the cross-section U-frame, both compression belts buckling 
symmetrically or antisymmetrically, and calculate C from the data on the 
U-frame given in Figure 5.6c. 

5.2.4 Solve Per and w(x) for the semi-infinite beam on elastic foundation shown 
in Figure 5.6d, which has at the end x = 0 a transversely sliding restraint, that 
is, w' = 0, V = 0 at x = 0 (P, El, c =constants). Plot w(x). 

5.2.5 Do the same as Problem 5.2.4, but the end of the beam is loaded through a 
short rigid pin-ended link of length L 1 (Fig. 5.6e). Also discuss the 
dependence of the solution on L 11 L. 

5.2.6 Solve w(x) for an infinite beam on elastic foundation that is initially 
imperfect, having initial curvature zo(x) = a sin ( JU I b) where a, b are given 
constants (Fig. 5.6f). First obtain the differential equation from the Euler 
equation of variational calculus. Also plot Wmax versus P. 

5.2.7 Write the potential energy for a beam on an elastic but nonlinear 
foundation such that the foundation reaction (per unit length) is p, = (c0 -

c1 w)w where c0 , c1 =constants. Using variational calculus obtain the 
differential equation for w(x) (which must be nonlinear) and check it by 
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Figure 5.6 Exercise problems on buckling of beams on elastic foundation. 

considering equilibrium of a beam element dx. Comment on possible 
solutions. 

5.2.8 Do the same as in Problem 5.2.7, but the foundation is linear (c=const.) 
while the deflections are large. Use the approximations M = EI I p = Elw"(1 -
3w'2/2) and the work of load per unit length is P(ds- dx)/dx where 
(ds- dx)/dx is expressed up to terms that are of the next higher order in w 
than the approximation Pw'2/2 (cf. Prob. 5.1.3). 

5.2.9 Do the same as Problem 5.1.4 but add an elastic foundation. 
5.2.10 As a generalized approximate foundation model suitable for foundation 

piles (cf. Bafant and Masopust, 1986), Pasternak (1926) proposed that beam 
rotation w' is also resisted by shear stresses from the foundation acting along 
the beam surface; see also Kerr (1964), Vlasov and Leontiev (1966), and 
Soldini (1965). The distributed moment m that these stresses apply on the 
beam is kpw' where kp =constant. The additional potential energy per unit 
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beam length then is !mw' or !kpw'2
, and so the potential energy of an axially 

loaded beam on a Pasternak foundation (Fig. 5.6g) is n = f~ (!Eiw112
-

!Pw'2 + !kw2 + !kpw'2) dx. Derive from this the differential equation and 
admissible boundary contitions and discuss stability (noting that replacement 
of P with P- kP yields the ordinary foundation we solved already). 

5.2.11 As an alternative foundation model, one may assume that the distributed 
reaction p,(x) at point x (Fig. 5.6h) represents the average of reactions 
kw(x + s) from all points x + s over a beam segment of length 2h, that is, 
p,(x) = f~:~ kw(x + s) ds. Expanding w(x + s) in a Taylor series about point x 
and truncating, show that the result is approximately equivalent to the 
equation for a Pasternak foundation. 

5.2.12 Consider a long continuous beam with spans h (Fig. 5.6i) and supports 
resting on springs of stiffness C. Assume I »h. For the global buckling replace 
the discrete elastic supports by a continuous Winkler foundation of modulus 
k = C/h (Fig. 5.6j). Considering a local buckling mode w1 =a sin (nx/h) and 
a global buckling mode w2 =A sin (nx/1), use the energy method to determine 
the condition for these two modes to have the same critical load. Note: In that 
case both modes occur simultaneously, that is, w = w1 + w2 • The interaction of 
modes causes a postcritical imperfection sensitivity characteristic of the 
so-called double-cusp catastrophy (which does not belong to the seven 
elementary catastrophes of Thom; Table 4.7.1, last row). Its analysis requires 
considering nonlinear large deflections and determining the energy function 
up to the fourth-order term in a and A, and applying Koiter's postbifurcation 
theory; cf. Hansen (1977), Hui (1986), or Wicks (1987). 

5.2.13 Including inertia forces in the differential equation for deflections, 
calculate the natural vibration frequency of a beam on elastic foundation with 
simply supported ends, subjected to constant axial force P. (This is a 
generalization of Sec. 3.1.) 

5.2.14 Do the same as above, but P(t) is pulsating. Using the energy method 
from Section 3.3, analyze parametric resonance. (This is again a generaliza
tion of Sec. 3.3.) 

5.2.15 Generalizing Problem 5.1.13 formulate the potential energy for three
dimensional buckling of a beam that is subjected to axial force and torque and 
rests on an elastic foundation with the same foundation modulus k for y- and 
z-directions. Derive from it the differential equation form for v(x) and w(x). 

5.2.16 Derive from potential energy the differential equation of a beam-column 
with torsion encased in an elastic foundation that resists also transverse 
rotation 8, such that the traverse distributed moment on the beam ism= kr8 
(simple torsion, Chap. 6). Also obtain kinematic and static boundary 
conditions. 

5.2.17 For the above case, derive the stiffness matrix and the transfer matrix ( cf. 
Tuma, 1988, p. 305). 

5.2.18 Derive the load terms of the matrix stiffness equation of equilibrium for 
the planar cases: (a) transverse concentrated load at third point, (b) uniform 
load over a half-span, (c) triangular or distributed load over a quarter-span, 
and (d) concentrated moment applied at a half-span. Then do it for the spatial 
case of a transverse concentrated moment applied at a quarter-span (all results 
in Tuma, 1988). 
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5.2.19 Derive the modified stiffness matrix of a beam-column on elastic founda
tion having one end (a) hinged, or (b) free, all the reactions at the other end 
being nonzero (cf. Tuma, 1988). 

5.2.20 Analyze the heavy rotating column with centrifugal forces, Problem 3.4.3, 
on the basis of potential energy. Discuss analogy with the beams on elastic 
foundation. 

5.3 RAYLEIGH QUOTIENT 

So far we have used the energy approach to determine the exact conditions of 
equilibrium and stability. However, the energy methods are also valuable as a 
means of obtaining bounds and approximate solutions, which are sometimes 
much simpler than ex:1ct solutions. 

We now restrict consideration to linearized bifurcation problems, such that 
w(x) = 0 (or q1 = · · · = qn = 0) is the equilibrium position whose stability is to be 
examined. Then the potential energy is n = 62ll = quadratic functional or 
quadratic form. Assuming that either there is a single load P or all the loads are 
proportional to one load parameter, P, we can always express n in the form: 

ll= 62ll= U-PW =(PR -P)W (5.3.1) 

in which U is a positive-definite quadratic strain energy expression, independent 
of the load (or load parameter) P; W is a positive-definite quadratic expression 
defining the work per unit load; and PR is defined as 

u 
PR=w (5.3.2) 

This quotient is called the Rayleigh quotient, after the famous physicist who 
introduced it in the general context of linear eigenvalue problems (Rayleigh, 
1894, p. 110). Same as U and W, PR represents a functional of function w(x), the 
deflection shape, that is, PR = PR[w(x)]. 

Upper-Bound Property of Rayleigh Quotient 

Since W is always positive, Equation 5.3.1 allows us to restate the stability 
criterion [i.e., Eq. 4.2.5 or the Lagrange-Dirichlet theorem (Theorem 3.6.1)] as 
follows: The structure is 

1. Stable If P<PR for all admissible w(x) (5.3.3a) 

2. Critical If P:sPR for all admissible w(x) while 

P=PR for some admissible w(x) 
(5.3.3b) 

3. Unstable If P>PR for some admissible w(x) (5.3.3c) 

where the admissible functions w(x) are those that are continuous, with 
continuous slopes w'(x), and satisfy all the given kinematic boundary conditions. 
Since the limit of stability is the first critical load Pcr

1
, it follows that 

(5.3.4) 
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This is an important property. It means that the Rayleigh quotient represents an 
upper-bound approximation of P cr, and is equal to P cr, if and only if the exact 
equilibrium curve w(x) is used to calculate U and W. 

Equation 5.3.4 implies that {)PR = 0 for the exact equilibrium curve w(x) that 
corresponds to the first critical load. This fact may also be demonstrated as 
follows: 

w {)PR = w lJ(u tw> = <w lJu- u 6w)w-• = lJu- lJw ~ = lJu- PR lJw = 6n 

(5.3.5) 

which shows that the conditions 6ll = 0 (or 6( 62ll) = 0] and lJPR = 0 are 
equivalent. 

The argument that we just used to prove the minimum property of PR (Eq. 
5.3.4) is physical. For a mathematical proof see, for example, Collatz (1963, sec. 
8.1) and also the text which follows. 

Can the Rayleigh quotient be used to determine the higher critical loads, for 
example, P cr2? It can, but only if the choice of the deflection curves w(x) is 
restricted to those curves that represent linear combinations of the second and 
higher modes, excluding the first mode (Collatz, 1963). Obviously, such a choice 
of the deflection curve can be made only if the first buckling mode has already 
been solved [we will see that this requires restricting the choice of w(x) to those 
deflection functions that are orthogonal to the first buckling mode]. 

If the equilibrium position to be examined is not characterized by w(x) = 0 (or 
q1 = · · · = q,. = 0), then n does not coincide with the second variation 62ll = 
{)

2U- P {)2W, in which {)2U and 62W are different from U and W. By a similar 
argument as before, one can show that 

lJzU 
P cr, =min bzw (5.3.6) 

When n is a nonlinear function of load P, one may consider a Taylor series 
expansion of nasa function of the difference P- Per,· Then, truncating all terms 
with higher than first powers of P- P cr,, one may obtain an energy expression of 
the form of Equation 5.3.1, from which again a Rayleigh quotient may be 
formulated. 

Application to Beam-Columns 

For beam-columns, for which ll is given by Equation 5.1.10 with p = 0, Equation 
5.3.2 yields 

[ !Eiw"2 dx 
PR = -'-,,.-----1 !w'zdx 

(5.3.7) 

Since, for the exact deflection shape w(x), the Rayleigh quotient (Eq. 5.3.7) gives 
the exact critical load, one may naturally expect that for a deflection shape w(x) 
that is very close to the critical state the Rayleigh quotient PR will be very close to 
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the exact critical load. This must be so because PR is a continuous functional of 
w(x ). This fact is useful for approximate calculations of critical loads, and, 
according to Equations 5.3.2 and 5.3.3, such approximate calculations yield 
always upper bounds. 

The stationary property of the Rayleigh quotient expression for a beam, in 
Equation 5.3.7, can be again demonstrated more directly. We showed that 
W lJPR = lJU- PR lJW (Eq. 5.3.5). Thus, calculating lJU and lJW from the 
numerator and denominator of Equation 5.3.7, and setting PR = P for the exact 
solution, we obtain 

W lJPR = [ Elw" lJw" dx- [ Pw' lJw' dx = [ [(Elw")" + (Pw')'] lJw dx (5.3.8) 

in which we transformed the integrals using integrations by parts along with the 
boundary conditions. We may now recognize that W lJPR must vanish because the 
first expression represents the statement of the principle of virtual work [since 
Elw" = M and w' lJw' = lJ(!w'2) = lJe], and also because (Elw")" + (Pw')' = p = 
0. This proves again that, for the exact w(x ), PR attains a stationary value with 
regard to all kinematically admissible variations of w(x), but it, of course, does 
not prove the minimum property. 

It should be emphasized that the chosen approximate deflection shape w(x) 
(i.e., the trial function) must always be kinematically admissible, that is, it must 
satisfy all the kinematic boundary conditions (e.g., for a hinged column, w = 0 at 
both x = 0 and x = 1). The trial function does not have to satisfy the static (or 
natural) boundary conditions, because the static boundary conditions as well as 
the differential condition of equilibrium are a consequence of the minimization of 
PR (or II) itself. However, if the static boundary conditions are satisfied, the 
shape of w(x) is obviously much closer to the exact buckling shape, and so the 
resulting PR approximates Per, more accurately, usually much more accurately, as 
we will see later. 

As an example, consider the simply supported Euler column (Fig. 5.7), and 
substitute the deflection shape w(x) =A sin (nx/1), which we know to be the 
exact buckling shape. Indeed, evaluation of Equation 5.3.7 yields Per,= 
Eln2W =the exact value of the first critical load. 

Figure 5.7 Exact and approximate deflection of a Euler column. 



326 ELASTIC THEORIES 

Now pretend we do not know the exact w(x) and consider a parabolic 
deflection curve 

w(x) = Ax(l- x) (5.3.9) 

which obviously satisfies the kinematic boundary conditions w = 0 at x = 0 and 
x = l. Substituting this into Equation 5.3.7 and integrating, we obtain 

12EI 
PR =-p= 1.215Pcr1 (5.3.10) 

This result is indeed larger than P cr, and exceeds Per, by 21.5 percent. It would be 
a poor approximation to Per,· Obviously, the choice of a parabola for the 
deflection curve is not very good, since the curvature of the deflection curve is 
constant, while it should vanish at column ends where the bending moment is 
zero. 

To improve the result, we might consider a better function, which is not only 
kinematically admissible (i.e., w = 0 at x = 0 and x = l) but also satisfies the static 
boundary conditions M = 0 at x = 0 and x = l. This may be achieved by a 
parabolic distribution of curvature: 

w"(x) =Ax(l-x) (5.3.11) 

(A= arbitrary constant). Integrating twice we have w(x) = A(2lx3 - x4 + Cx + 
D)/12. The integration constants C and D can be determined from the boundary 
conditions w = 0 at x = 0 and x = l, which yield C = -P, D = 0. So w(x) = 
Ax(2lx2

- x3
- P)/12. Substituting this and Equation 5.3.11 into Equation 5.3.7 

and integrating, we obtain 

(5.3.12) 

Again the upper-bound property of PR is verified, but the result is a far better 
approximation to Per,, with an error of only 0.13 percent. This drastic improve
ment is a consequence of the fact that the convergence of PR to Per, is quadratic, 
as will be shown later. It also shows that one way to obtain a very good estimate 
for the deflection shape is to try to satisfy not only the kinematic boundary 
conditions but also the static boundary conditions. 

Relation to Differential Equation 

Now that we have illustrated the minimizing property of the Rayleigh quotient by 
examples, we will examine the minimization property more rigorously. Let us 
consider a self-adjoint linear eigenvalue problem defined as the boundary value 
problem with the homogeneous linear differential equation l-w = Mw - P/Yw = 0 
and homogeneous boundary conditions; l-, M, lY are linear differential operators, 
M and lY being positive definite (see Sec. 5.1). Stable states are considered to be 
those for which operator Lis positive definite. According to Theorem 5.1.3, this 
condition means that state w(x) = 0 is stable if (w, {..w) = (w, Mw)- P(w, /Yw) > 
0 for all admissible w(x), critical if ( w, l-w) ~ 0 for all admissible w(x), and 
(w, {..w) = 0 for some admissible w(x) and unstable if (w, Lw) < 0 for some 
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admissible w(x). Noting that (w, Nw)>O because N is positive definite, we may 
express P from these inequalities and find that the system is stable if, for all 
admissible w(x), P < PR where 

P. _ (w, Yw) _ [ w(x)¥[w(x)]dx 

(w, Nw) [ w(x)~(w(x)] dx 
(5.3.13) 

This definition of the Rayleigh quotient, which is normally used in mathematics, 
is more general than our definition in Equation 5.3.2, for it is applicable even if 
the differential operators 1!1 and N are not associated (according to variational 
calculus) with the strain energy and work. 

From the condition that ( w, L.w) > 0 for all admissible w(x) it follows that 
P<(w, Mm)/(w, Nw) for all admissible w(x) that do not satisfy the differential 
equation with its natural boundary conditions. This implies (by the same 
argument as used to derive Eq. 5.3.4) that min PR is Per, also for the definition of 
PR according to Equation 5.3.13. 

For the special case of a beam-column (.M = d2/dx2[El(x) d/dx2
], N = 

-d2/dx2
, see Eq. 5.1.11), Equation 5.3.13 becomes 

[ w(Elw")" dx 

PR= I -L ww"dx 

(5.3.14) 

Is this the same as Equation 5.3.7? It is, for by integrating by parts and taking 
into account the homogeneous essential or natural boundary conditions of the 
column, Equation 5.3.14 can be transformed into Equation 5.3.7. One may easily 
check that if the trial functions used in the previous examples (Eqs. 5.3.9 and 
5.3.11) are substituted, one gets from Equation 5.3.14 the same results as those 
obtained before from Equation 5.3.7. Also, substitution of the exact deflection 
shape yields the exact first (lowest) critical load. 

Proof of Upper-Bound Property and Convergence 

The fact that the first critical mode minimizes the Rayleigh quotient can be 
alternatively, and perhaps also more conspicuously, proven on the basis of the 
eigenfunctions (buckling modes) w,(x), n = 1, 2, 3, .... Since the eigenfunctions 
are linearly independent and mutually orthogonal, any admissible function w(x) 
(i.e., any kinematically admissible deflection curve) may be expressed (exactly) 
by the eigenfunction expansion: .. 

w(x) = ~ q,w,(x) 
n=l 

We may now substitute this expansion into Equation 5.3.13. This yields 

PR = ~" ~m (w,, Mwm)q,qm 
E. Lm (w,, Nwm)q,qm 

(5.3.15) 

(5.3.16) 
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According to the differential equation lt:fw - P!Yw = 0 we may now substitute 
lt:fwm = Per,.!Ywm and assume that the eigenfunctions Wn are normalized in such a 
manner that (wn, !Ywm) = 6nm =Kronecker delta (= 1 if n = m and 0 if n :#=m). 
Thus we can reduce Equation 5.3.16 to the form 

2 + p er2 2 + Perl 2 + Per• 2 + ql -q2 -q3 -q4 · · · 
P. = E;=l Per.q! = P. Per1 Per1 Per1 

R 't""" 2 er, 2 2 2 2 L..n=lqn ql+q2+q3+q4+··· 
(5.3.17) 

The inequality PR <==Per, follows from the fact that each term in the denominator 
of the last fraction is equal to or less than the corresponding term in the 
numerator, that is, q~-:5q~Per./Per,, since, by definition, Per, is the lowest critical 
load (i.e., Per,< Per. for all n > 1). The case PR =Per, is obtained only if 
q2 =q3 =q4 =0, that is, if w(x)=q 1w1(x)=first critical mode. Otherwise, 
PR >per,· Thus we prove that min PR =Per,· 

If we require w(x) to be orthogonal to w1(x), that is, restrict w(x) to such 
functions that (w, l:fw1) = 0, then by a similar argument we can show that 
min PR = Per2· 

Noting that, according to Equation 5.3.17, 

P. _ P. = E:=2 (Per.- P er,)q~ 
R cr1 t"'aa 2 L.ln=l qn 

(5.3.18) 

it is also apparent that the difference PR - Per, decreases as the squares of the 
deviations from the first critical mode. This is an essential property; it indicates 
that even an approximate shape of the deflection curve should yield an excellent 
estimate of the first eigenvalue provided it is not very different from the first 
eigenfunction. 

The last observation means that the convergence of the Rayleigh quotient to 
the first eigenvalue should be quadratic. This may be proven more directly as 
follows. Equation 5.3.18 shows that PR =Per, when w(x) = w1(x) =first eigen
function. For a general admissible deflection curve we may write w(x) = w1(x) + 
ew(x) in which w(x) is any kinematically admissible function satisfying the given 
kinematic boundary conditions (which are homogeneous) and £ is an arbitrary 
parameter. Thus, by definition (Eq. 5.3.13), 

[ ( )] 
_ (w1 + ew, lt:fw1 + elt:fw) PR w X - ..:._:,.__-'--''---=-----:-'-

(wt + ew, l:fw1 + el:fw) 

(w~> lt:fw1) + e(w, lt:fw1) + e(w~> Mw) + e2(w, lt:fw) 
(w~> l:fwt) + e(w, l:fw1) + e(w~> l:fw) + e2(w, l:fw) 

(5.3.19) 

In the numerator we have e(w~> lt:fw) = e(w, lt:fw1) because of the self-adjoint 
property of operator lt:f. Furthermore, because w1 is the exact eigenfunction, we 
may substitute lt:fw1 = Per,l:fw1• In the denominator, e(wt> l:fw) = e(w, l:fwt) 
because of the self-adjoint property of operator l:f. Thus, Equation 5.3.19 yields 

[w( )] = Per,(wt> !Ywt) + 2EPer,(w, l:fw1) + e
2
(w, lt:fw) 

PR x (w1, l:fw1) + 2e(w, l:fwt) + E2(w, l:fw) 

2 [ (w, lt:fw)- Per,(w, l:fw) ] 
=Per,+ 

8 (w~> l:fw1) + 2e(w, l:fwt) + £ 2(w, l:fw) 
(5.3.20) 
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The term that multiplies E
2 is not constant. However, it varies continuously and is 

nonzero when E is zero. So this term is nearly constant within the range of 
infinitely small values of E. For a sufficiently small E, the denominator is positive. 
Because L = 1!1 - P cr,IY is a positive-semidefinite operator, the numerator is 
nonnegative, that is, it is zero for some w(x), and positive for other w(x) [this 
would not be true if w1(x) were replaced by another wn(x)). Thus we conclude 
again that with diminishing E the smallest eigenvalue is approached from above, 
that is, PR is an upper bound. At the same time, we also verify that the error in 
the eigenvalue is of the order of E2 if the error in the eigenfunction is of the order 
of E. This proves that as the deflection curve w(x) approaches the exact first 
eigenfunction, the convergence is quadratic. This further implies that even a 
relatively crude estimate of the first eigenfunction should give a relatively 
accurate estimate of Per,· See also, for example, Dym and Shames (1973), Collatz 
(1963), Courant and Hilbert (1962), and Morse and Feshbach (1953). 

Extension to Free Vibration 

Let us now generalize the Rayleigh quotient for free vibrations of elastic columns 
under a conservative axial load. Similar to Section 3.1, we assume that 
w(x, t) = ei(l)lv(x). Then, according to the D' Alembert principle and the principle 
of virtual work, the condition of dynamic equilibrium leads to the differential 
equation (Elv)" + (Pv')' -~Jro2v = 0, with homogeneous boundary conditions. 
The system is stable if the differential operator of this differential equation (which 
is self-adjoint) is positive definite, which requires that 

[ [(Elv")" + (Pv')' -~Jro2v)vth >0 (5.3.21) 

Then, integrating by parts and using the boundary conditions, which are assumed 
to be homogeneous, we may transform Equation 5.3.21 to the equation: 

[ (!Elv"2
- !Pv'2 - !1Jro2v2

) th > 0 (5.3.22) 

This immediately leads to the following stability conditions in terms of the 
Rayleigh quotients for either the circular frequency ro or the axial load P: 

[ !(Elv'12
- Pv'2) th 

(1)2 < _;;_---:------

I: !1JV
2

tU 

(5.3.23a) 

f !(Elv"2 -~Jro2v) th 
p < ~0~-~-----

I: !v'
2
th 

(5.3.23b) 

In the plane (P, ro2
), either one of these inequalities defines an exterior 

approximation for the stable domain (Fig. 5.8). It consists of a straight line 
segment connecting the point of the Rayleigh quotient roR (Eq. 5.3.23a for P = 0) 
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p 

Figure 5.8 Variation of exact and approximate circular frequencies of free vibrations of an 
Euler column with axial load. 

with the point of the Rayleigh quotient PR (Eq. 5.3.23b for w = 0). In the first 
(positive) quadrant of Figure 5.8, this straight line segment lies entirely outside 
the straight line segment that connects the points of Wert and Pert (Fig. 5.8) and 
was already obtained by the exact solution in Section 3.1 (Fig. 3.2a). 

Problems 

5.3.1 Consider a free-standing column (Fig. 5.9a) and transform Equation 5.3.14 
into Equation 5.3.7. 

a) t 

1} 
Spring 
conat.nt C 

TranaverH framH 
are infinitely 
denaely diatributed 

Figure 5.9 Exercise problems on Rayleigh quotient for columns and beams on elastic 
foundation. 

5.3.2 Consider a beam on an elastic foundation (Fig. 5.9b) with hinged ends and 
length I. Solve it by the Rayleigh quotient assuming w(x) =A sin (nnx/1). 
(Note: n = 1 does not in general give the lowest critical load, and so one must 
minimize with respect to n.) 

5.3.3 Do the same, but t-oo and w(x)=sin(.nx/L). (Note: Now one must 
minimize with respect to L, and this must give the exact solution, Sec. 5.2.) 
Also, check that w(x) =[sin (nxll)r, for example, for m = 3, yields an 
upper bound. 

5.3.4 Solve the problem of the lateral buckling of the compression belt of a truss 
bridge (Fig. 5.9c, also Fig. 5.5c). 

5.3.5 Solve the problem of a simply supported beam with variable cross section 
(Fig. 5.9d) by the Rayleigh quotient. Use (a) I= Io + I1x/l or (b) I= 
Io+4I1x(l-x)/l2

• (c) Repeat for the case of a cantilever beam and for a 
fixed-hinged beam. 
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5.3.6 Calculate the frequencies of axially loaded simply supported columns: (a) 
of variable cross section (see Prob. 5.3.5), (b) loaded by own weight. If 
P = 0. 95P cr

1
, how does the frequency change with respect to P = 0. 90Pcr

1
? 

5.3.7 Generalize the Rayleigh quotient for columns with shear (analyzed by 
equilibrium in Sec. 1.7). 

5.3.8 Formulate the Rayleigh quotient for three-dimensional buckling of a 
column under axial force and torque (Sec. 1.10). 

5.4 TIMOSHENKO QUOTIENT AND RELATIONS BETWEEN 
VARIOUS BOUNDS 

Derivation 

For structures that are statically determinate, there exists another upper-bound 
method that yields closer approximations. In this method, due to Timoshenko 
(Timoshenko and Gere, 1961, p. 90), we calculate the bending energy from the 
bending moment M, which isM= -Pw, for the pin-ended column (Fig. 5.10a), 
rather than from the curvature of the assumed approximate deflection function 
(trial function). Imposing the condition that the energy variation at the critical 
state must be zero, we have 

L
l (Pw )

2 L' p (dw)2 
_ ~= --dx- -- dx=P2 U1 -PW=O 

0 2EI o 2 dx 
(5.4.1) 

where U1 =strain energy based on M but calculated from w(x), and W =work of 
load, same as used for PR. Now we may solve for P and denote the expression as 

d) t 

b) r . 

1
£.---
~· ~~•-Pw 

Figure 5.10 Examples of structures in which the bending energy can be calculated from 
the bending moment (expressed through deflection). 
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(5.4.2) 

This expression is known in buckling theory as the Timoshenko quotient. It exists 
only for statically determinate structures. We will see that if Pr exists it always 
provides a closer upper bound than the Rayleigh quotient defined by Equation 
5.3.7 or 5.3.14. 

Equation 5.4.2 is applica.,le not only to pin-ended columns, but also more 
generally to a free-standing column provided that w(x) is measured from the 
moving axis of load Prather than the fixed axis (Fig. 5.10b). This equation is also 
applicable to a column with one sliding rotational restraint and one fixed end 
(Fig. 5.10c), provided that w is measured from the vertical line passing through 
the inflection point at which M = 0. For multispan continuous beam-columns, one 
could define w(x) differently in each span in order to make the expression 
M = - Pw applicable. But in such cases, for example, the simply-supported 
beam-column with an overhang (Fig. 5.10d) or a free-standing column with an 
L-shaped base (Fig. 5.10e), it is preferable to write first the expression for energy 
<I> and then solve P from it. 

A necessary, although not sufficient, condition for Pr to attain a minimum for 
the exact deflected equilibrium shape w(x) is that 6Pr = 0. This property may be 
easily checked from the relation 6Pr = lJ(W I U1) = ( U1 lJW - W lJU1)U}2 = 
(lJW- P lJU1)/U1• By a procedure similar to Equation 5.3.8, we have 

[
1 

[
1 

w L'( Pw) U1 6Pr = Jo w' lJw' dx- P Jo EI lJw dx =-
0 

w" + EI lJw dx + [w' 6w1I> (5.4.3) 

in which the first integral has been transformed by integration by parts and the 
bracketed expression vanishes since either w = 0 or w' = 0 at the boundary 
points. If equilibrium exists not only for w(x) = 0 but also for nonzero w(x ), the 
last integral in this equation vanishes because the integrand vanishes. This 
demonstrates that Pr is stationary if there is equilibrium at nonzero w(x), but, of 
course, not that Pr is minimum. 

Examples 

Let us check how close an approximation we get from the Timoshenko quotient 
for the pin-ended column. First we can verify that by substituting w(x) = 
sin (ru/1) into Equation 5.4.2, we obtain the exact first critical load Per,= 
Eln2/12

• Then we pretend again we do not know the exact shape and choose a 
parabola, Equation 5.3.9. Substitution into Equation 5.4.2 and integration then 
yields 

lOEI 
Pr = f = 1.013Pcr, (5.4.4) 
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This is a far closer upper bound than the value 1.215Pcr1 we obtained from the 
Rayleigh quotient (Eq. 5.3.10). 

Now adopt a parabola for the curvature distribution, as written in Equation 
5.3.11, and substitute the associated expressions for w(x) and w'(x) that we 
determined before into Equation 5.4.2. This yields 

EI 
Pr = 9.87096[2= 1.00014Pcr1 

(5.4.5) 

This is again closer to Pcr1 than the upper bound 1.0013Pcr
1

, which we obtained 
from the Rayleigh quotient (Eq. 5.3.12). Later we will show in general that, if Pr 
exists, it always gives a closer upper bound than PR (that is, PR ;;=: Pr ). 

If we realize that the Timoshenko quotient involves lower-order derivatives 
than the Rayleigh quotient, it is not surprising that it gives closer bounds. In 
mathematics it is generally known that if a certain function has an error, then its 
derivative has a larger error. Therefore, it is generally desirable to make 
approximations on the basis of derivatives of the lowest order possible. 

Relation to Differential Equation and Proof of Upper-Bound 
Property 

From the fact that the Timoshenko quotient can be defined only for statically 
determinate structures we may have suspected it must be related to the integrated 
(second-order) differential equation of beam-columns, w" + wP I EI = 0, with 
which we started in Section 1.2. This equation is of the form t *w = .M*w
Plj*w = 0, in which the differential operators are M* = -d2/dx2

, IY* = 1/ EI. In 
mathematics, the general rule for forming the Rayleigh quotient is Equation 
5.3.13, and substitution of these operators then yields, for w(O) = 0, 

f w.M*w dx [ ( -ww") dx [ w'2 dx 

p = f' = f'wz = f'wz = Pr (5.4.6) 
)
0 

wlj*wdx Jo Eldx Jo Eldx 

in which the last expression has been obtained through integration by parts. The 
boundary terms arising from the integration by parts vanish because at the 
boundaries x = 0 and x =I we have either w = 0 or w' = 0. Note the boundary 
terms also vanish for the free-standing column if w(x) is measured from the load 
axis (Fig. 5.10b). 

Note that the last expression in Equation 5.4.6 is identical to the Timoshenko 
quotient (Eq. 5.4.2), at which we initially arrived by physical arguments. 
Consequently, even though Pr is not the Rayleigh quotient in the physical sense 
of PR = U /W (=ratio of strain energy to work per unit load), it mathematically 
represents nothing else but the Rayleigh quotient for a twice-integrated 
differential equation of equilibrium of a beam-column. From this observation it 
immediately follows that Pr is an upper bound and attains a minimum for the 
exact first buckling mode, that is, 

minP=Pr for all admissible w(x) (5.4.7) 
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The proof of the minimum property that we showed in Equations 5.3.19 and 
5.3.20 applies also to PT, and so does the demonstration of quadratic convergence 
(Eq. 5.3.20). 

Note that the formation of the Rayleigh quotient according to Equation 5.4.6 
is contingent upon the fact that operator L * = M* - PN* is self-adjoint. This 
property may be easily verified by integration by parts. Also, one can verify that 
operators M* and N* are positive definite. Furthermore, the conditions of 
positive definiteness of operator L * require that functional (J) be negative definite. 
This may be verified by integrating by parts as follows: 

1 1 p 
(J)*[w(x)] = 2 (L*w, w) = 2 (w, M*w)- Z (w, N*w) 

=! (I w(-w") dx -~L~ w2 dx 
2 Jo 2 o El 

1[L1
P L1

(Pw)
2 J 1 =- -w'2dx- --dx =--(J)[w(x)] 

P o 2 o 2El P 
(5.4.8) 

which shows that ~[w(x)]<O for all admissible w(x) if and only if (J)*[w(x)]>O 
for all admissible w(x ). 

Relation to Rayleigh Quotient and Inequalities 

From the examples we saw that PT was a better upper bound than PR, that is, 
PT::::; PR. Is this valid in general? We want to prove that 

f w'2 dx f Elw"2 dx 
0 < ....:0~-----

1 - I L w2
dx/El L w'

2
dx 

(5.4.9) 

or 

[ Elw"
2 

dx · [ ;;dx 2: ([ w'
2 

dx r (5.4.10) 

Integration by parts and boundary conditions w = 0 yield 

[ w'2 dx =-f ww" dx (5.4.11) 

Denoting w"VEI = f(x) and w/VEI = g(x), we have 

f F<x> dx · f g2
(x) dx 2: [f f(x)g(x) dx r (5.4.12) 

Now this last inequality may be recognized to represent the well-known 
Cauchy-Schwarz inequality (e.g., Rektorys, 1969, p. 571). (This inequality may in 
turn be proven by approximating the integrals with sums and considering a limit 
of the algebraic inequality in Eq. 5.4.22.) So we conclude that if PT exists then 
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Pr::;; PR. Together with our previous result we thus have (Bafant, 1985) 

(5.4.13) 

The cases of equality occur here only if w(x) is the exact solution. 
The inequalities in Equation 5.4.13 also can be proven by considering again 

the expansion of a general deflection curve into the eigenfunctions that we 
already introduced in Equation 5.3.15; see, for example, Schreyer and Shih 
(1973). Consideration must now be restricted to statically determinate columns, 
for which the differential equation is (see Eq. 5.1.11) M'*w- P!j*w = -w"
(PI EI)w = 0, where El can be variable. Let us assume that the eigenfunctions 
w*(x) are normalized in such a way that 

(w;:'., !j*w:) = [ w!,(x)w:(x) ~ = lJm,. (5.4.14) 

in which lJmn = 1 if m = n and otherwise zero. (Note that lJmn is not nondimen
sional but has the dimension of length/force.) Because the eigenfunctions satisfy 
the differential equation, we may substitute w: = -Elw:"IPcr. into Equation 
5.4.14. This furnishes 

[ EIW::'(x)w!"(x) dx = lJm,.P~r. (5.4.15) 

Furthermore, we may substitute w: = -Eiw!"IPer. into Equation 5.4.14, and this 
yields - J~ W::'w: dx = lJmnPer.· If we integrate by parts and use the boundary 
conditions w: = 0 at x = 0 and x =I, we obtain 

[ w;:'.'(x)w:'(x) dx = lJm,.Per. (5.4.16) 

We may now use Equations 5.4.14 to 5.4.16 to evaluate 

(5.4.18) 

L
l = 
El[w"(xW dx = · · · = L P~r.q:2 

0 n=l 
(5.4.19) 

Substituting this into Equation 5.4.2, which defines the Timoshenko quotient, we 
find that 

(5.4.20) 

where the inequality ensues from the fact that Per.> Per1• This proves again that 
the Timoshenko quotient is an upper bound for the lowest critical load. 

Equation 5.4.20 is identical to Equation 5.3.17. This observation is not 
surprising since Equation 5.3.17 is valid for any operator Jj, provided that the 
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eigenfunctions are normalized with respect to the same operator, that is, /Y. If 
one substitutes Equations 5.4.18 and 5.4.19 into Equation 5.3.7 for the Rayleigh 
quotient, one obtains 

(5.4.21) 

Let us now prove that PR ~ Pr always if Pr exists. Substituting into this 
inequality the expressions in Equations 5.4.20 and 5.4.21, multiplying by the 
expressions in the denominators (which are positive), and denoting Pcr.q: =am 
we reduce the inequality PR ~ Pr to the inequality 

(5.4.22) 

This inequality may be proven as follows. Consider the hyperspace with 
coordinates q~, qi,... and denote the vectors q = (q~, qi, ... ) and a= 
(a 11 a2 , ••• ). Then the sums on the left-hand side of Equation 5.4.22 represent 
the squares of the magnitudes of vectors a and q, and the right-hand side 
represents the square of the scalar product of these vectors. This means that 
inequality 5.4.22 is equivalent to lallql2:: Ia • ql. The last inequality, as well as that 
in Equation 5.4.22, is known as the Cauchy-Schwarz inequality (in algebraic 
form). Its geometric proof is simple: see Figure 5.11. We divide the last inequality 
by lal and note that a/lal = ea = unit direction vector of vector a. Thus, the last 
inequality is equivalent to lql ~ lea · ql, and this inequality states an obvious fact: 
The length of vector q in Figure 5.11 is not shorter than its projection onto the 
direction of vector a. This completes the proof. 

It also may be noted that for n = 2, the Cauchy-Schwarz inequality reads 
(a~+ a~)(q~ + q~) ~ (a1q 1 + a2q2)

2
; this can be reduced to a~q~ + a~q~ ~ 2a1a2q 1q2 

or (a2q1 - a 1q2)
2 ~ 0, which again proves Equation 5.4.22 for n = 2. 

The preceding proof can be also generalized to other boundary conditions (as 
shown by Schreyer and Shih, 1973). To this end, one needs to note that generally 
ElM"+ PM= 0, and so what we did before using eigenfunctions wn(x) can be 
repeated for moment eigenfunctions Mn(x) with only slight modifications. One 
modification is to write J~ M;..M~ dx =Per. {)mn for the case of a free-standing 
column or a fixed-sliding column. For other types of supports, slightly different 
but similar relations may be written. In more detail, see Schreyer and Shih 
(1973). 

The Rayleigh and Timoshenko quotients also can be defined for discrete 

Figure 5.11 Projection of vector q onto the direction of vector a. 
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systems. They may then be used for obtaining approximate solutions and bounds 
using a reduced number of kinematic variables qn. The foregoing proofs can be 
directly translated from continuous to discrete systems, using an expansion in 
terms of discrete eigenvectors rather than continuous eigenfunctions. 

To derive the inequality for Pn one might be tempted to assume that the 
work expression J !(Pw)2 dx/El- P J !w'2 dx = P(P- Pr) J !w2 dx/El must be 
positive for stable states. But, curiously, this cannot be right because solving for P 
from the positiveness condition incorrectly indicates that stable states would 
occur, for all admissible w(x), when P > Pr, which would imply that Pr should be 
a lower rather than an upper bound on P cr1-a consequence contradicted by our 
examples. So where is the error in this argument? The error lies in having tacitly 
assumed that the aforementioned work expression is positive definite. This 
expression may be recognized to coincide with «<> as defined before (Eq. 5.4.1), 
and we already showed (below Eq. 5.4.8) that in fact~< 0. «<> is not a potential 
energy, since the equilibrium condition M = - Pw has been introduced. Therefore 
«<> > 0 is not required for stability (in contrast to the condition n = c52ll > 0 we 
used in Eq. 5.3.2). 

An inequality for Pr can also be proven if one can find some structural system 
for which the expression in Equation 5.4.1 represents the potential energy. Such a 
system indeed exists. It is the fiber on an elastic foundation, whose potential 
energy we have already found to be n, = J !(cw2 + Nw'2

) dx (Eq. 5.2.13). 
Comparing Equation 5.4.1 with Equation 5.2.13 we see that mathematical 
equivalence can occur if either «<> = P2ll1, c = 1/ EI, N = - 1/ P or <I> = - P2ll1, 
c = -1/ El, N = 1/ P. Only the second choice, however, is acceptable, for two 
reasons: (1) an increase of stiffness EI must cause an increase in potential energy 
and (2) an increase of load P must cause a decrease in potential energy. Now 
from the stability condition n, > 0 it follows that the stability condition associated 
with Equation 5.4.1 is P2ll1 = -<1> > 0 or«<>< 0 (and not«<>> 0!). This means that 

L
t wz 

«<>=P(P-Pr) -dx<O 
o2EI 

(5.4.23) 

that is,«<> is negative definite for stability (this also follows from Eq. 5.4.8). So we 
conclude that the column is stable if and only if P < Pr for all admissible w(x), 
which implies that P cr1 = min Pr. 

Inapplicability to Dynamics 

As we have seen, the Rayleigh quotient has an analogy in structural dynamics 
where it is used to approximate the first free vibration frequency. The 
Timoshenko quotient, however, has no analogy in dynamics. The reason is that 
the differential equation for free vibrations of a beam-column, which we derived 
in Section 3.1 (Eq. 3.1.2) contains the term #lW, which is a zeroth-order derivative 
of w with respect to x, so that the equation cannot be integrated to reduce the 
highest derivative with respect to x from the fourth to the second order. This 
agrees with the fact that the bending moment in a vibrating pin-ended or 
free-standing column cannot be expressed in terms of the load and deflection 
alone. 
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The Question of Lower Bounds 

From the viewpoint of safety, it would be comforting to designers to have an 
approximate method that would give a lower rather than upper bound. 
However, the problem is more difficult than the upper-bound problem. One type 
of lower bound, PL, may be obtained on the basis of the Rayleigh and 
Timoshenko quotients, using the equation (Schreyer and Shih, 1973) 

(5.4.24) 

Unfortunately, this bound, as well as some other lower bounds discovered so far, 
is quite poor, that is, not sufficiently close to Per,· Another type of a lower bound, 
which can be quite close, nevertheless exists; see Section 5.8. 

Problems 

5.4.1 Use the Timoshenko quotient to estimate Per, of the columns in Figure 
5.12a, b, c. Also solve these problems by the Rayleigh quotient and compare 
the results. 

a) r b) c) 

d) p e) t 

Figure 5.12 Exercise problems on Timoshenko quotient for columns and rigid-bar systems 
with elastic springs. 
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5.4.2 Can the Timoshenko quotient be formulated for (a) a simply supported 
beam on an elastic foundation? (b) A two-span continuous simply supported 
beam with a hinge in the middle of one span? 

5.4.3 Solve, approximately, Pcr1 for the discrete systems made of rigid-body links 
and springs in Figure 5.12d, e, f. 

5.4.4 Formulate and demonstrate the Timoshenko quotient for three-dimensional 
buckling of a statically determinate column under axial force and torque (Sec. 
1.10). 

5.5 BOUND APPROXIMATIONS FOR COLUMNS, FRAMES, AND 
HIGH ARCHES 

We will now illustrate the practical calculation of upper-bound approximations 
for critical loads using the Rayleigh and Timoshenko quotients. This approach is 
often quicker and easier than the exact solution of critical loads. 

Columns 

Consider a column that is loaded by its own distributed weight p(x) and by a 
concentrated force P0 at the top (Fig. 5.13). The condition of zero energy 

a) Po b) 

c) 

Fipre 5.13 (a) Free-standing column loaded by a distributed weight; (b) column with 
variable cross section loaded by a distributed weight; (c) column with overhang. 
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variation of the critical load becomes 

U- W = [ !EI(w")2 dx-£ p(x)u(x) dx- P0 u(O) = 0 (5.5.1) 

where w(x) is an approximate solution and u(x) is the vertical displacement due 
to deflection w. Integrating by parts the second integral, and using the boundary 
conditions u(l) = 0 and P(O) = P0 , we obtain 

f !EI(w")2 dx + r P(x)u'(x) dx = 0 (5.5.2) 

in which P(x) = P0 + f0p(s) ds is the variable axial force. The second integral in 
Equation 5.5.2 now represents the work of the axial force -P(x) on the 
second-order axial strain component u'(x) = -w'2(x)/2 (which results upon 
imposing the condition E = 0 in Eq. 4.3.7). Introducing this last expression in 
Equation 5.5.2, and expressing P(x) = p 0 f(x), in which p0 is a multiplier of the 
distributed load, one obtains the Rayleigh quotient 

f !Elw"2 dx 
p~ = I O (5.5.3) 

L f(x)(w'2/2) dx 

Consider now a free-standing column of constant cross section (Fig. 5.13a), 
with no load at top, that is, P0 = 0. We can then set p = p0 =constant and 
f(x) = x. Let us choose for the approximate buckling shape w = A[1 -
sin (1rX/21)] where A is an undetermined constant. This choice has the advantage 
that it satisfies not only the kinematic boundary conditions (w = w' = 0 at base, 
x = 1), but also one of the static boundary conditions on top of the column, w" = 0 
at x = 0. Substituting in Equation 5.5.3 one gets 

0 = (~)(El) = 8.29EI 
PR .1l2- 4 213 /3 (5.5.4) 

The exact solution can be obtained by integrating the differential equation 
M' + Pw' = (Elw")' + P(x)w' = 0, which can be done with the help of Bessel 
functions. The result is p~ = 7.837El/P. This means that the error in Equation 
5.5.4 is 5.9 percent. 

A better result may be obtained from the Timoshenko quotient, which can be 
calculated since the column is statically determinate. The relation analogous to 
Equation 5 .4.1 reads 

(I Mz 11 (I pz (M)z J w'z 
~ = Jo 2Eldx- o p(x)u(x) dx = Jo 2;1 Po dx- Pof(x) T dx (5.5.5) 

The expression of the Timoshenko quotient becomes 

I: f(x)(w' 2 /2) dx 

Por= f (1/2EI)(M/p
0

) 2 dx 
(5.5.6) 
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For the previously considered case of the cantilever in Figure 5.13a we have 
M(x) = f~po(w(s)- w(x)] ds and substituting the same approximate buckling 
shape as before, we obtain 

7.888£/ 
Por= [3 

(5.5.7) 

which differs from the exact solution only by 0.65 percent and is much better than 
the result from the Rayleigh quotient, as expected. 

Better approximations may be obtained by assuming the moment distribution 
to be parabolic, M = MoX2 I 12

, and by obtaining the corresponding deflection 
distribution by integration with the use of the boundary conditions w = 0 and 
w' = 0 for x =I. Substitution of the solution w = (M0/12El)(x4ll2

- 4lx + 3/2
) into 

Equation 5.5.3 yields PR = 8EII13
• 

The approximate energy methods are also useful for estimating the critical 
loads of columns with variable cross sections (see Probs. 5.3.5 and 5.4.1). For the 
case of a beam of variable cross section loaded by its own weight and axially 
supported at its base (Fig. 5.13b), the expressions for p0R and Por in Equations 
5.5.3 and 5.5.6 (if they exist) remain valid (for various boundary condtions) 
provided that the origin of coordinate xis placed at the top (see Prob. 5.5.2). 

The upper-bound approximations are not limited to simple columns. They can 
be obtained for any structure for which the buckling shape can be reasonably 
estimated either on the basis of similar known solutions or on the basis of 
experimental observations. As an example, consider the column with an 
overhang, loaded axially as shown in Figure 5.13c. Since this beam is statically 
determinate, the bending moment due to load P can be calculated for every point 
of the beam. To do this for points between the supports, it is, of course, 
necessary to first calculate the reactions (see Fig. 5.13c). One gets (1) for 
O<x<l, M=P(woXII-w) and (2) for l<x<2l, M=P(w0 -w). So the 
equation which gives the Timoshenko quotient (Eq. 5.4.1) becomes 

Lu ~w'2dx 
Pr = ---,.-,-------

121 (M I P)2(112E/) dx 

(5.5.8) 

Assuming w = w0(xl2f)(x -l) one gets from Equation 5.3.7 PR = 2.57R/l2
, and 

from Equation 5.5.8 Pr = 1.83Ril2• Again one can see that the Timoshenko 
quotient gives a far better result. (The exact result is Per,= 1.789R/f; see Prob. 
2.2.11.) 

Frames 

Consider now the two-bar frame in Figure 5.14a. Assume distributions of 
deflections given by w1(x)=80(h/n)sin(nxlh) for the vertical bar, and by 
w2(x) = 80(x I l)(x - I) for the horizontal bar. One can verify that they satisfy 
compatibility at the joint, the rotation of which is denoted as 80 • The Rayleigh 
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a) 

Figure 5.14 Two-bar frame with (a) pin support and (b) sliding pin support. 

quotient 

(5.5.9) 

gives PR = (2Ellh)(n212h + 411). For h =lone gets PR = 1.81n2Elll2
• The exact 

value is Per,= 1.406n2Elll2 (see Prob. 2.2.15). 
Consider now the two-bar frame in Figure 5.14b, and let 90 and w0 be the 

rotation and displacement of the joint of the two bars under an assumed 
deflection distribution given by w1 = w0(1- xlh) + [(w0 - h90)ln] sin (.nxlh) for 
the vertical bar, and by w2 = 90(x I I)( I- x) for the horizontal bar. One can verify 
that these distributions satisfy slope compatibility at the joint of the two bars. The 
Rayleigh quotient PR is expressed again by Equation 5.5.9, but in this case it is a 
function of two variables, 90 and w0 • One may now divide both the numerator 
and the denominator by (}~, obtaining PR as a function of the ratio X = w01 90 • 

For any chosen ratio X, PR yields an upper bound for Per,· To get the best upper 
bound, PR must be minimized with respect to ratio X. The necessary minimum 
condition dP I dX = 0 yields a quadratic equation for X. Its proper root, 
corresponding to the minimum X, may then be substituted into the expression for 
PR, giving PR = 0.201n2El/l2

• (The exact result for h = l is Per,= 0.144n2EIIP; 
see Prob. 2.2.15.) It may be noted that minimization of PR with respect to X is 
equivalent to the Rayleigh-Ritz method for problems with more than one 
unknown (see Sec. 5.6). 

In the foregoing example, however, it is also possible to calculate the 
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Timoshenko quotient, since the structure is statically determinate. One must first 
calculate the bending moment, which is given by M1 = - Pw0 + P( w0 - w1) = 
- Pw1 for the vertical bar and by M2 = - PwoX /I for the horizontal bar. The 
Timoshenko quotient is expressed by 

f !w~2dx 
PT = h I L (1/2£/)(M.f P)2 dx + L (1/2E/)(M2/ P)2 dx 

(5.5.10) 

Again one finds that PT needs to be minimized with respect to the ratio 
X = w0/60 • This leads to a quadratic equation for X and its proper root gives 
PT = 0.145n2EJ/f-a very close bound. 

Elastically Supported Beams 

Consider now a column laterally supported at midlength by a spring of stiffness 
C, as shown in Figure 5.15a. Let w0 be the displacement at midlength. The 
symmetry and compatibility conditions at x = 0 may be satisfied by choosing 
w = w0 + a(x/1)2 + b(x/lt. Determining constants a and b so that both the 
kinematic and static boundary conditions are satisfied at x = 1/2, that is, 
w(l/2) = 0, w"(l/2) = 0, one gets w = w0[1- ZJ-(x/1)2 + .lf(x/1)4

). The Rayleigh 
quotient is given by 

[ !Elw"2 dx + !Cw~ 
PR = -'------,------

[ iw'2 dx 

(5.5.11) 

Performing the calculations for C = 20EIW, one obtains PR = 13.903El/12 = 
1.4087PE, which is very close to the exact value, Per,= 1.4076PE (see Prob. 
2.2.12). Again we see that if the assumed displacement distribution satisfies the 
static boundary conditions, the solution is very accurate. 

a) b) 

~ 

L 

Figure 5.15 (a) Elastically supported beam; (b) beams on elastic foundations. 
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Since the spring reaction at the midlength support (which makes the structure 
redundant) may be expressed as a function of w0 , the bending moment becomes a 
known function of w0 (for the assumed displacement shape) and consequently the 
Timoshenko quotient may be calculated from the equation 

L
1 

1 [ Cw0 (I ) ]
2 

1 2 J 1 2 - -Prw +- --x dx +-Cw0 - Pr -w' dx =0 (5.5.12) 
0 2EI 2 2 2 2 

Performing the calculation for C = 20EJI[3, one obtains Pr = 1.4078PE. Co
mpared to the exact value 1.4076PE, this seems too good to be true but it is true. 

Consider now an infinite beam on an elastic foundation, of modulus c, and 
assume that w = w0 sin (1rXI2L) (Fig. 5.15b). The expression for the Rayleigh 
quotient becomes 

L
L 1 Elw"2 dx + LL lcw2 dx 

p _ o 
2 

o 
2 

El1r2 4L 2 

R - LL = 4L 2 + c -2 
!w'2 dx lf 

0 

(5.5.13) 

Minimizing with respect to L, we get PRm•• = 2VEk, which is the same as in 
Equation 5.2.7. 

Note that the sinusoidal w(x) can also be used for finite-length beams with 
hinged ends. Then it would be necessary to minimize PR only with respect to the 
discrete values of L which are compatible with the hinged ends. For a beam of 
length/, L =lin, n = 1, 2, ... (Fig. 5.15b). 

High Arches 

Consider now high arches, that is, arches in which the shortening of the neutral 
axis has a negligible effect, which we studied in Section 2.8. Let us first treat the 
case of circular arches under a uniformly distributed radial load p whose direction 
remains constant during deflection (dead pressure). For this case we derived the 
differential equation (Eq. 2.8.11). This sixth-order equation may be rewritten as 
l!fu- k2/Yu = 0, with M = d6ld<P6 + 2d4ld<P4 + d2ldql, lY = -(d4 ld</J4 + 
2d2 I d<jJ2 + 1 ), k2 = pR3 I El. Now, forming the Rayleigh quotient according to 
Equation 5.3.13, one gets 

L
L u(u1v+2u"+u)"d</J LL[(d2wlds2)+(wiR2))2ds 

EI o EI o 
PcrR < PRR = R2 LL - R2 -L....,.L.:..._ _________ _ 

-
0 

u(u1v+2u"+u)d<P 
0 

(1IR2)((dwlds)+(uiRWds 

(5.5.14) 

where the primes denote differentiation with regard to the angular coordinate </J. 
The last expression in Equation 5.5.14 has been obtained by integration by parts, 
use of the boundary conditions for fixed and hinged ends, and consideration of 
the inextensibility condition u' = w. Equation 5.5.14 can be rewritten in the form 

1 LL (d
2
w w )

2 
LL 1 (dw ")

2 

2 EI 0 ds2 + R2 ds + ( -pR) 0 2 ds + R ds = 0 (5.5.15) 
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Here the first term represents the strain energy due to bending, since d2w I ds2 + 
w/R2 is the curvature change; see Equation 2.8.2. The second term represents 
the strain energy due to axial extension, since -pR is the axial (normal) force, 
positive for tension, and dw/ds + u/R represents the rotation (which is analogous 
to the slope dw/ds for a straight beam, for which we derived the expression of the 
potential energy in Eq. 4.3.8). We see in this way that Equation 5.5.14 could be 
obtained directly from the expression for the variation of potential energy. 

We can use this energy approach to find the expression of the Rayleigh 
quotient for the case that the pressure remains normal to the deflected arch (i.e., 
for the case of normal pressure or hydrostatic pressure of a fluid). For this kind of 
loading, which is of follower type but is conservative, we need to subtract from 
the second variation of the strain energy the work !1 W = f~ !p,u ds done by the 
tangential component p, of the load (Fig. 2.43c) during deflection. From Section 
2.8 we have p, = -p8, with 8 = (u + w')/ R =rotation of the arch cross section. 
Then, by integration by parts, use of the boundary conditions for hinged or fixed 
ends, and consideration of the inextensibility condition, one obtains 

!1W =~pR (L (w2- "2) ds 
2 Jo R2 R2 (5.5.16) 

Subtracting this term from the left-hand side of Equation 5.5.15 and integrating 
by parts, one obtains 

EI LL [(d2w/ds2) + (w/R2W ds 
PcrR < p'R.R = 2---:-L....:;o _________ _ 

R L (1/R2)[(dw/ds)2- (w/R)2] ds 
(5.5.17) 

As an application, consider a semicircular arch with hinged ends, which we 
solved exactly in Section 2.8. Assume w = w0 sin 2q> for the radial displacement 
(this displacement shape represents an antisymmetric mode and satisfies the 
boundary conditions w = 0 for q, = ±;r/2). The inextensibility condition u' = w 
and the boundary conditions u = 0 for q, = ±;r/2 suggest the assumption 
u = -w0(1 +cos 24> )/2. Substituting this into Equation 5.5.14, we find 

36EI 1r
2El 

PRR = 11R2 = [{J(;rR/2W with {3 = 1.1055 (5.5.18) 

This value is very close to the exact solution, for which we found {3 = 1.1078 (Sec. 
2.8, below Eq. 2.8.17). The upper-bound character of the Rayleigh quotient is, of 
course, verified, since the lower the effective length, the higher is the critical load. 

For the case of normal (hydrostatic) pressure, we substitute the same curve 
w(tj>) as assumed previously for dead pressure into Equation 5.5.17. We find 

EI 1r
2El 

p'RR = 3 R2 = [{J(;rR/2W with {3 = 1.1547 (5.5.19) 

which is the same value as calculated exactly from the differential equation (see 
Prob. 2.8.6). This can happen only if the trial function is the exact solution, and 
this is in fact what happened here (see Prob. 2.8.6). 
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It may now be interesting to construct the Rayleigh quotient starting from the 
approximate second-order differential equation given in Section 2.8, Equation 
2.8.5. This equation can be written in the form M*w- k*2/Y*w = 0, with 
M*=-(d2/ds2+1/R2), /Y*=1, and k*2 =pR/EI. The Rayleigh quotient 
becomes 

(5.5.20) 

Substituting the same assumed function w( 4>) as before, one finds 

El tr2EI 
p'RR = 3 R2 = [,6(trR/2)]2 with f3 = 1.1547 (5.5.21) 

This is the same solution as that which we found for p'R. Again, this is not 
surprising because the assumed solution satisfies exactly Equation 2.8.5 if 
pR = 3EI/R2

, as can be verified. Since, however, Equation 2.8.5 is only 
approximate, the value given by Equation 5.5.21 cannot be assumed as an upper 
bound for the critical load. 

Problems 

5.5.1 For the free-standing column of constant cross section in Figure 5.13a 
determine the Rayleigh and Timoshenko bounds for the self-weight assuming 
for the deflection the expression w = A(1- x2/l2). How do the results 
compare with those we obtained before for the same example but with a 
different assumption for w? 

5.5.2 For the hinged-sliding column in Figure 5.13b, determine the Rayleigh and 
Timoshenko quotients, assuming for the self-weight the distribution p = 
p 0(1 + x/1), and for the deflection the expressions (a) w =A sin (nx/1), (b) 
w = Ax4 + Bx3 + Cx2 + Dx + E in which A, B, C, D, E can be determined 
(through the kinematic and boundary conditions) as functions of only one 
unknown parameter. Does a horizontal shear force V develop during 
buckling? 

5.5.3 Do the same as Problem 5.5.2, but consider a fixed end at the bottom of 
the column. Find suitable expressions for the buckling shape. Can you 
calculate the Timoshenko quotient? 

5.5.4 For the column with a lateral spring at midlength, as shown in Figure 5.15a, 
determine the Rayleigh and Timoshenko quotients, assuming either (a) 
w =A sin (HX/l) or (b) w = Ax(l- x). Using both these approximations and 
the one used in our previous example, determine the effect of the spring 
constant, assuming Cl3/EI=0.01, 0.1, 0.5, 1, 2, 10, 100. 

5.5.5 Use the Rayleigh quotient and, if possible, also the Timoshenko quotient to 
estimate Pcr1 of the columns in Figure 5.16a-k. Compare the results of the two 
methods. 
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Figure 5.16 Exercise problems on upper-bound approximations for column buckling. 
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5.5.6 For the columns with L-shaped base in Figure 5.17a-d, calculate the 
Raleigh and Timoshenko quotients. 

5.5.7 For the frames in Figure 5.17e-o, find an estimate of Per, using Rayleigh, 
and for statically determinate frames, also Timoshenko quotients. 

5.5.8 For the frames in Figure 5.17p, q, estimate Per, treating the springs as an 
elastic foundation of foundation modulus c = 3El/l4

• 

5.5.9 Using Equations 5.5.14 and 5.5.17 for the Rayleigh quotient, solve the 
critical values of dead and normal pressures of a clamped circular arch. 
Compare the result with the exact solution given in Section 2.8 and with the 
value obtained from Equation 5.5.20. (Note that the assumed solution must 
now satisfy the boundary conditions w = 0 and w' = 0 at l/J = ±~r/2.) 

5.5.10 Solve the approximate critical distributed load p for the circular three
hinge arch of constant cross section shown in Figure 5.18a. Also do the same 
for the arches in Figure 5.18b, c, d, for which I= Io -/1s

2
• 
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Figure 5.17 Exercise problems on upper-bound approximations for frame buckling. 

5.5.11 Solve the approximate critical load for lateral (spatial) buckling of the pipe 
arch in Figure 5.18e, with lateral bending rigidity Ely and torsional rigidity 
GI,. Assume a constant circular thin cross section of thickness hand radius r. 
The arch is circular, of radius R, and has a slope a at its base. Solve it both by 
Rayleigh and Timoshenko quotients and compare the solutions (a) for 
distributed vertical load p, and (b) for concentrated load P. Hint: Assume 
lateral displacements v = Af(y) and calculate strain energy U = 
2 f~ [(M;/2Ely) + (M~/2G/,)] ds where M, =torque and My= lateral bending 
moment. 

5.5.12 Solve the same as Problem 5.5.11, but for lateral buckling of the portal 
frame in Figure 5.18f. 

5.5.13 Solve Per for the lateral buckling of the frames of pipe cross section in 
Figure 5.18g, h. 

5.6 RAYLEIGH-RITZ VARIATIONAL METHOD 

In many problems it is not possible to guess a function that provides a close 
enough approximation to the exact deflection curve. Then, of course, the 
upper-bound approximation obtained from the Rayleigh quotient is not very 
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Figure 5.18 Exercise problems on upper-bound approximations for in-plane and lateral 
buckling of arches and frames. 

close. An improvement in accuracy can be achieved by considering the deflection 
curve to be a linear combination of several assumed functions. The solution is 
then obtained by minimizing either the Rayleigh quotient, or more directly the 
potential energy itself, with respect to the unknown coefficients qk of this linear 
combination. An approach of this kind is known as the Ritz method or the 
Rayleigh-Ritz method (it was presented in a rigorous general form by Ritz, a 
Swiss mathematician at the beginning of this century). 

We begin with the example of a column of nonuniform bending rigidity El(x). 
Although for certain functions I(x) it is possible to get an exact solution of the 
critical load in terms of some special functions (e.g., Bessel functions if /(x) is 
linear], it is more effective to solve this problem by an approximate variational 
method. 

Let us assume that /(x) =given function of x, and let the column be subjected 
to a small lateral disturbing load p =p0 cos(:~rxll) (see Fig. 5.19a). It is obvious 
that the tapering of the column toward the ends will cause a decrease of curvature 
at midspan and an increase of curvature near the ends. Such changes of curvature 
can be described by superimposing on the function cos ( :n:x I l) the function 
-cos (3:n:x I l). These functions are chosen so as to satisfy both the kinematic and 
the static boundary conditions at the column ends (the origin of the coordinates is 
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Figure 5.19 (a, b) Trial functions for columns of variable cross section; (c) piece-wise 
linear "hill" functions. 

placed at midspan). So we introduce the linear combination 

:JCX 
</>1(x) =cos

I 
3:Ja 

</>2(x)=cos-
1
- (5.6.1) 

where q1 and q2 are unknown coefficients (generalized displacements or kinema
tic variables). 

Substituting this into the potential-energy expression we obtain 

IT=! J'12 
(Elw',z- Pw'

2
) dx- f'

12 
pw dx 

2 -112 -112 

=
2
!J'12 

[EI(q1</>i+q2</>;)2 -P(q14J~ +q2</>~f]dx 
-112 

1
112 :JCX 

- Po cos -
1 

( q 1 </>1 + q2</>2) dx 
-112 

= !(Auq~ + 2A12q1q2 + A22q~)- !P(Buq~ 

+ 2B12q1q2 + B22q~)- C1q1- C2q2 

in which we introduced the notations: 

f
/12 f/12 (.1E'4)( .1E'X)2 

Au= _
112 

EI(x)[</>i(x)jldx = _
112 

EI J4 cos-
1 

dx 

f
/12 1112 (9.1E'4)( .1E'X)( 3:Ja) A 12 = _

112 
El(x )</>i(x )</>i(x) dx = _

112 
EI [4 cos -

1 
cos -

1
- dx 

f
/12 f/12 (81.1E'4) ( 3:Ja)2 

A 22 = _
112 

EI(x)[</>i(xWdx = _
112 

El T cos-
1
- dx 

(5.6.2) 

(5.6.3) 
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1
112 1112 3Jf2 ( JfX) ( 3JtX) B12 = _112 </>~(x)</>~(x) th = _112 f sin -

1 
sin -

1
- th 

1
112 1112 9Jf2 { 3Jfx)2 

822 = _112 [ </>~]
2 th = _112 f sin -

1
- th 

1
112 ( JfX) 1112 ( .1tx)2 Ct= _112 Po cos-

1 
<!>t(x)th= _112 p0 cos-

1 
th 

C2 = f~12 Po{ cos 7)<t>2(x) th = f: Po( cos ~x)( cos 
3
7x) th 

All these coefficients are obviously positive. The condition of equilibrium, as a 
necessary condition of min n, requires that 

{an;aq.} =[Au- PBu A12- PB•2]{q•} = {c•} = 0 ( 
an1aq2 A12- PB12 A22- PB22 q2 C2 

5
·
6

.4) 

Two kinds of problems may now be distinguished. If the lateral disturbing 
load pis zero, then C1 = C2 = 0, in which case Equation 5.6.4 represents a linear 
matrix eigenvalue problem in a nonstandard, that is, generalized, form. The 
solution is possible only if the matrix equation (A- P8)q = 0 or (8-1 A- Pl)q = 
0 has a nonzero solution q, that is, if 

Det (A- P8) = 0 or Det (8- 1A- PI)= 0 (5.6.5) 

in which A and 8 are 2 x 2 square matrices formed from A 11 , 

A12, ... , Bn, ... , 8 12, and I is the identity matrix. The latter equation reduces 
the problem to a standard eigenvalue problem. Assuming /(x) = /0[1- k(x!WJ 
(Fig. 5.19a), substituting into Equations 5.6.3, and expressing the critical load as 
Pcr1 = C1f2EI0 /12

, one gets for k = 1 the value c = 0.9655 and for k = 2 the value 
c = 0.9268. Assuming /(x) = Io/(1 + k lx/11) (Fig. 5.19b) one gets for k = 1 the 
value c = 0.8699 and for k = 2 the value c = 0. 7689. (Note that for k = 2 in both 
cases I= 0.5/0 at the ends, but in the second case I decreases more rapidly away 
from the midspan.) 

In the second kind of problem, p, C1, and C2 are nonzero. The solution then 
tends to infinity as the value of P approaches a critical value, which solves 
Equations 5.6.5. In either case, the salient property of the solution is the value of 
the critical load P, which follows from Equations 5.6.5. The lowest eigenvalue 
obtained from Equations 5.6.5 is an approximation for the first critical load Per·· 
It is always an upper-bound approximation. The approximation is generally closer 
than that obtained with only one function </> 1(x) =cos (lfx/1). In that case the 
result of the aforementioned procedure would be the same as that obtained from 
the Rayleigh quotient. 

Further improvements of accuracy can be obtained by including more 
functions in the linear combination, for example, 4>3(x) =cos (51fx/l), </>4(x) = 
cos (11fx/l), etc. So generally one may use 

N 

w(x)= 2: qk<!>k(x) (5.6.6) 
k=l 

This may be substituted into the potential-energy expression (Eq. 5.6.2), which 
may be written in the form n = U - PW - WP in which WP denotes the work of 
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disturbing loads, such as the lateral load p(x) on a column. Then one may impose 
the conditions ant aqk = 0 for all k = 1, 2, ... , N, which represent the equi
librium conditions if disturbing loads are present. The conditions ant aqk = 0, 
however, should not be regarded as equilibrium conditions if such loads are 
absent, that is, in bifurcation problems (problems with adjacent equilibrium); 
rather, they represent the Trefftz conditions of critical state (Sec. 4.2). In this 
manner one obtains the equation 

(k = 1, 2, ... , N) (5.6.7) 

This equation yields again, for the critical load (at WP = 0), the matrix equations 
5.6.5. The coefficients of the matrices generally are similar to Equations 5.6.3: 

A1cm = (Ell/J'k, l/J':..) = [ El(x)l/J'k(x)<f>':,.(x) dx 
(5.6.8) 

in which the parenthesis notation for scalar products of two functions is used. 
The foregoing method obviously can be generalized to the minimization of 

any functional (of one or more functions), as well as to two or three dimensions 
(see, e.g., plate buckling. Eq. 7.3.14). 

The Ritz method is not restricted to quadratic functionals associated with 
linear problems. It may be applied to all nonlinear problems for which a 
minimizing functional n exists, as we shall illustrate in Section 5.9 for the 
problem of large deflections of columns. The functional n, of course, has a 
minimum only for P < Per•• in which case the matrix A- PB or o- 1A- PI in 
Equations 5.6.5 is positive definite. For P>Pcr •• Equation 5.6.7 still applies but 
represents merely stationarity conditions since n does not have a minimum. 

Underlying the Rayleigh-Ritz method is the following theorem of Ritz: 

Theorem 5.6.1 The limit of the approximations wN(x) = ~Z'=t qkl~Jk(x) for 
N-oo is the exact solution w(x) if the system of the chosen functions q,k(x) 
satisfies the following conditions: 

1. Functions l/Jk(x) are linearly independent (i.e., none of these functions can 
be expressed as a linear combination of the others). 

2. Functions l/Jk(x) form a complete system of functions. 
3. Functions l~Jk(x) satisfy the essential (kinematic) boundary conditions. 

The chosen basis functions l~Jk(x) do not need to satisfy the natural (static) 
boundary conditions; however, if they do, the approximations are better, usually 
substantially better. A sequence of functions <f>k (k = 1, 2, 3, ... ) is complete 
with respect to operator .6 if any function w(x) in a linear set M (more precisely, 
in a linear manifold) can be approximated by a linear combination ~Z'=t ak<f>k so 
that for any given positive number E ( E > 0) one can achieve for sufficiently large 
Nthat 

(5.6.9) 
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An equivalent condition is: If (~w, cpk) = 0 for all k (i.e., up to oo), and if cpk is 
a complete system, then w = 0 everywhere. A linear set (linear manifold) is a set 
of functions such that if the set contains functions wt> w2 , ••• , wn, then it also 
contains any linear combination w = c1w1 + CzWz + · · · + cnwn. 

The theorem of Ritz applies only to the space L 2 of real square-integrable 
functions won the given interval/ (or region Q). The approximations converge to 
the exact solution in the mean. More precisely, the convergence is such that 
llwk- Wexactll :s: [II(wk)- Ilexact)/k provided that operators A and B are positive 
definite in the sense that (Aw, w) 2: k llwll where k is a positive number and 
II·· ·II denotes a quadratic norm. If the problem is linear (i.e., if the functional is 
quadratic), the convergence is quadratic and is always from above. This signifies 
that the first critical load obtained from the Rayleigh-Ritz method is guaranteed 
to be larger than the exact critical load. We have an upper-bound approximation. 

The Rayleigh-Ritz method does not require that functions cpk(x) form an 
orthogonal system of functions [an orthogonal system is such that the scalar 
products of any two different functions from the system is zero, i.e., ( cpk, cflm) = 0 
for k of= m ]. However, for accuracy it is generally advantageous to choose an 
orthogonal system of functions. It is easy to show that if functions cpk(x) represent 
the exact eigenmodes, the Ritz method yields the exact solution ( eigenmodes are 
always orthogonal). In that case it is usually computationally convenient if the 
orthogonal system of functions is normalized, which is done by introducing in 
cpk(x) multipliers such that (cpk, cpk) = 1. 

For a column of constant cross section, trigonometric functions represent the 
exact eigenmodes and constitute the best complete orthogonal system of functions 
to choose. The solution of a linear problem for a column represents a Fourier 
trigonometric series. For a column with I(x) = const. · x, the exact eigenmodes 
are the Bessel functions. For some other types of variation of J(x), special 
functions that represent exact eigenmodes exist. These special functions represent 
systems of functions that are orthogonal with a weight (weighting function), a 
generalization of the concept of orthogonal functions. For example, if J(x) = 
const · x, the orthogonality condition is (xcpk, cflm) = 0 for k of= m, rather than 
( cpk, cflm) = 0, where x represents the weight. 

Polynomials of different degrees represent linearly independent functions, and 
particularly the functions 1, x, x2

, x3
, x4

, ••• represent a complete system of 
linearly independent functions. These functions, however, are not orthogonal. 
They can be orthogonalized on the basis of the conditions ( cpk> cflm) = 0 for k of= m, 
and the result of the orthogonalization are the Legendre polynomials: 1, x, 
~x2 - !, ~3 - ~x, ~x4 -lfx2 + ~ •... , which are orthogonal in the interval 
(-1,1). 

A very important, nonclassical special case of the Rayleigh-Ritz method is the 
finite element method. This method is equivalent to using for functions cpk(x), for 
example, the linear "hill" functions sketched in Figure 5.19c. These piecewise 
linear functions are obviously linearly independent and form a complete system, 
although they are not orthogonal. In the finite element context, by contrast, their 
orthogonalization is not computationally advantageous. The properties of the 
Rayleigh method that we described, of course, apply also to the finite element 
method. 

Thus far our formulation of the Ritz method was based on potential energy. It 
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turns out, however, that minimization of the Rayleigh quotient PR is equivalent to 
minimization of potential energy n, for two reasons: (1) both nand PR possess a 
minimum for the stable equilibrium states (i.e., for P <Per,), and (2) the 
condition lJPR = 0 is equivalent to the condition (jfi = 0, which is easily proven 
(as we already showed in Equation 5.3.5) by the following transformations: 

lJPR = lJ( U /W) = W - 2(W lJU- U lJW) 

(5.6.10) 

Hence the name Rayleigh-Ritz method. 
In a certain sense, though, minimization of the Rayleigh quotient is more 

generally applicable than minimization of the potential energy (Collatz, 1963). 
This is because the Rayleigh quotient can be formulated even when, for some 
boundary-value problem, no potential energy exists. This is because the Rayleigh 
quotient can be expressed in terms of the differential operators M and /::! from the 
differential equation (as stated already in Eq. 5.3.13 for the case when M and /::! 
are linear). Formulation of the Rayleigh quotient from operators M and /::! is 
equivalent to a variant of the Rayleigh-Ritz method, called the Galerkin method, 
which we outline next. 

Problems 

5.6.1 For the hinged column loaded by self-weight, shown in Figure 5.20a, 
determine the upper-bound approximation of the critical distributed load. Use 
the Rayleigh-Ritz method, assuming w = q 1 sin (nx/l) + q2 sin (21U/l). 
Compare the result with the Rayleigh quotient value obtained for w = 
w0 sin (1U/l). 

5.6.2 For the symmetric portal frame in Figure 5.20b, find the upper-bound 
approximation of the first critical load using the Rayleigh-Ritz method. 
(Impose antisymmetric deflection and express this deflection through para
meters q1 = 6 and q2 = ll..) 

5.6.3 Do the same, but for the two-bar frame in Figure 5.20c. 
5.6.4 For the free-standing column (Fig. 5.20d) of I(x) = Io + /1(1- x2/z2) find an 

upper bound on the critical load using the Rayleigh-Ritz method. Assume 
w = q1[1- cos (1U/2l)] + q2[1- cos (.nx/1)]. 

5.6.5 For the hinged column (Fig. 5.20e) with I(x) = 10 + /1(1- x/l), find an 
upper bound on the critical load using the Rayleigh-Ritz method. Assume 
w = q 1 sin (nx/l) + q2 sin (21U/l). 

5.6.6 Using the same functions as in Problem 5.6.4, find the upper bound on the 
critical distributed load for the free-standing column of Figure 5.20f using the 
Rayleigh-Ritz method. 

5.6.7 For the beam supported laterally by a spring at midspan (Fig. 5.20g), find 
an upper bound on the critical load using the Rayleigh-Ritz method. Assume 
w = q1 sin (1U/l) + q2 sin (3nx/l). Compare the result with the results for 
Figure 5.15a and for Problem 5.5.4 with C = El/zl. 

5.6.8 For the free-standing column supported on an elastic foundation of 
modulus c (Fig. 5.20h), find an upper bound on the critical load using the 
Rayleigh-Ritz method. 
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Figure 5.20 Exercise problems on Rayleigh-Ritz method for column and frame buckling. 

5.6.9 Use the Rayleigh-Ritz method to find the relation between the load and the 
load-point displacement in large deflections for the fixed-fixed beam in Figure 
5.20i. Assume 8 = q1 sin (1a//) + q2 sin (31rX//). 

5.6.10 Do the same as above, but for the fixed-hinged column in Figure 5.20j. 
Assume 8 = q 1[sin (nx/ L1)- k 1x] + q2[sin (1a/ L2)- k 2xJ. First determine for 
the parameters L1o k1o L2 , k 2 the conditions that the assumed functions satisfy 
the kinematic boundary conditions. 

5.6.11 Using a linear combination of three or more trigonometric functions that 
satisfy the kinematic boundary conditions, find a close upper-bound ap
proximation of the first critical load of the tapered column of Figure 5.20k. 
The cross-section dimensions vary linearly with height, h = h0 + h 1(1- x/1). 
For h0 = h 1 the exact result is Pcr1 = 4.10~, ~ = n 2Eio/12 (Tuma's handbook, 
1988, p. 225). (In the same handbook exact values are given for various ratios 
h0/h1o and also for different cross sections and end conditions.) 

5.6.12 Do the same as Problem 5.6.11, but for the symmetrically tapered column 
in Figure 5.201. 
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5.7 CALERKIN VARIATIONAL METHOD 

This method is based on the differential equation rather than the potential 
energy, and therefore it is also applicable to problems for which no potential 
energy exists. The basic idea of the method, proposed by Galerkin, a Russian 
mathematician, early in this century, is to exploit the fact that the functional 1/J(x) 
is identically zero within the interval (0, l) if the condition J& 1JJ(x)q,k(x) = 0 is 
satisfied for all the square-integrable functions q,k(x) that are infinite in number 
(k = 1, 2, ... ) and form a complete set of linearly independent functions. Now, if 
one deals with the differential equation L( w) = 0 where l- is a certain differential 
operator, one may set 1/J(x) = l-[w(x)] = 0, and then by imposing the condition 

f l-(w(x))q,k(x) dx = 0 (5. 7.1) 

for all functions q,k(x), infinite in number, one ensures that the differential 
equation is satisfied identically. This suggests that an approximation for the 
differential equation can be obtained with a finite set of square-integrable 
functions q,k(x), yielding a finite set of equations. More precisely, the Galerkin 
method may be formulated by the following theorem: 

neorem 5.7.1 The approximation wN(x) = EZ'= 1 qkq,k(x) has as its limit for 
N-+ oo the exact solution of the boundary-value problem if the coefficients qk are 
solved from Equation 5.7.1 (after substituting w = Ek qkq,k) and if the assumed 
functions q,k(x) are such that 

1. They are linearly independent. 
2. They form a complete system of functions within the given domain. 
3. Each of these functions satisfies the given essential (kinematic) boundary 

conditions. 

Again, although these functions do not need to satisfy the static boundary 
conditions, the approximation is usually much better if they do. The convergence 
of the solution is in the mean (e.g., Rektorys, 1969, p. 699). For a proof of the 
theorem, see, for example, Collatz (1963), Rektorys (1969), Courant and Hilbert 
(1962), or Churchill (1963). 

Applying integration by parts to Equation 5.7.1, one can easily show that if an 
associated minimizing functional (the potential energy) exists, then the Galerkin 
method is equivalent to the Ritz (or Rayleigh-Ritz) method and gives, for the 
same set of assumed functions q,k(x ), exactly the same solution. 

For the sake of illustration consider the differential equation of beam
columns, L(w(x)] = (Elw")" + (Pw')'- p = 0. One may solve again the example 
of pin-ended columns of variable stiffness considered before (Fig. 5.19a), using a 
linear combination of two functions as defined in Equations 5 .6.1. Substituting 
this linear combination into the differential equation, then the differential 
equation into Equation 5.7.1, and integrating, one obtains again Equation 5.6.4, 
with the same expressions as before (Eqs. 5.6.3). The rest of the solution is 
identical. Ultimately, instead of substituting the trigonometric functions for 
q,k(x), one can keep the general form of functions q,k(x) and integrate Equation 
5.7.1 by parts, twice. This then leads to the general expressions in Equations 
5.6.3. 
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We will show further examples of application of the Galerkin method, as well 
as the Rayleigh-Ritz method, when we deal with the buckling of thin-walled 
beams and plates (Chaps. 6 and 7). 

As already mentioned for the Rayleigh-Ritz method, no particular advantage 
[e.g., for arbitrary f(x)] is generally derived for the Galerkin method from using 
an orthogonal set of functions that does not represent the exact solution of the 
eigenvalue problem. This is because the orthogonal functions available are 
defined with a certain weighting function (e.g., 1 for trigonometric functions, x 
for Bessel functions, x2 for spherical harmonics), but often orthogonality with 
respect to a different weighting function may be required for the given problem. 
For example, if the weight is f(x)- 1 =a+ bx + cx2

, no orthogonal set of functions 
is found in mathematical handbooks and one would have to construct it by solving 
the buckling eigenmodes exactly. 

Using the piecewise linear "hill" functions from Figure 5.19b as the system of 
linearly independent functions, the Galerkin method reduces to the finite element 
method. For boundary-value problems that do not possess a potential, the 
Galerkin method serves as the most general basis for the finite element method. 

The Galerkin method is equivalent to the principle of virtual work. Indeed, 
after the substitution of the differential operator of beam-columns and integration 
by parts, Equation 5.7.1 yields f Mcp'ic dx- f Pep~ dx- f pcpk dx = 0. According 
to Equation 2.38, this represents the virtual work equation that requires that the 
work of unbalanced transverse distributed loads on virtual deflections cpk(x) be 
zero for all kinematically admissible defte\.:tion distributions of the system. 

The Galerkin method, just as the principle of virtual work, is a more limited 
concept than the Rayleigh-Ritz method, carrying more limited information. The 
Rayleigh-Ritz method implies both equilibrium and stability conditions (minimiz
ing conditions), while the Galerkin method implies only the equilibrium 
conditions. The fact that this method yields upper bounds and quadratic 
convergence for linear boundary-value problems that possess a potential is not 
due to the method per se, but to its equivalence to the Rayleigh-Ritz method for 
such problems. 

Like the Rayleigh-Ritz method, the Galerkin method can be generalized to 
problems with more than one unknown function, as well as to two- or 
three-dimensional problems. We will show this when we deal with thin-walled 
beams and plates (Chaps. 6 and 7). 

Another variational method for approximate solutions is the method of least 
squares (Rektorys, 1969). In this case the solution to the differential equation 
Mw - P/Yw = 0 with homogeneous boundary conditions is obtained by minimiz
ing the functional 

(5.7.2) 

after substitution of the approximation w = EZ= 1 ancf>n· The minimizing conditions 
are afPtaam =0 (m = 1, ... , N). Obviously, this method is more generally 
applicable than the Ritz method; it can be applied even if the potential energy 
does not exist, for example, when operator M or lY is not symmetric (i.e., not 
self-adjoint). 

For multidimensional problems, still another possibility is the Trefftz varia-
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tional method (Rektorys, 1969). It requires a system of exact solutions of the 
differential equation and minimizes the error in the boundary conditions. The 
boundary element method is a recent important variant to this idea. 

Problem 

5.7.1 Using the Galerkin method, repeat Problems 5.6.1, 5.6.4, 5.6.5, 5.6.6, 
5.6.7, 5.6.8, 5.6.9, and 5.6.10 using Figure 5.20a, d, e, f, g, h, i, j. 

5.8 METHOD OF SUCCESSIVE APPROXIMATIONS AND LOWER 
BOUNDS 

We have already seen in our examples that the estimate of the deflection shape 
can be improved when the bending moment distribution is based on an initial 
estimate of the deflection shape and is then used to get an improved estimate by 
integrating the corresponding curvature distribution (see Sec. 5.5). In a similar 
spirit, one can generally improve the estimates of eigenvalues, or the critical 
loads, by the method of successive approximations. With a sufficient number of 
approximations, any desired accuracy can be achieved. 

Formulation of the Method 

Let us describe the method for the differential equation M(w)- P/Y(w) = 0. We 
start by choosing any kinematically admissible function w = w<•>(x) as the first 
iterate, n = 1. Then we proceed as follows: 

1. Evaluate p 0 >(x) = /Y[w0 >(x)] and solve M[w<2>(x)] = p<1>(x). 

2. Evaluate p<2>(x) = /Y[w<2>(x)] and solve M[w<3>(x)] = p<2>(x). (5.8.1) 

n. Evaluate p<n>(x) = /Y[w<n>(x)] and solve M[w<n+t>(x)] = p<">(x). 

Note that, if w<•>(x) were actually an eigenfunction, w<2>(x) would differ from 
w<1>(x) only by the factor P, since the equation Mw<2> -fYw<•> = 0 would hold. 
Note also that the functions w<n>(x) must all satisfy the kinematic boundary 
conditions, and so the integration constants in solving w<n>(x) must be determined 
from the boundary conditions. 

The foregoing represents a sequence of boundary-value problems, in each of 
which p<n> are known functions of x (in the case of the beam-column differential 
equation, they represent the distributions of transverse load needed to balance 
the beam). Because M(wn)I!Y(wn) =Per. (if Wn is an eigenfunction) we expect that 
ratio M(w<n>)J!Y(w<n>) should approach, for n-+oo, the eigenvalue P, and 
function w<n> should approach the eigenfunction. However, this ratio depends on 
x, and in order to remove the dependence on x we may integrate from 0 to l with 
the factor w<n>(x ). Thus, the nth approximation to the eigenvalue is given by the 
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quotient: 

f w<n>(x)M[w<n>(x)] dx fw<n>(x)~[w<n-t>(x)) dx 
p(n) = 0 = ....:0'--:---------

[ w<n>(x)~[w<n>(x)) dx [ w<n>(x)~[w<n>(x)] dx 
(5.8.2) 

where the last two equalities are of course valid only for n > 1. In mathematics, 
this is called the Schwarz quotient (Collatz, 1963, eq. 12.8) and the an are called 
the Schwarz constants. Note that the first approximation (n = 1) represents the 
Rayleigh quotient (Eq. 5.3.13). 

As a check, consider a pin-ended column of constant cross section under axial 
load P, for which the solution is known. The differential equation is characterized 
by ~ = 1/ El, M = -d2/dx2

• Considering as the first approximation w<•> = 
A sin (.1a/l), one obtains p<•>(x) =(A/ El) sin (.1a/l), and solving for w<2> gives 
w<2> = (AI2

/ Eln2
) sin (.1a/l). From this, w<•>tw<2> = n 2El /12

, which illustrates that 
the ratio of two successive terms in the sequence of approximation should tend to 
the eigenvalue (in this case it is equal to it since w<•> is exact). The same is true of 
the ratio M(w<2>)/~(w<2>). 

Newmark (1943) showed very effective practical solutions of column buckling 
loads by successive approximations describing functions w<n>(x) by a discrete set 
of values and by using fimte difference expressions; see also Chen and Lui (1987, 
p. 443). 

For a general eigenvalue problem, the differential equations that define the 
successive approximations may be deduced by subjecting the differential equa
tions and the boundary conditions to the following operation (Collatz, 1963): (1) 
in all the terms containing eigenvalue A replace w by w<n-t) and delete A.; and (2) 
in all the terms not containing A replace w by w<n>. 

Example 

Consider now the case of the tapered column solved before (Sec. 5.6, Fig. 5.19b), 
and assume /(x) = /0 /(1 + k lx/11) with either k = 1 or k = 2. We have JY = 
1/El(x) and M = -d2/dx2

• As the first approximation, we choose w<l) = 
A cos (.1a/l), which is not the exact solution but satisfies the boundary conditions. 
Substitution into Equation 5.8.2 gives, as the first approximation to the 
eigenvalue, P~~> = c(n2Eio/ P), with c = 0. 870565 for k = 1 and c = 0. 770797 for 
k = 2, values that are slightly higher than the approximations that we found for 
the same case with the Ritz method in Section 5.6 (c = 0.8699 and c = 0. 7689, 
respectively). Note that the first approximation in this case coincides with the 
Timoshenko quotient, Equation 5.4.6, rather than with the Rayleigh quotient 
(because we use the second-order rather than the fourth-order differential 
equation of beam-columns). 

We can then calculate p<•> =(AI E/0)(1 + k lx/11) cos (nx/1), and solving 
Mw<2>(x) = p<1>(x) with the boundary conditions w<2>(f/2) = 0 and w<2>'(0) = 0, we 
obtain 

w< >=-- 1+k- cos--2-sm-+k -+-2 A/
2 [( X) ffX k/ . .1U (X a)] 

n2 E/0 I I n I I 2 
(5.8.3) 
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with a= 4/;c -1. Equation 5.8.2 then gives for the second approximation: 
c = 0.869719 if k = 1 and c = 0. 768444 if k = 2. 

To calculate the third approximation, we evaluate p<2>(x) = ~w<2>(x) and solve 
.Mw(3>(x) = p<2>(x) with the boundary conditions w(3>(i/2) = 0 and w<3r(o) = 0. 
Thus, we obtain 

( 12 )2 
w<3>(x) = A 1C2 Efo [g(x) + C) (5.8.4) 

where 

( 
2kx k

2x2 
10k

2
) 1CX 6kl ( kx) 1CX 

g(x) = 1 + -
1
- + f- 1C2 cos -

1 
----;;- 1 + l sin -

1 

_;c
2
k

2
(x

4
) _ 8;c

2
k(1 + ak)(x

3
) _ ;c

2
ak(x

2
) +4kx 

12 14 3 2 p 4 12 l (5.8.5) 

[ 
6 1C2 1C2 ( 3 1C2 1C2 ) ] c=k --2+-a+-+k -+-a+-
1C 16 48 1C 96 192 

(5.8.6) 

For p~> one gets, from Equation 5.8.2, c = 0.869708 if k = 1 and c = 0. 768411 if 
k = 2. Since the rate of convergence of this method is known to be quadratic (and 
monotonic from above; Collatz, 1963), and since the third approximation is very 
close to the second, we may expect the third approximation to be nearly exact. 

From the foregoing procedure it appears that the successive approximations 
lead to rather complicated expressions. This makes the method unattractive, 
except perhaps if Newmark's (1943) finite difference version is used. However, 
an advantage of the method is that it allows lower bounds, and that these 
bounds are often surprisingly close. 

Lower Bound 

The way to use successive approximations to obtain lower bounds on Pcr1 was 
shown by Temple (1929) (see also Collatz, 1963, eq. 12.19). Temple's lower 
bound, which is often close, is given by 

p<n-1) _ p<n) 
p > p(n) - ----:--:---
crt- (P;./ p(n))- 1 (5.8.7) 

where P;.
2 

is some lower bound on the second eigenvalue Pcr2 such that 
P;.

2 
> p<n>. P;.

2 
can be conveniently obtained as the second critical load of a 

column of constant cross section equal to the minimum cross section of the actual 
column. Equation 5.8.7 is valid if the operator is self-adjoint and positive definite, 
if the first eigenvalue A is not a multiple root, and if A does not appear in the 
boundary conditions. 

For the previously considered example with k = 2, Equation 5.8.7 yields 
P;,f I ;c2 Elo = 0. 766976 for n = 2 and 0. 768390 for n = 3. The corresponding 
upper bounds are c<2> = 0. 768444 and c<3> = 0. 768411. As we see, these bounds 
are extremely close, and their spread is only 0.19 percent for n = 2 and 0.0027 
percent for n = 3. 
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Problems 

5.8.1 (a) Use the method of successive approximations to calculate the critical 
load of a hinged column of constant cross section. Although the exact solution 
is a sine curve, deliberately use a parabolic curve for w0 > so as to be able to 
check how good the results are. (b) Obtain also the lower bounds and 
compare them to the exact solution. 

5.8.2 (a) Repeat the calculation of the critical load of the tapered column from 
the example in the text assuming a parabolic function for w<1>. (b) Obtain also 
the lower bounds and compare them to the solution in the text. (The upper 
and lower bounds for k = 2 are c + = 0. 768446 and c- = 0. 766247 for n = 2, 
and c+ = 0. 768411 and c- =t 0. 768389 for n = 3.) 

5.8.3 Solve the same example as in the text, but with k = -0.5 and k = -1. Also 
obtain the lower bounds. 

5.8.4 For the columns shown in Figure 5.20a and e (considered before in Probs. 
5.6.1 and 5.6.5), assume w<1> =A sin (;rx/1). (a) Obtain second improved 
estimates of the critical load by successive approximations. (b) Also obtain a 
lower bound on P cr2 (replacing p by axial load P = pl at column top for the 
column shown in Fig. 5.20a), and then a lower bound on Per,· 

5.8.5 Solve the same problem as above, but characterize w<1> by values w~l) 
(i = 1, 2, ... , 6) at six points along the column. Approximating the deriva
tives and integrals by finite difference expressions and the Simpson rule, 
obtain better upper bounds on P cr, (this is the approach used by Newmark, 
1943). Also obtain lower bounds. (Since the finite difference equations have 
an error, the solution does not necessarily represent bounds for exact solution 
of the actual column, but it does for the exact solution of the finite difference 
equations.) 

5.9 NONLINEAR PROBLEMS: LARGE DEFLECTIONS OF 
COLUMNS 

Let us now illustrate (following Bafant, 1985) how a nonlinear problem can be 
approximately solved by minimization of potential energy. The energy approach 
makes it possible to determine the approximate initial large-deflection behavior of 
columns in a simpler and more general manner than was done by equilibrium 
analysis in Section 1.9. We study large deflections of an inextensible column of 
length I. As a generalization compared to Section 1. 9, we now allow the bending 
rigidity to be variable, that is, El(s) where s =length coordinate measured along 
the deflection curve, with s = 0 placed at midlength (see Fig. 5.21a), and the 
column, to be imperfect with initial imperfection, defines a curve with slopes 
60(s ). The exact potential-energy expression valid for arbitrarily large deflections 
is II= U- PW where 

W = J, (cos 60 - cos 8) ds (5.9.1) 

where 8'- 80 =change of curvature produced by load, and ( )' = d/ds (see Sec. 
5.1). To discretize the problem, we assume the slope of the deflection curve to be 



362 ELASTIC THEORIES 

a) p 

q 

c) 

Figure 5.21 (a) Column with large deflections, (b) load-deflection curves, and (c) 
load-displacement curves. 

approximately 8(s) = qf(s) where function f(s) is given or suitably chosen. For 
the initial imperfection we assume 80(s) = q0 f(s). Then 

W(q) = i (cos (q0f)- cos (qf)) ds (5.9.2) 

The equilibrium condition is ant aq = o or au I aq - Paw I aq = o, which yields 

autaq (q -qo) L Elf'2
ds 

P= - = = P(q) 
awtaq Jt sin (qf) ds 

(5.9.3) 

Evaluating this integral yields the equilibrium curve P(q) for any imperfection q0 • 

The column is stable if also cfu I aq2 > o or cfu I aq2
- P cfw I aq2 > o (with all 

derivatives taken at constant P). This leads to the condition: 

(stable) (5.9.4) 

For the special case of a perfect column (q0 = 0) and the start of buckling 
(q-0), Equation 5.9.4 gives 

(5.9.5) 

which we recognize to be the Rayleigh quotient. If/(s) is the exact initial slope of 
the column curve (e.g., sin (m/1) for the case that EI = const.), Equation 5.9.5 
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must give the exact critical load; otherwise, only an approximation. For example, 
for a pin-ended column with El = const., function f(s) =sin (rull) furnishes 
Per= Ebr2 I 12 = PE = exact solution. If the first integral is expressed from Equation 
5.9.5 and substituted into Equation 5.9.4, the stability condition of a perfect 
column (for which q-0, cos qf -1) takes the form: 

(P.:r-P) [Fds>O (stable, q = q0 = 0) (5.9.6) 

This inequality must hold true for any kinematically admissible function f(s), 
including the one that gives the exact buckling shape and exact Per· Equation 
5.9.6 means that a perfect column is stable for P <Pen where Per is any critical 
load that can be obtained from the Rayleigh quotient in Equation 5.9.5. Since we 
know the minimum of this quotient to be the exact Pen we thus prove that the 
column is stable if P is less than the exact Per and unstable if larger-a result we 
have already proven by dynamic analysis (Sec. 3.1), as well as by eigenfunction 
explansion of w(x) (Eq. 5.3.17), but could not prove from equilibrium analysis in 
Chapter 1. 

For imperfect columns (q0 > 0) and finite q, one can easily check that the 
stability condition in Equation 5.9.4 (in which the first integral is expressed from 
Eq. 5.9.3) is equivalent to the condition aP I aq > 0 (provided that f f sin qf ds > 
0). This demonstrates that curves P(q), which were already shown in Figure 1.25, 
are stable as long as they have a positive slope (for q > 0). 

Let us now analyze a pin-ended column (Fig. 5.21a), choosing again 
f(s) =sin (rull). While in a pin-ended column there are no kinematic boundary 
conditions to be satisfied by f(s), that is, by O(s), this function satisfies the static 
boundary conditions 0' = 0 at s = -1/2 and s = 1/2. It also represents the exact 
buckling shape asymptotically, for q- 0 (if El = const. ). Substitution into 
Equation 5.9.3 yields 

(5.9.7) 

(Note that if q0 = 0 and El = const., the limit of this expression for q- 0 is 
Per= Ebr2112

.) We may now introduce in the denominator the expansion 
sin a= a- !a3 + -doa-5- · · · where a= q sin (ru/1). For EI = const. we may 
then evaluate all integrals in Equation 5.9.4 and get 

p = ---,------.,...~(E_l,_1r....;2l_l2~)(~q....,.--'q~0)~(,...;..11.....:2);_____, __ _ 

f/12 [ ( 1rS)2 q3 ( 1rS)4 q5 ( lr$)6 ] q sin- -- sin- +- sin- - · · · ds 
-112 I 6 I 120 I 

or 

.!.._ _ q - qo = q - qo (5 9 8) 
Per- ~[q!._q3 (31)+L(51)-···] q(1-~q2 +mq4 -···) • • 

I 2 6 8 120 16 

Since f(s) =sin (1rsll) is not exact, this expression is only approximate. 
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For small enough q, in Equation 5.9.8 we may neglect all the terms beginning 
with q4/192 and also introduce (1- iq2

)-
1 = 1 + iq2

• Thus we get the 
approximation: 

.!_ = q - qo (1 + q2) 
Per q 8 

(5.9.9) 

(see the curves in Fig. 5.21b for various q0). For q0 -+0, this equation describes 
the initial postcritical behavior and exactly agrees with Equation 1.9.7 that we got 
in Section 1. 9 from the exact solution in terms of elliptic integrals. This shows 
that the term 1 + q2/8 is the exact approximation up to the second order in q [the 
reason is that f(s) =sin (m/1) gives the slope of the exact deflection shape for 
q-+0 and q0 -+0]. 

Based on Equation 5.9.8 we can further deduce the initial dependence of P on 
maximum deflection w and/or the axial displacement u, generalizing the results 
obtained in Section 1.9 for q0 = 0. We may approximately consider the deflection 
curve ordinates to be z =-a cos (m/1) where a= midspan deflection ordinate. 
From this, 8 = z' = (:rra/1) sin (m/1), and so q = na/1. Thus, Equation 5.9.9 
provides 

P ( a0
)( n

2 
2) -= 1-- 1+-a 

Per a 812 (5.9.10) 

where a0 = q0 l/ n =ordinate of initial imperfection at midspan (note: deflection at 
midspan= a- a0 = Wmax)· Note that for small a, Equation 5.9.10 becomes 
PIPer= 1- a0/a, which yields a= a0/(1- P/Pc:r)-the same as derived in Chapter 
1 (Eq. 1.5.10). 

To calculate the dependence of P on the axial displacement u due to 
transverse deflections, we need to note the approximation u =! f (z'2

- z~2) ds = 
n 2(a2

- a5)/41 = (q2
- q'5)l/4, from which q2

- q'5 = 4u/l. Thus, Equation 5.9.9 
yields 

p [ ( 4u)-II2]( q2 ") -= 1-qo q'5+- 1 +~+-
Per l 821 

(5.9.11) 

where q0 = mJ0 /l. Equations 5.9.10 and 5.9.11, describing the initial large
deflection behavior, generalize Equations 1. 9.12 and 1. 9.14 deduced for q0 = 0. 

The value of u in Equation 5.9.11 does not include the effect of axial elastic 
strains. To take them into account, we must introduce into Equation 5.9.11, an 
expression of u in terms of the total axial displacement u, that is, substitute 
u = u - PI I EA = axial displacement due to both the transverse deflection and the 
axial elastic shortening (EA =axial elastic stiffness). This yields the following 
implicit relation for P as a function of u: 

u p 
.il.=---

1 EA 
(5.9.12) 

which generalizes Equation 1. 9.15. The graph of P versus u can be easily 
constructed by choosing successively increasing values of .i1. and calculating first 
the corresponding P and then u from Equations 5.9.12; u = l(.il. +PlEA) (see Fig. 
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5.21c; Fig. 1.26d). Further discussion of these results would be analogous to that 
already made in Section 1. 9. 

For large deflections, better accuracy may be achieved by introducing into 
Equation 5.9.1 the expression f(s) =En qnfn(s) where fn(s) are linearly inde
pendent chosen functions satisfying at least the kinematic boundary conditions for 
slope 0; n = 1, 2, ... , N. The equilibrium states then result from the conditions 
antaqn =0 (all n), which represent a system of nonlinear algebraic equations. 
This approach is similar to the Ritz method for linear problems, but, unlike the 
Ritz method, convergence for N- oo cannot be guaranteed, due to nonlinearity 
of the problem. 

Nonlinear finite element analysis is today, of course, preferable to solutions of 
this type if a larger N is needed. But in the past, this was an important method. 

Problems 

5.9.1 Derive results equivalent to Equations 5.9.9 to 5.9.11 assuming that f(s) is 
a polynomial such that f(O) = f'(±//2) = 0 (which gives M = 0 at the ends). 
Alternatively, is f(s) = s admissible and is an upper bound guaranteed? 

5.9.2 Consider the same column (Fig. 5.21a) with EI(s) = E/0(1- /cs2
); ~. 

k =constants. Calculate and plot the diagrams P(q) for q = 0, 0.001, 0.01, 
0.1. (It is easier to evaluate the integrals in Eq. 5.9.3 numerically on a 
calculator.) Alternatively, consider E/(s)=E/0 exp(-/cs2

) or El0 cosks. 
5.9.3 Based on the above, obtain also the equivalents of Equations 5.9.9 to 

5.9.11. 
5.9.4 Do the same analysis as in Equations 5.9.1 to 5.9.11 but for a free-standing 

column (EI = const.). 
5.9.5 Do the same, but a fixed-fixed column, using (a) f(s) =sin (2~rstl), (b) 

f(s) = appropriate polynomial. 
5.9.6 Do the same, but for a fixed-hinged column, using for f(s) the exact 

solution of w'(x) from Section 1.4. 
5.9.7 Do the same but for a pinned column with rotational springs c = lOEitl at 

ends. 
5.9.8 Do the same but for symmetric buckling of a portal frame (braced) with 

hinges at the base, using suitable polynomials for f(s) in the columns and the 
beam. 

5.9.9 Do the same as above, but with the frame legs fixed at the base. 
5.9.10 Do the same as Problem 5.9.2 but EI = const. and Pis variable due to its 

own weight; P = P0(1- gs), where Po, g = const. 
5.9.11 Do the same type of analysis as in Equations 5.9.1 to 5.9.11 but based on 

w(x) instead of O(s). To express n use M = Elw"(1- ~w'2), 1- cos (J = 
~w'2 - i4w'4, 1 -cos 00 = ~w~2 - i4w~4• 

5.9.12 Do the same as Problem 5.9.2 but EI and P are constant while the 
moment curvature relation is nonlinearly elastic; M = E/0'(1- k0'3

). 

5.9.13 For the same problem as in the text, assume that f(s) = q. sin (~rs/1) + 
q2 sin (3rutl), express n, formulate the equilibrium conditions from 
ant aq 1 = 0, ant aq2 = 0, and, using numerical integration for the integrals 
that arise, calculate the diagram of P versus Wmax for (a) constant El, or (b) 
variable EI(s) = E/0(1- /cs2

). Compare the result to the curves obtained 
before for f(s) =sin (ru/1). Are these new curves higher or lower? 
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Figure 5.12 Exercise problems on buckling of sandwich column. 

5.9.14 Extending the linearized small-deflection formulation for sandwich beams 
from Section 1.7 (Eqs. 1.7.1-1.7.2), use the energy method to calculate large 
deflections of a simply supported sandwich beam with very thin faces (f « c) 
(Fig. 5.22). Determine the approximate diagrams P(wmax) and P(u). 
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6 
Thin-Walled Beams 

As the term "beam" suggests, thin-walled beams are structures that can be 
treated as one-dimensional, characterized by cross-section deformation variables 
and cross-section internal forces that depend only on the longitudinal coordinate 
x. The basic forms of beam theory are the theory of bending and the theory of 
torsion. In the theory of bending, the shear deformations are neglected, and in 
the elementary theory of torsion of circular shafts, the longitudinal normal strains 
(as well as stresses) are zero. In the theory of thin-walled beams, by contrast, 
torsional loads also produce normal strains and stresses while longitudinal or 
transverse loads induce torsion and the thin-walled beam deformation involves 
both normal and shear strains. Torsion and bending become coupled. 

The reason for this coupling is the fact that the cross section of a thin-walled 
beam can no longer be assumed to remain plane. The longitudinal displacements 
do not conform to a linear distribution over the cross-section plane and the cross 
section exhibits out-of-plane warping in response to torsion. The warping is 
generally not the same in adjacent cross sections, which obviously gives rise to 
longitudinal normal strains and stresses. 

The loss of stability of thin-walled beams often occurs through a combination 
of bending and torsion, even if the loading consists of transverse and axial loads 
in one plane. The basic types of such instability are the lateral buckling of beams 
and the axial-torsional buckling of columns. 

For the sake of easy comprehension, we will begin by analyzing warping 
torsion and the associated instabilities in 1-beams. Then we generalize our 
formulation to thin-walled beams of arbitrary open cross section. We will make 
frequent use of the energy methods presented in the previous chapters, which are 
particularly efficacious for the treatment of thin-walled beams. Finally, we will 
briefty outline an analogous formulation for thin-walled beams of closed cross 
section, whose stability analysis is important for the safety of box-girder bridges. 

A detailed exposition of the theory of thin-walled beams has been given in the 
works of Vlasov (1959), Bleich (1952), Timoshenko and Gere (1961), Murray 
(1984), and without stability also in Oden and Ripperger (1981). The basic 
developments took place during the 1930s and 1940s (see, e.g., Bleich, 1952, p. 
105, or Nowinski, 1959). The early contributors included Wagner (1936), Vlasov 
(1959), Timoshenko (1945), Ostenfeld (1931), Bleich and Bleich (1936), Kappus 
(1937), Lundquist and Fligg (1937), Goodier (1941), and others. 

370 
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6.1 POTENTIAL ENERGY AND DIFFERENTIAL EQUATIONS 

The reason for warping of cross sections due to torsion can be most easily 
explained by considering first the behavior of 1-beams. When the 1-beam is 
subjected to a uniform torsional moment (or torque) M,, the specific angle of 
twist (}' is distributed uniformly along the beam, as illustrated by the plan view of 
the beam in Figure 6.la. The beam is said to undergo uniform torsion 
(0' =constant). However, for general boundary conditions, nonuniform M,, or 
variable cross section, the torsion is nonuniform. 

An easily understandable case is the torsion of an 1-beam whose cross section 
is symmetric with regard to both the vertical and horizontal axes, and whose 
flanges and web are both fixed (clamped, built-in) at one end as shown in Figure 
6.lc. The opposite end of the beam is free. As far as the horizontal displacements 
are concerned, each flange may be regarded as an independent beam. If the 
flanges at both ends are free to undergo axial displacements and the beam is 
subjected to a uniformly distributed torsional moment M, (torque), the plan view 
of the deformation of the beam is as shown in Figure 6.la. The cross sections of 
the two flanges rotate about the vertical axis by equal angles at all points along 
the beam. So the flanges are subjected to no bending and remain free of axial 
normal strains and stresses. The torque produces only shear stresses. This is the 
case of simple (St. Venant) torsion, which generally arises in beams of constant 
cross section if the torque is uniform. The cross sections of the 1-beam 
nevertheless do not remain plane but warp out of their plane, since the cross 
sections of the opposite flanges rotate about the vertical axis in opposite sense. 

If the flanges at one end are clamped (Fig. 6.lb), the rotation shown in Figure 
6.1a cannot be accommodated at the clamped end. Thus, each flange undergoes 
bending in the horizontal plane. The top and bottom flanges bend to the opposite 
sides, and this again causes out-of-plane warping of the cross sections. In the case 
of nonuniform torsion, however, the warping is accompanied by axial strains and 
stresses associated with the bending of the flanges in the horizontal planes. The 
same is true when torque M, varies along the beam. 

a) b) 

Q$Mt 
(,"< 

' "> .-, 

c) 
z 

Longitudinal 
displacement 

d) 

e) 

Lateral Warping 
displacement function 

Figure 6.1 (a, b) 1-beam subjected to torsional moment, (c, d) ftange deformations, and 
(e) warping function. 
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Deformation of the Cross Section 

Let us now formulate the behavior just described mathematically. We introduce a 
right-handed system of Cartesian coordinates x, y, z as shown in Figure 6.1c, x 
being the longitudinal coordinate, and y, z being the horizontal and vertical 
transverse coordinates. The x axis is the beam axis, and points (y, z) characterize 
the middle of the wall, which is assumed to be thin. The axial, transverse 
horizontal, and transverse vertical displacements of the points on the beam axis 
are denoted as u, v, w. Denoting ash the height of the 1-beam and as(} the angle 
of twist as shown in Figure 6.1d (positive if clockwise when looking in he 
direction of x), the transverse horizontal displacements v1 of the top and bottom 
flanges and their longitudinal normal strains ex are related to the angle of twist (} 
as follows: 

Top flange: 
h v, = -(}-
2 

Bottom flange: h v,= (J-
2 

I (}'h u1 = -v1y = -y 
2 

I (}' h u1 = -v1y = - - y 
2 

h 
ex= -v;y = (}" 2 y 

h (6.1.1) 
ex= -v;y = -(J"zY 

in which u1 represents the longitudinal displacement of points on the middle 
surface (Fig. 6.2a) and expressions for ex are based on bending theory applied 
separately to each flange. 

The difference in signs in Equations 6.1.1 between the top and bottom plates 
reflects the fact that the cross section of the 1-beam ceases to be plane, that is, 
warps out of the plane as illustrated in Figure 6.1c. To preserve a planar form of 
the cross section after deformation, the signs for the top and bottom flanges 
would have to be the same. 

It is now convenient, especially in view of further generalizations in Section 
6.4, to describe the entire cross section by one equation. This can be done by 
writing (6.1.2) 

in which w is a cross-section variable that is called the warping function and is 
defined as (Fig. 6.1e) 

Top flange: 

Bottom flange 

Web 

b) 

h 
w=--y 

2 

h 
w=-y 

2 

w=O 

(6.1.3) 

Figure 6.2 (a) Reference system for displacements of center line of cross section; (b, c) 
shear deformation due to transverse displacements. 



THIN-WALLED BEAMS 373 

The expression for ex in Equations 6.1.2 defines the warping strains in the cross 
section. 

Torsion is usually combined with bending and axial deformation, and then, 
according to the theory of bending, Equations 6.1.2 must be enlarged as 

u1 = u- v'y- w'z- 8'w 

ex= u'- v"y- w"z- 8"w 
(6.1.4) 

in which ex is the axial normal strain at any point of the cross section and u, v, 
and w represent the axial, lateral, and vertical displacements (in directions x, y, 
and z) at the center 0 of the cross section (Fig. 6.2a). This center, which lies on 
the x axis of the beam, is chosen to coincide with the centroid of the I-beam cross 
section. 

In the theory of warping torsion, the cross section is assumed to move in its 
own plane as a rigid body, that is, the in-plane deformations of the cross section 
are neglected while out-of-plane warping is not. Therefore, the lateral displace
ments u2 and the vertical displacement u3 of a point of the middle surface (Fig. 
6.2a) may be calculated as 

u2 = v- 8z u3 = w + 8y (6.1.5) 

Note that, although the section is no longer plane, we have for the web 
y~~ = aut! az + au3/ ax = 0 and for the ftanges y~~ = au.t ay + au2/ ax = 0, where 
y~~ and y~~ are the linear parts of the shear strain. These conditions, which can 
be verified immediately by substitutions of Equations 6.1.3, 6.1.4, and 6.1.5, will 
be generalized in Section 6.4. 

The simplest approach to derive the governing differential equations of a 
thin-walled beam is the energy approach. Our energy analysis will be analogous 
to that by which we analyzed the beam-column under imposed axial displacement 
(Sec. 4.3). We are aiming at a linearized formulation that is correct for infinitely 
small incremental displacements u, v, 8 but takes into account the effect of finite 
initial stresses o0 and rP that exist prior to the displacements u, v, and 8. The 
strain energy is then a quantity that is second-order small in terms of 
displacement derivatives (gradients) u', v', and 8'. However, our expression for 
the axial strain ex in Equations 6.1.4 is accurate only up to terms that are 
first-order small in terms of the displacement derivatives. Therefore, the axial 
strain expression must be enhanced by all second-order terms of the finite strain 
expression, particularly by the second-order axial strain e<2> that is due to the 
transverse displacements v and w. For the same reason, we will have to calculate 
the second-order terms also for the shear strains, even though we have shown 
that the first-order parts of the shear strains are zero. 

From the calculation of e<2> from our analysis of columns (below Eq. 4.3. 7) we 
recall that e<2> = (ds 1 - dx)/dx in which ds 1 is the length of the longitudinal fiber 
after deformation due to displacements u2 and u3• As we calculated it for columns 
(Sec. 4.3), we have ds 1 = (1 + u? + u~2)112 dx = (1 + u?/2 + u~2/2), from which 
e<2> = u?/2 + u~2/2. This is exact up to terms second-order small. Now the axial 
(normal) finite strain at a point undergoing displacements u2 , u3 is expressed as 
Ex =ex + !u~2 + !u~2• Introducing the small (linearized) strain expression accord-
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ing to Equation 6.1.4, we thus obtain the result: 

Ex= u'- v"y- w"z- 8"(J) + !(v'- 8'z)2 + !(w' + 8'y)2 (6.1.6) 

Consider now the shear angle Yxz represented in Figure 6.2b by the change of 
the initially right angle <1:123. Due to bending in the vertical plane associated with 
w(x ), this angle does not change because, for bending, the cross sections are 
assumed to remain normal to the deflected beam axis. In fact, we have seen 
(below Eqs. 6.1.5) that according to the assumed distribution of "" u2 , and u3 

(Eqs. 6.1.4-6.1.5), no first-order (linear) shear strain is produced. However, the 
lateral displacements u2 produce a second-order small change Yxz of angle <1:123 
(Fig. 6.2b), which causes the shear force V to work. The reason is that angle 
<1:143 is less than 90° because plane 143 is not normal to the y axis (a plane 
normal toy is 123). The angle change may be calculated from angles <1:234 = u2,1 

and <1:214 = Uz,3 where Uz,t = auzl ax and Uz,3 = auzl az. We will do a similar 
calculation for plates (see Sec. 7.2 and Fig. 7.3), and the result shows that the 
second-order shear angle is y~~ = <1:123- <1:143 = u2 ,1u2 ,3• Note that shear angle 
<1:123- <1:143 is in the sense of Ym and <1:143 - <1:123 would be against it. (The 
expression for Yxz may also be deduced from the finite strain expression 
Y13 = 2£13 = Ut,3 + u3,t + uk,tuk,3 = Ut,3 + u3,t + Uz,tUz,3; see Sec. 7.2.) Because the 
cross section is rigid in its own plane, we may substitute u2 = v- 8z (Eqs. 6.1.5) 
at any point of the cross section. So we finally get 

( au2 )(auz) Yxz = ax az = -v'8 + 88'z 
(6.1.7) 

Yx = (a"3)(a"3
) = w'8 + 88'y 

Y ax ay 

in which the second equation has been deduced by analogy (see also Fig. 6.2c). 
The shear strains given by Equations 6.1. 7 are assumed to be constant through 
the small thickness of the wall. 

Potential Energy 

We will now restrict our attention to a beam under initial axial force P, initial 
lateral load Pz• initial bending moment M~, and initial shear force V~ in the xy 
plane. The strain energy due to incremental displacements u, v, and 0 of the 
initially stressed 1-beam may be calculated as 

U = [ L (0°Ex + !Ee~ + T~yYxy + T~zYxz) dA dx +I: !GJ0'2 dx (6.1.8) 

in which lis the length of the 1-beam, A is the cross-section area, aO is the initial 
normal stress in the cross section, T~y and T~z are the initial shear stresses 
(constant throughout the thickness of wall), Yxy• Yxz are the associated shear 
angles, G is the elastic shear modulus, and GJ is the torsional stiffness for simple 
torsion. We include no strain energy associated with the stresses ayy• azZI Tyz in 
the plane of the cross section, which are assumed (and normally are) negligible. 
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The term ~Ex+ ~Ee; in Equation 6.1.8 represents the strain energy due to 
axial normal strains. We use the finite strain Ex to calculate the work ~Ex of the 
initial stresses ~. while at the same time we use the linearized, small-strain 
expression ex to calculate the incremental strain energy. Inconsistent as this might 
first seem, our expression is nevertheless correct up to terms second-order small, 
which is all that we need for a linearized formulation at small incremental 
deformations. The term ~Ee; is second-order small, and the further terms in the 
expression ~EE; with finite strain Ex would be higher-order small, and would have 
to be truncated anyway for the purpose of a linearized formation. It is also 
obvious that the expression for ~Ex (in which~ is not small) must be exact up to 
the second-order small terms because ~Ee; is second-order small. 

The work of initial shear stresses is T~yYxy + T~zYn· As we already mentioned, 
the first-order components of Yxy and Yxz are zero, and so this expression is of the 
second order. For this reason we have also omitted in Equation 6.1.8 the term 
J~ JA !G(y;z + y;y) dA dx; it would give only terms of higher than second order. 

The last term in the expression of U (Eq. 6.1.8) represents the incremental 
strain energy due to shear stresses -r* that results from the so-called Saint-Venant 
torsion, also called the simple torsion or uniform torsion (this energy was ignored 
by the foregoing assumption of constant strain distribution across the thickness). 
The Saint-Venant torsion is a torsional mode with 8' = const. In this case torsion 
causes no longitudinal normal stresses, only shear stresses -r* that are zero at the 
middle surface and vary approximately linearly across the wall thickness (Fig. 
6.3b). In textbooks of mechanics of materials (e.g., Timoshenko and Goodier, 
1973) it is shown that for an open cross section that consists of a set of thin plates 
of thicknesses ti and lengths bi, the torsional stiffness for Saint-Venant torsion, 
which results from these shear stresses, may be approximately calculated from the 
equation 

n 

GJ= G L !bjtj (6.1. 9) 
j=l 

where n is the number of plates forming the cross section. This expression is 
derived as the limit for the torsional stiffness of a rectangular cross section and 
is exact asymptotically for a very small plate thickness, that is, til bi-+ 0. 
According to Equation 6.1.9, the torsional stiffness of the cross section is the sum 
of the torsional stiffnesses of all its plates. This is true for open cross sections, 
but not for closed cross sections such as those of box girders. 

a) b) c) ....nlllt\i'•y T* 

~ 
~ 

'·~ ~ I y 

fvz fvz 
Figure 6.3 (a) Shear stress distributions due to warping torsion, (b) Saint-Venant torsion, 
and (c) shear force. 
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An interesting point is that the coefficient in Equation 6.1.9 is ! and not -h as 
the summation of the elementary torques from all the wall elements (by the shear 
stresses parallel to the wall surface) would seem to indicate. The reason is that 
additional torques arise from the shear fluxes across the wall thickness at the ends 
of the flanges. 

The initial axial stresses a0 according to the bending theory and the initial 
shear stresses T~z• T~y may be expressed as 

0 P M~z (] =-----
A fz 

o v~ -
Txz=A+ Txz 

0 -Txy = Txy (V~=O) 

(6.1.10) 

in which the axial force P is positive for compression but stress ~ is positive for 
tension, A = cross-section area, and Iz = f z2 dA = centroidal moment of inertia 
of the cross section about the y axis. The stresses Txz and 'ixy represent the 
deviations of the total shear stresses from the average shear stresses V~/ A and 
V~/ A, whose distribution may be approximately determined from the axial 
equilibrium condition; see, for example, Oden and Ripperger (1981, p. 120). Txz 
and 'ixy need not be calculated since their work is zero for a doubly symmetric 
cross section, as we will see later. Consequently, the work of the initial shear 
stresses can be expressed as the work of their average V~/A. 

It is certainly interesting that the initial shear stresses due to the shear force 
do nonnegligible work even though the deformed cross sections (except for their 
warping) are assumed to remain normal to the deflected beam axis. The need to 
include the work of shear stresses in the energy expression has been overlooked 
in most studies of stability of thin-wall beams, but was included in the formulation 
by Powell and Klingner (1970) and Pignataro, Rizzi, and Luongo (1983); Masur 
(1975) deduced its expression indirectly from the differential equations of 
equilibrium and the boundary conditions. 

The increment !iU of the strain energy of the beam compared to the initial 
equilibrium, which coincides with the total energy U if the zero energy value is 
associated with the initial state, may be calculated by substituting Equations 
6.1.10 as well as Equations 6.1.4, 6.1.6, and 6.1.7 into Equation 6.1.8: 

U = f L [ (-~)( u'- v"y- w"z- O"w + ~ v'2
- v'O'z +~ ()'zzz 

1 1 1 ) +- 6'2z3 +- w'2z + w'O'yz +- 6'2y 2z 
2 2 2 

+ (:~ + Txz )< -v' 6 + ()()'z) + 'ixy(w'() + OO'y) 
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] L
IGJ 

+ 2v"w"yz + 2v"8"yw + 2w"8"zw) dA d.x + 
0 
2 8'2 d.x (6.1.11) 

In this integral, the integration over the cross-section area A involves only the 
variables y, z, w and their powers, while the variables u ', v", 8", etc. depend 
only on the axial coordinate x and are constant during integration within each 
cross section. For doubly symmetric cross sections, such as that of anI-beam, the 
following integrals over the cross section vanish: 

L y dA = L z dA = L yz dA = L (l) dA = L yw dA 

(6.1.12) 

provided the centroid of the cross section lies on the x axis. These relations ensue 
from the fact that the integrands have equal magnitudes and opposite signs at 
locations that are symmetric with respect to the z axis, the y axis, or center 0. 
Further we may introduce the notations: 

The quantity lw (often also denoted as r) is called the warping moment of 
inertia of the cross section (alternatively, the term "sectorial moment of inertia" 
has also been used, for reasons that will be clear when we discuss arbitrary open 
cross sections). While the dimensions of the moment of inertia lz and ly are 
(length)4

, the dimension of the warping moment of inertia lw is (length)6
, as is 

clear if w is substituted according to Equations 6.1.3. In this sense, lw is a 
higher-order cross-section parameter. For a doubly symmetric I-beam with 
negligible web area (tw!t1 -+0), integration according to Equations 6.1.3 and 
6.1.13 yields lw = l,h2/2 = lyh2 /4, which 11 = -b_t~JJ = centroidal moment of inertia 
of one flange considered separately; t1 = thickness of the flange, and b1 =width 
(or depth) of the flange (Fig. 6.4a). 

Bringing the integral over A into each term of Equation 6.1.11, we obtain for 

a) 

Fipre 6.4 (a) Geometry of cross section; (b) applied loads at beam axis; (c) simply 
supported beam. 
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the beam the strain energy expression: 

L
l [ p ( v•2 6 .2 w•2 6 .2 ) Mo 

U= -- u'A+-A+-1 +-A+-1 __ z(-w"l -v'6'1) 
o A 2 2 z 2 2 y lz z z 

(6.1.14) 

In writing Equation 6.1.14 we took into account the fact that, due to the double 
symmetry of the cross section, the work of fxz and i'xy (which have a zero 
resultant) is zero (see also Fig. 6.3c). Also, since we regard the deflection z0 in 
the prebuckled state as negligibly small, we have put V~ = - M~' in the foregoing 
equation. 

With the approximations just introduced, the terms in Equation 6.1.14 that 
involve both v and 6 are Us = f~ (M~v' 6' + M~' v' 6) dx. These terms may be 
simplified by integrating the first term by parts, which yields Us = f~ (-M~' v' 6 -
~v"6 + ~'v' 6) dx + [M~v'6]~. The term [· · ·]~ vanishes for many realistic 
boundary conditions at ends x = 0 and x = I. So we conclude that Us = 
f - M~v" 6 dx. This form of the work term due to M~ has been introduced in some 
classical works (see, e.g., the examples solved by Timoshenko and Gere, 1961, 
p. 266). 

Regrouping the terms in Equation 6.1.14, and introducing the notation 
(/z + ly)/A = r~, we finally obtain for the potential energy II= U- W the 
expression 

II= L'! (El v"2 + El w"2 + El 6"2 + GJ6'2 + 2M0w"- 2M0v"6) dx o2 Y z "' z z 

- (' ~ (v'2 + w'2 + 6'2r~) dx + (' (~EAu'2 - Pu') dx- W Jo 2 Jo (6.1.15) 

The work of loads may be expressed as 

W = f [(Pz + .6.pz)w + .6.pyv + .6.m,6] dx + [.6.Mzw')~+ [.6.M,6)~- [(P + .6.P)u)~ 
(6.1.16) 

in which .6.py and .6.pz are small transversal distributed disturbing loads (added to 
the initial load Pz), .6.m, is a small perturbation representing an applied 
distributed moment about the beam axis, .6.My and .6.M, are small moments about 
the z and x axes applied at the beam ends, and .6.P is a small disturbing increment 
in the axial compressive load. Keep in mind this is an incremental theory, which 
is accurate only if .6.py, .6.pz, .6.m,, .6.My, .6.M,, and .6.P represent increments that 
are small compared to Pu M~, and P. 

The point of application of Pz in Equation 6.1.16 is assumed to be on the 
beam axis (i.e., at the beam centroid). If Pz is applied on the top flange, then the 
integrand in Equation 6.1.16 must be augmented by the term -pz(ih62

) because 
rotation 6 causes additional negative displacement ih62 as shown in Figure 6.4b 
(h =depth of the 1-beam). 
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Differential Equations and Boundary Conditions 

The differential equations of equilibrium in terms of u, w, v, and 8 may now be 
obtained as the Euler variational equations for the sum of the integrands of 
Equations 6.1.15 and 6.1.16. The result is 

(EAu')' =0 

(Elzw")" + (Pw')' = ll.pz 

(Elyv")"- (M~8)" + (Pv')' = ll.py 

(E/.,6")"- [(GJ- r~P)O']'- M~v" = ll.m, 

(6.1.17a) 

(6.1.17b) 

(6.1.18a) 

(6.1.18b) 

In deriving Equation 6.1.17b we took into account the fact that M~' = p z because 
the initial state is an equilibrium state. The approximation Me;'= Pz results if the 
moment Pz0 is neglected in calculating M~. 

Equation 6.1.18b is written for the case when load Pz is applied at the beam 
axis. If it is applied at the center of the top flange of the 1-beam, the term 
-pz(h/2)8 must be added to the right-hand side (because the term -pz82h/4 
needs to be added to the integrand of Eq. 6.1.16, already mentioned). 

The first two relations (Eqs. 6.1.17a, b) represent the well-known equations 
that govern axial extension and bending in the vertical plane. These equations are 
uncoupled from each other. By contrast, the differential equations for transverse 
rotation (} and for lateral displacement v (Eqs. 6.1.18a, b) are coupled. They 
represent a system of two linear simultaneous ordinary differential equations for 
the unknown functions 8(x) and v(x ). 

The boundary conditions that are compatible with the existence of potential 
energy can be obtained from Equations 6.1.15 and 6.1.16 by the method of 
variational calculus (see Sec. 5.1). Alternatively, the boundary conditions can 
also be set up directly from the conditions of the stresses and strains at the end of 
the beam, as we will see later. 

Equations 6.1.18a, b for ll.py = ll.m, = 0 represent the basic differential equa
tions that govern the lateral buckling of beams as well as the axial-torsional 
buckling of columns. Lateral buckling is the instability caused by bending moment 
~ when the axial force P = 0, and axial-torsional buckling is the instability due 
to the axial load P when the bending moment M~ = 0. Naturally, a combination 
of lateral buckling and axial-torsional buckling is also possible. 

If the boundary conditions are homogeneous and ll.py = lim, = 0, Equations 
6.1.18a, b define a linear eigenvalue problem for a beam that may be called 
perfect. When an applied distributed moment m, about the x axis, or an applied 
lateral distributed load py in the direction of they axis is considered, or if Pz has 
an eccentricity, then Equations 6.1.18a, b have nonzero right-hand sides, that is, 
are nonhomogeneous. In that case, the problem is to solve the rotations 8 and 
lateral deflections v caused by these disturbing loads. Obviously, when an 
eigenstate of the associated homogeneous problem is approached, these rotations 
or deflections tend to infinity. 

The preceding analysis suffices for formulating the boundary conditions for a 
fixed end of the beam as well as a simple support. If the end of the beam is fixed 
(clamped, built-in) over the entire cross section, we have the boundary 
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conditions: 

v=O 8=0 v'=O 8'=0 (at X= 0, X = l) (6.1.19) 

The last condition follows from the fact that u 1 = - 8' co = 0. 
Another basic type of boundary condition is the simple support illustrated in 

Figure 6.4c. The boundary conditions then are 

v=O 8=0 v"=O 8"=0 (6.1.20) 

in which the last condition follows from the fact that ax= Eex = -E8"w = 0, but 
can nevertheless be obtained easily by the energy method. 

The torque M, is the sum of the Saint-Venant torque GJ8' and torque V,h that 
is due to the horizontal shear forces V, in the flanges (Fig. 6.3a) associated with 
the bending of flanges in the horizontal planes. Torque GJ(J' is due to the parts of 
the shear stress -r* that are nonuniform (linear) across the wall thickness (Fig. 
6.3b) and are zero at midthickness, while torque V,h is due to the shear stresses T 

at midthickness of the wall, which represent the shear stress average over the 
thickness. According to the theory of bending, V, = -(EI1v'j)' = -[EI1(h8/2)"]', 
and for h =constant, V,h = -[EI1(h8/2)"]'h = -Eiw8"' (because l,h2 /2 = lw)· 
Therefore, the torque for a beam of uniform cross section is 

M, = -Eiw8"' + GJ8' (6.1.21) 

The boundary condition of a free end is M, = applied torque, and M, = 0 if no 
torque is applied. Note that the boundary condition is not 8' = 0 (except when 
lw/112

- 0). 

Problems 

6.1.1 Derive the differential equations (Eqs. 6.1.18) directly by the variational 
procedure from the work expression (Eqs. 6.1.15-6.1.16) without using the 
Euler equation. 

6.1.2 Extend the preceding assignment to determine by the variational procedure 
the kinematic (essential) and static (natural) boundary conditions for a (a) 
fixed end (Eqs. 6.1.19), (b) simple support (Eqs. 6.1.20), and (c) free end 
(Eq. 6.1.21). 

6.1.3 What effect does a neglect of the work of shear stresses on the second-order 
shear strains have on the differential equations of equilibrium? For which 
practical situations is such neglect admissible? 

6.1.4 How do the differential equations simplify when twlt1-0 (ideal 1-beam) 
and at the same time t1/h-o (very thin flanges)? 

6.1.5 How do the differential equations simplify when b1 = 0 (i.e., the 1-cross 
section degenerates into a rectangular cross section of width b1 and height h)? 

6.1.6 A pile in the ground may be approximately treated as a thin-wall 1-beam 
embedded in an elastic foundation that resists not only deflections but also 
rotation 8 about beam axis. Derive the differential equation and boundary 
condition by minimizing n (for lw = 0 this must coincide with Prob. 5.2.16). 
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6.2 AXIAL-TORSIONAL BUCKLING OF COLUMNS 

One characteristic property of thin-walled columns is that they may twist as they 
buckle due to axial load. This phenomenon can considerably reduce the critical 
load. It is called axial-torsional buckling and can be analyzed on the basis of 
Equations 6.1.18a, b, in which we now assume the cross section to be constant, 
~ = 0 and P > 0 (Fig. 6.5a). Then the coupling term between the transverse 
rotation 8 and the lateral displacement v disappears. For the case of constant 
cross section, Equations 6.1.17b and 6.1.18a, which govern bending in the xz and 
xy plane, become 

El v 1v + Pv" = 0 y (6.2.1) 

These are the well-known bending differential equations that, along with the 
appropriate homogeneous boundary conditions, give the flexural (bending) 
critical loads. Equation 6.1.18b becomes 

(Jiv + Pr~~"' GJ 8" = 0 (6.2.2) 

and it is seen to be analogous in form to the bending differential equations (Eqs. 
6.2.1). Also analogous are the boundary conditions for fixed or simple supports at 
the ends (Eqs. 6.1.19 and 6.1.20). We then have (with n = 1, 2, 3, ... ): 

P. ,2 _ GJ n21e2 
Simple (torsional) supports (Fig. 6.5b): ern P =--

EI"' f 
(6.2.3a) 

Fixed (torsional) supports (Fig. 6.5c): (6.2.3b) El =-p 
(I) 

As we now see, there exists for the 1-cross section a critical load Pcre for which 
the buckling mode represents pure torsion. The lowest critical load, which occurs 

a) 
z p 

Fipre 6.5 Axial-torsional buckling of 1-beams with different end restraints. 
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for n = 1, is 

Simple (torsional) supports (Fig. 6.5b): 

1r2 
GJ+EI(JJp: 

Pere = (6.2.4a) 

Fixed (torsional) supports (Fig. 6.5c): (6.2.4b) 

There obviously exist also critical loads Per, and Per, for bending in the xz and xy 
plane. So the column will buckle for the lowest of the three loads Per,• Per,• Pere 
(for 1-beam Per,> Per, always). If imperfections are considered, all these modes 
are excited simultaneously to various extents. Note that the column length I has 
no effect when /OJ-+ 0. This has made the cruciform column an attractive test for 
determining certain material properties (cf. Eq. 8.1.25 and Fig. 8.10b). 

The ratio of bending to torsional critical loads is, according to Equation 
6.2.4a, 

(6.2.5) 

where the last expression is valid for ideal doubly symmetric 1-beams, (twlt1 -+0), 
for which I(JJ = tiJ]h2/24, ly = tiJ]/6, and r~ = b'j/12 + h2/4. We now see that 
flexural buckling prevails when the column is sufficiently slender (1/rp is high), 
while the flange thickness t1 is not too small. This condition often applies in 
practice. For example, cold-formed steel cross sections are more prone to 
torsional buckling than hot-rolled ones because they are thinner. Wide-flange 
1-beams are more prone to torsional buckling than regular ones, and stubby 
columns more than slender ones. However, for stubby columns, the failure due to 
reaching the strength or yield limit of the material often dominates over any type 
of buckling unless the walls are sufficiently thin. Obviously, torsional buckling is 
more important for high-strength materials. 

Even when the flexural critical load is less than the torsional one, imperfec
tions may induce significant torsional deformations below the critical load. 

The conclusions we have drawn so far apply to doubly symmetric cross 
sections. But they also apply more generally to cross sections in which the shear 
center (see Sec. 6.4) coincides with the centroid (center of mass). 

Finally, Figure 6.6 (Northwestern University, 1969) demonstrates the two 
possible buckling modes of cruciform columns: (1) axial-torsional buckling (left), 
which occurs when Pere <Per, (=Per.), and (2) planar flexural buckling (right), 
which occurs when Per,(= PerJ < Pere· 

Problems 

6.2.1 For the beam that is simply supported (e.g., rests on an edge supported at 
one end and two spherical balls at the other end) and has a rectangular cross 
section (Fig. 6.7a), calculate the torsional buckling load. How does it depend 
on length L? How does it depend on the type of end supports? 

6.2.2 For the 1-beam in Figure 6. 7c, calculate the torsional and flexural critical 
loads assuming H = b1, L = 20H, and H/t1 = 5, 10, 20, 50, 100. Plot their 
ratio as a function of H /t1. 
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rlglll'e o.o r'lonnwesrem umversny ll~~J reacrung models: axial-torsiOnal tlett) and 
planar (right) buckling of cruciform columns. 

6.Z.3 For the ideal 1-beam, as well as for the beam of thin cruciform cross section 
shown in Figure 6.7b (for which lw/r2J-+O), calculate the torsional and 
flexural critical loads for the following boundary conditions: (a) simply 
supported [so that v = w = 8 = 0 and ux(y, z) = 0 at ends]; (b) same but two 
balls are replaced by one spherical ball, allowing free rotation 8 at the end; (c) 
both ends fixed against all rotations (v' = 8' = 0) but not against warping 
[u...(y,z)=O]; (d) both ends completely fixed [v'=w'=8'=0, u(y,z)=O]; 

Figure 6.7 Exercise problems on axial-torsional buckling of columns. 
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(e) both ends rigidly stiffened against warping ( 8 = 8' = 0) and fixed against 
rotation 8 but not fixed against rotations w' and v' (i.e., rotation v' is free, 
Mz = 0, Fig. 6.7d); (f) cantilever beam with a completely fixed (built-in) end 
(8 = 8' = v' = w' = 0, u(y, z) =0] and a completely free end v (assume J = 0 
in this case); (g) same but the free end is rigidly stiffened against warping 
(8' = 0); (h) cantilever beam with a support preventing slope and twist 
( 8' = v' = w' = 0) but not warping (free 8'), and a completely free end; (i) 
same, but the free end is rigidly stiffened against warping ( 8' = 0). 

6.2.4 Considering an ideal I-beam and including the inertia forces due to 8 and 
8', calculate the torsional vibration frequency for a simply supported column 
of length I subject to constant axial forces P. 

6.2.5 Analyze the same I-beam as in Problem 6.2.4, but consider a pulsating axial 
load, P = P0 + P, sin Ct. Note that bending of the flanges causes their axial 
shortening. Using the energy method from Section 3.3, calculate the smallest 
load frequency causing parametric resonance and the maximum stable 
amplitude P, in the presence of damping. 

6.2.6 (a) Formulate the Rayleigh quotient (Sec. 5.3) for Problems 6.2.1 to 6.2.3 
and use it to obtain the upper bounds for P cr·· (b) Can a Timoshenko quotient 
(Sec. 5.4) be formulated for these problems? (c) Solve these problems by the 
Ritz method or the Galerkin method. (It is helpful to consult first Eqs. 
6.3.12-6.3.15 of the next section.) 

6.3 LAHRAL BUCKLING OF BEAMS AND ARCHES 

Thin-walled beams can buckle by lateral twisting. This phenomenon, called 
lateral (or lateral-torsional) buckling, can again be analyzed on the basis of 
Equations 6.1.18a, b. To illustrate it, consider the example of a simply supported 
beam shown in Figure 6.8a. The cross section of the beam is constant and the 
axial force in the beam is P. For the sake of simplicity we consider first a 
uniformly distributed bending moment ~ in the vertical plane, applied at the 
ends of the beam. This has the advantage that the coefficients of the governing 
differential equations are constant. In practical problems, of course, the bending 
moment causing instability is variable along the beam, and then these coefficients 

Fipre 6.8 (a) Buckling of 1-beam, subjected to (b) eccentric axial force or (c) uniform 
bending moment. 
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are not constant, which complicates the solution. The boundary conditions of 
simple supports at both ends (Eqs 6.1.20) can be satisfied, term by term, by the 
following Fourier series representations: 

~ . nnx v= Ll a sm-
n-1 n l 

(} ~b .nnx = Ll sm-
n=t n l 

(6.3.1) 

in which an and bn are constants. Substituting these series into Equations 
6.1.18a, b, we obtain 

OD ( n
4
n

4 
n2n 2 n2n 2) nnx 

~1 Elyan T + M~bn f- Pan f sin-~-= 0 

ao [ n4n4 n2n2 n2n2] nnx 
n~l EI(J)bn T + ( GJ- r~P)bn f + M~an f sin-~-= 0 

(6.3.2) 

To satisfy these equations identically for any x, it is necessary that for each n 
either the expressions in the parentheses vanish or an, bn = 0. This condition 
(which is exact as long as all n = 1, ... , oo are considered) yields, for each n, an 
independent system of two linear algebraic homogeneous equations for an and bn 

(6.3.3) 

where P~! = n2n 2Ely/l2 and Pere = (GJ + EI(J)rz2n 2/l2)/r; are the critical loads for 
purely flexural and purely torsional buckling defined in Section 6.2. 

Axial-Torsional Buckling due to Eccentric Axial Force 

Let us consider first the case of eccentric compression, that is, the case where the 
initial bending moment M~ is caused by the eccentricity ez of the axial load, 
~ = Pez. As we know, the column can deform in a planar bending mode ( w -=!= 0 
at v = (} = 0), which is governed solely by Equation 6.1.17b. We focus our 
attention exclusively on a combined mode that involves both v and (}, satisfies 
Equation 6.3.3, and is uncoupled. This mode arises when the determinant of 
Equation 6.3.3 vanishes. This condition gives for the first critical value (n = 1) 
P = Per the equation 

XY=e;r "hX Per 1 Wlt =--=z- , 
Per 

(6.3.4) 

which can be rearranged to the quadratic equation 

( 1- ;;)P~r- (Pcr1 + Per9 )Per + Per1 Pcr9 = 0 
p 

(6.3.5) 

from which Per can be easily solved. 
The left-hand side of Equations 6.3.5 is a function /(Per)· It is represented by 

the parabolas shown in Figure 6.9a. Their intersections with the P axis are the 
roots, that is, Per. If rP > lezl > 0, the parabola is convex, and Figure 6.9a 
illustrates that the smaller root is positive and less than both Pcr

1 
and Pere· If 

lezl > rp, the parabola is concave and the smaller root Per is negative, that is, a 
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F1gure 6.9 (a) Plot of the left-hand side of Equation 6.3.5; (b, c, d) graphic solutions of 
Equations 6.3.4 and 6.3.5. 

tensile load causes the beam to buckle laterally, although the same beam would 
also buckle for a compressive load (the second, larger root), which is smaller in 
magnitude. For the case of compression (Per> 0) and for any value of ez, Figure 
6.9a shows that Pcr<Pcr and Pcr<P""8 simultaneously, that is, Pcr<min (Per, 

1 1 

Per
8
). For tension (Per< 0) and for lezl = rP, Per- -co; so we see that buckling in 

tension is practically possible only if the eccentricity is substantially larger than 'r 
The solutions of Equations 6.3.5 are plotted in Figure 6.9c, d. 
The basic properties of P cr can also be deduced more directly from the plot of 

Equation 6.3.4 shown in Figure 6.9b, which makes it possible to calculate Pcr
8 

if 
Per and Pcry is chosen. Because for compression (Per> 0) we always have Per< Per, 
and Per< Pcr8 , the relations among Per, Per,• and Pcr8 are represented by the 
positive branches X > 0, Y > 0. If P ere » P cr,, then Y »X, and then X- 0 or 
Per= Per,· If Pcr8 « Per,• then X» Y, and then Y- 0 or Per= Pere· 

Now assume that Per,< Per8 , which means that X« Y (in design, typically one 
chooses Per «Per~). We want to know when Per/ P.:r is minimum, that is, Per I Per is y D' y y 

maximum. This obviously happens for the maximum X value satisfying the 
condition X « Y. The point that satisfies this condition is the apex of the 
hyperbola in Figure 6.9b, which corresponds to the case Per, = Pere· Similarly, if 
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we assume that Per,~ Pere• that is, X~ Y, we find that the minimum of Per/ Pere 
occurs also for Per,= Pere· Therefore, the lowest relative depression of Per below 
Per, and Pere occurs for the beam design such that Per,= Pere· 

We see that coincidence of the critical loads for two modes causes the greatest 
relative reduction of the actual critical load (which corresponds to a combined 
mode). This is a general phenomenon, not restricted to this problem (see, e.g., 
Sec. 4.6). 

lateral Buckling due to Bending Moment 

Let us consider now the case that P = 0, and the bending moments M~ are 
applied at the two ends of the beam. Buckling is possible only if the determinant 
of equation system 6.3.3 vanishes. This yields for the first critical value (n = 1) of 
the initial bending moment the following result (which is exact): 

~z.., = ±] { ElyGl[ 1 + ~; (72
2
) ]f12 

(6.3.6) 

This simple result may be used as a safe but crude approximation in design 
even if the bending moment is nonuniform; obviously, if the maximum bending 
moment does not exceed the value given by Equation 6.3.6, a more accurate 
solution is required only if the beam needs to be designed for a larger maximum 
bending moment. The first lateral buckling mode is sketched in Figure 6.8c. 

Consider now some limiting cases. If the walls are extremely thin (t- 0), J is 
negligible compared to lw, because J is proportional to t 3 while lw is proportional 
tot. Equation 6.3.6 then reduces to 

:Jr2 
M'L, = ± J2 EVI;f:, (6.3. 7) 

On the other hand, if the walls are relatively thick, lw is negligible compared to J, 
and then Equation 6.3.6 reduces to 

(6.3.8) 

It is interesting to note from Equation 6.3.6 or Equations 6.3. 7 and 6.3.8 that in 
the former case (very thin walls) the critical bending moment is proportional to 
1/f, while in the latter case, it is proportional to 1/l. Thus we see that for 
sufficiently short beams lateral buckling is dominated by the warping torsion, 
while for sufficiently long beams it is dominated by the simple torsion (Saint
Venant torsion). 

Alternatively, the critical bending moment can, of course, be solved by direct 
minimization of the potential energy. In this approach, Equations 6.3.1 are 
directly substituted into Equation 6.1.15, and the conditions antaan =0 and 
ant abn = 0 are then found to yield again Equation 6.3.3 (with p = 0). The result 
is the same. This analysis however provides further information: it proves that the 
beam is stable for M~ < M'L and unstable for M~ > M'L,· 

Lateral buckling can als~ be caused by a bending moment combined with an 
axial load. In this case Equation 6.3.3 gives the critical bending moment 
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Mt_
1 
= rp((Pcr, -.P)(Pcr

9
- P)]112

• This can be cast in the form 

(6.3.9) 

where M~, is the critical moment at P = 0, given by Equation 6.3.6. 
Lateral buckling of a beam with uniform M~ is also easily solved when the 

ends are fixed (the boundary conditions are then expressed by Eqs. 6.1.19). In 
that case the first critical mode can be described by the relations 

( 2.n-x) 8=b 1-cos-
1
- (6.3.10) 

and by a similar procedure as before one obtains for the first critical bending 
moment the solution (cf., e.g., Chajes, 1974, p. 222) 

2.1r [ ( .n-2)]1/2 M~=±-1 Ely GJ+4EI(l)f (6.3.11) 

This solution is exact. Its limiting behavior for a very thin short beam or a thicker 
very long beam is similar to Equations 6.3. 7 and 6.3.8. 

Approximate Solution for Variable M: 

For variable M~, relatively simple solutions are possible in an approximate form, 
based on the Rayleigh quotient (Sec. 5.3) or the Rayleigh-Ritz method (Sec. 5.6). 
Let the bending moment distribution be described as M~(x) = Mzf(x), where 
f(x) is a fixed function and Mz is a moment parameter (of the dimension of a 
moment) whose critical value is to be found. As we did for columns, we may 
obtain the Rayleigh quotient from the stability condition ll = 6 2ll > 0 with ll 
given by Equation 6.1.15 if the vertical load is applied at the centroidal axis 
rather than at the top flange. Solving Equation 6.1.15 for Mz, we obtain for 
lateral buckling (P = 0, u' = 0, w = 0) the stability condition 

_ _ f !(Elyv"2 + E/(1)8"2 + GJ8'2) dx 

Mz < Mz., = 1 (6.3.12) 

L v"8f(x)dx 

For a simple upper-bound approximation we may assume 

• .1rX 
v=q1 sml f) 

. .?rX 
=q2 sm

l 
(6.3.13) 

Upon substitution into the Rayleigh quotient in Equation 6.3.12 we obtain Mz .. as 
a function of the ratio ; = q1/q2 • The necessary condition of minimum of the 
Rayleigh quotient is CJMz) a; = 0. Minimization of the quotient then yields 

M = -
1
- [El .n-2(El .n-2 + GJ/2))112 

Za 2C/ y (l) 
C= ft(x)sin2 7 dx (6.3.14) 
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If, for example, we have a simply supported beam of constant cross section 
loaded by a uniform distribution load Pz applied at the axis of the beam (Fig. 
6.10a) we may put Mz = Pzl2/8 =value of ~ at midspan, and f(x) = 4(x
x2/l)/l. Substitution into Equations 6.3.14 leads to C = 1(3 + :rc2)/3:rc2 and 
Mz.,. = 1.150M!.

1
, wi~ ~~~ given by Equation 6.3.6. The corresponding critical 

value of Pz is Pz., = BMz)l . 
If we choose the Rayleigh-Ritz method, we substitute the expressions for v 

and 8 (see Eqs. 6.3.13) into the potential-energy expression in Equation 6.1.15 
(with W = 0, P = 0, u' = 0). Carrying out the integration and calculating then the 
derivatives with respect to q1 and q2 , we obtain the following necessary 
equilibrium conditions: 

an 1 :rc4 _ :rc2 
aq

1 
=2Elypqt-MzCpqz=O 

an 1 ( :rc4 :rcz) - :rcz 
aqz =2 Elwp+Gll qz-MzCpq•=O 

(6.3.15) 

This represents a system of two linear algebraic homogeneous equations for q 1 

and q2 and the critical state is obtained from the condition that the determinant of 
these equations must vanish. This yields exactly the same result as the 
minimization of the Rayleigh quotient (Eqs. 6.3.14), as expected. This value is, of 
course, an upper bound on the exact solution. 

It may be checked that the foregoing solution based on the Rayleigh quotient 
or the Rayleigh-Ritz method yields the exact result for the case of a uniform 
initial bending moment distribution, for which f(x) = 1. 

An accurate result for general f(x) can be obtained by the Rayleigh-Ritz 
method if Equations 6.3.13 are replaced by a truncated Fourier series with 
sufficiently many terms. 

The same procedure can be used for a beam with simply supported ends, 
subjected to a concentrated load Fat midspan (Fig. 6.10b). Adopting for v and 8 
the same approximation as given in Equations 6.3.13 and denoting by Mz the 
value of~ at midspan, one finds 

(6.3.16) 

Figure 6.10 (a) Beam subjected to distributed transverse load; (b) beam subjected to 
concentrated transverse load; (c) lateral buckling of arches. 
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The corresponding critical value of F is Fa = 4M~/ I. Tabulated values of Fa for 
this case as well as for a cantilever beam with a concentrated load applied at the 
end can be found in Timoshenko and Gere (1961, pp. 264 and 259). 

The lateral buckling of a cantilever subjected to a concentrated load at the 
free end is demonstrated in Figure 6.11, which portrays a teaching model 
developed at Northwestern University (1969). 

Bimoment 

It is customary to describe the stresses due to warping torsion in terms of the 
so-called bimoment B. The normal strains and stresses due to 0" alone are 
E = - 0" w and u = -EO" w. In analogy to the bending moment definition, we may 
define the quantity 

B = - L (J(l) dA =EO" L w2 dA = ElwO" (6.3.17) 

and call it the bimoment. The reason for this term is that, for a symmetric 
I-beam, B = M2h/2- M1h/2, where M1 and M2 = -M1 are bending moments in 
the upper and lower flange (in their planes), respectively. In terms of bimoment 
we now have u = - EwO" = - Ew(B I Elw) = - Bw/ lw. Adding the normal stresses 
due to the axial load and bending moments, we may write, in general, 

P Mzz MyX Bw 
u=---------

A lz ly lw 
(6.3.18) 

where the last term is easily remembered as an analog to the bending stress 
formula. Note, however, that (in contrast to Mz, My, P, and M,) B is not a static 

F1pre 6.11 Norwhwestem University (1969) teaching models: lateral buckling of 
cantilever. 
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resultant of the stresses due to warping torsion; in fact this resultant is always 
zero for a doubly symmetric cross section. 

The static boundary condition 6" = 0, used before, may alternatively be 
replaced by B = 0. Except for load P applied at the centroid (free end, simply 
supported end), the static boundary conditions (in the absence of axial loads or 
restraints) are u = 0 and Mz =My = 0, and so they may be written as Mz = 0, 
My =0, and B =0. 

Lateral Buckling of Arches 
A practically important application of the thin-wall beam theory is the lateral 
buckling of arches (Fig. 6.10c). To solve the arch problem, the foregoing 
formulation for straight thin-wall beams must be generalized to curved thin-wall 
beams. The modification consists in replacing v", w", and 6' by suitable 
expressions for the bending curvatures and the specific angle of twist (torsional 
curvature) that take into account the curvature radius of the bar. Using such 
generalized curvature expressions (see, e.g., Vlasov, 1959, or Bafant, 1965), one 
can obtain an analogous expression for the potential-energy function (see Sec. 
5.1) from which the differential equations of the problem follow. For detailed 
solutions see Timoshenko and Gere (1961, p. 317), Vlasov (1959, sec. 12.4), and 
for beams of variable cross section, Bafant (1965) and Bafant and El Nimeiri 
(1975). 

Buckling formulas for lateral buckling of arches under various loadings are 
reported in Galambos (1988, pp. 594-605). 

Problems 

6.3.1 Find the value of the first critical load of the 1-beam in Figure 6.8 under 
eccentric compression. Assume h = b1 ; I= 20h; hltw = 10, 50, 100; t11tw = 2 
(symbols defined in Fig. 6.4a); and ez = ~h, 2h. What is the minimum 
eccentricity ez for which buckling in tension becomes possible? 

6.3.2 Do the same as Problem 6.3.1, but the ends are fixed (v' = w' = 6' = 0). 
6.3.3 Find the exact value of the critical uniform bending moment for a 

fixed-fixed beam (Eq. 6.3.11), with each end fixed against warping and all 
rotations. 

6.3.4 For the beam in Figure 6.10a: (a) find an approximation of the critical value 
of Pz for the case analyzed in the text; (b) do the same but consider Pz to be 
applied at a distance ez above the axis of the beam (hint: how would Eq. 
6.3.12 have to be modified?); (c) do the same for the problem in the text, but 
the end cross sections are fixed against warping (6' = 0). 

6.3.5 For the beam in Figure 6.10a: (a) solve the same problem as in the text, but 
consider both ends to be completely fixed against rotation as well as warping; 
(b) do the same, but consider the ends fixed only against slope and not against 
warping; (c) do the same for the case of a simple support at one end and fixed 
at the other end. 

6.3.6 Solve the critical value ofF in Figure 6.10b for the case of (a) completely 
fixed supports at both ends; (b) end cross sections fixed only against warping 
but not against rotation; (c) end cross sections fixed only against rotation but 
not against warping. 
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6.3.7 Consider a cantilever beam of 1-cross section and find the critical loads for 
lateral buckling for (a) a distributed load Pz applied at a distance H /2 above 
the beam axis (Fig. 6.12a); (b) a concentrated load at the end (Fig. 6.12b). 
The beam is simply supported at both ends, with free rotations as well as 
warping. (c) Then solve the same problem but for both ends completely fixed; 
(d) then the same problem but the ends fixed only against rotation but not 
against warping. 

Figure 6.U Exercise problem on lateral buckling of beams. 

6.3.8 For the beam that has both ends completely fixed (8 = 8' = w = w' = v = 
v' = 0) (Fig. 6.12c) and has a variable cross section with H = B[l- 2x(L
x )I L 2] (B = L/10, t = B /10), find an approximate value of F for lateral 
buckling. 

6.3.9 The cantilever beam in Figure 6.12d has the cross-section variation 
H = B(l + x/ L) but is loaded by a combination of distributed and concen
trated loads. Find the critical value of the load multiplier A. for lateral 
buckling. 

6.3.10 A beam with simple supports ( w = w" = v = v" = 8 = 8" = 0) is subjected 
to lateral load Pz = f I L and axial load P = 2/. Find the approximate critical 
value of multiplier f. How does the solution change if P = f, P = 4f, P = f /2? 

6.3.11 Do the same as (a) Problem 6.2.4 and (b) Problem 6.2.5, but consider 
lateral vibrations with torsion for a simply supported beam loaded by a 
uniform bending moment M~ or by a vertical distributed load Pz· 

6.4 BEAMS OF ARBITRARY OPEN CROSS SECTION 

General Theory of Warping Torsion 

Although our attention has so far been restricted to 1-beams, a similar solution is 
possible for beams of arbitrary open cross section (Fig. 6.13a-j). The theory of 
thin-walled beams rests on the following two basic simplifying assumptions: 

1. The cross section is perfectly rigid in its own plane. 
2. The shear strains in the middle surface of the wall are negligible (this is 

known as Wagner's assumption). 
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Furthermore, the transverse normal stresses in the walls as well as the bending 
moments of normal stresses about any axes tangent to the midsurface of the wall 
(like the bending moments in shells) are assumed to be negligible. Also, the 
tangential normal stresses in the walls are considered to be small, so that they can 
be neglected in the relation between the longitudinal normal stress and strain. 
This assumption, of course, does not strictly conform to assumption 1, but (unless 
the cross section is stiffened by closely spaced diaphragms, see Gjelsvik, 1981, 
p. 17) appears to be closer to reality than the assumption of negligible strains in 
the tangential direction, which would be implied by a strict interpretation of 
assumption 1. (For Poisson ratio v = 0, however, this discrepancy disappears.) 

These assumptions transform the three-dimensional problem to a one
dimensional problem. Assumption 2 obviously includes the bending theory of 
beams because a negligible value of the shear strain implies, in the case of 
bending, that the cross section remains plane and normal to the middle surface. 
All these assumptions, and especially Wagner's assumption, have been exten
sively verified by experiments and were found to be applicable to thin-walled 
beams that are sufficiently slender, approximately such that the length-to-width 
ratio exceeds 10. 

Let s denote the length coordinate of the middle surface along the cross 
section, measured from some suitably chosen origin 0' (Fig. 6.14a, b). In the case 
of branched cross sections, such as T -beams or /-beams (Fig. 6.13d, i), coordinate 

c) 

y 

Figure 6.14 Geometry of (a) monosymmetric and (b) arbitrary cross sections and physical 
meaning of sectorial radius and sectorial coordinate for warping function; and (c) plots of 
warping functions for channel cross section. 
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s is defined separately for each flange but must be such that s is continuous 
through the branching points. The shear strain in the middle surface of the wall 
may be expressed as Y.u = (8u1/8s) + (8us/8x) where u1 =longitudinal displace
ment and us =transverse displacement in the direction of s. Wagner's assumption 
means that Y.u = 0 or 8u1/8s = -aus!ax. By integration, u1 = f~ ( -ausl8x) ds + 
Ua where Ua is the axial displacement at the origin of coordinate s (point 0'). (For 
a further discussion of ua, see Gjelsvik, 1981.) 

Consider now the effect of rotation 8 about the center 0 of coordinates y, z 
(Fig. 6.14a, b). Assumption 1 (rigidity of the cross-section shape) allows us to 
write us = 8p(s ), where p represents the distance of the tangent to the middle 
surface at point s from point 0 and is taken positive if the vector ds turns 
counterclockwise (Fig. 6.14a, b) and negative if clockwise (so that it would give 
the correct sign for the component of us)· The equation for u1 now becomes 
u1 -ua=-fH8us/8x)ds=-f0(88p/8x)ds=-8'ro, in which we introduce 
the notation 

ro = J: p(s) ds = J: (y dz - z dy) (6.4.1) 

Function ro(s) is called the sectorial coordinate (or the warping function), and ~ro 
represents the area of the sector shown in Figure 6.14a, b. It is easy to check that 
the definition of ro in Equation 6.4.1 includes the expressions for an 1-beam that 
we wrote in Equations 6.1.3. This documents that Wagner's assumption is the 
proper way to generalize the previously used idea that the flanges in an I -beam 
bend as independent beams. 

Next we add to u1 - Ua = - 8' ro the axial and bending deformations (which 
also satisfy Wagner's assumption as already mentioned), including the axial 
displacement of point 0' relative to point 0 due to bending. Thus we get 

Ut = u- v'y - w' z- 8' ro (6.4.2) 

in which u represents the axial displacement at the centroid (not at 0'). For 
thin-walled cross sections it can, of course, happen that there is no material point 
at the centroid. In that case u is an imagined displacement representing the 
average of the axial displacements at all material points of the cross section. 

Equation 6.4.2 is of the same form as our previous Equations 6.1.4 for an 
I-beam. The expressions for the transverse displacement components in Equa
tions 6.1.5 also apply in general. Consequently, the potential-energy expression 
that results from Equation 6.1.8 will be of the same form as before. So the 
derivation of the differential equations of the problem is also the same. 

For a general choice of coordinates x and y, however, certain integrals over 
the cross section, which vanished before, are no longer negligible, in general. It is 
clear that substitution of Equation 6.4.2 into the potential-energy expression will 
lead to integrals over the cross section of the functions 1, y, z, ro, as well as of 
their squares and products. By choosing x and y as the principal centroidal axis of 
the cross section, we can achieve that the following cross-section integrals vanish: 
f y dA = f z dA = f yz dA = 0. 

By changing the pole of the sectorial coordinate ro to a different location it is 
possible to make further cross-section integrals vanish. To this end, we need to 
consider how the sectorial coordinate changes when the pole is moved to point C 
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of coordinates Yc. zc (Fig. 6.14a, b). Let y and z be Cartesian coordinates that 
have their origin at point C and are parallel to the original coordinates y and z. 
The coordinate transformation is y = Yc + y, z = zc + z. Substituting this into 
Equation 6.4.1 for w, we obtain the transformation relation 

OJ= W + ZcY- YcZ + Wo (6.4.3) 

in which OJ = f p ds = f (Y dz - z dy) =sectorial coordinate at pole C, and 
w0 = ZcYo- YcZo is a constant that depends on the coordinates of pole C and of 
origin 0' of the curvilinear coordinate s. The relation between OJ and w is 
illustrated in Figure 6.14c for a channel cross section. 

In view of Equation 6.4.3, the mixed cross-sectional moments can be 
expressed as follows: 

la.y = J OJY dA = J wy dA + Zc J y2 dA - Yc J yz dA + w0 J y dA 

Ia.z = J OJZ dA = J wz dA - Yc J z2 dA + Zc I zy dA + w0 I z dA 
(6.4.4) 

Since y, z are the principal centroidal coordinates, the last two integrals in each of 
the two preceding equations vanish. We thus find that, in order to make Ia.y and 
la.z vanish, the following coordinates need to be chosen for the new pole C: 

IwydA JwzdA 
fwy fwz 

Zc = - = -- Yc = =- (6.4.5) 
J yzdA ly I zzdA lz 

The point C determined by Equations 6.4.5 coincides with the shear center of the 
cross section. The shear center is defined by the condition that for the transverse 
load resultants passing through point C the response consists of bending only 
(i.e., no twisting); see, for example, Oden and Ripperger (1981, p. 120). 

Consider now a similar transformation of Equation 6.4.2. According to the 
assumption of rigidity of the cross-section form, we have v = fJ + zcO and 
w = w -YeO. Substituting this into Equation 6.4.2, along with an expression for w 
according to Equation 6.4.3, we find that the terms with zc and Yc cancel out and 
the following expression results: 

Ut = U- fJ'y- w'z- (}'OJ+ (J'wo (6.4.6) 

By a suitable choice of origin 0' (Fig. 6.14a, b) of coordinate s it is possible to 
achieve that f OJdA vanishes. For this choice, however, w0 is generally nonzero. 
There is nevertheless a special case in which w0 = 0; it is the case of 
monosymmetric cross sections as shown in Figure 6.14a. In that case, by choosing 
the origin of coordinates to lie on the axis of symmetry (z axis), we achieve that 
both f OJ dA and constant w0 vanish, as it appears from the value found for w0 in 
Equation 6.4.3. Indeed, Equation 6.4.3 in this case reduces to the simple 
expression w = OJ - zc y, the validity of which is geometrically obvious from an 
inspection of Figure 6.14a. In that case, Equation 6.4.6 takes the same form as 
Equation 6.4.2 as well as Equations 6.1.4 used before for symmetric 1-beams. In 
the developments that follow, we will consider a cross section of general shape 
and choose 0' such that f OJ dA = 0. 
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Stresses and Bimoment in General Theory 

The bimoment associated with the shear center is defined as fJ = - f ali> dA. 
Substituting a= Eu~ and expressing u~ from Equation 6.4.6, we obtain 

fJ =-I E(u'- fJ"y- Kl'z- 8"ti> + 8"ro0)ti> dA = E/6>8" (6.4. 7) 

We see that normal stresses due to axial force and bending moment do not 
contribute to B. Using again the same expression of u~ and substituting it into the 
definitions Nx = -P =fA adA, My= fA ay dA, Mz =fA az dA, we further obtain 
u'+8"roo=-P/EA, fJ"=My/Ely, w"=M/Elz. Finally, substituting these ex
pressions together with 8" = B I Eh into the expression for a= Eu~ according to 
Equation 6.4.6, we obtain the e'Xpression (Ba!ant, 1965): 

P Myy Mzz Bti> 
a=-------- (6.4.8) 

A ly lz /6> 

Further, it is interesting to calculate the derivative of the bimoment: 

B' =.!!._I ati>t ds =I a( at) {i) ds = -I a( Txst) ~ ds dx ax as w (6.4.9) 

We utilized here the differential equation of equilibrium for stresses in the wall: 
a( at)/ ax= -a(Txst)/as, where Txs is the shear stress in the middle surface of the 
wall. The last integral in Equation 6.4.9 may be integrated by parts, and noting 
that dti>/ds = p (because dti> = pds), we have 

B'=-I Txs<:ds+(Tx.strofs~=-I TxsfJtds=-M1_, (6.4.10) 

The boundary terms corresponding to the boundary coordinates s1 and s2 must 
vanish since Txs = 0 at the boundary of the wall. The last expression in Equation 
6.4.10, by definition, represents the torque due to stresses T....,. in the middle 
surface of the wall. These stresses are due strictly to the warping torsion. The 
simple torsion (Saint-Venant's torsion) produces no shear stresses in the 
midsurface of the walls. 

The last relation makes it possible to calculate the total torque transmitted in 
the cross section. The shear stresses T acting at any point of the wall may be 
decomposed into two components: the shear stress Txs in the middle surface of the 
wall, and component T* that is zero at the middle surface and varies linearly 
across the wall thickness. The total torque M, in the cross section may be 
calculated as 

M, =I Tp .. dA =I TxsfJ .. tds +I T*p .. dA (6.4.11) 

in which p .. denotes the arm from pole C to the vector of shear stress T for any 
point within the wall thickness. The last integral in Equation 6.4.11 represents the 
torque due to simple (Saint-Venant's) torsion, denoted as M,,. According to 
Equations 6.4.11, 6.4.10, and 6.4.7, the total torque may now be expressed as 

M, = M,., + M,, = -B' + M,, = -(Elw8")' + GJ8' (6.4.12) 

This agrees with our previous Equation 6.1.21 for 1-beams. 
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The boundary condition for a free end of the beam is M, = 0 (note that this 
does not imply 8' = 0). Generally both the torque from simple torsion M,, and the 
warping torque M,

10 
are nonzero at the free end but they exactly offset each other. 

The presence of warping torque -!J• means that there must exist shear 
stresses, Tsx• which equilibrate this torque. They may be calculated by integrating 
the differential equation of equilibrium o(Tsxt)/ox =-a( at)/ as (see, e.g., Oden 
and Ripperger, 1981) in the same way the shear stresses are calculated from a in 
the bending theory. Tsx are found to be proportional to !J '. The existence of Tsn 

of course, conflicts with the starting assumption that Ysx = 0 in the midsurface of 
walls. This conflict is an inevitable paradox of the theory of warping torsion, in 
which the shear strains are implied to be zero due to the assumption that plane 
cross sections remain plane and normal to the deflection curve while the 
corresponding shear stresses must be nonzero to balance the shear force. For 
slender beams the error due to neglect of Ysx is small, but not so for relatively 
deep or wide beams. In that case 8' needs to be augmented by an additional 
(secondary) specific twist 8(2> due to shear stresses associated with B" (which may 
be approximately estimated from the condition of energy equivalence with the 
work of Tsx ). 

Potential Energy and Differential Equations 

Consider now the most general case of initial stresses ~ and T
0 associated with 

the initial axial force p0, initial bending moments M~ and M~, initial shear forces 
V~ and V~, initial bimoment B0

, and initial Saint-Venant torque M~. According 
to Equation 6.4.8 we have 

o o ~o 
o P Myy Mxz B ~ 

a= ----------w 
A fy fz /,;, 

(6.4.13) 

and, in analogy to Equations 6.1.10, 

o v~ -
Txy=A+ Txy 

o v~ -
Txz=A+ Txz (6.4.14) 

where fxy and fxz now comprise also the secondary shear stresses Tsz due to 
warping torsion. These stresses, representing deviations from the mean value of 
the shear stresses, have zero resultant. We will not give an expression for the 
stresses T* due to Saint-Venant torsion, since we will express their work directly 
through the resultant torque M~. 

The first-order, linearized parts of normal strains (small strains) are 

ex= ~I= U 1
- v"y- W"Z- (J"{i) + (J"Wo (6.4.15) 

while the second-order, geometrically nonlinear parts of strains can be obtained 
by substituting the transformations v = v + zc(J and w = w -YeO into Equations 
6.1.5, and these equations then into Equations 6.1.6 and 6.1.7. The result is 

Ex- ex=!( u'2 + 8'2z 2
- 2v' (J'z + z~(J'2 + 2v'zc(J'- 28'2zzc) 

+ i(w'2 + 8'2y 2 + 2w' O'y + y~8'2 - 2yc8'w'- 28'2YYc) (6.4.16) 

Yxy = w' 8 -YeO' 8 -yO' 8 Yxz = -v'O- zc(J'(J- z(J'(J (6.4.17) 
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The first-order, linearized (small) parts of Yxy and Yxz are zero as a consequence 
of the basic hypotheses of the theory. [This is obvious for the bending 
deformation. For the warping deformation, characterized by u1 = - 8' ru, one can 
check it easily by substituting this equation, as well as the relations uy = -8z, 
uz = 8y, oru/oy = -z, CJru/CJz = y, into the expressions (CJu1/CJy + auy/ox and 
ou1/oz + auzlox) for the first-order parts of the shear strains Yxy and Yxz·] 

In analogy to Section 6.1, we can now calculate the strain energy: 

U = f L a0
ex dA cU + f L <f(Ex- ex) dA cU + f L (T~Yxy + ~zYxz) dA cU 

+ f L !Ee; dAd¥ + [ M~8' d¥ + f ~GJ8'2 cL¥ (6.4.18) 

Note that in Equation 6.4.18 the term IHA !G(y;z + y;y) dA cU is omitted 
because it is a higher-order term. Also negligible is the work of Saint-Venant 
torsional shear stresses T* on the second-order shear strains. The reason is that 
the average of T* is zero, so that the work of positive T* cancels the work of 
negative T* (and Yxz• yxy =constants through the thickness of the wall). 

Evaluating the integrals over cross-section area A, one obtains 

L <fex dA = -P(u' + 8"w0 ) + M~v" + M~w" + B0 8" 

L a0(Ex- ex) dA = -P(!£1'2 + ~w'2 + ~r~8'2 + Zc8'v'- Yc8'w') 

- M~(~/Jy8'2 + w' 8')- M~(i/Jz8'2 - v' 8')- B0(~Pw8'2) (6.4.19a) 

L (T~yYxy + T~zYxz) dA = V~w'8- V~v'8- V~yc8'8- V~zc8'8 

f ! Ee2 dA = ~ (u'2A + £1'121 + w'121 + 8"21. + 8'12Aw2 + 2u' 8"Aw ) A2 x 2 y z a> 0 0 

in which 

r~ = ~ + ~ + z~ + y~) PY = i L y(y
2 + z2

) dA - 2yc 

Pz = i L z(y2 + z2
) dA - 2zc Pw = L L w(y

2 + z2
) dA 

(6.4.19b) 

In the calculation of the work of shear stresses, the contributions of the 
self-equilibrated stresses fxy and fxz have been neglected since they appear to be 
indeed negligible at least for some common cross-section shapes; see Powell and 
Klingner (1970) or Kitipomchai and Chan (1987). 

Further we need to calcualte the work of loads. We consider them to be 
distributed over the cross section (see Fig. 6.15a), having components py(x, s) + 
Apy(x, s) and fiz(x, s) + l!lfiz(x, s). Py and fiz denote the loads in the initial 
equilibrium state and the symbol l!l indicates small incremental quantities. The 
work of the distributed load is 



THIN-WALLED BEAMS 399 

Figure 6.15 (a) Distributed loads over cross sections and (b) second-order components of 
radial displacement. 

in which au2 and au3 are the second-order components of the displacements of 
the cross section. Noting that this second-order radial displacement is given by 
(Fig. 6.15b) s=(r/cos8)-r=!82r, we obtain au2 =-!82y and au3 =-!82z. 
Substituting these relations into Equation 6.4.20, together with Equations 6.1.5 
and the transformation formulas between quantities referred to the centroid and 
to the shear center, we obtain 

W = [ [(p1 + ap1 )fJ + (Pz + apz)w + (m, + am,)8- !m,82
) dx 

Py = L Py dA Pz = L Pz dA m, = L [pz(Y - Yc)- py(z - Zc)] dA (6.4.21) 

m,= L (p1 y +fizz) dA 

To this work we must add (as in Eq. 6.1.16) the work of the incremental loads 
directly applied to the beam ends. 

The total potential energy is given by n = U - W. It can be obtained from 
Equations 6.4.18, 6.4.19, and 6.4.21. The expression for the potential energy will 
be used in dealing with finite element analysis for large deflections in Section 6.5. 
It is instructive, however, to derive also the Euler equations, according to 
Equation 5.1.8. To do so, we will introduce in the FXpression for U the 
approximations V~ = - M~', V~ = - M~' (in which the effect of initial deflection z0 

is neglected), and we will apply also the transformation J~ (- V~)yc8' 8 = 
f~~'yc8'8dx = Yc[M~'!82]~- f~!JcM~'82 dx, and a similar transformation for 
f~ (- V~)zc8' 8 dx. The Euler equations then become 

-EAu"- EA(J)08"' = 0 

ElyfllV- (~8)" + P(fJ" + Zc8") = apy 

EIZKJV + (M~8)" + P(w"- Yc8") = apz (6.4.22) 

(Elo, + EA(J)~)81v- (GJ- Pr~)B" + (M1 - Pyc)w" 

+ (Pzc- M~)fJ"- (M~'Yc + Mrzc)B 

+ (Jy(M~8')' + Pz(M~8')' + f3w(B08')' + EA(J)oU"' =am,- m,8 

The formulation we just described has been extended to beams of smoothly 
variable cross section and to beams with curved axis (Bafant, 1965). The 
formulation is also limited by the hypothesis of rigid cross section (i.e., the cross 
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section keeps its shape). However, if the walls are very thin (as in cold-form steel 
profiles), or if stiffening ribs or diaphragms are missing, significant in-plane 
distortions of cross section can occur and cause interaction with local buckling 
(see, e.g., Sridharan and Ali, 1988; Pignataro and Luongo, 1987). 

Monosyrnmetric Cross Section 

Let us now consider the practically frequent special case of a monosymmetric 
cross section with z as the axis of symmetry. We assume the initial loading to 
consist only of axial force P of eccentricity ez (Fig. 6.16). In this case we have 
c.o0 = 0, Yc = 0, M~ = 0, M~ = Pez, and B0 = 0. The third of Equations 6.4.22 
becomes uncoupled (same as it did for the doubly symmetric cross section treated 
in Sec. 4.3) and furnishes the flexural critical load Per, (of the corresponding 
perfect beam). The second and fourth equations remain coupled and can be 
written as 

El v•v +Pv"+P(z -e )6"=0 y c z 

Elw(J'v- (GJ- Pr~- f3zPez)6" + P(zc- ez)v" = 0 
(6.4.23) 

Substituting in Equations 6.4.23 the Fourier series expansion of Equations 
6.3.1, one gets 

"" [ n
4
n

4 
n

2
n

2 
n

2
n

2
] nnx ~~ Elyan T- PanT- P(zc- ez)bn T sin-~-= 0 

(6.4.24) 
"" [ n

4
n

4 
n

2
n

2 
n

2
n

2
] nnx 

"~1 E]wb"f+ (GJ- Pr~- Pf3zez)b"f- P(zc -en)a"f sin-
1
-=0 

To satisfy these equations identically for any x (with a" and b" in general 
nonzero), it is necessary that for each n the expressions in the brackets vanish, 
that is, 

[ 

n21r2 

Ely---p:--P 

-P(zc -ez) 
(6.4.25) 

The critical load is obtained from the condition that the determinant of Equation 
6.4.25 vanishes. For the case that the axial force is applied at the shear center 
(ez = zc) for which the differential equations 6.4.23 uncouple, we have a purely 
torsional mode, for which we find P~~~ = (Elwn2n 2/l2 + GJ)/(r~ + f3zzc)· (A purely 
torsional mode would result even for general cross sections.) For the case ez = Zc 

(and n = 1) we have the condition 

(6.4.26) 

z 

Figure 6.16 Monosymmetric channel cross section. 
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where tr = (zc- ez)2/(r~ + f3zez)· Although here we have a more general expres
sion for Pcre than we did in Sections 6.2 and 6.3 (and a= ezlrP no longer), 
Equation 6.4.26 is formally identical to Equation 6.3.4. Therefore we do not need 
to repeat the discussion here. The only difference is that now Zc * 0, and 
consequently a centric axial load produces combined axial-torsional buckling 
rather than pure torsional and bending modes. The most important observation is 
that coupling of bending and torsional modes lowers the first critical load. 

Problems 

6.4.1 Calculate /(JJ, 1(/Jy, and the shear center location for the cross sections shown 
in Figure 6.13a-j. 

6.4.2 Consider a nonsymmetric beam with simple or fixed supports. Prove that, 
for an axial load applied at the shear center, the flexural and torsional 
buckling modes uncouple. Calculate the critical loads. 

6.4.3 Consider a nonsymmetric beam with simple or fixed supports loaded by an 
axial force at the centroid. Prove that the critical load for the combined mode 
is smaller than the critical loads for the uncoupled modes. Can this beam 
buckle due to tensile force? 

6.4.4 Solve Problems 6.3.1 to 6.3.5 for (a) nonsymmetric beams; (b) for a 
T-beam expressing the critical load in terms of cross-section characteristics. 

6.4.5 Formulate the solution to Problems 6.4.4 assuming the beam height varies 
so that h = h0 - h 1x(L- x). 

6.4.6 Generalize Problems 6.2.4, 6.2.5, and 6.3.11 to arbitrary open cross 
sections. Hint: Calculate the axial shortening of all longitudinal fibers and then 
take the work done on these shortenings by the initial normal stresses due to 
p0 and M~. 

6.4. 7 Calculate some of the elements of the transfer matrix that relates the 
column matrix ( v, 8, v', 8', V,, M, My, B)r for one cross section to that for 
another cross section (see also Prob. 2.1.11). (This is an initial-value rather 
than boundary-value problem. The result is in, e.g., Vlasov, 1959.) 

6.4.8 Generalize the above to a beam on an elastic foundation that resists both 
deflection and rotation about the beam axis (cf. Probs. 6.1.6 and 5.2.16). 

6.4.9 Do the same but for the stiffness (rather than the transfer) matrix. 

6.5 LARGE DEFLECTIONS 

In this section, which is based on a paper by Bafant and El Nimeiri (1973), we 
consider the most general case of finite deflections of thin-wall beams or thin-wall 
structures. This, of course, includes as a special case large deflections of ordinary 
beams or frames considered in Chapters 1 and 2. On the present-day computa
tional scene, the proper approach is a geometrically nonlinear finite element 
analysis with incremental loading. To handle the geometric nonlinearity, the 
updated Lagrangian approach is appropriate. In this approach, the geometry of 
the beam is updated after each loading increment, and the small subsequent 
increments of deformations are solved on the basis of incrementally linearized 
equilibrium equations. This means that, even if the beam is initially straight, its 
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updated shapes in the subsequent loading increments are curved, with a general 
spatial curvature. 

The basic information needed for the analysis is the stiffness matrix of a 
thin-wall beam element. As the kinematic variables that characterize the 
deformation in a cross section, we may use the variables, u, 0, w, 8, w', 0', and 
8', in which we mix variables referred to the centroid with variables referred to 
the shear center, since this brings about a simplification of the formulation. 
Labeling the end cross sections of a beam element by subscripts i and j (Fig. 
6.17a, b), the column matrices of element displacements and the associated forces 
may be defined as 

- ( J:'o A 8 At ~~ 8' ~ A 8 A I J:',l 8')T (6 5 1) q- U;, u;, W;, ;, W;, u;, ;, ui, ui, wi, i• wi, ui, i .. 
A A T 

F= (-.P;, v,.,, Vz,, M,,, My,, Mz,, D;, -~. Vy,, vz,• M,,, My,, Mz;• Bj) (6.5.2) 
Note that these displacement and force variables are associated, that is, Fr c5q is 
the correct work expression for the element. It is for this reason that we put the 
minus sign in front of Pin Equation 6.5.2. The fact that B;8; is the correct work 
expression for bimoments at the ends is justified by noting from Equations 
6.4.19a that the first-order work of B per unit length is B8", and then integrating 
by parts over the element length J~ B8" dx = (Bi8j- B;8;}- J~ B' 8' dx. 

From the viewpoint of vector notation, some authors used ( -w') rather than 
w' as the nodal value of rotation. This has the advantage that the axial vector of 
moment Mz is in the sense of y. With our notation, it is opposite toy. We prefer, 
however, the notation in Figure 6.17a, b because it makes it possible to treat 
bending in the xy and xz planes in an analogous manner (same shape functions 
and same expressions for bending in terms of the nodal values). 

The distribution of displacements and rotations along the beam element may 
be introduced in the form: 

u = a1 + b1x v = a2 + b2x + c2x
2 + d2x

3 

w = a3 + b3x + c3x
2 + d3x

3 8 = a4 + b4x + C4X2 + d4x3 (6.5.3) 

a) 
w.v. 

Figue 6.17 (a) Coordinate axes, displacements, and internal forces; (b) displacements of 
the beam element; (c) incompatibility of assumed warping displacement distributions when 
two elements meet at an angle and approximation of a curved beam. 
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in which at> bt> a2 , • •• , d4 are arbitrary constants. Altogether, we have 14 
arbitrary constants, which matches the number of element displacements in 
Equation 6.5.1. So these constants may be expressed in terms of the 14 
components of q, which leads to a relation of the form 

(u, v, w, 8f = N(x)q (6.5.4) 

N(x) is a 4 x 14 matrix of the shape functions (distribution functions) whose 
coefficients are cubic polynomials in x. The choice of cubic polynomials in 
Equations 6.5.3 for transverse displacements agrees with what has already been 
shown in Section 2.3. The use of cubic polynomials for transverse displacement 
and rotation is necessary because the distribution functions must be able to 
describe a uniform distribution of the shear forces and the warping torque, which 
are proportional to the third derivatives of the transverse displacement and of 
rotation. To ensure convergence, the distribution functions in Equations 6.5.3 
must also be able to describe rigid-body rotations without straining, as well as 
uniform distributions of the axial strain, curvatures, and the first and second 
derivatives of rotation 8. It is easily checked that these conditions are satisfied. 

Substituting Equation 6.5.4 into the incremental strain energy expression in 
Equation 6.4.18, in which the integrals over the cross section are given by 
Equations 6.4.19a, one obtains a quadratic form in q. In performing the 
integration over the length of the beam, the initial bending moments M~, M~ and 
the bimoment B0 may be assumed to be constant and equal to the averages 
i(M~,- M~.), ... of the nodal values, at the cost of some errors that tend to zero 
as the element length decreases. The elements of the incremental (tangential) 
stiffness matrix K, 14 x 14 in size, can then be obtained as 

(fu 
K;i = -- (6.5.5) 

aq; aqj 

The expressions for all elements of this stiffness matrix were presented by Bafant 
and El Nimeiri (1973) for a monosymmetric cross section and for loading in the 
vertical plane (however, without the terms that correspond to the work of the 
shear forces V~, V~ and that arise from the nonlinear part of shear strain 
expression). The resulting stiffness matrix for a general cross-section shape may 
be written in the form: 

K = Ko + PK1 + M~K2 + M~3 + B~ + V~s + V~ (6.5.6) 

in which Ko, ... , ~ are constant 14 x 14 matrices; Ko depends on the elastic 
moduli and is called the elastic stiffness matrix, while matrices Kt> ... , ~ are 
independent of the elastic moduli; PKt. M~2, ••• , ~'~ are called the geo
metric stiffness matrices. All these matrices are symmetric, and their elements are 
as follows: 

Elements of matrix Ko: 
EA 

Kt,t =Ks.s= -Kt,s=L 

1 ky 
K6,6 = Kt3,t3 = 2 K6,t3 = 4 L 
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1 kz 
Ks.s = K12.12 = 2 Ks.12 = 4 L 

kw 1 
K1t4=2---CL 

· L 30 

kw 1 
K4,1 = K4,t4 = -K1.u = -Kn,t4 = 6 L2 + 

10 
C 

EAro0 
K1,1 = -Kt,t4 = -K1.a = Ks,t4 = --z:-

in which ky =Ely, kz = Elz, kw = E(Io, + Aro~), and C = GJ. 

Elements of matrix PK1 + ~K2 + M~3 + B~: 

1 
K3,1 = K3,t4 = K4,s = -Ks,n = -K1,1o = -Kl0,14 = K4,t2 = -Kn.t2 = 

20 
~ 

1 
Ks,1 = K12,14 = 

15 
L~ 

1 
K6,1 = K13,t4 = -

15 
LS3 

2 
K6 ,6 = Kl3,13 = Ks.s = K12,12 = -

15 
PL 

1 
K6.t3 = Ks.12 = 30 PL 

(6.5.7) 

(6.5.8) 
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Elements of matrix V~Ks + V~~: 

K2,4 = K2,11 = -K4,9 = -K9,11 = !V~ 

L 
-KJ.1= K3,14 = K4,s = -Ks,ll = K1.1o = -Kl0,14 = -K4,12 = K11,12 = 

10 
V~ 

(6.5.9) 

Note that the term in Equation 6.4.18 that represents the work of the initial 
Saint-Venant torque does not give rise to a geometric stiffness matrix since it does 
not contain any second-order terms. Note also that the stiffness matrix for short 
elements of a beam-column given in Equation 2.3.6 is a special case of Equation 
6.5.5. 

The shape functions in Equation 6.5.4 need to be also used to calculate 
according to the principle of virtual work the nodal loads that are equivalent to 
distributed loads over the length of the beam. 

In the calculation of large deflections, the beam elements may be assumed, for 
the sake of simplicity, to be straight between their end points, even though the 
actual beam becomes curved. This approximation was proved to be satisfactory if 
the beam elements are short enough. Due to curvature of the beam, adjacent 
finite elements of the beam meet at their ends at an angle. A question then arises 
with regard to the transfer condition between the warping parameters (}' in the 
matrix of generalized displacements (Eq. 6.5.1, Fig. 6.17c). Detailed analysis 
(Bafant and El Nimeiri, 1973) showed that if the angle between the adjacent 
elements is small, the proper assumption is that the values of (}' for the ends of 
two adjacent elements meeting at an angle must be equal. This condition is easy 
to implement in the assembly of the global stiffness matrix, in which the 
remaining generalized displacements in Equation 6.5.1, representing displace
ments and rotations, are transformed to global coordinates in the usual manner. 

Although the displacements are allowed to be large, the present formulation is 
nevertheless restricted to small strains. Nonlinear geometric properties in the 
present formulation arise exclusively from large rotations at small strains (see 
Sec. 11.1). This limitation of scope is adequate for most practical problems of 
thin-wall beams. 

An incremental solution procedure with step-by-step loading, in which the 
locations of the nodes are updated after each loading step and the solution for 
each step is iterated to improve accuracy, was described in detail by Bafant and 
El Nimeiri (1973). Some of the results of their solution, which belongs to the class 
of updated Lagrangian solutions for large deformations, are exhibited in Figures 
6.18, 6.19 and 6.20. Figure 6.18 shows a solution of large lateral buckling 
deflections of an 1-beam for three different magnitudes of imperfections repre
sented by small applied lateral distributed moments. We see that a significant 
deflection increase takes place near the critical load, and that lateral buckling 
exhibits a postcritical reserve rather than a postcriticalloss of capacity. Thus, the 
lateral buckling of beams is not imperfection sensitive, which is similar to the 
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Figure 6.18 Load-rotation curves for three values of constant distributed disturbing 
torsional moments. (After Bazant and El Nimeiri, 1973.) 
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Figure 6.19 Comparison of computed and experimental load-deflection curves of angle 
cross section. (After Bazant and El Nimeiri, 1973.) 



THIN-WAUED BEAMS 407 

-40 -20 0 20 40 ., ., 100 120 140 

TWIST AT MIOSFM (cllgiMs) 

Figure 6.20 Comparison of computed and experimental torque versus rotation curves. 
(After Baiant and El Nimeiri, 1973.) 

behavior of columns. Figures 6.19 and 6.20 show comparisons of Bafant and El 
Nimeiri's finite element incremental solutions with large lateral buckling deflec
tions measured by Engel and Goodier (1953) and by Black (1967). The 
computational results in Figure 6.20, however, show that the load-deflection 
diagram of channel-section beam may exhibit at large deflections a limit point 
(maximum), leading to snapthrough instability. It is also seen from Figure 6.20 
that, due to a symmetry of the cross section, the response diagrams for twisting to 
the right and twisting to the left are different. For more detail see Bafant and El 
Nimeiri (1973). 

Interesting results were more recently presented by Kitipomchai and Chan 
(1987), who utilized a similar approach for the tracing of load-deflection curves of 
angle beam-columns under eccentric load. Their numerical results, shown in 
Figure 6.21, indicate the importance of updating the nodal coordinates of the 
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Figure 6.21 Influence of updating nodal coordinates after each loading step. (After 
Kitipornchai and Chan, 1987.) 
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Figure 6.22 Load-deformation curves for various eccentricities. (After Kitipornchai and 
Chan, 1987.) 

beam element after each loading step, and their results in Figure 6.22 illustrate 
how the maximum load decreases with increasing eccentricity. 

Problems 

6.5.1 Calculate at least some elements of the stiffness matrix in Equation 6.5.5 by 
using the generalized nodal displacements defined in Equation 6.5.1 and the 
shape functions defined in Equations 6.5.3 and 6.5.4. How would the results 
change if the nodal values of the rotations were all assumed to turn clockwise 
when looking in the directions of the x, y, and z axes? 

6.5.2 Calculate the elements of the geometric stiffness matrices M~K2, M~K3 , 
B~ assuming a linear variation of M~, M~, and B0 over the beam length, 
th~t is, M~ =-My,+ (My,+ My)x/ L; M~ = -Mz, + (Mz, + Mz)x/ L; B0 = 
-B; + (B; + B;)x/L. 

6.6 BOX GIRDERS 

Another stability problem, which can be approximately solved as a one
dimensional problem, is the buckling of slender box girders. Similarly to thin-wall 
beams of open cross section, box girders also exhibit warping of their cross 
sections. In contrast to thin-wall beams, however, box girders exhibit two further 
important modes of deformation: (1) shear strain of the middle surface of the 
walls (which is neglected in the formulation for open cross sections) and (2) 
distortion of the cross-section shape, unless the distortion is prevented by closely 
spaced rigid diaphragms. 

The fact that a box girder must deform by shear straining in its middle surface 
becomes clear if we consider a longitudinal slit in the box girder, which 
transforms the closed cross section to an open cross section. In the latter case the 
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shear strains in the middle surface are negligible, and according to the sectorial 
coordinate co there must be a mismatch liu of the longitudinal displacements 
across the slit (Fig. 6.23a). Obviously, to restore continuity across the slit, the 
walls must be made to deform by shear. This partially reduces the out-of-plane 
warping of the cross section, and so the behavior of box beams is influenced by 
warping less profoundly than the behavior of open cross section beams. 

Deformation Modes and Postcritical Energy 

Similar to our previous formulation for open cross sections, we assume again the 
deformation of the cross section to be approximately described by a linear 
combination of several basic modes: 

4 4 4 

u = L Uk(x)tl>k(s) v = L Vk(x)1Jik(s) w = L Vk(x)xk(s) (6.6.1) 
k=l k=l k=l 

in which u = longitudinal displacement at any point of the cross section, v and 
w =transverse displacements (i.e., displacements within the cross-section plane) 
of points on the middle surface in directions tangent and normal to the wall (Fig. 
6.24a), tl>k(s) = longitudinal displacement distribution and warping mode, 1Jik(s) 
and Xk(s) =functions defining transverse displacements, rotations, and distortion 
of the cross section shape; s =length coordinate of the midsurface of the wall; 
Uk(x), Vk(x) =generalized displacements serving as parameters of the deforma
tion modes; v. =axial displacement, u2, u3 =rotations about horizontal and 
vertical axes, v. = (J =rotation about beam axis; v2, v3 = transverse horizontal 
and vertical displacements, U4 =out-of-plane warping parameter, V4 =in-plane 
distortion parameter. Equations 6.6.1 were introduced by Bafant (1968), and 
their special case earlier by Umanskiy (1939); see also Kfistek (1979). 

The deformation modes that describe the warping and distortion of the cross 
section are t/>4 , 1J14 , X4 and are graphically illustrated in Figure 6.24b. Together 
with the remaining deformation modes representing translations and rotations of 
the cross section, these functions may be described, for a rectangular cross section 
of width a and depth b, by the following expressions (Bafant, 1968; and Bafant 

Figure 6.23 (a) Torsional behavior of an open cross section; (b) simply supported box 
girder subjected to constant bending moment. 
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c) Initial state 

fl·f H·f·H·f·l3 

Bazant and El Nimeiri 

Figure 6.24 (a) Subdivision of a curved beam into finite elements and a box cross section; 
(b) deformation modes assumed for cross section; (c) assumed transverse displacements of 
cross section. (After Baiant and El Nimeiri, 1974.) 

and El Nimeiri, 1974): 

1J11 = p(s) 

X1 = r(s) 
b 

X2 =-w 2 ,s 

b 
lP3 =-w 

2 

b 
1JI3 = 2 W,s 

a 
x3=zv,s 

vw [ 3 3 2 3 3 2 ] 
X4 = 4(af. + b~) a ti(3- v )v,s + b t2(3- w )w,s 

(6.6.2) 

p(s) = distance of cross-sectional wall tangent from the beam axis and r(s) = 
distance of the transverse normal displacement vector from the beam axis (both 
being of positive sign when turning positive); t1 and t2 =thicknesses of the 
horizontal and vertical ftanges of the box; s = length coordinate of the midsurface 
of the wall. The expression for function X4 represents the solution of the 
deformation shape of a rectangular frame due to an enforced change of length of 
its diagonal. 

The potential-energy expression for the box girder is II = U - W where 
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W = work of applied loads and U =strain energy: 

L
1 J [ 1 (au)2 

1 (au av)2] U= U
0Ex+-E- +T~Yxs+-G -+- dAdx 

0 A 2 ax 2 as ax (6.6.3) 

in which Ex and Yxs are the finite strain expressions: 

(6.6.4) 

In contrast to our previous expression in Equation 6.1.8 for thin-wall beams of 
open cross section, we must now include the strain energy due to the linear part 
of the shear strains in the middle surface of the wall (which was negligible for 
thin-wall beams of open cross section). Furthermore, we do not need a separate 
term for strain energy due to simple torsion (given by the last integral in Eq. 
6.1.8). The reason is that this strain energy is included in the term with shear 
modulus G in Equation 6.6.3. 

The differential equations for the unknown functions Uk(x) and Vk(x) and the 
boundary conditions may now be obtained by substituting Equations 6.6.1 into 
Equation 6.6.3 with Equations 6.6.4 and minimizing the potential-energy 
expression according to variational calculus. The resulting Euler equations are the 
differential equations of the problem. 

Examples 

For the sake of a simple illustration, consider a simply supported box girder of 
constant cross section and length L (Fig. 6.23b). Initially the girder is subjected to 
a uniform bending moment caused by applying initial bending moments M~ at the 
ends. We assume that the cross section is braced so that the distortion V4 is 
negligible. Minimizing the potential-energy expression, and neglecting the bend
ing shear strains, we obtain the following set of three differential equations (see 
Bafant and El Nimeiri, 1973): 

in which the coefficients are 

Elz V~v + M~V'j = 0 

aoU4-b,U4-b2v; =0 

b1 V'j -M~V2 =0 

(6.6.5a) 

(6.6.5b) 

(6.6.5c) 

b2 = L d!
4 (d!') dA (6.6.6) 

To simplify the solution, we may set U4 = f'(x). Then by integration of Equation 
6.6.5b, we have V1 = (a0f"- bd)/b2• After substitution into Equations 6.6.5a, c, 
Equations 6.6.5 reduce to a single fourth-order differential equation for function 
f(x): 

lv - 2af"- /3/ = 0 (6.6.7) 
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in which 2a=(b~-b~)/a0b1 -MC:/b 1 Elz, {3=MC:/a0Elz. The boundary condi
tions of simple support at x = 0 and x = L are V1 = U~ = f = f" = 0. Taking the 
solution in the form f(x) = c1 sin mx + c2 cos mx + c3e= + c4e-= we find that a 
nonzero solution of the differential equations exists if ( a2 + {3) 112 

- a = tc2
/ L 2• 

This yields for the critical value of the applied bending moment the expression, 
derived by Bafant and El Nimeiri (1974) 

M~·=i [ ElzGJ( 1 + ~~;)(1 + ~:::r
1

r
12 

(6.6.8) 

As another example, one can also solve the critical bending moment for 
lateral buckling of an arch of box cross section (Bafant and El Nimeiri, 1974, 
p. 2088), Figure 6.25. 

Finite Element Solution 

For beams of complex boundary conditions, beams of variable cross section, or 
curved beams it is preferable to solve the problem by the finite element method. 
Similar to our previous discussion of finite elements for beams of open cross 
section, it is sufficient (for beam elements that are sufficiently short), to consider 
straight box girder elements even if the beam is curved. A convenient way to 
formulate the stiffness matrix is to consider the finite element of a box girder of 
arbitrary shape to be a mapped image of a unit element whose length as well as 
box height and width equal unity. The transformation equations that describe this 
mapping are trilinear in Cartesian coordinates of the unit parent element. The 
stiffness matrix is formulated first for this unit element and then its transformation 
due to the mapping is carried out. 

The distribution functions (shape functions) may be considered as linear for Vk 
(k = 1, 2, 3, 4) and U1, and quadratic for Uk (k = 2, 3, 4). The shape functions are 
associated with 19 generalized displacements, represented by eight displacements 
(V1, ••• , V4 , Ut. ... , U4) at each end, and three displacements (U2 , U3 , U4) at 

Figure 6.25 Lateral buckling of an arch of box cross section (studied by Baiant and El 
Nimeiri, 1974). 
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element midlength. The formulation leads to a 19 x 19 stiffness matrix for each 
finite element of the box girder. The stiffness matrix, which depends on the initial 
stress distribution in the box girder cross sections, is fully listed in Bdant and El 
Nimeiri (1974). 

A sensitive aspect of finite elements for beams, and box girders in particular, 
is the spurious shear stiffness, which can occur not only in bending but also in 
torsion. It was found that the aforementioned finite element is free of spurious 
shear stiffness problems. In this formulation, the transverse displacements of the 
cross sections are assumed to vary linearly along the element (Fig. 6.24c), 
whereas the transverse rotations and the axial displacements, including those due 
to bending as well as warping, are taken as quadratic as is clear from the 
aforementioned distributions of vk and uk. This is a departure from the classical 
approach to bending of beams or torsion of thin-wall beams, in which a cubic 
variation of transverse displacements is normally introduced in order to achieve 
continuity of the transverse rotations expressed as derivatives of the transverse 
displacements. In the formulation just described, the rotations are considered as 
independent of the displacements. Consequently, the transverse displacements 
need not satisfy slope continuity conditions, which makes it possible to consider 
them linearly distributed (Fig. 6.24c). For a more detailed discussion of the 
avoidance of spurious shear stiffness with this finite element, see Bdant and El 
Nimeiri (1975). 

Examples of finite element analysis according to the formulation just 
described have indicated good agreement with the tests of Kfistek (1979) and of 
Aneja and Roll (1971), as well as with analytical solutions of certain special cases. 
Subsequent applications of this finite element approach to the calculation of 
deflections of prestressed concrete box girder bridges revealed that the method is 
sufficiently accurate only for relatively narrow and long box girder bridges, while 
for a higher width-to-span ratio, which frequently occurs in highway construction, 
the errors can be significant. These errors are due to local deformations and more 
complex transverse distributions of displacements than one can describe with the 
presently assumed transverse distribution modes (Van Zyl and Scordelis, 1979). 

Interaction with Local Buckling 
A very important aspect of stability of box birders, which is beyond the scope of 
thin-wall beam theory, is the local buckling of walls and the interaction of local 
buckling with global buckling. The local buckling of box girder walls and the 
effect of stiffeners are analyzed in detail by Kfistek (1979). Interaction of various 
buckling modes can profoundly alter postcritical behavior. In particular, it may 
cause softening of the response after the maximum load is reached. This type of 
response, which is illustrated by some simple examples in Chapter 4, is found to 
occur for stiffened plate structures such as box girders; in more detail see 
Thompson and Hunt (1984, sec. 8.5). Insufficient knowledge of the changes in 
postcritical behavior due to interactive local-global buckling have contributed to 
some collapses of large box girder bridges. 

Problems 

6.6.1 For the simply supported box girder in Figure 6.23b, work out the solution 
in full detail and check the result. 
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6.6.2 Analyze the same girder as above, but with completely built ends. 
6.6.3 The transfer matrix relates the (14 x 1) column matrix (u, v, w, 8, w', v', 

8', -P, Vy, Yz, M, My, Mz, Bf for one cross section to that for another 
cross section. Calculate it by algebraic rearrangements of the stiffness matrix. 
[For thin-wall multispan beams or beams of variable cross section, the use of a 
transfer (or transport) matrix requires less computational work than the use of 
a stiffness matrix. This explains popularity of transfer matrices in the early 
computer days; however, for today's powerful computers it does not matter.] 
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7 
Plates and Shells 

The design of plates, and especially shells, is usually dominated by stability. In 
the preceding chapter we dealt with one type of shells, called thin-walled beams, 
or, alternatively, long shells. The buckling of such shells can be reduced to a 
one-dimensional problem, a simplifying feature made possible when the shell is 
sufficiently long, the cross section is sufficiently stiff or stiffened against distortions 
in its own plane, and local plate buckling does not intervene. In this chapter we 
will tum our attention to stability of plates and shells in general, which must be 
mathematically approached as a two-dimensional problem. 

In some respects, buckling of plates and shells is analogous to buckling of 
columns and frames, while in other respects it is completely different. The 
similarities are bifurcation-type buckling with similar behavior near the critical 
loads, the possibility of solving the critical loads from linear eigenvalue problems, 
categorization into perfect and imperfect plates or shells, and qualitatively (not 
quantitatively) similar imperfection effects in the case of plates. The dis
similarities consist chiefly in postcritical reserve in plates, postcritical softening 
and imperfection sensitivity of shells, and the importance on nonlinear geometric 
effects at relatively small deflections. 

Our analysis will begin with critical loads of plates. For this purpose we will 
derive the expression for the potential energy of an elastic plate, and by applying 
the calculus of variations we will obtain from it the governing differential 
equation and boundary conditions. Then we will solve the critical loads of various 
rectangular plates, the type of plates most frequently encountered in practice. 
Aside from exact solutions, we will also utilize approximate variational methods, 
particularly the Ritz and Galerkin methods, which were already presented in 
Chapter 5. 

Subsequently we will discuss the postcritical behavior of plates and emphasize 
their postcritical reserve, which is usually much greater than that of columns, with 
loads becoming much larger than the critical loads already at relatively small 
deflections. This large postcritical reserve, which is obviously advantageous for 
design, is due to the capacity of a plate to redistribute the initial compressive 
in-plane forces, transferring them from the middle of the plate into strips along 
the edges, or from compressed diagonal strips into tensioned diagonal strips. 

Next we will tum to stability of shells. This is a complex problem with a vast 
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literature and is-important for practical applications. In a book that is devoted to 
structural stability problems in general and explanation of the fundamental 
concepts in particular, it is impossible to offer a detailed and exhaustive treatment 
of the stability problems of shells. We will include only a compact exposition of 
the fundamentals. Fortunately, excellent detailed books and broad review articles 
on the subject are available (see, e.g., Brush and Almroth, 1975; Popov and 
Medwadowski, 1981; Calladine, 1983; Kollar and Dulacksa, 1984; Bushnell, 
1985). In similarity to plates, and in contrast to columns, frames, arches, and 
thin-walled beams, the critical loads of perfect elastic shells have only a limited 
value for the designer since the collapse takes place at very different loads (with 
the exception of a few problems such as cylindrical shells under external pressure 
or torsion). However, in contrast to columns as well as plates, shells usually fail at 
loads that are only a small fraction (typically 20 to 35 percent) of the critical load 
of the perfect elastic shell. Whereas plates are imperfection-insensitive, most 
shells are imperfection-sensitive, and to a high degree. Mathematically, the types 
of imperfection sensitivity are the same as those we already illustrated for 
frames or asymmetrically supported columns; however, the imperfections have a 
much stronger influence, and even small imperfections that are inevitable even in 
the most careful casting, fabrication, and loading, tremendously decrease the 
failure load compared to the critical load of the perfect shell. 

Calculation of the postcritical behavior and the collapse loads of plates and 
shells is generally quite complicated, and simple analytical solutions and 
closed-form expressions generally do not exist. Historically, some of these highly 
nonlinear problems were first solved by various series expansions and the classical 
Ritz or Galerkin methods. As important as these solutions were until recently, on 
the present-day design scene they lost importance since all these problems can 
now be solved more effectively by geometrically nonlinear finite element 
programs for shells. Therefore, it is proper to concentrate here on the description 
of fundamental behavior and its explanation, leaving the detailed calculations to 
finite element specialists. The finite element approach is beyond the scope of this 
chapter and this book. 

7.1 CLASSICAL PlATE THEORY 

The classical theory of thin plates is based on Kirchhoff's assumption (1850) that 
the normals to the middle surface of a plate remain (1) straight and (2) normal to 
the deflected middle surface. In addition, the transverse normal stresses Uz are 
assumed to be zero. These assumptions are approximate, but they are exact in the 
limiting sense for an infinitely thin plate, as has been shown by determining the 
asymptotic form of the exact three-dimensional solutions of elasticity. When the 
deflections and rotations are small, Kirchhoff's assumption leads to the kinematic 
(geometric) relations: 

Exx = -W,xxZ Eyy = -W,yyZ Yxy = -W.xyZ (7.1.1) 
where x, y =in-plane rectangular coordinates, z =transverse coordinate, w = 
transverse deflection (Fig. 7.1a); the subscripts preceded by a comma denote 
partial derivatives (e.g., W,yy = (fwf ay2

); Exx and Eyy =normal Strains, and 
Yxy = in-plane shear angle. 
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Figure 7.1 (a) Thin-plate deflection and definition of (b, c) positive bending, twisting 
moments, and (d) shear forces (per unit width). 

There also exist higher-order plate theories in which Equations 7 .1.1 are 
enhanced by nonlinear distributions depending on higher derivatives of w. But we 
will not consider such theories. 

The internal forces, representing the stress resultants over the plate thickness 
and per unit width of the plate, are defined (Fig. 7.1b) as 

f
h/2 

Mu = - C1xxZ dz 
-h/2 f

h/2 

Myy = - Uyyz dz 
-h/2 f

h/2 

Mxy =- TxyZ dz (7.1.2) 
-h/2 

where h =thickness of the plate; u=, Uyy =in-plane normal stresses; Txy =in
plane shear stress; Mxx• Myy =bending moments; Mxy =twisting moments; and 
Myx = Mxy- Graphically, these moments are shown by their axial vectors with 
double arrows as in Figure 7 .1c. 

For the general case of orthotropic materials, the elastic stress-strain relations 
may be considered in the form: 

where Ex:o Eyy• Exy• Gxy =elastic constants. Substituting Equations 7.1.1 into 
Equations 7.1.3 and then Equations 7.1.3 into Equations 7.1.2, we get the 
expressions for Mxx• Myy• Mxy in terms of the deflection derivatives. For the 
special case of isotropic materials, for which Exx = Eyy = E/(1- v2

), Exy = vEm 
Gxy = !E/(1 + v), with E being Young's elastic modulus and v Poisson's ratio, 
these expressions become 

Mxx = D(w,xx + VW,yy) Myy = D(w.yy + VW,xx) Mxy = Myx = D(l- v)w.xy 

(7.1.4) 

where D = Eh3/12(1- v2
) =cylindrical bending stiffness. 

As in the theory of bending, the shear forces (always given per unit width of 
the plate; Fig. 7.1d) are determined from the following equilibrium relations: 

V,. = -(Myy.y + Mxy,x) (7.1.5) 
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Substitution of Equations 7 .1.5 into the condition of equilibrium with the 
transverse distributed load, v ....... + Vy,y = -p, gives the equation 

M ............. + 2Mxy,xy + Myy,yy = p (7.1.6) 

Using the expressions forM...,.., Myy• M ... y given in Equations 7.1.4, one can obtain 
the differential equation that governs the behavior of thin plates in the form 

4 (~w Cfw ~w) 
DV w = D ax4 + 2 ax2 ay2 + ay4 = P (7.1.7) 

in which V4 = V2~, and V2 =Laplacian operator. Equations 7.1.5 to 7.1.7 are 
valid only if no significant in-plane forces are present. Their influence will be 
investigated next. 

Problems 

7.1.1 Given the distribution of bending and twisting moments in a plate, derive 
the bending and twisting moments acting on the face of an element whose 
normal subtends an angle {3 with the axis x (Fig. 7 .2a). Find the values of {3 for 
which the bending moment Mpp is minimum or maximum (they are called the 
principal bending moments). What is the value of the corresponding twisting 
moment Mp,? 

Figure 7.2 Internal forces acting on faces of variable orientation. 

7.1.2 M...,.. + Myy is invariant at coordinate rotation. So is w ....... + w.yr Prove it. 
Also, M;; and w,;; are tensors. Construct for them the Mohr circle. 

7 .1.3 Derive the differential equation for the deflections of a plate that is 
orthotropic. 

7 .1.4 Consider a circular plate under axisymmetric loading on its boundary. 
Assume a polar system of coordinates (Fig. 7.2b) and derive the differential 
equation for the deflection using a similar procedure as in the text. 

7.2 DIFFERENTIAL EQUATION AND STRAIN ENERGY 

To obtain the incremental potential energy of a plate under initial in-plane forces, 
we need to express the in-plane strains produced at the middle surface by 
transverse deflection w(x, y). These forces must be expressed exactly up to terms 
of the second order in the derivatives of w. 
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Strains 

The in-plane strains due to w may be obtained from the three-dimensional finite 
strain tensor E;i· Let us briefly indicate its derivation. We use a system of 
Cartesian coordinates x1 = x, x2 = y, x3 = z, and we refer to these coordinates by 
letting lower-case subscripts take numerical values i = 1, 2, 3. The deformation 
causes the points of initial coordinates xk to move to points of new coordinates 
x~ =xk + uk. A line segment dxk whose initial squared length is (ds)2 = dxk dxk 
transforms into a line segment dx~ whose squared length is (ds')2 = dx~ dx~ 
(repeated subscripts imply summation from 1 to 3). Denoting partial derivatives 
by subscripts preceded by a comma (for example, u1.i = au;! axi), we may write 
dx~ = dxk + duk = dxk + uk.i dxi = ( lJki + uk.i) dxi, where {Jki = Kronecker delta = 1 
if k = j and 0 if k #= j. Thus we obtain 

( ds ')2 
- ( ds )2 = ( lJk; + uk,;) dx;( lJki + uk) dxi - dxk dxk 

= 12(U· · + U· · + Uk ·Uk ·)2 dx· dx· = 2E1· dx· dx· 1,1 J,l ,I ·I I I I I I (7.2.1) 

where we denote 

E;· = 2
1(U· · + U· · + Uk ·Uk ·) 1 1,1 J,l ·' ·I (7.2.2) 

Now we note that (1) for E1i = 0 there is no change in length and therefore no 
deformation, (2) E;i is a tensor, and (3) the linear terms ~(u1.i + ui,;) coincide with 
the well-known linearized strain tensor e1i that gives the correct expression for the 
work of stresses a1i on e1i, namely, a1ieii· In view of these three properties, E;i may 
be used as a measure of finite strain. This measure is called the finite strain tensor 
(for more details, see Sec. 11.1). To emphasize the fact that this tensor is 
expressed in terms of the initial (or Lagrangian) coordinates of material points, 
rather than the current (final) coordinates (Eulerian coordinates), this tensor is 
also called the Lagrangian strain tensor (another name is Green's strain tensor). 

For small transverse deflections of plates we set x1 = x, x2 = y, u3 = w and we 
neglect in Equation 7.2.2 all the terms that are not due to w. This furnishes the 
following second-order in-plane strains due to w: 

1 (aw) 2 

En= E:u =2 ax 
1 1 (aw)(aw) 

E12 = 2 'Yxy = 2 ax ay (7.2.3) 

These expressions may be written summarily in the form 

E;j = ~W.;W,j (i, j = 1, 2) (7.2.4) 

where subscripts i and j now run from 1 to only 2, not 3. 
It is instructive to show also a simple geometric derivation of the second-order 

strains due to w (see also Timoshenko and Gere, 1961, p. 338). Referring to 
segment dx in Figure 7.3a, 

En= (dx'- dx)/dx = (dx' /dx)- 1 = [V(dx)2 + (w,x dx)2/dx)- 1 

= V1 + w2 - 1 = 1 + 1w2 
- 1 = 1w2 

• . x 2 .x 2 .x 

This agrees with E11 as given in Equations 7.2.3. Furthermore, consider two 
orthogonal segments dx and dy, which transform into segments dx' and dy'. 
Referring to Figure 7.3b we consider plane 245, which is vertical and normal to 
segment dy =02. Plane 024, however, is not normal to dx' =03. The plane 
normal to 03 is 025, and this plane intersects plane 245 in line 25, which forms 
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Figure 7.3 Second-order strains due to lateral deflection w: (a) extensional component, 
(b) shear component. 

angle w ... with the vertical line 24. Also, 24 = dy w.y• and from triangle 245 we 
have 45 = (24)w ... = (dy w,y)w .... The change of the right angle initially formed by 
segments dx and dy is given by the angle between lines 04 and 05. This angle, 
which represents the shear angle Yxy• is Yxy = (45)/dy = (dy w.y)w.xfdy or hxy = 
~w ... w.y = E 12• Thus, E 12 as given by Equations 7.2.3 represents one-half of the 
shear angle caused by deflection w, as expected. 

Potential Energy 

Consider now a plate that is initially in equilibrium under in-plane forces N;i at 
w(x, y) = 0. Let n = 0 at this state. If the potential energy due to in-plane 
displacements u and v at the middle surface is excluded, the potential energy n 
of the plate, which is due solely to deflections w(x, y), may be written as 

(7.2.5) 
where 

U, =If 1
2M··W ··dA =If D··k w --wk dA IJ .IJ IJ m ,lj , m 

A A 
(i, j = 1, 2) 

u2 =If 12N--w ·W. dA I} ,I t} 

A 

(7.2.6) 

W= J[pwdA 

where A= area of plate; i, j =subscripts referring to in-plane Cartesian coordin
ates x1 = x, x2 = y (i, j = 1, 2); repeated subscripts imply summation from 1 to 2; 
w; =deflections, which coincide with 6w; because w; = 0 in the initial state; 
U1 =strain energy of bending (twisting included), which is due to curvatures; 
U2 = strain energy of in-plane deformations due to deflections, which is due to the 
work of initial in-plane forces N;i on the second-order strain components; and 
W =work of transverse distributed loads p (the concentrated loads are included if 
p is allowed to be the Dirac delta function). Finally, D;ikm are constants 
representing the plate-bending stiffnesses, which are defined by writing the 
moment-curvature relations in the form 

(7.2.7) 
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Always D;;km = Dkmii = Diikm = D;;mk· For the special case of isotropic materials, 
we have, according to Equations 7.1.4, D1111 = Dn.22 = D, D11n. = vD, D1212 = 
(1- v)D, with all other D;;km being zero. M;; and w,;; are second-order tensors in 
two-dimensional space (x 1, x2), and D;;km is a fourth-order tensor in this space. 

In component form, U1 and U2 (Eqs. 7.2.6) become 

ul =I L !(Mxxw,xx + M,,w,yy + 2MxyW,xy) dx dy 

u2 = I L ( Nxx w;x + N,, ~y + NxyW,xw,,) dx dy 

and for isotropic plates substitution of Equations 7 .1.4 gives 

If 
D 2 2 2 Ul = A 2 (w,xx + W,yy + 2VW,xxW,yy + 2(1- V)W,xy) dx dy 

=I L ~ ((w,xx + W,yy)2 + 2(1- v)(w~xy- W,xxw,,,)] dx dy 

Differential Equations of Equilibrium 

(7.2.8a) 

(7.2.8b) 

(7.2.9) 

The equilibrium conditions may be expressed as c5ll = 0. For a perfect plate, for 
which p = 0 and w = 0 at the initial state, this equilibrium condition at the same 
time represents the Trefftz criterion c5(c52V) = 0 for the critical state (Eq. 4.2.6) 
because c5w = w and c52ll = ll. Taking into account the symmetries D;;km = Dkmi; 
and N;; = N;;, we may calculate 

c5Ut = I L D;;kmW,;;c5W,km dA 

=I L (D;;kmW,;;c5w,k),m dA -I L (D;;kmW,;;),mc5w,k dA 

=I L (D;;kmW,;;c5w,k),m dA- I L [(D;;kmW,;;),mc5w].k dA 

+ I L (D;;kmW,;;),kmc5W dA 

= l VmDijkmW,;;c5w,k ds -L vkDijkmW,;;mc5w ds +I L D;;kmW,;;kmc5w dA (7.2.10) 

6U2 =!If (N.--w -c5w · + N,..w -c5w ·) dA 2 A I} ,I ,J I} ,J ,I 

=If N,..w -c5w · dA = If (N.-w -c5w) · dA - If (N.-w ·) -c5w dA IJ ,I ,J I} ,I ,J I} ,I ,J 
A A A 

= If (N-w -c5w) · dA - If N- ·W -c5w dA - If N.-w .. c5w dA IJ ,I ,J IJ,J 11 IJ ,IJ 
A A A 

= J. vN-w -c5w ds +If Rw -c5w dA -If N.-w --c5w dA J IJ ,I I ,I I} ,IJ 
s A A 

(7.2.11) 

c5W= ILpc5wdA (7.2.12) 
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where we applied Gauss' integral theorem in two dimensions to transform area 
integrals into integrals along the boundary curve s (recall: Gauss' theorem 
generally states that fi A T;1k ... ,, dA = J .. T11k ... v, ds where T;1k ... = tensor of any 
order); v, =cosines of the angle formed by normal v with axis x, (Fig. 7.4a); 
Fi = in-plane distributed loads in the initial state that may be expressed as 
F; = -N11,1 because the initial state is an equilibrium state. 

The equilibrium condition 6U1 + 6U2 - 6W = 0 yields 

J L (D;Jkmw,;Jkm- N11w,;1 + F;w,;- p )6w dA + i (V~ + V!')6w ds + i Mk6w,k ds = 0 

with 
(7.2.13) 

v~ = v,N;jW,; vtt = -vkDijkmW,jjm Mk = VmDijkmw,;,= VmMkm 

Since this variational condition must hold for any variation 6w, the integrands 

a) b) 
X2 

1/•t 
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~ 11 

•• 
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Fipre 7.4 (a) Local coordinate system at boundary and (b-e) relations between 
components in local and global systems. 
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must vanish at each point of the plate. For isotropic plates, D;ikmw,iikm = DV4w, 
and so we get for the plate the differential equation 

DV4w =p + N.--w .. - Rw. 
'I ·'I ' ·' 

(i,j = 1, 2) (7.2.14) 

In statics, the in-plane loads F; (such as the weight of the plate, its inertia forces, 
or electromagnetic forces) are usually negligible, and then we may write 

DV4w = p + PN with PN = NxxW,xx + NyyW,yy + 2NxyW,xy (7.2.15a) 

in which PN is an apparent transverse distributed load due to the initial inplane 
forces N=> NYY' Nxy that satisfy the differential equilibrium equations; 

(7.2.15b) 

Equations 7 .2.15b can be derived by the same variational approach if the energy 
of in-plane deformation is included in the potential-energy expression. 

Equations 7 .2.15a, b represent a system of three simultaneous linear partial 
differential equations with four unknowns w, Nxx, NYY' and Nxy· The in-plane 
membrane forces can, however, be expressed as functions of the middle surface 
strains (see Sec. 7.4), which in turn are functions (Eq. 7.2.2) of the transverse 
displacement w and the in-plane displacements u and v. So Equations 7 .2.15a, b 
can be reduced to a system of three simultaneous differential equations in u, v, 
and w. 

If, however, the deflection w is small (approximately w::::; 0.2h, h =plate 
thickness, as indicated by Donnell, 1976, p. 175) experiments indicate that the 
effect of the deflection w(x, y) on N;i can be neglected, that is, N;i in Equation 
7.2.15a can be assumed to be constant and obtained by a separate solution of the 
in-plane problem given by Equations 7 .2.15b. The small-deflection range, in 
which N;i is independent of w, will be studied in Section 7.3 and the 
large-deflection range, in which N;i depends on w, in Section 7.4. 

Boundary Conditions 

The boundary curve integrals in Equation 7.2.13 involve the variations 6w and 
6w,k on the boundary curves, which are not completely independent, since for a 
given 6w the variation derivative 6w,, in the direction tangent to s is also 
specified. It is then convenient to express c5w,k as a function of 6w,,, as well as 
6w,v, the latter representing the variation derivative along the normal v to the 
boundary curve. We have c5w,k = 6w.v(dxvldxk) + 6w,,(dx,/dxk) where Xv, x, 
represent a system of local Cartesian coordinates at the boundary point oriented 
in the direction of normal v and tangent t, respectively (Fig. 7.4a). Since 
(according to Fig. 7.4b) dxvldx 1 =vi> dxvldx2 = v2, dx,/dx 1 = ds/dx 1 = -v2, and 
dx,/dx2 = ds/dx2 =vi> we may write 

dxv i: dxs 
Mk6w,k = Mk6w,v dxk + Mkuw,s dxk 

= (M1v1 + M2v2)6w.n + (M2V1- M1v2)6w,s = Mvvc5W,v + Mvt6w,, (7.2.16) 

in which, as obtained from the moment equilibrium condition for a triangular 
plate element at the boundary (Fig. 7.4c), Mk = vmMkm =the moment component 
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at the boundary whose axial vector is normal to the xk axis; Mvv and Mv, are the 
bending and twisting moments acting on the plate boundary. We can now find for 
V~ in Equation 7.2.13 the following expression: 

v~ = -vkMkm,m = -vl(Mu,l + M,z,z)- Vz(M2l.l + M22,2) =VI Vt' + Vz v~ 
(7.2.17) 

in which Vt' and V~ are the shear forces (per unit length) that are required for 
moment equilibrium of an element of the plate (Eqs. 7.1.5), and V~ is the shear 
force on the boundary that equilibrates Vt' and V~ (Fig. 7.4d). The superscript 
M has been attached in order to indicate that this is the part of the shear force 
that is due exclusively to the bending and twisting moments. 

Let us now find the meaning of V~ in Equation 7.2.13. Considering the 
membrane components Nvv and Nv, in the local Cartesian system (xv, x,) at the 
boundary (Fig. 7.4e) we have 

N dxv dxs 
V v = vjV;1w,v dxi + v1Ni1w,, dxi 

= (v~N11 + 2vtv2N12 + v~N22)w.v + [(N22 - N11)v,v2 + Nn(v~- v~))w,, 

= NvvW,v + NvrW, 1 (7.2.18) 

We recognize in V~ a second-order shear force that arises if in-plane (membrane) 
forces are present and the deformed configuration is taken into account. We now 
see that the total shear force according to the second-order theory is Vv = 
V~ + V~ (and, by inspection of Eqs. 7.2.17 and 7.2.18, we also notice an analogy 
with the relation V = -M'- Pw' obtained in Sec. 1.3 for beam-columns in which 
Pis positive for compression). 

Since we have already ensured through Equation 7.2.14 that the integrand in 
the first parenthesis in Equation 7 .2.13 will vanish, this last equation becomes 
(upon substitution of Eq. 7.2.16) 

i ( V~ + V!'- a~v') c5wds + [Mv,c5w]~+ i Mvv<>w.vds = 0 (7.2.19) 

Here we integrated by parts the term Mvr<>w,, in Equation 7.2.16. The term in 
brackets is zero for any smooth boundary curve, while at sharp corners it is 
required that [ Mvr<>w] = 0. 

In order that Equation 7.2.19 be satisfied for any variations c5w and c5w.v, the 
integrands in Equation 7 .2.19 must vanish. This yields the boundary conditions 

Either w=O or aMvr= yN + yM 
at v v 

Either w =0 Mvv=O 
(7.2.20) 

.v or 

Note that the sign conventions for Mv,, Vv, Nv, on the boundary (Fig. 7.4) may 
but need not coincide with those adopted for the corresponding internal stress 
resultants on cross sections normal to the x or y axes (Figs. 7.1 and 7 .5). 

The conditions w = 0 or w.v = 0 represent the kinematic boundary conditions, 
the latter one representing a fixed (clamped) edge, while the remaining ones 
represent the associated static boundary conditions. The condition for a free edge 
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Figure 7.5 Equilibrium of deformed element: (a) effect of normal forces, (b) effect of 
shear in-plane forces. 

(w :#0) is the well-known Kirchhoff's boundary condition, which was much 
discussed when plate theory was evolving early in the nineteenth century. The 
notable aspect of this boundary condition is that one cannot prescribe at the 
boundary the transverse shear force and the twisting moment separately, but only 
a combination of the shear force and a derivative of the twisting moment, a fact 
conclusively demonstrated by Kirchhoff. 

The boundary conditions pertinent to the in-plane displacements can be found 
by the same variational procedure upon including in the energy functional the 
in-plane deformation. This procedure also yields the in-plane differential equa
tions of equilibrium. 

Dired Derivation of Transverse Resultant of In-Plane Forces 

It is instructive to show an elementary geometric derivation of PN as given by 
Equation 7.2.15a (Timoshenko and Gere, 1961). We examine vertical equilibrium 
of a small rectangular element dx dy that is transformed into a slightly inclined 
curved element dx' dy' in Figure 7.5a. Let us consider first the normal forces 
acting in vertical cross section on the sides normal to x (Fig. 7.5a). The vertical 
resultant of these forces is 

piJ> dx dy = - Nxx dy W,x + (Nxx + Nxx,x dx )( W,x + W,xx dx) dy 

= Nxx W,xx dx dy + Nxx,xW,x dx dy + Nxx,x W,xx dx2 dy (7.2.21) 

An analogous expression is obtained for the vertical resultant of the normal 
forces acting on the sides normal to y : 

pt?i> dx dy = NyyW,yy dy dx + Nyy,yW,y dy dx + Nyy.yW,yy dy 2 dx (7.2.22) 

Furthermore, consider the shear forces on all four sides, shown in Figure 7 .5b. 
The vertical resultant of these forces is 

p~> dx dy = -Nxy dy W,y + (Nxy + Nxy,x dx) dy (w,y + W,xy dx) 

- Nyx dx W,x + (Nyx + Nyx.y dy) dx (w,x + W,xy dy) (7.2.23) 
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Summing the expressions 7.2.21, 7.2.22, and 7.2.23 and neglecting higher-order 
terms such as dx dy2

, we obtain 

PN dx dy = (p~> + p~> + p~>) dx dy 

= (NxxW,xx + NyyW,yy + 2NxyW,xy + (Nxx,x + Nxy,y)W,x 

+ (Nyy,y + Nxy,x)w,y] dx dy (7.2.24) 

in which PN dx dy is the apparent additional load per area dx dy, due to in-plane 
forces N 1i. Noting that Nxx,x + Nxy,y = - Fx and Nyy,y + Nxy,x = - Fy, because of the 
differential equations of equilibrium for the initial state, we see that PN is 
identical to the expression that we obtained before in Equation 7 .2.15a. 

Discussion and Summary 

Equation 7.2.14 or 7.2.15a is a linear fourth-order partial differential equation for 
the unknown displacement function w(x, y ). Together with the appropriate 
boundary conditions, this differential equation defines a linear boundary-value 
problem. The solution of this problem yields, for the given boundary conditions, 
the deflections w(x, y) as a function of the given load distribution p(x, y). 

When no transverse distributed load is applied (p = 0) and the boundary 
conditions are homogeneous, that is, when there are no loads other than the 
in-plane loads, and no enforced displacements, Equation 7 .2.14 or 7 .2.15a 
together with the boundary conditions define an eigenvalue problem. This 
problem has a nonzero solution w(x, y) only for certain values of in-plane forces 
N1i, which then represent the critical loads, at which a symmetric bifurcation 
occurs. For the case of nonzero lateral distributed load p, which represents the 
case of an imperfect plate, the solution yields deflections that tend to infinity if 
the critical values of the in-plane forces N1i are approached. 

To sum up, we have seen that the presence of significant in-plane forces N1i in 
a plate contributes an additional second-order term to the potential-energy 
expression, as well as an additional apparent transverse distributed load to the 
differential equation of the plate. These additional terms are analogous to those 
for columns and become identical to them for the case of cylindrical bending, for 
which Nxx = - P, D--+ El, w,y = w,xy = w,yy = 0, Nyy = Nxy = 0. We have also seen 
that the potential-energy expression and the differential equation with its 
boundary conditions each suffice to fully describe the problem; they are 
equivalent to each other. 

For columns we used two different approaches to obtain the term due to the 
work of the axial load (Sec. 4.3). One approach was to assume the column center 
line to be inextensible and calculate the displacement lll at the end of the 
column, for example, the simply supported column. The other approach, 
which we later showed for a hinged column whose ends are not actually sliding, 
was to calculate the normal strain of the column center line due to transverse 
deflection. In the case of plates, only the latter approach, which we have 
exemplified in this section, makes sense. For general behavior it is not possible to 
assume that the middle surface of the plate would be undeformable and calculate 
the corresponding displacements at the boundary (as we did for columns). This is 
one notable conceptual difference between the calculation of potential energy of 
plates and of columns. 
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Problems 

7.2.1 Check that for a plate strip of width 1, with w(x, y) = w(x), that is, no 
dependence on y, and -NXJt = P, the plate differential equation reduces to the 
differential equation for a beam-column. Also check that the boundary 
conditions reduce to those for columns, considering the fixed end, simply 
supported end, and free end. 

7 .2.2 Include in the derivation of potential energy the strain energy due to 
in-plane displacements u and v of the middle surface, and derive correspond
ing Euler equations. Does the equation for deflection remain the same? In 
which cases can the resulting equation system be solved as uncoupled 
equations? 

7 .2.3 Using the Gauss theorem in reverse order, starting from the differential 
equation of the plate, derive the potential-energy expression. 

7 .2.4 Find the potential-energy expression for an orthotropic plate and derive the 
differential equation. 

7.2.5 Consider a simply supported circular plate (Fig. 7.6) under axisymmetric 
axial loading N" = -N (compressive). Assuming a polar system of coordin
ates, transform the potential-energy expression given in the text and find the 
Euler equation as well as the boundary conditions. 

y 

I( 

-iii 
~;1@2!!"'_""_..,_=-__ "'lw'!!' __ ..,_zz_:z;_~~-

Figure 7.6 Circular plate under axisymmetric axial loading. 

7.3 BUCKLING OF RECTANGUlAR PlATES 

Plate buckling governs the design of many types of structures, for example, the 
thickness of the walls used in thin-wall beams. The most efficient designs, used for 
large spans, usually employ stiffened plates. For the purpose of stability analysis, 
the wall plates between stiffening ribs may normally be analyzed approximately as 
isolated rectangular plates. Their analysis is relatively straightforward, and we 
will demonstrate it now. 

While for columns the initial axial force is usually uniform throughout the 
column, for plates the initial in-plane forces N;i are often nonuniform throughout 
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the plate. This complicates the solution. First we take the easier case of uniform 
N;i· 

Buckling of Simply Supported Plates 

Consider a rectangular plate of sides a and b such that a;::: b (Fig. 7 .7a). The plate 
is compressed in the direction of the longer side a by a uniformly distributed 
in-plane N= ( <0, negative for compression); Nyy = Nxy = 0. According to 
Equation 7.2.15a, the differential equation of this problem is 

NJCJC 
w.xJCJCJC + 2w.JCJCYY + w.yyyy = D w,JCJC (7.3.1) 

This equation represents the condition of neutral equilibrium (or existence of an 
adjacent equilibrium state), and it implements Trefftz's criterion of critical state. 
We will seek the solution in the form of a Fourier series 

~~ .mJCX.mry 
w= LJ LJ qm,. sm--sm--

m=t n=l a b 
(7.3.2) 

with unknown coefficients qmn representing generalized displacements. Each 
term of this series satisfies the kinematic boundary conditions w = 0 on the 
boundaries, and it also satisfies the static boundary condition Myy = 0 at the left 
and right boundaries and Mxx = 0 at the bottom and top boundaries (Fig. 7.7a). 
Because of Equations 7 .1.4, and because w,JCJC = 0 at the left and right boundaries 
and w.yy = 0 at the top and bottom boundaries, these conditions reduce to w,yy = 0 

a) 

c) 

b) 

a-alb 
o~~-~--L--~--• 

0 2 3 4 

Figure 7.7 (a) Simply supported plate subjected to uniformly distributed normal forces 
N,m (b) critical value of normal force, and (c) buckling mode. 
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at the left and right boundaries and w.= = 0 at the bottom and top boundaries. 
Substitution into Equation 7.3.1 yields 

co co [ 4(m4 2mznz n4) Nxx (mznz)] . mnx . mry L L qmn 1r 4+~b2 +b4 +-D - 2- sm-sm-b =0 (7.3.3) 
m=l n=l a a a a 

If this equation should be satisfied for all x and y at nonzero deflection w, it is 
necessary that, for at least one term of the sum, the bracketed expression 
vanishes (while qmn can be zero for all the other terms). This condition yields the 
critical loads 

(7.3.4) 

Stability needs to be analyzed on the basis of the potential-energy expression 
in Equation 7.2.5. Substituting Equations 7.2.9 and 7.2.8 for U1 and U2 , we find 
that 

(7.3.5) 

If this expression should be positive definite, the bracketed terms must be 
nonnegative for all terms of the sum (i.e., all m and n), and positive for at least 
one term (i.e. one m-n combination). The critical state is obtained if the 
bracketed term vanishes for at least one term of the sum (while for all other terms 
qmn can be zero). This again yields Equation 7.3.4. 

By analogy with columns one might think that the lowest critical load 
magnitude would occur for m = n = 1. This is not true, however. With regard to 
n, it is clear that the smallest INcrl occurs when n = 1; but m = 1 does not 
necessarily give the smallest value of INcrl· Setting a/b =a and n = 1, Equation 
7.3.4 may be written as 

INcrl = n;? (: + :r (7.3.6) 

We see that INcrl as a function of a always has a positive curvature and the 
minimum of INcrl occurs when dNcr/da = 0. This condition yields a= m, and 
Equation 7 .3.6 then yields 

4n2D 
miniNcrl=~ (for a=m) (7.3.7) 

This value is independent of the number, m, of the half-waves, as well as of the 
ratio a/b. Pl~tting Equation 7.3.6 as a function of a for m = 1, 2, 3, ... , we 
obtain the curves shown in Figure 7.7b. From this figure, one can readily see 
which value of m yields the smallest INcrl for a given alb ratio; the line of smallest 
INcrl is drawn as a heavy solid line. Note the tendency of the number of 
half-waves in the direction of compression to be such that the half-wavelength be 
as close to the width of bas possible (Fig. 7.7c). 

Similar solutions are possible when the plate is under biaxial in-plane normal 
forces Nxx and Nyr In this case the problem is to find for the given in-plane forces 
the value of a common multiplier, p., which causes the plate to reach the lowest 
critical state. This value then represents the safety factor. 



434 ELASTIC THEORIES 

Rectangular Plate with Arbitrary Boundary Conditions 

A different approach is needed for the rectangular plate shown in Figure 7 .Sa 
whose top and bottom edges are simply supported while the left and right edges 
can have different boundary conditions, including a clamped edge and a free 
edge. In this problem it is convenient to introduce a one-dimensional Fourier 
series in x, leaving the distribution of deflections in they-direction as unknown, 
characterized by function f(y ). The boundary conditions at x = 0 and x =a are 
automatically satisfied by setting 

"" mrcx 
w = f(y) L qm sin- (7.3.8) 

m=l a 

Substituting this into Equation 7.3.1, and imposing the condition that at least one 
of the terms multiplying sin (mrcx/a) must vanish (while qm = 0 for all the other 
terms), we find for f(y) the following linear ordinary differential equation: 

2ln2.1t2 [m2.1t'4 N (m2.1t'2)l~ 
/.,,,,-~ /., + ~ + ;; ----;;z J' = 0 (7.3.9) 

This equation can be solved easily when N= is constant. Then, assuming that 
( -Nu)l D > m2

.7t
2/a2, the general solution is 

f(y) =A sinh ay + B sin {Jy + C cosh ay + D cos {Jy (7.3.10) 

in which 

(7.3.11) 

The boundary conditions on the sides y = 0 and y = b may now be used to find 
the unknown constants A, B, C, and D. 

Consider now that the side y = 0 is simply supported and the side y = b is a 
free edge. Then we have the boundary conditions: 

Aty =0: w=O w.,=O 
Aty =b: w,, + vw,xx = 0 

a) 

w,,, + (2- v)w,xxy = 0 

c) 

(7.3.12a, b) 
(7.3.12c, d) 

Fipre 7.8 (a) Plate with three edges simply supported and one edge free, (b) buckling 
mode, and (c) analogy with buckling mode of L-cross section. 
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Equations 7.3.12c, d for the free edge mean that Myy = 0 and Vv- Mvr,t = 
V!' + V~- Mv1,, = V;'- Myx,x = 0 (the minus sign in front of Myx.x results from 
the fact that for this boundary M vr = - Myx and dt = ds = -dx; see also the 
comment below Eqs 7.2.20). Equations 7.3.12a, b yield C = D = 0, and Equa
tions 7.3.12c, d provide two algebraic equations for A and B whose determinant 
must vanish; 

( a 2
- v m~:

2

) sinh ab -(P2 + v m:n
2

) sin Pb 

2 2 2 2 = 0 (7.3.13) 
[ a 3

- a(2- v) ma: ] cosh ab - [P3 + p(2- v) ma: ] cos Pb 

The critical load is found to be (-Nxx )cr = kn2 D I b2
, in which k is a coefficient 

that depends on the ratio a/b, and it occurs form= 1. For long plates and for 
v = 0.25, one has k = 0.456 + b2/a2

• (In more detail see Timoshenko and Gere, 
1961, p. 362). The deflection surface according to Eq. 7.3.8 is plotted in Fig. 7.8b. 

The boundary conditions in Eqs 7.3.12a-d characterize the buckling of an 
axially compressed beam of an L-cross section with equal legs. Indeed, if the legs 
are equal and both legs buckle in concert, the joint of the legs (the corner point) 
rotates freely as if it were simply supported; see Figure 7.8c. 

A similar solution is possible when the longitudinal edges include various 
combinations of fixed and simply supported edges or fixed and free edges (see, 
e.g., Timoshenko and Gere, 1961). 

Buckling of Plate Subjected to Shear 

When a rectangular plate is subjected to shear, Nxy• the sine and cosine functions 
cannot satisfy the differential equation, and thus an exact analytical solution in 
terms of trigonometric functions is impossible. An approximate solution, suitable 
for hand calculation, may be based on minimizing the potential energy with 
respect to an assumed class of functions. As an example, consider that the plate is 
simply supported and the in-plane shear force Nxy is uniform (Fig. 7.9a). We will 
assume that the deflection is adequately approximated as 

. nx . ny . 2nx . 2ny 
W = q1 SID-;; SID b + q2 SID----;;- SID b 

a) 

-
II 

b 

·~ A; A 

b) 

(7.3.14) 

Figure 7.9 (a) Simply supported plate subjected to shear, (b) buckling mode, and (c) 
analogy with panel of beam web. 
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where q 1 and q2 are unknown. Substituting this into the potential-energy 
expression n = U1 + U2, with U1 and U2 given by Equations 7.2.9 and 7.2.8b, we 
obtain 

(7.3.15) 

U2 = -'Jj-Nxyqtq2 (7.3.16) 

The conditions of neutral equilibrium, which actually represent Trefftz's 
criterion for the critical state (Eq. 4.2.6), are ant aq1 = 0 and ant aq2 = 0. This 
yields 

(7.3.17) 

A critical state occurs when these equations admit a nonzero solution, that is, 
when their determinant is zero. This yields the condition n 8D 2a2b2(a-2 + b-2)

4
-

(32Nxyt9)2 = 0, which gives the following approximation for the critical shear 
force: 

9 ( 1 1 )
2 

Nxy., = ± 32 n4Dab a2 + b2 (7.3.18) 

This result is larger by 15 percent or more than the exact solution (Timoshenko 
and Gere, 1961, p. 381). The approximate deflection surface according to Eq. 
7.3.14 is plotted in Fig. 7.9b. 

The foregoing solution procedure in fact represents an application of the Ritz 
variational method, which we explained in Section 5.6 for one-dimensional 
problems. However, the principle of this method is also applicable to multi
dimensional problems, in which case the chosen system of linearly independent 
functions must be complete for the given multidimensional domain. A double 
trigonometric Fourier series represents such a complete system for a rectangular 
domain. From the properties of the Ritz method, we know that by increasing the 
number of terms in Equation 7.3.14 the solution converges to the exact solution. 
We also know, according to what has been said about the Ritz method, that the 
solution we obtained (Eq. 7.3.18) is an upper-bound approximation. 

The problem can alternatively be solved by the Galerkin method on the basis 
of the differential equation. Since the present problem is linear and the potential 
energy exists, the result of the Galerkin solution must be exactly the same. 

A simply supported rectangular plate under shear may be used as an 
approximation to the plate panel between two adjacent vertical stiffeners in the 
end regions of the web of a thin-wall beam, for example, an 1-beam (Fig. 7.9c). 

Nonuniform In-Plane Forces 

A typical problem for the design of steel beams is the buckling of a rectangular 
plate that is subjected at its left and right boundaries to a linearly variable normal 
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force N=. This loading is obtained when the plate forms a panel between two 
vertical stiffeners in the web of a beam, and the initial normal stress distribution 
in the beam is calculated according to the bending theory; see Figure 7.10a, b. 
Due to variation of the coefficient of the differential equation, this problem is best 
solved by an approximate method such as the Ritz or Galerkin method. By 
including a sufficient number of terms of a double trigonometric series, any 
desired accuracy can be achieved (see Timoshenko and Gere, 1961, p. 373; 
Gerard and Becker, 1957a; Fliigge, 1962). 

Solutions by Other Variational Methods 

In multidimensional problems it is often difficult to choose the trial functions for 
the Ritz method or the Galerkin method in such a manner that only very few 
terms would yield an accurate result. This problem may be circumvented by a 
variant of the Ritz method or the Galerkin method, which is usually called the 
Kantorovich method. 

In this method one chooses the distribution of an unknown function w(x, y) in 
only one direction, say x, and in the other direction, that is, y, the distribution is 
characterized by an unknown function f(y) in a manner that we already 
illustrated in our previous exact solution for a rectangular plate with three edges 
simply supported and one edge free (Eq. 7.3.8). Thus, an approximate solution of 
a rectangular simply supported plate, loaded by a linearly variable compression 
force Nxx = -N0 y (Fig. 7.10b), may be obtained by introducing either the 
one-term approximation: 

w(x, y) =f(y) sin 1rX 
a 

or the two-term approximation: 

w(x, y) = /1(y) sin 1rx + j;(y) sin 
2

.n:x 
a a 

(7.3.19) 

(7.3.20) 

Substituting this approximation into the expression for the potential energy of the 
plate, one obtains a functional of function f(y), or of functions / 1(y) and j;(y). 
This functional must now be minimized with respect to these functions of y. 

a) Y 

J -......___!---------~-f \N.,•-N,, 
a 

b) ty 

, Dl ~····-N., 
X a 

Figure 7.10 Simply supported plate under linearly varying normal forces. 
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One possible method of minimization is to apply the calculus of variations to 
obtain from this potential-energy expression either a single ordinary differential 
equation (Euler equation) for the unknown functionf(y), or a system of ordinary 
differential equations for the unknown functions .h(y) and h(Y ). These 
differential equations are then solved either exactly, if possible, or approximately, 
for which purpose again a one-dimensional Galerkin method can be used. 
Alternatively, the one-dimensional Ritz method can be applied directly to the 
functional of function f(y), or of functions / 1(y) and / 2(y). As still another 
alternative, one may introduce Equations 7 .3.19 or 7 .3.20 into the two
dimensional variational equation of the Galerkin method, and the result again is 
an ordinary differential equation for f(y) or a system of two ordinary differential 
equations for .h (y) and h(Y ). 

Kantorovich's variational method, as we see, is not a fundamentally different 
type of variational method. Rather, it is an adaptation of the Ritz method or the 
Galerkin method for multidimensional problems, in which the dimensionality of 
the problem is reduced (in our examples, from two to one dimension). 

In this sense, many theories of structural mechanics can be considered as a 
form of the Kantorovich method. For example, the bending theory may be 
regarded as an application of the Kantorovich method that reduces a two- or 
three-dimensional problem to a one-dimensional problem. This is accomplished 
by choosing functions f(y) in the transverse directions of the beam to be linear, 
thus forcing the plane cross sections to remain planar. Similarly, the bending 
theory of plates can be regarded as an application of the Kantorovich method, 
which reduces the three-dimensional elasticity problem for a plate to a two
dimensional problem. This is {lchieved by choosing a linear transverse distribution 
of displacements. Higher-order theories for the bending of beams and plates, in 
which the transverse displacement distributions are described as a superposition 
of several chosen basis functions, have been developed in the past. 

Other, fundamentally different, direct variational methods, such as the Trefftz 
method or the collocation method, have been applied to buckling of plates 
(Collatz, 1963). However, they are generally not as effective as the methods we 
have described. 

Finally, we must stress that, on the contemporary scene, the approximate 
variational solutions for the buckling of plates make sense only as long as they are 
very simple and useful results can be obtained with one or two terms. When this 
is insufficient, it is better to use the finite element method for plate buckling, 
rather than to seek solutions with many trigonometric terms, as has been done in 
the past. However, even when the buckling problem of a plate is solved by finite 
elements, the simple analytical solutions we have just demonstrated are valuable 
due to the understanding and insight that they convey, and the checks that they 
provide. 

Problems 

7.3.1 (a) Consider the simply supported square plate in Figure 7.1la, loaded by a 
longitudinal in-plane compressive force Nxx ( <0) and a transverse in-plane 
force Nyy that is either compressive or tensile. Let Nxxl Nyy = const. Find the 
critical value of the load multiplier tJ of these in-plane forces. Discuss the 
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F1pre 7.11 Exercise problems on buckling of plates. 
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effect of the ratio N:uiNYY' and particularly the effect of a change of sign of 
this ratio (note that N:uiNyy = -1 corresponds to pure shear). Construct the 
limit curve (interaction diagram) of the critical states in the plane (N:u, Nyy). 
(b) Do the same for a rectangular plate with b = 2a. 

7 .3.2 Consider an infinite simply supported plate strip 0 :s; y :s; b (Fig. 7.11 b), 
compressed by initial force N:u. Find its lowest critical load. What is the 
corresponding half-wavelength L in the x-direction? (Hint: Consider L 
unknown and minimize the critical load with respect to L.) 

7.3.3 Solve the same plate strip as above, but the plate carries forces N:u and Nyy 
in both directions. 

7 .3.4 Consider the plate in Figure 7 .Sa, whose sides y = 0 and y = b are clamped 
(i.e., fixed against rotation of the edge, w.yy = 0). Using the same method as 
in the text, find the critical load. 

7.3.5 Do the same as above, but the plate is a strip infinite in the x-direction. 
7.3.6 Consider a square plate clamped on all edges and subjected to equal 

compression forces in two perpendicular directions. Find the approximate 
critical value of these forces using the Rayleigh quotient. Assume w = 
q 1(1- cos (2.1t.tla)](1- cos (2.1f}'la)]. Is this an upper bound? Does this 
function satisfy the differential equation? 

7.3.7 Do the same as above, but with a:f::b, w=q1(1-cos(2nxla)][1-
cos (2.1f}'lb)] + q2(1- cos (4.1t.tla))[1- cos (4.1t.tlb)], and use the Ritz method. 

7.3.8 Consider again a simply supported plate subjected to an in-plane shear 
force (Fig. 7.9a), and solve it by the Galerkin method. Is the result the same 
as before? Is it an upper bound? 

7.3.9 Consider the simply supported plate in Figure 7.10b, with b =a, and 
assume a two-term approximation w = q 1 sin ( nx I a) sin ( .1f}' I b) + 
q2 sin ( .1t.t I a) sin (2.1f}' I b). Find the critical value of N0 using (a) the Ritz 
method; (b) the Galerkin method. 

7.3.10 Do the same as above, but assume w(x, y) = f(y) sin (nxla) and formu
late a differential equation for f(y) using the Kantorovich method. 

7 .3.11 An infinite simply supported plate strip 0 :s; y :s; b is subjected to shear 
force Nxr Solve approximate (Nxy)cr· 

7 .3.12 Do the same as above but the critical forces are Nxx = 2Nxr 
7.3.13 A rectangular plate is simply supported on edges x = 0 and y = 0, and 

clamped on edges x =a and y = b. Solve the approximate critical value of N:u 
by the Ritz method. 

7.3.14 A rectangular plate has simple supports on edges x = 0 and x =a, and on 
edges y = 0 and y = b it is supported by an elastic Winkler foundation of 
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foundation modulus c. Solve (Nxx)cr and discuss the limiting case c-oo and 
c=O. 

7.3.15 Do the same as above but the plate is infinitely long in the x-direction. 
7 .3.16 A rectangular plate is simply supported on edges x = 0 and x = a. On 

edges y = 0 and y = b it is elastically supported on beams of bending stiffness 
El each of which is simply supported at plate comers (the beams represent 
elastic stiffeners). Solve (Nxx)cr by a Fourier series expansion. 

7.3.17 For the circular plate in Problem 7.2.5 assume that it is simply supported 
and that the deflection is given by w = q 1 + q2(r/R)2

• Find an approximate 
value of the critical load by the Ritz method. Is it an upper bound? 

7 .3.18 Including inertia forces in the partial differential equation for plate 
deflection, calculate the lateral vibration frequency of a simply supported 
square plate subject to constant Nxx, Nyr 

7.3.19 Analyze the same problem as above, but consider that Nxx(t) and Nyy(t) 
are pulsating. Using the energy method from Section 3.3, analyze parametric 
resonance. Hint: Determine the second-order in-plane strain, due to 
w(x, y, t), calculate the work of Nxx(t), Nyy(t) on those strains, and compare it 
to the energy dissipated by damping that is proportional to w(x, y, t). 

7 .3.20 Thermal stress buckling. A square elastic simply supported plate whose 
edges cannot slide is uniformly heated by 6. T. Show that the critical values of 
N"", Nyy caused by 6. T are the same as if they were applied externally 
(although the postcritical behavior is very different). Express the stability limit 
in terms of ll.T. See Problem 4.3.13, note that u;i = Eiikm(Ekm- E~m) where 
E~m = ~kma 1:i T =thermal strains, and substitute E;i = - z (ilw I ox; axi; W = 0, 
ll = U = J v i(E;i- E'ij)Eiikm(Ekm- E~m) dV. {In general, the condition of stabi
lity in the presence of thermal stresses is of course again the positive 
definitiveness of U[ w(x, y) ). } 

7.4 lARGE DEFLECTIONS AND POSTCRITICAL RESERVE OF 
PLATES 

Plates, like columns and some types of frames, and unlike typical shells, possess a 
postcritical reserve, which permits them to resist loads that are higher than the 
critical load. As we will see, however, this postcritical reserve of plates is usually 
much larger than it is for columns. It manifests itself already for moderately large 
deflections, due to a redistribution of in-plane (membrane) internal forces, which 
is not possible in beams. The moderately large deflections have no analogy for 
columns because there is no redistribution of internal forces. 

In beam analysis we distinguished only between small deflections (linearized 
theory), for which the curvature expressions are linearized, and large or finite 
deflections (nonlinear theory), for which the curvature expressions must be kept 
in their nonlinear form. For plates (as well as shells), however, it is useful to 
distinguish: 

1. A linearized (small-deflection) theory 
2. A nonlinear theory for moderately large deflections, for which linearized 

expressions for the curvature are still valid while the in-plane forces 
redistribute due to deflections 
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3. A nonlinear theory for very large deflections 

The final collapse of plates usually occurs at loads that are much larger than 
the lowest critical load (frequently 50-100 percent larger). We nevertheless 
assume that the material behaves linearly, which is true if the plate is sufficiently 
thin. Thicker plates or shells, however, develop plastic strains or damage before 
failure (see Section 8.6). 

Von Karman-foppl Differential Equations 

A classical approach to the calculation of the postcritical behavior of plates for 
moderately large deflections is based on the use of the Airy stress function 
F(x, y) for in-plane stresses. The in-plane differential equations of equilibrium 
N.u,x + Nxy,y = 0 and Nxy,x + Nyy,y = 0 (Eq. 7 .2.15b) may be identically satisfied by 
setting 

N.u = F',yy Nyy = F.xx (7.4.1) 

In this chapter we generally assume that even for very large deflections the 
strains are small enough for the material to behave linearly. The geometrically 
nonlinear effects then arise only from the large rotations that accompany large 
deflections (cf. Sec. 11.1). The strain expressions for large rotations but small 
in-plane strains are E.u = u,x + !w~x• Eyy = v,y + !w~Y' and Yxy = u,y + v,x + w,xw,y. 

They satisfy the compatibility condition: 

E.u,yy + Eyy,.u- Yxy,xy = W~xy- w,X:JCW,yy (7.4.2) 

The left-hand side represents the linear terms and the right-hand side the 
nonlinear terms. Note that for linear elasticity the right-hand side must vanish, 
and this yields the well-known compatibility condition of linear plane elasticity. 

According to Hooke's law: 

2(1 + v)Nxy 
Yxy= hE (7.4.3) 

Substituting Equations 7.4.1 into 7.4.3 and Equations 7.4.3 into 7.4.2, we obtain 

(7.4.4) 

Furthermore, substituting Equations 7.4.1 into Equation 7.2.15a for lateral 
deflections, we also have 

(7.4.5) 

Equations 7 .4.4 and 7 .4.5 represent a system of two coupled nonlinear 
fourth-order partial differential equations for functions w(x, y) and F(x, y), 
called von Karman-Foppl equations. Foppl (1907) introduced the use of stress 
function F, and von Karman (1910) obtained the final form of these equations. 
These equations are rather difficult to solve analytically, and they have been 
solved only approximately. The earliest results on the postcritical reserve in plate 
buckling were obtained on the basis of these differential equations. 
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Solution by Minimization of Potential Energy 

Approximate solutions may be based on minimization of the potential energy 
(as long as the material of the plate is elastic). For deflections that are of the 
order of the thickness of the plate, experience shows that first-order approxi
mations for the curvatures can still be used, and so the strain energy U1 due 
to bending is still given by Equation 7.2.9. As the second part of the potential
energy expression, the strain energy due to the in-plane forces may be calcu
lated as 

Eh fafb(z 2 1-v 2 ) 
= 2(1 - v2) -a -b EJCJC + Eyy + 2vEJCJCEyy + -2- Yxy dx dy (7.4.6) 

in which U:xx, uYY' l'xy represent the stresses in the middle surface of the plate due 
to in-plane forces N:xx, NYY' N..,y (that is, N:xx = huxx, Nyy = huYY' N..,y = hu..,y); Exx, 

Eyy• and Y.ry represent the finite strains of the middle surface, which take into 
account deflection w; the material is assumed to be linear and isotropic; 2a and 2b 
are the length and width of the plate, and his the thickness. 

Aside from deflections w(x, y ), we must also solve the unknown in-plane 
displacements u(x, y) and v(x, y), which figure in the expressions for the finite 
strains Exx, Eyy• and Yxy· Assuming suitable distributions for w(x, y), u(x, y) and 
v(x, y) in the sense of the Ritz method, one may then obtain a system of 
equilibrium equations by minimizing the potential energy with respect to the 
unknown parameters of these assumed distributions. This results in a system of 
nonlinear algebraic equations. 

Let us demonstrate this approach with the example (Fig. 7.12a) of a square 
plate supported on all its sides and subjected to imposed uniform displacement 
v = - 2ae along the side y = a; e is a parameter that characterizes the loading. 
The constraints on the boundaries x = -a and x = a prevent any lateral 
displacements (sliding boundary). We assume the plate to be imperfect, with the 
initial warping defined by the ordinates: 

1CX :rry 
.zo=qocos-cos-

2a 2a 
(7.4.7) 

where q0 is a given coefficient of the imperfections. The unknown distributions of 
displacements are assumed in the form: 

• 1CX :rry 
U = q2 SID-;; COS 2a 

1CX • :rry ( ) v = q2 cos-SID-- e y +a 
2a a 

(7.4.8) 

where q1 and q2 are unknown parameters. This choice satisfies all the kinematic 
boundary conditions and is supported by deflection surfaces observed in 
experiments. The deflection surface according to Equations 7 .4. 7 and 7 .4.8 is 
plotted in Figure 7 .12c. 

The bending energy expression can be obtained from Equation 7.2.9 by 
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Figure 7.12 (a) Simply supported square plate subjected to uniform edge in-plane 
displacement, (b) normal force distribution at large displacements, and (c) deflection 
surface. 

substituting for w the elastic part of the deflection, w- z0 : 

Dfa fa 
U1 = z -a -a {[(w- Zo).xx + (w- Zo).yyf + 2(1- v)[(w- Zo)~xy 

- (w- ZoLx(w- Zo).yy]} dx dy 

= Eh
3 [tr4

(q 1 - qo)
2

] 

12(1- v2
) 8a2 (7.4.9) 

in which the last expression has been obtained by substituting the expressions for 
wand -.zo given in Equation 7.4.8 and 7.4.7. 

The expressions for the finite strains in the middle surface of the plate are 

E - t• + 1w2 1z2 yy - .y 2 .y - 2 O,y (7.4.10) 

Yxy = V,x + U,y + W,xW,y- Zo.xZo,y 

Substituting these equations into Equations 7 .4.6 and using the expressions in 
Equations 7.4.7 and 7.4.8, one obtains for the strain energy due to in-plane 
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forces: 

(7.4.11) 

The conditions of neutral equilibrium (Trefftz's condition of critical state) are 
obtained by imposing a( U1 + U2)/ aq 1 = 0 and a( U1 + U2)/ aq2 = 0. Assuming 
v = 0.3, we obtain from the latter condition: q2 = 0.1418(q~- q~)/a. Substituting 
this into the former condition, we get 

q 1(5.698(q~- q~) + 4.059h2
- 6.415ea2

) = 4.059h2q0 (7.4.12) 

First we consider that the plate is perfect (q0 =0). Equation 7.4.12 reduces to 
q 1 (5.698q~ + 4.059h2

- 6.415ea2
) = 0. This equation has the solutions: 

Either or 
(6.415ea2

- 4.059h2
)

112 

q! = 5.6974 (7.4.13) 

which show that a real value of q1 that is different from zero exists only if 
e > ecr = 0.6327h2/a2 (as obtained for this problem by Timoshenko and Gere, 
1961, p. 411). The stress resultant corresponding to this critical value of e (for 
which q1 = q2 = 0) is 

(7.4.14) 

This represents the critical in-plane force Nyr Since the lateral expansion is 
prevented by the sliding boundaries, we have Nttx = v(Nyy)cr for the critical state. 

Second, consider that the plate is imperfect (q0 #= 0), and calculate the value 
of Nyy· From Hooke's law, Nyy = Eh(Eyy + VExx)/(1- v2

). We are interested in 
the value of Nyy at y =a, for which Exx = 0. Calculating Eyy from Equations 7.4.10 
we obtain 

Eh [ q~-q~ ( 1rx) 1rx] (Nyy)y=a = -
1 

_ v2 e + 
02 

0.4455- 1.234 cos 2a cos 2a (7.4.15) 

For a given value of e, we can calculate q 1 from Equation 7.4.12. For example, 
for e = lOecr we obtain the distribution of Nyy plotted in Figure 7 .12b, which also 
shows the distribution of Nxx, obtained in a similar way. The most interesting 
property of these results is the strong redistribution of NYY' in which most of the 
axial in-plane force gets transferred from the middle strip of the plate into the 
edge strips along the sliding boundaries. _ 

It is also useful to calculate the average value Nyy = <f':a Nyy dx )/2a, which 
can be expressed as a function of q 1 by substituting into Equation 7.4.15 the value 
of e derived from Equation 7 .4.12. One obtains 

_ Eh (h2
)[ ( q0 ) (q~ q~)] (Nyy)y=a =-

1
_ y2 

02 
0.6327 1- q

1 
+ 0.5549 h2 - h2 (7.4.16) 
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The corresponding diagram of average load versus the maximum deflection is 
shown in Figure 7.13 for various values of the initial imperfection q0 • As one can 
see, a large postcritical reserve develops even for moderately large values of the 
deflection q 1. 

For comparison, we also plot on the same diagram the response of a unit plate 
strip considered as a hinged column with free sliding ends; its critical load is given 
by Ncr= tr2Eh 3/4a2 = 0.2056Eh(h/a)2

, and its nonlinear behavior is governed by 
Equation 5.9.10. Not only the critical load is lower, due to the lack of 
longitudinal supports x = -a and x = a, but also the curvature of the postcritical 
response curve N(q1) is of the order of hundred times smaller. 

The nonlinear behavior our example just illustrated fundamentally differs 
from the nonlinear behavior of columns. For columns, large-deflection energy 
analysis (Sec. 5.9) necessitates that the potential energy be expressed in terms of 
a nonlinear expression for curvature, which includes terms of at least the second 
order [that is, 1/p=dO/ds exactly, or 1/p=w"(1-1.5w'2) accurately up to 
second-order terms]. By contrast in our example we calculated the potential 
energy of the plate from the linearized curvatures, that is, w,xx• w,,,, and w, ... ,, 
and the nonlinearity was due solely to the redistribution of the in-plane forces 
N ...... , N,,, N ... ,, which cannot occur in columns. This redistribution engenders an 
early stiffening of the response (postcritical reserve) that is encountered already 
at moderately large deflections, at which the nonlinear curvature effect is still 
secondary in importance. 

Note that the use of the second-order strain term ~w'2 in the potential-energy 
expression for a column does not in itself represent a nonlinear effect. The reason 
is that the potential energy must always be represented exactly up to second
order small terms, even in a linear theory. What makes the effect of ~w~ ... (or 
w, ... w,,) nonlinear in plates is that the terms such that N ...... w~ ... also include a 
second-order change of N ...... due to ~w~ .... making the term N ...... w~ ... accurate up to 
quantities that are fourth-order small in deflections. 

iiiyy }Plate 

{Nyylcr 

1.5 

1.0 lseam 
J 

0.5 

05 10 ~ 
h 

Figure 7.13 Force-displacement relations for perfect and imperfect plates and beams. 
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Further note that the principal cause of nonlinear stiffening of plates at 
moderately large deflection is not the dependence of Nu on second-order strain 
!w~"" (or w,xw,y), per se. Rather it is the redistribution of the in-plane forces in the 
plane of the plate. In a simply supported column whose ends are prevented from 
sliding axially, the axial force P, too, changes as a function of !w'2• However, 
there can be no redistribution, such as the transfer of compression from the 
center of a plate toward its edge strips, which greatly helps the carrying capacity 
of a plate. 

Not all the plates stiffen due to redistribution of the in-plane forces. For 
example, a rectangular plate simply supported on edges x = 0, x = a and free on 
edges y = 0, y = b, compressed by Nu, buckles with a cylindrical surface, and 
thus it behaves as a column in which there is no redistribution of N=. If very 
weak stiffeners are added to this plate along the edges y = 0 and y = b, there will 
be redistribution of in-plane forces, but only to a very small extent, with only a 
very small contribution to the postcritical reserve. 

Large Deflections and Ultimate Strength 

For very large deflections of plates, nonlinear expressions for the curvatures 
must, of course, be used also, same as for columns. In practice, however, it is 
preferable to analyze very large plate deflections by the finite element method 
with step-by-step loading, in which the nodal coordinates are updated after each 
loading step. In this approach, called the updated Lagrangian method, it is not 
necessary to use large-deflection theory with nonlinear curvature expressions 
provided that the loading steps are sufficiently small so that the deflection 
increments remain only moderately large compared to the initial state for each 
current loading step. 

Unless the plate is very thin, nonlinear material properties may, of course, 
significantly affect the ultimate collapse mode. In general, the analysis of 
large-deflection postcritical collapse of plates may require not only a geometri
cally nonlinear analysis but also analysis for nonlinear inelastic material behavior. 
For such a general problem, the finite element method is ideally suited. 

A simple approximate formula for the ultimate buckling strength of rectangu
lar plates loaded by compression force Nxx was derived and experimentally 
verified by von Karman, Sechler, and Donnell (1932). As the axial compression 
resultant Pis gradually increased above the critical value, the distribution of Nxx 
becomes progressively more nonlinear as shown by curves 1, 2, and 3 in Figure 
7.14a until at the ultimate state (curve 3) the Nxx-distribution becomes nearly 
rectangular, most of the axial force being transmitted by edge strips of a certain 
width c while the central portion of the plate becomes almost load-free. Because 
the edge strips are buckled for all the postcritical states, the average distributed 
force Nxx that is carried by the edge strips may be estimated as the critical value 
of a uniform N"""" for a simply supported rectangular plate of length a and width 
2c, which is imagined to be the width of the statically equivalent rectangular 
stress distributions in Figure 7 .14a. Since the deflections are always small in the 
close vicinity of the edge, the local behavior near the edge may be approximately 
described by the classical formula for the critical load N~~ (bifurcation load) even 
if the overall behavior of the plate is postcritical, with large deflections. 
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Figure 7.14 (a) Effect of nonlinear material behavior on normal force distribution in the 
postcritical state; (b) bar-spring model; (c) postcritical behavior of panel under shear. 

According to Equation 7 .3. 7 the critical force on the edge strip of width 2c 
may be approximately expressed as I'NJCJCI = 4rc2 D /(2c )2 = rc2 D I c2 (because Eq. 
7 .3. 7 gives the critical Nu for b «a, and we usually have 2c «a). Because the 
edge strip is deflected for alliNxxl exceeding the elastic critical force of the entire 
plate, the last equation must be satisfied continuously for all load values. 
Therefore c2 = rc2D/IN....-l and so an increase of INxxl due to increasing axial 
resultant P must produce a decrease of the effective width c of the edge strips. 
Failure occurs when cis reduced to a value such that INxxl = rc2D/c2 = h/y, where 
/y = yield stress of the material and h = plate thickness. From this we get von 
Karman's formula c = rc(D/h/y) 112 for the effective width at failure. The total 
ultimate force carried by the plate is Pu11 = 2ch/y, and substitution for c, along 
with D = Eh3/12(1- v2

), yields von Karman's ultimate load formula: 

(7.4.17) 

where ku = rc(3(1- v2)r 112 = 1.9 (for v = 0.3). It is noteworthy that Pu11 is 
approximately independent of the plate dimensions a and b. 

Based on more extensive test results, Winter (1947) proposed the empirical 
coefficient ku = 1.9(1-0.475(h/b)(E//y)112

) where b =total width of the plate. 
This correction is explained by the fact that the two strips of width c do not 
behave exactly as a simply supported plate of width 2c. Another possible 
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correction of coefficient k,. was suggested by Donnell (1976, p. 235) who also 
considered the case where the inner edge of the strip cis treated as a free edge. 

If the edges of the plate are supported by flexible stiffening ribs of direction x, 
then the design must also satisfy Equation 7.4.17 in which [y is replaced by the 
critical stress o'er= INxxllh that causes the buckling of the ribs. 

An excellent comprehensive survey of various ultimate load formulas for 
many situations is found in Johnston (1966, 1976) and Galambos (1988). For a 
discussion of Equation 7.4.17, see also Timoshenko and Gere (1961, p. 418). 

A simply supported rectangular panel subjected to shear owes its large 
postcritical reserve to a different mechanism. As the buckling deflections become 
large, a large tension force is developed in that plane along one diagonal strip of 
the square plate, while the compression force that was originally produced by 
shear along the other diagonal strip is reduced to almost zero (Fig. 7.14c). Thus 
the panel, which initially carries the shear like a rectangular truss with two 
diagonals, one in tension and one in compression, acts after large deflections as a 
square truss with only one diagonal, the tension one, as if the compression 
diagonal failed. 

Due to their large postcritical reserve, plates can in principle be designed with 
a smaller safety factor than columns or frames. The use of smaller safety factors, 
however, might be inadmissible if there are large repeated loads that could cause 
repeated large buckling deflections, or if there is danger of simultaneous buckling 
of stiffeners. 

Measurement of Critical Loads 

Due to their more pronounced nonlinearity, the Southwell plot (Eq. 1.5.13) is 
insufficient for plates. The critical load Per

1 
of a plate may be accurately identified 

by fitting a sufficiently accurate nonlinear solution to the measured curve of 
maximum deflection w vs. load (or load parameter) P. According to Williams and 
Aalami (1979), the w(P) relation may be written as 

w2
- w~ = h2(C11j.l + C3 1j.l3 + .. ·)2 (7.4.18) 

where 1jJ = (wo/w -~~- 1) 112, ~~-· = 1- P!Per
1 

(Eq. 1.5.10), w0 =initial imperfec
tion; C1, C3 , ••• =constants that take into account the boundary conditions and 
load configuration. According to Walker (1969) and Williams and Walker (1977), 
the second and higher terms of the expansion in Equation 7.4.18 are usually 
negligible. Using an optimization subroutine, one may fit Equation 7.4.18 to the 
measured w(P) curve, which yields the optimum values of Per•' w0 and C 1• (See 
also Fok, 1984; Fok and Yuen, 1981; Spencer and Walker, 1975; Rhodes and 
Harvey, 1977; Dawson and Walker, 1972). 

Problems 

7.4.1 Derive Equations 7.4.9 and 7.4.11 for strain energies U1 and U2 and 
Equation 7.4.16 for the average in-plane (membrane) strain resultant Nyy· 
Then derive the expressions for Nxx and Nxx. 

7.4.2 Do the same as above, but for a rectangular plate of length 2a and width 
2b. Evaluate the results forb/a= 1, 1.25, 1.50. 
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7.4.3 Consider the bar-spring model in Figure 7.14b and assume C1 = !CL2
• By 

the energy approach, find the critical load and the postbuckling behavior, 
considering both the perfect (q0 = 0) and imperfect (q0 =F- 0) system. Show that 
the behavior of this model is analogous to the behavior of plates. 

7 .4.4 (a) Without referring to the text derive the von Karman formulas for 
effective width and Putt of a rectangular plate subjected to Nxx. (b) Then, using 
the same calculation procedure, generalize the formulas for the case of both 
Nxx and Nyy with a given ratio k = Nyy!Nxx (to this end obtain first the critical 
value of Nxx for an infinite plate strip of width 2c). 

7 .4.5 Calculate the value of ku considering the infinite plate strip of width c to 
have a free edge opposite to the simply supported edge (this was done by 
Donnell, 1976). 

7.5 AXISYMMETRIC BUCKLING OF CYLINDRICAL SHELLS 

Buckling of shells is a vast subject whose comprehensive treatment requires an 
entire book. Various excellent specialized books and comprehensive articles 
devoted to shell buckling exist (Gerard and Becker, 1957b; Timoshenko and 
Woinosky-Krieger, 1959; Vol'mir, 1963; Brush and Almroth, 1975; Donnell, 
1976; Calladine, 1983; Kollar and Dulacska, 1984; Popov and Medwadowski, 
1981; and Bushnell, 1985). We must content ourselves with an explanation of 
only the basic methods and an analysis of only some typical cases. We begin with 
the axisymmetric buckling of axially compressed cylindrical shells. 

Consider a circular cylindrical shell of constant thickness h and middle surface 
radius R, subjected to axial distributed in-plane force Nxx (positive for tension). 
Let x be the axial coordinate (see Fig. 7.15a), y the circumferential coordinate 
(length of arc), and z the outward normal coordinate. A strip of the shell of width 

a} Nxx 

b) 

dy 

Figure 7.15 (a) Axially compressed circular cylindrical shell, (b) forces acting on a 
circumferential element, and (c) axisymmetric buckling mode. 
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dy behaves longitudinally as a beam or plate strip of bending stiffness D = 
b_Eh31(1- v2

) =cylindrical stiffness of the wall. So (according to Eq. 7.2.14 with 
Fj = 0) the normal outward force on the shell element dx dy must be p* dx dy = 
(Dw.xxxx- Nxxw.xx) dx dy, in which p* is the normal outward resultant per unit 
area and w = outward deflection. 

An essential fact to note is that if we assume the shell deflection to be 
axisymmetric, deflection w changes the circle of radius R to a circle of radius 
R + w, and thus circumferential normal strain e,, = [2n(R + w)- 2nR)I2nR = 
w I R. So the deflection produces circumferential in-plane force N,, = Ehw I R. 
From the sketch of the small element dy in Figure 7 .15b we see that the forces 
N11 on this element have a normal inward resultant dx N,, dy I R. Therefore, 
p * dx dy = p dx dy - (Ehw I R) dx dy I R, which yields 

(7.5.1) 

where p is the applied transverse load. For buckling, we set p = 0. 
The foregoing fourth-order differential equation is of the same form as our 

previous equation for the buckling of a beam on elastic foundation (Eq. 5.2.2). 
The equivalent foundation modulus is c = Ehl R2

• So the same solutions as those 
presented before (Sec. 5.2) may be applied again. 

We consider here only the periodic solution of the type w = w0 sin ax, which 
can occur either if the shell ends are simply supported and the shell length I is a 
multiple of the half-wavelength L = n/ «, or if the shell is very long and the 
boundary segments are not considered. The substitution of w = w0 sin ax into 
Equation 7.5.1leads to the critical load: 

(7.5.2) 

which depends on «. Setting the derivative of this equation with respect to « to 
zero, we find « = «1 = (Ehl R2D)114

, and substitution into Equation 7.5.2 then 
yields the minimum possible critical load: 

1 (Eh
2

) 
- N':z_ = V3(1 - VZ) R (7.5.3) 

This solution was obtained by Lorenz (1908, 1911), Timoshenko (1910), and 
Southwell (1914). 

If the length I of the shell is not compatible with the half-wavelength nl «~t 
the critical load and the number of half-waves can be determined by plotting 
Equation 7.5.2 as shown in Figure 7.16 for various numbers n of half
wavelengths, with « = nnll. Obviously, if « + n«~t that is, if the boundary 
conditions are not compatible with the half-wavelength nl «~t the critical load is 
higher than Equation 7.5.3 indicates. 

The potential energy of the shell may be calculated as the potential energy of 
all the beam strips of widths dy: 

TI = 2nRhE f ~ [ Dw~xx + Eh (i) 2 - ( -Nxx)w~x] dx (7.5.4) 

The same expression results from analogy with the beam on an elastic foundation. 
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Figure 7.16 Critical values of normal compressive force. 

The differential equation 7.5.1 may be derived from this expression by variational 
calculus as the corresponding Euler equation. Alternatively, substituting w = 
w0 sin ax into Equation 7 .5.4, and setting ant aw0 = 0, one obtains Equation 
7.5.2 for the critical load directly. 

Unfortunately, the foregoing simple solution applies only to the initial 
deformation of relatively thick and short tubes (Fig. 7.15c). The majority of 
cylindrical shells do not buckle axisymmetrically (and even the buckling mode of 
thick and short tubes later changes to nonaxisymmetric). That in itself would not 
be a major drawback for the foregoing solution since the critical load for the 
nonaxisymmetric buckling loads is the same or nearly the same. A more serious 
problem is that, due to the combined effects of nonlinearities and imperfections, 
the failure loads of axially compressed thin cylindrical shells are usually far 
smaller than the critical stress of the perfect shell (Eq. 7.5.3), as we will explain 
later. 

Nevertheless, the result that the critical stress is approximately proportional to 
Eh2/R is correct, and, of course, Equation 7.5.3 represents an upper bound on 
the actual collapse load. That is where the usefulness of Equation 7.5.3 lies. 

Even the foregoing simple analysis suffices to bring to light one essential 
property of shells that distinguishes them from plates: The term Ehw I R2 in 
Equation 7.5.1 is due to in-plane stretching of the shell, and thus it introduces a 
coupling between the bending and stretching modes of deformation. For plates 
such a coupling exists, too, but the coupling terms are of the second order, and 
therefore negligible for small deflections, that is, for the calculation of critical 
loads. Not so for shells. The differential equations for shells generally exhibit 
first-order bend-stretch coupling terms that are exemplified by Equation 7.5.1. 

It is interesting that Equation 7.5.3 also gives the minimum possible critical 
value of the internal in-plane (membrane) force of a perfect spherical shell 
subjected to external pressure p. The critical value of p ensues from the critical 
value of Nxx (Eq. 7.5.3) according to the transverse equilibrium condition of the 
shell element: Nxx = pR/2 (Brush and Almroth, 1975; Timoshenko and Gere, 
1961). Again however, due to imperfections and nonlinear effects, the actual 
critical load of a spherical shell under external pressure is much smaller than this 
classical result. 
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Problems 

7.5.1 Check that Equation 7.5.3 can be derived from Equation 5.2.7 valid for 
beams on elastic foundation if the circumferential restraint of shell stiffness is 
directly interpreted as the foundation modulus of the beam. 

7.5.2 Derive Equation 7.5.1 as the Euler equation using the expression of 
potential energy in Equation 7 .5.4. 

7.5.3 Construct the plot in Figure 7.16. 
7 .5.4 Solve the approximate critical value of liquid mass density p at which the 

conical tank shown in Figure 7.17(a) buckles axisymmetrically in the mode 
shown in Figure 7.17b. (Some water tower tanks have, in fact, collapsed in 
this manner.) Assume simple support at the base. Hint: First determine the 
membrane stresses required by equilibrium conditions; Nxx follows by 
equilibrium of the shell segment (x, I) with the water column above it, Figure 
7 .17c; N,, follows by equilibrium of a ring ds for horizontal forces; see Figure 
7 .17c. Then calculate the potential energy n due to bending in the mode 
shown in Figure 7.17b, taking into account the work of membrane forces due 
to deflection. Then assume various suitable approximate functions w(x) and 
calculate the solution by minimizing n. Alternatively, use the variational 
calculus to obtain a differential equation for w(x) with boundary condition; its 
coefficients, however, are variable, which complicates analytical solution. 

d) 

e) P ~H 

~ 
I R I 

f) p 

~t:;;"" 
Nxx I r I 

~ 
h) 

Figure 7.17 Exercise problems on buckling of thin shells. 
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7.5.5 Find under which conditions the critical loads for the global buckling mode 
w1 = A sin ( .n:x /1) and the local buckling mode w2 = a sin ( .n:x I h) of the 
ring-stiffened axially compressed cylindrical shell (Fig. 7.17d) are equal. Note 
that the problem is analogous to Problem 5.2.12 and the same comments 
apply. 

7 .5.6 Including inertia forces in the differential equation for axisymmetric 
deflection of a long tube under axial stress ~. calculate its lowest natural 
vibration frequency. 

7.5.7 Do the same as above, but the applied axial stress a~...(t) is pulsating. Use 
the energy method from Section 3.3 to analyze parametric resonance. (This is 
analogous to Prob. 5.2.14 for a beam on elastic foundation.) 

7.5.8 (a) Consider a flat conical shell (Fig. 7.17e), very thin (negligible bending 
stiffness), in a membrane state. Calculate the first-order membrane forces N=, 
N11 (Fig. 7.17f) and the first-order in-plane strains as well as the transverse 
deflections of each originally straight line on the surface (see some text on 
membrane shell analysis, e.g., Fliigge, 1973). From these calculate the 
second-order load-point displacement by integrating along the originally 
straight line on the shell (Fig. 7.17g). Evaluate and plot the diagram of P 
versus load-point displacement u and analyze stability. (b) Do the same as (a), 
but consider distributed pressure p (Fig. 7.17h). Define a as the average 
displacement a = f u dA/ S so that p da =work of p on du (S = area of shell 
surface and dA =its element). Calculate and plot p(a), and discuss stability. 

7.6 SHALLOW OR QUASI-SHALLOW SHELLS 

The general equations for shell buckling are rather complicated, however, a 
simplification that is valid in many situations is possible when the shell is shallow 
or quasi-shallow. A shallow shell is one whose rise with regard to any chord is 
small. A quasi-shallow shell is one which buckles in such a manner that each 
buckle alone represents a shallow shell. This means that the half-wavelength of 
buckling is short compared to the curvature radius R. Cylindrical, spherical, and 
other shells usually fail by forming many relatively small buckles (Fig. 7 .18) even 
when the shell as a whole is not shallow. Thus, they may then treated as shallow 
shells. 

b«R 

Figure 7.18 Buckling mode of quasi-shallow shell. 
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Basic Relations for Cylindrical Shells 

We will now derive the basic differential equations for shallow cylindrical shells. 
First, we will consider the general nonlinear behavior and then carry out 
incremental linearization. 

Similar to Kirchhoff's assumption for plates, thin shells may be analyzed under 
the assumption that the normals of the middle surface remain straight and normal 
to the middle surface, and that the transverse normal stress is negligible. This 
assumption, due to Love (1888), implies that the strains due to bending at any 
point of coordinate z measured from the middle surface are calculated as 
Eu = -ZKu, Eyy = -ZKyy• Exy = -ZKxy• in Which Ku, Kyy• and Kxy represent the 
additional curvatures due to bending and twisting of the shell wall. By a similar 
procedure as for plates, the same moment-curvature relations are obtained: 

Mxy = D(1- v)KTy (7.6.1) 

where Mu, Myy• and Mxy are the bending moment and the twisting moment, and 
D = Eh3/12(1- v2

). For small displacements u, v, and w in the x-, y-, and 
z-directions, the curvature changes may be calculated as 

Kyy = W,yy + {;2 } {
1 V,x} 

Kxy=W,xy= 2R (7.6.2) 

The terms in braces are different from plates, and represent small corrections that 
can often be neglected unless the curvature radius R is too small. The term w/R2 

is the same as already derived for arches (Eq. 2.8.2). The term v,xi2R is due to 
the fact that a displcement, v, in the direction tangent to the middle surface must 
be accompanied by a rotation of the shell element: see Figure 7.19, which shows 
that the contribution of v to twisting curvature is 2dKxy = dfjJ/dx = (dv/R)Idx = 
v,xl R. For shallow shells, the additional curvature due to R, as written in braces 
in Equations 7 .6.2, can be neglected. 

The in-plane deformations at the middle surface are described, according to 
Hooke's law, by the relations: 

1-v 
Nxy = -

2
- Cyxy (7.6.3) 

in which Yxy = 2Exy =shear angle, and C = Eh/(1- v2
). The in-plane strains at 

the middle surface may be calculated the same way as for plates: 

- ~ [1 2] Eyy - v ,y + R + 2 w .y Yxy = U,y + V,x + [w.xw.y) (7.6.4) 

X 

Figure 7.19 Twisting curvature generated by tangential displacement. 
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in which the terms in brackets are nonlinear and second-order small. They have 
already been derived in Section 7 .2. Similar to plates, these terms must be 
considered in the potential-energy expression because the potential energy must 
be expressed accurately up to all the terms of second order. These terms, 
however, may normally be neglected in formulating the equilibrium equations for 
critical loads, since these equations should yield a linear eigenvalue problem, just 
like for plates. 

The bending and twisting moments and the transverse shear forces Qx and Qy 
(which rotate with the cross section, see Sec. 1. 7) are related, according to the 
moment equilibrium conditions, which read Mrcx.x + Mxy,y = Qx, Myy,y + Mxy,x = 
Qr The shear forces Qx and Qy are assumed to rotate with the normal of the 
middle surface and thus they are analogous to the shear force Q that we 
introduced in Section 1. 7 for columns with shear. They differ from the fixed 
direction shear forces Yx and Vy that are analogous to shear force V in 
beam-columns (Sec. 1.3). According to the condition of equilibrium of the forces 
normal to the shell, we also have Qx.x + Qy,y + p + PN = 0 in which p is the 
applied normal distributed load and PN is the transverse resultant (per unit area 
of shell) due to the membrane action, that is, due to the out-of-plane components 
of the in-plane forces in the curved middle surface of the shell. Combination of 
the foregoing equilibrium relations yields the differential equilibrium condition: 

Mxx,xx + 2Mxy,xy + Myy,yy = p + PN (7.6.5) 

The transverse distributed force due to the membrane action has two 
components: one is due to the initial curvature, 1/R, which equals -Nyy!R 
according to Section 7.5 (Fig. 7.15b); and another one, which is due to the 
additional curvatures wxx, Wxy• Wyy• is the same as previously derived for plates 
(Eq. 7.2.15a or 7.2.24). Therefore we have 

Nyy ) 
PN =-R + (NxxW,xx + 2NxyW,xy + NyyW,yy (7.6.6) 

The terms in the parentheses are a source of nonlinearity since the in-plane forces 
Nxx, .•. are in general unknown and variable. However, unless R is very large, 
these terms are higher-order small for the initial deflections for which w.xx• w.yy• 
and w,xy are infinitesimal. 

The in-plane differential conditions of equilibrium may approximately be 
written in the usual form: 

Nyy.y + Nxy.x = 0 (7.6.7) 

since the term Qy/R in the second of Equations 7.6.7 may be neglected due to the 
hypothesis that the shell is shallow. 

Equations 7 .6.1 to 7 .6. 7 represent all the necessary basic equations. The shell 
surface geometry and boundary conditions always have imperfections that induce 
initial bending deflections, and consequently there is no perfect initial loading 
path for which the transverse deflections would remain zero up to some critical 
load. Rather, the deflections increase continuously from the start of loading. Thus 
Nxx, ... as well as w, u, v vary simultaneously, and so the resulting system of 
equations is nonlinear. 
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The solution can be simplified by the introduction of the Airy stress function 
F(x, y), such that Nxx = F,YY' Nyy = F.xx, Nxy = -F.xr Substitution into the 
in-plane differential equilibrium conditions (Eqs. 7.6.7) then shows them to be 
automatically satisfied. The in-plane compatibility condition for strains Exx• Eyy• 

Yxy• which was already used (with R--+ oo) for deriving the von Karman-Foppl 
equations (Eqs. 7.4.4-7.4.5), reads 

2 1 
Exx,yy + Eyy,xx- Yxy,xy = W,xy- W,xxW,yy + R W,xx (7.6.8) 

Expressing first Em Eyy• and Yxy from Hooke's law (Eqs. 7.6.3) and then N=, 

NYY' Nxy in terms of F, we may obtain from Equation 7 .6.8 

1 4 2 1 
Eh v F = W,xy- W,xxW,yy + R w,JCJC (7.6.9a) 

A second differential equation results by substituting Equations 7 .6.2 (in which 
the terms in braces are neglected) into Equations 7.6.1, then Equations 7.6.1 into 
Equation 7.6.5, and finally Equation 7.6.6 (expressed in terms of Airy stress 
function) into Equation 7.6.5; 

4 1 
DV W = p + F,yyW,xx- 2F,xyW,xy + F,xxW,yy- R F.xx (7.6.9b) 

Equations 7.6.9a, b were derived by Donnell (1934). Note that their special case 
for R--+ oo is the von Karman-Foppl equations for nonlinear buckling of plates. 

Donnell's Equation 

Let us now examine the effect of small displacement increments starting from the 
initial state J!l, w 0

• We replace w in Equation 7.6.9b with w 0 + w and F with 
J!l + F where w and F now denote small increments. Then we subtract the same 
equation written for the initial state w0 and J!l with p considered as constant and 
we neglect the higher-order terms. In this manner we obtain 

DV4w = f'?yyW,xx + F,yyW?xx + f'?xxw,yy + F.xxw?yy- 2f'?xyW,xy- 2F,xyw?xy- ~ F.xx 

(7.6.10a) 

In a similar manner, we obtain from Equation 7.6.9a 

1 4 0 0 0 1 
Eh v F = 2w ,xyW,xy- w ,JCXW,yy- w ,yyW,xx + R w,JCX (7.6.10b) 

Now, assuming that the initial state is a membrane state for which the shell is a 
perfect cylinder, we may substitute w?xx = w?YY = w?YY = 0 (i.e., neglect initial 
curvatures). This reduces Equations 7.6.10a, b to 

(7.6.11a) 

1 4 1 
Eh V F= R W,xx (7.6.11b) 
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Then, applying the operator V4 to Equation 7.6.1la and noting that, according to 
Equation 7.6.1lb, V4F,u/R = w,=Eh/R2

, we obtain 

DV
8
w - V4(~xW,u + 2~yW,xy + ~yW,yy) + ~~ w.= = 0 (if w~ = 0) 

(7.6.12) 

in which V8 = (V4
)
2 = (V2t where V2 =the Laplacian. After solving the incremen

tal deformations from Equation 7.6.12, in which NJ are considered constant, one 
can solve F from Equation 7.6.11b, then solve strains from Equations 7.6.3 and 
finally calculate the displacements from strains. 

Equation 7 .6.12 is the famous linearized Donnell equation for shallow shells 
(1934). Its derivation, which we presented here (Bafant, 1985), is considerably 
simpler than the direct derivation previously presented in textbooks. It shows that 
derivation of linear differential equations by linearization of the nonlinear ones 
may be simpler than deducing the linearized equations directly. 

Equation 7 .6.12, which is valid only incrementally when w?;i = 0, can be used 
to solve critical loads. It should be noted that, for general shells, buckling from an 
undeftected initial state ( w0 = 0) does not exist. Therefore, Equation 7 .6.12 may 
be used only if the prebuckling curvature changes are negligible. 

Axially Compressed Cylindrical Shell 

Let us now apply Donnell's theory to calculate the critical load of an axially 
compressed cylindrical shell. We assume that the shell is initially in a perfect 
unbuckled membrane state, carrying an axial distributed force ~ with ~Y = 
N;y = 0, and p = 0. Then the shell buckles in a doubly periodic surface of 
alternating buckles assumed to have the form: 

W = W0 COS Q'X COS {3y (7.6.13) 

in which w0 , a, {3 =arbitrary constants, with a= n/ L, {3 = n/b, L and b being 
the half-wavelength of the buckles in the longitudinal and circumferential 
direction, respectively. Substitution of Equation 7.6.13 into Donnell's equation 
(Eq. 7.6.12) indicates that this equation is satisfied for any w0 when 

Eh ( 1 1 )-
2 

( 1 1 )
2 

-~ = -N':x = n2R2L2 L2 + b2 + n2L2D L2 + b2 (7.6.14) 

According to the assumption of the quasi-shallow shell theory, this result is, of 
course, correct only if L and b are sufficiently smaller than the radius R. 

One can also verify that if the expressions u = u0 sin ax cos {3y and v = 
v0 cos ax sin f3y are substituted into Equations 7 .6.4 (the terms in brackets being 
neglected), and if Nu, ... are calculated from Equations 7.6.3, the trigonometric 
functions in Equations 7.6.7 cancel out. 

For {3-+0 (b--+oo) or cosf3y-+1, deflections w(x,y) according to Equation 
7.6.13 are axisymmetric. Indeed Equation 7.6.14 reduces for this case to 
Equation 7.5.2 that we obtained earlier. 

For doubly periodic modes one needs to find the minimum of Equation 7.6.14 
with respect to variables L and b, subjected to the condition that suitable 
boundary conditions are satisfied. The simplest boundary conditions are simple 
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supports at the ends of the tube. Obviously, they require an integer number of 
half-waves of length L over the length I of the shell. Along the circumference, 
there must also be an integer number of half-waves of length b. Minimization of 
Equation 7 .6.14 under these constraints is not a straightforward matter; for 
details consult, for example, Calladine (1983, p. 485) or Chajes (1974, p. 312). 

For a long tube and a high number of buckles along the circumference, 
unconstrained minimization of -N~~ (Eq. 7.6.14) with respect to Land b yields, 
curiously, the same critical value as Equation 7.5.3 for axisymmetric buckling, 
that is, 

cr 1 (Eh
2

) 
-NXXm;n = V3(1- v2) R 

J2 
if Z~2.85 where Z= Rh ~ {7.6.15) 

Parameter Z, called the Batdorf parameter {1947), indicates the range over which 
this equation is a good approximation for the minimum critical load obtained by 
proper constrained optimization. For short cylinders, particularly for Z < 2.85, 
the approximate minimum is (Chajes, 1974, p. 314) 

(7.6.16) 

For this case one finds that there is only one half-wavelength over the entire 
circumference, that is, b = 2nR. This means that the assumptions of quasi-shallow 
shell theory are not satisfied, and so the solution cannot be accurate. 

Further it may be noted that for a very short cylindrical shell (Z- 0), the 
critical load expression approaches that for an infinitely wide rectangular plate, as 
may have been expected (this is not true of the axisymmetric solution, Eq. 7.5.3). 

The most remarkable fact about the foregoing results is that the axially 
symmetric mode (Sec. 7 .5) and the doubly periodic mode yield the same or nearly 
the same critical load. Furthermore, among the doubly periodic modes, one can 
usually find a number of combinations of half-wavelengths L and b that yield 
nearly the same critical load, with critical stresses differing by not over 2 percent 
of minimum N~ (Calladine, 1983, p. 493). This fact, which is a typical 
characteristic of shells and distinguishes them from other buckling problems we 
have discussed so far, has a major effect on the postcritical behavior. 

We have already seen from some simple examples in Section 4.8 that the 
postcritical response is profoundly altered when two different buckling modes are 
associated with the same or nearly the same critical load. We saw (Fig. 4.55) that 
such a combination of modes may conspire to produce a softening response after 
the critical state. This is precisely what happens for shells and explains their 
strong sensitivity to imperfections. Thus we have an explanation why experiments 
generally yield failure loads that are much smaller than the critical load (except 
when Batdorf parameter Z is small). This phenomenon, to which we will return 
later (in Sec. 7. 7), is illustrated in Figure 7 .20a, which compares theoretical and 
experimental results (reported by Gerard and Becker, 1957b) for cylindrical shells 
subjected to axial compression. The theoretical results (taken from Brush and 
Almroth, 1975, p. 183) refer to cylinders with clamped ends, but the experimental 
results do not generally correspond to these boundary conditions. 

It should be noted that our solution is inapplicable to very long shells, which 
buckle like a column, the circular cross sections remaining almost undeformed. 
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Such overall buckling cannot be predicted by Donnell's theory. This theory 
applies only to local buckling, that is, to situations where the half-wavelength of 
the buckles is small compared with the dimensions of the shell. 
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Figure 7.20 Comparison of theoretical and experimental results for cylindrical shells: (a) 
axial compression; (b) hydrostatic pressure; (c) lateral pressure; (d) torsion. (Adapted 
from Brush and Almroth, 1975.) 

Effect of Lateral Pressure on Cylindrical Shells 

The remarkable property of existence of many modes with nearly the same 
critical stress is lost when a lateral load pis superimposed (Fig. 7.21), producing 
nonzero N,,. We will now examine the case in which the cylindrical shell is 
assumed to have initially a perfectly cylindrical form and be initially in a 
membrane state carrying initial in-plane forces Nxx and N,,. An important special 
case is the loading by hydrostatic pressure, p, for which Nxx = ~N,, and 
N,, = -pR. We may assume for this loading the same doubly periodic displace
ments as we did in Equation 7.6.13. Substitution into Donnell's equation (Eq. 
7.6.12) yields an algebraic relation from which one can solve the critical value of 
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Figure 7.21 Combined normal axial forces and lateral pressure on cylindrical shell. 

the transverse (hydrostatic) pressure: 

=.!. [(k
2 + n2

t(D/R2
) + k 4Eh] 

Per R (k2 + n2)2(n2 + pk2) (P = z= , k = aR = m;R, n = PR) 
yy 

(7.6.17) 

in which m = 1/ L =number of half-wavelengths along the length and n = nR/b = 
number of wavelengths along the circumference. 

For the case of hydrostatic pressure (p = !), Figure 7.20b shows the plot of 
PI Z as a function of the Batdorf parameter Z; p is the critical value of the 
nondimensional parameter p = 12Rp/n2D. The same diagram also shows the 
experimental results reported by Gerard and Becker (1957b ). 

For the special case when only transverse pressure p is applied (p = 0), the 
smallest value of Per for any small n is found to correspond to m = 1, that is, a 
single half-wave along the length of the shell. Equation 7 .6.17 may be rewritten 
for this case in the nondimensional form: 

_ _ (1 + n2
)
2 + 1 (12)z2 

Per- 112 n2(1 + nz)2 tc4 (7.6.18) 

in which we introduce a further nondimensional parameter, n = nl I nR. 
Although n is not continuous, an approximate minimum can nevertheless be 
obtained by analytical minimization with respect to n. This yields Per= f(Z) =a 
certain function of parameter Z. The values of Per/Z are plotted in Figure 7.20c, 
together with experimental results taken from Gerard and Becker (1957b). 

The buckling modes produced by an internal vacuum in cylindrical shells of 
various dimensions are illustrated by the teaching models in Figure 7.22 
(Northwestern University, 1969). 

For lateral pressure different buckling modes have very different critical loads, 
as already mentioned. In keeping with the previous remarks, this means that the 
postcritical behavior is not expected to involve a steep softening, and experience 
confirms that. Therefore, the cylindrical shell is not highly imperfection sensitive 
for this type of loading. This is confirmed by the experimental data for 
transversely loaded cylindrical shells. Indeed, they yield failure loads that are 
quite close to the present theoretical critical loads (Eq. 7 .6.18), in sharp contrast 
with the data for axial loading. Thus, for transverse pressure loading the 
linearized Donnell's theory is directly applicable. 
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Figure 7.21. Northwestern University (1969) teaching models for buckling produced by an 
internal vacuum in cylindrical shells of various dimensions. 
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It may also be noted that the foregoing conclusion agrees with what is known 
about the buckling of high arches (Sec. 2.8). In fact, when the cylindrical shell is 
very long or infinite, the present solution for transverse pressure must approach 
the solution for a circumferential strip of the shell analyzed as an arch or ring. 

Cylindrical Shell Subjected to Torsion 

Another case where the linearized Donnell's theory yields results that are in good 
agreement with tests of failure loads is the case of torsional buckling of a 
cylindrical shell (Fig. 7 .23). For this case, the displacements may be assumed to 
be of the form 

w = w0 sin ({Jy- ax) (7.6.19) 

in which w0 , a, p = constants. This deformation mode represents buckle strips 
that form a helix on the cylinder. Substituting Equation 7.6.19 into Donnell's 
equation (Eq. 7.6.12), we find that the trigonometric functions cancel out, and 
the solution of the characteristic equation then yields 

cr Dn2 2 2 Ehk3 
Nxy = 2Rzk (1 + k ) + 2nz(1 + kz)z (7.6.20) 

Here n = {JR = number of wavelengths along the circumference and k = a I p = 
slope of the helix relative to the generating circle of the cylindrical surface. 

Our initially assumed deflection w = w0 sin ({Jy - ax) does not satisfy any 
simple boundary conditions at the shell end, and so we must assume that our 
assumed deflection surface pertains to the central portion of a long shell that is 
little affected by the end conditions. In such a case the slope k is arbitrary. It may 
be shown that the minimum of Nxy occurs for a relatively small slope k, and so 
1 + k2 may be approximately replaced with 1. This yields N~ = [(Dn2

/ R2k) + 
(Ehk3/n2))/2, and minimization of this expression with respect to k then yields 

Nc:r . = 0.136nEh (!!.) 312

(1 - v2
)-

314 
XYmon R (7.6.21) 

The minimum corresponds to k = n(h/6R) 112
• From this we can now see that for a 

thin shell the value of k 2 is indeed small compared to 1. 
The minimum of Equation 7 .6.21 occurs for n = 1, that is, for a single buckle 

along the circumference. However, a single buckle is usually unacceptable. This is 
realized upon considering the in-plane displacements, which are given by the 

Figure 7.23 Torsional buckling of a cylindrical shell. 
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expressions u = u0 cos (fJy - ax) and v = v0 cos (fJy - ax) (it may be verified that 
these expressions, together with Eq. 7 .6.19, satisfy the in-plane differential 
equilibrium equations; see Eqs. 7.6.26 given later). Now we may note that these 
expressions imply an antisymmetric distribution of the axial displacements, u, 
which can occur only if the end cross sections of the shells are permitted to rotate 
about an axis normal to the shell axis. The usual boundary conditions prevent 
this, and then the smallest possible number of buckles along the circumference is 
n = 2, which is the value to be substituted in Equation 7.6.21. 

Near the ends of the shell, the value n = 2 is also too small, since long buckles 
along the circumference cannot form for the usual boundary conditions of a 
simple support or a fixed edge. Many short buckles arise near the ends of the 
shell. 

It may be also noted that Equation 7.6.21 for n = 2 gives a value that is V1 
times larger than the value given by Timoshenko and Gere (1961). This small 
discrepancy is due to our neglect of the effect of circumferential bending, which is 
appreciable for small n. 

The values of the nondimensional critical shear force are plotted in Figure 
7 .20d as a function of the Batdorf parameter Z. Also shown in the figure are the 
test results according to the data reported by Gerard and Becker (1957b). As we 
see, the prediction of the linearized Donnell's theory is in this case in acceptable 
agreement with the measured failure loads of tubes subjected to torsion. 

Variational Derivation from Potential Energy 

The differential equations for shallow shells may, of course, be also obtained by 
variational calculus from the principle of stationary potential energy. Similar to 
Equation 7.2.5 for plates, the potential energy of a shallow shell may be 
expressed as n = Um + Ub - W in which W = -I I A pw dx dy =work of loads, 
Um =strain energy due to in-plane stretching, that is, membrane action, and 
Ub =strain energy due to bending of the shell. For isotropic materials we then 
have 

Um = ( Eh 2) If (E~ + e;y + 2vExxEyy + 2(1- v)e;y] dx dy 
21-v A 

ub =~I L [K;., + K;y + 2vK.,_,Kyy + 2(1- v)K;y] dx dy 

(7.6.22) 

(7.6.23) 

One may now substitute Equations 7.6.4 and 7.6.2 for the in-plane strains and 
bending curvatures to obtain the potential-energy expression in terms of u, v, w. 
Note that, in contrast to our previous derivation of the differential equations of 
equilibrium, one may not neglect in this expression the second-order small term 
in the brackets of Equations 7 .6.4. The reason is that the dominant terms in the 
potential-energy expression are already second-order small. 

The nonlinear differential equations of equilibrium may be obtained as the 
Euler equations from the integrand of the potential-energy expression in 
Equations 7.6.22 and 7.6.23 (see Brush and Almroth, 1975, p. 149). The 
linearized differential equations of equilibrium at constant in-plane forces can also 
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be directly obtained from the potential energy if the work of Nw . . . on the 
in-plane strains due to transverse deflection is included in Equation 7 .6.22. 

Cylindrical Shell Panels 

The foregoing analysis of complete cylindrical shells may be readily extended to 
cylindrical shell panels limited by lines x = const. and y = const. The difference is 
that the number of half-waves in the circumferential direction must match the arc 
length B of the panel (Fig. 7.24) rather than the circumference 2nR. 

General Quasi-Shallow Shells 

For shells of general shape, derivation of the differential equations from the 
potential-energy expression is particularly convenient. The shape of a general 
shell may be characterized by introducing lines-of-curvature coordinates x andy 
and specifying the distances along these coordinate lines by the relations 
dsx =A dx, dsy = B dy (Fig. 7.25) in which A, Bare called the Lame coefficients. 
The shell surface may then be characterized by global Cartesian coordinates 
X(x, y), Y(x, y), Z(x, y). From the relation ds~ = (X,x dx)2 + (Y,x dxf + 
(Z,z dx)2 and a similar relation for dsy it follows that (e.g., Novozhilov, 1953) 

A= (X~x + Y~x + Z~x) 112 B = (X~y + Y~y + Z~y)112 (7.6.24) 

The in-plane strains, rotations tPx and l/Jy of the normals, and the bending and 
twisting curvatures of shallow shells may then be generally calculated as (e.g., 
Brush and Almroth, 1975, p. 195) 

Ux Ayv W 
E =-' +-'-+-

xx A AB Rx 
Vy Bxu W 

E =-· +-'-+-yy B AB R 
y 

v u B v+A w 
Exy = ;; + ; - ,x AB ,y + l/Jxl/Jy 

Wx U Wy V 
tPx=-A+R l/Jy= -Ji+"R 

X y 

K = l/Jx,x + A,yl/Jy K = l/Jy,y + B,xl/Jx 
XX A AB yy B AB 

2K = l/Jy.x + l/Jx.y _ A.yl/Jx + B,xl/Jy 
xy A B AB 

in which Rx and Ry are the principal radii of curvature. 

z 

b) 

~ 
X 

(7.6.25) 

Figure 7.24 Buckling of a cylindrical panel. Figure 7.25 General shell element. 
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Calculating the potential energy from these expressions, and proceeding 
according to the calculus of variations, one can then obtain the differential 
equations of equilibrium for a general shallow or quasi-shallow shell. 

Incremental linearization of Equations 7.6.25 and quadratic approximation of 
the second variation A2Il according to Equations 7.6.22 and 7.6.23 leads to linear 
differential equations for general shallow shells, which are usually called the 
Donnell-Mushtari-Vlasov theory (Donnell, 1934; Mushtari, 1938; Vlasov, 1949; 
see also Brush and Almroth, 1975, p. 199). A special case of such equations are 
the linearized Donnell's differential equations for shallow cylindrical shells that 
we derived before. 

Problems 

7 .6.1 Derive in full detail the expression for the critical axial stress resultant Nxx 
in Equation 7.6.14. 

7 .6.2 Consider a simply supported elastic cylindrical shell of R I h = 200. Calculate 
the exact critical axial compression force Nxx for the case IIR = 4, using 
Equation 7.6.14. Compare the result with the expression in Equation 7.6.15. 

7 .6.3 For the same cylinder as in Problem 7 .6.2, but with 1/ R = 0.1, calculate 
the critical axial force Nxx using Equation 7.6.14. Compare with the expression 
in Equation 7.6.16. 

7.6.4 Solve (Nxx:)cr for a simply supported cylindrical shell panel (Fig. 7.24a) of 
length L and arc length B = R 13. 

7.6.5 For the same cylinder as in Problem 7.6.2, calculate the critical value of (a) 
external transverse pressure and (b) hydrostatic pressure. 

7 .6.6 Derive in full detail the expression for the critical value of the external 
transverse pressure in Equation 7 .6.17. 

7 .6. 7 For the same cylinder as in Problem 7 .6.2, calculate the critical value of the 
in-plane shear force Nxy under torsional loading. 

7.6.8 Without referring to the text, check that for a sufficiently long shell 
(I I R ._ oo) the critical value of transverse pressure p is the same as the critical 
radial distributed force of a ring of thickness h and a unit width. 

7.6.9 Check that if IIR as well as hiR is sufficiently small, and the shell ends are 
simply supported, then (a) (Nxx:)cr can be obtained from Euler's formula for 
the critical load of a column; (b) (Nx,)cr due to torsion agrees with the critical 
value of Nxy for a rectangular plate of sides I and 2nR (here we have only an 
approximate Nxy to go by); (c) the critical value of transverse pressure p tends 
to infinity; and (d) the critical value of hydrostatic pressure is Per= 
2nRNxxlnR2 = 2Nxx:IR where N= is the same as for case (a). 

7.6.10 Calculate the critical values of Nxx for various values of the ratio 
y = hpiNxx where p is either (a) transverse pressure or (b) hydrostatic 
pressure. Plot the envelope of critical states (interaction diagram) for 
0$ y$2. 

7 .6.11 Starting from Equations 7 .6.1 to 7 .6. 7, derive three differential equations 
of equilibrium for the x-, y-, z-direction in terms of displacements. Proceed as 
follows: Neglect the higher-order terms in the brackets and braces in 
Equations 7.6.2 and 7.6.4, then substitute Equations 7.6.4 into Equations 
7.6.3 and Equations 7.6.3 into Equations 7.6.7, and also Equations 7.6.2 into 
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7.6.1, 7.6.1 into 7.6.5 and 7.6.6 also into 7.6.5. The result is 

R[2u,xx + (1 ·- v)u,yy + (1 + v)v,xy] + 2vw,x = 0 (7.6.26a) 

R[2v,yy + (1- v)v.xx + (1 + v)u,xy] + 2w,y = 0 (7.6.26b) 

DV4w- NxxW,xx- Nyy(w,yy- R- 1
)- 2NxyW,xy = p (7.6.26c) 

Note: Problems in which the boundary conditions need to be specified in terms 
of u and v must, of course, be solved on the basis of these equations rather 
than Donnell's equation. 

7.6.U Derive Donnell's equation in the following manner (which is the proce
dure used in the previous works, e.g., Brush and Almroth, 1975; or Chajes, 
1974). Apply operator cf-lax ay to Equation 7.6.26b and operators cf-lax2 and 
cf-lay2 (separately) to Equation 7.6.26a. Then algebraically rearrange these 
equations to the form: 

(7.6.27) 

Apply now the operator cf-lax ay to Equation 7.6.26a and the operators 
cf-lax2 and cf-lay2 to Equation 7.6.26b. Then algebraically rearrange the 
resulting three equations to yield 

RV4v = (v + 2)w,xxy + W,yyy (7.6.28) 

Apply the operator V4 to Equation 7 .6.26c, and then substitute into the 
resulting equation the derivative of Equation 7 .6.26a with respect to x and the 
derivative of Eq. 7.6.26b with respect to y. This finally gives Donnell's 
equation. 

7 .6.13 Check that if Equation 7 .6.13 and the expressions u = u0 sin ax cos {Jy and 
v = v0 cos ax sin {Jy are substituted into Equations 7.6.26a, b, c, then the 
trigonometric functions cancel out. Check also that by setting the determinant 
of the linear equations for the unknowns u0 , v0 , w0 equal to zero one obtains 
the same expression as in Equation 7 .6.14 for the critical axial force Nxx-

7.6.14 Using Equations 7.6.22 and 7.6.23 for the potential energy, derive 
Equations 7 .6.26a, b, c as the corresponding Euler equations. 

7.6.15 Consider a shallow hyperbolic paraboloid shell given by the equation 
z = (xI a )2

- (y I b )2
• Substituting this into Equations 7 .6.24, find the values of 

the Lame parameters A and B. 

7.7 NONLINEAR ANALYSIS OF SHELL BUCKLING AND 
IMPERFECTIONS 

As already emphasized, the classical critical load formulas obtained by linear shell 
analysis are in good agreement with the experimentally observed collapse loads 
only for some types of failure, for example, the buckling of cylindrical shells 
under external pressure or under torsion. For many shell problems, for example, 
the buckling of cylindrical shells under axial compression or bending, as well as 
the buckling of spherical shells, the observed collapse loads are much smaller, 
typically about 30 percent of the classical critical load, and sometimes as low as 10 
percent of that load. Beginning with the experimental results of Robertson 
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(1928), Fliigge (1932), and Donnell (1934), the inadequacy of the classical 
linearized shell theory has been demonstrated by numerous experiments (see 
Gerard and Becker's 1957b handbook, or the 1971 handbook of the Column 
Research Committe of Japan). 

Reduction Factors for Classical Critical Loads 

Large as it is, the error of the classical critical load formulas as estimates of the 
collapse load nevertheless does not render them useless, for several reasons: (1) 
The classical critical loads provide a useful upper bound on the collapse load. (2) 
They are also valuable as test cases for finite element programs (although it is 
quite difficult to predict these critical loads by finite elements correctly). (3) The 
classical critical states further yield good estimates of the length of the buckles on 
the shell surface, which may then be used for an approximate nonlinear analysis. 
(4) Finally, due to their simplicity, the classical critical load formulas serve as the 
basis of design specifications, in which an empirical correction based on extensive 
test results is introduced by a reduction factor cp. 

As an example (e.g. Seide, 1981), the classical formula for the critical value of 
the axial distributed force in a cylindrical shell (Eq. 7.6.15) is modified for failure 
prediction as follows: 

in which 
I 

for 0.5:5 R :55, 
R 

100:5-:5 3000 
h 

(7.7.1) 

(7.7.2) 

This empirical formula for the reduction factor cp (also called the correction factor 
or the "knockdown" factor) has been determined as a lower-bound envelope of 
many test results. Equation 7. 7.1 also applies to the critical value of the maximum 
normal force Nxx caused in the cross section by the bending moment; however, 
the reduction factor is, according to numerous tests, expressed as cp = 1 -
0. 73[1- exp (- -k.Vifiii)]. 

For a combined loading by axial compression and bending, the critical value 
of the maximum Nxx in the cross section may be approximately and safely 
estimated, according to test results, from a linear interaction diagram: 

N':u + N~x = 1 Na Nb 
XXcr XX" 

(7.7.3) 

in which N':u, N~x are maximum internal normal forces due to axial compression 
alone and to bending alone, and N~x"'' N~x.,. are their critical values. Based on 
tests, linear interaction diagrams also apply to other shell buckling problems, for 
example, the combination of axial compression and lateral pressure on a 
cylindrical shell. 

Numerous other formulas, which are similar to Equation 7.7.1 and involve 
empirical reduction of the classical critical loads calculated by a linear theory, are 
given in various handbooks, as well as in the comprehensive review by Kollar and 
Dulacska (1984 ). 
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Physical Source of Postcritical Load Drop and High Imperfection 
Sensitivity 

The reason that many shells fail at a much smaller load than the classical critical 
load consists in the combined effect of nonlinearity and imperfections. This was 
discovered by von Karman with Dunn and Tsien (1940) (see also von Karman 
and Tsien, 1941). In their revolutionizing paper, they demonstrated by approxi
mate nonlinear analysis that, after reaching the critical states, the load can rapidly 
decrease at increasing deflection, that is, the structure undergoes softening. 
Further they demonstrated that even a small disturbance can cause the shell to 
jump to a postbuckling state at which the carrying capacity is greatly reduced. 
Shortly afterward, Koiter (in his dissertation in Dutch in 1945, which became 
known in the English speaking world only much later), recognized the possibility 
of developing a general theory of stability that asymptotically describes the 
immediate postcritical behavior, makes it possible to describe the effect of 
imperfections in general terms, and characterizes various types of postcritical 
imperfection sensitivity exhibited by various structures. Koiter introduced the 
idea of a multidimensional space whose coordinates are the load and the 
amplitudes of various possible buckling modes. He showed how different types of 
equilibrium paths can be obtained from the potential-energy expression by taking 
its first partial derivatives. He further showed how the stability of the subsequent 
equilibrium states on such paths can be decided on the basis of the second partial 
derivatives of the potential-energy expression. 

Analysis of the role of imperfections in shell buckling was pioneered by 
Donnell and Wan (1950). An analysis of the effect of random imperfection near 
the critical state explained why, even in rather careful experiments, the measured 
collapse modes exhibit tremendous scatter. The classical mathematical result that 
a truly perfect axially compressed shell should not fail until the classical critical 
load based on linearized theory (Eq. 7.6.15) is reached had not been experimen
tally confirmed until Almroth, Holmes, and Brush (1964); Evensen (1964); 
Tennyson (1969); Tennyson and Muggeridge (1969); and Tennyson, Muggeridge, 
and Caswell (1971) did it almost half a century after the critical loads had been 
calculated by Lorenz (1908, 1911), Timoshenko (1910), and Southwell (1914). 
Tennyson's tests were made on epoxy resins shells manufactured with extraordi
nary precision. 

The high imperfection sensitivity of shell buckling problems is caused by the 
fact that the polynomial expansion of the potential-energy expression, that is, 

(7.7.4) 

contains a cubic term; q =amplitude of the dominant buckling mode associated 
with the critical load, and a0 , a1, a2 , • •• =coefficients that depend on the load P 
(or load parameter A.), as well as the type and magnitude of the imperfections. 
The cubic term is absent from the potential-energy expression of structures that 
are imperfection-insensitive and exhibit symmetric bifurcation, such as columns 
or plates. For shells, though, this term is nonzero and can be particularly large. In 
a linear stability analysis, the potential-energy expression is, of course, always 
quadratic. Thus the cubic (and higher-order) terms can be obtained only by 
nonlinear analysis. 
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The way the higher-order terms can influence stability was explained by von 
Karman et al. (1940) by a simple and instructive example of a column restrained 
by a nonlinear spring; see Fig. 7 .26. He assumed that the relationship of the force 
F and the displacement w of the spring is a quadratic curve shown in Figure 7.26b 
and described as F = C 1 w - C2 w

2
, in which C 1 and C2 = positive constants. The 

potential energy of the system of two rigid bars and spring shown in Figure 7.26a 
may then be calculated as n = J F dw - 2P L( cos q0 - cos q) in which cos q0 -

cos q = (q2
- q~)/2 and w = L(q - q0). Integration yields the approximation: 

ll = !C1L2(q- qo)2 -iC2L3(q- q0 )
3

- PL(q2
- q~) (7. 7.5) 

which is third-order accurate. The condition ant aq = 0 furnishes for the 
equilibrium paths the equation: 

p = [C;L- C~L2 (q- qo)] q ~ qo (7.7.6) 

From this equation it is now clear that the presence of the quadratic coefficient C2 

in the force-displacement relation of the spring causes the perfect system (q0 = 0) 
to soften in its postcritical response (i.e., the curve P(q) has a negative slope). It 
is also clear from Equation 7.7.6 !hat the larger the imperfection q0 the smaller is 
the maximum load of the perfect system (Fig. 7.26c). 

As for the analogy with shells, we may now note that when a suitable buckling 
mode of amplitude q is introduced into the potential-energy expression in 
Equations 7.6.22 and 7.6.23 in which the proper nonlinear strain and curvature 
expressions are used, the resulting expression for the potential energy of the shell 
appears to be, in the simplest approximation, a cubic polynomial (analogous to 
Eq. 7.7.5). Since the potential-energy expression totally characterizes the 
response, the equilibrium path for the shell must be of the kind indicated in 
Figure 7.26c, as shown by von Karman et al. (1940). Moreover, it is found that 
for shells the coefficient C2 can be very large, causing the postcritical downward 
slope in Figure 7.26 to be rather steep or exhibit a snapback. Consequently the 
reduction of the carrying capacity of the shell is quite significant already at 
practically small deflections. 

b) 

w 

c) 

q 

++-q· 
Figure 7.26 (a) Rigid-bar model with (b) nonlinear spring and (c) load-rotation curves 
(used by von Karman et al., 1940). 
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Koiter's Laws of Imperfection Sensitivity 

Koiter (1945) reached some simple, yet important, general conclusions regarding 
the initial asymptotic postcritical behavior. The equilibrium path of a perfect 
system, resulting from the condition ant aq = 0, may be described by the power 
series expansion: 

(7.7.7) 

in which q represents the amplitude of the buckling mode associated with the 
critical state, such that q = 0 at the critical state; c1 = c2 =constants characterizing 
the given structure; A.= load parameter (e.g., A.= N= or A.= P); and Acr =critical 
value of A.. Depending on the vanishing or non vanishing of coefficient c 1, and on 
the sign of c2 , three basic types of behavior near the critical load can be 
distinguished, as shown in Figure 7.27. Koiter showed that the behavior of the 
perfect system near the critical state, as described by Equation 7.7.7 (or the 
associated potential-energy expression) completely determines the type of imper
fection sensitivity. 

For the type III response (Fig. 7.27c, c1 >0), Koiter showed that the 
maximum load parameter Amax of an imperfect system is asymptotically (for small 
q0) described by the formula: 

(7.7.8) 

in which p is a coefficient depending on the imperfection shape, and q0 = 
imperfection amplitude. This type of imperfection sensitivity is typical of 
spherical shells under external pressure or cylindrical shells under axial load or 
bending. The imperfection-sensitivity diagram according to Equation 7. 7.8 is 
illustrated in Figure 7 .27d, and it is noteworthy that its postcritical descent starts 
with a vertical tangent; hence, the ratio of the maximum load reduction to the 
magnitude of the imperfection tends to infinity as q0 - 0. 

For type II behavior (Fig. 7 .27b, c1 = 0, c2 > 0), Koiter showed the initial 
imperfection sensitivity to be, in general, described by the relation: 

A.~~= 1-3[ qo(~)vc; r3 

(7.7.9) 

For type I behavior (Fig. 7.27a, c1 = 0, c2 < 0), Koiter showed the structure to be 
imperfection-insensitive. 

I c,.o 
c. co 
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Figure 7.27 Basic types of postcritical behavior (as shown by Koiter, 1945). 
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Equations of the form of Equations 7.7.8 and 7.7.9 were already illustrated 
for simple systems in Chapter 4 (Eqs. 4.5.26 and 4.5.16). The power of Koiter's 
rules for imperfection sensitivity lies in their generality, that is, the fact that they 
are not restricted to the examples in Chapter 4. Koiter's general results were later 
also extended (Tvergaard, 1976) to the initial asymptotic behavior near a critical 
state that is associated with several buckling modes (eigenmodes). 

Koiter's analysis, of course, gives only an asymptotic description of the initial 
postcritical behavior, and does not apply to large postcritical deflections. For this 
purpose, the higher-order terms of the potential-energy expression or of the 
equilibrium path in Equation 7. 7. 7 must be calculated. The typical postcritical 
response of imperfection-sensitive shells at large deflections is shown in Figure 
7.28 for various magnitudes of the initial imperfection, characterized by 
parameter {JR I h where {J is a certain nondimensional measure of the initial 
unevenness (see Popov and Medwadowski, 1981, p. 18). 

Lest it be thought that a discrepancy between the measured collapse modes 
and the linear critical loads of shells is due solely to the effect of imperfections of 
the geometric shape, one should realize that even if they were zero one would 
still need to design for a greatly reduced maximum load. The reason is that very 
small dynamic disturbances, load misalignments, etc. can also cause the structure 
to jump over the peak of the equilibrium load-deflection curve if the postcritical 
softening is very steep. The ultimate cause of the high imperfection sensitivity of 
shells is the strong nonlinearity of their behavior. 

Buckling Modes and Their Interaction 

The nonlinearity of shell behavior, in tum, appears to be a consequence of the 
fact that, for imperfection-sensitive shells, there exist many different buckling 
loads associated with the same or nearly the same critical load. Consequently, the 
different buckling modes interact, and this interaction of modes is the culprit. 

For example, in our linearized analysis of the cylindrical shell under axial 
compression, we have seen that the axisymmetric and many doubly periodic 
modes are associated with the same critical load. This means that these modes 

Load-point displacement 

Figure 7.28 Postcritical response of axially compressed cylinders (after von Karman and 
Tsien, 1941). 



472 ELASTIC THEORIES 

will interact as the critical load is approached. The way an interaction of two 
different buckling modes can affect the postcritical behavior was illustrated in 
Section 4.8. A simple and easily understandable example was the von Mises truss 
(arch), in which the individual bars buckle simultaneously with the snapthrough 
of the whole arch due to elastic shortening of the bars. 

The fact that at the beginning of the postcritical response various buckling 
modes interact causes the buckling mode to change at larger deflections. For 
axially compressed cylindrical shells it is found that the initial square pattern of 
the buckles on the shell surface (Fig. 7.29a, Eq. 7.6.13) later changes to a 
diamond pattern that has ridges in two inclined directions and furrows in the 
direction normal to the cylinder axis. This pattern, called diamond buckles or the 
Yoshimura (1955) pattern (Fig. 7.29b), has one interesting geometric property: it 
represents an almost inextensional mapping of the shell surface, such that the 
combined length of all the furrows in each cross section is approximately equal to 
the length of the original circle. This means that, after the formation of the 
Yoshimura pattern, the membrane potential energy becomes negligibly small and 
most of the potential energy is due to bending at the ridges and the furrows. 

While the Yoshimura final deformation pattern of an axially compressed 
cylindrical shell is almost inextensible, the shell cannot transit to this pattern from 
its initial shape in an extensible manner. Rather the shell must first pass through 
states with a relatively large membrane deformation. This observation explains 
why the load must first rise and then decrease in order to reach the final 
Yoshimura pattern. 

In large postcritical deformations of axially compressed cylindrical shells, it is 
further observed that the buckles show a preference for growing inward rather 
than outward (see Fig. 7.30, taken from Liu and Lam, 1988). This is also 
intuitively obvious; whereas an inward deflection of each buckle on the shell 
surface can be accommodated through bending, an outward deflection obviously 

a) 

The square pattern 

(initial buckling shape) The Yoahimura pattern 

llinal buck ling shape l 

Figure 7.29 (a) Initial (small deflection) and (b) final (large deflection) buckling shapes of 
axially compressed cylinders. 
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PIPer = 1.0388 

~ 

- c_-==: 

PIPer = 1.0452 

PIPer = 0.8704 

Figure 7.30 Postbuckling deformation of cylindrical shell (after Liu and Lam, 1988). 

requires large membrane stretching. In a similar vein, it has been also observed 
that the inward buckles of the shell surface reduce their share of the transmitted 
axial compressive force and transfer that force to the outward buckles. Thus the 
share of axial compression carried by the outward buckles increases at large 
deflections. 
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Summary 

Nonlinear buckling of imperfection-sensitive shells is a complex problem, but one 
that is presently well understood. Although the future of shell buckling analysis 
no doubt lies in finite element techniques, the design at present still needs to be 
based on the classical critical loads obtained by linear analysis and corrected on 
the basis of extensive experimental data. The need to use these empirical 
corrections is nevertheless deplorable for the theorists since it makes generaliza
tions outside of the range of the existing experiments, and especially to different 
types of shells, uncertain. 

Problems 

7.7.1 Describe the stages of development of buckles on the surface of an axially 
compressed shell. 

7.7.2 What is the reduction factor (Eq. 7.7.2) for the case of Problem 7.6.2? 
7. 7.3 Plot the interaction diagram based on Equation 7. 7.3 and compare it to the 

interaction diagram obtained by linear analysis of the critical loads (see also 
Prob. 7.3.1). 

7.7.4 Correlate the coefficients of Equations 7.7.8 and 7.7.9 to the examples of 
postcritical behavior in Section 4.5 (Figs. 4.21, 4.22, 4.23, and 4.24). 

7.7.5 Try to find some simple elastic system other than the example of von 
Karman that also exhibits a cubic term in the potential-energy expression, and 
express coefficients a3 (Eq. 7.7.4) and c1 , c2 for this system. 

7.7.6 Without referring to the text, describe and illustrate by sketches the 
collapse process of an axially compressed cylindrical shell, with the formation 
of a Yoshimura pattern. 

7.8 SANDWICH PlATES AND SHELLS 

Sandwich plates or shells are layered plates or shells that have a very soft core of 
thickness c bonded to stiff but thin face sheets (skins) of thickness f; see Figure 
1.21 in Chapter 1. Such structures, in which the skin is usually made of metal or 
fiber composite and the soft core is a hardened foam or has honeycomb or 
corrugated construction, are widely used in the aerospace industry and also find 
increasing applications in structural engineering. 

Basic Relations for a Sandwich Plate Element 

Usually one can assume that the skins carry all the bending and twisting moments 
and the core carries the shear forces. The principal difference from the regular 
plates we have analyzed so far is that the normals do not remain normal to the 
deflected middle surface. Thus, u = -cp(x, y)z and v = -1jJ(x, y)z where cp(x, y) 
and 1/J(x, y) are rotations, which, in contrast to plates, are independent of w(x, y). 

The normal stresses, for the case of orthotropy, are Ox= ExxU,x + ExyU,y, 

Oy = EyyU,y + Eyx".x• and the in-plane shear stresses are l'xy = Gxy(u,y + v,x) (cf. 
Eqs. 7.1.3). Substituting for u and v and integrating over the face sheet 
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thicknesses f according to Equations 7 .1.2, one gets 

Mxx = Dxxlf>.x + Dxy1/1,y Myy = Dyxl/>,x + Dyy1/1,y (7.8.1) 

(7.8.2) Mxy = Myx = Hxy{l/>,y + 1/J,x) 

where Dxx• Dyy• Dxy = Dyx• and Hxy are four constants characterizing the plate. If 
we assume that f « c, the rotations of the normals cause out-of-plane shear 
stresses l'xz = Gxz'Yxz = Gxz(U,z + w,x) = Gxz(W,x- 4>) and l'yz = Gyz'Yyz = Gyz(V,z + 
w,y) = Gyz(w,y- 1/J). Multiplying them by thickness c yields the shear forces 

Qx = ex(w,x- l/>) Qy = ey(W,y -1jJ) (7.8.3) 

where ex, ey =constants. These shear forces rotate remaining normal to the 
deflection surface. Note that Equations 1.7.2 and 1.7.1, which are valid for 
sandwich beams if the faces are thin, are the special case of Equations 7.8.1 and 
7 .8.3 for cylindrical bending (i.e., for 1/J = l/>.y = w,y = 0). A basic requirement is 
that Qx and Qy must vanish if the normal to the deflection surface remains 
orthogonal, that is, if 4> = w.x and 1/J = w,y; indeed Equations 7 .8.3 satisfy this 
condition. 

For isotropic plates, in analogy to Equations 7.1.4, we have Dxx = Dyy = D, 
Dxy = Dyx = vD, Hxy = D(1 - v), and also ex= ey = e, where, in similarity to 
Equations 1.7.9 and 1.7.10 for cylindrical bending, D = Y(c + /)2£1/(1- v}) (if 
f «c), e = Gc(f +c); E1 = E1 =elastic Young's modulus of the face (skin), 
Gc =shear modulus of the core. 

The differential equilibrium equations are the same as for any plate: 

Qx = -Mxx,x- Mxy,y Qy = -Myy,y- Mxy,x (7.8.4) 

-QX,X- Qy,y = p + PN (7.8.5) 

where PN depends on w(x, y) according to Equation 7.2.15a. Substituting 
Equations 7 .8.1 to 7 .8.3 we obtain a system of three differential equations for 
three unknown functions w(x, y), lf>(x, y), and 1/J(x, y). 

A Rectangular Sandwich Plate and Other Problems 

As an example consider a rectangular simply supported sandwich plate subjected 
to uniform Nxx (same as Fig. 7.7a), and p = 0. The solution may be sought in the 
form 

Z 
. mnx . nny 

w= sm--sm-
a b 

mnx nny 
4> =X cos--sin-

a b 

. mnx nny 
1/J= Ysm--cos-

a b 

(7.8.6) 

where m and n are the numbers of half-waves in the x- and y-directions. Now we 
may note that with this choice we satisfy identically for all x and y the three 
differential equations in Equations 7.8.4 and 7.8.5 (after Eqs. 7.8.1-7.8.3 are 
substituted in them), and at the same time we fulfill the boundary conditions of 
simple supports, for example, w = Myy = 0 for the edges x = const. Substitution of 
Equations 7.8.6 into these three differential equations yields a system of three 
homogeneous algebraic equations for three unknowns X, Y, Z. The determinant 
of this system can be considerably simplified and the condition of a vanishing 
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determinant yields the critical value of N:xx as a function of m and n; see Plantema 
(1966). The numbers of half-waves are determined as we did it in Section 7.3. 
The results for the first critical value of N:xx are plotted in Figure 7.31, in which 
the curve for 1/s = 0 corresponds to the case of infinite shear stiffness of the core. 
In that case, the normals remain normal. So this curve represents the solution of 
an ordinary plate (see Fig. 7.7b). Figure 7.31 is taken from the book by Plantema 
(1966). This book, as well as Allen (1969) or Kovafik and Slapak (1973), also 
solves many other problems of sandwich plates and shells. 

An important problem for sandwich plates and shells is the local buckling of 
the face sheet. The problem is similar to the beam on elastic foundation; for 
details see, for example, Plantema (1966). Another important problem is 
delamination of the faces; see, for example, Sallam and Simitses (1985, 1987). 

The sandwich plate theory is the simplest and most important example of the 
so-called higher-order plate theories, in which the distribution of u and v is 
approximated by linear combinations of suitable assumed functions of z. 

The formulation that we presented for shells in Section 7.6 can also be 
generalized for sandwich shells. In the curvature expressions, Equations 7 .6.2, 
w,xx• w,yy• and w,xy are replaced with t/>.x• 1/J.y• and t/>,y + 1/J.x• respectively, and 
Equations 7.8.3 are introduced for Q" and Qy. Some problems, such as the 
critical loads for axisymmetric buckling or for cylindrical panels with a rectangular 
base, can be solved analytically without much difficulty (Plantema, 1966). 

Problems 

7 .8.1 Solve the critical value of uniaxial compression N"" for a square simply 
supported sandwich plate of side a (assuming m = n = 1). 

~ 
- a ~xx -o - .,._ - --b -- -- --- -
-~ 

5 ,_---r-r-,---.----.------, I 1(2 D 

10 

20 

-s= b2 C 

C • shear stillness 
of the core 

OL---L---~--~----~ 
0 05 10 

a/b 
1 5 20 

Figure 7.31 Critical value of normal compressive force for a sandwich plate (after 
Plantema, 1966). 
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7.8.2 Solve the same plate for biaxial compression with Nyy = Nu. 
7.8.3 Solve the same as Problem 7.8.1 but for an infinitely long plate of width b 

(a-oo). 
7 .8.4 Try to reduce the number of governing equations by eliminating some 

variables from Equations 7.8.1 to 7.8.5 (this is the usual approach, see, e.g., 
Plantema, 1966). 

7.8.5 Using Equations 7.8.1 to 7.8.3, formulate the potential-energy expression 
for a sandwich plate and use it to solve the critical load of a square simply 
supported panel subjected to Nxy (proceed similarly to the solution for an 
ordinary plate, Eq. 7.3.18). 

7.8.6 Solve the critical axial compression N)t)t for cylindrical buckling of a 
sandwich plate on elastic foundation. Then solve the analogous problem of 
axisymmetric buckling of a cylindrical sandwich shell, axially compressed. 
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8 
Elastoplastic Buckling 

As pointed out in the Introduction, structures can fail either due to material 
failure or to instability. But they can also fail due to a combination of both. The 
material failure is normally preceded by inelastic phenomena, which generally 
have a destabilizing influence on structures, and must therefore be taken into 
consideration. Even for structures that are elastic under service loads, achieve
ment of a uniform safety margin requires the consideration of overloads, and 
overloads inevitably involve inelastic deformations. 

Except for some dynamic solutions with energy dissipation due to damping 
(Chap. 3), all our analysis has so far been concerned with elastic behavior. To 
some extent, the Lagrange-Dirichlet theorem (Sec. 3.6) admits the presence of 
nonelastic phenomena because it admits the presence of dissipative forces. 
However, it does require the existence of the potential-energy function 
IT(q 11 ••• , qn) since all the forces other than dissipative must be conservative. 
Dissipative phenomena such as velocity-dependent damping or friction do not 
violate this requirement. However, the potential-energy function does not exist, 
in general, for time-independent inelastic behavior, such as plasticity or fractur
ing, and time-dependent inelastic behavior, such as viscoelasticity or viscoplas
ticity. This makes the energy methods based on the Lagrange-Dirichlet theorem 
inapplicable. Whereas the dissipative phenomena that do not destroy the 
existence of potential energy (such as velocity-dependent damping, Chap. 3) 
cannot destabilize a structure, those which do violate it have generally a 
destabilizing effect, as we will see. Plasticity, as well as viscoelasticity, viscoplas
ticity, fracturing, and other damage, are such dissipative phenomena. 

In this chapter we will be concerned with inelastic behavior of time
independent type, including perfectly plastic behavior as well as hardening 
elastoplastic behavior, but excluding fracturing, yield limit, degradation, and any 
softening damage. Our principal concern is the behavior of columns whose 
tangential bending stiffness varies continuously as the load is increased. Such 
behavior is obviously characteristic of columns made of aluminum alloys and 
high-strength alloy steels. However, it is also characteristic of structural steel 
columns, despite the fact that the stress-strain diagram of mild steel is not smooth 
but essentially elastic-perfectly plastic. The reason is that the residual stresses 
from hot-rolling, as well as those from welding or other heat treatment, cause a 
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continuous variation of the tangential bending stiffness. When the structure is 
perfect, buckling of such columns is described by Shanley's theory, which 
generalizes the concept of bifurcation for the inelastic range. The main effect of 
plastic deformations is a reduction of the limit load at which a perfect column 
can start to deflect. This reduction is closely related to a reduction of the maximum 
load and can be very large. 

Another important adverse influence on buckling is exerted by inevitable 
imperfections. While for elastic columns we found that imperfections merely 
increase deflections but do not lower the maximum load (if the buckling analysis 
is linearized), for elastic-plastic columns imperfections are found to decrease the 
maximum load, sometimes quite strongly. After analyzing small-deflection 
buckling of perfect and imperfect columns and the effect of residual stresses, we 
will finally be ready to explain and critically examine the basic design specifica
tions in the current codes for metallic and concrete structures. 

At very large deflections at which the load-deflection curve is descending, the 
critical cross section in a steel column becomes fully plastic and a plastic hinge 
forms. As we will see, the solutions of this behavior are particularly simple. 
Interpolation between them and the initial elastoplastic deflections provides 
useful approximations. Various simple estimates and bounds can be obtained in 
this manner for buckling and second-order effects in dynamic impact and blast 
problems. 

Apart from the familiar instability in compression we will also briefly illustrate 
some instabilities that can be observed in other types of loading, for example, 
large extensions of a bar. We will demonstrate that even when the stress-strain 
diagram has a positive slope, a bar can lose stability in tension due to decrease of 
the cross-section area caused by Poisson's effect. This is a type of instability that 
has no counterpart in small strain theory. 

Throughout this chapter we will concentrate on buckling analysis conducted 
on the basis of equilibrium conditions, as in Chapters 1 and 2. Since the principle 
of minimum potential energy is inapplicable to inelastic structures, the stability 
analysis must be based on more general minimum principles, which are furnished 
by thermodynamics. We prefer, however, to postpone the discussion of thermo
dynamic stability criteria to Chapter 10. 

8.1 PERFECT COLUMNS OR STRUCTURES AND SHANLEY'S 
BIFURCATION 

The ultimate failure of every column or structure is, of course, always caused by 
inelastic behavior, involving plastic yield or fracture, or both. Depending on 
structure geometry, especially column slenderness, the inelastic behavior is either 
irrelevant or important for buckling. Inelastic deformation always causes that for 
a given deflection the axial load becomes smaller than predicted by elasticity (Fig. 
8.1). If the column is very slender, the load reduction due to inelastic behavior 
occurs at very large deflections, which are of no interest (curve a orb in Fig. 8.1). 
For such columns, inelastic behavior is obviously irrelevant for design. Inelastic 
behavior, however, becomes important for columns or structures that are not too 
slender (curve c or d in Fig. 8.1), for which a significant reduction of the 
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Figure 8.1 Effect of inelastic behavior and material failure on columns of various 
slendemesses. 

maximum load occurs at relatively small deflections and must, therefore, be taken 
into account in design. 

When the column is not very slender, it is possible to exceed the initial yield 
limit before the column buckles. After this happens, the behavior of the column 
is elastoplastic, with two important characteristics: (1) The tangent modulus E, 
for continued loading is smaller than the initial elastic modulus E, and (2) the 
unloading modulus Eu is larger than E,. For elastic-plastic materials that undergo 
no damage, one has Eu = E; however, in the presence of damage (e.g., 
microcracking or void growth) one has Eu <E. 

Inelastic buckling is of interest for hardening elastic-plastic materials. They 
include high-strength alloy steels and aluminum alloys, for which the uniaxial 
stress-strain diagram above the plastic limit oP is smoothly curved, with a 
continuously decreasing slope, as shown in Figure 8.2a. As a simplification, one 
may sometimes consider the stress-strain diagram to be bilinear, with a constant 
tangent modulus E, as shown in Figure 8.2b. The limiting case of the bilinear 
diagram, which approximates mild steel, is the elastic-perfectly plastic material, 
for which E, ~ 0 (Fig. 8.2c). Mild steels (including structural carbon steels and 
high-strength low-alloy steels) approximately behave in such a manner. 

For an elastic-perfectly plastic column for which the elastic critical load is 
larger than the axial yield load, it might seem that failure is completely controlled 
by the yield criterion and has nothing to do with buckling. In reality, however, 
the inevitable presence of residual stresses causes structural columns made of 
mild steel (even perfect columns) to behave like columns made of an elastic
hardening plastic material (see Sec. 8.3). It is for this reason that the present 
section applies to typical structural steel columns as well. 

b) c) 

-a 

-£ 

Figure 8.2 Idealized stress-strain curves of hardening plastic, bilinear, and almost perfectly 
plastic materials. 
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Reduced Modulus Load 

Consider now a pedect pin-ended column of a rectangular cross section (Fig. 
8.3a, b). In similarity to the results of linearized elastic analysis of buckling 
(Chap. 1), we will now assume that the column buckles at constant axial force P. 
Prior to buckling (w = 0), the stress distribution is uniform; ~=-PIA, where 
A= cross-section area (Fig. 8.3c). If the column is not too short, we may assume 
again that plane cross sections remain plane and normal to the deflected center 
line of the column. This assumption is not as good as it is for elastic buckling, 
which takes place for columns that are more slender. It nevertheless usually is still 
acceptable, as verified by numerous experimental observations. 

At the start of buckling, the concave face of the column (i.e., the one toward 
the center of curvature) undergoes further shortening, that is, loading, and the 
convex face undergoes extension, that is, unloading. (Note that if both faces of 
the column underwent shortening, the axial load could not remain constant.) 
Somewhere within the cross section there is a neutral axis at which the axial strain 
does not change; its distances from the convex and concave faces of the column 
are denoted as h 1 and h2 (Fig. 8.3d), and h 1 + h2 = h =height of the cross section. 
Since the incremental moduli for loading and unloading are different (E, and E.,, 
Fig. 8.2a), buckling causes a bilinear stress distribution within the cross section, 
as shown in Figure 8.3d. The incremental stresses at the convex and concave faces 
of the column are, according to the assumption of plane cross-section, -E.,htfp 
and E,h2/ p, where 1/ p =curvature due to buckling. The condition of constant 
axial load that we imposed requires that the resultants fi. and ~ (Fig. 8.3d) of the 
incremental normal stresses be of opposite signs and equal magnitudes, and so 
bh1E.,h 1/2p = bh2E,h2/2p, in which b =width of the cross section. Substituting 
h2 = h- h., we have E.,h~ = E,(h- h 1)

2
, from which 

a) p 

ht =h VE, 
VE..+VE, 

b).f""''' 
c)·u··-= 

Before 

d) lj'b~kH~ 
_ - _ 4r, --==iet h2/P 

Jl -----!. Eu h1 /p 

During 
buckling 

(8.1.1) 

Fipre 8.3 (a) Pin-ended column, (b) rectangular cross section, and stress distribution (c) 
before and (d) during buckling. 
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The bending moment representing the resultant of the positive and negative 
normal stress increments in the cross section may now be calculated as follows: 

M= -Fi(~h 1 +~h2) = -FjGh) =bh1(E;;•)Gh) 

bh
3 

[ 4EuE, ](1) 
= (4)(3) evE..+ V£,)2 -p 

This may be rewritten as 

M=E,l' 
p 

(8.1.2) 

(8.1.3) 

in which I= bh3/12 and E, is called the reduced modulus (or double modulus). 
We see that for the start of buckling from the perfectly straight position, the 
bending moment is proportional to the curvature, same as for the linearized 
elastic theory; however, the bending stiffness is reduced. 

According to the equilibrium condition for a pin-ended column, M = -Pw. 
Equations 8.1.3 yield the differential equation E,Iw" + Pw = 0 (since 1/ p = w"). 
The boundary conditions are w = 0 at x = 0 and x =I (Fig. 8.3a). So the 
differential equation with the boundary conditions is the same as in Section 1.2, 
except that El is replaced by E,l. Therefore, the first critical load is 

1C2 

Per= P, = f E,I (8.1.4) 

Later (Sec. 10.1) we will see that this load, which characterizes a state of neutral 
equilibrium, represents the limit of stable equilibrium states of the columns when 
the load is controlled. 

For a smoothly curved stress-strain diagram (Fig. 8.2a), E, = f(u0
) =function 

of the uniform normal stress that exists just before buckling, u0 = - P,/ A. So 
Equation 8.1.4 represents an implicit nonlinear equation, P, = f( -P,/A)IH20Z, 
from which P, may be solved iteratively, for example by the Newton method. If 
the stress-strain diagram is bilinear (E, = const., Fig. 8.2b), then P, is given by 
Equation 8.1.4 explicitly. However, it may happen (depending on the value of l) 
that P, <A uP= load at the yield limit, in which case P, does not exist and 
equilibrium is lost upon reaching the load P = A O'p (or load P = PE if PE <A uP) 
suddenly. 

If the same analysis is carried out for the idealized, fully symmetric I cross 
section (i.e., an 1-beam with a massless web), then the critical load is again given 
by Equation 8.1.4, however, with 

E, = (!(E;;- 1 + E;1)r 1 (8.1.5) 

(this is the harmonic mean of Eu and E,). Generally, in contrast to the elastic 
buckling theory, the flexural stiffness E,I depends not only on I but also on the 
shape of the cross section. 

It is important to note that the reduced modulus values for buckling to the left 
and to the right are different if the cross section is nonsymmetric. Consider, for 
example, the ideal /-section with t « h, t «b., and t « b2 (t =plate thickness, 
h =height, b1, b2 =width of the cross section, Fig. 8.4). For buckling with the 
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t 

Figure 8.4 Buckling to the left or to the right of columns with nonsymmetric cross 
sections. 

convex face to the right (Fig. 8.4), the axial equilibrium condition is tb1Euhd p = 
tb2E,h21 p, and the moment equilibrium condition is M = th 1b 1Euh 11 p + 
th2b2E,h2l p where h2 = h- h1 • Eliminating h 1 and h2, we get M = E~I I p where 
I= th2(b1 1 + b21

)-
1 and 

E~ = (b11 + b2 1)[(biEu)-1 + (b2E,)- 1r 1 (8.1.6) 

This is a weighted harmonic mean of E, and Eu, with weights b1 and b2. For 
buckling with convex face to the left, E, and E" are interchanged, that is, 
M = E~IIp where 

(8.1.7) 

Now we note that generally E~ * E: (except when b1 = b2 , in which case Eqs. 
8.1.6 and 8.1.7 reduce to Eq. 8.1.5). If b1 > b2 , then always E~ < E~, that is, the 
column will buckle with its convex, i.e., unloading face at the heavier flange. 

Closed-form expressions for E~ and E~ can also be obtained for the T -cross 
section (Fig. 8.4). It is found that such a column will buckle with its flange at the 
convex face. For this case, the axial equilibrium condition (Fig. 8.4) is 
h2E,h2tl2p = h 1Euh 1tl2p + bh1Eutl p and the moment equilibrium equation is 
M = t[(h~E,I2p)(2h213) + (h~Eul2p)(2h 1 13) + (bh1Eul p)h1] where h2 = h- h1• 

The first condition is a quadratic equation for h1• Solving it and setting 
M = E,I I p, we obtain 

E~ =;I [E,(h- h1)3 + EuM + 3Eubhn, 

h
1 
=_hE,+ bE"+ [(hE,+ bE")

2 
+ E, h2]

112 

Eu - E, Eu - E, Eu - E, 

(8.1.8) 

The difference between E~ and E~ has important consequences for the effect 
of imperfections in monosymmetric columns (Sec. 8.2). 

The reduced modulus theory, also called the double modulus theory, was in 
principle proposed by Considere (1891) and was later developed in detail by 
Engesser (1895) as his second theory of elastic-plastic buckling. It was further 
substantiated theoretically and experimentally by von Karman (1910). 
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Tangent Modulus Load 

Although the early test results agreed with the reduced modulus theory well, 
some experimental studies conducted after the publication of von Karman's work 
(1910) revealed that columns can fail by buckling at loads that are significantly 
lower than the reduced modulus critical load (Eq. 8.1.4). The reason for this 
discrepancy with Engesser's second theory was explained by Shanley (1947). He 
showed that in a normal practical situation the column does not buckle at a 
constant load, as assumed in our previous calculations (Engesser's second 
theory). Rather, a perfect column may, and in fact must (see Sec. 10.3), start to 
deflect at a load that may lie significantly below the reduced modulus critical load. 
The buckling deflections occur simultaneously with a further increase of the axial 
load P. In this manner, it is possible that the tensile strain increments caused by 
the deflection may be compensated for by the axial shortening increment due to 
the increase of the axial load, so that there is no unloading anywhere in the cross 
section (Fig. 8.5a). 

Consequently, the incremental modulus for the first stress increments at 
the initiation of buckling, for which the stress distribution is still uniform, 
is equal to the tangent modulus E, for all points of the cross section. This is 
true for both the acual curved stress-strain diagram and the idealized bilinear 
stress-strain diagram (Fig. 8.2a, b). Thus it appears that, at an increasing 
axial load, a pin-ended column of length l starts to buckle at the tangent 
modulus load: 

1C2 

P,=pE,I (8.1.9) 

This is known as the tangent modulus theory of Shanley, and it coincides with 
Engesser's first theory, which Engesser introduced in 1889 but later discarded. 
Note that P, < P, except when E, =E .. = E (elastic behavior), in which case 

a) b) c) 
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ffrrlnnl.. K2Etl J material 
Pt·~ pt -•Nonlinear elaatic 

~ 
p.Aap Aap 

material 

Deflection Deflection 

d) 
e) 

P,t---
... ------

t 

Deflection 

Figure 8.5 Buckling at increasing axial load: (a) stress distribution with no unloading; 
(b, c, e) load-deflection curves; (d) Young's modulus drop due to sudden heating. 
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P, = Pr > 0, or when E,- 0, in which case the yield limit governs the start of 
deflection. 

It may be noted that Equation 8.1.9 gives also the critical load of a column 
made of a nonlinear elastic material, for which, by definition, Eu = E,. 

For a smoothly curved stress-strain diagram (Fig. 8.2a) one has E, = F(o0
) = 

function of the uniform normal stress o0 = - P,/ A that exists just before 
buckling. Thus, Equation 8.1.9 represents an implicit nonlinear equation, 
P, = F( -P,/A)br2

//
2

, from which P, may be solved by Newton iteration. 
For the special case of a bilinear stress-strain diagram (Fig. 8.2b), E, is 

constant beyond the proportionality limit, oP, and Equation 8.1.9 then gives P, 
explicitly. Two cases must be distinguished: 

1. If the column is not too slender so that P, ~A oP (Fig. 8.5b), then the value 
of P, is admissible. 

2. If the column is so slender that P, < AoP (Fig. 8.5e), then there is no 
solution for P,. If also AoP < PE, the load can be raised in a stable manner 
until P = Aop is reached. After that, can the load P be maintained, rather 
than dropping to the value of P, corresponding to the value of E, beyond 
the yield limit? The answer is yes, provided that P < Pro which is true for 
the load-controlled mode of loading, whereas for the displacement
controlled mode of loading the condition is P < pg_ where pg_ is a certain 
critical value higher than Pr (see Eq. 10.3.16). This is evidenced by the 
fact, proven later in Section 10.3, that under the aforementioned condition 
the column is stable. Further this is justified by the fact that for any load 
P < Pr (stability limit for load control) the load will subsequently increase 
rather than decrease as the deflection is increased from its initial zero 
value, as will be shown later (Eqs. 8.1.12 and 8.1.18). If, under this 
condition, the column were unstable, or if the load decreased with 
increasing deflection, a dynamic failure would occur upon reaching load 
Aop, and the column would have to be designed for load P, ( <Aop) rather 
than Aop or a higher safety factor would have to be used. But fortunately 
this is not the case, that is, the column capacity is safely obtained as the 
yield limit AoP if P, < AoP. 

A load P0 > P, can also be reached if E, drops instantly due to sudden heating 
(Fig. 8.5d), change of moisture content, damage due to a hysteretic loop of 
unloading, chemical damage, irradiation damage, etc. 

If P = Pr while the column is straight (urideflected), one has a state of neutral 
equilibrium (we have in mind only second-order accurate solutions in deflections; 
higher-order terms can make this state stable or unstable-see Sec. 4.5). This 
means that adjacent deflected states of equilibrium exist for the same load value 
(Fig. 8.5c). The tangent modulus load, on the other hand, is the load for which 
the column may start to deflect laterally under an increasing load (Fig. 8.5c). In 
this case, adjacent equilibrium positions at the same load do not exist, that is, 
there is equilibrium but not neutral equilibrium. When P, is reached, there is 
more than one equilibrium path, but every path corresponds to an increasing 
load. Like perfect elastic columns, we have a bifurcation, but unlike them, the 
bifurcated path has a positive rather than zero slope. As we will prove in Section 
10.3, the bifurcated path (branch) is the one that the column must actually follow, 
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that is, a perfect column must start to buckle at P = P, (even though the 
undeflected states for P, :5 P < P, are stable!). (As we saw, an exception is, of 
course, the case when P, <AaP, in which case the column starts to buckle at 
P = AaP, and does so again with an increasing load. For nonlinear elastic 
materials, however, the load P, would correspond to neutral equilibrium and 
represent a limit of stable states (Fig. 8.5c).) 

The situation here is partially similar to the elastic asymmetric bifurcation we 
elucidated in Section 4.5 for linear elastic structures. In that case there were three 
branches after bifurcation but none with a zero slope, which means there was no 
neutral equilibrium at bifurcation (not even according to a second-order 
accurate solution). For the tangent modulus load (in contrast to the reduced 
modulus load), there is also no neutral equilibrium and three branches of nonzero 
slope after bifurcation exist (since the perfect column can deflect either left or 
right). However, in contrast to elastic asymmetric bifurcation, no branch has a 
negative slope (and therefore Shanley's bifurcation per se is not a cause of 
imperfection sensitivity of the maximum load although inelastic behavior is, for 
other reasons we will see later in Sec. 10.3). 

It may be noted that, in contrast to symmetric as well as asymmetric 
bifurcations of elastic columns (Sec. 4.5), there is no neutral equilibrium at the 
bifurcation state for the tangent modulus load (according to a second-order 
accurate solution). Unlike the elastic behavior, a lateral force encounters a 
positive stiffness (yet, the determinant of the tangent stiffness matrix K vanishes 
at the bifurcation point). The reason is that the corresponding eigenvector does 
not satisfy the unloading criterion, which is absent for elastic structures. For 
further discussion, see Section 10.4 on bifurcation. 

In the literature, one finds statements that P, :5 Per :5 P, where Per= critical 
load = limit of stable states. This is not true, however, as we already remarked 
(Per= P., see Sec. 10.3). It is, however, true that, according to the small
deflection (linearized) theory, the maximum load, Pmax• which a deflected perfect 
column can reach (according to the small-deflection theory), satisfies the bounds: 

P,<Pmax<P, (8.1.10) 

The experimentally observed P max values are often much closer to P, than to P,. 
Thus P, is not only a safe lower bound for design but often also a good estimate of 
the carrying capacity of a column. 

It can be shown that the replacement of E in the elastic solution by the 
tangent modulus E, generally yields safe lower bounds for the critical loads for all 
types of uniaxially stressed structures, including columns with arbitrary end 
restraints, frames, and arches (see Prob. 8.1.7). This fact greatly simplifies 
analysis. It means that the critical loads of real structures, which are usually 
inelastic, can be obtained by elastic analysis. 

Column Strength Curve 

For design, it is convenient to describe buckling in terms of the so-called column 
strength curve, which describes the dependence of the critical stress of bifurcation 
a,. on the slenderness L/r of the column (r = v'l1A =radius of inertia of cross 
section). For linearly elastic behavior, a,. coincides with aE (Sec. 1.2) and so the 
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Figure 8.6 (a) Stress-strain diagram of aluminum alloy and (b) corresponding column 
strength curve. (Adapted from Batterman and Johnston, 1967.) 

column strength curve coincides at high L/r with the Euler hyperbola (Fig. 8.6b). 
This hyperbola is valid up to stresses that do not exceed the proportionality limit 
of the stress-strain diagram. When this limit is exceeded, the column strength 
according to the tangent modulus theory is 

P, n 2E,(a,)I n 2E,(a,) 
-a,= A= L2A = (L/r)2 (8.1.11) 

where E, is the tangent modulus at the stress level a= a,, Lis the effective length 
of the column. In the literature, a, is often called (improperly) the critical stress, 
but in reality a, does not represent the critical stress, defined as the limit of stable 
states (see Sec. 10.3). 

Equation 8.1.11 has the same form as Equation 1.2.8 for linearly elastic 
columns. However, unless E, = const. (i.e., the stress-strain diagram is bilinear), 
Equation 8.1.11 does not permit explicit calculation for a,; rather, it represents 
an implicit nonlinear equation because E, = E,( a,) = function of a,. The plot of a, 
versus L/r according to Equation 8.1.11 can, however, be easily obtained by 
choosing a sequence of a, values, evaluating E, for each of them, and then 
calculating L/r = n[E,/( -a,)j112

• As an example, Figure 8.6a shows the stress
strain diagram for an aluminum alloy (grade ASTM 6061-T6) and the cor
responding variation of E,. From these diagrams, one obtains the column strength 
curve in Figure 8.6b (Batterman and Johnston, 1967). 

A caveat is in order. Due to the nonlinearity of Equation 8.1.11, its solution 
need not exist for all L/r (as already mentioned with regard to the equivalent 
equation 8.1~. For example, if the stress-strain diagram is bilinear, there is no 
solution if n EP/aP < L/r < nVE/aP where aP =proportionality limit and EP = 
slope of the hardening branch beyond this point. For the same reason, if the slope 
E, of the stress-strain curve becomes zero, as exhibited by an elastic-perfectly 
plastic material. Equations 8.1.8 can have no solution in the inelastic range. In 
such a case, Shanley's theory cannot be applied. 

Postbifurcation Load-Deflection Diagram 

The initial slope of the load-deflection diagram at P = P, is of interest for 
estimating the reserve capacity. Let dw be the first infinitesimal deflection 
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increment at midspan from the perfect state. Assuming the deflection curve to be 
sinusoidal, w = w sin (1CX/l), we have at midheight the curvature increment 
dw" = -dwn2/12

• At P = P,, the corresponding strain distribution is triangular 
(Fig. 8.5a), with dE= 0 at the extreme point z = c1 of the convex side where c1 

and c2 are measured from the centroid. Therefore, dE= (c1 - z) dw" (Fig. 8.5a). 
The corresponding increment dP of the axial stress resultant is obtained as 
dP = -fA E, dE dA where A = cross-section area. Substituting for dE and then for 
dw", and setting E,n2ll2 = P,l I, we obtain (for P = P,) 

[ d~] = ~ J (c,- z) dA = P,Ac, = P,~, 
dw w=O I A I r 

(8.1.12) 

because fA z dA = 0. For an ideal 1-beam, this equation yields [dPidw)0 = 2P,Ih; 
for a rectangular cross section [ dP I dw )0 = 6P,I h. 

Although computer analysis by finite elements is easy, an analytical solution 
of the postbifurcation behavior other than the initial slope is complicated, much 
more so than the preceding calculations. The main reason is that the boundary 
between loading and unloading in the cross section moves during buckling and its 
locations are not the same for various cross sections of the column. 

To avoid these difficulties, we will study from now on the idealized pin-ended 
column considered by Shanley (1947); see Figure 8.7a. It consists of two rigid 
bars of length 112, connected at midspan by a very short elastoplastic link (point 
hinge) of length h « l. This segment has the cross section of an ideal 1-beam 
whose height we choose to be also h; then I= Ah214 where A= cross-section 
area. (Note that changing the length of the plastic link from h to some value 
h' + h is equivalent to replacing A with A' = Ah 'I h.) 

Let q1 be the midspan deflection and q2 the axial displacement on top of the 
column (positive for shortening). (It is important to realize that, in contrast to a 
column with a hinge, q2 is kinematically independent of q 1 since the segment h 
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Fipre 8.7 (a) Rigid-bar column with elastoplastic link (Shanley's column) (b) geometry of 
deformation, (c, d) strain and stress increments in link, and (e) loading and unloading 
moduli. 
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can shorten axially; moreover, in contrast to elastic behavior (cf. Sec. 4.3), this 
shortening is important.) The initial equilibrium of the undeftected column at 
some load P = P0 is disturbed by applying at midheight a small lateral disturbing 
load ft while the axial load is raised by a small increment fz to P = P0 + /2. On the 
concave side, the deformable segment follows the tangent modulus, while on the 
convex side it follows modulus sE, where s = 1 if there is loading and 
s = Eul E, > 1 if there is unloading. 

The compatibility of strains AE1 and AE2 at the concave and convex sides of a 
column with the displacements q1 and q2 requires that (see Fig. 8.7) 2 tan 8 = 
(AE2- AE1)h/h and q2 = -(Ae1 + AE2)h/2 + /(1- cos 8) where tan 8 = 2qtf(/
q2). Solving for AE1 and AE2, we have 

I ( ) qz 2qt Ae1=- 1-cos8 --+--
h h 1-qz 

I qz 2qt 
A£2=-(1-cos 8) --+--

h h 1- qz 
where 

cos 8 = [ 1 + c ::~2rr
112

· 
The force and moment equilibrium conditions are 

p- Po= h = -!A(E, AEt + sE, AEz) 

Pqt + lft(l- qz) = iAh(sE, AEz- E, AEt) 

(8.1.13a) 

(8.1.13b) 

(8.1.13c) 

(8.1.14) 

(8.1.15) 

Shanley's (1947) original analysis corresponds to simplifying the solution by 
replacing cos 8 with 1 and I - q2 with I in Equations 8.1.13 to 8.1.15. This 
simplification is possible if q2 « q1, which is true for small deflections. Then, after 
substituting Equations 8.1.13a and 8.1.13b into Equations 8.1.14 and 8.1.15, one 
gets 

P - P0 ( s + 1 )/ s - 1 
~= 2hz qz--h-qt (8.1.16) 

P ttt s+1 s-1(/) 
P,q 1 + 4P, =-2-q1 --4- h qz (8.1.17) 

in which P, = AE,h/1 =tangent modulus load (this can be immediately verified by 
setting ft = 0 and s = 1 in Eq. 8.1.15, which expresses the moment equilibrium 
conditions, and substituting Eqs. 8.1.13a, b with cos 8 = 1 and I - q2 = /). Since 
q2 now appears in Equations 8.1.16 and 8.1.17 linearly, it can be easily 
eliminated. After some rearrangement, this furnishes Shanley's formula: 

P = _R-=-o(=;_-_l...<..)h_+_4P.....:.;,s::....:qc.:-1 
<s -1)h + 2(s + 1)qJ 

(8.1.18) 

If s = const., which happens for the idealized case of a bilinear stress-strain 
diagram, and if P, ~ uPA (up= elastic limit, Fig. 8.2b), the curve P(qt) may be 
explicitly calculated from Equation 8.1.18. Now an important fact to note is that, 
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Figure 8.8 Load-deflection curves for Shanley's column: Shanley's approximate solution 
(dashed) and exact solution (solid). 

for each initial value P0 ;;:: P,, there exists a distinct equilibrium path P( q 1). These 
paths are plotted as dashed lines in Figure 8.8a, b for ; = 3, and 1/ h = 10 and 20. 
The vertical line q 1 = 0 is the main equilibrium path. Thus we see that, beyond 
the point P,, the main path consists of a continuous sequence of bifurcation 
points. This is a phenomenon not found in elastic stability theory. Later, on the 
basis of imperfection analysis (Sec. 8.2) as well as stability analysis (Sec. 10.3), we 
will see that the column must follow the path that bifurcates to the side at P, and 
cannot reach any point above this path (unless the column is temporarily 
restrained). An exception is the case when a sudden drop in the slope of the a-e 
diagram causes P, <A aP; then the state P0 = A aP > P, and the corresponding path 
P(q 1) can actually be reached by the column in a continuous loading process. 

According to Equation 8.1.18, the curves P(q 1) for all the initial values P0 
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have a common horizontal asymptote (Fig. 8.1), that is, 

lim P = _3£ P, = Pr (; = EE", = constant) q,-... ; + 1 
(8.1.19) 

where Pr denotes the reduced modulus load. That this must be so follows from 
the fact that Pr is defined as the value of Pat which deflection q1 can increase at 
constant load, and the asymptote is characterized by constancy of load (dP/dq 1 = 
0). That Pr is given by Equation 8.1.19 can easily be verified by setting / 1 = 0, 
/ 2 = P- P0 , and ; = Eul E, in Equations 8.1.14 and 8.1.15 and substituting 
Equations 8.1.13a, b with cos 8 = 1, 1- q2 =I. (It should also be noted that the 
relation between Pr and P, depends in general on the ratio Erl E, and 
consequently Eq. 8.1.19 is valid for an idealized !-section.) 

Differentiating Equation 8.1.18, one gets the slope of the equilibrium path 
that, at the onset of deflection (q1 = 0), is given by dP/dq 1 = [4sP,- 2(s + 
1)P0]/h(s -1), and, for P0 = P,, dP/dq 1 = 2P,/h. If P0 = P, the first infinitesimal 
increment of deflection occurs without unloading (Fig. 8.9a), because the 
resultant of the tensile stresses produced in the convex side flange by the bending 
moment, that is, dM/h = P0 dqtfh = P, dqtfh, is exactly offset by the compressive 
resultant due to the increment of axial load, dP/2=P,dqtfh. If P0 >P,, the first 
increment of deflection produces a larger tensile resultant, since P0 is larger, and 
a smaller increment of the compressive resultant, since dP/dq 1 decreases with 
increasing P0 (consequently, unloading occurs at the onset of deflection); see 
Figure 8.9a. Unloading then intensifies with increasing deflection along the 
equilibrium path (Fig. 8.9a). 

For a curved stress-strain diagram, the value of ; in Equation 8.1.18 decreases 
with increasing deflection. The dependence of; on E2 causes Equation 8.1.18 to 
become coupled with Equation 8.1.13b, with the result that the equilibrium 
deflection curve deviates downward from the curve for ; = const. and has no 
longer any asymptote but reaches at finite deflection a maximum value Pmax that 
is less, and often much less, than the P, value for the initial value of ; at P,; see 
Figure 8.9b. If E, decreases rapidly with e2, which is often the case, Pmax might be 
only slightly higher than P,. The value of Pmax is influenced also by the shape of 
the cross section. (When imperfections are considered, they too can further 
depress the Pmax value; see Sec. 8.2.) 

Among all the bifurcation states P0 , none represents a state of neutral 
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Figure 8.9 (a) Stress-increment distributions at various points on a load-deflection curve; 
(b) effect of curved stress-strain diagram; (c) column unloading. 
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equilibrium except P = P,. However, even for deflections starting at P = P, the 
axial displacement q2 , unlike that in elasticity, increases with increasing deflec
tions. Differentiating Equation 8.1.16 and substituting dP/dq 1 =0, one gets: 

; -1 (2h) 
dq2=;+ 1 1 dq. for P=P, (8.1.20) 

that is, dq2 is of the same order as dq 1• In linear elasticity, by contrast, dq2 at 
P=Pcr is small of higher order than dq 1 , that is, dq2/dq 1-0 at P-Pcr (Sec. 
1.9). 

An exact solution of the curves P(q 1) can be obtained according to Equations 
8.1.13a to 8.1.15. In general, for a curved stress-strain diagram, ; is a function of 
E2, that is, S = s(E2) where E2 =Eo+ fl.E2, Eo is the axial strain at p =Po, ql = 0. 
By substituting Equations 8.1.13a-c into Equations 8.1.14 and 8.1.15 with 
s = s(e2), one obtains a system of two nonlinear equations for q1 and q2• With a 
computer, the curve P(q 1) (for / 1 = 0 or given / 1) can be solved easily. First one 
eliminates P from Equations 8.1.14 and 8.1.15 and obtains one nonlinear 
equation for qt and q2 • Then one chooses a sequence of qtfl values, and for each 
of them one solves this equation for q2/l and then calculates PIP,. 

The curves obtained by such calculations are shown for ; = const. = 3 and 
L/h = 10, 20 as the solid curves in Figure 8.8a,b. It may be noted that for small 
qt> these exact curves (solid curves) are very close to Shanley's approximate 
solutions (dashed curves). For larger qt, these exact curves lie higher than the 
approximate solution (see Fig. 8.8a, b). 

The most interesting property of the load-deflection curves in Figure 8.8a, b, 
approximately described by Equation 8.1.18, is the fact that there are infinitely 
many equilibrium bifurcation loads and infinitely many equilibrium paths, all of 
them infinitely close to each other. This property has no parallel in elastic stability 
theory. It is caused by the irreversible nature of inelastic strains, particularly the 
fact that, after unloading occurs, different stresses can correspond to the same 
strain (Fig. 8.2). 

However, contrary to some statements found in the literature, the existence of 
a continuous series of bifurcation points does not mean that the critical load Pc., 
defined as the limit of stable states, would have to be at P, or somewhere below 
P,; see Section 10.3. The bifurcation load is not necessarily the critical load for 
stability. 

If the column has started to move along one equilibrium path P(qt), its state 
cannot shift to some other adjacent path. This is true, however, only as long asP 
increases monotonically, that is, the load-deflection curves in Figure 8. 9a are 
valid only for increasing qt. If qt starts to decrease (unloading of the column), the 
column behaves elastically, tracing backward the deflection curve for an elastic 
imperfect column; see curve u in Figure 8.9c and also Problem 8.1.14. 

For arbitrary cross sections and arbitrary columns, the calculation of the 
post bifurcation load-deflection diagram is tedious and necessitates a computer. 
As a crude approximation, however, the formula for load P as a function of 
maximum deflection w may be assumed to have the same general form as 
Equation 8.1.18, that is, P(w) = (aP0 + P,w)/(a + w). Constant a may be deter
mined from the initial slope k = (dP/dw) at w = 0, which is easy to calculate 
exactly for any column (see Eq. 8.1.12). Calculating the derivative, we find 



500 INELASDC, DAMAGE, AND FRACTURE THEORIES 

dP/dq 1 = (P,- P0)/a at q1 = 0, from which a= (P,- P0)/k. So we obtain (Bafant, 
1985) 

p = ..:....( P....:...., _-_P.=0)_P0::....+__:P,_k_w 
P,-P0 +kw 

(for E,/ Eu = const.) (8.1.21) 

Normally, one would substitute P0 = P,, but if P, <AoP, then Po= AoP (except 
when Aop > P, in which case P0 = P,). 

Bifurcation in Plastic Structures with Muhiaxial Stress 

For multiaxially stressed structures, calculation of the tangent modulus load is 
complicated by problems of constitutive modeling. Consider first Hencky's 
deformation (total-strain) theory based on von Mises yield criterion (e.g., Fung, 
1965). In this theory, the plastic hardening stress-strain relation for loading is 

a 
E=-

3K 
(8.1.22) 

where o = akk/3 =volumetric stress, E = Ekk/3 =volumetric strain, s;i = o;i -
ofJ;i = deviatoric stresses, e;i = E;i- EfJ;i = deviatoric strains (subscripts i, j refer to 
Cartesian coordinates X;, i = 1, 2, 3), K =bulk elastic modulus (constant), 
F = increasing function, Gs = secant shear modulus which depends on the second 
deviatoric stress invariant 12 = !skmskm· The plastic deviatoric strain is e~ = 
e;i -s;i/2G, where G =elastic shear modulus (constant). For the uniaxial test 
( a 11 =I= 0), o = o 11/3, s 11 = 2o11/3, s22 = s33 = -a11 /3 (all other S;i = 0); Equation 
8.1.22 yields £ 11 = (1/3K)( o 11/3) + (1/2Gs)(2a11 /3); since o11 / E 11 = Es =secant 
(Young's) modulus (Fig. 8.10a), we get 1/Gs = 3/Es -1/3K. To get the general 
tangent stress-strain relation, we note that dJ2 = skm dskm• and upon 
differentiating Equation 8.1.22 and denoting F' = d(1/Gs)ldJ2 = -(dGs/dl2)/G;, 
we get 

do 
dE=-

3K 

tJs .. F' 
de;i = 2J + 2 S;i dJ2 

s 
(8.1.23) 

Next consider the incremental theory of plasticity with associated flow rule 

Fipre 8.10 (a) Hardening plastic material and plastic stress increment tangential to the 
loading surface; (b) torsional buckling of cruciform column tested by Gerard and Becker 
(1957). 
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and normality (e.g., Fung, 1965 or Lin, 1968; cf. Eqs. 10.6.5-10.6.10). Assuming 
again the von Mises loading surface, we have the incremental stress-strain 
relation for loading: 

do 
de=-

3K 
d - ds;j d p 
e;i- 2G + e;i d 

P _ S;id). 
e---
'' f 

di skm dskm 
d).= 2H = 4Hi (8.1.24) 

where f = Wz = stress intensity, H = plastic hardening modulus for shear = 
function of J2 or lleftll· For the uniaxial test, J2 = o1t/3 and Equation 8.1.24 yields 
deft= deft= do11 /3H and de 11 = [(1/E) + (1/3H)] do11 , from which H-t = 
3(£;1

- E-1
) where E, = do11 /de 11 =tangent modulus in uniaxial test. 

These two theories yield different plastic bifurcation loads. The difference 
is most blatant for a structure that is initially under uniaxial stress (primary 
path) but buckles due to shear (secondary path). This is the case for torsional 
buckling of a thin-wall column of cruciform cross section (Fig. 8.10b), 
for which l(J) = 0 and, according to Equation 6.2.4, Per= GJA/21 if 
the behavior is elastic (J = 4bh 3/3 = stiffness of cross section in simple 
torsion, I= 2hb3/3, h =wall thickness, b =width of each of the four flanges). 
The plastic first bifurcation load P, is obtained by replacing G with the 
tangent shear modulus G,. For incremental shear deformation ds 12 =#:: 0 (with 
ds11 = ds22 = ds 13 = ds 23 = 0) we have skm dskm = 0 (because s12 = 0), and 
so de 12 = ds12/2Gso that is, G, = G, for this buckling mode. So, the first 
bifurcation stress is 

o, = ~ = '2~$ = (~r as = (~) \~ - 3~r~ 
s 

(8.1.25) 

On the other hand, noting that di = 0, we get from Equation 8.1.24 
de;i = ds;)2G, that is, G, = G or o, = G(h/b)2 where G = ((3/E)- (1/3K)r 1

• 

This means that the bifurcation load should be unaffected by plasticity-an 
untenable conclusion. 

According to the famous experiments of Gerard and Becker (1957), Equation 
8.1.25 is the correct one. It agrees with the tests very well. This noteworthy result 
has played an important role in the development of plasticity, revealing a 
fundamental deficiency of the classical incremental theory-the response to 
loading increments that are tangential to the loading surface (i.e., for which 
skm dskm = 0, for von Mises materials--see Fig. 8.10a) is mispredicted as elastic; 
in reality it is inelastic. Yet the deformation theory has other shortcomings: (1) 
when plastic loading resumes after unloading, E~ is in general predicted to have a 
discontinuous jump, and (2) the path independence implied by Equation 8.1.22 
cannot be exactly true. A suitable remedy may be to endow the incremental 
theory of plasticity with a vertex (whose useful form has been formulated by J. 
Hutchinson at Harvard; also Bdant, 1987), or even better-use multisurface 
plasticity (cf. Sees. 10.6-10.7). 

Finally consider a plate or shell in a uniform initial in-plane stress state 
o11 = N11 /h, o22 = N22/h, with o12 = 0. We have 3o = o11 + o22 , 3s 11 = 2o11 - o22 , 

3s22 = 2o22 - o 11 , and 3dJ2 = (2o11 - o22) do11 + (2o22 - a 11 ) da22• Substituting 
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this into Equation 8.1.23, we get the tangential stress-strain relation: 

[

lK-1 + c-1 iK-1- ~G;1 

{

de 11
} _! 

3

+ 1
6F'(2o1s1 - 022)2 + 1F'(2 )(2 ) 6 On - 022 022- On 

d£
22 

- 3 iK- 1 + G;1 + iF'(2o22- ou)2 

d£12 sym l~J 
X{~:~} (8.1.26) 

dot2 

The tangential compliance matrix seen in this equation is then used in 
quasi-elastic analysis of the first bifurcation load. For the incremental theory, a 
different matrix results from Equation 8.1.23. Better agreement with plastic 
buckling tests of plates is again obtained for the deformation theory (e.g., Bleich, 
1952) (although according to Gjelsvik and Lin, 1987, the discrepancy of the 
incremental theory with experiments could be explained by edge friction). 

For concrete structures, the tangential stiffness matrix needs to be based on 
damage theory (Chap. 13), and localization as well as creep needs to be taken 
into account. 

Conclusion 

To sum up, it is appropriate to quote von Karman. In his discussion published 
with Shanley's (1947) celebrated paper, he epitomized Shanley's theory by stating 
that it determines "what is the smallest value of the axial load at which 
bifurcation of the equilibrium positions can occur, regardless of whether or not 
the transition to the bent position requires an increase of the axial load." The 
tangent modulus load obviously provides a safe lower bound on the critical load 
of an elastoplastic structure. This is the principal merit of Shanley's work. 

Unfortunately, Shanley's theory does not indicate at which load a perfect 
column will actually start to deflect. This question can be theoretically sett~d for 
perfect columns only by stability analysis, which has been presented only recently 
(BilZant, 1988) and will be carried out in Section 10.3 on the basis of 
thermodynamics. We will see that, surprisingly, all the undeflected states for 
P, ~ P < P, are stable though they cannot be reached in a continuous, stable 
loading path except when P, > AoP" With this exception, the stable loading path is 
the deflected equilibrium path that emanates from P,, and P, is the limit of 
undeflected states that can be reached in a continuous loading process. 

The fact that a perfect column must start to deflect at P, can also be 
theoretically proven by considering the perfect column to be the limiting case of 
an imperfect column. This will be shown in the next section. 

The first bifurcation load may be solved under the assumption that there is 
plastic loading everywhere, which leads to quasi-static analysis (see also Hill's 
method of linear comparison solid, Sec. 10.4). For structures with multiaxial 
stress, one needs to determine for this purpose the tangential compliance or 
stiffness matrix of the material, which is a difficult problem of constitutive 
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modeling. These matrices di~r for various plasticity theories if the buckling 
d~ction in the stress space (12 in Fig. 8.10a) differs from the loading direction 
(01) before buckling (they differ the most when the buckling direction is 
tangential to the loading surface; Fig. 8.10a). Hencky's deformation (total-strain) 
theory of plasticity generally gives results that agree with experiment much better 
than those of the incremental theory of plasticity. 

Problems 

8.1.1 Calculate the reduced modulus load for (a) an idealized 1-beam, (b) a real 
1-beam, (c) a box beam, and (d) a tube. 

8.1.2 Calculate the E, values for buckling in the left and right directions of the z 
axis in Figure 8.1la, b, c, d, e. 

8.1.3 Calculate E, for buckling in the direction of the z" axis of any orientation 
angle a" in Figure 8.11f, g. Then find ii" for which E, is minimum (this is the 
actual direction of buckling). Also calculate the direction angle a' for 
buckling at P = P, and compare a' with ii" (in general, they are not the same). 
Hint: Does z' coincide with the principal axis of inertia? 

8.1.4 Considering an elastoplastic material that obeys the Ramberg-Osgood 
stress-strain law e/e0 = a/a0 + m(a/a0t, with m = ,, n = 10, a0 = 
315N/mm2

, E=70,000N/mm2
, and e0 =a0/(0.7E), calculate the column 

strength curve in the inelastic range. 
8.1.5 Assume that E, = E(1 - (a I a .. )"] where n, a.. are constants (a .. = final 

asymptotic stress value). For n = 1 this yields the stress-strain curve a= 
a .. (l- exp ( -Ee/a .. )], and for n = 2 the curve a= a .. tanh (Ee/a .. ) (which 
was proposed by Prager). Show that for both n = 1 and n = 2 an explicit 
formula a, as a function of L/r (column strength curve, Eq. 8.1.11) can be 
obtained. 

8.1.6 Equations 8.1.4 and 8.1.9 represent implicit algebraic equations for P, and 
P,. Solve them, assuming the same Ramberg-Osgood material as in Problem 

a) b) c) d) 

~l~lhn~(--t 
+--'L+ +---"----+ 

(wall thickness t • constant) 

h) 1 • 

r}J 
I I 

e) f) ro g) 

t 7 $z~ 
i~l~+L,~ 
+-"-+ /(. 2h I I 2h I 

0 

Fipre 8.11 (a-g) Cross-section shapes of elastoplastic columns; (h) elastoplastic pipe 
under temperature and pressure loading. 
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8.1.4. Consider (a) an ideal 1-beam, (b) a rectangular cross section, (c) a solid 
circular cross section, (d) a tubular cross section, and (e) a symmetric 
triangular cross section. 

8.1.7 Consider a ring of radius R subjected to radial load p per unit length. The 
ring buckles (by deforming into an ellipse) for Per= 3El/R3 (Bresse formula, 
cf. Timoshenko and Gere, 1961, p. 291, and Sec. 2.8). (a) Showing that the 
initial axial stress in the ring is u = pR/A (A= cross-section area) and 
replacing E withE,= £[1- (u/u.ot], n = 1, derive an explicit formula for Per 
as a function of R/r where r2 =I! A (the formula was given by Southwell, 
1915). (b) Generalize this to a two-hinge arch (cf. Sec. 2.8). 

8.1.8 For the system in Figure 8.12a consisting of Shanley's column loaded 
through a spring of spring constant C, find the dependence of the axial load P 
on deflection q1 at midlength, assuming a bilinear stress-strain relation for the 
elastoplastic joint. Hint: Superimpose the effect of the spring on the diagram 
for C-+oo. 

8.1.9 Solve P, P,, and the load-deflection diagrams of the inelastic systems in 
Fig. 8.12b, c, d, e, f, g, h, i, j, k, I. Assume for the elastic springs C = const. 
(>0) and for the elastoplastic links a bilinear stress-strain relation. 

8.1.10 Calculate for a pin-ended column of length I the slope dP I dq 1 of the 

a) p b) d) 

g) h) 

q, 

i) 

J ...... 
Fipre 8.ll Exercise problems on buckling of elastoplastic systems. 
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load-deflection diagram P(q1) that emanates from Shanley's bifurcation point 
P = P,, considering a sinusoidal deflection w = q 1 sin (nx/1). Assume (a) an 
ideal 1-beam, (b) a rectangular cross section, (c) a tubular cross section, (d) a 
solid circle, and (e) a triangle. (Hint: Express dq 1 as well as dP as a function 
of curvature increment dqr, considering a triangular strain increment distribu
tion according to Fig. 8.5a at P,.) Determine approximately the q 1/L value for 
which P = (P, + Pr)/2. Assume s = 5 = const. (bilinear o-e diagram). Repeat 
for a fixed-fixed column and a fixeu-hinged column of a thin tubular cross 
section and thin-wall rectangular section. 

8.1.11 Calculate the ratio of the axial displacement increment to the maximum 
deflection increment, considering (a) the free-standing column in Figure 
8.12b, (b) sinusoidal bending of a pin-ended column of a solid rectangular 
cross section, or (c) other cross sections such as the solid circular cross section, 
tubular cross section, and box cross section. 

8.1.12 Using c1 for buckling to the right and c2 for buckling to the left, and 
considering a T -cross section, use Equation 8.1.12 to calculate the initial 
slopes dP/dw for buckling to the right and buckling to the left, starting at 
P = P,. Note that they are not the same. (The curve that must be followed is 
that of smaller slope: see Sec. 10.2.) 

8.1.13 Calculate the initial slope dP I dq 1 at q 1 = 0 for the case when P, < P0 = A oP 
(which can happen for a bilinear o-e diagram). Consider cross sections: (a) 
ideal I, (b) rectangular, (c) tubular. (Note: The calculation is similar to that of 
Pr but simpler since the condition !l.P = 0 is not present. Compare this slope 
with dP/dq 1 for P0 = P, given below Eq. 8.1.19; it should always be smaller.) 

8.1.14 Discuss the unloading behavior after a perfect column has previously 
deflected at monotonically increasing P. Realizing that at least initially the 
unloading must be elastic, calculate the unloading path from point (q?, pO) 
located on the loading curve P(q 1) that emanates from P, (Fig. 8.9c), 
considering Shanley's rigid-bar column in Figure 8. 7. The result is sketched in 
Figure 8.9c. (Hint: The unloading curve is the same as the loading curve of an 
elastic imperfect column, but only until reverse yield begins.) What happens if 
the column is then reloaded to the previous maximum load, and beyond it? 

8.1.15 (a) Solve Pn P,, and the load~deflection diagrams of the structure in Figure 
8.12b assuming for the elastoplastic link o(e) = Ee/(1 + ke), k =constant. (b) 
Do the same for the other structures in Figure 8.12c-l. 

8.1.16 (a) Solve the problem in Figure 8.12e with a nonlinear spring, C = 
C0(1- kq 1) where C0 , k =constants. (When the link is elastic, this structure 
serves as a model for cylindrical shell buckling in compression; see Fig. 7.26.) 
The present structure is a model for elastoplastic shell buckling. (b) Do the 
same for the structure in Figure 8.121. 

8.1.17 Consider Eq. 8.1.25 for a cruciform column. (a) Assuming that each of the 
four flanges (Fig. 8.10b) has b = 10h, calculate the bifurcation stress P,/A 
from Equation 8.1.25 considering the exponential uniaxial stress-strain rela
tion (cf. Problem 8.1.5). (b) Repeat for the incremental theory of plasticity 
and compare the results. (c) Generalize the results for concrete assuming that 
1/Gs = F(J2, o). 

8.1.18 Consider a rectangular simply supported plate of sides a, b; a= 2b. (a) 
Let ou = 2o22 , in which case the tangential compliance matrix in Equation 
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8.1.26 is orthotropic. Generalizing the solution from Equations 7.3.1 to 7.3.7 
to an orthotropic material, derive the expression for the bifurcation load. (b) 
For the special case On = o22 , the tangent compliance matrix in Equation 
8.1.26 is isotropic. Equating its elements E;i to those of the isotropic elastic 
matrix with E,, v, instead of E, v, that is, En= E22 = E,/(1- v:), Et2 = 
v,E,/(1- V:), and £ 33 = E,/(1 + v,), express the tangent E,, v, in terms of Ott> 
£ 5 , E, v, and then, replacing D with D, = E,h3/12(1- v:), adapt Equation 
7.3.7 to plastic buckling. (c) Assuming On =F o22 and Ot2 * 0, generalize the 
matrix in Equation 8.1.26 and show that it is generally anisotropic. (d) Use 
the incremental theory of plasticity (Eq. 8.1.24) to derive the tangential 
compliance matrix analogous to Equation 8.1.26, and discuss the differences. 
(e) Repeat all for Tresca, Mohr-Coulomb, and Drucker-Prager yield surfaces. 
(f) Generalize to nonassociated theories (cf. Sees. 10.6-10.7). 

8.1.19 The circular thin-wall pipe (thickness h, radius R) with built-in ends (Fig. 
8.11h) is heated from temperature To, at which it is stress-free, to temperature 
T. Assume the uniaxial stress-strain relation o11 = Ee11/(1 + EE11/o .. ) where 
E, o .. =constants. Let a denote the thermal expansion coefficient. Let xt> x2 

be the circumferential and axial directions. Determine the tangential com
pliance matrix from Equation 8.1.26 with de22 = 0 (as required for circum
ferential bending), and express the tangential cylindrical stiffness D,. Then (a) 
calculate critical temperature Tcr at which the pipe starts to buckle, assuming 
pressure pin the pipe to be negligible. (b) With reference to Section 1.8, how 
does Tcr change if the pressure in the pipe is p? (c) In reality, the yield limit 
decreases with increasing temperature. How does Tcr change if o .. = op(1-
kT) where oP, k =positive constants (and p = 0, E = const.)? 

8.2 IMPERFECT COLUMNS AND STRUCTURES 

Imperfections are inevitable and significantly influence the response of elastoplas
tic columns. Imperfections break symmetry. This eliminates path bifurcations and 
thus makes stability analysis of bifurcations unnecessary. The lack of symmetry, 
however, usually also makes the solution much harder. Since a perfect column 
must behave as the limiting case of an imperfect column with vanishing 
imperfections, analysis of very small imperfections makes it possible to decide 
which path is followed by a perfect column after bifurcation. Thus, analysis of 
imperfections can replace or supplement path stability analysis (Sec. 10.3), 
although it is normally more tedious. 

Shanley's Rigid-Bar Column: Exad Solution 

To illustrate the effect of imperfections, consider again Shanley's rigid-bar column 
(Figs. 8.7 and 8.13), for which the effect of imperfections is the easiest to solve. 
The calculations are particularly simple for an imperfection in the form of a small 
lateral load It that is applied at midheight only after the axial load P has been 
raised to P = P,. The column is initially straight and the axial load P is raised up 
to P = P, at zero deflection, q1 = 0. At P = P,, the disturbing load It is suddenly 
applied and is then kept constant while the axial load P is increased further. For 
this type of lateral loading we have ; > 1 as soon as the deflections start. If we 



ELASTOPLASTIC BUCKLING 

2.0 

!;.- 3 

.!. - 20 
h 

1.0 __ ._..__._ __ _.__ _ __, __ _._ __ ...__""77"_. 
0.00 0 OS 0.10 0.15 0 20 0.25 q1 / f 

501 

Figure 8.13 Load-deflection curves for an imperfect Shanley's column (bilinear material): 
exact solution (solid curves) and approximate solution (dashed curves) .. 

also assume the a-E diagram to be bilinear, that is, ; = const., then the exact 
equations 8.1.13 to 8.1.15 are valid through the entire deflection process, and ; is 
known [i.e., need not be determined from a simultaneous nonlinear equation, 
; = ;(e2)). Eliminating P from Equations 8.1.14 and 8.1.15 and substituting 
Equations 8.1.13, one gets a nonlinear equation for q1 and q2 • So, for each 
chosen value of q1 one can calculate q2 and then solve P from Equation 8.1.14. 
This solution is exact, even for finite deflections. 

Figure 8.13 shows the load-deflection diagrams calculated in this manner for 
; = 3 = const., 1/ h = 20, and various constant values of fi that were chosen so as 
to produce at P = P, the deflections q~/1 = 10-15

, 10-1.75
, 10-2 , and 10-3 • Figure 

8.13 also shows, for q?/1 = 0, the bifurcated load-deflection curve for the perfect 
column. 

Now an important property that is demonstrated by Figure 8.13 is that, in the 
limit for fi---+ 0, the load-deflection diagram P(q1) tends to the bifurcated branch 
of the solution for the perfect column that starts at P0 = P, (/1 = 0). It tends 
neither to the main branch, which corresponds to q1 = 0, nor to some of the 
bifurcated branches that start at P0 > P,. Since a sufficiently small disturbing force 
fi must be considered to be inevitable, we now have a proof that the only solution 
of a perfect column that is actually possible is the load-deflection curve for which 
the deflection increase begins at P,. 

The foregoing argument reveals that stability analysis (Sec. 10.3) may be 
avoided by introducing an imperfection that breaks the symmetry of the system. 
However, that does not render stability analysis useless. Often the solution of the 
equilibrium path of an imperfect system is much more complicated than stability 
analysis of the perfect system, especially when arbitrary imperfections are 
considered. 

An approximate solution of the foregoing problem may be obtained from 
Equations 8.1.16 and 8.1.17 (where P0 = P,). Eliminating q2 from these two 
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equations, we get (Bafant, 1985) 

P,(s- 1)h- Y~L<s + t) + 4P,;ql 
P= . <s- 1)h + 2(s + 1)ql 

(8.2.1) 

The curves P(q 1) plotted according to this simple formula are shown as the 
dashed lines in Figure 8.13. (Equation 8.2.1 for k-~o, of course, reduces to 
Shanley's formula in Eq. 8.1.18 for P = P,.) 

Arbitrary Imperfect Columns: Approximate Solution 

From the design viewpoint, the most important effect of imperfections is that, in 
contrast to elastic columns, they normally decrease the maximum load p max that 
the column can reach. The reason why such an effect has not been indicated by 
the preceding solutions (e.g., Eq. 8.2.1) is that; has been considered constant. In 
reality, ; usually increases as the deflections grow. Then, however, analysis of 
Shanley's column ceases to be simpler than analysis of a more realistic 
deformable beam-column. 

Therefore, to analyze deflections at increasing ;, let us now consider a 
pin-ended beam-column of length I (Fig. 8.14a), with an imperfection in the form 
of a sinusoidal initial curvature given by the ordinates zo(x) = q0 sin (.7rx/ 1). We 
seek the deflection also as sinusoidal, given by the ordinates z(x) = q sin (Jrx/1). 
For the curvatures at midlength we have 

(8.2.2) 

As a further simplification we assume the stress distribution between the concave 
and convex faces to be linear. This means that the portion of the stress-strain 
diagram between the strain values £ 2 and £ 1 for the concave and convex faces is 
replaced by a straight line. This line represents a chord of the segment of the 
actual stress-strain curve that corresponds to the strain values throughout the 
cross section; see Figure 8.14b. For an ideal 1-beam, this assumption does not 
introduce any error since the stresses are needed only at two points. 

a) 

r Cl 

le 
I 

l 

Figure 8.14 (a) Pin-ended column and (b) definition of chord modulus. 
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It may be noted that, for a general cross section, these two points would 
better be located so that, with a linear stress distribution, they would give rise to 
approximately the same bending moment as does the actual stress distribution. 
However, the locations of these two points cannot be given precisely since they 
would have to be varied with the stress level. 

In view of the linearization of the stress distribution, the moment condition of 
equilibrium yields 

, M -Pq 
w =--=--

Echl Echl 
(8.2.3) 

in which Ech = chord modulus corresponding to the segment of the stress-strain 
curve between the strain values £2 and E 1. Equating the last two expressions for 
the midlength curvature, w", and solving for Ech• we find 

Ech = p!2 (-q -) 
1r I q- qo 

(8.2.4) 

For the chord approximation of the stress-strain curve (Fig. 8.14b), we further 
have U2- Ut = Ech(£2- Et), in which u1, u2, E~> £2 are the stresses and strains at 
the concave and convex sides of the column. For the stress-strain curves we 
introduce the notations £1 = <P1(u1) and £2 = <P2(u2) where <j)1(u1) and <Piu2) are 
monotonically increasing functions describing the stress-strain relations for the 
concave and convex faces of the column. As long as the entire cross section 
undergoes loading, both functions are identical, that is, <P1 = <P2 = q,, where 
E = <P( u) represents the stress-strain diagram for virgin loading. For large 
deflections, however, it normally happens that the convex face suffers strain 
reversal. In that case, function <j)2 must describe the unloading stress-strain 
diagram, which is different from <j)1(e1). 

Expressing the stresses according to the bending theory, we thus have 

P Pqh 
(J = -----

1 A 21 
P Pqh 

(12=--+--
A 21 

Pqh 
(J2- (Jl = -~-

(8.2.5) 

(8.2.6) 

Finally, substituting Equation 8.2.4, we obtain the following nonlinear algebraic 
equation relating the axial load P and the maximum (midspan) deflection q: 

;r
2
h ( P Pqh) ( P Pqh) -(q-qo)=<P2 --+- -<Pt ----

/2 A 21 A 21 
(8.2.7) 

To solve this equation, one starts with q = q0 = initial imperfection, and 
increments the value of q in small intervals. For each q, Equation 8.2.7 is solved 
by Newton iteration, using as the initial value the solution obtained for the 
previous q-value. Unless the initial curvature of the column is so high that the 
axial force resultant would be outside the core of the cross section, the entire 
cross section at first undergoes loading, that is, q,, = l/>2 = q,. At a certain 
eccentricity, however, the convex face experiences strain reversal and afterward it 
is unloading. At the moment of reversal, function l/>2 must be reset so as to 
represent the unloading stress-strain diagram from the point of reversal. 
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Figure 8.15 (a) Ramberg-Osgood stress-strain relation for various n values, (b) 1-beam 
cross section, (c) load-deflection curves, and (d) curves of Pmax. (After Wilder, Brooks,- and 
Mathauser, 1953.) 

Equation 8.2.7 was solved by Wilder, Brooks, and Mathauser (1953) for the 
stress-strain relation of Ramberg and Osgood (1943), which reads E/Eo = o/o0 + 
m(o/o0)"; m = ~ and o0, Eo are the stress and strain associated with the secant 
drawn from the origin at a slope of 0. 7 E where E is the initial elastic modulus. 
The plot of this stress-strain curve for different values of the constant n is shown 
in Figure 8.15a, from which it appears that increasing values of n give a sharper 
"knee" of the curve. Values of n in the range 3 to 5 correspond to the typical 
behavior of high-strength high-alloy steels, values around 10 correspond to 
aluminum alloys, and values around 30 to 40 correspond to mild steel (but 
residual stresses are ignored). 

Some of the results of these calculations, performed for an 1-beam cross 
section with a massless web (Fig. 8.15b), are shown in Figure 8.15c, d. Figure 
8.15c shows the load-deflection curves for n = 10 for different values of the initial 
deflection q0 and for columns of different slendemesses, characterized by the 
values of the ratio between the tangent modulus load P, and the squash load 
P0 =Aoo. 

As the column becomes more slender, inelastic behavior disappears, and thus 
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the maximum load approaches the Euler load. Figure 8.15d shows, for different 
values of n and of the initial imperfection, the values of Pmax in relation to P,. 
Obviously, imperfections can indeed significantly reduce Pmax· From Figure 8.15c, 
d it is evident that, if the initial imperfections are large and if the stress-strain 
diagram is nearly elastic-perfectly plastic (larger n values), the maximum load of 
an imperfect column can even be smaller than the tangent modulus load of the 
perfect column. 

The solution just demonstrated, in which the equilibrium is satisfied exactly 
only at two points of the cross section, represents what is generally known as the 
collocation method. Alternatively, the equilibrium conditions could be approxi
mately satisfied in a global manner, for example, by using the principle of virtual 
work. This approach, however, yields more complicated equations. 

Exact solutions, which were first obtained by Jefek (1934) (in terms of elliptic 
integrals) for an elastic-perfectly plastic a-e diagram and by Chwalla (1934, 1935) 
for a curved a-e diagram (but ignoring residual stresses), must take into account 
the fact that the deflection shape is not sinusoidal but varies during deflection. 
Accurate solutions are today best obtained by finite elements. 

Effect of Cross-Section Nonsymmetry 

An interesting behavior is found when the cross section is not symmetric (Fig. 
8.16). Nonsymmetry does not influence the tangent modulus load (bifurcation 
load), but can strongly depress the maximum load Pmax and the initial slope of the 
load-deflection curve. 

The reason becomes clear by recalling that the reduced modulus loads P~ and 
P~ for buckling to the left and right are different (Eqs. 8.1.6 and 8.1.7). The 
load-deflection curves that emanate from the tangent modulus load (Fig. 8.16a) 
approach P~ and P~ asymptotically if E1/ Eu = const., and so one curve must 
attain higher values than the other; see curves 1. Curves 2 for real columns, for 
which E1/ Eu is decreasing, deviate from curves 1 downward, and as is clear from 
Figure 8.16a, their peaks may be expected to occur at different heights. 
Calculations confirm that; see Figure 8.16b showing the numerical results of 

a) 

I -Conolont Et 
2 - Decr .. oiiiiJ Et 

q 

F1pre 8.16 (a) Effect of cross-section asymmetry on load-deflection curve; (b) numerical 
results of Hariri. (After Johnston, 1976, p. 47.) 
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Hariri (1967) for some typical pin-ended columns of a T -cross section, reported 
also by Johnston (1976, p. 47). 

It is important to note that the initial slopes a for buckling to the left and to 
the right are not the same (cf., Eq. 8.1.12 and Prob. 8.1.12) because they are 
proportional to the static (first) moment of the cross section about an axis tangent 
to the cross-section boundary at the extreme point to the right and to the left. 
The deflection curve that is actually followed from the bifurcation point at P = P, 
is that of smaller slope (this is proven in Sec. 10.3). 

Problems 

8.2.1 Solve Equation 8.2. 7 explicitly for P as function of q using for the 
stress-strain relation the following formulas: (a) E =kIn [1 + (o/Ek)]; (b) 
E =kIn F(o) + C1, with either F(o) = (1 + co)/(1 + bo) or F(o) = 1 +co+ 
be?-; (c) E = Eo(1- bo); and (d) E = Eo/(1 + bo), where k, b, c =constants. 
Obviously, the solution will be valid only until the point where strain E2 on the 
convex side reverses. Find this point (dE2/dq = 0). 

d) 

f) 

b) c) 

~~-· 
e) 

A h~·· 

Fipre 8.17 Exercise problems on buckling of elastoplastic systems. 
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8.2.2 Solve the load-deflection curve for the column supported by two elastoplas
tic links shown in Figure 8.17a. Let Zo = initial imperfection. Assume 
E = k In (1 + o I Ek) for the stress-strain curve of the links; k = 0. 01, 1/ r = 100, 
h = r. Plot the results for various values of Zolr. Hint: Express o 1 and o2 from 
the equilibrium conditions (Fig. 8.17b) P(r + z) + A 0o2 • 2r = 0, P(r- z) -
A 0o12r = 0, and use the geometric relation (e1 - e2)h/2r = (z- Zo)/1. 

8.2.3 Do the same, but consider Shanley's column, without or with an added 
axial spring (Fig. 8.12a). The initial imperfection is characterized by a given 
finite value q 1 = q~ at P = 0. 

8.2.4 Consider the same problem as solved in the text. According to the principle 
of virtual work, global equilibrium requires that c5W = f, Ld(e) c5edA dx
f P[c5A. + c5(z'2/2)) dx = 0 where f(e) = o. Substituting z =a sin (.1a/l), Zo = 
a0 sin (.1a/l), and E = (z"- z;;g where ~=transverse coordinate measured 
from the deflected centroidal axis, and ,\=strain at centroid, express P and 
discuss calculation of the curve P versus a by incremental loading. 

8.2.5 Calculate the curve P( 8) for the elastoplastic von Mises truss in Figure 
8.17c, which exhibits an inelastic version of snapthrough. The bars do not 
buckle, they only shorten (elastoplastically). Consider the stress-strain rela
tions: (a) o=E(e-ke2

); (b) o=Ee/(1+ke); (c) e=o/E+ko"; and (d) 
o = Ee(l + ke)/(1 + ce) where k, c =constants (k s c). Find the critical load 
and critical 8. Compare the results with the elastic analysis in Section 4.4. 

8.2.6 Calculate the load-displacement curve P(u) for the elastoplastic von Mises 
truss in Figure 8.17d. Except for the added spring, everything is the same as in 
Problem 8.2.5. Compare the results with the elastic analysis in Section 4.4. 

8.2.7 Consider again the elastoplastic von Mises trusses in Problems 8.2.5 and 
8.2.6, and analyze their responses during unloading and reloading. 

8.2.8 Consider Shanley's column (Fig. 8. 7) in which, however, the deformable 
link at midspan does not have the cross section of an ideal 1-beam but rather a 
nonsymmetric cross section: (a) asymmetric ideal (webless) 1-section, (b) 
thin-wall T-section (t«h), (c) triangular cross section (Fig. 8.17e). Solve the 
load-deflection curves assuming various initial imperfections (out-of
straightness). Calculate the deflection curves both to the right and to the left. 
(Note: They will be different.) Comment on Pmax· 

8.2.9 Solve the response of the column in Figure 8.17f, perfect or imperfect. 
Consider only symmetric deflection modes. Analyze the effect of lateral forces 
f as an imperfection. 

8.2.10 (a) Consider the von Mises truss made of rigid bars and a deformable 
inelastic link (Fig. 8.17g). Assuming P = 0 at 8 = 80 > 0, and o = Ee/(1 + 
ke), discuss the load-deflection path. Is there any bifurcation? (b) Same 
problem for the two-degrees-of-freedom system in Figure 8.17h. 

8.3 EFFECT OF RESIDUAL STRESSES 

The analysis presented so far in this chapter does not seem to apply to hot-rolled 
structural steels for which E, (and thus alsoP,) suddenly drops to zero. However, 
the picture is completely changed by the presence of large residual stresses. They 
make Shanley's theory applicable, too. We will discuss it in this section. 
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Figure 8.18 (a) Cooling sequence of hot-rolled beams; (b) residual stress contours 
(adapted from Galambos, 1988, p. 36); (c) relation between average stress and strain for a 
column cross section. 

The disagreement between Euler's critical load and the experiments made in 
the early 1900s was attributed at first to the neglect of elastoplastic behavior and 
imperfections. After the theory had been modified to take these two phenomena 
into account, as already described in Section 8.2, good agreement between theory 
and experiment was achieved for certain elastoplastic materials, such as alumi
num alloys. This was of considerable importance for aircraft design. 

Serious discrepancies nevertheless persisted for tests of hot-rolled steel beams 
used in structural engineering. Subsequent research led to the recognition that the 
chief source of the discrepancy between theory and experiment was not the 
imperfections but residual stresses (this was suggested already in 1908 by Howard 
and in 1921 by Salmon.) Systematic studies (see, e.g., Osgood, 1951; Yang, 
Beedle, and Johnston, 1952; Beedle and Tall, 1960) in the 1950s and 1960s have 
established that the residual stresses have in fact a major effect on the load 
capacity of short hot-rolled steel columns while the effect of imperfections is 
secondary in comparison. 

The residual stresses arise from nonuniform cooling of hot-rolled beams 
during their production. The rate of cooling is roughly inversely proportional to 
the square of their thickness. The tips of the flanges of an 1-beam cool the fastest, 
and the flange web intersections the slowest (Fig. 8.18a). Thus, when the white 
regions in Fig. 8.18a contract, the shaded regions have already cooled and 
hardened, and therefore resist the contraction. This causes residual stresses that 
are compressive at the tips of flanges and tensile in the central parts of flanges. As 
an example, Figure 8.18b (adapted from Galambos, 1988, p. 36) shows the 
residual stress contours measured in a heavy hot-rolled shape. 

Residual stresses are also caused by welding. After cooling, the region of the 
weld is normally in tension, and the rest of the cross section in compression. The 
plastic deformation due to the punching of holes for rivets or bolts or for cutting 
also causes residual stresses. Stress concentrations due to holes have a similar 
effect as the residual stresses, since they cause a part of the cross section to yield 
before the average stress reaches the yield limit. 

Calculation of the Effect of Residual Stresses 

As a consequence of the residual stresses, the yield limit is reached earlier when a 
compressive force is applied on the column. Even though the stress-strain curve 
a( e) of mild structural steel is essentially elastic-perfectly plastic, one obtains for 
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the column as a whole an average stress-strain curve of a gradually decreasing 
slope, as shown in Figure 8.18c. The curve of average stress versus strain for a 
cross section can be either determined experimentally or calculated on the basis 
of knowledge of the actual stress-strain diagram of the material and of the 
residual stress distribution. In terms of the average stress, the column behaves as 
if its apparent yield limit aP were much lower than the actual yield limit 
/y; aP = /y- a, where a, is the maximum residual stress. When this apparent yield 
limit is exceeded, the parts of the cross section that have large residual 
compressive stresses yield plastically and thus reduce the average tangent 
modulus. Obviously, this engenders a reduction of Shanley's tangent modulus 
load, P,. 

Let us now show how to calculate the effect of given axial residual stresses 
a0(y, z) on P,. We assume a0(y, z) to depend only on the cross-section 
coordinates y, z and to be independent of the axial coordinate x. The column is 
assumed to be perfect, and so there is no deflection until the tangent modulus 
load P, is reached. The material stress-strain curve a(e) is given, and its slope is 
E,(e) = da(e)/de. If axial strain £ 1 is produced in the column by the applied load, 
the total strain is E = £ 1 + e0(y, z), where £ 1 is the load-produced strain and 
e0(x, z) = a0(y, z)/ E =the residual strain. When the column begins to buckle 
from its initial perfectly straight state, the bending moment (about the y axis) is 
M = f (E,ra)z dA = R,K. Here K =curvature and R, =initial incremental (tan
gential) bending rigidity, which may be calculated as 

R,(Et)= L E,(e)z2 dydz e=e1 +e0(y,z) (8.3.1) 

where A = cross-section area. Since Shanley's tangent modulus load must be equal 
to the resultant of axial stresses a, we have the condition: 

(8.3.2) 

where L =effective length (Sec. 1.4) of the column. Substituting Equation 8.3.1 
for R, we have a nonlinear algebraic equation for the axial strain e1 at which load 
P, is reached. Strain e1 may be easily solved, for example, by the iterative Newton 
method. Then Shanley's load P, is evaluated as P,(e1). 

For the special case of an elastic-perfectly plastic material (mild steel), E, = 0 
in the yielded zone, and E, = E =elastic modulus outside that zone. So 
R,(e1) =fA, Ez2 dy dz = El., and P,(e1) = -A.,Ee1 - {y(A- A.,), in which /y =yield 
stress (>0), A., is the elastic portion of the cross section, and/., is the moment of 
inertia of this portion of the cross section. 

Examples 
As an example, consider the wide-flange 1-beam shown in Figure 8.19b. We 
consider the bending about the weak axis y, for which the effect of the residual 
stresses, concentrated at the flange tips, is more pronounced than for bending 
about the strong axis z. The effect of the web on bending rigidity is, for the weak 
axis bending, negligible. We assume the residual stress to vary monotonically 
from the middle of the flange to its tip (Fig. 8.19a). Denoting by ~the length of 
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Fagure 8.19 1-beam cross section (b); assumed residual stress distnbutions (a, d, e); and 
stress distributions at tangent modulus load (c, f). 

the elastic segment of the flange (Fig. 8.19c), we have R,(e) = Et~3/6, in which 
t =flange thickness. Thus, Equation 8.3.2 takes the form: 

(8.3.3) 

in which b =flange width, and the load-produced strain e1 can be considered as a 
function of ~ if the shape of the distribution of the residual stress a0(y, z) is 
specified. The minus sign appears because P is positive for compression while 
the stress and strain are negative for compression. The value of P is equal to the 
shaded area in Figure 8.19c. Solving ~ from Equation 8.3.3, we obtain the 
tangent modulus load, P,. Consider now two special cases: 

Case 1. The residual stresses are distributed rectangularly, as shown in Figure 
8.19d, and have the magnitude 0.3/y. In this case, it is necessary that ~ = b/2, and 
Equation 8.3.3 yields the tangent modulus load 

n 2Etb 3 

P, = 48L2 (8.3.4) 

Note that in this case the diagram of average stress -PI A versus strain e 1 is 
trilinear, the third segment being horizontal. Due to the discontinuity of slope of 
this diagram, however, P, might not exist because Equation 8.3.4 might yield a 
value that is less than the P value at the first yield (see Sec. 8.1). 
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Case 2. A more realistic assumption is a triangular distribution of o0 (Fig. 
8.19e). From the linear strain distribution in Figure 8.19f we figure out 
£ 1 = -(1.3- 0.6~/b )/y/ E for £ 1 :s; -0. 1/y/ E. Substituting this into Equation 8.3.3 
and solving for ~ we can calculate the tangent modulus load from its expression as 
a function of the nonyielding part of the cross section, P, = :~r2EI,/ L 2 = 
:~r2Et~3/6L2• Alternatively, we could calculate the average stress-strain curve by 
substituting the expression for ~ as a function of £ 1 into the equation that gives 
the average stress Oav= -P,(~)/A = -/y(1-0.3~2/b2). The tangent modulus then 
becomes E, = doavldEt = (doavld~)(d~/de 1 ) = E~/b, and P, is obtained from 
Equation 8.1.11. 

According to the latest studies at Lehigh University (cf. Chen and Lui, 1987, 
p. 122), the actual residual stress distributions usually are intermediate between 
the triangular and parabolic ones. 

Problems 

8.3.1 Derive the column strength curves for bending about the weak axis of the 
wide-flange beam shown in Figure 8.19b, for the rectangular and triangular 
residual stress distribution shown in Figure 8.19d, e. 

8.3.2 Solve the same as Problem 8.3.1, but consider a parabolic residual stress 
distribution of maximum residual stress 0.3/y. 

8.3.3 Solve the same as Problems 8.3.1 and 8.3.2 but for strong-axis bending. 
8.3.4 Considering the linear residual stress distribution in Figure 8.19d and 

calculating P(e1) = P(~) according to Equation 8.3.3, check that -dP/de1 = E 
for ; = b and dP I de1 = 0 for ; = 0. 

8.4 METAL COLUMNS AND STRUCTURES: DESIGN AND CODE 
SPECIFICATIONS 

With various finite element or finite difference computer programs that have 
recently come into existence, it is now feasible to design columns and frames on 
the basis of the maximum load Pmax (i.e., the load capacity). Such computer 
solutions are in close agreement with test results provided that they take into 
account: (1) the finite deflections and the equilibrium conditions on the deflected 
structure (which is, of course, the essence of buckling analysis); (2) the actual 
nonlinear stress-strain diagram; (3) the residual stresses from hot-rolling or 
cold-forming, as well as stress concentrations around holes, etc.; (4) the 
imperfections (inevitable initial crookedness); (5) the actual end restraints, with 
the elastic as well as inelastic and frictional properties of the end joints, and in the 
case of frames, the buckling interaction among all members; (6) possibly also load 
repetitions prior to the final overload up to Pmax (which produce, in the case of 
inelastic behavior or friction, further residual stresses and residual bending 
moments in indeterminate structures); and (7) for statically indeterminate 
structures, the possibility that in some members the axial force-displacement 
curve may already descend while in others it still rises. Why then, despite the 
availability of these computer programs, do we still need design codes? 

We still need them because the aforementioned completely rational analysis is 
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quite involved and requires various extensive data that are not readily available to 
the design engineer. Cookbooks as they are, codes nevertheless fill four 
important functions: (1) The procedures, or "recipes," enacted by codes, provide 
reliable guidance to the designer who neither has the time and will to study the 
theory in depth and make his own choice among several possible procedures, nor 
is able to collect input data on crookedness, end joint friction, residual stresses, 
etc.; (2) by sanctioning certain procedures, the codes lend the designer legal 
protection (an engineer can get sued for lack of wisdom, but a code-writing 
committee has not been sued yet); (3) by favoring simple approximate formulas 
and procedures, the codes make the designer's work easier, more efficient; ( 4) at 
the time the code specifications are instituted, they speed up progress by forcing 
the designers to use better methods. 

The benefit of the last function, however, gets reversed with the passage of 
time. It is patently difficult to change a code. Thus, all too often, code 
specifications tend to impede progress when they get old, when better methods 
become available. For this reason, and also because ripening of the theory in 
general obviates the need for codes, the future trend will probably be, and ought 
to be, away from codes. 

Centrically Loaded Columns 

For centrically loaded structural steel columns that are not too slender, tests show 
that the maximum load Pmax is usually higher, but only slightly higher, than 
Shanley's tangent modulus load P,. Moreover, the deflections at Pmax are 
relatively small for short columns. For these reasons it is logical that the 
contemporary codes base design on P,. As already emphasized (Sec. 8.3), the 
effect that makes Shanley's theory applicable to hot-rolled columns (in spite of 
the fact that mild steels, including structural carbon steels and high-strength 
low-alloy steels, are essentially elastic-perfectly plastic) is the effect of residual 
stresses. 

Beginning about 1950, the residual stress magnitudes and distributions have 
been determined for typical steel beams. This was done either by direct 
measurement of the extension of a small coupon after it is cut out longitudinally 
from the beam or, indirectly, by calculation from the measured load-deformation 
curve of a short stub of the beam (comprising the whole cross section). Extensive 
studies of this type have been carried out at Lehigh University and elsewhere for 
many different cross-section shapes, effective column lengths, and residual stress 
magnitudes and distributions. An example of the predicted column strength, 
which Salmon and Johnson (1980) adapted from Johnston's guide (1976), is 
shown in Figure 8.20a. 

According to the classical recommendation of Column Research Council 
(CRC) (cf. Johnston, 1976; or Galambos, 1988), a single curve of approximate 
column strength ou (ultimate stress) versus column slenderness A.= L/r is used, 
approximating the mean trend of the curves for various types of columns, such as 
those shown in Figure 8.20a. The CRC curve, plotted as a function of the 
slenderness parameter Ac = A.(f,/tc2E)112 in Figure 8.20b (adapted from Chen and 
Lui, 1987), follows Euler hyperbola (Eq. 1.2.8) for Ou s 0.51,. (!,.=yield stress), 
and for ou > 0.5/y, it is assumed to have the shape of a parabola (Bleich, 1952) 
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Figure 8.ZO Column strength curves: (a) weak and strong axis bending (adapted from 
Johnston's Guide, 1976); (b) AISC curves (adapted from Chen and Lui, 1987); (c) effect 
of imperfections (adapted from Johnston's guide, 1976); (d) multiple column strength 
curves (ECCS, European Convention of Constructional Steel Works, 1976). 

that has a horizontal tangent at L/r-+0 and is tangent to the Euler hyperbola. 
The tangent point is found to be at au= 0.5/y, and the CRC curve is given by the 
equations: 

L 
For -<c: 

r 

L 
For-~c: 

r 

(8.4.1a) 

"h fiE Wit C = 1r'J T.-
/y 

(8.4.1b) 

This curve (the solid curve in Fig. 8.20b) was used until 1986 by the American 
Institute of Steel Construction (AISC) for buildings, and has also been used by 
the American Association of State Highway and Transportation Officials 
(AASHTO) for bridges. Column strength in design equations usually is denoted 
as u •• instead of Uu, but we prefer to avoid this notation since u .. does not 
represent a critical stress, defined as the limit of stable states (see Sec. 10.3). 

Length L is not the actual column length but the effective length (Sec. 1.4), 
which is normally calculated from the elastic critical load Per· The factor K = L/1, 
called the K -factor, is tabulated by approximate formulas in handbooks or 
textbooks for a variety of situations. In the elastic stability calculations of Per used 
for determining L (Chaps. 1 and 2), the columns and beams in a frame are in 
practice usually assumed to have the same elastic modulus E. However, as Yura 
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(1971) pointed out, for small slenderness A< c it is more realistic to use E only 
for the beams, and for the columns use the tangent modulus E,. This is, of 
course, more tedious since the value of E1 depends on L (through the value of P,) 
and thus needs to be determined iteratively. 

Because friction at the end supports is inevitable, it is admissible, if a pin 
support is used, to take the end restraint stiffness not as C = 0 but as C = 0.1C0 , 

where C0 is the end rotation stiffness of the column at zero axial load. In the case 
of continuous beams and frames, in which there are members adjoining the 
column to be designed, the stiffness of the adjacent beams or columns can be 
adjusted for calculations. For example, if there is supposed to be a hinge at the 
far end of the next member framed into the column, the flexibility of this member 
can be decreased by a factor of 2, on account of friction. On the other hand, if 
the far end is fixed, this flexibility is recommended to be increased by a factor of 2 
since a perfect fixity is never achieved by the usual steel connection details. 

Further recommendations on adjusting the theoretic elastic value of the 
K-factor are indicated in Figure 8.21. More details and further recommendations 
on trusses, lateral bracing, and connections are given in Galambos's guide (1988, 
pp. 51-57); see also Salmon and Johnson (1980, p. 265). 

Equations 8.4.1a, b are used to determine the allowable axial stress of a 
column, aa11 = au/S, where S is the safety factor. The AASHTO specifications 
(1983) have simply used S = 2.12 for any slenderness. However, this does not 
provide a uniform safety margin since the statistical scatter of test results is larger 
when the column is more slender (which is explained by an increased influence of 
random imperfections). Therefore, AISC defined the safety factor, for use in 
conjunction with Equations 8.4.1a, b, as follows: 

S=~+ 3A _! (~)2 
3 8c 8 c 

For A !5; c: 

For A<:!:c: S=H 
(8.4.2) 
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J.i'ipre 8.21 Effective-length factors for various end restraints. 



ELASTOPLASDC BUCKLING 521 

This safety factor, which yields (according to Eqs. 8.4.1a, b and 8.4.2) the 
dash-dot curve in Fig. 8.4.1b, lumps the effects of statistical variabilities of the 
loads and the column strength. The statistical variability of column strength is 
largely due to randomness of residual stresses and the randomness of imperfec
tions such as initial crookedness. According to Equations 8.4.2, the longer the 
column (larger L/r), the larger is its safety factor. This is supported by 
experiments that show the statistical scatter to be larger when the column is more 
slender, and is explained by the fact that imperfections have a larger effect for 
longer columns. Thus, even though no critical crookedness is assumed in 
calculations according to Equations 8.4.1a, b and 8.4.2, we can say that the 
imperfections are in some average sense taken into account by the safety factor. 
They indeed should be reflected in the safety factor because they are random. 

On the other hand, to bury the effect of imperfections in the safety factor 
alone is, admittedly, a rather crude approach. In reality the effect of imperfec
tions is influenced by many factors that can be brought under consideration only 
if the calculations assume the column to be initially crooked. Because these 
factors do not appear in Equations 8.4.1a, b, the CRC curve per se (without the 
safety factor) implies the design to be based on an initially straight (perfect) 
column, for which the depression of the strength-slenderness curve below the 
Euler hyperbola is due solely to the residual stresses, whose presence makes 
Shanley's theory applicable. Without the residual stresses, the strength
slenderness curve of a perfect column would have to follow the Euler hyperbola 
all the way up to the yield limit f,, as long as the structural steel is 
elastic-perfectly plastic. 

The preceding analysis emphasizes the viewpoint of AISC and AASHTO 
(rather than that of Eurocode No. 3, 1989), in which the column design is based 
on a single strength-slenderness curve (Eqs. 8.4.1a, b and Fig. 8.20a). This is, of 
course, an approximation, and in theory a crude one. Theoretically, the effect of 
residual stresses depends on the shape of the cross section (Sec. 8.3), and thus 
affects P, and Umax· Furthermore, the residual stresses themselves are different for 
different cross-section shapes, for example, when regular 1-beams and wide-flange 
1-beams (called in Europe H-beams) are compared. The residual stresses also 
differ greatly among hot-rolled beams, cold-formed beams, round bars, beams 
welded from plates, etc. All these factors further cause the ratio Pmaxl P, (which is 
generally close to 1) not to be constant but to vary. 

The range of column strength curves that have been calculated for many 
different cross sections of columns used in practice is shown in Figure 8.20c. Since 
these curves fill a rather broad range, it is in principle desirable to abandon the 
use of a single strength-slenderness curve, and to introduce different curves for 
different types of beams. This has been recognized by the European Convention 
of Constructional Steelworks (ECCS), which in 1976 introduced for various 
typical cross sections the strength-slenderness curves shown in Figure 8.20d. 
Multiple column strength curves have also been recomended by the Structural 
Stability Research Council (SSRC, formerly CRC) (cf. Galambos, 1988) on the 
basis of a proposal by Bjorhovde and Tall (1971), and are also used in Eurocode 
No. 3 (1989); see also Ballio and Mazzolani, 1983. 

The evidence in favor of multiple strength-slenderness curves, however, is 
incomplete at present and debate is continuing. The AISC has been studying the 
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question in detail but so far adheres to a single curve (Eqs. 8.4.1a, b), not just for 
reasons of simplicity but also because other, possibly equally important, effects 
are still neglected by the curves in Figure 8.20d. Although in principle the use of 
multiple curves is doubtless superior under ideal conditions, it is unclear whether 
there is a significant gain in accuracy for real columns since other effects 
mentioned before are still neglected (even with multiple curves), for example, the 
uncertainties of end restraints and their inelastic (or frictional) behavior. 
Furthermore, the concept of effective length L, which is calculated by elastic 
analysis (Chaps. 1 and 2), is valid only for the tangential modulus load P, and not 
for Pmax· This means that the benefit of basing the strength-slenderness curves on 
the theoretical Pmax values of an imperfect column might be iost, as these curves 
are valid only for one idealized type of end support. One might need to have also 
different curves for different end supports, different thicknesses of the flanges 
(because they affect the cooling rate, and thus the residual stresses), etc. 
Moreover, there are still considerable uncertainties about the residual stress 
distributions. When it comes to safety factors, it may be expected that properly 
they should be assigned different values for different types of columns, but this 
has not yet been sufficiently researched. 

As part of a new code format-the load and resistance factor design-the 
AISC recently adopted for the strength-slenderness curve a new approximate 
formula (AISC, 1986): 

For Ac < 1.5: 

For Ac:::::: 1.5: 

~u = 0.658J.] with Ac = ~ (; /i) 
au 0.877 0.877 1r

2E 
/y =-A.~ = h (L/r)2 

(8.4.3a) 

(8.4.3b) 

The curve according to Equations 8.4.3a, b is plotted in Figure 8.20b as the 
dashed curve. 

The curve of Equations 8.4.3 has been determined so as to be optimal under 
the following assumptions: (1) the end restraint stiffness is C = 0.1C0 (as defined 
before); (2) the load is applied at the end centrically, and (3) the initial 
crookedness has a sinusoidal shape and amplitude L/1500 at midheight. As the 
last assumption reveals, a certain column imperfection has been considered in 
determining this curve. However, only a single design curve, not distinguishing 
among various cross sections, continues to be used by the AISC. 

Load and Resistance Factor Design and Probabilistic Aspects 

When the safety factor is used, the design condition is a :5 a.,/ S. This simple 
classical approach (AISC, 1978), however, cannot distinguish between the 
differences in statistical scatter of the loads and strength. From the probabilistic 
viewpoint, a more realistic design condition that is used in the so-called Load and 
Resistance Factor Design (LRFD) should be written as (AISC, 1986) 

(8.4.4) 

in which R =resistance (or capacity), for example, the column strength a.,, 
Q; =the forces or stresses (such as a in the column) produced by various loads on 
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Figure 8.22 (a) Probabilistic distributions of load and structural resistance and (b) failure 
probability. 

the structure (i = 1, 2, ... , n ), tPu = resistance factor (strength reduction factor, 
understrength factor, for example, tPu = 0.85 for a column) that characterizes the 
statistical scatter of the strength of the member and represents the combined 
effect of the statistical scatter of material properties, residual stresses, initial 
crookedness, etc.; and y; = load factor characterizing the statistical scatter of load 
i (i = 1, 2, ... , n), for example, 1.6 for the live loads, 1.2 for the dead loads 
acting simultaneously with the live loads, and 1.4 for the dead loads alone, 
according to the AISC. 

For the case of one load, the LRFD condition is illustrated in Figure 8.22a; 
here Q and R are the statistical means of the load Q and the resistance R: yQ is 
the load value that represents on the probability density distribution curve of the 
load a certain upper confidence limit (a probability cut-off) that is exceeded with 
a certain specified very small probability p 0 (e.g, p0 = 0.001); and similarly tPuR is 
the resistance value that represents on the probability density distribution curve 
of the resistance a certain lower confidence limit that is exceeded with the same 
very small probability p 0 • The probability distributions of Q and R are estimated 
empirically (usually as Gaussian distributions characterized by standard devia
tions), and from these the factors y and tPu are then deduced. 

The LRFD approach, which is superior from the viewpoint of probabilistic 
theory of structural safety, is allowed to be used (AISC, 1986) as an alternative to 
the previous specifications (AISC, 1978), but is not mandatory. 

For probabilistic treatment, it is convenient to consider the probability density 
distribution of In (R/Q), which may be assumed to be Gaussian, that is. normal 
(which means that the distribution of RIQ is log-normal); see Figure 8.22b. Note 
that In (R/Q) is preferable over RIQ since the Gaussian distribution extends to 
- oo, which means that negative values can occur; those for In (R/Q) are 
admissible but those for RIQ would not be since R and Q cannot be negative. 
The failure probability p, is represented by the cross-hatched area in Figure 8.22b 
(for which R < Q). For any given p, one can determine from the probability 
distribution of In (R/Q) the corresponding ratio P =In (RIQ)/s where In (R/Q) 
is the mean of In (R/Q) and sis the standard deviation of In (R/Q) (Fig. 8.22b), 
which is approximately equal (for small w) to the coefficient of variation w of 
R/Q [reason: <5(ln z) = 6(ln z -In i) = <5In (z/i) = <5In (1 + !iz/i) = 6(!iz/i) = 
6(!iz)/i = 6z/i, where <5 denotes a variation or error, z = R/Q, and liz= 
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z- i =small). Ratio f3 is called the reliability index, and its meaning is that the 
load-design combinations of the same f3 have approximately the same reliability, 
that is, the same probability of nonfailure (as p, is a function of {3). As an 
approximation, In (R/Q) =In (iVQ), and also (since ~ and Q are in'!_ependent 
random variables) co= (co~+ co~) 112 where coR= sR/R and coQ = sQ/Q are the 
coefficients of variation of R and Q (this is an application of Gauss approximation 
formulae; see e.g. Blom, 1989, p. 123, and Problem 8.4.5). Thus the reliability 
index can be approximately evaluated as 

R 
f3 =(co~+ co~)- 112 ln Q (8.4.5) 

From the foregoing remarks it is clear that probabilistic analysis of structural 
stability is very important. This is still a relatively little explored subject; see, for 
example, Bolotin (1969, chap. 4), which deals with probability of imperfections, 
distribution of critical loads, and statistical methods for buckling of shells, or 
Elishakoff (1983, Sees. 5.6 and 11.7), which illustrate probabilistic analysis of 
static imperfections sensitivity and dynamic stability. 

Beam-columns 
Beam-columns are columns subjected to significant bending moments. For 
columns that are so short that stability considerations (second-order effects) are 
irrelevant, the ultimate load can be obtained by plastic limit analysis. As an 
approximation, one may use linear interaction equations that have, for the most 
general case of biaxial bending, the form (see, e.g., Galambos, 1988, p. 308): 

p M, Mz < M, + Mz :S; 1 P. + 0.85 M + 0.6 M - 1 M MZp (8.4.6) 
u Yp Zp Yp 

Here P =actual axial force; Pu =axial yield force at no bending moment; M1 , 

Mz =maximum magnitudes of the bending moments for they- and z-directions 
(with z-direction corresponding to bending about weak y axis); and M,p, 
Mzp = maximum plastic bending moments at no axial force. The special case of 
bending in one plane is obtained by setting Mz = 0, provided that the bending is 
about the strong axis. If it is about the weak axis, the interaction equation reads 

p Mz Mz 
-+0.6-:S; 1 -$1 
Pu Mzp Mzp 

(8.4.7) 

When the axial force Pis not negligible compared to the elastic critical loads, 
then the interaction equations (Eqs. 8.4.6) need to be generalized by replacing 
the applied (first-order) moments M, and Mz by the approximate magnified 
(second-order) moments M;, M:, as derived in Section 1.6, and Pu needs to be 
determined as the ultimate load capacity of a perfect-inelastic column, as we just 
described it. So the interaction equation for the most general case of biaxial 
bending becomes (AISC, 1978; Galambos, 1988) 

P + M; + M: :S; 1 M* = M~Cm. M* = M~Cm, 
Pu Myp Mzp y 1- P/Pery z 1- P/Per, 

(8.4.8) 

Here Per,• Pcr
1 

=elastic critical loads for buckling of perfect column in x- and 
y-directions; M~, M~ = maximum applied (first-order) moments; and Cm

1
, Cm, = 
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correction coefficients that take into account the distribution of bending moments 
and the action of lateral forces in they- and z-directions, determined by elastic 
analysis as explained in Section 1.6. While Pu is obtained by inelastic stability 
analysis based on Shanley's concept, the critical loads Per,• Per, are obtained by 
elastic stability analysis (Sec. 1.6). As a special case, Equations 8.4.8 cover also 
bending in one direction only (Mzp = 0). When axial-torsional buckling takes 
place, Myp and Mzp must be calculated as the maximum bending moments when 
the axial load is zero (no second-order effects), taking into account axial-torsional 
buckling as well as plasticity and residual stresses. 

Equations 8.4.6 to 8.4.8 do not suffice for design because they give no 
information on the (nonuniform) safety factor to be used. When second-order 
effects are negligible, the AISC conservatively omits the coefficients 0.85 and 0.6 
from Equations 8.4.6, and after scaling this equation down with the appropriate 
safety factors one obtains the following criterion given in the AISC code (for 
biaxial bending): 

(J (Jb (Jb 
_a_+....::z+-'~1 
0. 6/y Fb, Fb, 

(8.4.9) 

Applying the same procedure to Equations 8.4.8 one obtains the following 
formula given in the AISC code (for the case in which the second-order effects 
must be taken into account); 

(8.4.10) 

in which 

(8.4.11) 

Ua =PIA= actual stress due to axial load, F;. = PuiAS = uu!S =allowable stress 
for the axial load (corresponding to safety factor S according to Eqs. 8.4.2), 
ub, = Myy/1, ug, = M~y/1, Uer, =Per,! A, and F,, =allowable bending stress for 
bending in they-direction; ub,, ug,, Uer, and Fb, are defined similarly (A= cross
section area, I= moment of inertia, y =distance from centroid to column face). 
Note that F,,, Fb. must take into account the possibility of lateral buckling (see 
AISC, 1978 and Sec. 6.3). Note also that the value of the safety factor used to 
scale down the critical stresses Uer,• ucr, in Equation 8.4.11 is S = fl (see Eq. 
8.4.2). For details, see, for example, Salmon and Johnson (1980). 

The derivation of Equation 8.4.10 from Equation 8.4.8 is as follows: One first 
sets P = lj, M~ = M~1, M~ = ~1, with lj = axial failure load and M~,, M~, = 
primary bending moments at failure, in which case Equation 8.4.8 becomes an 
equality. Then one divides both the numerator and denominator of each fraction 
by the safety factorS, and replaces lj/S with P, ~/S with M~, and M~/S with 
~' which means the equality is now changed back to ~- Finally, one divides P 
by A, etc., to get the corresponding stress quantities. 

The approximate semiempirical interaction Equations 8.4.6 to 8.4.11 have 
been justified by experiments as well as by second-order analysis taking into 
account plasticity and residual stresses. Many such analyses were made, in a 
simplified manner, already before the computer era. The easiest calculations of 
the interaction diagram begins by determination of the moment-curvature 
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Figure 8.23 (a) Moment-curvature diagram; (b) maximum bending moment; (c, d) 
interaction diagrams (adapted from Salmon and Johnson, 1980). 

relations for various fixed values of the axial force in a cross section of a given 
shape; see Figure 8.23a. Then one chooses a certain axial load value P and a 
certain effective buckling length L, and by considering an increasing sequence of 
the values of the end rotation of the column or maximum deflection, one 
calculates the corresponding column-deflection curve and the maximum bending 
moment using the moment-curvature diagrams in Figure 8.23a. An iterative 
procedure due to Newmark (1943) was often used for this purpose, but today the 
deflection curve or the moment distribution would, of course, be solved by finite 
elements with an incremental loading procedure. This calculation yields the 
maximum bending moment (Fig. 8.23b) for each chosen value of P and L. The 
result is an interaction diagram, which is exemplified by the dashed curves in 
Figure 8.23c, d (which are based on Salmon and Johnson, 1980). For comparison, 
Figure 8.23c, d also shows the interaction diagrams according to Equations 8.4.6 
and 8.4.8. We see that the error of the approximate design formulas is 
acceptable. 

Figure 8.24 shows an example of complete ultimate strength interaction curves 
for a wide-flange 1-beam (W8 x 31, f, = 33,000psi) calculated under the assump
tion that the residual stress along the flange is distributed bilinearly, with maxima 
and minima of magnitude 0.3f,, as in Figure 8.19e. The figures are presented for 
the various initial bending moment distributions; they were obtained under the 
assumption that the column ends do not move, that is, the frame member is 
braced. The error of the interaction equation (Eqs. 8.4.8) compared to the 
interaction diagrams in Figure 8.24 has been found to be acceptable. 

With the increasing power of computers, the second-order calculation of the 
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Figure 8.24 Interaction diagrams for wide-flange 1-beams. (Adapted from Salmon and 
Johnson, 1980.) 

ultimate strength interaction diagrams such as those in Figure 8.23d is becoming 
easier, and in the future the design practice may be expected to be increasingly 
based on finite element analysis. 

In the latest specifications of AISC (1986), which are allowed to be used as an 
alternative to its 1978 specifications (AISC, 1978), a refinement is recommended 
for determining Cm for unbraced rectangular frames with lateral loads. Instead of 
the formula given in Section 1.6 and Equations 8.4.8 (AISC, 1978), the magnified 
moment (M; = M*) is obtained as 

(8.4.12) 

where Mnr = magnified moment due to loads that cause no lateral translation of 
column ends, defined as in Section 1.6; M1, =additional moment due to loads 
causing lateral translations (sway, drift); 8 1 = Cm/(1- PIPer); and 

(8.4.13) 

The summation !; runs over all the columns of the same floor, 8 2 being common 
to all these columns; A= lateral translation of the floor (drift); and H =applied 
horizontal forces producing A. For details and justification see AISC (1986) with 
commentary (AISC, 1986, sec. Hl). 

It should be noted that buckling of some frames with lateral sway of columns 
can also involve torsion in which the entire floor rotates about a vertical axis 
(Wynhoven and Adams, 1972). 
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Plates, Shells, and Other Structures 

In principle, it is safe to design any structures such as plates or shells for a critical 
load calculated on the basis of the tangent modulus E,. However, this procedure 
is easy only if E, is known in advance, that is, if the stress-strain diagram is 
bilinear. Otherwise, the determination of E, is coupled with the calculation of the 
critical load and requires a nonlinear structural analysis that takes the plasticity of 
the material as well as the residual stresses into account. 

There exists nevertheless a simple approximate method--the method of 
equivalent column slenderness (e.g., Bleich, 1952; Johnston, 1976; Herber, 
1966), which is generally conservative (although sometimes too conservative). 
The reduction of the elastic critical stress ~ is assumed to be approximately the 
same as in a column of a certain equivalent slenderness L/r = il.cq. Thus, one sets 
~ = n2E/i\.~ (Eq. 1.2.8 or 8.4.1b), from which 

( 
E )'12 

i\.e<J = lf ~I 
c:r 

(8.4.14) 

Then one reduces the elastic critical stress ~ in the same ratio as required for a 
column of slenderness il.eq· 

We may illustrate it considering an infinite plate strip of width band thickness 
h, subjected to longitudinal stress o. The critical value of o (Sec. 7.3) is given by 
~ = kn2Eh2/[12(1- v2)b2

) where k =coefficient depending on the boundary 
conditions. From Equation 8.4.14, 

(8.4.15) 

This method is often used for inelastic lateral buckling of beams, for which it 
works quite well, as well as tubes, shells, etc. (Johnston, 1976). 

The local buckling of flanges in compression members is often simply handled 
by requiring the flange thickness to be so large that the buckling load will be 
higher than the load that causes the flange to yield. In this manner, elastoplastic 
stability analysis is avoided. 

For structures such as plates, for which there exists a large postcritical reserve, 
calculation of the critical stress from the elastic solution is unnecessarily 
conservative if E is replaced with the tangent modulus E,. Bleich (1952) proposed 
E to be replaced with Eer = (EE,) 112

, which gives a larger critical stress; see 
Galambos (1988). 

A detailed discussion and many other semiempirical formulas for various 
inelastic buckling problems are presented in Galambos's guide (1988) as well as 
other handbooks and textbooks (e.g., Salmon and Johnson, 1980). The future 
lies, however, in nonlinear finite element analysis. 

Design Examples 

Eumple 8.4.1 Consider a pin-ended steel column of length I = 16ft 
(4.87 m), which carries an axial load P = 180 kips (799 kN) (Fig. 8.25a). Its cross 
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Figure 8.25 Design examples for buckling of steel columns. 

section is a W8 x 48 shape, with area A = 14.1 in2 (9096 mm2
), radii of gyration 

rz = 2.08 in. (52.8 mm) in the weak direction of the z axis (i.e., about they axis) 
and r, = 3.61 in. (91.69 mm) in the strong direction of the y axis (i.e., about 
the z axis). Assuming!,= 36 ksi (247.7 N/mm2

), E = 29,000 ksi (199.5 kN/mm2
), 

check the design according to the AISC Allowable Stress Design (Eqs. 8.4.1 and 
8.4.2). Hint: In which direction will the column buckle? 

Solution. A36 steel, E = 29,000 ksi,!, = 36 ksi (1 ksi = 1000 psi). 

c = (2;2£ = 126.1 A= Kl = 16(12) = 92.3 "VT rz 2.08 

A =A {t; =A Vi= 92·30 = 1.035 
c "V7E c 126.1 

u = F (1 - A
2

) = F (1 - A~) = 26 36 ksi u Jy 2c2 Jy 4 . 

s = ~ + ~ C~5)- ~ C~5r = 1.89 F, = ~u = 13.93 ksi 

p 180 . 
U0 =-=-= 12.77ksl<F, 

A 14.1 

Example 8.4.2 Same column as in Example 8.4.1, assuming that D = 
180 kips (799 kN) is the dead load (load factor 1.4). Check the design according 
to the AISC Load and Resistance Factor Design (Eqs. 8.4.3 and 8.4.4 with 
<Pu = 0.85). Compare the results with Example 8.4.1. 
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Solution. P = 1.4D, 1.4D < 0.85R, D < R/1.65. 

au= /,.(0.658.\f) = 36(0.6581 0352
) = 22.99 ksi 

22.99 k . I --= 13.93 st = same resu t 
1.65 

Example 8.4.3 A hinged steel column of length I= 28ft (9.75 m) has an 
intermediate support in the xz plane and carries an axial load of P = 170 kips 
(754.7 kN) (Fig. 8.25b). Its cross section is a W10 x 39 shape, characterized by 
A= 11.5 in2 (7419 mm2

), rz = 1.98 in. (50.3 mm), ry = 4.27 in. (109 mm). Assum
ing!,.= 36 ksi (247.7 N/mm2

), E = 29,000 ksi (199.5 kN/mm2
), check the design 

according to the AISC Allowable Stress Design (Eqs. 8.4.1 and 8.4.2). 

Solution. 

Az = Kl = 0.5(28)(12) = S4. 8S 
rz 1.98 

,Y = Kl = 28(12) = 78.69 , , ( k . ) ,. "-z > "Y wea ax1s governs . 
ry 4.27 

Ac =Vi Az =Vi (84.85) = O. 952 
c 126.1 

( A~) ( 0. 952
2

) • au=/,. 1-4 =36 1--4- =27.85ksl 

S=~+~ (0.952) _! (0.952)
3 

= 1.881 
38V2 8V2 

F: =a"= 14 806 ksi 
a S • 

p 170 
a =-=-= 14.78<F: 

a A 11.5 a 

Example 8.4.4 A steel column of length I= 18ft (5.48 m) is hinged at the 
bottom and at the top, and loaded by an axial load P = 150 kips (666 kN) that has 
an eccentricity e = 5 in. (127 mm) at the top in the xy plane (Fig. 8.25c). Its cross 
section is W12 x 53, A= 15.6 in2 (10,064 mm2

), rz = 2.48 in. (63 mm), ry = 5.23 in. 
(133 mm), Sy =cross-section modulus= 70.6 in3 (1.15 x 106 mm3

). Assuming!,.= 
36 ksi (247.7 N/mm2

), E = 29,000 ksi (199.5 kN/mm2
), check the column design 

according to the AISC Allowable Stress Design (Eqs. 8.4.10 and 8.4.11). 
(Hint: Assume Fj, = 0.6!,. as the allowable stress in bending, which takes into 
account the danger of lateral buckling for the given section and length, and check 
also the cross section at the top for yielding.) 

Solution. ry > rZI Az > Ay, Az = Kllrz = 18(12)/2.48 = 87.1. 

A _ ViAz _ V2(87.1) _ 
c - c - 126.1 - 0. 977 

Uu = t,.( 1- ~) = 27.41 ksi 

s = ~ + ~ (0. 977) -! (0. 977)
3 

= 1.885 
38V2 8V2 

F, = ~" = 14.54 ksi 
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Assume Fb = 0.601, = 21.6 = 22 ksi (from the AISC tables). 

Ay = Kl = 18(12) = 41.3 
ry 5.23 

' Ocr Jr2£ . 
F" = s= A.2(2l) = 87.55 ks1 

y 12 

p 
150 9 61 k · o = M = 150(5) = 10 62 ksi 

Oa =A = 15.6 = • Sl b Sy 70.6 • 

Oa Cmob ( 1 ) 9.61 0.6(10.62) 
F, + --p;- 1 - oaf F; = 14.54 + 22 (1.123) = 0. 986 < 1 

• • Oa Ob 9.615 10.62 
Y1eldmg at the top: 0.6f, + Fb = 0.6(36) + n = 0. 928 < 1 

Example 8.4.5 A steel column of length l =16ft (4.88 m) is hinged at the 
bottom and at the top, and has an intermediate support at midlength in the xz 
plane (Fig. 8.25d). The axial load is P = 100 kips (443.9 kN) and the lateral load 
at midlength in the xy plane is F = 8 kips (35.51 kN). The cross section is a 
W10 x 39 shape, A= 11.5 in2 (7.42 X 103 mm2

), Tz = 1.98 in. (50.3 mm), ry = 
4.27 in. (108.4 mm), Sy = 42.1 in3 (0.690 x 106 mm3

). Assuming f, = 36 ksi 
(247.7 N/mm2

), E = 29,000 ksi (199.5 kN/mm2
), check the column design accord

ing to the AISC Allowable Stress Design (Eqs. 8.4.10 and 8.4.11). 
(Hint: Assume Fb = 0.661, as the allowable stress in bending, since for the given 
unbraced length and shape there is no danger of lateral buckling.) 

Solution. 

Ou 
F =-= 1848 a S . o = p = 

100 
= 8. 70 ksi 

a A 11.5 

Oa = 8. 70 = 0.471 
F, 18.48 

ob = M = ~(8)( 12) = 9.12 ksi 
Sy 42.1 

~ = 0.661, = 23.76 ksi 

' Ocr Jr2£ 
Fe=~= 2(Zl)=74.1 

S Ay 12 

oh = 9.12 = 0_384 
~ 23.76 

1 

I 
, = 1.133 

1- Oa Fe 
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Cm = 1- 0. 2~a = 0.977 
F .. 
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Ua + Cmub ( 1 ') = 0.471 + 0. 977(9.12) (1.133) = 0.896 < 1 
Fa Fb 1- Ua/Fe 23.76 

Problems 

8.4.1 Derive the coefficients of Equation 8.4.1a knowing the condition of 
tangency with the Euler hyperbola. 

8.4.2 Describe the Load and Resistance Factor Design and its differences from 
the Allowable Stress Design. 

8.4.3 Recalling that the interaction diagram of P and magnified moment is 
assumed to be linear, derive the interaction equation. 

8.4.4 Solve (a) Examples 8.4.1 and 8.4.2 for /=17ft instead of 16ft; (b) 
Example 8.4.3 for I = 30ft instead of 28 ft and P = 160 kips instead of 
170 kips; (c) Example 8.4.4 for I= 20ft instead of 18ft and P = 115 kips instead 
of 150 kips; (d) Example 8.4.5 for I = 15 ft instead of 16ft and F = 10 kips 
instead of 8 kips. 

8.4.5 Derive Equation 8.4.5 as a special case of the following derivation of Gauss 
approximation formulae for the mean and variance sj (s1 = standard deviation 
of f) of a function f(x, y) of independent random variables x, y. (1) Mean: 
Expand f(x, y) = /(~, ji) + (x - i)f.x + (y - ji)/.y where f.x = f.x(i, ji), f.y = 
f.y(i, y). From this, f(x, y) = f(i, y) since (x - i) = (y- ji) = 0. (2) Variance: 

sj = (/-/)2 = (f(x, Y)- f(i, YW = [(x - i)f.x + (y - ji)/.y]2 = (x- i)2f~x 
+ (y - ji)2/~y + 2(x - i)(y - ji)fxfy = s;f~x + s~f~ 

since for independent variables (x - i)(y - ji) = 0. 

8.5 CONCRnE COLUMNS AND STRUCTURES: DESIGN AND 
CODE SPECIFICATIONS 

Reinforced concrete columns are composite structures whose load capacity 
depends on concrete, reinforcing steel bars, and their bond. Like steel, the 
uniaxial stress-strain diagram of concrete, whose typical form is sketched in 
Figure 8.26a, is also highly nonlinear. Unlike steel and other metals, the 
compressive and tensile strengths, £. and 1:, are very different. Their ratio is 
about 10:1 (more precisely, 1: = 6Vf'c VpSi, psi= 6895 Pa). The tensile resistance 

a) -G 
b) 

-& 
0.002 0.003sa&t 

Fipre 8.26 (a) Uniaxial stress-strain diagram of concrete and (b) simplified form with 
sudden stress drop adopted by CEB. 
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of concrete is usually neglected in the design of columns. This no-tension 
assumption is on the safe side. 

The nonlinearity of the o( E) diagram of concrete in compression or tension 
begins at a rather low stress level, roughly at 0.3/; or 0.3[;. There is no plastic 
(yield) plateau. Rather, the stress begins to decline with increasing strain right 
after reaching the peak stress. The mathematical treatment of this phenomenon, 
which is called strain-softening and is due to distributed cracking, is difficult in 
general (Chap. 13), but not for the bending of columns. 

The use of the smooth descending portion of the o(e) diagram, of course, 
implies the hypothesis that strain-localization instabilities (Sec. 13.2) do not 
occur. In most cases of bending of not too large columns this is probably a 
reasonable hypothesis as long as the diagram of load versus load-point deflection 
is rising. This is normally the case nearly up to the peak point of the 
load-deflection diagram (but not completely up to the peak). On the other hand, 
when the diagram of load P versus the axial displacement u1 under the load at the 
column end is descending, the possibility of localization instabilities, such as those 
in Section 13.2, is much greater. We accept the aforementioned hypothesis 
because the use of a smooth descending portion of the o( E) diagram for both 
compression and tension has yielded good comparisons with experimentally 
measured deflections of reinforced concrete beams (Bafant and Oh, 1984) as well 
as partially prestressed beams (Chern, You, and Bafant, 1989). 

In contrast to beams, strain-softening behavior is difficult to measure in 
uniaxial tests since strain localization occurs right after the peak (Chap. 13). In 
view of these difficulties, the practice has been to assume for concrete a 
stress-strain diagram terminating with a sudden stress drop (e.g., CEB, 1978, Fig. 
8.26b). This is a simplification that is probably not very realistic for bending but is 
usually on the safe side, except for the use of a horizontal plateau at the end of 
the diagram (in reality the stress declines right after maximum o is attained). 
However, the CEB Draft (1988) of the Comite Euro-International du Beton 
(CEB) Model Code recommends a smooth descending stress-strain diagram. 

Unlike steel columns, the case of centric loading is not considered for concrete 
columns. This case is circumvented in codes by stipulating that every column must 
be designed for a certain minimum eccentricity, emin· 

Interaction Diagram (failure Envelope) 

As explained in the texts on reinforced concrete (e.g., Wang and Salmon, 1979; 
Park and Paulay, 1975), the ultimate compressive force P and the ultimate 
bending moment M for a concrete column cross section (Fig. 8.27a) are related 
by an interaction diagram (also called the failure envelope or failure surface). The 
cross-section failure may be due either to brittle failure of concrete in compres
sion or to ductile failure of steel in tension. The interaction diagram has the 
characteristic "knee" shape shown in Figure 8.27b. Its slope is not continuously 
downward, but reverses sign. This is due to tensile cracking of concrete. If PI M is 
small, the main effect of increasing P is to suppress tensile cracking; hence M 
increases. On the other hand, if PI M is large, no cracks can form and the main 
effect of increasing P is to cause the cross section to reach the compression 
strength earlier; hence M decreases. 
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Figure 8.27 (a) Concrete column cross section, (b) cross-section interaction diagram, (c, d) 
load-displacement curves. 

With regard to our further analysis, it may be helpful to discuss how the 
cross-section interaction diagram is defined. One considers a small element tu of 
the beam (in which there are no second-order effects), one end cross section 
being fixed and the other one subjected to axial force P applied at constant 
eccentricity e (Fig. 8.27a). The load-point displacement u1 is increased in small 
steps, and the corresponding values of P are calculated from equilibrium 
conditions and the stress-strain laws of concrete and steel, assuming the cross 
section to remain plane. If the curve P(u1) is rising, the beam element is stable, 
that is, no failure can take place (see also Sec. 10.1). If this curve is descending, 
the beam element is, under load control, unstable, (Sec. 10.1). The critical point 
of stability, that is, the failure point, is obtained as the peak-load point (max P) 
(see Fig. 8.27c). Thus, in a consistent mechanics analysis, the interaction diagram 
(at controlled load, as it is normally understood either directly or by implication) 
should be defined and calculated as the collection of the peak-load point of all the 
curves P(u1) obtained for all the eccentricities e. 

In the practical engineering literature, this theoretically consistent definition 
of failure has normally not been adhered to. Failure has been assumed to occur, 
for example, when the maximum strain of concrete or steel reaches a certain 
specified limit, which is selected empirically. However, if calculations beyond this 
limit (with a realistic constitutive law, of course) would indicate a further increase 
of load (Fig. 8.27d), this is not really a failure state, and is not a state lying on the 
interaction diagram. Vice versa, if calculation would indicate that the load at this 
limit is already decreasing (Fig. 8.27d), then again this is not a failure state, since 
failure must have occurred earlier. 

Consider now a hinged beam-column under the action of axial load P. It is 
usually reasonable to assume that load P is applied in such a manner that its 
eccentricity e remains constant (Fig. 8.28d) as the load increases. The path 
followed by the axial load and the bending moment acting on the cross section at 
column midlength can be shown in the same figure (Fig. 8.28e). In the absence of 
second-order effects (as in very short columns), the cross section would undergo 
proportional loading, and its state would follow the radial ray 01 (of slope 
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Figure 8.28 (a) Concrete column cross section; (b, c) strain and stress distributions; (d) 
columns subjected to axial load of constant eccentricity; loading paths for columns (e) of 
different slendernesses, or (f) of different eccentricities of axial load. 

e = M I P) shown in Figure 8.28e, reaching a maximum at point 1 of the 
cross-section interaction diagram. For slender columns, however, the midle_!!gth 
deflection w1 causes the path to deviate from the radial ray downward (path 02 in 
Fig. 8.28e). The larger the column slenderness A. (A.= L/r, where r =radius of 
gyration), the greater are the deviations. 

For not too slender columns, the failure (i.e., the peak point) occurs at points 
rather close to the cross-section interaction diagram (path 02 in Fig. 8.28e). Such 
behavior corresponds to what has been called (according to the ACI) the 
cross-section failure. For very slender columns, on the other hand, the failure 
occurs well within the cross-section interaction diagram (path 03 in Fig. 8.28e), 
because of pronounced second-order effects. This corresponds to what had been 
called (according to the ACI) the stability failure. The type of instability is the 
snapthrough (limit point; Sec. 4.4). 

Figure 8.28f compares the P(M) path at constant e for columns of the same 
length L (or slenderness) and different end eccentricities e;. Connecting the 
failure points (peak points) such as 1, 2, 3 in Figure 8.28f yields the interaction 
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Figure 8.29 Reduced interaction diagrams. (Adapted from MacGregor, Breen, and 
Pfrang, 1970.) 

diagram P(M) of the column, which is modified for second-order effects. 
Projecting each failure point (maximum point) horizontally onto point A; on the 
radial line of slope e; (Fig. 8.28f), one obtains the column interaction diagram in 
terms of the ultimate primary bending moments M = M~ = Pe (and ultimate load 
P = P,.). This diagram is called the reduced interaction diagram (a term used, 
e.g., in Italy) or the slender column interaction diagram (a term used in the 
United States). Figure 8.29 (adapted from MacGregor, Breen, and Pfrang, 1970) 
shows the reduced interaction diagrams for three different ratios of the end 
moments and for various values of the ratio L/ h (where h = height of rectangular 
cross section, Fig. 8.27a). These diagrams, as well as the actual column 
interaction diagrams (curve 234 in Fig. 8.28f) are different for different column 
slendernesses. 

Deflections and Interaction Diagram 

To obtain approximate column deflections, we may assume, for the sake of 
simplicity, that the column deflection curve is sinusoidal, w = -w1 sin (JtX/ L) 
where L = effective length of the column (Fig. 8.28d), equal to the column length 
if the supports are hinges. To simplify the solution, the equilibrium condition and 
the moment-curvature relation are matched at only the midlength of the column, 
in the spirit of the collocation method. The curvature at midlength is K = 
H

2wtfL2
, from which w1 = L2

K/H2. By equilibrium, the second-order bending 
moment is M11 = Pwt> or 

M 11 = Pk11K (8.5.1) 

(In reality, of course, coefficient k11 must be, for the same wt> less than L2 /H2 

because nonlinear behavior tends to produce at midspan a sharper, more pointed 
curve.) The total moment at midlength is M = M1 + M11 where M1 = Pe =first
order (primary) bending moment, which is due to eccentricity e of load Pat both 
column ends. 

The maximum of the response curve P(M) at constant e represents the failure 
points if load P is controlled. Consequently, the collection of all these maxima for 
various e determines the failure envelope of the column. This can be proven as 
follows. 
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The failure point under load control (snapthrough or limit-point instability) is 
obviously characterized by the condition dP I du1 = 0 where u1 is the axial 
displacement of the load point at the column end (the basic reason is that P du1 is 
the correct expression for the work of load P; see Chap. 10). For a sinusoidal 
column shape, the rotations of the column ends are 81 = w1[d sin (.n:xl L)ldx] = 
w11riL. So the load-point displacement is u1 = 81e + H~w'2 dx = 
1rew1l L + 1r2wV8L, in which the axial shortening of the column axis is neglected. 
Also w1 = L2KIH2

• From this, approximately, 

eL L 3 

Ut=-K+-K2 

1r 8~ 
(8.5.2) 

The column under load control is stable if dPidu 1 >0 (see Sec. 10.1). It fails 
(loses stability) when the response first satisfies the condition dPidu 1 :sO 01 

c52W = ~ c5P c5u1 :s: 0 (see Sec. 10.1), i.e. that is 

(8.5.3) 

If the slope dPidu 1 varies continuously, then, of course, the failure condition is 
dPidu 1 = 0. According to Equation 8.5.2, dKidu 1 >0 always (since K ~o. e >0). 
Now it is possible that dM I dK at failure is either nonpositive or positive. If 
dMidK :s: 0, the cross section fails even without the second-order (slenderness) 

a) 
p D 0 

p 

b) 
p 

8 

o M o u, 
Figure 8.30 Column failure conditions (a) for smoothly varying P-M diagram, and (b) for 
discontinuous slope change. 
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effect. So this_!ype of failure, which occurs at point 1 of Fig. 8.30a (the end of the 
straight path 01) is obtained for zero slenderness (L = 0) and in this case we do 
not have dP I dM = 0 for the points on the cross-section interaction diagram. For 
L > 0 we must have dM I dK > 0. So the column fails (i.e., reaches a point on the 
column interaction diagram) as soon as the following condition is reached: 

dP sO 
dM 

(if L > 0 and e = const.) (8.5.4) 

This means that a peak point of the P(M) diagram at constant e represents 
failure. 

If the slope dP I dM at constant e varies continuously, then th~olumn fails 
(loses stability) when dPidM =0. In that case, the response curves 02, 03, and 04 
in Figure 8.30a must intersect the column interaction diagram P(M) horizontally. 

If the slope changes discontinuously, then the intersection with the column 
interaction diagram (see Fig. 8.30b) is the first point where the slope dPidM is 
nonnegative on the left and nonpositive on the right of the intersection. This 
situation may arise if the column fails when the steel bars begin to yield provided 
that the steel is assumed to behave as elastic-perfectly plastic and the steel area 
at each side is considered to be concentrated in its centroid. 

Numerical Algorithm for Calculating Deflections and Interaction 
Diagram 

For numerical calculation, it is convenient to subdivide the critical cross section at 
midlength of the column into many thin layers. Some of the layers are used to 
represent the steel reinforcement. Having the values of curvature K and of the 
distance c from the beam axis to the neutral axis (Fig. 8.28b, c), one has 
E = -K(z +c), and so one can use the given stress-strain diagram a( e) of 
concrete and of steel for either loading or unloading to evaluate the stress at the 
center point of every layer (Fig. 8.28b, c). From these stress values one obtains 
the resultants P = P(K, c) and M = M(K, c). The a( e) diagram of concrete should 
take into account the effect of elastic lateral confinement due to stirrups (or 
spirals). 

To calculate the column response curve P(M) at increasing deflection and 
constant eccentricity e at the column ends, the following algorithm may be used. 
One chooses an increasing sequence of K values. For each K value, one has 
w1 = k 11K. So one needs to solve c from the equilibrium equation: 

M(K, c)- (e + w1)P(K, c)= 0 (8.5.5) 

in which M and P are calculated as the resultants of the stresses in all the layers 
corresponding to strains E = -K(z +c) (Eq. 8.5.5 ensures equilibrium to be 
satisfied only at column midlength). Equation 8.5.5 is a nonlinear equation that is 
quite easy to solve with a computer library subroutine such as that for the 
Marquardt-Levenberg algorithm. The convergence is very fast if the solution of c 
for the preceding K value is used as the initial estimate of c for the new K value. 
From the c value obtained, one may then evaluate P(K, c) and M(K, c), which 
define parametrically the curves P(M) at constant e. 

In the course of the foregoing calculation, one should compare the strain in 
each layer with the strain value at the previous load level, and if unloading is 
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detected, then the proper o( E) curve for unloading should be considered for that 
layer. 

The foregoing new algorithm based on Equation 8.5.5 (Baiant, 1985, and 
Baiant, Cedolin, and Tabbara, 1989) is easy to program, is cheap to run (suitable 
for a small microcomputer), and is recommended as the best choice for a design 
office, among all the methods described in this section. This algorithm was used 
to calculate the response curves P(M) at various constant values of e for concrete 
columns with the square cross section of side h shown in Figure 8.28. Various 
slendernesses L/r (with r = h/Vfi) were considered. The concrete was assumed 
to have no stiffness in tension ( oc = 0 at Ec ~ 0) and in compression to obey the 
formula recommended in the Draft (1988) of the 1990 CEB Model Code, which 
gives a smooth curve with peak value (strength) 1; = 5000 psi and postpeak strain 
softening. For steel, up to yield limit {y = 60,000 psi, os = EsEs for both compres
sion and tension, with Es = 29 x 106 psi. To achieve accurate results, the cross 
section was subdivided into 100 layers. 

The calculated response curves P(M) at constant e (Fig. 8.31) show that the 
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Figure 8.31 Loading paths and load-displacement curves for different eccentricities at the 
same column slenderness. (After Baiant, Cedolin, and Tabbara, 1989.) 
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Figure 8.3:Z (a) Loading paths for different column slendemesses and various ec
centricities, (b) failure envelopes of column for zero slenderness (dashed), and for actual 
slenderness (solid), and reduced failure envelopes in terms of primary bending moment 
(dash-dot). (After Bazant, Cedolin, and Tabbara, 1989.) 

peak-load point always occurs within the cross-section interaction diagram, not on 
it. In textbooks it has been widely assumed that for small e (and not to large 
slendernesses) the response curve intersects the cross-section interaction diagram 
with a positive slope; but this is not the case. For columns of medium slenderness 
(L/r = 70), the peaks of the P(M) curves (i.e., the failure points) lie rather close 
to the cross-section interaction diagram. This is so for small as well as large 
eccentricities e. On the other hand, for very slender columns (L/r = 100), these 
peaks are quite remote from the interaction diagram for all eccentricities except 
the very large ones (e > 0.3h). The corresponding diagrams P(u1), which have 
the same peak values of P determining the stability limits, are shown on the right. 
Figure 8.32a shows the effect of varying the column slenderness at various 
eccentricities. Note that the trend of the interaction envelope continues smoothly 
into the tensile side (P < 0). This means that tension stiffens the column, as it 
does in the elastic domain (Sec. 2.1). Also note that the second-order effect 
deftects the loading path again below (but to the left of) the straight radial path 
for zero slenderness. Figure 8.32b shows the failure envelope of columns of 
various slendemesses, calculated as the maximum value of P for various e/h. The 
same figure shows the reduced failure envelope in terms of primary bending 
moments. This envelope is close to both the column and the cross-section failure 
envelopes for low slendemesses (L/r = 30), but it moves farther apart for higher 
slendemesses. 

The responses in Figure 8.31 are calculated and plotted also for very small 
eccentricities e, for which they must approach Shanley's theory. Shanley's tangent 
modulus load P, of the column has been calculated from the equations 

rr-
P, = L2 [Ec(E)lc + Esls] (8.5.6) 

where Ac, lc, As, Is= cross-sectional areas and inertia moments of the concrete 
and steel parts of the (uncracked) cross section, oc(E) is the given stress-strain 
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diagram of concrete, and Ec(E) = dac(E)Ide =tangent modulus of concrete. 
Setting both expressions for P, equal, one gets a nonlinear algebraic equation for 
E, from which E can be solved iteratively by the Newton method, upon which P, 
may be evaluated. If, however, -EsE > [y, one must replace -AsEsE in Equation 
8.5.6 by Ash· The maximum load, Pmax• of a perfect column (e = 0) is always 
higher than P,. It is noteworthy, however, that Pmax is nearly equal to P, if the 
eccentricity e is small, but not very small, for example, e = 0.01h in Figure 8.31 
(which corresponds to elL= 1.15 x 10-3 for Llr = 30, elL= 0.49 x 10-3 for 
A= 70, and elL= 0.34 x 10-3 for A= 100). This observation reveals that by 
requiring the eccentricity in column design to be at least emin = 0.01L (which 
corresponds to elh = 0.09 for A= 30, elh = 0.20 for A= 70, and elh = 0.29 for 
A= 100), the need for using Shanley's theory is essentially circumvented. 

The requirement for minimum eccentricity, em;n, as used in the existing codes, 
has previously been justified purely empirically. As we just showed, however, it 
has to some extent a logical explanation in Shanley's theory. This theory, 
however, at the same time points at a need for further refinement in which emin is 
made dependent on the column properties, instead of being given as an empirical 
constant. 

By a similar simple iterative calculation (see Prob. 8.5.10) one can calculate 
the value of the reduced modulus Pn which is shown by horizontal lines in Figure 
8.31. Note that P, always represents an upper bound on Pmax· This condition is 
satisfied as long as the steel has not yielded; otherwise, Pmax admits only an upper 
bound P0 calculated by setting Ec = Es = strain at the start of yielding. 

Column Response for Unsmooth Stress-Strain Diagrams 

As already mentioned, the change of slope dasldEs due to transition of steel from 
elastic to perfectly plastic response causes a sudden change in the slope dP I dM of 
the response curve at constant e. It may then happen that the peak point of this 
curve, representing the failure point (point on the column interaction diagram), 
lies exactly on the cross-section interaction diagram; see Figure 8.30b. A sudden 
change in the slope dalde of the bilinear a(e) diagram of concrete, however, 
cannot cause a sudden change of slope dP I dM at constant e because sudden 
changes of dalde can be simultaneous (for K > 0) only in a vanishingly small 
area of the cross section (if K * 0). 

The stress-strain diagram of concrete has been, in practical concrete literature, 
assumed to terminate at a certain critical strain e: at which the stress drops 
suddenly to zero (Fig. 8.26b). This type of behavior does change the slope 
dPidM at constant e. As a result, the maximum point of the response curve P(M) 
may be without a horizontal tangent and can lie on the cross-section interaction 
diagram. 

It should be noted, however, that the stress-strain diagrams with a sudden 
slope change or a sudden stress drop are not simplifications but complications 
because the discontinuities impair convergence of the numerical solution of the 
P(M) diagram. Also, the assumption of a sudden stress drop is not realistic for 
column bending because strain-softening is stabilized by the preservation of 
planeness of cross section. [The assumption of a sudden stress drop at the start of 
strain-softening is nevertheless justified for sufficiently long tensile specimens, in 
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which the strain-softening zone becomes unstable and leads to sudden dynamic 
failure (Sec. 13.2).) 

According to concrete textbooks and codes (e.g., the ACI), the points of the 
cross-section failure envelope (interaction diagram) have been approximately 
determined under the assumptions (1) that the o(e) diagram for compression is 
replaced by an equivalent rectangular stress block and (2) that the failure occurs 
at a certain value of the maximum compression strain in the cross section, 
namely, E~ax = -0.0030 (ACJ) or -0.0035 (CEB). In that case it is possible that 
(for L > 0) the calculated response curve P(M) for constant e (unlike the real 
response curve Lintersects the actual cross-section interaction diagram with a 
positive slope (29 in Fig. 8.30b). This intersection, which occurs for small e, has 
then been considered as the failure point, even though the curve P(M) may rise 
further after the intersection. In such a case, the practice has been to call this the 
cross-section failure, although this is not necessarily a failure state, as we already 
emphasized. Only for large e this method yields a peak (dP/dM = 0) before the 
cross-section interaction diagram is reached (point 4 in Fig. 8.30b). In that case, 
the practice has been to call this the stability failure. 

Keeping in mind, though, that the distinction between the cross-section failure 
and the stability failure is but a figment, which does not exist in reality and merely 
results from the assumption that there is a sudden stress drop at the end of the 
o(e) diagram. In reality, every column (with L > 0) loaded at constant e fails (if 
L > 0) at the peak of the response curve P(M), and this peak must lie within, not 
on, the cross-section interaction diagram (even if only slightly within), regardless 
of slenderness. It is impossible for a real column to fail while the P(M) curve has 
a positive slope to the right of the failure point. 

Design Recommendations and the ACI Code 
Design on the basis of a nonlinear calculation of the load-deflection relation and 
construction of the column interaction diagram is recommended by the ACI Code 
(ACI, 1977). This code, however, also permits the use of simple approximate 
formulas, which were shown to approximately agree with the interaction diagrams 
of the type shown in Figure 8.29 (e.g., MacGregor, Breen, and Pfrang, 1970). 
Similar to AISC formulas for steel beam-columns (Sec. 8.4), the ACI formulas 
are based on the magnification factor (Sec. 1.6). The magnification factor, 
however, is the only concept that is used to take the buckling phenomena into 
account. The strength-slenderness diagram used by the AISC for centric loading 
(Eqs. 8.4.1 and 8.4.3) is not used by the ACI. To avoid the need for specifications 
for centric loading, the ACI requires every column to be designed for a certain 
minimum eccentricity, namely emin = 0.03h + 0.6 in. (h =cross-section height, 
Fig. 8.27a), even if the calculated initial load eccentricity is zero or less than ths 
value; the CEB requires emin = L/200 or 2 em. Based on numerous studies 
(MacGregor, Breen, and P{rang, 1970; Blomeier and Breen, 1975; and Colville, 
1975), the ACI code recommends the following formula, which uses the 
magnification factor derived in Sec. 1.6 (and is also recommended by the AISC 
for steel, see Sec. 8.4): 

(8.5.7) 

in which P:., = tPuPcr,; tPu = ACI strength reduction factor (0.7 for tied columns 
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and 0.75 for spiral columns) which takes into account the random statistical 
variability of column properties; M! =ultimate design moment magnified for 
second-order effects; Mu, Pu = ultimate design moment and ultimate axial load, 
obtained by first-order analysis from the design loads multiplied by their safety 
factors (withou~he second-order effects); Per,= Ebr2

/ L2 where L =effective 
column length, EI =effective bending stiffness of the column cross section; and 
Cm = correction coefficient that takes into account the initial bending moment 
distribution along the column and the type of supports. The reduction factor 4>u is 
applied to Per, because, if there is a random decrease of material strength, the 
effective (secant) £-value must also be lower (as the strain at peak stress is not 
lower for a weaker concrete). Cm is based on elastic analysis as already explained 
in Section 1.6, and is the same as that used for steel (see Sec. 8.4). Recall that 
Cm = 0.6 + 0.4Mtf M2 , Cm s; 1, Cm 2::0.4 (Eq. 1.6. 7) for the columns without 
lateral sway, as in braced frames, and without lateral loads between the column 
ends; and Cm = 1 for all other cases. The design condition is that the point (M!, 
Pu) must not lie outside the scaled cross-section interaction diagram (4>uM, 4>uP), 
or the point (M! I lJ>u, Pul tJ>u) must not lie outside the actual cross-section 
interaction diagram (M, P) (Fig. 8.33a). The ACI Code allows the analysis of 
buckling (slenderness effects) to be skipped for short columns such that 
L/r<34-12M1/M2 if the column is braced against sway, and L/r<22 if not. 
[The CEB (1978) takes this limit as L/r<25, with or without sway.] 

For columns in a frame, the ACI Standard uses formulas analogous to 
Equations 8.4.12 and 8.4.13 for steel, in which the moments due to loads that do 
and do not cause lateral sway of the floor are magnified differently. 

For the case of long-time loading, the ACI recommends the axial force P 
obtained from the interaction diagram, such as that shown in Figure 8.29, to be 
reduced by the factor f({Jd)· This factor takes into account the effect of creep and 
will be explained in Section 9.6. {Jd is the ratio of the dead load to the live load. 

The ACI code equation (Eq. 8.5.7 and also Eq. 1.6.1 with Eq. 1.6.7) does not 
consider how the initial moments and the axial loads are supposed to increase 
during the loading process. The values of Cm in Equation 8.5.7 were calculated 
(see Sec. 1.6) assuming the initial moments to be constant while P is increased 
(which means that the eccentricity M I P decreases with loading). A more severe 
assumption is that the initial moments increase in proportion to the axial load, 
which is equivalent to a column loaded solely by an eccentric axial load. For the 
special case of uniform eccentricity, e, this case is solved by Equation 1.5.11. 
That equation is equivalent to Equation 8.5.7 (or Eqs. 1.5.9-1.5.10) if one sets 

Cm = (t- ::) sec(i fti) 
CfJ Cft 

(8.5.8) 

This expression yields Cm = 1.024 for Pu = 0.1P: ••• 1.126 for Pu = 0.5P:.,, and 4/Jr 
(Eq. 1.5.12) or 1.273 for P"- P:.,. So the ACI (as well as the AISC) formula in 
which Cm = 1 for this case has an error on the unsafe side for such loading. 

To eliminate this error, the code of the Swiss Engineers and Architects 
Association (SIA, 1976) introduces the approximate formula: 

* ~I 
M u = Pue + Pu 1 _ P. /P* 

U Cft 

(8.5.9) 
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in which d 1 is the first-order deflection due to the applied end moments (see also 
MacGregor, 1986). For example, if the end moments are equal, Mt = M2 = Pue, 
one has a1 = Puef/8El = n 2Pue/8P!, = 1.234PueiP!, (which can be calculated, 
e.g., by the moment-area theorem). Substituting this into Equation 8.5.9, one 

finds that * 1 + 0.234Pu/ P!, 
Mu = Pue 1 _ P./P* (8.5.10) 

U CfJ 

This formula is equivalent to the ACI equation (Eq. 8.5.7) if one uses Cm = 1.023 
for Pu=0.1P!,, 1.117 for Pu=0.5P!,, and 1.234 for Pu-+P!,. These values are 
indeed quite close to the exact ones listed below Equation 8.5.8. The advantage 
of Equation 8.5.9 is that it can be applied for columns with unequal initial end 
moments (i.e., nonuniform eccentricity), without needing coefficients Cm. 

The effective bending rigidity for calculating Per, in Equation 8.5.7 is allowed 
by the ACI code to be conservatively estimated from the following empirical 
equation due to MacGregor, Breen, and Pfrang (1970): 

(8.5.11) 

in which /(/3d) = 1 +/3d where /3d = ratio of the maximum design dead load 
(moment) to the maximum design total load (moment) in the column, always 
taken as positive; Es, Ec =elastic moduli of steel and concrete; Is = moment of 
inertia of steel reinforcement; and 18 =gross cross-section area of the column 
(i.e., area including both concrete and reinforcement). The factor 0.2, which 
reduces the elastic modulus of concrete in Equation 8.5.11, is imagined to take 
into account the effect of nonlinearity of the moment-curvature diagram due 
mainly to concrete cracking (and also the effect of short-time creep). The value of 
El roughly corresponds to the secant slope for the peak-moment point; see Figure 
8.33b. Factor /(/3d) is intended to introduce in a crude manner the effect of 
long-time creep. (For the effect of creep on the interaction diagram, see Sees. 9.5 
and 9.6, with Fig. 9.16.) 

A formula somewhat less conservative than Equation 8.5.11 was proposed by 
Medland and Taylor (1971), and another one by MacGregor, Oelhafen, and 
Hage (1975) who introduced EI = E;I8 + 1.2p,E9 l8 where p, =ratio of the total 
area of steel to the area of concrete and 18 = inertia moment of the gross section 
area. 
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Fipre 8.33 (a) Design condition according to ACI Code; (b) Effective bending rigidity 
adopted by the ACI Code for calculating Per,· 
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It is difficult (and probably futile) to develop a simple formula that gives a 
close approximation for El, and the practice varies considerably. Menn (1974) 
proposed EI = M1 I Kt where M1 and K1 are the moment and curvature at failure 
calculated approximately under the assumption that the strains of tensile as well 
as compression steels are at the yield limit. The dependence of these EI values on 
M and P was studied by Wood and Shaw (1979)..:....._The Australian code [Australian 
Standards Association (ASA), 1984) uses EI = Mb/ Kb where Mb and Kb 
correspond to the balanced condition of the cross section, that is, the state where 
the tensile steel strain is at the yield limit and simultaneously the compressive 
strain of concrete at the face is 0.003 (this yields EI = 200Mbd, in inches and psi, 
where d =depth to tensile reinforcement); Smith and Bridge's (1984) results 
indicate this approximation to be on the safe side. The British code [British 
Standards Institution (BSI), 1972) determines M at failure from the magnified 
eccentricity (as used by the CEB) and the curvature at failure. This curvature is 
calculated under the assumption that the maximum tensile strain in the cross 
section is Ey = /y/ E and the maximum compressive strain is 0.003Pc where factor 
Pc allows for creep (Pc = 1.25). The value thus obtained is reduced for very long 
columns accordin..&_to an empirical formula. 

The value of EI for buckling is no doubt influenced by initial cracking due to 
prior shrinkage, thermal strain, and differential creep. But these influences still 
remain to be systematically researched. 

CEB Design Recommendations 

Instead of using the P(M) interaction diagrams for various constant values of e, 
the CEB recommends predicting the column response from the moment
curvature relations for various constant values of the axial force. In general, the 
CEB method requires calculation of the complete deflection curves of the column 
at increasing load. Finite difference calculations have been introduced for that 
purpose (CEB, 1978). 

As a second, simplified alternative, the 1978 CEB Model Code permits the 
use of the so-called "model column method." This method is based on the 
approximate equation 8.5.1, which applies to a free-standing column of 
length I = L/2 or other equivalent columns such as the pin-ended column (Fig. 
8.34a). 

The CEB model column method considers the plots of the applied moment M 
and of the resisting moment M versus curvature K at a constant P as sketched in 
Figure 8.34. The plot of the applied total moment M = M1 + M11 versus IKI is, 
according to Equation 8.5.1, an inclined straight line of slope Pku; see Figure 
8.34b. This line may intersect the associated resisting M(K) diagram at two 
points, or one point, or none. If there is no intersection, there exists no 
equilibrium state and the column fails dynamically. If there are two intersection 
points such as points 5 and 6 in Figure 8.34b, then point 5 is stable (because at 
that point the resisting M increases faster than the applied M), while point 6 is 
unstable. The maximum P for which a stable state exists occurs when the inclined 
straight line of applied M is tangent to its associated ki(K) diagram; see line 124. 

The failure envelope for a column of given length (or slenderness) is 
determined according to the CEB by selecting a number of constant P values. For 
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Figure 8.34 CEB model column method: (a) pin-ended and equivalent free-standing 
column; (b) critical state determination from moment-curvature diagram and total applied 
moment diagram; (c) cross-section moment-curvature diagrams for various axial loads; 
(d, e) construction of load-deflection curve; (f) failure condition coinciding with cross
section strength; (g) comparison of the CEB method and constant e method (Bafant, 
Cedolin, and Tabbara 1989); (h) loading-unloading reversal. 

each of them, one calculates the M(K) diagram 0-2-3 (Fig. 8.34b). The tangent line 
14 having slope Pk11 is then determined either graphically or by solving the K 
value for the tangent point from the nonlinear equation Pk 11 = aM(K)/aK. The 
tangent point (point 2) yields the ultimate bending moment for the critical state, 
M~·. The point (M~·, P) is shown in the P(M) diagram as point 3 in Figure 8.28f. 
The collection of all such points obtained for various P values yields the failure 
envelope 234 (in Fig. 8.28f) for the total M (M = M1 + M11) at failure. For design, 
however, it is more convenient to determine from Figure 8.34b the value M1 of 
the primary moment corresponding to the tangent point 2 (M1 = segment 01 in 
Fig. 8.34b). In the P(M) diagram, the point (M" P) is shown as point A; (Fig. 
8.28f), and it represents the horizontal projection of the failure point onto the 
radial ray of slope P/M, = 1/e. 

The determination of the case for which the applied and re5isting M(K) curves 
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are tangent is equivalent to solving P and K from two simultaneous nonlinear 
equations: 

M1 + Pk11K = F(K, P) Pk 
_ aF(K, P) 

n-
aK 

(8.5.12) 

where function F(K, P) represents the resisting moment-curvature diagram M(K) 
for any constant value P, as sketched in Figure 8.34c. The solution of Equations 
8.5.12 with a standard computer library subroutine is a trivial matter once 
function F(K, P) has been formulated. Although it is more convenient to choose 
various constant values of P and solve for the corresponding values of M., one 
may sometimes prefer to solve P =Per for a given e. 

The load-deflection curve for a fixed value of the eccentricity e at column 
ends, whose direct calculation we already explained (Eq. 8.5.1-8.5.2), can also 
be constructed on the basis of the CEB model column method (Migliacci and 
Mola, 1985), provided that the loading path dependence due to possible 
unloading is neglected. To this end one needs to determine the intersections of 
the curves M = F(k, P) with the straight lines M = Pe + k 11PK representing the 
equilibrium values of the applied moment (Fig. 8.34d), and then calculate the 
corresponding deflection w1 = k 11K. Connecting these intersection points yields 
the load-deflection curve (Fig. 8.34e). 

Note that the CEB model column method is applicable also for the case in 
which the failure is assumed to occur if the compression strain magnitude reaches 
0.003 while at the same time dP/dM >0 (Fig. 8.34f). For a smaller value of the 
slope of the applied moment line, one finds a larger Mu, and as this slope 
approaches zero, Mu approaches the peak moment that represents the cross
section strength. 

The assumptions of a sinusoidal deflection curve and of enforcement of 
equilibrium only at midlength of the column (Eq. 8.5.1) are the same as those 
employed by the solution algorithm based on Equation 8.5.5. The results then 
must be exactly the same if unloading is neglected, provided that the numerical 
algorithms converged (in practice there are small differences, due to numerical 
errors). Unloading typically occurs in concrete during loading at constant Pas the 
neutral axis moves into the previously compressed portion of cross section (Fig. 
8.34h). The CEB model column method, however, cannot reproduce unloading 
in a meaningful way, since the (M, K) diagram is calculated at constant P (and 
variable e = M I P) and thus does not represent the actual path followed by 
columns, which is closer to loading at constant e (Fig. 8.34g). But the effect of 
unloading is usually found to be small (B3Zant, Cedolin, and Tabbara, 1989), 
because the loading-unloading reversal occurs near the neutral axis (with little 
effect on M) and at stress levels at which nonlinear effects are negligible (Fig. 
8.34h). In any case, the constant e method described before is simpler and easier 
to use than the model column method, because it does not require the 
construction of (M, K) curves and the numerical determination of the tangent to 
these curves. 

The CEB model column method also can take into account the effect of 
constant lateral (horizontal) loads (Fig. 8.35a), which contribute to the primary 
moment. It can also be generalized to arbitrary columns, as long as one can 
determine a reasonably accurate relationship between M11 and K for a certain 
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Figure 8.35 Generalizations of the CEB method to different load or end-constraints 
conditions. 

critical cross section of the column (Eq. 8.5.1). This can always be done if the 
deflections can be assumed to have a sinusoidal shape, increasing proportionally 
along the column, and if the effective length L is known. For example, for a 
hinged-fixed column of length I, k11 = (0.6991/ nY. Note that in writing Mu = 
Pwh one must consider w1 to represent, in general, not the maximum deflection 
(Fig. 8.35b) but the displacement of the critical cross section from the line of the 
axial resultant (this resultant moves laterally and can also be inclined; cf. Figs. 
1.7a and 8.35c). The critical cross section is not that for which w1 is maximum but 
that for which e + w1 is maximum (e = M1/ P =initial eccentricity). 

The effect of creep is introduced in the CEB model column method by scaling 
the K-axis in the M(K) diagram with the factor 1 + a{Jq, where a is the ratio of 
sustained to total axial loads, fJ is the ratio of corresponding moments and q, is 
the creep coefficient (Sec. 9.4). But, according to MacGregor (1986, p. 19) this 
seems to underestimate the effect of creep. 

It may be noted that all the aforementioned effects can also be introduced into 
the solution algorithm based on Equation 8.5.5. 

As a third, still simpler alternative, the CEB (1978) also permits using the 
so-called second-order eccentricity method, which was adopted for the British 
Code (BSI, 1972). The cross section of a hinged column bent in single curvature 
is designed for the moment Pe, with e, = e + ea + e2• Here e, =total eccentricity, 
e =first-order eccentricity due to initial moments, ea =empirically specified 
additional eccentricity to account for geometric imperfections, and e2 = second
order eccentricity due to column deflection, which is given by e2 = KL2/10 (this is 
nearly the same as KL2/n2

, which corresponds to a sine curve). There is, 
however, a major problem with realistic determination of the curvature K at 
failure, as already discussed. Note that if one substitutes K = Pe,/ EI into the CEB 
relation e2 =e,-e=KL2/n2

, one gets e,=e/(1-P/Pcr), which is equivalent to 
the ACI moment magnifier equation (Eq. 8.5.7). 

The second-order eccentricity method is quite convenient for introducing the 
effect of creep (CEB, 1978). This is done in terms of additional creep eccentricity 
ec, which is defined as the residual eccentricity increase that is left when a column 
is suddenly unloaded after a long period of creep under the (factored) dead load, 
P0 . Under subsequent rapid overload to failure, the column behaves about the 
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same way as a column with initial eccentricity e + ec instead of e (as discussed 
before Eq. 9.5.1). For the determination of ec, Warner and Kordina (1975) and 
Warner, Rangan, and Hall (1976) proposed a formula based on Dischinger's 
method. This formula corresponds to Equation 9.4.11 derived in the next 
chapter, which gives the load eccentricity (ordinate) at time t as z(t) = ef(t), 
where e = initial eccentricity due to initial moments. From this, ec is obtained by 
dividing z(t) by the magnification factor 1/(1- P0 / Per,) and subtracting e, that is, 

(8.5.13) 

where Per, is the elastic critical load corresponding to the elastic modulus E(t) at 
timet (see also the discussion before Eq. 9.5.1). The value of z(t) or f(t) can be 
calculated by various methods for creep (Sec. 9.4). It appears that Equation 
9.4.18, based on the age-adjusted effective modulus method, is both simpler and 
more accurate than the formula (Eq. 9.4.11) based on Dischinger's method. 

Comparisons of Codes and Shortcomings 

A questionable aspect of the ACI moment magnifier method is the value of EI. 
Since failure of the cross section per se is determined by the peak point of the 
cross-section interaction diagram, the EI value in Equation 8.5.11 is assumed to 
correspond approximately to th~secant slope of the M(K) diagram for the peak 
point (Fig. 8.33). This value of EI seems to be generally on the low (safe) side. 

For small eccentricities, however, the ACI's value of EI seems to be less than 
for higher eccentricities. Below Equations 8.5.6, we observed (from Fig. 8.31) 
that Shanley's theory is indeed approached for small eccentricities such as 
e = 0.01h. But Shanley's theory would require calculating the bending stiffness 
from the tangent modulus (Eqs. 8.5.6), which gives a smaller bending stiffness 
than the approximate secant value EI used by the ACI. 

Another error on the safe side is due to the neglect of redistribution of the 
initial moments that is caused by nonlinear behavior of a column in a frame. 
Indeed, if the largest M occurs at midlength, the bending stiffness at midlength is 
smaller than near the ends of the column, and this tends to transfer the initial 
bending moments toward the column ends. 

As a third error, which tends to be on the safe side, the nonlinear behavior 
causes the effective length of the column in a frame to become less than that 
obtained by elastic analysis, since the inflection points move toward the midlength 
as the deflection curve becomes more pointed due to inelastic behavior. 

The aforementioned effects further depend on the ratio of the initial end 
moments and on whether or not the column is braced against sidesway. The 
various sources of error might, but need not, offset each other. There is obviously 
much room for improvement in the quest for a design method that yields the 
same safety margin for all situations. 

For the CEB model column method, likewise, several kinds of limitations or 
disadvantages need to be pointed out. The assumption of a sinusoidal shape of 
the deflection curve, along with the corresponding effective length L and the 
value of w1 , is exact for the initial deflection increment of a perfect column at the 
tangent modulus load, but is probably not too good at larger deflections for which 
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the simplified CEB model column method is applied. Obviously, due to 
nonlinearity, the curvatures near the peak of the deflection curve become larger 
than for a sine curve. This effect would change the applied moment curves in 
Figure 8.34b from straight to curved. The sinusoidal shape is, of course, also 
implied in the ACI's use of the magnification factor. Same as the ACI, the CEB 
model column method also neglects the initial moment redistributions and 
changes of the effective length due to adjacent frame members. 

Furthermore, the CEB model column method implies the value of M for a 
given K depends only on the current value of P, but not on the path in the P(M) 
response curve; that is, the method implies the assumption of path-independence, 
although some path-dependence might occur in reality if unloading takes place. 
(The ACI's use of the interaction diagram, of course, implies path-independence, 
too.) 

The simplified CEB model column method is more tedious to implement (in 
hand calculatons) or to program, and it requires more information than the ACI 
method based on the magnification factor. Instead of one interaction diagram, it 
necessitates a set of moment-curvature diagrams for various P values. 

Excellent practical appraisals of various code methods for concrete columns 
have recently been presented by MacGregor (1986) and Quast (1987). 
MacGregor ~ints out several serious shortcomings: (1) the problem of determin
ing a realistic EI value, which we have already discussed; (2) determination of the 
effective length L, taking into account the nonlinearities and overload (safety) 
factors; (3) lack of a good, simple approach for column failures involving biaxial 
bending or torsion, or both; and (4) lack of consensus on how to introduce the 
creep effects. MacGregor further indicates that accuracy of the simplified code 
methods is seriously reduced due to extensions (1) from uniform to nonuniform 
initial moments, (2) from isolated columns to columns in frames, and generally 
(3) from elastic behavior to nonlinear behavior with cracking and creep. As 
important recent developments, MacGregor (1986) calls attention to the 
following: 

1. Calculation of interaction among columns that is involved in buckling with 
lateral sway (also called the lateral drift). Since all the columns of the ftoor 
have to buckle simultaneously, the failure depends not on the individual 
column loads but on E P; li/ L; where P; and L; are the axial force and 
effective length of column number i, and t;. is the lateral sway displacement 
(cf. Eq. 8.4.13). 

2. Formulation of a procedure (by Butler, 1977, and by Wood and Shaw, 
1979) that uses a variable EI, defined by a simple formula. This approach 
was shown to agree well with Cranston's (1972) computer simulations of 
column failures. 

3. Recognition of fundamental differences between the initial column mo
ments due to applied loads and those due to imposed deformations in 
frames (Thiirlimann, 1984; Favre et al., 1984). The latter are not magnified 
as strongly. 

To sum up, the simplified design procedure for reinforced concrete columns 
that is permitted by the ACI code as a replacement for the full second-order 
analysis is entirely based on the moment magnification factor and a comparison of 
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the magnified moment with the cross-section interaction diagram of axial load 
versus bending moment. This approach is the same as that used by the AISC for 
steel columns (which is an advantage for engineers who do not specialize in 
concrete only). Nonlinear behavior, cracking, and creep are taken into account 
by the ACI rather approximately-by making a simple adjustment of the bending 
rigidity. The residual stresses and cracking due to prior shrinkage, thermal 
strains, and differential creep have so far been ignored, although for metal 
columns the residual stresses are known to be important. The need for a formula 
for centrically loaded columns is circumvented by prescribing a certain minimum 
load eccentricity. 

Although the simplified code methods provide valuable insight, it appears 
increasingly preferable to obtain accurate values of the failure loads of columns 
and frames by finite elements considering geometric as well as material 
nonlinearities. Initial residual stresses and cracking due to prior shrinkage, 
thermal strains, and creep may have to be considered also. This should lead to 
more uniform true safety margins, and thus allow reduction of the safety factors, 
whose values for concrete columns are still quite large. 

Prestressed Concrete Columns 

In Section 1.8 we proved that an axial prestress (by a bonded tendon) does not 
alter the stability limit Per of a column. However, this is true only for columns 
that fail in the elastic range. 

Consider two identical columns, one with prestressing force F and one without 
it, both under axial load P. If the column behaves nonlinearly, the effect of 
prestress is to change the resisting moment-curvature diagram from that 
corresponding to P = P2 = const. to that corresponding to P3 = P2 + F; see Fig. 
8.36 (the construction of the resisting M(K) diagrams is explained in prestressed 
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Figure 8.36 (a) Prestressed concrete column, critical state conditions for (b) stocky or (c) 
slender columns, and (d) comparison of column failure envelopes. 
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concrete textbooks; see Nilson, 1987; Lin and Bums, 1981). (Note that the effect 
of prestress is similar to that of residual stresses.) At the same time, the 
straight-line diagram of the applied moment versus curvature remains unchanged 
because (as shown in Sec. 1.8) the axial force resultant in the cross section is not 
affected by F (the compressive prestress in concrete is balanced by the tension in 
steel (Fig. 8.36a)]. So the critical state does not occur when the line for P2 that 
represents the applied moment becomes tangent to the diagram of the moment
curvature relation for P = P2 • Rather, the critical state (at constant axial force) 
occurs when the line for P2 becomes tangent to the diagram for P3 = P2 + F; see 
Figure 8.36b. If the nonlinearity of concrete in compression dominates the shape 
of the resisting M(K) diagram, which is true for stocky columns, then the diagram 
for P = P2 +Flies below that for P = P2 (Fig. 8.36b). So this procedure yields for 
a prestressed column a smaller critical load than for a nonprestressed column. If, 
however, the nonlinearity is due mainly to tensile cracking, which is true for 
slender columns, then the diagram for P = P2 + F lies above that for P = P2 (Fig. 
8.34c), and so a larger critical load is obtained than for a nonprestressed column. 
This is the case where the benefit from prestress is the greatest. 

The effect of prestress on the critical load is also apparent in the ACI method. 
As shown in prestressed concrete textbooks, the effect of prestress is to change 
the ultimate state interaction diagram of P versus M. As shown in Figure 8.36d, 
this depresses the value of P., at the terminal point of the P(M) path if the column is 
not too slender (i.e., if it fails at a low ratio of e = M I P) but can increase P., if the 
column is slender (i.e., if it fails at a high ratio of e = M I P). 

The design of a prestressed column may also be done approximately on the 
basis of the magnification factor. One may then use Equation 8.5.7, the same as 
for nonprestressed columns: 

(8.5.14) 

The prestress is taken into account in determining P., from the interaction 
diagram of the cross section. The initial moment M., should include not only the 
(factored) moments due to lateral loads with the moments and forces applied at 
the ends of the column, but also the (factored) initial moment P(e + wF) due to 
the axial force P where eccentricity of load P on the undeftected column and 
deflection due to prestress wF are included. However, no moment due to axial 
prestressing force F should be included, as explained in Section 1.8. 

Counterintuitive though it might seem, prestress is nevertheless used not only 
for slender columns (Fig. 8.36c) but also for some not-too-slender columns. This 
brings about various benefits. Prestress reduces cracking, which is generally 
advantageous. Prestress makes it possible for a lighter column to better withstand 
handling in transport. In concrete piles, prestress helps the pile to withstand the 
dynamic effects during driving. 

Shells and Other Structures 

In contradistinction to steel structures, there are no special code specifications for 
concrete structures other than columns, even though for some structures the 
analysis of stability is very important, for example, for sheDs. Generally, stability 
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of shells is analyzed elastically using the tangent modulus E, instead of the elastic 
modulus; see for example, Popov and Medwadowski (1981). This contrasts with 
the current practice for concrete columns where Shanley's tangent modulus 
theory is not used. The value of E, is further reduced by the factor 1 + rp where rp 
is the creep coefficient; see Section 9.4. 

Stress-Strain Relations for Strain Softening 
It needs to be emphasized that the softening (descending) portion of the effective 
stress-strain relation used in the analysis depends on many factors not normally 
considered in design. The reason is the localization of softening (see Chap. 13). 
Depending on the volume fraction of localized softening zones, the post-peak 
average slope can be mild or steep (or even a snapback). The aforementioned 
volume fraction must be expected to depend on the axial stiffness of reinforce
ment, the spacing of stirrups, the type of transverse reinforcement (ties, spirals), 
the shape of cross section, the shape of ties, the stiffness of ties, the aggregate 
size, the stiffness of matrix of concrete versus the stiffness of aggregate, the 
distribution of the axial bars, etc. Thus all these factors must be expected to 
influence considerably the steepness of the post-peak softening stress-strain 
relation. As long as these factors are neglected, it really makes no sense to argue 
whether one or another formula for the a( E) curve is better. The fact that a 
laboratory test of a standard specimen gives a certain o{ E) curve is not too 
relevant. One would need, among other things, to actually calculate the 
localization of softening zone in the column in order to achieve more dependable 
results and be able to profit from a sophisticated stress-strain relation. 

In this light the CEB formula for the a( E) curve seems to be unnecessarily and 
unjustifiably complicated. A short formula such as a= Ee exp ( -ke2

) is probably 
just as good, or just as poor. 

Design Examples 
Example 8.5.1 A column of length I= 16ft (4877 mm) (Fig. 8.37a), braced 

against sidesway, is subjected to dead load D = 105 kips ( 467.2 kN) and live load 
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Figure 8.37 Design examples for buckling ·:>f reinforced concrete columns. 
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L = 90 kips (400.4 kN) acting with an eccentricity e = 3 in. (76.2 mm). The square 
cross section (Fig. 8.37b) of depth h = 15 in. (381.0 mm) is reinforced with a steel 
bar at each corner (area= 0.875 in2 = 564.5 mm2

) whose centroid lies at d' = 
2.5 in. (63.5 mm) from the edge. Assuming 1; = 3000 psi (20.6 N/mm2

), /y = 
40 X 1~ psi (275.2 N/mm2

), Es = 30 X 1<fpsi (206.4 kN/mm2
), Ec = 57,000VJ: 

(all in psi), check the column design according to the moment magnifier method. 
[Hint: The factored load is Pu = 1.4D + 1.1L; see Sec. 9.3 of ACI (1977) Code or 
Sec. 9.2.1 of updated ACI 1989 Code.] Calculate first the ultimate moment Mu 
for the cross section under Pu, writing the force and moment equilibrium 
conditions of the cross section and assuming a rectangular block for concrete 
stresses (Fig. 8.37c). Compare Mu with that resulting from Equations 8.5.7 and 
8.5.10. 

Solution. Pu = 0.85f;ab + A.J;. - Asfs, Is = EsEs = 0.003Es(d- C )/c= 
0.003Es(/31d- a)/a, Mu = 0.85/;ab(d- d"- 0.5a) + A;/y(d- d'- d") + Asfsd", 
/31 = 0.85. 

Is= 0.003[0.85(12.5)- a] (
30 

x 106) = 90,000(10.625- a) 
a a 

300,000 = 0.85(3000a)(15) + 1. 75( 40,000)- 1. 75(90,000)(10·625 - a) 
a 

a =7.63 in 

Mu = 0.85(3000)(7.63)(15)[12.5- 5- 0.5(7.63)] + 1. 75(40,000)(12.5- 2.5- 5) 

(
10.625 -7.63) + 1. 75(90,000) 

7
_
63 

(5) = 1. 734 x 106lb-in. 

Ec = 57,000V3000 = 3.122 X 106 (all in psi) /8 = rz(15)(153) = 4218 in4 

Es = 30 X 106 psi Is= 4(0.875)(52
) = 87.5 in2 

R 1.4D 1.4(105) 
Pd = 1.4D + 1. 7 L = 1.4(105) + 1. 7(90) = 0.49 

Cm = 0.6 + 0.4 = 1 

{)- 1 
- 1 - 300,000/0. 7(945,000) 1.830 

Me= f>Pue = 1.83(300,000)(3) = 1.647 X 106lb-in. 

Example 8.5.2 Consider a free-standing column (Fig. 8.37d) of length I = 13ft 
(3960 mm) subjected to an axial load of 250 kips (1110 kN) acting with an 
eccentricity e = 3 in. (76.2 mm). The cross-section area has depth h = 15 in. 
(381 mm) and is reinforced with a steel bar at each corner (Fig. 8.37b) (of area 
0.875 in2 = 564.5 mm2

) whose centroid lies at d' = 0.1d = 1.5 in.= 38.1 mm from 
the edge. Assuming for concrete a "characteristic" strength fck = 4800 psi 
(33 N/mm2

), /y = 40,000 psi (275.2 N/mm2
} for steel, relative axial load v = 0.4 
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and mechanical reinforcement ratio w = 0.1, the moment-curvature relation can 
be assumed (CEB Bulletin No. 123) to be given in tabular form by: For 
K/(10-s in-1) = 5, 10, 15, 20, 25, 30, 35, 40, 45, the corresponding moment is 
M/(1<flb-in.)=0.608, 0.973, 1.22, 1.41, 1.56, 1.68, 1.76, 1.80, 1.81. Check 
stability according to the CEB model column method. 

Solution. (cf. CEB, 1978): fc = 0.85/ck/1.5 = 0.85(4800)/1.5 = 2720 psi. 

- _k__- 40,000- . 2 fs- 1.
15

- 1.
15 

- 34,782 psi Pc = fcAc = 2720(15 ) = 612,000 lb 

= Asfs = 2(0. 875)(34, 782) = O 099 """ 0. 1 
W Pc 612,000 • 

= p = 
250

•
000 

= 0 408 = 0.4 
V Pc 612,000 • 

M1 = 250(3) = 750 kips-in. (1 kip= 1000 lb) 

k -41
2

- 4[(13)(12)]
2 

9860. 2 
n- 2- 2 m 

1C 1C 

M11 = Pk11k = 250,000(9860)(10.2 X 10-5
) = 252 kips-in. (Fig. 8.32f) 

Problems 

8.5.1 Describe the (a) ACI method and (b) CEB method for determining the 
load capacity of reinforced concrete columns. 

8.5.2 Do the same as Example 8.5.2, but find the limit value of the eccentricity e. 
8.5.3 So the same as Example 8.5.2, but find the limit value of the length I. 
8.5.4 Do the same as Example 8.5.2, but with e = 1 in. (25.4 mm) and a 

horizontal force on top (Fig. 8.37c) given by H = 2000 kips (8.88 kN). 
8.5.5 Solve (a) Example 8.5.1 for h = 14 in. instead of 15 in.; (b) Example 8.5.2 

for I= 14ft instead of 13ft. 
8.5.6 Program the step-by-step iterative solution of Equation 8.5.5 and solve the 

interaction diagram of the same column as in Figure 8.37 but with Ps = 0.004. 
8.5.7 Calculate the stability limit of a prestressed concrete column that is the 

same as in Figure 8.37 but has uniform axial prestress ~ = -1500 psi. 
8.5.8 Repeat Problem 8.5.5 for a prestressed column with ~ = -1500 psi. 
8.5.9 The interaction diagrams in Figure 8.31, covering the top-right quadrant of 

the (P, M) plane, describe buckling to the left (M > 0). Buckling to the right is 
described by similar diagrams in the top-left quadrant. They are symmetric if 
the cross section is symmetric, but not if the cross section is nonsymmetric (cf. 
Fig. 8.16). Construct a portion of such interaction diagram assuming that the 
area of the left-side bars in Figure 8.31 is doubled. 

8.5.10 Show that the reduced modulus load P, of the column with the cross 
section in Figure 8.28a is given by P, = (n2

/ L2)(«'PcE~c + «~>sE~ls) and P, = 
UcAc + asAs where «~>cE~Ic = (E~i + E~M,)b/3, «~>sE~ls = (As/2)[E!(hL
d)2 + ~(hu- d)2

], hu = h- hL, and hL (representing the portion of h that 
undergoes loading) is to be solved from the quadratic equation bhi(E~
~) + hL(2bhE~ + AsE! + AsE~)- bE~2 - AsE~h + dAs(E~- E!) = 0, where 
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d = thickness of the concrete cover of steel bars. Solve P, by iterations for the 
same data as used to calculate Figure 8.31 (see also Bafant, Cedolin, and 
Tabbara, 1989). 

8.6 PERFECTLY PlASTIC lARGE-DEFLECTION BUCKLING, 
IMPACT, AND BlAST 

The preceding sections dealt with stocky columns for which the initial buckling is 
inelastic. Now we focus attention on very large deflections of columns that are (1) 
so slender that their initial buckling is elastic, governed by the Euler hyperbola 
portion of the column strength curve, and (2) made of an elastic-plastic material 
whose stress-strain diagram terminates (both for compression and tension, Fig. 
8.38d, e) with a long horizontal plateau at which the response becomes perfectly 
plastic. If the column is slender [and the hardening range of the o(e) diagram is 
short or absent), the transition from an elastic state to a perfectly plastic state 
occurs relatively fast (i.e., within a small portion of the deflection range). At 

a) 
p 

u 

c) 

~· 
h 

P. P 

I ,c 
CJp 

~) ~ 

+ 
F1pre 8.38 (a) Simply supported column with pla:.otic hinge, (b) strain and stress 
d~stributions at plastic hinge, (c~ column cross section, (d, e) stress-strain relations, (f, g) 
yteld surface of rectangular and 1deal-I cross sections. 
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sufficiently large deflections, nearly all of the cross section of maximum bending 
moment reaches the yield stress oP for the yield plateau. This makes it possible to 
obtain simple solutions, as we will see. 

Since very large deflections are not covered by design codes, we were able to 
deal with the codes before addressing perfectly plastic behavior. Large buckling 
deflections are of interest mainly for determining the energy absorption capability 
of a structure, which is important for the behavior under dynamic impact or blast. 
They are also of interest for determining internal stress redistribution and the 
corresponding strength reserve in redundant structures during collapse, particu
larly for deciding whether the entire frame will collapse if one member buckles. 

Perfectly plastic solutions of column buckling are of some interest also for 
stocky columns or frames, for which the initial buckling is well approximated by 
Shanley's theory. If the stress-strain diagram terminates with a long plateau for 
both compression and tension, then the cross section must eventually approach 
(along curve c in Fig. 8.38e) a state at which the unloading, too, reaches the yield 
plateau and every point is at yield in either tension or compression. In such a 
case, the perfectly plastic solution must be approached asymptotically at large 
deflections. 

Load-Deflection Curve of Perfectly Plastic Columns 

For perfectly plastic behavior, we may assume the plastic deformations in beams 
to be concentrated in plastic hinges. A simply supported column develops a 
plastic hinge (yield hinge) at midheight, as shown in Figure 8.38a. In the classical 
analysis of carrying capacity of beams and frames, the yield bending moment in 
the hinge may be assumed to be constant; however, in buckling one must take 
into account the influence of the axial load P on the yield moment M, that is, the 
dependence M = f(P). 

Function f is characterized by the geometry of the cross section. For example, 
for a rectangular cross section of height h and width b (Fig. 8.38c), the bending 
moment and axial force equilibrating the perfectly plastic stress distribution 
shown in Figure 8.38b may be calculated as 

M = oP(t)(h2
)- oPbc2 P = P0 - 2oPb(~- c) (8.6.1) 

in which P0 = oPbh =centric axial yield force (also called the squash load), 
oP =yield limit of the material (Fig. 8.38d), and c =the z-coordinate of the 
neutral axis (point of e = 0); see Figure 8.38b. Eliminating c from Eqs. 8.6.1 we 
get for a column of rectangular cross section 

(
h Po-P) M=(P0 -P) ---- =/(P) 
2 4boP 

M 
z=-p (8.6.2) 

where the deflection ordinate z at column midheight is obtained from the 
equilibrium condition IMI = Pz. The deflection then is w = z- Zo where Zo is the 
initial imperfection, if any. The curve M = f(P) defined by Equations 8.6.2 
represents the yield surface of the cross section, and we see that for a rectangular 
cross section it is parabolic (Fig. 8.38f). It should be noted that, due to the 
variation of c during loading, some points of the cross section change their stress 



558 INElASTIC, DAMAGE, AND FRACTURE THEORIES 

a) 

b) c) 
p p 

Elastic Po 

Elastic 

T -----
Small 
imperf __ .... 

Pm / 

l "'""' High imperfection 
/ 

w 

e) p 

d) P.: 
h I 

~ 
e= 20 

Figure 8.39 (a) Load-deflection diagrams under different assumptions and bounds for 
maximum load; (b, c) cases of short and slender columns; (d) transition to perfectly plastic 
response of Shanley's column; (e) load-displacement diagram. 

from oP to - oP" Such behavior represents hysteresis, and it increases the plastic 
energy dissipation. If the axial load P has become small due to large deflections, 
and if the slope dM I dP of the cross-section yield surface at P = 0 is zero (i.e., the 
tangent is horizontal as in Fig. 8.38f), then the bending moment M can be 
assumed to be approximately constant and equal to the yield hinge moment at no 
axial load, that is, f(P) = const. = M0 • For this case, the column path is the 
dashed curve 74 in Figure 8.39a, which is an easily calculated upper bound on P. 
This curve is approached by the actual P(w) curve 34 asymptotically for small w 
values. 

If there are no imperfections (Zo = 0), the load-deflection diagram of the 
column is given by the path 01234 in Figure 8.39a (see also Horne, 1971, p. 148). 
However, in practice there are always imperfections. They may cause the 
maximum load to be much less than P0 (point 5 in Fig. 8.39a). If the column is 
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imperfect, it will, of course, start deflecting before the yield stresses are reached, 
following initially a curve such as 036 in Figure 8.39a (this curve may be obtained 
from the magnification factor, Sec. 1.5). Now, as plastic strains start to develop, 
the actual load should be smaller than that for the elastic im~rfect column, and 
so the actual behavior should follow some curve such as curve 05 in Figure 8.39a. 
At the same time, because the yield moment calculated according to the perfectly 
plastic stress-strain diagram in Figure 8.38d (Eqs. 8.6.1) is reached only at very 
large rotations in the hinge, and is larger than the bending moment for smaller 
rotations, the actual behavior must follow a curve that lies below the perfectly 
plastic response curve 1234 in Figure 8.39a and approaches this curve asymptoti
cally for very large deflections. Thus, the actual behavior should follow a curve 
such as 54 in Figure 8.39a. 

It is now obvious that the actual maximum load Pm (which represents the 
critical state, i.e., the limit of stability if the load is controlled) is always below 
the intersection point 3 of the perfect hinge response curve and perfectly elastic 
response curve of imperfect columns. Thus, the load P:;, at the intersection of 
these curves, which can be calculated easily, represents an upper bound on the 
collapse load or the actual maximum load. However, the easily calculated value 
P:;, is often not very useful, because the actual maximum load Pm can be 
substantially smaller. 

Some approximate ways of estimating the peak point 5 (Pm) on the basis of 
PE and P0 have been formulated (see, e.g., Horne, 1971; and eq. 1.39 of Horne 
and Merchant, 1965). Unfortunately, they are not very accurate, in general. Pmax 
may best be estimated on the basis of the intersection point 3. 

If the imperfection is small (Fig. 8.39b) and the column is short, Pm is only 
slightly smaller than the squash load P0 • Then P0 gives a good upper bound for the 
maximum load that the column can attain. If the column is slender, plasticity 
begins only at large deflections (Fig. 8.39c). The consequence is that the beam is 
prevented from displaying the postbuckling reserve that is calculated when the 
large deflections are elastic (Sec. 1.9). In this case, the maximum load Pm is 
close to the elastic critical load ~~. if the initial imperfection is small. 

To obtain the axial displacement u at column top (Fig. 8.38a), we need to 
calculate the plastic axial shortening displacement uP in the plastic hinge at the 
beam axis. From Figure 8.38b we have A. = KC = axial strain a~ beam axis and 
uP = hPA. = 28c where K = curyature, 28 = Khp = total rotation in the hinge (Fig. 
8.38a), and hP =length of the plastic hinge (hp «I), whose value, however, is 
irrelevant. From Equations 8.6.1 we have c = !h - (Po- P)/2aPb. The total axial 
displacement under the load is u = 1(1- cos 8) +uP, and 8 = 2z/l. So the curve 
u(P) can be obtained as 

( P9 -P) u = 1(1 - cos 8) + h - -- 8 
aPb 

. a 2M 
With u=

PI 
(8.6.3) 

where M is calculated from Equations 8.6.2. This equation, whose plot is shown 
in Figure 8.39e, makes it possible to calculate the work that is done by load P. 

It may be noted that our calculation of uP satisfies the so-called normality rule 
of plasticity. Indeed, differentiation of Equation 8.6.1 with respect to c yields 
dM/dP= (dM/dc)/(dP/dc) = -c = -A/K = -(Ahp)/(Khp) = -uP/28, and so the 
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vectors (uP, 6) and ( -dP, dM) are orthogonal since their scalar product vanishes, 
that is, up( -dP) + (26) dM = 0. 

Equations 8.6.1 to 8.6.3 apply to rectangular cross sections. For the case of an 
ideal 1-beam, the yield surface (failure envelope) M(P) consists of straight lines 
as shown in Fig. 8.38g. Obviously, for each different cross section a different 
shape of the load-deflection curve is obtained. 

Buckling of Perfectly Plastic Frames 

The solution that we have shown for columns can be generalized to plastic 
buckling of frames and trusses. Let us illustrate it for the portal frame shown in 
Figure 8.40a. We will consider only the collapse mechanism shown in Figure 
8.40b. In contrast to classical analysis, the load is not constant but decreases with 
increasing deflection. For an infinitely small increment of rotation from 6 to 
6 + d6, the condition that the incremental internal work and external work must 
be equal yields (Bafant, 1985) 

L Mk d6k = L ~ dw}1> + L P; du~2> (8.6.4) 
k j j 

a) 

(' 
p p 

~ L L ·I 

c) P 

4 

p 

80 8 

Flpre 8.40 (a) Portal frame, (b) sway collapse mechanism, (c) load-deflection curves, and 
(d) beam collapse mechanism. 
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in which 8k are the rotations in plastic hinges k = 1, 2, 3, ... ; ~or P; are the 
concentrated loads; Mk are the bending moments in the hinges; w}1> are the 
deflections under the loads calculated according to the classical first-order theory; 
and du~2> are the additional displacements under the loads due to second-order 
analysis that takes into account a finite rotation 8. The last term containing du}2> 
represents the only difference from the classical, first-order analysis of plastic 
frames. For 8 = 0, du}2> = 0. 

In Equation 8.6.4, we neglect for the sake of simplicity the work of the axial 
forces on the axial plastic shortenings uP in the hinges. This is acceptable only for 
slender frames. We took shortenings uP into account in Equation 8.6.3, and they 
could also be introduced into Equation 8.6.4. 

For the frame in Figure 8.40a and the collapse mechanism in Fig. 8.40b, with 
the notation shown, we have w<1> = L sin 8, u<2> = H(l -cos 8). At small 8 we 
have the approximations w<1> == L8, u<2> == !H82 so that dw< 1> = L d8, du<2> = 
H8 d8. Now substituting this into Equations 8.6.4 we obtain the equation: 

M1 • d8 +M2 • 2d8 + M3 ·2d8 +M4 • d8 = P • Ld8 +3P · H8d8 (8.6.5) 

from which d8 cancels out. For a slender frame, which is capable of very large 
deflections and rotations, the hinge moments for any cross-section shape may be 
supposed to be approximately equal to M0 because the axial forces must be small. 
At M = M0 = const. (which may be assumed after P has become small), Equation 
8.6.5 yields P = 6M0/(L + 3~), in which~= H8 =lateral deflection of the frame 
(Fig. 8.40b). This expression yields a curve that represents, for small values of P, 
an asymptotic approximation to the curve 134 (Fig. 8.40c) of the actual perfectly 
plastic solution for which M is variable. The value P1~> represents, for the 
mechanism considered, the plastic collapse load from the usual first-order plastic 
analysis of the frame. For a frame that is not slender, the dependence of Mk on 
the axial force in each plastic hinge must also be considered, and an iterative 
solution is then required. 

It should be noted that the load P of the frame in Figure 8.40a has also an 
upper bound P1f> (curve 62 in Fig. 8.40c) that corresponds to the beam collapse 
mechanism having hinges at the frame corners and under the load at midspan 
(Fig. 8.40d), for which there are no second-order effects. If the influence of the 
axial load on the yield moment is neglected and M = M0 is equal for all plastic 
hinges, P1f> = 4M0/ L. The P1f>-value is always lower than the P1~>-value for the 
sway collapse mechanism considered previously; for example, under the same 
assumptions as mentioned before, PW = 6M0/ L. Then the P-value calculated 
from Equation 8.6.5 becomes valid only at large enough ~ at which it becomes 
less than P1f> (curve 234 in Fig. 8.40c). If one considers the path in the ( 8, 4>) 
plane (Fig. 8.40d) where 4> is the rotation angle of the left corner hinge in the 
beam collapse mechanism, the initial path direction is vertical ( 68 = 0, 64> > 0), 
while (if the frame is slender) the path for large enough deflection tends to 
become horizontal ( 68 > 0, 64> = 0). For an ideal frame the transition from 
vertical to horizontal is sudden, but for real (imperfect) frames it is smooth, with 
68 and 64> increasing simultaneously in the transition stage. (For other examples 
of how different mechanisms may govern the postcollapse behavior of frames see, 
e.g., Corradi, 1978a.) 

If the frame is imperfect, with imperfection characterized by a small initial 
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angle 80 = 110 / L, then u<2> = ~H(82 - 8~); this yields again du<2> = H8 d8, that is 
Equation 8.6.5 remains valid. So the initial imperfection does not influence the 
solution once the plastic hinges have been fully plasticized. Similar to Figure 
8.39a, we plot in Figure 8.40c also the load-deflection diagram of the imperfect 
elastic frame; see curve 73 in Figure 8.40c. This diagram may be obtained by 
multiplying the initial imperfection /10 by the elastic magnification factor 
1/(1- P/Pcr

1
) for the frame. The intersection point 3 in Figure 8.40c represents 

an upper bound on the actual maximum load. If the imperfection of the frame 
becomes smaller, the intersection point 3 moves upward and to the left. Again, 
some approximate considerations could be made to estimate the actual response 
diagram 754 (Fig. 8.40c). On the contemporary computational scene, however, 
this diagram is best obtained by finite elements. 

Plastic Redistribution and Reserve Capacity of Structures 

The foregoing type of solution describes plastic redistribution of bending 
moments in structures. This redistribution can endow the structure with reserve 
load capacity. The phenomenon is most easily illustrated for a truss. Consider the 
simple pin-jointed cross-braced square truss shown in Figure 8.41a (same as Fig. 
2.24c). We assume the compressed frame bar 34 to be so strong that it never 
buckles, and then the only member susceptible to buckling is the diagonal brace 
23. Since for slender members the axial yield force oPA can be much higher than 
the maximum force in compression buckling, we assume the tensile dia~nal14 as 
well as all the other members to behave elastically while diagonal 23 buckles 
plastically (Fig. 8.41d). 

a) b) c) d) 
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Figure 8.41 (a-d) Step-by-step solution of redundant truss; and load-deflection curves 
under different assumptions (e-h) regarding stiffness of diagonals and (i) regarding type of 
initial buckling. 
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The solution may be obtained incrementally with step-by-step loading. The 
axial compression force X in member 23 may be chosen as the redundant, and the 
condition of compatibility of the displacement increments at diagonal 23 may then 
be written, according to the principle of virtual work, as follows (Bafant, 1985): 

(8.6.6) 

where dux/dX is calculated from Equation 8.6.3 with Equations 8.6.2 (X= P) on 
the basis of the initial value of X for each loading step; ux is the relative axial 
displacement between the ends of bar 23, associated with X; tl.fJ; is the extension 
increment of member number i; /;, ff is the axial force in the ith member caused 
either by compression force X= 1 at no load (F = 0, Fig. 8.41b), or by load Fat 
X= 0 (Fig. 8.41c), respectively; A;, l; are the cross-section area and the length of 
member number i. 

If the values of X have been solved up to a certain load level F, then the value 
of tl.X for a further small load increment tl.F can be solved from Equation 8.6.6. 
The corresponding load-point deflection is then obtained, according to the 
principle of virtual work, as tl.u = Edf tl.fJ;. In this manner one can construct the 
load-deflection curve F(u). If the moment-curvature diagrams of the members 
are simplified as elastic-perfectly plastic and the members have no imperfections, 
the curves that can be obtained in this manner are as sketched _in Figure 
8.41e, f, g. The rising curve in F~re 8.41e is obtained if the diagonal14 is rather 
stiff, and the descending curve 012 in Figure 8.41f is obtained if this diagonal is 
rather soft. The curve with a snapback in Figure 8.41g is obtained if members 24 
and 14 are very soft. If both members 23 and 34 are not very strong and can 
buckle plastically, then the curve in Figure 8.41h may be obtained. If the 
members have imperfections, the response curve changes in the manner 
illustrated by curve 032 in Figure 8.41f. If, in addition, the moment-curvature 
diagram is smoothly curved before reaching a plateau (which is the reality, 
described by Eqs. 8.6.2-8.6.3), the response changes to curve 042 shown in 
Figure 8.41f. 

All of our analysis so far dealt with slender columns for which the initial 
buckling is elastic and later there is relatively rapid transition to perfectly plastic 
behavior. The initial portions of the response curve become modifie~for stocky 
columns for which the initial buckling is elastoplastic. If the diagonal 23 is perfect 
and initially buckles at Shanley's tangent modulus load, then the response curve 
represents a transition from the rising initial Shanley's bifurcated path to the 
descending perfectly plastic response at large deflections, as sketched by curve 
012 in Figure 8.41i. A slightly im~ect column does not exhibit the bifurcation, 
but its response is close to curve 012 in Figure 8.41i. 

For the case of a perfect column (Fig. 8.38a) that is stocky rather than slender 
and buckles first at Shanley's tangent modulus load, one also observes a 
transition to a perfectly plastic response at very large deflections. This is 
illustrated by curve 0123 in Figure 8.39d. The intersection point 6 of Shan)~ 
bifurcated curve (Eq. 8.1.18) with the perfectly plastic response curve 463 
represents an upper bound on p max. 
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F1pre 8.42 Simply supported column subjected to impact. 
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Aside from redistribution and reserve capacity, the perfectly plastic analysis of 
buckling is useful in providing very simple bounds on deflections due to impact. 
To illustrate it, consider that an object of mass m impacts the top of a simply 
supported column (Fig. 8.42). An upper bound on the maximum column 
shortening u1 may be obtained by assuming all the kinetic energy of mass m, that 
is, ~mv2, to be dissipated by the work WP of the plastic deformation in the 
column. We have "'j, = f P du where u is defined by Equations 8.6.3 and 8.6.2 as 
a function of P. The initial value of P is P0 (see Fig. 8.39a). So we have the 
energy balance condition: 

1 J.P' du J.Po 2mv2= "'j, = Po P dPdP = (Pt- P0)u + ~ udP (8.6.7) 

where integration by parts has been used to transform the integral, and P1 is the 
axial force at maximum deflection u1 (P1 < P0). After substituting Equations 8.6.3 
and 8.6.2 for u one can solve for the value of P1 from Equation 8.6. 7, and then 
evaluate the upper bound u1 from Equations 8.6.3 and 8.6.2. 

Perfectly Plastic: Buckling of Thick Plates 

Although the load-deflection diagram of thin plates (in biaxial bending) has a 
very large postcritical reserve and thin plates remain elastic into relatively large 
deflections, a perfectly plastic analysis of plate buckling can give a useful 
approximation for the terminal stage of decreasing load at very large deflections 
of a thick plate (Fig. 8.43a). If the plate is thick, plasticity develops in the 
deflection range in which a geometrically linear formulation is applicable. Then a 
simple solution is possible by a second-order generalization of the yield line 
theory. If the plate is thin, however, plastic deflections cannot be analyzed in a 
geometrically linearized manner. 

Assuming some familiarity with the yield line theory for upper bounds of 
plastic limit loads of plates, we consider for the sake of illustration the square 
simply supported plate of side a, which is shown in Figure 8.43b and is loaded by 
in-plane distributed normal forces N:u and Nyy ( < 0). We assume the yield hinges 
to form in the pattern shown by the wavy lines in Figures 8.43b, c and to transmit 
per unit length the yield moment MP (for the yield criterion of Tresca, 
MP = Oph2/4, and for that of von Mises, MP = oPh20/2 where h =plate 
thickness). We suppose MP to be constant during deflection; this is, of course, an 
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Fipre 8.43 (a) Load-deflection diagram of thick plate at very large deflections and (b, c) 
yield line pattern. 

approximation, which gets worse the thicker the plate, same as we saw it for a 
column (in reality MP, of course, depends on Nxx, Nyy)· The stress state of the 
plate pieces between the hinges is constant, and so they behave as rigid during the 
plastic buckling. Therefore, the deformation of the plate is characterized by one 
parameter, for example, the slope angle 8 shown in Figure 8.43b. 

Now an important point to note is that the relative shortening due to 8 at any 
cross section such as I-I or 11-11 normal to the yield line is 1- cos 8, or 
approximately 82/2, as the lowest-order approximation. Thus the boundaries of 
the plate move inward as if the plate underwent a uniform in-plane strain 82/2 
in any direction. So the work of the loads is aWt = ( -N.ua)_{a82/2) + 
(-Nyya )(a82 /2). The work dissipated in the hinges is a WP = 2a\1'2 Mp(28). 
According to the principle of conservation of energy, we must have aWt = aWP, 
and solving 8 from this condition we obtain for the maximum deflection 
w = 8a/Vi, which occurs at the plate center, the expression: 

w = ___ 8_M_,P.___ 
-Nxx-Nyy 

This gives the dashed curve 45 in Figure 8.43a. 

(8.6.8) 

Solutions of this type are again useful for determining crude deflection bounds 
in problems of dynamic impact or blast. 

Transverse Impact or Blast on Plates or Columns with In-Plane or 
Axial Loads 

When a plate (slab, panel) or column is subjected to impact or blast in the 
transverse direction and is at the same time under significant static in-plane or 
axial forces, then the second-order effects of these forces must be taken into 
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Fipre 8.44 Simply supported plate subjected (a) to impact and (b) to blast. 

account since they tend to increase deflections. The solution is again easy if the 
behavior is plastic. To demonstrate it, consider the same square panel as before. 
An object of mass m, traveling at velocity v, impacts the center of the plate in the 
normal direction (Fig. 8.44a). An upper bound on the transverse deflection w is 
obtained if all the kinetic energy !mv2 together with the work of loads N= and 
Nyy is assumed to be converted into plastic work in the yield hinges, that is, 

1 a282 

2mv2
- (Nxx + Nyy) 2 = 4\1'2 aMP8 (8.6.9) 

provided N= and Nyy remain constant during the deflection. Calculating the 
positive solution 8 from this quadratic equation, one obtains the deflection bound 
w= 8a/V2. 

Consider now the effect of a blast that produces a given pressure history p(t) 
on the surface of the plate (Fig. 8.44b). If energy dissipation outside the yield 
hinges is neglected, then the work of p(t) and of N=, Nyy during time increment 
dt must be equal to the increment of the kinetic energy of the plate plus the work 
dissipated in the plastic hinges. This yields the condition: 

in which w =deflection at plate center, v =velocity at any point of the plate, 
ll = specific mass of the plate per unit area, and (Sx, dx) = area element of the 
plate (Fig. 8.44b) in which the velocity is v = w2x I a. Evaluating the integral and 
substituting 8 = w\1'2/a, one obtains for the center deflection the differential 
equation: 

d2w4 2 ~ 
ll d 2 +2 (Nxx + Nyy)w =

3
-p(t) -16 2 t a a 

(8.6.11) 

Integration of this equation in time t yields the deflection history w(t) due to the 
blast. 
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Problems 

8.6.1 Derive the load-deflection diagram of a perfectly plastic column, replacing 
the equilibrium conditions with the condition that the work increment of the 
applied load d"" = P du must be equal to the internal work dWP = hPJ a de = 
M(2 d8) + P duP =work in the plastic hinge; M =moment in the hinge; 28, 
uP = rotation and axial displacement in the hinge. 

8.6.2 Derive equations corresponding to Equations 8.6.1 to 8.6.3 for the case of 
(a) an ideal 1-beam, (b) an 1-beam, (c) a solid circular cross section, (d) a 
tube, (e) a nonsymmetric ideal 1-beam, (f) aT-beam, and in cases (e-f) also 
discuss the effect of nonsymmetry of the cross section. 

8.6.3 Consider the frames in Figure 8.45a-i and solve them in the manner of 
Equations 8.6.4 and 8.6.5. 

8.6.4 (a) Repeat Problem 8.6.2 for a fixed-hinged column (Fig. 8.45c). Consider 
a rectangular or any other cross section used in Problem 8.6.2. (Note: Find the 
distance of the plastic hinge from the base from the condition that the load P 
for a given axial shortening u would be minimized. This condition is indicated 
by the path stability analysis in Sec. 10.2.) (b) Repeat the above using a 
similar approach to solve the columns in Figure 8.45j-m, having a variable P 
or variable cross section (use the same condition to find the hinge location). 

8.6.5 A fixed column obviously forms three hinges. Equations 8.6.2 forM applies 
to each hinge. However, Equation 8.6.3 and Equations 8.6.2 for z require 
modification. Derive it and plot the diagram P = P(u). Consider (a) an ideal 
1-bar cross section and (b) a rectangular cross section. 

8.6.6 Solve the same as Problem 8.6.5 but for a fixed-hinged column. 
8.6.7 Consider the trusses in Figure 8.46 and solve them in a manner similar to 

Equation 8.6.6. Then determine the safety factor SP due to plastic redistribu
tion, defined as the ratio of the maximum load (at large deflection) to the load 

npre 8.45 Exercise problems on buckling of columns and frames which develop perfectly 
plastic hinges. 
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~ 

F1pre 8.46 Exercise problems on buckling of trusses with perfectly plastic bars. 

that causes the initial plastic deflection. (The problem is meaningful only if 
SPa: 1.) 

8.6.8 (a) Recalling the derivation of Equation 8.6.3, formulate the axial 
shortenings uP done in the hinges of the frame in Figure 8.40, and introduce 
the work of axial loads on duP into Equations 8.6.4 and 8.6.5. (Such a solution 
would be valid even for frames that are not slender.) (b) Repeat for the 
L-frame, Figure 8.45d. (Note: Here the axial shortening causes asymmetry of 
deflections to the left and to the right, similar to that encountered in Sec. 2.6, 
Fig. 2.25.) 

8.6.9 (a) Calculate the work that is done if the distance between the ends of the 
hinged column in Figure 8.38a is shortened to 0.51. (b) Repeat for the columns 
in Figure 8.45b, c. 

8.6.10 A projectile of mass m impacts axially the top of a column (Fig. 8.42). 
Calculate the lower bounds on the impact velocity v that would cause the 
column initial length l to change to chord length /1 = 0.9/, 0.5/, 0.11. Consider 
both (1) an ideal 1-beam and (2) a square cross section, and (a) a simply 
supported column, (b) a free-standing column, and (c) a fixed column. Assume 
L/ h = 20. How would the results change if 30 percent of the kinetic energy is 
dissipated by shattering of the projectiles and friction on the column, 15 
percent of the kinetic energy is transferred to the fragments flying away, and 5 
percent is dissipated by hysteresis in the column at points away from the 
plastic hinge? 

8.6.ll Solve the same as Problem 8.6.10, but determine an upper bound on axial 
displacement u if the mass m is dropped from a given height H above the 
column top. 

8.6.12 Calculate the deflection of the plate in Figure 8.43b assuming its edges are 
fixed rather than simply supported. 

8.6.13 Assume that the plate in Figure 8.44 is supported only on the top and 
bottom sides and that only one horizontal hinge forms at plate midheight. 
Calculate an upper bound for deflection w due to impact of mass m. Discuss 
the effect of N=, N1r 

8.6.14 Solve the same as the impact problem in the text for Figure 8.44, but the 
boundary of the plate is fixed rather than simply supported. 



ELASTOPLASnC BUCKLING 569 

8.6.15 Solve Equation 8.6.11 for blast loading p(t) = p0e-d~ fort;:: 0 and p(t) = 0 
for t < 0, where T =constant. 

8.6.16 Solve the same as Problem 8.6.13, but with blast loading as in Problem 
8.6.15. Discuss the effect of N:xx, Nyr 

8.6.17 How would the preceding solutions change if N:xx, Nyy decreased during 
deflection? (This happens if there is a restraint against free in-plane 
displacements at the boundaries.) 

8.7 GEOMETRIC HNSILE INSTABILITY, LOCALIZATION, AND 
NECKING 

We will now shift attention to a different problem, considering structures that are 
subjected to tension. For small inelastic deformations, such structures are always 
stable. Not so, however, when large deformations take place. In that case, the 
Poisson effect may cause a significant reduction of the cross-section area. Since 
the load must be resisted over a reduced area, an increase of stress and strain 
results, and thus the Poisson effect may ultimately lead to instability. The 
material behavior may still be purely elastic, although a similar instability arises 
when the reduction of the cross-section area is caused by material plasticity or 
damage. (We will touch this aspect in Chap. 13.) 

Role of Transverse Contraction and Finite Strain 

To illustrate this type of stability loss, consider a rubber rod of initial length 10 

and initial cross section A 0 , subjected to uniaxial tensile stress produced by axial 
tensile load F; see Figure 8.47a. Although this chapter is devoted to plastic 
materials, for the sake of clarity let us consider first a material that is perfectly 
elastic (reversible), highly deformable but incompressible in volume. The 

a) d) 

2.ns f/f. u 

Figure 8.47 (a) Rubber rod subjected to tensile load; (b) stress-strain relation for large 
strains; (c) load-elongation curve; (d) loading through a spring; (e) snapdown instability. 
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condition of constant volume of the material may be written as AI = Aolo in which 
A =the current cross-section area, I = length of the rod (Fig. 8.47a), and A 0 , 

10 = their initial values at P = 0. Substituting A = A010 / I into the equilibrium 
relation F = oA where o is the true stress, that is, the force per unit area of the 
deformed rather than undeformed material, we find that oAolo = Fl or 

0 =.!._ (i) 
Ao lo 

(8.7.1) 

The uniaxial stress-strain relation for large strains is assumed to have the form 

do=Edl 
I 

(8.7.2) 

where E =constant. The strain increment dA. = dl/1 represents an increment of 
the so-called logarithmic strain A. (cf. Sec. 11.1), since A.= In (1/10). Therefore, 
o = EA.; see curve 1 in Figure 8.47b. Substituting this into Equation 8. 7.1 we get 

F=EA ln(I/10)=EA ~ 
0 l/10 ° eA. 

(8.7.3) 

The diagram of this load-elongation curve is plotted in Figure 8.47c. We see 
that the curve reaches a maximum after which it continuously declines and 
approaches asymptotically a zero load. Based on our previous discussion of 
stability of equilibrium curves that exhibit a limit point (Sec. 4.4), it is clear that 
the maximum point represents a critical state, after which the rod is unstable. 
Setting for the maximum point dF I dl = 0, we find that instability occurs when 
I = lcr = 2. 71810 and the corresponding critical load is Fer = EA010 / lcr· The in
stability is of the snapthrough type (see Sec. 4.4). But, in contrast to the 
snapthrough of arches, the structure cannot regain stability after snapthrough, 
since the equilibrium path has no second rising segment. 

An interesting modification of this example is to attach a spring of stiff
ness C at the end of the rod (Fig. 8.47d) and load the rod through the spring. 
The behavior is then rather similar to the example of a von Mises truss with a 
spring attached at its apex (Fig. 4.48), which was discussed in Sec. 4.8. It is found 
that for a sufficiently soft spring such that its stiffness C is less than the magnitude 
of the steepest descending slope kmin in Figure 8.47c, the load-elongation 
diagram exhibits snapback, as shown in Figure 8.47e (from Eq. 8.7.3, kmin = 
- EA0e -J /210). This type of behavior exhibits instability even under displacement 
control, and snapdown instability may occur as shown by path 23 in Figure 8.47e. 
Without the attached spring, the tension rod is stable under displacement control 
for any value of the displacement, provided we assume the strain to remain 
uniform. 

Similar tensile instabilities due to Poisson effect can occur in pressurized 
spherical shells (balloons) or tubes. 

Consider now an elastoplastic material defined by 

F EA. 
o=-=----:-

A 1 +EMf, 
(8.7.4) 

where o = F /A= true stress (rather than the force per unit initial area); see curve 
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2 in Figure 8.47b. For the sake of simplicity let us replace A. with the linear strain 
E = (1-10)/lo and suppose all deformations to happen at constant volume, in 
which case u = F I A = F(1 + E )I A 0 • Substituting this into Equation 8. 7.4 with 
A.= E, we get 

F= A0 EE 
(1 + e)(1 + Ee//y) 

(E = 1/10 -1) (8.7.5) 

We find that, despite the absence of a peak in the u(e) relation (Eq. 8.7.4), the 
curve F( E) does have a peak, given by dF I de = 0. For the peak-force point, 
representing the limit of stability (i.e., the point of snapthrough), this condition 
furnishes 

E = ft. 
cr 'J£ (8.7.6) 

The assumptions that A = E and that the volume is constant for the elastic part 
of deformation are, of course, not quite realistic; large (finite) strains and 
Equations 8.7.6 are acceptable only if Ecr is small (for mild steel, Eqs. 8.7.6 yield 
Ecr=0.04 and Ucr=0.96/y, which may be considered as small, although the 
assumptions we made do not really apply to mild steel). For finite strains, we 
need to characterize the elastic deformation by the relative length change 
E" = (l .. /10) - 1 and assume the plastic deformation to be defined by the relation 
l/10 = (lello)(llle) where (llle)- 1 = Ep =linear plastic strain. (This decomposition 
of l/10 is merely a reasonable assumption, not a law.) So we have A= In (1110 ) = 
A. .. + A.P where A"= ln (/,JI0) =In (1 +e.,) and A.P = ln (1/le) =In (1 + Ep). The trans
verse linear contraction due to elastic axial strain may be considered as vA.., where 
v = Poisson ratio. This ratio may be defined by writing, for the change of volume, 
In (A0/A) = A.P + 2vA.". This expression is justified by the fact that for the case of 
elastically incompressible material, v = 0.5, it reduces to In (A0IA) = A.P +A..,= 
A.=ln(l/10), that is, A 0IA =1/10 or AI=A010 , which agrees with our previous 
assumption of volume incompressibility. Finally, considering the elastic strain to 
be given by A.,= FIAE (which is also merely a simplifying assumption, not a law), 
we get 

Ao = Ae"'p+2v)., = Ae).-(t-2v)FIAE (8.7.7) 

Expressing A from Equation 8.7.4 and substituting it here, one gets a transcen
dental equation relating F and A. from which the curve F(i..) can be numerically 
calculated. Again, this curve has a peak that represents a point of snapthrough 
instability. 

We see that finite strains of an elastoplastic material pose new problems, 
which arise with regard to the manner of decomposition of strain into its elastic 
and plastic parts, and need to be decided on the basis of experiments. These 
problems are interesting, especially in three dimensions, and have been intensely 
debated. For the recent thinking, see, for example, Simo and Ortiz (1985) and 
Simo (1986). 
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Strain Localization 

Consider again the first example of a rubber rod. In the preceding simple solution 
(Eqs. 8.7.1-8.7.3) we tacitly assumed the strain to remain uniform along the rod. 
Before reaching the peak load point this assumption is no doubt correct since 
only one value of strain corresponds to any given force. After the peak, however, 
the strain does not have to remain uniform since only a segment of the rod of 
some initial length h0 (h0 < 10) (Fig. 8.48a, b) can increase its strain (Fig. 8.48d) 
while the rest of the rod length can unload at decreasing strain (Fig. 8.48e), 
maintaining uniform normal force F along the rod (Fig. 8.48c). Denoting 
A.= In (1/10) =strain, we have in Equation 8.7.3 the function F = f(A.). Its inverse 
is A.= tl>a(F) for post-peak response and A.= tPb(F) for the pre-peak response. 
These relations are valid for each segment of the rod that has a uniform strain. 
Thus, the post-peak strains in the loading and unloading segments are Aa = tl>a(F) 
and A.b = tPb(F). The corresponding lengths of the deformed segments are 
Ia = h0eA• and lb = (10 - h0)eJ., (Fig. 8. 48d, e), and so the total post-peak length of 
the rod under force F is I = Ia + lb, that is, 

I= hoe.P.<F> + (/0 - ho)etl>b<F> (8. 7.8) 

This defines the post-peak curve of F versus I, which can be graphically 
constructed as shown in Figure 8.48d-f. 

Now we see that the peak point is a bifurcation point. After the peak we have 
two equilibrium paths as shown in Figure 8.48, one with uniform strain (dashed 
curve), and one with localized strain (solid curve). Which one actually occurs? 
This question can be answered only by thermodynamic stability analysis that we 
will carry out in Chapter 10. We will see that in a problem with a single controlled 
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Flpre 8.48 Elastoplastic rod subjected to (a) tensile force, (b) strain localization, (c) 
uniform distribution of axial force; force-elongation curves of (d, e) loading and unloading 
parts and (f) entire rod. 
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variable, such as I, the path that will actually take place is the path that descends 
steeper in the diagram of F versus I (because it gives a larger increase of internally 
produced entropy). Thus the strain will localize. A uniform strain after the peak can
not be obtained except if the rod were artificially restrained along its length. 

Further we note that the post-peak path in Figure 8.48f depends on the length 
h0 of the localization segment. For different values of h0 , different post-peak 
paths are obtained. Obviously, there are infinitely many descending equilibrium 
paths emanating from the peak point. The smaller the value of h0 , the steeper the 
descent of the path. The path that actually occurs is the steepest one possible. So 
it seems that the length ~ of the localization segment will be vanishingly small, 
which would produce a sudden drop of force F. 

In reality, however, length h0 must have a certain minimum value hmin that is 
approximately proportional to the thickness b of the rod. The simple uniaxial 
analysis that we demonstrated is valid only if h0 » b. For h0 values that are of the 
same order as b, one must analyze the multiaxial stresses near the points of 
transition from one rod thickness to another, and such analysis imposes a certain 
minimum length of the transition zone. This problem is related to plastic necking, 
upon which we touch next, as well as to localization due to softening damage, 
which we will discuss in Chapter 13. 

The influence of the h0 value is obviously a source of a size effect. For the 
same material and the same cross section of the rod, a longer rod will exhibit a 
steeper descending curve in the plot ofF vs l/10 • For a very short rod of length 
I = hrmn• there would be no localization, that is, the strain will remain uniform. 
Our preceding analysis of snapback at displacement control is valid only for such 
a short rod. Otherwise the snapback analysis must be based on the response curve 
for a rod with localized strain. 

If the material is inelastic, the principal difference is that function q,b().) must 
describe the unloading curve starting from the peak point, which differs from the 
initial pre-peak loading curve (see Prob. 8.7.3). 

Necking 

An important example of tensile instability is plastic necking, which involves very 
large plastic deformations in the neck region (Fig. 8.49a). Necking is the typical 
mode of failure of elastic-plastic metals in tension. The problem has been studied 
in detail by finite elements (e.g. Needleman, 1982; Tvergaard, 1982; Becker and 
Needleman, 1986). It appears that there are two basic geometrically nonlinear 

b) 

Fipre 8.49 (a) Plastic necking; (b) pressurized cylindrical tube; (c) pressurized balloon. 
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causes of the necking instability: (1) a decrease of the cross-section area of the 
bar, causing a stress increase for the same load value, in the same manner as in 
our preceding example; and (2) formation of microscopic voids in the plastic 
metal. A cross section of the bar then intersects a certain number of the voids, 
with the result that the net resisting area of the material is less than the area of 
the cross section (see also Chap. 13). Approximately, the true stress to which the 
material between the voids is subjected is a,= a/(1- v) where a= F/A = 
macroscopic stress (i.e., the stress in the usual, Eulerian definition), and 
v = volume fraction of voids, which increases with the deformation during 
necking. 

The elastic-plastic constitutive law of the metal may be approximately written 
as the relation between the true stress and the strain (finite strain must be 
considered). For the purpose of finite element analysis, this stress-strain relation 
must be converted to macroscopic stresses, which is usually done in Lagrangian 
formulations in terms of the strains and stresses that are referred to the original 
undeformed geometry (cf. Chap. 11). 

The formulation of the three-dimensional elastoplastic constitutive relation at 
finite strain, as well as the evolution equation for the void fraction, is a difficult 
problem still debated at present. A further complicating factor is that the 
evolution of voids causes macroscopic strain-softening of the material, 
which causes the finite element analysis not to exhibit the correct structural 
size effect and to show spurious mesh-size sensitivity. It is now known that 
this sensitivity can be avoided by nonlocal continuum formulations. Among 
these, the most effective approach appears to be to consider the damage, 
represented here by the void fraction, as a function of mean strains 
and stresses from a certain representative volume of the material rather 
than a function of the local strains and stresses (Bafant and Pijaudier-Cabot, 
1987). 

Problems 

8. 7.1 Analyze tensile instability of the rod in Figure 8.47a assuming a "locking" 
elastic material, with the stress-strain law a= Ee(1 + k£) where k =positive 
constant. Assume the same definition of strain E as before, as well as the 
condition of constant volume. 

8.7.2 Analyze the snapdown behavior for the rod in Figure 8.47c, including the 
load-elongation diagram and the instability point. 

8.7.3 (a) Repeat Problems 8.7.1 and 8.7.2 for an elastoplastic material described 
for monotonic uniaxial loading by the relation a= [y tanh (Ee/[y) and for 
unloading by a straight a-E diagram of slope E. Again assume constant 
volume. (b) Do the same but for a= (2[y/n) tan- 1 (nEe/2[y). (c) Do the same 
but for the Ramberg-Osgood stress-strain relation. 

8. 7.4 Solve tensile instability of the pressurized cylindrical tube in Figure 8.49b, 
assuming the strain to remain uniform and the relation between the 
membrane resultant Nand the linear strain , E = (/-/0)//0 , to be of the form 
N = h0Ee(1 + k£). 

8.7.5 Solve the same as in Problem 8.7.4, but for a pressurized balloon (spherical 
shell, Fig. 8.49c). 
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9 
Creep Buckling 

The inelastic behavior of some materials, such as concrete and polymers, and at 
high temperature also metals, is strongly time-dependent and may be charac
terized as viscoelastic or viscoplastic. In viscoelastic behavior, typical of polymers 
and to some extent of concrete within the service stress range, the linearity of the 
stress-strain relation-an essential aspect of all the analysis in Chapters 1 to 7-
is preserved. By virtue of this fact, most of the elastic solutions for stability can be 
transplanted to the viscoelastic domain, using the so-called elastic-viscoelastic 
analogy. If inevitable imperfections are taken into account, it is found that 
viscoelastic structures may lose stability slowly, over a long period of time. This 
phenomenon may be characterized either in terms of the long-time critical load, 
which may be much smaller than the short-time (elastic) critical load, or in terms 
of the deflection at the end of the projected life span. 

An entirely new type of behavior is encountered when the time-dependent 
behavior is nonlinear, that is, viscoplastic. In that case, as it turns out, columns 
under sustained loads are generally unstable for any value of the load, if the usual 
definition of stability of solutions is adopted. However, this does not mean that 
such columns could not be used. It appears that the loss of stability may occur 
long after the end of the projected service life of the structure. Then it is more 
reasonable to characterize stability in terms of the critical time (life time), defined 
as the load duration for which the ratio of the buckling deflection to the initial 
imperfection becomes infinite. The existence of a critical time is the salient 
feature of viscoplastic (or nonlinear) creep buckling. For linear viscoelastic 
behavior, the critical time is infinite and therefore useless as a distinction between 
stable and unstable behavior. 

In design applications to concrete structures, the viscoelastic and viscoplastic 
analysis of buckling of reinforced columns must further take into account the 
variation of creep properties of the material with age, a phenomenon called 
aging. We will briefly discuss some recent developments in this regard, and 
illustrate the analysis of long-time carrying capac;ty of concrete columns. 

With regard to the thermodynamic analysis of stability, which follows in the 
next chapter, we must note that no state with a nonzero creep rate can represent 
stable thermodynamic equilibrium since this implies a positive energy dissipation 
rate (and thus a positive rate of internally produced entropy; Sec. 10.1). When we 

S84 
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use the word "equilibrium" in this chapter, we will mean merely static 
(mechanical) equilibrium (i.e., absence of inertia forces), unless thermodynamic 
equilibrium is explicitly mentioned. 

9.1 VISCOELASTIC STRESS-STRAIN RELATIONS 

Some materials, such as polymers or concrete, continue to increase their 
deformation while the stress is kept constant. This phenomenon is now generally 
called creep. When a number of specimens are loaded to various stress levels at 
timet= t0 , and their strains are recorded at various specified times t0 , tl> t2 , ••• , 

one can obtain the creep isochrones as the stress-strain curves that connect the 
points reached at the same time (in Greek "chronos" means time, and the prefix 
"iso" means equal); see Figure 9.1a. For some materials, such as polymers or 
reinforced polymers, the isochrones are initially straight, that is, linear, up to a 
certain proportionality limit. This is the special case of linear creep, also called 
viscoelasticity (or linear viscoelasticity). If the isochrones do not depend on the 
age of the material at the moment of loading, we speak of nonaging viscoelas
ticity, in contrast to aging viscoelasticity that is a typical property of concrete. The 
behavior above the proportionality limit of the isochrones represents nonlinear 
creep (or nonlinear viscoelasticity). For some materials, such as metals at high 
temperatures or clays, there is no linear range, that is, the creep isochrones have 
a significant curvature beginning with zero stress (Fig. 9.1b). In this section we 
will consider only nonaging linear viscoelastic behavior. 

Compliance Function and Integral-Type Creep Law 

A typical shape of the creep curve e(t) at constant stress a is shown in Figure 
9.2a. Due to the second law of thermodynamics, the creep curve must always 
have a nonnegative slope, and for materials that undergo no damage the slope of 
the creep curve must not increase with time. Due to the proportionality property, 
the creep curves of viscoelastic materials are fully characterized by the creep 
curve for unit constant stress, called the compliance function, J(t- t0), where tis 
the current time and t0 is the time at which the unit stress was applied. For any 
stress within the linear range, the creep curve is then obtained as e(t) = aJ(t- t0). 

Another typical type of response is the stress variation when the material is 
deformed at time t0 and subsequently the strain E is kept constant (Fig. 9.2b). The 
ensuing stress response is called stress relaxation. According to the second law of 
thermodynamics the stress-time relaxation curve may not increase. For non
damaging materials the magnitude of the slope cannot increase. 

a) 
b) 

IJ Nonlinear 
creep boundary IJ 

13 

t-• c'••.o Spec• ----
- 2 - 3 t t 

Figure 9.1 Creep isochrones: (a) initially linear creep, (b) nonlinear creep. 
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Figure 9ol (a) Creep curve; (b) relaxation curve; (c) decomposition of stress history into 
infinitesimal stress increments. 

For the analysis of creep buckling, we need a stress-strain relation applicable 
at time-variable stress, a(t). It appears that if the material should be described as 
linear, in the sense that the general stress-strain relation is characterized by 
linear differential (or integral) equations in time, it is necessary to satisfy the 
principle of superposition in time. This principle, which is not implied by linearity 
of the isochrones (see Bafant, Tsubaki, and Celep, 1983), requires that if two 
stress histories are superimposed, then the strain response to the combined stress 
history is a sum of the strain responses to each of the stress histories. An arbitrary 
stress history a(t) can be imagined to be a sum of infinitesimal stress increments 
da(t'), as illustrated by the horizontal strips in Figure 9.2c. According to the 
principle of superposition, the strain response should then be obtained as the sum 
of the responses to the individual steps da(t'), that is, 

e(t) = [ J(t- t') da(t') (9.1.1) 

(Note that the lower limit could be t0 instead of 0 because CJ = 0 for t < 10). This 
equation, expressing the principle of superposition, agrees reasonably well (albeit 
not exactly) with the test results for many viscoelastic materials, particularly 
polymers, in their linear (low-stress) range. The integral in Equation 9.1.1 is the 
Stieltjes integral, which is defined even if a(t) varies discontinuously (piecewise 
continuously). If a(t) is continuous and differentiable, then da(t') = u(t') dt' 
where u(t') = da(t')/dt', and Equation 9.1.1 thus becomes the usual (Riemann) 
integral. For a stress history a(t) that is continuous and differentiable for t > t0 

but begins with a jump from 0 to a(t0), Equation 9.1.1 implies that e(t) = 
J(t- to)a(to) + f~o J(t -t')u(t') dt'. 

If the stress history is unknown in advance, Equation 9.1.1 represents an 
integral equation for a(t). An integral equation of this type is called the Volterra 
integral equation. It is a special case of the integral equations of the second kind. 

Differential· Type Creep Law and Rheologic Models 

For the purpose of structural analysis, it is often more convenient to formulate 
the stress-strain relation as a differential equation in time. This can be 
accomplished by describing the material with a rheologic model consisting of 
springs and dashpots. Such models are purely phenomenologic and have nothing 
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Figure 9.3 Responses of various types of rheologic models: (a) elastic; (b) viscous; (c) 
Maxwell; (d) Kelvin (Voigt); (e) standard solid (Maxwell type); (s) standard solid (Kelvin 
type); (g) Maxwell chain; (h) Kelvin chain. 

to do with the actual physical mechanism of viscoelastic behavior. It has been 
shown (e.g., Roscoe, 1950) that any type of viscoelastic behavior can be 
approximated by a spring-dashpot model with any desired accuracy. 

Various linear rheologic models are illustrated in Figure 9.3. The force 
applied on the model represents the stress, u, and the relative displacements 
between the end points of the model represent the strain, e. The model is 
characterized by its spring moduli E and dashpot viscosities 'I· Since the material 
is assumed to be nonaging, E and 11 are independent of timet, that is, constant. 
Figure 9.3 also shows the typical responses to constant unit stress or to constant 
unit strain (Heaviside step functions), as well as to constant strain rate. The 
spring is described by the relation u = Ee, and the dashpot by the relation u = 'IE 
(superimposed dots denote time derivatives, that is, t = de/dt). 

The Maxwell unit, describing material behavior that was first considered by 
J. C. Maxwell in England in the late nineteenth century, consists of a spring and 
dashpot coupled in series (Fig. 9.3c). This model exhibits constant-rate creep (at 
a constant stress), and stress relaxation (e = const.) of a decaying rate, approach
ing zero stress at t-+ oo. Another simple model is the Kelvin unit (or Kelvin
Voigt unit) shown in Figure 9.3d. It describes material behavior first considered 
by Lord Kelvin in England and Voigt in Germany, and consists of a spring and 
dashpot coupled in parallel. This model exhibits creep at a decaying rate, but no 
instantaneous elastic deformation, in contrast to the Maxwell unit. The simplest 
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rheologic model that gives both instantaneous elastic deformation and subsequent 
creep at a decaying rate is the standard solid model, for which there exist two 
types: the Maxwell type, which consists of a Maxwell unit and a spring coupled in 
parallel (Fig. 9.3e), and the Kelvin type, which consists of a spring and a Kelvin 
unit coupled in series (Fig. 9.3f). 

The most general linear viscoelastic behavior can be approximated as closely 
as desired (Roscoe, 1950) by the Maxwell chain model (Fig. 9.3g) or the Kelvin 
chain model (Fig. 9.3h), which consists of either a sequence of Maxwell units 
coupled in parallel or a sequence of Kelvin units coupled in series. With these 
models it is possible to capture the fact that, as is true for many real materials, 
the creep or relaxation curve begins with an almost vertical slope, and its slope 
decays over many orders of magnitude of load duration, much slower than an 
exponential curve (exponential decay is typical, as one can check, for the 
standard solid models). Since the Maxwell and Kelvin chain models can describe 
material behavior as closely as desired, there is no need for other arrangements of 
springs and dashpots than those shown in Figure 9.3. 

In viscoelastic behavior we may distinguish fluids and solids. Fluids are those 
materials for which the creep curve at constant stress is unbounded, as is true for 
the viscous unit (Fig. 9.3b) and the Maxwell unit (Fig. 9.3c). When the creep 
curve at constant stress is bounded, the material is called a solid. The Kelvin unit 
and the standard solid models (Fig. 9.3d, e, f) are solids. The Maxwell chain (Fig. 
9.3g) represents a solid if the last Maxwell unit (i = n) in the chain has no dashpot 
(that is, 'ln-+oo). The Kelvin chain (Fig. 9.3h) always represents a solid; 
however, it exhibits instantaneous elastic strain only if the first Kelvin unit in the 
chain has no dashpot (that is, '11 --+ 0). The viscoelastic strain of a solid that 
remains after subtracting the instantaneous elastic strain is called delayed elastic 
strain. 

It should be kept in mind, however, that the distinction between solids and 
ftuids in viscoelasticity is blurred and for materials exhibiting creep of very long 
durations becomes an academic question. For concrete, for example, it is known 
that the creep curve does not approach a horizontal asymptote up to load 
durations of about 50 years, but whether an asymptote is approached for longer 
durations is irrelevant for design. The characterization as a solid is meaningful 
only for those materials that attain the final asymptotic value of the creep curve at 
load durations that are much smaller than the lifetime of the structure. 

Let us now illustrate a stress-strain relation in the form of a differential 
equation, considering the standard solid model of Kelvin type (Fig. 9.3f). Let 
E2 = spring constant and a2 = stress in the spring of the Kelvin unit. The total 
deformation of the model is 

(9.1.2) 

The stress in the dashpot is, due to the equilibrium condition, a- a2 , and so the 
total strain rate of the model may be expressed as 

. o a- a2 E=-+-
E 'I 

(9.1.3) 
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Multiplying Equations 9.1.2 and 9.1.3 by E2 and TJ, and adding them, we obtain 
the first-order linear differential equation: 

ETJ + eE2 = ui + u( 1 + i) (9.1.4) 

With the notation T, = TJIE2 , E .. = (E-1 + E21)-t, this equation may be rewritten 
as 

. l', 1 
Te+e=-u+-u 
' E E .. 

(9.1.5) 

in which the material constants E, E .. , and T, represent the elastic modulus for 
instantaneous deformation, the elastic modulus for long-time deformation, and a 
constant with the dimension of time, called the retardation time. 

The creep curve for a constant stress u applied at time t = 0 may be obtained 
by integrating Equation 9.1.5 for u = 0. The initial condition is E = u/ E at t = 0, 
and integration yields for the creep curve (Fig. 9.3f) the expression: 

E = u[.!.- (.!.- .!.)e-''"·] 
E.. E .. E 

(9.1.6) 

By optimum fitting of this formula to a measured creep curve for a given 
material, one can identify the material constants E, E .. , and T, from which one 
can then calculate also E 2 and 'I· 

The stress relaxation curve may be obtained by integrating Equation 9.1.5 for 
a constant strain E ( £ = 0) imposed at time t = 0. The initial condition is u = Ee at 
t = 0, and the integration yields the stress relaxation curve (Fig. 9.3f): 

u= e(E .. + (E- E .. )e-tt('f,E.JE>] (9.1.7) 

Elastic-Viscoelastic Analogy 

The differential stress-strain relation for the standard solid, as well as any other 
linear rheologic model, may be generally written in the form 

u = Ee or (9.1.8) 

E and ,e-1 represent differential operators that are inverse to each other; E is 
called the relaxation operator, and ,e-1 is called the creep operator. For the 
standard solid the relaxation and creep operators may be written in the form 

1 + l',(atat) 
E = (1/ E .. )+ ( T,/ E)( at at) 

E_ 1 = (1/E .. ) + (T,/E)(a/at) 
1 + l',(atat) 

(9.1.9) 

It can be shown that for a general viscoelastic material, the relaxation operator 
may be expressed as 

E = E + a1(atat) + a2(~taf) + · · · 
- 1 + b1(atat) + b2(~/at2) + ... 

(9.1.10) 

where a., a2 , b., b2 , ••• =material constants. With certain minor restrictions the 
differential operators can be manipulated according to the same rules as those of 
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linear algebra. The principal exception is that (atat)/(atat) cannot be replaced 
by 1 because the equation [(atat)/(atat))y = z is equivalent to j = i and has the 
solution y = z + const., not y = z. A rigorous formulation requires the use of the 
Laplace transform, but for the sake of simplicity we refrain from it here. As long 
as the rules of linear algebra are applicable, we may obtain the governing 
differential equation for a certain problem simply by replacing E or 1/ E in the 
associated elastic formulation with the relaxation operator E or the creep 
operator e-t, respectively. The possibility of replacing the elastic constants by 
the corresponding creep or relaxation operators and manipulating them according 
to the rules of linear algebra, is called the elastic-viscoelastic analogy (also called 
the correspondence principle by Biot, 1965, p. 359). This analogy was stated by 
Alfrey (1944) for nonaging viscoelastic materials (although for concrete as an 
!lging viscoelastic material, this analogy was introduced previously by McHenry, 
l943). 

Problems 

9.1.1 Determine the expression of the creep curve and the relaxation curve for 
the (a) Maxwell model (Fig. 9.3c); (b) Kelvin-Voigt model (Fig. 9.3d); 
(c) standard solid of Maxwell type. 

9.1.2 For the same models, determine the o-e relations for iJ = const. and for 
t = const. (i.e., the stress-controlled or displacement-controlled tests at 
constant loading rate). 

9.1.3 For those acquainted with the Laplace transform: Obtain the transform of 
the stress-strain relation for the standard solid of Kelvin type, which has the 
form of an elastic stress-strain relation. Use it to solve the load-displacement 
relation for the structures in Figure 9.4 under either constant load or constant 
displacement. Then, by inversion of the Laplace transform obtain the 
displacement or force as a function of time. 

Vi1coelastic 

L t L ~ L ~p L f 
I ) 

VIICOtll .. lic Elaalic ...AJ_lf :& 
Viacoelaatlc .._ E Ia otic 

Figure 9.4 Exercise problems on viscoelasticity. 

9.2 VISCOELASTIC BUCKLING 

Viscoelastic buckling consists of a slow growth of deflection with time. Depending 
on the load magnitude, deflections may either asymptotically approach a finite 
value, which represents a stable response, or grow at t-+ oo beyond any bounds, 
which is considered to be a long-time instability. If the problem is linear, the 
deflection cannot become unbounded at a finite time after load application, but if 
nonlinearities are present it can. For viscoelastic buckling it is essential to 
consider imperfections (Freudenthal, 1950; Libove, 1952; Kempner, 1954; Hoff, 
1954, 1958; Lin, 1956; Rabotnov and Shesterikov, 1957; Huang, 1967). Without 
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Figure 9.5 (a) Imperfect viscoelastic column subjected to axial load and (b) deflection 
histories. 

the consideration of imperfections, the static form of the problem becomes 
meaningless. 

Let us now analyze the buckling of a viscoelastic column, using the integrated 
differential equation for the deflections of a simply supported beam-column. The 
column is considered to be imperfect, with an initial curvature defined by function 
.zo(x). Let z(x, t) =deflection ordinates (Fig. 9.5a). According to Section 1.2, the 
elastic behavior is described by the differential equation El(z"- z0) + Pz = 0, in 
which derivatives with respect to spatial coordinate x are denoted by primes, P is 
the axial load, and I is the centroidal moment of inertia. Replacing E with the 
relaxation operator E we have 

EI(z"- z0) + Pz = 0 (9.2.1) 

and upon substitution of the operator for the standard solid (Eq. 9.1.9): 

1+-r,(a/at) (, ") P 0 (1/Eoo)+(-r,/E)(a/at) z -zo +1z= (9.2.2) 

In view of the analogy with the rules of linear algebra, we now multiply 
Equation 9.2.2 by the operator in the denominator: 

( 1 + T ~)(z"-z0)- ~ [__!_ + T, (~)]z = 0 
'at I E"" E at 

(9.2.3) 

or 

z" - z" + T i" + _!_ z + .!.._ T i = 0 0 
' E""I El ' 

(9.2.4) 

This is a partial differential equation in space and time, which governs the 
time-dependent buckling of a viscoelastic pin-ended imperfect column. The 
boundary conditions are z = 0 at x = 0 and x = I. The initial condition is given by 
the instantaneous elastic deformation calculated on the basis of elastic modulus E 
at timet= 0. 
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Deflection History and Long· Time Critical Load 

Although the solution can be obtained in general for a Fourier series expansion of 
the initial imperfection Zo(X ), we consider for the sake of simplicity only a 
sinusoidal initial curvature, Zo =a sin (nx/1) with a= constant, and seek the 
solution in the form: 

z = f(t)a sin ~x (9.2.5) 

which agrees with the initial imperfection when f = 1. This form of the solution 
obviously satisfies the boundary conditions at the simply supported ends of the 
column. Substitution into Equation 9.2.4 yields 

T,(1 - ~) df + (t -~)f = 1 
PE dt PE. 

(9.2.6) 

in which we introduced the notations: 

(9.2.7) 

PE is the elastic Euler load based on modulus E, and PE. may be considered as 
the Euler load corresponding to modulus E ... 

The initial elastic deflection for a sinusoidally curved column is obtained by 
multiplying the imperfection ordinates with a magnification factor from Equation 
1.5.10, and so the initial condition is 

Fort =0: /= 1 
1-P/PE 

(9.2.8) 

Equation 9.2.6 is a linear ordinary differential equation with constant coefficients. 
Its solution for the given initial condition is 

(9.2.9) 

in which we introduced the notation: 

(9.2.10) 

Let us now discuss this result. For P < PE., the solution according to Equation 
9.2.9 indicates a gradual increase of the deflection ratio f(t) that approaches for 
t-+® a final value/ .. (Fig. 9.5b). If the initial imperfection is very small, that is, a 
is very small, then the final deflection at midspan, af .. , is also very small. 
According to the general notion of stability, the column therefore must be 
considered stable. 

When P = PE., we have f.,-+®, as well as Tb -+®. We therefore must calculate 
the limit of the solution in Eq. 9.2.9. Since 1/Tb-+0, the exponent t/Tb of the 
exponential is infinitely small, and so we may either set e -tt-rb == 1 - t I '~'b• and calculate 
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the limit as follows: 

(9.2.11) 

or get the same result using the rule of L'H6pital. We also get the same result by 
setting P = PE.. in Eq. 9.2.6. 

We see (Fig. 9.5b) that the deflection increases linearly with time. After a 
sufficient load duration, the deflection obviously will exceed any chosen bound no 
matter how small the initial imperfection a is (a > 0). According to the general 
notion of stability, this behavior must be considered as unstable. 

When PE.. < P < PE we have f.,.< 0, Tb < 0, and 1- e_,,,.b < 0. Thus, the 
exponent of the exponential functions in Equation 9.2.9 is positive, and so the 
exponential grows beyond any specified bound (Fig. 9.5b) no matter how small 
the initial imperfection a is (a> 0). This behavior is obviously also unstable. 

When P ~ PE, the column loses stability instantly, at t = 0, as we already know 
(Chaps. 1-3), and so it makes no sense to investigate long-time deflections. 

PE.. is called the long-time critical load of the column, while PE, calculated for 
the instantaneous loading at t = 0, is now called the instantaneous critical load. 
The fact that the long-time critical load of a viscoelastic column is always less than 
the instantaneous (elastic) critical load may be intuitively understood by realizing 
that the mechanism of viscoelastic buckling has a feedback due to the increasing 
arm of the axial force. As the deflection increases, the bending moment due to 
axial load increases even if the axial load is constant; this in turn causes an 
increase of creep, which causes a further increase of deflection, which causes an 
increase of bending moment, etc. 

The same result can be obtained if the initial imperfection is considered as an 
inevitable eccentricity at the column end, or as a small lateral disturbing load p(x) 
applied on a perfect column. Similar results are obtained for all types of columns 
as well as other structures. See Freudenthal (1950), Rosenthal and Baer (1951), 
Hilton (1952), Lin (1953, 1956), Kempner (1954), and others. 

The Concept of Stability for Viscoelastic Structures 

As a special case of the foregoing solution, we may note that for a perfect column 
(a = 0) no deflections are possible (that is, z = 0) except when P = PE· This means 
that neutral equilibrium does not exist for P < PE, that is, the long-time critical 
load cannot be obtained by analysis of neutral equilibrium (that is, adjacent 
equilibrium states or bifurcation of equilibrium path); see, for example, Kempner 
(1962). This is generally true for all kinds of viscoelastic structures. 

In the foregoing analysis we have applied the general definition of stability in 
a somewhat generalized sense. As stated in Chapter 3 (Sec. 3.5), the fundamental 
dynamic definition of stability according to Liapunov considers a change in the 
solution caused by a change in the initial conditions. Instead of that we have 
compared the solution for an imperfect column with that for a perfect column and 
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considered as unstable the situations where even for an arbitrarily small 
(nonzero) imperfection the difference between these two solutions for t ~ oo can 
become finite (larger than any given positive number 6). This represents a slight 
generalization of Liapunov's stability definition, in which we consider as unstable 
all the situations in which an arbitrarily small change in some parameters of the 
problem, such as the imperfection amplitude a, can cause a finite change in the 
response. This is called the parametric concept of stability (see Leipholz, 1970). 

Can the critical load be obtained from the general dynamic definition of 
stability according to Liapunov (Sec. 3.5)? Yes, it can, and the dynamic approach 
is the only one where creep buckling analysis can be limited to perfect columns 
only. Unlike the dynamic approach, the static approach does not work for perfect 
columns. The reason is that creep buckling deflections cannot occur unless there 
already is a bending moment. A bending moment may be created either by an 
imperfection or by a dynamic disturbance. For the purpose of dynamic analysis of 
a perfect column, one may consider imparting to the column at t = 0 a certain 
initial velocity (characterized by a); see, for example, Dost and Glockner (1982). 
This induces oscillations (if P < PE)· As soon as the deflections become nonzero, 
creep buckling deflections due to bending moment from the axial load are 
superposed on these oscillations. Eventually, after all the kinetic energy dissipates 
due to creep and the oscillations cease, a finite creep buckling deflection has 
already been accumulated. This residual creep deflection plays the role of an 
initial imperfection (Hoff, 1958) in that it gives rise to a bending moment due to 
P, which causes the deflection to grow further, as a result of creep. Thus we can 
see that, after the motion that follows a dynamic disturbance of a perfect column 
comes to a standstill, the problem becomes the same as creep buckling of an 
imperfect column. So the general dynamic concept of stability leads to the same 
conclusion as our imperfection approach. The dynamic analysis of a perfect 
column, however, is much more complicated than the static analysis of an 
imperfect column. 

Stability of a column in its asymptotic equilibrium state at t~ oo and P < PE.o 
can be proven on the basis of the Lagrange-Dirichlet theorem (Sec. 3.6), which 
applies even in the presence of dissipative forces if the potential energy exists. 
The energy dissipation rate, which is D = f v E; TJ;E~ dV (where TJ;, E; =viscosity 
and strain in dash pot i), vanishes for infinitely slow ( £; ~ 0) deviations from the 
final equilibrium state at t~ oo. For infinitely slow deviations, there exists a 
potential energy given by Equation 4.3.8 in which E is replaced by E ... This 
energy is positive definite if P < PE.o, and nonpositive definite if P 2: PE.o, which 
means that P < PE.o is the condition of stability of the final asymptotic state. This 
final asymptotic state is a state of thermodynamic equilibrium, and so the 
question of stability of this state can also be answered from thermodynamics using 
the condition that there exists no small deviation from the final asymptotic state, 
even a very slow one, for which the (internally produced) entropy would increase 
(cf. Sec. 10.1). If some such infinitely slow deviation exists, then such a deviation 
must occur spontaneously, which means the final state is unstable (even though 
the motion away from this state is not necessarily dynamic, but infinitely slow). 

If the column is imperfect, the deflection rate due to creep is nonzero at any 
finite time t. Thermodynamics (i.e., the classical equilibrium thermodynamics) 
does not apply to such states, which are in the realm of irreversible thermo-
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dynamics since the energy dissipation rate is finite. Stability of the entire solution 
P(t) is proven, as already mentioned, on the basis of the general dynamic 
definition of Liapunov. 

If, however, the column is perfect and axially undeformable (i.e., deforms 
only by bending), then w(x, t) = 0 (for all t and all x) is a possible solution, and so 
a constant displacement state exists at any t. The infinitely slow deviations from 
such states are the same as elastic deviations for modulus E .. instead of E. Thus it 
follows from the Lagrange-Dirichlet theorem that a perfect axially undeformable 
column is in a stable equilibrium state at any timet if P < PE. (and in an unstable 
state if P "2 PEJ· 

Extensions and Ramifications 

It can be shown that the stability condition P < PE. applies generally for any 
viscoelastic material that represents a solid, characterized by long-time elastic 
modulus E .. (e.g., Distefano, 1961, 1965). This may be verified, for example, by 
carrying out the solution (e.g. in terms of the Laplace transform) for the Maxwell 
chain or the Kelvin chain (Fig. 9.3g, h). 

A solution based on the integral-type stress-strain relation (Eq. 9.1.1) 
utilizing the compliance function J(t - t'), is completely general. The governing 
equation for the buckling of a hinged column may then be obtained most easily 
by recalling that the elastic buckling equation can be written in the form 
z" + (P/J)E-1z = z0, and then replacing E-1 by the integral-type creep operator 
,e-• defined by writing Equation 9.1.1 in the form e(t) = E-1u(t). This 
replacement, which is a manifestation of the elastic-viscoelastic analogy, yields 

crz(x. t) ~ L',< _ ') dz(x. t') d • = d2
:zo(x) 

ax2 + I o t t dt' t ax2 (9.2.12) 

This is a Volterra-type integra-differential equation. It can be solved numerically 
in small finite time steps. To be able to integrate to infinity and decide whether 
the asymptotic deflection is finite, one may substitute a new variable such as 
T = t/('A + t), where ').=positive constant, and then use time steps aT instead of 
at. Alternatively, recognizing that the integral in Equation 9 .2.12 is a convolution 
integral, one may apply the Laplace transform to reduce Equation 9.2.12 to an 
ordinary differential equation in x. After solving this equation for the appropriate 
boundary conditions, one may obtain the solution by inverse Laplace transforma
tion. The Laplace transform can also be applied to viscoelastic buckling of 
structures other than columns. 

This nature of the stability problem is different when the viscoelastic material 
is a fluid. In that case the compliance function J(t- t') is unbounded (and the 
spring-dashpot model possesses no continuous connection from one end to the 
other exclusively through springs). Then the long-time asymptotic deflection of an 
imperfect column is found to be infinite for any P > 0, and the long-time critical 
load is Per~= 0. However, the asymptotic critical load for t-+oo is not a 
meaningful measure of column capacity if the load durations that yield 
unacceptably large creep deflections exceed the practical lifetime of the structure, 
such as 50 years. For such behavior, typical, for example, of concrete columns, 
one needs to base the analysis of long-time carrying capacity either on the 
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magnitude of deflections at the end of the lifetime (BaZant, 1965, 1968a) or 
consider an overload and carry out a nonlinear solution (Sec. 9.6). 

Viscoelastic buckling becomes more complicated when the column or struc
ture is inhomogeneous in its creep properties. For example, in a reinforced or 
composite column, one part of the cross section may exhibit creep while the other 
does not. In these problems there is a redistribution of internal stresses 
throughout the cross section, occurring simultaneously with the creep deflections. 
Some elementary problems of this type can be solved exactly (see Sec. 9.4), while 
generally a computer analysis by finite elements is preferable. 

As a simple practical conclusion, we note that the stability limits for long-time 
behavior of columns made of viscoelastic solids are the same as the elastic 
stability limits when the elastic modulus is replaced by the long-time modulus E .. 
(or, more generally, the effective modulus; see Sec. 9.4). This conclusion applies 
generally, not just for the pin-ended column, but also for columns with any 
supports, frames, arches, thin-walled beams, plates, shells, etc. The method of 
replacement of E with E.. is also applicable to columns of composite cross 
section, for example, reinforced columns. 

Long-time stability is one reason why the building code for concrete prescribes 
for the determination of carrying capacity of columns a much smaller bending 
stiffness El than the true short-time stiffness. For example, American Concrete 
Institute (ACI) Standard 318 divides the short-time stiffness by factor (1 + {Jd) 
where {Jd accounts in a rather approximate manner for the creep effect (see Sees. 
8.4 and 9.4). 

Viscoelastic buckling is important for determining the force exerted by a 
floating ocean ice sheet moving against an obstacle, such as a stationary oil 
platform, or a river ice sheet moving against a bridge pier. See, for example, Hui 
(1986), who simplified ice as a linearly viscoelastic Maxwell solid, which enabled 
him to generalize an elastic buckling solution according to the elastic-viscoelastic 
analogy (but, in reality, the creep of ice is strongly nonlinear). 

Problems 

9.2.1 Solve the long-time critical load of the rigid bar hinged at the bottom and 
supported at the top by a Kelvin (Voigt) unit as depicted in Figure 9.6a. Let a 
be the initial imperfection. Hint: Relate the strain in the link to the rotation 6 
and write the moment equilibrium condition. 

9.2.2 Solve the same as Problem 9.2.1, but with a support that behaves according 
to (a) the Maxwell unit, or (b) the standard solid model (Fig. 9.6b). 

9.2.3 Solve the deflection and long-time critical loads for columns in Figure 
9.6c-h in which the springs are elastic unless labeled viscoelastic. In that case, 
assume the standard solid model. 

9.2.4 Using the elastic-viscoelastic analogy, calculate the deflection histories for 
(a) axial-torsional buckling, (b) lateral buckling of viscoelastic beams, and 
analyze long-time stability. 

9.2.5 Do the same as Problem 9.2.4 for (a) a viscoelastic beam on an elastic 
foundation, (b) an elastic beam on a viscoelastic foundation, (c) a von Mises 
truss loaded through a spring, (d) spatial twist buckling of a shaft as in Section 
1.10, (e) a simply supported square plate compressed uniformly in two 
directions, and (f) a portal frame as in Section 2.2. 
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Figare 9.6 Exercise problems on viscoelastic buckling. 
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c) 
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9.2.6 Use the Laplace transform to solve z(x, t) from Equation 9.2.12 with z 
according to Equation 9.2.5. Consider (a) J(t- t') = E-1 + c(t- t')112

, or (b) 
J(t- t') = E-1 + ct/(). + t); c, ). =constants. 

9.2.7 Express the potential energy of a perfect free-standing viscoelastic column 
for infinitely slow small deviations from its undeftected state, assuming that 
E .. > 0. Discuss stability. 

9.2.8 Generalize equations 9.2.5-9.2.10 considering arbitrary .zo(x) given as a 
Fourier series. 

9.3 VISCOPlASTIC BUCKLING 

When viscoplastic materials are loaded to high stress levels, their stress-strain 
relation ceases to obey the principle of superposition and becomes markedly 
nonlinear. For other materials, such as metals at high temperature, the 
stress-strain relation is strongly nonlinear for the entire stress range. We then 
speak of viscoplastic behavior, also called nonlinear creep. The behavior of 
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various metals can be reasonably well approximated by the uniaxial viscoplastic 
stress-strain relation 

£ =!!. + (j>(o) 
E 

(9.3.1) 

in which 4>( o) is a positive monotonic nondimensional function of o whose slope 
increases as the magnitude of o increases; for example, q,(o) = ko". The creep 
isochrones for this stress-strain relation are shown in Figure 9.7. As we will see, 
the nonlinearity of the creep law can greatly accelerate the growth of deflections 
of an imperfect column and cause the deflection to tend to infinity at a finite load 
duration. This phenomenon cannot occur in the small-deflection theory of linear 
viscoelastic buckling. 

Note that Equation 9.3.1 can be visualized by the Maxwell model (Fig. 9.3c or 
Fig. 9.7) for which the spring is linearly elastic but the dashpot is nonlinearly 
viscous. More complicated arrangements of springs and nonlinear dashpots can 
be used to obtain other viscoplastic stress-strain relations. 

Viscoplastic buckling was analyzed by Kempner (1954), Hoff (1954) (who 
developed the imperfection approach), Libove (1952, 1953), Higgins (1952), Lin 
(1956), Gerard and Papinno (who in 1963 proposed the critical deflection 
approach), and Rabotnov (1957, 1969) (who proposed the dynamic approach); 
see also the survey by Hoff (1958). Creep buckling in snapthrough problems was 
discussed by Boyle and Spence (1983), and so was creep buckling of thin-wall 
structures (Gerdeen and Sazawal, 1974). 

Rigid-Bar Model Column 

As a simple illustration of nonlinear creep buckling, consider the column 
consisting of a rigid bar of length l supported on a hinge at the bottom and loaded 
by a vertical load on top, as shown in Figure 9.8a. The column is held upright by 
a horizontal link of length a and cross section area A, located at height b above 
the hinge. The material behavior of the link is given by Equation 9.3.1. The 
column is imperfect, with an imperfection consisting of an initial inclination a. 
The rotation of the column, 8, as well as angle a, is assumed to be very small. 
From geometry, the strain rate in the horizontal link is £ = Ob/a, and from 
equilibrium the stress in the horizontal link is o = F/A = PL8/bA. Substituting 
these expressions into the stress-strain relation in Equation 9.3.1 and solving the 
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Figure 9.8 (a) Rigid-bar column with horizontal viscoplastic link and (b) deflection 
histories with vertical asymptotes (critical times). 

resulting equation for iJ, we obtain 

iJ = </>(PL8/bA) =~{</>[(PLibA)8]} 
(bla)- (PLibEA) b 1- PIPer 

(9.3.2) 

in which Per= EAb 2laL =instantaneous critical load of the column. Equation 
9.3.2 is an ordinary nonlinear differential equation that can be easily solved by 
separation of variables. The initial condition is given by the instantaneous 
deflection of the imperfect column, which may be calculated elastically; 

Fort =0: 
a 

8 = 8o = 1 - PIP. er 
(9.3.3) 

Critical Time and Stability Concept 

Consider now that a> 0 in the link, </>(a) = ka", where k and n are material 
constants, n 2: 1 (coefficient k for metals is strongly temperature-dependent). 
Denoting c = (aklb)(PLibA)n(1- P/Pcr)- 1 =constant, Equation 9.3.2 may be 
written as d8l8n = c dt. Integration yields the inclination angle 8 as a function of 
timet: 

[ 
1 ]-1/(n-1) 

8 = 8~_ 1 - (n- 1)ct (9.3.4) 

We see that, for n > 1, the deflection 8 tends to infinity as t- t*, where 

1 ( p)n-1 
t*= 1--

c(n - 1)~-1 Per 
(9.3.5) 

This value is called the critical time. The curves of deflection versus time are 
plotted for various values of the vertical load in Figure 9.8b where the critical 
times correspond to the vertical asymptotes. Note that the higher the load P, the 
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shorter the critical time. Also, the higher the exponent n of the creep law (i.e., 
the stronger the nonlinearity), the shorter is the critical time. On the other hand, 
for n- 1, we have t*- oo. This is the case of linear viscoelasticity, for which we 
have already demonstrated, in the previous section, that the deflections can 
approach infinity only at infinite time. For the linear case (n = 1), the solution of 
the differential equation is 8 = aec' ( 1 - PI Per) -l. We see that the deflection tends 
to infinity at t-oo for any positive value of load P. This is because the 
stress-strain relation in Equation 9.3.1 describes a fluid. (There is no bound on 
strain E.) This again confirms that a column made of a linearly viscoelastic 
material that is a fluid has a zero long-time critical load. 

For nonlinear creep buckling, the design of a column is usually based on the 
critical time. The critical time obviously must be sufficiently larger than the design 
lifespan of the structure. 

For normal environmental temperatures, steel does not creep, but it does 
creep at high temperatures. Therefore, viscoplastic buckling of metals is primarily 
of interest for machines operating at high temperatures. It is also important for 
predicting performance of a steel building structure in a fire. When a steel column 
is sufficiently heated by the fire, it may creep, and its critical time must obviously 
be sufficiently larger than the maximum possible duration of the fire. The critical 
time can be made sufficiently large by slowing the rise of temperatures through 
thermal insulation. 

Now how does the general definition of stability of solutions apply to 
viscoplastic buckling? When a= 0 (perfect column) and P <Pen the only solution 
of Equation 9.3.2 is 8 = 0. But when parameter a is positive, no matter how 
small (imperfect column), 8 becomes infinite at a certain time t* > 0 (if P > 0). 
Thus, an arbitrarily small change in a parameter of the problem causes an 
infinitely large change in the response. Therefore, in accordance with the general 
definition of stability of solutions from Section 3.5, generalized for parametric 
instability (as explained in Sec. 9.2), we must conclude that a viscoplastic column 
is unstable for any load. Obviously, we face here a situation for which the general 
stability definition that considers the solutions up to infinite times does not yield 
practically useful information. However, modifying the stability definition by 
stipulating that the effect of a on the deflections is considered only for times that 
are less than the design lifetime tL of the structure, we find that the deflection 
becomes infinite only if the load exceeds a certain finite value. In practice it is 
further necessary to require that the deflections at the end of the lifetime remain 
within certain reasonable limits. So buckling of viscoplastic structures should, in 
general, be approached through deformation limitations and lifetime require
ments, rather than strictly according to the general stability definition. 

Real Columns 
An approximate solution can also be easily obtained for a flexible viscoplastic 
column. We assume that the pin-ended column shown in Figure 9.9a has an initial 
sinusoidal imperfection .zo(x, t) =a sin (1a/l) where a= small positive constant. 
We seek a solution of the form 

z(x, t) = f(t)a sin 7 (9.3.6) 
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Fipre 9.9 (a) Pin-ended column and (b) assumed strain and stress distributions over cross 
section. 

where f(t) is an unknown function to be found. Equation 9.3.6 satisfies the 
boundary conditions of a pin-ended column. The stress-strain relation is 
described by Equation 9.3.1. Evidently, the stress distribution throughout the 
cross section is generally nonlinear; however, we approximate it by a linear 
distribution characterized by stress values o1 and o2 at distances e1 from the 
center line of the column; see Figure 9.9b. For the cross section at the midheight 
of the column, these stresses may be calculated as 

o•} = _ P± Pafe1 A 
(9.3.7) 

o2 I 

Substituting these values into the viscoplastic stress-strain relation, Equation 
9.3.1, we may calculate the difference in strain rates: 

. . P2c1 · ( P Pe1 ) ( P Pe1 ) e.- £2=--af+ 4> --+-af - 4> ----af 
EI A I A I 

(9.3.8) 

Now, the difference can also be expressed from geometry of the deformation. For 
small deflections, and according to the assumption of plane cross sections, we 
have £1 - £2 = 2c1i.xx = 2c1ajn2/l2

• Substituting this into Equation 9.3.8, we 
obtain the following differential equation for the deflection ratio f(t): 

(9.3.9) 

The initial condition for the instantaneous elastic deflection at t = 0 is f = fo = 
(1- P/PE)-1

• Equation 9.3.9 is an ordinary nonlinear first-order differential 
equation of the general form j = F(f; P), which is the standard form. Such a 
differential equation can generally be solved step-by-step, for example, by the 
Euler method or, more accurately, the Runge-Kutta method. Integration yields 
the curves of deflection versus time for various values of load P; they have similar 
shapes as those in Figure 9.8b. Their characteristic feature is again the existence 
of a critical timet* depending on P, for which the deflection becomes infinite. 

The foregoing approximate solution is an example of the collocation method. 
The differential equation is not satisfied for all x, but only for some discrete 
values of x, in the present case only for x = 1/2. The stress distribution is 
collocated at two points, z = =Fe1• For the special case of the idealized 1-cross 
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section (massless web), one may set c1 = h/2, and the stress distribution is then 
represented exactly. The substitution c1 = h/2 also can be made for other cross 
sections, but then the solution, which is only approximate, lacks optimum 
accuracy. A better result is achieved if c 1 is selected so that the moments of 
positive and negative areas between the true curved stress distribution and the 
assumed straight-line distribution are approximately equal, as sketched in Figure 
9.9b. 

More accurate solutions can, of course, be obtained by the finite element 
method. This approach is needed when the cross section is nonhomogeneous or 
composite, or when viscoplastic buckling of more complicated structures (frames, 
plates, shells, etc.) is to be analyzed. Nevertheless the simple solutions that we 
demonstrated provide valuable insight, not easily gained by finite element 
analysis. 

Problems 

9.3.1 Solve the problem defined by Figure 9.8a for the following expressions of 
function cp: (a) cp(o) = exp (ko -1) and (b) cp(o) =sinh ko. 

9.3.2 Solve the problem in Figure 9.6a, assuming for the dashpot a nonlinear 
response, given by £ = ko". (Note: This case possesses a finite long-time 
critical load, and only above the long-time critical load one gets a critical 
time.) 

9.3.3 Do the same as Problem 9.3.2, but for Figure 9.2b. 
9.3.4 Solve the problem of the wide-flange column in Fig. 9.9a (Eq. 9.3.9) by 

forward integration for several time steps, using the Euler method or the 
Runge-Kutta method. 

9.3.5 Assuming an ideal 1-cross section, analyze (a) a free-standing column and 
(b) a fixed-end column. 

9.3.6 Do the problems in Figure 9.10(a, b). 
9.3.7 Do the problems in Figure 9.10(c, d, e), assuming an ideal 1-beam cross 

section. Assume a suitable one-parameter deflection shape. 
9.3.8 Analyze viscoplastic buckling of a square plate uniformly compressed in 

two directions. (Hint: Same as for the wide-flange beam, collocate the 
differential equation only at the central point of the plate, and across the 
thickness collocate the stress-strain law at points ±c 1 .) 

a) b) c) d) e) 

H 

Figure 9.10 Exercise problems on viscoplastic buckling. 
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9.4 BUCKLING OF AGING VISCOElASTIC STRUCTURES 

In the context of viscoelasticity, aging is understood as the age of dependence of 
material properties, such as the elastic moduli and viscosities of the springs and 
dashpots in a rheologic model. Aging is a characteristic property of the creep of 
concrete. It is caused by cement hydration, which becomes, after the initial 
hardening period, a very slow process advancing over many years. This process 
changes creep by an order of magnitude during a typical lifetime of a concrete 
structure, and so the aging phenomenon must be taken into account. 

It is proper to distinguish a small and a large ratio of the live load to the dead 
load. The case of a small dead-to-live load ratio is the case when the stresses in 
the column under the dead load multiplied by its safety factor are within the 
service stress range. In this range, the creep law of concrete is approximately 
linear, which brings about a great simplification of the analysis. The failure of the 
column occurs in this case due to application of a sudden overload representing 
the live load multiplied by its safety factor. The effect of creep is to increase the 
deflections due to initial imperfections prior to the application of the live load. 
During the failure process caused by sudden overload (live load), creep plays no 
role and the analysis may be carried out in the usual time-independent manner, 
although the nonlinear behavior of concrete under the overload needs to be taken 
into account. The purpose of creep buckling analysis is to provide the initial 
conditions for the analysis of buckling due to the rapid overload. The increase of 
the column deflection due to creep prior to the overload must be taken into 
account in the analysis. Also, one may have to consider changes in the nonlinear 
properties caused by previous creep. 

The case of large dead-to-live load ratio is the case when dead load multiplied 
by its safety factor puts the material of the column into the range of nonlinear 
creep. The creep analysis in this case must be nonlinear, which will be discussed 
in the next section. 

Aging Maxwell Solid (Dischinger-Type Methods) 

The simplest stress-strain relation to describe linear aging creep is the so-called 
rate-of-creep method, introduced by Glanville (1933) and Whitney (1932), in 
Germany also called the Dischinger formulation, after Dischinger (1937, 1939) 
who was first to use this approach extensively in structural calculations. In this 
case, the material is assumed to be characterized by an aging Maxwell model (see 
Fig. 9.3c), for which the stress-strain relation is 

. u (J 
e=--+-

E(t) 11(1) 
(9.4.1) 

E(t) and fl(t) are the age-dependent elastic modulus and viscosity of the material. 
The compliance function J(t, t1), which represents the strain at age t caused by a 
unit constant stress applied at age t 1 (Sec. 9.1), is obtained by integrating 
Equation 9.4.1 for constant stress o = 1, applied at age t 1: 

1 f' dt' 1 + 1JI(t) 
J(t, t,) = e(t) = E(t,) + ,, fl(t') = E, (9.4.2) 
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Here we introduced the notations E 1 = E(11) and 

f' dl' 
1/J(I) = £(11) J,. 71 (l') (9.4.3) 

Note that the compliance function J(l, 11) is not merely a function of a single 
variable, the time lag (1- 11) (Eq. 9.1.1), but depends now on two variables, the 
current age, 1, and the age at loading, 11• Function 1/J(t, t1) indicates the ratio of 
the creep deformation to the initial elastic deformation, and is called the creep 
coefficient. The age dependence of the viscosity of the Maxwell model may be 
expressed as 71(1) = E(t1)/,P(t), which becomes very large near the end of the 
lifetime (which makes the use of the Maxwell model possible even though in 
principle it represents a fluid). The age dependence of the elastic modulus is 
E(t) = 1/J(I, t). According to Equation 9.4.2, 1/J(I) = E(t1)J(t, t1)- 1. By virtue 
of Equation 9.4.3, Equation 9.4.1 may be written as £=U/E(t)+[o/E(t1)],j,. 
This may also be rewritten as 

aE 1 ao CJ 
-=--+-
ay E(t) ay E, 

(9.4.4) 

because function 1/J(I, 11) is monotonically increasing and may be taken as the 
independent variable, serving as a kind of reduced time. 

The typical compliance function of concrete is shown in Figure 9 .11a by the 
solid curves. We see that the creep coefficient function 1/J(t, t1) (Eq. 9.4.2) can be 
fully determined on the basis of the specified or measured creep curve J(t, t1) 

where 11 is the age at first loading, representing the age at which the load is 
applied on the column. From the definition of function J(t, t1) in Equation 9.4.2 
we can further note that for other ages at loading, such as 12 and 13 (Fig. 9.1la), 
the creep curves 1(1, 12), J(l, 13) are simply obtained by shifting the creep curve 
J(t, t 1) vertically downward; see Figure 9.11a, in which these curves are shown as 
the dashed curves 5-9 and 10-11. It is important to note that the creep curves 

J<t.t1) 

a) 

- l/-;(1-; --Real J (l,t•l 
---R•te of-creep method 

0 

b) ' Const 

0 t, 

Figure 9.11 Creep curves for aging material (concrete): (a) rate-of-creep approximation 
(Dischinger formulation); (b) rate-of-flow approxmation (improved Dischinger 
formulation). 
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J(t, t2), J(t, t3) obtained in this manner substantially underestimate the creep for 
loads applied at ages much higher than t 1 (see the cross-hatched areas in Fig. 
9.11a). This is an inevitable error in the rate-of-creep method. 

The error of the rate-of-creep method can be substantially reduced by 
deliberately increasing the value of the instantaneous (elastic) deformation at the 
time of loading so that the aforementioned error is made smaller for longer ages 
at loading. Such a modification was in effect proposed by England and Illston 
(1%5) under the name rate-of-ftow method. This proposal was further improved 
by Nielsen (1970), and also by Rusch, Jungwirth, and Hilsdorf (1973) under the 
name improved Dischinger method, which is currently embodied in the Comite 
Euro-Intemational du Beton-Federation Intemationale de Ia Precontrainte 
(CEB-FIP, 1978) design recommendations. These authors assumed that (1) the 
additional initial instantaneous deformation represents the final value of the 
delayed elastic portion of creep (reversible creep) and (2) the final value of this 
delayed elastic deformation is age-independent; see deformation 1/ Ed in Figure 
9.11b. In the light of recent experimental evidence, however, the age
independence assumption for Ed does not appear to be very good (Bafant and 
Osman, 1975; Bafant, 1982; RILEM TC69, 1986). Nevertheless, as Figure 9.11 
illustrates, by making the initial deformation 1/ E;(t) much larger than the actual 
initial elastic deformation, one considerably reduces the overall error, as shown 
by the cross-hatched areas in Figure 9.1lb. 

To formulate the differental equation for column buckling, it is convenient to 
apply the operator method. Equation 9.4.4 may be written as a= ~E, in which~ 
is the following linear time-dependent differential operator: 

E = ata1J1 
- 1 a 1 

(9.4.5) 
--+-
E(t) a'ljJ E1 

This type of operator obeys the same rules as linear algebra, except for the 
commutative law. The differential equation for aging creep may be obtained from 
the elastic differential equation of the beam-column by replacing the elastic 
modulus E with operator ~. 

Deflections According to Aging Maxwell Model 

Consider now a reinforced concrete column with a symmetric cross section (Fig. 
9.12). Let I and Is be the centroidal moments of inertia of the concrete and the 
steel bars, and let Es be the elastic modulus of steel. The steel reinforcement 
does not creep (we exclude the case of very high temperatures, and we do 
not consider prestressed bars). The column is hinged and has an initial im
perfection given by the initial shape .zo(x ). The elastic differential equation is 
(Esfs + EI)(z"- z0) + Pz = 0. Now replacing E with the operator in Equation 
9.4.5 we obtain 

(9.4.6) 
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Figure 9.11 (a) Pin-ended imperfect column, (b) reinforced concrete or (c) composite 
cross sections, and (d) deflection history. (After Baiant and Najjar, 1973; Baiant, 1968a.) 

Multiplying this equation with the differential operator in the denominator yields 
for the deflection ordinates z(x, t) the following linear partial differential 
equation: 

[ _1 ~ + _!_] [E l ( ffz- ffZo) + Pz] +I~ ( ffz- ffZo) = 0 (9.4. 7) 
E(t) a'I/J E 1 s s ax2 ax2 a'I/J ax2 ax2 

Although the solution can be obtained for arbitrary initial imperfection Zo(x) 
expressed as a Fourier series, consider for the sake of simplicity that the initial 
curvature is sinusoidal. The sinusoidal shape may then be assumed also for the 
deflection ordinates, z(x, t), and so 

Zo(x) =a sin 7 z(x, t) = f(t)a sin 7 (9.4.8) 

in which a= constant, f(t) is a function of timet to be solved, and I= length of 
the pin-ended column (Fig. 9.12). Substituting these equations into Equation 
9.4.7, and introducing the notations E(t)br2/12 =PEr, Eslstr2/12 =PE,• we get the 
following ordinary nonhomogeneous linear differential equation for function f(t): 

Eo df 
E(t) (Per,- P) d'I/J- (P- PE.)f = PE. (9.4.9) 

in which P cr, = PE. + PE, = instantaneous elastic critical load at time t. 
Consider that the load P is applied at age t 1 and is constant afterward. 

Equation 9.4.9 has time-dependent coefficients due to the time variation of elastic 
modulus E(t). However, this time variation is relatively small, much less than the 
variation of creep properties with age. For this reason, and also because for 
concrete the aging Maxwell model (rate-of-creep theory, Dischinger theory) 
introduces a relatively large error regardless of E(t), we may replace E(t) by a 
constant equal to the average value of E(t) over the time interval of interest, 
(tt> t), that is, we set E, = U£1 + E(t)), and also PE, = E,ltr2/f. The integral of 
Equation 9 .4. 9 then has the form f = Ae -A.,. + /p where /p is the particular solution 
for which one finds /p = PE/(P- PE.); A, A= constants; A is determined by 
substituting/= e-A.,. into the homogeneous part of Equation 9.4.9 and A is found 
from the initial condition. The initial condition is represented by the instan
taneous elastic deflection at the moment of application of the load P, which is 
given by f(t1) =A= (1- P/Pcr.)-1 in which Per,= PE, + PE. =instantaneous criti-
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cal load of reinforced column at age tt> and Pe, = E1ln
2 /12

• Thus the initial 
condition (t = t1 , 1J1 = 0) requires that / 1 =A + fP, and this then leads finally to the 
solution (Bafant, 1966): 

/(t) = (p Per, p- P P~ ) exp [P- Pe, ( E,)1J1(t)] + Pe, (9.4.10) 
cr1 - - E, P cr, - P E 1 P - Pe, 

For weakly reinforced concrete columns, one can approximately neglect the steel, 
that is, set EslsiEI-+0, and then Equation 9.4.10 simplifies to 

f(t) = Pe, exp ( 1J1(t) I (9.4.11) 
Pe,- P PeJ P)- (£1 E,) 

Similar solutions were given by Warner and Kordina (1975) and Warner, Rangan, 
and Hall (1976). 

If we would assume that 1J1-+ co, Equation 9.4.10 would indicate the long-time 
critical load for t-+ co (according to the linearized small-deflection theory) to be 
zero (even though the creep rate of concrete decays with time quite rapidly, no 
bound on the creep deformation is known to exist for concrete). However, within 
any reasonable lifetime such as 50 years, function 1J1(t) is bounded (and not larger 
than about 6), and so, according to Equation 9.4.10, the long-time critical load, 
defined as the load for which f becomes infinite within the lifetime, is equal to the 
initial instantaneous critical load of the entire cross section, Per,· The fact that the 
Dischinger formulation gives no reduction of the critical load for the design 
lifetime is an unrealistic aspect of this formulation. It is inherent to the 
simplification in the creep model itself. 

The bending moment Ms transmitted by the reinforcing steel is obtained from 
the curvature, which is z0(/ -1). So the moment in steel, the total moment, and 
the moment in concrete are 

M = Pz = PZof(t) Me= M- Ms (9.4.12) 

It is now interesting to note that Ms and Me do now grow in proportion to M or 
z(x, t). The portions of the total moment Pz carried by steel and by concrete, 
that is, the ratios Msl M and Mel M, vary in time. This redistribution of internal 
forces due to creep is a typical phenomenon in nonhomogeneous structures. 
Generally, the portion of the bending moment increases in the cross-section part 
that creeps less or does not creep at all, which is the steel reinforcement. 

A typical solution of the deflection multiplier f(t) versus the logarithm of age 
is plotted in Figure 9.12d (Ba.Zant and Najjar, 1973; Ba.Zant, 1968a). 

Unfortunately, the aging Maxwell model on which the foregoing calculation is 
based is inherently incapable of describing the material behavior accurately. The 
aging Maxwell model is fully calibrated by matching one unit creep curve J(t, t0) 

for a single (chosen) age at loading t0 ; but then the given or experimental curves 
J(t, t') for t' ¢ t0 cannot be matched and are not even closely approximated. In 
the original Dischinger's version, in which the Maxwell model is calibrated 
according to the creep curve J(t, t 1) for the age at loading t1 equal to the age 
when the long-time load is applied on the structure, the creep due to the stress 
increments arising after t1 is always underpredicted, and in consequence the 
long-time magnification factor f according to the original Dischinger's formulation 
(Eq. 9.4.11, and also Eq. 9.5.1) has generally an error on the low (unsafe) side. 
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In the so-called improved Dischinger version (England and lllston, 1965; 
Nielsen, 1970; Rusch, Jungwirth, and Hilsdorf, 1973), in which the calibration of 
the aging Maxwell model in effect represents a compromise between the 
calibrations based on the creep curves for load applications at age to and at a high 
age, the errors of the long-time prediction can be on either the low or the high 
side and are generally smaller. Nevertheless, they are still quite large (as is clear 
from Fig. 9.11b), and generally much larger than the errors of the age-adjusted 
effective modulus method. This method, which we will explain later, is also 
simpler to use. Thus, after the emergence of this method in the early 1970s, the 
foregoing solutions based on the aging Maxwell model lost most of their practical 
significance. 

Deflection According to More Realistic Rheologic Models 

A long-time critical load P cr. that is less than PE, can be obtained by adopting 
more sophisticated constitutive relations. For example, a solution has been 
obtained (Distefano, 1965; Bdant, 1965, 1966, 1968a, b) according to the 
standard solid rheologic model (Fig. 9.3e or f) in which both spring moduli E and 
E2 as well as viscosity 'I depend on age t. The solution leads to a linear ordinary 
differential equation with a strongly time-dependent coefficient, which can be 
solved by means of the incomplete gamma function (Bdant, 1965, 1968a, b). 
This solution is more realistic than the preceding solution based on the aging 
Maxwell solid, but still the error can be substantial. This is because an accurate 
representation of concrete creep requires a Kelvin or Maxwell chain models 
(Figs. 9.3g, h) in which all the elastic moduli and viscosities depend on age. Such 
solutions can be obtained with great accuracy by step-by-step computer integra
tion of the time history. 

Deflection According to Elective Modulus 

Another approximate solution method, whose error is generally not larger than 
that of the classical rate-of-creep method (aging Maxwell solid, with Et =E), is 
the effective modulus method. In this method, the creep strain is calculated 
assuming the stress to be constant from the beginning and equal to the current 
final stress o(t). Such an assumption would be totally unacceptable for a material 
whose creep curve is approximated by a power curve (t- t't with large exponent 
n (about n > 0.5) but is not too bad for materials for which n is small, as is the 
case for concrete (for which n =0.1). The reason is that, for small n, a iong 
portion of the stress history curve before time t is almost horizontal and the 
initial rise of stress toward this horizontal line is rather steep (Fig. 9.13). The 
stress-strain relation for the effective modulus method is assumed to be 
quasi-elastic, o(t) = Ee11E(t), with Ee11 = 1/J(t, It)= effective modulus. The deftec
tion multiplier for time t is then obtained according to the elastic magnification 
factor: 

1 
/(t)=----

1- P/Pa.,lt, It) 
(9.4.13) 

in which P crc1, = critical load of reinforced column based on the effective modulus 
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Figure 9.13 (a) Typical stress history and constant stress assumption of effective modulus 
method; (b) strain histories for which the age-adjusted effective modulus method is exact 
(Bafant, 1972a, b); (c) histories of bending moment for different values of load P. 

for concrete. We see that according to this approximate solution, the long-time 
critical load is P = Pa.u• a value which decreases with time. 

The solution according to the effective modulus method is on the safe side. 
This is important since this method is widely used for concrete structures (it is 
implied in ACI Equations 8.5.7 and 8.5.11, in which factor 1 + fJd in effect gives 
the effective modulus). The solution according to the classical rate-of-creep 
method (with Et =E), on the other hand, always assumes less creep than in 
reality, as already mentioned, and so it represents a lower bound. Generally, z 
from Equation 9.4.10 for Et = E is less than the actual z, which again is less than 
z from Equation 9.4.13. 

Deflection According to Age-Adjusted Effective Modulus 
There exists another, more recent method that gives a surprisingly accurate 
solution in most cases, yet is about as simple as the effective modulus method. It 
is the age-adjusted effective modulus method (Bafant, 1972b), which represents a 
refinement of Trost's method (1967) and is recently often called the Trost-Bafant 
method (e.g., Neville, Dilger, and Brooks, 1983, Ghali and Favre, 1986). This 
method is based on the following quasi-elastic stress-strain relation written for 
the entire time interval from the time of loading It to the current time 1: 

AE = lia + AEc AEc = a(lt) q, (9.4.14) 
E* E(lt) 

in which AE = E(t)- E(tt), lia = a(l)- a(lt), and 

q, = E(tt)J(t, It) -1 E* = E(lt)- R(t, It) 
q, (9.4.15) 

(for a proof see Appendix II to this section); R(t, It) is the relaxation function of 
the material, which represents the stress at age 1 caused by a unit strain imposed 
at age It· This function can be calculated accurately and easily by a step-by-step 
numerical solution of the integral equation 9.4.19 (Bafant, 1972a, 1975). It can 
also be estimated with good accuracy from an approximate semiempirical formula 
(Eq. 9.4.24) developed by Bafant and Kim (1979). AEc plays the role of inelastic 
strain and represents the creep strain based on the initial stress a(lt); E* is called 
the age-adjusted effective modulus, and q, = l/1(1, 11) = creep coefficient based on 
time It of first loading= ratio of creep strain to the initial elastic strain (for the 
Maxwell model we denoted the creep coefficient as 1/J since, due to the limitation 
of that model, it could be made equal to the actual creep coefficient l/1(1, It) 
only for one value of It used to calibrate that model]. 
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The quasi-elastic stress-strain relation in Equation 9.4.14 is exact, according to 
the linear stress-strain relation based on compliance function 1(1, 1'), under the 
condition that the strains in the structure vary as a linear function of 1(1, It) [or 
l/>(1, It)]; this follows from Bafant's (1972b) theorem (see also RILEM TC69 
State-of-Art Report, 1986, chap. 2; and Appendix II to this section). Such strain 
histories usually approximate quite closely the actual strain histories in structures, 
including the buckling of columns. They encompass all the stress histories 
sketched in Figure 9.13b. By constrast, the effective modulus method and the 
aging Maxwell model, either in the form of the rate-of-creep method or in the 
form of the improved Dischinger method, are exact only for one stress-strain 
history, namely that which corresponds to constant stress (curve 1-2 in Fig. 
9.13b). This is the reason why Equation 9.4.14 is generally much more accurate, 
compared to the exact solutions according to linear aging viscoelasticity (this is 
not necessarily true in comparison to measurements because of various nonlinear 
effects, moisture effects, and temperature effects in real structures, which may some
times offset the errors of the aging Maxwell model or the rate-of-creep method). 

The age-adjusted effective modulus is frequently written in the form E* = 
E(lt)/(1 + Xl/>) in which X= X( I, It)= (1- R(l, It)/ E(lt)rt -l/>(1, lt)- 1

; X is called 
the aging coefficient (Ba!ant, 1972b) because in the absence of aging its value is 
almost exactly 1 for the typical form of 1(1, 1') for concrete [the reason for this is 
that 1(1, 1')- (1 -l')n where n « 1; it would not be true for n close to 1). Always 
X ::s; 1, and usually X= 0. 7 to 0.9. As a crude mean estimate, one may use x == 0.8, 
but for an accurate solution x needs to be considered to be a function of 1 and It 

(Ba!ant, 1972b; RILEM TC69 State-of-Art Report, chap. 2, 1986). 
According to the quasi-elastic stress-strain relation in Equation 9.4.14, the 

change of the bending moment Me in concrete from the time of loading It to time 
I is llMc = E*I(llz"- K1l/>) in which KttP = !lKc =change of curvature K due to 
creep calculated as if Me were constant and equal to the initial value Mc(lt); K 1 is 
the initial elastic curvature change at time 11 caused by instantaneously applied 
load P; Kt = z'O(/t- 1) in which !t. =/(It)= (1- PI Pcr

1
)-t, Per

1 
= PE

1 
+ PE. =initial 

elastic critical load of the reinforced column. Substituting these expressions into 
the equilibrium condition llM = llMe + Esfs llz" = - P llz for a hinged column, 
we obtain the relation 

llM = E* 1( llz" - p P_ z'OtJ>) + Esls llz" = - P llz 
erl p 

(9.4.16) 

Assuming the initial curvature to be sinusoidal, that is, Zo =a sin (nx/1), we have 
z = /(I)Zo, llz = z(l)- z(11) = (/-!t.)Zo, and so we obtain 

[ 1C2 1C2( p ) ] (1C2) 
E*l -p:(f-ft)+p: p -P l/> -Esls f (1-/t)=-P(/-/t) (9.4.17) 

CfJ 

Solving for f and substituting !t. = (1- PIP erJ-1
, we finally get the result 

/(1) = Per1 [1 + ::tJ> (_!_)] (9.4.18) 
Per1 - P Per- P Per1 

where P: = E* ln2 I 12 =critical load of the concrete part if it bas modulus E*, and P:. = P: + PE, = critical load of the reinforced column when concrete bas 
modulus E*. 
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Figure 9.14 Comparison of deflection histories at various levels of axial load. (After 
Bazant and Najjar, 1973.) (AEMM =age-adjusted effective modulus method; RCM = 
rate-of-creep method, RFM = rate-of-flow method) 

Note that this solution gives infinite deflection when P = P:., which is a value 
that is less than the initial instantaneous critical load Per, but is larger than the 
critical load PE.u based on the effective modulus. This is a realistic feature of this 
solution. For P close toP:., the solution has a large error, predicting deflections 
to be much higher than the actual ones. This is because, for high loads P, the 
history of bending moment M reverses curvature as shown by curve 1-2-5 in 
Figure 9.13c; this curve can be considerably different from curve 1-3-5 that is 
linearly dependent on the compliance function, as required for achieving good 
accuracy of this method. On the other hand, for small P such asP~ 0.3Pcr,, this 
solution is highly accurate compared to the exact solution according to aging 
linear viscoelasticity; this has been demonstrated by Bafant and Najjar (1973); 
see Figure 9.14. 

An important advantage of the foregoing solution according to the age
adjusted effective modulus method is that the solution in time is algebraic, same 
as for the classical effective modulus method. No differential or integral equation 
in time needs to be solved. This makes it easy to apply this method for any type 
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of buckling problem for which an elastic solution is available, including arbitrary 
columns, continuous beams and frames, lateral buckling, plate and shell buckling, 
etc. The long-time buckling behavior of these structures is similar to that we 
expounded for columns. 

Deflection According to Integral-Type Stress-Strain Relation 

Let us now outline the exact solution according to aging linear viscoelasticity. By 
definition of the compliance function, the strain history caused by stress 
increment da(t') applied at time t' and held constant afterward is J(t, t') da(t'). 
Linearity implies the principle of superposition, which states that the strain 
history is a sum of the contributions of all the previous stress increments. In the 
limit, the summation becomes an integral. So the aging linear viscoelastic 
stress-strain relation for variable stress in general reads 

I
t It da(t') 

E(t) = J(t, t') da(t') = J(t, t1)a(tt) + J(t, t') ~ dl'. 
~ q I 

(9.4.19) 

Here It is the time when the first stress is applied. The first integral is the Stieltjes 
integral, which is applicable for continuous as well as discontinuous stress 
histories. The second integral is the usual Riemann integral, applicable only for 
continuous and differentiable histories a(l). The second form in Equation 9.4.19 
is written for the case when the stress history has a sudden jump at the time of 
first loading, It> and varies continuously afterwards. 

The equation governing creep buckling may again be obtained according to 
the elastic-viscoelastic analogy. Equation 9.4.19 may be written in the form 
E = E- 1

(1 where e-• is a Volterra integral operator defined by Equation 9.4.19. 
Such operators again can be manipulated according to the rules of linear algebra, 
except for the lack of commutativity. Considering the elastic relation for a 
pin-ended column: M = (EI + Esls)(z"- z'O) = -Pz, multiplying it by E-t and 
replacing E- 1 with the operator e-t, we obtain the following integra-differential 
equation of the buckling problem: 

J(z"- z0) + e-t[Esls(z"- z0) + Pz] = 0 (9.4.20) 

Considering a pin-ended column with z0 =a sin (1CX/l), z = f(I)Zo, Equation 
9.4.20 reduces to the integral equation: 

E-•[:2 Pf- Esls(f -1)] = I(f -1) (9.4.21) 

in which e-t is an integral operator. At the time of loading, It> Pf has a jump 
from 0 to Pft, after which P is constant and f varies continuously. Function 
(/ -1) has at time It a jump from 0 to the value ft -1. Thus, in similarity to the 
last form in Equation 9.4.19, Equation 9.4.21 may be written as follows: 

J(l, It) [:2 Pft- Esls(ft- 1)] + (~: P- Esls) L J(l, t') df(t') = J[/(1)- 1) 

(9.4.22) 

This is a linear integral equation of Volterra type for function f(t). This equation 
may be solved relatively easily by approximating the integral with a finite sum, 
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which leads to a system of linear algebraic equations. It may be verified that, for 
t =tv Equation 9.4.22 yields the expression / 1 = (1- PI Pcr,)-1

, as expected. 
A more general approach is to replace the integral by a finite sum already in 

the stress-strain relation (Eq. 9.4.19). This leads to an incremental quasi-elastic 
stress-strain relation Ao = E0(AE- AE0

), in which E 0 is a certain quasi-elastic 
modulus expressed in terms of J(t, t'); AE0 is calculated by a summation involving 
the previous stress increments and can be evaluated if the solution up to the 
current time is known. This reduces the problem to a sequence of elastic buckling 
problems with initial strains AE0

• Each of these may be solved in the same 
manner as shown before for the age-adjusted effective modulus method (Eqs. 
9.4.14, 9.4.16-9.4.18); see B8Zant and Najjar (1973). 

Appendix 1-Compliance Fundion and Relaxation Fundion 
of Concrete 

A simple expression is the double power law, J(t, t') = {1 + cp 1[(t')-m +a) 
x (t- t't}/E0 where n, m, a, cp1, E0 =empirical constants. [Typically n = t 
m = ~. a= 0.05 if t, t' are in days, cp 1 = 2 to 6 (B8Zant, 1975; B8Zant and Osman, 
1975).) A more realistic expression for the compliance function (B8Zant and 
Chern, 1985), called the log-double-power law, is 

J(t, t') = L +::In {1 + 1J11[(t')-m + a)(t- t'r} (9.4.23) 

in which E0 , 1J10 , 1/lv a, m, and n are empirical constants; their typical values are 
n = 0.25, m = 0.5, 1Jio = 1J11 = 1, a= 0.02 if t' is in days. The conventional elastic 
modulus is expressed as E(t) = 1/J(t +A, t), in which A= 0.1 day (=duration 
of a typical short-time loading test of a structure). A typical semilogarithmic plot 
of the compliance function is shown in Figure 9.15. Recently, a still more realistic 
expression has been developed by B8Zant and Prasannan (1989a, b); it is based on 
the analysis of the solidification process (B8Zant, 1977) and has two important 
advantages: (1) All the unknown material parameters can be identified from test 
data by linear regression (B8Zant and Kim, 1989); and (2) the elastic moduli and 
viscosities of the spring-dashpot model are constant (since aging is introduced by 
two transformations of time) and can be determined from the compliance 
function by explicit formulas. 

1 hour 
log ( t-t') 

Figure 9.15 Compliance (creep) function for concrete. 
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Bafant and Kim's (1979) semiempirical formula for the relaxation function is 

I 0,992 0.115 [J(I-11,1') 
1
] 

Rll ---- -
( , ) - J(l, 1') J(l, I- 1) J(l, 11 + !1) 

I -I' 
!1 = -2- (9.4.24) 

This formula is approximate, but its error compared to the exact solution from 
the integral equation (Eq. 9.4.19) is normally within 1 percent, for any realistic 
form of J(l, 1') for concrete. 

Appendix 11-Proof of Age-Adjusted Effective Modulus Method 

The method is based on the following theorem (Bafant, 1972b) for 1 ~It: 

neorem 9.4.1 If, for constant a and {3, 

then 
E(l) = a+ {JJ(I, It) 

u(l) = {3 + aR(I, It) 

provided that e(l) = 0 for 1 <It· 

(9.4.25) 

(9.4.26) 

Proof Equation 9.4.25 may be rewritten as e(1) = aH(1- It)+ {3J(1, It) 
where H(l- It)= Heaviside step function ( = 1 for 1 >It, 0 for 1 <It)· Then, 
multiplying this by the relaxation operator e, and noting that: Ee(l) = u(l) 
(by definition of E), EH(I- It)= R(l, It)= relaxation function, and E/(1, It)= 
H(l- It)= 1 for 1 >It (by definition), we get Equation 9.4.26. This theorem was 
later generalized by Bafant (1987) to triaxial stress states and to arbitrary internal 
force and deformation matrices, by Lazic and Lazic (1984) to internal forces in 
composite beams, and by Khazanovich (1989) to time-variable loads, such as 
thermal loads. 

Denote now !1u(1) = u(1)- u(lt) and !1e(1) = e(l)- e(lt)· From Equations 
9.4.25 and 9.4.26, l1E = {3(1(1, It)- 1/ E{tt)] = fJ<P(I, It) I E(lt), and !1u = 
a[R(I, 11)- E(11)]. Solving for a and {3 and substituting into Equation 9.4.26 for 
I= It, that is, e(lt) =a+ {31 E(lt), we get e(lt) = !1u(1)/[R(I, It)- E(tt)] + 
!1e(I)/<P(I, It)· Multiplying this equation by 4>(1, It), and setting e(lt) = 
u(lt)l E(lt), we get 

!1 _ E(lt)- R(l, It) [ u(lt) ( >] 
u- tP(I, It) dE- E(lt) tP I, It (9.4.27) 

which proves Equations 9.1.14 and 9.4.15 (Bafant, 1972b). 

Problems 

9.4.1 Consider (1) a free-standing, (2) a fixed unreinforced concrete column of 
length l, and solve aging creep buckling deflections using (a) the aging 
Maxwell model, (b) the effective modulus model, and (c) the age-adjusted 
effective modulus model. 

9.4.2 Do the same, but for a reinforced column, symmetric cross section. 
9.4.3 Show that the foregoing solutions are equivalent to those for a pin-ended 

column of length (1) L = 21; (2) L = !1. Knowing this, write the deflection 
solution for (a) a pinned-fixed column, (b) a free-standing column. 
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For concrete columns, one cannot base their design on the long-time critical load 
Pcrs• for which the deflection tends to infinity at t-oo. One reason is that concrete 
creep does not appear to reach a final asymptotic value within the typical lifetimes 
of structures. Neither can the design be based on some critical lifetime, since the 
linearity hypothesis does not allow the deflection to become infinite within a finite 
and nonzero time. Therefore, the design must be based on the effect that the creep 
deflection has on the strength when the live load is subsequently superimposed. 

Equation 9.4.18 or 9.4.13 indicates, for a given permanent load P = P0 (dead 
load), the value of the ratio f(t) of the deflection ordinates z(x, t) at timet to the 
initial ones, z0(x ), before load P0 is applied. Consider now that at time t the load 
is rapidly increased from P0 to P0 + PL where PL is the live load. For this 
overload, the deflection ordinates z(x, y) = z0(x)f(t) play the role of initial 
imperfection. To figure out how they are increased due to PL, we must imagine 
the column to be suddenly unloaded from P0 to 0 and then reloaded to P0 +PL. 
Dividing by the magnification factor (Sec. 1.5), we figure that after unloading the 
ordinates become i = zl[1- P0 1 Pc,(t)r 1 in which Pc,(t) =instantaneous elastic 
critical load at time t. [This corresponds to i = e + ec as introduced in Sec. 8.5, 
ec =creep eccentricity; see CEB (1978), Warner and Kordina (1975), Warner, 
Rangan, and Hall (1976).] Then, due to reloading, the ordinates become 
Zu = i[1- (Po+ PL)I Pc,(t)r 1 (now we multiply by the magnification factor). So, 
for load P0 + PL we have the ordinates zu(x, t) = .zo(x)fu(t) where 

1 - Pol Pc,(t) 
fu(t) = f(t) 1 -(Po + PL)I Pcr(t) (9.5.1) 

The bending moment under load P0 + PL at time t then is M(x, t) = 
(P0 + PL)z0(x)fu(t) (for the case of hinged columns). 

How should we now use the calculated fu or Mu in the ultimate strength design 
of columns? The effect of creep is to magnify the arm on which the axial force 
acts, which is the same as the effect of the elastic deformation under the axial 
load. So we may adopt the same design philosophy as in the ACI design method 
for short-time loads (Eq. 8.5.7). In particular, the safety factors may be 
incorporated and the interaction diagram used in the same manner. 

Therefore, to take the statistical uncertainties of the column properties and 
the loads into account, we may proceed similarly as in Equation 8.5. 7. First, the 
value used in calculating f(t) and fu(t) must be the factored dead and live loads 
P~ and P~, not their actual design values P0 and PL (by the ACI, P~ = 1.4P0 and 
P~ = 1.7PL). Second, in the evaluation of Equation 9.5.1 we need to apply factor 
4>u to the critical load Pcr(t) for the same reasons as stated below Equation 8.5.7 
(4>u = ACI strength reduction factor, which is 0.70 for tied columns and 0.75 for 
spiral columns). 

According to Equation 9.5.1, and in similarity to Equation 8.5.7, the 
magnification factor for the ultimate state becomes 

* * 1- P~l4>uPcr(t) 
f u (t) = f (t) 1 - (P~ + P~)l 4>uPcr(t) (9.5.2) 
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where f*(t) is calculated on the basis of P = Pi>, not P = P0 . The bending 
moment to be used in the failure criterion then is 

M*(x, t) =(Pi>+ Pnt:(t)Zo(x) (9.5.3) 

Let the equation M = F(P) describe the interaction diagram of the column 
cross section in the absence of second-order effects (no buckling). Then the 
design requirement may be expressed as 

(9.5.4) 

that is, the point [M: I t/Ju, (P:0 + P:JI tPu] must not fall outside the cross-section 
interaction diagram (Fig. 8.27). 

The design approach is illustrated by Figure 9.16a. The curve 0-1 describes 
the rapid initial loading at t = 10 , the curvature being due to second-order effects. 
The segment 1-2 represents the growth of deflection (and thus M) due to creep at 
constant P = Pb/ tPu· The curve 2-3 represents the rapid application of the live 
load, Pi/ tPu· It terminates at the failure point 3 on the interaction diagram 
(failure envelope). 

The foregoing method ignores the fact that the strength for a live load applied 
after a period of creep under constant load P0 is not equal to the short-time 
strength. Usually it is higher (provided that the long-time stress is within the 
service stress range); see Section 9.6. Consequently, the appropriate interaction 
diagram looks roughly as shown by the dashed curve in Fig. 9.16b. Accordingly, 
the failure point is point 4. 

The combined load Puo + PuL is inevitably in the range of nonlinear material 
behavior but the foregoing calculation is based on the hypothesis of linearity. 
However, the same is true of the ACI method for short-time loads (Eq. 8.5.1). 

a) 

p 

Mo M 

b) 

P 1 Long time }f .1 a1 ure 
'-....j Instantaneous 

Po ............... 

' .... 
' ' ', Failure 

\I 
I 

M0 M 

Figure 9.16 (a) Loading path to failure; (b) modification of interaction diagram for live 
load application. 
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The fact that this method has been calibrated so as to agree reasonably well with 
experiments lends credence to using the same approach for long-time loads. 

It should also be noted that the response to sudden overload after creep is not 
completely equivalent to instantaneous loading of a column with the imperfection 
given by Equation 9.4.13 or 9.4.18. The reason is that the long-time creep due to 
P0 produces in the cross section self-equilibrated residual stresses that to some 
extent affect the response to overload PL (as explained in Sec. 8.3). Further 
residual stresses are caused by shrinkage, and cracking may result from all these 
stresses. 

There are also alternative design approaches. One can calculate the value of 
an effective elastic modulus of concrete for which a short-time load equal to 
P:, +Pi. gives the same magnification factor as Equation 9.4.18 or 9.4.13, and 
then use this modulus to design the column as if all the loading were short-time. 
Or one can calculate an effective load for which the short-time magnification 
factor is the same as that given by Equation 9.4.18 or 9.4.13, and then use this 
load to design the column like for a short-time load (Bafant, 1965, 1966, 1968a). 
Whether these alternative approaches adequately reflect the reality, however, has 
not been determined. 

A more realistic calculation of the column response to rapid overload (live 
load) can be carried out in small loading steps, subdividing the length of the 
column into layered finite elements. The calculation must take into account the 
yielding of reinforcement, compression nonlinearity of concrete, and tensile 
cracking or softening (e.g., Bafant and Tsubaki, 1980). 

With regard to the CEB method of column design for instantaneous loads 
(Sec. 8.5, Fig. 8.34g), the__!.ole of creep deflection can be explained by means of 
Figure 9.17. The curve 08 is the resisting instantaneous diagram of bending 
moment M versus curvature Kat time t1; this curve is already scaled down by the 
capacity reduction factor <Pu and is taken, for the sake of simplification, at 

M 

-J 
~_,.?\)o _ _J I 
0-1 Live load ! ~ 
2-3 Dead load = i'l c 

0 
..J 

Figure 9.17 Moment-curvature relation for cross section and variations of applied moment 
according to assumptions of the CEB method. 
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P = const. as M increases. The line 78 is the instantaneous applied moment, 
including the second-order moment M11 , and point 8 is the instantaneous failure 
point, as explained in Section 8.5. _ 

Now, if the load is sustained, the short-time M(K) diagram 016 for 
P = Puo = const. (which differs from that for P = Pcr1) will change, at time t, to 
some long-time M(K) diagram 024 for P = Pu0 const., which is also scaled down 
by factor 4>u· As the (factored) dead load Puo is applied at time tt> the segment 01 
is followed. Creep at constant load P,.

0
, which happens at increasing M, causes 

the column state to move from point 1 to point 2, at which the long-time 
(isochronous) M(K) diagram 024 for P = P,.

0 
(and fixed time t) is reached. The 

moment at point 2 can be determined as M2 = Mtf(t)//(t1) where M1 =moment 
at point 1 and f(t) =factor given by Equation 9.4.18 or 9.4.13. The bending 
curvature K2 at point 2 is obtained from z2 = K2 + z0 = (K1 + z0)/(t)//(t1) where 
K 1 =bending curvature at point 1 and z0 =initial curvature at no load. 

Instantaneous superposition of the (factored) live load ~ at time t causes 
the column state to move from point 2 to point 3. The line 53 is the line of the 
applied moment, including the second-order effect that is caused by the constant 
long-time load P. The static failure occurs if line 53 is tangent to curve 23, as 
shown in Figure 9.17. If there is no intersection, dynamic failure will occur, and if 
there are two intersections, the column will not fail for that load value (Fig. 
8.34). 

For long-time loading, the slope of the applied moment line, which is equal to 
Pk11 , is obviously less than the slope for short-time loading (lines 78 and 53 in Fig. 
9.17). Therefore, the column capacity is also less. 

Problems 

9.5.1 Consider Is= 0.05/, Es = 7 E(t1), J(t, t') according to Equation 9.4.23 with 
the typical parameter values; t 1 = 28 days, Pv = PL = 0.3Pcr·· The cross-section 
interaction diagram is approximated as bilinear with P 0 = 2PE., M0 = 0. 05/P~ 
(Fig. 9.18). The initial imperfection is sinusoidal with a= 0.005L. Calculate the 
deflection at t = 40 years for Pv as well as Pv +PL. Determine the load factor 
1J. such that the loads IJ.Pv and 1.211J.PL put the column state on the interaction 
diagram (note: the ratio of the load factors for Pv and PL is 1.7/1.4 = 1.21). 

9.5.2 The long-term column design may be based on the residual ordinate z 
(called creep eccentricity) that is obtained after sudden unloading at time t. 

P/P0 

Figure 9.18 Approximate cross-section interaction diagram. 
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Calculate it for the Dischinger method, using Equation 9.4.10 or 9.4.11. (The 
result is particularly simple if one uses E, = E1 and PE, = PE,, which was done 
by Warner and Kordina, 1975, and Warner, Rangan, and Hall1976.) 

9.5.3 Use the age-adjusted effective modulus to analyze creep buckling deflec
tions of (a) an infinite concrete beam on an elastic (not viscoelastic) 
foundation, (b) an axisymmetric buckling of an axially compressed thin 
circular concrete shell [this is not equivalent to case (a) if the foundation does 
not creep), (c) a thin square plate compressed by N= only, (d) a braced portal 
frame, (e) a snapthrough of a von Mises truss, and (f) a lateral buckling of a 
simply supported 1-beam, either without or with reinforcement. 

9.6 NONLINEAR CREEP AND LONG-TIME STRENGTH 
OF CONCRm STRUCTURES 

In Section 9.4 (as well as 9.5) the aging creep law of concrete was assumed to be 
linear. However, linearity is valid only for stresses less than about 0.5 of the 
strength, which happen to fall within the service stress range of structures. For 
higher stresses, the creep of concrete is strongly nonlinear. The principal 
consequence is that (as we already showed in Sec. 9.3 for viscoplastic behavior in 
general) the deflection calculated from a linearized small-deflection theory may 
tend to infinity within a certain finite time, called the critical time. Thus, a load 
magnitude that does not cause collapse under short-time loading may cause 
collapse if the load is sustained. 

The increased specific creep (per unit stress), which is observed at high 
stresses and is often called flow, is not the only type of nonlinearity exhibited by 
concrete creep. Another type of nonlinearity, called adaptation, is observed in 
the service stress range. A low sustained compressive stress causes strengthening 
of concrete, diminishing the creep for subsequent load increments as well as 
increasing the strength. By modifying the integral-type stress-strain relation from 
Equation 9.4.19, Bafant and Kim (1979) described both the flow and the adapta
tion nonlinearities of concrete, and their constitutive relation was then used by 
Bafant and Tsubaki (1980) in a step-by-step incremental analysis of columns; see 
Figures 9.19 to 9.21 (taken from Bafant and Tsubaki). 

Figure 9.19a shows the deflection histories of a column with assumed 
sinusoidal initial curvature. Two different reinforcement ratios p are considered. 
The deflection histories are plotted for various magnitudes of a constant sustained 
load, relative to Af; where A= cross-section area of concrete and 1; =standard 
compression strength. These results illustrate that, depending on the load 
magnitude, the deflection after a certain period of time starts to increase rapidly 
and quickly leads to collapse. The larger the load, the shorter is the time to 
collapse. However, for loads that are less than about 50 percent of the short-time 
strength, collapse does not occur within a 30-year lifetime. 

As explained in the preceding section, one needs to distinguish the dead load 
P0 and the live load PL (i.e., the long-time and short-time loads). When the ratio 
P0 / PL is small, the stresses caused by P0 alone are inevitably within the linear 
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Fipre 9.19 (a) Creep deflection history and (b) axial load variation. (After Baiant and 
Tsubaki, 1980.) 

range, and then the creep part of the analysis can be based on a linear aging creep 
law, which was the subject of the preceding section. When the ratio P0 /PL is not 
small, the creep is nonlinear and should be analyzed nonlinearly. 

Some typical results of Ba!ant and Tsubaki's (1980) nonlinear creep analysis 
of a typical concrete column with a high P0 /PL are shown in Figures 9.19b and 
9.20. Figure 9.19b shows the isochrones of the nondimensionalized axial load P 
versus the nondimensionalized midspan deflection. (Remember from Sec. 9.1 that 
each isochrone is detennined by collecting, for the same time, the results 
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obtained for many specimens, each loaded with a different constant axial load.) 
The isochrones terminate at failure points marked by crosses. The solid curves 
correspond to the sustained load (dead load) before the live load is applied. As 
the live load is applied, the response is instantaneous and therefore can be 
represented in the same plot with the isochrones, as shown by the dashed curves 
for various instants of application of the live load. The dotted lines represent 
failure envelopes connecting the failure points for the same value of the sustained 
load. 

Figure 9.20 shows the results in the plot of the axial load versus the logarithm 
of load duration (t- t 1). The horizontal lines represent the sustained loads, and 
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the vertical lines the instantaneous loading that terminates at the failure point. 
The failure points calculated for various values of the sustained load are 
connected by dashed curves, and the failure points for no live load (constant load 
up to failure) are connected by the solid curve. We see that for small sustained 
loads the points of failure caused by the subsequent sudden overload indicate a 
substantial increase in strength. This phenomenon, however, appears almost 
nonexistent in the tests of Drysdale and Huggins (1971), perhaps because of 
drying that prevents the growth of concrete strength due to hydration and was not 
considered in the calculations. The strength increase should nevertheless be 
observed in columns that are sealed or are subjected to moist environments. For 
larger values of the sustained load, the calculation results in Figure 9.20 indicate a 
substantial decrease of column strength if the duration of the preceding sustained 
load is sufficiently long. 

Figure 9.21a shows the plot of P~/ P~ versus /3d where /3d= Pvi(Pv + PL) = 
ratio of dead load to total load, P~ =short-time failure load, and P~ =long-time 
failure load. Figure 9.21b shows a similar plot from the test results of Drysdale 
and Huggins (1971) and of Kordina (1975). As already mentioned, the test results 
do not exhibit the column strengthening obtained in calculations. On the other 
hand, calculations show for some cases also a rather large reduction of capacity, 
which appears to be absent from the test results. This may be due to the fact that 
these large reductions of carrying capacity were calculated for very long load 
durations (30 years), while the sustained loads used in the tests were of much 
shorter durations (under 1 year). The solid and dashed curves represent the 
reductions of column strength due to sustained loading according to the following 
formulas specified in the ACI code and proposed in Bafant and Tsubaki (1980), 
respectively: 

p~ { 1 +/3d 
p~ = 1 + 1.3/3~ 

(ACI code) 
(Bafant & Tsubaki) 

(9.6.1) 

The strength of concrete columns under sustained loads and in combination 
with live loads was also studied by Bridge (1979); Foure (1978); Hughes and Ash 
(1970); Manuel and MacGregor (1967); Mauch and Holley (1963); Mauch (1966); 
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McClure, Gerstle, and Tulin (1973); Wilhelm and Zia (1970); and Wu and 
Huggins (1977). 

In general, analysis of creep buckling of concrete structures up to failure is a 
rather complicated problem that requires a realistic, and therefore sophisticated, 
constitutive law for nonlinear creep of concrete, as well as short-time nonlinear 
behavior including cracking. Effects of drying, shrinkage stresses, and tempera
ture should also be included. Such calculations require a computer and can be 
accomplished by finite elements. On the other hand, random scatter in the 
behavior of actual columns, which is quite large, weakens the usefulness of very 
sophisticated calculations unless they are carried out probabilistically. For this 
reason, design practice has been limited to a rather simple semiempirical 
calculation method only partly supported by test results. The price paid for this 
simplicity is that the safety factors for concrete columns must be rather large. 

Problems 

9.6.1 The aging linear creep laws from Section 9.4 can be generalized for the 
nonlinear range. Consider the so-called "time-hardening," which corresponds 
to the aging Maxwell model with a linear spring and nonlinear aging dashpot, 
for which E =(a/E)+ f(t)a", f(t) =given function of age 1 such asf(t) = kt-m 
(0 < m < 1, n > 1). Analyze small buckling deflections due to P0 and PL for 
(a) Shanley's column and (b) a deformable ideal 1-beam. 

9.6.2 Another useful approximation for nonlinear creep of concrete is e= f(a, t) = 
(a I E) + g(t )a" (this is a nonlinear generalization of the effective modulus 
approach). Use it for Problem 9.6.1. 

9.7 CREEP BUCKLING AT FINITE DEFLECTIONS 

Similar to elastic buckling, the finite deflection analysis of viscoelastic buckling 
must yield finite deflections for all times and all load values. Therefore, the 
long-time critical load P';. introduced in Section 9.2 cannot be characterized by an 
infinite deflection ordinate z at 1- oo. Rather the infinite deflection values, which 
we used in the small-deflection theory (Sec. 9.2) as the indicator .of instability, 
must be interpreted in relative terms, namely in relation to the magnitude of 
initial imperfection. Thus, within the framework of finite deflection theory, the 
long-time critical load P';. needs to be defined by the following property: 

. z(oo) {<oo hm--= 
zo-O Zo = oo 

for P < P';. 
for P ~ P';. 

where z(oo) =deflection ordinate at 1- oo, Zo =initial imperfection. 

Example of Imperfection-Sensitive Rigid-Bar Column 

(9.7.1) 

Despite the boundedness of deflections, the deflection rate of a linearly 
viscoelastic column at large deflection may reach an infinite value at a finite time, 
provided the elastic characteristics of the structure are imperfection sensitive 
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Fipre 9.22 (a) Rigid-bar column with horizontal Kelvin-type support; (b) load-rotation 
curves; (c, d) rotation histories; and (e) load applied through elastic spring. 

(i.e., P decreases at increasing deflection). This was discovered by Szyszkowski 
and Glockner (1985). We will demonstrate it by considering a rigid free-standing 
column with a hinge at the base and a viscoelastic lateral support on top. The 
support, characterized by a standard solid model of Kelvin type (Fig. 9.3f), slides 
vertically, always remaining horizontal (Fig. 9.22a). From Section 4.5 we know 
that the elastic behavior of a perfect column of this type is characterized by a 
decrease of P at increasing 6. Let L =height of the column; b, c =length and 
cross-section area of the lateral support; £, u = strain and stress in the support. 
From geometry we have£= L(sin 6- sin a)/b where a= initial inclination of the 
column (i.e., an imperfection), and from moment equilibrium we have u = 
(PL sin 6)/(cL cos 6) = (P tan 6)/c. Substituting the foregoing expressions for £ 
and u into the equation of the standard solid, -r,t = (u/E"")- £- iJ(-r,/E) (Eq. 
9.1.5), we acquire the differential equation 

When Pis constant (P=dP/dt=O), this equation has the form f(6)d6/dt= 
g(6). Integration may then be easily accomplished by separation of variables, 
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which yields t = t(8) = J [/(8)/g(8)) d8. Inverting function t(8) one gets the 
deflection history 6(t). 

Consider that at t = 0 the load is instantly raised to the value P and then is 
kept constant (P = 0 at t > 0). The response may or may not reach a final state at 
r~st (constant 8). If it does, the final state is determined by Equation 9.7.2 with 
8 = P = 0. This equation coincides with the equation for the elastic behavior of a 
column whose lateral support is elastic, characterized by modulus E"". As shown 
in Section 4.5, for each imperfection angle a there exists a maximum load ~(a); 
see Figure 9.22b. As a manifestation of imperfection sensitivity of this column, 
P;;(a) is less than the long-time critical load P;:.; p;;_ =critical load of a 
perfect-elastic column with modulus Eoo; P;;(a) = P?,(a)Eoo!E where ~(a)= 
max P for instantaneous elastic loading. Furthermore, p;:. = P~Eool E < P~., where 
~. is the instantaneous critical load based on modulus E. 

For P > P;;(a), no final state at rest can exist. The lateral support cannot 
impose any bound on 8. Angle 8, therefore, cannot stop growing and must 
eventually reach some value 8 = 8cr such that the expression in parenthesis on the 
left-hand side of Equation 9.7.2 vanishes, that is, 

cos 8cr = (~ r13 

(P < P~.) (9.7.3) 
cr 

where~= ELc/b =instantaneous (elastic) critical load. Consequently, d8/dt
oo at 8 = Bcr (the right-hand side of Eq. 9.7.2 being nonzero); see Figure 9.22c, d, 
which also shows the effects of the values of P and a. The time ten which 
corresponds to 8 = 8cr and may be obtained from the aforementioned solution 
t(8), is finite if P > P;;(a). This can be shown from Equation 9.7.2 and bas been 
demonstrated by Szyszkowski and Glockner (1985). For P = P;;(a), one bas 
8cr- oo (Fig. 9.22). Since at tcr the left-band side of Equation 9.7.2 changes sign, 
the curve 8(t) is indicated to turn back after tcr as shown in Figure 9.22c, d. This 
is, however, impossible because the time would have to decrease. So there can be 
no equilibrium after tcr (it P = const.), and dynamic analysis is required. 

Broader Implications and Ramifications 

Similar behavior is found for buckling to the right of the column in Figure 9.23 
whose elastic behavior exhibits asymmetric bifurcation and is strongly imperfec-

a) b) p 

Fipre 9.23 (a) Rigid-bar column with inclined Kelvin-type support and (b) load-rotation 
curves. 
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a) b) c) 

8 

Figure 9.24 (a) Rigid-bar column with rotational viscoelastic spring, (b) load-rotation 
curves, and (c) rotation history. 

tion sensitive (Sec. 4.5). However, the depression of ~(a) compared to P: is 
much stronger, causing a critical time to be encountered for smaller loads and 
smaller deflections (Fig. 9.23). For buckling to the left of this column, the 
maximum point P:,(a) does not exist, and neither does 8cr· The elastic behavior 
of the column in Figure 9.24 exhibits stable symmetric bifurcation and is imperfection 
insensitive. In that case, 8(t) for t-+ oo (and P < P:) approaches an asymptote 
located below that for the small-deflection theory (Fig. 9.24). 

In Section 9.3 we saw that the existence of a critical time is typical of 
nonlinear creep buckling. Now we conclude that critical time can also exist for 
imperfection-sensitive columns with linear creep, provided that the deflection 
becomes so large that geometric nonlinearity matters. The most important 
conclusion is that for imperfection-sensitive structures the safe load limit is not 
the long-time critical load P: for small-deflection theory, but load P:,( a) 
representing the maximum load for large-deflection elastic response of an elastic 
column with modulus E"" instead of E. However, this is true only for large 
enough imperfection a. 

For sufficiently small a, time tcr is longer than the design lifetime of the 
structure, and then the safe load limit is still P~. rather than P:,(a). This usually is 
the case for concrete columns and frames in engineering practice, but not for thin 
plates and shells. 

The value of the present analysis lies mainly in that it illustrates the type of 
behavior that can be expected for plates and shells. Although the creep buckling 
of such structures would today be analyzed by finite elements, it is important to 
realize what to look for, what kind of responses to expect. 

The fact that the stability limit P:,(a) is decided by the long-time elastic 
modulus indicates that the analysis of the effect of large deflections on the 
stability limit of structures (within the range of linear viscoelastic behavior) may 
be conducted elastically, replacing E with E"". To capture the effect of a finite 
lifetime, one may use instead of E"" the effective modulus and, in the case of 
aging, the age-adjusted effective modulus (Sec. 9.4). 

Variable load 
Equation 9.7.2, as written, is valid also for time-variable load P. As one special 
case, it can be used to solve the relaxation of force P when (J is held constant 
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after t = 0 (Szyszkowski and Glockner, 1985). In that case, the left-hand side of 
Equation 9.7.2 is identically zero, and the right-hand side (with 8 = const.) 
represents a differential equation for P(t). Its solution is a decaying exponential; 
8(t) always decreases, and there is no critical time. 

For a column that forms part of a larger redundant structure, the axial force P 
is generally variable even if the loading of the structure is constant. This is due to 
internal force redistributions caused by creep in the structure. As a simple 
example, we may consider the load to be applied on the column in Figure 9.22e 
through a spring of stiffness C 1• The spring is suddenly compressed at time t = 0 
to produce a given force P0 , and a subsequently the top of the spring is prevented 
from moving vertically. The vertical force on the ~lumn must then satisfy the 
compatibility relation P0 - P(t) = C1L(cos a- cos 8). This yields P = C1LiJ sin 8, 
which may be substituted into Equation 9.7.2. The result is that the force P(t) 
initially decreases with increasing deflection. The deflection rate iJ may again 
become unbounded at some critical time. The minimum value of P0 above which 
this happens is generally less than P:',(a). The influence of structural redundancy 
is stronger if the instantaneous response exhibits asymmetric bifurcation than if it 
exhibits symmetric unstable bifurcation. 

The geometric nonlinearity obviously affects also the creep buckling of 
viscoplastic structures if the deflections become large. 

Problems 

9. 7.1 Analyze large-deflection creep buckling for the columns in Figure 
9.6a, b, c, d, e, f, g, h. In particular, determine Ben ten and the condition for 
which these exist. Relate the behavior to elastic imperfection sensitivity, 
bifurcation stability, and bifurcation symmetry. 
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10 
Stability of Inelastic Structures, 
Bifurcation and Thermodynamic Basis 

Although in Chapter 8 (and partly also in Chap. 9) we succeeded to solve the 
equilibrium states, paths, and bifurcations for various practically important 
inelastic structures, we have not yet addressed the problem of stability. Neither 
have we discussed the general properties of path bifurcations and the general 
methods for their determination. We will now tackle these problems in this 
chapter. 

First we will use the second law of thermodynamics to develop various useful 
criteria for stability of equilibrium states of inelastic structures. Then, on the basis 
of the second law, we will determine which equilibrium branch is actually 
followed after bifurcation and derive general criteria for the bifurcation states. 
We will illustrate our results using the example of an elastoplastic column. We 
will conclude by considering the stability aspects of small loading-unloading cycles 
and some stability problems of frictional materials. 

10.1 THERMODYNAMIC CRITERIA Of STABLE STATE 

As stated in the Lagrange-Dirichlet theorem (Theorem 3.6.1), the minimization 
of potential energy n (Sec. 4.2) represents the fundamental criterion for stability 
of equilibrium of structures with conservative and dissipative forces. The proof in 
Section 3.6, however, is predicated on the existence of an elastic potential that is 
path-independent and is such that a given value of the potential corresponds to a 
unique contour in the space of generalized displacements. Closed contours 
around the origin indicate positive definiteness and guarantee stability. 

In Chapters 4 to 7 we applied the potential-energy criterion to elastic 
structures. Although the Lagrange-Dirichlet theorem permits dissipative forces 
(such as damping) that do not preclude the existence of elastic potential, the 
potential-energy criterion is not applicable to inelastic structures, which do not 
possess a potential as their behavior is path-dependent. This behavior includes 
plasticity, as well as damage, fracture, and friction. 

Stability of equilibrium of inelastic structures can in principle be analyzed on 
the basis of the dynamic definition of Poincare and Liapunov (Sec. 3.5). In 
practice, however, this approach necessitates integrating the nonlinear equations 
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of motion of the structure, which is actually quite complicated. Such studies have 
often been inconclusive. 

A simpler approach is to use the second law of thermodynamics, as we will 
show now. The second law, which is not derivable from the laws of mechanics 
(i.e., Newton's laws), is in fact a more general and more fundamental approach 
to stability of equilibrium states and paths than are the laws of mechanics. Keep 
in mind, though, that since the second law of thermodynamics applies only to 
macroscopic systems that are in equilibrium or very close to equilibrium, the 
theromodynamic approach does not apply to systems that lose stability in a 
dynamic manner, which as we saw (Chap. 3) can happen under nonconservative 
loads. 

The treatment of thermodynamics in the existing works on continuum or 
structural mechanics has generally been limited to thermodynamics of constitutive 
equations and field equations, while the thermodynamic aspects of structural 
stability have not received proper attention. We will, therefore, attempt a rather 
thorough exposition of this subject, following Bafant (1987a; 1988; 1989a, b). 

First and Second Laws of Thermodynamics 

The incremental work done on the structure by the loads is defined by 

.6. W = L P; .6.q; = pT .6.q ++ J. Pk .6.uk dS + J. Fk .6.uk dV (10.1.1) 
i s v 

Superscript T denotes a transpose, q = n-dimensional column matrix (vector) of 
displacements or discrete deformation parameters q1 (i = 1, ... , n) that charac
terize the state of the structure, P =column matrix (vector) of the given 
associated loads P; such that pT dq represents the correct expression for work 
(note that some q1 may have to be introduced even if P; = 0; see the example in 
Sec. 10.3); S, V =surface and volume of the structure; Pk• Fk =distributed 
surface and volume forces (loads) associated with displacements uk that depend 
on the position vector x (k = 1, 2, 3). 

For the sake of brevity, we will be writing from now on simply .6.W = pT .6.q, 
assuming this expression to be interchangeable with the integrals in Eq. 10.1.1. 
This is permissible because the concentrated loads can be regarded as the limit 
case of distributed loads having the form of Dirac delta functions, and vice versa 
the distributed loads can be regarded as the limiting case of infinitely small 
concentrated loads that are infinitely densely distributed. Note also that for fluids 
(the object of interest in the basic textbooks of thermodynamics) Equation 10.1.1 
reduces to .6. W = -p .6. V where p =pressure and V =volume of fluid. (We use 
the sign convention of solid mechanics; in fluid mechanics, .6. W is usually defined 
asp .6. V, i.e., the work is considered positive if done by the system rather than on 
the system.) 

According to the first law of thermodynamics, which expresses the law of 
conservation of energy, the total energy U of a structure (sometimes also called 
the internal energy) is incrementally defined by 

.6.U = .6.W + .6.Q (10.1.2) 

Here .6.Q is the heat that has flowed into the structure from its surroundings. 
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To be able to apply the second law of thermodynamics, the system we 
consider must be in, or close to, thermodynamic equilibrium. Thus, we are 
allowed to consider only structures whose temperature is uniform or nearly so. 
The increment of (total) entropy of the structure is defined by 

aQ as= T + (aS);n (10.1.3) 

in which T =absolute temperature, (aS);n =internally produced increment of 
the entropy of the structure, and aQ IT = externally produced entropy increment, 
due to the influx of heat into the structure. 

The second law of thermodynamics (e.g., Guggenheim, 1959; Denbigh, 1968; 
de Groot and Mazur, 1962; Brophy, Rose, and Wulff, 1964; Fermi, 1937; Planck, 
1945) can be stated as follows: A change of state of a structure such that 

aQ{<o 
(aS);n = as-T = 0 can occur 

> 0 must occur 

cannot occur 

(10.1.4) 

Here, the case (aS);n = 0 is a change maintaining thermodynamic equilibrium, 
which is by definition reversible, and the case (aS);n > 0 is an irreversible change. 
In the following text, when we use the term "equilibrium" we will mean only 
mechanical equilibrium (i.e., equilibrium of forces) unless we explicitly state 
"thermodynamic equilibrium" or "reversible process." 

An equilibrium state of a system is stable if no deviation from this state can 
take place by itself, that is, without any change in loads or boundary displace
ments. Therefore, the structure is 

Stable if (aS);n < 0 for all vectors C>q 

Critical if ( aS);n = 0} 
Unstable if (aS);n > 0 

for some vector C>q (10.1.5) 

This is the most fundamental criterion for stability of equilibrium of any physical 
system, whose concept was stated in 1875 by Willard Gibbs in the context of his 
work on chemical systems. 

Note that for a system that is thermally isolated, that is, adiabatic (aQ = 0), 
(aS);n in Equation 10.1.5 may be replaced by aS. 

After a structure (i.e. mechanical system) becomes unstable, the energy 
- T(aS);n becomes the kinetic energy of the structure, and the structure is set 
into motion. Eventually the kinetic energy gets converted into heat due to 
dissipative processes such as viscosity, plasticity, friction, damage, and fracture. 
This is the practical significance of all the expressions for - T ( aS);n that we are 
going to present in this section. 

Tangentially Equivalent Elastic Structure 

The incremental mechanical properties of the structure are characterized by the 
relations df = K dq or more precisely 

dfT = KT(v) dq 

df5 = K5 (v) dq 
(isothermal, dT = 0) 

(isentropic, dS = 0) 

(10.1.6) 

(10.1. 7) 

which describe changes that can occur in mechanical equilibrium; fT and f5 are the 



636 INELASnC, DAMAGE, AND FRACTURE THEORIES 

column matrices of the equilibrium forces fr. and Is, (or reactions) associated with 
q, which depend on q; so as to maintain mechanical equilibrium. Subscripts T and 
S label the isothermal and isentropic values of the tangential stiffness matrix K, 
which can in general be history dependent and nonsymmetric. Kr and Ks are to 
be evaluated from the isothermal or isentropic tangential moduli of the material, 
which are not the same (see, e.g., Fung, 1965). v is the vector of direction cosines 
of the vector dq in the n-dimensional space of qt> ... , qn; v = dq/(dqT dq)112

• 

For inelastic materials, the value of K generally depends on v; however, for many 
types of materials (e.g., plastic-hardening metals), there exist radial sectors (fans, 
cones) of directions v in the space of dq for which the value of K is constant. 

To be able to analyze stability for the given inelastic structure, we need its 
equation of state. In thermodynamics, the equation of state describes the 
reversible properties of a system or structure (e.g., ideal gas equation pV = RT). 
It might seem that the equation of state is represented by the constitutive relation 
of the material or the corresponding force-displacement relation of the structure 
(i.e., Eqs. 10.1.6 and 10.1.7). The inelastic constitutive relation, however, is not 
an equation of state because it is irreversible, as the material is inelastic. 

On the other hand, an elastic stress-strain relation of a material, or an elastic 
force-displacement relation of a structure, is an equation of state. This observa
tion provides us a clue. As we know, the response of an inelastic structure can be 
rolved in small loading steps by a series of quasi-elastic incremental analyses. The 
exact solution is the limiting case of infinitely small steps, which corresponds to 
approximating the given inelastic stress-strain or force-displacement relation in 
each loading step by its tangential approximation (Eq. 10.1.6 or 10.1.7) which has 
the form of an elastic stress-strain or force-displacement relation. In stability 
analysis, we need to deal only with infinitely small loading increments. Therefore, 
we may replace the given inelastic structure by a tangentially equivalent elastic 
structure whose elastic stiffness matrix is equal to K(v)( = Kr or K5 ). 

Of course, there may exist many such structures since there may be many 
matrices K depending on the loading direction v (there are at least two matrices 
K~ne for loading and one for unloading). So one has to try various tangentially 
equivalent elastic structures, each corresponding to a different matrix K. Among 
these, only those for which the solution bq is within the assumed sector of 
directions are valid. 

To sum up, when the force-displacement relations in Equations 10.1.6 and 
10.1. 7 are used in the sense of the tangentially equivalent elastic structure, they 
do represent an equation of state because elastic deformation is a reversible 
process that preserves thermodynamic equilibrium. Certain hypotheses implied in 
this approach will be discussed in the subsection "Hypothesis Implied in Present 
Thermodynamic Approach" in Section 10.3. Introduction of the tangentially 
equivalent elastic structure is inevitable if the question of stability of equilibrium 
should be answered. Without this concept, we would have no state of thermo
dynamic equilibrium to analyze, and so the question of stability could not even be 
posed. 

Total Energy U and Helmholtz Free Energy F 

In practice, it is often convenient to express the stability criterion in Equation 
10.1.5 in terms of other thermodynamic state functions. Introducing dQ = 
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T[dS- (dS);n] into Equation 10.1.2 (and replacing increments fl. by differentials 
d), we get 

dU = pr dq + T dS- T(dS);n· (10.1.8) 

In situations in which the temperature is controlled, it is convenient to use the 
transformation F = U- TS, called the Legendre transformation, to introduce a 
new thermodynamic state function, F, called the Helmholtz free energy. 
Differentiating, we have dF = dU- d(TS) = dU- S dT - T dS, and substituting 
for dU from Equation 10.1.6, the terms T dS cancel and we get 

dF = pr dq- S dT- T(dS);n (10.1.9) 

For changes during which thermodynamic equilibrium is maintained, we have 
(dS);n = 0. For such changes, U as well as Fare reversible and path-independent, 
and so they represent thermodynamic potentials (Table 10.1.1). Their total 
differentials are dU = pr dq + T dS and dF = pr dq- S dT, and consequently 
U = U(q, S) and F = F(q, T). Since dF involves dT, function F is convenient for 
isothermal conditions (dT = 0), and since dU involves dS, function U is 
convenient for isentropic conditions (dS = 0). Equations 10.1.8 and 10.1.9 mean 
that for irreversible processes dU < pr dq + T dS and dF < pr dq- S dT (see, 
e.g., eq. 11.9 and p. 8 in Guggenheim, 1959). 

For isothermal (dT = 0) or isentropic (dS = 0) deformation increments at 
which mechanical equilibrium is maintained, we may write 

dF =f~dq for dT =0 

dU=ffdq fordS=O 

(10.1.10) 

(10.1.11) 

in which superscript T denotes a transpose and the equilibrium forces (reactions). 
fr and fs are to be determined according to the isothermal or isentropic material 
properties (Eqs. 10.1.6-10.1.7). These forces must be distinguished from the 
applied loads P;. In the initial equilibrium state we have lr, = 1% = P; or 
Is,= /1, = P; (i = 1, ... , n), but after the incremental deformation, Jr. or Is, 
generally differ from P; because the applied loads obey their own law such as 
gravity (or ftuid pressure, centrifugal force, electrostatic force, electromagnetic 
force, aerodynamic force, hydraulic force, etc.). 

Although Equations 10.1.10 and 10.1.11, having the form of incremental 
work, might be intuitively clear, they in fact follow from Equations 10.1.8 and 
10.1.9 in which dS or dT vanishes and the term -T (dS);n must be omitted. The 
reason for omitting (dS);n is that, instead of the given inelastic structure, we 
consider the tangentially equivalent elastic structure whose deformation is 
reversible, as we already said. 

Equations 10.1.8 to 10.1.11 imply that 

aF au Jr.=- Is.=- (10.1.12) 
aq; aq; 

Because of the principle of conservation of energy (the first law of thermo
dynamics), we have for an equilibrium deformation path 

F = L L fir : d£ dV U= LL fls: d£dV (10.1.13) 
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where V =volume of the body, «Se =strain tensor increment, Or. os = current 
stress tensor calculated (from current e and its history) on the basis of isothermal 
or isentropic material properties, and (:) denotes a tensor product contracted on 
two indices. Note that when the problem is geometrically nonlinear, the equality 
of the work of stresses (Eqs. 10.1.13) to the work of reactions (Eqs. 10.1.10 and 
10.1.11) is achieved only for some appropriate types of stress and strain tensors 
(e.g., the second Piola-Kirchhoff stress tensor and the Lagrangian finite strain 
tensor); see Chapter 11 (also, e.g., Hill, 1958). If the problem is geometrically 
linear, the equivalence of Equations 10.1.13 and Equation 10.1.10 or 10.1.11 can 
also be proven from the principle of virtual work, because o is in equilibrium with 
f and e is compatible with q. 

When the structure is loaded through some elastic device (a spring, a testing 
frame), it is convenient to consider this device as part of the structure. Its 
potential energy is then included in F or U, and its flexibility or stiffness is 
included in the calculation of structural stiffness (e.g., in Eq. 10.1.25 below). 

Functions F and U represent the Helmholtz free energy and the total energy 
of the structure alone, without the loads. If the loads are conservative, it is more 
useful for stability analysis to introduce the Helmholtz free energy, f!F, and the 
total energy, OU, of the structure-load system. Then, because the energy of the 
loads is -W (see Sec. 4.1), 

f!F=F-W (10.1.14) 

OU=U-W (10.1.15) 

Obviously, these definitions represent generalizations of the concept of potential 
energy II (Eq. 4.1.1). According to Equations 10.1.9 and 10.1.8 we have 

df!F = -S dT- T (dS)in 

dOll= T dS- T (dS)in 

(10.1.16) 

(10.1.17) 

for increments preserving mechanical equilibrium (fr = P, fs = P) (but not 
necessarily thermal equilibrium). These equations have the advantage that, 
compared to Equations 10.1.9 and 10.1.8, pr dq does not appear in them. If 
thermodynamic equilibrium is disturbed only mechanically (fr -:1= P or fs =I= P) (but 
not thermally) according to Equations 10.1.10, 10.1.11, and 10.1.1 we may also 
write 

df!F = f~dq- pT dq 

dOll = fi dq- pT dq 

at T = const. 

at S = const. 

(10.1.18) 

(10.1.19) 

f!F represents the isothermal potential energy and OU the isentropic potential 
energy. 

When Equations 10.1.16-10.1.17 are applied to an elastic (or tangentially 
equivalent elastic) structure, (dS)in of course does not represent an entropy 
produced within the structure per se because the deformations of an elastic 
structure are reversible. Rather, (dS)in represents the entropy produced in the 
structure-load system due to disequilibrium between the structure and the load. 

Second Variation of f!F or OU 

Consider now a change from the initial equilibrium state q = q0 to an adjacent 
state q = q0 + «Sq, which may, but generally need not, be an equilibrium state. 
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By introducing the tangentially equivalent elastic structure, we suppose the 
inelastic response to be path-independent in the small (i.e., infinitesimally). 
We expand ~into multiple Taylor series, writing a~= {J~ + {J2~ + {J3~ + ... 
where fJn~ = (1/n!) E; · · · E, (a"~/ 8q; 8q1 • • • 8q,) flq;6q1 • • • {Jq, = (1/n!) E; · · · 
E, [a"- 1(8~/ 8q1)/8q1 • • • 8q,) {Jq; 6q1 • • • fJq, and substitute 8~/ 8q; = /T;- P; 
(according to Eq. 10.1.18). Also, we assume that the applied loads P; are 
constant, that is, dead loads. (However, if there are variable conservative loads, 
they may be incorporated into the structural system so that the remaining loads 
are constant.) For the change of the Helmholtz free energy of the structure-load 
system, we thus obtain the expression 

L
<f+6q lqf+6q, { 1 [df ]0 

a~= [fi{q) dq- pr dq) = ~ f~ +·
2

, ~ d ~ (q1 - qJ) 
q0 I qp " I ql 

1 ~ ~ [ d
2
/ 7: ]

0 
0\ 0 } +- LJ LJ d. (q,- qj,(qk- qk) + ... - P; dq; (10.1.20) 

3! i k dq, qk 

in which the initial state q? is labeled by superscript 0. Since the initial state is an 
equilibrium state, we have /~ = P; (but generally ~.;=I= 1';,1 and ~.; .. =I= P;,1m)· For 
the case of dead loads we further have P; = const. (and P;,1 = 0). Consequently, 
the first-order work terms due to~ are canceled in Equation 10.1.20 by the work 
of P;. Integrating, neglecting the terms of higher than second order, and noting 
that E1 [ 8/71/ 8q1)0 6q1 = 6/T, =first-order equilibrium change of reactions, we 
obtain 

(10.1.21) 

where 62~ = {J 2F =second-order change of the Helmholtz free energy of the 
structure, which is equal to the second-order work of isothermal equilibrium 
reactions due to 6q; (see the triangular area in Fig. 10.1b, in which the first-order 
variation 6~ = 6F - {JW is represented by the rectangular areas fJF and fJW). 

By a procedure analogous to Equations 10.1.20 and 10.1.21, in which ~. F, 
and subscripts Tare replaced by OU, U, and subscripts S, one finds that 

aOU = 620U = !6ff 6q (10.1.22) 

a) b) c) d) 
Load Sq 

P1 ~ 
o .. d load a•w-o 

sw 

e) f) 

•

-Sq 
n 

Sq, 

Figure 10.1 (a) Inelastic structure; (b, c, d) first- and second-order variations of Helmholtz 
free energy; (e, f) path independence limited to a certain range and path dependence. 



640 INElASTIC, DAMAGE, AND FRACTURE THEORIES 

The increments of isothermal or isentropic reactions occurring at mechanical 
equilibrium can be expressed as 6fr = Kr(v) 6q, 615 = Ks(v) 6q (Eqs. 10.1.6-
10.1.7), and substitution into Equations 10.1.21 and 10.1.22 yields 

6.~ = 62~ = !6qrKr(v) 6q 

!J.OU = 620U = !6qrK5 (v) 6q 

According to Equations 10.1.21 and 10.1.22, 

ofs-
K - . s----a ., qi 

(10.1.23) 

(10.1.24) 

(10.1.25) 

Here Krq and K5,
1 

are the components of the tangential (incremental) isothermal 
(dT = 0) or isentropic (dS = 0) stiffness matrices Kr(v) and K5 (v) of the structure 
that are associated with q; and must be evaluated on the basis of isothermal or 
isentropic tangential moduli (stiffnesses) of the material. These moduli charac
terize the total strain increments representing the sum of elastic and inelastic 
(irreversible) strain increments. The isothermal and isentropic moduli are not the 
same (see, e.g., Fung, 1965). For a discussion of the differences see Biot (1965, p. 
286). 

An important feature (which, as we will see, spoils path-independence) is that 
the tangential stiffness matrix Kr or Ks in general depends on the vector v of the 
direction cosines (Fig. 10.1e) of the displacements 6q in then-dimensional space 
of q1, ••• , qn; v= 6q/(6qr 6q)112

• As we will see from the example in Section 
10.3, the tangential stiffness matrix for the directions that represent loading-only 
everywhere in the structure differs from the tangential stiffness matrices which 
represent unloading-only or some of the combinations of loading in one part of 
the structure and unloading in another part of the structure. 

Note that the tangential stiffnesses Kr or Ks include not only the stiffness for 
the reversible (elastic) part of the deformation but also the stiffness for the 
irreversible part of the deformation due to plasticity, damage, or fracture. The 
fact that the irreversible part of the response is entirely covered by these matrices 
makes it possible to introduce the tangentially equivalent elastic structures. This 
in turn justifies the omission of the term -T(!J.S);n from Equations 10.1.18 and 
10.1.19 as well as Equations 10.1.21 and 10.1.22, on which we already 
commented. 

The meaning of isentropic deformations deserves some discussion. The term 
-T(!J.S);n does not and should not appear in Equations 10.1.18 and 10.1.19 (that 
is, (!J.S);n = 0 must be used for these equations) because the tangential stiffnesses 
Kr. Ks already comprise all incremental irreversible responses (plastic, damage, 
fracture). Consequently dQ = TdS (Eq. 10.1.3) in conjunction with these 
equations. It follows that the isentropic conditions, dS = 0, are equivalent to 
adiabatic conditions, dQ = 0, if the tangentially equivalent elastic structure is 
considered. So the isentropic incremental stiffness matrix Ks is then equivalent to 
the adiabatic incremental stiffness matrix, which is calculated on the basis of 
adiabatic tangential elastic moduli. 

The adiabatic deformations are approximated by very fast deformations, since 
heat transfer to material elements requires some time and is negligible for short 
times. The isothermal deformations are approximated by very slow deformations, 
which allow enough time for the temperature to equilibrate. Although the 
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difference between isothermal and adiabatic material properties is often 
neglected, it may be quite appreciable. 

Path Dependence and Incremental Potentials 

Internal friction, damage, and fracture present potent physical arguments against 
symmetry of the tangential stiffness matrix Kr or Ks (see Bafant, 1980 and 1984; 
Bafant and Prat, 1988; Mandel, 1964). Therefore, the thermodynamic state 
functions F(q), U(q), ~(q), 'tl(q) do not have to be path-independent potentials. 
However, under certain frequently used simplifying hypotheses about the 
constitutive law that exclude friction, damage, and fracturing (e.g., Drucker's 
postulate in plasticity), the tangential stiffness matrix must be symmetric (Hill and 
Rice, 1973). Then Equations 10.1.6 and 10.1.7 imply that 

K4v) = ofr.=~= OZF (10.1.26) 
aqi aq; aq; aqi 

Ksl/(v)= ofs~=~= OZU (10.1.27) 
aqi aq; aq; aqi 

This means that the tangential stiffness matrix represents the Hessian of function 
F or U with respect to the displacement vector q. Furthermore, if P; is 
independent of q; (see Eqs. 10.1.38 and 10.1.39), we also have 

az~ OZifl 
Kr

9
(v)=-;-;- K4v)=-;-;- (dead loads) (10.1.28) 

r7q; r7qj vq; vqi 

For such symmetric stiffness matrices, functions ~and lfl, or F and U, might be 
expected to be path-independent, and thus to represent incremental potentials. 
Not so, however. 

These functions would be path-independent only if Kr or Ks were independ
ent of the path direction v in the space of 6q. The consequence of the 
dependence of Kr and Ks on v may be explained by means of Figure 10.1f. We 
assume Kr(v) has the value K} for v-directions in the cross-hatched sector, and 
the value K~ for directions outside this sector. We consider five infinitesimally 
different paths a, b, c, d, e leading to the sam~int A. Path a is radial. For 
paths b, c, d, e, the infinitesimal increment 6q = OA is a sum of two infinitesimal 
subincrements 6q1 and 6q11 corresponding to the two straight path segments 
shown. We must now associate direction v with each of these two path segments 
rather than with the chord vector OA. 

Path b leads at point A to the same value of ~ as path a because at all times 
the direction of this path belongs to the same sector of v-directions, particularly 
to the cross-hatched sector for which Kr(v) = K}. Path c, however, leads at point 
A to a different value of ~ because the direction of the second straight segment of 
this path belongs outside the cross-hatched sector. Path d, which goes out and 
into the sector, obviously also leads to a different value of ~. So does path e, 
which lies entirely in the sector, because the direction of its second segment 
(which involves unloading) lies outside the sector of v-directions. 

Consequently, if Kr or Ks depends on direction v, then the thermodynamic 
state functions F, U, ~. and lfL are not in general path-independent, that is, they 
do not represent potentials in the mathematical sense. If the dependence of Kr or 
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Ks on the direction v is piecewise constant-a behavior typical of plasticity-then 
F, U, ~. and <flare path-independent for a certain finite range of paths (such as 
paths a and b in Fig. 10.1f) and do represent potentials restricted to this range. 
This range includes all the radial and nonradial paths such that the path direction 
always belongs to the range of directions for the sector in which the point on the 
path lies. This means that the boundary between two sectors of constant v cannot 
be crossed (path d in Fig. 10.1f), that is, the path must lie entirely within one 
sector, and also no segment of the path must represent unloading (path e). 

If the dependence on v is not piecewise constant but continuous-a behavior 
exhibited, for example, by endochronic theory-then F, U, fJi, and 'tL are never 
path-independent and do not represent potentials, not even within a limited 
range. 

The lack of path independence caused by v has some important consequences. 
In Section 10.3 we will see that it may cause the equilibrium states on all the 
postbifurcation branches to be stable. 

Second-Order Work of Stresses and Geometric Stiffness 

According to the principle of conservation of energy (the first law of thermo
dynamics), the second-order work of reactions must be equal to the second-order 
work of stresses. Therefore, 

c52fJi=!c5f~c5q= ( !c5aT:c5edV0 +c52 'W;,.= ( !c5e:ET:c5edV0 +c52 'W.,. (10.1.29) 
Jvo Jvo 

c52<fl = !c5fi c5q =J. !c5a5 : c5e dV0 + c52 'W.,. =J. !c5e: Es: c5edVo+ c52 'W.,. (10.1.30) 
Vo Va 

Here V0 =initial volume of the body (before displacements c5u); the colon 
denotes a product of tensors contracted on two indices (for example, a:£= O;iE;i 

where repeated subscripts imply summation over i = 1, 2, 3); En Es =fourth
order tensors of isothermal or isentropic (adiabatic) tangential moduli, which 
have different values for loading and unloading, c5e =field of linearized (small) 
strain increments associated with displacements c5q, and c52 'W.,. =work of the 
initial stresses a0 on the second-order parts c5e<2> of the finite strain increments c5e 
corresponding to c5q, that is, 

c52 'W.,. = J. a0 : c5e<2> dV0 (10.1.31) 
Vo 

The reason that the work a0 : c5e<2> must be included is that it is also second-order 
small, same as !c5a: c5e. On the other hand, the reason that we can write !c5a: c5e 
instead of !c5a: c5e is that c5a is small, so that the second-order part of c5e would 
contribute only to third-order work. An illustration and explanation of the work 
of c5t<2> was given in Sections 4.3 and 6.1. For general three-dimensional 
formulation, see Chapter 11. 

In the absence of thermal and inelastic effects, Equation 10.1.29 or 10.1.30 
must reduce to the potential-energy expressions given in Chapter 4, and indeed it 
does (e.g., Eq. 4.3.10). 
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When the strains C>t: and C>t:<2> are expressed in terms of C>q, C> 2"W'a must be 
quadratic in C>q. So we may further write C> 2"W'a = !C>qTKa C>q where Ka is the 
geometric stiffness matrix, which depends only on the initial stresses and the 
geometry of the structure. It is independent of the tangential moduli of the 
material, and for this reason it is also independent of the loading direction v. Its 
components are 

K~ = cf( ()2"W'a) 
'' aq; aqi 

(10.1.32) 

because C> 2"W'a =! E; Ei Kij(q;- q?)(qi- qf> with q;- q? = C>q;. 
Note that in stability analysis the calculation of C>fr (or C>f5 ) from C>q must be 

based on the equilibrium conditions for the deflected structure and must include 
the second-order effects of the initial forces f or the initial stresses o0 (we will 
illustrate that in Sec. 10.3). In view of the split of the work expressions in 
Equations 10.1.29 and 10.1.30, we may also write 

C>fr = [~.,{v) + K"] C>q C>fs = [~(v) + K"] C>q 
()2~ =! ()qT(~.,{v) + K"] ()q ()2CU = ! ()qT(~(v) + K"] ()q 

(10.1.33) 
(10.1.34) 

in which ~.,{v) and ~(v) are the stiffness matrices calculated from the isothermal 
or isentropic tangential moduli neglecting the second-order geometric effect of 
the initial stresses (or initial loads). (For details, see Eq. 11.8.8.) 

In the case of a single load P, we may also write C> 2"W'0 = P C>u<2> where C>u<2> is 
the second-order part of the load-point displacement due to C>q [for example, 
()u<2> =A./= shortening of a column due to the deflections w(x); see Sec. 4.3]. 

If the special case that o0 : C>t:<2> is negligible compared to C>o: C>e, we may 
neglect 62 "W'0 • The resulting equation can alternatively be justified also by the 
principle of virtual work, because Mr (or (jfs) are in equilibrium with 6or (or 
C>o5 ), while ()q is compatible with 6t:. However, the principle of virtual work in 
this form is inapplicable when the second-order geometric effects of finite strain 
are not negligible (and a correction due to the geometric stiffness matrix is 
required; see, e.g., Maier, 1971, and Maier and Drucker, 1973). 

Criterion of Stable State for the Case of Dead Loads 

Assume that all the loads are specified as constants, that is, dead loads. Many of 
the loads P; can, of course, be zero since this is a special case of dead loads. It is 
also admissible that some displacements are prescribed, in which case 6q; = 0 for 
these displacements. From Equations 10.1.14, 10.1.15, 10.1.19, and 10.1.20 we 
obtain 

1. for isothermal conditions (dT = 0): 

- T(A.S);n =A.~= !6f~ ()q 

2. For isentropic conditions (dS = 0): 

-T(A.S);n = A.CU = !6ff 6q 

(10.1.35) 

(10.1.36) 

Substituting this into Equation 10.1.5, the criterion of stable state is expressed in 
terms of the second-order work of the equilibrium reactions. This criterion may 
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be restated as follows. An equilibrium state of a structure is 

Stable if - T(dS)in = 11 'W =!6fT 6q = !6qTK(v) 6q > 0 for all vectors 6q 
Critical if- T(dS)in = d 'W =!6fT 6q = !6qTK(v) 6q = 0} 
Unstable if- T(dS)in = 11 'W = !MT 6q = !6qTK(v) 6q < 0 

for some vector 6q 

(10.1.37) 

in which we introduce the tangential stiffness matrix from Equation 10.1.21 or 
10.1.22; for isothermal conditions 6f = 6fn K = Kn d 'W = d~, while for 
isentropic conditions 6f = 6f5 , K = K5 , and d 'W = 11 OU. Thus, the state is stable if 
the second-order work of the reaction increments is positive definite. 

Note that the criterion of incremental work, which was stated for elastic 
structures in Section 4.9, is a special case of Equation 10.1.37. 

Consider now the special case of an elastic structure with a single dead load P, 
associated displacement q, and stiffness K. According to Equation 10.1.50, the 
entropy change of the structure-load system at a small deviation 6q away from 
the equilibrium state q = PI K is ( dS)in = - !K 6q2

/ T. One might at first have 
doubts since no entropy can be produced in an elastic structure. True, but we 
have a structure-load system. Since (dS)in = 0 characterizes changes that maintain 
thermodynamic equilibrium, (dS)in must be nonzero for changes away (or 
toward) the equilibrium state, even if the structure is elastic. 

The present stability criterion in terms of the work of equilibrium reactions 
was stated and rigorously proven in Bahnt (1988, 1989a, b). A vague justification 
with application to uniaxial strain softening was indicated in Bafant (1976, 1985). 
Also, the stability condition d'W>O was used by Maier (1971) for general 
discretized continuous solids, and by Maier, Zavelani, and Dotreppe (1973) for a 
beam with softening hinges. For the special case of elastoplastic structures and 
boundary conditions of fixed displacements, the foregoing stability criterion was 
given (without derivation) by Hill (1958). In his famous classical paper, he 
formulated this criterion in terms of incremental strains and stresses rather than 
displacements and reactions, and considered finite strains, which produce 
geometrically nonlinear effects. The stability criterion in terms of the work of the 
reaction increments on 6q; (Eq. 10.1.37) is, of course, valid even if geometrical 
nonlinearity is present. 

It should be noted that in practical calculations, especially in finite element 
codes, the work of the equilibrium reactions can usually be calculated easier and 
more efficiently than the work of incremental stresses. 

Extensions to Variable Loads 

Consider now that the loads P; are not constant (dead loads) but variable. An 
important point is that the variation of load is specified independently of the 
structure. For example, if the load (central force) is produced by attraction or 
repulsion between two electric charges or between two magnets, we have 
P; = a;/(r;- q;)2 where a;, r; are constants, or if the load is produced by 
hydrostatic pressure of a heavy liquid, we have P; = a;(r;- q;). The derivation of 
the stability criterion then proceeds similarly as before (Eqs. 10.1.14-10.1.20) 
except that a Taylor series expansion of the function P(q) must be introduced in 
Equation 10.1.20, that is, P; must be replaced by P~1 + 6P; with 6P; = 
~i [ aP;t aqi]0(qi- qJ) + · · · . Instead of Equations 10.1.21 and 10.1.22, integra-
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tion of Equation 10.1.20 (or a similar equation for aCU) then yields 

a~= lJ2~ = !lJf~ lJq- !lJPT lJq (10.1.38) 

(10.1.39) a lf.l = lJ20U = !lJf:f lJq- !lJPT lJq 

The equilibrium state is stable if a11' (for isothermal conditions) or aou (for 
isentropic conditions), as given by these equations, is positive for all lJq. 

Stability at Critical State 

At the first critical state, lJ211' or lJ2 CU is zero for some vector lJq and positive for 
all other vectors lJq. To decide whether this critical state is stable or unstable, one 
needs to keep the third-order, fourth-order, and possibly higher-order terms of 
the Taylor series expansion of fr(q) or f5 (q) in Equation 10.1.20, and the same 
for Q(P) in Equation 10.1.47. This yields expressions for lJ311' and lJ411' (or lJ3 CU 
and lJ4CU). Stability is decided by the positive definiteness of these expressions. If 
lJ311' (or lJ30U) is nonzero, the state cannot be stable (because lJ311' is always 
negative for some variations). The state is stable if lJ311' = 0 (or lJ30U = 0) and 
for all lJq, lJ4 11' > 0 (or lJ4 0U > 0). If lJ3 11' = lJ4 11' = 0, then the same could be said 
of lJ511' and lJ611', etc. 

Gibbs Free Energy and Enthalpy 

Gibbs free energy G and enthalpy H are thermodynamic generalizations of the 
complementary energy (see Sec. 4.2). For a structure, they may be defined as 

G = F- pT q = u- TS- pTq (10.1.40) 

H=U-PTq (10.1.41) 

in which the terms pT q implement Legendre transformations of the work terms 
(see Table 10.1.1). Differentiation and substitution of Equations 10.1.8 and 
10.1.9 yield 

in which 

dG = -dW* - S dT- T (dS);n 

dH = -dW* + T dS- T (dS);n 

dW* =qT dP 

(10.1.42) 

(10.1.43) 

(10.1.44) 

Table 10.1.1. Total Differentials of Basic Thermodynamic Functions of a Structure at 
Equilibrium Changes (boxed) and Legendre Transformations (circled) 

Isentropic Isothermal 

Work I dU=TdS+PTd•l-~ -ldF=-SdT+PTd•l 

1 1 1 
·------------------------~----------------~----------------~----. 

l l 
Complementary work I dH = T dS- .T dP 1-e- ldG = -s dT- .T dP I 
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a) 

P1pre 11.2 (a) Work and complementary work; (b) first and second variation of Gibbs 
free energy and of complementary work. 

Here W* = J qT dP =complementary work (cf. Sec. 4.2); see Fig. 10.2a. For 
equilibrium changes we have (dS);n = 0, and then G and F represent thermo
dynamic potentials. Their total (exact) differentials are dG = -qT dP- S dT, 
dH = -qT dP + T dS, and consequently G = G(P, T), H = H(P, S). Note also 
that, for ftuids, dW* =-V dp where p =hydrostatic pressure and V =volume of 
ftuid. 

Let qT, cas denote the displacements corresponding to P that maintain 
equilibrium of the structure and are calculated on the basis of the isothermal or 
isentropic material properties; and, if the function P(q) can be inverted, let 
Q = Q(P) denote the displacements corresponding to P according to the given 
law of applied forces (e.g. electromagnetic force). Similar to Equations 10.1.14 
and 10.1.15, it is again convenient to define the Gibbs free energy Cfi= G + W* 
and enthalpy 1t = H + W* of the structure-load system. Then, for increments 
preserving mechanical equilibrium (qr = Q, cas= Q) (but not necessarily thermal 
equilibrium), dCfi= dG + dW* = -qT dP- S dT- T(dS);n + qT dP, that is, dCfi= 
-S dT- T(dS);n· Similarly, d1t = T dS- T(dS);n· When thermodynamic equi
librium is disturbed only mechanically (qr ::¢: Q, q5 ::¢: Q) (but not thermally), we 
may write, according to Equations 10.1.42 and 10.1.43, dCfi=dG +dW* = 
-qT dP- S dT + QT dP and d1t= ... , that is, 

d'D= QT dP- q~dP at T = const. 
d1t= QT dP- qi dP at S = const. 

These equations are analogous to Equations 10.1.18 and 10.1.19. 

Stability Criteria Based on Complementary Work 

(10.1.45) 
(10.1.46) 

From Equations 10.1.45 and 10.1.46 we conclude that the important case of dead 
loads must be excluded from considerations of stability of equilibrium state based 
on Cfi or 1t. The reason that this case cannot be handled in terms of the 
complementary work is that if P does not depend on Q, the function P(Q) cannot 
be inverted. For the same reason, all the displacements qi for which there are no 
loads (~ = const. = 0) must be eliminated in advance by using equilibrium 
conditions. However, if det (dP/dQ) ::¢:0 (Fig. 10.2b) then the inverse functions 
Q = Q(P) do exist. In the equations that follow, there must be a variable load 
associated with every displacement. 

Consider now a change from the initial equilibrium state p0 to an adjacent 
state pO + {) P, which may but generally is not a state of mechanical equilibrium 
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(but thermal equilibrium is preserved). By Taylor series expansion, we obtain 
similarly to Equation 10.1.20 

J.
p0+c5P I.Ffl+c5P;{ 1 aQo 

,~.<fJ= [QT dP- qf{P) dP] = L Q? +-L _; (lj- PJ) + ... 
pO ; If 2 i alj 

0 1 ~ [aqr,]
0 

nO\ } - qr,- 2 ~ aP.. (lj- ~ il- . . . dP; 
I I 

(10.1.47) 

Integrating, neglecting all the terms of higher than second order, denoting 
~i [ aqrJ alj]0(1j- PJ) = 6P;, observing that q~ = Q? if the initial state is a 
compatible equilibrium state (Fig. 10.2b ), and noting that, according to Equation 
10.1.42, li <fJ = - T(!iS);n for isothermal conditions (dT = 0), we conclude (in 
analogy to Equation 10.1.37) that the structure is 

Stable if - T(!iS);n = li <fJ = l>2<fJ = ~[)pr l>Q- ~[)pr l>qr > 0 for all q 

Critical if - T(!iS);n = li <fJ = l>2 <fJ = ~[)pT 6Q- ~[)pr l>qr = 0} 
Unstable if - T(!iS);n = li <fJ = {)2<fJ = ~[)pr {)Q- ~[)pr l>qr < 0 for some q 

where 
(10.1.48) 

(10.1.49) 

Here Cr = isothermal tangential compliance matrix of the structure, which 
depends on direction v of loading. 

Now one difficulty with the use of <fJ becomes apparent. Because of the nature 
of the loading-unloading criteria for materials, direction v is the direction of the 
displacement vector 6qr;' and not the direction of 6P; that is used in Equation 
10.1.49 as the independent variable. Also note that for the cases of P; = 0 or 
P; = const. (dead loads), which we had to exclude from our analysis, we would 
have to consider l>Q; __,. oo for any l>P; * 0 in Equation 10.1.48 [because 
lim (dP;/dQ;) = 0 for deal loads]. (Other difficulties with the use of compliance 
matrices were discussed in Sec. 4.2.) 

Under isentropic conditions, a similar theorem holds for 62 'f/e. Its derivatiion 
proceeds similarly to Equations 10.1.45 to 10.1.49, with <fJ and subscript T being 
replaced by 'f/e and subscript S. 

Due to the limitation excluding P; = const., the Gibbs free energy and 
enthalpy (which are widely used in chemical engineering and heat machines) are 
of very limited usefulness for stability analysis of structures and have not been 
used so far. In the next section, however, we will find them useful to deal with the 
stability of paths. 

Structures with a Single Load or a Single Controlled Displacement 

Stability of structures with a single load f or a single controlled displacement q 
can be decided on the basis of tangential stiffness K = dP I dq or compliance 
C = 1/ K. They have the value K, or C, for loading of the structure (dq > 0) and 
the value Ku or Cu for unloading of the structure (dq s; 0). (Note: some authors 
prefer to define loading as dq 2:: 0, although practically the difference is 
inconsequential.) The case dq s; 0 does not imply the material to be unloading 
everywhere in the structure; there can be a combination of loading and unloading 
of the material in different parts of the structure. 



648 INELASnC, DAMAGE, AND FRACTURE THEORIES 

b) Displacement control 

q q 

Figure 10.3 Stability of structures with (a) a single load and (b) a single controlled 
displacement. 

Let us assume isothermal conditions, in which case K,.. and K, have the 
isothermal values. If the load is controlled, q is the independent variable and the 
governing thermodynamic function is the Helmholtz free energy, ~. Thus we 
have, according to Eq. 10.1.35, 

{ ~K, tJq2 
-T(~S);n = ~~ = lK {J 2 

2 " q 

if {Jq ;::: 0 (loading) 
if tJq < 0 (unloading) 

(10.1.50) 

Stability is assured if this is positive definite, that is, if both K, and K,.. are 
positive. It follows that, for the normal unloading behavior (see points 1, 2, and 3 
in Fig. 10.3a), inelastic structures under a single controlled load are stable in the 
prepeak hardening regime and unstable in the postpeak softening regime. Note 
that the actual movement of the state point (q, P) is along the horizontal dashed 
line through point 1, 2, or 3 in Figure 10.3a, which represents a path away from 
equilibrium. The lines of slopes K, and K,.. characterize the equilibrium responses 
that cannot happen under the constraint P = const. 

If the displacement is controlled, one must use load P (in fact, a reaction) as 
the independent variable. Therefore, the governing thermodynamic function is 
the Gibbs free energy, <D. Thus we have, according to Equation 10.1.48, 

(without loading) 
(with unloading) 

(10.1.51) 

This equation is applicable only in the postpeak softening regime (points 5 and 6 
in Fig. 10.3b) and indicates that the structure is stable if both C, and C,.. are 
negative as illustrated at point 5 in Figure 10.3b, and unstable if C,.. is positive, as 
illustrated at point 6 in Figure 10.3b. The latter case (positive C,..) represents 
snapback instability (Sec. 4.8). 

The reason that Equation 10.1.51 cannot be applied to the prepeak hardening 
regime is that a structure under displacement control has one degree of freedom 
less than the same structure under load control; see Section 4.8. Therefore, 
instability can occur only due to internal degrees of freedom, which in fact are the 
cause of the difference between C, and C,... At softening states (points 5 and 6), 
the structure does have an internal degree of freedom, manifested by the 
existence of two slopes C, and C,... But at hardening states (point 4), the structure 
has no degree of freedom if the displacement is controlled. (This is because 
internal equilibrium of the structure is implied in the use of C, and C,...) Hence, 
the state remains fixed (a change ~ <D cannot occur), which means the structure is 
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stable. We will clarify this behavior when we analyze a strain-softening bar taking 
strain localization due to internal degrees of freedom actually into consideration 
(Sec. 13.2). 

The foregoing conclusions also apply to structures with many loads P; and 
many associated displacements q; (i = 1, ... , n) if all the loads depend on a 
single load parameter A. and all the displacements depend on a single displace
ment parameter p. 

Summary 

1. Thermodynamic stability analysis requires the given inelastic structure to 
be replaced by tangentially equivalent elastic structures applicable to 
various sectors or cones of loading directions. 

2. An equilibrium state is stable if the internally produced entropy increment 
of the structure-load system is negative for all possible deviations. 

3. At isothermal (isentropic) conditions, a state is stable if the second 
variation of the Helmholtz free energy (total energy) of the structure-load 
system is positive for all possible deviations. For dead loads, this second 
variation is equal to the (isothermal or isentropic) work of the equilibrium 
reaction increments on the generalized displacement increments. 

4. The tangential (isothermal or isentropic) stiffness matrix may be, but need 
not be, symmetric. But even if it is symmetric it does not guarantee 
incremental path independence and existence of an incremental potential. 
The reason: dependence of this matrix on the direction of the vector of 
generalized displacement increments. 

5. Inelastic structures under a single controlled load are stable if the 
load-deflection curve has a positive slope (hardening), and unstable if it has 
a negative slope (softening). Under displacement control, they are stable 
except if a snapback path exists. 

Problems 

10.1.1 Consider a slow displacement fJq of a spring of isothermal stiffness KT 
away from an equilibrium state under a dead load, and show that for the 
spring-load system (~S)in = -KT(fJq)2 /2T (see second paragraph below Eq. 
10.1.37). 

10.1.2 Considering elastic structures, derive the principle of minimum potential 
energy from the second law of thermodynamics and distinguish between 
isothermal and isentropic (adiabatic) elastic constants. 

10.1.3 Prove the stability criterion for variable loads (Eq. 10.1.38 or 10.1.39) in 
full detail. 

10.1.4 Mechanical (force) equilibrium is a special case of thermodynamic 
equilibrium. Therefore, it must be possible to derive the principle of virtual 
work from the second law of thermodynamics. Show this derivation. (Note: 
The condition of min ~ or min au is equivalent to the second law. One must 
distinguish isothermal and isentropic conditions.) 

10.1.5 The points of the structure at which there is a fixed support need not be 
included in the second-order work sums. However, the points at which there 
is no applied load must be included, because a nonzero reaction may be 
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b~p 

~~· 
Figure 10.4 (a) Redundant internal forces; (b) rigid-bar column with elastoplastic hinge. 

required to equilibrate some vector <5q;. Explain it by an example of some 
structure (one example is 6ft for Shanley's column in Sec. 10.3). 

10.1.6 The redundant internal forces Xk (k = 1, ... , m) in a structure (Fig. 
10.4a) can be determined from the condition of stationary value of the 
complementary energy W*, that is, <5W* (where W* represents either rJ or 
:1{). However, the second-order work of <5Xk (Eq. 10.1.49) has nothing to do 
with stability of the given structure. Explain why. (Note that the work is done 
on the relative displacements associated with Xk in the primary structure; 
these displacements are zero for the actually given structure, which represents 
the conditions of compatibility. However, the second-order work of <5Xk 
would determine stability of the primary structure, if that were the question.) 

10.1. 7 Apply the present stability criterion to an imperfect rigid-bar column (Fig. 
10.4b) with an elastoplastic hinge assumed to be characterized by the equation 
dM = C( 8) d 8 where M, 8 = moment and rotation in the hinge, C( 8) = 
C0e-k<B-Bo> where C0 , k =constants, and 8 = 80 =initial inclination at P = 0. 
Determine the range of P for which the column is stable. 

10.1.8 Derive the stability criterion for the critical state assuming that <52~ = 
<53~=0 and <54~*0. 

10.2 THERMODYNAMIC CRITERIA OF STABLE PATH 

In contrast to elasticity, for inelastic structures it can happen that, after a 
bifurcation of the equilibrium path, the states on all the postbifurcation branches 
are stable. So is the choice of the branch left to chance? That would be 
philosophically unacceptable. "The god does not play dice," (except on the 
subatomic scale), as Albert Einstein once quipped. There must be some 
fundamental law that determines the path that will actually be followed. Such a 
law is provided by thermodynamics. In this section (following Bafant, 1987a, 1988, 
1989a, b) we will present the derivation of the thermodynamic criterion of stable 
path. Its application will be illustrated in Section 10.3. 

One necessary condition for a stable path is that it must consist entirely of 
stable states. There exists a second necessary condition that is provided by the 
second law of thermodynamics. However, the form of the second law of 
thermodynamics stated in Equation 10.1.4 or 10.1.5 is not quite pertinent. We 
will need another form of the second law (Guggenheim, 1959), which was stated 
in 1875 (in the context of chemical thermodynamics) by Willard Gibbs: Every 
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system approaches equilibrium in such a manner that 

L\Q 
(A.S)· = A.S -- = max 

m T (10.2.1) 

among all reachable states. For adiabatic conditions (A.Q = 0), this reduces to the 
condition A.S = max. 

Equation 10.2.1, which is applicable only to states infinitely close to 
thermodynamic equilibrium, should not be confused with the principle of 
maximum entropy production. That principle is used in irreversible (nonequi
librium) thermodynamics for processes at which the state is not close to 
equilibrium. It is a different principle; see also Section 10.3. 

Path Stability for Basic Types of Control 

An equilibrium path of a structure represents a series of infinitesimal deviations 
from equilibrium and restorations of equilibrium. Let us consider for an arbitrary 
(irreversible) inelastic structure a small (infinitesimal) loading step along the 
equilibrium path a (a = 1 or 2) that starts at the bifurcation state A 
(characterized by t', q0

) and ends at another state Con path a (Fig. 10.5). To be 
able to apply Equation 10.2.1, we decompose this step into two substeps, the first 
one (I) away from the initial equilibrium state A and ending at some intermediate 
nonequilibrium state B, and the second one (II) toward a new equilibrium state, 
ending on one of the equilibrium paths at state C; see Figure 10.5 (this 
decomposition was introduced in Bafant, 1985). Since these two substeps are 
intended as approximations for the actual equilibrium path, matrix K(v) must be 
evaluated in both substeps on the basis of the actual direction v<a> of the 
equilibrium path, and not on the basis of the directions of the two substeps. 

The displacements or forces that are controlled are denoted as qm, fm 
(m = 1, 2, ... , N; N s n ). If q m is controlled (which is called displacement 
control), we consider ~qm to be changed in the first substep (Fig. 10.5a) while fm 
is kept constant, which, of course, destroys equilibrium. Displacements ~qm are 
kept constant during the second substep in which ~fm is allowed to change so as to 
regain equilibrium, that is, reaches a state on one of the equilibrium paths. If fm is 
controlled (which is called load control), we consider ~fm to be changed in the 
first substep (Fig. 10.5b) while qm is frozen (constant), which destroys equi
librium. Forces ~fm are kept constant during the second substep in which ~qm is 

b) 

Figure 10.5 Decomposition of a loading step along an equilibrium path after bifurcation: 
(a) for displacement control, (b) for load control. 
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allowed to change so as to restore equilibrium. We will separately consider four 
basic controls: 

la. First we consider displacement control (that is, c5q prescribed, Fig. 10.5a) 
and isothermal conditions (dT = 0). Then c5q is the same for all the paths a but 
the equilibrium force increments c5t<a>T are different. The increment of the 
Helmholtz free energy of the structure over the entire step happens at mechanical 
equilibrium and dT = 0, and so (according to Eq. 10.1.10) we have, up to 
second-order terms, 

(10.2.2) 

Here c5t< ... > is the equilibrium reaction change; a.Fj = fr c5q =increment ofF over 
the first substep, which is the same for both paths a= 1, 2, and aF~r> = 
~c5f(«lr c5q = c52p<a> = c52'JV'<«> =increment ofF in the second substep in which the 
qm-values are constant, while the forces fm change by c5J<,:> to find new 
equilibrium on path a; c52'Jf'<«l is the second-order work along path a. According 
to Equation 10.1.9 with dT = 0, we have for the second substep (in which c5q = 0) 
aF~r> = - T(aS);n· The second law of thermodynamics (Eq. 10.2.1) indicates that 
the structure will approach the equilibrium state that maximizes aS;n, that is, 
minimizes aF~r>. Hence, the path a that actually occurs (stable path) is that for 
which 

- T(aS);n = c52'Jf'<«l = ~c5f<«lT c5q = ~c5qTK(a) c5q =min 
(a) 

(10.2.3) 

(if q is controlled). K<al is the tangential stiffness matrix Kr for path a, which must 
be based on isothermal material properties. It is again important to keep in mind 
that K<a> is considered to represent the stiffness matrix of a tangentially 
equivalent elastic structure (recall our discussion below Eqs. 10.1.6-10.1.7). 

lb. Next consider displacement control ( c5qm prescribed, Fig. 10.5a) and 
isentropic conditions (dS = 0). The increment of the total energy of the structure 
over the entire step occurs while mechanical equilibrium is maintained, and so 
(according to Eq. 10.1.11) we have 

au= (f + ~c5t< ... >f c5q =au,+ auir> (10.2.4) 

Here au/= fT c5q, which is the same for both paths a, and au~r> = ~c5f<«lT c5q = 
c52'JV'<«l =increment of U in the second substep in which the qm-values are 
constant while the fm-values change by c5J<,:> to find new equilibrium on path a. 
According to Equation 10.1.8 with dS = 0, we have for the second substep (in 
which c5q = 0) au~r> = - T(aS);n· The second law of thermodynamics indicates 
that, on approach to equilibrium, au~r> must be minimized. Hence, the path that 
occurs (stable path) is again determined by Equation 10.2.3, in which however 
K<al now represents the tangential stiffness matrix Ks that must be based on 
isentropic rather than isothermal material properties. 

2a. Futhermore, consider now load control (Fig. 10.5b) and isothermal 
conditions. The proper thermodynamic function now is Gibbs' free energy, which 
is defined by Equation 10.1.40. The increment of G of the structure over the 
entire step occurs while mechanical equilibrium is maintained, and so (according 
to Eq. 10.1.45 without loads) we have, up to second-order terms and for both 
substeps combined, 

(10.2.5) 
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Here L\G1 =-E qm lJim =increment of Gover the first substep, which is the same 
for both paths a= 1, 2, and aGii> = !q<<>Y lJf= -lJ2 'W*<a> =increment of Gover 
the second substep in which the 1m-values are constant while the qm-values are 
allowed to change by lJq<,::> so as to restore equilibrium by reaching path a; 
lJ2 'W*<a> is the second-order complementary work along path a. According to 
Equation 10.1.42 with dT = 0, we have for the second substep (in which {Jf= 0) 
aGii>= -T(L\S)in· Based on the second law of thermodynamics (Eq. 10.2.1), 
the approach to the new equilibrium state must maximize (aS)in• that is, 
minimize aGli>. Hence, the path a that actually occurs (stable path) is that for 
which 

T(L\S)in = lJ2 'W*(«) = !lJq<«>r df= !lJfT lJq<«> = !lJfTc<a> lJf= Max (10.2.6) 
(«) 

(provided that lm is controlled). c<cr> is then x n tangential compliance matrix of 
the structure for path a, which must be based on isothermal material properties. 
Note that, in contrast to Equation 10.2.3, the path label (a) now appears with lJq 
rather than {Jf. 

2b. Finally, consider load control (Fig. 10.5b) and isentropic conditions 
(dS = 0). The proper thermodynamic function is now the enthalpy, H, which is 
defined by Equation 10.1.41. The increment of H of the structure over the entire 
step occurs while mechanical equilibrium is maintained, and so (according to Eq. 
10.1.46 without loads) we have, up to second-order terms and for both substeps 
combined, 

(10.2.7) 

Here L\H1 = -qr {Jf= increment of enthalpy Hover the first substep, which is the 
same for both paths a= 1, 2; and aHii> = -ilJq<«)T {Jf= -lJ2 'W*<«> =increment 
of Hover the second substep in which the 1m-values are constant (Fig. 10.5b) 
while qm are allowed to change so as to restore equilibrium. According to 
Equation 10.1.43 with dS = 0, we have for the second substep (in which lJf= 0) 
aHii>= -T(aS)in· In view of the second law of thermodynamics (Eq. 10.2.1), 
the approach to new equilbrium must maximize (aS)in• that is, minimize aHii>. 
Hence, the path that occurs (stable path) is again that indicated by Equation 
10.2.6, in which however c<cr> must be based on isentropic rather than isothermal 
material properties. 

Mixed Controls of Loads and Displacements 

In general, it is possible that the load and displacement controls are mixed, that 
is, some loads and some displacements are controlled. A more general path 
stability condition is then needed. Consider that displacements q and (non
associated) loads f are controlled. The force and displacement responses, which 
are different for various paths a, are f<«> and q<«>. Note that in the present 
notation column matrix f does not contain all the lm components of the structure, 
nor does q contain all the qm components; the components of q and q<«> are 
different, and so are the components off and f<«>. 

The simplest way to treat this case is to imagine that for mixed loading each 
step {Jq and (jf consists of two simple infinitesimal steps; in the first step, only the 
components of {Jq are changed, and in the second step, only the components of 
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c5f are changed. During the first step, according to Equation 10.2.3, we have 

T(~S);n = -!c5f<a>T c5q (10.2.8) 

and in the second step, according to Equation 10.2.6, 

T(~S);n = !c5fr c5q<a> (10.2.9) 

For both steps combined into a single infinitesimal step, the T(~S);n values from 
Equations 10.2.8 and 10.2.9 must be summed. Therefore, in view of Equation 
10.2.1, the path a that is stable under mixed controls is that for which 

T(~S);n = !c5q(a)T c5f- !c5t<a)T c5q =max 
(a) 

(10.2.10) 

This result can also be derived by a direct thermodynamic argument. We 
consider isothermal conditions and introduce a semicomplementary thermo
dynamic function Z that involves the complementary work for t<"'> but the actual 
work for q<"'>. The function is obtained by Legendre transformation of f: 
Z = F- rr q<"'>. If only the displacements are controlled, there is no term with 
q<"'>, and then Z = F =Helmholtz free energy. If only the loads are controlled, 
q<a> comprises all the loads, and then Z = G =Gibbs' free energy. 
Differentiating, dZ = dF - fr dq<a> - q<a>r df, substituting dF = -S dT + 
dW, dW = (<a>r dq + fT dq<a> (work of all reactions and loads), and integrating 
from f, q0 to f + c5f, q0 + c5q we obtain 

~z =-I s<a> dT +I ra>T dq- I q<a)T df (10.2.11) 

where t<"'> and q<a> vary to maintain equilibrium, t<"'> = t<;>, q<"'> = qt;>. Expanding 
t<"'> and q<a> into a Taylor series about f and q0, integrating, and neglecting the 
terms of higher than second order, we get 

in which 

~z = -I s<a> dT + ~z. + ~Zu 

~Zu = fT c5q- qoT c5f 

~z11 = !c5fa)T c5q _ !c5q(a)T c5f 

(10.2.12) 

(10.2.13) 

(10.2.14) 

On the other hand, if the same changes of controlled variables c5q and c5f are 
carried out at constant f = f (dead loads) and constant displacements q = q0

, we 
have a nonequilibrium change, for which the term - T(~S);n must be added to dF 
and dZ in the preceding derivation (cf. Eq. 10.1.16). Hence, 

~z = -I s<a> dT + fT c5q- q0T c5f- T(~S);n (10.2.15) 

Here f and q0 are the same for all paths a because we consider increments from 
a common bifurcation point. Subtracting Equation 10.2.15 from Equation 10.2.12 
with Equations 10.2.13 and 10.2.14, we finally obtain T(~S);n = -~Z11 , which 
yields Equation 10.2.10. 

The linear terms in Equations 10.2.12 to 10.2.14 and Equation 10.2.15 are 
identical. Therefore, the internal entropy change during the first substep, in 
which the controlled variables q; and h are changed while their responses/; and qi 
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are kept constant (frozen), is the same for each path a. So the differences in 
internal entropy among paths a= 1, 2, ... arise only during the second substep 
in which the controlled variables q; and h are kept constant while f~Ot> and qJOt> 
change to find an equilibrium state on one of the paths a. Therefore, the 
equation T(~S)in = -~Z11 , which corresponds to the second substep, represents 
the internal entropy change on approach to an equilibrium state. According to 
the second law of thermodynamics (Eq. 10.2.1) this entropy change must be 
maximized. This leads to the general path stability condition in Equation 10.2.10. 

A similar argument shows that this is also true when the total entropy S is 
constant (isentropic conditions). To derive this result one needs to introduce, 
instead of Z, the semicomplementary thermodynamic function Z* = U- rr q<Ot> 
that differs from Z only by the thermal term. 

Note that the previously stated path stability conditions for the cases when 
only the displacements are controlled or only the loads are controlled result as 
special cases of Equation 10.2.10. 

The general criteria of stable path in Equations 10.2.3, 10.2.6, and 10.2.10 
were derived from thermodynamics by Bafant (1988, 1989a, b) (based on a 1987 
reporc). A sketch of the proof for displacement control appeared in Bafant 
(1985). The special criterion for displacement control in Equation 10.2.3 has been 
used as a postulate without thermodynamic proof by Maier and Zavelani (1970), 
Maier, Zavelani, and Dotreppe (1973), Bafant (1976), Nguyen (1984, 1987), 
Petryk (1985a, b), Nguyen and Stolz (1986), Stolz (1989); and a simplified 
justification based on the second law of thermodynamics was also given by Bafant 
(1976), Nemat-Nasser (1979), Nemat-Nasser, Sumi, and Keer (1980) and others. 

The Case of Equal (AS)1n for Two Branches 

In the special case that the T(~S)in values at bifurcation load P, are equal for 
both bifurcation branches, there are two ways to select the correct path: (1) 
Either one must calculate the higher-order term in the work terms, or (2) one 
considers a bifurcation load P, + ~p where ~p is infinitesimal, and if T(~S)in is 
larger for one of the branches, this is the branch that occurs for ~p-+ 0 (this 
actually happens for the Shanley column in Sec. 10.3). However, in fhe case of 
symmetry, the branch that is followed is decided by random imperfections (e.g., 
whether the column in Sec. 10.3 deflects right or left). 

Second-Order Work of Stresses along the Path 

In view of Equations 10.1.29 and 10.1.30 representing the principle of conserva
tion of energy, we may alternatively express the second-order work along path a 
as follows: 

«52'Jr<Ot) = !«5f<Ot>r «5q = L !«5a<Ot>: «5e<«> dV + !«5qTKo «5q (10.2.16) 

in which K0 =the geometric stiffness matrix introduced in Equation 10.1.32 (for 
more detail, see Chapter 11); «5f<"'> = «5f;> for isothermal changes, «5f<"'> = «5~"'> 
for isentropic (adiabatic) changes; «5a<«>, «5e(Ot) =stress and small strain incre
ments along path a. However, a similar expression for the complementary 
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second-order work c52'W*<a> generally does not exist because 'W* must be 
expressed in terms of the compliance tensor but the compliance corresponding to 
K 0 need not exist, that is, K 0 may be, and typically is, singular and cannot be 
inverted. In the special case that nonlinear geometric effects are absent, K 0 

= 0, 
and then 

()Z'W*(a) = ~(jfT c')q(«) = L ~c5o<«>: c5e<«> dV (10.2.17) 

Also in that case, Equation 10.2.17, lacking the nonlinear geometric term, can 
alternatively be obtained from the principle of virtual work because c5f is in 
equilibrium with c5o(x) and c5e(x) is compatible with c5q. 

Note that in Equations 10.2.16 and 10.2.17, the path label (a) appears with 
both c5o and c5e, but only with one of the variables c5q and c5f. In finite element 
programs, it is generally much more efficient to calculate c5fr c5q than the volume 
integrals. 

Structures with a Single Load or a Single Controlled Displacement 

In this case the structural response is characterized by tangential stiffness 
K = df /dq (whose isothermal value K = Kr should be distinguished from its 
isentropic value K = Ks). Expressing the second-order work and second-order 
complementary work, we have for the stable path the conditions 

(10.2.18) 

(10.2.19) 

From this the following theorem ensues: 

Theorem 10.2.1 If the bifurcation state is stable, the stable path is that for 
which the tangential stiffness K<a> is minimum regardless of whether the 
displacement or the load is controlled. 

This theorem holds not only for K<a> > 0 (hardening) but also for K<a>-+ 0 
(perfect plasticity) and K<a> < 0 (softening). Note that for K<a> < 0 the load 
control is excluded because such an initial state is unstable. For example, the 
stable paths, as indicated by this theorem, are the lower ones in Figure 10.5, for 
both displacement control (left) and load control (right). 

For uniaxial test specimens, this theorem implies that the strain must start to 
localize right after the peak stress point, even though nonlocalized (uniform) 
strain states in the softening range may be stable way beyond the peak (as proven 
in Bafant, 1976). For more details, see Section 13.2. 

Stable States on Postbifurcation Branches 

At the outset we alluded to the following theorem (Bafant, 1987a): 

Theorem 10.2.2 Let the main (primary, symmetric) path be along the 
direction of axis q,. If the structure is elastic, no secondary postbifurcation 
branches that are not initially orthogonal to axis q, can consist of stable states. 
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Figure 10.6 Path dependence of post bifurcation equilibrium states. 

But if the structure is inelastic, both such branches can consist of stable states. 
This difference in behavior is due to the dependence of the tangential stiffness 
matrix on the direction of c5q. 

Proof Consider isothermal conditions (in the case of isentropic conditions, 
simply replace ~by 0U in all that follows). At point 0, at which the Helmholtz free 
energy is ~ = $00, the equilibrium path in the space of q., . . . , q n bifurcates into 
paths a= 1 and 2 leading toward adjacent (infinitely close) points 1 and 2 
corresponding to the same load; see Figure 10.6. Moving along these paths, the 
values of~ at points 1 and 2 are ~ and ~2• If point 1 is reached along path 021, 
the value of~ at point 1 is ~2>. If point 2 is reached along path 012, the value of 
~ at point 2 is ~1>. Stability at point 1 requires that a~12 = ~t)- ~1 > 0. 
Stability at point 2 requires that a~21 = ~2> - ~2 > 0. 

If the structure is elastic, function~ is path-independent, and so ~2> =~and 
~1> = ~. Then d~2 = ~- ~ and d~21 = ~- ~2· So d~2 =-a~ •. 
Obviously, either d~2 or d~21 must be non positive, and so either state 1 or state 
2 must be unstable. 

If, however, the structure is not elastic, ~ is path-dependent (see our 
discussion of path dependence in Sec. 10.1 in relation to Fig. 10.1f). Therefore, 
$11> need not be equal to ~. and ~2> need not be equal to ~1 • Consequently, 
d~2 need not be equal to -d~21 • Clearly, both d~2 and d~21 can now be 
positive. This means that states 1 and 2 in Fig. 10.6 can both be stable (this will 
be illustrated by an example in Sec. 10.3, particularly paths 13 and 123 in Fig. 
10.8c). 

The foregoing argument, however, is invalid if state 2 of an elastic structure 
lies on a branch that, as illustrated in Figure 10.6b, starts in a direction 
orthogonal to the main path (axis q2) at the bifurcation point (this hap~ns, e.g., 
in symmetric bifurcation of perfect columns, Chaps. 4 and 8). Then line 02 of Fig. 
10.6a tends to a horizontal, and so point 2 is no longer infinitely close to point 1; 
then d~12 corresponds to a finite segment 12 (even if 01 is infinitesimal) and so it 
need not be positive if state 1 is stable; similarly a~21 need not be positive if state 
2 is stable. Therefore, this case must be excepted. Q.E.D. 

The catastrophy theory (Sec. 4.7), as general as it is purported to be, is 
nevertheless rather limited. It deals only with path-independent systems for which 
the behavior near the bifurcation point is characterized by a single potential 
surface. In its present form, the catastrophe theory does not apply to structures 
that are inelastic (i.e., path-dependent). 
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further Comments and Conclusion 

There is some philosophical question whether the present path stability criterion 
must always be exactly followed. An analogous example from physics is the 
condensation of a vapor on cooling (described, e.g., by van der Waals' equation 
for gases). According to the condition (~S);n =max, condensation into a liquid 
would have to begin right after the critical point of vapor-liquid equilibrium is 
passed. However, as is well known, the start of condensation requires nucleation 
of liquid droplets, and if nucleating inhomogeneities are not present, it is in fact 
possible to get a supercooled vapor for which the Gibbs free energy per unit mass 
is lower than that for a mixture of vapor and liquid [that is, (~S);n per unit mass 
is higher]. In this light, we can see that it might be possible for a structure to start 
along some path for which (~S);n is not maximum. However, such a behavior 
would, of course, be metastable (since a path toward a higher entropy would exist 
nearby), and could not be expected to last in the presence of small imperfections 
or any type of small disturbances (which are analogous to nucleation of liquid 
droplets). 

To sum up, path stability is decided by the second-order work along the 
equilibrium path. For displacement control, this work must be minimized, while 
for load control it must be maximized. 

We will relegate further discussion of the path stability concept and 
bifurcations until an example will have been presented in the next section. 

Problems 

10.2.1 If the loads are not dead loads, the condition of stability of state acquires 
an additional second-order term due to the load variation (Eq. 10.1.38). 
Consider that the load control is affected by changing the attraction force 
between two electromagnets and determine whether the condition of path 
stability must also be modified. 

10.2.2 How is a stable path to be decided if there exist two paths along which 
62'W = 0 (all the states being stable)? 

10.3 APPLICATION TO ELASTOPLASTIC COLUMNS AND 
BROADER IMPLICATIONS 

To illustrate the criteria of stable states established in the previous section, let us 
now study (following Bafant, 1987a, 1988, 1989a, b) again the idealized column 
from Figure 8. 7 that was considered in the epoch-making paper by Shanley 
(1947). Equilibrium of this column was analyzed in Section 8.1. The column (Fig. 
10.7) is pin-ended and consists of two rigid bars of lengths 1/2, which are 
connected by a very short elastoplastic link (point hinge) of length h « I and 
width h, having an ideal 1-beam cross section of area A. Before loading, the 
column is perfectly straight. The lateral deflection and the axial displacement at 
the load point (positive if shortening) are denoted as q1 and q2 , respectively. The 
rotation of the rigid bars, assumed to be small, is MJ = 2lJq 1/l. The column is 
loaded by an axial centric load P (positive if compressive). The initial equilibrium 
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Figure 10.7 Shanley's elastoplastic column. 
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under load P = P0 at zero lateral deflection is imagined to be disturbed by raising 
the axial load to P = P0 + 6/2 and applying a small lateral load 6/1• 

Loading-Unloading Combinations and Equilibrium Paths 

The incremental moduli for loading and unloading are denoted as E1 and Eu (Fig. 
10.7a). These moduli have different values for isothermal and isentropic 
(adiabatic) deformations. E1 is called the tangential modulus (although Eu has the 
meaning of tangential modulus for unloading). Always E1 < Eu, except when the 
material is elastic, in which case E1 = Eu. E1 is a given function of the initial 
uniform stress a = a 1 = a 2 = -PI A. It is convenient to express the moduli at the 
left and right faces as E 1 = qE1 and E2 = 1]l;E1 and define the nondimensional 
displacements X = 6q tfl and Y = 6q2/2h. The force variables associated with X 
and Y by work are fx = I 6ft and fy = 2h 6/z. Using the expressions for small 
(linearized) strains at the left and right flanges: 

6qz 6qz 
6e1 = -68 -h= -2(X + Y) 6e2 = 68 -h= 2(X- Y) (10.3.1) 

one may obtain for buckling to the right (X > 0) the following loading-unloading 
criteria (Fig. 10. 7e ): 

1) For Y >X (loading only): l;=l 1]=1 

2) for -X :s; Y :s; X (loading-unloading): lg = lgu 1]=1 (10.3.2) 

3) For Y <-X (unloading only): !;=1 1J = lgu 

where !;" = Eul E1• The values of !; and 1J characterize the ranges of directions v 
introduced in Section 10.1. The dependence on !; and 1J is a dependence on v. 

Based on the incremental stresses 6a1 = E 1 6e 1 and 6a2 = E 2 6ez at the left 
and right flanges, the moment and axial conditions of equilibrium at the midspan 
lead, for buckling to the right, to the equations: 

[ 

2Po 

{ 
I {)ft } = 2 P.l 1 + !; - P. 

2h 6f 1J I 1J I 

'J2 1-l; 
1-l;]{ ~} 
1 +!; 

(10.3.3) 

in which P, = E
1
Ah/l =Shanley's tangent modulus (see Sec. 8.1). (Note that for 

loading only, !; = 1J = 1, the determinant of this equation vanishes if Po= P,.) If 
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Figure 10.8 Bifurcations of equilibrium paths. 

6h. = 0 (P = const.) and 6ft= 0 (i.e., if Eqs. 10.3.3 are homogeneous), then the 
only nonzero solution of Equations 10.3.3 is P0 = 2;uP,I(;u + 1) = Pr. Load Pr 
represents the reduced modulus load of Engesser and von Karman (Sec. 8.1), at 
which there is neutral equilibrium (Fig. 10.8a). 

For a straight segment of the a-E diagram, E,, P,, and Pr are constant. When 
E, depends on a (curved a-E diagram), P, and Pr depend on ao= -PIA through 
E,(ao)· 

As shown in Section 8.1, Equations 10.3.3 for 6/1 = 0 permit more than one eq
uilibrium path. One path, called the primary (or main) path or path 1 (Fig. 10.8), 
is characterized by zero deflection and ; = rJ = 1: 

x<1> = o 6/~1) = 2P,(~)y<I> (10.3.4) 

For P0 -+ P,, however, x<1> is arbitrary since the matrix of Equations 10.3.3 
becomes singular (but x<1> < y< 1> because ; = 1). Another path, called the 
secondary path or path 2 (Fig. 10.8), is characterized by positive deflection (at 
6ft = 0), rJ = 1 and ; > 1. For this path Equations 10.3.3 yield 

X(2)= ;u-1 y(2) 6f~2)=P,/[4;uP,-2(;u+l)Po]y<2> (10.3.5) 
;u + 1 - 2Po/ P, h ( ;u + 1 )P, - 2Po 

The superscripts (1) and (2) refer to paths 1 and 2. Path 2 according to Equations 
10.3.5 is possible only if ; > 1, and ; > 1 is possible only if P0 ~ P, (Sec. 8.1). 
Since the solutions in Equations 10.3.4 and 10.3.5 exist for each point P0 ~ P, 
(solid curves in Fig. 10.8a), the primary path for P ~ P, represents a continuous 
sequence of bifurcation points. The first bifurcation occurs at P0 = P,, as shown by 
Shanley (Fig. 10.8a). Note that for P0 = P, we have y<21/X<2> = 1, that is, the 
secondary path starts along the boundary of the loading-only sector in the (X, Y) 
plane. 

Second-Order Work 

According to the preceding section (Sec. 10.1), analysis of stability necessitates 
that we calculate the second-order incremental work 62'W of small equilibrium 
forces 6/1 and 6h. on arbitrary small incremental displacements 6q 1 and 6q2. We 
have 62'W = !( 6[1 6q 1 + 6/2 6q2), and substitution of Equations 10.3.3 provides, 
after some algebraic rearrangements, 

62'W(X, Y) = ;~'~1 { [(; + 1)Y- (;- 1) IXUZ + 4; [ 1- (;2;;,~Po ]xz} (10.3.6) 
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The absolute value lXI is introduced here in order to make Equation 10.3.6 valid 
for buckling to both right and left. 

As indicated in Section 10.1, 62 'W"(X, Y) can also be calculated as the work of 
stresses instead of reactions (which is the procedure we favored in Chaps. 4-7). 
According to Equation 10.1.29 or 10.1.30, we have 

2 h(A) 2 6 'W" = 2 2 ( 6u1 6e1 + 6u2 6e2) + 6 'W"0 (10.3. 7) 

in which 

(10.3.8) 

Here u1, u2 , e1, e2 =stresses and small (linearized) strain in the left and right 
flanges of the elastoplastic link, and &/ = /(1 - cos 68) = /( 68)2 /2 = 2/X2 = axial 
length change of the column due to lateral deflection, which is second-order 
small. It may be checked that Equation 10.3.7 yields for 62 'W" the same 
expression as Equation 10.3.6. Also note that since 62 'W"0 = -2P0/X2

, the 
geometric stiffness matrix K 0 with respect to variables X and Y has the 
components Kf1 = -4P01, Kf2 = K~1 = K~2 = 0, and is independent of ; and '1· 
The stiffness matrix for zero initial stress, JC>, is then obtained by subtracting K0 

from the total tangential stiffness matrix in Equations 10.3.3. 
Equation 10.3.6 applies in general if both the axial load and the column length 

can change during the incremental deformation. Under a displacement-controlled 
mode of loading, we have 6q2 = 0 during buckling, and then 62 'W" = ~ 6f1 6q 1, that 
is, (for Y ~ 0): 

62 'W" = [ 62 'Wh-cons1 = 6 2 'W"(X) = 71P,l(; + 1 - ~;,)x2 (10.3. 9) 

On the other hand, under a load-controlled mode of loading (6/2 = 0): 

(10.3.10) 

To identify the stable path, we will also need the work 6 2 'W" done along each 
equilibrium path (for 6ft= 0). For path 2, 62 'Jr<2> = ~6/~2> 6q~2>. Substituting 
Equations 10.3.5 we get, in terms of Y, 

(10.3.11) 

and in terms of 6/2 

(10.3.12) 

For path 1, 62 'Jr<1> = !6/~1 > c5q~1> = 2P,I'Y2 in terms of Y, or 62 'Jr<1> = h2 6f~/2P,I in 
terms of 6/2, according to Equations 10.3.4. After some algebra, the difference is 
found to be, when Y is the same for both paths, 

(10.3.13) 
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and when lJ/2 is the same for both paths, 

[J2'JV'l) _ [J2'Jf<2) = _ (Po- P,)(;u- 1)h
2 {Jf~ 

2(P,- Po)(;u + 1)P,/ 
(10.3.14) 

Equations 10.3.13 and 10.3.14 characterize the differences between the substeps 
considered in Section 10.2, which are for the present column represented by 
segments BC (substep toward the primary path) and BC' (substep toward the 
secondary path) and are marked by arrow arcs in Figure 10.8b. 

Stable Equilibrium States of Elastoplastic Column 

According to Equation 10.1.37, the condition of stability is that the expressions in 
Equation 10.3.10 (for a prescribed axial load) or Equation 10.3.9 (for a 
prescribed axial displacement) must be positive for all real X and Y (i.e., positive 
definite). From this we conclude that, under load control, Shanley's column is 
stable if P0 < P~ and unstable if P0 > P~ where 

L 2~ ( ) Per= P, = -f:- P, 10.3.15 
<:>u + 1 

Under displacement control, the column is stable if P0 < P~ and unstable if 
P0 >P~ where 

(10.3.16) 

For elastic columns, by contrast, P~ = P~. The physical reason for P~ to be 
higher than P~ is that lateral deflection of an elastoplastic column at constant P is 
accompanied by axial displacement (Eqs. 10.3.5). Note that P~ is the P0 value for 
which Equations 10.3.3 with lJf1 = Y = 0 have a nonzero solution (at lJf2'=1= 0), 
while P~ is the P0 value for which Equations 10.3.3 with lJf1 = lJf2 = 0 (P = const.) 
have a nonzero solution. 

Also note that the value of P~ can be obtained from Equations 10.3.5 as the 
value of P0 for which the slope lJk/Y ceases to be positive, and the value of P~ 
from the condition that Y I X ceases to be positive. 

The main aspects of the present stability problem can be illustrated by the 
surfaces in Figure 10.9. This figure shows (for Eu = 3£,) three-dime4nsional views 
of the surfaces of T(&S);n = -lJ2 "W given by Equation 10.3.6 as functions of X 
and Y. The equilibrium state is characterized by a( lJ2 "W)/ ax = 0 and 
a( {J2 'W")/ aY = 0. Accordingly, all the surfaces shown have zero slopes at the 
origin, for any direction. These surfaces show the values of lJ2 "W that are reached 
along radial paths from the origin (i.e., paths for which lJq2/lJq1 = const.). For 
nonradial paths for which the path direction at all points of the path belongs to 
the same sector (cone) of v-directions in the space of bq, the behavior is path
independent, that is, the same lJ2 "W is obtained. For other paths, however, there 
is path dependence, that is, different lJ2 "W is obtained. 

Equation 10.3.6, which can be written as lJ2 "W = E ~K;k lJq; lJqk, appears to be 
a quadratic form but is not, because ; and fJ depend on the ratio lJq2/lJq 1• The 
surfaces in Figure 10.9 consist of quadratic portions separated by the lines 
X = ± Y at which ; or fJ changes discontinuously. These are lines of curvature 
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Figure 10.9 Surfaces of internally produced entropy increment (~S);n = -62 'W/T for 
Shanley's column at various load levels. 

discontinuity. Therefore, in contrast to the potential-energy surfaces for elastic 
stability problems (Chap. 4), the surfaces of 62 'W are not smooth. 

We have constructed the surface 62 'W(X, Y) for radial paths. Because the 
tangential stiffness matrix K;i is symmetric (Eqs. 10.3.3), and because the values 
of K;i are constant for finite ranges (cones) of directions characterized by the values 
of ; and 7J, the same surface 62 'W also applies to a set of infinitesimal nonradial 
paths such that the direction of the path at any point of the path belongs to the 
same sector (cone) of the q-space in which the point lies (see our discussion in Sec. 
10.1). For this particular set of paths, the values of 62 "W are path-independent, 
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Figure 10.10 Evolution of surfaces c52 'U~''(X, Y) for Shanley's column at increasing load P. 

<5 2 'W does represent an incremental potential, and the surface of <5 2 'W is continuous 
(as seen in Fig. 10.9). For other paths, the behavior is path-dependent. 

The surfaces of <52 'W have continuous slopes, because the gradient represents 
the equilibrium forces (fk = a~/aqk or aautaqk), which must change con
tinuously. The curvatures, however, must be discontinuous because they repre
sent the tangential stiffnesses K;i of the structure, which change discontinuously, 
for example, due to a change from E, to Eu. 

The stack of the surfaces for P0 /P, = 1, 1.25, 1.5 (crit.), 1.75 (Fig. 10.9) shows 
how these surfaces evolve as the load is increased. The limit of stable states 
(Po= 1.5P, =Per) is manifested on these surfaces by the existence of a horizontal 
path emanating from the origin 0 (line B or B' in the figures). Instability is 
characterized by the existence of a path for which <5 2 'W descends [or T(~S);n = 
-<52 'W rises] while moving away from the origin. Absence of any such path 
ensures stability. Note that for P0 /P, = 1.25 a portion of the surface in Figure 10.9 
for Y > lXI is a hyperbolic paraboloid, even though the state is stable. Figure 
10.10 shows the evolution of the <52 'W surfaces as seen from the top. 

While stability under load control (dead load P) is determined by the positive 
definiteness of the entire two-dimensional surface in Figure 10.9, stability at 
displacement control (Y fixed) is determined only by the positive definiteness of 
the cross section Y = 0; this cross section is one-dimensional, that is, a curve. The 
critical load P~ is obtained when the path Y = 0 away from the origin is 
horizontal, which occurs for P = 2P,; see Figure 10.10 (not shown in Fig. 10.9). 

Stable Equilibrium Path of an Elastoplastic Column 

Inspecting Equations 10.3.13 and 10.3.14 for Shanley's column, we find that 
under displacement control (same Y) we always have <52 'Jif<2

) < <52 'Jif<1
) if P0 > P,, 

and under load control (same <5/z), we always have <52 'Jif<2
) > <52 'Jif<1

) if P0 > P,. 
This means that, for P0 > P,, path 2 must occur and is, therefore, stable, while 
path 1 cannot occur and is, therefore, unstable. So the column must deflect for 
P0 > P,. Shanley's load P, represents the maximum load of an undeflected column 
that can be achieved in a continuous loading process, provided £, varies 
continuously. 

What is then the meaning of the stable states of a perfect column for P0 > P,? 
They can be reached if temporary restraints are placed at the sides of the column 
to prevent it from buckling. The load may then be raised up to some value 
P0 > P,. If P0 < P~ at axial displacement control, or if P0 < P;. at axial load 
control, this column will not deflect when the lateral restraint is removed 
(provided that the column is perfect, of course). So the column is stable at such a 
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load because the initial state does not change. Deflection occurs only if the load is 
increased further. 

If E, decreases discontinuously, which happens, for example, if the o-E 
diagram is bilinear or if the temperature suddenly increases, then an undeftected 
equilibrium state P0 > P, can be reached by a continuous loading process (without 
any lateral restraints). 

The equilibrium paths leading away from the origin are marked in Figure 10.9 
as 1, 2, and 2'. In the plots of c52 "W, the structure follows the path that descends 
steeper with respect to Y (since X is controlled), and less steeply for the plots of 
- c52"W. The limit of stability of the primary path is characterized by the fact that 
points 1 and 2 (of equal Y) are at equal altitude (Fig. 10.9). This happens on the 
surfaces for P0 / P, = 1. Instability of the primary path is characterized by the fact 
that point 2 in the plots of -c52 "W lies at a higher altitude than point 1 (and a 
lower altitude for the plots of c52"W). (Note also that the states on the primary 
path 01 in Fig. 10.9 cannot be called metastable because for P0 > P, it is not 
possible to move from point 1 to point 2.) 

The static structural stability studies in the literature, even those conducted in 
the most general sense of catastrophy theory (Sec. 4.7), have mostly been 
confined to elastic structures that possess a potential. For inelastic structures, we 
have two crucial differences: (1) While the surface of the elastic potential energy 
is always smooth, the surface of -c52 "W that determines stability of inelastic 
structures is unsmooth, exhibiting lines of curvature discontinuity. (2) While the 
elastic potential surface characterizes a path-independent response, the surface of 
c52"W applies only to radial outward paths (for example, c5q2/c5q 1 = const.). 
Nonradial loading paths, such as 012 in Figure 10.6a, produce changes - T(~S)in 
that do not lie on this surface, in contrast to elastic behavior. 

As we have seen in general in Section 10.2 and illustrated for Shanley's 
column, irreversible systems have the following striking properties: The first 
bifurcation point on the equilibrium path of an inelastic structure does not have 
to represent the limit of stability, that is, the states on all the branches emanating 
from the bifurcation point can be stable (which cannot occur in elasticity); yet at 
the same time, the stable states on one branch beyond the first bifurcation point 
cannot be reached by a continuous loading process. 

As proven in Section 10.2, the ultimate cause for this behavior lies in the 
irreversibility of inelastic deformation. Let us describe it in more detail 
considering the path of Shanley's column in the (q 1 , P) and (q 1 , q2) planes. After 
bifurcation at point 1 in Figure 10.8c, d, a subsequent prescribed increment of 
either axial load P or axial displacement q2 can occur along two distinct 
equilibrium paths leading to points 2 and 3 (actually, if buckling to the left is also 
considered, there i~also a third path 13', but it need not be analyzed since it is 
symmetric to path 13). This is similar to elastic bifurcation. However, contrary to 
elastic bifurcation, the structure cannot move along path 23, not even in a 
nonequilibrium (dynamic) manner, and cannot reach at point 3 the same values 
of q 11 q2 , and P. The cause is evidently the irreversibility (path dependence) of 
plastic strain, which _£rohibits reaching the same values of q I> q2 , and P as those 
reached along path 12. 

An elastic structure, though, can move along path 23 in a nonequilibrium 
manner, and it does reach at point 3 the same values of qt> q2 , and Pas does 
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path 12. This is dictated by path independence of elastic deformation. If the 
structure were elastic (reversible, path-independent) then admissibility of path 23 
would cause the potential energy at point 2 to be non-positive definite. For 
inelastic structures, on the other hand, the state (q1 , q2 , P) at point 3 (Fig. 
10.8c, d) cannot manifest itself in the incremental work expression at point 2 since 
path 23 is kinematically inadmissible. It is for this reason that point 2 in Figure 
10.8c, d can be stable for inelastic structures but never for elastic structures. 

For the same reason, point 2, even if it is infinitely close to point 1, can be a 
bifurcation state itself, permitting as the subsequent equilibrium paths both path 
24 and path 25 in Figure 10.8c, d. Bifurcation states infinitely close to each other, 
occupying a continuous path (such as 124), are impossible for elastic structures 
(reversible systems). 

The foregoing observations justify our broadening (in Sec. 10.2) of the general 
concept of stability by distinguishing between (1) a stable equilibrium state, and 
(2) a stable equilibrium path. The stable path is that which (1) consists entirely of 
stable states and (2) maximizes (dS);n compared to all the other paths (which 
satisfy the given constraints of load or displacement control). So the stable path is 
a narrower concept than a stable state. For elastic (reversible) structures, both 
concepts are equivalent, and so this distinction does not exist. For irreversible 
systems, however, an equilibrium state can be stable while the equilibrium path 
on which it lies may be unstable. This stable state cannot, in reality, be reached. 
For such systems, examination of stable states is obviously insufficient. 

Note also that stability of the state is decided on the basis of deviations away 
from equlibrium, while stability of the path is decided on the basis of approaches 
toward equilibrium. 

The concept of a stable path does not quite fit the general definition of 
stability of solutions, as stated in the dynamic definition of stability in the sense of 
Poincare and Liapunov (Sec. 3.5). If an infinitely small disturbance (such as 
lateral load M is introduced at the bifurcation point (point 1 or 2 of Fig. 10.8c, d), 
it does not change ~h 124 to path 13 or 125; rather it excludes path 124 from 
paths 124, 13, and 125 that are all possible in the absence of any disturbance. 
Thus, instability of a path is not manifested by the creation of a second, distinct 
path, as a consequence of an infinitely small disturbance. It is manifested by the 
opposite, namely by the exclusion of one of several possible paths. 

Breakdown of Symmetry 

The fact that real columns must start to deflect at P, can be independently proven 
by analyzing the effect of imperfections; see Sec. 8.2 (Eq. 8.2.1 and Fig. 8.13). 
Imperfections generally are an effect that breaks symmetry of the structure. 

The bifurcations that we have illustrated correspond to a breakdown of 
symmetry. The perfect column has the symmetric choice of deflecting either left 
of right, but once it has deflected to the right it no longer has the choice of 
deflecting to the left, that is, its symmetry has broken down. Structures without 
symmetry (or at least some hidden symmetry) do no exhibit equilibrium path 
bifurcations. This is, for example, the case for our column if it is perturbed by a 
lateral load (Eq. 8.2.1). 

Symmetry of any system can be eliminated by introducing suitable imperfec
tions. Does this render the preceding stability analysis useless? Hardly. Imperfect 
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systems are in general harder to solve than the perfect (symmetric) systems. A 
particular difficulty is that, in principle, all the possible imperfections have to be 
considered (in Eq. 8.2.1 we considered only one type of imperfection). Analysis 
of the perfect system is required to get a complete picture of the behavior near 
the bifurcation point. 

Hypothesis Implied in Present Thermodynamic Approach 
A general thermodynamic description of inelastic (irreversible) systems requires 
the use of internal variables that characterize the dissipative process in the 
material. In that approach, the equilibrium state is the terminal state of the 
dissipative processes, and so none of the states along the (static) equilibrium path 
of a structure can be considered to be an equilibrium state. But then it is also 
impossible to consider stability. Yet, from a practical viewpoint it certainly does 
make sense to consider stability of an inelastic structure. As already pointed out 
in our discussion of elastic structures in Sec. 10.1, the way out of this conceptual 
roadblock is to define stability in terms of the tangentially equivalent elastic 
structure, and deliberately avoid the theory of internal variables for inelastic 
materials. 

There are nevertheless some fine points to worry about. A tangentially 
equivalent elastic structure exists only if the response to infinitesimal loading 
increments is path-independent (e.g., if application of de 11 followed by de 12 

produces the same response as a simultaneous proportional application of both 
de 11 and de12). Most inelastic constitutive models satisfy this condition of 
incremental path independence, but some do not; for example, the nonassociated 
Drucker-Prager material, which violates the normality rule. In those cases, the 
approximation df= K(v) dq is still possible but matrix K is not symmetric (and thus 
does not correspond to elastic behavior). In uniaxial behavior of the material, 
these problems, of course, do not arise. 

Our approach to stability of state as well as path has been based on 
maximization of entropy. This might seem to be similar to the principle of 
maximum entropy production that is widely used in irreversible thermodynamics. 
Unlike the second law of thermodynamics, that principle is not a natural law and 
can be violated. If we use the tangentially equivalent elastic structure, however, 
we are not in the realm of irreversible thermodynamics but in the realm of 
equilibrium (classical) thermodynamics, which deals only with processes infinitely 
close to an equilibrium state. In that sense, the maximization of entropy is a 
natural law and does not represent application of the principle of maximum 
entropy production from irreversible thermodynamics. It should also be noted 
that plasticity, unlike viscoplasticity, is not a well-defined process of irreversible 
thermodynamics because the dissipation rate is undefined, as time plays the role 
of an arbitrary increasing parameter. From this viewpoint, plasticity is more like 
elasticity than viscoplasticity. 

In view of the aforementioned conceptual difficulties, it is not surprising that 
Hill (1958) and others chose to state the stability criterion of positive-definite 
second-order work as a mathematical postulate (hypothesis), without any 
thermodynamic justification. However, by the reverse of the present argument, 
this postulate of Hill in effect implies the approximation of the actual structure by 
the tangentially equivalent elastic structure. It appears that this approximation 
cannot be avoided if stability should be investigated. 
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In the case of path stability analysis, an additional conceptual difficulty can 
arise from the need to compare the entropy increases for various postbifurcation 
paths. It may happen that paths a = 1 and a = 2 correspond to different 
tangential stiffness matrices K (e.g., one purely for loading and another one for a 
combination of loading and unloading. which happens for Shanley's column 
bifurcations at P > P,). In that case (aS)f~> and (aS)f~> correspond to different 
tangentially equivalent elastic structures. We have tacitly assumed that the 
maximum (aS);n still decides the path that actually happens. 

Summary 

1. While stability of a state is decided by considering deviations away from 
equilibrium, stability of a path is decided by considering approaches toward 
equilibrium. 

2. Among all the equilibrium paths emanating from a bifurcation point, the 
internal entropy of the structure is maximized for the stable path. It follows 
that, among all the equilibrium paths, the stable path is that which consists 
of stable states and either minimizes the second-order work along the path 
if the displacements are controlled, or maximizes it if the loads are 
controlled, as compared to all other equilibrium paths. 

3. The undeflected states of Shanley's perfect elastoplastic column are stable 
up to the reduced modulus load P,. if the axial load is controlled, and up to 
an even higher load if the displacements are controlled. However, the 
stable undeflected states for loads P above the tangent modulus load P, are 
not reachable in a continuous loading process, except when E, decreases 
discontinuously. The stable equilibrium path is such that the deflection 
becomes nonzero as soon as P exceeds P,. 

4. If there is only a single load, the stable path is that for which the tangential 
stiffness is minimum, provided the initial state is stable. 

Problems 

10.3.1 Analyze stable states and the stable path for the symmetric buckling mode 
of a perfect rigid-bar column in Figure lO.lla that has two elastoplastic links 
and is characterized by two displacements q 1 and q2 • 

10.3.2 Analyze stable states and the stable path for the free-standing perfect 
rigid-bar column in Figure lO.llb whose link is elastic perfectly plastic (yield 
stress f,) and is restrained against rotation by a spring of stiffness C. 

10.3.3 Find the stability limit P~ at controlled axial displacement for a perfect 
hinged continuously deformable elastoplastic column of constant rectangular 
cross section (Fig. lO.llc). Assume f 1 to be the amplitude of a sinusoidally 
distributed lateral load. 

10.3.4 Calculate surface 62 'W" for the column in Problem 10.3.3, and discuss 
stability of states and paths. (Note: For the initial deflection, the deflection 
shape is sinusoidal.) 

10.3.5 Do the same as above, but for (a) a continuous two-span column, (b) a 
fixed column (Figs. lO.lld, e). 
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Figure 10.11 Exercise problems on buckling of elastoplastic systems. 

10.3.6 Do the same as above but for a perfect portal frame (Fig. 10.11£): (a) with 
no sway, (b) in the sway mode. Note that since the differential equation for 
the initial deflections is linear, the s and c stability functions from Chapter 2 
can be used for all the calculations. The variables of ()2 'W are the amplitude of 
the first buckling mode and the axial shortening of the column. 

10.3.7 Calculations of ()2 'W from the work of reactions (Eq. 10.1.21 or 10.1.22) 
and from the work of stresses (Eq. 10.1.29 or 10.1.30) must yield the same 
result. Prove it for (a) Shanley's column, Figure 10.7, (b) the columns in 
Figure 10.11a, b, c, d, e. 

10.3.8 Verify path dependence of surface ()2 W(X, Y) for Shanley's column (Fig. 
10.7). We already calculated this surface when point (X, Y) is reached radially 
(Fig. 10.12a). Consider that any point (X, Y) is reached by moving (1) first 
along axis Y (at X= const.). then in the direction of X (Y = const.), Fig. 
10.12b; (2) first along the X axis (at Y = const.), then in the direction of Y 
(X= const.), Fig. 10.12c; (3) first in arbitrary direction tJ> (Fig. 10.12d), then 
in the direction of X. Show that each case yields a different surface 
()

2W(X, Y), and that there in fact exist infinitely many possible surfaces 

a) b) c) d) 

~1--:-x 
y 

y 

X 

Figure 10.11 Different paths for Shanley's column deflection. 
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c52'W'(X, Y) if nonradial paths are considered. Also show that for elastic 
behavior ( ~" = 1, E, = Eu), all these surfaces are the same. 

10.3.9 Do the same as Problem 10.3.4 but for the structures in Figure 
10.1lg, h, i. 

10.3.10 Check that Equation 10.3.7 indeed yields the same c52'W' as given in 
Equation 10.3.6. 

10.4 CRITICAL STATES OF STABILITY AND BIFURCATION 

According to Sections 10.1 to 10.3, the critical states of stability and bifurcation 
can be found by examining certain quadratic forms as demonstrated for 
elastoplastic columns in Section 10.3. For more complex structures, however, 
more general criteria are needed. 

The analysis that follows first ignores the dependence of the stiffness matrix on 
direction v in the space of bq, and later brings it under consideration. 

Critical State for Structures with a Symmetric Stiffness Matrix 

The critical state of stability represents the limit of stable states and the onset of 
instability. Stable states are those for which - T(~S)in = c52'W' = !c5qTK c5q > 0 for 
all c5q (i.e., c52'W' is positive definite); here c5q =column matrix of displacements 
qi> ... , qn, and K = [K;i(v)] =tangential stiffness matrix (either isothermal or 
isentropic) as introduced in Section 10.1. Thus, the critical state of stability is the 
state at which the quadratic form c52'W' vanishes for some vector c5q = c5q*, that is, 
it becomes positive semidefinite (see also Langhaar, 1962, p. 326). Assuming K to 
be symmetric, a quadratic form is of this type (Korn and Korn, 1968; Strang, 
1976) if and only if among the eigenvalues A.k of matrix K (k = 1, 2, ... , n) at 
least one is zero and the remaining ones are positive. Therefore, and also because 
det K = A.1A.2 ···An (Vieta's rule, Sec. 4.1), the critical state of stability (for 
symmetric K) occurs if 

detK=O (10.4.1) 

In this case the matrix equation K c5q = 0 has a nonzero solution vector c5q = c5q* 
and consequently the critical state of stability represents neutral equilibrium. The 
vector c5q* is the eigenvector associated with a zero eigenvalue of K and describes 
the mode of instability (critical mode). For c5q = c5q* we obviously have 
c52'W' = !c5qT(K c5q) = !c5qT • 0 = 0. 

According to Sylvester's criterion (Sec. 4.1), positive definiteness is lost not 
only when det K = 0 but also when detmK = 0 where detm K is the mth principal 
subdeterminant (a minor) of matrix K. However when detm K for subvector 
( c5q1 , c5q2, ... , c5qm) with m < n becomes zero while at the same time det K :1::0, 
one does not have a critical state, in other words, the quadratic form of matrix K 
is not semidefinite but indefinite (because if det K :1:: 0 it cannot be semidefinite 
and if detm K = 0 it cannot be positive definite) and there is no neutral 
equilibrium, that is, K c5q = c5f:1=0 for all vectors c5q. Furthermore (under the 
hypothesis that the condition det K = 0 corresponds to a change of sign of 
determinant from positive to negative) one can prove that (Langhaar, 1962, p. 
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326) in the loading process, the determinant itself vanishes before any of its 
principal minors. 

Critical States for Structures with a Nonsymmetric Stiffness Matrix 

In certain situations, for example, if there is internal friction in the structure (Sec. 
10.6), the tangential stiffness matrix K may be nonsymmetric. In that case 

1 1 (K+ KT) 1 A - T(6S)in = 62 'W = 2 6qTK 6q = 2 6qT 
2 

6q = 2 6qTK 6q (10.4.2) 

where (K + KT)/2 = K = symmetric part of K, and superscript T denotes the 
transpose. This is proven by noting that 26qTK 6q = 6qTK 6q + (6qTKT 6q)T = 
26qTK 6q. So we must conclude that stability is decided solely by the symmetric 
part of the tangential stiffness matrix. 

For nonsymmetric matrices, the condition of critical state (stability limit), 
6qTK 6q = 0, can be satisfied not only when K 6q = 0, which is the case of 
neutral equilibrium, but also when the vector K 6q = 6f is orthogonal to vector 
6q, that is, when 6f:;1:0 but 

(10.4.3) 

Therefore (in contrast to the case of symmetric K), the critical state of (stability 
limit) of a tangentially nonsymmetric structure (in the sense that 62 'W = 0 at 
nonzero q) can also be obtained when det K :;I: 0, that is, when no neutral 
equilibrium exists (K 6q :;I: 0) and all the eigenvalues of K are nonzero. This 
critical state is characterized by 

detK=O or (10.4.4) 

The corresponding smallest critical load represents the limit of stability, such that 
62'W is positive definite for loads below this limit. This limit is typically lower 
than the lowest critical load for the state of neutral equilibrium (det K = 0). The 
positiveness of all the eigenvalues A; of matrix K, but not of matrix K, is a 
necessary and sufficient condition of stability of a structure with a nonsymmetric 
tangential stiffness matrix (e.g., de Borst, 1987a, b). 

1beorem 10.4.1 (Bromwich, 1906; see also Mirsky, 1955, p. 389). Every 
eigenvalue A of a nonsymmetric matrix K satisfies the inequalities (Bromwich 
bounds) 

A1 s ReA sAn X1 sImA s Xn (10.4.5) 

where A1 and An are the smallest and largest eigenvalues of the symmetric matrix 
K = !(K +F.?), and xl and xn ~re the smallest and largest eigenvalues of the 
antisymmetric (Hermitian) matrix K = (K- KT)/2i. (Thus the real part of any 
eigenvalue of K lies within the spectrum of K.) 

Proof The definition of eigenvalues A is qA = Kq where A and q may be 
complex if K is nonsymmetric. Let the eigenvectors q be normalized so that 
i{ q = 1 where the overb_!lr denotes _the complex conjugat_e. Tl}en A= c{ qA = 
c{Kq and X= qTKq = (qTKT q)T = qTKT q = qT~T q because AT= A (A is a num~e!, 
not a matrix) and K is assumed to be real, K = K [recall the rules AD= AD, 
(ADf = DT Ar]. Therefore, ReA= !(A+ X)= qT!(K +KT)q = qTKq and lmA = 
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(A- X.)/2i = qT(K- KT)q/2i = t{Kq. Further consider the linear substitution 
q = Qy that transforms K to a diagonal form. The columns of the square matrix Q 
(which is real) are the normalized eigenvectors of K, and Q- 1 = QT (Sec. 4.1). 
Now, obviously, l1 (y~ + y~ + · · · + y~) s: l 1 y~ + l2y~ + · · · + lnY~ S: ln(Y~ + 
y~ + · · · + y~). which may be concisely written as l 1jT y s; jT Ay s; lnYT y where A 
is the diagonal matrix of all the eigenvalues l 1 , ••• , in of K (written in Eq. 
4.1.9). Here jT y = i{QQT q = i{ q = 1. Also, i{Kq = yTQTKQy = jT Ay 
(according to Theorem 4.1.5). So the inequality becomes X, s; qTKq s; in, that is, 
l 1 s; ReA s: ln. The inequality for lm A is proven similarly. In more detail, see 
Mirsky (1955, p. 389); cf. also Householder (1964). Q.E.D. 

To sum up, structures with a nonsymmetric stiffness matrix have two kinds of 
critical states: (1) the critical state of neutral equilibrium (det K = 0), and (2) the 
critical state of stability limit (det K = 0). The latter one is generally more severe. 
Positive definiteness of all the eigenvalues of the nonsymmetric tangential 
stiffness matrix K is a necessary but not sufficient condition for stability. Also, 
det K = 0 is not a condition of the critical state of stability if K is nonsymmetric. 
Since neutral equilibrium is an unstable state, it also follows that the critical load 
of neutral equilibrium cannot be less than the critical load of stability. 

Example of a Nonsyrnmetric Stiffness Matrix 

Let us now illustrate the foregoing conclusion by an example similar to Problem 
4.1.5. Consider a structure with (tangential) stiffness matrix 

K = [ 5 - 2P 2- 2P - VS] 
2- 2P + VS 4- 4P 

(10.4.6) 

Neutral equilibrium occurs when the equations Ei K;iqi = 0 have a nonzero 
solution q;, that is, when det K;i = 0. This condition yields the quadratic equation 
4P2

- 20P + 21 = 0, which has the two roots Per,= 1.5 and Per
2 
= 3.5. The 

symmetric part of K is 

K = [5 - 2P 2 - 2P] 
2-2P 4-4P 

(10.4.7) 

This matrix becomes singular (i.e., det K = 0) when 4P2 - 20P + 16 = 0, which 
has the roots: Per,= 1 and Per2 = 4. Note that the critical P-values of K (i.e., 1.5 
and 3.5) lie between the critical P-values of K (i.e., between 1 and 4), as required 
by Bromwich bounds, Equation 10.4.5 (the critical P-values represent the 
gen:ralized eigenvalues of matrix K or K). Also note that the eigenvalues l= l; 
of K follow from the equation 

detK= =0 
A [5- 2P- A 2- 2P ] 

2-2P 4-4P-A 
(10.4.8) 

which, for P = 1, reads (l- 3)l = 0, yielding X,= 0 and ~ = 3 (so the lowest 
eigenvalue of K, but not of K, vanishes at P = 1 ). Further one can verify that 

262"W"= L L K;jqiqj = (1- P)(q, +2q2)2 + (4- P)q~ 
; j 

(10.4.9) 
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This quadratic form (which can be derived from the eigenvectors of K similarly to 
Eqs. 4.3.18) is positi~e definite if and only if P < 1, that is, P < P a

1
• So the limit 

of stability is P = P a 1 = 1, which is less than the critical load of neutral 
equilibrium, Per1 = 1.5. Note that for P = Per1 there is no neutral equilibrium; 
indeed, substituting P = 1, the equilibrium equations 'f.; K;;q; = 0 read 3q1 -

VS q2 =It and VS q1 = 12. which have no nonzero solution if ft = 12 = 0. The 
eigenvector of K associated with P = 1 is q\1> = 0, q~1> = 1, and the corresponding 
forces are /\1> = Kuq\1> + K12q~1 > = -VS and /~1 > = K21 q~1 > + KW = 0. Therefore, 
2c52 'W' = !tq1 + f2q2 = - VS · 0 + 0 • 1 = 0 at P = 1. So c52 'W' vanishes not because 
ft = 12 = 0, as in the case of neutral equilibrium, but because vectors f<1> = 
(fP>, /~1>) and q<1> = (qp>, q~1>) are orthogonal at P = 1, that is, c52 'W' = 
~f1>rq(1) = 0 (Eq. 10.4.3). 

Symmetric and Asymmetric Bifurcations at the Critical State 

The quadratic forms c52"W = c52 f!f (or c52 'W = c520U) determine only stability. At the 
critical state of stability c5f!f = c5 2f!f = 0 for some c5q, and c52 f!f * 0 for all c5q near 
the critical state. In similarity to our analysis in Sections 4.5 and 4.6 based on 
potential energy, the behavior near the critical state depends on the third and 
fourth variations of f!f (for isothermal conditions) or OU (for isentropic condi
tions). Keeping the higher-order terms in Equation 10.1.20, and considering the 
possibility that the loads P; are not dead loads but can vary, one may use a 
procedure similar to Equations 10.1.20 and 10.1.21 to obtain, for the states near 
the critical state, tif!f = c52f!f + c53f!f + c54 f!f, in which 

3 -~1[~1r.J c5 g;- ~ 3' a . a c5q; c5q; c5qk ,,,,k . q, qk 0 

4 - ~ 1 [ aJ{r, ] 
c5 g;- . ~ 41 a . a a c5q; c5q; c5qk c5qm I,J,k,m • q, qk qm 0 

(10.4.10) 

Now, for the same reasons as in Sections 4.5 and 4.6, the behavior near the 
critical state is a symmetric bifurcation if c5 3f!f = 0 for c5q = c5q* and c5 4f!f * 0 for 
c5q*. The behavior is an asymmetric bifurcation if c53 f!f * 0 for some c5q. The 
critical state at asymmetric bifurcation is always unstable and strongly 
imperfection-sensitive. The critical state at symmetric bifurcation can be stable (if 
c5 4f!f > 0 for all c5q*) and imperfection-insensitive, or unstable (if c54f!f < 0 for 
some c5q*) and imperfection-sensitive. If c54 f!f = 0 for some c5q* and c54 f!f > 0 for 
all other c5q, and also c52f!f = c53f!f = 0 for all c5q, one needs to consider c55f!f and 
c56f!f. 

Uniqueness 

The critical state of bifurcation implies nonuniqueness, and so the critical state 
condition can also be derived as the condition of loss of uniqueness. For 
small steps along the equilibrium path, we have K c5q = c5f. There are now two 
possibilities. If the loads are such that c5f = 0 at this state, we have the limit point 
(maximum point, snapthrough point) of the load-deflection path. At that point 
we must obviously have det K = 0. If c5f* 0 at the bifurcation point, we must 
have at the same time another vector c5q' for which K c5q' = (jf also. Since both 
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equations must hold simultaneously, we may subtract them, yielding K( 6q-
6q') = 0, where 6q- 6q' is nonzero. This, or course, implies that det K = 0, for 
symmetric as well as nonsymmetric matrix K. So, a necessary condition of the loss 
of uniqueness and bifurcation is that det K = 0. This condition, however, also 
characterizes the limit point. 

The condition det K = 0, as we showed, coincides with the condition of critical 
state of stability only if K is symmetric. If K is nonsymmetric and if det K = 0 
while at the same time det (K + Kr) * 0, there is loss of uniqueness (bifurcation) 
but no critical state of stability. 

However, as we know from Section 10.3, bifurcation (loss of uniqueness) can 
occur without loss of stability (i.e., in a stable manner) and without neutral 
equilibrium even if K is symmetric. This happens (and can happen only) for 
inelastic structures for which K depends on direction v of vector 6q due to the 
distinction between loading and unloading, which we have ignored so far. From 
now on we take this important phenomenon into consideration. 

Bifurcation for Inelastic Structures and Hill's Linear Comparison 
Solid 

We consider again the example of the Shanley column (Fig. 10.7). Let L be the 
loading-only sector of direction v in the space of 6q, and U any one of the 
adjacent loading-unloading sectors (Fig. 10.13b). Let KL, Ku be the correspond
ing tangential stiffness matrices K (either Kr or K5 ). 

If the column has a choice of two paths under load control, then KL oq<•> = 6f 
and Ku f>q<2> = 6f where 6f is given. The direction v0> of f>q<•> always lies in 
sector L. Prior to the first bifurcation, the direction v<2> of f>q<2> lies outside the 
corresponding sector U for all possible sectors U, that is, no path 2 exists. After 
the first bifurcation, along the primary (main) path, the direction v<2> lies within 
the corresponding sector U for at least one sector U, and then path 2 exists. 

Suppose now that the tangential stiffnesses K;i vary continuously along the 
loading path. Then the direction v<2> should also vary continuously. So, at the first 
bifurcation, the direction v<2> must coincide with the boundary of sector L (as 
illustrated by Shanley's column, Sec. 10.3). But then we must have not only 
Ku f>q<2> = 6f but also KL f>q<2> = 6f. Subtracting this from KL oq<•> = ()f we get 
KL( f>q<2> - 6q(1>) = 0 where f>q<2> * f>q<•>. Consequently, the first bifurcation is 
indicated by singularity of matrix KL, that is, by the fact that 

det KL = 0 (10.4.11) 

b) ••• ' <) ~ d) t-
-f-q_, ___ ~·· tt\·lr ... 

q2 q, q, 

a) 

Figure 10.13 Various postbifurcation paths for inelastic structures. 
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or that the smallest eigenvalue At of matrix KL vanishes (our example in Sec. 10.3 
illustrates that). This is the well-known bifurcation criterion of Hill (1961, 1962c). 
He derived this criterion on the basis of consideration of uniqueness rather than 
stability. The solid corresponding to matrix KL (for which one finds multiple 
solutions) is called Hill's linear comparison solid. It is a solid in which there is 
loading at all points of the structure. 

If, however, the tangential stiffnesses change along the loading path discon
tinuously (see the case of bilinear material in Sec. 8.1), then the first bifurcation 
may occur when the value of At jumps from positive to negative, without KL 
ever becoming singular (i.e., without the vanishing of det KL). In this case, 
matrix K along the initial bifurcated path corresponds to a combination of loading 
and unloading (rather than loading only, as assumed for the linear comparison 
solid). 

The eigenvector 6q* of the singular matrix KL at the first bifurcation can lie 
either inside or outside sector L. If 6q* lies inside L, then there exists path 2 such 
that KL 6q<2> = 0 where 6q<2> = 6q*. This means that there is neutral equilibrium, 
which represents the limit point instability (or snapthrough). 

If 6q* lies outside sector L (which is the case for Shanley's column), then 
6q<2> cannot coincide with 6q* but must lie at the boundary of sector L; then 
KL 6q<2> = 6f where 6f is nonzero. This means that the secondary path at the first 
bifurcation occurs at increasing load, which represents the Shanley-type 
bifurcation. 

If A1 is an eigenvalue of KL, we have (KL- A11) 6q* = 0 where I is the identity 
matrix. It follows that, for 6q = 6q*, 62W- 6q*

7
KL 6q = 6q*

7
A11 6q = 

At 6q*
7 

6q* < 0 if At< 0. But this does not imply instability of state if the 
associated eigenvector q* lies outside L (which has been ignored in some papers). 
However, the existence of negative smallest eigenvalue A1 of tangential stiffness 
matrix K' always means that a bifurcation point must have been passed and that 
the state cannot lie on a stable path. Alternatively, this situation is indicated by 
the existence of a negative pivot in the Gaussian elimination process of solving 
the system of tangential stiffness equations (cf. Theorem 4.1.11). 

So the computational strategy may be to check always for negativeness of the 
smallest eigenvalue At of K' (or the existence of a negative pivot). If a negative A1 

is detected, one must determine the other postbifurcation paths, and the path that 
is actually followed is that for which all the eigenvalues of K' are nonnegative 
(i.e., all the pivots are nonnegative). Proceeding along a path with negative A1 (or 
with a negative pivot) is incorrect. 

Consider now displacement control. Let 6qn be controlled and 6/1 = · · · = 
6fn-l = 0. One may now take the foregoing case of load control for which KL is 
singular at the first bifurcation point, and then scale 6fn and 6qn by a common 
factor so as to make 6qn for both paths equal. Since such a scaling does not 
change the eigenvalues of KL, the condition det K = 0 must also characterize the 
first bifurcation point under displacement control (provided that the tangential 
stiffnesses vary continuously). The checks for bifurcation are analogous. 

The typical variations of det KL for loading only and det Ku for combined 
loading and unloading are illustrated in Figure 10.14 for an elastoplastic column. 

In regard to bifurcations in structures with damage, many other recent works 
are also of interest; for example, Billardon and Doghri (1989), Sulem and 
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Vardoulakis (1989), Stolz (1989), Borre and Maier (1989), Runesson, Larsson 
and Sture (1989), de Borst (1989), and Leroy and Ortiz (1989). 

Distribution of Bifurcation Points and Postbifurcation Branches 

In Section 10.2 (Fig. 10.6) we proved Theorem 10.2.2 stating that all postbifurca
tion branches can consist of stable states if the structure is inelastic. We now give 
two related theorems (Bazant, 1987b). 

neorem 10.4.2 For inelastic (irreversible) structures, there can be two or 
infinitely many postbifurcation branches that consist of stable states and have 
directions that are infinitely close to each other (Fig. 10.13c). But for elastic 
(reversible) structures this is impossible. 

Proof Consider the space (q 1, ••• , qn)· Let .<1't, 1, ~.~> and Bf3•1 be the 
partial derivatives of B/i in the direction of coordinate q 1 at points 1, 2, 3 that 
correspond to the same load and lie at a finite distance from point 0 (Fig. 10.13c). 
If state 2 is an equilibrium state, then Bf2•1 = 0, and if it is stable then ~~~ > 0 and 
~~\ < 0 at the adjacent points 1 and 3 where superscript 121 means that the points 
are accessed by traveling to them from point 2 (Fig. 10.13c). At point 1 the 
derivative Bf1•1 is taken in the direction of ql> while the derivative Si'\~\ is taken in 
the direction opposite to q 1• Due to path-dependence, the values of Bli1, 1 and Bf\~11 
at point 1 can be different for an inelastic structure, which means that Bli1, 1 can be 
zero even though Si'\~\ is negative (Fig. 10.13c). So there can be an equilibrium 
branch also at point 1 infinitely close to point 2 (such behavior is typical for 
strain-softening and fracture problems; see Sec. 13.2 and Fig. 13.10). However, if 
the structure is elastic, that is, B/i is path-independent, then we must have 
Bf1, 1 = Bli\~\; consequently Bf1•1 cannot be zero, that is, branch 01 cannot be an 
equilibrium path. Q.E.D. 

neorem 10.4.3 For inelastic structures, a state [2] on a stable equilibrium 
path that is adjacent (infinitely close) to a bifurcation state can also be a 
bifurcation state, so that the equilibrium path can consist of infinitely many 
bifurcation points that are spaced infinitely closely (Fig. 10.13a, d). But for elastic 
structures this is impossible. 

Proof Consider now infinitely close points 0, 1, 3 shown in Fig. 10.13d. If 
point 1 is a bifurcation state on an equilibrium path, we must have Bft. 1 = 0, and if 
it is stable, we must have .<F1~\ > 0 when point 2 is reached from point 1. If point 2 
is an equilibrium state, we must have Bf2•1 = 0. When the structure is elastic we 
must have Bf2,1 = .<F1~\ (due to path-independence), and so point 2 cannot be an 
equilibrium state. But then point 0, which is infinitely close, cannot be a 
bifurcation point (we except the case where the angle 102 is vanishing since then 
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segment 01 would not be infinitesimal). On the other hand, when the structure is 
inelastic we can have ~2• 1 :I=~~\ since path-dependence can occur (either because 
of the lack of symmetry of the stiffness matrix or its dependence on the 
displacement direction; see Sec. 10.1); this means that 02 can be an equilibrium 
path, and so point 0 can be a bifurcation point. Repeating for points 1, 3 the same 
argument as for points 0, 1 etc., we conclude that for an inelastic structure 0, 1, 3 
can be bifurcation points. We will see that such behavior is typical for 
strain-softening structures and interacting crack systems (Sees. 13.2 and 13.8). 
Q.E.D. 

Numerical Finite Element Analysis 

In nonlinear finite element analysis, the given loads and prescribed displacements 
are increased at small loading steps. In each step, the tangential stiffness matrix K 
(K = Kr or K5 ) may first be estimated on the basis of the values of forces, 
stresses, strains, and displacements, and iterations of the loading step may be 
used to improve this matrix so as to correspond to the state in the middle of the 
loading step (in which case the numerical error is second-order small). Stability 
checks can be made if the signs of the eigenvalues .1.1, ••• , An of matrix K are 
determined at each loading step and each iteration. 

Due the finiteness of the chosen loading steps as well as round-off errors, the 
lowest eigenvalue .1.1 of K is never exactly zero. It is not convenient to vary the 
size of the loading step to make At exactly zero. So one does not try to obtain the 
critical state exactly. The sign of .1.1 is monitored, and when a negative At is 
encountered while all other A; (i = 2, ... , n) are positive, it means that either a 
bifurcation point or a critical state has been passed. (Alternatively, the 
negativeness of At is signaled by the occurrence of a negative pivot in the 
Gaussian elimination process.) 

If the value of - T(~S);n obtained from matrix K for further loading (Eq. 
10.1.23 or 10.1.24) is positive for this loading step, it means that a bifurcation 
point has been passed (and the state is stable). In the case of a single load or a 
single controlled displacement, this is the case where At becomes negative while 
the load is rising. 

The foregoing numerical approach has initially been developed for buckling of 
e!astic structures (e.g., Riks, 1979), for which K is unique, independent of 
loading direction v. For inelastic structures, in principle, the values of - T(~S);n 
should be checked for matrices K(v) associated with all the sectors of v (Sec. 
10.1). However, if K varies continuously along the loading path, only matrix K 
for further loading needs to be considered because it determines the first 
bifurcation (see Hill's criterion). 

A negative value of At can also mean that the limit point (snapthrough point, 
maximum load point) has been passed. In this case the load is descending (and 
the value of - T(~S);n is negative for some v if the controlled displacement is 
considered as a free variable, i.e., is included among the degrees of freedom 
associated with K). This state is stable (despite negative At) if the displacement is 
controlled. If the second lowest eigenvalue ~ becomes negative while the load is 
descending, it means that either a bifurcation point on the descending branch or a 
snapback point has been passed. 

After bifurcation, T(~S);n should, in principle, be calculated for the steps 
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along each branch, and the branch for which T(A.S);n =max should then be 
chosen. In practice, if there are two postbifurcation equilibrium branches, the 
primary one preserving symmetry and the secondary one breaking symmetry, the 
latter branch needs to be followed. Continuation along the symmetry-breaking 
branch can be enforced for the first iteration by adding the eigenmode q* that is 
associated with vanishing A1 to the vector of incremental displacements A.q<•> 
along the primary (symmetry-preserving) path (see Riks, 1979; de Borst, 1986, 
1987a, b), that is, 

A.q = A.q(l) + kq* (10.4.12) 

where k is an unknown parameter. To obtain k, one may assume for the first 
iteration that the trial vector A.q is orthogonal to the primary path, that is, 
A.qT A.q<•> = 0, or (A.q<1> + kq*)T A.q<•> = 0, from which 

A,q(l)T Aq(l) 
k = - ----'"'--o:7:-.:....._ 

A,qO>Tq* 
(10.4.13) 

This procedure, however, does not work when A.q0>Tq* = 0, that is, when the 
eigenmode happens to be orthogonal to the primary path. A simple remedy (de 
Borst, 1986, 1987a, b) is to use such k that A.qT A.q = A.q<t>T A.q<l) in such 
iterations. In the subsequent iterations of the step, the trial vector generally will 
not remain orthogonal to A.q<•>, but the orthogonality assumption in Equation 
10.4.13 will maximize the chance that A.q would converge to the symmetry
breaking (secondary, bifurcated) path rather than to the symmetry-preserving 
(primary) path. 

When several secondary branches emanate from the bifurcation point, this 
procedure will not necessarily converge to the branch for which T(A.S);n =max. 
In previous works, such a situation was assumed to be revealed by a check for a 
negative eigenvalue of the tangential stiffness matrix K1 for the points adjacent to 
the bifurcation point. This check is not necessarily sufficient, however. From 
Sections 10.2 and 10.3 we know that the states on all the postbifurcation 
branches can be stable, and if they are stable then either K' has only positive 
eigenvalues or K' has a negative eigenvalue but the associated eigenvector is 
outside the sector of directions to which K' applies. 

Summary 

1. In the case that the tangential stiffness matrix K does not depend on the 
direction of the vector of generalized displacement increments, a structure 
is stable if and only if all the eigenvalues of the symmetric part of this 
matrix are positive, and critical if and only if at least one of these 
eigenvalues vanishes. The vanishing of at least one eigenvalue of a 
nonsymmetric K implies either a limit point or bifurcation (loss of 
uniqueness), but not a critical state of stability. 

2. If K depends on the direction v of the generalized displacement increment 
vector, the vanishing of at least one eigenvalue of K implies (Fig. 
10.13a, c, d) either a limit point (with or without bifurcation) or a 
bifurcation of Shanley type, which occurs at increasing load. The former 
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case happens if the associated eigenvector lies in the sector of directions v 
for which K is valid. The latter case happens if the eigenvector lies outside. 

3. If K varies discontinuously along the loading path, the first bifurcation 
occurs when the smallest eigenvalue of K becomes zero or negative. If it 
jumps from a positive value to a negative value, then the initial 
postbifurcation direction of the secondary path does not involve loading
only at all points of the structure (i.e., is not governed by Hill's linear 
comparison solid). 

4. For inelastic structures, bifurcation points can be continuously distributed 
along the equilibrium path, and infinitely many branches with a continuous 
angular distribution can emanate from each bifurcation point (Fig. 
10.13a, c, d). For elastic structures, this is impossible. 

5. Calculation of (AS);n according to Section 10.2 may be used to decide 
which branch will be followed after bifurcation. Hill's bifurcation criterion 
gives no information in this regard. At a point on a stable path, all the 
eigenvalues of the tangential stiffness matrix must be positive. (So, if at 
least one is not positive, the point does not lie on a stable path.) 

6. Calculation of (AS);n from <5q<«> and <5f<"'> (Sec. 10.2) makes it possible to 
detect bifurcations even without actually calculating the tangential stiffness 
matrix K. This enables nonlinear finite element analysis to utilize step-by
step algorithms in which iterations are not based on the tangential stiffness 
but on the elastic stiffness or on the secant stiffness (see, e.g., Owen and 
Hinton, 1980). For such algorithms, Hill's method of linear comparison 
solid cannot be implemented. A complicating factor in this approach is that 
all the branching paths a must first be detected before (AS);n can be 
calculated from <5q<"'> and <5f<"'>. 

Remark. In some finite element studies (e.g., Droz and Bafant, 1989; Bafant, 
1989a, b) the calculation of the lowest eigenvalue of K was omitted and the 
secondary path was obtained by introducing slight symmetry-breaking imperfec
tions in the nodal coordinates or small disturbing loads. Subsequently, the values 
of (AS);n could be compared without calculating the tangential K. 

Problems 

10.4.1 Use the condition det K = 0 for loading only (s = 11 = 1) to determine the 
tangent modulus load of Shanley's column. Determining the eigenvector 
direction, prove that there is no neutral equilibrium at this load. Discuss the 
variation of det K during loading if the stress-strain diagram is nonlinear. 

10.4.2 Do the same as above but for the columns in Figure 10.11a, b, c, d, e and 
the frame in Figure lO.llf. 

10.4.3 Analyze again the structures in Figure 8.11g (Prob. 8.1.13) and in Figure 
8.11e, I (Prob. 8.1.14) from the energy viewpoint. Plot surface <52 'W(X, Y). 
Analyze stable states and stable paths. Check bifurcation from (a) the 
second-order work criterion and (2) Hill's criterion. 

10.4.4 In the example treated in this section (Eq. 10.4.6), loads P were real, but 
for a nonsymmetric stiffness matrix they can also be complex. Show that this 
occurs for K 11 = 1- P, Kn = 4- P, K12 = 3, K 21 = -2. Prove that the limit of 
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stability is P =Per= (10- VSS)/4, and that there is no state of neutral 
equilibrium, because the P values for which Kq = 0 are complex. (See also 
Prob. 4.1.6.) 

10.4.5 Prove Bromwich bounds for the generalized eigenvalue problem Nq.A. = 
Mq (Eq. 4.1.6) where Nand Mare nonsymmetric real square matrices. 

10.5 STABILITY AT INFINITESIMAL LOADING CYCLES 

For some applications it is useful to consider stability from the viewpoint of 
infinitesimal loading cycles, in which either a load increment <5f or a displacement 
increment <5q is applied and subsequently removed. In the case of elastic 
structures under conservative loads, such a cycle reveals nothing because the net 
work over the cycle is zero. For inelastic structures, though, this work can be 
positive or negative, and this has some interesting consequences for material 
modeling. 

Internal Entropy Changes for Cydes in Shanley's Column 

First consider again Shanley's perfect column (Figs. 8.7 and 10.7). The column is 
initially in equilibrium under load P0 at no deflection (q1 = 0), and we assume the 
axial displacement q2 to be controlled. As indicated by the principle of virtual 
work, the first-order work ll. w<t> during application as well as removal of <5f1 

vanishes because the column is initially in equilibrium. So we need to consider 
only the second-order work <52 'W. 

Imagine a load-unload cycle in which the lateral load <5ft is applied and then 
removed while the axial displacement is kept constant ( <5q2 = 0). For <5q2 = 0 we 
have, from Equation 10.3.3, <5ft = 21JP,[1 + s- (2P0/1JP,)] <5qtfl. During the 
application of <5ft, Equation 10.3.3 for <5/1 applies, with 'I= 1, s = Su where 
Su = Eu!E, (Fig. 10.15c). After some algebraic manipulations, one finds 

(10.5.1) 

where P~ is the critical load at controlled axial displacement (Eq. 10.3.16). 
During the removal of <5ft, Equations 10.3.3 for <5/1 can be applied again, but 
with 'I = Su and s = 1 (one side of the cross section unloads and the other one 
reloads, Fig. 10.15d). After some algebra, one gets 

2 1 I <5f~ 
<5 'Wir = 

2
- (-6ft) .5qi =---

4P,Cu 
C 

_ 2 P~~-Po u-
P, 

where ~ is the critical load if the column is elastic, with modulus Eu. 
Over the entire load cycle, the net change of q 1 is nonzero because the 

inelastic behavior is irreversible. If the conditions are isothermal, the thermo
dynamic state function that depends on displacements is the Helmholtz free 
energy ~. From Section 10.1 we know that ll.~ =-T(ll.S);n· For isothermal 
deformations at mechanical equilibrium, the change ll.~ is given by the net work 
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Figure 10.15 Work on infinitesimal load or displacement cycle. 

{)2 'WQ done during the cycle, that is, 

T(dS);n = -d~ = -{)2 'WQ = -{)2 'U';- {)2 'U';1 = 1 :~~ (C~~C~u) (10.5.3) 

The values of {)2 'WQ, {)2 'U';, and {)2 'U';1 are graphically represented by the 
cross-hatched areas in Figure 10.15a. Note that the first-order work dW<•> is 
canceled by the work of applied (actual) loads (due to the principle of virtual 
work) and thus has no effect on stability. 

Second, consider a cycle in which the lateral displacement {)q 1 is applied and 
removed at constant axial displacement ({)q2 = 0). During the application of {)q., 
Equations 10.3.3 for {)ft apply, with 7J = 1, s = Su· During the removal of {Jq., 
the same equation applies with 71 = Su• s = 1. After some algebra, one obtains 

it2<lw'* _! s,~ it - P, {)q~ C ( 0 ) 
U WI -2 UJI uq~--~- I 1 .5.4 

2 * 1 P, {)q~ 
{) 'W'u=z{)ft(-{Jq.)= --

1
-cu (10.5.5) 

where the stiffnesses C1 and C11 are the same as before. Note that {)2 'W't and 
{)2'W'~ must be interpreted as the complementary work (while {)2 'U'; and {)2 'U';1 

represent the work); see the cross-hatched areas in Figure 10.15b. Also note that 
the first-order complementary work d w*<•> can have no effect on stability (Sec. 
10.1). 

Over the entire displacement cycle, the net change of force / 1 is nonzero. If 
the conditions are isothermal, the thermodynamic state function that depends on 
forces is the Gibbs free energy <{}. Thus, according to the definition of <{} (Eq. 
10.1.42), we have d<{}= -{)2 'W'ri for isothermal deformations at mechanical 
equilibrium. From Sec. 10.1 we also recall that d<{}= -T(dS);n· For the change 
over the entire cycle we get 

T(dS);n = -d <{} = {)2 'W'ri = {)2 'W't + {)2'W'~ = 2P, l{)q~ ( C1- Cu) (10.5.6) 
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Note that in the preceding analysis the physical meaning of 62 'W6 as minus 
the change of Gibbs (rather than Helmholtz) free energy is crucial. Without 
realizing that, one would get an incorrect sign for 62 'W6. It is also important to 
realize that, for a displacement cycle, the potential is the Gibbs free energy rather 
than the Helmholtz free energy, even though the controlled variable is the 
displacement. 

Stability 

Now consider stability. If (AS);n <0, the cycle that would create such a deviation 
from the initial state cannot happen, and so the structure is stable. If (AS);n > 0, 
the cycle can (and will) happen, and so the structure is unstable. 

Stability with respect to one-way deviations requires that P0 < P~, as Equation 
10.5.1 confirms. Then we have C1 > 0, C11 > 0 (if E, > 0). Furthermore, 

C C _3_(P~-P~~)_1-;u ,- u- ---
P, P, P, 

(10.5. 7) 

Because ;u > 1, we conclude that always T(AS);n < 0, that is, an unstable cycle 
cannot occur if the column is stable. So the consideration of a cycle does not 
impose any further stability restriction. 

In view of this conclusion, the consideration of loading cycles might seem 
useless. It is nevertheless useful from the viewpoint of material modeling. 

For example, can a stress-strain diagram of the material be assumed to have 
an unloading slope that is less than the loading slope, that is, 0 < Eu < E,? The 
stability conditions for one-way deviation from equilibrium, 62 'Wj > 0 and 
62'Wi < 0 (Eqs. 10.5.1 and 10.5.4), do not prohibit Eu to be less than E, since 
they still yield a positive stability limit for P. However, the stability condition for 
a cycle does prohibit Eu to be less than E,. Indeed, ;u < 1 yields, according to 
Equation 10.5.7, (AS);n > 0 for a cycle at any load, even an arbitrarily small load 
P. So a material model for which Eu < E, is physically impossible. 

To sum up, the consideration of load cycles may pose material model 
restrictions that are not obtained from the consideration of one-way 
deformations. 

Implications of load cycles for material models are not particular to the 
consideration of columns. We will discuss them in a broader sense in the next 
section. 

Further conceptual differences with regard to the standard concept of stability, 
which is based on one-way, monotonic deviations, are illustrated in Figure 10.16. 
To actually obtain (for Eu < E,) a cycle that produces positive (AS);n, the 
structure must first deflect along a monotonic path segment that is stable 
(segment 01 in Fig. 10.16b, cLTherefore an initial positive energy input, A~, is 
required to effect the cycle (013 or 015 in Fig. 10.16b, c) even if the cycle as a 
whole makes a net release of energy ( 62 'Wo < 0). On the other hand, if the 
equilibrium state is unstable, the structure requires no positive energy input to get 
moving along the unstable path (path 02 in Fig. 10.16a). 
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Figure 10.16 Conceptual difference between stability of a structure and stability of a cycle. 

Structures with a Single Cyclic Load or Displacement 

In this case, we generally have - T(&S);n = c52 "WQ where c52 "WQ is the second-order 
work done during the cycle, which is represented by the area (in the diagram of 
load versus displacement) that is enclosed during the cycle; see Figure 10.17. The 
stable cycles are those for which c52"WQ > 0, and the unstable cycles are those for 
which c5 2 "WW < 0. Various types of stable and unstable cycles are illustrated in 
Figure 10.17. 

Incremental Collapse 

Under a cyclic load, the structure may settle after a few cycles (i.e. "shake 
down") into an elastic response mode--a phenomenon called shakedown. 
Shanley's column behaves in this manner. But for certain other structures it is 
possible that plastic deformations accumulate from cycle to cycle and grow 
beyond any bounds with an increasing number of cycles, as illustrated in Figure 
10.18b and d. This well-known phenomenon, in which shakedown is not 
obtained, is called incremental collapse. This may represent a cyclic instability 
because a cyclic load of arbitrarily small amplitude may produce after a sufficient 
number of cycles any given deflection. If shakedown does not occur, it is also 
possible that cycles of plastic deformations of opposite signs continue indefinitely. 
Such alternating plasticity leads to material failure. 

Problems 

10.5.1 If, for Shanley's column, the axial load P rather than the axial displace
ment is controlled, that is, c5/2 = 0 (and c5q2 =arbitrary), the work of the axial 
force on c5q2 is of the first order (P c5q2) because c5f2 = 0, and the second-order 
work of axial load, !c5/2 c5q2 , vanishes (same as for axial displacement 
control). However, the expression for c5ft is different: c5ft = {[4JlP,;/(; + 1))-
2P0} 2c5q .fl. Proceeding similarly as Equations 10.5.1 to 10.5.6, show that, 
under axial load control, also lateral load or displacement cycles of Shanley's 
column are stable if ;u > 1 and unstable if ;" < 1. 

10.5.2 Calculate c52 "WW for load cycles as well as displacement cycles of the 
rigid-bar column with two elastoplastic links shown in Figure 10.1la, and 
discuss stability of the cycle for Eu > E, as well as Eu = E, and Eu < E,. 
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Figure 10.17 Stable and unstable cycles of load or displacement for the case of a single 
load. 
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Figure 10.18 For unstable cycles the structure can be stable or unstable. 
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10.5.3 Do the same as above, but for the rigid-bar column in Figure 10.11b. 
10.5.4 Do the same, but for the continuously deformable column in Figure 

10.11c. (Assume It to be the amplitude of a sinusoidally distributed lateral 
load.) 

10.6 DRUCKER'S AND IL 'YUSHIN'S POSTULATES FOR STABLE 
MATERIALS 

The preceding section brought us to a point at which we can discuss certain 
stability postulates that are important for the theory of inelastic constitutive 
equations and are intimately related to normality and symmetry (Rice, 1971). 

Drucker's Postulate 

Consider a uniformly strained body that is subjected to a small loading-unloading 
cycle in which a small uniform stress 6o is applied and removed (Fig. 10.19). The 
residual strain that remains after the cycle is, by definition, the inelastic strain, 
lJi'. The first-order work over the cycle, represented by the rectangular area 1365 
in Figure 10.19a, determines the initial equilibrium but is irrelevant for stability. 

The second-order work (per unit volume) done on applying 6o is fl. W, = 
62W, = !6o: 6t: (area 124), and the second-order work done on removing 6o is 
fl. Wu = 62Wu = !6o: ut:e (area 423) where 6t:e = C: bCJ =elastic strain, determined 
by the current values of the elastic compliance tensor C of the material ( o and t 
are second-order tensors and do: dt: = da;i dE;i ). The second-order work dissip
ated per unit volume over the cycle 123 is fl. Wc = 62Wc = fl. W, - fl. Wu = 
!6o: ( 6t:- 6t:e) = !6o: {)f! in which {)f! = 6t: - 6te = inelastic strain increment, 
by definition. For isothermal changes we have fl. We V = ll.:Ji (Helmholtz free 

a) b) 

c) 

F1gare 10.19 Infinitesimal cycle of stress and strain. 
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energy), and for isentropic changes li W., V = li CU (total energy); V = volume of 
the uniformly strained body. 

The second-order work given by li We, which is represented by the shaded 
triangle 123 in Figure 10.19a, is related to stability, as is clear from the preceding 
section. Based on Section 10.1, T(ll.S);n = -ll.WcV and (ll.S);n =the internally 
produced entropy change over the cycle. Since stability requires that (ll.S);n < 0, 
we may follow Drucker (1950, 1959) to define a "stable" material as a material 
for which, for any tensor ocr, 

for loading 
(10.6.1) 

for unloading or neutral loading 

This definition is called Drucker's postulate (Drucker 1950, 1954, 1959, 1964). 
[Note that the strict inequality (> ), which is used here to conform with Equations 
4.2.5, 4.9.4, and 10.1.37, excludes the limiting case of perfect plasticity from the 
definition of stable materials; often, however, Equation 10.6.1 has been written, 
as a matter of definition, with the sign ~. in order that perfect plasticity be 
included among "stable" materials.] 

The term "stable material," however, is somewhat misleading-a negative 
li We for a cycle does not necessarily imply instability of the body, as demon
strated in the preceding section. Moreover, if we consider bodies that are not 
uniformly strained, nonnegativeness of li We for some part of the body does not 
necessarily imply nonpositiveness of (ll.S);n over the cycle of the body as a whole 
(see Chapter 11). So-called "unstable" states of the material for which li W., < 0 
for some ocr seem to exist in real structures in a stable manner (e.g., states of 
localized softening damage or frictional plastic states). 

It may be noted that, in applications to plasticity, Drucker's postulate is 
equivalent to Hill's (1948) postulate of maximum plastic work (see also Simo, 
1989). It has been thought by some that Drucker's postulate might be a 
consequence of the second law of thermodynamics, but this is not true. As 
Drucker himself pointed out, his postulate can be and is violated by real 
materials, for example, due to friction. Unfortunately this causes considerable 
mathematical complications (e.g., Bafant, 1980). 

ll'yushin's Postulate 

Instead of cycles of stress ocr(:x) (where ocr depends on coordinate vector :x), one 
may consider as well a uniformly strained body subjected to cycles of strain OE(:x); 
see Figure 10.19b. The first-order complementary work, given by the rectangular 
area 1356 in Fig. 10.19b, is irrelevant for stability. The second-order complemen
tary work (per unit volume) done in a uniformly strained body on applying OE is 
ll.W! =!ocr: OE (area 124 in Fig. 10.19b). The second-order complementary work 
done on removing OE is li W! = !ocf: OE (area 423) where ocf = E: OE =elastic 
stress, determined by the current values of elastic moduli tensor E of the 
material. The second-order complementary work (per unit volume) dissipated 
over cycle 123 is li w: = li w: - li w: =!(ocr- ocf): OE = -!ocrP: OE where 
ocrP = ocf - Ocr= inelastic stress decrement tensor' by the customary definition. 
For isothermal changes we have ll.w:v = -li~ (Gibbs free energy), and for 
isentropic changes ll.w:v = -!1'1{ (enthalpy). 
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According to Sections 10.5 and 10.1, T(dS);n = -dw:v. Therefore, 
following Il'yushin (1961), one may alternatively define a "stable" material as a 
material for which, for any tensor c5t:, 

for loading 
for unloading or neutral loading 

(10.6.2) 

This definition is called Il'yushin's postulate. It is not equivalent to Drucker's 
postulate. For example, states of strain-softening damage violate Drucker's 
postulate (dW: <0) but not Il'yushin's postulate (-dW: >0); see Figure 
10.19c. 

For the same reason as Drucker's postulate, violation of Il'yushin's postulate, 
too, does not necessarily imply instability of the body, and if the strain state of 
the body is nonuniform, it does not even imply (dS);n over the cycle of the body 
as a whole to be nonnegative. "Unstable" material states, in the sense of 
II'yushin's postulate, can exist in a stable manner. 

Nonuniformly Strained Bodies 

The fact that the stability implications of Drucker's and Il'yushin's postulates are 
limited to uniformly strained bodies has often been overlooked. It is usually 
considered that, in any structure, some external agency applies stresses c5o(x) and 
then removes them. However, it would have to be a supernatural agency to 
actually carry that out under general conditions. Stresses cannot in general be 
applied; only loads (or displacements) can. 

In reality, stresses c5o(x), once introduced in an inelastic body by means of 
some loads c5f, cannot be removed, except for some special cases such as 
uniformly strained bodies. Rather, residual stresses c5o'" ( x) will remain after 
forces c5f are removed (unloaded) (regarding some stability implications of 
residual stresses, see, e.g., Maier, 1966a, 1967). Therefore, the net strain change 
over a cycle of applying and removing c5f in an elastic body is c5t:c = c5t: - c5t:" = 
c5t:- c5t:e - c5t:' where c5t: = C : c5o =strains at loading, c5t:e = C: c5o =elastic strains 
due to c5o, c5t:' = C: c5o' =residual strains, C =tangential compliances for load
ing, and C =elastic compliances for unloading (fourth-order tensors). The reason 
is that the field of strains c5t:e = C : E1 

: c5t: (where E1 = tangential moduli tensor, 
inverse to C) generally do not satisfy the compatibility conditions if c5t: does, 
unless C and E1 are constant over the body. 

For the same reason, a cycle of c5t: will in general also leave residual stresses at 
the end of the cycle, except for uniformly strained bodies. (The problem, 
however, becomes more involved when one recognizes that in real materials a 
and t: are volume averages of microstresses and microstrains that are always 
nonuniform; see, e.g., Maier, 1966a, 1967.) 

The second-order work in a structure during a cycle that consists of loading 
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with stresses c5o(x) and unloading is 

A. W0 = [fv (o +!<5o): c5E dV- pr c5q]- [fv (o +!<5o): c5t" dV- pr c5q"] 

=/)<5o: («5£- c5t") dV + [fv o: c5t dV- pT c5q]- [fv o: c5t" dV- pr c5q"] 

=/)<5o: (c5t- c5t") dV (10.6.3) 

Here c5t, c5q are the strain and displacement changes corresponding to the 
introduction of <5o, and c5t", c5q" are those during the unloading part of the cycle 
( c5t" = <5te + c5tr). The last two expressions in the square brackets vanish due 
to the principle of virtual work because o is in equilibrium with P, and because c5t 
is compatible with c5q and c5te is compatible with c5qe. Note that here we do not 
need to assume equilibrium to exist after the loading part of the cycle and after 
the entire cycle. Also note that the geometrically nonlinear effects are assumed 
here to be negligible. 

For uniformly strained bodies we have c5t" = <5te ( <5tr = 0), and then Equation 
10.6.3 yields A. W0 = f !<5o: «5£" dV =!<5o: <5t"V for the body as a whole. There
fore, validity of Drucker's postulate implies nonnegativeness of A. W0 for the 
whole body. However, this is not true for a nonuniformly strained body because 
c5t" ::1: <5te. 

Similarly, the complementary second-order work done in a non uniformly 
strained body during a cycle that consists of loading with strains c5t and unloading 
is 

A. Wri = fv (t + !c5t): <5o dV- fv (t + !c5t): <5o" dV 

=-L (<5o"- <5o): <5tdV + L t: <5odV-L t: <5o" dV 

= - L (<5o" -<5o): c5t dV (10.6.4) 

where <5o" = residual stresses after the cycle. The integrals of t: <5o and t: <5o" 
vanish because of the principle of virtual work, since <5o and <5o" are equilibrium 
stress fields and E =compatible stress field. If the body is uniformly strained, then 
<5o" = c5«T and <5o" - <5o = <5oP = inelastic stresses, in which case positiveness of 
A.Wo (and thus also stability of the structure for the cycle) follows from Il'yushin's 
postulate. But for nonuniformly strained bodies this does not follow. 

To conclude, the material stability postulates are neither necessary nor 
sufficient for stability of the initial equilibrium state of the structure in general. 
One reason is that stability is defined with respect to one-way (monotonic) 
deviations from the initial state (see the discussion in Sec. 10.5). Another reason 
is that each of these postulates suffices to prevent only some kind of unstable 
deformations. It ensures neither stability for arbitrary cycles (not even in the 
absence of nonlinear geometric effects), nor stability for one-way (monotonic) 
deviations from the critical equilibrium state (see Fig. 10.20). It is basically a 
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Fipre 10.20 Static stability concept for inelastic structures. 
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convenience hypothesis with a vital but partial relationship to stability (Ba!ant, 
1980). Nevertheless, the important role that Drucker's postulate played in the 
development of plasticity theory and formulation of bound theorems must be 
recognized. 

Normality Rule for Plasticity 

Although there exist questions about its applicability to real materials, Drucker's 
stability postulate brings in four important practical advantages: (1) it implies a 
certain special form of elastoplastic constitutive relation that usually leads to a 
good, albeit imperfect, description of experimental reality; (2) it greatly reduces 
the number of unknown functions and parameters that need to be identified from 
test results; (3) the resulting formulation is efficient and well-behaved in 
numerical applications; and (4) formulation of certain useful bounding principles 
is rendered possible. We will now briefly discuss the implications of Drucker's 
postulate. 

To satisfy tensorial invariance restrictions such as isotropy, the loading
unloading boundary in the stress space (a space with o;i as coordinates) must be 
characterized in terms of a scalar loading function f(o) that depends on the 
proper invariants of the stress tensor o. In the case of isotropy (same properties 
after any rotation of coordinate axes), function f can depend only on the three 
basic invariants of o or their functions. Function f may also depend on further 
scalar parameters Kk that introduce the influence of loading history. Thus, the 
current plastic boundary (yield locus, or yield surface) in the stress space is 
described by the equation f(o, Kk) = 0. The states for which f(o, Kk) < 0 are 
elastic, representing either the initial elastic loading or unloaded states after 
previous plastic yielding. The case f(o, Kk) > 0 is by definition impossible 
(increase of the yield limit is handled by parameter Kk)· The simplest example is 
the von Mises loading surface f(o, K 1) = f- K 1 = 0 where f = (!s;1-s 1i)

112 =stress 
intensity, s;i = deviatoric stresses, and K 1 =yield limit in pure shear, which may 
vary as a result of previous plastic straining. 

During plastic loading, parameters Kk are changing, and so the surfaces f = 0 
at constant Kk evolve; see Figure 10.21a showing the subsequent loading surfaces 
at times t 1 and t2 • Since the material remains plastic, we must have df = 0, that is, 
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Figure 10.21 (a) Subsequent loading surfaces; (b) normality rule; (c) multisurface 
plasticity; (d) geometric interpretation of Drucker's postulate; (e, f) inadmissible and (g) 
admissible forms of loading surface. 

dt =f.,.: da + Ed, I<. dKk = 0, where f,. = at I aa =tensor of components at I aa;j 
and t ... : da = ( af/ aa;i) da;i (summation implied by repeated subscripts). This sign 
oft can always be chosen in such a manner that E t.x. dKk < 0 for loading. With 
this choice, the loading criterion is formulated as 

plastic loading 
{

>0 
t.,.:da =O neutral loading 

(10.6.5) 

while f,.: da < 0 represents unloading, which is elastic. The neutral loading is the 
limit case of plastic loading at which dKk = 0. (In the limit case of perfect 
plasticity, though, one always has f,.: do = 0 and loading occurs unless d). = 0, 
based on Eq. 10.6.8 below.) 

Now, adopting Drucker's postulate, both Equations 10.6.1 and 10.6.5 must be 
positive, and so we may set 

df!' :da =d).> 0 
t ... :da 

(for plastic loading) (10.6.6) 

Because t ... : da > 0 for plastic loading, we may multiply this inequality by the 
denominator, and we get for plastic loading (Bafant, 1980): 

d£" :da=O where d£" = df!' - t ... d). (10.6.7) 

This condition must hold for all possible increments da that represent plastic 
loading. One way to satisfy this condition is to set d£" = 0. Then it follows that 

df!' = t ... d). (10.6.8) 

This is the famous plastic ftow rule of Prandtl (1924) and Reuss (1930); see also 
Fung (1965) and Malvern (1969). It is also called the normality rule (Prager, 
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1949); the reason is that, in a nine-dimensional space (not six-simensional-unless 
a 6 x 1 column strain matrix with shear angles y12 = 2E12, ••• is used), in which 
coordinates d£1j are superimposed over coordinates oii• the vector of f.o is normal 
to the surface f(a, Kk) = 0 at Kk = const.; see Figure 10.21b. This is proven by 
differentiation: df = f.o:da at Kk = const.; the vector of da must be tangential to 
the loading surface if dKk = 0, and the vector of f.o is normal to da because f.o: da 
represents a scalar product of two nine-dimensional vectors. 

Drucker's postulate, da: df!' 2= 0, may be geometrically interpreted as a 
condition that the projection of the vector of da onto the vector d£P, that is, onto 
the normal vector f.o• be nonnegative for any vector da that does not point inside 
the loading surface f = 0; see Figure 10.21d. Consequently, a reentrant comer on 
a yield surface is not allowed by Drucker's stability postulate; see Figure 10.21e. 
Furthermore, if Drucker's postulate is extended from infinitesimal to small but 
finite cycles of ll.a, (Drucker's postulate "in the large") a concave form (Fig. 
10.21f) of the loading surface is also inadmissible. Hence, the loading surface is 
required to be convex. 

It is admissible that the loading surface has a comer (vertex) of less than 1SOO. 
Then the projection of the vector of da for loading onto the vector of df!' is 
positive for all the vectors shown in Figure 10.21g. Hence, Drucker's postulate 
allows df!' to be anywhere between the normals of the loading surface on the 
sides of a comer (which is called the generalized normality rule). The direction of 
df!' is in this case indeterminate, and all the possible directions fill the fan (or 
cone) of directions between these normals; see Figure 10.21g. 

Since the material continues to be plastic after a loading increment, we must 
have df = 0. Consequently, df = f.o: da + Ed,~ek(dKk/ d).) d).= 0, which repre
sents Prager's (1949) continuity relation. Denoting H =-Ed."k dKk/d)., we 
obtain 

1 
d). = Hf.o: da (10.6. 9) 

provided that f.o da 2= 0. Coefficient H, to be determined from experiments, is 
called the plastic hardening modulus. Equation 10.6.9 is due to Melan (1938). 

The total strain tensor £ is a sum of elastic and plastic strain tensors. that is, 
d£ = C: da + df!' where C =fourth-order elastic compliance tensor. Substituting 
here Equation 10.6.8 with d). according to Equation 10.6.9, and factoring out d)., 
we obtain 

d£=C':da 
1 

C'=C+-f f H ,o .o (10.6.10) 

for loading (/.0 : da > 0), while for unloading (/,o: da ::=; 0) dE= C: da. Here 
C' =tangential compliance tensor. Note that this tensor is symmetric, which is a 
consequence of the normality rule. If, on the other hand, the material does not 
obey the normality rule, C' is nonsymmetric. Thus, symmetry is in plasticity 
synonymous with normality and is implied by Drucker's postulate. (But in 
continuum damage mechanics C' can be nonsymmetric, even if there is normality; 
see Maier and Hueckel, 1979.) 

Nonsymmetry is allowed in the so-called nonassociated plasticity, in which one 
assumes df!' = 8.o d). where g = g(a, Kk) =plastic potential (or flow potential) 
that is different from the yield function /(a, Kk)· 
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To obtain the tangential moduli tensor E', the expression do= E: (de
df!) = E: (dE- f . ., d).) where E =fourth-order elastic moduli tensor may be 
substituted into Equation 10.6.9 and the resulting equation solved to get an 
expression for d).. After substituting this expression again into the relation 
do= E: (dE- f.., d).), one obtains 

do=E' de E' = E- E:f..,®f,.,:E 
f,.,:E:f,.,+H 

(10.6.11) 

for loading. The symbol ® denotes the tensor product, which is not contracted on 
any index that is, f . .,® f . ., is the fourth-order tensor of f.oijf.ok..). Note again that 
tensor E' is fully symmetric (E:ikm = E:imk = Ej;km = E~m;i) for associated plasticity. 

The formulation that we just presented may be generalized, assuming that at 
each state the plastic strain consists of several components, df! = E; df!<i), each 
governed by a different yield (loading) surface f<i)(o, Kk) = 0 (i = 1, ... , np)· The 
same logic then leads to the following generalizations of Equations 10.6.8 and 
10.6.9 (Koiter, 1953): 

d). (i) = ..!..._ f<;>: do 
H- ·" I 

(10.6.12) 

This formulation, illustrated in Figure 10.21c, is called multisurface plasticity. 
Although in principle much more realistic in the description of material behavior, 
it is not easy to apply because identification of the material parameters from test 
data appears to be much more difficult. (In this regard note that, for example, the 
Drucker-Prager "cup" surface endowed with a "cap" does not represent 
multisurface plasticity because two simultaneous yield surfaces do not intersect 
and two plastic strain increment vectors are not superposed at every stress point. 
Rather, it is a single loading surface with a vertex, at which two parts of the 
surface, defined by different equations, meet. In practice, though, the intersection 
of cap and cone has been treated according to multisurface plasticity.) 

There is another way to satisfy Equation 10.6.7: We may require the vector of 
d£' in a nine-dimensional space to be normal to the vector of do. Then 
dE" =dEn + d£', in which dEn =f.., d).= normal plastic strain and dE' = tangential 
plastic strain that is normal to the vector of f..,, that is, is tangential to the loading 
surface (for detail, see Bafant, 1980). A special form of such a formulation has 
been proposed by Rudnicki and Rice (1975). The attractive feature of using dE' is 
that actual materials do show deviations from the normality rule, with plastic 
strain components parallel to the loading surface. In numerical applications, 
however, the use of dE' leads to convergence difficulties. Rather than using dE', it 
appears to be numerically preferable as well as more realistic to use multisurface 
plasticity, which makes it possible to obtain various directions of vector df!. (As 
another way to introduce deviation from single-surface normality, flow rules in 
which df! depends on do have been proposed; cf. Maier, 1969.) 

Based on the work A W = ~do: df! in an infinitesimal cycle, one can define the 
tangential compliance magnitude CP = 2/iW /lldoll where II doll= da;i da;i· It can 
be shown that for plasticity CP = k cos2 

(J for loading and CP = 0 for unloading, in 
which 6 = angle between the vector of do and the normal to the loading surface, 
and k = coefficient independent of do. The dependence of CP on (J appears to be 
a simple basic characteristic of inelastic constitutive theory. For theories other 
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than the single-surface associated plasticity, for example, the deformation theory 
(also called the total strain theory), multisurface plasticity, or endochronic 
theory, the dependence of CP on 8 is rather different (see B8Zant, 1978, 1980). 

Il'yushin's postulate, too, can be used as the basis of constructing inelastic 
constitutive relations. The loading surfaces are considered in the strain space 
rather than the stress space, and a normality rule in the strain space, analogous to 
Equation 10.6.8, may be derived. Whether this is more realistic depends on 
experiment. The inelastic behavior can be characterized in this formulation in 
terms of either inelastic strain increments (e.g., Naghdi and Trapp, 1975) or 
inelastic stress decrements (Dougill, 1975, 1976; Bafant and Kim, 1979; Bafant, 
1980). The use of the strain space is particularly suitable for the description of the 
strain-softening (see Prob. 10.6. 7). However, additional complexities arise if the 
iQelastic stress decrements are associated with degradation of elastic moduli. It is 
also possible and apparently advantageous to combine in the same constitutive 
law plastic strains based on a loading surface in the stress space with inelastic 
stress increments based on loading surfaces in the strain space (Bafant and Kim, 
1979). 

Problems 

10.6.1 Describe the relation of Drucker's postulate to the stability of (a) a 
uniformly stressed body and (b) a nonuniformly stressed body. 

10.6.2 Show that for nonassociated plasticity there exist cycles of applying and 
removing do for which the work done is negative. 

10.6.3 Using Il'yushin's postulate, derive the normality rule for strain-space 
plasticity. 

10.6.4 Derive the tangential compliance and stiffness matrices, given that (a) 
f(o, K) =Jz + kl1 and (b) /(o, K) =J3 + k/1, where /1 = ukk, }z = !s;rY;i, J3 = 
is;rYi~ki· Assume normality. 

10.6.5 Rewrite all the equations of this section in tensor component notation, for 
example,/ .• : do= (at I au;i) du;j· 

10.6.6 Arranging the components of stress and strain tensors as 6 x 1 column 
matrices, o and £, rewrite all the equations of this section in matrix notation. 
(Caution: The column matrix for strains must involve shear angles Y;i = 2£;1 so 
that or de be the correct expression for work.) 

10.6. 7 Show that the loss of positive definiteness of the tangential stiffness matrix 
E' of the material (called strain-softening, Chap. 13) violates Drucker's 
postulate but not Il'yushin's postulate. 

10.7 STABILITY OF FRICTIONAL MATERIALS AND STRUCTURES 

Frictional phenomena have a profound influence on stability. It is of particular 
interest to extend our preceding discussion of Drucker's postulate to frictional 
materials. As Drucker (1950, 1959) pointed out, internal friction in the material 
can cause !do: de" to be negative yet the material can be stable. 
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a) b) 

liu -u 

Figure 10.22 Frictional block at the point of sliding loaded by (a) a spring or (b) a constant 
force. 

Frictional Block Preloaded by a Spring 

To illustrate this phenomenon, consider first the simple example in Figure 10.22a 
given by Mandel (1964) (and further discussed by Maier, 1971). A block that 
slides on a rough surface is preloaded through a horizontal spring of stiffness C. 
The slip lJE may be imagined to correspond to plastic shear angle y", the 
horizontal applied force to shear stress T, and the vertical applied force to normal 
stress o. The roughness of the surface causes a small slip dy" to be accompanied 
by a certain vertical displacement del'= fJ ldr"l simulating dilatancy; fJ is the 
given dilatancy factor. 

In the absence of the spring, the slip condition of the block may be written as 
f( o, T) = T + ao- K = 0 where a= given friction coefficient and K = current slip 
limit, representing a hardening parameter. The slip condition is graphically 
represented by the line in Figure 10.22c. The normal to this slip surface has the 
inclination 1/ a. The vector de of slip displacement and vertical displacement, 
plotted in the same diagram, gives a line of inclination 1/ {J. Obviously, normality 
exists only for fJ = a, but the value of fJ is independent of a and, in particular, fJ 
may be zero. So the sliding of the block violates the normality rule. 

The presence of the spring causes a change in the limit value of T + ao, which 
represents hardening. The current cohesion limit is K = To + Cy", where To = 
given initial cohesion limit. Assume now that the spring force f(o, T) is such that 
sliding of the block is imminent. Consequently, 

f( o, T) = T + ao- To- Cy" = 0 (10.7.1) 

We apply load increments dT and do such that dT is opposite ro the spring 
force and ldTI < k Idol (Fig. 10.22a). Now we realize that this causes the block to 
slide to the right by dy". The reason is that do reduces the friction capacity more 
than dT increases it by relieving the spring. Equilibrium after sliding requires that 
f + df = ( T + dT) + a( o +do) - To- C( y" + dy") = 0. Subtracting from this 
Equation 10.7 .1, we get the condition of continuing equilibrium df = dT + 
a do-C dy" = 0, from which dy" = (dT + a do)/C. Also, slip dy" causes the 
block to rise by a distance fJ dy". So the second-order work done by forces dT and 
do on the inelastic displacements dy" and del' will be 

1 1 
!:iW = 2(dTdy" +do del')= 

2
C(dT + {Jdo)(dT +ado) (10.7.2) 

This work is obviously equivalent to the work in Drucker's postulate (Eq. 10.7.1). 
If fJ = a, which is the case of normality (Fig. 10.22c), the expression for !:i W is 

symmetric and we always have li W > 0. However, if fJ = 0 (fiat surface, no 
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dilatancy) and if we choose d1:<0 and da> -d1:/a we get dW <0, that is, 
energy is released by the block. The block is nevertheless stable because infinitely 
small loads d1: and da cause an infinitely small slip {)yP. More generally, if 
a> fJ > 0 and if we choose da > 0 and -ada< d1: < - fJ da ( <0), we always get 
d W < 0, that is, the block is still stable. 

Note, however, that if the spring force were replaced with a constant force 
(e.g., the pull of a weight, Fig. 10.22b), no new equilibrium would exist, that is, 
the system would be unstable. Thus, the stability of the block is obviously due to 
the fact that the driving force decreases with increasing displacements, as is true 
for the release of elastic energy. 

From the finding that d W < 0 is not an unstable situation in these cases we 
may conclude that a release of frictionally blocked elastic energy is harmless for 
stability. We have seen that this can occur only if fJ 'I= a (lack of normality). Thus, 
it is expedient to rewrite Equation 10.7.2 in the form 

dW = dW, + d"f (10.7.3) 
in which 

1 2 
d W, = 

2
C (d1: + fJ da) 

a-fJ 
d "f = --u- da(d1: + fJ da) (10.7.4) 

Here d W, is always positive. It is solely d "f that may cause d W to become 
negative. 

Generalization to Frictional Continuum 

Following Ba!ant (1980), we now establish a continuum analogy to the preceding 
example. We need to (1) express d Wand f by means of differentials of the same 
variables; (2) express d Win terms of the stress invariants because f must be given 
in terms of stress invariants; (3) express d W by means of only two stress variables 
and two strain variables, and (4) express dW such that no cross products be 
present, just as neither dadyP nor d1:del' is present in Equation 10.7.2. This last 
condition is the salient property that defines friction. Generally a friction
producing force (such as a in Fig. 10.22a) is any force that does no work on some 
displacement (on dyP in Fig. 10.22a) yet at the same time does affect this 
displacement. 

The foregoing conditions can be met by writing 

d W = !da defck + !ds1i drlj = !da(3deP) + !p d't df' (10. 7.5) 
in which 

ds;j 
Pti = d't df' = (!dt;i drlj) 112 

(10.7.6) 

and s1i = a;i- 61p = deviatoric stresses, o = okk/3 =volumetric stress, Yti = Eti
{)1ie = deviatoric strains, E = Ekk/3 =volumetric strain, f = stress intensity, Y" = 
length of plastic strain path, d't = s1i ds1i/2't, and a= akk/3. Variables Pti and q;i 
characterize the directions of vectors ds1i and drlj in the stress space, and 
coefficient p is a function of the angle between these two vectors and of the angle 
between ds;i and s;i· Here we chose to normalize Pti and q;i in different ways. 
Instead of the plastic path length Y" (Odquist's hardening parameter) one might 



INELASDC, DAMAGE, AND FRACTURE THEORIES 

think of using fl' = (rl/rl/12)112 and write q;i = drljldfl' (where dfl' = 
Ykm dykm12fl'); but this would be inconvenient since it is f"', rather than y, 
which is suitable as a hardening parameter in the loading function. Alternatively, 
one might think of introducing Pii = ds;)dt where dt = (ds;ids;il2) 112 =stress path 
length; but this would again be inconvenient because the loading function 
depends on t rather than t. 

Comparison of Equation 10.7.5 with Equation 10.7.2 indicates that the 
variables do, dT:, dE", and dyP for the block correspond to continuum variables 
do, di:, 3d£", and pdf"', respectively. A general loading function for isotropic 
materials may be considered in the form 

(10.7.7) 

where J3 = s;iskms""l3 =third invariant of s;i; Kk are possible further hardening 
parameters in addition to E" and f"'. Differentiating t, we get 

where 

dt = at do+ Dt dt + Dt (Pdf"')= 0 (10.7.8) 
ao Dt Df"' p 

Dt = at + 213 at + at (al(k) 
Df"' ar 3 a£" aKk ar 

3deP 
{3 = 2df"' 

(10.7.9) 

(10.7.10) 

The last expression is chosen to define the dilatancy factor t, in which 2df"' is 
used because, for pure shear, it represents 2deft2 =plastic shear angle increment. 
Note that if t depends on J3 , then Dt I Dt depends on the direction of vector ds;i 
and if {3 ::/= 0 or at I aKk ::/= 0, then Dt I DyP depends on the direction of vector de~. 
Dividing by Df I Dt and keeping in mind the proper correspondence of variables 
with the frictional block, comparison of Equation 10.7 .8 with dt = dT: + a do
C dyP = 0 (Eq. 10.7.1) yields 

C= _ _!(DtiD'f"') 
p DtiDt 

at lao 
a= Df/dt (if C, a ;;?:0) (10. 7.11) 

The dilatancy factor for the block, dE" Idyl', corresponds according to definition 
(10.7.1) to the ratio 3dE"Ipdf"' that equals 2{3lp where {3 is given by Equation 
10.7.10. Thus, according to Equations 10.7.4, the frictionally blocked second
order elastic energy may be expressed as 

11 W, = {3' ;/* do(di: + {3* do) in which {3* = ~ {3 
p 

(10.7.12) 

This expression is general, applicable to any loading function. Note that the 
equivalent stiffness C for the frictionally blocked elastic energy as well as 
dilatancy factor {3* depends on the directions of ds;i and d~. So does the friction 
coefficient a if aal aJ3 ::/= 0. 

Obviously we must have C ;;?; 0 and a ;;?; 0. Not only the derivatives of t, but 
alsop must be checked for this purpose. Normally (Dt I Df"')I(Dt I Di:) < 0, and 
then p must be positive; this is so if ds;i drlj > 0. 
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Stability Condition of Frictional Materials 

Let us now introduce the work expression 

fl. W = fl. W - fl. W, = ~do1i dE~ - fl. W, 

697 

(10.7.13) 

Now, although fl. W can become negative due to release of the frictionally blocked 
elastic energy, fl. W will still remain positive. So the state is stable. On the 
other hand if fl. W becomes negative for other reasons (fl. W, = 0), so will fl. W. 
Thus the following proposition, which gives for bodies under uniform strain a less 
restrictive (more general) sufficient condition for material stability than does 
Drucker's postulate, appears to be true for isotropic materials under controlled 
stress or strain (Bafant, 1980): 

If either fl. W > 0 or fl. W > 0, the material is stable (10. 7 .14) 

Note that we cannot discard the condition fl. W > 0 because fl. W, can be 
negative when fJ do< -df even if fl. W > 0. 

In the stress space ( o, f), the domain of do1rvectors that give fl. W > 0 
occupies the half-plane a in Figure 10.23b, and the domain of those that give 
fl. W > 0 occupies a certain other half-plane b. The combined domain of vectors of 
applied stress increments do1i for which the response is inelastic and is assured to 
be stable (for bodies under uniform strain) occupies the union of these two 
half-planes, that is, the reentrant wedge (Fig. 10.23b), one side of which is 
tangent to the loading surface. 

Condition 10.7.14 may equivalently be stated as follows (Bafant, 1980): 

If fl.W- X ll.W, >0 for any X e (0, 1), the material is stable (10.7.15) 

Since fl. W - X fl. W, is a linear function of x. the extremes can occur only at x = 0 
and x = 1, and so condition (10.7.13) follows from condition (10.7.14) and vice 
versa. 

Classical Plasticity Frictional Plasticity 

b 

-o 

d) 

-o -o 

Fipre 10.23 Stable increments of stress and associated plastic strain. 
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Plastic Strain Increment for Frictional Materials 

In view of the fact that the flow rule can be derived from 1:i W > 0, it is interesting 
to see what follows by the same line of reasoning from the more general condition 
l:iW- x li"J > 0. We have 

1 3 (1'- {3* -
!iW- X l:i"J =2ds;idy'ij+2,dodel'- x---u;do(d-r+ {3* do)>O (10.7.16) 

The loading criterion may be written as df = f.s,i ds;i +f. a do> 0. The ratio of this 
expression to that in Equation 10.7.16 obviously must be positive, and denoting it 
as d~J/2 (d/l > 0), we get 

( at d/l- dy'ij) ds;j + [at d~J- 3deP +X (1' -cf3* (di + {3* do)] do= 0. (10. 7.17) 
ao;j ao 

This equation must hold for any ds;i and do. Pursuing the same line of argument 
as we did in developing the normality rule of classical plasticity, we note that this 
is possible only if the bracketed expressions vanish, that is, if (Bafant, 1980) 

at a- f3* 
3del' = ao d/l- X-C- (dt + {3* do) 

= :~dll- ~(a-:I~~)( dt +:I~~ do) (10.7.18) 

where we used {3* = (2/p )3del' /2dY' and substituted df"' =I d/l where I= 
[(attas;i)(attas;i)t2r12

, which follows from the above expression for dt{. 
Equation 10.7.18 governs the ratio of the d~ components, that is, the 

direction of the vector d~. Using the same logic as in classical plasticity, we 
could further consider the magnitude of d~ to be proportional to 1:i W - x l:i MJ. 

Except for x = 0, Equation 10.7.18 is nonlinear with regard to de~/d~J. 
Moreover, C, a, and p depend on the direction of vectors do;i and d~. These 
aspects complicate applications. Equation 10.7 .18, however, is instructive. 

What we should observe is that, by pursuing basically the same line of 
reasoning as we did in classical plasticity to derive the flow rule, we now obtain 
no unique direction of the vector of d~ but a continuous set of infinitely many 
possible directions characterized by an arbitrary parameter x e (0, 1). In the 
volumetric section of stress space, all the possible directions of d~ fill a 
continuous fan of finite angle (1-2-3 in Fig. 10.23d). One boundary direction of 
the fan is the normal to the loading surface (x = 0). The other boundary direction 
(3 in Fig. 10.23d, x = 1) can be thought to be normal to some other surface (bin 
Fig. 10.23d). 

This situation resembles that encountered in classical plasticity at the corner of 
the loading surface. It is also similar to what is assumed in nonassociated 
plasticity; however, the direction of the fan boundary (X= 1) is not unique and is 
not known in advance as it is not uniquely determined by the current loading 
surface in the stress space. Moreover, material stability (in the sense of Drucker's 
postulate) is assured for all loading directions do;i within the fan, while in 
nonassociated plasticity the stability is not assured. 
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Inverse Material Fridion 

A friction-producing force, in a generalized sense, is a force that does no work on 
some displacement yet does affect that displacement. From Equation 10.7.5 we 
saw that da does no work on d}R but affects it if the loading function depends on 
both a and r' (Eq. 10.7.7). However, we may now notice from Equation 10.7.5 
that, conversely, df does no work on de" yet can affect de" if the loading function 
depends on eP, as is the case for geomaterials. So, df alternatively may be 
regarded as a friction-producing force and may be assumed to correspond to da 
for the block (Fig. 10.22a), while da, p d}R and 3d£" are assumed to correspond 
to d-r, de", and dyP for the block. This phenomenon was called the inverse 
friction (Bafant, 1980). Instead of Equation 10.7.8, we may now write the 
differential of Equation 10.7.7 in the form 

Df at 1 Df 
df =- Df +- da +--(3d£")= 0 

Df aa 3D£" 
(10.7.19) 

where 
Df at 3af 
-=-+--
DeP aeP 2fJ ay 

(10.7.20) 

while Df/Df and fJ are given by Equations 10.7.9 and 10.7.10. Comparison of 
Equation 10.7.19 with the equation df = d-r +ada- C dyP stated below Equa
tion 10.7.1 now yields 

C= _!(Df/DeP) 
3 attaa 

Df/Df 
a= attaa 

where a may now be called the "inverse friction" coefficient. 

(10.7.21) 

The expression for aw, has again the form of Equation 10.7.12 in which, 
though, {J* = p dyP /3d£"= p/2{J where fJ = 3deP /2dyP. Note that this expression 
for AW,cannot be reduced to the previous one (Eqs. 10.7.11-10.7.12). 

The material stability condition (Eq. 10.7.14) may now be broadened. We 
may define AW = AW- AW, where AW, = AW, as given by Equations 10.7.21 
and 10.7.12 with {J* = p/2{J, while AW remains to be given by Equations 10.7.11 
and 10.7.13. Then: 

If aW>O or aW>O or AW>O, thematerialisstable (10.7.22) 

(Bafant, 1980). Instead of a reentrant wedge, the domain of da;i vectors that 
produce inelastic strain and stable response now becomes a reentrant pyramid, 
one side of which is tangent to the loading surface. Equivalently, we can state 
that 

If A W - X a W, - 1p A W, > 0 for any X e (0, 1) 

and 1JI e (0, 1), the material is stable (10.7.23) 

To make a distinction, A W, may be called the frictionally blocked volumetric 
elastic energy, while the previously introduced a W, is the frictionally blocked 
deviatoric elastic energy. 

The line of reasoning that is used in classical plasticity to deduce the normality 
rule would now generalize Equation 10.7.18 to a form that contains two arbitrary 
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parameters x and 1J1 and indicates that all stable plastic strain increment vectors 
fill a cone (hypercone) rather than just a fan. The normal to flies on one side of 
this cone. 

It may be instructive to illustrate the meaning of coefficient p from Equation 
10.7 .5. Consider the special case when the medium principal axes of ds;i and rlj 
coincide and let them lie on the x2 axis. Also assume that the medium principal 
values of ds;i and de~ are zero, that is, ds22 = drl2 = 0. For a suitable choice of the 
x1 and x2 axes, the stress state in the x., x2 plane can be represented as 
hydrostatic stress do superimposed on a pure shear stress of magnitude dt. 
Likewise, in some other x~ and xi axes the strain state in the x1, x2 plane can be 
represented as volumetric strain de" superimposed on a pure shear strain of 
magnitude d}R. Since ds22 = -ds11 , we have ds11 = ±dt/VZ. Furthermore, 
working in the principal axes of ds;i, we have ds12 = 0, and because of drl2 we 
have dtl1 = ±d}R cos 2w/VZ where w =angle between the maximum principal 
directions of do;i and d~. Thus, from ll. W = ~ do de" + !ds;i drlj we obtain 

ll. W =~do del' + !dt(2d}R cos 2w) (10. 7.24) 

So, coefficient p from Equation 10.7.5 is simply equal to 2 cos 2w, and we see that 
it may vary between 2 and -2. When do;i and d~ are coaxial (as in a cubic 
triaxial test) p =cos 2w = 2 and we have a one-to-one correspondence with the 
friction block example, without introduction of any further arbitrary factor. 

Frictional Phenomena in Other Constitutive Theories 

An analogous frictional formulation can be developed for stress-strain relations 
based on loading surfaces in the strain space. This has been done (Bafant, 1980) 
for the so-called fracturing material models in which the inelastic deviatoric stress 
decrements depend on the volumetric strain. 

Problems 

10.7.1 Consider the frictional block in Figure 10.22b, which is loaded by a weight 
over a pulley rather than by a spring. Show that if slipping is imminent, any 
infinitesimal disturbance (do, d-r) for which ll.W = !(d-rdyP +do de") <0 
causes the block to slip a finite distance. The equilibrium is therefore unstable. 

10.7.2 Can the block be stable if it is preloaded by a nonlinear spring? 
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11 
Three-Dimensional Continuum 
Instabilities and Effects of 
Finite Strain Tensor 

The exposition of elasticity in textbooks normally begins by a general three
dimensional formulation, which is subsequently simplified to solve one- and 
two-dimensional problems. Why haven't we followed this route?-because the 
general theory of stability for multidimensional continuous bodies is considerably 
more difficult than the theory of beams. plates, and shells. The difficulty stems 
from the geometrically nonlinear nature of the finite strain tensor. 

As we have seen in Chapters 4 and 10, stability depends on the second-order 
incremental work. One contribution to this work comes from !a1ieti where e1i can 
be taken as the small (linearized) strain increment since the stress increment a1i is 
also small. However, there is another contribution from S~E;i where ~ is the 
stress in the initial state. Now since S~ is not small, the incremental strain E;i must 
be expressed accurately up to terms second-order small in u1.i, that is, one must 
use finite strain. This complicates the concept of stress. 

In the usual (Cauchy) definition, the stress (true stress) can be defined by 
forces acting on a small elemental cube cut from the material. Due to the 
finiteness of strain, this cube would have to be cut after deformation Eti• but then 
the material properties cannot be related to the initial state and the body surface 
would have a more complicated shape. For these reasons it is necessary to write 
the equilibrium conditions in terms of stresses T;i that act on a deformed element 
(which was a small elemental cube in the initial state) and are referred to the 
initial areas of the faces of the cube. But these stresses do not give the correct 
work expression in terms of E;i and are nonsymmetric, while the stresses used in 
the stress-strain relation must be symmetric. To remedy it, still another 
symmetric kind of stress, a1i, must be introduced in order to write the 
stress-strain relation. In this regard, one must further realize that there is not one 
but infinitely many equally justified expressions for finite strain, e1i, and the 
meaning of a1i depends on the choice of this expression. Hence the incremental 
moduli Cijkm must also depend on the choice Of E;j• 

It is important to use only a formulation that involves a conjugate group of e1i, 

uti• and Ctikm· Unfortunately, many formulations presented in the literature 
mixed nonconjugated variables. Biezeno and Hencky (1928) were apparently the 
first to present one correct statement of stability that happens to meet the 

706 
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conjugacy requirements, although these requirements were not clearly stated 
until much later. 

For most problems of thin bodies (beams, plates, shells), the aforementioned 
difficulties due to conjugacy of variables are avoided because it suffices to 
consider that only the deflections and rotations are large, while the material 
strains remain small. This has been the case for all the problems considered so far 
in this book. In this chapter we finally focus on three-dimensional massive bodies 
in which the finite strains of the material must be taken into account. 

The critical states of stability of three-dimensional bodies that are not thin can 
generally occur, as we will see, only if the compression stress is of the same order 
of magnitude as the tangential shear modulus or transverse modulus of the 
material. Consequently, this chapter is of practical interest only for 

1. Highly anisotropic materials, such as fiber composites 
2. Composite structures having very soft components, such as sandwich plates 
3. Continuum approximations of latticed structures 
4. Materials that undergo a drastic reduction of tangential stiffness due to 

plasticity or damage (see Chap. 13). 

The stiffness reduction we have in mind is not necessarily instantaneous. In 
the sense of the effective modulus treatment of long-time creep (Chap. 9), the 
large stiffness reduction can come about as a result of long-time creep 
(viscoelastic or viscoplastic). Thus, for example, the folding of rock strata, a basic 
problem in geology, may be regarded as a long-time three-dimensional instability, 
even though the instantaneous stiffness of rock remains very high. 

While the finite strain theory is usually approached by means of coordinate 
transformations and tensorial invariance arguments, we will find it simpler to 
derive the entire theory solely by means of energy and variational arguments 
(Bafant, 1967, 1971). Moreover, the latter approach will also reveal the stress 
conjugacy restrictions that cannot be detected by the former. Then we will 
proceed to show some applications that can be solved by hand and, therefore, 
understood easily-buckling of a thick column or plate with shear, surface 
buckling of an orthotropic half-space, bulging of a compressed orthotropic wall or 
cylinder, and fiber buckling in composites. 

All these applications are inherently multidimensional continuum problems. 
They illustrate that finite strain (as opposed to finite rotation) and a two- or 
three-dimensional form of buckling are important only when some of the stresses 
are of the same order of magnitude as the tangential moduli of the material. If 
the body is not thin, such a situation can arise only for highly anisotropic 
incremental material moduli or for stress states that are close to the peak of the 
stress-strain diagram. The anisotropy need not be natural but can be induced by 
previous inelastic straining or damage. 

11.1 FINITE STRAIN 

As illustrated in Chapters 4 to 7, in stability problems the work of initial stresses 
must be calculated on the basis of finite strain tensor components that are 
accurate up to terms second-order small in displacement gradients u;.i· The 
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reason is that the work of small stress increments is second-order small in u;,;· We 
have already introduced finite strain in Sections 4.3, 6.1, and 7.2, however, only 
for thin bodies (beams, plates, and shells). For such bodies, as we will see (Eq. 
11.1.19), the second-order part of strain depends principally on material rotations 
W;;· To treat bodies that are not thin, we need to introduce a more rigorous 
measure of finite strain than we did before. 

Notations and Basic Requirements 

For the sake of simplicity we will use only Cartesian tensors in component 
notation, that is, x 1 = x, x2 = y, x3 = z, and refer to the coordinates by italic 
lowercase subscripts running from 1 to 3. The current (or final) spatial 
coordinates X; (i = 1, 2, 3) of material points, also called Eulerian coordinates, 
must now be distinguished from the initial coordinates X; of material points, also 
called the material coordinates, reference coordinates, or Lagrangian coordin
ates. The initial (or reference) state in stability problems is generally a stressed 
state, and we measure the finite strain with respect to this state, not with respect 
to the natural stress-free state of the material. The deformation of the structure 
represents a mapping, x = x(X). Locally this mapping is characterized by the 
deformation gradient tensor X;,j =ax;/ aX; (the subscripts preceded by a comma 
will always denote partial derivatives with respect to X;, not x;). In terms of 
displacements u; =X; -X;, obviously X;,;= lJ;; + U;,; where lJ;; = 1 for i = j and 0 
for i =I= j (Kronecker delta). The displacement gradient u;,; is in general a 
nonsymmetric tensor and may be decomposed as 

U;,; = e;; + W;; e-- = 1(u- -+ u- -) w-- = 21(u- -- u- ·) IJ 2 I,J J,l IJ I,J J,l (11.1.1) 

where e;; is called the small (or linearized) strain tensor, and W;; is the small (or 
linearized) rotation tensor of the material; e;; and W;; depend on u;,; linearly and 
describe strain and rotation accurately only up to first-order terms in u;,;· 

The definition of finite strain E;; must satisfy four requirements: 

I. E;; must be a second-order tensor. 
II. E;; must be symmetric. 

III. E;; must vanish for all rigid-body motions. 
IV. E;; must depend on u;,; in a continuous, continuously differentiable, and 

monotonic manner. 

Requirement I follows from the fact that the work increment per unit volume 
is dW = a;; dE;; where a;; is a certain type of stress tensor. If E;; were not a tensor, 
then either a;; could not be a tensor or W could not be a scalar, each of which is 
inadmissible. Furthermore, since a;; is symmetric (see Sec. 11.2), a nonsymmetric 
part of dE;; would do no work and would, therefore, be arbitrary, indeterminate. 
This is the reason for requirement II. Requirement III ensures that the work of 
stresses on rigid-body rotation is zero (this condition is violated by e;;, the error 
being of the second order in u;,;)· Requirement IV implies that if there is no 
rotation ( W;; = 0), the dependence of E;; on u;,; must be unique and invertible 
(i.e., monotonicity holds). Monotonicity in requirement IV means that if the 
length of any line segment dX increases, the resolved normal component of E;; in 
the direction of dX must increase, too. For the sake of convenience, we further 
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choose to impose a fifth requirement: 

V. The first-order (linear) part of E;; must coincide withe;; (Eq. 11.1.1). 

Lagrangian (Green's) finite Strain Tensor 

To deduce tensor E;; satisfying the foregoing requirements, we consider a small 
line segment dX; of length ldXI that gets transformed to line segment dx; of 
length ldxl (Fig. 11.1a). Partially duplicating our argument in Section 7.2, we may 
set 

(11.1.2) 

Repetition of italic lowercase subscripts implies summation over 1, 2, 3 
(Einstein's summation rule). Equation 11.1.2 automatically satisfies (1) require
ment III, because ldXI = ldxl for rigid-body rotations; (2) requirement I, because 
the dyad dX; dX; is a second-order tensor; and (3) requirement II, because this 
tensor is symmetric. Substituting ldXI2 = dXk dXk, ldxl2 = dxk dxk, and noting 
that dxk = xk,i dX;, we get 

2£·· dX. dX. = xk · dX. xk · dX - dXk dXk = (xk "k ·- 6-·) dX. dX. II I I ,I I ·I I ...... • I II I I 

= [(Xk + uk),;(Xk + uk),;- 6;;] dX; dX; 

= [(6ki + uk,;)(6k; + uk,;)- 6;;] dX; dX; 

= (U· · + U· · + Uk ·Uk ·) dX. dX.. 1,1 J,l ,I ·I I I 

Hence (see also Eq. 7.2.2): 

E·· = 12(xk "k ·- 6-·) = 12(u· · + U· · + uk ,uk ·) = e·· + 21uk 1uk · II ,t"" •I II 1,1 J,l ,I •I II , ,1 (11.1.3) 

Equation 11.1.3 is called the Lagrangian (finite) strain tensor (because it is 
based on the Lagrangian coordinates X;, not because Lagrange would have 
invented it) or Green's strain tensor (Green, 1839). The expression C;; =xk,.Xk,; is 
called Green's or Cauchy-Green's deformation tensor (Cauchy, 1828). In view of 
Equation 11.1.2, Equation 11.1.3 obviously satisfies requirement IV. 

The factor 2 is introduced in Equations 11.1.2 and 11.1.3 in order to satisfy 
the convenience requirement V (this is clear upon noting that uk,iuk,; in Eq. 
11.1.3 is second-order small). 

a) 

! 

x, x, 

Flpre 11.1 (a) Large deformation of line segment and material element; (b, c) polar 
decompositions of deformation, corresponding to left and right stretch tensors. 
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Note that while !(u;.i + ui.i) is not the exact expression for finite strain, the 
analogous expression eii = i[(avJaxi) + (avitax;)] gives nevertheless the strain 
rate exactly ( v; = i; = U; = velocity of material point, and a superior dot denotes a 
time derivative). For proof, we consider u; to be the displacements from any 
deformed state taken as the initial state, and set u; = V; lit (t =time); then 
E;i =lim [ E;i(lit)/ lit] =lim!( V;.i lit+ vi.i lit+ vk,ivk.i lit2

)/ lit for lit-+ 0. The term 
with lit2 vanishes, and so lim E;i = eii at the initial deformed state, that is, for 
U;-+0, X;-+X;, and atax;-+a/aX;. 

Biofs Finite Strain Tensor 

Equation 11.1.3 is at present a generally adopted finite strain measure. However, 
it is not the only possible way to define finite strain in Lagrangian coordinates X;. 
In fact, other definitions were either used or tacitly implied in most original 
contributions to stability theory of multidimensional continuous bodies. This 
generated unnecessary controversies in the past and prevented acceptance of 
some important original results. We will now show other possible definitions. 

Biot (1934, 1939, 1965) introduced an alternative physical definition of finite 
strain that we denote as et. We imagine that the material element is first 
subjected to a symmetric deformation ( W;i = 0) with a displacement gradient 
equal to et (Fig. 11.1c), and then the deformed element is rotated as a rigid body 
to its final position characterized by coordinates x;(X). Let x; be the coordinates 
of material points X; after the symmetric deformation. As the subsequent rotation 
does not change the length of an infinitesimal line segment, we have ldx'f = ldxl2 

or dx~dx~ = dxk dxk. Since dx~dx~ =x~.;dX;xLdXi = (lJki + E~;)(lJki + E~i) 
dX; dXi and dxk dxk = ( {Jki + uk,;)( {Jki + uk,i) dX; dXi we have 2et + E~;E~i = ui.i + 
ui,i + uk,iuk,i• that is, 

(11.1.4) 

Finite strain et, called the Biot strain (Biot 1934, 1939, 1965), is a solution of 
this nonlinear equation (which represents a system of six quadratic equations). 
Similarly as before, one can check that et fulfills requirements I, II, Ill, and V, 
and fulfillment of requirement IV is physically clear from the decomposition of 
deformation into pure strain and rotation. A convenient feature of Biot's strain is 
that et = ui,i = ui,i = eii if there is no rotation ( wii = 0). (On the other hand, 
E;i * eii even for no rotation.) 

The fact that Equation 11.1.4 defines et implicitly is inconvenient. However, 
for stability analysis we need et with only second-order accuracy. So we may 
approximate E~;E~i as ekieki• and thus we get the second-order approximation: 

(11.1.5) 

To obtain a third-order approximation to et, we may substitute the expression 
in Equation 11.1.5 into the term !e~;E~i in Equation 11.1.4. This yields 

(11.1.6) 
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Second-Order Approximations of Other Finite Strain Tensors 

Comparing Equation 11.1.5 for 4 with Equation 11.1.3 for E;i, Bafant (1971) 
proposed that the tensors 

m 
a=1--

2 
(11.1. 7) 

where coefficient m (or a) can have any value, could be used as acceptable 
second-order approximations to finite strain (the meaning of m will become 
apparent after Eq. 11.1.13). That Equation 11.1.7 as well as Equation 11.1.5 is an 
admissible second-order approximation of finite strain follows from the fact that 
this expression violates requirement III only by terms of higher than second order 
in u1.i, and satisfies requirement IV for sufficiently small u1.i. The latter fact means 
that the range of monotonicity of Equation 11.1.7 as well as Equation 11.1.5 is 
limited, while that of E;i is unbounded. 

For m = 2 (a = 0), Equation 11.1. 7 (as well as the foregoing deformation 
sequence) yields the second-order Lagrangian strain ef, that is, 42> = E;i [the lack 
of superscript (m) will signify m = 2]. Form= 1 (a= 2), Equation 11.1.7 (as well 
as the foregoing sequence) yields the second-order Biot strain, that is, e~J> = et. 
For m = 0 (a= 1), Equation 11.1.7 gives e}J> = e1i- ek;eki = e}j8 ; this represents 
the second-order approximation to what is called the logarithmic strain or Hencky 
strain. This strain, often favored for representing large strain test data, is 
associated (see Sec. 11.3) with the differential equations of equilibrium of Biezeno 
and Hencky (1928), as well as with the Jaumann stress rate (Prager, 1961; 
Truesdell and Noll, 1965; Masur, 1965). Form= -2 (a=2), Equation 11.1.7 
yields a finite strain that is associated with Timoshenko's differential equilibrium 
equations for beam-columns with shear (see Sec. 11.6). And form= -1 (a=~), 
Equation 11.1.7 yields a finite strain that is associated (Sec. 11.3) with the 
so-called convected stress rate of Cotter and Rivlin (Prager, 1961; Masur, 1965). 

The reason for calling e~J> with m = 0 the logarithmic strain (Bafant 1971) is 
that the principal strain (i.e., the normal strain En at e12 = e13 = 0) according to 
Eq . 11 1 7 . co> 1 2 2 1 2 Th I . h . I uatton . . IS Eit =en+ 2en- en =en - 2en. e ogant mtc norma 
strain is defined as e~8 = I den/(1 +en)= In (1 +en), the expansion of 
which is e~i8 = e 11 - !e~ 1 + !e~1 - • • • • This coincides with Equation 11.1. 7 up to 
the second-order terms. 

The most general second-order approximation that satisfies requirement III 
except for terms of higher than second order, as well as requirement IV for 
sufficiently small U;,i, has the form (Bafant, 1971): 

e; = E;i - aek,eki + a611-ekkenn + be,iekk + c6,iekmekm 

where a, a, b, care any constants. 

Further Measures of Finite Strain 

(11.1.8) 

Let F denote the transformation tensor F = Vx (where V =gradient vector). The 
components of F are F;i = ax;/ a xi = x1.i. The transformation F can be decom
posed either as a strain followed by a rotation (Fig. 11.1c) or a rotation followed 
by a strain (Fig. 11.1b). This is described by the polar decomposition theorem 
(e.g., Ogden, 1984; Marsden and Hughes, 1983; Truesdell and Noll, 1965): 
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neorem 11.1.1 For any nonsingular tensor F there exist unique positive
definite symmetric second-order tensors U and V such that 

F=RU=VR (11.1.9) 

in which R is a (finite) rotation tensor, which is orthogonal, that is, RTR =I= 
unit tensor. (Product RU denotes a tensor product contracted on one index, also 
written as R • U; the component form of Equation 11.1.9 is F;; = R;kUk; = V;kRk;·) 

To prove it, one obtains from Equation 11.1. 9 

c = FTF = UTRTRU = uru = U2 (11.1.10) 

(11.1.11) 

So U = (FTF)112 and V = (FFr)112
• Such square roots are known to exist and be 

unique since tensors FTF and FFr are symmetric and positive definite. Indeed, 
the principal values of U may be calculated as A.(i) = ~ (i = 1, 2, 3) where 1-'c;> 
are the principal values of the symmetric tensor FTF, and the unit principal 
direction vectors nY> of tensors U and FTF are the same. Obviously, 1-'ci) are 
positive if FTF is positive definite. The spectral representation of U (e.g. Ogden, 
1984) is 

3 
, 1 - "" ' ~ (i) (i) v;k - LJ v 1-'(i) n; nk 

i=l 
(11.1.12) 

The uniqueness may be proven by showing the impossibility of two different 
tensors U and U'. 

Tensor C (Eq. 11.1.10) represents Green's (or Cauchy-Green's) deformation 
tensor (Cauchy, 1828); U is called the right stretch tensor (Fig. 11.1c) and V is 
called the left stretch tensor (Fig. 11.1b) ("right" and "left" refer to the positions 
in Eq. 11.1.9). The Lagrangian (Green's) strain is obtained as 

t = i(C -I)= i(FrF -I)= i(U2 -I) (11.1.13) 

and from this, U =(I+ 2£)112 (I is the unit tensor, which has components 6;;). 
The relation F = RU describes exactly the sequence of transformations that 

are used to obtain the Biot strain tensor tb (Eq. 11.1.4) (and U;; = x:.; = 6;; + e~). 
Therefore 

(11.1.14) 

The last two equations suggest defining generalized Lagrangian finite strains: 

t(m) = _.!._ (Um - I) 
m 

t(m) =In U 

form ::1=0 
(11.1.15) 

form=O 

as proposed by Doyle and Ericksen (1956). These tensors all represent acceptable 
strain measures, satisfying requirements I to V. Tensors t<m> have the principal 
values 

E~Q) =_.!._(A.(;)- 1) 
m 

em>= In A.<;> 

for m-::1=0 
(11.1.16) 

form =0 
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Here l<;> = VP;;, =principal values of U, called the principal stretches (i = 
1, 2, 3), A(i) geometrically represents the stretch ratio ldxl/ldXI if vector dX lies 
in the principal direction n<;> associated with A(;) (e.g., Ogden, 1984). [Note that 
lim (lm -1)/m for m--+0 is In l.) When m is not an integer, um (the mth power 
of tensor U) is defined by the aforementioned principal values E~f)> and the unit 
principal direction vectors n<,.> of tensor U (or C, £): 

3 

[Um1k = L l(ii"Ji>n~> (11.1.17) 
i=:l 

which constitutes the spectral representation of tensor um. When m is an integer, 
U2 = UU = U;kUk;• U3 = U(UU) = U;kUkmUm;• etc.; U1'n is the solution Y of the 
equation yn = U. In U may also be defined by the power series expansion of the 
logarithm, and l(i> in Equation 11.1.17 must in this case be replaced by In l(i)· 
Equation 11.1.17 shows that all the tensors u<m>, £<m> are coaxial (i.e., have the 
same principal directions). Thus, they also are coaxial with C and£. 

If the X 1 axis is rotated to coincide with the principal direction i = 1, then 
l 1 =1+e11 (for finite strain). Thus e\'f>=(1/m)[(1+enr-1] if m:;I:O and 
e\';'> =In (1 +en) if m = 0. Noting that (1 + en)m = 1 +men+ (m/2)(m - 1)e~1 
+ · · · and In (1 + e 11) = e11 - !e~1 + · · ·, we obtain the second-order approximation 

(11.1.18) 

Now, for comparison, Equation 11.1. 7 yields the second-order approximation 
ei'f> =En- ae~1 =en+ !(m -1)e~1 • On this basis it has been realized that the 
tensors E~m> in Equation 11.1.7 proposed by Bafant (1971) for the purpose of 
stability analysis represent second-order approximations to the finite strain 
tensors E~t> in Equations 11.1.15, proposed by Doyle and Ericksen (1956) for 
hyperelastic materials. 

The finite strain tensor can also be defined with reference to the Eulerian 
coordinates x,.. A counterpart of Green's strain tensor E;; is then the Almansi 
(1911) (or Eulerian) strain tensor defined as «;; = !(1- BB') =!(I- v-2

) where B 
is the tensor of aX,./ ax;. Analogs to all the tensors given in this section can be 
formulated. For the analysis of solids, however, the Lagrangian coordinates X; of 
material points are usually more convenient. The Eulerian coordinates, on the 
other hand, are more suitable for fluids. 

To sum up, infinitely many equally justifiable definitions of the finite strain 
tensor£ are possible. Therefore, it would be purely by chance if the stress-strain 
relation o(£) in finite strain were linear. The tangential moduli C' =do/dE are 
obviously different if different definitions of £ are used for the same material. The 
choice of£ depends only on convenience. In general, the Lagrangian strain tensor 
is the simplest to calculate at large strain and should perhaps be preferred for the 
sake of standardization. 

The Special Case of Thin Bodies 

Except for very large deflections, the deformations of thin plates and shells 
normally satisfy the following three hypotheses: 

(1) Strains e;; are negligible compared to out-of-plane rotations w13 , w23 , that 
is, max le;;l «max (lwl31, 1w231). 
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(2) The in-plane rotation w12 is of the same order of magnitude as e;1 and thus 
negligible compared to w13 and W23. 

(3) The out-of-plane shear and normal strains e 13 , e 23 , e 33 are negligible 
compared to the in-plane strains en, en, e12· 

Because of hypothesis (1), e~aeki is negligible compared to wk;wki• and so, 
from Equations 11.1.7 and 11.1.3, 4m> = E;1 = e;1 + !(wk;Wki + ek;Wki + ekiwk;). 

Now, from hypothesis (2) we find the terms e12w12 and ez1W21 to be of the same 
order of magnitude as ek;eki and thus negligible compared to wk;wk1; and from 
hypothesis (3) we find e 31 w 31 and e 32w 32 as well as e 31 W32• e 32W31 to be negligible 
compared to wkiwki· Thus, for the in-plane finite strain components in plates and 
shells we may write 

(i = 1 2· 1· = 1 2· all m) ' ' ' , (11.1.19) 

Decomposition of Strain into Elastic and Inelastic Parts 

In large strains, one no longer can justify the customary summation decomposi
tion E;1 = Eij + ~ where Eij = elastic strain and e;j = plastic (or other inelastic) 
strain. Assuming that the plastic strain increment occurs first (since it is treated as 
the initial strain) and the elastic one afterward, the transformation tensor F of the 
total displacement gradients Ft1 = u;,1 is properly decomposed in the form of polar 
decomposition F = F'P' where F' and P' are transformation tensors for the elastic 
strain and the plastic strain. The elastic and plastic strains may then be 
determined on the basis ofF' and P'. See, for example, Lee (1969), and some of 
the recent discussions in Simo and Ortiz (1985) and Simo (1986). 

PToblems 

11.1.1 Why is log ( ~;1 + E;1) unacceptable as the components of a strain measure? 
Hint: Is it a tensor? What about exp (~;1 + E;1)? 

11.1.2 The tensor 'E;1 = E;1 - E;kEki satisfies all the requirements for finite strain 
except that requirement IV is satisfied only in a limited range of strains. Find 
the maximum uniaxial strain £ 11 beyond which the dependence of 'E;1 on e;1 at 
w;1 = 0 is not invertible. 

11.1.3 Let the x3 axis be identified with the axis of rigid-body rotation w = w 12• 

Then Xt = Xt cos w- x2 sin w, Xz = -xl sin w + XJ cos w. Calculate Ut = 
Xt- xl> "2 = x2- x2 and set sin w = w- !w

3
, cos w = 1- !w

2 + -f4w4. Check 
that Equation 11.1.5 is accurate only up to second order, and express the 
error up to the fourth order. 

11.1.4 Explain why Equation 11.1.3 cannot be written in the standard matrix 
notation for strains? Hint: Can uk,i be written as a 6 x 1 column matrix? 

11.1.5 Show that, for thin bodies, Equation 11.1.19 is a correct approximation of 
any tensor E~t>, for any value a. (Thus, the distinctions between various types 
of finite strain tensors disappear for thin bodies.) 

11.1.6 Given that u1,1 = -0.3, u1,2 = 0.2, u2, 1 = -0.1, u2,2 = 0.1, all other u;,1 = 0, 
calculate all the principal values and unit principal direction vectors of tensors 
eij> Eij> FTF ( = U2

), c, u, R ( = u-1F), u<m>, E(m) (form= 2, 1, 0, -2). Then 
calculate the second-order approximations to E<m> (Eq. 11.1.5) as well as the 
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third-order approximations. Then calculate for all these tensors the com
ponents with subscripts (1, 1), (1, 2), (2, 1), (1, 1) using the spectral repre
sentation of a tensor when convenient. 

11.1.7 Do the same, but (a) for u 1,1 =-3, u 1,2 =2, ~. 1 =-1, u 2,2 =1; (b) for 
u1, 1 = -0.025, u1,2 = 0.02, u 2, 1 = -0.01, ~.2 = 0.01 (in this case the second
order approximations will be very good). 

11.1.8 By expressing U2 = [~kUkm] according to Equation 11.1.12 and noting 
that n~>n~> = {Jijl prove that U2 = FTF. 

11.1.9 Prove Equation 11.1.13. 

11.2 STRESSES, WORK, AND EQUILIBRIUM AT FINITE STRAIN 

The finiteness of strain makes it necessary to distinguish between stresses referred 
to the initial and final configurations of the body, as well as between the true 
stresses and the stresses that are associated by work with various finite strain 
tensors. 

Virtual Work Relations and Equilibrium 

The initial state and the final (current) state of the body after incremental 
displacements u1 are assumed to be equilibrium states. The condition of 
equilibrium in the final state may be expressed in terms of the principle of virtual 
work, which can be written in three ways: 

f. S1i atJu; dV'- f. p'/;tJu1 dV'- f p; tJu1 dS' = 0 
v· axi v· Js· 

(11.2.1) 

f. atJu. J. l T:--1 dV- P.'~{Ju. dV- p-tJu. dS = 0 
IJ ax 'Ji I I 1 

v i v s 
(11.2.2) 

f. l:~!">{Je~!"> dV- J. P.'~{Ju. dV -1 p-tJu. dS = 0 IJ IJ 'Ji I I I 
v v s 

(11.2.3) 

Here tJu1 =arbitrary kinematically admissible variations of u1, tJE;i =associated 
finite strain variations; V, S, V', S' =volume and surface of the body in its initial 
(stressed) configuration and final (current) configuration; p, p' =mass densities in 
the initial and final configurations; /;=prescribed body forces per unit mass; 
p1, p; = prescribed distributed surface loads (or, tractions) in the final state that 
are referred to the initial or final surface areas, respectively; S;i, T;i, and 
l:~m> =various types of stresses in the final state, which we are going to discuss in 
detail. 

The first equation expresses the work on the basis of the final (current) 
configuration. The second and third equations express the work on the basis of 
the initial configuration. In the last equation the work is expressed in terms of the 
(symmetric) finite strain tensor, while in the first and second equations the work 
is expressed in terms of the (nonsymmetric) displacement gradients au;/ axi and 
au;/ axi with respect to the final coordinates X; and the initial coordinates X;. 

The integrand of the first integral in Equation 11.2.2 or 11.2.3 represents the 
work per unit initial volume, that is, {JW = T;itJu;,i = l:~t>tJ4m>. According to 
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Section 10.1, 'W is the Helmholtz free energy F per unit initial volume if the 
conditions are isothermal, and the total energy U per unit volume if the 
conditions are isentropic (adiabatic). It follows that 

(m)_ a'W 
l:;; - ae~!"> 

IJ 

(11.2.4) 

Note, however, that 'W is not path-independent (see Sec. 10.1); it does not 
represent a potential, except if the material is elastic in finite strain (i.e., 
hyperelastic). 

Applying the Gauss integral theorem to the first volume integral in Equation 
11.2.1 as well as Equation 11.2.2, we may get rid of the derivatives of lJu; in these 
equations and obtain 

f. (p;- n;S;;)lJu; dS' + J. (aaS;; + p'!t) fJu; dV' = 0 
S' v• X; 

(11.2.5) 

L (p;- v;T;;)lJu; dS + L (:~ + p[; )lJu; dV= 0 (11.2.6) 

in which v; and n; are the unit outward normals of the surfaces S and S'. Since 
these variational equations must be satisfied for any variation lJu;, it is necessary 
(according to the fundamental lemma of the calculus of variations, see Sec. 5.1) 
that 

as;; 'It o -+p ·= 
axj I 

in V' S;;n; = p; on S' (11.2.7) 

ar:. 
al.+pft=O in V T;;V; =Pi on S (11.2.8) 

I 

These are the differential equations of equilibrium and the static boundary 
conditions of the final state based on the final and initial configurations. 

True (Cauchy) Stress 

Tensor S;; is the actual stress tensor that is referred to the current (final) 
configuration and works on the strain rate; see Equation 11.2.11 and Figure 11.2. 
It represents the forces in the x;-directions on a small unit cube that is cut out 
from the body in its final configuration (i.e., after the incremental deformation). 
S;; is called the true stress or Cauchy stress (Cauchy, 1828; Malvern, 1969; Ogden, 
1984); it has also been called the Eulerian stress (Prager 1961), since the X; 

coordinates are called the Eulerian coordinates. Tensor S;; must be symmetric 
(this follows from the equilibrium conditions of a small material element, as well 
as the fact that asymmetric S;; would, in Eq. 11.2.1, yield nonzero work for 
rigid-body displacements). So we haveS;; a(fJu;/ax;) = S;;lJd;; were 

{Jd .. =! (a6u; + afJu;) 
IJ 2 a. (11.2.9) 

X; ax; 

d;; represents a symmetric strain tensor that is linear in displacement gradients, 
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r 
x, 

Figure 11.1 Two-dimensional representation of Cauchy stress tensor S11 and Piola
Kirchhoff stress tensor T;1• 

same as e;i· It is referred to the current (final) configuration. By contrast, 
e;i = !(au;/ a xi+ aui/ aX;) is referred to the initial configuration. Equation 11.2.1 
may also be written as 

f. S;i6d;i dV' -f. p'/;6u; dV -1 p/Ju; dS' = 0 (11.2.10) 
v· v· s· 

Even though the first virtual work relation in Equation 11.2.1 and the 
equivalent relation in Equation 11.2.10 are the simplest ones and involve a 
symmetric stress tensor, they are not convenient to treat the finite strain of solids. 
The reason is that the tensor 6d;i in Equation 11.2.10 does not take into account 
the initial configuration, which is important for solids. 

The foregoing equations can be divided by 6t where t = time-like parameter, 
not necessarily the real time. From 6u; one gets 6u;l 6t = u; = V; = velocities of 
material points; a6uJ axi, a6uJ {)~, and 6E;i become au;/ axi, au;/ a xi, and E;i· 
Strain d;i yields the strain-rate tensor 

6d;j 1 (avi avi) -=- -+-
6t 2 axi ax; 

(11.2.11) 

Stress Referred to Initial Configuration and Working on Displacement 
Gradient 

As is clear from Equation 11.2.2, stress T;i is referred to the initial configuration 
and is associated by work with the displacement gradient. According to Equations 
11.2.2 and 11.2.6, the stress tensor T;i represents the forces acting in the final 
configuration in X;-directions on a deformed material element that was in the 
initial configuration a unit cube; see Figure 11.2. This tensor is nonsymmetric. 
Indeed there is no need for T;i to be symmetric since a6u;l a xi is a nonsymmetric 
tensor. Tensor T;i is usually called the first Piola-Kirchhoff stress tensor (Piola, 
1835; Kirchhoff, 1852; Truesdell and Noll, 1965; Malvern, 1969) or the nominal 
stress tensor (Ogden, 1984); it has also been called the Lagrangian stress tensor 
(Prager, 1961) or Boussinesq's stress tensor (Mandel, 1966), or the mixed stress 
tensor ("mixed," because T;i characterizes the forces that act on a deformed cubic 
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element in the final configuration of the x1 coordinates but are referred to the 
facet areas of an undeformed element in the initial configuration of the X, 
coordinates). In most texts, the initial configuration to which T;1 is referred is 
considered unstressed, but to deal with stability we must consider a stressed initial 
configuration. 

To establish the relationship of T;1 and S11 , we transform the integral over V in 
Equation 11.2.2 to an integral over V', that is, 

f. T;k a6u, dV =f. T;k a6u, ( axi )rt dV' (11.2.12) 
v axk v· axj axk 

in which J = dV /dV' =Jacobian of the transformation; 

ax. ax 
J=det-' J- 1 =det-' (11.2.13) 

axj axj 

Now comparing Equation 11.2.12 to the first volume integral in Equation 11.2.1 
(and noting that x1,k = 61k + u1,k) we conclude that 

1 axj 1 
s,i = 1 axk T;k = 1 (T;1 + T;ku1.k) (11.2.14) 

Multiplying Equation 11.2.14 by aXm!ax1 and noting that 
(aXm!ax1)(ax1!aXk) = 6mk• we obtain the inverse relation 

axm axm - T - T ( ) T;m =--JS11 =-- s.. or T=JSF- =SF- 11.2.15 
axj axj IJ 

in which axmt axj = a(xm - Um)l axj = 6jm- auml axj = (F- 1)mi• F-T denotes 
(F-1)r, and S11 = JS11 ; S11 is called the Kirchhoff stress. The same equation results 
when the integral over V' in Equation 11.2.1 is transformed (similarly to Eq. 
11.2.12) to an integral over V and is compared to the first integral in Equation 
11.2.2. 

Note that the relationship between T;1 and S11 is independent of the choice of 
the finite strain tensor, which we discussed in the previous section. 

Stress Referred to Initial Configuration and Working on Finite 
Strain 

Consider now stress l:~t>, which is referred to the initial configuration and is 
conjugated by work with the finite strain tensor 4m>. To derive its relationship to 
T;1, we may observe that the integrands of the first integrals in Equations 11.2.2 
and 11.2.3 must be identical, that is, 

For the Lagrangian strain (m = 2), we drop the labels (m) and we have 

l:i,.6Ei,. = l:i,.~6(xk,..Xk,J- 6/,.) = l:i,.~(xk,,.6xk,j + Xk,j6xk,n) 

(11.2.16) 

= l:i,.Xk,n6xk.i = l:i,.xk,n6Uk,J 

because tensor l:1,. is symmetric (symmetry of l:11 is required because, in Eq. 
11.2.3, any nonsymmetric part of l:11 would always contribute no work, i.e., 
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would be irrelevant, indeterminate). Also, 6xk,J = 6(Xk + uk),1 = 6(6ki + uk,J) = 
6uk,J· Thus Equation 11.2.16 becomes (Tki -l:1nxk,n)6uk,J = 0. Since this equation 
must hold for any variation 6uk,J• it follows that 

or T=FI: (m=2) (11.2.17) 

where axk/ axn = xk.n = Fkn· Furthermore, multiplying this equation by aX;/ axk 
and noting that l:jn( ax;/ axk)( axk/ axn) = l:jn/jni = l:ij• we obtain the inverse 
relation 

ax. 
l; .. = -' T.k· or E = F-ty (m = 2) (11 2 18) 

IJ axk I •• 

where F- 1 is a tensor of components aX;/ ax1• Tensor l:;1 = l:~J> is called the 
second Piola-K.irchhoff stress (Piola, 1835; Kirchhoff, 1852; Truesdell and Noll, 
1965) or simply the Piola-K.irchhoff stress (Ogden, 1984). Substitution of 
Equation 11.2.17 into Equation 11.2.14 provides 

1 ax. ax. S=!FEFT 
S;i = j a;k aJ!m l:km or J (m = 2) (11. 2.19) 

(see also, e.g., Ogden, 1984; Hill, 1968; Truesdell and Noll, 1965). Using 
X;,J = 6;1 + U;,1, one further obtains S;k = J- 1(l:;k + U;,~ik + uk,1l:1; + U;,Juk,nl:Jn)· 

Substitution of Equation 11.2.15 into Equation 11.2.18 provides the inverse 
relation 

ax ax 
l:;1=-a. '-a. 'JSkm or E=F- 1SF-T (m=2) (11.2.20) 

Xk Xm 

To obtain the stress tensor l:~/> that is work-conjugate to the Biot strain 
E~= 41>, we note from Equation 11.1.13 that the Green's (Lagrangian) strain 
variation may be expressed as 6£ = !6(U2

) where U = (FTF)112 =right stretch 
tensor (Eq. 11.1.9) and F=iJx/aX or F;1 =x;,1. Consequently, 6e=!(U6U+ 
6UU), and 6W = l:k16ek1 = !{l:k1Uk;6U;1 + l:k16Uk;U;1) = !( U;kl:ki + l:;kUk1)6U;1 
where l:;1 = l:~f>. From Equation 11.1.14, 6U;1 = 6e~. The stress tensor l:~f>, called 
the Biot stress, is defined by 6W = l:~f>6e~ = l:~1>6U;1. Since the foregoing two 
expressions for 6W must be equivalent for any 6U;1, it follows that 

l:~/> = !(U;kl:ki + l:;kUk1) or E<t> = !(UE + EU) (m = 1) (11.2.21) 

For any m, the stress tensors l:~j> that are conjugate to E~j> are related to l:;1 
and U;1 by more complicated implicit equations (Ogden, 1984, p. 158). However, 
their second-order approximations are calculated easily (Bafant, 1971), as we 
show in the next section. 

Finally, it should be emphasized that the stress referred to the initial 
configuration and the finite strain involved in the constitutive relation must 
represent a conjugate pair. If the Lagrangian strain E;1 is chosen, the stress-strain 
relations must be written in terms of l:;1, and not T;1, S;1, or l:~1>. If Biot strain e~f> 
is chosen, they must be written in terms of l:~f>, not l:;1, T;1, or S;1• Furthermore, if 
the material is elastic in finite strain (i.e., hyperelastic), only the use of a 
conjugate pair of stress l:~j> and finite strain e~j> satisfies the condition that 
l:~m> = aw 1 ae~j> where w =strain energy per unit initial volume. 
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Problems 

11.2.1 Using tensor F whose components are F;i = x;,j, rewrite all the relations of 
this section and reproduce the derivations in tensor notation. 

11.1.1 Deduce the second-order accurate relationships between l:.~]> and T;i and 
between l:.~]> and S;i when the second-order accurate Biot strain et (Eq. 
11.1.5) is used. 

11.1.3 Do the same for logarithmic (Hencky) strain eW> (m = 0 or a= 1). 
11.2.4 Assume that Sf1 = -5000 Pa, S?2 = ~~ = 1000 Pa, sg2 = -1000 Pa, all 

other sg = 0, and use the results of Problems 11.1.6 to 11.1.8. Calculate the 
components of l:.~J> and l:.h1>, their principal values, and the unit principal 
direction vectors. (Use the spectral representations for U.) 

11.3 INCREMENTAL EQUILIBRIUM AND OBJECTIVE STRESS 
RATES 

For calculating the critical states and analyzing stability, the finite strain tensors 
need to be only second-order accurate in u;,j· Then the Lagrangian (Green's) 
strain tensor no longer has any particular advantage in simplicity and other finite 
strain measures discussed in Section 8.1 can be used just as well without causing 
any increase in complexity. In this section we will use the second-order finite 
strain approximations to formulate the incremental equilibrium conditions of 
three-dimensional initially stressed bodies and then will proceed to determine the 
corresponding objective stress increments and rates. 

Incremental Equilibrium Conditions 

The stress increments S;i' T:;i, and u~r> with respect to the Cauchy stress sg (true 
stress) in the initial state may be defined by the relations: 

S;j = sg + S;j T;j = sg + T:;j l:.~r> = sg + u~r> (11.3.1) 

The fact that the initial state is an equilibrium state is expressed by the virtual 
work relation 

( 0 a6u; ( 0 ( 0 
Jv S;i axi dV- JvP/;6u;dV- J

5
p;6u;dS=O (11.3.2) 

Subtracting this equation from Equation 11.2.2, we obtain 

L T:;i6u;,i dV - L p/;6u; dV - L p;6u; dS = 0 (11.3.3) 

in which 6u;,j = a6u;/ axj; /; = /; -!? = increment of body forces per unit mass, 
and p; = p;- p? =increment of given surface forces (loads, tractions) per unit 
initial area. Writing T:;i6u;.i = ( T:;i6u;),i- T:;M6u; and applying the Gauss integral 
theorem to the volume integral of the first term, we get a variational equation 
from which the following incremental differential equilibrium conditions and 
incremental boundary conditions result: 

T:;M + p/; = 0 (in volume V) 

(on the stress boundary part of S) 
(11.3.4) 
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Note that the incremental equations are valid irrespective of the material 
properties and of the choice of the finite strain measure. 

Increments of Cauchy (True) Stresses 

If the displacement gradients are small, the calculation of J = det x1,1 = det ( 611 + 
u1,1) and neglection of all the second- and third-order terms yields the 
approximations 

J == 1 + uk,k r 1 == 1- uk,k (11.3.5) 

where uk,k = ekk = dV /dV0 =relative volume change of material element. We 
substitute this into Equation 11.2.14, set T;k = S?k + T;k> S;j = s~ + S;j, axi8Xk = 
lJ1k + u1,k> and neglect terms of higher than first order in u1,1• Considering -r11 to be 
linearly related to u1,1, T1; are small if u1,1 are small. Thus we get for the true stress 
increments 

S·· = T·· + S 0
;kU· k- S~-uk k IJ IJ J, IJ , (11.3.6) 

which is accurate up to the first-order terms in u1,1 (s11 and -r11 are small compared 
to S~). This relation is, of course, independent of the choice of finite strain 
measure. 

Objective Stress Increments Conjugate to Strain Increments 

To relate o11 (or :I:11) to -r11 and T;1, we consider the two different expressions (in 
Eqs. 11.2.2 and 11.2.3) for the work variation lJW (per unit initial volume): 

lJW = T;16u;,1 = (S~ + T11)6u;,1 

lJW = :I;~!">lJe(!"> = (S~- + o~!">)lJe~!"> IJ IJ IJ IJ IJ 

(11.3.7) 

(11.3.8) 

where we admit the possibility of various finite strain measures 4m> and attach 
superscript m to o~r> because the meaning of o11 depends on the choice of e~r>, as 
we will see. Tensors e~r> are symmetric, and so is S~. Therefore, the tensors :I:~j> 
and d;j>, too, must be symmetric (their nonsymmetric part would be arbitrary, 
doing no work). Tensor lJu1.; is nonsymmetric, and so there is no reason forT;; to 
be symmetric. 

The tensor s11 characterizes the force increments on a material element cut 
from the deformed material in the final configuration, which is a different 
material element than that cut in the initial configuration and subsequently 
deformed. Therefore s11 cannot be used to calculate work on the initially cut 
material element as it deforms. On the other hand, both -r11 and o11 characterize 
the force increments acting in the final configuration on the deformed material 
element that was cut in the initial configuration. Of these two, however, only o11 is 
symmetric. Therefore it is only tensor o~j>, rather than -r11 or s11, whose product 
with strain gives the correct work expression. The value of o~r> is objective in the 
sense that it is invariant with respect to the coordinate transformations associated 
with the deformation (called observer transformations; see, e.g., Malvern, 1969). 

To derive the relationship between o~m> and T11, we subtract Equation 11.3.7 
from Equation 11.3.8. This yields Sg{ lJ4m)- lJu;,;) + o}t>lJe~j>- T;ilJui,J = 0 
where we now admit the possibility of any finite strain measure E~m>, not just the 
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Lagrangian strain E;;· Noting that ~c5u;,; = S~c5e;; (as sg is symmetric), and that 
<f;t>c5E~t> = u~m>c5e;; = u~t>c5u1.; (as CT;;, E;;, u;,; are small, u~t>c5E}t> is second
order small, and only second-order accuracy is required), we obtain 

[ <J1~> +So a(e}':;>- epq)- T··]c5u·. = 0 
IJ pq aui,j IJ I,J 

(11.3.9) 

This must hold for any variation c5u;,;, and so we obtain the following general 
relation (Bafant, 1967, 1971): 

(11.3.10) 

For small incremental deformations, U;,;, uLm>, and T;; are first-order small 
while sg is finite. Therefore, it suffices for the finite strain expression in Equation 
11.3.10 to be accurate only up to the second-order terms in U;,;· 

An important property to notice is that, unlike the relationship between s;; 
and T;;, the relationship between the objective stress increment and the 
incremental first Piola-Kirchhoff (mixed) stress T;; does depend on the choice of 
strain tensor, E}t>, for which infinitely many possibilities exist, as we know from 
Section 11.1. Let us now consider some of these possibilities. 

Substituting e}t> = E;; =Lagrangian (Lagrange-Green) finite strain tensor 
(m = 2, Eq. 11.1.3), and noting that a(um,pUm,q)/ au;,;= c5nuc5p;Um,q + c5mic5q;Um,p = 
c5p;U;,q + c5q;U;,p, aemp/ au;,; = !( aum,p/ au;,;+ aup,m/ au;,;) = c5m;c5pj + c5p;c5mi• etc., 
we obtain from Equation 11.3.10 

(11.3.11) 

Here the lack of superscript (m) at CT;; labels the objective stress increment 
associated with the Lagrangian strain (m =2) according to Equation 11.1.3 (i.e., 
CT;; = u~J». 

Substituting Biot's finite strain (e}f> = Et) (Eq. 11.1.5 or 11.1.7 with m = 1), 
referred to by superscript (1), Equation 11.3.10 yields 

T;; = u}}> + S~;U;,k -lS~q a(ekpekq)/ au;,;= uW> + S~;U;,k- !S~qepq( c5k;c5pj + c5p;c5k;). 

that is, 

T;; = u~1 > + S~;u;,k- !(S?~ki + SJkek;) (11.3.12) 

Another case of interest is to substitute e~0> (Eq. 11.1.7 form= 0 or a= 1). 
This corresponds to the logarithmic strain, as already remarked. We have 
eW> = E;;- ek;eki• and for this choice Equation 11.3.10 yields 

T;; = u~J> + S~;U;,k- !S~q a(ekpekq)l au;,; 

= uW> + Si~>ui,k- s}o,Jepq( c5k;c5pj + c5p;c5k;) 
_ (O)+So so so 
- CT;; k;U;,k- ;qe;q- ;qeiq• 

that is, 
(11.3.13) 

Substitution of Equations 11.3.11 and 11.3.12 into Equation 11.3.4 yields the 
incremental differential equations of equilibrium that were proposed, on the basis 
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of various geometric considerations, by Biezeno and Hencky (1928). They were 
apparently the first to present one of the correct statements of these equations. 

Southwell (1914) and Neuber (1943, 1952) presented incremental equilibrium 
conditions corresponding to 

_ _co) + so so so T:;j- Ulj k/D;k- ik!!kj + ijekk (11.3.14) 

in which the last term differs from Equation 11.3.13. For the case that sg is 
uniform, Equation 11.3.13 corresponds to the differential equations proposed by 
Neuber (1943, 1952). Biot (1965), too, used Equation 11.3.13 (aside from Eq. 
11.3.2). Except if the material is incompressible, the last term of Eq. 11.3.14 is 
incorrect since it does not give correct work in the expression 62W = h 116u;,1 (for 
any definition of ~J> = C;1~cm6uk,m; see Sec. 11.4). 

If we substitute the general expression, E~';>= Epq- aekpekq (Eq. 11.1.7) in 
Equation 11.3.10, we need to calculate 

a(ekpekq) = a(ekpekq) [~a(um,n + Un,m)] 
aui,j aemn au;,j 

= ~( 6km6pnekq + 6km6qnekp)( 6mi6nj + 6ni6mj) 

= ~(e;p6Jq + e;q6iP + e1p6;q + e1q6;p) (11.3.15) 

(which represents the symmetric part of the fourth-order tensor e ® 6). Equation 
11.3.10 then yields the general relation 

- <m> +so - (1- m)(so so ) 1:;1 - o;1 kJui,k 
2 

tk!!ki + j~kt (11.3.16) 

from which Equations 11.3.12 and 11.3.13 result by setting m = 1 and m = 0. 

Objective Stress Rates 

If the deformation increment is associated with time interval 61, then 
lim(~j>t6t) for 6t-O represents an objective stress rate, denoted as S~m>. On 
the other hand, lim (s;/ 6t) = S;1 = material rate of stress, which represents the 
rate of change of the Cauchy stress in a material element as it deforms (in 
Lagrangian coordinates X;, the material time derivative is simply at at, while in 
Eulerian coordinates it is at at+ vk at axk)· 

The strain rate associated with S~j> is lim (E~j>t6t). However, in the limit 
6t- 0, all the higher-order terms in the strain increment vanish, for example, 
lim (uk,;Uk./61) =lim (vk,;6tvk,16tt6t) =lim (vk.tvk.161) = 0. So the strain rate as
sociated with S~m> is simply e;1 = ~(v;,1 + v1,;), regardless of which finite strain 
measure is used in the derivation of S~j>. Therefore, the second-order work 
increment that governs stability (per unit initial volume) is 

(11.3.17) 

The expressions !S;i;16t2 or ! i;i;16f do not represent the second-order work 
increments. 

Dividing Equations 11.3.6 and 11.3.10 by 6t, and considering the limit 61-o, 
one gets for the objective stress rate S~j> associated with E~j> the general 
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in which one must express E1';> and epq on the basis of u;,i = V;,i dt. For E1';> one 
can use any admissible finite strain tensor. Using the tensor given by Equation 
11.1.7, and noting Equations 11.3.18, one obtains 

~~i> = S;j + ( 1- ;)(s;kekj + sjkek;) (11.3.19) 

In particular, Equations 11.3.11 to 11.3.13, which correspond to Equation 
11.3.10 form= 2, 1, and 0, and also the equation that corresponds to Equation 
11.3.10 form= -1, yield the following expressions for the objective stress rates: 

~~l) = S;j = S;j- skjvi,k- skivj,k + S;jVk.k (11.3.20a) 

~~p = S;i- skjvi,k- skivj.k + !(S;kekj + sikek;) + S;jvk,k (11.3.20b) 

~~J> = S;i- Ski6Jik + S;k6Jki + S;ivk,k (11.3.20c) 

~fj-l) = S;j + S;kVk,j + sjkvk,i + S;jVk,k (11.3.20d) 

in which 6Jik = !( v 1.i- vi.;) = rotation rate, e1i = J( v1.~,_ + vi.;) = strain rate, and 
v1 = u1 = velocity of material point. Same as S1i, s~m> must be symmetric. 
The reason is that the second-order work is <52W = !SLm>e1i&

2
, and a nonsym

metric part of ~fj> would do no work as e1i is symmetric. 
~~i is known in continuum mechanics as Truesdell's stress rate (Truesdell, 

1953, 1955; Truesdell and Toupin, 1960). The rate ~V>, which corresponds to Biot 
strain, may be called Biot's objective stress rate. 

Another widely used expression is the Jaumann's stress rate (also called the 
corotational stress rate or Jaumann derivative of Cauchy stress tensor; Jaumann, 
1911; Prager, 1961): 

(11.3.21) 

It differs from Equation 11.3.20c only by the missing term S1ivk.k, which is negligible 
for incompressible materials. However, if this term is not negligible it is 
disturbing that Jaumann's stress rate cannot be obtained by substituting the most 
general second-order finite strain approximation (Eq. 11.1.8 into Eqs. 11.3.18). 
Thus, as pointed out by Bafant (1971), the Jaumann's rate does not appear to be 
associated by work with any admissible finite strain expression. This has the 
consequence that !~te1i<5t2 is not the correct expression for the second-order work 
of stress increments, whose value is the basic indicator of stability (cf. Sec. 10.1). 

Another well-known objective stress rate is that of Cotter and Rivlin (1955) 
(see Prager, 1961): 

(11.3.22) 

It coincides with Equation 11.3.20d (form= -1) except that the term S1ivk.k is 
missing, same as for Jaumann's rate. Consequently, !Sffe1i<5t2 is also an incorrect 
expression for the second-order work of stress increments except when the 
material is incompressible. 
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The same comment can be made regarding the objective stress rates of Green 
(1956) and of Oldroyd (1950) (given e.g. in Eringen, 1962) and the rate that 
corresponds to Biot's (1965) "incremental" stress. They coincide with ~~J> and 
~~1°>, respectively, except that the term S11vu is again missing. 

The aforementioned deficiency of Jaumann's stress rate may be remedied by 
applying the Jaumann (corotational) rate to the Kirchhoff stress S11 =JS11 (Eq. 
11.2.15) rather than to the Cauchy (true) stress S11• This yields the rate 

~W> =(1St;)" - (JSk;)w;k + (JS;k)wk; (11.3.23) 

that is called the Jaumann rate of Kirchhoff stress and has recently been popular 
i~ fini~e-strain plasticity. Substituting J = 1 + uk,k> noting that (JS11 ) • = JS11 + 
JS11 .,. S1; + S11vk,k> and neglecting higher-order small terms, one finds that this 
rak: is equal to ~~o> as given by Equation 11.3.20c. Replacing S with S, a similar 
remedy can be obtained for the rates of Cotter and Rivlin, Oldroyd, Green, etc. 

Oldroyd's rate represents what is known in mathematics as the Lie derivative, 
L.S, of tensor S with respect to vector field v(x, t); L..,S = S11 - Sk1v1.k- Sk;V;,k 
(Guo, 1963; Marsden and Hughes, 1983, p. 100). By missing the term S11vk,k> L..,S 
suffers the same problem as the Jaumann's rate of S. Correctly, however, the Lie 
derivative must be applied to Kirchhoff stress, that is, L..,S, which coincides with 
Truesdell's rate (and is free of the aforementioned problem). Other objective 
stress rates can be obtained as the Lie derivatives of various transformations of 
tensorS. 

It is interesting to note that for fJt-+ 0 

F-ts-F-T so 
s<2> = l~o fJt - = LvS (11.3.24) 

-r,- 0 
s<o> = lim R SR - S 

6t->O fJt 
-r,- 0 

s<-t>= lim F SF-S 
6t....O fJt 

in which S = JS = Kirchhoff stress. To prove the last relation, we write 

S~cmFmj = S~cm( {Jmj + Um,j) = ski + Skmum,j 

Sij =JFkiS~cmFm; =J({Jki + uk,;)(Sk; + S~cmum) 
.,. (1 + uk.k)(Sti + Stkuk,i + Sk;uk,t) 

Q< sij + S;kUk,j + skjuk,i + S;;Uk,k• 

(11.3.25) 

(11.3.26) 

and then lim (Sij - ~)/ fJt (with S11 .,. S~) yields Equation 11.3.26. Equations 
11.3.24 and 11.3.25 can be proven similarly, noting that tensor F-1 has 
components aX1/ax1 .,. fJ 11 - u1,1, and tensor R has components (fJ11 + co11 ) (only 
small displacements and rotations need to be considered). 

In concluding, we must emphasize that all the different finite-strain formula
tions and the associated objective stress rates must be physically equivalent. 
Therefore, different objective stress rates must be used in conjunction with 
different characterizations of incremental material properties, such that the 
results would indeed be physically equivalent (Ba!ant, 1971). How to do that, we 
discuss next. 
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Problems 

11.3.1 Derive Equation 11.3.6 directly from the work equivalence, c5'W = (Sg + 
T1i)c5u1,k = (SZ + a1i)c5E1i, rather than from Equation 11.2.14. 

11.3.2 Work out in detail the derivation of Equations 11.3.11 to 11.3.13. 
11.3.3 Work out in detail the derivation of Equations 11.3.20a-c. 
11.3.4 Derive S~j> form= -2 (a= 2). 
11.3.5 Rewrite the equations of this section in (a) tensor symbolism and (b) 

matrix symbolism. 
11.3.6 Substituting Equation 11.1.8 into Equations 11.3.18, derive the most 

general possible expression for an objective stress rate. 
11.3.7 Prove Equations 11.3.24 to 11.3.26 in detail. 

11.4 TANGENTIAL MODULI AT LARGE INITIAL STRESS 

In the preceding sections we developed the finite-strain formulations for many 
rather than just one finite-strain measure. Vain as this exercise might have 
seemed, it is nevertheless rather revealing with regard to the meaning of the 
tangential moduli C;ikm of three-dimensional bodies at initial stress. It brings to 
light a certain degree of arbitrariness in the determination of C;ikm• and at the 
same time it shows that this arbitrariness merely represents different ways of 
looking at the same material properties. 

In Section 10.6 we have seen that plasticity theory leads to incremental 
stress-strain relations that are linear for a certain sector or cone of directions in 
the space of strain increments. Such linearity in fact characterizes most 
constitutive models. Thus we will assume in this section that the material 
properties are adequately described by a set of tangential moduli C;ikm relating 
the stress and strain increments (or rates). 

Based on the foregoing considerations it is clear that the tangential moduli 
cannot relate to the strain rate the time derivative of the true stress, aS1i/ at, 
because the material elements on which the stresses S1i are defined at two 
subsequent times are not the same, that is, do not involve the same piece of 
material (in the Eulerian coordinate description the material is movidg through a 
fixed elemental volume in space). So the requirement to describe the deformation 
process on the same small piece of the material excludes the increments s1i of 
Cauchy stress S1i and permits only the increments Tg and <f;j>. However, T;i must 
be excluded for a different reason-namely that (S1i + T1i)c5E~j> is not the correct 
expression for work in terms of E~j>. Rather, the correct expression is 
<SZ + a~j>)c54m>. Therefore the tangential moduli must refer to the increments 
<f;j>, or to the corresponding objective stress rates S~j>. It follows that the 
incremental stress-strain relation must have the form o&m> = C;ikmekm or S~j> = 
cijkmekm. 

Since the expression for S&m> is a matter of choice as far as the m value is 
concerned, the corresponding moduli C~;;:J. must be different, so as to always 
represent the same material properties. Considering finite strain tensors Eij = 
E;i- aek;eki (a= 1- !m, Eq. 11.1.7), we will label the corresponding quantities 
o}j>, S~j>, and c&~. For m = 2 (Lagrangian strain) we have O;j, sij> cijkm; for 
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m = 1 (Biot's strain) we have af]>, Sf]>, CfNm; for m = 0 (logarithmic strain) we 
have afJ>, SW>, C~J:lm, etc. The tangential stress-strain relations must now be 
written as (Bcdant, 1971) 

s~~> = c~~km> ek IJ IJ m or (m)- c<m> G;j - ijkmekm (11.4.1) 

The uses of different tangential moduli c~;;:~ must be physically equivalent. 
This is so if they yield the same second-order work ~2"W per unit initial volume. 

. 2- 1' 2 1 . Smce ~ "W= 2 T;iv1.i& = 2 T:1i~u1.i, we see that T;i or T:;i must be the same for any 
C~IZ~. We express T:;i both from Equation 11.3.10 (m :#2) and Equation 11.3.11 
(m = 2), and set them to be equal: 

(11.4.2) 

where we may replace S~ with S1i since we consider infinitesimal increments only. 
Because C~jk~e1cm = Cij';:~uk,m and 4':;> - epq = [a( e~r;;> - epq )/ auk,m]uk,m we may 
rewrite the last equation as 

[ 
(m) ~(e~r;;>- epq) _ _ ] _ 

C;ilcm + Spq a .. a C;ikm Sim~tk uk,m- 0 
u,,, uk,m 

(11.4.3) 

This equation must hold true for any uk,m· It follows that 

(m) - - ~(ek;>- epq) ( 
C;ilcm- C;ikm + Sim~tk Spq a a 11.4.4) 

U;,j Uk,m 

If we now substitute e~r;;> = Epq- aekpekq = !{up,q + uq,p + uk,puk,q)- (a/4)(uk,p + 
up,k)(uk.q + uq,k), a= 1- !m, and differentiate with respect to u1.i and uk,m (for 
example, aup,q/ au1.i = ~pi~iq), we obtain (Bcdant, 1971) 

(11.4.5) 

where C1ikm = C~JJ, = tangential moduli associated with Lagrangian strain. Note 
that these relations preserve all the symmetries, C}Jk~ = C}U:~ = C~J::,>k = C~~i· So if 
these symmetries hold for C;ikm• they hold also for other c~;:~, which is, of 
course, required from the physical point of view. 

Substituting for E~m> other finite strain tensors, for example, Equation 11.1.8, 
the corresponding C}Jk~ can be obtained from Equation 11.4.4. 

To examine the Jaumann rate of Cauchy stress (Eq. 11.3.21), we may express 
i;i from both Equations 11.3.20a a~d 11.3.21 and we can verify that S~ = ~kme1cm 
and S~J> = qi'2,.ekm yield the same T;i if and only if (B3Zant, 1971) 

(11.4.6) 

Note that this relation does not preserve the symmetry of the 6 x 6 matrix of 
tangential moduli, that is, ~km #= C'1cm1i if C;ikm = Ckmii· This is a questionable 
feature (Bcdant, 1971), which however disappears if the material is incompres
sible (because in that case $~ = S~J>). (The same deficiency occurs for the rates of 
Cotter and Rivlin and of Oldroyd.) The problem is eliminated by using the 
Jaumann rate of Kirchhoff stress (Eq. 11.3.20c). 

The differences between the various types of tangential moduli need to be 
explained in relation to experiment. Assuming that a uniform strain field in a test 
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specimen can be achieved, one can determine the stresses from the forces 
measured or applied at the specimen surface. These forces yield stresses T;i (or 
t;i), not l:~j> or S;i (<1~j> or t;i). To determine the tangential moduli for each stress 
level~. one cannot avoid first using Equation 11.3.10 to determine the objective 
stress increments <1~j>, and then CL'k~ can be determined on the basis of <1~j> and 
e;i (many types of tests are, of course, needed for that). Now the important point 
is that before one can do this, one must obviously first choose the type of 
finite-strain measure to be used in Equation 11.3.10. For example, if the 
Lagrangian strain is chosen, one uses the special form of Equation 11.3.10 
indicated in Equation 11.3.11. So it is clear that the tangential moduli measured 
are inevitably associated with a certain type of finite strain tensor, and different 
moduli are obtained from the same test results if different finite strain tensors are 
used or implied in the evaluation of tests. The arbitrariness lies neither in the 
material nor in the measurement method, but in the chosen method of 
description. 

If the tangential moduli happen to be constant (independent of S;i) in one 
formulation, they will not be constant in another formulation, as is revealed by 
Equation 11.4.4 or 11.4.5. Since there are infinitely many possible finite-strain 
measures, and none of them is physically better justified than the others, we 
realize that the case of constant tangential moduli (independent of S;i) must be 
purely speculative and could happen only exceptionally, by chance. Equation 
11.4.5 also confirms that incremental isotropy of the material in finite strain is but 
a figment not usually met in practice. 

In practical calculations it is important to employ the same type of finite-strain 
formulation as that used in evaluating experimental data. In the absence of tests, 
one must at least be consistent enough to use only equations corresponding to 
one and the same finite-strain formulation. Unfortunately, it has been a 
widespread practice to use, for example, incremental equilibrium conditions that 
correspond to the Lagrangian strain (t;i.i = 0, with T:;i = <1;.i + S2iu;,k; Eq. 11.3.11) 
but at the same time adopt for the objective stress rate the Jaumann rate of 
Cauchy stress (Eq. 11.3.21) or of Kirchhoff stress (Eq. 11.3.20c). Even if we 
discount the aforementioned limitation of the Jaumann rate of Cauchy stress to 
incompressibility, such a practice is incorrect. It implies an incorrect expression 
for the second-order work, and thus leads to incorrect predictions of stability 
limits and path bifurcations. The only objective stress rate that can be used in this 
case is Truesdell's rate (Eq. 11.3.20a). Any other objective rate yields a wrong 
value for the second-order work, although the condition of objectivity (invariance 
at all observer transformations) is satisfied. Objectivity does not guarantee a 
correct value of work. 

The aforementioned incorrect practices can have serious consequences only if 
the strains are truly large. For the case of thin bodies in which only the deflections 
and rotations are large while the strains may remain small, the differences 
between various finite-strain measures are negligible, and so are the differences 
between the associated tangential moduli values and incremental equilibrium 
relations. In such a case one can freely mix any objective stress rate with any 
finite-strain measure and any incremental equilibrium relation (the cases of large 
lml-values excepted). At very large deflections, however, even thin bodies can be 
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Fipre 11.3 Reduction of tangential modulus in inelastic materials. 

subjected to large strains. Then, of course, the foregoing comment does not 
apply. 

The differences between the tangential moduli associated with various 
finite-strain formulations (Eq. 11.4.5) are important only if the stresses reach the 
same order of magnitude as the tangential moduli. Structural materials (steel, 
concrete, aluminum) are so stiff that stresses in beams, plates, and shells are 
much smaller than the elastic modulus. However, for stiff structural materials, the 
differences between various finite-strain formulations can become important if the 
material is inelastic and the tangential modulus is greatly reduced, which happens 
near the peak of the stress-strain diagram (Fig. 11.3). Therefore, the finite-strain 
formulation of stability problems for stiff structural materials can be important 
only for material states that are close to perfect plasticity. If IIS;ill « IICiikmll, the 
differences among various objective stress rates and among various finite-strain 
measures can be ignored. 

On the other hand, for soft materials such as rubber, the finite-strain 
formulation is important in most situations. 

At this point it may be helpful to summarize the correlations among various 
formulations of finite strain, objective stress rates, incremental equilibrium 
equations, etc.; see Table 11.4.1 (taken from Bafant, 1971). The last column of 
this table, for a= 2, and the lines for stability criterion and for columns with 
shear, will be explained in Sections 11.5 and 11.6. 

Problems 

11.4.1 Express the difference between second-order works based on C~i'k.!l and on 
A(~) .l,, 0 

11.4.2 Derive C;ikm associated with the Cotter-Rivlin objective stress rate and 
show that they are nonsymmetric unless the material is incompressible. 

11.4.3 Express T;i from Equations 11.3.11 to 11.3.13, and substituting Equation 
11.4.5 for C~/Jm (a = !) and C~~m (a = 1) verify that indeed the same 
expressions for T;i are obtained. 

11.4.4 Carry out the detailed derivation of Equation 11.4.5 from Equation 
11.4.4. 

11.4.5 Consider plane strain and assume that S~1 = -5000, S~2 = sg1 = 1000, 
~=-1000, all other S~=O; v1.1 =5, Vt,2=2, v2.1=l, V2,2=-1; ~tn= 
12,000, C02222 = 2000, ~212 = 3000, G122 = cg2n = 1000, c~m = ~2n = 
200, all other C;ikm = 0. Calculate ~~2\ ~~l>, ~W>, ~~i-2>, ~t. ~:. 



Table 11.4.1 Bafant's (1971) Correlations of Various Stability Formulations. 

Fonn (a) (b) (c) (d) (e) (f) 

m=2 m=1 m=O m=O m=-1 m=-2 

(a=O) (a=!) (a= 1) (a= 1) (a=~) (a=2) 

1. Finite strain tensor E·· EV> = E11 - !ek1ek1 
E!o) = E·· _ ekleki E~=EW> E~-l) = E11 - ~ek1ek1 E~--2) = E;J- 2e~k· 

IJ 1 2 
EW=en \0)~ 11 12 41 1

) =en- eft ~(-2) ~ 2 I 
En= en+ 2en E 1 =en- 2en == En =en- en 

Eq. 11.1.3 Eq. 11.1.5 In (1 +En) Eq. 11.1.7 Eq. 11.6.12 

(Green's or (Biot's pure defor- Eq. 11.1.7 
Lagrangian) mation part of (logarithmic or 

displacement Hencky's strain) 
gradient) 

2. Incremental Eq. 11.3.11 Eq. 11.3.12 Eq. 11.3.13 Eq. 11.3.14 Eq. 11.3.9 

equilibrium (Trefftz) (Biot) (Biezeno and (Biot, Neuber, 

equation Hencky) Southwell) 

(Eqs. 11.3.4) 

3. Objective material Eq. 11.2.18, Eq. 11.3.12 Eq. 11.3.13 Eq. 11.3.14 Eq. 11.3.10 

stress tensor Eq. 11.3.11 (Biot's alternative (Biot's incremental 

(second Piola- stress) stress) 

Kirchhoff tensor) 



4. Incremental cwm c<t> c<o> ~/em c<-t> c<-2> 
ljlcm /jlcm ljlcm ij/cm 

moduli if a (symmetric) (symmetric) (symmetric) (~/em= C'fcmlj) Eq. 11.4.5 
potential exists 

5. Objective stress sf>, Eq. 11.3.20a Sj/>. Eq. 11.1.30b sjf>, Eq. 1t.3.20c ~. Eq. 11.3.21 sL-1>, Eq. 1t.3.20d 
rate (Truesdell's rate) (if (Jaumann rate of (Jaumann [Lie derivative of 

incompressible, Kirchhoff stress) ( corotational) rate Kirchhoff stress (if 
also Oldroyd's of Cauchy stress•] incompressible, 
and Green's also convected 
rate*) rate of Cotter and 

Rivlin*)) 

6. Stability Eq. 11.5.4 Eq. 11.5.5 Eq. 11.5.1 Eq. 11.5.1 
criterion (Hadamard, Trefftz, (Biot) 

Pearson, Hill) 

7. Buckling of E<2>jG<2> in Fig. 11.5 E<1>jG<1> in Fig. 11.5 E<0>jG<0> in Fig. 11.5 Eq. 11.6.11 
column Eq. 11.6.6 (Haringx's shear 
with shear (Engesser) column) 

8. Surface buckling Fig. 11.9 Eq. 11.7.9 
(Bafant) (Biot) 

• Give incorrect 62'W' unless incompressible. 
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11.5 STABLE STATES AND PATHS FOR MULTIDIMENSIONAL 
CONTINUOUS BODIES 

Now that we have formulated strains, stresses, and tangential moduli in the 
presence of geometric nonlinearity due to finite strain, we are ready to discuss 
stability of equilibrium states and equilibrium paths. First let us start from the 
point where we ended in Chapter 10, particularly Equations 10.1.29 and 10.1.30, 
which show that - T(&S)in = I v !u~m>e~j> dV + 62 'W .. where T =absolute tem
perature, (&S)in =internally produced increment of entropy of the structure, 
~j> = stress increments caused by strain increments e~j>, and c52 'W., = additional 
work due to geometric nonlinearity, representing the work of initial stresses sg 
on the second-order part of strains. In the case of finite strains, we must now be 
more precise and write the foregoing integral in terms of volume V0 in the initial 
configuration. The second-order work of the initial stresses is c52 'W., = 
I vSg(e~j>- e;i) dV. The stress increments ~j> must be understood as the 
objective stress increments ~j> associated with 4m> (Sec. 11.3), and u~j> = 
Cfj;J.ekm where Cfj;J. are the tangential moduli as discussed in Section 11.4; but in 
view of Section 10.1 we must distinguish between isothermal and isentropic 
(adiabatic) tangential moduli, C~l, and C~';ilm· 

Based on Section 10.1, equilibrium of a body with boundary conditions of 
prescribed displacements and dead loads is stable if c52 'W is positive definite (with 
respect to all kinematically admissible fields c5efj>), that is, if 

for all admissible fields efj> (Bafant, 1967). The state is unstable if this energy 
expression is indefinite. 

Based on Section 10.2, under controlled displacements the stable equilibrium 
branch after a bifurcation point is that which minimizes this integral among all the 
emanating equilibrium branches. 

Since the principles on which this criterion is based have been developed in 
an abstract sense by thermodynamic considerations, it might be helpful to also 
derive Equation 11.5.1 in a simpler, albeit less general, manner. We consider a 
deviation from the initial equilibrium state characterized by displacement field 
u;(x) with finite strains E~j>(x), and load-point displacements qk under given 
dead loads Pk (k = 1, ... , n). The total work that must be done on the structure
load system to produce this deviation is & "W = Ek I fk dqk- Ek Pk dqk where 
fk are the equilibrium reactions at the load points depending on qk (see Eqs. 
10.1.6-10.1.7). If & 'W is positive for all possible deviations qk, e~j>, the system 
is stable. 

For small enough deviations qk we have I fk dqk = Ek (!2 + !A)qk where 
/2 = initial values of fk and A are their increments. According to the principle of 
conservation of energy, Ed2qk =I v sge~j> dV and Ek ~Aqk = I v !u~j>e;i dV. 
Here, in order to calculate the work of objective stress increments u~j>, we can 
take small strains e;i because we need only second-order accuracy; but for the 
work of the initial Cauchy (true) stresses sg we need to take second-order 
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accurate finite strain 4m> because 5Z is not small. Thus we have (Bafant, 1967) 

a 'W = J. (S~4m> + ia~t>e;i) dV- :L Pkqk (11.5.2) 
v k 

in which ~t> = C~jkkekm and C~jk~ represents either the isothermal moduli, 
c¥ijl,., or the isentropic moduli, C~'Ijk,. 

Since the initial state is an equilibrium state, the principle of virtual work (Eq. 
11.2.3) requires that 

(11.5.3) 

because the field of S~ is in equilibrium with loads Pk and strains e1i are 
compatible with qk. Subtracting the last equation from Equation 11.5.2, we 
obtain for.::\ 'W the expression in Equation 11.5.1 and we rename it 62 'W because 
it includes only second-order work terms. The fact that 62'W = - T(aS);n was 
established in Section 10.1. 

The diversity of admissible forms of finite-strain formulations projects itself 
into the stability criterion for three-dimensional continuous bodies (attempted 
perhaps first by Bryan, 1888). Using e~t> = E1i = Lagrangian strain (m = 2) with 
the corresponding C~'k~ = C1ikm (m = 2), Equation 11.5.1 can be reduced to the 
stable equilibrium conditions: 

-T(.::\S);n = 62 'W= t (Ctikm + 6;kSJm)u;.}4k.m dV >0 (11.5.4) 

in which u1(x) can be any kinematically admissible displacement field. This 
condition was presented by Trefftz (1933). In a special sense, an identical 
criterion was obtained by Hadamard (1903) from the condition that in a stable 
body the wave propagation velocities must be real. Equation 11.5.4 is also 
equivalent to the criterion given by Goodier and Plass (1952), Pearson (1956), 
Hill (1957), Prager (1961), and Truesdell and Noll (1965). 

For Biot's second-order strain (m = 1), Equation 11.5.1 yields the stability 
criterion 

- T(.::\S);n = 62'W = t i[S;!{uk;Uki- ek;eki) + U;,jC~Nmuk,m] dV > 0 (11.5.5) 

Other forms of the stability criterion would result by using e~t> for other m 
values (Bafant, 1971). Of course, aU these forms are physically equivalent. 

Problems 

11.5.1 Assume the special case of uniaxial stress and apply criterion 11.5.4 to the 
Euler column. 

11.5.2 Consider the finite strain tensor for a thin body at small strains but finite 
rotations, and apply Equation 11.5.4 to a fixed column. 

11.5.3 Do the same as above but use Biot's strain tensor (m = 1). 
11.5.4 Use the calculus of variations to derive, by minimization of the functional 

in Equation 11.5.4, the differential equations of equilibrium and the boundary 
conditions in terms of ~J> (for details, see Bafant, 1967). 

11.5.5 Do the same as above but for the more general functional in Equation 
11.5.1. 
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11.6 COLUMN OR PLATE WITH SHEAR: FINITE-STRAIN EFFECT 

The effect of shear on the buckling of columns or plates, which is important for 
built-up (reticulated, latticed) columns, composite materials, and sandwich plates, 
was already studied in Sections 1. 7 and 7 .8. However, we did not, and could not, 
observe that the form of the differential equations of equilibrium in the presence 
of shear depends on the choice of finite-strain measure, and that the elastic 
moduli cannot be considered constant but must depend on this choice, too. But in 
the light of this chapter we may sense a problem. We know that in thin bodies 
there is no difference among the uses of various finite-strain measures because the 
second-order work depends only on rotations (Eq. 11.1.19) in which there is no 
ambiguity. In beams or plates with shear, though, there are two different 
rotations at each cross section: the rotation of the beam axis, w,x, and the 
rotation of the cross section, 1/J(x). So which rotation counts? Let us revisit this 
subject. 

Differential Equations 

We consider a perfect hinged column of length Land a constant cross section of 
area A and centroidal moment of inertia I. The material is elastic, and isotropic or 
orthotropic. The column is initially straight and carries uniform uniaxial stress 
S~t· Let Xt =X= longitudinal axis and X3 = Z =deflection direction. The deflec
tion curve is w(x ). The cross sections are assumed to remain plane but not normal 
to the deflection curve. The cross-section rotation is 1/J(x) (Fig. 11.4a), and the 
longitudinal displacements are u1 = -z1JI(x). According to Equation 11.5.1, the 
condition of stable equilibrium of the column is that 

-T(AS)in= 62'W= LL L (S0(E~i) -eu) + !E<m>e~1 + !G<m>y2]dA dx>O (11.6.1) 

in which S0 = S~1 ; A= cross-section area; E<m>, a<m> =(tangential) Young's 
modulus and shear modulus; and label (m) indicates the choice of finite strain 
tensor £(m) to which these moduli refer. The critical state is obtained when the 
first variation of the integral in Equation 11.6.1 vanishes, that is, 

LL L [S06(E~i)- eu) + E(m)eu&u + a<m>y6y] dA dx = 0 (11.6.2) 

a) 

Fipre 11.4 Beam with shear deformation and various choices of the direction of the shear 
force component. 
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S b · · (m) 1 1 ( 1 u st1tutmg Eu - eu = 2Ut,1Ut,t + 2u3,1u3,t- a-e11e11 - a-e31e31 a-= 1- 2m), 
"•·• = eu = -z1JI.x, UJ.t = w.x• and y = 2et3 = Ut,3 + U3,1 = w,x -1jl (shear angle), 
we have 

LL L {SOc5[ G- Q' )z21JI~x + ~w~- ~ (w,x- 1/1)2] + E(m)z21JI.xc51JI.x 

+ G<m>( w.x- 1J1 )( c5w,x- c51J1)} dA dx = 0 (11. 6. 3) 

and noting that J dA =A, J z2 dA =I, we obtain 

LL {so[ (1- 2a-)l1JI.xc51JI.x + Aw,JC<5w,JC- i A(w,JC -1jl)(c5w,JC- c51J1)] 

+ E(m)l1JI,xc51JI,x + G(m)A(w,x -1jl)(c5w,x- c51j1)} dx = 0 (11.6.4) 

Now we integrate by parts the terms containing <51/J.x, take into account the 
boundary conditions (w = 1/J.x = 0), and group all the tenns with c51jl as well as 
those with c5w.x, that is, 

LL {[ (E<m>J1/I,x + S0(1- 2a-)l1JI.x),JC-i S0A(w,JC- 1/1) + G(m)A(w,JC -1jl) ]c51J1 

- [ S0Aw,x- i S0A(w,x -1/1) + G<m>A(w,x -1j1) ]c5w,x} dx = 0 (11.6.5) 

If this should hold true for any admissible variations c51J1 and c5w·"' the expressions 
in the square brackets must vanish. This yields two differential equations. By 
adding the second equation to the first one and then integrating the first equation, 
Bafant (1971) obtained the following system of two homogeneous linear 
differential equations for 1JI(x) and w(x): 

[E<m> + (m- 1)S0)l1JI.x- SO Aw = 0 

[G(m)- i(2- m)S,(w,x -1j1) + S0w,x = 0 
(11.6.6) 

Substituting S0 =-PIA, differentiating the second equation, and eliminating 1/J.x 
from both equations, one obtains a single second-order linear differential 
equation w.= + k 2w = 0, in which 

(11.6.7) 

This differential equation is of the same fonn as Equation 1. 7 .6. The solution may 
be sought again in the fonn w =a sin kx, and from the boundary conditions 
w = 0 at x = 0, we get k = nn/ L where n = 1, 2, 3, ... , same as in Section 1.7. 
Substituting this into Equation 11.6.7, we obtain for the critical loads a quadratic 
equation. 

The shear is important in columns only if G<m> « E<m>. The axial stress PI A 
cannot have a higher order of magnitude than G<m>, and so PIA «E<m>. 
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Therefore, (m -1)PIE<m>A « 1. With this simplification, Equation 11.6.7 
becomes: 

Form =2: 

(11.6.8) 

Form= -2: 

(11.6.9) 

Theories of Engesser and Haringx 

Substituting k2 = n 21 L2, introducing the notation Pc;'> = tc2E<m>JI L2
, and solving 

for P, Equation 11.6.8 yields for a hinged column Engesser's (1889, 1891) 
formula 

(11.6.10) 

already presented as Equation 1.7.7, while Equation 11.6.9 yields the formula 

_ G<-2>A[( p~-2> )t/2 _ ] 
Per.- 2 1 +4 G-2>A 1 (11.6.11) 

proposed, albeit without the labels ( -2), by Haringx (1942) (and also given by 
Timoshenko and Gere, 1961, p. 143). Haringx initially proposed this formula for 
buckling of a helical spring treated approximately as a column, but later 
Haringx's formula was used also for piles of elastomeric bridge bearings or for 
rubber bearings, as well as for laced and battened structural members; see Chan 
and Kelly (1970), Lin, Glauser, and Johnston (1970), Johnston (1976, p. 359), 
Nanni (1971), etc. 

For not too slender columns, the results of both formulas are quite close, 
much closer to each other than to the Euler formula. However, in the limit of 
vanishing slenderness, that is, PE-+oo, Haringx's formula gives Per

1
-+ oo while 

Engesser's formula (Eq. 11.6.10 or 1.1.7) yields Per
1
-+ G<2>A, which is a very 

different result. For very small slenderness Llr (i.e., very small PE), Haringx 
found his formula to agree with the results of the tests on springs much better 
than Engesser's formula, which had previously been proposed for springs by 
Biezeno and Koch (1925). 

The dependence of Oer1 = -Per/ A on column slenderness Ll r (r2 = I I A) · is 
plotted in Figure 11.5a for five different orthotropic materials characterized by 
£<2>1G<2>=25, E(1>1G<1>=25, E<0>IG<0>=25, E<-•>IG<-•>=25, and 
E< -2> I G< - 2> = 25. The solid curves are the exact (and theoretically fully consis
tent) solutions of Equation 11.6.7, while the dashed curves are the approximate 
solutions when (m -1)PIE<m>A is neglected compared to 1, which includes 
Engesser's and Haringx's formulas. For L-+ 0, all the curves except those for 
m = -2 tend to a finite value of Per.· The corresponding curves for E<m>IG<m> = 3 
are plotted in Figure 11.5b. 

Haringx's equation is associated with the finite strain tensor e~j> 
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Figure 11.5 Bafant's (1971) solution of critical stress for thick columns with shear for 
different definitions of finite strain. 

corresponding tom= -2 (a= 2) (Bdant, 1971), that is, 

(11.6.12) 

This tensor has not been used in other types of problems but is perfectly 
admissible, just as the Lagrangian strain tensor. 

Regarding the differences between Engesser's and Haringx's formulas, much 
confusion persists in the literature, even though the reason for the differences was 
explained by Bcdant (1971). Contrary to frequent claims, these formulas do not 
contradict each other, but are in fact equivalent. The only reason for the 
differences is different definitions of incremental elastic moduli of a stressed 
material, corresponding to different finite-strain formulations. This is described 
by Equation 11.4.5, which yields, for the case of uniaxial stress (511 = S0 =-PIA) 
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and under the assumption that Ci'f}3 = 0, the following relations: 

E<2> = E<t>- S0 = E<o> + ~ = E<-2>- 4S0 

G<2> = a<t> + iSO = G<o>- !S0 = a<-2>- SO 
(11.6.13) 

(11.6.14) 

The transformation in Equation 11.6.14 is essential but that in Equation 11.6.13 
can be neglected since shear in columns is important only when IS01 « E<2>. Using 
Equation 11.6.14, one can for example transform Engesser's formula (Eq. 11.6.10) 
into Haringx's formula (Eq. 11.6.11). 

The implication is that the effective incremental shear stiffness of any column 
with shear cannot really be determined without taking into account the initial 
stresses and their work on the geometrically nonlinear part of finite deformation 
of a beam element. This is important particularly for shear columns with very 
small slendernesses. The fact that the buckling tests of springs are apparently 
described by Haringx's equation with constant G<-2> better than by Engesser's 
equation with constant G<2> means that the transformation in Equation 11.6.14 
happens to compensate for some geometric nonlinearity of springs that causes 
G<2> to depend on S0

• 

Engesser's equations 1.7.8 for buckling of columns with shear were originally 
derived from the equilibrium conditions written under the assumption that the 
shear force that produces shear angle y = w .... - 1/J is given by Q = - Pw..... This 
shear force represents the tangential force component caused by the initial axial 
force P (P = -S0A) on a cross section that is normal to the deflected beam axis 
(Fig. 11.4b). On the other hand, Haringx's equation is derived assuming the shear 
force that produces y to be given by Q = P1jl, which represents the tangential 
force component produced by the axial load P on a cross section that was normal 
to the beam axis in the initial state, after this cross section has rotated through 
angle 1J1 (Fig. 11.4c). 

In the case of solid columns, whether we take the shear force on a cross 
section inclined by angle w .... (Fig. 11.4b) or by angle 1J1 (Fig. 11.4c) or by a 
weighted average of these two angles is entirely a matter of choice. But for each 
choice one needs to define and measure the tangential stiffness for finite 
deformation of a solid column in a different manner, obtaining for them different 
values; see Equations 11.6.13 and 11.6.14. (Conversely, a good way of measuring 
E<m> and G<m> under initial uniaxial stress experimentally might be to make 
buckling tests and calculate E<m> and a<m> from the measured values of Per,.) 

Correlation to Built-Up Columns 

In the light of the foregoing discussion, it is interesting to examine the meaning of 
a<m> for built-up columns. The material in built-up columns remains in small 
~train, and so in contrast to solid shear columns, there can be no ambiguity in the 
values of the elastic moduli of the material. Therefore, the value of the effective 
shear stiffness must be fully determined by the small strain, Young's modulus E, 
and by the geometry of the cells of the column, and the transformation in 
Equation 11.6.14 must be entirely explicable by geometric effects. 

To illustrate it, consider a battened column (Fig. 11.6a). In Sec. 2.7 we 
analyzed its equilibrium considering an undeformed H-cell (Fig. 2.34), but 
correctly the equilibrium should be analyzed considering a deformed cell as 
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Figure 11.6 Deformed cell configurations for (a-c) battened columns and (d-h) laced 
columns with symmetric and asymmetric lattices. 

shown in Figure 11.6b. The internal forces P and V in the coordinate directions 
can be replaced by statically equivalent forces P* and Q whose inclinations are 
equal to slope w.x• or by forces P and Q whose inclinations are equal to 
cross-section rotation 1J1 (Fig. 11.6b). Because angles w,x and y are small and 
because lVI « IPI, we have P* = P cos w,x- V sin w.x = P, Q = P sin w.x + 
V cos w,x = V + Pw,x, P = P cos 1/J - V sin 1/J = P, Q = P sin 1/J + V cos 1/J = V + 
P1JI. Now, the relative shear displacement lJ of the cell ( lJ = ya) is proportional to 
bending moment m in the flange near the joint (Fig. 11.6c). Among the shear 
forces V, Q, and Q, only Q determines m (because P* does not contribute to y 
while P and P do-see Fig. 11.6b, c). Therefore, the correct shear angle 
expression is y = Q/GA0 (and not Q/GA0 or V /GA0), which is what we used in 
Section 2. 7 ( GA0 = effective shear stiffness and A 0 = GA0/ G). 

Knowing that Q = GA0 y for battened columns, we can also deduce the 
transformation in Equation 11.6.14 purely geometrically. Static equivalence 
(according to Figs 11.4b, c and 11.6b) r~quires that Q = Q cosy- P* sin y = 
Q- Py. Substituting Q = GA0 y we have Q = (GA0 - P)y, which may be written 
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as Q = GA0y where 

G=G+SO (11.6.15) 

Since G = G<-2> and G = G<2>, we have verified Equation 11.6.14, originally 
deduced from finite-strain theory. 

Similar results are obtained for laced columns with symmetric lattice, such as 
that in Figure 11.6d, or regular building frames treated as columns (Sec. 2.9). The 
behavior is more complicated for laced columns with unsymmetric lattice, for 
example, that in Figure 11.6e. The cells of this lattice, assumed to be pin-jointed, 
undergo shearing by angle 1/Jo = (60/a) cot f3 (with 60 = Pa/2EAb) already before 
any lateral deflection (see Fig. 11.6f; Ab =area of the flange, f3 =inclination of 
the diagonal); but the shear force Q in this undeflected state is zero (while 
Q = P1JI0 + 0). Considering then the deformed cell in Figure 11.6g, h, the 
additional shear angle y must be due entirely to force Q normal to the flange 
(Fig. 11.6g), which is associated with force P parallel to the flange. An inclined 
force P associated with Q, as shown in Figure 11.6h, would produce additional 
shear displacement in the cell. Therefore, we have again Q = GA0y (and not 
Q = GA0y) where GA =effective shear stiffness of the cell in Figure 11.6f 
(calculated on p. 137 of Timoshenko and Gere, 1961). 

In the light of the foregoing arguments, we may conclude: The effective shear 
stiffness GA0 calculated by first-order theory from a cell of a built-up (battened or 
laced) column whose material is under small strain represents the shear stiffness 
in Engesser's theory (m = 2) (and not in Haringx's theory, m = -2, or any other 
theory with m #= 2), and in general corresponds to a formulation based on the 
Lagrangian strain. 

Summary 

While in no-shear columns only the axial stresses work, in shear columns, 
second-order work is done also by the shear stresses. This is the reason why the 
finite strain tensor must be considered for shear columns, while the geometric 
nonlinearity of the deflection curve suffices for no-shear columns. 

Problems 

11.6.1 Generalize the present variational analyses to an imperfect column that is 
initially straight but carries small constant lateral load p(x). 

11.6.2 In the formulation of Equations 11.6.2 to 11.6.11, all the points of the 
cross section contribute to both shear and axial stress transfer. Generalize the 
solution for sandwich beams and plates in cylindrical bending using the 
assumptions and idealizations of Section 1. 7 and develop for them a 
finite-strain stability formulation. 

11.6.3 Derive the differential equations for 1JI(x) and w(x) that are associated 
with (a) Biot strain, m = 1; (b) logarithmic strain, m =0 (and the Jaumann 
rate of Kirchhoff stress). 

11.6.4 Solve exact Per, according to Equation 11.6.7 with k = 1e/ L for any m, and 
show that for large PE it asymptotically approaches the Euler formula. 
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11.6.5 Use Equation 11.6.14 or 11.6.15 to transfonn Engesser's fonnula into 
Haringx's fonnula. 

11.6.6 The material rotation in a shear column is neither w,.., nor 1/J, but 
w = (w,.., + 1/1)/2 = w,..,- y/2. Let Q be the shear force on a cross section 
rotated by w (which is inclined by y/2 with respect to the nonnal; Fig. 11.4d). 
Show that the differential equations obtained upon assuming that Q = GAy 
(where (;=material constant) correspond to m = 0, that is, (; = a<o>, and 
calculate Pcr

1 
for a hinged column. 

11.6.7 Do the same, but G"Ay (G" =shear modulus) acts on a cross section 
rotated by (w,.., + w)/2. 

11.6.8 Use small strain theory to calculate the effective shear stiffness GA0 of the 
latticed column in Figure 11.6e and prove that it must be used in Engesser's 
rather than Haringx's fonnula (cf. eq. 2-62 in Timoshenko and Gere, 1961). 

11.6.9 (a) A column consisting of two rigid bars is supported on two small elastic 
cubes of sides h as shown in Figure 11. 7a. Taking into account not only the 
axial forces but also the shear forces on these small cubes, considering finite 
nonnal and shear strains of these cubes, and assuming these cubes to defonn 
homogeneously, calculate the critical load and plot it as a function of L/b. (b) 
Do the same for the column in Figure 11.7b. 

11.6.10 Consider a crucifonn column (see Fig. 8.10b) and generalize Equation 
8.1.25 for critical stress u, to the case of large initial axial strain £ 11 • Start by 
expressing c52 'W directly from rotation O(x), similar to Equation 11.6.1. 
Discuss the differences between various m, and the possibility of using u, for 
measuring a<m>. 

11.7 SURFACE BUCKLING AND INHRNAL BUCKLING OF 
ANISOTROPIC SOLIDS 

Three-dimensional instabilities are important for solids with a high degree of 
incremental anisotropy, which can be either natural, as is the case for many fiber 
composites and laminates, or stress-induced, as is the case for highly damaged 

b) 

L/3 

L/3 

L/3 

F1pre 11.7 Exercise problems on rigid-bar columns with deformable cubes under finite 
strain. 
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states of materials. The typical three-dimensional instabilities are the surface 
buckling and internal buckling, as well as bulging and strata folding. 

Basic Relations for Incompressible Orthotropic Solids 

Let us consider an orthotropic material in plane strain, whose incremental 
stress-strain relations (Eqs. 11.4.1 form= 2) reduce to the form: 

<J\i> = C\iAu1,1 + C\ii2u2,2 o~> = C~/1ul,l + c~Au2,2 
o\'i> = C\1'/2(u1,2 + u2,1) 

(11.7.1) 

The solution is easier if we assume incompressibility, u1,1 = -u2,2· This assump
tion is often quite realistic if the shear modulus is much smaller than the 
longitudinal moduli, which is the case when the three-dimensional instabilities are 
of most practical interest. Equations 11.7.1 become 

o\1'> = Q<m>(u12 + U2,1) 

(11.7.2) 

in which o<m> = ( o\i> + ~>)/2 and 

N<m> = ~( C\i/1 + ~- C\ib- C~/1) Q(m)_ c<m) - 1212 (11.7.3) 

So we have only two independent elastic constants, Q<m> and N<m>. Since for 
isotropic materials Q<m> = N<m>, the ratio N<m> I Q<m> is a measure of the degree of 
orthotropy. 

Consider now that Sf1 and S~ are the only nonzero initial stresses. Then, 
according to Equation 11.4.5, 

N<1> = N<2> + ~(S~1 + S~) N<o> = N<2> + ~(S~1 + S~) (11. 7.4) 

where superscripts (2), (1), and (0) refer to Lagrangian (Green's) strain, Biot 
strain, and logarithmic strain. According to Equation 11.3.11 (for a= 0) we have 

Tu = <J\1> + s~1u1,1 T12 = a\~+ S~u1,2 

T21 = o~1> + s~1u2,1 T22 = og> + S~u2,2 
(11.7.5) 

(note that <J\1'> = ~i> but T12 + -r21). The differential equations of equilibrium are 
Tu,1 + T12,2 = 0 and T21.1 + T22,2 = 0, which yields 

u\~1 + s~1u1,ll + o\~2 + sg2u1,22 = 0 

u\~1 + S~1u2.n + ~2 + S~u2.22 = 0 

Surface Buckling of an Orthotropic Half-Space 

(11.7.6) 

Let us now discuss the surface buckling of a homogeneous orthotropic half-space, 
x2 < 0 (in two dimensions). The boundary conditions on the half-space surface 
require that T22 = T21 = 0, that is, 

og> + S~u2.2 = 0 a\~+ Sf1u2,1 = 0 (at x2 = 0) (11. 7. 7) 

(note that og> + 0, a\~+ 0 at the half-space surface). The differential equations 
for functions u1(x 1 , x2) and u2(x 11 x2) result by substituting Equations 11.7.1 or 
11.7.2 into Equations 11.7.6 and 11.7.7. 
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Figure 11.8 Surface buckling for homogeneous orthotropic half-space. 

The solution for a half-space (x2 < 0, Fig. 11.8) as well as some other bodies, 
may be sought in the form 

Ut = -f'(xz) sin rox1 (11.7.8) 

where k =constant. Substituting this into the differential equations and boundary 
conditions one finds them to be identically satisfied if k = 1/ ro, and one obtains a 
homogeneous fourth-order linear ordinary differential equation with constant 
coefficients for the unknown function f(x2), along with a set of homogeneous 
linear boundary conditions at x2 = 0. This represents an eigenvalue problem 
whose solutions are of the type f(x2) =A exp (fJx2); P is a constant for which one 
obtains a quadratic equation whose roots are real or complex. The roots having 
positive real parts must be discarded since limf(x2) for x2 - oo must be finite. This 
means the displacements decay away from the surface exponentially, either as an 
exponential curve or an exponentially modulated sine curve. Thus, buckling is 
confined to a layer near the surface. 

In full detail the solution was given by Biot (1963a, b). Using exclusively the 
elastic moduli N<1>, Q<1> associated with Biot finite strain Ef]>, he showed that the 
critical states are given by the relation 

N<t> =! [(!ti)tl2 _ ] 
Q(l) 2 s 1-' 1 (11.7.9) 

which is plotted as curve b in Figure 11.9. Replacing the elastic moduli according 

0.8 

e o.6 
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Figure 11.9 Biot's (1965) and Ba!ant (1971) solutions of critical stresses for surface 
instability of orthotropic half-space (P = S~ = -S~\). 
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to Equation 11.4.5, one can generalize Biot's solution for the elastic moduli 
associated with other finite strain tensors E~r> (Bafant, 1971); see curves a and c 
form= 2 (Lagrangian strain) and m = 0 (logarithmic strain). It is noteworthy that 
for N<m> I Q<m> = 0. 75 these curves differ by as much as 2: 1, which indicates an 
enormous influence of the choice of finite-strain measure. The differences 
disappear when N<2> = Q<2>, which corresponds to material isotropy. 

For s~- s~ .-0, the ratio of the values N<2> I Q<2>, N(l) I Q(l), and N(O) I Q(O) 

approaches 1:1:1 asymptotically. This means that, for a strongly orthotropic 
material, the choice of the finite strain tensor becomes irrelevant. The reason is 
that buckling occurs at stresses that are much smaller than the elastic moduli, in 
which case only material rotations are large while the strains are small, just like in 
thin bodies. 

A solution for orthotropic compressible materials has also been presented 
(Bafant, 1967). 

Note from Figure 11.9 that the critical stress can be of a smaller order of 
magnitude than the tangential elastic moduli only if the material is strongly 
orthotropic, with N<m> « Q<m>. 

Internal Buckling and Other Instabilities 

Using a formulation corresponding to Equations 11.7.2 to 11.7.7 with a=!, Biot 
(1965) considered the instability modes shown in Figure 11.10f, g, h, called the 
internal instabilities. They are described by the displacement field 

where a, w., C02 =real constants. This field can satisfy the boundary conditions of 
a rigid perfectly lubricated rectangular boundary (Fig. 11.10f, g, h). Biot showed 
that for one kind of instability the critical initial stresses s~ h s~2 are given by the 
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Fipre 11.10 Surface and internal instability modes. (After Baiant, 196Z) 
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condition (Biot, 1965, eq. 3.23): 

(2Q<1> + P)~ + 4(2N<1> - Q<1>)s2 + 2Q<1> - P = 0 

745 

where P = .5t- S:11 and Q<1>, N<1> (m = 1) represent the formulation associated 
with Biot finite strain. From Equation 11.7.1, min P = 2Q<1> or 

min (SOn- S~1) = 2CWt2 (11. 7.12) 

In view of the analysis in Ba!ant (1971) (Eqs. 11.7.4), we should note that the 
equivalent condition in terms of the modulus associated with the Lagrangian finite 
strain is 

(11.7.13) 

We see that the hydrostatic pressure component is important in determining the 
incremental shear modulus C\i/2• 

Biot (1965, eq. 3.47) also showed that another kind of internal instability 
occurs for P2 = 16N<1>(Q<1> - N<1>). 

To solve the three-dimensional buckling of a thick compressed rectangular 
solid in two dimensions (Fig. 11.10a, b, c; Fig. 11.11), Biot considered the 
displacement field given by Equations 11.7.8 and showed that the solutions that 
can satisfy the boundary conditions of free surfaces of the layer have the forms 
(Biot, 1965, eqs. 5.4, 5.12): 

f(xz) = C1 cosh co1xz + C2 cosh co2x2 (antisymmetric) 

f(xz) = cl sinh COtXz + Cz sinh COzXz (symmetric) 

where colt COz, ell Cz =real constants. 

(11.7.14) 

(11.7.15) 

Figure 11.11 shows the plot of load versus slenderness obtained by Biot 
(1963e, 1965). He assumed that the material exhibits rubberlike finite elasticity 
whose incremental form corresponds to oW = cm2e12 < cmz = Q<1>). The solu
tion is compared in the figure to Euler's buckling formula, and we see that this 
formula deviates appreciably from Biot's two-dimensional solution only for 
nb/2L < 0.3, that is, for slenderness <17. Such comparisons, of course, depend 
on the assumed material properties in finite strain. 

The same comment applies for doubly periodic modes called internal 
instability shown in Figure 11.10f, g, h (Biot, 1965). 

10 20 30 

A •Lir ( r•b/'V'i"f) 
slenderness 

F1pre 11.11 Biot's (1963e, 1965) solution of critical stress of a thick rectangular solid. 
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'I 

Figure 11.12 Thick-wall bulging instability considered by Bafant (1967) to explain his 
measurements of the compression failure stresses. 

Biot (1965) also presented solutions for buckling of thick layers embedded in 
an elastic half-space-a problem of interest in geology for the folding of strata. 
He has also generalized the foregoing solutions for viscoelastic behavior. 

The three-dimensional buckling modes described in this section no doubt play 
some role in the final phase of compression failures. For example, Ba!ant (1967) 
showed that a formula based on the thick-wall buckling mode shown in Figure 
11.12 agrees with his measurements of the effects of the radius-to-wall thickness 
ratio on the compressive failure stress of fiber-glass laminate tubes. On the other 
hand, other physical mechanisms, particularly the propagation of fractures or 
damage bands, are no doubt more important for the theory of compression 
failure. The reason is two-fold: (1) The calculated critical states for the 
three-dimensional instabilities require some of the tangential moduli to be 
reduced to the same order of magnitude as some of the applied stress 
components, which can occur only in the final stage of the failure process; and (2) 
the body at this stage might no longer be adequately treated as a homogeneous 
continuum. 

By generalization of Biot's solution for a thick layer, one can solve the 
periodic buckling of a compressed laminated plate (or a laminated half-space) in 
which the wavelength of the layers is not much larger than their thickness. The 
solution can be effectively obtained by means of transfer matrices that relate the 
integration constants of the solution for one layer to those for the next layer 
(these transfer matrices are obtained from the matrix that relates the interface 
stresses and displacements to the integration constants). See Bufter (1965), 
Mtihlhaus (1985), Mtihlhaus and Vardoulakis (1986), Vardoulakis (1984), Horii 
and Nemat-Nasser (1982), and a similar solution for a layer on a half-space by 
Dorris and Nemat-Nasser (1980). 

General Solution 

Finally we consider general incremental anisotropy. Substituting o~l> ~ C~i~muk,m 
into the differential equations of equilibrium T:;i.i = 0 (Eqs. 11.3.4, /; = 0), we 
obtain for functions u; the differential equations 

(11.7.16) 
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The three-dimensional instabilities may be considered to have the general 
form 

(11.7.17) 

where ak and ror are complex constants. Substituting Equation 11.7.17 into 
Equation 11.7.16 and assuming c~;, and S!!.; to be independent of X;, one finds 
this equation to be satisfied identically if 

(11.7.18) 

This is a system of three homogeneous linear algebraic equations for amplitudes 
a;. Nonzero solutions are possible if det A;; = 0. The roots of this algebraic 
equation are the eigenvalues ro;, to each of which there corresponds a solution. 

There are many such solutions, whose linear combination can satisfy the 
boundary conditions for various typical instabilities. These include the surface 
instability (Fig. 11.10d, e), as well as the doubly periodic instabilities called 
internal buckling (Fig. 11.10f, g, h), the bulging instabilities (Fig. 11.10a, b) of 
compressed prismatic specimens, the buckling of thick compressed layers (Fig. 
11.10c), the buckling of layers confined in an infinite space, the buckling of 
layered space, and the interfacial buckling. These solutions are of interest in 
geology for the theory of folding of strata in the earth crust. Many problems of 
this type were solved by Biot (1957, 1963a, b, c, d, 1964a, b, 1965), who used 
moduli Cf/Jm rather than CWm and considered incompressible orthotropic 
materials or incrementally isotropic materials. Some further solutions for or
thotropic materials were given in terms of the Lagrangian strain formulation in 
Bafant (1967). Stability of thick layered or sandwich plates was analyzed by 
Bufter (1965), and in terms of the aforementioned Neuber's differential equi
librium equations also by Neuber (1952, 1965). Buckling of rectangular thick 
bodies was also examined by Kerr and Tang (1967), and Wu and Widera (1969). 

An impediment to practical applications of the solutions of three-dimensional 
instabilities is the fact that they necessitate the full anisotropic matrix of the 
tangential moduli C;;km (for all loading directions). These moduli need to be 
deduced from the finite-strain inelastic constitutive relations, which are generally 
not known at present. The research community is still struggling with the 
constitutive relations for small strain plasticity and damage. 

Problems 

11.7.1 Check that Equations 11.7.8 satisfy Equations 11.7.6 and 11.7.7 with 
Equations 11.7.2, and derive the differential equation for f(x2) with the 
boundary conditions. Discuss the solution of the above differential equation 
for (a) surface buckling, (b) internal buckling. 

11.7.2 The condition of incompressibility in plane strain reads u1,1 + u2,2 = 0. To 
satisfy it identically in plane strain, Biot introduced function <l»(x., x2) such 
that u 1 = a<I» I ax2 , u2 = - a<I» I ax 1• Instead of Equations 11.7 .8, one may then 
introduce <l»(x., x2) = t/>(x2) sin rox1• Use Equations 11.7.5 and 11.7.6 to 
obtain the differential equation and boundary conditions for function <l»(x2), 

and derive from it the solution for surface instability. 
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11.8 CONSISTENT GEOMETRIC STIFFNESS MATRIX OF FINITE 
ELEMENTS 

For problems more complex than those analyzed in the preceding sections, 
analytical solutions become either ineffective or impossible, and one has no 
choice but to resort to the finite element method. Although treatment of the 
numerical aspects of this method is outside the scope of this text, let us at least 
examine how the geometric nonlinearity due to finite strain is properly 
introduced. 

The structure is analyzed in small loading increments. In each of them, we 
need the incremental stiffness matrix K of each finite element. To this end, we 
substitute l:~m>=S~+ o~m> (Eqs. 11.3.1) into the virtual work equation 11.2.3 for 
the final state of the loading increment, and subtract from it the virtual work 
equation f v sttJe;i dV - f v pf? fJu; dV - f s pf fJu; dS = 0 expressing the equi
librium condition for the initial state at the start of the loading increment, at 
which the load values are/? and p?. This yields the fundamental incremental 
virtual work relation 

{J'W= /}o~j>&ij + sg{tJe~j>- fJe;j)] dV- L p/;fJu; dV- Lp;lJU; dS = 0 

(11.8.1) 

/; = /; - /? and p; = p; - p? are the increments of the applied volume and surface 
forces over the loading step. 

Let q = (n x 1) column matrix of the nodal displacements of the finite element. 
The basic hypothesis of the finite element method is that the displacements u;(x) 
at any point x of the finite element can be approximated as u; = Hfq (i = 1, 2, 3) 
where H; = H;(x) = (n x 1) column matrices of the interpolation polynomials of 
the finite element (e.g., Zienkiewicz, 1977). Recalling that the linearized (small) 
strains are e;i = (u;,i + ui,;)/2, we obtain by differentiation: 

(11.8.2) 

where Hk,i and R;i are (n X 1) column matrices depending on coordinate vector x. 
Further we recall from Equation 11.1.7 that E~j>- e;i = ~uk,iuk.i- aek;eki (only 
second-order accuracy is needed for small increments), substitute this into 
Equation 11.8.1, and note that HJ.,q = qTHk,;. RI,q = qTRk;· Thus we acquire the 
basic variational relation: 

L [ CJ~m>fJe;i + S~fJ(!qTHk,;HLq- aqTRk;R~q)] dV- J · · · dS = 0 (11.8.3) 

It is now advantageous to assume that the nodal coordinates of the finite 
element are updated after each small loading increment so that q, u;, and e;i 
represent the increments of nodal displacements, continuum displacements, and 
small strains from the initial state of the loading step, in which the stress is S~. 
Then, from Equations 11.4.1, CJ~m) = C~jk},.ekm = ChT}..Rfmq where C~jk},. are the 
tangential moduli for the initial state or, more accurately, for the midstep. 
Substituting this and fJe;i = R~{Jq = tJqTR;i into Equation 11.8.3 and taking the 
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variations, we have 

L { 6qTR;1C~1kkRfmq + SZH< 6qTHk,;H,L~ + qTHk,;H,L6q) 

-a(6qTRk;RL~+qTRk;Rk6q)]}dV-J ···dS=O (11.8.4) 

Now, if we note that qTHk,;H,L6q = 6qTHk,JHLq and factor out 6qT as well 
as q, we obtain the variational relation 

F= L H,i;pdV + L H,P; dS (11.8.5) 

in which 

K = ~m) + Ko(m) (11.8.6) 

~m) = L R;je}~Rf, dV (11.8. 7) 

K.,<m) = L S2H(Hk,;H,L + Hk,)IL)- a(R~aRk + Rk,RL)] dV (11.8.8) 

with a= 1 - (m/2). Summations over repeated tensorial subscripts i, j, k are 
implied in Equations 11.8.5 to 11.8.8; K is the incremental stiffness matrix of the 
finite element;~ .. , represents the usual, small-strain incremental stiffness matrix, 
and Ko< .. , represents the incremental geometric stiffness matrix (which is referred 
to the initial state at the start of the loading step and was already introduced in 
Equations 10.1.32-10.1.34). From the fact that Equation 11.8.5 must hold for 
arbitrary variations 6qr, it follows that Kq = F, and so F represents the (n x 1) 
column matrix of the incremental nodal forces resulting from the prescribed load 
increments. The evaluation of the integrals such as those in Equations 11.8.5 to 
11.8.8 by numerical integration is standard in finite element courses. 

Now it is important to realize that both ~.,, and Ko< .. , depend on m, that is, 
on the choice of the finite strain tensor for the incremental displacements. On the 
other hand, for physical reasons, the total incremental stiffness matrix K must, of 
course, be independent of the choice of m. So the differences in Ka<m> due to 
various choices of the finite strain tensor are exactly compensated by the 
corresponding differences in ~"'\ resulting from Equation 11.4.5 for C&'kl, 
provided that the values of K<a> and C;ikm are mutually consistent (same m). This 
consistency condition for the geometric stiffness has often been overlooked. 

The geometric stiffness matrix has its simplest form for the case of the 
Lagrangian (Green's) strain tensor (m = 2, a= 0), for which the term with a in 
the integrand of Equation 11.8.8 vanishes. 

Problems 

11.8.1 Is Ko< .. , fully symmetric? 
11.8.1 Use Equation 11.4.5 to show that K, according to Equations 11.8.6 to 

11.8.8, is independent of the choice of m. 
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11.8.3 In finite element courses, the (1 x n) vectors R~ for all the six ij
combinations are usually grouped into one ( 6 x n) rectangular matrix 8 = 
(Rf., ... , Rf1), called the geometric matrix, such that e = Bq. Another 
rectangular matrix H can be set up from matrices HD. Derive the matrix form 
of Equations 11.8.7 and 11.8.8 that has no subscripts. (Our derivation in terms 
of R;i and H;,i was more transparent than that in terms of 8 and H.) 

11.8.4 A planar four-node quadrilateral element is subjected to various uniform 
deformation fields u;,i· Using IC""'1 and Ka<"'

1
, calculate the corresponding 

nodal forces. Supposing that one can deform a rectangular specimen in the 
laboratory in the same way (this, is, of course, difficult), discuss how the force 
resultants measured on the sides of the specimen could be used to determine 
the tangential stiffnesses C~jkJ,. 

11.8.5 Considering a beam element with a cubic interpolation polynomial for w, 
prove that its geometric stiffness matrix (Eq. 2.3.6) is a special case of 
Equation 11.8.8. 

11.9 BUCKLING OF CURVED FIBERS IN COMPOSITES 

As we saw in Section 11.7, orthotropic composites that have a very high stiffness 
in one direction and a small shear stiffness may suffer three-dimensional 
instabilities such as internal buckling or surface buckling. These instabilities, 
which involve buckling of stiff fibers (glass, carbon, metal) restrained by a 
relatively soft matrix (polymer), are analogous to the buckling of perfect 
columns. When the fibers are initially curved, one may expect behavior analogous 
to the buckling of imperfect columns. In particular, the initial curvature of fibers 
causes fiber buckling, which reduces the stiffness of the composite. It also gives 
rise to transverse tensions, which may promote delamination failure. 

For the sake of simplicity, we will assume the fibers to be sinusoidally 
undulated. Following Bdant (1968a), we will now show a simple solution without 
taking recourse to the general three-dimensional stability theory expounded in 
the previous sections. This solution is valid only for small incremental deforma
tions of a composite with strong fiber imperfections and cannot yield the critical 
loads and instability as the limiting case. 

•+ II 111111 

'""'"' F1pre 11.13 Orthotropic composite with straight parallel fibers analyzed by Bafant 
(1965). 
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Macroscopic Elastic Stress-Strain Relations 

Consider first the case of plane strain in Cartesian coordinates x and z. 
Assuming the material to be elastic and orthotropic, one may write the 
small-strain stress-strain relations in the form 

'fxz = Gxz(U,z + W,x) (11. 9.1) 

where ax, az = normal stresses, Txz =shear stress, and u, w =displacements in x· 
and z-directions. If all the fibers have the direction of the x axis (Fig. 11.13), one 
can use the approximate estimates (Bafant, 1965): 

E E v. E v. G = (G-1V. + G-1V. )-1 x= m m+ f I xz m I I 

E;1vx = E;1vz = E;1( Vm Vm + VIV,) Ezz = (E:.,- 1Vm + Ej-1V, )-1 

Exz = EzzExE;1vz 

Ez = Ezz- E";}E;z 

Exx =Ex+ E;}E;z =Ex+ Ezz(vm Vm + vxV,)2 

(11.9.2) 

in which E1, Em, G1, Gm, v1, vm are the longitudinal elastic moduli, shear moduli, 
and Poisson ratios of the fibers and the matrix; E:,. = Em/(1- v!,), E/ = E1 /(1-
v'j); V, and Vm = 1 - V, are the volume fractions of the fibers and the matrix. The 
foregoing formulas are based on the following assumptions: (1) The fibers are 
sufficiently densely distributed, so that macroscopically the composite may be 
treated as a continuum; (2) the fibers are and remain nearly straight and their 
curvature radius is much larger than the fiber diameter; (3) E1 »Em. 

Decrease of Elastic Moduli Due to Fiber Undulation 

Case A. Consider now a composite in which the fibers are not initially straight 
but undulated in the form of parallel sine curves (Fig. 11.14a) described by 
ordinates ~ = C cos (;rx/1) where C, l =constants, C =initial amplitude and 
l =half-wavelength; C « l. If the fibers carry axial stress cfx, they transmit into 
the composite the radial forces (per unit volume) 

nx fz = cfxVfo',xx = -focos-
1 

(11.9.3) 

• b N 

Fipre 11.14 Orthotropic composite with various patterns of undulation of fibers analyzed 
by Ba!ant (1968a). 
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in which fo = Co{Yf'C2/12
• The differential equations of equilibrium for the 

composite are Ox,x + l'xz.z = 0, l'xz,x + Oz,z + fz = 0, and upon substitution of 
Equations 11.9 .1 this yields 

(EuU,x + ExzW,z),x + [Gxz(U,z + W,x)J.z = 0 

[Gxz(U,z + W,x)J.x + (EzzW,z + ExzU,x),z + /z = 0 
(11.9.4) 

Instead of boundary conditions we assume translational symmetry of the 
solution in the z-direction, and symmetry with respect to all the planes of 
symmetry of the sine curve undulations. The solution has the form: 

u=ExX 
1rX 

w=-ccos-
1 

(11.9.5) 

where Ex= constant (strain) and c = fol2/n2Gxz = o{.CYtiGxz· We note that the 
axial stress magnifies the initial undulation, and the magnification depends, 
among the moduli, only on Gxz· 

Similar to our analysis of columns (Sec. 4.3), the contribution of the 
magnification of fiber undulations to the axial deformation of composite per unit 
length is described by 

(11.9.6) 

where E{ = axial strain of fibers. So the effect of the initial undulation is to change 
t~e composite modulus Ex to the effective value it = Em Vm + E1Yt in which 
E1 = a{/ Ex, that is, 

£, (11.9.7) 

Case B. Consider now the initial fiber undulation that is variable as shown in 
Figure 11.14b and is described by l; = C cos (nx/1) sin (trz/d). In this case 
fz = -f0 cos (ta/l)sin (trz/d). The solution of Equations 11.9.4 has the form 

• 1rX 1rZ 
u =Ex -a sm-cos-

x I d 

1rX • 1rZ 
w= -ccos-sm-

1 d 

(11.9.8) 

Since the shortenings of various fibers are now different, we must express the 
effective stiffness on the basis of the potential energy 

II= [ {!EzzW~z + ~GxzW~x- fzw) dx dz (11.9.9) 
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From the minimizing condition ant ac = 0 we get 

fo/1f2 

C = (Gxz/12
) + (Ezz/d2) 

To obtain Exl, we consider now the average fiber shortening, that is, 

Exl=~-2d1 J.l (d [(t+w)~x-t~x]dxdz 
x-o Jz-o 

Again we obtain Equation 11.9. 7, in which now 

"2 
k=~--------~~-

4[1 + (Ezz/Gxz)(f/d2
)] 
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(11.9.10) 

(11.9.11) 

(11.9.12) 

Case C. In a laminate reinforced by fabric, all the waves of fibers have about 
the same amplitudes, and the fiber shape may be idealized as shown in Figure 
11.14c, for which t = ±C cos (:JrX/1). We may consider this to be approximately 
equivalent to the previous case provided that the sum of the radial forces from 
the fibers is the same (per length/), that is, 

(11.9.13) 

in which we may assume .fz = -/0 cos (nx/1) sin (nz/d). From Equation 11.9.13 it 
follows that lo = fon/2. Replacing/0 by loin Equation 11.9.10, we get 

loln2 !of - 2 ( 1
2 

) 
c=(Gxzll2)+(Ezz/d2)= n2(;JCZ Gxz=;; GJCZ'+ d2EZZ (11.9.14) 

The shortening due to undulation of variable amplitude is again determined 
by the integral in Equation 11.9.6. This yields Ex= Em Vm + E1V,, with E1 given 
by Equation 11.9.7 in which (Ba!ant, 1968a) 

"3 
k= [ ( I 2 2 ] (11.9.15) 4 1 + Ezz Gxz)(l /d) 

For Emf E,--+ 0 this simplifies as 

(11.9.16) 

Generalization to Three Dimensions 

Case D. Consider now composites reinforced by a fabric woven from fibers of 
two directions x andy, whose volumes are V} and V} (V} + V} = V, ). We assume 
that (1) the mean normal stresses of x-direction in the matrix and in the fibers of 
orientation yare equal; (2) the shear stresses Txz• l'xy• Tyz in fibers and matrix are 
also equal; (3) the axial strains of fibers and matrix are equal. Then, approxi
mately (Ba!ant, 1965), 

Gxy = Gxz = Gyz = (G;;;1Vm + Gj 1V, )-1 

Ex= E:, Vm + E1V} etc. 
(11.9.17) 
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in which V!. = Vm + Vj, E!.V!. = (E;;;1Vm + Ej1Vj)- 1
• We assume the fiber shape 

in the woven fabric is, approximately, 

3U 
~~ = ±Ct COST." 

1rY 
~2 = =FC2 cos lz 

for cos 1rY ~ 0 
12 

3U 
for cos-~0 

11 

(11.9.18) 

The radial distributed forces from the fibers on the matrix are fz = -/o 
cos (HX/11) cos (1rJ/l2). We introduce an averaging condition similar to Equation 
11.9.13: 

(12 1f2 3U 

Jo h dy = -[2~,V}Ct ~~COST." (11.9.19) 

with /0 = /oH/2, fo = l1cf,V}1r3 m. A three-dimensional generalization of the 
differential equations 11.9.4 can be solved by 

HX HX 
u = v = ExX = 0 w = -c cos-cos-

It /2 
(11.9.20) 

with - 2 2 
_ fo/H2 _ fo1t (; _(a Gyz1t) ~ 

C- (G:u//D + (Gyz/1~)- H2Gxz xz- xz + 12 1f 
(11.9.21) 

Next we proceed in the same manner as from Equation 11.9.6 to 11.9.7, gaining 
the result Ex= E!.V!. + E}V}, in which (Bafant, 1968a) 

-. E 
E, = 1 + kV}(C~IlD(E,IG:u) with 

The undulation of fibers also affects the Poisson ratio in the xy plane. 
Extending the technique illustrated here, Bafant (1968a, eq. 25) obtained an 
expression that shows the Poisson ratio increases in proportion to the undulation 
amplitude c. Furthermore, he calculated estimates for the effective moduli for 
some other three-dimensional arrangements. Some extensions and experimental 
verifications of Bafant's results were presented by Tamopol'skii and Roze (1969) 
and others. 

Stresses Due to Fiber Undulation 

Fiber undulation causes transverse shear stresses Txz and normal stresses Oz. The 
shear stresses are obtained as Txz = Gxz(U,z + w,x)· For case A, substitution of 
Equations 11.9.5 yields Txz = (H/1)GxzC sin (HX/1) and max Txz = HGxzC/1. After 
substituting c = fof/H2Gm fo = Cci,V,rr2/12, one gets 

1f 

max Txz =I ccl,v, (11.9.23) 

So the maximum shear stress is proportional to the amplitude of fiber undulation. 
Similar expressions can be obtained for cases B, C, and D. Analogously, one can 
calculate Oz = EzzW,z· 
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In closing this subject, it needs to be pointed out that there are many factors 
influencing the stiffness and strength of fibrous composites. The initial curvature 
of fibers is not the most important one. Nevertheless, as we saw, this factor can 
be taken into account easily. 

Problem 

11.9.1 Generalize the solution for case A to three dimensions, assuming that the 
initial shapes of the fibers running in the x- and y-directions are ~1 = ~2 = 
C cos (nx/11) cos (rry//2). 
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12 
Fracture as a Stability Problem 

As we saw in Chapters 8 and 10, material plasticity has a great influence on the 
stability of a structure. But it does not in itself cause instability. The destabilizing 
cause is solely the nonlinear geometric effect. Without geometric nonlinearity 
there are no instabilities in hardening elastoplastic structures. 

Fracture, by contrast, has a profound destabilizing influence. Instabilities arise 
even if nonlinear geometric effects are absent. Fracture alone can be a cause of 
instability. 

Before we can focus on stability problems of fracture, we first need to explain 
the elementary concepts of linear and nonlinear fracture mechanics. After that we 
will apply the general thermodynamic stability criteria to structures exhibiting 
fracture and analyze single, isolated cracks as well as systems of interacting 
cracks. We will discuss in more detail some important types of instabilities such as 
the snapback instability in the terminal phase of tearing of a cross section. 
Finally, we will briefly examine the fracture instabilities that govern the spacing 
and width of cracks in parallel crack systems. 

12.1 LINEAR ElASTIC FRACTURE MECHANICS 

The basic theory of fracture, originated by Griffith (1921, 1924), is linear elastic 
fracture mechanics (LEFM). This theory deals with sharp cracks and its central 
assumption is that all of the fracture process takes place at one point-the crack 
tip. Thus, if the material is linearly elastic, the entire volume of the structure is in 
a linearly elastic state, and so the methods of linear elasticity may be applied. The 
basic problem is to determine when an existing crack will grow. 

Creation of a crack in an elastic body under uniform uniaxial tension disrupts 
the trajectories of the maximum principal stress in the manner shown in Figure 
12.1. This reveals that stress concentrations arise near the crack tip. They were 
first calculated by Inglis (1913) as the limit case of his solution for an elliptical 
hole. 

Stress Singularity and Fracture Energy 

From Inglis's solution, Griffith noted that the strength criterion cannot be applied 
because the stress at the tip of a sharp crack is infinite no matter how small the 
load (Fig. 12.2a). He proposed that the formation of a crack requires a certain 
energy per unit length and unit width of fracture surface, which is a material 
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relief 
zone 

Figure 12.1 Maximum principal stress trajectories in a cracked plate under tension. 

property and is called the fracture energy G1. Crack propagation is possible if 
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where bCfJ= -[aii] = [aii*] 
aau aa p 

(12.1.1) 

a= crack length, b =thickness of the structure, CfJ represents the energy release 
of the structure (per unit length of crack and unit width of crack front), 
u = load-point displacement, II = II(a, u) =potential energy of the structure-load 
system (Helmholtz free energy in the case of isothermal conditions, or total 
energy in the case of isentropic conditions); and II*= II*(a, P) = Pu(P)
II( a, u(P)) =complementary energy of the structure-load system (Gibbs free 
energy in the case of isothermal conditions or enthalpy in the case of isentropic 
conditions; see Eqs. 10.1.40-10.1.41). Label u or P in Equation 12.1.1 means 
that the derivative is to be calculated at constant u or constant P. Note that the 
minus sign in Equation 12.1.1 appears with aii/au but not with aii*/au. By 

c) 

d)t}Load 
p - 1 

~ 

0 u Defl. 

Figure 12.2 Elastic stress distributions at the crack tip (a) before and (b) after crack 
advance; and load-displacement curves for unloading after crack length increments (c) at 
deflection control, (d) at load control, (e) at arbitrary control. 
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analogy with the relation f =-ant au (f =force, u =displacement). and because 
b~ has the dimension of a force Irwin also called ~the crack driving force. 

The most direct way to calculate ~ by finite elements is to evaluate the 
potential energies ll1 and ll2 of the specimen or structure, corresponding to crack 
lengths a- !l.a/2 and a+ !l.a/2. Then b~= -an(a)/aa = -(ll2 - ll1)/6.a. 

The energy release rate may be determined from the stress and displacement 
fields near the crack tip. If we consider a sufficiently small region around the 
crack tip, the boundaries of the body become infinitely remote compared to the 
size of this small region, and so the shape of the boundaries of the body can have 
no effect on the stress and displacements fields in such a relatively small region. 
This physical deduction is indeed verified by the solutions of the stresses for 
various body geometries. Furthermore, if we consider a microregion around the 
crack tip that is still much smaller, the stress and displacement fields in it must be 
similar. So the near-tip field must be such that the transformation r-+ kr 
(k =constant, r =radial coordinate from the crack tip) would not change the 
angular distribution. It follows that all the asymptotic near-tip stress and 
displacement distributions must be separable in the form F(r)/(8), where F and/ 
are some functions of polar coordinates r and 8 centered at the crack tip (Fig. 
12.2a). It is found that F(r)-+ oo as r-+ 0, and that (see, e.g., Kanninen and 
Popelar, 1985; Broek, 1977 and 1988; Knott, 1981; Owen and Fawkes, 1983; 
Hellan, 1984), regardless of the body shape and for arbitrary loading, the near-tip 
asymptotic field of stresses a;i and displacements u; in an isotropic material always 
has the form 

a;i = (KJ}';i(8) + K 11g;i(8) + K 111h;i(8)]r).-l 

u; =(Kif/>;( 8) + Kn1JI;( 8) + K111x;( 8)]r). 
(12.1.2) 

where A.=!, K., K11 , K111 are parameters called the stress intensity factors, and 
hi• g;i, h;i, f/>;, 1/1;, X; are certain functions of polar angle 8. For example (see, e.g. 
Broek, 1978), if the crack lies in axis x =xl> 

/u(8)} 1 8( . 8 . 38) 
/

22
( 8) = \fi; COS 2 1 =F SID 2 SID 2 

1 8 8 38 fd 8) =~cos- sin- cos-
v2n 2 2 2 

4>1(8) = ~c; v) cos~ (1- 2v + sin2 ~) 
4>2( 8) = ~ ( 1 

; v) sin~ ( 2- 2v - cos2 ~) 

(12.1.3a) 

(12.1.3b) 

where v = v for plane strain and v = v/(1 + v) for plane stress, E =Young's 
elastic modulus, and v =Poisson's ratio. Similar functions are associated with K

11 
and Km. The three terms in Equation 12.1.2 represent deformation modes that 
are symmetric, antisymmetric in a plane, and antisymmetric out-of-plane. These 
terms correspond to the three basic fracture modes shown in Figure 12.3, which 
are mutually orthogonal. They are called mode I (opening), mode II (in-plane 
shear), and mode III (antiplane shear). 
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Mode I II m 

~KJ~ 
Figure U.3 Basic fracture modes: 1---opening, 11-in-plane shear, and 111-antiplane 
shear. 

The easiest way to derive Equations 12.1. 3b is to substitute u; = K </>;( 8)rA 
(where K =constant) into the differential equations of equilibrium a;i.i = 0 after 
setting a;i = C;ikmuk,m· This yields for functions </> 1( 8) and 4>2( 8) an eigenvalue 
problem defined by a system of two homogeneous ordinary differential equations 
with homogeneous boundary conditions ( a22 = 0) at 8 = - ;r and n. It is found 
that the smallest A value for which this eigenvalue problem has a nonzero solution 
(such that U; is finite at r- 0) is A=~. and the corresponding eigenfunctions are 
those appearing in Equations 12.1.3b. This method can be generalized to 
determine the asymptotic fields at singularities for anisotropic materials, sharp 
corners, three-dimensional situations, etc. (see Williams, 1952; Karp and Karat, 
1962; Bafant, 1974; Bazant and Estenssoro, 1979). 

For points on the crack extension line (8 = 0, r = x), Equations 12.1.3a yield 
ay = KdViiiX, and so ay VfiiX = K1 for the near-tip asymptotic field. Similar 
relations hold for Txy and Txz· Therefore, the stress intensity factors for arbitrary 
bodies under any loading are defined as 

Km = lim Txz VfiiX (12.1.4) 
x~o+ 

Energy Release Rate 

Because the asymptotic stress field is unique, and because the rate of energy ftow 
into the crack tip must depend only on this field, there must exist a unique 
relationship between the energy release rate, <§, and the stress intensity factors. 
We consider mode I and imagine the crack tip to move by an infinitesimal 
distance h in the direction of axis x1 =x (Fig. 12.2b). After that happens the new 
near-tip displacements behind the new crack tip location are obtained from 
Equations 12.1.2 and 12.1.3b by setting r = h- x, 8 = ;r, which yields (v = u2) 

v = ~(~!)vh -x (12.1.5) 

in which E' = E/(1- v2) for plane strain and E' = E for plane stress. (Thus, 
according to linear elastic fracture mechanics, the shape of every opened crack 
near the tip is a parabola.) The original stresses ahead of the original crack tip are 
obtained from Equations 12.1.3a by setting 8 = 0, which yields ( ay = a22) 

(12.1.6) 
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These stresses are reduced to zero as the crack tip advances. 
release rate may be obtained as the work of oy on v, that is, 

So the energy 

1 Lh 1 t;4 = 2 lim - -o v dx 
h .... oho2Y 

(12.1.7) 

where the factor! is due to the fact that, for small h, the stresses must reduce to 
zero linearly and the factor 2 to the fact that the crack opening width is 2v. 
Substituting Equations 12.1.5 and 12.1.6 into Equation 12.1.7 and integrating (by 
means of the substitution x = h sin2 w ), one gets for mode I 

(mode I) (12.1.8) 

(Irwin, 1957). Doing a similar calculation for a combination of modes I, II, and 
III, one gets, in general, 

(12.1.9) 

According to Equations 12.1.1 and 12.1.8, a mode I crack can propagate if 

K, = Kc Kc = VE'Gt (12.1.10) 

where Kc = critical value of stress intensity factor K., called fracture toughness. 
Similar critical values may be introduced for K11 and K111 • 

Equation 12.1. 7 makes it possible to prove most easily that the singularity 
exponent A must indeed be!. If exponents! in the expressions for v and oy were 
replaced by A =I= ! , then evaluation of the integral in Equation 12.1. 7 would 
indicate that t;4 is 0 if A>! or oo if A< !, either of which is impossible. Replacing 
r). by other functions such as In A a similar conclusion ensues. 

Another way to calculate the energy release rate is to choose around the crack 
tip some closed path r that is moving as a rigid body as the crack tip advances by 
!l.a. Since no energy is dissipated in the material (which is elastic), the energy !1 ~ 
that has flowed into the crack tip must be equal to the energy that has flowed into 
the contour r as it moves with the crack tip regardless of the shape of the 
contour. This energy is the sum of the energies 0 !l.a dy contained in all the 
elemental areas !l.a dy that moved into contour r, cross-hatched in Figure 12.4a 

Figure 12.4 (a) Closed path around advancing crack tip; (b) linearly elastic; (c) 
nonlinearly elastic, and (d) inelastic stress-strain relations. 
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(where 0 = !o1iE1i =strain energy density in the material), minus all the work of 
the surface tractions acting on this contour, t1 = o1ini, done on the displacement 
increments Au1 = (au;/ ax) Aa that occur at a point of contour r as it moves by 
distance Aa; n1 is the unit outward normal of contour rand x =x1• (Note: The 
fact that the cross-hatched region on the left in Fig. 12.4a is moving out of the 
contour is taken into account by the negative value of dy.) In consequence, 
A~ = ~rO Aa dy - ~r t1 Au1 ds. So the rate of energy flow into the crack tip is 
(/J=J = A~/Aa where 

(12.1.11) 

in which P;i = OlJ1i- oikuk,i (which follows by setting dy = n1 ds = lJ 1ini ds); P;i is 
called Eshelby's energy momentum tensor. Equation 12.1.11, introduced into 
fracture mechanics by Rice (1968), is called the J-integral. From the fact that 
energy is dissipated only at the crack tip and nowhere else within the contour, it is 
physically clear that the J -integral must be path-independent. For the same 
reasons, the path-independence of J is also true for nonlinearly elastic materials, 
for which the unloading stress-strain diagram coincides with the loading 
stress-strain diagram (Fig. 12.4c); in that case 0 = f o1i de1i, not !o1iEti· But J is 
not path-independent for inelastic materials, which dissipate energy throughout 
their volume because the unloading and loading diagrams (Fig. 12.4d) differ 
(often, though, path-independence is a good approximation). Nevertheless, J is 
path-independent for such paths that do not go through an inelastic region. The 
path-independence of the J -integral has also been proven mathematically. 

If r is taken, for example, as a circle of radius r = R around the crack tip, one 
may use Equation 12.1.11 to calculate (/} = J. The result is the same as before 
(Eq. 12.1.8). The fact that A= ! can be derived even without exact calculation of 
the J-integral (cf. Bafant and Estenssoro, 1979, p. 411). Near the crack tip we 
have U; - r). where - denotes proportionality. Hence au;/ ax - r).-J, E;j - O;j -

r).-J' O;j au;/ ax- r2).-2 , 0- r2A-2 , and J- R2A-2R = R2
).-l. Consequently, for J 

to be bounded and nonzero as R .- oo it is necessary that Ry (2A.- 1) = 0, that is, 
Re (A.)=!. (That A. is a real number can be shown from the field equation.) 

Determination of CfJ and G, from Compliance Changes 

The load-point displacement may be expressed as u = C .. (a )P(a) where C .. (a) = 
unloading compliance of the structure or specimen at crack length a. The 
complementary energy of the structure is ll* = !Pu = !C .. (a)P2

• Therefore, the 
energy release rate CfJ= (all*/aa)/b (Eq. 12.1.1) is given by 

~a)= ~:dC~a) (12.1.12) 

If the crack is propagating, then, of course, G1 =~a). Equation 12.1.12 serves as 
the basis of measurement of the fracture energy. 

Equation 12.1.12 can also be derived from the potential energy n. Since 
n = P(u)u- ll*(a, P(u)) = u2/C .. - !Pu = u2/C .. - u2/2C .. = u2/2C .. (a), we have 
b(/J- antaa = -(- u2/2C~) dC .. /da, and substituting u = C .. P, we obtain again 
Equations 12.1.12. 
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It is instructive to derive Equation 12.1.12 by elementary energy balance 
considerations. When the crack is assumed to advance by ~a while the loading 
point is fixed (fixed grip, du = 0), load P does no work, dW = 0. We have 
U = !Pu =area 0130 in Figure 12.2c, and u =CuP. Therefore, -b<Dda =dO= 
dU = d(!Pu) = d{!u2/Cu) = -!(u/Cu)2 dCu = -!P2 dCu (=area 0120 in Fig. 
12.2c), which yields Equations 12.1.12. 

When the crack is assumed to advance while the load is fixed (dead load, 
dP = 0), load P does work. We have -b<D da =dO= dU- dW, which is the 
difference between areas 0120 and 12431 in Fig. 12.2d; we calculate dO = 
d{!Pu) - P du = d(!CuP2

) - P(P dCu) = !P2 dCu - P2 dCu = -!P2Cu. So the re
sult for dead load is the same as for the case of fixed grip (Eq. 12.1.12), even 
though the strain energy for the case of dead load increases while for the case of 
fixed grip it decreases. 

In real testing, du is normally accompanied by load drop dP. In that case 
dU = d(!Pu) = !P du + !u dP = area 0240- area 0130 in Figure 12.2e; dO = 
dU- dW = dU- area 15431 = dU- P du = -!(P du - u dP). At the same time, 
dCu = d(u/ P) = (P du- u dP)/ P2

• Therefore, dCuldO = -dCulb<D da = -2/ P2
, 

which again yields Equation 12.1.12. Note that the result is independent of the 
softening slope dP/du, and that -dO= area 0120 in Figure 12.2e. 

Equation 12.1.12 serves as the basis of the compliance method for measuring 
the fracture energy. This method, however, becomes questionable if the fracture 
process zone is so large that the value of equivalent crack length, a, is uncertain 
(Sec. 12.2), or if a substantial amount of energy is dissipated by plasticity and 
friction outside the fracture region. The latter problem is manifested by the fact 
that the experimental unloading curves are not straight and do not return to the 
origin; see curves 16 and 27 in Figure 12.2e. The residual displacements 06 and 07 
are due to plasticity, and various attempts to compensate for them have been 
made. 

Some Simple Elastic Solutions 1 

For a line crack of length 2a in an infinite elastic plane (Fig. 12.5a) subjected at 
infinity to a uniform uniaxial normal stress a in the direction orthogonal to the 
crack plane 

(12.1.13) 

A crack of length 2a subjected to uniform remote stress a becomes critical 
when Kr = a....;tCa = Kc (according to Eq. 12.1.13). This occurs when the crack 
length reaches the critical value acr = (Kcl a)2 In, which represents the limit of 
stability (Sec. 12.3). This expression may be used as an estimate of acr even for 
other situations (provided that acr !grad d;}l « la~l for all i, j where a~ is the stress 
field for no crack). 

For a normal surface crack (Fig. 12.5b) of lenght a in a half-plane subjected to 

1. See, e.g., Tada, Paris, and Irwin (1985), Murakami (1987), or Kanninen and Popelar (1985). 
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Figure ll.S Various crack geometries: (a) line crack in infinite elastic plane; (b) edge 
crack in half-plane; (c) circular (penny-shaped) crack; (d) central crack in infinite strip; (e) 
edge crack in infinite strip; (f) collinear equidistant cracks; (g) edge crack in beam 
(three-point-bend specimen); (h) circumferential edge crack in circular bar with circular 
ligament. 

stress a parallel to the surface, 

K1 = 1.12avml (12.1.14) 

For a circular (penny-shaped) crack (Fig. 12.5c) of radius a in an infinite 
elastic space subjected at infinity to a uniform uniaxial normal stress a in the 
direction orthogonal to the crack plane 

(12.1.15) 

For finite two-dimensional bodies, the formulas for K1 generally have the form 

a 
a=-

D 
(12.1.16) 

where P = load, b = thickness, D =characteristic dimension, a =crack length, 
and k(a) =function of a depending on the shape but not the size of the structure. 
For example, for a long planar strip (Fig. 12.5d) of width D containing a centric 
transverse crack of length 2a and subjected to axial tensile stress a = PI D at 
remote cross sections, 

( na)-112 
K1 = aV'iiQ cos D /1 

a 
a=-

D 

where approximately / 1 = 1, but more accurately / 1 = 1- 0.1a2 + 0.96a4
• 

(12.1.17) 

For a planar stip (Fig. 12.5e) of width D and thickness b that is axially loaded 
by tensile force P at infinity and is weakened by a transverse crack such that only 
a small ligament of length 2r « D remains at the center, 

K1=~ k(a)= {D a=!_!.. (12.1.18) 
b v nr 'J;;. 2 D 
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For a row of collinear equidistant cracks (Fig. 12.5f) of length 2a and 
center-to-center spacing D in an infinite plane loaded at infinity by stress o 
normal to the crack plane, 

( 
:rca)•12 

K 1=o DtanD (12.1.19) 

This has the form of Equation 12.1.16 with P = oDb =load per crack, and 
k( a)= (tan (:rca/ D))112. 

For a three-point bend specimen of depth D and span L = 4D, with one crack 
of length a (Fig. 12.5g), Equation 12.1.16 holds, with (Srawley 1976) 

= 3L .. r:.[l.99- a(1- a)(2.15- 3.93a + 2.7tr)] = ~ (12.1.20) 
k(a) 2D va (1 + 2a)(1- a)312 a D 

For finite three-dimensional bodies, the formulas for K1 generally have the 
form 

A 
a=-

D 
(12.1.21) 

where function k( a) again depends on the shape but not the size of the structure. 
For example, for a circular bar (Fig. 12.5h) of radius D /2 that is axially loaded by 
tensile force P and is weakened by a transverse crack such that only a small 
ligament of radius r « D /2 remains, 

p 
K.=~ 2vnr 

1 (D)312 
k(a) = 2y;;; ; (12.1.22) 

Approximation by Stress Relief Zone 

The principal stress trajectories in Figure 12.1 reveal that the formation of a crack 
causes stress relief in the shaded triangular regions next to the crack. As an 
approximation one may assume the stress relief region to be limited by lines of 
some constant slope k, (Fig. 12.6), called the "stress diffusion" lines, and further 
assume the stresses inside the stress relief region to drop to zero while remaining 
unchanged outside. Based on this assumption, the total loss of strain energy (per 
unit thickness) due to the formation of a crack of length 2a at controlled (fixed) 
boundary displacements is dll = - 2ka2

( o'-!2E) where o'-!2E = initial strain 
energy density; therefore, the energy release rate per crack tip is ~ = 
-a(dll)/aa = 2kao'-/E. Setting <D= KUE, one obtains 

K1 = o-..fi]CQ (12.1.23) 

tttttttttcr. 
D 
<1.1 

/ 'Jk 

i9 
111111111 

Fipre U.6 Stress relief zone. 
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This is in exact agreement with Equation 12.1.13 if one assumes that k = n/2 = 
1. 571. (If the stress relief zone is assumed to be a circle of radius a passing 
through the crack tips, the exact K1 results.) 

For the penny-shaped crack (Fig. 12.5c), the stress relief region consists of 
two cones of base na2 and height ka. Therefore, ~n = -2~1UJ2ka(cr/2E). Also 
'li= -(a ~ntaa)/2na (per unit length of crack perimeter), that is, 'li= 
kcra/2E = /(f/E. From this 

(12.1.24) 

This is in exact agreement with Equation 12.1.15 if one assumes that k = 8/ n. (If 
the stress relief zone is assumed to be a rotational prolate ellipsoid of minor axis a 
and major axis 2a, the exact K1 results.) 

The approximate method of stress relief zones can be applied in diverse 
situations for a quick estimate of 'IJ or K1• The value of k depends on geometry 
and its order of magnitude is 1. The error of intuitive estimations of k can be 
substantial; however, the form of the equation obtained for K1 is correct. 

Examples Solvable by Bending Theory 

If the beams or structures shown in Figure 12.7 are slender, the energy release 
ratio may be solved by means of the theory of bending. The solutions are exact 
asymptotically, as the slenderness tends to infinity. 

If the double cantilever specimen in Figure 12.7a is slender, the cantilevers 
may approximately be treated as beams having a fixed end at the cross section 
with the crack tip. The load-point relative displacement u due to load P is, 
according to the principle of virtual work, u = 2 J MM dx/ El = 8Pa3 I Ebh3 

(where I= bh3/12, b =thickness, M = x, M = Px). From this, P = Ebh3u/8a3
• If 

the relative displacement u is controlled, the potential energy is n = Pu/2 = 
Ebh3u2/16a3

• Hence, b'IJ= -antaa = 3Ebh3u2/16a4
• From 'li= G1, the fracture 

propagation condition is 

- - (§!!__) 1/2 u -Ucr-4 3Eh3 Va (12.1.25) 

The stress intensity factor is KI = m or 

_ ( h
3

)
112

( Eu ) _ 2P ( a
3

)
112 

KI- 3 aJ 4\Ta - b\Ta 3 hJ (12.1.26) 

As another example, consider a wall with a longitudinal crack of length 2a at a 
small depth h below the surface, subjected to compressive stress u0 < 0 (Fig. 
12.7f). Sufficient compression causes the layer above the crack to buckle as a 
slender column whose ends at the crack tip are assumed to remain fixed. The 
buckling stress is O'cr=-E'ln2/a2h where J=h3/12, E'=E/(1-v2

). Without 
buckling, the layer may be brought to some stress luol >lucri. and due to buckling 
the axial stress in the layer drops to O'er. This contributes to fracture the energy 
loss U = -~llo corresponding to the cross-hatched triangle in Fig. 12.7f, 
-~fio=2ah(u0 - O'cr)2/2E' (per unit thickness). If the bending energy of the 
layer is neglected, the crack will propagate when -a(~llo)/c3a = 2G1. From this 
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g) 

Figure 12.7 Cracks in slender structures treated by beam theory. 

we obtain the condition 

(12.1.27) 

from which one can solve for the stress o0 that would cause the crack to 
propagate. 

The foregoing calculation captures some but not all of the important aspects 
of the problem of delamination in layered composites (Sallam and Simitses, 1985, 
1987; Yin, Sallam, and Simitses, 1986). 

Herrmann's Method to Obtain Approximate K1 by Beam Theory 

A remarkably simple method for close approximation of K1 in notched beams was 
recently discovered by Kienzler and Herrmann (1986) and Herrmann and Sosa 
(1986). The method was derived from a certain unproven hypothesis (postulate) 
regarding the energy release when the thickness of the fracture band is increased. 
We show a different derivation of this method (Bafant, 1988) that is simpler and 
at the same time indicates that the hypothesis used by Herrmann et al. might not 
be exact but merely a good approximation. Also, Herrmann's method relies on 
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a 

Figure 12.8 (a) Line crack advance; (b) crack band widening; (c, d) corresponding stress 
relief zones; (e) notched beam under constant bending moment. 

more sophisticated concepts (material forces) that seem more complicated than 
necessary to obtain the result. 

Let us estimate the energy release rate rti by considering the expansion of the 
stress relief zone at crack extension ll.a and employing the simplified "stress 
diffusion lines" of empirical slope k; see Figure 12.8a, c. Consider now that 
instead of crack extension ll.a the crack is widened into a crack band of width ll.h; 
see Figure 12.8b, d. This widens the stress relief zone from area 1231 to area 
45784 as shown by arrows in Figure 12.8d. Since the triangular area 56725 in 
Figure 12.8c is second-order small if ll.a is small, the increments of the stress 
relief zones 123876541 and 12387541 in Figure 12.8c and dare identical provided 
that ll.h/2 = k ll.a. Therefore (at fixed boundary displacements, for which 
ll=U), 

au au 
-brti=-=2k-aa ah (12.1.28) 

(Bafant, 1988); b =thickness of body. The case k = 1 coincides with the 
hypothesis (postulate) on p. 41 of Kienzler and Herrmann (1986). However, 
there seems no reason to assume that k = 1, and numerical results in Bafant 
(1988) show that more accurate results can be obtained if the empirical constant k 
is allowed to differ from 1. 

The advantage of Equation 12.1.28 is that it can be used even in problems 
where the initial stress field before the appearance of the crack is nonuniform. 
The reason is that, approximately, the widening of the crack into a band has 
merely the effect of shifting the stress field as a rigid body along with the shift of 
the triangular stress relief zones as indicated by arrows in Figure 12.8d, while the 
strain energy in the band can be easily estimated. 

Following Kienzler and Herrmann (1986), we illustrate their method by 
considering the beam in Figure 12.8e subjected to bending moment M. The 
bending stiffness of the beam is E/1, and the notched cross section has bending 
stiffness E/2 , where /1 = bH3/12 and /2 = b(H- a)3/12 (moments of inertia, 
b =thickness). The energy release due to widening of the notch to thickness 
(length) ll.h is ll.U=M2(1/EI1 -1/EI2)ll.hb/2. From Equation 12.1.28, rti= 
( -ll.U I ll.h )(2k/b) or 

(12.1.29) 
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from which K1 = (Ef§) 112• According to Kienzler and Herrmann (1986, figs. 3 and 
4) this compares (fork= 1) very well with the accurate solutions from handbooks 
(but it appears the agreement would be even better for some value k * 1 ). 

Problems 

12.1.1 Show that Equation 12.1.7 may be obtained by applying the }-integral to a 
path of two straight segments at y = 0 that run along the surfaces of the crack 
extension. 

12.1.2 Assume that the near-tip displacement field is separable as u = rA.cp( 6) and 
v = rA.'IJI( 6). Substitute this into differential equations of equilibrium and crack 
surface boundary conditions written in terms of u and v. Variable r cancels 
out and one obtains an eigenvalue problem for }.. consisting of two linear 
homogeneous differential equations for cp( 6) and 1/J( 6) and associated 
homogeneous boundary conditions. Show that the physically admissible 
eigenvalues are }.. = n/2 (n = 1, 2, 3, ... ), and obtain the corresponding 
cp( 6), 1/1( 6). By differentiation, get the stresses and strains. Also use this 
method for the case of a comer of a finite angle, for which ). >! (for details 
see Karp and Karal, 1962). 

12.1.3 ~. K" and the crack propagation criteria for the structures in Figure 
12. 7b, c, d, e are solvable by the theory of bending. Carry out these solutions. 
Also solve Fig. 12.7a with P replaced by opposite applied moments M. 

12.1.4 Figure 12.7g illustrates compression failure due to pressure applied over 
one-half of the top surface. If there is an axial crack as shown, the load 
applied on each column strip is eccentric and causes the strip to buckle. 
Calculate the stress a0 that makes the crack of length a grow. 

12.1.5 What is the critical crack length acr for Figure 12.5f (Eq. 12.1.19)? 
12.1.6 As already remarked, Equation 12.1.8 can be obtained by calculating the 

J -integral along a circle of radius r using Equations 12.1.3a and av I ax = vI h. 
Show it. 

12.1. 7 The regular field near a sharp corner of a finite angle is characterized by 
u = rA.cp( 6), v = rA.'IJI( 6) with A.> !. Can a nonzero finite energy flow into the 
comer point? Can an energy criterion be used for the start of crack 
propagation from the comer? The answers are no, but why? 

12.2 NONLINEAR FRACTURE MECHANICS AND SIZE EFFECT 

If all the fracture process happens at one point-the crack tip, the whole body is 
elastic and linear elasticity may be used. If the fracture process happens either on 
a finite line segment or in a finite zone, part of the body behaves in a nonlinear 
manner. There exist many brittle materials in which the fracture process zone is 
so large that it cannot be approximated as a point. Fracture behaviour of this type 
is generally desirable; it increases the material resistance to fracture growth. We 
will now briefly outline the typical methods to deal with this type of fracture. 
Then we will consider the consequences for the size effect. But the examination 
of the stability aspect of size effect will be postponed to Chapter 13. 
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Inelastic Zone and Equivalent Elastic Crack 

Although linear elastic fracture mechanics assumes the size of the inelastic zone 
at the crack tip to be zero, in reality this zone must have some finite size, rP (Fig. 
12.9a). This size was estimated by Irwin (1958). For a crude estimate, we note 
that the point on the crack extension line where ay = f,' (=tensile strength of the 
material) lies at the distance x = rP from the crack tip given by ay = 
Kc(2nrp)- 112 = f,'. This yields, for mode I (see Fig. 12.9a), 

1 (K )2 
1 (E'G) 

rP = 2n f,'c = 2n /,'2 1' (12.2.1) 

In reality, the nonlinear zone must be larger than this because the stress 
resultant from an inelastic zone of size rP would be less than the stress resultant of 
the elastically calculated stresses ay = Kc(2nr)- 112

• If these resultants were made 

• • 
c) Metals 

Nonnn .. r ( yieldlnt) zone 
d) Concrete. rock, caramics 

Nonlin .. r(d•m-} zone 

Detail A~ctual fracture proce .. zone 
(f,-O) d•m•e• 

Fracture proceaa zone ft denaity 

Figure 12.9 Nonelastic stress distributions at crack tip due to (a) yielding or (b) damage, 
and ( c, d) corresponding fracture process zones. 
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coincident and equal in magnitude, then the stress field farther from the 
nonlinear process zone would be unaffected, due to Saint-Venant's principle. 
Equal magnitude of these resultants may be achieved by assuming the tip of an 
equivalent elastic crack to be shifted forward by distance RP - rP ahead of the true 
crack tip, where RP is an improved estimate of the size of the nonlinear zone. 
Graphically, this means that the two cross-hatched areas (area 04120 and 54135) 
in Figure 12.9a must be equal (this means that area 1361 is replaced by equal 
area 05620). If we also assume the material to be plastic (stress=!,.) over the 
entire length RP (Fig. 12.9a) (which implies all the fracture processes to happen at 
point 0 at which the stress suddenly drops to zero), then the condition of equal 
magnitudes of the stress resultants over length RP (i.e., equality of areas 04120 
and 54135 in Fig. 12.9a) reads 

(12.2.2) 

where !,. = yield limit and rP is given by Equation 12.2.1 with /,' = f,.. Solving for 
RP from this equation, Irwin (1958), obtained for the length of the yielding zone 
the improved estimate RP = 2rP = kPK~If~, kP = 1/n. However, the moments of 
the stress distributions (i.e., of areas 04120 and 13541) about point 0 are still not 
equal, which means the lines of the stress resultants do not coincide. More 
seriously, the stress intensity factor K1 calculated for point 4 is nonzero, which is 
impossible because the stress must be finite. Therefore Dugdale (1960) calculated 
length RP from the condition that the value of K1 caused by the plastic stresses in 
a body with a large crack up to point 4 must vanish, and he obtained 

(K)2 E'G 
Rp = kp J,.c = kp ~~'I 

H 
k =

p 8 (12.2.3) 

The hypothesis that stress oy is constant is justified for ductile metals, in which 
typically there is a large nonlinear (plastic) zone ahead of the crack tip but only a 
very small fracture process zone embedded in it (Fig. 12.9c). In materials such as 
concrete, rocks, and toughened ceramics, the nonlinear zone is also large but 
most of it constitutes the fracture process zone (Fig. 12.9d), in which the material 
undergoes progressive distributed damage such as microcracking. For such 
materials, oy declines gradually along the nonlinear zone (Fig. 12.9b). To describe 
this behavior one may assume that oy is a decreasing function of the crack 
opening lJ. Since a change from a uniform to a descending stress profile shifts the 
stress resultant forward, one has RP = kPKVf~ where kP is larger than Irwin's 
estimate 1/ n, kP ~ 1/ n. Coefficient kP depends on the stress profile throughout 
the inelastic zone, which in turn depends on the relationship between oy and the 
relative displacement lJ1 across the width of the nonlinear zone. 

The opening displacement {Jc at the front of the actual crack may be assumed 
to be approximately the same as the opening displacement of the equivalent 
elastic crack with length c0 at that point. We have {Jc = lJ(x) for x = 0, where 
according to Equations 12.1.3b for 8=n, lJ(x)=2u2(x)= (4K.IE)(1 + v)(1- v) x 
[2(Rp- rP- x)/ njl12

• Setting c0 = RP- rP this yields (for K1 = Kc) the estimate 

lJ -k K~ -k a, 
c- OE.~ - 0 ~ (12.2.4) 

'}y Jy 
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where k 0 =constant= 4(1 + v)(1 - v)(f,/ Kc)(2c0 / .nY2
• For Dugdale's model, for 

which ({j = {Jcf,, one gets k0 = 1 along with c0 = nk~/32/~ for plane stress (while 
Planas and Elices, 1987, by a certain asymptotic analysis, obtained c0 = nK~/24!~ 
for Dugdale's model). 

Fracture Models with a Nonlinear Zone 

Equivalent linear elastic cracks do not suffice for describing materials in which the 
nonlinear zone is not very small compared to the cross-section dimensions. In this 
case, the inelastic deformations accumulated across the width of the nonlinear 
zone may be lumped into relative displacements 61 across the center line of the 
crack, and all the material on the sides of the centerline may be approximately 
treated as elastic. Various approaches have been devised. 

One approach, introduced by Dugdale (1960) and Barrenblatt (1959), is to 
consider a fictitious crack that extends all the way to the front of the inelastic 
zone, in which case the stress intensity factor for the tip of this crack must be zero 
(K1 = 0). The action of the inelastic zone at the crack front is represented by 
stresses ay applied on the fictitious crack surfaces, which tend to close the crack 
and are distributed over a certain length. Depending on the material properties, 
there are two possibilities: (1) The material (Fig. 12.9a) is plastic and the stress ay 
drops suddenly to zero when the fictitious crack opening 61 reaches a certain 
critical value {Jc (Dugdale, 1960; Barrenblatt, 1959). (2) The material (Fig. 12.9b) 
exhibits progressive softening, in which case one needs to specify ay( 61) as a 
decreasing function (Knauss, 1973; Wnuk, 1974; Kfouri and Rice, 1977; 
Hillerborg, Modeer, and Petersson, 1976); here the area under the curve ay( {J1) 

may be approximately interpreted as the fracture energy: 

G1 = L"" ay( 61) dlJ1 (12.2.5) 

For finite element analysis, the crack is modeled in this approach as an 
interelement line crack and the stresses ay( 61) are modeled as internodal forces 
(Fig. 12.10a). Equation 12.2.5 is exact only if the fracture process zone is 
assumed to be a line and all the behavior outside the crack is reversible. 

a) 

b) 

Figure 12.10 Finite element representation of (a) a line crack and (b) a crack band. 
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The u,(«5) relation for mortar and, consequently, also G1) was estimated from 
laser-interferometric measurements by Cedolin, Dei Poli, and Iori (1983, 1987) 
along with the extension of the fracture process zone. 

To deal with materials exhibiting a large zone of microcracking at the fracture 
front (e.g., toughened ceramics), a sharp line crack, characterized by stress 
intensity factor K;, is considered to exist inside the microcracking zone. The 
effect of this zone is to reduce the value of K; compared to the stress intensity 
factor K1 that characterizes the elastic field around the microcracking zone. The 
reduction from K1 to K;, called crack tip shielding, is approximately described 
according to various simplified models. 

Instead of line cracks, a convenient alternative for finite element analysis is to 
assume the nonlinear deformation near the crack front to be uniformly smeared 
over a certain band, called the crack band, whose width we is approximately equal 
to the width of the nonlinear softening zone. The crack band is represented by a 
row of finite elements (Fig. 12.10b) and the material in the crack band is 
characterized by a softening stress-strain relation, whose component transverse 
to the crack is specified as a function u,(e,), where e, is the mean strain across 
the crack band. The width We must be considered to be a material property, and 
the fracture energy may be approximately expressed as 

(12.2.6) 

This approach (Bafant, 1976b; Bafant and Cedolin, 1979, 1980, 1983; Bafant, 
1982; Bafant and Oh, 1983a) is essentially equivalent to the line crack approach if 
Ey = «5,/wc. 

A refined version of this approach is the nonlocal formulation (Sec. 13.10) in 
which the crack band width need not be specified as a material property but is 
obtained by solving the problem (in which case it depends on geometry, albeit not 
strongly). In the nonlocal formulation the fracturing strain at any point x 
(strain-softening or damage) is assumed to be a function of the spatial average of 
the strains from a neighbourhood of point x whose size is determined by the 
characteristic length I, a property of the material. The nonlocal approach is free 
of mesh bias and allows crack band propagation in arbitrary oblique directions 
through the mesh (see Sec. 13.10). 

Size Effect 

The most important consequence of fracture mechanics is the size effect on failure 
loads. It may be defined by considering geometrically similar specimens or 
structures of different sizes, with geometrically similar notches or initial cracks. 
We describe it in terms of the nominal strength (or nominal stress at failure): 

for 2D similarity 

(12.2.7) 
for 3D similarity 
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where P,.. =maximum load (ultimate load); b =thickness of a two-dimensional 
structure, the same for all structure sizes; D =characteristic dimension of the 
structure or specimen; and en = coefficient introduced for convenience. For 
example, if D is the depth of the beam, the elastic formula for the maximum 
bending stress in a simply supported beam of span L is aN= 1.5P,..L/bD2 = 
cnP,../bD with en= 1.5L/ D (=constant if the structures are geometrically similar). 
One can also use the plastic bending stress formula, aN= P,..L/bD2 = cnP,../bD, 
for which en= L/ D (=constant). Alternatively, one may define aN= P,../bL = 
cnP,../bD in which en= Dl L (=constant). This illustrates that any stress formula 
can be brought to the form of Equation 12.2. 7. 

It is known that plastic limit analysis, as well as elastic analysis with an 
allowable stress criterion or any failure criterion based on stress, exhibits no size 
effect (i.e., structures of different sizes fail at the same aN). Not fracture 
mechanics, though. 

Due to similarity of elastic stress fields in similar two-dimensional structures of 
different size, the strain energy of the structure must have the form U = 
V(~/2E)f(a) where V = c0bD2 =volume of the structure (c0 is some constant) 
and f (a) is a decreasing function of the relative crack length a = aID, which 
depends on the shape of the structure. Therefore b~= -autaa = 
-(oU/oa)/D = -c0bD(~/2E)f'(a), from which, for two-dimensional problems, 

K 
_, t«iDi _ P,..k(a) 

,- V'B.C. - bVD (2D) (12.2.8) 

where E' = E/(1- v2
) for plane strain, E' = E for plane stress and for 3D, 

g(a) = -f'(a)c0c~/2 =certain function of a depending on the structure shape, 
and k(a) = v'i('a). For basic specimen geometries, formulas for function k(a) 
can be found in handbooks (Tada, Paris, and Irwin, 1985; Murakami, 1987), and 
the values of k(a) can also be obtained by linear elastic finite element analysis. It 
may be checked from handbooks that all the formulas for K 1 have the form of 
Equation 12.2.8 (check Eqs. 12.1.18 and 12.1.26). 

For three-dimensional similarity, we have U = V(~/2E)f(a) where V = c0 D3 

and ~p(a)D = -autaa = -(autaa)/D = -c0D2(~/2E)f'(a), where p(a)D= 
length of the perimeter of the fracture front and ~ = average energy 
release rate per unit length of the perimeter. Therefore 

K 
_, t«iDi _ P,..k(a) 

I - V 'B.C. - ViY 

where g(a) = -f'(a)c0c~/2p(a) and k(a) = Yi(a). 

(3D) (12.2.9) 

When g ' (a) > 0, which applies to most practical situations, linear fracture 
mechanics indicates that the maximum load occurs at infinitely small crack 
extensions. Then a at failure is the same for all the sizes of specimens of similar 
geometry. Setting~= G1 or K1 = Kc, we recognize from Equations 12.2.8 as well 
as 12.2.9 that the size effect of linear elastic fracture mechanics generally is, 

(2D and 3D) (12.2.10) 
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Based on our preceding discussion of nonlinear fracture mechanics the 
maximum loads for various structure sizes may be assumed to occur when the tip 
of the equivalent elastic crack lies at a certain distance c ahead of the tip of the 
initial crack or notch, that is, a = a0 + c or a = a 0 + ( c I D) where ao = ao/ D, 
a0 = initial crack or notch length. Let c1 denote the value of c for D---+ oo, for 
which CO= G1 at failure. 

At the beginning of loading, the fracture process zone starts with a zero 
length. Subsequently its length (characterized by c) grows as the load is 
increased, remaining attached to the notch tip provided that the specimen 
geometry is such that g'(a) >0 (which usually is the case). At maximum load Pu, 
the zone reaches approximately its maximum length. In the postpeak regime the 
zone detaches itself from the notch tip and travels forward while keeping its 
length approximately constant (Bafant, Gettu, and Kazemi, 1989). The CO-value 
required for fracture growth is basically determined by the length of the fracture 
process zone, and since this length determines the value of c, the CO value at 
P = Pu depends on c. At the same time the magnitude of c at failure fully 
determines the value of g(a) at failure, and so the ratio CO/g(a) at maximum load 
must be approximately equal to G1 /g(a1) for a specimen of the same size. 
Therefore CO= G1g'(a)/g(a1 ). If we substitute this expression into Equations 
12.2.8, make the approximation g(a1 )=g(a0 )+g'(a0)(c1 /D) (based on the 
Taylor series expansion) where a1 = c1 / D and g'(a0) = dg(a0 )/da, and if we also 
set P~ = (aNbD/cn)2 and solve the resulting equation for aN, we get for the size 
effect law (Bafant, 1984) the following expression 

a -c t - " [ 
E'G ] 112 Bf. 

N- n g'(ao)c, + g(ao)D - v'1 + {3 
D 

{3=-
Do 

(12.2.11) 

(see also Sec. 13.9). Here we introduce the tensile strength fu =f.' and denote 
B = (E'G,Ig'(ao)c,] 112cnlfu, Do= c,g'(a0)/g(a0). Equation 12.2.11 may be re
written as (Bafant and Kazemi, 1988) 

- ( E'Gt )112 TN- --
c,+D 

(12.2.12) 

where TN= Yg'(ao)PulbD, D = Dg(a0)/g'(a0); TN= intrinsic (shape
independent) nominal strength (nominal stress at failure), and jj =intrinsic 
(shape-independent) size of the structure. Equations 12.2.11 and 12.2.12 are, of 
course, valid only if g'(a0)>0, which comprises most practical situations. 

For three-dimensional similarity, the size effect is again found to be 
approximately described by Equation 12.2.11 or 12.2.12 (Bafant, 1987a). 

Parameter {3, which is called the brittleness number (Bafant, 1987a, Bafant 
and Pfeiffer, 1987), may also be expressed as 

(12.2.13) 

An alternative expression for {3 may be obtained (Bafant, 1987a) by calculating 
D0 as the value of D at the intersection of the strength asymptote aN = Bf.' with 
the inclined asymptote aN= cn[G1E' /g(a0)Djl12 based on linear elastic fracture 
mechanics (Fig. 12.11). Equating these two expressions yields D0 , and then 
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Figure 12.11 Size effect law proposed by Bafant (1984). 
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(12.2.14) 

The value of B characterizes oN for very small structures and can be determined 
on the basis of plastic limit analysis from the relation B = oNifu· Thus, Equation 
12.2.14 is suitable for small {J. On the other hand, Equation 12.2.13 gives fJ 
solely on the basis of the fracture mechanics function g, without taking any plastic 
solution into account. Thus Equation 12.2.13 is preferable for large {J. Since 
Equations 12.2.13 and 12.2.14 are based on different asymptotic approximations 
(D- oo and D- 0), the fitting of test data may give slightly different B values. 

The size effect law in Equation 12.2.11, giving the approximate relation of oN 
(or TN) to D, is plotted in Figure 12.11. For large fJ ({J =DIDo) such that fJ > 10, 
Equation 12.2.11 gives (with an error under 5% of oN) the approximation 
oN- D- 112

, which is the size effect of linear elastic fracture mechanics (Eq. 
12.2.10). So in this range, linear elastic fracture mechanics may be used. For 
small fJ such that fJ < 0.1, Equation 12.2.11 gives (again with an error under 5 
percent of oN) oN= Bfu = const. or TN= (EG1Ic1 )

112 
= const., that is, there is no 

size effect and the failure load is proportional to the strength of the material. In 
this case, plastic limit analysis may be used (and the value of B can be deduced 
from such analysis). For 0.1 < ~ < 10, the size effect is transitional between linear 
elastic fracture mechanics and plastic limit analysis. In this range, nonlinear 
fracture mechanics must be used. 

Since the size effect vanishes for fJ- 0 and oN- Bfu, the value of Bfu or B 
can be obtained by solving the failure load according to plastic limit analysis. 
On the other hand, since oN== Bfu WoiVD for fJ- oo, the value of Bfu Yifo can be 
obtained by solving the failure load according to linear elastic fracture mechanics. 
From these two results, D0 can be identified. 

The brittleness number {J, proposed by Bafant (1987a), is capable of character
izing the type of failure regardless of structure geometry. The effect of geome
try is captured by the ratio g(a0)lg'(a0). This is, of course, only approximate and 
fails when g ' ( a 0) :S 0. However, structural geometries for which g' ( «o) :S 0 are 
rare (one is a panel with a short enough centric crack loaded by concentrated forces 
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at the middle ofthe crack). Usually g'(a0) >0 (which was called type a geometries 
by Jenq and Shah, 1985, and positive geometries by Planas and Elices, 1988a). 

The size effect law in Equation 12.2.11 has also been derived by dimensional 
analysis and similitude arguments. This derivation (Bafant, 1984) was based on 
the hypothesis that the total energy 11 U released by the crack formation is a 
function of both the crack length a and the length c1 of the fracture process zone, 
which is assumed to be a material property. An alternative hypothesis that leads 
to the same law is that there is a crack band of frontal width We that is a material 
property (i.e., same for any size) and the total energy ll.U released by the crack 
band formation depends both on the length a and the area awe of the crack band 
(Bafant, 1984, 1985a, 1987a). If ll.U is assumed to depend only on a but not on 
c1, the size effect of linear elastic fracture mechanics (that is, aN- D- 112

) results. 
So it does if ll.U is assumed to depend only on the crack band's length a but not 
on its area awe. 

The size effect law proposed by Bafant has been shown to agree well with 
fracture tests of very different geometries (Bazant and Pfeiffer, 1987), not only 
for Mode I but also for Mode II (Bafant and Pfeiffer, 1986) and Mode III 
(Bafant and Prat, 1987). The agreement was demonstrated for concretes, as well 
as rocks, certain toughened ceramics, and tough aluminum alloys (Bazant and 
Kazemi, 1988, 1989; Bazant, Lee, and Pfeiffer, 1987). 

Fundamentally, there is no reason why the derivation of the size effect law 
should be based on a Ta~series expansion of g(a). Alternatively, one can 
expand function k(a) = Yg(a) or function g(a)m for any value of m. Thus one 
gets the generalized size effect law aN= B/,'(1 + f:J')- 112

, with additional para
meter r (Bazant, 1985a, 1987a). For r = 0.44, this formula gave very close 
agreement with some size effect predictions of Hillerborg's model (Bafant, 
1985b, 1987a); but the fitting of tests of specimens of various geometries indicated 
the optimum value to be r = 1 (Bafant and Pfeiffer, 1987). 

The size effect law can be used to determine the fracture energy, a1, and the 
length of fracture process zone, c1, using only the maximum load Pu measured on 
similar specimens of significantly different sizes (of ratio at least 1 :4). In fact, the 
size effect may be used to provide the following unambiguous definition of a1 and 
c1 as fundamental material properties, independent of specimen size and shape 
(Bafant, 1987a): 

a1 and c1 are the energy required for crack growth and the elastically equivalent 
(or effective) fracture process zone length in an infinitely large specimen. 

Mathematically, this definition can be stated as a, = lim ~ = lim ( Kiol E') for 
D ~ oo where ~ or K10 can be determined as the value of ~ or K1 at the 
measured maximum load Pu calculated for the initial crack length a0 (notch 
length). (Alternatively, ~ or K 10 could be evaluated for the tip location of the 
equivalent elastic crack.) For this limiting procedure, however, it is necessary to 
restrict consideration only to those geometries for which g( a) increases with 
increasing crack length because otherwise the value of a= a/ D would not 
approach a0 =a0/D as D~oo (Planas and Elices, 1988a, 1989). 

The foregoing definition would provide the exact values of a1 and c1 if the size 
effect law were known exactly. Equation 12.2.11, however, is only approximate 
(valid for a size range of only up to about 1: 20). Therefore, the values of a1 and 
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c1 obtained from this definition are also approximate. But this is not really a 
serious drawback because the size range 1 : 20 is sufficient for most practical 
purposes. The obtained values of G1 and c1 then do not correspond to the true 
extrapolation to infinity, but that does not really matter as long as they correctly 
describe the energetics of fracture in the size range needed. 

The reason that G1 and c1 in an infinitely large specimen are independent of 
the specimen shape is as follows: In an infinitely large specimen the fracture 
process zone occupies a vanishingly small volume fraction of the body, so that all 
of the body is elastic. Consequently the stress and displacement fields surrounding 
the fracture process zone are the asymptotic elastic fields. They are known to be 
the same for any specimen geometry (Eqs. 12.1.2-12.1.4), and so no influence of 
the boundary's shape can be transmitted to the fracture process zone. 

Based on the foregoing definitions of G1 and c1, Equation 12.2.11 can be used 
for their experimental determination. A simple formula for G1 (Bafant, 1987a; 
Bafant and Pfeiffer, 1987) can be obtained by taking the limit of Equations 12.2.8 
in which Pu = bDuN/cn and uN is expressed from Equation 12.2.11 (and by noting 
that lim a = a0 for D-+ oo); 

. P;g(a) B 2
/; • D B2

/; 

Gt = }J!!t .. E'b2D = c~E' g(ao) }J!!t .. 1 +DIDo= c~E' Dog(ao) (12.2.15) 

Furthermore, from Equation 12.2.13 (where P = D I D0), 

D~(ao) 
Ct = '( ) . g ao 

(12.2.16) 

So, in order to determine G1 and c1, one needs only to calculate g(a0) and g'(a0) 

according to linear elastic fracture mechanics and then find Bfu and D0 by fitting 
Equation 12.2.11 to the uN data (Baiant, 1987a; Baiant and Pfeiffer, 1987). This 
may be accomplished by linear regression since Equation 12.2.11 can be 
transformed to the linear plot Y=AX+C where X=D, Y=(fuluN)2, 
B = c-112, and D0 = CIA. Linear regression formulas also yield the coefficients of 
variation of A, C, G1, and c1. 

Fracture parameters G1 and c1 can be related to the critical crack tip opening 
displacement f>c, which occurs at some distance ktc1 behind the tip of the 
elastically equivalent crack; k1 is an empirical coefficient (approximately 1), which 
depends on the shape of the softening stress-displacement diagrams (Planas and 
Elices, 1988a). From Eq. 12.1.5, f>c = 2v = 2(8ktc11 1C) 112Kcl E (for plane stress) in 
which K~ = EG1. Denoting kc = 32k111r (an empirical coefficient), one gets 
(Baiant, Gettu, and Kazemi, 1989) 

{) = (kcc/Gt) 
112 

c E' 
(12.2.17) 

It is now obvious that instead of characterizing nonlinear fracture properties 
by G

1 
and c1, one can equivalently characterize them by G1 and l>c, or by Kc and 

f>c. Several models of this type have been proposed, for example, Jenq and 
Shah's two-parameter model for concrete. We see that the parameters of these 



782 INELASDC, DAMAGE, AND FRACTURE THEORIES 

models can also be obtained solely on the basis of the measured effect of size on 
aN. 

The size effect law in Equation 12.2.11 has also been shown to describe well 
the existing test data on the size effect in various brittle failures of concrete 
structures, in particular; (1) the diagonal shear failure of reinforced concrete 
beams (unprestressed or prestressed, without or with stirrups), (2) the torsional 
failure of concrete beams, (3) the punching shear failure of reinforced concrete 
slabs, (4) the pull-out failure of steel bars embedded in concrete, and (5) the ring 
and beam failures of plain concrete pipes (Bafant and Kim, 1984; Bafant and 
Cao, 1986a, b; and 1987; Bafant and Prat, 1988b; Bafant and Sener, 1987, 1988; 
Bafant and Kazemi, 1988, 1989). Since, in contrast to fracture specimens, 
concrete structures have no notches, these applications rest on two additonal 
hypotheses, which are normally correct for concrete structures: (1) the failure 
(maximum load) does not occur at crack initiation but only after a relatively long 
crack or crack band has developed; and (2) the shape of this crack or crack band 
is about the same for structures of different sizes. 

It may also be noted that describing the size effect in (unnotched) structures 
by Equation 12.2.11 is in conflict with the classical Weibull statistical theory of 
size effect. However, this theory needs to be made nonlocal (cf. Sec. 13.10), and 
then this classical theory is found to apply only asymptotically to very small 
structures, while for large structures there is a transition to the LEFM size effect, 
similar to Equation 12.2.11 (Bafant and Xi, 1989). 

Problems 

12.2.1 Let ay = F( 6) =given descending function of opening 6 of the equivalent 
elastic crack shown in Figure 12.9b. Formulate the condition that the resultant 
of the equivalent elastic stresses ay over length rP (Fig. 12.9b) be equal to the 
resultant of stresses ay = F(6) over length 11 (Fig. 12.9b). (From this 
condition, one can estimate the ratio of 11 to E'G1/f;.) 

12.2.2 Rearrange Equation 12.2.11 algebraically so that Bf; and D0 can be 
obtained from aN data by linear regression (Bafant, 1984). 

12.3 CRACK STABILITY CRITERION AND R CURVE 

The propagation of a crack is a problem of equilibrium and stability governed by 
the same laws as those for inelastic structures in general. This section will discuss 
the criterion of stability of a crack and explain a simple approach to handle in an 
equivalent elastic manner the nonlinearity of fracture caused by the existence of a 
nonlinear zone at the crack tip. 

R Curve and Fracture Equilibrium Condition 

After a crack starts from a smooth surface or a notch, the size of the fracture 
process grows as the crack advances. The consequence is that the energy release 
rate R required for crack propagation (also called the crack resistance to 
propagation) increases and may be considered to be a function of the distance c 
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of the advance of the tip of the equivalent elastic crack (c =a- a0 where 
a= current crack length and a0 =initial crack length or notch length). If the 
function R(c) is known, the crack propagation may be approximately analyzed by 
methods of linear elastic fracture mechanics, in which constant G1 is replaced by 
the function R(c), called the R curve (Fig. 12.12a). 

To some extent, the function R(c) may be approximately considered to be a 
fixed material property, as proposed by Irwin (1960) and Krafft, Sullivan, and 
Boyle (1961). It has been found, however, that the shape of the R curve depends 
considerably on the shape of the specimen or structure. The R curve may be 
assumed to be unique only for a narrow range of specimen or structure 
geometries. Thus, it is necessary to determine the R curve for the given geometry 
prior to fracture analysis. A simple method to do that, utilizing the size effect law, 
has been proposed by Ba!ant, Kim, and Pfeiffer (1986) and refined by Ba.Zant 
and Kazemi (1988), and by Ba.Zant, Gettu, and Kazemi (1989). In the analysis 
that follows we will assume that the R curve for the given geometry is known. 

The energy that must be supplied to an elastic structure under isothermal 
conditions in order to produce a crack of length a is 

$ = f bR(c') de' + fi(a) c=a-a0 (12.3.1) 

where b = thickness of the structure and a0 = initial crack length or notch length. 
~ represents the Helmholtz free energy and n is the total potential energy of the 
structure due to formation of a crack of length c = a - a0 • An equlibrium state of 
fracture occurs when {J~ = 0, in which case neither energy needs to be supplied, 
nor energy is released if the crack length changes from a to a + lJa. Since 
lJ~=(a~/aa)lJa=O and (from Eq. 12.3.1) a~;aa=bR(c)+an;aa=O 

b) ~(C) 

' 

c 

P,A"-::::,.......::;--Gf 
P, 
P,- '-----'-==-....:.c_. 

Figure U.U Curves of crack resistance to crack propagation (R curves) and of energy 
release rate: (a) ~· > 0; (b) ~· <0; (c) R = const. = G1 ; (d) critical stress for structures of 
different sizes. (After Baiant and Cedolin, 1984.) 
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(where aruaa = an/ac), it follows that a growing crack is in equilibrium if 

<D(a) = R(c) 
ll'(a) 

with <D(a) =--
b 

c=a -ao (12.3.2) 

Here <D(a) =energy release rate of the structure when the crack length is a, 
ll'(a) = an(a)/aa. In the special case of linear elastic fracture mechanics we have 
R(c) = G1 =constant, and then Equation 12.3.2 becomes -an/aa = bG1, as 
already indicated in Equation 12.1.1, where <6= energy release rate of structure. 

If 0 < <6 < R( c), the crack can neither grow nor shorten, and so it is in 
equilibrium as a stationary crack. 

If <6 = 0, the crack can start closing near the tip, as the crack tip opening 
displacement {Jc is zero if <6 = 0 or K1 = 0 (see Eqs. 12.1.5 and 12.2.4); this case 
represents the equilibrium state of crack shortening ( & < 0) because {J~ = 
(a~/aa)tJa = -b<§{Ja = 0, that is, the energy required for crack closing is zero [as 
if R(c) =0]. 

Under isentropic conditions, the only the change needed to be made in the 
foregoing equations is to replace ~ with total energy of the structure, OU. 
However, the values of R(c) and G1 for isentropic conditions are different (larger) 
than for isothermal conditions. 

Fracture Stability Criterion and Critical State 

If the fracture equilibrium state is stable, the crack cannot propagate by itself, 
that is, without any change of loading (applied force or prescribed displacement). 
If the fracture equilibrium state is unstable, the crack will propagate by itself, 
without any change of applied load or boundary displacement. The fracture 
equilibrium state is stable if the second variation 62 fli is positive (same as in Sec. 
10.1). Since 62fli = !{a2fli/aa 2)&2 and ~~/aa2 = b(dR/dc) + ~n/aa2, we con
clude that the equilibrium state of a growing crack satisfying Equation 12.3.2 is 

Stable if 

Critical if 

Unstable if 

R'(c)- <§'(a)> 0 

R'(c)- <§'(a)= 0 

R'(c)- <§'(a)< 0 

[if <B=R(c)] 

where R'(c) = dR(c)/dc and <B'(a) = a<o/aa = -(1/b)a2n(a)/aa2• 

(12.3.3) 

If 0< <B<R(c), the crack is stable regardless of the sign of R'(c)- <§'(a) 
because it can neither extend nor shorten. 

If <6 = 0 (or K, = 0), we have an equilibrium state of crack shortening 
( tJa < 0). It is 

Stable if 

Critical if 

Unstable if 

<B'(a)<O 

<§'(a)= 0 

<B'(a)>O 

(if <6= 0) (12.3.4) 

If the equilibrium state of crack growth (or crack shortening) is unstable, the 
crack starts to propagate (or shorten) dynamically, and inertia forces must then 
be taken into account. 
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In the special case of linear elastic fracture mechanics, for which R(c) = G1 = 
constant, we have dR(c)/dc = 0. In that case, conditions 12.3.3 for stability of a 
growing crack become identical to conditions 12.3.4. 

For a structure with a single load P (or a system of loads with a single 
parameter P), TI is proportional to P2

• According to Equations 12.2.8, 
~a)= P;g(a)/Eb2D. For most structures and fracture specimens, g(a), and thus 
also ~a), are increasing functions. The plots of functions ~a) for a succession of 
increasing values P = P1 , P2 , P3 , ••• then look as shown by the dashed curve in 
Figure 12.12a (Bafant and Cedolin, 1984). According to Equation 12.3.2, the 
equilibrium states of crack propagation for various load values are the intersec
tions of these dashed curves with the R curve. According to Equations 12.3.3, 
these equilibrium states are stable if R'(c) >~'(a) at the intersection point (Fig. 
12.12a). As the load increases and the crack grows, the difference between the 
slopes R'(c) and ~'(a) gradually diminishes until, at a certain point, the slopes 
become equal (i.e. the curves become tangent); this is then the critical state, at 
which the load is maximum and the structure fails if the load is controlled. 
Beyond this point the crack extension is, under load control, unstable and occurs 
dynamically; the excess energy ~a)- R(c) goes into kinetic energy. The portion 
of the R curve before the critical state represents a stable crack growth (also 
called the "slow crack growth," to indicate the growth is not dynamic). 

In the case that g'(a)<O or ~'(a)<O (Fig. 12.12b), stability is guaranteed 
because R ' (c) > 0. This case occurs for the double cantilever fracture specimen 
with a relatively short crack and for a rectangular specimen with a small centric 
crack loaded on the crack (as well as for specimens with chevron notches). For 
most other geometries, though, g'(a) > 0 or ~'(a)> 0. 

In the case that R(c) = G1 = const. (Fig. 12.12c), stability under controlled 
load requires that ~'(a) <0. So there can be no stable crack growth in linear 
elastic fracture mechanics except when ~'(a) <0. Conversely, if a stable growth is 
observed and ~'(a)> 0, it means that the fracture law must be nonlinear. 

Comparing structures that are geometrically similar (with similar notches) but 
of different sizes, the curves of ~c) are of similar shape (Fig. 12.12d), while the 
R curve remains the same. Consequently, the larger the structure, the larger is 
the crack length cat the maximum load (critical state under load control). 

Determination of Geometry-Dependent R Curve from Size 
Effect Law 

The foregoing quasi-elastic analysis of equilibrium propagation and stability can 
be carried out only if a realistic R curve is known. The R curve can be determined 
experimentally, but that is quite demanding and fraught with possible am
biguities. The main trouble, however, is that the experimentally measured R 
curve is valid only for specimens of similar geometry. For different geometries, 
the R curves are rather different (Bafant and Cedolin, 1984; Bafant, Kim, and 
Pfeiffer, 1986). This fact narrows the applicability of R curves, despite the 
attractive simplicity of this approach. 

A different twist, however, has recently appeared, making the R curve 
approach much more versatile (Bafant and Kazemi, 1988). It has been found that 
the size effect law proposed by Bafant is much more broadly applicable than a 
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single R curve. One and the same size effect law, based on the same G1 and c1 
(Eq. 12.2.11) applies for specimens of very different geometries while their R 
curves are very different (see fig. 8 in Bafant, Kim, and Pfeiffer, 1986). So the 
point is how to determine the R curve from the size effect law. 

Consider now that the maximum load Pu has been measured for a set of 
geometrically similar specimens of different sizes D. For each size one has 
'D(a) = P;g(a)/Eb2D, where function g(a) is the same for all sizes D (Eqs. 
12.2.8). On each curve C§(a), there is normally one and only one point a= a 1 that 
represents the failure point (critical state). At this point, the 'D(a) curve must be 
tangent to the R curve. Consequently, the R curve is the envelope of the family of 
all the fracture equilibrium curves 'D(a) for different sizes, as shown in Figure 
12.13. 

To describe the envelope mathematically, we write the condition of equi
librium fracture propagation f(c, D)= G( a)- R(c) = 0 where a= a/ D = a0 + 
c/ D. If we slightly change size D to D + {JD but keep the geometric shape (that 
is, a0 = const.), failure (max P) occurs at a slightly different crack length c + &. 
Since f(c, D) must vanish both for D and D + lJD, we must have at(c, D)/ aD = 
0. Geometrically, the condition at(c, D)/ aD= 0 together with f(c, D)= 0 means 
that the R curve is the envelope of the family of fracture equilibrium curves 
f(c, D)= 0 for various D values (Bafant, Kim, and Pfeiffer, 1986). Because the 
R(c) curve is a size-independent property, aR(c)/aD =0. Therefore, the 
envelope condition is 

a'§( a)= 0 
aD 

(12.3.5) 

We have P;=(aNbD/cn)2 =(BfubD/cn)2/(1+D/D0) where (Bfu)2 = 
c~E'G1/Dog(a0) (according to Eq. 12.2.15). If we substitute this into 'D(a) = 
P;g(a)/E'b2D (Eqs. 12.2.8), we obtain for the critical states 

g(a) ( D ) 
'D(a) = Gf g(«o) D +Do (12.3.6) 

Substituting this into the condition for the envelope, a'D( a)/ aD = 0 (Eq. 12.3.5), 

... 
!!'. 
·~ c:. .. ~ 

~(C) 

c: 

Crack length 

Figure U.l3 R curve as an envelope of fracture equilibrium curves. (After Bazant, Kim, 
and Pfeiffer, 1986.) 
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differentiating and noting that aataD=aa0/aD+a(c/D)taD=-c/D2 = 
-(a - a 0)/ D (because a 0 = const. or aa0 / aD = 0 for geometrically similar 
structures), we get 

D +Do= Dog( a) 
(a- ao)g'(a) 

(12.3. 7) 

Furthermore, substituting this, along with the relations (a- a0)D = c and 
Do= Cf8'(a0)/g(a0) (from Eq. 12.2.16), into Equation 12.3.6, and setting 
'§(a)= R(c), we obtain the following result (Bafant and Kazemi, 1988, 1989): 

g
1

(a) (c) 
R(c) = Gr-1-(--) -

g a0 c1 
(12.3.8) 

Equations 12.3.8 and 12.3.7 define the R curve parametrically. To calculate 
the R curve, we must first obtain G1 and D0 from the size effect law (Eq. 12.2.11). 
Then we choose a series of a values. For each of them we evaluate D from 
Equation 12.3.7, get c =(a- a0)D, and calculate R from Equation 12.3.8. When 
c is specified, then R needs to be solved by Newton iterations. 

For different geometric shapes, functions g(a) are different, and so Equation 
12.3.8 gives different R curves for different geometries. The R curves obtained in 
this manner, as well as the load-deflection diagrams calculated from such R 
curves, have been found to be in good agreement with various data on concrete 
and rocks, as well as aluminum alloys. 

The foregoing derivation presumed the fracture process zone to remain 
attached to the tip of the notch or initial crack. This ceases to be true after 
passing the peak load; the fracture process zone becomes detached from the tip 
and subsequently its size remains approximately constant. Therefore it dissipates 
roughly the same amount of energy per unit crack extension. Consequently, the 
values of CfJ after the peak load must be kept constant and equal to the value that 
R(c) attained at the peak load (Bafant, Gettu, and Kazemi, 1989). 

Determination of the R curve from the size effect does not work in all 
circumstances. It obviously fails when g 1 

( a 0) = 0, and does not work when 
g 1 

( a0) < 0 or g ' (a) ::::; 0, because g 1 (a) > 0 (Do> 0) was implied in the derivation 
of Equation 12.3.8. It also fails when g 1(a0) or g 1(a) is too small, because of the 
scatter of test results. So this method must be limited to specimen geometries for 
which g 1 

( a0) > 0 and g 1 (a) > 0. This nevertheless comprises most practical 
situations. 

Crack Propagation Direction 

Another stability problem in crack propagation is that of propagation direction. 
Equilibrium modes of propagation can generally be found for many directions 
emanating from the tip of a crack or notch but only one will occur in reality. 
There exist several theories to decide the actual direction. 

One theory assumes that the crack propagates in the direction normal to the 
maximum principal stress. If the trajectory is smoothly curved, this implies the 
propagation to occur in such a direction that the crack tip field would be of mode 
I. Another theory, due to Sib (1974), assumes the crack to propagate in the 
direction of minimum strain energy density. A third theory (Wu, 1978) holds that 
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a)~ b)~ 

~~~ 
Figure 12.14 (a) Shear crack propagation in brittle materials; (b) crack kinking. 

the crack should propagate in the direction that maximizes the energy release rate 
of the structure or specimen. 

The last theory appears to be most reasonable since it in a certain sense 
maximizes the internally produced entropy increment at a deviation from the 
initial equilibrium state. The prediction of the last theory is often very close to 
that of the maximum principal stress theory. However, cracks in concrete have 
been observed to propagate under certain conditions in shear following the mode 
II direction (Bafant and Pfeiffer, 1987) or the mode III direction (Ba:tant, Prat, 
and Tabbara, 1989). The possibility of shear crack propagation seems to be 
typical of brittle materials with a coarse microstructure, in which the shear 
fracture propagates as a band of tensile (mode I) microcracks that are inclined 
with regard to the direction of propagation (Fig. 12.14a) and later coalesce into a 
continuous shear crack. 

Kinking of Cracks and Three-Dimensional Instability of Front Edge 

In some specimens with a symmetric (mode I) loading, the crack does not 
propagate straight, along the symmetry line, but deviates to the side. This 
phenomenon, called kinking, occurs, for example, in double cantilever specimens 
(Fig. 12.14b). Rice and Cotterel (1980) analyzed the kinking as a stability 
problem and showed that the straight-line propagation along the symmetry line is 
stable only if there is a normal compressive stress ax of sufficient magnitude in the 
propagation direction; sec also Sumi, Nemat-Nasser, and Keer (1985). 

Recently Rice also studied the condition when a propagating circular crack in 
an axisymmetric situation ceases to be circular. He showed that the crack front 
edge can develop a wavelike shape superimposed on the basic circular shape. 

Problems 

12.3.1 Supposing that R(c) = GJC/(k +c) where k =constant, calculate the 
critical crack length and the stability region for the cracks in Figure 12.5a-h 
(Eqs. 12.1.13-12.1.22). 

12.3.2 Do the same for R(c) = G1(1- e-ke). 

12.4 SNAPBACK INSTABILITY OF A CRACK AND 
LIGAMENT TEARING 

In the preceding section, we formulated the stability criterion in terms of crack 
length increments that cause deviations from the fracture equilibrium state. From 
Section 10.1 we recall, however, that in the case of a single load or displacement 
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(or load parameter, displacement parameter) stability can be determined from 
the load-displacement diagram P(u). With this aim in mind, we will now show 
how to calculate this diagram. Then we will apply the procedure to the terminal 
phase of the fracture process in which the distance between two crack tips or 
between a crack tip and a surface, called the ligament, is being reduced to zero. 

General Procedure for Load-Displacement Relation at 
Growing Crack 

Handbooks such as Tada, Paris, and Irwin (1985) or Murakami (1987) contain the 
solutions of many elastic crack problems. In most cases, though, they list only the 
stress intensity factor K1 (or K11 , K111) as a function of the crack length a and the 
load P, but the displacement is not given because it does not directly figure in 
many analytical methods of elastic analysis. Yet, if the entire structure is elastic, u 
can be calculated from K1(a) quite easily as follows (Bafant, 1987b). 

Consider a body with a single load P (or a single loading parameter P). 
Instead of the actual process of equilibrium crack growth at <§= R(c), the current 
state with load P, load-point displacement u, and crack length a may be imagined 
to be reached by two other loading processes at which mechanical equilibrium is 
maintained [but the condition of<§= R(c) is violated). 

Process I. Load Pis applied first on an uncracked specimen (Fig. 12.15a) and 
then, while P is kept constant, a crack grows from length 0 to length a (Fig. 
12.15b), which causes additional displacement u1. The energy release rate is 
<§= KVE' (Eq. 12.1.8) where K1 = Pk(a)/bVD for two-dimensional similarity 
(20, Eqs. 12.2.8) or K1 = Pk(a)D-312 for three-dimensional similarity (30, Eqs. 
12.2.9), and E' = E/(1- v2

) for plane strain, E' = E for plane stress and for 30. 
The energy dissipated by the crack tip is 

For 20: 

W. = b J <§D d = pzq,(a) 
t a E'b 

a) b) c) 

Loaded 
first 

' Brack 
cut 
first 

~' ~ 
Crack formed second 

Process I 
Loaded second 
Process 11 

(12.4.1a) 

d) 

Figure 12,15 (a, b, c) Two loading and cracking sequences leading to the same final state 
of an elastic solid; strain energy and complementary strain energy for (d) linear and (e) 
nonlinear elasticity. 



790 INELASTIC, DAMAGE, AND FRACTURE THEORIES 

For axisymmetric or other 3D situations: 

f p2~(a) 
"'f = p(a)D'DDda= E'D ~(a)= f' p(a')(k(a'W da'(12.4.1b) 

in which D da = da and p( a)D =perimeter of the crack front edge in three
dimensional situations. For example, p(a) = 2na for a circular crack of radius a 
in a bar of diameter D. 

The change of potential energy needed to produce the crack is 11~ = n + "'f 
where n = U - W = U - f P du1 = U - Pu1 = potential-energy change without 
regard to fracture, W =work of load, U =strain energy change (at constant 
temperature), and 11~ represents the Helmholtz free energy of the system (cf. 
Eq. 12.5.1). Since there is no external energy input other than load P, we have 
11~ = 0, from which 

(12.4.2) 

(alternatively we could have written this relation directly on the basis of energy 
conservation requirements). Now we notice that the expression U* = Pu1 - U 
coincides with the definition of the complementary strain energy (Fig. 12.15d). 
Moreover, for constant load (dP = 0), the complementary energy of the 
structure-load system is nj = U*- W* = U* because W* = f u1 dP = 0 (com
plementary work of the load at dP = 0). So we conclude that 

nj ="'I (12.4.3) 

The total complementary energy of the cracked structure is n• = n; + nj where 
II;= nri(P) =complementary strain energy of the structure if there is no crack. 

Process D. The crack of length a is imagined to be cut prior to loading (in an 
unstressed body, Fig. 12.15c), and then the load is increased from 0 to P while 
the crack length a is kept constant. Because the body is elastic, the principle of 
conservation of energy must apply, and so the complementary energy at the end 
of this process must be the same, that is, n• = II; + nj where Uri =change 
of complementary energy calculated for a body with no crack. 

Process II has the advantage that we may apply Castigliano's .theorem to 
calculate the displacements; u = an• I aP. Therefore, 

an* an* 
u(P) = a; + a; = Uo(P) + u,(P) (12.4.4) 

in which Uo(P) = anri(P)I ap =displacement calculated for a body with no crack 
(Fig. 12.15a), and u1(P) = anj(P) where u1(P) represents the additional 
load-point displacement due to crack, which must be equal to the displacement 
caused in process I by creating the entire crack at constant load P (Fig. 12.15b). 
The additivity of the displacement due to crack, stated by Equation 12.4.4, is a 
basic simple principle for calculating deformations of cracked elastic bodies. 

According to u1 = anj I aP, Equations 12.4.1 yields 

For 20: 
anj 2P u, = ap = E'b t/>(a) (12.4.5a) 
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For axisymmetric or other 3D situations: 

an; 2P 
u,= aP = E' D 1/J(a) 

791 

(12.4.5b) 

Now consider the actual loading process, in which the crack grows gradually 
as the load is increased. During the actual crack growth (in contrast to processes I 
and II) we must have ~= R(c) or K1 = Kf(c) satisfied all the time; Kf(c) = 
[ E' R (c)] 112 = critical stress intensity factor depending on the crack extension 
c =aD- a0 according to the R curve (which must be calculated in advance as we 
showed in Sec. 12.3). Consequently, from Equations 12.2.8 and 12.2.9, 

For 2D: 

[
E'b2

D ]
112 bVD R 

P = g(a) R(c) = k(a) K 1 (c) (12.4.6a) 

For axisymmetric or other 3D situations: 

[
E' D3 ]112 om 

P= g(a) R(c) = k(a) Kf(c) (12.4.6b) 

Analogous equations, in which Kf is replaced by K~ or K~., apply to mode II or 
mode III fracture. 

Equations 12.4.5a, band 12.4.6a, b describe the load-deflection curve P(u) at 
advancing crack in a parametric way, with a as the parameter. For any value of a, 
one may calculate P from Equations 12.4.6a, b and u1 from Equations 12.4.5a, b. 
Adding u0(P), one obtains u. 

A similar derivation can be made when the boundary conditions consist of a 
specified remote stress u .. instead of load P. 

Snapback Instability at Crack Coalescence in Two Dimensions 

To demonstrate stability analysis based on the foregoing procedure, consider a 
periodic array of collinear cracks of length 2a and center-to-center spacing D in 
an infinite space subjected at infinity to tensile stress u normal to the cracks 
(Ortiz, 1987; Horii, Hasegawa, and Nishino, 1987; Bafant, 1987b) (Fig. 12.16a). 
This problem is of interest for micromechanics of the fracture process zone in 
brittle heterogeneous materials, such as concrete or modern toughened ceramics. 
According to Equation 12.1.19 (Tada, Paris, and Irwin, 1985) we have 

.!_an;= 2~= 2K~ = 2a2 D tan Ha 
b aa E' E' D 

(12.4. 7) 

with E' = E/(1- v2
), for both crack tips combined. By integration, the strain 

energy released by symmetric crack formation is 

* 2a2 D
2
b I ( Ha) nf =- n cos-

HE' D 
(12.4.8) 

The relative displacement due to cracks, measured between two planes remote 
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(J b) (J c) (J d) 
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D -Unstable 

+ -
\ Ce 11 

Figure U.16 (a) Array of collinear cracks, (b, c, d) determination of snapback instability 
and graphical construction of stress-displacement diagram. 

from the crack plane, is (by Castigliano's theorem) 

UJ = an; = _1_ an; = - 4uD In (cos na) 
ap bD au nE' D 

(12.4.9) 

where P = uDb = force per crack. Although linear elastic fracture mechanics does 
not apply to macroscopic fracture of concrete or toughened ceramics, it may 
probably be assumed to apply to microcracks, and so we may use R(c) = G1 = 
const. Setting '!J= R(c), we also have 

q- I ( 
E'G )'n 

D tan (na/D) 
(12.4.10) 

Equations 12.4.9 and 12.4.10 define the relation u(u1) in a parametric way, 
with a as a parameter. We may assume the R curve in the form R(a) = 
G1[1- (1- a/cmt] for a :5 em and R(a) = G1 for a ;;;a. em where G1, em, and n are 
material constants and em has the dimension of length (Bafant, Kim, and Pfeiffer, 
1986). Then, if we choose various values of a, we can calculate the corresponding 
values of u(a) and u1(a). The resulting curve u(u1) is plotted in Figure 12.16b 
(for n = 2.8, em= 0.1 in.). An interesting property is that, after a maximum 
displacement u1, this curve exhibits snapback. 

The stress a, in reality, is not applied or controlled at infinity but at some 
remote planes at distance L, parallel to the cracks. To judge stability one needs 
the total displacement u( a)= u1( a)+ u0( a) where u0 ( a)= C.,u, C.,= L/ E' = 
relative displacements between these planes if no cracks existed. Based on this 
relation, one may construct the u( a) diagram graphically by adding the abscissas 
for the same value of a as shown in Figure 12.16b, c, d. Clearly, the resulting 
diagram u(u) (Fig. 12.16<1) also exhibits snapback. 

Since the diagram u(u) is descending, the states of growing cracks cannot be 
stable under load control. They can be stable only if displacement u is controlled, 
but never after the snapback point. The stability condition is du/dP < 0 (see Sec. 
10.1). The critical state is obtained for du/dP = 0, which means drawing vertical 
tangents as shown in Figure 12.16<1. Stability (under displacement control) exists 
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only between the tangent points. Since u = u1 + Cea, one finds that the state of 
growing cracks under displacement control is 

Stable if 
du1 -<-C da e 

Critical if du1= -c 
da e 

(12.4.11) 

Unstable if du1> -c 
da e 

This stability condition is illustrated in Figure 12.16b where dashed straight lines 
ofslope -1/ Ct! are drawn as tangents to the calculated ut( a) diagram. There are 
two tangent points A and B representing the critical states. Between these critical 
states (segment AB) the growing crack is stable, and the remaining points on the 
u1( a) curve (branches DA and BE) are unstable. The shorter length L is, the 
steeper is the slope -1/ Ce, which causes the stability region to increase. 
However, no matter how steep this slope is, the critical state cannot be pushed 
beyond point C with a vertical tangent. 

Snapback Instability at Tearing of Circular Ugament 

For micromechanics of the fracture process zone in concrete or toughened 
ceramics, a more realistic model for the terminal process of ligament tearing is 
shrinking circular ligaments of spacing D, connecting two elastic half-spaces in 
three dimensions. As stated in Equation 12.1.22, K1 = !P(.7rr3

)-
112 (Tada, Paris, 

and Irwin, 1985) where r =ligament radius and P =transverse force transmitted 
by one ligament. From this, -an; /or= an;taa = 2.1rr~= 21rrKUE' = P2/2E'r2 

where E' = E/(1- v2
). By integration, 

n; = p2 (!-~) 
2£' r D 

D 
r=--a 

2 
(12.4.12) 

where K =integration constant. By Castigliano's second theorem, 

u, = an; = !_ (! _ ") 
oP E' r D 

(12.4.13) 

Also, setting ~= R(c) = G1 we obtain r = (P2 /4.7rE'G1 )
113

, and Equation 12.4.13 
then becomes 

(12.4.14) 

Constant K can be determined from some known state at finite r. Requiring 
Equation 12.4.14 to pass through the snapback point obtained from a more 
realistic model, Bafant (1987b) found K = 2.299. 

The plot of Equation 12.4.14 is shown in Figure 12.17b as the lower dashed 
curve. Obviously, Equation 12.4.14 represents snapback, and we could repeat a 
similar discussion as before. Figure 12.17a, b also exhibits the solutions obtained 
by Bafant (1987b) for the two idealized three-dimensional situations shown, 
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Figure 12.17 Stress-displacement diagrams for (a) circular (penny-shaped) crack, (b) 
circular ligament, (c) three-point bent beam. (After Batant, 1987b.) 

which model the evolution of fracture in the process zone from small circular 
cracks to small circular ligaments. 

With regard to the stress-displacement (or stress-strain) relation for the 
fracture process zone, the foregoing results suggest that it should be considered to 
possess a certain maximum displacement (or strain). Conceivably, though, 
various other inelastic phenomena could spoil this picture; see the discussion in 
Bafant (1987b). 

General Condition for Snapback at Ugament Tearing 

Does the snapback always take place in the terminal phase of fracture? It does 
not. For example, using Srawley's expression for Kh Bafant (1987b) used the 
technique we just demonstrated to calculate the P( u1) diagram for a three-point 
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bend fracture specimen; see Figure 12.17c; it exhibits no snapback instability. So 
what is the property that causes snapback? 

Let us consider the ligament size to be infinitely small compared to any 
cross-section dimension of the structure. We assume the subsequent ligament 
shapes to remain similar as the ligament shrinks. Let P and M be the internal 
force of any direction and the internal moment about any axis transmitted across 
the ligament {Fig. 12.18). {The special cases of P include a normal force or a shear 
force, and of M a bending moment or a twisting moment.) According to 
Saint-Venant's principle, P or M can produce significant stresses and significant 
strain energy density only in a three-dimensional region whose size (L1 and L 2 in 
Fig. 12.18) is of the same order of magnitude as the ligament size 2r. The strain 
energy produced in this region by P or M is 

(12.4.15) 

where A = k 5r2 =cross-section area of the ligament, I = k 6r4 = moment of inertia 
of the cross section of the ligament, and k 1, k 2 , ••• , k6 =constants. The remote 
displacement u1 and rotation 8 associated with P and M, respectively, are 

an~ P 
u ------
!- oP - Ek

3
r (12.4.16) 

The energy release rates due to P and M per unit circumference of the ligament 
cross section are 

1 an~ P2 

C{jl = ----= ----:: 
k7r or 2Ek3k7r 3 

1 an; 3M2 

~= ----= 5 (12.4.17) 
k 8r or 2Ek4k 8r 

Setting Cfi1 = G1 or ~ = G1, we have 

For P: r - ( p
2 

) 

113 

- 2Ek3k 7 G1 

ForM: ( 3M2 )"5 
r= 2Ek

4
k

8
G

1 

(12.4.18) 

Substituting this into Equations 12.4.16 we get, for very small ligament size r, the 

Figure 12.18 Tearing of ligament joining two half-spaces or half-planes. (After Batant, 
1987b.) 
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asymptotic approximations: 

For P: 

ForM: 

v =ciPI'3 

8 = c2M-115 
(12.4.19) 

where c~> c2 =constants. Note that Equation 12.4.19 for P agrees with the 
asymptotic form of Equation 12.4.14, which is uj = 4HG1PI E'2 for P-O. 

From Equations 12.4.19 we conclude that if the ligament is loaded by a force, 
the curve uJ<P) must return to the origin (u1 = P = 0) as P- 0 (r- 0). This 
implies that there must be snapback at some finite P value. 

On the other hand, if the ligament is loaded by a moment, the curve 8(M) 
tends to infinity as M- 0 (r- 0). So there can be no snapback. 

For two-dimensional problems a similar asymptotic analysis is possible, but 
only for the moment loading. We have I = k6br3 where b = thickness of the body, 
and instead of Equations 12.4.15 to 12.4.17 we obtain 

M2 M2 
IIi = 2EI k2r = 2Ek

4
br2 

8 =arr; =~ 
aM Ek4br2 

ani M 2 

~ = - b ar = Ek
4
b2r3 

(12.4.20) 

(12.4.21) 

(12.4.22) 

Setting~= G1, we haver= (M2/G1Ek4b2
)

113
, and substituting this into Equation 

12.4.21 we get, for small r, 
(12.4.23) 

So for moment loading in two dimensions there cannot be any snapback either. 
For two-dimensional problems in which the ligament is loaded by a force, the 

foregoing approach fails because, as it turns out, the curve u1(P) is not of a power 
type as P- 0. For a sufficiently short ligament, the stress field must be the same 
as that near a ligament joining two elastic half-planes. For that problem it is 
known that K 1 = (P/b)(Hr)- 112 where P =normal (centric) force and r =half
length of the ligament (Fig. 12.18). Therefore - arrj I ar = b~ = bK:E' = 
P2/1rE'br, and by integration the total strain energy release is 

p2 r 
rrj = ---ln

HE'b r0 

where r0 = integration constant. Furthermore, 

an* 2P r 
u1 =~=---1n-ap HE'b ro 

(11.4.24) 

(12.4.25) 

Setting K1 = K1c =critical value of K., we also get r = P2/Hb 2Kic, and substitution 
into Equation 12.4.25 yields 

(12.4.26) 
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The curve u1(P) described by this equation is not of a power type, which explains 
why the type of approach used in Equations 12.4.15 to 12.4.23 would fail. 

The curve u1(P) given by Equation 12.4.26 obviously exhibits a snapback 
since, for P- 0, lim u1 = 0. The critical state is characterized by the condition 
a"J/ aP = 0. u1 yields for the snapback instability the critical load Per = 
K1 b~/7.389; max u1 follows from Equation 12.4.26. 

Note: Coalescence of adjacent circular voids in a plastic material is a related 
stability problem. It is of interest for micromechanics of fracture propagation in 
metals. 

Alternative Calculation of Displacement from Compliance Variation 

Instead of using Castigliano's theorem and complementary energy, we can 
alternatively calculate the load-point displacement u by integrating the changes of 
compliance C. We again consider a process in which load Pis applied first on an 
uncracked structure and then, while P is kept constant, the crack grows from 
length 0 to length a (see process I in Fig. 12.15a, b). According to Equation 
12.1.1, the energy release rate during this process is, for 2D, <B= (i1ll*/i1a)/b = 
b-1d(!C(a)P2)/da = (P2/2b) dC(a)/da (Eq. 12.1.12), and for axisymmetric or 
other 3D situations<§= (i1ll*/i1a)/p(a)D. Substituting<§= KVE', we obtain 

For 2D: 

dC(a) 2bKf(a) 2[k(aW 
--= = 

da P2E' bDE' 
(12.4.27a) 

For axisymmetric or other 3D situations: 

dC(a) 2p(a)DK~(a) 2p(a)[k(aW 
~= pzE' DzE' 

(12.4.27b) 

where a= a/ D. The initial value of C for a = 0 is the compliance C0 of the same 
structure with no crack. Thus, setting da = D da and integrating Equations 
12.4.1a, bat P = const. from C(O) = C0 to C(a), we obtain 

C(a) = C0 + C1(a) (12.4.28) 
where 

For 2D: 
c ( ) = 24>(«) 

I a bE' (12.4.29a) 

For axisymmetric or other 3D situations: 

C ( ) = 21JI(a) 
I a DE' 1JI(a) = f' p(a')[k(a'W da' (12.4.29b) 

C1(a) represents the additional compliance due to the crack. Equation 12.4.28 
proves that the compliance of the uncracked structure and the compliance due to 
the crack are additive. According to Equation 12.4.28, the load-point displace
ment is u(P) = u0(P) + u1(P) where u(P) = C0 P and u1(P) = C1(a)P. Substituting 
Equations 12.4.29a, b, we get for u1 the same expression as in Equations 
12.4.5a, b. 
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Problems 

U.4.1 Derive Equation 12.4.25 as the asymptotic approximation of Equations 
12.4.9 and 12.4.10 for a very small ligament, such that 2r/ D « 1, 2r = D- 2a. 
{Note that cos (na/ D)= sin (!n(1- 2a/ D)]= 1fT/ D.} 

U.4.2 Using the same procedure as that in Equations 12.4.24 to 12.4.26, 
calculate u,(P) for a tensioned infinite planar strip with a centric normal 
crack, for which K1 is given by Equation 12.1.17. Find u1,max for snapback 
instability. 

U.4.3 Derive the asymptotic u1(P) associated with Equation 12.1.22 for r-o 
(tensioned circular bar with a circular crack). 

U.4.4 Analyze possible snapback instability in a very slender double cantilever 
specimen, using Equation 12.1.26. 

U.4.S Referring to Section 10.1, formulate the second variation of the Helmholtz 
free energy, lJ2~, for the crack problem described by Equations 12.4.24 to 
12.4.26, and then discuss stability directly on the basis of lJ2 ~-

U.4.6 Generalize Equations 12.4.8 to 12.4.10 assuming that R(c) is not a 
constant but R(c) = Gtcl(k +c), c =a- a0 • Discuss the effect of variable 
R(c) on stability. 

U.4.7 Generalize Equations 12.4.1 to 12.4.4 to a nonlinear elastic structure, for 
which the definition of complementary energy is illustrated in Figure 12.15e. 

U.4.8 All the problems in this section can alternatively be solved on the basis of 
Equation 12.4.28, without any use of Castigliano's theorem. Do that. 

12.5 STABLE STATES AND STABLE PATHS OF 
INTERACTING CRACKS 

So far we have investigated only the stability of a structure with a single (active) 
crack. Various applications, however, call for the analysis of a structure with a 
system of interacting cracks. This is a more intricate problem. The equilibrium 
path of a crack system can exhibit bifurcations of various types. There exist 
bifurcations in which progress along each branch requires an increase of load, 
similar to the behavior of Shanley's column. 

Conditions of Equilibrium and Stability in Terms of Crack Length 

Consider a two-dimensional brittle elastic structure (Fig. 12.19a) that contains a 
crack system with N crack tips and crack lengths a; (i = 1, 2, ... , N). The cracks 
propagate in mode I along known paths (so that the question of propagation 
direction need not be considered). Stability may be analyzed on the basis of the 
energy ~ that has to be supplied to the body in order to produce the cracks; 

~=ll(a,, ... ,aN;A.)+~J R;(a;)da; (12.5.1) 

in which A is a loading parameter, for example, a parameter controlling the 
applied forces, or enforced boundary displacements, or temperature distribution; 
R;(a;) = R(c;) (c; =a;- ao;) is the energy required for the growth of crack a; (i.e., 
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Figure U.19 System of parallel cracks in a half-space. (After Bazant, Ohtsubo, and Aoh, 
1979.) 

the R curve, treated as a given property), and n = U- W =potential energy of 
the structure (U =strain energy and W =work of applied loads). In the special 
case of fixed boundary displacements, W = 0 and n = U. We assume the 
conditions to be isothermal, and then, from the thermodynamic viewpoint, ~ 
represents the Helmholtz free energy of the structure (Sec. 10.1) and the values 
of R; must correspond to isothermal fracture. (If the conditions are isentropic, all 
our analysis to come is the same except that ~ needs to be replaced by the total 
energy, OU, and the R; values for adiabatic conditions need to be used.) In the 
special case of linear elastic fracture mechanics, R;(a;) = G1 = const. 

Consider now that the crack tips numbered i = 1, ... , m advance ({)a;> 0), 
the crack tips numbered i = m + 1, ... , n close near the tip and retreat ({)a; < 0), 
and the crack tips numbered n + 1, ... , N remain stationary ({)a;= 0); obviously 
0 :::; m :::; n ::s N. The special case m = n means that no crack closes, and n = N 
means that no crack remains immobile. The work, ll.~, that would have to be 
supplied in order to change the crack lengths by {)a; at constant A. (no change of 
loading) may be expanded as ll.~ = {)~ + /) 2~ + · · · where (for a body of unit 
thickness) 

(12.5.2) 

(i,j=1, ... ,n) (12.5.3) 

in which 

~n aR; 
~-- = ~-- = --+- {).-H({)a.) i, ,. = 1, ... , n. (12.5.4) 

,IJ ,JI Oa· Oa· Oa· IJ 
1 

I I I 

{) .. =Kronecker delta and H = Heaviside function, that is, H(&;) = 1 if &; > 0 
a~d 0 if {)a; < 0. In the case of a homogeneous body obeying linear elastic fracture 
mechanics, CJR;/ CJa; = 0 and ~ij = n,ij· (Note that in the above all the partial 
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derivatives with respect to a; and ai are calculated at constant A, and so they 
correspond in general to deviations from equilibrium.) 

For the cracks to change their lengths in an equilibrium manner, {)~ must 
vanish for any 6a;. One must distinguish whether a crack extends ( 6a; > 0) or 
closes (6a;<O). According to Equation 12.5.2, {)~=0 occurs if and only if 

For 6a; >0: 

For 6a; =0: 

For 6a; <0: 

an 
--=R-

aa; I 

an 
o~--~R; 

aa; 

an 
--=0 

aa; 

(12.5.5) 

This includes the Griffith criterion, and -ant aa; is the energy release rate. An 
equivalent form of this equation can be given in terms of the stress intensity 
factors K;, defined by K~ = -(antaa;)E' where E' = Et(1- v2

) for plane strain 
and E' = E for plane stress; 

For 6a; >0: 

For 6a; =0: 

For 6a; <0: 

K;=Kc, 

O~K;~Kc, 

K;=O 

(12.5.6) 

in which Kc, = (R;E') 112 =critical value of K; (fracture toughness). From the 
foregoing expression for K~ and the symmetry property n.;i = n.ii for growing 
cracks it follows that 

aK aK. 
K·-1 =K.-1 

1 aaj I aa; 
(12.5. 7) 

An equilibrium state of fracture is stable if and only if no a; can change 
without a change in the loading (A= const.). Stability is assured if the work ll.~ 
done on any admissible 6a; is positive, for 6a; cannot occur if this work is not 
done on the body. On the other hand, if /iff< 0 for some 6a;, energy is released, 
and when a release of energy is possible, 6a; will occur spontaneously, /iff being 
transformed into kinetic energy and ultimately dissipated as heat (which follows 
from the second law of thermodynamics). 

An unstable situation obviously arises when -ant aa; > R; or K; > Kc, for 
6a; > 0. Indeed, {)~ < 0 for 6a; > 0, and so K; > Kc, cannot be a stable 
equilibrium state. Similarly, the case -ant aa; < 0 or K; < 0 is also unstable. 
Therefore, stability requires that 0 ~ -ant aa; ~ R; or 0 ~ K; ~ Kc, at all times. 
Combining this with Equations 12.5.6, we see that only the following crack length 
variations are admissible: 

For 0 < K; < Kc,: 6a; = 0 (12.5.8) 

For K;=O: 
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Now stability of an equlibrium state of growing cracks ( lJ~ = 0) will be ensured if 
(Bafant and Ohtsubo, 1977) 

for any admissible &; (12.5.9) 

(i.e., if lJ2~is positive definite). Instability occurs if 62~<0 for some admissible 
{)a;. The critical state, for which {)2~ = 0 for some admissible {)a;, can be stable 
or unstable depending on the higher variations of ~-

These conditions are the same as those for any structure (Sec. 10.1). But the 
variations are taken here in the crack lengths rather than displacements q;, and 
an important restriction on the admissibility of {)a; must be imposed here. If 
matrix f/i.;i is positive definite, stability is obviously ensured. But stability can exist 
even if matrix ~ii is not positive definite provided that negative 62~ occurs only 
for inadmissible &;. 

Stability of Parallel Cooling or Shrinkage Cracks 

Consider the two-dimensional problem of a homogeneous isotropic elastic 
half-space in which a system of parallel equidistant cracks normal to the surface is 
produced by cooling or drying shrinkage. This problem arises in many applica
tions. It was studied in detail with respect to a proposed hot-dry-rock geothermal 
energy scheme; see Bafant and Ohtsubo (1977), Bafant, Ohtsubo, and Aoh 
(1979), Bafant and Wahab (1979), Nemat-Nasser, Keer, and Parihar (1978), 
Bafant (1976a), Keer, Nemat-Nasser, and Oranratnachai (1979), Sumi, Nemat
Nasser, and Keer (1980) (and also, with respect to crack width in beams, see 
Bafant and Wahab, 1980). In this scheme, a large primary crack is created by 
forcing water under high pressure into a bore several kilometers deep (hydraulic 
fracturing). Heat is extracted from the rock by circulating water through the 
crack. However, this cools the rock adjacent to the crack wall, and so the scheme 
can be viable only if further cracks are produced by the cooling water. Another 
application is the shrinkage cracking of concrete (Ba.Zant and Raftshol, 1982), as 
well as shrinkage cracks in dried lake beds or in lava flows, which are of interest 
to geologists. 

Let the half-space be initially at uniform temperature T = To and at time t = 0 
the temperature of the surface x = 0 is suddenly changed to 1j. The temperature 
field is assumed to have the form T - To=/( s)(1i - To) where ; = VJx I ..t, 
x =coordinate normal to the surface, and ..t = ..t(t) = penetration depth of cooling. 
If all the heat is transferred by conduction in the solid, the solution is well known 
(Carslaw and Jaeger, 1959) and is given by f(s) = erfc s = 2 f~ exp ( -TJ2

) dTJ/Vi:, 
..t = yUCt, c =heat diffusivity of the material. The cooling profiles T(x, t)- To 
advance into the half-space as shown in Figure 12.19b. T approaches To 
asymptotically for t~ oo. The depth ..t is defined as the depth of an equivalent 
parabolic profile that gives the same heat flux at the surface. 

Because Tis constant along lines parallel to the surface, one may expect a 
possible solution to be a system of equidistant equally long cracks. However, 
there also exist solutions with unequal crack lengths, for example, with the crack 
lengths alternating from a 1 to a2 (Fig. 12.19). Thus we suspect that in the space 
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Figure 12.20 System of equidistant parallel cooling or shrinkage cracks in a half-plane, 
exhibiting path bifurcation in which every other crack gets arrested. (After Baiant and 
Tabbara, 1989.) 

(a 1, a2), the path representing the solution bifurcates (Fig. 12.20). The bifurca
tion may or may not be the limit of stable states. 

First, let us examine bifurcation at the limit of stable states for an initial state 
in which all the cracks are equally long (a2 = a 1) and critical (K; = Kc) 
(Bafant and Ohtsubo, 1977). One simple possibility is that only every other crack 
extends by & 2 while the intermediate cracks remain stationary (t5a1 = 0). (Fig. 
12.20a). Then we have m = 1, n = N = 2, and det ~;i = ~22 = ffl~l aa~, t52~ = 
!~22(t5a2)2. Assuming the material to obey linear elastic fracture mechanics, we 
have ~22 = 0,22 = U,22 = -aGtaa2 where G = -autaa2 = K~/E' =energy re
lease rate for a body of unit thickness. According to Equation 12.5.9, the state is 

Stable if 
aK2 

0 -< 
aa2 

Critical if aK2= 0 
aa2 

(12.5.10) 

Unstable if 
aK2 

0 --> 
aa2 

The instability mode at critical state consists of a sudden advance of every 
other crack by t5a2 > 0, occurring at t5a 1 = 0 and at constant A., that is, at no 
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change in temperature distribution (Fig. 12.20b). This represents a state of 
neutral equilibrium. Finite element calculations indicate that K 1 decreases during 
the instability, that is, the stationary cracks cease to be critical, while, of course, 
K2 remains equal to Kc. 

The bifurcation with stability loss and the equilibrium postbifurcation path 
calculated by finite elements are plotted in Figure 12.20a, b, c, in which s =crack 
spacing. The calculation has been made (by Bafant an Ohtsubo, 1977, and 
Bafant, Ohtsubo, and Aoh, 1979) for 7;,- 7; = l00°C and the typical properties 
of Westerly granite: thermal expansion coefficient a= 8 x 10-6 rC, E = 
37,600 MPa, v = 0.305, c = 1.08 x 10-6 m2/s, and G1 = 208 J/m2

• (Similar results 
have been presented by Nemat-Nasser, Keer, and Parihar, 1978.) The instability 
is found to occur when a2/s = 1.8, A/s =2.5. The plots of K 2 versus a2/s from 
which the condition aK2 / aa2 = 0 is identified are shown in Figure 12.20d. After 
bifurcation, cracks a2 grow as the cooling front advances (K2 = K), while cracks 
a 1 are arrested (a 1 = const.) and their K 1 decreases (Fig. 12.20c). Eventually (at 
A/s = 3.3), K 1 becomes zero. As the cooling front advances further, cracks a 1 are 
closing. The solution now becomes approximately equivalent to that at the 
start-a system of equally long cracks of length a 2 , but the spacing is now 
doubled to 2s (Fig. 12.19). When a2/2s = 1.8 or a2/s = 3.6, the same type of 
bifurcation repeats itself. After that every other remaining opened crack is again 
arrested and eventually closes, thus causing the spacing of the open cracks to 
double again, etc. 

The practical significance of this behavior is that the crack opening l>c at the 
crack mouth is approximately {>c = e0s0 where £

0 =a( I;,- T1) and s0 = s, 
2s, 4s, 8s, ... =spacing of the opened cracks. So the crack width increases with 
the advance of cooling (a common experience in observing, e.g. a drying lake 
bed). For the aforementioned geothermal energy system this means that, due to 
increasing crack width, more cooling water can circulate through these widely 
spaced new cracks-a desirable behavior. However, circulation of water through 
the newly formed cracks alters the cooling profile, making it steeper at the 
cooling front. It appears that the profile of temperature has a very large effect on 
the occurrence of bifurcation instability (Fig. 12.21). The steeper the profile at 
the front, the larger the ratio A/s at which the bifurcation occurs. If the profiie is 
sufficiently steep at the front, bifurcation never occurs, and the parallel, equally 
long cracks can propagate indefinitely, at constant spacing, without any instability 
(see Fig. 12.21). For details, see Bafant and Wahab, 1979. 

A question remains: Can an instability mode at constant A. (i.e., at neutral 
equilibrium) occur with both l>a 1 and l>a2 being nonzero? It cannot. In that case 
one has m = n = N = 2, and a sufficient condition of stability is the positive 
definiteness of the matrix ~.ii = n.ii = U.;i = iYU I aa; aai, which requires that 

U.zz = U.u > 0 and l
u.,, 
U.21 

U,,zl >O 
v.zz 

(12.5.11) 

Now, finite element calculations indicate that, for a certain range of G1 values, 
the determinant condition is violated before the condition aKzl aaz < 0 that we 
examined before. Does it mean that an instability mode associated with the 
determinant condition occurs earlier? It does not. 
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A bifurcation of the basic equilibrium path a 1 = a 2 at neutral equilibrium 
would occur if (j2 fii = !E;(EiU.;il>ai)l>a; = 0 for some admissible l>a;. This condi
tion is satisfied if "l:.iU.;il>ai = 0 or 

U.ul>at + U.t2l>a2 = 0 

u.2l(jal + u.22&2 = 0 
(12.5.12) 

in which U. 12 = U,21 . Since U, 11 = U,22 for a1 = a2, the condition of vanishing 
determinant is U~22 - U~12 = 0 or U.22 = ±U, 12 = ±U.21. Thus Equations 12.5.12 
indicate that 

l>at 
-=±1 
l>a2 

(12.5.13) 

at the point of bifurcation with neutral equilibrium. The plus sign refers to the 
main equilibrium path of the crack system ( l>a 1 = l>a2). The minus sign refers to 
the secondary path and indicates that the cracks a1 would have to shorten 
( l>a 1 < 0) for this type of instability to occur. But shortening of these cracks would 
violate Equations 12.5.8 since we have assumed that K2 = K1 = Kc. So we must 
conclude that an instability mode at constant ,\ in which both l>a 1 and l>a2 are 
nonzero is impossible (Bafant and Ohtsubo, 1977; Nemat-Nasser, Keer, and 
Parihar, 1978). 

Stable Path and Bifurc:ation at Advancing Cooling Front 

The instability mode corresponding to aK2/ aa2 = 0 occurs at constant loading 
parameter. With regard to our previous analysis of plastic buckling (Sec. 10.3), 
this is analogous to the instability at the reduced modulus load, which happens at 
constant load. Is there a situation analogous to that at Shanley's tangent modulus 
load? The answer is yes. 
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Along the equilibrium path of a crack system, the condition ~; = 0 (equi
valent to K; = K;c) must be satisfied at every point, and~;= U,; + G1ifweassume 
K;c to be constant. Therefore d~;/d). = 0 or dU,;Id). = 0 where U = 
U(a1, ••• , aN; l); ). is a loading parameter (which may represent a 
boundary displacement, an applied force, the depth of cooling front, etc.). Since 
a; are functions of loading parameter )., this means that E1 U,;1af + U,'; = 0 
where the primes denote partial derivatives with respect to )., At a bifurcation 
point, this equation must hold for both postbifurcation branches, that is, 

"" u ·-a~(l) + u'. = 0 L.J •'I I •1 

i (12.5.14) 

"" u ·-a~<2> + u'. = 0 LJ ·'I I ·' 
i 

where superscript (1) labels the main path (c5a1 = c5a2 ) and superscript (2) the 
secondary path ( c5a1 #= c5a2). Subtraction of the equations now yields 

L U,;1at = 0 where at = a;<2>- a;<1> (12.5.15) 
i=1 

Since this is a system of homogeneous linear algebraic equations for at, it follows 
that bifurcation (i.e., the case a;<2> #=af0 >) occurs if and only if 

detU--=0 ·'I (12.5.16) 

This agrees with the second condition in Equations 12.5.11. 
Let us now return to the system of parallel cooling cracks in a half-space. As 

already mentioned, finite element analysis indicates that the condition of 
vanishing det U,;1 may occur before the first instability point ( aK2/ aa2 = 0). 
Therefore, bifurcation may occur in a stable manner during an advance of the 
cooling front, without any instability. As we already showed (Eq. 12.5.13), the 
eigenvector at associated with det U,;1 = 0 is such that ai =-a;, that is, 
a~<2>- a~<t> = -(a~<2>- a~< 1 >). Because for the main path a~<t> = a~< 1 >, we get 
a~<2> + a~<2> = 2a~(J). For the main path we have a~<t> = a~U> = a'<t> > 0. For the 
secondary path with a~<2> > 0 it is necessary that a~<2> = 0; the reason is that if both 
a1 and a2 propagate we must have K 1 = K 2 = Kc, but the stress intensity factors 
cannot be equal if a1 #= a2 while a~<2> #= 0 would lead to a1 #= a2 • Therefore, the first 
bifurcation is characterized by a~<2> = 2a~<t> or 

1 aa~2) aa~J) aap> 
---=--=--
2 al al al 

(12.5.17) 

The behavior at first and second bifurcation states and the corresponding 
postbifurcation branches are schematically drawn in Figure 12.20a, b, c. 

The foregoing analysis shows that bifurcation is possible but does not show 
whether the secondary path must actually be followed by the crack system. The 
first bifurcation path can be decided from the condition that c52~ or c52 U must be 
minimized for the actual (stable) path. It turns out that bifurcation must occur, 
that is, every other crack must get arrested, as soon as the condition det ~;1 > 0 
(or det U,;1>0, Eqs. 12.5.11) becomes violated. Yet, as shown below Equations 
12.5.11, the states on the main path at and after this point are stable. In fact, both 
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postbifurcation branches consist of stable states (and so analysis of stability of 
equilibrium cannot decide which branch must be followed). The situation is 
analogous to Shanley bifurcation at the tangent modulus load of a column (Sec. 
10.3). 

By dimensional analysis one may conclude that the stability behavior of the 
parallel crack system can depend only on the nondimensional spacing 

sE' sE'2 

s =-= -2 (12.5.18) 
G, Kc 

Numerical results of Bafant and Tabbara (1989) show that, for any s, the 
bifurcation at 6A. > 0 (that is, det U,;i = 0) is reached before the bifurcation at 
6A. = 0 (that is, aK2/ aa2 = 0). 

It may be noted that, in the foregoing analysis, the spacing of the parallel 
cracks was left indeterminate. We will discuss its determination in Section 12.6. 

The critical state of stability limit (neutral equilibrium, Eq. 12.5.10) was, for a 
system of parallel cooling cracks, found by Bafant (1976a) and Bafant and 
Ohtsubo (1977), and analyzed in detail by Bafant, Ohtsubo, and Aoh (1979); 
Bafant and Wahab (1979, 1980); Nemat-Nasser, Keer, and Parihar (1978); Keer, 
Nemat-Nasser, and Oranratnachai (1979); Sumi, Nemat-Nasser, and Keer 
(1980); and Bafant and Tabbara (1989). The fact that a system of parallel cooling 
cracks exhibits a critical state with det U.;i = 0 (Eq. 12.5.16) and that this critical 
state precedes the stability limit was noted by Bafant (1976a) on the basis of finite 
element results of Ohtsubo. The paths at and near this critical state were 
determined by Sumi, Nemat-Nasser, and Keer (1980), and more generally by 
Bafant and Tabbara (1989). 

Three-Dimensional Pattern of Cooling or Shrinkage Cracks 

Analyzing the cooling or shrinkage cracks in a half-space as two-dimensional is 
only a simplified approximation. In three dimensions, the pattern of the cracks in 
the planes parallel to the surface is hexagonal; see Figure 12.22d. 

To show that it ought to be so, we need to note that the actual crack pattern 
(~nder isothermal conditions) should minimize the aver~ge Helmholtz free energy 
~per unit cell of the crack pattern (see Sec. 10.1), that is, 

~ = U(a., ... , aN; A.)+ Gylc =min (12.5.19) 

where we assume that R = G1 = const., and denote as Ac the area of the cracks 
per unit cell. For the sake of simplification we may probably assume that the 
strain energy (J per unit volume is approximately the same for all the patterns. 
Thus it is necessary to minimize Ac for the same cell volume Vc. Parallel planar 
cracks (Fig. 12.22a) must be rejected because they do not relieve the normal 
stress in all directions. The regular patterns that relieve the stress in all directions 
are the square, triangular, and hexagon~l _patterns (F~ 12.22b, c, d). The 
volumes of cells of unit depth are Yc = s2

, s~3/ 4, and s2V27 /2, and so the sides 
ares= Wc, (4Vc/V3)112

, and (2'Yc/'Vi7)112
, respectively. Noting that by repeating 

the pattern of boldly drawn sides of the cross-hatched elements in Figure 12.22 
one can generate the entire mesh, we find that the crack areas per cell of the 
same volume are 2Wc, ~(4Yc/V3) 112, and 3(2VJVi7)112

, that is, 2Wc, 2.280Wc, 
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Figure 12.22 Possible patterns of shrinkage cracks in 30, dominant hexagonal pattern and 
formation of larger quasi-hexagons. 

and 1.861v'v,:, respectively. The last value is the smallest, which indicates the 
pattern should indeed be hexagonal. Although in nature the crack pattern is 
disturbed by random inhomogeneities, observations (e.g., dried lake beds) 
confirm that such a pattern indeed dominates (Lachenbruch, 1961; Lister, 1974). 
Rigorous proof, however, would require also calculating the values of 0, which 
could be done by finite elements. 

As cooling or drying advances into the half-space, a similar phenomenon 
happens as we showed for two dimensions. At a certain moment some hexagon 
sides cease to grow into the half-space. The remaining sides which grow further, 
increase their opening width (see the double lines in Fig. 12.22d) and transform 
themselves into rough hexagons whose size is three times larger. The triplication 
of the hexagons is repeated as cooling penetrates deeper, etc. 

Shrinkage cracks on the surface of concrete seem to behave similarly, but 
their precise pattern is complicated by the effect of reinforcement as well as 
geometry of the structure. 

Stability of Parallel Cracks in Reinforced Concrete 

Reinforcement can greatly alter the evolution of parallel shrinkage or cracking 
stress in concrete. It can either postpone or entirely suppress the occurrence of 
bifurcation with instability in which the growth of every other crack is arrested. 
The behavior is very sensitive to the nature of the bond between steel and 
concrete. Bond slip must take place and cannot be ignored, for if there were no 
bond slip at the points where a steel bar crosses the crack, then the crack could 
not open at all unless the bar broke. 

Two-dimensional stability analysis of various problems of this type was 
conducted by Bafant and Wahab (1980), who modeled the frictional bond slip by 
means of an equivalent free bond slip length as introduced by Bazant and Cedolin 
(1980). Some of the results are plotted in Figure 12.23a, b. It is seen that, despite 
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Fipre 12.23 Critical states and growth of shrinkage or cooling cracks for reinforcement 
(a) close to the surface, (b) deeper within the solid. (After Baiant and Wahab, 1980). 

reinforcement, instability at which every other crack gets arrested does occur. 
Even a very small reinforcement area, such as 0.1 percent of crack spacing s 
(times unit thickness), causes the point of instability to be pushed from depth 
a1 = s to a1 = 1.5s, which is located well behind the reinforcing bar. A further 
increase in reinforcement, however, has only a marginal effect. 

This type of behavior is not restricted to shrinkage or cooling cracks. The 
arrest of every other crack seems to occur generally when parallel cracks are 
propagating toward a zone of concrete without tension-for example, in a 
reinforced concrete beam subjected to bending, as demonstrated in Figure 12.24 
(after Bafant and Wahab, 1980). It is seen that a reinforcement percentage of 3 
percent pushes the point of instability from a 1 = 0. 9s to a 1 = 1. 8s. 



FRACTURE AS A STABILITY PROBLEM 

0; 

2h 

2 

2 

--- unstabl• 
equ111br1um 

/:;.~· •0001 
(1839.10021 b ..... 

Kc•4 5Nmm ..... il: 

4 
D/2h 

E,tE,·~23 

Ec•37300 
N/mm1 

6 

809 

Figure 12.24 Critical states and growth of bending cracks. (After Baiant and Wahab, 
1980.) 

The results just presented give only the limit of stability, that is, the state 
where every other crack suddenly jumps ahead at no change of loading. No doubt 
a stable bifurcation at an increase of loading (without instability) occurs earlier, 
but numerical results are unavailable to confirm it. It should also be kept in mind 
that bifurcation and stability are not the only phenomena that decide the width of 
opened cracks in reinforced concrete. 

Stability Analysis in Terms of Displacements 

Instead of analyzing stable states and paths in terms of crack length variations 
&;, one may equally well carry out the analysis on the basis of the tangential 
stiffness matrices associated with structural displacements q;. In some problems, 
this approach is more convenient. 

All that has been said about this approach in Sections 10.1 and 10.2 is 
applicable to structures with propagating cracks. An important point, though, is 
that the tangential stiffness matrices K' must now be calculated for cracks that 
advance simultaneously with loading (in an equilibrium manner, K; = K;c)· In 
theory, these matrices must be calculated for all possible combinations of 
advancing or stationary tips for those cracks for which K; = K;c, and receding or 
stationary tips for those cracks for which K; = 0. According to Equation 10.1.37, 
the structure with moving cracks is stable if - T(.6.S);n = lJ2 fF = !tJqTK'q > 0 for 
all vectors lJq with the associated matrices K'. Bifurcation states, which need not 
represent a limit of stability, are found from the condition det K' = 0. Here, for 
the first bifurcation, matrix K' needs to be evaluated only for loading, which 
means continuing crack advance (this is analogous to Hill's method of the linear 
comparison solid for plasticity; cf. Sec. 10.4). Determination of the stable 
postbifurcation branch necessitates calculating from K' the values of lJ2 fF<"'> along 
each path a. 

To describe the procedure in more detail, consider a structure whose state is 
characterized by displacements q; (i = 1, ... , n). Let all the cracks be initially at 
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the state of propagation; the crack tips with coordinates at> a2, ... , am are 
growing (m s. N) and those with am+l, ... , aN are unloading. The condition that 
the initial state is a state of propagation may be written as an/aak = -Rk(ak) 
where Rk(ak) is the given R curve of crack ak (Rk = G1 =constant for linear 
elastic fracture mechanics). The condition that the cracks remain propagating are 
6(an/aak) = -6Rk(ak) where 6 is a total variation. This yields 

~ ~(an)6a, + i ~(an)6q· =-dRk 6ak 
1=1 aal aak j=l aqj aak I dak 

m n ~n 
2: <I>k, 6a, = - 2: a a 6qi 
t=l i=1 ak qi 

or 
(12.5.20) 

in which 

(12.5.21) 

Assuming that the inverse, 'll;i• of matrix <l>;i exists, Equation 12.5.20 may be 
solved for 6a1: 

m n ~n 
6a, =- 2: 'llkj 2: 6qj with ['l'kt] = [<l>;jrl (15.5.22) 

k=1 j=l aak aqj 

The total force changes at propagating cracks are 

n a[; m a[; n m ~n 
6[; = 2: -a I 6qi + 2: -a r 6a, = 2: K;i6qj + 2: -a a 6a, (12.5.23) 

i=1 qi t=l a, i=l 1=1 q; a, 

where a[;/ aqi = Kfi = ~n/ aq; aqi =current secant elastic stiffness matrix of the 
structure damaged by cracks, and an/ aq; =[;=force associated with q;. 
Substituting now Equation 12.5.22, we obtain a force-displacement relation that 
may be written in the form 6/; = Ei K:i 6qi, in which 

r s ~ ~ ~n ~n s ~ ~ a[; at; 
K;j= K;j- LJ LJ wk,-a a a a = K;j- LJ LJ wk,-a -a (12.5.24) 

k=lt=l a, q; ak qi k 1 a, ak 

This is the tangential stiffness matrix at growing cracks. As we see, it is 
symmetric. The second-order work is - T(aS);n = 62W = E; Ei !K:i 6q; 6qi, from 
which stability and the postbifurcation path may be determined. 

Equation 12.5.24 gives admissible values only for such vectors of displace
ments 6q; for which (1) &k~o for all k = 1, ... , m (as calculated from Eq. 
12.5.22) and (2) 6(an/aak) = E;(~n/aak aq;) 6q; ~ 0 for all k = m + 1, ... , N; 
that is, the stress intensity factor of the critical nongrowing cracks may not 
increase. If these conditions are not satisfied, one must analyze other choices of 
the cracks assumed to propagate, either with the same total number m (but the 
cracks renumbered), or a different number m. To characterize the entire surface 
62~ as a function of 6q;, one must try successively m = N, N- 1, ... , 1, 0, and 
check also all the possible crack numberings for each number m. The second 
derivatives of n at a; and q; in Equations 12.5.21 and 12.5.24 can be 
approximated by finite differences after n is calculated by finite elements for 
a;+ da;, a;- da;, q, + aq;, q;- aq;. On the basis of 62~ or K:i, stability and 
critical states can be analyzed by the methods described in Chapter 10. 

Consider now a path bifurcation, choosing as q; only those displacements that 
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are controlled. Then tJq; are the same for paths 1 and 2 but tJa; = {Ja~l) or 
tJa; = tJa~2> are not. Writing Equation 12.5.20 for these two paths and subtracting 
the equations, we get E1 «<>kt tJa: = 0 where tJa: = &~2>- tJaP>. This shows (in 
accordance with Eq. 12.5.16) that cl>k1 at bifurcation must be singular (det «<>kt = 
0), provided that the derivatives a2ll/ oak oa1 are evaluated for the case that only 
the controlled displacements are kept constant while other displacements vary. 
This was the case for the system of parallel cooling cracks, for which A. may be 
interpreted as q 1• 

If, on the other hand, we include among q; some displacements that are 
associated with prescribed forces and are not controlled, then such tJq; are not the 
same for paths 1 and 2. So one would have to substitute tJq; = tJqp> or tJqf2> in 
Equation 12.5.20. Then, of course, E1 cl>kt tJa: =I= 0, and so matrix cl>k1 (which 
equals tJ2ll/ aakoa1, with derivatives evaluated while all q; are kept constant) is 
not singular at the first bifurcation. But in terms of K:; we must simultaneously 
have E; K: tJq?> = 0 and E; K:; tJqJ2> = 0. By subtraction, E; K:; tJq! = 0 where 
tJq! = tJqj2~- tJqJ•>. Since the vector of tJq! is nonzero, K:; must be singular at 
bifurcation (det K:; = 0), provided, of course, that tJq?> and tJqj2> belong to the 
same sector of the loading directions, with the same set of cracks that are 
growing. As shown in general in Section 10.4, this case must occur for the first 
bifurcation, if all the properties of the system change continuously along the 
loading path. 

The method and results can be illustrated by examples analyzed by Bafant, 
Tabbara, and Kazemi (1989). These examples, in which linear elastic fracture 
mechanics is used (R = G1 = const. ), consider bodies with two symmetric crack 
tips that are simultaneously critical (K1 = K2 = Kc)· Bifurcation into three 
branches is possible at every state: (1) for the main path, both crack tips advance; 
(2) for the secondary path, only one crack tip (K1) advances while the other crack 
tip unloads, its stress intensity factor K2 decreasing below the critical value Kc, 
tJK2 < 0 (actually this comprises two paths-either tip 1 advances or tip 2 
advances, but for symmetric situations both are equivalent); (3) for the third 
path, both crack tips unload, tJKt = tJK2 < 0. 

Figure 12.25 shows the results for a long strip containing a transverse crack 
with tips at distances at, a2 from the axis of symmetry. Initially, the state is 
symmetric, at= a2 , and propagation with at= a2 , normally assumed in practice, 
represents the main path. As explained in Section 12.1, the problem can be 
completely solved from the values of the stress intensity factors that are known 
for this problem (see Murakami, 1987). The calculated plots of average axial 
stress a versus the additional displacement qc due to the cracks are descending, 
which means the specimen can be stable only under displacement control at the 
ends provided the snapback point has not been reached or exceeded. Every point 
of the main path is a bifurcation point. Since the secondary path is always 
steeper, it is stable. So the specimen cannot follow the main path, that is, the 
crack cannot grow in a symmetric manner. The actual stable path is the secondary 
path emanating from the initial state with a symmetric notch (the solid curve). 
After this path reaches the snapback point, the shorter ligament tears suddenly in 
a dynamic manner (Sec. 12.3) subsequently a single one-sided edge crack is 
gradually loaded up to its critical state, after which it grows in a stable manner 
until complete failure of the specimen. 
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Figure 12.25 Stable (solid curve) and unstable (dashed curve) paths of center-cracked 
panel. (After Baiant, Tabbara, and Kazemi, 1989.) 

A similar problem is a long strip with two transverse coplanar edge cracks of 
lengths at and a2 • The results obtained by finite elements (Bafant, Tabbara, and 
Kazemi, 1989) are plotted in Figure 12.26. Again, every point of the main path 
(at= a2 , the dashed curve in Fig. 12.26a, b) is a bifurcation point, and since the 
secondary path descends more steeply, the main (symmetric) path cannot be 
actually followed. The stable (actual) path is the solid curve corresponding to the 
growth of only one crack (the solid curve in Fig. 12.26a). 

Figure 12.26c shows the surfaces of lJ 2~ [ =-T(dS)in] for the state 
at= a2 = 0.2b, which is stable under axial displacement control, and the state 
at = a2 = 0. 16b, which is unstable (b =strip width). The coordinates for these 
surfaces are the axial average displacement lJu and the rotation lJ(J at the end 
cross section. For convenience of calculations, the controlled variables in the 
finite element program were the crack lengths, and lJu and lJ(J were obtained as 
the output. The values of lJ2~ for various values of lJu and lJ8 were calculated as 
lJ2~ = !lJf lJu + !lJm lJ(J where lJf, lJm are the axial stress resultant and the 
moment at the end cross section. The main (symmetric) path (a= 1) corresponds 
to lJ(J = 0. The solid curves labeled 1 and 2 represent the main (symmetric) path, 
which corresponds to lJ(J = 0, and the secondary (bifurcated, nonsymmetric) 
path. 

Stability of path 2 (only one crack grows) is revealed by the fact that, for a 
given lJu, the point on path 2lies lower than the point on path 1 (i.e., minimizes 
lJ2 ~). Stability of the state is revealed by the cross section of the surface for 
lJu = 0 (controlled variable); if it curves upward (at the left in Fig. 12.26a), the 
state is stable (that is, lJ2~ has a minimum); if it curves downward (at the right), 
the state is unstable (that is, lJ2~ does not have a minimum). The surfaces of lJ2~ 
represent a patch-up of these quadratic surfaces corresponding to the tangential 
stiffnesses for (1) both cracks growing, (2) just one growing, (3) none growing. 
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Figure 12.26 Stable and unstable paths of edge-cracked panel and surfaces of 62f!f 
(6u, MJ =axial displacement and rotation at specimen ends). (After Baiant, Tabbara, and 
Kazemi, 1989.) 

The dividing lines between these surfaces are shown as the dashed lines. The 
surface is always continuous and has a continuous slope across these dividing 
lines. It is interesting to notice the similarities and differences of these surfaces 
compared to those for plastic column buckling shown in Section 10.3. 

The lack of a maximum for the present surfaces, in contrast to some of those 
in Section 10.3, is due to the fact that the state is stable only under displacement 
control (while the state of the Shanley column in Sec. 10.3 was stable for both 
load and displacement control when P < P,). It needs to be also pointed out that 
the curves and surfaces shown in Figure 12.26 have been calculated solely from 
the compliance matrix due to crack growth, neglecting the additional compliance 
Co due to elastic deformation of the uncracked specimen. This does not affect the 
choice of postbifurcation path, but does affect the limit of stability. The present 
stability limits apply only if the uncracked specimen is assumed to have infinite 
stiffness. Nevertheless, Figure 12.26 serves the purpose of simple illustration. 

In general it appears that symmetric crack systems usually do not lie on a 
stable path. A stable path usually is that for which the fracture process localizes 
into a single crack tip, while all other crack tips unload. For the specimen in Fig. 
12.26 this was experimentally demonstrated by Cedolin, Dei Poli and Iori (1983), 
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Figure 12.%7 Regular crack systems. 

and Labuz, Shah and Dowding (1985). Other examples are the systems in Figure 
12.27. Therefore, a homogeneous elastic solid with a periodic crack array such as 
that in Figure 12.27a, b is not a realistic model for the fracture process zone in 
concrete or similar material. A realistic model may be a periodic array of 
interacting cracks and inclusions (Fig. 12.27c). Pijaudier-Cabot, Bafant, and 
Berthaud (1989) showed that the presence of cracks makes simultaneous 
propagation of many cracks stable. 

The results in Figure 12.26 cannot be applied to for materials such as 
concrete, rock, or ceramics because these materials exhibit pronounced R-curve 
behavior, that is, the energy required for crack propagation is not constant 
but varies as a function of the effective crack length (Sec. 12.3). Intro
duction of an R curve into the calculations is necessary to achieve agreement with 
test data, such as those of Labuz, Shah, and Dowding (1985); see the data points 
in Figure 12.28. Using the specimens shown in Figure 12.28c, these investigators 
achieved stability by controlling the average of the crack mouth opening 
displacements (CMOD) measured by two clip gauges mounted over both notches 
as shown in Figure 12.28c. The load-point displacements were measured with two 
L VDT displacement transducers mounted on the face of these specimens across 
the notches, and the average of these two displacements was recorded. The 
load-displacement curves for paths 1 and 2 shown in Figure 12.28a were 
calculated by Bafant and Tabbara (1989). They used the R curve given by 
Equation 12.3.8 with Equation 12.3. 7 ( Gr = 0.165 N/m, c, = 27.9 mm). Observe 
that: (1) The load-deflection curve now bifurcates already on the rising branch; in 
fact the first bifurcation occurs at the origin, which is due to assuming R(O) to be 
zero according to Equations 12.5.10. (2) The fit of the LVDT-measured 
displacements (Fig. 12.28a) is good and verifies that the nonsymmetric path 2 is 
the stable path. (3) Due to snapback in the curve of the load versus load-point 
displacement, this test specimen would have become unstable shortly after the 
peak load if the load-point displacement was controlled instead of CMOD. The 
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test was also analyzed according to LEFM; the results shown in Figure 12.28b 
prove that LEFM cannot give a good fit, except at the end of the declining 
branch. 

For further analysis of the tensile test specimen from the viewpoint of 
damage, see Sections 13.2 and 13.8. 

Problems 

U.S.l Generalize Equations 12.5.11 assuming an R curve (variable R). 
U.S.l Assuming that initially a2 = a11 and R = G1 =constant, show that when 

the cracks in Figure 12.29a become critical only one of them advances (the 
load is applied through a rigid cable over a pulley; displacement q is 
controlled). Assuming that h «a 1, nearly all of the strain energy is due to 
bending of the cantilever arms and may be calculated by bending theory. 
Solve the problem in terms of a11 a2• Repeat for the structure in Figure 
12.29b. 

U.5.3 Do the same as above but solve the problem in terms of displacements q 1 

and q2 at the ends of the cantilever arms. Also consider the case when 
q, = q2 = q (i.e., no pulley). 

U.5.4 Do the same as Problem 12.5.1 but consider R = GJCI(k +c). 
U.S.S Denoting as q 1 and q2 the displacements at the cantilever ends, calculate 

the surface 62~(q 1 , q2) and plot it. 
U.5.6 Using the approximate method for calculating stress intensity factors, as 

explained in Section 12.1 (Eqs. 12.1.28-12.1.29), solve the bifurcation and 
stability in beams with two growing cracks sketched in Figure 12.29c, d, e, f. 

U.5.7 Discuss generalization of Equations 12.4.1 and 12.4.4 for load-point 
deflection to a body with a system of (a) noninteracting cracks, (b) interacting 
cracks. 
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12.6 CRACK SPACING 

In concrete structures as well as in some geotechnical or geological problems, the 
spacing s of parallel cracks is an important factor, mainly because it determines 
the crack width. Very narrow cracks are bridged and thus they still transmit some 
tensile stresses while widely opened cracks do not. Due to surface roughness of 
cracks (or interlock of asperities, aggregate pieces), narrow cracks transmit shear 
stresses. Very narrow cracks, for example, less than about 0.1 mm in concrete, 
are not continuous, and they do not serve as conduits for moisture or corrosive 
agents (Bafant and Raftshol, 1982). Diffusivity of a densely cracked material is a 
function of crack width and thus of crack spacing (Bafant, Sener, and Kim, 
1987). 

The spacing of cracks depends on various factors such as structure geometry 
or reinforcement outlay. Stability and energy balance are important considera
tions, and we will now discuss them briefly. 
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Spacing of Parallel Initial Drying or Cooling Cracks: Energy Balance 

In the preceding section we showed how the spacing of opened cracks in a 
parallel crack system (Fig. 12.19) evolves but we did not determine the initial 
crack spacing, s. One limiting factor is the heterogeneity of the material, for 
example, the (macroscopic) shrinkage cracks (which matter for continuum 
analysis) cannot be closer than the size of the maximum aggregate pieces in 
concrete or the size of the largest grains in rock. Normally, though, the minimum 
possible spacing is larger. This minimum depends on the balance of energy during 
the initiation of cracks from a (macroscopically) smooth surface. 

Consider first parallel planar cracks growing into a half-space (Fig. 12.19). Let 
x, y, z be cartesian coordinates, x being normal to the half-space surface. Let 
e0(x) be the profile of free (unrestrained) shrinkage or thermal strain correspond
ing to a certain depth x = ,t of the drying or cooling front. The stresses produced 
before cracking by e0(x) may be solved from the condition ( ~- va~)/ Eeff- e0 = 
Owhere ~=~, v=Poisson ratio, and Eeff=E/(1+4>)=effective modulus for 
elastic deformation plus creep; 4> =creep coefficient (Sec. 9.4) corresponding to 
the direction of drying or cooling. Consideration of creep is important for 
concrete since it significantly reduces the shrinkage stresses. For a material such 
as granite, creep may be neglected, that is, 4> = 0 and Eeff = E. Solving the 
foregoing equation, we get the stresses before cracking: 

(12.6.1) 

At a certain moment, the initial cracks normal to the y axis suddenly form. 
This reduces the stresses ~ to much smaller values and the stress becomes 
nonuniformly distributed. Let liaz be the change of az, and lie'; be the change of 
strain Ey of the material between the cracks (while lie':= 0). From Hooke's law 
lie';= (liay - v !o.az)/ E and AEz = (ll.az - v Aay)/ E. For the sake of simplicity, 
we assume the stresses~ to be reduced uniformly to 0, that is, the stress change 
is liay = -~ everywhere. The solution then is ll.~ = -v~ and lie';= -(1-
v2)~/ E. Now the loss of strain energy due to cracking per unit area of half-space 
surface is 

/l.U = (}. (a?. ! A ) A m dx =LA~ [(1- v2)~] dx 
1 )

0 
y + 2 ay Ey o 2 E 

= ( Eeff )2(1- v2) (A eoz(x) dx = A.E (~)2(~) 
1 - v 2E Jo 10 1 + 4> 1 - v 

(12.6.2) 

where we assumed the profile of e0(x) to be parabolic, expressed as e0(x) = 
(1 - x/ .t)2e~ for x :s ,t and e0(x) = 0 for x 2: A.; e~ =constant= free shrinkage on 
thermal strain at half-space surface, and ,t =penetration depth of drying or 
cooling. 

Stresses ~ actually are not reduced completely to zero, and so the loss of 
strain energy will be r ll.U1 where 0 < r < 1 and probably r is close to 1. The 
balance of energy during crack formation requires that r liU1s = Grz where 
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a = crack length. This yields the following estimate for the spacing of parallel 
planar cracks (Bafant and Ohtsubo, 1977): 

s = 10(~)(G')(1 + 4>)
2

(~) 
r 1 + v E E~ A 

(12.6.3) 

The order of magnitude of ratio a/A is 1. An accurate value of A/a as well as r can 
be solved by elastic finite element analysis from the condition that the crack 
length a should be such that K1 = Kc for the given temperature or free shrinkage 
profile. Such analysis provides A/a= 1.5 (and a= 2s); see Bafant and Wahab, 
1979. This gives the initial crack length as a= 2A/3. 

Size of Initial Hexagonal Cracking Cells from Energy Balance 

The planar cracks normal to one axis, x, can occur only if cracking normal to the 
other axis, z, is somehow inhibited, for example, by reinforcing bars laid in the 
z-direction. In the absence of such an inhibitor, the true crack pattern on the 
half-space surface consists of a hexagonal mesh, of side s, as shown in Section 
12.5. For that case, both uy and Uz are reduced about equally and may be 
assumed to drop to 0. One finds that 

I!!. =LA~(~)2 =AE(~)2 
VI 0 2 1 + 4> dx 10 1 + 4> (12.6.4) 

Noting that the area of one hexagonal cell is s2Vi7 /2 and the crack area ~r cell 
is 3sa (see Fig. 12.22), we have the energy balance condition r I!!.U1 s

2V27 /2 = 
3saG1, from which we find for the side of the hexagonal cells of the initial 
cracking pattern the estimate: 

s = 20 (G')(1 + 4>)
2

(~) 
-;\J3 E E~ A 

(12.6.5) 

Snapthrough Formation of Cracks According to LEFM 

Now, from the stability viewpoint, what is the nature of the formation of the 
initial cracks? First of all, linear elastic fracture mechanics does not permit cracks 
to start from a smooth surface. Furthermore, if we imagine the cracks growing 
from the surface to their final length a corresponding to Equation 12.6.3 (or 
12.6.5) while the profile of e0(x) is fixed, the stress intensity factor K1 varies with 
x approximately as shown in Figure 12.30 by curve 01234. The energy release per 
unit length is KU E'. Therefore, the strain energy release I!!.U1 given by Equation 
12.6.2 must be equal to J (Kf/ E') da', which is represented by the cross-hatched 
area 0123450 in Figure 12.30. According to the energy balance condition that we 
used to derive Equation 12.6.3, this area must be equal to area 06750 under the 
horizontal line representing K~/ E. From Figure 12.30 it is clear that the final 
state obtained from the overall energy balance condition has K1 < Kc, which 
means it is not a critical state for fracture propagation. So the drying or cooling 
front needs to advance further before the K1 value at the tip of the initial crack 
can reach Kc and start to propagate further. During the first phase of crack 
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Figure 1.2.30 Variation of Kif E' with thermal crack growth. 

formation, area 0610 represents the energy deficiency that must be overcome by 
some dynamic impulse of imperfection. Subsequently, area 1231 represents excess 
energy which goes into kinetic energy. Finally, area 3743 represents again energy 
deficiency, which reduces the existing kinetic energy. Thus, the process of crack 
formation implied in our analysis represents a snapthrough process, analogous to 
that illustrated for elastic systems in Chapter 4. Path 6137 is the static equivalent 
of the dynamic snapthrough instability, with the same overall energy balance. 

The dynamic snapthrough formation of cracks is, of course, true only in 
theory, according to linear elastic fracture mechanics. According to nonlinear 
fracture mechanics with a finite-size fracture process zone, the formation of the 
initial crack can happen as an equilibrium process. However, nonlinear fracture 
mechanics does not yield a result as simple as Equation 12.6.5 or 12.6.3. 

One useful aspect of nonlinear fracture mechanics is that it can take into 
account the tensile strength, f,'. However, a separate strength consideration can 
supplement Equation 12.6.5 or 12.6.3 and provide a lower bound on the value of 
the surface free shrinkage or cooling strain, E~, at which the initial cracks can 
form (see Bafant, 1985a). 

Crack Spacing in Loaded Reinforced Concrete Beams 

The overall energy balance condition of the type just illustrated, which in theory 
implies dynamic crack formation by snapthrough instability, is also useful for 
simple estimates of crack spacing and width of reinforced concrete beams 
subjected to external loads. Such fracture mechanics estimates can supplement 
and perhaps even supplant the existing provisions for crack width in concrete 
design codes, which are empirical. 

To avoid using nonlinear fracture mechanics, which embodies both fracture 
and tensile strength, one may separately impose the strength criterion and the 
energy balance criterion for the formation of cracks. The former governs the 
crack initiation in the form of discontinuous microcracks, while the latter governs 
the formation of continuous (macroscopic) cracks. 

The energy balance condition for the sudden formation of the complete cracks 
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(by a dynamic snapthrough) must take into account the fact, already mentioned 
in Section 12.5, that fractures that have a nonzero width at the points of 
crossing of reinforcing bars must be accompanied by bond slip between the bars 
and concrete. Thus, the complete energy balance relation should read !1U = 
G1Ac + !1 Wb, in which !1U =total release of strain energy due to fracture, 
G1Ac =energy needed to produce cracks of area Ac, and !1 Wb = energy dissipated 
by the bond slip that is casued by fracture. 

Consider now a round concrete rod of diameter b, which is subjected to 
tension and has a single steel bar in the middle (Fig. 12.31). (This rod 
approximately simulates the behavior of the concrete zone in a beam surrounding 
one of the bars in a tensioned beam or panel with many parallel reinforcing bars.) 
We distinguish two cases. 

(a) Cracks without bond slip. As an approximation, we can imagine that the 
sudden formation of a complete crack relieves the stress from the triangular area 
012, cross-hatched in Figure 12.31. This area is limited by a "stress diffusion" line 
of slope k, already explained just before Equation 12.1.23. The volume of the 
region obtained by rotating this area about the bar axis is V1 = nb3 /12k, provided 
the cracks are assumed to be spaced so far apart that their stress relief zones do 
not overlap (for the case they do overlap, see Bafant and Oh, 1983c). The strain 
energy release is !1U = V1 ~/2Ec where a1 = EcEs =initial axial stress in concrete 
prior to cracking, Ec =elastic modulus of concrete (which should be replaced by 
Eelf= Ec/(1 + l/>) in the case of long-time loading), and Es =axial strain in the 
steel bar. Substituting into the energy balance equation !1U = G.rAc and solving 
for £., we find that complete transverse cracks (which have a zero width at bar 
crossing) can form if 

E > __ I 
(
6kG )

112 

s- Ecb (12.6.6) 

(b) Cracks with bond slip. In this case, instead of a1 = EcEs the condition of 
force equilibrium with the bond stresses over length s /2 furnishes the relation 
a1nb2/4 = U',s/2 where s =crack spacing and U~ =average value of bond 
strength. All the other equations are the same as in case (a). Neglecting the 

a) 
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Figure U.31 Parallel cracks normal to a reinforcing bar, and (b) limits on crack spacing 
and strain at cracking (a-strength criterion, no slip; b-strength criterion, slip; c--energy 
criterion, no slip; d-energy criterion, slip; ~urve for more accurate solution). (After 
Baiant and Oh, 1983c.). 
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energy of bond slip (a Wb = 0), one obtains 

s ;:: 2n(3kb3 EcGt)l/2 
8U~ 

821 

(12.6.7) 

The foregoing results were derived in Bafant and Oh (1983c) where much 
more detail as well as comparisons with test data can be found. The main 
practical usefulness of calculating s is that it allows estimation of the crack 
width. 

Snapthrough Crack Formation in a Drying Tube 

After thin tubular specimens of hardened cement paste (Fig. 12.32) are exposed 
to a drying environment for some time, a long longitudinal crack may suddenly 
appear in the wall. To explain it, consider the energy required to produce this 
crack. It must come from the bending energy of the tube walls due to drying 
shrinkage. Assume the tube dries only from the outside, and consider the 
distribution of circumferential normal stress a to be approximately parabolic (Fig. 
12.32c) when the drying front just reaches the inside face. The bending moment 
of this distribution about the midthickness of the wall is M = aah2 /12 where 
h =wall thickness and a a= (1 + v)E' aEsh• E' = E/(1 - v2

). The formation of 
the longitudinal crack relieves the entire energy of circumferential bending of the 
tube, and so (per unit length of tube) U=2nrM2 /(2E'I), I =h3/12, r= radius of 
the midsurface of the wall. This must be equal to the fracture energy, that is, 
U = G,h, which yields (Bafant and Raftshol, 1982) 

aEcr = [(~)(12G')]tl2 
sh 1 + v nrE 

(12.6.8) 

as the critical shrinkage strain that is capable of causing the crack. The process of 
formation of these cracks is a snapthrough instability satisfying the overall energy 
balance but not the incremental balance of energy that would be required for a 
static growth of the crack. 

Problems 

12.6.1 Work out the derivation of Equation 12.6.4 in complete detail. 
12.6.2 A square pattern of cracks can form if the material is macroscopically 

orthrotropic with a weaker strength in the x- and y-directions. Such 
weakening can arise in composites or concrete by an orthogonal layout of 
fibers or reinforcing bars. Using the same procedure as that to get Equation 
12.6.3 or 12.6.5, derive the minimum possible size s of a cell in a square crack 
pattern. 

CJAQk (b) Ia M,~ ~ 
r=:J l~ 

(d) 

/ 
Figure 12.32 Longitudinal cracking of thin-walled tubular drying specimen. 
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12.6.3 Derive formulas analogous to Equations 12.6.6 and 12.6.7 assuming that 
the initial cracks are so close that the cones of stress relief zone V1 overlap 
before they reach the surface of the round reinforcing rod (the derivation is 
given in Bafant and Oh, 1983b). 
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13 
Damage and Localization Instabilities 

To complete our exposition of stability theory of nonelastic structures begun in 
Chapter 8, in this last chapter we will tackle the instabilities due to damage-a 
problem that recently attained prominence in research, and in which rapid 
advances are taking place. Damage is a broad term describing a decrease of 
material stiffness or strength, or both. The physical cause of damage is chiefly 
microcracking and void formation. Damage may be regarded as continuously 
distributed (smeared) fractures. Vice versa, fracture may be regarded as damage 
localized into a line or surface, in the sense of the Dirac delta function. 

Damage, just like fracture, has a strong destabilizing influence and can cause 
instability of a structure even without any geometric nonlinearity. Not all damage 
causes instability. Whether it does depends on the tangential stiffness matrix. If 
this matrix is positive definite, in which case the stress-strain curve is rising and 
the material is said to exhibit strain hardening, damage causes no instability. 
When this matrix ceases to be positive definite, in which case the stress-strain 
curve is descending and the material is said to exhibit strain softening, instabilities 
and bifurcations arise. They generally consist of localization of damage into a 
zone of the minimum possible size permitted by the continuum model. As we will 
see, this creates a new twist to the problem of constitutive modeling-it makes no 
sense to formulate stress-strain relations for strain softening without at the same 
time coping with the problem of localization instabilities (Bafant, 1976). 

As pointed out by Hadamard (1903), the lack of positive definiteness of the 
elastic moduli matrix makes the wave propagation speed imaginary. This 
observation, which is also true of the tangential moduli matrix of an inelastic 
material, causes the differential equation of motion to change its type from 
hyperbolic to elliptic. This in tum causes the initial-boundary-value problem of 
dynamics to cease being well-posed (i.e., become ill-posed, which means that an 
infinitely small change in the initial or boundary conditions can cause a finite 
change in response). However, this is not as problematic as thought until recently 
because the unloading wave speed is real as the unloading modulus remains 
positive even in the strain-softening range (Bafant, 1976; Reinhardt and 
Cornelissen, 1984). 

Due to the imaginary wave speed, strain softening has been considered an 
inadmissible property of a continuum and some scholars have argued that strain 



830 INELASnC, DAMAGE, AND FRACTURE THEORIES 

softening simply does not exist (Read and Hegemier, 1984; Sandler 1984). True, 
but only on the microscale. Strain softening does not exist in the heterogeneous 
microstructure at sufficient resolution. It is merely an abstraction, a necessary 
expedient to model the material on the macroscale. It would be impossible for an 
analyst to take the vast number of microcracks into account individually. 

Similar phenomena, which cause ill-posedness of the initial-boundary-value 
problem, are known and accepted as real in other branches of physics. For 
example, the liquid-vapor phase transition described by van der Waals' equation 
of state involves a region where pressure increases at increasing volume. This 
behavior, which must be classified as volumetric strain softening, characterizes 
metastable superheated liquids or supersaturated vapors. In astrophysics, a 
continuum equation of state of stellar matter that exhibits what we might call 
volumetric strain softening is a well-established concept, which explains the 
gravitational collapse of a white dwarf into a neutron star or the gravothermal 
collapse (Thompson, 1982; Misner and Zapolsky, 1964; Misner, Thorne, and 
Wheeler, 1973; Harrison et al., 1965). Ill-posedness arises in certain boundary
layer problems of viscous fluids, and so forth. 

The central problem of this chapter is the stability aspect of strain softening. 
We will begin by clarifying the phenomenon of localization and ill-posedness in 
dynamics as well as statics. Then, observing that, due to the finiteness of the 
energy dissipation per unit volume, localization of damage to a zone of zero 
volume would unrealistically imply the structural failure to occur at zero energy 
dissipation, we will show that the usual (local) finite element solutions are 
unobjective with regard to the analyst's choice of the mesh and exhibit spurious 
convergence. We will see that the remedy is to introduce into the material model 
a mathematical device that limits the localization of damage to a zone of a certain 
minimum thickness that is a material property. Then we will discuss the crack 
band model that limits localization in the crudest but simplest manner. Further
more, we will analyze some multidimensional localization instabilities due to 
strain softening that can be solved exactly, and we will also briefly discuss 
localization instabilities due to frictional phenomena. Finally we will briefly 
examine more general material models that limit localization by nonlocal 
continuum concepts. We will close by pointing out some consequences for the 
structural size effect and the constitutive modeling. With this we will complete a 
fairly comprehensive picture of contemporary structural stability theory that has 
been attempted in this book. 

13.1 WAVES IN STRAIN-SOffiNING MATERIALS 

To clarify the mathematical difficulties caused by strain-softening damage, we 
present the exact solution of a one-dimensional wave propagation recently 
obtained by Bafant and Belytschko (1985). 

The material of a bar has the stress-strain diagram 0 P F shown in Figure 13.1, 
which exhibits elastic behavior with Young's modulus E up to strain Ep at peak 
stress t: (strength), followed by a strain-softening curve F(e}--a positive 
monotonic continuous function that has a negative slope F'(e) but, otherwise, an 
arbitrary shape, and that attains zero stress either at some finite strain or 



DAMAGE AND LOCALIZAnON INSTABillnES 831 

I~ 
p 

F 

Ep E 

Figure 13.1. Stress-strain diagram with 
strain softening. 

al r---L , L---j 
-cl ~ cl 

b) 

el 

--ff/P4$1Wff!#IHI/ff(#u/fflff#&/ff/4-

i---• 

u c:::::::::a-
I < L/v 

f'~----t=~ _______ :j_~--~ 

u~-------,.... I>L/v 
I ' z 

.------:i__, - -- - - - - -- ~~--------, 
('~------------------~ 

u~I>L/v 
E I =-3- ----~-----E.-----, 

• • z 

CT[=-j••OI a<o 

I I 

Figure 13.2. (a) Bar loaded by imposed 
motions of constant velocity at opposite 
ends; (b) elastic solution; (c,d,e) solution 
with strain softening. (After Baf.ant and 
Belytschko, 1985.) 

asymptotically for e-+oo. The unloading (e<O) and reloading (e~O), up to the 
last previous maximum strain, is elastic with modulus E and, if the strain 
increases beyond this maximum, the (virgin) strain-softening diagram is followed. 

Consider a bar of length 2L, with a unit cross section and mass p per unit 
length (Fig. 13.2a). Let the bar be loaded by forcing both ends to move 
simultaneously outward, with constant opposite velocities of magnitude c. The 
boundary conditions are 

Forx=-L: 
For x = L: 

u = -ct} 
u =ct 

(fort ~0) (13.1.1) 

in which x =length coordinate measured from the midlength; t =time; and 
u(x, t) =displacement in the x-direction. Initially (at t = 0), the bar is unde
formed and at rest (u = u = 0). Due to symmetry, the problem is equivalent to a 
bar fixed at x = 0. 

Exact Solution of Strain-Softening Bar 

Suppose first that strains exceeding Ep are never produced, that is, the bar 
remains linearly elastic. The differential equation of motion is hyperbolic and 
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with v2 =~ 
p 

(13.1.2) 

For the given boundary and initial conditions, the solution is 

u = -c(l-x: L) +c(l+ x ~ L) (tor 1~ 2~) (13.1.3) 

in which the symbol ( ) , called Macaulay brackets, is defined as (A) =A if 
A > 0 and (A) = 0 if A ~ 0, and v = wave velocity. The strain is 

au c [ ( X + L) ( X - L)] E= ax=;; H t--v- +H t+-v- (13.1.4) 

in which H denotes Heaviside step function. The stress is o = EE. The strain 
consists of two tensile step waves of magnitude c/v, emanating from the ends of 
the bar and converging on the center. After the waves meet at the midpoint, the 
strain is doubled (Fig. 13.2b). Obviously, if c/v ~ Ep/2, the assumption of elastic 
behavior holds for x ~ 2Lv, that is, until the time each wavefront runs the entire 
length of the bar. If, however, Ep/2 < c/v ~ Ep, the previous solution applies only 
for 1 < L/v and the midpoint cross section (x = 0) enters the strain-softening 
regime at t = L/v, that is, when the wavefronts meet at the midpoint. 

It is interesting to look at the behavior in a very small neighborhood of the 
interface between the elastic and the strain-softening region, imagining a segment 
(control volume) of length h '(Fig. 13.2c) that is fixed within the material and 
contains the interface at the distance VI from the left end of the segment (placed 
at x = 0), where V denotes velocity of the interface. The displacements at points x 
just to the right of the interface are u+ = U + e+(x- Vt), and those just to the 
left of it are u- = U + E-(x - Vt), in which U =displacement at the interface, 
and £+, E- =strains just to the right and to the left of the interface. 
Differentiating, we get the material velocities (material derivatives of u) 
u+ = (J- ve+ and u- = (J- ve- just to the right and to the left of the interface. 
The equation of motion of the small element h, fixed within the material, may be 
stated as follows: the rate of the linear momentum of element h equals the total 
force applied on this element. Thus, we have 

a[(' · t · ] at Jo p(U- Ve-) dx + Jv, p(U- Ve+) dx = o+- o- (13.1.5) 

from which we get the jump relation, relating the jumps in stress and strain: 

o+- o- = pV2(E+- E-) (13.1.6) 

Now consider again the whole bar and assume that Ep/2 < c/v < Er Then the 
waves are elastic until they meet at time It= L/v. Strain softening begins 
immediately at time It at x = 0 (midpoint). Due to symmetry, a centrally located 
strain-softening segment of length 2s with initial value s = 0 is created in the 
middle of the bar at 1 = It (Fig. 13.2d). 

It might be useful to mention what happens if the step waves are considered as 
the limiting cases of strain waves with a wavefront that rises very sharply but 
continuously. Then the stress at x = 0 would rise too= t: before strain softening 
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begins, and so an elastic stress wave of magnitude t:- E c/v, superimposed on 
the incoming wave of magnitude Ec/v, would pass through the midpoint (x = 0) 
from right to left. However, this passing elastic wave would become in the limit a 
finite magnitude stress pulse of an infinitely short duration, because the strain 
softening is reached instantly in the limit. The strain energy of such a pulse is 
zero; thus it can have no effect on the bar and need not be considered in our 
solution. 

The differential equation of motion within the strain-softening segment 2s has 
the form aatax = p ifutat2

• Since aatax = (aataE) aEtax = F'(E) ifutax2
, we 

have 
. h _2 _-_F...,!.'(E~) 

Wit a = 
p 

(13.1.7) 

Because F'(E)<O, this equation is elliptic, which means that interaction over 
finite distances is immediate; however, that need not be questionable as long ass 
remains infinitely small. 

One possible solution of Equation 13.1.7 is 

u = [a(t- It)+ Ep]x (for -s sx ss, t >It) (13.1.8) 

in which a is some constant. This solution, implying a uniform strain distribution, 
can adequately describe the strain-softening segment as long as s is infinitely 
small. Note that Equation 13.1.8 satisfies the symmetry condition, and also the 
condition au/ ax= Ep at t =It· 

Check that, for -v(t- t 1) sx < -s (i.e., outside of segments, on its left), 
Equation 13.1.2 is solved by the following expression: 

u = c(x: L- t) + /(s) = c(~-;) + /(s) 
L-x 

s=t-- (13.1.9) 
v 

in which f is an arbitrary function describing a wave propagating toward the left. 
By differentiation of Equation 13 .1. 9 

au 1 
E=-=-[c+f'(s)] 

ax v 

in which f'(s) = df(s)!d;. 

for -v(t- ~) <x < -s (13.1.10) 

Now we need to formulate the interface conditions for displacements and 
stresses at x = -s. Continuity of displacement requires, fort> (L + s)/v, that 

L+s 
;.=t--

v 
(13.1.11) 

The interface stresses must satisfy the jump condition in Equation 13.1.6. The 
interface at the left end of segment s can be either stationary (constant s, s---. 0) 
or it can move to the left at velocity V = -s. It cannot move to the right, since 
then the softening segment would not exist, and there would be no strain 
softening. 

Suppose that the interface moves to the left. Then the material points are 
entering the strain-softening regime as the interface moves through them. 
Therefore, a- on the left of the interface must be equal to the strength/;. From 
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this we know that u- 2:: u+. At the same time, e+ > e- because the strain must be 
larger than Ep inside the strain-softening segment and must not be larger than Ep 

outside it. Thus, we see from Equation 13.1.6 that V 2 <0 if the interface moves. 
This, however, is impossible, since V must not be imaginary. The only remaining 
possibility is that the interface does not move (V = 0) and s remains infinitesimal. 
Therefore, according to Equation 13.1.6 

(at x =s) (13.1.12) 

that is, the stress must be continuous at x = s (strain-softening boundary) for 
t > t1 + s/v, although the strain is discontinuous. It follows that Ee- = F(e+). 
Substituting here Equation 13.1.10 and calculating e+ from Equation 13.1.8 as 
au/ax, we get (fort >tl +s/v) 

(13.1.13) 

Eliminating a from Equations 13.1.11 and 13.1.13, we find 

(13.1.14) 

Now, since the strain-softening segment must remain infinitely short, that is, 
s-+0, we have e+-+oo, and consequently F(e+)-+0. Therefore, c+/'(;1)=0, 
that is, /(;1) = -c;1 or/(;)= -c;. Hence 

( 
L-x) f(;)=-c t--v- (13.1.15) 

Consequently, the complete solution for 0 :s: t :s: 2L/ v and x < 0 is 

u = -c(t- X: L)- c(t- L ~ x) (13.1.16) 

and 
c ( x+L) c ( L-x) e=;;H t--v- -;;H t--v- (13.1.17) 

For the right half of the bar, x > 0, a symmetric solution applies. For x-+ o- the 
displacements are u=-2c(t-L/v), and forx-+0+ they are u=2c(t-L/v). 
So, after time t1 = L/v, the displacements develop a discontinuity at x = 0, 
with a jump of magnitude 4c(t- L/v ). Therefore, the strain near x = 0 is e = 
4c(t-L/v)tJ(x) in which tJ(x)=the Dirac delta function. This expression fore 
satisfies the condition that f~s E dx = 4c ( t - L/ v) for s-+ 0. 

The complete strain field for x :s: 0 and 0 :s: t :s: 2L/v is 

c [ ( x + L) ( L -x) ] e=;; H t--v- -H t--v- +4(vt-L)tJ(x) (13.1.18) 

This solution is sketched in Figure 13.2d, e. It may be checked that no unloading 
(i.e., strain reversal) occurs within the strain-softened material (at x = 0), as 
supposed. 

A subtle question in regard to unloading still remains. We tacitly implied no 
unloading and showed that a solution exists. Can we find another solution if 
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unloading is assumed to occur after the start of strain softening? Apparently we 
cannot. Indeed, for unloading, the tangent modulus becomes positive; thus the 
equation of motion in segment 2s becomes hyperbolic, which means that the wave 
arriving from the right is transmitted to the left across the midpoint. But then the 
superposiiton of the converging waves yields an increase of strain, which 
contradicts the assumption of unloading. Thus, our solution for c < veP/2 (Eq. 
13.1.16) appears to be unique. 

Stability Aspects and Unrealistic Properties of Solution of a Bar 

Some properties are rather interesting and unrealistic. The solution does not 
depend on the shape of the strain-softening diagtam; the result is the same for 
strain-softening stress-strain diagrams of very mild slope or very steep slope, and 
even for a vertical stress drop in the a-E diagram. The latter case is equivalent to 
having a bar that splits in the middle at time t = L/v, with each half having a free 
end at x = 0; indeed, this behavior leads to the same solution. 

Consider the dependence of the solution on the boundary conditions. When c 
is just slightly smaller than vEp/2, the solution is given by Equation 13.1.3, and 
when cis just slightly larger than VEp/2, the solution is given by Equation 13.1.16, 
which differs from Equation 13.1.3 by a finite amount for t > L/v. Thus, an 
infinitely small change in the boundary condition can lead to a finite change in the 
response. Hence, the solution of the dynamic problem for a strain-softening 
material does not depend continuously on the boundary conditions, that is, the 
response may be termed unstable (for c = VEP/2), similarly to the definition in 
Section 3.5. 

The solution also exhibits a discontinuous dependence on the parameters of 
the stress-strain diagram. Compare the solutions for stress-strain diagram OPS 
in Figure 13.1 for which the magnitude of the downward slope PS is as small as 
desired but nonzero, and for the stress-strain diagram OPY in Figure 13.1, for 
which the straight line PY is horizontal and represents plastic yielding. For the 
former, the present solution applies. For the latter, plastic case, Equation 13.1.9 
also applies but must be subjected to the boundary condition E au/ ax= t: at 
x = -s. The resulting solution is well known and is entirely different from the 
present solution. Thus the response is discontinuous in regard to the strain
softening slope E, as E,-+ 0. 

As we see from our solution, strain softening cannot happen within a finite 
segment of the bar. It is confined to a single cross-sectional plane of the bar, at 
which the strains become infinite within an instant (i.e., an infinitely short time 
interval after the start of softening), regardless of the shape and slope of the 
strain-softening part of the CJ-E diagram. Strain softening cannot happen as a field 
in the usual classical type of a deformable continuum as considered here. The 
parameters of the strain-softening diagram, such as the slope F'(e), cannot be 
considered as characteristic properties of a classical continuum, since they have 
no effect on the solution. 

This conclusion agrees with that drawn by Bafant (1976) on the basis of static 
stability analysis of strain localization. To circumvent the phenomenon of 
localization into a single cross-sectional plane, one would have to postulate some 
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special type of continuum in which the strains cannot localize into a single 
cross-sectional plane. A nonlocal continuum can ensure that, as we will see. 

Strain softening consumes or dissipates no energy because the volume of the 
strain-softening region is zero while the energy density in the strain-softening 
domain is finite, not infinite. This is also confirmed by the fact that, for t > L/v, 
the present solution is the same as the elastic solution for a bar that is split 
initially in the middle into two bars, for which the mechanical energy (potential 
plus kinetic) must be conserved. 

Note that strain softening can be produced in the interior of a body, and not 
just at the boundaries, as has been recently suggested by some. To produce strain 
softening, it is also not necessary to have a symmetric problem; for example, we 
may enforce velocity c = c1 = -0.6eP/v at the left end, and c = c2 = 0.9eP/v at the 
right end, and strain softening would again be produced at x = 0. 

To sum up, strain softening in a classical (local) continuum is not a 
mathematically meaningless concept. A solution exists for given initial and 
boundary conditions. However, the hypothesis that strain softening may occur in 
a classical (local) continuum is not representative of known strain-softening 
materials (concrete, geomaterials, some composites), in which strain softening 
consumes finite energy and strain-softening regions of finite size are observed 
experimentally. 

It has been demonstrated that numerical, step-by-step solutions by finite 
elements converge to the present solution (Bazant, Belytschko, and Chang, 
1984). 

Bar with Rehardening or Residual Yield Strength 

Some materials, such as fiber-reinforced concrete, exhibit rehardening that 
follows a strain-softening drop of stress (Fig. 13.3a). Other materials, for 
example, some soils in compression, exhibit a residual yield strength (Fig. 13.3b). 
We will now present the solution for the same bar as before (Fig. 13.3c), which 
was obtained by Belytschko et al. (1987). 

We assume again that Ec/v > aa/2 where aa(=J:) =peak stress so that when 
the opposite waves meet, strain softening begins. Based on our preceding 
experience, we will assume the strain softening to be limited to a single point 
x = s(t), and the strain at that point to increase instantaneously to the strain eb at 
which the stress attains the postpeak minimum, so after strain softening e ~ eb 
(Fig. 13.3a). 

Rebardeoing (Fig. 13.3a). We will see that a solution can be found if, after 
softening, the stress assumes any value as such that ab :s: as :s: a

0
• Figure 13.3d, e 

illustrates the form of the solution we seek. In domain 1, behind the initial elastic 
wavefront, u1 = -c, £1 = c/v, a 1 = Ec/v. We will see that after the opposite 
waves meet, the strain-softening point moves, but slower than the elastic 
unloading wave. 

At the unloading wavefront of velocity v (interface between domains 1 and 2 
in Fig. 13.3e), the following jump conditions must be satisfied (cf. Eq. 13.1.6): 

(13.1.19) 
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Figure 13.3. Bar loaded by imposed motions of constant velocity at opposite ends (c) and 
solutions (d, e) for (a) stress-strain diagram with rehardening or (b) residual yield 
strength. (After Belytschko, Wang, Bazant, and Hyun, 1987.) 

where subscripts 1 and 2 refer to domains 1 and 2 in Figure 13.3e. Substituting 
u1 = -c and £ 1 = c/v, we have 

Uz = v( £ 2 - ~) 
The displacement field in domains 1 and 2 then is 

u(x, t) = -c( s- ~) + (ve2 - c)(s) 
Hence u(O, t) = (v£2 - 2c)(t- L/v ). 

L-x s=t---
v 

(13.1.20) 

(13.1.21) 

If the displacements are to remain continuous at x = 0, another wave, of 
speed V = -s (V < v), must emanate from that point, except when £ 2 = 2c/v. 
This wave is represented by the interface between domains 2 and 3, Figure 13:3e. 
The velocity jump condition yields 

s(E)- Ez) = U)- Uz = 2c- VEz (13.1.22) 

where it has been noted that u3 = 0 and Equation 13.1.20 has been substituted. 
The stress-jump condition (Eq. 13.1.6) gives 

(13.1.23) 
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and the stress-strain law for rehardening reads 

(J3- (Jb = E(E3- Eb) (13.1.24) 

Subtracting the stress changes corresponding to E3 - Eb and E2- e* according to 
Figure 13.3a, we have u3 - u 2 = pv2(E3 - Eb- E2 + e*) where pv

2 = E and 
e* =ubi E (Fig. 13.3a). Substituting this into Equation 13.1.23 we obtain 

(13.1.25) 

Expressing s from Equation 13.1.22 and substituting it here, we gain for E3 a 
quadratic equation whose solution is 

(13.1.26) 

This is a family of solutions with e2 as an arbitrary parameter such that 
ubi E s E2 s ual E. A second solution with a minus in front of the radical has been 
rejected since it is necessary that e3 > Eb. 

Solving e3 from Equation 13.1.22, substituting it into Equation 13.1.26, and 
rearranging, we obtain the equation (slc)2 + 2A(slc) -1 = 0 where 

A= v(eb- e*) 
2(2c- VE2) 

and solving this quadratic equation for sIc we get 

s = c( -A+ Vt-i=k) 

(13.1.27) 

(13.1.28) 

It follows that if A :2:0, then s s c. This condition is satisfied if clv > e212, which 
is necessary to initiate strain softening at x = 0. 

An interesting special case, to which numerical solutions have converged 
(Belytschko et al., 1987), arises for e2 =ablE= e*. Substituting this into 
Equation 13.1.26, one can show that 

Eb + E* 2c * 
E2 + ::5 E3 ::5 - + Eb - E 

2 v 
(for e2 = e*) (13.1.29) 

Note that if clv-+ e*l2, Equation 13.1.27 shows that A-+oo, and from Equation 
13 .1.28, s-+ 0. The solution for - L :::;; x < - s then is 

u(x, t) = -c(;-~) + (ve*- c)(;) (13.1.30) 

e =~H(;- ~) + ( e* -~)a(;) (13.1.31) 

and for -s sx sO the solution is u = e3xH(;) and E = e3H(;). 
The character of the solution is shown in Figure 13.3d, e. The most interesting 

point is that now, in contrast to Fig. 13.2, the strain-softening point moves. The 
strain at this point also involves a postsoftening elastic increase of strain, such 
that the overall stress change (from u2 to u3 in Figure 13.3a) is an increase. 
This means that the interface s(t) is actually an interface between two elastic 
domains with different uniform strains. (Further this means that, according to 
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Equation 13.1.22, s > 0, because e3 > E2 .) Since the strain-softening point moves, 
the energy dissipation is, in contrast to the previous problem, nonzero. The shape 
of the strain-softening portion ab of the stress-strain diagram (Fig. 13.3a) has no 
effect on the solution. 

Another interesting property is that, at the moving strain-softening points 
x = ±s(t), the stress takes the values o in the range oa < o < ob three times at the 
same time (albeit at different strains). This clouds the question of differentiability 
of ao/ ax in the equation of motion. In contrast to the preceding problem (Fig. 
13.2), no displacement discontinuity is caused by strain softening. But again the 
problem is not a well-posed one, since at Ea = Ev /2oa an infinitely small change in 
prescribed boundary velocity c causes a finite change in the solution. 

Residual yield strength (Fig. 13.3b). The stress at the strain-softening point 
becomes ob after the jump in strain, and so the elastic solution in domains 1 and 2 
becomes 

u(x, t) = -c(;- ~) + (ve*- 2c)( s) (13.1.32) 

In particular, at x=O (s=O), we have u(O,t)=(ve*-2c)(t-L/c). If strain 
softening has taken place, vE*- 2c < 0. So, since the stresses in both the elastic 
and strain-softening domains are ob, there is no way a wave eliminating the 
displacement discontinuity could develop. The only way to satisfy the boundary 
conditions is to allow a discontinuity in the displacement at x = 0, same as in the 
first problem with softening of stress to zero. Hence, Equations 13.1.32 must hold 
for x s 0, with s = 0, and the magnitude of displacement discontinuity fort~ L/v 
is 2(ve*- 2c). Noting that a(s)/as = H(s) and differentiating Equation 13.1.32, 
we get for the strain field 

E(x, t) =~ H(t- L ;x)- (~- e* )H(t- L ~x) + (2ve* -4c) c5(x)H(t- ~) 
(for x s 0) (13.1.33) 

where the term with the Dirac delta function c5(x) is added to represent the 
discontinuity at x = 0. In contrast to the first problem (Fig. 13.2), this function 
causes the energy dissipation W to be finite (occurring in the region -s sx ss 
where s~O); W=2ob(vE*-2c). Note that when ob~o. W vanishes, which 
agrees with the first solution. Thus, energy dissipation is due solely to the residual 
yield strength ob. It is independent of the magnitude of the stress peak Oa and of 
the shape of the strain-softening curve. 

Belytschko et al. (1987) showed that step-by-step finite element solutions 
converge to the foregoing analytical solutions, although slowly and with much 
noise near the wavefronts. 

Cylindrically or Spherically Converging Waves 

Waves that propagate inward along the radii of a cylindrical or spherical 
coordinate syslem exhibit further strange phenomena when the material is strain 
softening. Such waves, with a step wavefront, can be produced by a sudden 
increase of pressure along the surface of a cylinder or sphere (caused, e.g., by an 
explosion). For the case of elastic material behavior, there exists a simple 
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closed-form formula for the solution (e.g., Achenbach, 1973). This elastic 
solution is plotted in Figure 13.4b. As can be seen, the magnitude of the elastic 
wavefront grows, and it approaches oo as the wavefront approaches the center. 

If the material exhibits strain softening after the elastic limit is exceeded, the 
wavefront will grow (Fig. 13.4b, right) to eventually reach the strain-softening 
limit, regardless of the magnitude of the surface pressure applied. Once strain 
softening is initiated, the strain suddenly increases and the stress suddenly drops, 
as suggested by the experience with uniaxial waves. This is borne out by the 
numerical step-by-step finite element solutions, which are reproduced in Figure 
13.5. These plots, showing the radial profiles of radial displacement and 
volumetric strain at various times, were calculated for a material that has 
unlimited elasticity in shear and a triangular strain-softening diagram in volu
metric response (Belytschko et al. 1986; Bafant, 1986a). The pertinent plots are 
those (on the left) marked "local." For the sake of comparison, the figure also 
shows (on the right) results marked "nonlocal," although these are pertinent to 
Section 13.10. 

An interesting point revealed by the solutions in Figure 13.5 is that the sudden 
stress drop that occurs after the elastic limit is first reached is not the end of strain 
softening. A strange thing happens: A part of the wavefront, with an uncertain 
magnitude, creeps under the strain-softening limit and propagates further inward. 
Due to the radially converging nature of the wave, the wavefront grows again, 
and reaches again the strain-softening limit. At that moment the stress drops 
suddenly, but again some part of the wavefront, whose magnitude is uncertain, 
gets through and grows further. In this manner, strain softening is produced at 
many singular points, all of them located beyond the point where the elastic limit 
is reached first. The numerical solution beyond the elastic domain does not 
appear to converge as the mesh is refined, and the locations of the subsequent 
softening points vary randomly, giving an impression of a chaotic response. It 
nevertheless seems that the locations of the strain-softening points remain sparse, 
so that the total energy dissipation in all the softening finite elements converges to 
zero as the mesh is refined to zero. Again this is an unrealistic feature of the 
strain-softening concept for an ordinary (local) continuum. 

General Three-Dimensional Condition for Waves to Exist 

Consider now a homogeneous space of tangential moduli o:ikm and mass density 
p. The differential equations of motion are a;i.i = pii; where u; = displacement 
increments, a;i =stress increments and the subscripts refer to cartesian coordin
ates X; (i = 1, 2, 3). The tangential stress-strain relation may be written as 
U;i = D:ikmuk.m• and SO the equation of motion becomes 

(13.1.34) 

which is a system of three hyperbolic partial differential equations for u;(xk, t). 
The solutions may be sought in the form: 

uk = Ak exp [iw(x,n,v- 1
- t)] (13.1.35) 
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Figure 13.4. (a) Inward propagating wave in a sphere, and (b) elastic solution. (After 
Belytschko, Bazant, Hyun, and Chang, 1986.) 

where i2 = -1; Ak, w, v =constants; n, =unit vector indicating the direction of 
propagation; and v =wave velocity. Substitution into Equation 13.1.34 yields a 
system of three homogeneous linear equations (Synge, 1957; Achenbach, 1973): 

(13.1.36) 

Waves of any direction can propagate only if v is real, i.e. if all the eigenvalues A. 
of Z;k are positive. Thus the (3 x 3) matrix Z;k (called the Christoffel stiffness) 
must be positive definite, that is, Z;kq;qk > 0 for all nonzero q;. Substituting for 
Z;k and denoting q;n; = ;;;. which is a symmetric second-order tensor, we 
conclude that Z;; is positive for all propagation directions n; if and only if 

D:;km;;;;km > 0 for any nonzero ;;; (13.1.37) 

This means that the 6 x 6 matrix of D:;km must be positive definite (Hadamard, 
1903). Otherwise the material cannot propagate loading waves in at least one 
direction n;, and the type of the partial differential equation (Eq. 13.1.34) 
changes from hyperbolic to elliptic. 

Since uk according to Equation 13.1.35 can have either sign, the use of v:;km 
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for loading might seem inconsistent. But it is not, for two reasons: (1) a sum of 
many terms uk given by Equation 13.1.35 can approximate any wave profile, and 
(2) the same result ensues by considering a loading step wave whose wavefront 
has the form of a discontinuity line with stress oij ahead of the front and oij 
behind the front. For a discontinuity line whose unit normal is n;, Equation 
13.1.6 may be generalized as [o;i]ni = -pv[u;], where [ ] is the standard 
notation for a jump, that is, [ u;] = u"( - ui. The material rates of displacements 
are u; = -vu;,,n, both ahead and behind the discontinuity. Hence [u;] = 
-v[u;,,)n, (Achenbach, 1973, p. 142), which gives 

(13.1.38) 

Now we may seek solutions [u;,,] represented as a sum of terms of the form A;n,. 
By virtue of the superposition principle, we may consider each one of them 
separately, that is, set [u;,,] = A;n, where A; are some constants. Multiplying this 
by n, we get [u;,,]n, =A;, which we substitute into Equation 13.1.38. From the 
tangential Stress-strain relation we have [o;,j) = D:jkm(Ekm) = D:jkm(uk,m) = 
v:ikmAknm, which we also substitute into Equation 13.1.38. Thus we get for A; 
the equation system D:ikmAkninm = pv2A;. But this is identical to Equation 
13.1.36, and so the conclusion is the same. 

Summary 

Exact dynamic solutions to some strain-softening problems can be found, and 
numerical finite element solutions converge to these exact solutions (and in fact 
do so quite rapidly). The typical feature of these solutions is that strain softening 
remains isolated at singular points. Consequently, the energy dissipation due to 
strain softening is zero, which is an unacceptable feature. In the numerical 
solutions this is manifested as spurious mesh sensitivity, a phenomenon which will 
be discussed in Section 13.5. 

Remarks. Before closing, it is interesting to add that strain softening may 
apparently lead to chaos (Sec. 3.9). This was discovered by G. Maier (discussion 
recorded by Roelfstra, 1989) when he studied forced vibrations of a beam with a 
softening hinge (of the type discussed in Sec. 13.6). A chaotic structure was 
indicated by the Poincare diagram in the velocity-displacement plane. 

Valuable studies illuminating the ill-posedness and other aspects of strain 
softening in a continuum (local, Sec. 13.10) were presented by Sandler and 
Wright (1983), Hegemier and Read (1983), Read and Hegemier (1984), Wu and 
Freund (1984), Sandler (1984), Needleman (1987), and others. 

Problems 

13.1.1 Beginning at t = 0, the left end of the bar considered before (Fig. 13.1) is 
moved at velocity (vf;!E)- {) to the left, and the right end is moved at 
velocity 2v{)f E to the right; {) is infinitely small ( (j- 0). Obviously, both 
waves are elastic until they meet at midlength, at which time strain softening is 
produced. The solution is obviously not symmetric. Derive it, assuming that 
strain softening goes all the way down to zero stress. 
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13.1.2 Do the same as above, but the material exhibits rehardening, as in Figure 
13.3a. 

13.1.3 Do the same, but the material exhibits residual yield, as in Figure 13.3b. 

13.2 SERIES-COUPLING MODEL FOR LOCALIZATION 
DUE TO SOmNING 

As transpired from the preceding dynamic analysis, strain-softening damage leads 
to localization of strain and energy dissipation. In statics, the consequence of 
strain softening is that a uniform state of strain and damage that satisfies all the 
field equations and boundary conditions may become an impossible solution that 
cannot occur in reality. The strain and damage may become nonuniform and 
localize into a relatively small zone, representing the failure zone. The localiza
tion is driven by the release of strain energy from an unloading region outside the 
localization zone. In statics, the localization presents itself as a problem of 
bifurcation of equilibrium path, in which the main (primary) path, which preserves 
the uniform strain field, becomes impossible and the secondary path, which 
produces localization, must occur. The localization after the bifurcation state can 
represent either an instability, in which case it happens at constant load, or a 
stable bifurcation at increasing load, analogous to Shanley bifurcation in plastic 
columns (Sec. 10.3). 

In this section, we first analyze a simple series-coupling model and then focus 
attention on localization in bars or specimens under uniaxial stress. Discussion of 
multidimensional localization problems is left for the subsequent sections. 

Stable States 

A simple prototype of localization behavior, which typifies the behavior of many 
structures, is a series-coupling model (Fig. 13.6a) in which one part of the 

a) b) 

p p 
e) 
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+ = 

Fipre 13.6 (a) Series-coupling model; (b) load-displacement diagram of softening part; 
(c, d, e) graphic construction of load-displacement curve. 
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structure (the localization part) undergoes further loading (suffering further 
softening damage) while the remaining part of the structure that is coupled in 
series unloads (and suffers no more damage). The strain energy released from the 
unloading part helps to drive the localization with further softening damage in the 
other part. Let C,. and Cb be the tangential stiffnesses of parts a and b; C,. > 0 if 
part a is unloading and Cb > 0 if part b is unloading; C,. < 0 if part a is loading 
and softening and Cb < 0 if part b is loading and softening. If we denote as lJq1 
the load-point displacement increment (under load P) and lJq2 the displacement 
increment at the interface between parts a and b (Fig. 13.6), then the force 
increments in parts a and b are lJF,. = C,. lJq2 and lJF, = Cb(lJq1- lJqz). So the 
second-order work is lJ2 'W = !tJF,.lJq2 + !tJF,(lJq1- lJqz) or 

lJ 2 'W = !C,. lJq~ + !Cb( lJq1- lJqz)2 (13.2.1) 

Note_ that according to Section 10.1, lJ2 'W = - T(aS)in where T =absolute 
temperature and (aS)in =internally produced entropy increment of the tangen
tially equivalent elastic structure. lJ2 'W represents the second variation of the 
Helmholtz free energy of the structure-load system if the conditions are 
isothermal or the enthalpy if the conditions are isentropic. The first-order work, 
that is, lJ'W = F,. lJq2 + F,( lJq1 - lJq2)- PlJq 11 must vanish (according to the 
principle of virtual work) if the initial state is an equilibrium state (this is indeed 
true since in equilibrium P = F,. = F,). 

Based on Section 10.1, the initial state is stable if lJ2 'W > 0 [or (aS)in < 0) for 
all admissible displacements, and unstable if lJ2 'W < 0 for some admissible 
displacement. When the load is controlled, both lJq 1 and lJq2 can be nonzero, and 
so the structure is stable only if C,. > 0 and Cb > 0, that is, if there is no softening 
in any part. If the load-point displacement is controlled, we have lJq 1 = 0 for any 
possible excursion from the initial state, and then Equation 13.2.1 yields 

lJ2 'W= !{C, + Cb) lJq~ (13.2.2) 

From the condition lJ 2 'W > 0 it now follows that the state is 

Stable if -Ca < Cb 
(13.2.3) 

Unstable if -Ca > Cb 

The critical state - Ca = Cb can be stable or unstable depending on higher 
variations of 'W. 

An elementary derivation of Equation 13.2.3 (Bafant, 1976) can alternatively 
be made as follows. The force that would have to be applied at the interface 
between parts a and bin order to preserve equilibrium is lJf2 = (Ca + Cb) lJq2 • Its 
work is lJ 2 'W = !tJ.fi lJq2 • When this work is positive, no change of state can 
happen if force lJf2 is not applied. So C,. + Cb > 0 implies stability. If lJ2 'W < 0, 
then lJq2 leads to a spontaneous release of energy, which must go first into kinetic 
energy but must eventually be dissipated as heat, due to inevitable damping. 
Whenever a spontaneous release of heat is possible, it must happen, according 
to the second law of thermodynamics, and so the initial state cannot be 
maintained. Hence lJ 2 'W < 0, or C,. + Cb < 0, implies instability. 

Equations 13.2.3 have a simple graphical meaning shown in Figure 13.6b. 
Curve 0123 represents the response of part a, which is softening for states located 
beyond the peak point 1. The limit of stability is obtained by passing a tangent 
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line of slope -Cb (a similar construction was used for elastic softening structures 
in Sec. 4.8). Tangent point 2 is the stability limit (point 2). 

If Ca < 0 and Cb > 0, the stability condition, -Ca < Cb, may also be written as 
-1/Ca > 1/Cb or C;;-1 + C;;1 < 0. So the structure is 

Stable if C = ( C;;-1 + C;;1)-1 < 0 (13.2.4) 

where C represents the tangential stiffness of the whole structure. Hence, a 
structure with a softening part is stable (under displacement control) as long as 
the stiffness of the entire structure associated with the controlled displacement is 
negative. When this stiffness becomes positive ( C < 0), the structure is unstable 
(even under displacement control). Furthermore, the critical state condition 
ca- -cb may be written as C;;-1- -C;;1 or c;;-1 + C;;1.-0 or c = 
(C;;-1 + c;;1)-1.-oo. 

Therefore, snapback in the response of the entire structure represents 
instability. The stability limit (critical state) is represented by the snapback point, 
that is, point 2 in Figure 13.6e (in which curve 0123 describes the response of the 
whole structure). This response curve can be graphically obtained from the 
response of softening part a simply by adding to each ordinate a the ordinate b of 
part b for the same force P, as illustrated in Figures 13.6c, d, e. 

The foregoing stability conditions are similar to those shown in Section 4.8 for 
elastic structures whose parts exhibit snapback. The difference is that now one 
needs to check various combinations of loading and unloading stiffnesses for 
stability. If both parts a and b have softening properties, then localization that 
destabilizes the structure is not decided by a combination of loading (softening) 
stiffnesses in both parts but by a combination of the loading (negative) stiffness of 
one part (a or b) and the unloading (positive) stiffness of the other part. 

The stability condition can also be interpreted in terms of energy exchange, 
for which only the second-order work needs to be considered. The release of 
energy due to unloading of part b is ( 6P)2 /2Cb and the energy influx into part a 
required for further softening is -(6P)2/2Ca. If (6P)2/2Cb < -(6P)2/2Ca, the 
energy released does not suffice to drive the localization, and so instability cannot 
happen. This yields the stability condition C;; 1 + C;;- 1 <0, same as before. If 
(6P)2/2Cb > -(6P)2/2Ca, there is an excess release of energy that can manifest 
itself as nothing else but kinetic energy, and so equilibrium can no longer ~xist. 

Surface of Second-Order Work 

The surface of second-order work (or internally produced entropy of structure
load system) given by Equation 13.2.1 is plotted in Figure 13.7 (Bafant, 1988c) 
for the cases of a mild softening with -Ca = Cb/6, medium softening with 
-Ca = Cb/3, and steep softening with -Ca = 2Cb/3. The surface is a patch-up of 
quadratic surfaces in various radial sectors of the plane of displacements 
(6q1, 6q2). For the same reasons as explained in Section 10.3, the quadratic 
surfaces must be joined continuously ~nd3ith a continuous slope, but with a 
discontinuity in curvature. Paths 01, 02, 03, and 04 represent the infinitesimal 
equilibrium path increments for (1) loading in both parts, (2) loading in part a 
and unloading in part b, (3) unloading in part a and loading in part b, and (4) 
unloading in both parts, as shown. 
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Figure 13.7 Surfaces of second-order work 62 'W for uniaxial specimen. (After Baiant, 
198&:.) 

Application to Uniaxially Stressed Bars or Specimens 

As a simple but important practical application, consider a uniaxially stressed bar 
or specimen of length L, uniform cross section of area A, and uniform material 
properties (Fig. 13.8a). One end of the specimen is fixed and the other is loaded 
through a spring of stiffness Cs that, for example, simulates the behavior of the 
frame of the testing machine. The applied axial force P is either tensile or 
compressive. The stress-strain diagram exhibits strain softening; see Figure 
13.8b. 

Experimental observations of uniaxial softening response of concrete as well 
as rock in tension were reported in many studies (in tension: Rusch and Hilsdorf, 
1963; Hughes and Chapman, 1966; Evans and Maratbe, 1968; Petersson, 1981; 
Reinhardt and Cornelissen, 1984; Labuz, Shah, and Dowding, 1985; in compres
sion: van Mier, 1984, 1986; see also review by Bafant, 1986b). 

We assume the specimen to be initially in a uniform state of strain E = Eo that 
lies in the strain-softening (postpeak) range. We restrict consideration only to 
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Figure 13.8 (a) Uniaxially stressed specimen and (b) softening stress--strain diagram. 

such infinitesimal deviations from this state for which the strains 6ea and 6eb, 
shown in Fig. 13.8b, can be different but uniform within segments of lengths h 
and L - h. Without any loss of generality, we may assume 6ea to represent 
loading, characterized by a negative tangent modulus E, and 6eb to represent 
unloading, characterized by a positive unloading modulus E,.. Such a deformation 
mode represents localization of strain into segment h. 

The behavior is obviously equivalent to a series-coupling model in which 
segment h corresponds to part a of stiffness Ca, and segment L- h together with 
the spring corresponds to part b of stiffness Cb. The compliance of segment L- h 
alone is (L- h )I E,.A, and the compliance of segment L- h together with the 
spring is c;• = c;• + (L- h)/E,.A. Also, Ca = E,A/h. Substituting for Ca and Cb 
in the stability condition Ca + Cb > 0 (Eqs 13.2.3), we conclude, after rearrange
ments, that the specimen is (Bafant, 1976) 

Stable if 
E, E~· 1 

- -< - -= ---------
E,. E.. (L/h) -1 + (AE,.!Csh) 

(13.2.5) 

where E~ is the strain-softening (negative) tangent modulus at the stability limit 
(critical state), at which the specimen is in a state of neutral equilibrium. If the 
inequality sign is reversed, the specimen is unstable. 

In Figure 13.8a, the localization segment is shown to develop at one end of 
the specimen. In a uniaxial model, however, the location of this segment is 
irrelevant and indeterminate. It can develop anywhere within the specimen 
length. In fact, the segment can even be subdivided in discontinuous subsegments 
and only their combined length matters. 

Effects of Size and Support Stiffness 

Equation 13.2.5 can explain the effects of specimen length and testing frame 
stiffness on the failure strain e0 = Ecr of a uniformly strained specimen. We 
assume the postpeak u(e) diagram to be concave (that is, d2u/de2 < 0), which is 
true [for smooth u(e) diagrams] for at least some distance beyond the peak-stress 
point. Then, the smaller the magnitude IE~·I of the tangent modulus (IE~I = 
- E~), the smaller is Ecr. From Equation 13.2.5 it is now clear that an increase of 
L (at constant h) causes a decrease of IE~I at the critical state. Therefore, the 
longer the specimen, the smaller is Ecr. Furthermore, it is clear that an increase in 
Cs causes an increase of IE~·I at the critical state. Therefore, the stiffer the testing 
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frame, the larger is Ecr· Since a softer testing frame has a larger stored energy (for 
the same P), it also follows that the larger the stored energy of the structure, the 
smaller is Ecr· 

To be able to observe the softening response at large strains, the test specimen 
must be short enough, and the testing frame must be stiff enough. The 
importance of testing frame stiffness has been known to experimentalists for a 
long time and was highlighted for rock especially by the researchers at the 
Chamber of Mines in Johannesburg in the 1950s and 1960s (e.g., Cook, 
Bieniawski, Fairhurst), and for concrete by Glucklich and Ishai, as well as others. 
In this classical literature, however, the localization within the specimen length 
was not considered. Even without it, one can show that the stiffer the testing 
frame, the larger is Ecn but the effect of specimen length is not revealed. 

Specimen Ductility as a Function of Length and Loading 
Frame Stiftness 

The foregoing conclusions are illustrated in Figure 13.9 (from Bafant, 1976) that 
shows for concrete the diagrams of tensile ductility as a function of the relative 
specimen length L/nda, for various values of the relative stiffness CsLIAE of the 
testing frame; here da =maximum size of the aggregate in concrete, n =empirical 
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Figure 13.9 Specimen ductility as a function of relative specimen length and relative 
stiffness of testing frame. 
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factor taken as n = 3 (see the crack band model, Sec. 13.10). The ductility is 
defined as the ratio Ec.l Ep where Ep =strain at peak stress ( o = /;). The diagrams 
were calculated assuming the stress-strain diagram to be given by Popovics' 
formula stated in the figure, with two values of empirical coefficient m (m = 2 and 
3, which applies to lower- and higher-strength concretes). 

Inadmissibility of Arbitrarily Small Size of Localization Region 

Now consider the effect of h, the size (length) of the localization (softening) 
region. For the concave part of the postpeak o(e) diagram, Equation 13.2.5 
shows that the smaller the value of h, the smaller is Ecr· Especially, 

(13.2.6) 

where Ep = strain at peak stress for which E, = 0. It must be emphasized that the 
diagrams in Figure 13.9 (bottom) show the limits of stable states of uniform 
strain, corresponding to snapback instability with neutral equilibrium. As we will 
see, localization develops in a stable manner before these limits are reached, and 
the stability loss (snapback) occurs at a smaller average strain than these diagrams 
indicate. But the solution shown in Figure 13.9 has the advantage of simplicity. 
Since instability occurs when 62 'W < 0 becomes possible at any h, it follows that, 
for the first instability, 

(13.2.7) 

To examine the energy consequence, assume further that the o(e) diagram 
before the peak is straight, that is, elastic. In that case, the unloading retraces the 
elastic loading, and so the energy dissipation in the unloading segment L - h is 
zero. In the loading (softening) segment the energy dissipation per unit length of 
the bar is nonzero and finite, but because h-+ 0, the total energy dissipation 
during strain localization in the specimen is zero. Since strain localization is the 
mechanism of failure, we have the same unrealistic property as obtained in the 
preceding section on wave propagation in strain-softening materials. 

From the fact that softening does exist in experiments and that energy 
dissipation during failures due to strain localization must be finite, Bafant (1976) 
concludes that a realistic macroscopic continuum model must be endowed with 
some property that limits localization to a region of a certain minimum (finite) 
size. The simplest way to do that is to require that the size h of the softening 
region cannot be less than a certain characteristic length I that is a material 
property. A model based on this condition, called the crack band model (Ba!ant 
and Oh, 1983) was shown to yield results that are in good agreement with 
experiments. A more general and fundamental way to prevent localization of 
softening into a region of vanishing size is to replace the ordinary (local) continuum 
model with a nonlocal model (see Sec. 13.10). 

Bifurcation and Stable Path 

The bifurcations we analyzed so far represent instabilities and occur at neutral 
equilibrium. However, bifurcations can also occur without neutral equilibrium at 
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increasing displacement and no loss of stability. After the peak-stress state, two 
different strain increments {)E = {)u/ £,and {)E = {)uf Eu are possible for the same 
stress decrement {)u in the specimen. Therefore, each state after the peak-stress 
state is a bifurcation state; there is a continuous sequence of infinitely many 
bifurcation states (Fig. 13.10c, d; see also Theorems 10.4.2 and 10.4.3). If h is 
fixed, then just two paths emanate from each bifurcation point. However, if the 
subdivision of specimen length into softening and unloading segments h and L - h 
is arbitrary, a fan of infinitely many possible paths emanates from each 
bifuraction point (Fig. 13.10g). 

To determine the stable path, we need to compare the second-order work 
{)

2'W done along the equilibrium path. This work is calculated easily as 
{)

2'W = !{)P{)q 1 = !C{)qi where (jp =equilibrium reaction change due to imposed 
{)q 1, and C = (C; 1 + C; 1

)-
1 =overall structural stiffness. According to Section 

10.2, the path that occurs must minimize {)2 'W, and so it must minimize C. 
For path 1, which preserves uniform strain, we have C = [C; 1 + (h/E,A) + 
(L-h)/E,Ar 1

• For path 2, which involves localization, we have C= 
[C; 1 + (h/E,A) + (L- h)IEuAr 1

• Path 2 must occur if the latter expression for 
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Figure 13.10 Bifurcation of equilibrium path in strain-softening uniaxial test specimen. 
(After Baiant, 1988c.) 
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C is less than the former. But this is always true because E,. > 0 and E, < 0. 
Hence, the strain must localize as soon as a localization path exists, which is at 
the peak-stress point. Furthermore, if we compare the values of C for various h, 
we see that the smaller the value of h, the smaller is C. Therefore, the strain 
localization segment will be the shortest possible. In view of our previous 
argument below Equation 13.2.7, it is now again necessary to introduce into the 
material model some material property that limits localization (e.g. the charac
teristic length of nonlocal continuum, see Sec. 13.10). 

The foregoing conclusions can be instructively derived from the diagrams in 
Figure 13.10. We assume a polygonal o(e) diagram, as shown in Figure 13.10c, 
with unloading defined by lines 16, 27, 38, and 49. For the sake of illustration 
suppose that h = L/2, and that there is no spring (that is, Cs--+oo). By 
equilibrium, stress o in the softening and unloading segments must be the same. 
The response diagrams of stress versus the average strain £ = q tf L, shown in 
Figure 13.10d, can be constructed graphically by considering various stress values, 
taking for each of them the corresponding abscissa c for the softening segment 
and abscissa d for the unloading segment, and finally plotting the averages 
(c + d)/2 as the abscissae in the o(£) diagram. (In the general case, this would be 
weighted averages, with the weights determined by the values of h and Cs, and 
varying h would produce a fan of slopes from points 1, 2, 3, 4.) Assuming the 
localization to begin at various states 1, 2, 3, one obtains various paths shown as 
1ABCD, 2GHJ, 3EF, 4KL, etc., starting at bifurcation points 1, 2, 3, 4. 

For structures with a single controlled displacement, the limit of stable states 
is the snapback point. Therefore, the stability limit for uniform strain is point 4 in 
Figure 13.10d. For the various localized paths, the limits of stable states are 
points B, H, and E in Figure 13.10d, and not the bifurcation points 1, 2, 3. At the 
bifurcation points the equilibrium (under displacement control) is stable (note the 
similarity with Shanley's tangent modulus load, see Sec. 10.3). 

The stable postbifurcation path of a softening structure with a single 
controlled displacement is that of the steepest descent possible (Sec. 10.2). This 
follows from the values of the second-order work for the same lJq I> which are 
represented by the areas of the cross-hatched triangles in Figure 13.10e (they are 
both negative, and so the area that is larger in magnitude indicates the correct 
path). Therefore, at every bifurcation point such as 1, 2, or 3 (Fig. 13.10d), the 
steeper path shown is followed. In a continuous loading process, the localization 
must begin at the peak-stress state (point 1), and the specimen must follow the 
path 01ABCD, which leads to snapdown failure at point D. 

Can the stable softening states of uniform strain, such as point 2 or 3, ever be 
reached? They can, but only by some other process, for example, if E, were made 
negative by heating or irradiation at constant qt> or if the specimen were 
temporarily forced to deform uniformly by gluing it to a parallel stiff plate, 
extending it jointly with the plate, and the glue were dissolved as the ends are 
kept fixed. The specimen would then remain stable in a state such as point 2, and 
upon further extension would start to localize along path 2G. 

Now we must realize that the ductility diagrams in Figure 13.9, based on 
snapback instability of uniform strain, give only upper bounds on the true 
ductility. Snapback takes place at a smaller Ecrl Ep because the strain distribution 
must have already localized (in a stable manner) before. However, this solution 
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of ductility, which is not as simple as that for uniform strain, is still not perfect 
since it neglects the three-dimensional behavior during failure. 

Some further interesting viewpoints of the uniaxial localization instability were 
presented in Ottosen (1986) and a subsequent discussion by Borre and Maier 
(1988). 

Alternative: lmperfedion Approach to Bifurcation 

The fact that softening must localize right at the peak-stress state can also be 
proven, independently of thermodynamics, by considering imperfections. 
Suppose that, for example, the strength (peak-stress ap) in segment h is slightly 
smaller than the strength in segment L - h. Consequently, when segment h 
reaches the peak stress, segment L - h has not quite reached it yet (point U in 
Fig. 13.10c). After that both stresses decrease. Segment h can undergo strain 
softening along line 12 (Fig. 13.10c), but segment L- h cannot pass over the 
peak-stress point into the softening range, and so it can only unload. 

Further suppose that the value of strength aP is a random variable of Weibull 
distribution, which has a lower bound. Then the probability that the minimum 
value of aP within the specimen could be reached in more than one cross section 
is zero. This means that only one cross section can reach strain softening, that is, 
h- 0 and L - h- L. But this implies that a specimen that is elastic up to the 
peak stress would fail with zero energy dissipation, which is physically impossible. 
The remedy is to introduce some spatial averaging, that is, adopt a nonlocal 
formulation (Sec. 13.10). 

Identification of Softening Stress-Strain Relations from Tests 

The strain localization complicates experimental determination of strain-softening 
material properties from tests. Previous evaluations of test data from small tensile 
or compression specimens have generally assumed the strain to be uniform even 
after the peak stress. However, this can be assumed only for small enough 
specimens whose size does not exceed the minimum possible length I of the 
localization segment (which was introduced below Equation 13.2.7 and is roughly 
equal to the characteristic length I, Section 13.10). 

To simplify the material identification and avoid complicated finite element 
analysis of test specimens, one may assume a series-coupling model, in which a 
loading region of volume fraction f undergoes uniform strain softening and an 
unloading region of volume fraction 1 - f unloads. The observed mean strain is 
E = fe + (1- f)Eu where E =true postpeak strain in the loading (softening) region 
and Eu =strain in the unloading region, which follows the unloading branch from 
the peak-stress point. From this (Bafant, 1989a): 

e=ye+(j-1)Eu (13.2.8) 

For tensile specimens, one may assume that f = I I L. Obviously, E can be 
determined only if I is known (see Prob. 13.2.8). For specimens that exhibit 
postpeak softening in compression, shear, or other complex modes, the value of I 
might depend on the size and shape of the cross section. 
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Equation 13.2.8 may be demonstrated using recent uniaxial compression data 
for concrete reported by van Mier (1984, 1986). His measured diagrams of 
average stress u versus average strains £ for specimens of the same concrete, 
same cross section, and lengths L = 5, 10, and 20 em are plotted as the data 
points in Figure 13.11. From the present uniaxial series-coupling model we have 
£ = fe + (1- f)Eu where f = 1/ L and Eu =unloading strain assumed as shown in 
the figure. Assuming I= 5 em, we use the curve for L = 5 em as the material u(e) 
curve, and the curves for L = 10 em and 20 em calculated on this basis are plotted 
in the figure (after Bafant, 1989a). The agreement with the data is seen to be 
very close. This confirms that the series-coupling model is an acceptable 
approximation, despite the fact that the compression failure mechanism is 
three-dimensional. 

The figure also shows the calculated curve for L = 40 em; it exhibits a 
snapback, and so a test of a specimen of this length could not have succeeded. 

Some related but more sophisticated and highly interesting ideas for iden
tification of softening constitutive relations have been advanced and developed 
for shear bands in three dimensions by Ortiz (1989). 

Relation of Strain Softening to fracture Energy 

Strain softening in brittle heterogeneous materials such as concrete, rocks, or 
ceramics is the macroscopic consequence of distributed microcracking. The 
combined energy dissipated by the microcracks over length h of the softening 
zone per unit cross-section area is the fracture energy G1. Consider a finite drop 
of stress from the peak value u = t: (=tensile strength) all the way to zero. 
Setting A= 1, the work done on the softening segment of length h may be 
expressed as .6. W = - Y?h/ E, or as .6. W = G1 - .6.U where .6.U = Y?h/ Eu = 
energy released from the material between the microcracks in the softening 
region, in which E, and E" now represent the average softening and unloading 
moduli for the stress drop from the peak point all the way down to zero (Fig. 
13.12). Equating these two expressions for .6. W, we get 

J'2h ( 1 } ) (fEp foo ) G1 = - 1
- -=---=- = h ude + ude 
2 Eu E, e1 Ep 

(13.2.9) 
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Figure 13.11 Bafant's (1989a) fit of uni
axial compression stress-strain diagrams 
measured by van Mier (1984, 1986). 
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where E1 is the strain at full unloading. So we conclude that the fracture energy is 
equal to the area under the curves of loading and unloading emanating from the 
peak-stress point; see Figure 13.12 (Bafant, 1982a). 

Summary 

The series coupling of a softening element with an elastic element becomes 
unstable when the load-deflection diagram reaches a snapback point. This occurs 
at a certain finite negative tangential stiffness of the softening element. In a 
uniaxially stressed specimen of a strain-softening material, the strain localizes into 
a segment whose length must be determined by material properties. In a 
continuous loading process the localization starts at the peak-stress point, but 
snapback instability may occur later, at a certain finite value of negative tangent 
modulus. The localization must be taken into account in identification of material 
properties from test data. The series-coupling model provides a simple descrip
tion of the effects of size (or length) and of support stiffness on the localization 
instability. 

Problems 

13.2.1 Assume the a( E) diagram to be a parabola, a= EE(l- E/a) where 
a = constant. Calculate the limit of stability of uniform strain assuming that 
(a) h = L/4, Cs-+oo, (b) h = L/4, Cs = EA/L, (c) h = L/8, Cs-+oo. 

13.2.2 Do the same, but calculate the postpeak curve of a versus the average 
strain £ assuming localization to begin at the peak stress. Then find the failure 
state as the snapback point of this curve. 

13.2.3 Some experimentalists, for example, Evans and Marathe (1968), managed 
to measure tensile softening response of concrete specimens in a soft 
testing machine. The trick was to stabilize the specimen by coupling to its ends 
very stiff parallel steel bars of stiffness CP, as shown in Figure 13.13a where 
Cm represents the stiffness of the testing machine. Segment L - h together 
with springs Cm and CP represents part b; calculate its stiffness and then 
analyze the effect of CP on stability. (Bazant and Panula (1978), showed that 
this model agrees with test results.] 
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13.2.4 Damage causes a decrease of unloading modulus. Consider the triangular 
a( E) diagram in Figure 13.13b with E1 = 5EP, and assume the unloading 
diagrams to coincide with the secants. Calculate the limit of stability of 
uniform strain for the same cases as in Problem 13.2.1. 

13.2.5 The series-coupling model can describe the effect of structure size on 
ductility, but not on its maximum nominal stress at failure ( cf. size effect law 
in Sec. 12.2). However, a system of localizing softening bars coupled in 
parallel, with a statistical distribution of their strength values, can describe a 
kind of effect, as shown by Bafant and Panula (1978). Illustrate it in a simple 
manner, considering only two parallel bars having the same properties as in 
Problem 13.2.4 but one of them with a strength 25 percent larger than the 
other. Consider that h = L/4 for each bar. 

13.2.6 Analyze stability and bifurcation for a localizing softening specimen that 
rests on a simply supported beam of span I and bending stiffness El (Fig. 
13.13c). 

13.2. 7 Analyze stability and bifurcation in the system of two identical softening 
specimens loaded as shown in Figure 13.13d. First consider the balance beam 
to be rigid. (A similar problem is solved in Sec. 13.7.) Then consider the 
balance beam to be flexible. 

13.2.8 Assuming the series-coupling model for material test specimens, consider 
the compatibility conditions IE( a)+ (L; -I)Eu(o) = L;E;(o) where L; =various 
lengths of specimens of the same cross section and £;(a) = corresponding 
mean strains measured. It might seem that by writing these conditions for two 
different lengths L;, one could solve from these equations both X= I and 
Y = IE( o) and thus identify the value of I from size effect data. Show that, 
unfortunately, this equation system has no solution because it has a zero 
determinant. (This proves that I cannot be identified solely from test data on 
the effect of specimen length; different /-values give equally good fits.) 

13.3 LOCALIZATION OF SOFTENING DAMAGE INTO 
PLANAR BANDS 

A uniform state of strain softening in an infinite space or in a layer can localize, in 
a stable or unstable manner, into an infinite planar band. This localization 
problem, which is of considerable interest to the mechanics of earthquakes as well 
as shear banding in metals, is one-dimensional and similar to the uniaxial 
softening that we just analyzed, except that the triaxiality of stress needs to be 
taken into account. These localizations are rather sensitive to the form of the 
nonlinear triaxial constitutive relation. 

Localization into planar bands is the simplest mode of instability or bifurca
tion in a uniformly stressed space. Some of the basic principles ensue from 
Hadamard's work (1903), which was extended to inelastic behavior by Thomas 
(1961), Hill (1962a), and Mandel (1966). An in-depth .discussion was given in a 
review by Rice (1976). Thorough studies of bifurcation and neutral equilibrium 
states were made by Rudnicki and Rice (1975) and Rice (1976). These studies 
were focused primarily on localization caused by the geometrically nonlinear 
effects of finite strain before the peak of the stress-strain diagram (i.e., in the 



858 INElASTIC, DAMAGE, AND FRACTURE THEORIES 

plastic-hardening range), although critical states for negative values of the 
plastic-hardening modulus were also identified. Although these studies repre
sented an important advance, they did not actually address the stability conditions 
but were confined to neutral equilibrium conditions for the critical state. They did 
not consider a general incremental stress-strain relation but were limited to von 
Mises plasticity (Rudnicki and Rice, 1975) or Drucker-Prager plasticity (Rudn
icki, 1977) (in some cases enhanced with a vertex-hardening term). They also did 
not consider bodies of finite dimensions, for which the size of the localization 
region usually has a major influence on the critical state and, in the case of planar 
localization bands, did not consider the effect of unloading outside the localiza
tion band, which is important for finite bodies. A more general analysis which 
takes these conditions into account was presented in Batant (1988a). The present 
section, based on this article, explains exact analytical solutions for some 
multidimensional localization problems with softening, using the method ex
pounded in the previous section. The presentation emphasizes the work in
equalities that describe the stability condition and determine the postbifurcation 
path, while the previous studies have dealt merely with the equations for neutral 
equilibrium or bifurcation. 

Stability Condition for the Softening Band within a Layer 
or Infinite Solid 
Let us analyze the stability of a uniform state of softening against localization in 
an infinite layer, which is called the softening band (or localization band) and 
forms inside an infinite layer of thickness L (L '2: h); see Figure 13.14. The 
minimum possible thickness h of the band is assumed to be a material property, 
proportional to the characteristic length /. The layer is initially in equilibrium 
under a uniform (homogeneous) state of strain eg and stress d;} assumed to be in 
the strain-softening range. Lowercase subscripts refer to Cartesian coordinates X; 

(i = 1, 2, 3) of material points in the initial state. 

d) 
(J 

Figure 13.14 (a, b) Planar localization band in a layer; (c) pure shear; (d) stress-strain 
diagram with softening and unloading; (e) layer supported on an elastic foundation. 
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The initial equilibrium is considered to be disturbed by small incremental 
displacements 6u; whose gradients 6u;.i are uniform both inside and outside the 
band. The values of 6u;.i inside and outside the band are denoted as 6u:.i and 
6u't,i and are assumed to represent further loading and unloading, respectively. So 
the increments 6u;,i represent strain localization. We choose the x2 axis to be 
normal to the layer (Fig. 13.14). As the boundary conditions, we assume that the 
surface points of the layer are fixed during the incremental deformation, that is, 
6u; = 0 at the surfaces x2 = 0 and x2 = L of the layer. If the strains inside and 
outside the band are homogeneous, compatibility of displacements at the band 
surfaces requires that 

h 6ub + (L -h) 6u't,2 = 0 (i = 1, 2, 3) 

(13.3.1) 

(13.3.2) 

Assume the incremental material properties to be characterized by incremen
tal moduli tensors D:ipq and Dijpq for loading and unloading. These two tensors 
may either be prescribed by the given constitutive law directly as functions of E~ 
and possibly other state variables, or they may be implied indirectly. The latter 
case occurs, for example, for continuum damage mechanics. The crucial fact is 
that Dijpq differs from D:ipq and is always positive definite, even if there is strain 
softening. 

Noting that E;i = (u;.i + ui,;)/2 and assuming symmetry D;ikm = Diimk• we may 
write the incremental stress-strain relations as follows: 

6oj; = DJikm f>E~m = Dfikm f>u~,m 

f>oj; = D'/;km f>E/:m = D'/;km 6u/:,m 

for loading 

for unloading 

(13.3.3) 

(13.3.4) 

Stability of the initial equilibrium state (Sec. 10.1) may be decided on the 
basis of the second-order work 62 'W' that must be done on the layer per unit area 
in the x1x3 plane in order to produce the increments 6u;. This work represents 
the Helmholtz free energy under isothermal conditions and the total energy under 
isentropic conditions. Using Equations 13.3.3, 13.3.4, and 13.3.1, as well as the 
relation 6u't,2 = -6ubh/(L- h), which follows from Equation 13.3.2, we get 

()
2 'W' = ~ 6o':z, 6ub + L ; h 6ifz, 6u't,2 = ~ ( 6o':z, - 6o2;) 6ub 

= ~ (D~i2 6u},2- Di,i2 6uj,2) 6ub (13.3.5) 

2 h ( I h D" ) J1. I J1. I 6 'W' = 2 D2ii2 + L _ h 2ti2 vui.2 vU;,2 (13.3.6) 

We may now denote the 3 x 3 matrix: 

I h D" Z;i = D2ii2 + L _ h :zti2 (13.3. 7) 

(13.3. 7a) 
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This matrix is symmetric (Z;i = Zi;) if and only if D;..i2 = D~ii2 and D~i1- = D'iii2· 
This is assured if D~;im as well as D'k;im has a symmetric matrix. Our derivation, 
however, is valid in general for nonsymmetric Z;i or D~iim· 

The necessary stability condition (Bafant, 1988a) may be stated according 
to Equation 13.3.6 as follows: 

62'W = !!_ 6u~ 2Z·· 6u~ 2 > 0 2 '· ., J, 
for any 6ub (13.3.8) 

Positive definiteness of 62 'W (or th.e 3 x 3 matrix Z;i) is a necessary condition 
of stability. (We cannot claim this to be sufficient for stability since we have not 
analyzed all the possible localization modes; however, changing > to < yields a 
sufficient condition for instability.) 

Positive definiteness of the 6 x 6 matrix Z* = D, + Duhi(L- h) (where D, and 
Du are the 6 x 6 matrices of incremental moduli for loading and unloading) of 
course implies stability. However, the body can be stable even if Z* is not 
positive definite. 

Discussion of Various Cases 

If the softening band is infinitely thin (hi L- 0), or if the layer is infinitely thick 
(L/h-oo), we have Z;i = D;.,i2, and so matrix Z loses positive definiteness when 
the (3 x 3) matrix of D;.,i2 ceases to be positive definite. This condition, whose 
special case for von Mises plasticity was obtained by Rudnicki and Rice (1975) 
and Rice (1976), indicates that instability may occur right at the peak of the 
stress-strain diagram. However, for a continuum approximation of a hetero
geneous material, for which h must be finite, the loss of stability can occur only 
after the strain undergoes a finite increment beyond the peak of the stress-strain 
diagram. For L- h, the softening band (under displacement control) is always 
stable. 

The strain-localization instability in a uniaxially stressed bar, which we 
analyzed in the previous section, may be obtained from the present three
dimensional solution as the special case for which the softening material is 
incrementally orthotropic, with D2222 = E, ( <0) and D2222 = Eu (>0) as the only 
nonzero incremental moduli. Equations 13.3.7 and 13.3.8 then yield the stability 
condition in Equation 13.2.5 for Cs = 0 (Bafant, 1976). This simple condition 
clearly illustrates that for finite L/ h the localization instability can occur only at a 
finite slope IE,I, that is, some finite distance beyond the peak of the stress-strain 
diagram. If the end of the bar at x =Lis not fixed but has an elastic support with 
spring constant Cs, one may obtain the solution by imagining the bar length to be 
augmented to length L', the additional length being chosen so that it has the 
same stiffness as the spring; that is, L'- L = CsiEu. Therefore, the stability 
condition is - E,/ Eu < h(L' -h), which yields the same condition as given in 
Equation 13.2.5. 

The stability condition for a layer whose surface points are supported by an 
elastic foundation (Fig. 13.14e) may be treated similarly, that is, by adding to the 
layer of thickness L another layer of thickness L'- L such that its stiffness is 
equivalent to the given foundation modulus. 
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The case when the outer surfaces of the layer are kept at constant load 
p? = u?!li during localization is equivalent to adding a layer of infinite thickness 
L'- L. Therefore, the necessary stability condition is that the 3 x 3 matrix of 
D~i2 be positive definite, that is, no softening can occur. 

Another simple type of localization may be caused by softening in pure shear, 
Figure 13.14c. In this case, 6u1,2 :#: 0, c5~.2 = c5u3,2 = 0, and D~112 = G,, D~112 = 
Gu are the shear moduli. According to Equations 13.3.7 and 13.3.8, the necessary 
stability condition is 

G, h 
--<-- (13.3.9) 

Gu L-h 

When the normal to the layer and the localization band has an arbitrary 
orientation with respect to the material coordinates defined by direction cosines 
n;, then the components a21 and u;,2 must be replaced by a;ini and u;,fli· This may 
be done in every step of the preceding derivation, and the conclusion is that the 
state of uniform strain is stable against localization into a band of any orientation 
n; if the 3 x 3 matrix 

(13.3.10) 

is positive definite. If it is indefinite the state is unstable, and if it is positive 
semidefinite (the critical state), the state can be stable or unstable depending on 
higher variations. Matrix Z, of components Z;i• is called the localization matrix. 
For the special case of a localization band in an infinite space, Equation 13.3.10 
becomes 

Z;i(n)=nkD~iimnm (L-+oo) (13.3.11) 

This special localization matrix can be derived in a variety of ways, for example, 
directly from the conditions of uniqueness or bifurcation, or from the condition 
that the wave speed should be real (e.g., Ortiz, 1987). 

While in a layer an infinitely long softening band must be parallel to the layer 
surface, for an infinite solid the softening band can have any orientation. Since 
L-+ oo, we have Z;i = D~i2, and if the band is normal to the x2 axis, stability 
requires that c52'W' = c5ubD~i2 c5uj,2h/2 =positive definite. To generalize this 
condition to a band of arbitrary orientation, we may carry out an arbitrary 
rotation transformation of coordinates from X; to x;. The transformation relations 
are X;= c;,xj where c;i are the direction cosines of the old coordinate base vectors 
in the new coordinates. According to the rules of transformation of tensors, we 
now have 2c52 'W' = h(c;kc2m c5u~.m)(c2pC;qCi,c2sD~qrs)(ciuc2vu~.v) where the primes 
refer to the new coordinates xj. Noting that c;kC;q = c5kq• ci,ciu = c5,u, and that 
D~;km must be symmetric, we obtain 

2c52'W'= hc5apqD~qsr c5as, with c5apq = ~(c2P c5uq.m C2m + C2p 6um.qc2m) (13.3.12) 

In the space of six strain components, c5apq is a 6 x 1 column matrix. For arbitrary 
rotations, c5apq can have any values. Thus the 6 x 6 matrix of moduli D~qs, and 
also D~ikm• must be positive definite in order to ensure that the strain cannot 
localize into an infinite planar band of any orientation. 

The same requirement was stated by Hadamard (1903), who derived it from 
the condition that the wave speed would not become imaginary (cf. Eq. 13.1.37). 
Hadamard's analysis, however, implied that D" = D'. 
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Finally, consider another case of boundary conditions: The case when the 
plane surfaces of an infinite layer slide freely over rigid bodies during the 
localization. The boundary conditions at x 2 = 0 and x2 = L now are 6a21 = 6a23 = 
0. Similar to Equation 13.3.6, we now have 

62'W = ~ ( D~222 + L ~ h Di2222) 6u~.2 6u~.2 
+ ~( 6N11 6u •. 1 + 6N33 6u3.3 + 26N13 6uu) (13.3.13) 

in which 6N11 , 6N33, and 6N13 are homogeneously distributed in-plane incremen
tal normal and shear force resultants over the whole thickness of the layer. 
Overall equilibrium now requires that 6N11 = 6N33 = 6N13 = 0. Hence, the neces
sary condition of stability against localization is 

t h Du 0 
D2222 + L _ h 2222 > (13.3.14) 

Numerical Examples 

The limit of stable states according to Equation 13.3. 7 was analyzed in Bafant 
and Lin (1989) for the case of associated and nonassociated Drucker-Prager 
elastoplastic materials, for which the loading function and the plastic potential 
function are 

f(a, K) = t +\II( a")- K = 0 g(a, K) = t +ell( a")- K = 0 (13.3.15) 

. h" h - ~ 'J (1 ) 112 • • v /3 I . m w 1c T = yJ2 = 2s;isii =stress mtens1ty, a = akk = vo umetnc stress, 
K = plastic-hardening parameter, and ell, \II = empirical monotonically increasing 
functions. As usual, we introduce the notations 

H=aK 
al 

(13.3.16) 

where }.. is the proportionality parameter in the flow rule, de1j = 
( ag I aa;i) dl; H = plastic modulus (which is positive for strain hardening 
and negative for strain softening), {J' =internal friction, and {J = dialatancy 
ratio of the material. Using the flow rule and eliminating d).. (as shown in general 
in Sec. 10.6), one can show that, for loading, 

(~s;i + K{J6;i)(~skm + K{J'6km) 

G+K{J{J' +H 
(13.3.17) 

in which Dijkm =isotropic tensor of elastic moduli; Dijkm = (K- ~G)6;i6km + 
2G6;k6im and G, K =shear and bulk elastic moduli. Note that for nonassociated 
plasticity ({J' :1= {J), D:ikm is nonsymmetric, and for associated plasticity ({J' = {J), it 
is symmetric (with respect to interchanging ij with km). 

The condition of stability limit here depends on four nondimensional material 
parameters: v, H/G, {J, and {J'. In addition, it depends on the relative size L/h 
and on the ratios S;i/ t characterizing the initial stress state. The influence of these 
parameters was studied numerically by Bafant and Lin (1989). The eigenvalues of 
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the localization matrix Z (Eq. 13.3.7) were calculated with a computer for various 
combinations of the parameter values. Using Newton's method, the material 
parameter combinations for which the smallest eigenvalue vanishes were found. 
Some of the results are plotted in Figure 13.15 for initial states representing 
uniaxial tension and pure shear. The states below each curve are stable, and those 
above it unstable. 

As expected, these curves show that the thicker the layer, the lower the 
magnitude of the plastic tangential modulus H at which the layer becomes 
unstable. However, the asymptotic values of the curves for L--+oo show a 
surprise. For an infinitely thick layer (infinite space), the limit of stability against 
localization does not occur at H--+ 0, but at some finite magnitude of H. By 
contrast, the stability limit of uniaxial localization (Sec. 13.2) at L--+ 0 occurs at 
H = 0. This is also true for the present triaxial solution when the incremental 
moduli are assumed to be isotropic (as will be shown in Fig. 13.21, curves 2 and 
3). 

When Diikm is nonsymmetric, so is matrix Z;i (Eq. 13.3.10). In that case, the 
states for which Z;i is singular ( det Z;i = 0) represent only states of path 
bifurcation (or loss of uniqueness, cf. Sec. 10.4) but not states at the limit 
of stability (i.e., the limit of positive definiteness of Z;i). Since, for any matrix 
Z;i, E; Ei Z;jX;Xi = E; Ei Z;r;Xi where x; =arbitrary column matrix and Z;i = 
(Z;i + Zi;)/2 =symmetric part of matrix Z;i, the limit of stable states (i.e., of 
positive definiteness of Z;i) is characterized by the singularity of matrix Z;i (which 
is not the same as the singularity of Z;i; see Prob. 4.1.5 and Sec. 10.4). So, in the 
case of a nonsymmetric matrix, one needs to distinguish between (1) the critical 
states of path bifurcation, for which det (Z;i) = 0 (i.e., one eigenvalue of Z;i is 
zero), and (2) the critical states of stability limit, for which det (Z;i) = 0 (i.e., the 
smallest eigenvalue of Z;i is zero). The second condition is more stringent (cf. 
Bromwhich bounds, Equation 10.4.5; for an illustration, see Prob. 4.1.5). The 
curves shown in Figure 13.15 (taken from Ba!ant and Lin, 1989) indicate the 
states of path bifurcation (which represents neutral equilibrium if the correspond
ing eigenvector does not represent unloading). However, the differences between 
these curves and those for the stability limit are small for the present problem 
(and graphically distinguishable only for fJ' < 0.5). 

Generalization for Geometrically Nonlinear Effects 

Strain localization in an infinite planar band can be solved easily even when the 
geometrically nonlinear effects due to finite strains and finite rotations are taken 
into account. The deviations c5u; and c5e;i from the initial state with homogeneous 
stresses at again are considered to be infinitely small, and the energy expression 
c52'W that governs stability is second-order small. The contribution to c52W that 
arises from the geometrically nonlinear finite-strain expression, is also second
order small, and so it may not be neglected. Then the material stress increment 
c5a;i in the work expression needs to be replaced by the mixed (first) Piola
Kirchhoff stress increment c5T;i• which is referred to the initial state and is 
nonsymmetric (Sec. 11.2). As is well known, c5T;i = c5s;i- a?k c5ui.k +at c5uk.k 
where c5s;i =material increment of the true (Cauchy) stress. Since neither c5a;i nor 
c5T;i is invariant at coordinate rotations, one must use in the incremental 
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Fipre 13.15 Plastic modulus H at the limit of stability against localization into planar 
bands in (a, b) pure tension and (c, d) pure shear, as a function of ratio L/h of thicknesses 
of layer and planar band. (After Bazant and Lin, 1989.) 

stress-strain relation the objective stress increment l>a;i (representing the 
objective stress rate times the increment of time); l>a;i is symmetric. The 
relationship between l>a;i and l>t:;i (Sec. 11.2) may be written in the general form 

with 
(13.3.18) 

(13.3.19) 

in which we substituted l>a;i = D;ikm l>uk,m· Coefficients R;ipqn are certain con
stants that take into account the geometric nonlinearity of finite strain. The values 
of R;ikmpq are different for various possible choices of the objective stress rate and 
the associated type of the finite-strain tensor, as shown in Chapter 11. The 
expressions that are admissible according to the requirements of tensorial 
invariance and objectivity are (Bafant, 1971) 

(13.3.20) 

where a can be an arbitrary constant (Chap. 11). For each different a value, 
different values of incremental moduli D;ipq must be used so as to obtain 
physically equivalent results; generally (cf. Ba.Zant, 1971, or Eq. 11.4.5) 

(13.3.21) 

From Equation 13.3.5, in which l>a;i must now be replaced by l>t:;i• the 
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necessary stability condition is (Bafant, 1988a) 

2c52 'W = h 6r21 6ut2 + (L- h) c5T2. 6uf.2 

for any c5ub 

in which 

865 

(13.3.22) 

Z H' h H" D' h D" L R 0 ( 3 3 23) 
ii = 21i2 + L- h 2li2 = 2li2 + L- h 2ii2 + L- h 2li2rsars 1 .. 

In particular, if we use the Lagrangian (Green's) finite strain that is associated 
with Truesdell's objective stress rate (a= 0), we have 

(13.3.24) 

The condition det (Z;i) = 0 obviously represents the critical state of path 
bifurcation with strain localization (tantamount to stability loss if Z;i is sym
metric). Rudnicki and Rice (1975) derived a special case of this condition for 
which (1) the constitutive law consists of von Mises plasticity, possibly enhanced 
by vertex hardening; (2) L/h-+oo (infinite space); (3) a= 1 (Jaumann's rate); and 
( 4) the initial stress ~ is pure shear a~2• Their analysis was concerned only with 
the critical state of neutral equilibrium or bifurcation, rather than with stability. 
The values of the unloading moduli Dijkm and the fact that they are different from 
D~ikm and positive definite were irrelevant for their analysis. 

Rudnicki and Rice (1975) showed that, due to geometric nonlinearity, the 
critical state of strain localization can develop in plastic materials while the matrix 
of D:ikm is still positive definite, that is, before the final yield plateau of the 
stress-strain diagram is reached. This may explain the formation of shear bands in 
plastic (nonsoftening) materials. The destabilizing effect is then due exclusively to 
geometric nonlinearity. According to a geometrically linear analysis (small-strain 
theory), strain localization could develop in plastic (nonsoftening) materials only 
upon reaching the yield plateau but not earlier. 

From Equation 13.3.23, it appears that the geometric nonlinearity can have a 
significant effect on strain localization only if the incremental moduli for loading 
are of the same order of magnitude as the initial stresses ~; precisely, if 
max ID:ikml and max 1~1 are of the same order of magnitude. (The unloading 
moduli Dqkm of structural materials are always several orders of magnitude 
larger.) Thus the importance of geometric nonlinearity depends on D:ikm· For 
strain-softening types of localization, the geometric nonlinearity can be important 
only if the instability develops at a very small negative slope of the stress-strain 
diagram, which occurs very close to the peak-stress point. This can occur only if 
the layer thickness L is much larger than I. If L- h «I, instability occurs when 
the downward slope of the stress-strain diagram (Fig. 13.14d) is of the same 
order of magnitude as the initial elastic modulus E, and this is inevitably orders of 
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magnitude larger than the initial stresses d;}. Therefore, we must conclude that 
the role of geometric nonlinearity in localization due to strain softening can be 
significant only when the localization occurs very near the peak point of the 
stress-strain diagram (or possibly another point of very small slope). 

Bifurcation and Stable Path 

For the special case when only one of the three stress components ou at the 
surface is nonzero and does work, the conclusion from Section 10.2 for systems 
with a single load is applicable. It immediately follows (same as in Sec. 13.1) that 
localization must begin right at the peak-stress states. 

When more than one of the components ou at the surface works, the 
peak-stress state is not unambiguously defined. If there is bifurcation, the 
postbifurcation path is determined by comparing the work cS2 w<2> along the 
localization path with the work cS2 'W'1> along the path preserving uniform strain 
(main path). Since, in contrast to stability analysis, we now need to consider only 
equilibrium states with uniform stress, o2, = o'u = o21 , it is more convenient to use 
the compliance tensors qikm and Cijkm whose 6 x 6 matrices are the inverses of 
those of D~ikm and Dijkm. We have <Sub= Cui2 cSo21 and cSur,2 = C~i2 cSo2i, and so 
the relative displacements between the opposite surfaces of the layer are 

(13.3.25) 

The second-order work done on the layer along the equilibrium path is 
cS2W = !<Sou cSv1• Solving <Sou from Equation 13.3.25, we have, along the path of 
localization (path 2), 

cS2w<2> = !(hC' + (L- h)C"]ij1 cSv1 cSvi (13.3.26) 

where C' and CU are the 3 x 3 matrices of C~i2 and Cuj1.· For the path that 
preserves uniform strain (path 1), we obtain cS2 w<1> simply by replacing C" with 
C', which yields 

cS2 'W'1> = 1[LC']::-1 cSv· cSv. 2 IJ I I (13.3.27) 

Taking the difference, 

cS2 'W'1>- cS2 w<2> = !{(LCT1
- [hC' + (L- h)c"r1hi cSv; cSvi (13.3.28) 

Since softening states are unstable under load control, we need to consider only 
the case of displacement control. The postbifurcation path that occurs is that for 
which cS2W is smaller. Therefore, the localization path must occur (that is, is the 
stable path) if the matrix of the quadratic form in Equation 13.2.28 is positive 
definite. Calculations indicate that if localization is possible, the localized path 
will occur. If the stability limit has not yet been reached, then the localization 
happens as a bifurcation at increasing load (i.e., similar to Shanley's bifurcation 
in plastic columns). 

If the tangential moduli or compliances vary continuously, then the first 
bifurcation must happen when the stiffness matrix for loading everywhere 
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becomes singular, as shown in general in Section 10.4. The layer with moduli 
o:ikm applicable everywhere represents Hill's comparison solid. The condition of 
first bifurcation in a layer normal to x2 is that the 3 x 3 matrix of D~i2 becomes 
singular. For a layer of any orientation, the condition is that the localization 
matrix given by Equation 13.3.11 becomes singular. For an infinite space, it 
suffices if this happens for one direction vector n;. 

If moduli o:ikm vary discontinuously, then the appearance of a negative 
eigenvalue of the 3 x 3 matrix of D~i2 or of Z;i(n) in Equation 13.3.11 implies 
that a bifurcation state has just been passed and that localization must have 
started. 

Although nonlocalized stable states beyond the first bifurcation state cannot 
be reached in a continuous loading process, they can be reached if the material 
properties change discontinuously, or if the loss of positive definiteness of D'ui2 is 
caused by heating of the material, etc. 

Localization into Shear Bands Due to Nonassociatedness in 
Fridional Materials 

Frictional plastic materials are usually considered as those in which the deviatoric 
yield limit depends on the hydrostatic pressures as described by the Drucker and 
Prager (1952) yield surface (Eqs. 13.3.15-13.3.17) (a more general concept of 
friction in materials was discussed in Sec. 10.7). Because of the physical nature of 
friction, the flow rule for such materials should violate normality, that is, be 
nonassociated. Examples of localization in a nonassociated frictional material are 
presented in Figure 13.15. In these examples, however, the instabilities are still 
caused primarily by strain softening, although they are affected by the lack of 
associatedness (violations of normality). 

The nonassociatedness, however, can by itself cause instabilities due to 
localization into shear bands, even if there is no strain softening. These 
instabilities can be detected on the basis of the criteria already stated-see 
Equations 13.3.7, 13.3.10 and 13.3.11. A detailed study of localization due to 
nonassociatedness, based on the condition of positive definiteness of the 
localization matrix Z;i in Equation 13.3.11, has been carried out by Leroy and 
Ortiz (1989) and Bafant and Lin (1989). Other pertinent studies were presented 
by de Borst (1988a); de Borst (1986); Vermeer and de Borst (1984); Raniecki and 
Bruhns (1981); and some numerical problems in finite element simulation were 
addressed by Ortiz, Leroy, and Needleman (1987) (in a local context). 

Sand Liquefaction as a Localization Instability 

Cyclic shear deformations of loose sand (of undercritical density, underconsolid
ated) due to earthquake or other dynamic loads may produce volume compac
tion. If the sand is saturated by water, as is often the case in foundations, the 
compaction causes the pore pressure p to rise from p0 to p 0 + ll.Pc· The value of 
ll.pc depends also on how fast the water can flow out of the densified zone 
(diffusion problem). The frictional forces between sand grains are proportional to 
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the so-called effective stresses u~ = CT;; + 6;;P· Although the initial principal 
effective stresses CT;; + 6;;Po are all negative (compressive), the change of p by lipc 
can cause the effective stress CT;; + 6;;(Po +lip c) to become nonnegative (tensile or 
zero). Thus the sand loses its capability to transmit shear stresses and flows as a 
liquid (until water flows out), which is manifested in the matrix v:;km (e.g., 
Bazant, and Krizek, 1975). The foundation may then collapse (e.g., Blazquez, 
Bafant and Krizek, 1980; Bafant, Ansal, and Krizek, 1982; Ansal, Krizek, and 
Bafant, 1982). This collapse may again be regarded as a strain-softening 
instability, in which the strain softening is caused by the loss of shear stiffness of 
sand. Usually it is assumed that the foundation collapses as soon as the maximum 
principal value u; or u;; becomes zero. In reality this need not yet represent 
collapse; collapse occurs in the form of strain-localization instability, of which the 
simplest to analyze is localization into a planar band, as just discussed (the 
liquefaction band must have a certain minimum thickness h, due to the nonlocal 
material property). The foregoing stability criteria can be used to decide 
liquefaction failure as a localization instability. (The analysis of the next section is 
also applicable.) 

Summary 

Localization of strain softening into planar bands in three dimensions is a 
problem similar to the uniaxial localization treated in the previous section. 
However, the triaxial material properties, particularly the tangent moduli tensors 
for loading with strain softening and unloading, affect the localization instability 
as well as the bifurcation of the equilibrium path. While in infinite space the 
localization instability and bifurcation depend only on the material properties, 
localization into a band inside a layer of finite thickness depends also on the ratio 
of the band thickness to the layer thickness. The band thickness must be nonzero 
and a material property. 

Problems 

13.3.1 Derive in detail the matrices Z;;(n) in Equations 13.3.10 and 13.3.11, 
introducing from the outset the components n;lJCT;; and n;6u;,; instead of lJu21 

and 6u2,;· 
13.3.2 For infinite space, the bifurcation condition that det (D~;2) = 0 can be 

derived most directly as follows. We assume D' to be applicable everywhere 
and subtracting the stress-strain relations for the inside and outside of the band, 
labeled by superscripts (i) and (o ), we have {Ju~>- {Ju~~> = D~;2( tJu¥,}- {Ju~~J). 
Since the stresses must be continuous, we must have tJu¥/ = {Ju~>, and since 
lJu~.} * {Ju~~J if there is localization, it follows that the 3 x 3 matrix of D!z.;;2 

must be singular. Furthermore, since this is not an instability mode, it follows 
that the localization must happen during loading. Generalize this argument (a) 
to a band with any normal vector n; (see, e.g., Ortiz, 1987), and (b) to a band 
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within a layer. (This approach is simpler than that in the text but tells nothing 
about stability of state and path.) 

13.4 LOCALIZATION OF SOFTENING DAMAGE INTO 
ELLIPSOIDAL REGIONS 

The strain-localization solutions in the preceding section dealt with unidirectional 
localization of strain into an infinite planar band. If the body is finite, localization 
into such a band does not represent an exact solution for certain boundary 
conditions because, for example, the fixed boundary conditions cannot be 
satisfied at the location where the localization band intersects the boundary. In 
this section (which closely follows Bafant, 1988b), we will seek exact solutions for 
multidirectional localization due to strain softening in finite regions. 

In particular, we will study localization into ellipsoidal regions for which 
analytical solutions can be found. Except for the special case of cylindrical and 
spherical localization regions, these solutions are available only for an infinite 
solid, and generally cannot satisfy the boundary conditions for a finite body. 
However, in contrast to the infinite localization band, they can at least satisfy the 
boundary conditions approximately, provided the body is sufficiently large 
compared to the size of the localization ellipsoid. This is due to the fact that the 
stresses, strains, and displacements in the analytical solution for the ellipsoidal 
localization region in an infinite solid decay rapidly with the distance from the 
ellipsoid, thus becoming negligible at a certain sufficient distance from the 
ellipsoid. If the boundary lies beyond that distance, the solution is nearly 
vanishing at the boundary and can, therefore, be used as an approximate solution 
for a finite body. 

Eshelby's Theorem 

Localization in ellipsoidal regions can be solved by application of Eshelby's 
(1957) theorem for ellipsoidal inclusions with uniform eigenstrain. Consider an 
ellipsoidal hole (Fig. 13.16a) in a homogeneous isotropic infinite medium that is 
elastic and is characterized by elastic moduli matrix Du. We imagine fitting and 
glueing into this hole an ellipsoidal plug of the same material (Fig. 13.16a), which 
must first be deformed by uniform strain E" (the eigenstrain) in order to fit into 
the hole perfectly (note that a uniform strain always changes an ellipsoid into 
another ellipsoid). Then the strain in the plug is unfrozen, which causes the plug 
to deform with the surrounding medium to attain a new equilibrium state. The 
famous discovery of Eshelby (1957) was that if the plug is ellipsoidal and the 
elastic medium is homogeneous and infinite, the strain increment E" in the plug 
that occurs during this deformation is uniform and is expressed as 

(13.4.1) 

where Siikm are components of a fourth-order tensor that depend only on the 
ratios atfa3 and a2/a3 of the principal axes of the ellipsoid and for the special case 
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IIIII U 
plug before Insertion I 
/ fl~l 'ea~lllbrl• 

fJ;.r'-~'N. ..:,.~ 1before insertion 
+-------~ 

Figure 13.16 (a) Ellipsoidal plug (inclusion) inserted into infinite elastic solid; (b) interface 
tractions and displacements, (c) distribution of stress and strain increments during 
bifurcation at localization instability; (d) distribution of strain increments during stable 
bifurcation with strain localization. 

of isotropic materials, on Poisson ratio vu; see, for example, Mura (1982) and 
Christensen (1979). Due to symmetry of £~ and Eij, sijkm = sjikm = sijmk• but, in 
general, S;ikm .:!= Skmii· Coefficients S;jkm are, in general, expressed by elliptic 
integrals; see also Mura (1982). Extension of Eshelby's theorem to generally 
anisotropic materials was later accomplished by Kinoshita and Mura (1971) and 
Lin and Mura (1973). 

It will be convenient to rewrite Equation 13.4.1 in a matrix form 

e"=Qu£0 (13.4.2) 
or 

£~1 Suu Su22 Stt33 S1112 S1123 Slt3t £~1 
ei2 Sn11 ~2 ~233 ~212 ~223 ~231 £~2 
£33 s3311 ~322 s3333 s3312 s332'l s3331 £~3 

(13.4.3) = 
2e?2 2£~2 251211 251222 251233 251212 251223 251231 

2eiJ ~11 ~22 ~33 ~12 ~23 2~31 2£~ 
2£)1 253111 253122 253133 253112 253123 ~131 2£~1 

in which E = (e11, £22, £33, 2£12• 2£23• 2e31)T and superscript T denotes the tran-
spose of a matrix. 
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For isotropic materials, the only nonzero elements of matrix Qu are those 
between the dashed lines marked in Equation 13.4.3, which is the same as for the 
stiffness matrix. The factors 2 in matrix Qu in Equation 13.4.3 are due to the fact 
that the column matrix of strains is 6 x 1 rather than 9 x 1 and, therefore, must 
involve shear angles 2£12• 2£23, and 2£31 rather than tensorial shear strain 
components £12, £23, and £31 or else aT6E where aT= (o11 , o22 , o33 , o12 , o23 , o31) 
would not be a correct work expression. (The work expression o;i6E;i• as well as 
the sum implied in Equation 13.4.1 for each fixed i, j, has nine terms in the sum, 
not six.) For example, writing out the terms of Equation 13.4.1, we have 

E~1 = · · · + (Sm2E?2 + Sm1Eg1) + · · · = · · · + Su12(2e?2) + · · · (13.4.4) 

while the factors 2 arise as follows: 

2Eh = 2[· · · + S1233E~3 + (S1112E~2 + Sm1Eg1) + (S1223E~ + S1232Eg2) + · · ·] 
= · · ·(2St233)eg3 + (2St212)2e?2 + (2St223)2eg3 + · · · (13.4.5) 

The stress in the ellipsoidal plug .r (which is uniform), may be expressed 
according to Hooke's law as 

(13.4.6) 

After substituting E
0 = Q;,;-1E", according to Equation 13.4.2, we get .r = 

Du(E"- Q;,;- 1E") or 

(13.4.7) 

where I is a unit 6 x 6 matrix. The surface tractions that the ellipsoidal plug exerts 
upon the surrounding infinite medium, Figure 13.16a, are pf = of!li• in which ni 
denotes the components of a unit normal n of the ellipsoidal surface (pointed 
from the ellipsoid outward). 

Stability of Uniform Strain against Ellipsoidal Localization 

Consider now infinitesimal variations 6u, 6E, 6a from the initial equilibrium state 
of uniform strain E

0 in an infinite homogeneous anisotropic solid (without any 
hole). The matrices of incremental moduli corresponding to E0 are D, for further 
loading and Du for unloading, Du being positive definite. We imagine that the 
initial equilibrium state is disturbed by applying surface tractions 6p; over the 
surface of the ellipsoid with axes at> a2, a3, Figure 13.16b. We expect 6p; to 
produce loading inside the ellipsoid and unloading outside. We try to calculate 
the displacements 6u; produced by tractions 6p; at all loading points on the 
ellipsoid surface. 

Let 6eij, 6ur be the strain and displacement variations produced (by tractions 
6p;) in the ellipsoid, and denote the net tractions acting on the softening ellipsoid 
as 6p~, and those on the rest of the infinite body, that is, on the exterior of the 
ellipsoid, as 6pr. As for the distributions of C>p~ and C>p7 over the ellipsoid surface, 
we assume them to be such that 6p~ = C>o';fli and 6p7 = C>if;fli where C>O:i and C>oij 
are arbitrary constants; 6o';i is the stress within the softening ellipsoidal region, 
which is uniform (and represents an equilibrium field), and C>oij is a fictitious 
uniform stress in this region that would equilibrate C>pr. 
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Equilibrium requires that ~p; = ~p~- ~pr. The first-order work ~'W done by 
eft} must vanish if the initial state is an equilibrium state. The second-order work 
done by ~p; may be calculated as 

~2'W = L~ ~p; ~ur dS = ~ L ~P~ ~ur dS- ~ L ~Pr ~ur dS 

= ~ ~<T;; L n; ~ur dS - ~ ~oij L n; ~ur dS (13.4.8) 

where S =surface of the softening ellipsoidal region. Note that ~oij are not the 
actual stresses in the solid but merely serve the purpose of characterizing the 
surface tractions ~pf. Applying Gauss' integral theorem and exploiting the 
symmetry of tensors ~<T;; and ~oij. we further obtain 

~2W =! (~<f:.- ~~·) J. ~u-=. dV = J. ! (~<f:.- ~~·)! (~u'=. + ~u" ·) dV 2 IJ IJ V I,J V 2 I} I} 2 I,J j,l 

f. 1 T = - ~E" (~o'- ~~) dV 
v2 

(13.4. 9) 

where V = volume of the softening ellipsoidal region, and subscripts preceded by 
a comma denote partial derivatives. We changed here to matrix notation and also 
recognized that ~( ~uf.; + ~uj,;) = ~Eij. Now we may substitute 

~o' =D,~£" 

According to Equation 13.4.7, we also have, as a key step, 
~~ = D,.(l- Q; 1)~£e 

(13.4.10) 

(13.4.11) 

In contrast to our previous consideration of the elastic ellipsoidal plug made of 
the same elastic material (Eqs. 13.4.2-13.4.7), the sole meaning of~~ now is to 
characterize the tractions ~pf acting on the ellipsoidal surface of the infinite 
medium lying outside the ellipsoid. Noting that the integrand in Equation 13.4.9 
is constant, we thus obtain 

(13.4.12) 

in which Z;;km are the tensor components corresponding to the following 6 x 6 
matrix Z: 

(13.4.13) 

Equation 13.4.12 defines a quadratic form. If the initial uniform strain £
0 is 

such that the associated D, and D,. give ~2'W > 0 for all possible ~Eij, then no 
localization in an ellipsoidal region can begin from the initial state of uniform 
strain £

0 spontaneously, that is, without applying loads ~p. If, however, ~2W is 
negative for some ~Eij, the localization leads to a release of energy, which is first 
manifested as kinetic energy and is ultimately dissipated as heat. Such a 
localization obviously increases entropy of the system, and so it will occur, as 
required by the second law of thermodynamics. Therefore, the necessary 
condition of stability of a uniform strain field in an infinite solid is that matrix Z 
given by Equation 13.4.13 must be positive definite. 
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To check whether the result in Equation 13.4.13 is unique, we may note that 
instead of the equilibrium relation 6pf = 6u'f;ni with which we started one can 
most generally write 6pr = (6oij + /;i(n)]ni where /;i(n) = (m;ki + mik;)l/>(n); 
lj>(n) =arbitrary scalar function of orientation n; m;, k; =components of mutually 
orthogonal unit vectors, each being normal to n, that is, mini = 0, kini = 0. 
Tracing the effect of functions [;i(n) through the entire derivation, one finds that 
the term -1 J v [;i(n)6eij dV needs to be added to the right-band side of Equation 
13.4.12. Considering now the limiting case of neutral equilibrium, 62'W = 0, we 
conclude that uziikm 6eij- hi(n)] 6ekm = 0 for any 6ekm• from which hi(n) = 
Z;ikm 6eij. This relation can be satisfied for arbitrary 6eij only if [;i(n) = 0, as 
tacitly assumed at the outset. 

The expressions for Esbelby's coefficients S;ikm from which matrix Q" is 
formed (see, e.g., Mura, 1982) depend on the ratios atfa3 , a2/a3 of the axes of 
the ellipsoidal localization region. They also depend on the ratios of the 
unloading moduli Difkm· If, for example, the unloading behavior is assumed to be 
isentropic, they depend on the unloading Poisson ratio v". Matrix Du is 
determined by Vu and unloading Young's modulus Eu. If, just for the sake of 
illustration, the loading behavior is assumed to be also isotropic (which is, of 
course, not realistic for inelastic materials, see Chaps. 10 and 11), matrix 0 1 is 
determined by v1 and E1 (Poisson's ratio and Young's modulus for loading); E0 

V11 Eu, Vu, in tum, depend on the strain e~ at the start of localization. Since a 
division of Z by Eu does not affect positive definiteness, only the ratio E1/ Eu 
matters. Thus, Z is a function of the form 

-(at~ ~) -(at~ o) z = EuZ -, -, Vu, vt, -E = EuZ -, -, E;i 
a3 a3 u a3 a3 

(13.4.14) 

where Z and Z are nondimensional matrix functions. 
Note that matrix Z, which decides the localization instability, is independent 

of the size of the ellipsoidal localization region. (This is the same conclusion as 
already made in Sec. 13.3 for a planar localization band in an infinite solid.) No 
doubt, the size of the localization ellipsoid would matter for finite-size solids, 
same as it does for localization bands in layers. 

The previously obtained solution for a planar localization band in an infinite 
solid must be a special case of the present solution for an ellipsoid with a2/ at- 0 
and a2/a3-0 (Fig. 13.17). Localization in line cracks also must be obtained as a 
special case for a2-0; however, the present solution is not realistic for this case 
since energy dissipation due to strain softening is finite per unit volume and, 
therefore, vanishes for a crack (the volume of which is zero). For this case, it 
would be necessary to include the fracture energy (surface energy) in the energy 
criterion of stability, same as in fracture mechanics. In the present approach, 
though, we take the view that, due to material heterogeneity, it makes no sense 
to apply a continuum analysis to localization regions whose width is less than a 
certain length h proportional to the maximum size of material inhomogeneities. 

Numerical Examples of Stability Limits and Discussion 

Figure 13.17 shows some numerical results (from Bafant, 1988b) for localization 
of strain into ellipsoidal domains in infinite space. The results were calculated for 
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Figure 13.17 Tangential modulus E, at the limit of stability against localization into 
ellipsoidal region as a function of ratio a1/a 2 of principal axes of ellipsoid. (After Baiant, 
1988b.) 

domains in the shape of infinitely long elliptic cylinders ( a3- oo and various a tl a2) 

as well as prolate spheroids (a 1 > a2 = a3 , various ratios a1/a2). The material was 
assumed to be incrementally isotropic, with matrices D, and Du characterized by 
Young's moduli E, and Eu, and Poisson ratios v" = 0.18 with various values of v,. 
(The assumption of incremental isotropy is here made for the sake of simplicity; 
in reality, the incremental moduli at strain softening must be expected to be 
anisotropic, except when the initial state is a purely volumetric strain; cf. Chap. 11.) 

Matrix Z, Equation 13.4.13, was evaluated by computer on the basis of S;ikm 

taken from Mura (1982, Eqs. 11.22 and 11.29). The smallest eigenvalue of the 
symmetric part of matrix Z was calculated by a computer library subroutine. 
Iterative solution by the Newton method was used to find the value of E,/ Eu for 
which the smallest eigenvalue is zero and is about to become negative, which 
indicates loss of positive definiteness. 

The results are plotted in Figure 13.17a-d. For the infinite cylinder (Fig. 
13.17a, b), as a1/a2 increases, the localization instability occurs at smaller IE,/ Eul· 
The case a1/a2 -oo corresponds to an infinite planar band, and the results are 
identical to those given for this case in Section 13.3. In particular, IE, I tends to 0 
as a1/a2 - oo; that is, instability occurs right at the peak of the stress-strain 
diagram. 

For the prolate spheroid, Figure 13.17c, d, the instability also occurs at 
decreasing IE,!Eul as a1/a2 increases, but for la11-oo, which corresponds to an 
infinite circular tube, a finite value of IE,I, depending on Poisson's ratio, is still 
required for instability. This limiting case is equivalent to two-dimensional 
localization in a circular region (Sec. 13.5). On the other hand, the case atfa2 = 1, 
Figure 13.17c, d, is equivalent to localization into a spherical region (Sec. 13.5). 

The results show that a localization instability in the form of a planar band 
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always develops at a smaller IE,I, and thus at a smaller initial strain, than the 
localization instability in the form of an ellipsoidal softening region. That does 
not mean, however, that the planar band would always occur in practice. A 
planar localization band cannot accommodate the boundary conditions of a finite 
solid restrained on its boundary, and a localization region similar to an ellipsoid 
may then be expected to form. It is remarkable how slowly the slope IE,I at 
instability decreases as a function of atfa2• The value of the aspect ratio that is 
required to reduce IE,I at instability from about 0.4 to about 0.04 of Eu is 
atfa2 = e3 = 20. This means that if a very long planar softening band cannot be 
accommodated within a given solid, the deformation required for softening 
instability is considerably increased. 

Figure 13.18 shows some of the results obtained by Bafant and Lin (1989) for 
the Drucker-Prager elastoplastic material (Eq. 13.3.17). The limiting case 
a3/a2 - oo is equivalent to localization in a planar band, and the results indeed 
coincide with those from Figure 13.15. It is again noteworthy that the magnitude 
of H at the stability limit is not zero for the limit case of a band ( a3/ a2 - oo) 
except when fJ' = 0. 

As already pointed out below Equation 13.4.13, matrix D,, and thus also 
matrix Z, can be nonsymmetric for certain materials with internal friction or 
damage. As explained, it is then necessary to distinguish between (1) the critical 
state of bifurcation, for which Z{Jr..e = 0 or det Z = 0, that is, one eigenvalue of Z 
is zero (this represents neutral equilibrium if the associated eigenvector {Jr..e does 
not correspond to unloading); and (2) the critical state of stability limit, at which 
{J2"W ceases to be positive definite. The latter critical state depends only on the 
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symmetric part Z of matrix Z, that is, Z = (Z + zr)/2, and is characterized by 
det Z = 0 (i.e., the smallest eigenvalue of Z is zero). The latter condition is 
more stringent (cf. Bromwich bounds, Eq. 10.4.5 and Prob. 4.1.5); however, the 
numerical results for ellipsoidal localization (Bafant and Lin, 1989) indicate 
that the differences are usually very small except for some cases of very strong 
nonsymmetry of D,. Figures 13.18 and 13.19 show by the solid curves the critical 
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states of stability limit ( det Z = 0) and by the dashed curves the critical states of 
bifurcation (det Z = 0). 

Bifurcation and Stable Path of Ellipsoidal Localization 

As we know in general from Sections 10.2 and 10.4, and illustrated for uniaxial 
localization in Section 13.2, the condition of stable equilibrium does not 
necessarily indicate which path will be followed by an inelastic structure after a 
bifurcation point. The states on the equilibrium branches emanating from a 
bifurcation point can all be stable, yet only one branch is stable, that is, can be 
followed by the structure. Such behavior is again exhibited by ellipsoidal 
localization. 

The loss of stability due to strain localization is considered to occur while the 
remote displacements, strains, and stresses are constant (Fig. 13.16). Bifurcation 
of the equilibrium path, on the other hand, can occur while the remote 
displacements, strains, and stresses increase. In this manner, it can happen that 
the strains increase everywhere, but most in the ellipsoidal region so that the 
strain localizes in a stable manner simultaneously with the progress of loading 
(increasing E at infinity). In the mode of instability (Fig. 13.16c, neutral 
equilibrium), matrix D, of the loading moduli applies for the interior of the 
ellipse, and matrix Du of the unloading moduli applies for the exterior, but in the 
stable bifurcation mode (in Fig. 13.16d), matrix D, applies for both the interior 
and the exterior of the ellipse. 

By examining the derivation of Equation 13.4.13, we readily find that the 
second-order work along the equilibrium path when loading takes place both 
inside and outside the ellipsoid is <5 2 'JY = !<5£rZ, b£ where Z, is obtained from Z 
by replacing Du with D,. Therefore, Z, = D,(l + Q; 1 -I) or 

Z,=D,Q;- 1 (13.4.15) 

Assuming D, to vary during the loading process continuously, the first 
bifurcation of the equilibrium path is obtained when <52 'JY = ~6£rz, <5£ = 0 for 
some nonzero vector 6£ (Bafant, 1987b, 1988c). This case is obtained when the 
matrix equation 

(13.4.16) 

admits a nonzero solution 6£. This means that matrix Z, must be singular at the 
first bifurcation. 

It is now useful to realize the basic physical meaning of matrix Q,. We 
consider an infinite homogeneous elastic body that has elastic moduli D, and 
contains an ellipsoidal hole. An ellipsoidal plug of different shape is deformed by 
a uniform eigenstrain 6£0 so that it would fit exactly and could be glued into the 
hole. Then the eigenstrain is unfrozen and the infinite body with the plug finds its 
new equilibrium state. As already mentioned, Eshelby's discovery was that this 
state involves a uniform strain 6£ within the plug, and that this strain is given by 
the equation 6£ = Q, <5£0

• Conversely, the eigenstrain necessary to obtain <5£ is 
<5£0 = Q; 1 6£. From this physical meaning it is now clear that if D, is positive 
definite, then a finite <5£ can be produced only by a finite 6£0

, and if D, is nearly 
singular (a state near the peak of the stress-strain diagram) then a finite 6£ 
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occurs even for a vanishingly small 6t0
• Therefore, if D, is positive definite, so 

must be Q;\ and if D, is singular, so must be Q;-1
• Hence, in view of Equation 

13.4.15, singularity of matrix Z, implies that the tangential moduli matrix D, must 
be singular, that is, 

detD, =0 (13.4.17) 

(Baiant, 1988b). This is equivalent to the condition for the peak point of the 
stress-strain diagram and represents the condition that separates the strain
hardening regime of material (D, positive definite) from the strain-softening 
regime (D, indefinite). 

So we must conclude that, during a loading process in which the displacements 
are continuously increased at infinity, localization of homogeneous strain into an 
ellipsoidal region must begin as soon as D, loses positive definiteness, that is, as 
soon as strain softening begins. 

Let us now discuss the type of bifurcation. In view of Equation 13.4.15, 
Equation 13.4.16 for eigenvector fJr.* of matrix Z may be written as 

D,x* =0 (13.4.18) 

in which x* = Q;- 1 fJr.* or 

(13.4.19) 

and x* is the eigenvector of matrix D, corresponding to its zero eigenvalue. 
Two cases may now be distinguished: (1) Either the eigenvector lJt* lies in the 

sector of loading or (2) it does not. 
If it does, then the bifurcation state would be a state of neutral equilibrium, 

which represents the limit of stability. However, we have shown that, except for 
the limit case of an infinite layer (which is equivalent to an ellipsoid for which the 
two ratios of its axes tend to infinity), the limit of stability does not occur when 
det D, = 0 but only later, when matrix D, becomes indefinite (i.e., at a certain 
finite distance after the peak of the stress-strain diagram). It follows that the 
eigenvector fJr.* must lie outside the loading sector. So the actual increment lJt"q 
along the equilibrium path cannot coincide with lJt* because it would imply 
unloading, which we have ruled out. Therefore, the actual lJteq must lie at the 
boundary of the loading sector (cf. Sec. 10.4) and must differ from the 
eigenvector fJr.*. Hence, Z, lJt"q -=1= 0 (that is, D,x"q -=1= 0 where x"q = Q;-1 lJt"q). This 
means that the increment lJt"q along the equilibrium path must be happening at 
increasing boundary displacements (or increasing strain) at very remote points. 
This is similar to the Shanley bifurcation in plastic columns. The bifurcation state 
and all the immediate postbifurcation states are stable. 

We have seen that the loss of stable equilibrium with localization into an 
ellipsoidal domain occurs only when matrix D, becomes indefinite, that is, the 
material is in a strain-softening state. However, now we find that along the 
equilibrium path the localization into an ellipsoidal domain occurs already when 
matrix D, becomes semidefinite, that is, at the peak-stress state, which always 
precedes the state of stability loss. 

The classical bifurcation condition of Hill (1962c), which serves as the basis of 
the method of linear comparison solid (Sec. 10.4), also indicates that singularity 
of matrix D, is the condition of first bifurcation; see also Rudnicki and Rice 
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(1975), Rice (1976), Leroy and Ortiz (1989); and de Borst (1988a). Note, 
however, that Hill's condition applies only to localization into an infinite band in 
an infinite space. The boundary conditions of such a localization mode cannot be 
accommodated for finite bodies. The present analysis (Bafant, 1988b) proves that 
Hill's bifurcation condition (that is, det D, = 0) is also correct for localization into 
ellipsoidal regions, although the mode of localization is different. 

The foregoing analysis that led to the bifurcation condition det D, = 0 shows 
only when localization can occur. To show that it must occur, the path-stability 
criterion from Bafant (1987b, 1988c) requires it to prove that, for the conditions 
of prescribed displacements at infinity, the value of 62 'W is smaller for the 
localizing path than for the nonlocalized path (for which the strain field remains 
uniform). The calculation of 62 'W along the equilibrium path can be done 
numerically. 

The preceding analysis shows that the case of stability loss with localization 
into an ellispoidal domain can never occur in a continuous loading process in 
which the displacements at infinity are controlled. Localization along the loading 
path, without stability loss, always precedes such instability. So may the solution 
of stability loss have in this case any practical application? It may-either if the 
tangential moduli matrix D, changes suddenly during the loading process (which 
happens, e.g., for bilinear stress-strain diagrams; cf. Sees. 8.1 and 10.3, or if the 
uniform strain state in the strain-softening range is reached by some other type of 
process). Examples are processes in which some displacements inside the body 
are controlled, or processes in which a finite sudden change of D, is caused by a 
change of temperature, change in moisture content or pore pressure, crystal
lographic conversion (as in certain ceramics), chemical conversion, irradiation, 
etc., or processes in which D, is changed due to hysteretic cycles. 

Simpler Derivation of Bifurcation Condition 

It is instructive to show a simpler direct derivation of the bifurcation condition 
det Z = 0. According to Equation 13.4.7, the (fictitious) stress variations inside 
the ellipsoidal region that correspond to Eshelby's solution for the outside are 
()ff = Du(l- Q;-1) ()e". The components of surface traction vector that must be 
transmitted from the ellipsoidal region to the outside in order to 

4

provide the 
correct boundary conditions for Eshelby's solution for the outside is 6p'[ = 
-6o'fl'i where ni is the unit vector of the normals to the ellipsoid, pointed 
outward from the ellipsoid. Therefore 

(13.4.20) 

were { } 'i denotes the tensorial components extracted from a 6 x 1 column 
matrix. At the same time, the stress variations inside the ellipsoidal region may 
be expressed as ()ff = D,()e". Therefore, the vector of surface tractions acting on 
the surface of the ellipsoid is {D,()e"};ini, and the vector of surface tractions 
applied from the ellipsoidal region on the outside is 6p'[ = -{D,()e"};pi. 
Substituting this into Equation 13.4.20, one obtains for the strain variations 6t" in 
the ellipsoidal localization region the condition: 

{ 6X};ini = 0 with ()X= Z 6e" (13.4.21) 

in which Z is defined by Equation 13.4.13. 
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Column matrix <5X is the same for all the points of the ellipsoidal surface 
because the strain <5e~ in the ellipsoidal region is homogeneous, both according to 
Eshelby's solution for the outside and the assumed strain-softening deformation 
inside. Equation 13.4.21 represents a system of three homogeneous linear 
algebraic equations for the three components ni. These equations must be 
satisfied not just for one vector ni, but for infinitely many vectors of all the 
normals ni of the ellipsoidal surface. This is possible if and only if <5X = 0. 
Therefore, 

(13.4.22) 

This is a system of six homogeneous linear algebraic equations for the six 
components of the column matrix <5ee. A nonzero solution is possible if and only 
if the determinant of this equation system vanishes, that is, det Z = 0. 

Summary 

Localization of strain softening into ellipsoidal regions in an infinite homogeneous 
body is a three-dimensional localization problem with a finite-size localization 
region for which an exact analytical solution can be found. The solution is based 
on Eshelby's theorem from elasticity theory, whose applicability is due to the fact 
that the infinite region outside the ellipsoid is unloading, and thus behaves 
elastically. Bifurcation of localization type begins in a stable manner (at 
increasing load) when the tangential moduli matrix becomes singular (which 
corresponds to the peak of the stress-strain diagram), but localization instabilities 
arise later. Also the localization instability occurs later than in an infinite band. 
The more elongated the ellipsoidal region, the earlier the instability develops. 

Problems 

13.4.1 Without referring to the text, derive Equation 13.4.7. 
13.4.2 Consider that further loading (strain softening) occurs outside the ellip

soid, while the ellipsoidal region begins to unload. Adapting the present 
solution, formulate the condition of stable state. Note that in this case the 
Eshelby coefficients must be calculated for an anisotropic material, except 
when the D~ikm are assumed to be isotropic. 

13.5 LOCALIZATION OF SOFTENING DAMAGE INTO SPHERICAL 
OR CIRCULAR REGIONS 

Localization of softening damage into spherical or circular regions is a special 
case of the preceding solution for ellipsoidal regions. That solution, however, was 
limited to infinite space. Following Bafant (1988b), we will now show that for 
spherical or circular regions the solution can be easily obtained even for finite size 
bodies (spheres and circular disks or cylinders). 

Localization Instability for Spherical Geometry 

Consider a spherical hole of radius a inside a sphere of radius R (Fig. 13.20a). We 
assume polar symmetry of the deformation field and restrict our attention to 
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Figure 13.20 Localization of strain into spherical and circular regions. 

materials that are isotropic for unloading. As shown by Lame (1852) (see, e.g., 
Timoshenko and Goodier, 1970, p. 395), the elastic solution for the radial 
displacements and the radial normal stresses at a point of radial coordinate r is 

u =Ar + Dr-2 (13.5.1) 

where A= A/(1- 2vu); D = D/(1 + vu); Eu, Vu =Young's modulus and Poisson's 
ratio of the sphere; and A, D =arbitrary constants to be found from the 
boundary conditions. 

We now consider a solid sphere of radius R that is initially under uniform 
hydrostatic stress a0 and strain E0 

( a0 = d/ck/3, E0 = E2k/3). We seek the 
conditions for which the initial strain may localize in an unstable manner into a 
spherical region of radius a. Such localization may be produced by applying on 
the solid sphere at r =a radial outward tractions {Jp (i.e., pressure) uniformly 
distributed over the spherical surface of radius a, Figure 13.20a. To determine the 
second-order work of tJp, we need to calculate the radial outward displacement 
{Ju 1 at r =a. We will distinguish several types of boundary conditions on the outer 
surfacer= R. 

Outer surface kept under constant load. As the boundary condition during 
localization, we assume that the initial radial pressure pg applied at outer 
surface r = R is held constant, that is, tJp2 = 0. For {Jar= -{Jp 1 at r =a and 
{Jar= -{Jp2 = 0 at r = R, Equations 13.5.1 may be solved to yield A= a3 tJptf 
E(R3

- a3
), D = AR3/2, and then 

(13.5.2) 
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The inner spherical softening region of radius a, Figure 13.20c, is assumed to 
remain in a state of uniform hydrostatic stress and strain, and its strain-softening 
properties to be isotropic, characterized by E, and v,. Thus the strains for r < a 
are l>E = l>u 1/a, the stresses are l>a = 3K,l>utfa = C,l>u 1 with C, = 3K,/a; K, = 
bulk modulus for further loading (softening); 3K, = E,/(1- 2v,), with E, < 0 and 
K, < 0 for softening. The surface tractions acting on the softening region, Figure 
13.20c, are equal to C,l>u 1 where C, = 3K,/a. Hence, by equilibrium, the total 
distributed traction at surface r =a must be l>p = Cul>ut + C,l>ut and the second
order work done by l>p is l>2 "W = 4.1la2(~l>pl>u 1 ) = 2.1la2(Cu + C,)l>u~. Thus the 
necessary condition of stability of the initial uniform strain E

0 in the solid sphere 
is Cu + C, > 0, which yields the necessary condition for stability 

E, 2(1 - 2v,)(R3
- a3

) 
--< 3 3 (13.5.3) 

Eu 2(1 - 2vu)a + (1 + Vu)R 

Changing < to > , we obtain the sufficient condition for strain-localization 
instability. 

Outer surface kept fixed. In this case we assume that during localization l>u = 0 
at r = R, and l>a, = -l>p 1 at r =a. From Equations 13.5.1, we may then solve 
D = -AR 3 and 

(13.5.4) 

which yields 

(13.5.5) 

The second-order work done on the solid sphere by tractions l>p = Cul>u 1 + C,l>u 1 

applied at surface r =a is l>2 'W = 2.1ra2
( Cu + C,)l>u~ where C, = E,/(1 - 2v,)a, as 

before. Thus the necessary stability condition is Cu + C, > 0, which can now be 
reduced to the condition 

(13.5.6) 

Assuming that IE,I increases continuously after the peak of the stress-strain 
diagram as Eo is increased, instability develops at the value a = acr that minimizes 
IE, I under the restriction h/2 :sa ::s; R where h is the given minimum admissible 
size of the strain-softening region, representing a material property. For the case 
of prescribed pressure at the boundary r = R, we find from Equation 13.5.3 that 
acr = R, which corresponds toE,= 0. So the sphere becomes unstable right at the 
start of strain softening, that is, no strain softening can be observed when the 
boundary is not fixed. For the case of a fixed (restrained) boundary at r = R, 
Equation 13.5.6, one can verify that min IE, I is finite and occurs at acr =min a= 
h/2 (provided that Vu;;:::: 0). 

For R/a-oo, Equation 13.5.6 yields the stability condition for the case of an 
infinite solid fixed at infinity (Fig. 13.20e, f) 

E, 2(1-2v,) 
- -E < 

1 
(13.5.7) 

u + Vu 
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It is interesting that for Ria-+ oo, Equation 13.5.3 yields the same condition, but 
this limit case is of questionable significance since we found that acr = R when the 
boundary is not fixed. Note that the stability condition in Equation 13.5.7 does 
not depend on the radius a of the softening region; yet, unlike the softening in a 
layer in an infinite solid, solved before, instability does not begin at the peak of 
the stress-strain diagram (where E, = 0) but begins only at a certain finite 
negative slope of the stress-strain diagram. This slope can in fact be rather steep 
(-E, = 2Eu for v, = v u = 0). 

Localization Instability for Circular or Cylindrical Geometry 

Working in two dimensions, consider a circular hole of radius a inside a 
homogeneous isotropic circular disk of radius R, Figure 13.20a, b. We assume a 
plane-stress state, and then, according to Lame's solution, the radial displace
ment u and the radial normal stresses are (see, e.g., Fliigge, 1962, p. 37-13; or 
Timoshenko and Goodier, 1970, p. 70) 

1- Vu (a2
pt- R

2
p2) 1 + Vu [R2a2

(Pt- P2)] u=-- r+--
Eu R2- a2 Eu (R2

- a 2)r 
(13.5.8) 

p 1 and p2 are the pressures applied along the hole perimeter and along the outer 
perimeter of the disk, respectively, and Ez is the transverse strain in the plate, 
which is independent of r. Depending on the boundary conditions, we distinguish 
two cases. 

Outer boundary kept under .:onstant load. As the boundary condition during 
the strain-localization instability, we now assume that the initial radial pressure p 2 

applied at the outer boundary r = R of the disk is held constant, that is, l>p2 = 0. 
Equation 13.5.8 then yields for l>u 1 = l>u at r =a, Figure 13.20b, the relation: 

.~:.u 1 = l>p 1 _!_-~ ( R
2 
+ a

2
) (13 5 10) 

v Cu Cu- Eu Vu + R2- a2 .. 

The inner circular softening region of radius a, Figure 13.20c, is assumed to 
remain in a uniform state of stress and strain. Thus the strains for r < a are 
l>e, = l>utfa. Assuming the plate to be thin compared to radius a, we may assume 
the strain-softening region to be also in a plane-stress state, and then l>e, = 
l>a,(1 - v,)/ E,. Hence, 

C,=! (____§_) 
a 1- v, 

(13.5.11) 

Now, we consider uniformly distributed outward tractions l>p to be applied 
along the circle r =a on the solid disk (without the hole). By equilibrium, 
lJp = Cu l>u1 + C, l>u 1 and the work done by l>p is f>2'U' = 2na(~{)p l>u 1) = 
na(Cu + C,) l>u~. Thus the necessary condition of stability of the initial state of 
uniform strain is Cu + C, > 0. According to Equations 13.5.10 and 13.5.11, the 
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stability condition for plane stress becomes 

E, 1-v, 
- - < -----=----=-;__-=------::-

E,. v,. + (R2 + a 2)/(R2
- a 2

) 
(thin plate) (13.5.12) 

As another limiting case, we may consider a long cylinder of radius R (and 
length» R), in which case the strain in the softening region along the cylinder 
axis is forced to be equal to the strain Ez in the unloading region. However, the 
softening region is not in a plane-strain state either. Assuming the planes normal 
to the cylinder axis to remain plane, consider now that, unlike before, the axial 
stresses az are nonzero. We must impose the equilibrium condition that the 
resultants of <f.: in the softening region and of a': in the unloading region cancel 
each other, that is, :n:(R2 -a2)a';= -:n:a2<T.,. We leave it to a possible user to 
work out the solution in detail and we now restrict our attention to the case 
a« R, for which (according to Eq. 13.5.9 with 6p2 = 0), we have 6ez = 
2v,.6p 1a

2/(a2 -R2)E,.=O (for r2!a), while also 6az=O. Therefore, we may 
assume for the incremental deformation in the strain-softening region a state of 
plane strain. The solution may then be obtained simply by replacing E, with 
E; = E,/(1- v~), and v, with v; = v,/(1- v,) (the unloading region remains in 
plane stress in this case). Thus Equation 13.5.12 transforms to 

E, (1 + v,)(1 - 2v,) --< -~---=~~-~-.,...-
£,. v,. + (Rz + az)/(Rz- az) 

(long cylinder, a «R) (13.5.13) 

When a/ R is not very small, the solution may be expected to lie between 
Equations 13.5.12 and 13.5.13. 

Outer boundary kept fixed. In this case we have during localization 6u = 0 at 
r =Rand 6a, = -6p, at r =a. Taking the variations of Equations 13.5.8 at r = R 
and r=a, we get 

1 - v,. (a2 
6p 1 - R2 

6p2)R 1 + v,. [R2a2
( 6p 1 - dp2)] _ 

E,. R2 - a2 + E,. (R2 - a 2)R - O (13.5.14) 

<5u = 1- v,. (a
2 

6p 1 - R
2 

6p2)a + 1 + v,. [R
2
a

2
(6p 1 - 6p2)] 

' E,. Rz- az E,. (Rz- az)a (13.5.15) 

Eliminating 6p2 from these two equations, we get the relation 6p 1 = C,. 6u1 with 

(13.5.16) 

By the same reasoning as before, the necessary condition for the stability of the 
initial uniform strain e0 is C,. + C, > 0 where C, is again given by Equation 
13.5.11. This condition yields 

-~<~--~--~~~(~1-~v~,)~(R~
2

_--=a~
2

)~--~-------
E,. R2 + a2 + vu(R2

- a2
)- (4R2a2)/((1- v,.)R2 + (1 + v,.)a2) 

(thin plate) 

(13.5.17) 

For the case of a long cylinder of length» R and with a « R, we may obtain 
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the solution again by replacing E,, v, withE;, v;. This yields 

E, (1 + v,)(1 - 2v,)(R2
- a2

) 
--<--=--::-----:---::-.o...._-;;--.:.:....:,:----z-:;'-'-:'':-:-----'---;;--:-----:---:;:-

Eu R2 + a2 + vu(R2
- a2

)- (4R2a2)1((1- Vu)R2 + (1 + Vu)a2
) 

(long cylinder, a« R) (13.5.18) 

Instability develops at the value a = acr that minimizes IE,I under the 
restriction that hl2 ::sa ::s R. For the case of a prescribed load at the outer 
boundary we find from Equation 13.5.12 or 13.5.13 that acr = R, which 
corresponds to E, = 0. Thus the disk becomes unstable right at the start of strain 
softening, that is, no strain softening can be observed. For the case of a fixed 
(restrained) boundary at r = R, we find that, for a--+ R, lim (-E,l Eu) = oo (to 
verify it, one needs to substitute a= R- 6 and consider 6--+0); consequently 
min IE,I is finite, and it is found to occur at acr =min a= hl2. 

For Rla-+oo, Equation 13.5.17 or 13.5.18 yields the stability condition for the 
case of an infinite plate fixed at infinity, Figure 13.5.20e, f, 

E, 1- v, 
--< -- for a thin plate 

Eu 1 + Vu 

E, (1 + v,)(1 - 2v,) 
- - < for massive solid 

Eu 1 + Vu 

(13.5.19) 

(13.5.20) 

It is interesting that for Rla-+oo, Equations 13.5.12 and 13.5.13 yield the same 
conditions, but these limits are of questionable significance since we found that 
acr = R when the boundary is not fixed. Note that the stability conditions in 
Equations 13.5.19 and 13.5.20 are independent of the size of the localization 
region, same as we found it for spherical localization regions and layers. 

Numerical Examples 

Figure 13.21 shows the plots of IE, II Eu at the limit of stable states as a function of 
Ria for spherical geometry (curve 1) and for circular geometry (curve 4), both for 
fixed displacement at the outer boundary. For comparison, the figure also shows 
the solutions for localization in planar bands under transverse uniaxial stress 
(curve 2) and under shear stress (curve 3). We see that the value of E, at 
instability depends strongly on the relative size R(a) of the body as well as well as 
Poisson's ratios. For infinite body size (Ria--+ oo), instability of planar bands 
occurs at E, = 0, that is, at the peak of the stress-strain diagram. The same 
happens under load-controlled conditions for the cases of spherical or circular 
regions with Ria-+ 1 (i.e., the smallest possible body size for which the body 
remains at homogeneous strain). For Ria> 1, the spherical or circular regions 
generally require a finite slope IE, I to produce localization instability, provided 
the boundary is under prescribed displacement during the localization. 

In the preceding analysis of ellipsoidal softening regions, we solved only the 
case of infinite solids and were unable to examine the effect of the boundary 
conditions at infinity. Now, from the fact that spherical and circular softening 
regions are special cases of ellipsoidal ones, we must conclude that our solution 
for ellipsoidal region is applicable only if the ellipsoidal region is of finite size, 
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Figure 13.21 Tangential modulus E at the limit of stability against localization into 
spherical and circular regions of radius r within a sphere or disk of radius R. (After Baiant, 
1988b.) 

which is guaranteed only if the infinite body is fixed at infinity rather than having 
prescribed loads at infinity. Otherwise the limit cases acr = R for spherical or 
circular softening regions discussed after Equations 13.5.6 and 13.5.18 would not 
be satisfied. 

The present solutions represent upper bounds on IE,I at actual localization. 
When the stability condition for some of the previously considered softening 
regions is violated, instability with such a region is possible and must occur since 
it leads to an increase of entropy. However, it is possible that localization 
instability with some other form of localization region that we could not solve 
would occur earlier, at a smaller strain. For this reason, the present stability 
conditions are only necessary rather than sufficient. However, the opposite 
inequalities (that is, < changed to >) represent sufficient conditions for 
instability. 

Bifurcation and Stable Path 

The preceding analysis has dealt only with stability of an initially uniform strain 
state against spherical or circular localization. A bifurcation with localization 
may, of course, take place in a stable manner, at increasing load. Proceeding 
similarly as for the ellipsoidal regions, the present approach may be adapted to 
show that bifurcation with stable localization occurs at smaller IE, I/ Eu. 
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Summary 

Circular or spherical bodies with a circular or spherical localization region 
represent a softening localization problem for which an exact analytical solution 
can be found when both the localization region and the body have a finite size. 
The localization instability occurs later than in an elongated ellipsoidal region or 
in a layer. The smaller the ratio of body size to the size of the localization region, 
the later the localization instability takes place. 

Problems 

13.5.1 A ceramic circular disk of thickness b1 , which is in a strain-softening state, 
is perfectly bonded to a circular disk of the same radius R and thickness b1 , 

which is in an elastic state. Generalize Equation 13.5.13 to obtain the stability 
condition in terms of IE,I for the ceramic material. 

13.5.2 Assuming that spherical localization happens with the same tangent 
modulus E, both inside and outside a sphere of radius r = a, derive the 
condition of bifurcation. Then calculate the ratio 6p2/ 6u2 (at {Jp = 0), show 
that 6p2 =I= 0 (which means this cannot be a state of neutral equilibrium), and 
calculate 62 'W done by {Jp2 • Then show that the localization path is the stable 
path. 

13.6 LOCALIZATION IN BEAMS AND SOAENING HINGES 

Plastic limit analysis of beams and frames is valid only if the moments in all the 
simultaneously active plastic hinges (yield hinges) of the collapse mechanism 
carry their maximum moment simultaneously at least at one instant of the 
collapse process. This condition is guaranteed only if the plastic hinges exhibit no 
softening, that is, no decrease of moment at increasing rotation. Often this 
condition is met by practical designs. For reinforced concrete beams with no axial 
compression, absence of softening is achieved if the reinforcement ratio is 
sufficiently less than the so-called balanced steel ratio. Such a design is called the 
underreinforced cross section and is required by design codes. In many important 
cases, however, absence of softening cannot be guaranteed-for example, in 
reinforced concrete beams carrying a sufficiently large axial force, such as 
prestressed beams, columns, or beams in frames, a pronounced softening is seen 
in experiments (e.g., Darvall, 1983, 1984, 1985; Darvall and Mendis, 1985; 
Mendis and Darvall, 1988; Warner, 1984; Nylander and Sahlin, 1955; Cranston, 
1965). In steel beams, likewise, softening in a plastic hinge region can arise if 
fracture develops in the plastic hinge, or if a stiffener of a flange or web locally 
buckles during plastic deformation, or if the cross-section shape suffers large 
distortion (Maier and Zavelani, 1970). The diagram of buckling moment M 
versus hinge rotation 8 then has the form shown in Figure 13.22a. For different 
axial forces, the curves are different. 

In reinforced concrete beams, softening of the hinge is caused by strain 
softening of concrete (which itself is a macroscopic manifestation of microfractur
ing). Based on softening material properties one may calculate the diagram of 
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Figure 13.22 (a) Moment-rotation diagram; (b) plastic hinge. 

Softening 
compression zone 

tensile zone 

bending moment M versus beam curvature K. The M(6) diagram may then be 
obtained by setting K = 6/1 where I is the effective length of the plastic hinge (Fig. 
13.22b). A discussion of the value of I will better be postponed. If M is variable 
throughout the length I, as is usually the case, the M( 6) relation refers to the 
average of M over length I. 

Stability limit and Snapback 

In view of the preceding sections, we must expect softening of plastic hinges to 
cause bifurcation and instability. Following Bafant (1976) and Bafant, Pijaudier
Cabot, and Pan (1987), we will now analyze stability of a structure with a single 
softening hinge-for example, the beam of span L loaded at midspan by load P 

c) 
t=~ ==~~==~r 

Primary 
etructure 
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Figure 13.23 (a, b, c) Definition of curvature localization zone; (d) influence of relative 
length and spring constant on stability limit. (After Bazant, Pijaudier-Cabot, and Pan, 
1987.) 
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and restrained at the ends by rotational springs of stiffness C (Fig. 13.23a). The 
beam is loaded by controlling the load-point (midspan) displacement w. For 
C---+ 0, we have a simply supported beam, and for C---+ oo we have a fixed beam. 
For the sake of simplicity, we assume the incremental bending rigidities R, for 
further loading and Ru for unloading to be distributed uniformly. Except when 
the M(K) diagram is triangular, R, and Ru in fact vary along the beam, but we 
content ourselves with using their average values for the loading and unloading 
parts of the beam. 

To analyze stability, we consider infinitesimal variations 6M (x) and 6K(x) of 
the bending moment and curvature, superimposed on a certain initial equilibrium 
state of beam, which is characterized by the initial bending moments M0(x) and 
initial curvatures K 0(x). The beam is loaded in a displacement-controlled mode, 
and so the load-point deflection, w, is fixed during the variation (6w = 0), and the 
load P, representing a reaction, can change arbitrarily. We assume that small 
variations 66/2 of rotation are enforced at the ends of the curvature localization 
segment of length I (Fig. 13.23a). We try to calculate the applied moment 
reactions 6M at these points and the work done by these moment reactions. The 
bending moment variations are characterized by variation 6M1 within segment/, 
6M2 just outside this segment, and 6M3 at the beam ends. From 6M2 to 6M3, the 
bending moment varies linearly. At the ends of segment /, we must assume for 
the calculation of curvatures that there are moments of magnitude 6M1 = 
6M + 6M~, 6Mf =6M2+ (6M2- 6M3)1/2(L -I), where 6M~ represents the 
average moment in segment I for 6M = 0 (see Fig. 13.23c). 

The conditions of compatibility require that, if a primary structure is created 
by a cut at midspan, the variations of rotation, 6q,, and of deflection, 6w, at the 
midspan are equal to zero. We may calculate them applying the moment-area 
theorem to the cantilever represented by the left half of the beam, that is, 
calculating the vertical reaction and the support moment on the conjugate 
cantilever due to the curvature diagram sketched in Figure 13.23c (or by applying 
the virtual work principle to the primary structure). Thus we get 

6 t/J = (LI2 6K(x) dx + 66c = 66 + L -I (6M2+ 6M3)+ 6M3= O (13.6.1) 
Jo 2 2 2Ru C 

6w = (L/2 6K(x )(!:_ _ x) dx + 66 !:_ = 66 (I) + L - I (!:. _ L -I) (6M3) 
Jo 2 c 2 2 4 2 2 6 2Ru 

+ L;l (~- L;l)(~::) + 6~3 (~) =O (l3.6.2) 

in which the x coordinate is meaured from the left end, and 66c = 6M3/C = 
rotation in the spring. Now we substitute 66 = 6M1l/R, along with the expression 
previously found for 6M1 • Thus we reduce Equations 13.6.1 and 13.6.2 to a single 
relation, 6M = k 66, in which the incremental stiffness k is given as k = kRull, 
with 

k- R, 1 ( X + 1/1 ) =-+-- x+-=--'--
R" a - 1 2( a - 1) 

(13.6.3) 

in which we have set a= L/1, 1/1 = (2a + 1)/(a- 1 + fjay), x = 1p/2 + 
3(2a-1)/2(a-1), y= RuiCL. The variation ofthe load during the instability mode 
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may be calculated as 6P = 2(6M2 - 6M3)/(L -I). The second-order work done 
on the structure by enforcing the rotations MJ /2 is 62 'W = 6M 68/2 = k( MJf /2. 
If 62 'W > 0, the structure is stable, that is, the deformation increments will not 
occur if work 62'W is not supplied. However, if 62 'W < 0, the structure is unstable 
because a kinematically admissible deflection variation releases energy. It follows 
that k > 0 signifies a stable state, k < 0 an unstable state, and k = 0 a critical state. 

Numerical evaluations of Equation 13.6.3 have been used by Bdant, 
Pijaudier-Cabot, and Pan (1987) to obtain the stability limits. The results, plotted 
in Figure 13.23d (with some corrections), show the lines of critical R,LRu values 
as functions of the relative beam size for various fixed values of the relative 
stiffness Cl/ Ru of the elastic restraints at the beam ends. The states below these 
lines are stable, and the states above these lines are unstable. We see that with an 
increasing size of the beam or with a decreasing stiffness of the end restraint, the 
magnitude of R,/ Ru for the critical state decreases (which means that instability 
occurs closer to the peak point of the moment-curvature diagram). The diagrams 
in Figure 13.23d permit an approximate assessment of instability of our model 
beam (approximate because R, and Ru are assumed to be uniformly distributed 
within segments of the beam). 

By analogy with plastic limit analysis, the softening in previous works was 
assumed to be localized in a point hinge (Baker and Amarakone, 1964; Barnard, 
1965; Darvall, 1983, 1984; Ghosh and Cohn, 1972; Maier, 1967a, b, 1971; Mr6z, 
1985). Let us examine whether this simplifying assumption makes a significant 
difference. Consider the beam in Figure 13.24 and assume that, at midspan, there 
is a softening hinge such that its rotation .6.8 equals the additional rotation 
difference (between the ends of the segment of length l = h) due to strain 
softening, which is obtained as the total rotation difference (between these ends) 
caused by moments M applied at the ends of the segment, minus the rotation 
difference (between the ends) corresponding to elastic deformation only. This 
yields for the hinge the moment-rotation relation: 

-1.5 

-1.0 

·0.5 

68=/MP ~M 
R, 

L-.J~ 

~ 
!lb. .c!'!l 

"4lllllJJlP M (x) 

---Softening hinge 
- Softening element 

~=~ (!•h) 

(13.6.4) 

(13.6.5) 

Figure 13.24 Stability limits for softening hinge analysis, and comparison with softening 
element analysis. (After Baiant, Pijaudier-Cabot, and Pan, 1987). 
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(where l > 0). It is important to note that it would be incorrect to replace R, 
with R,. 

We may now repeat the same analysis as before, except that the segment of 
length lis replaced by a point hinge characterized by Equations 13.6.4 and 13.6.5. 
The result must be equal to the limit of Equation 13.6.3 for l ~ 0. Instead of 
Equation 13.6.3 one gets 

k = R, + Ru [ 4( 1 + 6y)] 
l L 1 +Sy 

(13.6.6) 

The stability limits according to this equation are plotted in Figure 13.24 (for 
various C) as the solid lines. 

For comparison, Figure 13.24 also shows as the dashed lines the stability limits 
for a strain-softening segment that has length l = h and the same secant stiffness 
at uniform moment distribution as the hinge with the elastic segments of length 
l/2 adjacent to it. 

If the beam is very long compared to length l of the softening region, the 
agreement must be close. However, even for normal slenderness values (L/1 
around 20), Figure 13.24 shows R,/ Ru values that are distinctly lower (more 
conservative) than the classical results for a hinge, independently of C. When the 
beam slenderness is very small, the difference of the present calculation from the 
classical analysis (i.e., a softening point hinge) becomes large. Thus, the accuracy 
of failure analysis based on a softening hinge is normally poor, and for deep 
beams very poor. 

On the load-deflection diagram, the instability we obtained corresponds to the 
snapback point at which the descending slope of the load-deflection diagram 
becomes vertical (point 3 or 4 in Fig. 13.25). (That this must be so is clear if we 
note that the instability involves load variation 6P at constant midspan deflection 
w.) If the beam is not sufficiently long, or the end restraints are not sufficiently 
weak, the load-deflection diagram may exhibit no snapback stability (curve 01 or 
02 in Fig. 13.25). Otherwise, snapback instability occurs, and the load-deflection 
diagram after the point of instability descends with a positive slope, at which the 
equilibrium is unstable. Under displacement-controlled conditions, the structure 
snaps dynamically from 3 to 5 (Fig. 13.25). Nevertheless, the knowledge of the 
equilibrium path 049 (Fig. 13.25) is important; the area under the curve 
(cross-hatched) represents the energy dissipated by the structure. [The fact that 

p 

0 w 

Fipre 13.25 Load-displacement diagram and snapback point. 
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strain softening may cause snapback in beams was shown by Mr6z (1985), Bafant 
(1976), Maier, Zavelani, and Dotreppe (1973), and others.] 

Note that without imagining the curvature to depend on the average bending 
moment within segment l (which is accomplished by assuming M to be uniform 
over l) one could not explain how strain softening could spread from the midspan 
point into a segment of finite length. This is known as Wood's (1968) paradox. 

Rotation Capacity or Ductility of Hinges in Concrete Beams 

From the diagrams in Figure 13.23 we see that with an increasing slenderness of 
the beam, or with a decreasing relative stiffness of the end restraint, the 
magnitude of R,/ Ru for the stability limit decreases. Since l is proportional to 
beam depth h, it follows that this stability limit also decreases with increasing 
depth of the beam. 

The ratio of hinge rotation 8 = 8cr at the stability limit to the elastic rotation 
at M = MP characterizes the rotation capacity of the hinge (also called the 
ductility of a softening hinge). Because normally the moment-curvature diagram 
is concave (d2M /dK2 < 0), it further follows that the rotation capacity decreases 
with an increasing depth of the beam, with an increasing slenderness of the beam, 
and with a decreasing relative stiffness of the beam. 

If the formulas for the M(K) diagram are specified, then one can calculate the 
function defining R,, that is, R, = dM I dK = f(K ). In terms of the initial hinge 
rotation, K = 8crll. Then 8 = g(R,)l where g is the inverse function off (in the 
postpeak range). Furthermore, the diagrams in Figure 13.23 may be described by 
the function R,/Ru = </J(L/1, Cl!Ru)· Therefore, we have 

(13.6. 7) 

which represents an implicit function. Furthermore, since I is proportional to 
beam depth h, this equation may be rewritten in the form: 

8cr = F(h, L, C) (13.6.8) 

where F is a certain function describing how the rotation capacity decreases with 
increasing beam depth h, increasing beam length L, and decreasing support 
stiffness C. It seems that, for typical concrete properties, function F has roughly 
the form 

(13.6.9) 

where k =constant if L and C are kept constant. 
The fact that the rotation capacity 8cr depends on beam depth has well as span 

L was derived in the above manner by Bafant (1976). Recently Hillerborg (1988) 
analyzed the problem of rotation capacity in a somewhat different although 
analogous manner. He assumed the softening to be due to transverse line fracture 
in compression occurring in the compression zone of a concrete beam that he 
treated as a uniaxially stressed compressed bar assuming its length to be 
proportional to its depth (or to the beam depth). Based on his assumptions he 
concluded that the rotation capacity should be inversely proportional to the beam 
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depth (Eq. 13.6.9) and supported this conclusion by some test data of Corley 
(1966). However, the assumption that the compression zone behaves as a 
uniaxially compressed beam seems to be an oversimplification. So does a uniaxial 
treatment of the compression fracture at bending, since this type of fracture is 
inherently a three-dimensional phenomenon. 

length of the Softening Region 

In the preceding analysis we assumed the length I of the softening region to be 
given. The value of I is a central question of the analysis. Can it be arbitrary? 

From Equation 13.6.3 we may notice that for I = 0 we always have k < 0 if 
R, < 0. This implies the first instability to occur at the peak moment point, which 
further implies that, for l = 0, the softening behavior of a frame could never be 
observed experimentally. But it can be. Hence, the softening length cannot be 
zero. So there must exist a certain lower bound lmin on the value of l. 

The same conclusion may be reached from the value of the postbifurcation 
stiffness, K = ap I au, where u = load-point displacement. It may be shown that 
for 1- 0 it is equal to the elastic stiffness (this may be readily verified by 
Equation 13.6.11). The positiveness of K means that there is always snapback 
instability when l = 0. Again, it follows that softening could not be observed, but 
it can. 

Moreover, the fact that K<2> equals the elastic stiffness means that all the 
elastic energy has been recovered, and so the energy dissipation at softening 
failure vanishes if I = 0. This is a general property due to the fact that by 
introducing a moment-curvature diagram to describe softening we implied the 
energy dissipation due to softening, per unit length of the beam, to be zero. So if 
I= 0, the dissipation of energy must be zero, which is physically inadmissible. 
Therefore I must be finite. 

From these arguments (advanced by Bafant, 1976), it follows that strain 
softening cannot localize into a segment that is shorter than a certain characteris
tic value of I. Based on the experience with softening in continua (Sees. 
13.1-13.5), I must be bounded by the size of inhomogeneities in the material and 
cannot, for example, be less than several aggregate sizes in concrete. It seems, 
however, that this bound is too small for bending. The ..,alue of I must also be 
related to the depth h of the cross section. This is due to the fact that the bending 
theory that we are using is not valid for large deformations occurring within a 
length that is less than approximately the size of the cross section. As an 
approximation we may assume I to be equal to the depth h of the cross section. 

Therefore, in our subsequent analysis we will assume that the minimum 
possible length of the softening region l is nonzero. But, for the sake of 
convenience of calculations, we will assume that the hinge rotation is concen
trated into a point. 

Bifurcation Due to Interaction of Softening Hinges 

When more than one plastic hinge enters the softening range, their interaction 
produces a multitude of equilibrium paths. To illustrate it, let us analyze the 
simply supported beam of span L (Fig. 13.26) that receives two loads P/2 at the 
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Figure 13.26 (a) Simply supported beam under third-point loads; (b) bending moment 
distribution; (c) initial linear moment-curvature relation; (d) softening moment-rotation 
diagram; (e, f) incremental deflection shapes; (g) equilibrium curves according to localized 
(II) and unlocalized (I) paths. 

one-third points as reactions from a shorter, perfectly rigid beam. From the 
bending moment distributions in Figure 13.26b we see that two softening hinges 
may form simultaneously at the one-third points of the beam (they may also form 
anywhere between the one-third points, but we do not analyze that case, although 
the method will be obvious). Now we assume, for the sake of simplicity, that the 
hinges are point hinges and that the M(K) diagram is linear up to moment MP at 
which softening begins with the initial slope dM I d8 = R,l I (R, < 0). 

The load-point deflection w (at the center of the rigid beam) is w = w., + ws 
where we = deflection due to the elastic curvature M I Ru and ws = deflection due 
to rotations 81 and 82 in the left and right hinges (Ru =elastic bending 
rigidity= El where I= cross-section moment of inertia). From the principle of 
virtual work, w., = f MM dxiRu where M is the moment distribution due toP= 1. 
The distributions of M and M shown in Figure 13.26 yield w., = 5PL3I324Ru and 
Ws = ( 81 + 82)LI6. After the state M = MP is reached at the one-third points, 
either both hinges can soften simultaneously, which represents the nonlocalized 
path (Fig. 13.26e ), or only one may soften ( ~81 > 0) while the other one unloads 
( ~M < 0 at ~82 = 0), which represents the localized path (Fig. 13.26f). 

For the nonlocalized path, ~81 = ~82 = ~M1 l/R, (R,<O) where ~M1 = ~M2 = 
~PLI6 (by equilibrium), and so ~ws = ~81 LI3 = ~PL2l/18R,. Summing ~Ws and 
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6w,., we get <5w = 6P I K<1> where 

1 L
2 (I 5L ) 

K<1> = 18 R, + 18R., (13.6.10) 

For the localized path, MJ1 = 6M11/R, (>0) and <582 =0 where <5M1 =6M2 = 
6PLI6 (by equilibrium). Therefore, <5w .. = (L/2)68tf3 = 6PL21/36R,. Summing 
6w .. and <5w .. , we get <5w = 6P I K<2> where 

1 L
2 

( I 5L ) 
K<2> = 18 2R + 18R 

t .. 

(13.6.11) 

We see that for the nonlocalized and localized paths we get postbifurcation 
branches of different slopes (see Fig. 13.26g where I labels the nonlocalized path 
and II the localized path). 

From our analysis of structures with a single load in Section 10.2, we know 
that instability at controlled displacement is indicated by snapback, that is, by 
positiveness of K. Therefore, path stability needs to be analyzed only for 
bifurcation states for which K < 0 for both paths. 

According to Section 10.2, the stable path at controlled <5w is the branch for 
which <52 "W is smaller. We have <52 "W = !6P6w = !K6w2

• Therefore, the localized 
path is the stable path if K<2> < K<1>. Substituting Equations 13.6.10 and 13.6.11 
and noting that we need to consider only the cases for which K<1> < 0, K<2> < 0, 
we find that this inequality is always satisfied. This means that softening will 
localize in only one of the two possible softening hinges and the beam response 
will be nonsymmetric. 

A similar example of bifurcation in a beam with softening hinges has been 
solved by Maier, Zavelani, and Dotreppe (1973) (see also Maier, 1970, 1971; and 
Maier and Zavelani, 1970). They identified the correct path assuming that <52W 
should be minimized. 

Imperfection Approach 

The correct path after bifurcation, of course, can also be determined by 
considering inevitable very small imperfections. For example, in the beam in 
Figure 13.26 the elastic limit MP in one hinge can be slightly smaller than in the 
other hinge. Then softening rotation starts in this hinge. But this causes unloading 
in the other hinge, and so this hinge can never reach the elastic limit and can only 
unload. This is the same conclusion we reached from the condition of stable path. 

Bifurcation and Localization ir: :ledundant Structures 

In a statically determinate structure, the load starts to decrease as soon as a 
softening hinge forms. In redundant structures, though, more than one hinge 
must rotate to produce collapse, and the load may continue to increase after the 
first softening hinge forms. As a simple example, consider the singly redundant 
beam in Figure 13.27a that has one end fixed and one simply supported. Load P 
is applied at distance a from the fixed end. The M(K) diagram is again linear up 
to Mp. The bending moment distribution is characterized by moments Mt at the 
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Figure 13.27 (a) Redundant beam; (b) bending moment distribution; (c, d) collapse 
mechanisms; (e) incremental deflection shapes. 

fixed end and M2 under the load (Fig. 13.27b). Due to redundancy, we now have 
a compatibility condition that requires that if the simple support is removed, the 
cantilever obtained must have a zero deflection. From the moment-area 
theorem, we may calculate the elastic part of this deflection as the moment of the 
M-distribution (Fig. 13.27b) about the right end of the beam, divided by Ru· The 
softening part of this deflection may be calculated as the moment of forces 
MJ 11/R, and MJ2 l/R, about the right end. In this manner, we obtain the 
compatibility condition 

!:_ ( tJM2) (~) (2L) _ ~ [ tJM2 (~) _ tJM1] (L _ ~) 
2 Ru L a 3 2 Ru L a Ru 3 

+ tJ61L + tJ92(L- a)= 0 (13.6.12) 

in which tJ91 = ~~ tJM.ll R, and tJ92 = ~2 tJM21/ R, where coefficients ~to ~2 
distinguish loading (with softening) from unloading; ~1 = 1 or ~2 = 1 for loading, 
and ~1 = 0 or ~2 = 0 for unloading in softening hinge 1 or 2. We expect {JM1 > 0, 
tJM2 < 0, tJ91 < 0, tJ92 > 0 (R, < 0). 

Using a collapse mechanism with hinges (real hinges) inserted under the load 
and at the fixed support (Fig. 13.27d) in order to obtain the equilibrium 
condition, according to the principle of virtual work, we get M1( -91) + M292 = 
P(-91)a, where 62= -91L/(L-a). From this we have 

tJM2 = -(1 - a) tJM1 - a(1 - a)LtJP (a=i) (13.6.13) 

Substituting this into Equation 13.6.12 and rearranging, one finds that {JM1 = 
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C1bP and 6M2 = C2{JP where 

C _ aL(1- a)[ 2- 3a + a-2 + ; 2 I (~)(1- a)2
] 

1
- 61 (R) a(1 - a)(3- a) + St L R: (1- a) 

(13.6.14) 

- (1- a)[ 2- 3a + a 2 + ; 2 ~ ( ~:)(1- a)2
] 

C2 = (1- a)( -Ct- aL) 

The load-point deflection w may now be calculated as the deflection at the end of 
the cantilever segment of length a. By the moment-area theorem, one takes the 
moment of the M(K) distribution to the left of the load about the load point. 
Thus one gets {Jw = {JP I K in which 

.!.. = {Jw = [ 681a + 6Mt (~)(2a) +6M2 (~)(~)](...!._) 
K {JP Ru 2 3 Ru 2 3 {JP 

= L3
a [(;tl~u + ~) Ct + ~ (Cz)] 

Ru LR, 3 L 6 L 
(13.6.15) 

K represents the tangential stiffness of the structure. The second-order work 
under controlled displacement {Jwcan now be evaluated as {J2 'W = !{JP{Jw = !K {Jw2

• 

As displacement w is increased, first one softening hinge forms, either at 81 or 
at 82 depending on the value of a. This corresponds to point A in Figure 13.28. 
Afterward this hinge rotates and softens (line 13 or 26 in Fig. 13.28b), which 
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Figure 13.28 (a, b) Moment-curvature and moment-rotation diagrams; (c, g) equilibrium 
paths; (h-k) incremental deflection shapes. 
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causes the slope of the P(w) curve to drop (lines AB in the figure). Later, at 
point B, the second softening hinge forms as its moment reaches Mr 
Subsequently, there exist two equilibrium paths (branches, shown as lines B1 and 
B2): (1) both hinges rotate and soften (line 34 or 67 in Fig. 13.28b), or (2) the 
new hinge rotates and softens while the previously formed hinge starts to unload 
(line 35 or 68). (The case of the first hinge rotating and the new one unloading 
does not exist at point B since IMI would exceed Mr) 

For path 1, ; 1 = ; 2 = 1. For path 2, either ; 1 or ; 2 is 1 and the other is 0. 
Using these combinations, one can calculate the corresponding stiffnesses 
K = K<1> and K = K<2> from Equation 13.6.15 with Equation 13.6.14. If at least 
one of them is positive, snapback instability takes place. If they are both 
negative, the structure is still stable, and in that case the stable path is that for 
which K is smaller (that is, c52 'W is smaller, for the same c5w). 

Depending on the values of a and R,/ R,., the structure can exhibit various 
kinds of responses as shown in Figure 13.28c, d, e, f, g, among which cases c, d, e 
are stable states at the bifurcation point B and cases f and g are unstable states. 
The incremental deflection shapes for various combinations of active and 
nonactive hinges are shown in Figure 13.28h, i, j, k. 

A path of the kind shown in Figure 13.28e is obtained when the first-formed 
softening hinge softens so rapidly (high IR,I) that its moment is reduced to zero 
before the second softening hinge is activated. The moment at the first hinge 
becomes 0 at point C, and along path CB the structure behaves elastically, but 
with reduced stiffness (as if a real hinge were provided). If IR,I-+ 00 for the 
first-formed hinge, which corresponds to a sudden moment drop in this hinge, 
then the response (dashed line AC') nearly retraces the initial elastic loading path 
AO. On the other hand, if the softening slope is sufficiently mild (smalliR,I), then 
there may be no snapback after point A (dashed line AC"). If the first hinge has 
softened to a zero moment before the second hinge is activated (i.e., before point 
B), there can be no bifurcation at point B. 

Bifurcation at Simultaneous Fonnation of Several Softening Hinges 

In the preceding examples we tacitly ignored the possibility the two hinges may 
form simultaneously. This case arises if the elastic moment distribution in the 
beam (for 81 = 82 = 0) has max M and min M of the same magnitude Mr To find 
the a value for which this happens, we substitute c5M1 = -MP, c5M2 = MP, 
c581 = c582 = 0, and then the compatibility Equation 13.6.12 for this case reduces 
to the equation cr- 5a2 + 6a - 2 = 0. The root of this cubic equation that is 
practically useful is a= 0.5859, which indicates the value of a= a/ L such that the 
hinges at the fixed end and under the load would form simultaneously. If 
a< 0.5859, then the softening hinge forms first at the fixed end, and if 
a> 0.5859, then it forms first under the load. When the hinges become activated, 
there exist three different tangent stiffnesses K = K<1>, K<2>, K<3> with three 
combinations (paths): (1) ;1 = 1, ; 2 = 0; (2) ;1 = 0, ; 2 = 1; and (3) ; 1 = 1, ; 2 = 1, 
which may be evaluated from Equation 13.6.15. The correct postbifurcation path 
is that for which K is minimum. As an example, for L = 121 and R,./ R, = 3 (and 
a= 0.5859/), Equation 13.6.15 yields K<1> = 47.47R,./ L 3

, K<2> = 15.50R,./ L 3, and 
K<3> = 23.44R,./ L3 for the three paths. Therefore, path 2 is the stable one. Only 
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one hinge is loading along this path, and so again we see that the softening has a 
tendency to localize. 

The typical responses that can be traced by the structure when three hinges 
form simultaneously are sketched in Figure 13.29a-f. Cases a, d, e are stable (no 
snapback), whereas cases b, c, fare unstable, due to snapback. Figure 13.29d, e, f 
illustrates what happens when the structure size, particularly the ratio L/ I, is 
increased while the geometric shape of the structure (beam or frame) remains the 
same. The softening behavior becomes steeper (Fig. 13.29e) and for a sufficiently 
large size it leads to snapback instability (Fig. 13.29f). 

A statically indeterminate (redundant) structure of a sufficiently large size 
exhibits in its P(w) diagram multiple peaks (Fig. 13.29e), and for a still larger size 
it exhibits multiple snapback instabilities. The number of peaks or snapbacks is 
equal to the number of hinges in the plastic collapse mechanism (which is equal to 
the redundancy degree plus one), provided that no two hinges form simul
taneously. For each pair of simultaneously forming hinges, the number of peaks 
and snapbacks is reduced by one. 

If the structure is displacement controlled, it may be designed (with the 
proper safety factor) for the highest peak load (Fig. 13.29e), provided there is no 
snapback before it. If the structure is under load control, it must be designed for 
the first peak load, even if there is no snapback. Under mixed load control 
(loading through an elastic device), either case may apply. If there is snapback, 
the structure must be designed for the first snapback displacement. 

If the structure is loaded through an elastic loading device of stiffness Cs 

Figure 13.29 (a-f) Equilibrium paths for simultaneous formation of three hinges; (g) 
graphical construction of failure points for a structure loaded through an elastic device. 
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(coupled in series), then the load P and deflection w at which the structure fails 
(and for which it must be designed) can be determined by the graphic 
construction in Figure 13.29g, which is a generalization of the construction in 
Figure 13.6b already justified before. A line of slope -Cs (dashed in Fig. 13.29g) 
is passed as the first possible tangent to the load-deflection curve P( w ). 
Depending on the value of stiffness C5 , this can produce failure states such as 1, 
2, or 3 shown in Fig. 13.29g. (Note, for example, that the line of slope C!2> 
cannot be made tangent before the second load peak.) 

It might be thought that, for IR,I/ « RuL, the beams between the softening 
hinges could be considered as rigid during a small deflection increment after 
bifurcation. However, in contrast to plastic analysis of frames, this cannot be 
done. The structure would then be found to be always stable under displacement 
control (this can be verified, e.g., by the fact that the limit of Equation 13.6.3 for 
R,- 0 always yields k > 0). Softening instabilities are driven by release of stored 
elastic energy, but a structure with rigid beams has no stored energy. So the 
calculation of elastic deflections is an essential part of stability analysis of 
softening beams or frames. 

As for bifurcations, in structures with beams that are rigid between the hinges 
they exist only if there are more hinges than necessary to create a collapse 
mechanism (this is verified by the fact that Equations 13.6.10 and 13.6.11 give 
different K< 1> and K<2> for Ru-oo). No bifurcations can be detected if the number 
of hinges just suffices to create a mechanism. This is illustrated by the fact that if 
the beam in Figure 13.27 is rigid and only one hinge can rotate (while the other 
one would have to unload), no deflection is possible. 

Softening Frames and Trusses 

The type of behavior we illustrated for beams is, of course, exhibited by 
continuous beams and frames. Examples of structures with such behavior are 
given in the exercise problems. 

The axial response of bars can also exhibit softening. Then, whether or not 
the material softening is localized along the bar, the overall diagram F(u) of axial 
force F versus the axial extension u of the bar exhibits softening (Fig. 13.30a). 
When this happens in a truss, the behavior is analogous to that described for 
beams. 

For example, the triangular truss in Figure 13.30b under displacement control 
can be stable or unstable depending on the softening slope dF I du and the elastic 
properties. The truss in Figure 13.30c having the same member properties in 
tension and compression exhibits a bifurcation as soon as the elastic limit is 
reached because there exist three paths for which either both bars extend and 

a) b) c) 

b_u ~: 
Figure 13.30 Trusses (b-d) with bars having softening response (a). 
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soften, or only one bar extends and the other one unloads. The stable path is that 
for which only one bar extends. The redundant truss in Figure 13.30d exhibits 
bifurcation similar to the redundant beam in Figure 13.27. 

An important aspect of the inelastic behavior of frames and trusses is their 
capacity to redistribute their internal forces so as to carry higher loads than elastic 
analysis permits. Softening behavior reduces that capacity or entirely eliminates 
it. This has been illustrated by the beam in Figure 13.27. Determination of the 
extent to which redistribution of internal forces (moments) is possible is basically 
a problem of stable path (rather than stable state). 

Softening in Metallic Structures 

Development of softening hinges is not limited to reinforced concrete beams. 
Hinges with pronounced (steep) softening develop also in thin-wall metallic 
beams such as tubes or T-sections subjected to bending or eccentric compression. 
This in turn produces a softening response in the axial force-shortening diagram 
of a metallic structural member. The reason for softening in metallic structures is 
local buckling of the walls and deformation of the cross section, for example, the 
flattening of the circular cross section of a tube. This was experimentally 
demonstrated by Maier and Zavelani (1970); see Figure 13.31 (adapted from their 
figs. 2 and 3). 

Summary 

Softening damage in beams localizes in softening hinges and causes instability 
with snapback. The rotation capacity of softening hinges is limited and is not 
merely a property of the material. Rather, it is determined by structural sta
bility considerations. It depends on the cross-section depth, the beam slenderness, 
and the support stiffness. Interaction of several softening hinges causes bifurcations 
of the equilibrium path, and the correct path may be identified by the path stability 
criterion (Sec. 10.2). In redundant softening structures, instabilities and bifurca
tions affect the maximum load, and successive formation of softening hinges may 
produce multiple load peaks, possibly also with snapback instabilities after the 
successive peaks. The structure must then be designed for the first peak load, or 

Axial 
force 

0~------------------_. 
Shortening 

Metallic 
T·cross section 

Shortening 

Fipre 13.31 Softening response of a metallic structural member. (Adapted from Maier 
and Zavelani, 1970.) 
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the overall peak load, or the first snapback displacement, depending on the type 
of loading. 

Problems 

In all the problems consider a triangular M(K) or M( 0) diagram. 

13.6.1 Verify that the limit cases of Equations 13.6.6 for c-o and c-oo give 
correct results, valid for a simply supported beam and a fixed-end beam. 

13.6.2 Calculate the snapback instabilities for the cantilevers in Figure 13.32a, b 
assuming a softening region of finite length I. Discuss the size effects. 

A 
-J- L ,; 

T 
L 
2 

k) 

e) f) 

~~ 
~a 

1 
a~~a I ~ 

ILILI ~LIL: 

A 
I L ~ 

h) 

W':Z't,'i'\1 

Figure 13.31 Exercise problems with softening hinges. 

13.6.3 Calculate the maximum loads and snapback instabilities for the structures 
in Figure 13.32a, b, c, d, e, f assuming softening hinges equivalent to softening 
segments of length I > 0. Discuss the size effect. 

13.6.4 Analyze path bifurcation and stable path for the statically determinate 
structures in Figure 13.32g, h. Discuss the size effect. 

13.6.5 Analyze successive load peaks and successive snapbacks for the redundant 
structures in Figure 13.32i, j, k, I. Consider the effect of size on failure load. 

13.7 FRICTION: STATIC AND DYNAMIC 

Frictional phenomena have much in common with softening damage and cause 
similar instabilities. Due to the difference between static and dynamic friction 
coefficients ks and kd (kd < ks), a slip displacement causes the frictional force to 
drop, which represents a kind of softening damage to the rubbing surfaces. 
Therefore, systems of frictional bodies exhibit instabilities and bifurcations similar 
to those in softening beams and frames that we discussed in the preceding section. 
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Due to these similarities, we will touch the subject only superficially. Instabilities 
caused by frictional phenomena have been studied in depth by Ruina (1981), Rice 
and Ruina (1983), Kosterin and Kragel'skii (1960), Brockley and Ko (1970), Gu, 
Rice, and Ruina (1982), Schaeffer (1987), Schaeffer and Pitman, (1988), Pitman 
and Schaeffer (1987), and others. 

Paradox in Sudden Friction Drop 

Consider the rigid block of length 2L shown in Figure 13.33a, which is pulled by a 
spring of stiffness C over a rough surface. The static and dynamic frictional limits 
of the friction force F on the block are Fs and Fd. The block first slips when 
P = F;, after which F drops instantly to F = Fd (Fig. 13.33c). 

Rigid bodies, however, are an idealization that does not exist in nature. They 
are the limiting case of elastic bodies whose stiffness tends to infinity. Therefore 
let us imagine, for instance, that in the middle of the block there exists a thin 
layer of stiffness C 1 joining two halves of the block (Fig. 13 .33b). As C 1---+ oo, the 
case of a single rigid block must be obtained. 

Now, if C1 < oo, then the friction force on the left half must be zero (Fj = 0) 
until the right half slips. The right half slips at P = f;/2. Then, as the load-point 
displacement u increases, the slip q1 of the right half increases and the force in 
the elastic layer grows as C1q1 • The left half then slips when C1q 1 = Fd/2, in 
which case the pulling force is P = Fd. For this case the P( u) diagram is as shown in 
Figure 13.33d, which is sketched under the assumption that Fd > f;/2. If Fd < f;/2 
(and C1 ---+ oo), then, after the first slip of the right half, the force in the elastic 
layer immediately rises to the value f;/2 that makes the left half also slip 
immediately, after which force P must immediately drop to Fd. The P(u) diagram 
then looks as shown in Figure 13.33e. 

Now we cannot escape noting that the maximum forces needed to make the 
block move are different: Pmax = Fs for the rigid block and Pmax = Fd or f;/2 for the 
elastic blocks with stiffness approaching infinity. This result is a paradox. (Its 
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Figure 13.33 (a, b) Rigid blocks sliding with friction over rough surface; (c, d) load
displacement diagrams. 
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essence was pointed out by A. Ruina in his seminar at Northwestern University in 
1988.) 

So the assumption that the friction force drops from the static value to the 
dynamic value instantly is not quite reasonable. In reality, of course, this drop 
must occur gradually over a certain finite slip distance h (Fig. 13.34a) that is a 
property of the rubbing surfaces. This is explained by the fact that the 
microscopic asperities whose interlock causes friction are of finite size and the 
scraping of the peaks that causes the friction to drop requires a displacement at 
least equal to the size of these asperities. 

Bifurcation, Stable Path, and Localization of Frictional Slip 

Consider now the pair of two identical rigid blocks (Fig. 13.34b) that are attached 
by springs of stiffness C to a rigid balance rod and are pulled over a frictional 
surface by load P. The blocks are identical and have equal weights and the same 
frictional properties, described by static and dynamic frictional force limits F; and 
Fd, such that Fd < F;. The actual frictional forces on the blocks, denoted as F,, 
must be equal due to the equilibrium condition on the balance rod. At the 
moment of the first slip of a block, its friction force equals f;. 

If F under each block is assumed to drop from F; to Fd instantly, then the 
load-deflection diagram P(u) looks as sketched in Figure 13.34c. Now consider 
that the frictional forces drop gradually (Fig. 13.34a). Let the initial slope of the 
diagram of friction force versus slip displacement be C1 ( C1 < 0). There are two 
possibilities: 

1. Both blocks start slipping when P = 2F;, in which case q 1 = q2 = 
u- P/2C and F, = Fi = Fs + CrJ 1 in each block. So the pulling force is P = 
2(f; + CrJ 1) = 2f; + 2C,(u- P/2C), from which 

dP ( 1 1 )-
1 

K<
1
>= du = 2 C+ C

1 
(13.7.1) 

2. One block starts slipping when P = 2f; while the other block does not 
move. So q 1 = (u/2)- (P/2C), and the force in the slipping block is 
F, = Fs + Cj</1· Due to equilibrium conditions, the force in the other block 
must be the same, and so P = 2F1 = 2f; + 2CrJ 1 = 2f; + 2C1(u- P/C)/2, 
from which 

a) 

:.lc, 
Ll=X. 

0 h q 

dP ( 1 1 )-
1 

1 
K<

2
>= du = C+ C

1 
=2_Ko> (13.7.2) 

b
) 

2F5 

d 

u 

Figure 13.34 (a) Initial friction force drop; (b) identical blocks on rough surface; (c) 
load-displacement diagram. 
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So we see there is a bifurcation of equilibrium path. If C > -c1, then K<'> > 0 
(which implies K<2> > 0), and so the system exhibits snapback and is unstable. If 
C = -C1, the system is critical, and if C < -C1, it is stable. Path stability needs to 
be considered only for stable states, that is, for C + c1 < 0. Since this is a 
structure with a single load (Sec. 10.2), the stable path is that for which the 
tangential stiffness is less. We find that K<2> < K<'> always. So we conclude that 
the path that is stable in path 2, for which the frictional slip localizes into one 
block. 

For the case of a sudden drop of friction forces from F; to Fd we have K<'>-+oo 
and K<2>-+ oo, and so on this basis one cannot decide which path will take place. 
However, on the basis of the limiting process C1 -+oo, one must conclude that 
path 2 should occur. 

It may be noted that the system of frictional blocks we analyzed (Fig. 13.34b) 
is mathematically equivalent to the system of two parallel softening specimens in 
Problem 13.2.7 and Figure 13.13d. 

Frictional Supports in Columns 

Friction also has considerable effect on the buckling of columns. Solutions to 
many problems in Chapters 1 to 4 are modified introducing friction. For example, 
consider the perfect columns in Figure 13.35, in which we assume for the sake of 
simplicity the dynamic and static friction to be equal, characterized by constant 
friction coefficient k. In the column (a), a frictional property of the support has 
no effect because the horizontal reaction H on top of the column is zero. For 
columns (b)-(e), however, H becomes nonzero as soon as deflection begins. 
After bifurcation, His proportional to deflection, and so is the frictional reaction 
kH. 

a) b) 

Figure 13.35 Columns with frictional supports. 
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For column (b), the moment equilibrium condition of all forces about the base 
joint yields H = Cq 1/ L, and the moment equilibrium condition of the top half of 
the column about the middle joint reads 2Cq 1 - (P- kH)q 1L/2 + HL/2 = 0, 
from which 

. h 5C 
Wit Pcr=L (13.7.3) 

We see that the bifurcation load is the same as that without friction, but friction 
causes P to increase after bifurcation. Thus, there is no neutral equilibrium and 
the bifurcation becomes of Shanley type, with all the immediate postbifurcation 
states being stable (this can be shown by calculating c5 2 'W). 

Columns (c) and (d) behave similarly. Column (e) would, without friction, 
exhibit asymmetric bifurcation (Sec. 4.3), but the increase of P due to friction 
tends to offset the decrease of P associated with asymmetric bifurcation; if k is 
too small P still decreases after bifurcation for buckling to the right, but if k is 
sufficiently large, P increases for buckling both to the left and to the right. 

In columns (f)-(i), friction is nonzero for any P > 0 and causes the equations 
of equilibrium of the column to become nonhomogeneous, with the right-hand 
sides containing P. Column (g) first buckles at no frictional slip (q 1 = 0, q2 > 0), 
while column (f) requires P-+ oo to start buckling, but P then declines rapidly 
with increasing q1 (similar to the perfectly plastic columns considered in Sec. 8.6). 

Structures with Stiffness Matrix Asymmetry 

To demonstrate asymmetry of the stiffness matrix of the type seen in Problem 
4.1.5 and the example in Section 10.4, we need to consider frictional-elastic 
structures with multidimensional action, for example, those in Figure 13.36. The 
blocks I, II or I, II, III are rigid. The frictional forces on the horizontal and 
vertical sliding surfaces are F1 = k 1N1 and~= k2 N2 where k 1,k2 =given constant 
friction coefficients. A salient feature is that It affects q2 through ~. and fz affects 
q 1 through / 1 even though / 1 does no work on q2 and / 2 no work on q 1 (cf. Sec. 
10.7). Let us assume that, on each frictional surface, the sliding is imminent, the 
structure is initially in equilibrium, and dq 1 > 0 and dq2 > 0. Then, writing the 
horizontal equilibrium condition of blocks I and II and the vertical equilibrium 
condition of block II in Figure 13.36a, we get C1 dq 1 + dF,. = df1 and C2 dq2 + 

a) 

Figure 13.36 Multidimensional frictional-elastic systems. 
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dfi = dh where dFj = k 1 dfz and dFz = k 2 d/1• Rearranging, we obtain 

[ 
Ct KtC2]{dqt} = {(1- K 1K 2) dft} 

KzCt Cz dq2 (1- KtKz) dfz 
(13.7.4) 

in which Kt = kl> Kz = kz. If dq 1 < 0, dq2 > 0, we get the same result but with 
Kt = -kl> Kz = kz; if dqt > 0, dq2 < 0: K1 = kl> K2 = -k2; and if dq 1 < 0, dq2 < 0: 
Kt = -kt, K2 = -kz. Furthermore, when dq 1 = 0, we have a system with only one 
degree of freedom, provided that -ktf2 ~ Fj ~ k 1h, and similarly when dq2 = 0. 

From Equation 13.7.4 it is now interesting to note that, in general, the 
stiffness matrix is nonsymmetric. The consequences of nonsymmetry for stability 
have already been discussed in Section 10.7, the example in Section 10.4, and 
Problem 4.1.5. The multidimensional elastic-frictional systems in Figure 13.36 are 
the most elementary prototypes of the salient aspects of stability of granular 
materials such as sand (Sec. 10.7). 

Problems 

13.7.1 Determine the stable path in the example in Fig. 13.34 by considering 
infinitely small imperfections in the values of F;. 

13.7.2 Consider that the springs in Figure 13.34 are replaced by a single spring 
transmitting load P into the rod and analyze the stable path. 

13.7.3 Construct examples of frictional bodies mathematically equivalent to 
problems in Equations 10.4.6 to 10.4.7. 

13.7.4 Write the equilibrium equations of the columns in Figure 13.35d, e, 
discuss the type of bifurcation and the postbifurcation response. 

13.7.5 Do the same for columns in Figure 13.35f-i. 
13.7.6 For the system in Figure 13.36a, determine the critical state of bifurcation 

and the stability limit. 
13.7.7 Do the same for the system in Figure 13.36b. 
13.7.8 Discuss problems 13.7.5 to 13.7.7 under the assumption that the dynamic 

friction coefficients k 1d, k2d are smaller than the static ones, k 1,, kz.. 

13.8 BIFURCATIONS DUE TO INTERACTION OF SOFTENING 
DAMAGE ZONES 

In Sections 13.2 to 13.7, we have seen how localization of softening damage into a 
small zone from an adjacent unloading zone can produce bifurcations and 
instabilities. The same effect can also be caused by interaction of nonadjacent 
zones of softening damage. 

Interaction of Damage (Cracking) Fronts and Stable Paths 

Distributed cracking is in finite element analysis often modeled as a sudden drop 
of the maximum principal stress to zero. If the element size at the cracking front 
is fixed as a material property (as is done in crack band theory), this approach is 
objective. Figures 13.37 and 13.38 show examples of application of this 
approach to a tensioned rectangular panel, calculated by Lin (1985) and Ba!ant 
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Figure 13.37 Various crack band advances in tensioned rectangular panel. 

(1985b) (the mesh actually used has been much finer than that shown). One 
horizontal mesh line coincides with the axis of symmetry of the panel, and the 
pairs of elements at the left and right boundaries bordering on the symmetry axis 
are assumed to have a slightly smaller strength than the rest of the panel. The 
loading is displacement controlled, the displacement at the top and bottom being 
uniform. The material is assumed to obey the Tresca yield criterion. Softening is 
introduced by decreasing the yield limit linearly as a function of the maximum 
principal strain. For the sake of simplicity, the left and right sides of the panel are 
forced to respond symmetrically. 

As the displacement is increased, a band of smeared cracking starts growing 
horizontally from each edge. Now, at every advance of the crack band there are 
two possible equilibrium paths which satisfy all the boundary conditions and 
compatibility conditions: 

Path 1 (Fig. 13.37a), for which only one element cracks while its symmetric 
element unloads elastically, so that the crack band front becomes a single element 
wide and nonsymmetric 

Path 2 (Fig. 13.37b) for which a symmetric pair of elements cracks 
simultaneously and the crack band front remains two elements wide. 

1.5 

/ 

, , 
Stobie 
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Unstable 
Poth 2 
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Displocement ( inch)(•t0•3) 

Figure 13.38 Bifurcation of loading path in strain-softening panel. (After Bazant 1985b 
and Lin, 1985.) 
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By applying infinitesimal force pairs 6{ as shown in Figure 13.37a, b, it has 
been checked that the states for both paths are stable. Once a crack band front 
with single-element width forms, forces 6{ cannot cause the element on the side 
of the frontal crack band element to crack, so as to make the cracking band two 
elements wide. The reason is that the element at the other side of the band has 
unloaded (elastically). On the other hand, once a band front of two-element 
width forms, forces 6{ cannot cause the width of the crack band front to decrease 
to one element since the cracking that occurred in one element cannot be 
reversed. More generally, 62 'W for the structure is found to be positive definite 
for the equilibrium states on path 1 as well as path 2. 

So the evolution of cracking is decided by stability of path rather than stability 
of state, just as it is for Shanley's plastic column. The stable path may be 
determined by comparing 62 'Uf<1> and 62 'Uf<2> for paths 1 and 2. (Their values are 
best calculated from the increments of the boundary displacement and reaction 
force, although their calculation on the basis of stress and strain increments in all 
the elements yields the same result.) In our example, since the displacement is 
forced to be uniform at the top and bottom boundaries, one may even more 
simply exploit the fact that the stable equilibrium path is that of a steeper 
downward slope (Sec. 10.2) in the load-deflection diagram. Now the calculated 
paths plotted in Figure 13.38 show that the stable path is path 1. It means that the 
cracking front must localize to a single-element width. 

Because the load-displacement diagrams for both cases are identical, the path 
stability criterion cannot decide whether the cracking in Figure 13.37 localizes 
into the top element or the bottom element. That is decided by random 
imperfections. 

Convergence of Iterations Depends on Stability of State, not Path 
It is interesting to observe that the existing general-purpose large finite element 
codes generally produce path 2, the incorrect path. Moreover they give no 
indication of trouble. The iterations of the loading step based on initial elastic 
stiffness matrix, as normally used in nonlinear finite element programs, converge 
well and about equally fast for increments along paths 1 and 2. 

The problem is that the convergence of these iterations has nothing to do with 
path stability (Baiant 1988c, 1988b). It depends only on the stability of state. The 
reason is that, during the iterations of a loading step, the loading (prescribed 
displacement or load) does not change. Consequently, the errors in the iterated 
states represent deviations away from the equilibrium state. Path stability, on the 
other hand, can be checked only when approaches toward a new equilibrium 
change are involved, which requires consideration of responses to load changes. 

Incorrect path can, however, be detected by checking the signs of eigenvalues 
(or pivots) of the tangential stiffness matrix K' (de Borst, 1987). If one of them is 
negative, the state cannot lie on a stable path (see Sec. 10.4). One must return to 
a previous load step and find a loading path for which no eigenvalue (or pivot) of 
K' is negative. 

Multiple Interacting Crack Band Fronts 
The two paths in Figure 13.37a, b, that we considered so far are not all the 
possible equilibrium paths in this example. In every loading step, the cracking 
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front can expand into any of the elements 1, 2, 3, 4 marked in Figure 13.37c, in 
any combination. Altogether, the possible combinations consist of cracking in the 
following elements: 1, 2, 3, 4, 12, 23, 34, 41, 13, 24, 234, 341, 412, 123, and 1234, 
which represents 15 possible paths. This enumeration shows that, in general, if 
there are n elements into which the damage can spread, in any combination, the 
number of all the paths is 

N= (~) + (~) + (;) + • • • + c: 1) ~2n -1 (13.8.1) 

Another way to deduce this result is to note that the number of all the possible 
combinations is 2 x 2 x · · · x 2 = 2n. But one combination represents no cracking 
in all the elements, which must be excluded, yielding N = 2n - 1. 

From this conclusion we now realize that in larger finite element systems the 
number of all the possible paths is enormous. It is not feasible to check all of 
them. If the stable path from the initial stress-free state is to be determined, 
states on an incorrect path can be excluded by checking the sign of the smallest 
eigenvalue (or pivot) of K', as already said. This does not work, however, for 
determining the correct path that begins from a given initial stable state that lies 
on an unstable path. 

The random imperfection approach might be another way to circumvent the 
problem. By assigning small random deviations to the strength limits or other 
softening parameters in all the candidate elements, the symmetries are broken 
and the number of possible paths might be reduced to one. This approach 
nevertheless also presents difficulties: In theory, all the possible imperfections, 
infinite in number, should be checked. Moreover, the imperfections must be very 
small, but then the loading steps must also be sufficiently small. Otherwise, 
several elements might straddle their strength peaks simultaneously, in the same 
loading step. 

The number of combinations can be reduced by assuming the cracking to 
localize into a single-element front. Indeed, this is often the case, but not always. 
Crack bands in the limit represent fractures, and we may recall that in the 
analogous problem of interacting crack tips (Sec. 12:5) it is possible that two 
interacting crack tips may propagate simultaneously. This happens, for example, 
in a center-cracked square specimen loaded at the middle of the crack. An 
analogous specimen with a crack band must behave similarly if the crack band is 
sufficiently narrow. 

Interaction of Multiple Shear Bands 

Problems of bifurcation and stable path also arise when multiple shear bands 
form and interact. This may be illustrated by the example in Figure 13.39 taken 
from Droz and Bafant (1989). The rectangular specimen, solved by finite 
elements, is subjected to uniform controlled displacement at the top boundary. 
The top and bottom boundaries are bonded to rigid blocks. The material is 
assumed to yield according to the Mohr-Coulomb criterion and follow the 
normality rule (Sec. 10.6). The yield limit decreases with increasing effective 
plastic strain, which is described by a negative value of the plastic-hardening 
modulus. A strip of elements in the center of the specimen (cross-hatched in 
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Fagure 13.39 (a) Rectangular panel with central elements of smaller yield strength; (b) 
load-displacement curves; (c, d) failure patterns. (After Droz and Baiant, 1988.) 

Figure 13.39a) is assumed to have a slightly smaller yield strength than the rest. 
The width of the shear band is forced to be at least several elements wide, which 
is accomplished by the nonlocal continuum formulation with local strain, which 
will be described in Section 13.10. 

Two symmetric shear bands of opposite inclinations develop at first, as seen in 
Figure 13.39c. Symmetric shear bands, however, do not remain the only solution. 
At a certain moment, while the load is still rising, another solution becomes 
possible (Fig. 13.39d). This solution is asymmetric-one shear band continues to 
exhibit loading (with plastic softening) while the other shear band starts to unload 
after it has experienced some plastic softening. For this second path, the load 
decreases--see Figure 13.39b. According to Theorem 10.2.1 about structures with 
a single load, this second, unsymmetric path must be the stable path. The shear 
softening localizes into a single asymmetric shear band. 

Various examples of periodic eigenmodal deformations indicating instabilities 
and bifurcations were found by de Borst (1989) to occur in finite element systems 
with material behavior exhibiting either strain softening or nonassociated 
frictional plasticity; see also de Borst (1987), (1988b), Vardoulakis (1983), Sulem 
and Vardoulakis (1989), and Vardoulakis, Sulem, and Guenot (1988). These 
eigenmodes, which trigger shear band formation, resemble the internal in
stabilities analyzed in Section 11.7 (however, in contrast to Sec. 11.7, de Borst's 
treatment did not consider finite strains). 
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Example: Buckling in Direct Tensile Test 

In Section 12.5 we saw that a double-edge-notched fracture specimen does not 
respond symmetrically. Rather, due to interaction of two crack tips, it buckles to 
the side while only one crack extends and the other is arrested (Bafant, 1985e). 
The symmetric tensile failure of a specimen with distributed cracking may be 
modeled by propagation of two symmetric crack bands shown in Figure 13.40a; 
however, such symmetric growth of two crack bands does not represent a stable 
path and in reality only one crack band will grow, causing the specimen to buckle 
to the side. Rots and de Borst (1989) demonstrated such response both by 
experiment and by two-dimensional finite element analysis with smeared crack
ing. Pijaudier-Cabot and Akrib (1989) demonstrated a similar asymmetric 
response using layered beam finite elements with smeared cracking. 

This kind of response may be demonstrated quite easily, without finite 
elements, by the tensile specimen in Figure 13.40c, consisting of two rigid bars of 
length L connected by a deformable link. The link, of width 2b and length 2h, 
consists of two very thin flanges of cross-section areas A, which can exhibit strain 
softening. The structure is symmetric including the properties of flanges. The 
specimen is supported at the ends by hinges with springs of stiffness C. The 
deflection is characterized by angle 8. Assuming that initially (} = 0, the 

a) 

e) 

b) 

Elastic 

2~ EAb.Eib 

h) 

Figure 13.40 Buckling in direct tensile test: (a) crack band model; (b) test specimen; (c) 
rigid-bar model with deformable softening links; (d) force and strain increments; 
(e, f, g, h) exercise problems. 



DAMAGE AND LOCALIZATION INSTABILITIES 913 

conditions of force and moment equilibrium in the link require that 6fj + 6fi = 
6P and b( 6fj - 6fi) = (PL + C)MJ where P =axial tensile load, fj, F2 =forces in 
the flanges of the link, and 60 = 0. The strains in the link are 6e1 = (6u/h)
b 60/h, 6e2 = (6u/h) + b 60/h, and, if one link is loading (modulus E,) and the 
other unloading (modulus Eu), 6F1 = EuA 6e1 and 6F2 = E,A 6ez where E, is 
assumed to be negative (for strain softening) and Eu positive (unloading). We 
also assume there is no localization along the flanges. Eliminating 6et> 6e2 , 6fj, 
and 6Fi from these equations we obtain, with the notation k = b2A/(PL + C)h, 

60 = k(Eu - E,) 6u 
b{1 + k(Eu + E,)] 

and, for 60 * 0, 6P = K<2> 6u where 

K<z> = A(Eu + E, + 4kEuE,) 
h[1 + k(Eu + E,)] 

(13.8.2) 

(13.8.3) 

The condition that one flange unloads requires that 6e1 < 0 or 6u < b 60, which, 
by substitution of Equation 13.8.2, can be reduced to the condition 

-2E,Ab2 > (PL + C)h (13.8.4) 

Of course, there exists also a symmetric (primary) path, for which both 
flanges are loading and the lateral deflection is zero (0 = 0, e1 = e2). For this path 
6P = K< 1> 6u where K 0 > = 2E,A/h. Path 2, which represents buckling of the 
specimen, occurs when K<2> < K< 1>. According to Equation 13.8.3, and if 
Eu + E, > 0, this condition can be reduced to the same inequality 13.8.4. 

The inequality 13.8.4 is satisfied if the length h of the link is sufficiently small, 
or if IE,I is sufficiently large. In such a case the direct tensile test in which the 
deformation is symmetric and all the points of the cross section have the same 
strain cannot be carried out for the complete strain-softening branch. The 
symmetric response path is unstable, bifurcation occurs, and buckling is in
evitable. Note that the bifurcation with localization does not begin at the start of 
strain softening; see also Problem 13.8.3. 

Problems 

13.8.1 Consider small random imperfections (deviations in the strength limit) to 
argue that the localized path (path 1) is the path that must occur in Figure 
13.37. (Take into account the fact that if one element cracks, the stress in the 
element on its side decreases rather than increases.) 

13.8.2 Apply the same imperfection argument to the shear bands in Figure 13.39. 
13.8.3 For the specimen in Figure 13.40c it has been shown in the text that 

buckling may occur if K<2> < Ko>. Ko> = 0 at the start of strain softening and 
K<2> < 0 {assuming the slope of the u( e) diagram to be continuous]; since 
K<2> < K< 1> one might think that the bifurcation with localization would begin 
at the start of strain softening. Show that this is impossible. (Hint: At the start 
of strain softening the stress in the loading flange does not change while the 
stress in the unloading flange decreases. Is the sign of the resulting couple 
compatible with moment equilibrium in the deflected configuration? See 
Figure 13.40d and note that buckling can occur only when F2 < F1.) 
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13.8.4 Determine conditions under which the tensile specimens in Figure 13.40e, 
f, g, h cannot remain undeflected. Also, comparing (f) and (g), show that (f) is 
the case that occurs. This is no doubt the reason that direct tensile specimens 
tend to break usually at midlength (except for improper grips in which stress 
concentrations promote breakage at the grip). 

13.9 SIZE EFFECT, MESH SENSITIVITY, AND ENERGY CRITERION 
FOR CRACK BANDS 

Practically the most important property of the localization instabilities due to 
strain softening which were described in the preceding sections is that they cause 
size effect in structural failures. In finite element analysis in which strain softening 
is allowed to localize into bands of single-element width, the size effect in turn gets 
manifested as spurious mesh sensitivity that causes the results to become 
unobjective, depending on the analyst's subjective choice of mesh size and layout. 
In this section, we will first explain the size effect, then demonstrate the spurious 
mesh sensitivity, and finally outline one simple remedy based on an energy 
criterion for crack band propagation. 

Localization as a Cause of Size Effect 

In Section 12.2 we have already seen how the blunting of a crack front by a 
softening zone of finite length causes a size effect that is transitional between 
plastic limit analysis (which has no size effect) and linear elastic fracture 
mechanics. A similar size effect is due to fracture front blunting by a crack band 
(or softening band) of a finite frontal width we (Bazant, 1984c, 1986a, 1987a). Let 
us give a simple illustration, considering the rectangular panels in Figure 13.41, 
which are geometrically similar and are of different sizes, characterized by 
dimension D. Without any crack band, the stress is uniform and equal to the 
nominal stress aN= P/bD (Eq. 12.2.7, en= 1) where P =load resultant and 
b =panel thickness. The strain energy density before cracking is ~/2E (E = 

b) c) 
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Figure 13.41 (a, b) Crack band advance in panels of different sizes; (c) size effect law. 
(Baiant, 1984c.) 
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Young's modulus). As argued in Sections 13.2 and 13.3 on the basis of 
localization instabilities, the frontal width we of the crack band has to be a 
material property, and thus has to be the same for any panel size D. 

Creation of the crack band of length a may approximately be imagined to 
relieve the strain energy from (1) the area of the crack band and (2) the 
cross-hatched triangular areas limited by "stress-diffusion" lines of slope k. If the 
crack band advances by ll.a, additional strain energy is released from the densely 
cross-hatched area ll.Ae = we ll.a + 2ka ll.a. The energy release rate for b = 1 may 
be calculated as G = -au I aa = ( aZ,./2£) ll.Acf ll.a (assuming fixed boundary 
conditions, for which n = U). If the crack band propagates, we must also have 
G = G1 =fracture energy of the band, which may be approximately considered as a 
material property (i.e., a constant). From this we obtain for the nominal stress at 
failure the following approximate size effect law (Bazant 1984c): 

Bf,' D 
aN= y1 + J3 f3 = Du (13.9.1) 

in which D0 = (wc/2k)D/a =constant (because D/a is constant for geometrically 
similar failure situations), and Bf; = (2EG11wc) 112

• 

For small sizes, f3 « 1, and Equation 13.9.1 yields aN= const. For larger sizes, 
f3 » 1, and then 1 may be neglected compared to f3 in Equation 13.9.1, which 
gives aN= const./Vi5 or log aN= -~log D + const. This is the size effect of 
linear elastic fracture mechanics (Eq. 12.2.10), which is represented in the plot of 
log aN versus log D by a straight line of slope - ~; see Figure 13.41c. Equation 
13.9.1 represents a smooth transition from the strength criterion to linear elastic 
fracture mechanics, as sketched in Figure 13.41c. 

Equation 13.9.1 ensues by the foregoing type of approximate argument for 
various shapes of bodies with crack bands (Bafant, 1984c). Moreover, Equation 
13.9.1 coincides with Equation 12.2.12 that we derived in Section 12.2 for line 
cracks with a cohesive zone whose maximum effective length c1 is a material 
property. Therefore, there must be some more general argument leading to this 
law. 

Indeed, such an argument (Bafant, 1984c, 1986a, 1987a) can be based on 
dimensional analysis and similitude considerations, starting from the following 
fundamental hypothesis: The total potential-energy release caused by the fracture 
(or the crack band) is a function of both (1) the length a of the fracture (crack 
band) and (2) a length constant of the material, 10 • Here /0 may represent the 
material constant combination 10 = E'G11!:Z (Irwin's characteristic size of non
linear near-tip zone, Sec. 12.2), or the effective length c1 of fracture process zone 
in an infinitely large specimen, or the effective width we of this zone. [If only part 
(1) of this hypothesis were adopted, the size effect of linear elastic fracture 
mechanics would ensue, and if only part (2) were adopted, there would be no size 
effect, as in plasticity.) 

We consider geometrically similar two-dimensional bodies of different sizes, 
and assume the ratio a/ D at failure to be the same. The potential-energy release 
- n must depend on a and 10 through some nondimensional parameters, which may 
be defined as 81 =a/ D and 82 = 10 / D (this can be rigorously proven by applying 
Buckingham's theorem of dimensional analysis; see, e.g., Barenblatt, 1979). The 
energy release may then be written in the form -n = F(Ot, 8z)V(az,./2E), in 
which aN= P/bD =nominal stress at failure, P =maximum load, V = bD2 = 
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volume of the structure times some constant, b = thickness of the body, and 
F = function characteristic of the shape of the structure and the fracture. Energy 
balance at fracture propagation requires that -an/ aa = bG,. From this, noting 
that oF/oa = F' /D where F' = oF/o81, we have (F' ID)bD2a~/2E = bG,, from 
which 

[ 
2EG ]

112 

aN= DF'(8.:82) 
(13.9.2) 

For geometrically similar bodies, 8 1 =a/ D =constant, and so F' depends only on 
82 • This dependence must be smooth and expandable into a Taylor series. Taking 
only the first two terms of the series we have F'( 8 1 , 82) = F~ + F; 82 in which F~ 
and F; are constants if geometrically similar bodies are considered. Now, with 
this approximation, Equation 13.9.2 takes the form of Equation 13.9.1 (or Eq. 
12.2.12) in which Bf; = (2EGrl F;/0 )

112 and Do= wJ;J F~. 
An analogous derivation has been given for structures similar in three 

dimensions (Bazant, 1987a). 
The foregoing derivation indicates that the law in Equation 13.9.2 should have 

a very general applicability. Even though it is only approximate, this law has 
indeed been shown to describe quite closely the available test data for various 
types of brittle failure of concrete structures, including (1) diagonal shear failures 
of reinforced concrete beams, nonprestressed or prestressed, and without or with 
stirrups; (2) torsional failures of beams; (3) punching shear failures of slabs; (4) 
pullout failures of bars and anchors; and (5) beam and ring failures of pipes 
(Bazant and Kim, 1984; Bazant and Cao, 1986a,b and 1987; Ba:Zant and Sener, 
1987a,b). Applicability of the law in Equation 13.9.2 to these problems rests on 
two additional hypotheses: (1) the failure modes of structures of different sizes 
are geometrically similar and (2) the failure does not occur at initiation of 
cracking. These hypotheses are normally applicable to concrete structures. The 
second hypothesis represents a requirement of good design. 

Further arguments and applications ofthe law in Equation 13.9.2 were presented 
by Planas and Elices (1989). This law is also applicable to fracture specimens of 
materials such as concrete or rock, as already indicated in Section 12.2. 

lnobjectivity or Spurious Mesh Sensitivity 

Strain softening, in the form of smeared cracking with a sudden stress drop, was 
introduced into finite element analysis of concrete structures by Rashid (1968) 
and a generalization to gradual strain softening was proposed by Scanlon (1971). 
This concept has found broad application in finite element analysis of concrete 
structures as well as geotechnical problems, and has been implemented in large 
general-purpose codes (e.g., NONSAP, ADINA, ABAQUS). Soon, however, it 
was discovered (Bazant, 1976) that the convergence properties of strain-softening 
models are incorrect and the calculation results are nonobjective with regard to 
the analyst's choice of the mesh (see also Ba:Zant and Cedolin, 1979, 1980, 1983; 
Darwin, 1986; Rots et al., 1985; Ba:Zant 1986a, de Borst, 1989). 

The problem is illustrated by the finite element results in Figures 13.42 and 
13.43 (taken from Ba:Zant and coworkers). Figure 13.42 shows the results for a 
rectangular panel with a symmetric crack band, obtained for three different 
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• Figure 13.42 Spurious mesh sensitivity and incorrect convergence. (After Bazant and 
Cedolin, 1979.) 

a) 
1.5 

- 1.2 
~ 

.JI. 
-oe • u 

~ 0.6 

0 3 

o.o 

c) 

0.5 1,0 1.5 20 

Displecem•nt (inch •10-3> 

p 

• 
~ 
:!! 

10 

8 

.... 8 .. 
0 .... 

4 

2 

0 

,kf{ 1 
It 

2 3 
Deflection 

4 

... . 

b) 

io.t 
: 
c5 0 L---L---L......;~ 

0 10 20 

N-h2CNo of •lemenu) 

A 

Figure 13.43 (a) Mesh sensitiVIty for softening stress-strain relations and (b) energy 
dissipated by failure (After Bazant 1985b and Lin, 1985); (c) mesh sensitivity of 
predictions of diagonal shear failure of reinforced concrete beams. (After Bazant and 
Cedolin, 1983.) 
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meshes of sizes 1:2:4. The material is assumed to crack when the maximum 
principal tensile stress reaches the strength limit. The calculated diagrams of the 
load needed for further propagation versus the crack band length reveal great 
differences. In the limit of vanishing element size, an arbitrarily small load will 
suffice to propagate the crack, which is physically incorrect. The reason for this 
behavior is that, according to the localization instabilities we analyzed before, the 
crack band will localize into a band of elements a single element wide. The stress 
in the element just in front of the crack band increases as the mesh size (element 
size) decreases, and for any given load it can exceed the strength limit if the mesh 
size is small enough. Figure 13.42, taken from Bafant and Cedolin (1980) was 
calculated for sudden stress drop at cracking, but similar behavior has been 
demonstrated for gradual strain softening (e.g., Bafant and Oh, 1983). 

Figure 13.43a (which was calculated under the assumption of symmetric 
response by F.-B. Lin at Northwestern University) shows an example of the effect 
of the mesh size h on the postpeak softening slope of the load-deflection diagram. 
For mesh sizes smaller than shown, the postpeak response is a snapback. The 
great differences between various meshes are again caused by localization. Figure 
13.43b presents the values of the energy dissipated by failure of the panel. As the 
mesh is refined, this energy is found to approach zero. This behavior is, of course, 
physically incorrect. Figure 13.43c, taken from Bafant and Cedolin (1983), shows 
that the mesh size can also have a great effect on the maximum load. 

The foregoing properties are generally the consequence of bifurcation, which 
causes strain softening to localize into a band whose front is single element wide. 
In the limit of vanishing element size, the softening zone has a vanishing volume, 
and because stress-strain relations always give a finite energy dissipation density, 
the structure is incorrectly indicated to fail in the limit with a zero energy 
dissipation. 

Note that stability failures of elastic structures (the subject of Chaps. 1-7) 
exhibit no size effect, same as failure loads when the second-order geometric 
effects are ignored. This can be verified by the formula for the critical stress in 
Euler columns: aen2E/(I/r)2

• There is an effect of slenderness 1/r, which 
characterizes the structure's shape, but no effect of size. For geometrically similar 
structures, 1/r is constant; hence no size effect. 

Energy Criterion for Crack Band and Stability 

Correct strain-softening formulations must in some way circumvent the patholog
ical behavior just demonstrated. The simplest remedy is to base the crack band 
propagation on an energy criterion (Bafant and Cedolin, 1979, 1980, 1983) 
instead of a strength criterion. This approach is applicable if a sudden stress drop 
is assumed, and in view of the R curve, if the structure is so large that the energy 
required to propagate a crack band by a unit length is approximately constant. 

Generalizing Rice's (1968) energy analysis of the extension of a notch, Bazant 
and Cedolin (1979, 1980) calculated the aforementioned required energy for 
reinforced concrete assuming sudden unidirectional cracking. The crack band 
extension by length l!ia into volume 1!1 V (of the next finite element, Fig. 13.44) 
may be decomposed for calculation purposes into two stages. 
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Figure 13.44 Assumed stages of extension of a crack band in reinforced concrete. (After 
Baiant and Cedolin, 1980.) 

Stage I. Cracks are created in concrete inside volume !:J.. V of the element 
ahead of the crack in the direction of principal tensile stress (Fig. 13.44b), while, 
at the same time, the deformations and stresses in the rest of the body are 
imagined to remain fixed (frozen). This means that one must introduce surface 
tractions !:J.. T~, applied on the boundary !:J..S of volume !:J.. V, and distributed forces 
!:J..f~, applied at the concrete-steel interface, such that they replace the action of 
concrete that has cracked upon the remaining volume V - !:J.. V and upon the 
reinforcement within !:J.. V. 

Stage II. Next, forces !:J..T~, and !:J..f~, (Fig. 13.44c) are released (unfrozen) by 
gradually applying the opposite forces -!:J..T~, and -!:J..f~ •• reaching in this way the 
final state. 

Let u? and E~ be the displacements and strains before the crack band advance, 
and let u; and E;i be the same quantities after the crack band advance. For the 
purpose of analysis, the reinforcement may be imagined to be smeared in a 
separate parallel layer undergoing the same strains as concrete. The interface 
forces between steel and concrete, !:J..f~ •• then appear as volume forces applied on 
the concrete layer. 

Upon passing from the initial to the intermediate state (Stage 1), the strains are 
kept unchanged, while cracking goes on. Thus, the corresponding stress changes in 

• "'V • b A __c __c" £r II ( II + r II )£'/(1 r2) £r II • concretemu areg1ven yuu 11 =u 11 - E 11 = E 11 v E22 -v - E,,, 

!:J..~2 = ~;; !:J..ah = 0 (cracks are assumed to propagate in the principal 
stress direction). Here, o"J' denotes the stress fraction carried before cracking 
by concrete alone, defined as the force in concrete per unit area of the steel
concrete composite; E and v are the Young's modulus and Poisson's ratio of 
concrete. The values E' = E and v' = v apply to plane stress and E' = E/(1- v2

) 

and v' = v/(1- v) to plane strain. The change in potential energy of the system 
during Stage I in Figure 13.44b is given by the elastic energy initially stored in !:J.. V 
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and released by cracking, that is, 

liU1=-f ~(oij0Eg-E'Eft)dV (13.9.3) 
~v 

The change in potential energy during Stage II is given by the work done by the 
forces A~. and !if~. while they are being released, that is, 

AU2 = f ~ liT~,(u; - u?) dS + f ~lif~,(u;- u?) dV (13. 9.4) 
~s ~v 

Coefficients ~ must be used because forces Tc, and fc, reduce to zero at the end of 
Stage II (and for small enough Aa they should reduce nearly linearly, similarly 
as in Eq. 12.1.7). If the concrete is reinforced, part of the energy is consumed by 
the bond slip of reinforcing bars during cracking within volume A V. This part 
may be expressed as A Wb = J s Fbc5b ds, in which c5b represents the relative 
tangential displacement between the bars and the concrete, Fb is the average bond 
force during displacement c5b per unit length of the bar (force during the slip) and 
s is the length of the bar segment within the fracture process zone we (and not 
within volume A V since the energy consumed by bond slip would then depend on 
the chosen element size). The energy criterion for the crack band extension may 

now be expressed as { > 
0 

c52"W'= G1 lia- liU1 - AU2 - liWb = 0 

<0 

stable 
critical 
unstable 

(13.9.5) 

where c52 "W' =-T(dS);n can be regarded as energy (second order work) that 
would have to be externally supplied to the structure if the crack band of width h 
should be extended by length Aa. In Bafant and Cedolin (1983), the foregoing 
formulation has been developed in detail and various aspects such as zigzag crack 
bands and bond slip have been dealt with (see also Bafant, 1985d). 

The results obtained with the energy criterion, shown in Figures 13.42 and 
13.43c, are seen to be sufficiently close to each other. The practical applicability 
of the energy criterion in Equations 13.9.5 is nevertheless limited. This criterion 
is easy to apply only if the stress may be assumed to drop suddenly after the 
strength limit has been reached. This is generally possible only if the structure is 
sufficiently large compared to the crack band width h (we or h '2::. 2EG1![,'2

; see 
Eq. 13.10.4). For many problems one must consider gradual strain softening, and 
also one cannot base the term G1 lia in Equation 13.9.5 on a constant fracture 
energy value G1. Then one needs a more general and fundamental remedy of 
spurious mesh sensitivity, which requires the localization to be limited to bands of 
a certain minimum thickness that is a material property (or depends on material 
properties). This is achieved by nonlocal material models, which we discuss in the 
next section. 

Problems 

13.9.1 If the mesh size is enlarged in proportion to the size of the structure, a 
(local) solution based on stress-strain relations (as opposed to stress
displacement relations) must exhibit no size effect, that is, the failure must occur 
at the same nominal stress aN. On the other hand, if the structure is enlarged 



DAMAGE AND LOCALIZATION INSTABILITIES 921 

while the mesh size is kept constant, there must be a size effect and it should 
roughly follow Equation 3.9.1. Use these considerations to show that the 
effect of mesh size h on aN at fixed structure size D is approximately given by 
the relation 

(13.9.6) 

which for very small h becomes aN= const. x Vii (note that aN- 0 for 
h-0). 

13.9.2 How does the energy criterion in Equation 13.9.5 simplify if all the stress 
components in A V are reduced to zero and reinforcement is absent? 
(Calculation of Rice, 1968.) 

13.9.3 Consider the formulas for the critical loads of a thin-wall beam in lateral 
buckling, a square simply supported beam, and a cylindrical axially com
pressed shell. Examine the nominal stress at failure, and show that the 
stability failures of these elastic structures exhibit no size effect. 

13.10 NONLOCAL CONTINUUM AND ITS STABILITY 

Distributed damage such as cracking is conveniently described by stress-strain 
relations with strain softening on the macroscale. For general-purpose programs, 
this formulation seems computationally more efficient than the modeling of 
localized damage through stress-displacement relations for the fracture process 
zone of a line crack and is more realistic in those situations where damage does 
not localize. As we have seen, however, objective and properly convergent 
results require that the localization be artificially limited to a zone of a certain 
minimum thickness that is essentially a material property. This can, in general, be 
achieved by introducing a nonlocal continuum concept. In this section, we discuss 
various forms of this concept, illustrate some spurious instabilities that can be 
caused by nonlocality, and present some effective nonlocal formulations. 

Crack Band Model 

The simplest but also crudest way to limit localization is the crack band model 
that was formulated in detail in Bafant (1982a) and Bafant and Oh (1983, 1984) 
on the basis of the general idea from Bafant (1976) and of the studies by Bafant 
and Cedolin (1979, 1980). The basic idea is (1) to prescribe a certain minimum 
admissible width we of the crack band (or damage band) that represents a 
material property (Bafant, 1976), and (2) in case we as the finite element size 
would be too small, to adjust the softening stress-strain relation so as to achieve 
the correct energy dissipation by the crack band (Bafant and Cedolin, 1979, 
1980) (Fig. 13.45a). It has been shown that this simple approach makes it possible 
to achieve good agreement with all the basic fracture test data for concrete as well 
as rock. By data fitting it was found that the optimal values of We for normal 
concretes are between 2da and 8d0 , with We= 3da as the overall optimum for 
concrete and We= 5dg for rocks where da, d8 =maximum size of aggregate in 
concrete or grain in rock. To avoid bias, it is best to use a square element mesh in 
the region near the fracture, although some small mesh irregularities are not a 
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Figure 13.45 (a) Crack band advance, (b) softening stress-strain relations, and (c) 
adjustment for correct energy dissipation. 

problem. The elements near the boundary of the fracture process zone are 
preferably of low order (e.g., three-node triangles or four-node quadrilaterals) 
since they can best simulate discontinuities in strains. 

The uniaxial stress-strain relation in the crack band model can most simply be 
considered as linear (Fig. 13.45b), characterized by tensile strength t: and 
softening modulus E, ( <0). In that case, the fracture energy is 

(13.10.1) 

In reality this relation is no doubt curved, and, for example, a decaying 
exponential curve seems to give better results (Darwin, 1986). In that case G1 1wc 
is equal to the area under the softening curve and the unloading curve emanating 
from the peak-stress point (Fig. 13.45b). However, in view of other simplifica
tions involved, the simple triangular stress-strain relations might not give inferior 
results. 

The triaxial stress-strain relation for softening is obtained under the assump
tion that the total strain is decomposed as £ = £~ + Etr where £~ = elastic strain and 
Etr =fracturing strain. The fracturing strain is usually assumed to be a function of 
the normal strain En in the direction normal to the cracks, in which case the 
stress-strain relation can be manipulated either into a form of an orthotropic 
total stress-strain relation (Ba.Zant, 1985d; Bazant and Oh, 1983) or damage 
theory. Basically, there are two variants. 

In the classical variant, the smeared cracks are assumed to start forming in the 
direction normal to the maximum prinicipal stress a 1 when the strength limit is 
first reached, and the crack orientation is assumed to remain fixed even if a 1 
subsequently rotates. Then it is possible that the crack surfaces would later 
receive shear stresses. The stiffness of the cracked material in shear has usually 
been assumed to be {3G where G = shear modulus and {3 = empirical shear 
retention factor (0 < {3 < 1), as proposed by Suidan and Schnobrich (1973) and 
Yuzugullu and Schnobrich (1973). Cedolin and Dei Poli (1977) proposed the use 
of a value of {3 decreasing with the crack width. 

In a new variant, it is assumed that the cracks rotate so as to remain normal to 
a 1 and that no shear stresses arise on the crack surfaces. This "rotating (or 
swinging) crack" hypothesis (which really means that cracks of one direction close 
and cracks of another direction open) has been shown to agree relatively well 
with some experimental observations (Gupta and Akbar, 1984; Cope, 1984), 
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perhaps better than the fixed crack direction hypothesis. The general stress-strain 
relation for this variant has been developed by Bafant and Lin (1988a). For 
loading it has the form 

E;j = [ cijkm + (1-:)E' n;njnknm ]akm (13.10.2) 

where cijkm =isotropic tensor of elastic moduli, w =damage function of maxi
mum principal strain e., and n; =unit vector of maximum principal strain 
direction. 

When we is too small and the finite element size h needs to be made larger 
than we, the softening stress-strain relation for the crack band model must be 
adjusted so as to ensure that the energy dissipation by a crack band of width h is 
about the same as the actual crack dissipation by a crack band of width we. The 
manner of adjustment is illustrated in Figure 13.45c, where 012 is the actual 
stress-strain curve associated with crack band width We. When h is increased 
beyond the value of we, one first adjusts the value of softening modulus from E, 
to E, so that area 0130 times h would equal area 0120 times we. From this 
condition one finds 

_ _!_ = We (! _ _!_) _ _!_ = 2Gt _ _!_ 
- '2 E, h E E, E hf, E 

(if£,< 0) (13.10.3) 

However, for a band wider than h = 2/0 where 

(13.10.4) 

the value of E, becomes positive, which means that one would need to use a 
stress-strain curve that exhibits snapback (curve 015 in Figure 13.45c). To make 
static calculations possible, one must then replace snapback curve 015 with curve 
089 for which the stress drop is vertical and the strength is reduced from 1: to a 
certain equivalent strength /;q such that area 0890 times h would equal G1 (or 
area 0140 times her). This condition yields (Bazant and Cedolin, 1979, 1980; 
Bafant and Oh, 1983) 

! , - V2EGt 
eq- \fJ,. (13.10.5) 

Note that the reduction of the equivalent strength is identical to that obtained 
from the size effect law in Equation 13.9.2 when D0 = const. x h whileD is fixed 
and is much larger than D0 • 

When the elements are not exactly square in shape, some approximate 
adjustments are possible to preserve applicability of the model. The value of h 
may be defined as h =A Ilia where A= area of finite element that undergoes 
cracking and !ia = length of advance of crack band corresponding to this element. 

Nonlocal Continuum Concept 

The crack band model has some less than satisfactory features. From the 
mathematical viewpoint it is disconcerting that convergence of the finite element 
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solutions cannot be checked since the element size cannot be reduced below w,.. 
A more fundamental model should permit arbitrary subdivisions of the fracture 
process zone by finite elements. (Even though the material is on such a scale very 
heterogeneous, the calculations refer to a macroscopic smoothing continuum that 
describes the statistical mean of the scattered material response.) Another 
weakness is that the exact value of the effective width of the fracture process zone 
that gives the correct rate of energy dissipation is probably not exactly a constant 
but varies slightly due to interaction with boundaries and the type of loading. So 
what is the material constant governing localization and energy dissipation? It 
seems that a true and more fundamental constant is the characteristic length I of a 
nonlocal continuum model for the material. 

Nonlocal continuum is a continuum for which the constitutive relation for a 
point involves some variables obtained by averaging over a neighborhood of this 
point. For example, the average (nonlocal) strain is defined as 

with 

£(x) = V,~x) L a(x- s)E(s) dV(s) 

V,(x) = L a(x- s) dV(s) 

(13.10.6) 

(13.10.7) 

in which the integral may be considered to extend over the whole structure, 
E(s) =the usual {local) strain at point s, a= given weight function, and the 
overbar denotes the spatial averaging operator. 

As the simplest form of the weight function, one may consider a= 1 within 
a certain representative volume V(1 centered at point x, and a = 0 outside this 
volume. Convergence of numerical solutions, however, is better if a is a smooth 
function. An effective choice is the bell-shaped function (Fig. 13.46a): 

if lrl <Pol a=O if lrl;;::: p01 (13.10.8) 

where r = lx- sl =distance from point x, I= characteristic length (material 
property), and p0 =coefficient chosen in such a manner that the volume under 
function a from Equation 13.10.8 is equal to the volume under function a= 1 for 
r s l/2 and a= 0 for r > l/2 (which represents a line segment in 10, a circle in 
20, and a sphere in 3D). From this requirement, p0 = ti = 0. 9375 for one 
dimension, Po= V'J = 0.9086 for two dimensions, and p0 = (ffi) 113 = 0.8178 for 
three dimensions. For points whose distance from all the boundaries is larger than 
Pol, we have V,(x) =I in one dimension, ;r/2/4 in two dimensions, and ;r/3 /6 in 

a) 
(} 

' 
'. 

-Por P0 f 

Figure 13.46 Weight functions for a nonlocal continuum. 
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three dimensions. For points closer to the boundary, the averaging volume 
protrudes outside the body, and then V,(x) is variable because the domain of 
averaging is not constant. The Gaussian (normal) distribution function (Fig. 
13.46<1) has also been found to be effective for function a. 

The concept of a nonlocal continuum was conceived and for a long time 
studied for elastic materials with heterogeneous microstructure (Kroner, 1967; 
Krumhansl, 1968; Kunin, 1968; Beran and McCoy, 1970; Levin, 1971; Eringen 
and Edelen, 1972; Eringen and Ari, 1983). The macroscopic continuum stresses 
o(x) and strains t(x) are defined as statistical averages of the randomly scattered 
microstresses oM(x) and microstrains EM(x) (Fig. 13.47) taken over a suitable 
representative volume around point x. The statistical theory of the microstructure 
developed in the 1960s showed that if E(x) is nonuniform the macroscopic 
constitutive relation is not exactly of the form o(x) =function of t(x) but o(x) 
also depends on the average macroscopic strain i(x) (even though £ itself is an 
average of EM). This provided the original impetus for the development of 
nonlocal elasticity. 

Periodic Instabilities Due to Nonlocal Concept 

The nonlocal concept has for a long time been used in various analytical studies 
of elastic heterogeneous materials until finite element studies (Bazant, Belyts
chko, and Chang, 1984) revealed the existence of spurious instabilities due to 
spatial averaging of the elastic strain. Let us briefly summarize their analysis 
made in Bafant and Chang (1984). We consider a long bar with the nonlocal 
uniaxial elastic stress-strain relation: 

a(x) = Ee(x) e(x) = f_""oc e(x + r)a(r) dr (13.10.9) 

in which f'~ .. a(r) dr = 1, and E =Young's modulus. Now, any theory of an 
elastic continuum must obviously satisfy the following two requirements: (1) If 
the stresses a(x) are everywhere zero, the strains in a stable material must also be 
zero, that is, no unresisted deformation (zero-energy deformation mode) may be 
permitted by the theory. (2) In a stable material, the wave propagation velocity v 
must be real. From these two requirements it follows that the Fourier transform 

Figure 13.47 Stresses and strains in concrete microstructure. 
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of the weight function, a(r), must be positive for all real w, that is, 

a*(w)= [ .. e-iwra(r)dr>O (13.10.10) 

To prove this condition, consider Requirement 1 first. According to Equation 
13.10.9, a(x) = 0 occurs when 

L: e(x + r)a(r) dr = 0 (13.10.11) 

This condition must not have any nonzero solution (eigenstate). A general strain 
distribution may be approximated as e(x) = Ek ak exp (iwkx), in which ak and wk 
are some real numbers (k = 1, 2, 3, ... ), and the actual strain is to be understood 
as the real part. No single term of this expansion, that is, e(x) =a exp (iwx) with 
a real amplitude ar and a real frequency Wn may satisfy Equation 13.10.11. 
Substituting this into Equation 13.10.11, we obtain the condition that the 
equation J:"" a(r) exp [iw(x + r)] dr = 0 must not have any solution, and dividing 
this equation by exp (iwx ), we conclude that a*( w) must not be zero for any w. 
Since a*(w) must be continuous, it must be either positive everywhere or 
negative everywhere. 

Second, consider Requirement 2. We restrict attention to small deformations, 
such that in one dimension e(x) = au(x)/ax, in which u =displacement. The 
equation of motion is a a I ax = p ~flu/ at2

, in which t = time and p = mass density. 
Equation 13.10.9 then yields 

a f"" au(r) rflu 
E- -. -a(x-s)ds=p-2 ax -oc OS at 

(s=x+r) (13.10.12) 

Any wave may be decomposed into harmonic components of the type u(x) = 
a exp [iw(t- vt)] in which v =wave velocity; w, a= real constants; and w :;C 0 
(since for w = 0 there is no strain). Substituting this into Equation 13.10.12, 
multiplying the equation by exp (iwvt)/iwpa, and setting s = x + r, ds = dr, we 
obtain 

Ea[·J"'· ] 2. -- e"'"" e•wr a( -r) dr = v iwe•wx 
pax -oc 

(13.10.13) 

Furthermore, substituting r = -y, and noting that a( -r) = a(r), we find that the 
integral in this equation equals f':ooexp(-iwy)a(y)dy, which represents a*(w). 
Then, differentiating a*( w) exp (iwx) with respect to x, and dividing the equation 
by iw exp (iwx), we finally get 

E 
v2 =-a*(w) 

p 
(13.10.14) 

We see that v is real if and only if a*( w) is positive for all w except w = 0. The 
fact that a*( w) must be positive also for w = 0 follows from Requirement 1, as 
already proven. Note that for the usual local continuum we have a(r) = c5(r) = 
Dirac delta function, and so a*(w) = 1 for all w. 
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For a uniform weighting function a(r) = 1/l, the Fourier transform is 
a*( co)= (2/ col) sin ( col/2), which can be positive, negative, or zero. Therefore, a 
nonlocal continuum with this a(s) is unstable. The triangular weight function 
a(r) = (2/1)(1- 21rl/l) also produces instability because its Fourier transform is 
a*( co)= 2(2/ col)2(1- cos ~col), which can be zero. On the other hand, the 
Gaussian (normal) distribution function a(r) = (lVfic)- 1 exp ( -r2/2P) produces 
no instability because a*( co) = exp (- co2f /2) > 0. Neither does the bilateral 
exponential distribution, the Cauchy distribution, and the hyperbolic sine 
function (for details see BaZant and Chang, 1984). The uniform distribution may 
be stabilized by adding to it a spike of the Dirac delta function, a(r) = 
c!J(r) + (1- c)/1, and from the Fourier transform it is then found that instabilities 
are prevented if c > 0.17847. The spiked triangular distribution, a(r) = c!J(r) + 
2(1- c)(1- 21rl/l)/l, is found to produce no instabilities if c > 0. 

Nonlocal Continuum with Local Strain 

After realizing that the nonlocal continuum concept can serve to limit localization 
of strain softening to a band of a certain minimum thickness, the first nonlocal 
finite element model was based on a spiked uniform distribution (BaZant, 
Belytschko, and Chang, 1984; BaZant, 1984a). As a manageable approach to 
programming, it was shown that this formulation can be considered as the limiting 
case of a system of elastic-softening finite elements that are imbricated (i.e., 
overlap each other in a regular manner) and are further overlaid by a local elastic 
layer. Although the imbricate model was found to indeed limit localization of 
softening and guarantee mesh insensitivity, especially in terms of the energy 
dissipated by failure, it was still quite complicated, due to the fact that the 
differential equations of equilibrium as well as the boundary conditions were of 
nonstandard form (involving either spatial integrals or higher-order derivatives); 
see BaZ3nt (1984a). Moreover, the need for using an overlay with a local elastic 
continuum in order to suppress spurious zero-energy periodic modes of instability 
was an unrealistic artifice. 

The property that gives rise to nonstandard differential equations of equi
librium and boundary conditions may be explained by considering their derivation 
from the virtual work relation: 

!JW= f ai£)M;idV- ftl>u;dV- f p;l>u;dS=O (13.10.15) 

where V, S =volume and surface of the structure; /;, p; =given volume and 
surface forces; U; = displacements, and a;i =stresses. The fact that the strain in 
the variation M;i is nonlocal, that is, expressed in terms of a spatial integral, 
poses difficulties. For a local continuum, by contrast, one can set l>E;i = 6u;.i and 
use the Gauss integral theorem to obtain the differential equations and boundary 
conditions of the problem (Chaps. 5 and 6). But this standard procedure is 
impossible if lJ"E;i is expressed in terms of a spatial integral (even if the integral is 
approximated by a Taylor series). A much more complex procedure was found to 
be necessary, with a complicated result (BaZant, 1984a). This observation led to 
the idea of a partially nonlocal continuum in which M;i is is replaced with l>E;i in 
Equation 13.10.15, but a;i is still determined from "E;i while the elastic strains are 
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local. After this modification, the Gauss integral theorem can be applied to the 
first integral in Equation 13.10.15, and then the differential equations of 
equilibrium and boundary conditions that arise are of the standard form. 

Such a nonlocal model, called the nonlocal continuum with local strain 
(Bafant and Pijaudier-Cabot, 1987b; Bafant, Lin, and Pijaudier-Cabot, 1987; 
and Pijaudier-Cabot and Bafant, 1987), has proven to be quite simple and 
effective. In this approach the usual constitutive relation for strain softening is 
simply modified by calculating all the state variables that characterize strain 
softening from the nonlocal rather than local strains. All that is necessary to 
change in a local finite element program is to provide a subroutine (Bafant and 
Ozbolt, 1989a) that delivers at each integration point, each loading step, and each 
iteration the value of 'E;i· The formulation can be of various kinds. In nonlocal 
damage theory, one needs to either calculate nonlocal damage w from 'E;i or 
replace w with its spatial average w. If strain softening is due to degradation of 
the yield limit r:P (Bafant and Lin, 1988b), either r:P must be replaced by tP or the 
value of the effective plastic strain from which r:P is calculated must be replaced 
by its spatial average. If strain softening is described through the fracturing strain 
E-fr, one needs to replace E-fr with its spatial average £fr or calculate it from £. 

The essential property of all the variants is that the energy dissipation density 
rate due to damage must be nonlocal. Then it can be mathematically proven 
(Bafant and Pijaudier-Cabot, 1987b, 1988b) that the energy dissipation density 
rate cannot localize into a vanishing volume. Briefly, the proof goes as follows. 
The strains as well as w, r:P, or Err have at least C0-continuity (i.e., they could be 
Dirac delta functions); so the spatial averages £, w, tP, 'Etr have at least 
C1-continuity, and so they cannot be Dirac delta functions; but this means that 
the damage cannot localize into a zero volume (as numerical solutions confirm). 

A micromechanics argument for the nonlocal continuum with local strain has 
also been given (Bafant, 1987c), albeit only for a rather simplified situation that 
consisted of a uniaxially stressed elastic continuum containing a cubic array of 
either circular (penny-shaped) cracks or circular ligaments that are small 
compared to their spacing. For this problem one can satisfy the homogeneization 
conditions for the micro-macro compatibility of displacements and equality of 
work exactly, and the result is a continuum damage formulation in which the 
elastic strains are local while the damage is nonlocal. Intuitively, the reason for 
the macroscopic nonlocality of fracturing strain (or damage) due to microcracks is 
that formation of a crack releases energy from a region of nonzero volume 
adjacent to the crack, and that the additional displacement due to formation of 
any crack is not manifested immediately at the crack but only at sufficient 
distance from the crack. Conversely, formation of a crack or other damage at a 
certain point cannot depend on the local deformation at that point but must be 
determined by the overall deformation of a certain region around that point. In 
Figure 13.47, picturing the microstructure of concrete, the damage on cross 
section PQ depends mainly on the relative displacement of points 1 and 2 and not 
on the local strains at point 0 (also note the requirement for symmetry; the 
relative displacement of points 3 and 4 would determine the damage on line RS 
rather than PQ). 

Further mathematical arguments for a nonlocal continuum with local elastic 
strain and nonlocal energy dissipation were advanced by Simo (1989) (from the 
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viewpoint of regularization). An argument based on Weibull-type statistical 
theory of strength, which also leads to a stochastic generalization of the size effect 
law in Equation 13.9.2, is given in Bafant and Xi (1989). 

One-Dimensional Localization Instability 

The characteristic length I of a nonlocal continuum is not equal to the width we of 
a localized crack band, but must be related to it. This relationship may be 
established by stability analysis on the basis of the given nonlocal constitutive 
model. Such an analysis has been carried out for one dimension by Bafant and 
Pijaudier-Cabot (1988b), and we will explain it now. The analysis is based on a 
uniaxial constitutive law of continuum damage mechanics 

o=(1-Q)Ee (13.10.16) 

where Q = nonlocal damage. The specific free energy per unit volume is 
p'I/J = !(1- Q)Ee2, and the damage energy release rate (Lemaitre and Chaboche, 
1985) is 

(13.10.17) 

The energy dissipation rate per unit volume is 4> = - a(p'I/J )/at = - Q a(p'I/J )/ ao 
= QY. The local damage evolution is, in general, defined by an evolution 
equation of the type c.Q = f(e, w); but for the sake of simplicity we use an 
integrable special form of this relation: 

w =g(Y) = 1- [1 + b(Y- Y.)r" (13.10.18) 

in which b, n, Y1 =positive material constants; n > 2; and Y1 =local damage 
threshold. The damage is assumed to grow only for loading. For unloading or 
reloading, c.Q must vanish in the nonlocal (average) sense. This means the 
response is elastic. The loading criterion and the nonlocal damage Q are defined 
as follows: 

If F(ro)=O and F(ro)=O, then Q = ro 

If F(ro) <0, or if F(ro) = 0 and F(ro) < o, 
. (13.10.19) 

then 0=0 

where the overbar denotes the spatial averaging operator (Eq. 13.10.6). Function 
F(ro) represents the loading function and is defined as F(ro) = w- k(w), where 
k( w) is a softening parameter, which is set to be equal to the maximum value of 
w achieved up to the present. The initial value of k( w) is zero. The formulation 
of the loading formulation automatically satisfies the dissipation inequality. The 
density of the energy dissipation rate due to damage is 4> = CY, and since Q ~ 0, 
we have 4> ~ 0. The damage expression in Equation 13.10.18 was found to 
approximate acceptably the behavior of concrete, provided that different local 
damage thresholds Y1 are introduced for tension and compression. 

The fact that Equation 13.10.16 uses nonlocal rather than local damage, and 
that the unloading condition is stated in terms of the nonlocal damage, represents 
all that is different from the classical (local) damage theory. 
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Consider now for the sake of simplicity the one-dimensional problem of 
a bar loaded through two springs of stiffness C (Fig. 13.48). This problem was 
used by Bafant (1976) to demonstrate the localization instability due to strain 
softening (see also Sec. 13.2). The length coordinate is x, the bar length is L, 
and the bar ends are at x = 0 and x = L. The bar is initially in a state of uniform 
strain Eo and stress u 0, with uniform damage Q0 = ro0 • The initial state is in the 
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Figure 13.48 Bar loaded through elastic springs: (a, b, c) localization profiles of incremen
tal strain; (d) length of softening zone; (e, f) critical tangent modulus; (g, h) profiles of 
incremental strains for various element subdivisions and weight functions. 
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strain-softening range and satisfies the relation Go= (1- Q 0 )Eeo. If the consti
tutive relation for damage is given in the form of Equation 13.10.18, we have 
wo = 1- (1 + b(!Ee~- Yt)rn. 

We now consider a small deviation from the initial state caused by incremental 
variation of the load at the bar ends. Let c5e(x) = 71(x) =incremental strain and 
c5a = T = incremental stress. To maintain equilibrium, it is necessary that T = 
constant along the bar. The compatibility condition for fixed supports requires 
that 

LL 1J(X) dx + ~ = 0 (13.10.20) 

Taking the one-dimensional form of the constitutive law in Equation 13.10.16 
with the averaging according to Equation 13.10.6 and the loading criterion 
according to Equation 13.10.19, we find 

For J{; a(s- x)71(s) ds > 0: 

«o + T = [ 1- l'~) LL a(s- x)w(s) ds ]E[e0 + 71(x)) (13.10.21) 

Otherwise: T = (1- w0)E71(x) 

in which l'(x) = J{; a(s- x) dx =effective averaging length for point x. For 
infinitely small increments 71(x ), the equations can be simplified by incremental 
linearization. To this end, we may introduce the linear approximation w(x) = 
Wo+ We1J(X), with We= awtae for w = Wo. Substituting into Equation 13.10.21, 
neglecting the quadratic term 71(x )71(s ), and subtracting the equation Go= 
£(1 - Q0)e0 , we can reduce Equation 13.10.21 to the form 

T = (1- w0)£7J(X) - 1,~) (f «(s- X)7J(s) ds) (13.10.22) 

with k = Ee0we. The symbol ( ) , which introduces the loading criterion, is 
defined as (x) = x if x > 0 and otherwise (x) = 0. For the special damage 
constitutive law in Equation 13.10.18, we may evaluate We= Ee0wy, with 
wy = bn(!Ee~- Y~t- 1 [1 + b(Y- Y1)r2n. 

Equation 13.10.22 has the form of a linear integral equation of the second 
kind. However, the problem is not simply that of solving an integral equation, 
because Equation 13.10.22 is an integral equation only for those x for which 
loading takes place. Outside the loading region, Equation 13.10.21 reduces to the 
usual linear elastic differential equation for displacements and the behavior is 
then local, elastic, and unaffected by the strain localization in another segment of 
the bar. 

If we find one solution such that there exist elastic segments of finite length at 
both ends of the bar, then we can obtain another solution simply by shifting the 
softening segment along with the softening solution profile as a rigid body. This 
shift is arbitrary provided the entire original length of the softening region, along 
with a small neighborhood of points located just outside the softening zone, 
remains within the bar. Due to this fact, we can calculate the length of the 
softening region and the solution profile through it by analyzing any bar of a 
shorter length, provided the bar length exceeds the length of the softening region. 
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The actual boundary conditions and the compatibility condition may be disre
garded in such analysis and satisfied afterward. Obviously, one can have infinitely 
many solutions. Arbitrary shifts of the softening region, however, do not affect 
the overall response of the bar. The length of the softening region and the 
solution profile through it is nevertheless unique. The localization profiles 
terminating at the boundary points are different from those at the interior and 
require a special analysis. For real materials, the actual location of the 
strain-softening segment that does not reach the boundary is decided by 
inevitable random fluctuations of material strength along the bar. 

Equation 13.10.22, which is also obtained for various other types of nonlocal 
continuum with local strain (Bafant and Pijaudier-Cabot, 1988b), can be easily 
solved numerically. If we subdivide the bar length into N equal elements of length 
!u = L/ N, use for integration the trapezoidal rule, express T from Equation 
13.10.20, and substitute it into Equation 13.10.22, we may approximate the 
resulting equation as follows: 

N 

L K;;T/j =0 
i=l 

with 
k!u c 

K;; = (1- w0)Ef>;;- yi;a(x; -x;) + 2 (13.10.23) 
I 

Subscripts i, j refer to centroids of elements number i or j, and I;= 1 if 
f~ a(x;- s)11(s) ds == E; a(x;- X;)T/; !u ~ 0; otherwise I;= 0. Equation 13.10.23 
represents a system of homogeneous linear algebraic equations for T/;· The critical 
state occurs at such Eo for which det (K;;) = 0. The loading segment, characterized 
by I;= 1, is, of course, unknown in advance, and so it must be determined 
iteratively. To search for the critical state with the smallest Eo and the shortest 
damage localization segment, the values of Eo may be incremented in small 
loading steps and, for each E0, the following algorithm (by Bafant and 
Pijaudier-Cabot, 1988b) may be used: 

1. In the first iteration, we assume that only one element i undergoes loading 
(the central element). In the subsequent iterations, we increase the number of 
elements that undergo loading by one (either on the left or on the right), unless 
the number of loading elements already equals N, in which case we start a new 
loading step with a larger E0• 

2. For each assumed set of elements with loading, we calculate the lowest 
eigenvalue A1 of K;; and the corresponding eigenvector ,p>. If the positive values 
of 11P> in this eigenvector do not agree with the assumed set of loading elements, 
we return to step 1 and repeat the calculation for the same Eo and a larger number 
of softening elements. If they agree but A1 > 0, we also return to step 1 (after 
storing the A1 value) and commence the next load step for an incremented value of 
E0; otherwise (A1 ~ 0) the critical state Eo= E({ has just been passed. In that case, 
we interpolate with regard to the A1 value in the preceding loading step, in order 
to estimate more closely the value of Eo for which A1 = 0. Then we print this E 1 

value, calculate the corresponding eigenvector 11P> and stop. 
As we can see from Equation 13.10.23, the tangential stiffness matrix K;; is 

nonsymmetric (K;;-:/= K;;). The nonsymmetry is inevitable for the present formula
tion and is due to the loading-unloading criterion, brought about through 
parameter 1;, as well as to the variability of 1; caused by overlap of the averaging 
region with the unloading segment or its protrusion outside the body. If I; as 
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well as r; had the same values for all elements, K;i would be symmetric. Similarly, 
the part of matrix K;i for which I; and r; are constant is symmetric. Matrix K;i also 
becomes symmetric for e0-0 (elastic behavior). For small Eo it is weakly 
nonsymmetric. The fact that K;i is nonsymmetric implies that the integral 
operator in Equation 13.10.22 is nonsymmetric, too, which means it is not 
self-adjoint. This further implies that a minimizing functional associated with 
Equation 13.10.23 does not exist. 

Numerical results were obtained (Bafant and Pijaudier-Cabot, 1988b) for the 
bar shown in Figure 13.48 with b = 20.5, Yo= 0.00854, and I= 0.25L. This figure 
shows (a, b) the localization profiles of incremental strain E and damage ro at the 
limit of stable states, for formulations in which either damage ro or the energy 
release rate is averaged; (c) profiles for various other characteristic lengths l; (d) 
ratio of the length h 1 of the softening zone to the characteristic length for various 
values of l; (e, f) the values of tangent modulus E, and critical nonlocal damage iiJ 
as a function of L/l; and (g, h) the profiles of incremental strain for subdivisions 
with various numbers of elements, N, and for rectangular or Gaussian weight 
functions. The results confirm the absence of localization into a vanishing volume 
and, for the Gaussian weight function, good convergence as the subdivision is 
refined. 

Bifurcations leading to stable localization at increasing load have not yet been 
studied, but they are likely to occur before the instabilities just analyzed. The 
localization instabilities in a nonlocal continuum with local strain were further 
clarified by a dynamic analysis in Pijaudier-Cabot and Bafant (1988). An 
interesting uniaxial model for strain softening in which higher-order derivatives 
are used to approximately characterize nonlocal properties has been presented by 
Schreyer and Chen (1986) and Schreyer (1989). The use of higher-order 
derivatives has also been studied by Belytschko and Lasry (1989). 

By contrast to the nonlocal continuum with local strain, the operators and 
stiffness matrices for the originally formulated imbricate nonlocal continuum 
(Bafant, Belytschko, and Chang, 1984; Bazant, 1984a) are symmetric. In fact, 
the requirement of symmetry was shown to lead to the imbricate nonlocal model 
(Bafant, 1984a). Convenient though the symmetry is for numerical solutions, this 
advantage is nevertheless more than offset by other disadvantages of the 
imbricate model. For uniaxial deformations or bending of bars, however, the 
localization instabilities of imbricate continuum can be solved analytically (Bafant 
and Zubelewicz, 1988). 

Measurement of Charaderistic Length of Nonlocal Continuum 

The preceding stability analysis indicates one simple way of measuring the 
characteristic length I of the material. From Figure 13.48d we see that the length 
of the softening zone in a uniaxially tensioned bar is about h1 = {Jl where 
{J =constant ({J = 1.88 for the model used), and the shape of the damage 
distribution throughout this zone is also constant. Replacing this distribution by a 
rectangle of equal area, one would get the width htf a where a= 1. 93. The 
fracture energy G1 represents the energy dissipation over the width of the 
localization band, and balance of energy requires that G1 = (h1/a)l¥s where l¥s is 
the energy dissipation per unit volume of a uniformly strained specimen. Thus, 
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I= hd/3 = aa1!{3'Ws = l.02a1 /'Ws, or approximately 

I= a, 
'Ws 

(13.10.24) 

Note that this fraction has indeed the dimension of length because the dimensions 
of a1 and 'Ws are J/m2 and J/m3

• 

So the characteristic length can be easily determined if a uniaxially tensioned 
specimen can be deformed macroscopically uniformly. As proposed and demon
strated by Bafant and Pijaudier-Cabot (1987a, 1988a, 1989), this can be achieved 
by gluing a set of parallel steel rods to the specimen sides with epoxy (Fig. 13.49). 
The rods must be considerably thinner than the maximum aggregate size, so as 
not to alter the nonlocal properties of the material. The specimen (Fig. 13.49) 
should be as thin as it can be cast, so as to avoid localization in the transverse 
direction. Replacement of thin rods by a steel sheet is not suitable, because the 
sheet would interfere with the Poisson effect. 

The basic condition of the test is that the slope of the load-displacement curve 
of the specimen with the steel rods must always be positive, since this guarantees 
absence of localization, according to our stability analysis in Section 13.2. The 
characteristic shape of the load-displacement curve is shown in Figure 13.49 
(curve 012). The dashed straight line 03 represents the response of the steel rods 
without concrete. The response of concrete is represented by the difference in the 
ordinates of curve 012 and line 03. After concrete has been completely damaged, 
the response of th~ specimen must approach the straight line 03, as sketched. The 
strain-softening response of concrete begins at the point at which the tangent is 
parallel to line 03. 

Using this method, it was found that, for one typical concrete, I= 2. 1da where 
da =maximum aggregate size (Bafant and Pijaudier-Cabot, 1987a, 1988a, 1989). 
Further refinements of this measurement method were made by Mazars and 
Berthaud (1989). 

Example: Stability of a Tunnel 

As an example of application in large-scale finite element analysis, one can 
mention a recent study of stability of a subway tunnel that is excavated in a 
strain-softening soil with large inhomogeneities (Bafant and Lin, 1988b). The soil 

cr 
v 

I ~ A' 
I 1 
I 
I 

A-A' 

~~ 
0 u/L 

Figure 13.49 Load-displacement curves for restrained concrete specimen (solid curve) and 
for steel bars alone (dashed line.) 
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is a clayey sand with gravel, which is injected by cement grout from the sudace in 
order to strengthen it so as to allow excavation by machines, without temporary 
supports (Z. J. Bafant, 1983). Zones of compressive strain-softening develop on 
the sides of the tunnel (Fig. 13.50). The characteristic length was assumed to be 
about three times the mean spacing betweeen highly and little cemented chunks 
of soil. The excavation process was simulated in two dimensions by gradually 
reducing the stresses acting on the outline of the tunnel to zero. If the 
displacements remain small and finite, the tunnel is stable, and if they become too 
large, the tunnel is unstable. 

To assess convergence, the problem has been solved with meshes of increasing 
fineness, two of which are shown in Figure 13.50 (the fine mesh involves 3248 
degrees of freedom). Interestingly, the nonlocal solution for the finest mesh ran 
(on a Cray II computer) faster than the corresponding local solution, which is no 
doubt due to the stabilizing effect of the nonlocal operators (which tends to make 
iterations converge faster). Figure 13.50 shows the boundaries of the strain
softening zones at the end of excavation, obtained for various meshes (Bafant 
and Lin, 1988b). Note that these boundaries mutually agree very well, while in 
local analysis they are quite different. 

Gradient Approximation to Nonlocal Continuum 

If the averaging zone is symmetric (which means it must not protrude outside the 
boundary), the averaging integral in Equation 13.10.6 may be approximated on 
the basis of the second strain gradient (see eq. 44 in Bafant, 1984a): 

i(x) = (1 + A.2V2)t:(x) (13.10.25) 

where A?= k 0tl. For a(:x) = 1 within a sphere of diameter l (in 3D), k 0 = -k; a 
circle of diameter l (in 20), k0 = !i; and a segment of length l (in 10), k0 = i4 
(see eqs. 49 and 50 in Bafant, 1984a). Equation 13.10.25 can be derived by 
substituting into Equation 13.10.6 the truncated Taylor series expansion t:(s) = 
t:(x) + £,k(x)rk + !e.km(x)rkrm where rk = sk - xk> integrating and noting that, for 

N=3248 -
N=1840-
N• 608 -·
N: 218 ----.. -

Softening 
zone 

Fipre 13.50 Softening zone in tunnel analysis. (After Baiant and Lin, 1988b.) 
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integrals over a circle or sphere of diameter /, f rkrm dV = A6km where A is a 
certain constant. 

Consider now again the localization instability for the uniaxial bar in Figure 
13.51, with the same notations as before (Fig. 13.48). For the incremental 
stress-strain relation, we again assume that the elastic strain is local and only the 
inelastic damage strain is subjected to the nonlocal gradient operator, that is, 

(13.10.26) 

where ( 6£) = 6E for M ::2::0 (loading) and ( o£) = 0 for 6£ < 0 (unloading) and 
E, Eu =moduli for loading and unloading (E, < 0, Eu > 0). For the loading 
segment, -h/2<x<h/2, substitution of Equation 13.10.25 with V2 =d2/dx2 

yields the linear differential equation E, 6u'(x)- (Eu- £,)).,2 6u"'(x) = 6a where 
{)a= constant, 6u(x) =axial displacement, and 6u'(x) = 6e(x). Integration under 
the conditions of symmetric deformation of the bar yields 

6u(x) = (~, x +A sin px )6a 
1 ( E )-112 

p=}. 1- E: (13.10.27) 

where A is an arbitrary constant. The coordinate x = h/2 at the end of the loading 
segment is given by the condition 6£(x) = 0 or 6u'(x) + .A?6u"'(x) = 0. Together 
with the compatibility condition 6u(h/2) + [(L- h)/2Eu + 1/C) 6a = 0 (where 
L =bar length and C =stiffness of the springs at bar ends), this yields two 
equations from which A can be eliminated and 6a cancels out. Thus one gets the 
equation 

(13.10.28) 

from which the width h of the softening region may be solved. For the limiting 
case C-+ 0 or L-+ oo, one gets localization at constant stress ( 6o = 0), and 
Equation 13.10.28 provides 

(13.10.29) 

In this case the strain profile throughout the localization region is a half sine wave 
and the strain is continuous. For finite L and C > 0, the localization segment is 
shorter; there is a jump in 6e between the localization segment and the unloading 

Figure 13.51 Softening zone in a bar loaded through elastic springs. 
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segment, and the strain profile is an incomplete half sine wave (Fig. 13.51). For 
!E,!Eu!~oo (vertical stress drop) one gets h~o. 

For points close to the boundary for which the domain of the averaging 
integral in Equation 13.10.6 protrudes outside the boundary, one finds from the 
Taylor series expansion that grade should also appear in Equation 13.10.25, and 
in fact its effect may dominate over V2e. 

Another approach, which also leads to a formulation with the gradient of 
strain, is the micropolar (or Cosserat) continuum (cf. Sec. 2.10); this was 
proposed by Sulem and Vardoulakis (1989). 

Summary 

Various materials exhibit distributed damage, which may be described in a 
smeared continuum manner as macroscopic strain softening. The continuum 
model, however, must be formulated in such a manner that instabilities and 
bifurcations in which the energy dissipation due to strain-softening damage would 
localize to a region of vanishing volume are prevented. The simplest, but also 
crudest, way to achieve it is the crack band model in which the element size is 
not allowed to become less than a certain length that is a material property. A 
more general way to achieve it is to make the continuum model nonlocal. The 
nonlocal operator, however, can produce zero-energy periodic modes of in
stability. These spurious instabilities can be prevented by making the continuum 
only partially nonlocal, so that the strain as a kinematic variable, and especially 
the elastic response, would be local and only the softening damage would be 
nonlocal. This brings about a further advantage in that the differential equations 
of equilibrium as well as the boundary (or interface) conditions have the standard 
form, the same as for a local continuum. Analysis of localization instabilities in 
such a continuum shows that the size of the strain-softening region is proportional 
to the characteristic length, and knowledge of their ratio can be exploited for 
measurement of the characteristic length. The nonlocal continuum with local 
strain is easily programmed in finite element codes and its efficiency has been 
verified in some large-scale computations. 

Problems 

13.10.1 Show that a nonlocal elastic continuum with a triangular weight 
function is unstable, and that the Gaussian function makes it stable. 

13.10.2 Consider a nonlocal von Mises continuum with a degrading yield limit, 
and formulate for it the integral equation governing uniaxial localization 
instability. 

13.11 CONSTITUTIVE EQUATIONS FOR STRAIN SOFTENING 

Although there is no way to fit a thorough discussion of constitutive equations 
into this text, some closing comments are nevertheless in order because the 
triaxial nature of the constitutive law for strain softening can tremendously 
influence the localization instabilities (as confirmed by some results quoted in 
Sees. 13.3-13.5). It is now clear that not only the strain-softening stiffness but 
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also accuracy in the representation of such multiaxial phenomena as internal 
friction, nonassociatedness, dilatancy, and vertices on the loading surfaces can be 
very important. 

Inelastic constitutive equations can be subdivided into two broad categories: 
(1) phenomenological, and (2) micromechanical. In the phenomenological 
constitutive relations, the tensorial invariance restrictions are identically satisfied 
a priori by the use of proper stress and strain invariants. But since the invariants 
have no simple meaning one must find their proper combinations empirically and 
intuitively. The constitutive laws in this category include (for a detailed review 
see Bafant, 1986b): 

1. Plasticity with yield limit degradation, either associated or nonassociated 
(i.e., with or without normality, Sec. 10.6), in which strain softening is 
achieved by gradual reduction of the yield limit (see, e.g., Lin, Bafant, 
Chern, and Marchertas, 1987; and the bounding surface model of Yang, 
Dafalias, and Herrmann, 1985). 

2. Fracturing theory (Dougill 1975, 1976) and plastic-fracturing theory 
(Bafant and Kim, 1979; Chen and Mau, 1989), where strain softening is 
achieved by reduction of material stiffness, while, similarly to plasticity, 
loading surfaces with normality rule are used (although in the strain space 
or in both the stress and strain spaces). 

3. Continuous damage mechanics· (originally proposed by Kachanov, 1958, 
for creep but later adapted to strain softening), where strain softening is 
also achieved by reduction of material stiffness. But instead of loading 
surfaces the central concept is that of damage, which is often simplified as a 
scalar although properly it should be a fourth-order tensor; for concrete, 
see Mazars and Pijaudier-Cabot (1989), Bafant and Carol (1989), and 
Ortiz (1985). 

4. Total strain models, which are based on the simplifying assumption of path 
independence (Bafant and Tsubaki, 1980). 

5. Heuristic incremental models, such as the orthotropic models, which 
however have problems with the form-invariance requirement (Bafant, 
1983). 

6. Endochronic theory, an idea due to Valanis (1971) and Schapery (1968), 
which was adapted to strain-softening concrete by Bafant and Bhat (1976) 
(also Bafant and Shieh, 1980). This theory, which is particularly powerful 
for cyclic loading, is incrementally nonlinear while all the previous ones are 
piecewise linear in the sectors of loading directions in the stress or strain 
spaces. 

In the micromechanical constitutive models, the tensorial invariance restric
tions are not imposed a priori by means of stress and strain invariants, but are 
satisfied a posteriori only after the constitutive behavior has been described 
locally in the microstructure model. This brings about a great conceptual 
simplification and makes it possible to utilize various laws from physics (e.g., 
frictional slip, activation energy theory for load ruptures), but at the expense of 
greatly increased computational requirements. 

One successful formulation has been the microplane model, which is based on 
an idea of Taylor (1938). In this model the stress-strain relation is specified 
independently on the planes of various orientations in the material, and the 
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responses from all the orientations are then combined using some weak constraint 
such as the equivalence of virtual work. The original models for metals (known as 
the slip theory of plasticity of Batdorf and Budianski, 1949) used a static 
constraint in which the stresses on the microplanes are assumed to be the resolved 
components of the macroscopic stress tensor. To model strain softening, 
however, stability considerations (Ba.Zant and Oh, 1984) dictate the use of either 
a kinematic constraint, in which the strain components on the microplane are 
assumed to be the resolved components of the macroscopic strain tensor (a 
combined kinematic-static constraint can also be used). This approach has 
allowed so far the best representation of the existing triaxial test data for 
concrete; see the model of Ba.Zant and Prat (1988a, b), which achieves conceptual 
simplicity by assuming that on each microplane the response for monotonic 
loading is path independent and all the macroscopic path dependence (as well as 
friction and dilatancy) results from combinations of loading and unloading on the 
microplanes of all orientations. 

The microplane model takes into account only interactions between various 
orientations in the microstructure, but neglects interaction at distance. 
Although those are partially reflected in the nonlocal concept (which can also be 
combined with the microplane model), a more realistic description of the 
interactions at distance is obtained by direct simulation of the random 
microstructure of concrete or other heterogeneous materials. Adapting an idea of 
Cundall for sand, Zubelewicz (1983), Zubelewicz and Bafant (1987), and Ba.Zant, 
Tabbara, Kazemi, and Pijaudier-Cabot (1989) developed this approach for the 
fracturing of concrete. Concrete is represented as a system of randomly generated 
rigid particles whose interactions are described by interparticle force
displacement relations, which may involve both normal and shear interactions but 
can be simplified to normal interactions only. It has been demonstrated that this 
approach can describe the strain-softening test data very realistically and, unlike 
all the previously mentioned models, need not be enhanced by a nonlocal 
formulation. The nonlocality is an implied feature of the particle models. This is 
evidenced by the fact that they exhibit limited localization and a size effect that is 
in good agreement with the size effect law in Equation 13.9.2 and represents a 
transition from plasticity to linear elastic fracture mechanics. A serious disadvan
tage of particle simulation is that it poses extreme demands for computer time 
and storage, which are at present almost unsurmountable if the particle system is 
three-dimensional, as it should be. 

There are many further possible avenues to explore in the micromechanics 
approach to constitutive modeling. This approach seems to be more promising 
than the phenomenologic constitutive equations, which have been studied 
intensely for a long time and probably leave little room for further improvements. 
Substantial improvements, however, will be needed in order to master predictions 
of instabilities and bifurcations caused by constitutive properties rather than 
geometric nonlinearities, or by both of these combined. 
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E e-• 
E' 
E* 
EI 
Efw 
Es,Er 
F 

G, 
Gxy 
GJ 
H 

'X 
H 
I 
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or instantaneous elastic modulus (9.1) 
=chord modulus for elastoplastic column (8.2) 
=reduced modulus for elastoplastic column (8.1) 
=tangential (incremental) modulus for loading (8.1) 
=incremental modulus for unloading (8.1) 
= elastic moduli of orthotropic material (7 .1) 
=long-time (quasi) elastic modulus (9.1) 
= relaxation operator (9 .1) 
=creep operator (9.1) 
= E/(1 - v2

) (12.1) 
=age-adjusted effective modulus for creep of concrete (9.4) 
= effective bending stiffness (8.5) 
=warping stiffness of thin-walled beam cross section (6.4) 
=isentropic and isothermal tensors of tangential moduli (10.1) 
=prestressing force (1.8) 

or reference load (2.2) 
or stress function (7 .4) 
or axial tensile force (8. 7) 
or Helmholtz free energy of structure (10.1) 

=Helmholtz free energy of structure-load system (10.1) 
=in-plane distributed loads (7.2) 
=allowable compressive stress for axial load (8.4) 
=allowable compressive stress for bending (8.4) 
= column matrix of forces (2.2) 

or transformation tensor (11.1) 
=column matrix of fixed-end forces due to loads (2.2) 
=elastic shear modulus (1.7) 
=Gibbs free energy of structure (10.1) 
=Gibbs free energy of structure-load system (10.1) 

or energy release rate (energy released per unit length and 
unit width of crack) (12.1) 

=fracture energy (12.1) 
=elastic shear modulus of orthotropic material (7.1) 
=torsional stiffness for simple torsion (6.1) 
=height (4.5) 

or horizontal force ( 4.2) 
or Heaviside step function (9.4) 
or enthalpy of structure (10.1) 
or hardening (tangential) modulus (10.6) 

=enthalpy of structure-load system (10.1) 
=Hurwitz matrix (3.7) 
= centroidal moment of inertia (1.1) 

or functional (5.1) 
or invariant of stress tensor (/1 , / 2 , / 3) (10.6) 

=moment of inertia in y direction (about z axis) (6.1) 
=moment of inertia in z direction (about y axis) (6.1) 
=warping (sectorial) moment of inertia (6.1) 
=mixed cross-sectional moments (6.4) 
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I 
J 

K, 
Ku 
K., K 11 , Km 
Kc 
K 
i 
i 
Ke 
Kr 
Ks 
K' 
K" 
L 

Mo 
Mmax 

M, 
Mu 
My 
Mz 
M;,M: 
Mxx•Myy 
Mxy=Myx 
M, 

Mu 
M, 
MT 

M 
N 
N;i 
N 
lY 
p 

Po 
PE 

=identity matrix (2.3) 
=pure-torsion stiffness divided by G (Sec. 3.2) 

or compliance function (creep strain per unit constant stress) 
(9.1) 
or J-integral (12.1) 

=second invariant of deviatoric part of stress tensor (10.6) 
=stiffness coefficient (2.1) 

or bulk modulus (Sec. 8.1) 
=tangential stiffness for loading (10.1) 
=tangential stiffness for unloading (10.1) 
=stress intensity factors for modes I, II, III (12.1) 
=critical value of stress intensity factor (12.1) 
= stiffness matrix (2.2) 
=symmetric part of matrix K (4.1) 
= antisymmetric part of matrix K (10.4) 
= linear elastic stiffness matrix (2.3) 
=tangential stiffness matrix in isothermal conditions (10.1) 
=tangential stiffness matrix in isentropic conditions (10.1) 
=tangential stiffness matrix (12.5) 
= geometric stiffness matrix (2.3) 
=length (4.4) 

or effective length of column (1.4) 
= length in x or y directions (2. 7) 
=self-adjoint positive definite operator (5.1) 
=bending moment (1.1) 

or moment in general ( 4.5) 
=bending moment for no axial load (1.2) 
=maximum bending moment (1.6) 
=torsional moment (torque) (1.10) 
= ultimate design moment (8.5) 
=bending moment for y direction (about axis z) (1.10) 
=bending moment for z direction (about axis y) (1.10) 
=magnified bending moments (8.4) 
= bending moments (per unit width) in a plate or shell (7 .1) 
= twisting moment (per unit width) (7 .1) 
=first-order moment (disregarding second-order geometric 

effects) (8.5) 
= second-order moment (8.5) 
=torque vector (1.10) 
=bending component of torque vector (1.10) 
= linear differential operator ( 5.1) 
=axial force (positive if tensile) (1.3) 
= in-plane forces per unit width of plate (7 .2) 
=column matrix of interpolation functions (2.3) 
= linear differential operator ( 5 .1) 
= axial load (positive for compression) (1.2) 
=permanent axial load (9.5) 
=Euler load (of pin-ended column) (1.2) 
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PR 
PT 
Per 
Per,• Per, 
Per, 
p~ 
Pm 
P, 
P, 
P,. 

Q,.,Q, 

R 

R,. 
R 

s 
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=long-time Euler load corresponding to modulus E"" (9.2) 
=lower bound for critical load (5.3) 

or live load (axial) (9 .5) 
= Rayleigh quotient (5.3) 
= Timoshenko quotient (5.3) 
=critical value of axial load (1.2) 
=critical load for bending in they or z direction (6.2) 
=critical load for pure torsional buckling (6.2) 
=critical load under displacement control (8.1) 
=maximum axial load (8.6) 
=reduced modulus load (8.1) 
=tangent modulus loal (8.1) 
= axial force corresponding to yielding of the material (2.5) 
=ultimate (design) axial force (8.5) 
= ultimate load (12.2) 
=axial force in directions x, y (2. 7) 
= axial yield force (squash load) (Sec. 8.6) 
=force field of components Px, Py, Pz (3.2) 
=column matrix of loads (10.1) 
=shear force normal to the deflected beam axis (1.3) 

or heat flow into the structure (10.1) 
=force component in direction k (2.3) 

or constant (3.7) 
=(rotating) transverse shear forces normal to deflection surface, 

per unit width (7 .6) 
=Fourier coefficients (1.5) 
=square matrix (4.1) 

or column matrix of displacements (10.1) 
= matrices of Eshelby coefficients for unloading and loading 

(13.4) 
= curvature radius (2.8) 

or radius (7 .5) 
or resistance (8.4) 
or energy release required for crack propagation (resistance to 
crack growth) (12.3) 

=inelastic zone length (12.2) 
=tangential (incremental) bending stiffness (8.3) 

or tangential bending stiffness for loading (13.6) 
=incremental bending stiffness for unloading (13.6) 
=unitary matrix (4.1) 

or rotation tensor (11.1) 
=safety factor (8.4) 

or surface of structure (10.1) 
or entropy (10.1) 

=internally produced entropy increment of structure (10.1) 
=true stress tensor (Cauchy stress, Eulerian stress) (11.2) 
=Truesdell stress rate (11.3) 
= Cotter-Rivlin stress rate (11.3) 
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T 

T;; 
u 

Vo 
vk 
Vx.V,. 
v 
w 
'W 
w 
Wext 

"i 
"'int 
w• 
w• 
w 

z 
Z,Z;; 
a 

b 

c 

= Jaumann stress rate (11.3) 
= fourth-order tensor of Eshelby coefficients for ellipsoidal 

domain (13.4) 
=kinetic energy (3.6) 

or period (3.9) 
or absolute temperature ( 4. 9) 

=first Piola-Kirchhofl stress tensor (Lagrangian stress) (11.2) 
=strain energy (2.9) 

or total internal energy of structure (10.1) 
=total internal energy of structure-load system (10.1) 
=generalized displacement parameters (6.6) 
=strain energy due to bending in shells (7.6) 
=strain energy due to membrane action in shells (7.6) 
= strain energy of bending and twisting in plates (7 .2) 
= strain energy of in-plane deformation in plates (7 .2) 
=right stretch tensor (11.1) 
=shear force (normal to undeftected beam axis) (1.3) 

or volume of structure (4.3) 
=initial volume of body (10.1) 
=generalized displacement parameters (6.6) 
= fixed direction shear forces per unit width (7 .1) 
=left stretch tensor (11.1) 
=work of loads (3.2) 
=work at equilibrium displacements (4.9) 
=work per unit initial volume (11.2) 
= work of external forces (2.5) 
=energy dissipated at the crack tip (12.4) 
= work of internal forces (2.5) 
=complementary work (10.1) 
=complementary work per unit volume (10.6) 
=work per unit load (4.7) 

or work per unit volume (10.6) 
=work of initial stresses (10.1) 
= initial spatial coordinates of material point of continuum 

(11.1) 
=Batdorf parameter for shells (7.6) 
=matrix deciding localization instability (13.3, 13.4) 
= distance (2. 7) 

or crack length (12.1) 
=distance (2.7) 

or damping parameter (3.1) 
or width (8.1) 
or thickness (12.1) 

=sandwich core thickness (1.7) 
or stability function (carry-over factor) of beam-column (2.1) 
or foundation modulus (5.2) 
or limit slenderness (8.4) 
or z-coordinate of neutral axis (8.6) 
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g(a) 

h 

k 
k(a) 
I 
I* 
m 

mxz• myz 
[m;;] 
o, n; 

p 
Per 
Ph 
PN 
Pn 
p, 
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or length of (equivalent elastic) crack advance (12.2) 
or velocity of imposed displacement (13.1) 

= effective length of fracture process zone for infinite-size 
structure (12.2) 

=damping matrix (3.5) 
=eccentricity of axial load (1.4) 

or first-order normal strain (4.3) 
=first-order normal strain (6.1) 
=small (linearized) strain tensor (10.1) 
=skin thickness of sandwich plate (1.7) 

or small (disturbing) load (2.2) 
=yield limit (1.2) 
=compression strength (1.2) 
= tensile strength (12.2) 
=ultimate stress (strength) (1.9) 
= column matrix of generalized forces (2.3) 
= column matrix of equilibrium forces at isentropic or isother

mal conditions (10.1) 
= nondimensional energy release rate of a crack (function of a 

and structure shape) (12.2) 
=thickness (2.4) 
o~ or thickness of localization zone (13.2, 13.3) 

= VP/EI (1.2) 
=function of structure shape (12.1) 
=length of column (1.1) 
=half wavelength of the deflection curve (2.1) 
=shear correction coefficient (1. 7) 

or small applied disturbing moment (2.9) 
or point mass (3.2) 

= couple stresses in micropolar continuum (2.10) 
=mass matrix (3.5) 
=unit vector in principal strain direction (11.1) 

or unit normal vector (11.2) 
=lateral distributed load (1.2) 
=critical value of hydrostatic pressure (1.8) 
= hydrostatic pressure (1.8) 
=transverse load due to in-plane forces (7.2) 
= Fourier coefficients ( 4.3) 
= radial distributed forces (1.8) 

or distributed reaction (5.2) 
=generalized displacement (3.5) 
=mode amplitude (1.2) 

or degree of freedom (3.6) 
or Fourier coefficient (1.5) 

=displacements for mode k (eigenvector) (4.3) 
= column matrix of generalized displacements (3.5) 
= buckling mode ( 4.3) 
=radius of inertia (1.2) 
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s 
s* 
t 

t' 
t* 
to, tl 

t 
u 

U;, U 

V; 

w 

X;, X 

y 

Y; 
Yk 
z 
Z; 

=Irwin's inelastic zone length (12.2) 
= (/z + fy)/A (6.1) 
=length coordinate along deflected member centerline (1.8) 

or stability function of beam-column (2.1) 
or span (4.5) 
or standard deviation (8.4) 

= s ( 1 + c) = stability function (2 .1) 
= 2S -n2P/PE =stability function (2.1) 
=time (3.1) 

or thickness (6.1) 
=time (9.1) 
=critical time (9.3) 
=age of concrete at loading (9.1) 
= unit tangent vector (7 .2) 
= displacement in direction x (1. 9) 

or kl (1.4) 
or load-point displacement (4.4) 
or radial displacement (13.5) 

= displacements of material point of continuum in X; direction 
(11.1) 

=transverse displacement in directions (6.4) 
=displacements of wall middle surface in x, y, z directions (6.1) 
=column matrix of joint displacements (2.2) 
= displacement in direction y (1.10) 

or wind velocity (3.2) 
or velocity (8.6) 
or wave velocity (13.1) 

=velocity of material point in the x;-direction (11.1) 
=deflection (in direction z) (1.1) 
= width of crack band (12.2) 
=load-point displacement (4.3) 
=maximum column deflection (1.1) 
= deflection at no axial load (1.6) 
=coordinate (along undeformed centerline for beams) (1.1) 
=current (final) spatial coordinates of material point of con-

tinuum (11.1) 
=coordinate (in lateral direction for beams) (7.1) 

or distance from centroid to column face (8.4) 
=transformed variable (4.1) 
= amplitude of buckling mode ( 4.3) 
=coordinate (transverse for beams, plates and shells) (1.1) 
=transformed variable (4.1) 
=coordinate of beam centerline at no axial load (1.5) 
= nondimensional imperfection (2.6) 

or angle (1.8) 
or friction coefficient (10. 7) 
or a/ D =relative crack length (12.2) 
or weight function (13.10) 
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= Almansi (Eulerian) strain tensor (11.1) 
= 1- P/GA0 (1.7) 

or damping coefficient (3.1) 
or dilatancy factor (10. 7) 
or brittleness number (12.2) 
or shear retention factor (13.10) 

= shear strain (1. 7) 
=linear part of shear strain (6.1) 
=second-order part of shear strain (6.1) 
=plastic slip (10. 7) 
=deflection (2.7) 

or crack opening displacement (12.2) 
or variation sign (4.2) 

=Dirac delta function of x (13.1) 
= Kronecker delta ( = 1 for i = j and 0 for i =I= j) (7 .2) 
= opening displacement at crack front (12.2) 
= fictitious crack opening displacement (12.2) 
= normal strain ( 1.1) 
=normal strain at any generic point of cross section (4.3) 

or load-produced strain (8.3) 
=residual strain (8.3) 
= second-order component of normal strain ( 4.3) 
= Biot's finite strain (11.1) 
=finite strain associated with parameter m (11.1) 
=strain tensor (4.3) (finite strain tensor in Ch. 11) 
=inelastic (or plastic) strain tensor (10.6) 
= Eul E, (8.1) 
= Eul E, (10.1) 
= dashpot viscosity (9.1) 
=slope angle (1.3) 

or rotation (2.1) 
or angle of twist (6.1) 

= curvature (2.8) 
or current slip limit (10.7) 

=scalar parameter (10.6) 
=kl=1CVP/PE (2.1) 

or load parameter (4.1) 
or column slenderness (8.4) 
or logarithmic strain (8. 7) 

=eigenvalues (4.1) 
or control parameters in catastrophe theory ( 4. 7) 

= column slenderness parameter (8.4) 
=principal values of tensor U (11.1) 
=magnification factor (1.5) 

or load multiplier (1.5) 
or mass per unit length (3.1) 

=Poisson ratio (1.7) 
= unit normal vector (7 .2) 
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p 

o, 
o, 
Ou 

O:u, Oxy> ••• 

0, O;j 

T 

-r* 
TN 
T, 

T.u 

tP 

t/>(t) 
tPs 
tPu 
X 
1/J 
1/l(t) 
1/Js 
(J) 

W, (J)n , , 
(J) ' (J)n 

roo 

W;i 

!l. 

!l.t, !l.z, · · · 
n 
ll* 
Il* 
l:(!") ,, 
41»,41»* 

=curvature radius (1.1) 
or PIPE (2.1) 
or distance (6.4) 
or mass per unit length (13.1) 

=normal stress (1.1) 
= critical stress (1. 7) 
=Euler stress (1.2) 
=nominal stress at maximum load (12.2) 
=stress at proportionality limit (8.1) 

or apparent yield limit (8.3) 
or yield limit of the material (8.5) 

=residual stress (8.3) 
=stress at tangent modulus load (8.1) 
=ultimate stress (strength) (8.4) 
=normal and shear stresses in cartesian coordinates x, y (Sec. 

2.10) 
=stress tensor (4.3) 
=shear stress (6.1) 
=shear stress due to Saint-Venant torsion (6.1) 
=intrinsic (shape-independent) nominal stress (12.2) 
=retardation time (9.1) 
=shear stress in wall middle surface (6.4) 
=rotation (2.4) 

or collapse load reduction factor for shells (7. 7) 
=creep coefficient (9.4) 
=stability function (2.1) 
=strength reduction factor (8.4) 
=aging coefficient for concrete creep (9.4) 
=rotation of beam cross section (1.7) 
=creep coefficient (9.4) 
= stability function (2.1) 
=angular velocity (3.4) 

or warping function (sectorial coordinate) (6.1) 
or coefficent of variation (8.4) 
or damage (13.10) 

= undamped natural circular frequency (3.1) 
=damped natural circular frequency (3.1) 
= natural frequency of coiumn at no axial load (3.3) 
=tensor of small (linearized) rotation of the material (11.1) 
=deflection (1.4) 

or relative displacement (2.1) 
or increment sign (2.6) 

=principal minors (3.7) 
= potential energy (2.10) 
=complementary energy (4.2) 
=complementary energy of primary structure (4.2) 
=second Piola-Kirchhoff stress tensor (11.2) 
=energy functional& (3.8) 
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=potential energy of loads (4.3) 
or energy dissipation rate (13.10) 

=forcing frequency (3.3) 
or nonlocal damage (13.10) 

GLOSSARY OF SYMBOLS 

ADDITIONAL SYMBOLS 

Superscripts 

T 

0 

(m) 

Subscripts 

,i 

Other Symbols 

® 
{A} 

prime indicates derivative with respect to length coordinate 
superimposed dot indicates derivative with respect to time 
indicates symmetric part of a matrix 
indicates antisymmetric part of a matrix 
superscript T indicates transpose of a matrix 
superscript 0 indicates initial equilibrium state 
superscript (m) refers to finite strain tensor definition (Sec. 11.1) 
with which the variable is associated 

a subscript preceded by a comma (e.g. i) indicates a partial 
derivative (with respect to coordinate x;) 

denotes a tensor product contracted on two inner indices 
denotes a tensor product contracted on one inner index 
denotes a tensor product contracted on no index 
=A if A> 0; {A} = 0 if As 0 (Macaulay brackets) 
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Wagner's assumption, 393 
warping torsion 

arbitrary cross section, 392 
basic assumptions, 392 
bimoment, 390, 396, 397 
boundary conditions, 379, 391 
differential equations, 379, 399 
finite elements, 402 
general theory, 392 
1-beam, 371 
large deflections, 403 
moment of inertia, 377 
monosymmetric cross section 400 
plastic, 500 ' 
sectorial coordinate, 372, 394 
sectorial radius, 393 
shear stresses, 396 
stiffness matrix, 403 
Wagner's assumption, 393 
warping function, 372 

Winkler foundation, 314 

yielding-buckling analogy, 87 
Yoshimura pattern, 472 



Appendix to the WSP Edition1 

During the eleven years that have elapsed since the first edition of this 
book by Oxford University Press in 1991, we have collected a number of 
corrections and updates which we have hoped to implement in the second 
edition. Unfortunately, the first edition of this book by Oxford University 
Press in 1991 was produced by mechanical type-setting. In view of the sub
sequent universal switch to computerized book production, any corrections 
within the text have now become very difficult and prohibitively expensive. 

Therefore, the present WSP edition involves no corrections at all within 
the original text. The original text is reproduced exactly, and not even 
single-letter misprints are corrected. Instead, all the necessary corrections, 
as well as most of the pedagogically motivated updates and clarifications, 
are assembled in this Appendix. They are grouped in four sections, labeled 
as A, B, C and D. 

Section A. These are essential errata which are not readily obvious and, 
if not corrected, could be misleading. 

Section B. These are minor errata, which are almost obvious, can be 
readily guessed by thoughtful readers, and are not misleading. Their 
correction is nevertheless necessary for precise writing. 

Section C. These are minor updates helpful to students, which provide 
brief observations or small improvements that enhance understanding 
but are not necessary for correctness. 

Section D. These are significant updates providing further clarifications 
or better explanations, most of which are of pedagogical nature and 
result from our experience in using this book in teaching. 

Since 1990, the year of completion of the original manuscnpL, many 
important research results have been contributed to the vast field of struc
tural stability. This is particularly true for chapters 12 and 13. Despite this 
fact, any systematic coverage of these new results had to be ruled out. It 
would make this treatise much longer, yet it is already voluminous enough. 
Among extensive recent literature, we nevertheless wish to call attention to 
the excellent book by J. Singer, J. Arbocz, and T. Weller (Buckling exper
iments, J. Wiley, New York 1998), and to the perspicacious review by J.R. 
Rice (Rice, J.R.,1993, "Mechanics of solids". Encyclopedia Brttanica, 15th 
ed., Vol.23, 737-747 and 773) characterized by an admirable combination 

1Minor update to the previous Appendix to Dover edition in 2003 
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of insight and brevity. Furthermore, a recent review article by Ba.Zant in 
ZAMM (Vol. 80, 2000, pp. 709-732, Prandtl's anniversary issue) can be 
regarded as a summary of the highlights of this book. 

In the following listing of misprints, corrections and didactic clarifi
cations, the locations of the required or recommended replacements are 
indicated by the page number followed by either a superscript, denoting 
the line number counted from the top, or a subscript, denoting the line 
number counted from the bottom of page. Alternatively, the page number 
is followed by an equation number or figure number in parentheses. In 
counting the lines from the top or bottom of the page, the figure captions 
and headings are included but the lines in separate equations are excluded 
(whether numbered or not). 

A. Essential Errata 

Location 
sus 

2219 
2219 

28(1.6.5) 

28(1.6.6) 

35(1.7.11) 
55(2.1.3) 
6516 
114(2.8.10) 
146(3.1.9) 
1676 

176(3.5.9) 
176(3.5.9) 
182(3.6.4) 
209 (unnumbered 
equation) 
209(4.2.6) 
2103 

210(4.2.7) 

228(4.4.1) 
309(5.1.12a) 
3448 

As printed 
midspan 
P/e1 
P/e2 
Mmax = ... C~) 

Cm = ... C~) 

+Eflt 
A(cosA- 1) 
0.744PE 
M'- .. pR28 = 0 
Ane-Ant 

lw'2 
2 
~IS 
<E 
8\I! 
8v;;Vk 

for alll5qi 

for all i 
potential energy 
IS IT = 0 . . . . all i 

EALfcosq 
(Elw")' 
(1rxj2L) 

Correction 
quarters pan 
Pe1 
Pe2 

Mmax = JC[ + C3 if CI/C2 < 
tankl, otherwise Mmax = M2 
Cm = (1- _E.._)M.m=. 

Pcr1 M2 

+2Eflt 
AA(COSA- 1) 
0.748PE 
M' + RV + pR28 = 0 
AneAnt 

1 + lw'2 
2 

~ 1)2 

< €2 
8\I!. 
8v;;Vk 

for some vector 15q 

(all i) for some vector 15q 
strain energy 
for some vector q: ~ = 0 (all i) 

or L:i ~Qi = 0 (all vectors q)or 
ISIT = 0 tall vectors q) 
EALfcosa 
-(Elw")' 
(1rxj L) 
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Location As printed Correction 
344(5.5.13) Ehr~ + C4L~ Ehr~ + CL~ 

4V 7 ---y;r ='I 

34615 (1- x2 jl ) (1- xjl)~ 
3956 wo = zcyo- yczo wo = yczo - zcyo 
397(6.4.17) -yO'O +yO'O 
397(6.4.17) -zO'O +zO'O 
4004 (r~ + f3zzc) (r~ + f3zez) 
4003 €z = Zc ez =f Zc 
420(7.1.1) 'Yxy = -W,xyZ 'Yxy = -2W,xyZ 
450(7.5.4) 21rRhE 21rR 
496(8.1.13a) +~ -q2 ~ Q2 

743(11.7.9) s ( 

743(11.7.9) ( _ ~2-S~\ ( = Pj2Q, SP1 = -P, 8~2 = 0 - 2Q(l) 
7431 P-8°- 8° SP1 = -P,S~2 = 0 - 22--11 

B. Minor Errata 

Location As printed Correction 
112 IPI IPI 
1811 x w 
2620 imperfection deflection 
32u load when bending loads when shear 
57(Fig.2.2) s' s 
591 spectre spectrum 
652o 823 = 4(1 + 1/2) = 6 823 = 4, C23 = 1/2 
662 based base 
8016 their the 
11118 B= D= 
1186 the beam the tie 
1462 an (twice) fn(t) 
1463 complex numbers. complex. 
1465 an fn(t) 
14610 An Cn 
146(3.1.4) An Cn 
1537 y--+0 u--+0 
15515 it Q + i{3 if Q + i{3 
1611 Cw,CT Cw, Ct 
1614 -reduced =reduced 
1642 unknowns than equations equations than unknowns 
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Location As printed 

166(3.3.11) S1= .... Jp2-1$-

1703 (d) 
17514,15 y;o 

k 
175(3.5.4) ~O(t) 
18918 specter 
191 14 Understanding 
2061 kiQi 
208(4.2.4) any 8qi 
20813 According 

208(4.2.5) any 8qi, 8qj 
208]1,10 8qi, 8qj 
2088,7,6 8qi, 8qj 
21710 8qn 
2277 unless , is very small 
2278 small must r 
2336 q5- q2 > 0 
2538 positive 
2786 field 

307(5.1.3) ~ 
307(5.1.3) </>,w"(x, W + €W", ... ) 

308(5.1.9a) </>w' 
308(5.1.9a) </>w" 
308(5.1.9b) </>w" 
3131 M = Elw" 
31311 (w" + w"') 
3317 deflection 

37513 
Yxz 

38510 Pcro = 

390(6.3.18) M11 x 
ly 

393(Fig. 6.14c) x,y,x,f) 
3946 x andy 
47211 extensible 
47722 Bulking 
491g acual 
500(8.1.23) d€km 

APPENDIX TO THE WSP EDITION 

Correction 

n = 2w 1 ± VP2 - 1$
(b) 
Yko 

Y~(t) 
spectrum 
(Understanding 
/iQi 
any vector 8q 
where 8q = (oq1, ...... , oqn)· 
According 
any vector 8q 
8q 
8q 
8q 
for qo--+ 0 
large must Qo 

q5- q2 < 0 
positive definite 
fold 

~ 
</>,w"(x,w + EW, ••• ) 

</J,w' 
4>,w" 
</J,w" 
M ::/- Elw" 
[w" + (kw"') 2] 

deflection 

'Yxz 

PJ:r1 = (GJ + Elwn2
1r

2 jl2) = 
(GJ + Elwn2

1r
2jl2)" 

Myy 
ly 

y,z,f),z 
y and z 
inextensible 
Buckling 
actual 
dskm 
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Location As printed Correction 
501s Ba.Zant, 1987 Ba.Zant, 1980 
5024 8.1.23 8.1.24 
527(8.4.13) B _ EPv) B2 = (1- ~Wz)- 1 2- ····r;pcr 
54218 keeping keep 
5427 ths this 
5586 small large 
5601 (up,O) (Up, 20) 
589(9.1.10) E + a1(fJjfJt) E + a1(fJjfJt) 
6042 approxmation approximation 
614w 9.1.14 9.4.14 
6349 theromodynamic thermodynamic 
637a 10.1.8 to 10.1.10 to 
63814 potential strain 
64319 If the special In the special 
6436 10.1.14, 10.1.15, 10.1.16, 10.1.17, 10.1.21, and 

10.1.19, and 10.1.20 10.1.22 
643a For isentropic for isentropic 
6442 10.1.21 or 10.1.22 10.1.23 or 10.1.24 
647(10.1.48) for all q for all 8q 
647(10.1.48) for some q for some 8q 
64717 deal loads dead loads 
64719 derivatiion derivation 
648(10.1.51) without loading without unloading 
65818 affected effected 
660(10.3.6) P,lry Ptl'f/ 
67015 Koq=O Koq=O 
670a Of I= 0 Of I= 0 
671 11 when Koq= 0 when Koq = 0 
67113 Of I= 0 Of I= 0 
67117 Koq 1= o Koq 1= o 
69112 d.X du 
7162 were where 
7244 Equations 11.3.18 Equations 11.3.15 
7247 m= -1 m=-2 
7244 m= -1 m=-2 
724(11.3.20d) .s<-1) .s~-2) 

725(11.3.26) 8?-1) .s?-2) 

736(11.6.11) a-2) Q{-2) 

7399,8 m M 
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Location As printed Correction 
7395 Ao = GAo/G Ao = A/J.L 
74016 GA =effective G A0 = effective 
742(11.7.2) (u1.2 + u2,1) (u1,2 + u2,1) 
75622 Deformation Deformations 
7614 arr.;au arr.;aa 
7614 an• ;au arr.;aa 
7625 -oiT(a)joa = -8IT(a)j8a == 
765w Cu(a)P(a) Cu(a)P(u) 
76917 ratio rate 
769(12.1.25) Pu Per 
796(11.4.24) (11.4.24) (12.4.24) 
79710 12.4.1a, b 12.4.27a, b 
7973 u(P) =CoP uo(P) =CoP 
80612 as Ac as Ac 
8105 condition conditions 
810(15.5.22) 15.5.22 12.5.22 
8226 Barren blatt Barenblatt 
8411 Uk .... 13.1.35 the strains fkm = (uk,m + Um,k)/2 
845(Fig. 13.6b) q1 q2 
8478 (C < 0) (C > 0) 
859(13.3.7a) Z= Z= 
879u outside is outside are 
8993 three hinges two hinges 
8992 three hinges; two hinges; 
9002 extend undergo further loading 
9057 in path is path 
91614,22,27 13.9.2 13.9.1 
923g 13.9.2 13.9.1 
92513 €(x) but u(x) €(x) but u(x) 
92619 [iw(t- vt)] [iw(x- vt)] 
9396 of either of 
94419 Local strain Total strain 
9482 Murkami Murakami 
9633 Barrenblatt Barenblatt 
96412 Brezina Brezina 
9711 Ostsubo Ohtsubo 
98017 helmholtz Helmholtz 
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C. Minor Updates 

Location As printed Update 
45 centroid) centroid), 
815 concrete concrete (if uncracked) 
1111 differential differential equation 
255 eliminate the deal with 
2620 maximum load load 
263 uncertain and uncertain, having 
3115,16,18 m J.L 
3119,20,21 m J.L 
626 equations. equations, and h2 = 123· 
725 Consider the truss of For the frame in 
7514 This process Normally this process 
10013 Sec. 4.5 Prob. 4.5.14 
1074 stiffness for stiffness and P cr1 for 
1506 functions functions, heigth=span, same EI 
15513 w, which w. This 
15812 currently in 1990 
1605 in which in which x = length coordinate, 
1632 stability stability (Strutt diagram) 
16611 and 1945). , 1945) (named Strutt before knight-

hood). 
16613 For the . . . frequency, At the higher ... frequencies, 
1678 this equation u 
17219 corresponding corresponds 
17219 implies , implies 
1765 small sufficiently small 
1766 a small an arbitrarily small 
17614 band arbitrarily narrow band 
17614 will be is 
1767 position distance 
1782 Q1 = t+ Q1 = t + v 
1783 aRe euut v = at-2Re ei(wt+<p), cp = 1r /4 
1783 w2 = -3 + v'1 - P w2 -6w+8 = P 
17810 PE. PE. Assume sinusoidal deflection. 
17811 6(6 > 0) 6(8 > 0) as a function of € 

20118 positive positive definite 
201s Vieta's Viete's (or Vieta's) 
2132 II II of the given structure, 
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Location 

217u 

2394 

24021 

24021 

2421 

2436 
2436 
2431 
2441 

2462 

25413 
25515 

25512 
25512 
255u 

31716 

331s 

As printed 
actual 
Block: 

8IT/8qn = 0 

column 

magnet 
energy ... 
Show 
16 b) 
loss. 
Rigid-bar 

(a= 0) is 
post buckling 
with q 
rigid-bar 

1.9.14. 

equilibrium curve 
decrease with 
On the other hand, 
this means that one 
finds 
initial 
, and so 
oq* = oq 
path at 
oq= o 
path with oq # 0 

any Pqi plane 
e,f. 
one stable equilib
rium path 
biological reactions, 
incremental work 

than 
bending moment 

APPENDIX TO THE WSP EDITION 

Update 
given 
Block and Unilateral Con-
straints: 
8ITj8qn = 0 (Trefftz criterion, Eq. 
4.2.7) 
column, with initial shape wo = 
q0sin( 1rx / l), 
electromagnet 
energy. Show 

16 b), called the Maxwell path, 
loss, nor gain. 
Stable symmetric bifurcation of a 
rigid-bar 
(a = 0) is the bifurcation load 
post critical 
with respect to the P-axis 
Unstable symmetric bifurcation of 
rigid-bar 
secondary equilibrium path 
point decreases with increasing 
Note that 
thus, in second order approximation 
there is 
critical 
and varies continuously. So 
oq = oq* 
path oq = oq(1) at 
oq(1> = o 
path oq = oq(2) with oq(2) # 0 be
comes also 
any (P, qi) plane 
e,f. Also apply the Trefftz criterion. 
one path of stable equilibrium states 

chemical reactions, biology, 
incremental work (second-order 
work) 
that 
equilibrium bending moment 
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Location 
3314 
3313 
3387 

3615 

37318,17 
37315 
37816 

3792 

3857 

3857 

3935 
39419 
431 17 

431 20 

44817 

45614 

4594 

4594 

4939 

5231 
5415 

5943 

59412 
6032 

611 1 

634(10.1.1) 
63418 
63510 

638(10.1.18) 
638(10.1.19) 
63917 

64421 

64614 

64615 

As printed 
strain energy 
load 
lower .. . so far 
imperfection, de
fines 
u,v, 
u', v', 
r2 

p 
may now be ob-
tained as 
6.1.16. The result 
is 
either the 
or an,bn = 0 
origin 0' 
u 
axial 
axial 
failed. 
equations 
theoretical 
results 
uniaxially stressed 
structures 
a variation 
As/y· 
0 
non positive 
age of 
histories 
fsPkb..ukdS 
s,v 
1945) 
dF 
dU 
obtain 
hinges. 
g 
1{ 

Update 
strain energy for P = 1 
unit load 
simple forms of lower bounds 
imperfection defined by 

u,v,w 
u', v', w' 
r; (rp = polar radius of gyration) 
(representing 

6.1.16): 

the 
(not all an, bn = 0) 
origin 0' of coordinates Yo, zo 
u = Ua + v'yo + w'zo 
radial 
radial 
failed (Wagner, 1929). 
equations (Eqs. 7.4.4-5) 
critical loads 
failure loads 
structures (see Eq. 10.4.11), 

a coefficient of variation 
A8 /y and E8 l 8 by 0. 
€ 

not positive 
age 
histories of a column 
fnPktl.ukdn 
n,v 
1945; Haase, 1969) 
- T( dS)in = dF 
-T(dS)in = dU 
obtain, for dead loads 

993 

hinges, and by Lin'kov (1977, 1987). 
g• 
1i* 
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Location 
64617 

64618 

64620 

64621 

646g 
6463 

647(10.1.47) 
6476 

647(10.1.48) 

64711 

64719 

64720 

64721 

6496 

652(10.2.5) 
6531 

6532 

67014 

68621 

6905 

6917 

691 (10.6.10) 
69326 

70723 

70814 

As printed 
d9 (twice) 
d1i 
d9 
d'H 
9 or 1i 
associated . . . . dis
placement. 
.6.9 = 
.6.9 
.6.9 = o29 (three 
times) 
9 
a21£ 
9 
1i 
>. and all the 
(q+ 
- L:qmofm 
!q(o)T 

Stiffness Matrix 

symmetric K) 
equilibrium 
Incremental 
Collapse 
seem to 
This 
represents 
!,u!,u 
J2 + kl1 
very high. 
depend on ui,J 

increases 
increase 
(.6.t) 

APPENDIX TO THE WSP EDITION 

Update 
d9* 
d'H* 
d9* 
d1i* 
9* or 1-l* 
vector associated with the displace
ment vector . 
.6.9* = 
.6.9* 
.6.9* = o29* 

9* 
a21i* 
9* 
1-l* 
>., or if all the prescribed 
(qO+ 
-qOOf 
!oq<o)r 

Stiffness Matrix and Bifurca
tion Theory 
symmetric K, and for load control) 
equilibrium or bifurcation 
Incremental Collapse and 
Shakedown 
can 
The 
can be regarded as 
!,u®!,u 
v'J2 + kl1 
very high (Biot, 1959). 
characterize the length change of 
any line segment dX 
increases (or vanishes) 
increase (or vanish) 
.6.t 

7114 . The transforma- = Oij + Ui,j· F can 
tion F can 

71317 Cl!ij = !(I-BBt) = (aij] = !(I- BBT) 
=!(I- y-2) 

7137 is the simplest (m = 2) is the simplest 



MINOR UPDATES 995 

Location As printed Update 
7196 pair. pair (Hill, 1968). 
7237 ~·- l(v· · + v· ·) eij = !(8vd8xj + 8vjj8xi) J - 2 ~.J }.~ 

7259 J = 1 + Uk,k J ~ 1 +uk,k 

72821 Equation 11.4.5 The last equation 
73319 real. real (cf. Sec. 13.1) 
77719 bQ= bQ = (8II* j8a)p = 
77722 certain certain nondimensional 
77821 where at = (ctf D) where 

and 
77821 dg(ao)/da dg(o:)/do: at a= ao 
77912 error error b 
77912 UN) UN, Fig. 12.11) 
77915 error error b 
78022 with some with the 
78017 sizes brittleness numbers f3 
786(12.3.5) 8Q(a:) - 0 [~]a=const. = 0 (flJ-

7909 load P from load P 
8403 motion motion (for small strains) 
8546 branch branch emanating 
8579 effect size effect 
85817 dealt merely dealt 
85819 Condition and Bifurcation Conditions 
863s to o2W to o2W 
8645 1971 1971, Eq. 11.3.16 
8654 (a= 0) (a= 0, Eq. 11.3.16) 
8655 path bifurcation instability 
8657 of this of the bifurcation 
89323 implied the implied the total 
89324 , per unit ... beam, in the whole beam 
89510 this hinge that hinge 
9lls (1988b) (1989b) 
91512 From this Equating the expression for G, 
91513 1984c 1983b, 1984c 
9156 potential energy re- release of complementary energy II* 

lease -II 
9152 -II= II*= 
9163 -8IIj8a = b9t 8II* j8a = bQt (Eq. 12.1.1) 
9227 linear bilinear 
945n de Borst, R. (1988b) de Borst, R. (1989b) 

94510 (in press) ' 59, 160-174 
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D. Significant Updates 

xii3 After of a Block insert and Unilateral Constraints 
xvi21 Replace Extension to Variable Loads by Variable loads and Lagrange-

Dirichlet Theorem 
xvi2 Replace Stiffness Matrix by Stiffness Matrix and Bifurcation Theory 

xvii9 After Collapse insert and Shakedown 
xix4 Replace Condition by and Bifurcation Conditions 
xix6 Replace Generalization . . . . Effects by Stability and Bifurcation for 

Geometrically Nonlinear Deformations 
xix6 Replace Bifurcation ... Path by Stable Post-Bifurcation Path 

121 At top insert For P = 0, the general solution is w = Ax3 + Bx2 + 
Cx + D + wp(x). 

195 After zero. insert What happens if the sliding contact has friction 
angle tp? 

235 After p. 32). insert (Note that for small P, the first sine term 
does not dominate, but an accurate value of J.L is not needed when 
P «Perl·) 

2621 After 4.5). insert Consider an initial sinusoidal curvature as an 
imperfection. 

3312 After 2.9). insert , 1 Note that there exists an alternative theory of 
shear buckling, due to Haringx (in detail see Sec. 11.6). Engesser's 
formula (Eqs. 1.7.7 and 11.6.10) is equivalent to Haringx's formula 
if the transformation stated in Eq. 11.16.15 is made. This equation 
implies that, in at least one of these two formulae, the shear stiffness 
must be considered to depend on the axial force, which is inconve
nient. It is now established this is the case for Engesser's formula. 
Haringx's formula is free of this inconvenience because the shear mod
uli of the material (or materials, in a composite cross section), and 
thus also the cross-sectional shear stiffness, can be considered con
stant, provided, of course, that the material is linearly elastic in 
small strain and that the stress magnitudes are negligible compared 
to the values of these moduli (see Z.P. Bazant, "Shear buckling of 
sandwich, fiber-composite and lattice columns, bearings and helical 
springs: Paradox resolved," J. of Appl. Mech. ASME, Vol. 69, 2002, 
in press). This includes typical sandwich columns, fiber-composite 
columns, built-up or lattice columns, elastomeric bridge bearing and 
helical springs. In all these cases, Haringx formula is superior. 

1 The symbol , indicates the beginning of a new paragraph 



SIGNIFICANT UPDATES 997 

5018 After Euler insert ,.Galambos, T.V. (1968), Structural members 
and frames, Prentice Hall, Englewood Cliffs 

601 Before torsion insert (1988) handbook. Aside from the basic planar 
stiffness matrix of beam columns (Eq. 2.1.17), Tuma also includes 
the spatial stiffness matrix of beam-columns with 

6120 After Tuma 1988). insert ,.2.1.15 Use the moment equilibrium 
condition, Fig. 2.3, to obtain from Eq. 2.1.10 the 3x3 flexibility 
matrix representing the inverse of the stiffness matrix in Eq. 2 .1.17 

62 (Fig. 2.5) Move the "erroneous guess" point to the intersection of 
the curved dashed line with the JL-axis. 

6610 After If this is so, insert and if we consider only infinitely small 
deflections at the beginning of buckling 

725 After joint at 2, insert consider only infinitely small deflections at 
the beginning of buckling (at which the shear forces in the members 
are negligible compared toP). 

762 After unknowns has insert been solved. Another effective method 
is to 

1074 After 2.37a,b. insert Consider EA of 45° diagonals to be k-times 
EA of longitudinal bars, k = 0.05. 

1104 Replace A useful .... during buckling. by Except when the arch is 
statically determinate, deflection of the arch causes the compression 
line of the arch to move. But during the initial buckling the move
mentis higher-order small compared tow, regardless of whether the 
compression line initially coincides with the centroidalline of the arch 
or not. 

1119 After for the other insert (the axial extension is first-order small, 
while in columns it is second-order small) 

1142 After loading insert (symmetric buckling occurs because p(x) is very 
nonuniform and w(x) non-sinusoidal) 

13810 After Ba.Zant, Z.P. (1966) insert ,.Bazant, z. P. (1971), "Micropolar 
medium as a model for buckling of grid frameworks". Developments 
in Mechanics, Vol. 6 (Proc. of 12th Midwestern Mechanics Conf., 
University of Notre Dame), 587-593 

15515 After criterion. insert (Of course, it applies only to structures with
out damping.) 

1624 After (1987). insert ,.3.2.16 The equations of motion of a system 
with deflections u, v are (1-P)u+3ii+v+2ii = 0, -u+ii+v+ii = 0. 
Discuss stability 
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1678 Before Because insert The axial shortening u is second-order small 
in terms of a, and thus need not be considered for equilibrium con
ditions whose terms are first-order small. But it must be considered 
for energy analysis because the energy is quadratic. 

1768 After economics, etc. insert It should be realized that the following 
law is implicit to the common usage of the stability definition: if the 
system is stable, the response will not deviate from the initial solution 
(or equilibrium state), but if it is not stable, the response will deviate. 
In the case of equilibrium states, this law is in fact equivalent to the 
second law of thermodynamics (see Sec. 10.1). 

1788 After o > 0? insert ,(c) Repeat for q1 = t + v/(1 + v) and d) for 
q1 = t + e-v (such responses cannot happen for linear systems) 

1789 Replace o(o > 0) if by the initial midspan velocity 0 < wo < o such 
that lw(x, t)l < € for all t > 0, € = w-9 and 

1877 After Chapter 7. insert fJA random noise process x(t) (which may 
result from a small initial disturbance) is considered almost stable if 
infinite values are reached only with an extremely small probability 
(or frequency). Therefore, stability is defined in terms of the Eu
clidean norm llxll(t). Since llxll(t) =e-Xt implies A= C 1 ln llxll(t), one 
introduces the so-called Liapunov exponent Ax = limt-too c 1 ln llxll 
(t). If this exponent is negative, stability is almost certain, in terms 
of the first moment. This may further be extended to Liapunov expo
nent of the n-th moment, defined as Ax(n) = limt-too = t-1 ln llxlln (t) 
(this concept is for instance important for wind turbulence spectra; 
see, e.g., Y.K. Lin and G.Q. Cai, Probabilistic Structural Dynamics, 
McGraw-Hill, New York 1995). 

207t3 Replace work of loads W. by potential energy II£ of the conservative 
load. ilL = - W where W is the work of load. 

20810 After Chapter 10. insert ,It is important to distinguish between the 
load P, whose dependence on displacement u is defined independently 
of the structure, and the equilibrium reaction R, which depends on 
the structure stiffness. In equilibrium, R(q) = P(q), and away from 
equilibrium R(q) =/= P(q). ,Note that the complementary energy of 
an elastic structure is IT* = U*(fk) +ill. For one load, the comple
mentary energy, ill is the area to the left of the diagram f = P(q), 
i.e., IT[, = J qdP. For the special case of dead load, the load-deflection 
diagram is a horizontal line, and so the complementary energy of dead 
load IT[, = 0, and IT* = U*. 
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2094 Replace text from 2094 to 2102 by 1At the limit of stability, the 
second variation o2II = ! L:i L:i II,ijOqioqj ceases to be positive defi
nite. Since matrix [II,ij], representing the tangential stiffness matrix 
Kij is symmetric, the stability limit (according to theorem 4.1.3) oc
curs if and only if eigenvalue Ai vanishes and all the others are positive. 
Thus (because of Eq. 4.1.5) a sufficient and necessary condition of 
critical state is 

Det[II,ij] = 0 or Det[Kij] = 0 (4.2.6) 
(for nonsymmetric Kii• this condition is not necessary; see Eq. 10.4.3). 
It further follows that ofi = L:j II,ijOqj = 0 for all i and some vector 
oq (the eigenvector), which means that the critical state is character
ized by neutral equilibrium (this is not necessarily true for nonsym
metric Kij; see Sec. 10.4). ,The condition that ofi = 0 for all i can 
be written as &( o2II) I &( Oqj) = 0 for all j. This is further equivalent, 
in the variational sense, to the condition that, for o fi corresponding 
to some nonzero vector oq, L:i o fioif.i vanish for any nonzero vector 
oq, with components oif.i· But L:i ofioif.i = L:i L:i II,ijOqioif.i, where 
0 fi = Lj II,ijOqj = &( o2II) I &( Oqi). Therefore, the critical state crite
rion may be stated as 

~~615:~? = 0 for all i and some vector oq or ( 4.2.6a) 

L:i L:i II,ijoqioif.i = L:i a(fqi) (! L:i L:k II,jkoqioqk)oif.i = L:i ~wq~? oiji 
= 0 or o(o2II) = 0 for all vectors oq and some vector oq (4.2.6b) 
,The last equation is the Trefftz's form of critical state criterion. Note 
that o(o2II) is not the third variation o3II, which would be calculated 
with reference to the same vector oq. 

2102 After o3II.] insert For examples, see Eq. 4.3.12 and the condition 
resulting from 4.5.41. (For further details see Sec. 10.4) 

2105 After energy insert (for dead loads and small displacements) 

2213 After vanishes. insert Then (and only then) equations 4.3.12 co
incide with &(82II)I8qi = 0 (all i), which is the Trefftz criterion of 
critical state (Eq. 4.2.7). 

2275 After constants insert (a = control parameter, proportional to the 
controlled intensity of electric current) 

2278 Replace (Hint: ... ) by (Hint: The stability condition is 82III82q1 = 0 
at a= canst., not at P = const.) 

2275 After Section 4.1. insert ,4.3.17 Modify Eqs 4.3.2 - 4.3.5 to a 
column with initial crookedness given by wo(x) = L:n q~sin(mrxll), 
and p = 0. 
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2384 Before Setting insert (although for a single variable we could write 
d/dq, we prefer ojoq since P and a could also be regarded as vari
ables, as in Sec. 4. 7) 

24019 Replace The perfect column .. . . post buckling path. by For the 
perfect column (a = 0) the primary equilibrium path, coinciding 
with the P-rods, is stable (82IT.joq2 > 0) for P < pg_ and unstable 
(fPITjoq2 < 0) for P > Pg.. The point P = pg_ and q = 0 is a 
point of bifurcation because for P > pg_ the column follows a rising 
secondary post bifurcation path given by Eq. 4.5.3 for a= 0. All the 
points on this path represent stable states (82IT.joq2 > 0). 

2432 After q-+ 0. insert For a= 0, Eq. 4.5.13 describes the secondary 
post bifurcation equilibrium path of the perfect structure. The pri
mary equilibrium path is the P-rods (q = 0). 

243s Replace symmetrically . . . . reason by The state on this path are 
unstable (82IT.j82q < 0). The response is symmetric with respect to 
the P-ax.is. For these reasons 

2447 After present. insert ,Before advancing further, note that the 
general calculation procedure is as follows: ( 1) BIT/ oq = 0 yields 
P = f(q, a); (2) 82IT.j82q > 0 yields P < g(q, a); (3) from the 
equation f(q, a) = g(q, a) one solves q = Qer = cp(a); (4) then 
Per = f[cp(a), a] = F(a) (!, g, cp, Fare certain functions). 

2451 Replace Rigid-bar by Asymmetric bifurcation (unstable) of a rigid
bar 

2465 After q-+ 0. insert The P-rods (a= 0, q = 0) is the primary path, 
which becomes unstable for P > Per. The secondary post bifurcation 
path emanating from the bifurcation point (P = Per, q = 0, a= 0) 
is given by Eq. 4.5.22 for a = 0. 

253g After oq~). insert (Note that o2IT = 0 for some oq represents the 
Trefftz criterion, Eq. 4.2.7) 

25~ Replace Equilibrium by Considering that P =const. (dead load) 
during variation oq, equilibrium 

2542 Replace From this . . . . expressed as by Since the last equation must 
remain valid after increment ~q along the equilibrium path, we must 
have 

254(4.5.45) Replace b~ ~rr,i = Ei(U,ii- PW,ij)~qi- ~PW,i = 0 or 
Ej IT,ij~Qj = ~PW:i (4.5.45) 

2551 Replace lines 1-8 by At the limit point (maximum point), ~p = 0, 
and so the equation system Ei IT,ij~Qj = 0 must have a non zero 
solution ~q. Therefore, the limit point is characterized by detfl,ij = 



SIGNIFICANT UPDATES 1001 

0; it is a critical state. ,In the foregoing example of asymmetric 
bifurcation, one has AP = 0 at the bifurcation point. However, also 
W,i = 0 (as long as q = 0). So, II,ij must again be singular. '/Stability 
requires II,ij to be positive definite, i.e. the left hand side of Eq. 4.5.45 
must be positive for all Aq. Therefore, A.P > 0. So the structure is 
stable if the load-deflection diagram is rising (under load control, P 
prescribed). 

25510 Replace Now .... depends. Therefore by Thus at bifurcation point 
we have simultaneously K8q(l) = 8f and K8q(2) = 8f. Subtracting 
these two equations, we get K8q* = 0 where 8q* = 8q(2) - 8q(l) (in 
our examples 8q* = 8q<2> because 8q(l) = 0 for the perfect structure). 
Since 8q<2> =f. 8q(l) at bifurcation point, 

2617 After 4.1.3 insert ,4.5.32 If there is only one load P, associated 
with q1, and the equilibrium conditions 8II/ oqi = 0 are used to 
eliminate all Qi with i > 1, one can always write II = U(ql) -
PW(ql). Prove that the stability condition II,n > 0 is equivalent 
to dP(ql)jdq1 > 0 where P(ql) = equilibrium path obtained from 
II,1 = 0. 

2644 After is even. insert ,The foregoing analysis can be extended to 
many degrees of freedom. Koiter (1945) simplified the problem by 
considering Ql, ... . qn to be the coordinates of the orthogonal buckling 
modes such that q = Ql represents the coordinate of the buckling 
mode of the perfect system, which is zero on the main path but varies 
along the secondary post bifurcation path. 

270s After nonlinear insert ,4.6.9 A standard finite element program 
cannot determine bifurcations. It can be used for imperfect systems. 
Its use provided Pmax = 3.8846, 3.5574 and 3.1014 for imperfections 
a= 0.0001, 0.0004 and 0.0010. Considering linear regression plots of 
Pmax versus a 112 and Pmax versus a 213 , decide whether the bifurca
tion is symmetric and calculate Per. (Answer: Per = 4.10.) 

30217 After Hunt, G.W. insert ,-Huseyin, K. {1986), "Multiparameter sta
bility theory and its application", Oxford Univ. Press, New York
Oxford. 

3046 After Washizu, K. insert ,Wu, B.-S. and Zhong, H.-X. (1999), 
"Postbuckling and imperfection sensitivity of fixed-end and free-end 
struts on elastic foundation" Arch. Appl. Mech. (Ingenieur Archiv) 
69, 491-498. 

3792 Replace The differential by Writing out the variation 8II and in
tegrating by parts, one can bring the equation 8II = 0 to the form 
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I ( ... )8udx + I ( ... )8wdx + I ( ... )8vdx + I ( ... )80dx + boundary terms 
= 0. Since this must hold for any kinematically admissible 8u, 8w, 
8v and 80, the integrands must all vanish. This yields the following 
differential 

39421 After beams. insert ~Through a suitable choice of origin 0' of 
coordinates, we now require that I w(s)tds = I w(s)dA = 0, i. e., 
that the average longitudinal displacement of the cross section due to 
warping be zero. 

395(6.4.6) Replace -O'w + O'wo by -O'(w- wo) 
39512 Replace By a suitable ... generally nonzero. by Equation 6.4.6 

differs from 6.4.2 for the presence of a constant w0 which is sub
tracted from the warping function w(s). It is easy to realize, however, 
that (w- w0 ) is equivalent to a warping function w(s*) correspond
ing to the same pole C and to an origin of the length coordinate s* 
moved to the point 0* of coordinate s 1 such that w(sl) - wo = 0. 
Moreover, from the previously imposed condition I wtds = 0 and 
from the choice of y and z as the principal centroidal axes, one gets 
f[w(s) - w0]tds = I w(s*)tds* = 0, which means that the average 
longitudinal displacement of the cross section due to w(s*) is zero. 

44616 After A simple insert approach to load capacity of plates is Wagner's 
(1929) truss analogy. Based on this analogy, a simple 

4845 After von Karman, T., Sechler, E. E. insert ~Wagner, H (1929), 
"Ebene Blechentragwandtrager mit sehr dtinnem Stagblech", Zeit
schrift fiir Flugtechnik und Motorluft-Schiftfahrt 20, No.8 to 12, Berlin 
(Sec. 7.4). 

491s After diagram (Fig. 8.2 a,b). insert Considering now an infinitesi
mal deflection increment dw(x), the equilibrium condition for a pin
ended column requires that Etldw" = -(P + dP)dw. Neglecting the 
second-order term, we get the differential equation Etl dw" + Pdw = 
0, which has, for a hinged column, the solution dw(x) = dw sin(1rxjl) 
if p = Pt = 7r

2 Etl I l2 ' dw being the deflection increment at mi
dlength. 

4914 After discarded. insert Since the maximum curvature increment 
occurs at midlength, the maximum tensile strain increment due to 
bending is given by (h/2)( 1r2 fl 2)dw. The increase of the axial load 
needed to avoid unloading of the cross section is then dP = EtA(h/2) 
(1r2 jl2 )dw, and consequently the initial slope of the load-deflection 
diagram at P = Pt is dP/dw = ?r

2EtAh/(2l2). 

4922 After deflection. insert ~The general procedure to detect bifurca
tion is as follows. If, for a given 8P, there exist two different 8w(x) 
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for the same initial state P and w(x), we must have, for a simply sup
ported column that responds without unloading, Etl(w" + b"w('1)) + 
(P+b"P)(w+b"wc1>) = 0 and Etl(w"+b"w('2))+(P+b"P)(w+b"wc2>) = 0. 
Subtracting these two equations and setting P + &P ~ P, we get the 
differential equation 

Etlf" + Pf = 0 (8.1.9 a) 
where f = f(x) = W(2) - wc1) (in our case b"wc1)(x) = w(x) = 0). Bi
furcation occurs when f(x) =f. 0, and so the last differential equation 
must have a nonzero solution for the boundary condition f = 0 at 
ends x = 0 and x = L. Obviously the smallest P for which this is 
possible is P = Pt. 

55924 Delete P max . . . . point 3 

575u After Batterman insert ,Ba.Zant, Z.P. (1980), "Work inequalities for 
Plastic-Fracturing Material", Int. J. Solids and Structures, 16:873-
901 (Sec.8.1) 

6345 Replace a more general .... mechanics. by as fundamental an ap
proach to stability of equilibrium states as is the Liapunov's concept 
of stability. Like Liapunov's definition, the second law must also be 
regarded as a postulate which cannot be derived and is justified solely 
by experience (this definition and the second law are in fact equivalent 
in the case of equilibrium states; Coleman and Mizel, 1967). 

63521 After chemical systems. insert This criterion serves an analogous 
purpose as the concept of stability associated with Liapunov's defini
tion (see the law stated below Eq. 3.5.8). 

63613 After are valid. insert If all the tangentially equivalent elastic struc
tures are stable, so is the actual structure and if one of them is un
stable, so is the actual structure. 

63811 After with q. insert ,As a further justification, we may apply Eqs. 
10.1.8 and 10.1.9 to a structure consisting of a uniformly strained 
unit cube. Then the loads become the stresses and the strains the 
displacements, and so we have dF = CTT : d€ for isentropic equilibrium 
loading and dU = us : d€ for isothermal equilibrium loading. This 
consideration yields again Eq. 10.1.13. 

63810 Replace isothermal .... energy. by isothermal potential energy, ITT, 
and U the isentropic potential energy, ITs. From Eq. 10.1.18 and 
10.1.19 it is obvious that entropy changes are caused not only by 
heat exchange, but also by deviations from equilibrium (fT =1- P or 
fs =f. P). The equilibrium condition &II= 0 is equivalent to b"F = 0 
or b"U = 0, which implies fT = P or fs = P. 
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6396 Delete Also, we . .... are constant.) 

639(10.1.20) Replace = Ei J ..... }8qi by = Ei[/~i - P~J8qi + 1rEi{Ej 

[8(/r. -Pi)]or }r 1 ~ ~ ~ {~ [8(/T,-Pi)]or }8 8 8 
dqi UQj UQi + ... +4f.Uk.Um.Ui .Uj iJqj UQj Qi Qm Qk + ... 

63912 Replace J!l.. = Pi .. . neglecting by J!l.. = PP (but generally /~ .. =I .l' .It t.,J 

pP. and J!l... =I PP
3
.m)· Because of initial equilibrium (fi =~),the 'I.,J .Lt,Jm .. , 

first order work terms due to f~i are canceled in Equation 10.1.20 by 
the work of PP. For the case of dead loads we further have Pi = const 
(and Pi,j = 0). Neglecting 

6407 After considered insert (for the structure alone, not the structure 
load system) 

64415 After is present. insert The exclusion of unloading directions v 
may sometimes be simply introduced by requiring that, to prevent 
instability, matrix K must be co-positive (which means positive semi 
definite for Qk ~ 0 only, all k)(Hall and Newman, 1963; Lin'kov 1987). 

64411 Replace Extensions to Variable Loads by Variable Loads and 
Lagrange-Dirichlet Theorem 

6443 Replace a Taylor .... integration of Equation 10.1.20 by the deriva
tives of the function P(q) must be kept in Equation 10.1.20. Equation 
10.1.21 

6453 After all 8q. insert Now note that ~Mj8q = 82 F, ~5pT 8q = 
82W. Therefore 82 F = 82(F- W) = 8211r, where Ilr = isothermal 
potential energy. Similarly, 82U = 82(U- W) = 82Ils where Ils = 
isentropic potential energy. So the stability condition according to 
Eq. 10.1.38 or 10.1.39 coincides with the Lagrange-Dirichlet theorem 
(Sec. 3.6, 4.2). Thus we have proven this theorem from the second 
law of thermodynamics, instead of Liapunov's definition of stability. 

64613 After 10.1.19 insert For the case of dead loads, we have W = pTQ, 
and soW*= pTQ- W, or W* = 0 (i.e., the complementary energy 
of dead loads is zero); also Q* = G, 1£* = H. ,Considering a uni
formly strained unit cube, we obtain from Eqs. 10.1.42 and 10.1.43, 
similarly to Eq. 10.1.13, 

G = fv fc, ET: dudV, H = fv fu es: dudV (10.1.46a) 
where er, es =strain tensor calculated from u on the basis of isother
mal or isentropic material properties. 

64 710 After stability of paths insert ,The loading dual to dead loads is the 
prescribed (enforced) displacement Qk. In that case the work of loads 
is dW = 0 but the complementary work of prescribed displacements 
is dW* = QT8P # 0. 
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65816 After modified insert Generalize Problem 4.3.14 to elastoplastic ma
terial. 

6592 Replace (Note that ... Po = Pt-) If by This equation may be written 
as Of= Kx, where xT = (X, Y). When there are two solutions for 
the same Of and same K, we have Of = Kx(l) and Of = Kx<2> 

simultaneously. Subtracting these two equations, we get K(x<2> -

x<1>) = 0. Thus two different solutions, x<2> =f x<1>, exist if and 
only if detK = 0 (cf. Sec. 10.4), i.e. the determinant of the matrix 
in Eq. 10.3.2 vanishes. For the case of loading only (e = 17 = 1), 
this happens if and only if Po = Pt. The corresponding normalized 
eigenvector, representing x<2>- x<1>, is (X, Y) = (1, 0). Two different 
solutions, however, can also correspond to different K matrices, with 
different loading-unloading combinations. ,If 

66711 Replace an equilibrium state. by a state of thermodynamic equi
librium (the deformation is not reversible because the plastic strain 
cannot be recovered). 

69110 After C : du. insert The symbol ® denotes the tensor product, 
which is not contracted on any index, that is, f.u ® J,u is the fourth
order tensor of f.ai,f,akm). 

7017 After Castigliano insert ,Coleman, B.D., Mizel, V. J. {1967) "Exis
tence of entropy as a consequence of asymptotic stability", Archives 
of Rational Mech. and Anal. 25, 243-270 (Sec. 10.1). 

7023 After Guggenheim insert ,Haase, R. (1969), "Thermodynamics of 
Irreversible Processes", Addison-Wesley; also Dover Publ., New York 
{1990) (Sec. 10.1). 1Hall, M., and Newman, M. {1963), "Copositive 
and completely positive quadratic forms", Proc. Camb. Phil. Soc., 
59, 329-339 (Sec. 10.1). 

70312 After Lin insert 1Lin'kov, A. M. (1977), " Stability conditions in 
Fracture Mechanics (in Russian), Phys-Section, Docklady Akcdemii 
Nayk SSSR, 233 (1-3) (transl. Soviet Phys. Dokl. 22 (3)) (Sec. 
10.1). 1Lin'kov, A.M. (1987)," Stability of inelastic, geometrically 
nonlinear discrete system" (in Russian), ibid. (transl.) 32 (6), May 
1987, 376-378 (Sec. 10.1). 

7085 Delete requirement IV .. . holds). 
7081 After too. insert [This requirement is satisfied if Eij is a one-to-one 

(nonsingular, invertible) mapping of the Lagrangian strain tensor in 
Eq. 11.1.3 or the Green's deformation tensor C in Eq.11.1.10 below.] 

7096 After requirement IV insert (in this regard note that 8E11 /8u1,1 = 

= 8(eu + !e~ 1 )/8eu = 1 + eu > 0 because eu < -1 would imply 
overlapping of the deformed material with itself) 
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710(11.1.5) After !ekiekj insert= eij- !wkiWkj + !(uk,iWkj + UkJWk,i) 
7115 Replace F = 'Vx .... vector). by F = 'V ® x ('V =gradient vector) 

such that dx = FdX. 
7127 After SoU= (FTF)112 insert or Uij = [(8xk/8Xi)(8xk/8Xj)Jll2 

7127 After V = (FFT)112 insert = RURT 

( ) 
, m (i} (i} b (, ) (i) (i} (, ) , m 713 11.1.17 Replace 1\(i)nj nk y <p A(i) nj nk , <p 1\(i} = 1\(i) 

7137 After tensor um. insert [Proof: Eq. 11.1.7 is obviously a tensor. A 
tensor is fully defined by its principal values and principal directions. 
Rotating the coordinates into the principal directions we haven?) = 

(1,0,0), ny> = (0,1,0), n~3) = (0,0,1) and so Ufl = A{I)• U~ =A~)' 
U~ =A~)' with other Ujk = 0 (Q. E. D).] 

7132o After materials insert ,Using the binomial series expansion ( m =/= 0) 
or expansion of logarithm (m = 0), Eq. 11.1.15 (for any m) yields 

E(m) = E + m2l2E2 + (m-2~~m-4}E3 + .... (11.1.18a) 
Replacing e by e in the quadratic form, and dropping higher-order 
terms, Eq. 11.1.15 coincides with 11.1.7. 

7159 After Equation 11.1.13. insert ,11.1.10 In a finite strain triaxial 
test, length ho and radius ro of a test cylinder is changed to length h 
and radius r at axial force F and lateral fluid pressure p. Calculate 

(1} (2} s s (1} (2} en, e22, fn, €22, fn, fn, Tn, T22, u, 22, En, E22, En, E22 and 
check that Tw5en = Ew5€u = Eg> O€~~) for any oen. 

719(11.2.21) After Eq.11.2.21 insert When u<1> is known, Eq. 12.2.21 
represents a system of six linear equations from which Eij may be 
solved. 

721 22 Replace is nonsymmetric .. . . symmetric. by is in general nonsym-
metric, and so must be Tij. 

724(11.3.20a) In front insert m = 2 : (Truesdell) 
724(11.3.20b) In front insert m = 1 : (Biot) 

724(11.3.20c) In front insert m = 0: (Jaumann's rate of Kirchhoff stress) 
724(11.3.20d) In front insert m = -2 
724n After is symmetric. insert ,To get the most general possible objec

tive stress rate Sii• €~';) in Eq. 11.3.18 need to be replaced by Eq. 
11.1.8. The result (with arbitrary constants a, b, c, m) is 

~. _ ~(m) 82 (t:• 9 -f~';)) _ ~(m) . . 
Sii - Sii - Spq i?ei;at - Sii -2aSppennOij - b(Siiekk + 

SpqepqOij) - 2cSppeii ( 11.3.20e) 

72412 Replace by substituting .... 11.3.18). by from any tensor f~j), and 
not even from the most general second-order finite strain approxima
tion, as is clear from Eq. 11.3.20e for Sij. 
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7257 After to be considered). insert tjFor the most general second-order 
finite strain in Eq. 11.1.8, we obtain by a similar procedure the most 
general objective stress rate: 

SA* - SA(m) S ~2( * (m))/~ !:U SA(m) [ r S ij- ij - pqV €pq- €pq VUi,jV~ = = ij - 6auij mmVk,k + 
b(SijVk,k + 8iiSkmekm) +2cSkkeij] (11.3.27) 

7273 After stress (Eq. 11.3.20c). insert ,For the most general second 
order finite strain in Eq. 11.1.8, we obtain by a similar procedure 
the most general tangent moduli: Cijkm = cg~~ - Spqo2 (t:.~ -

Epq)/oui,jOUk,m = cg~~ -b(8kmSii +8ijSkm)- [6a8ij8km +c(8ik8jm + 
8jk8im)]Spp (11.4.7) 

730 On row 1., column (f), under Eq. 11.6.12 add (Lagrangian Al
mansi strain) 

730 On row 3., column {f), under Eq. 11.3.10 add or back-rotated 
Cauchy stress RT JSR 

731 On row 4., column {d), replace (C~km = Cfmij) by (C~km =f 

cfmij) 

731 On row 5., move Si~-l), Eq. 11.3.20d [Lie .... Rivlin*)] from col

umn (e) to {f) and replace s~- 1) by s&-2
) 

737 (Fig. 11.5b) Haringx arrow and m = 2 should reach to the sec
ond curve from right 

738u Above the heading insert For sandwich beams, fiber composites 
and elastomeric bridge bearings, it can happen that the Engesser and 
Haringx theories give significantly different results even if the axial 
stresses in the parts of the cross section (skins and core of sandwich, 
fibers and polymeric matrix) are negligible compared to the shear 
moduli in the same parts, in which case the shear moduli G can be 
considered as constant for both theories. The reason is that a large 
axial force in one part (skin or fibers) can affect the shear stiffness due 
to another part (core, or matrix). Recent research showed that, in 
the case of small strains and constant (and relatively very small) G, 
only the Engesser-type formula is correct for sandwich columns, while 
only the Haringx-type f~:>rmula is correct for elastomeric bearings (see 
Bazant, Z.P. and Beghini, A. (2004) "Sandwich buckling formulas." 
Composites: Part B, Vol. 35, 573-581; and Bazant, Z.P. and Beghini, 
A. (2005) "Which formulation allows using a constant shear modulus 
for small strain-buckling of soft-core sandwich structures?" J. of Appl. 
Mech. ASME, Vol. 72, 785-787). 

73812 After P cr
1 

• ) insert 'ITo introduce the shear correction that charac
terizes the average response of a solid cross section of a given shape, 
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moduli G(m) in Eq. 11.6.14 must be replaced by (;(m) = G(m)Ao/A, 
with Ao = A/J.L (defined below Eq. 1.7.1). 

7 462 Replace measurements . . . . stresses. by measured dependence of the 
compression failure stress on the radius and wall thickness. 

7612 After possible if insert the energy release under the given controls 
(prescribed load or prescribed displacement) caused by crack exten
sion, provides exactly the energy needed to create new crack surface, 
that is, 

7622 After driving force. insert For a single load, 11 = U - Pu and 11* = 
U* +11£ = U* 

7641 Replace So the energy .... that is by To calculate their work, imagine 
now we create first a slit of length h and then decrease stresses qy 
at each x gradually as (1 - r)qy(x) where r (a time-like parameter) 
varies from 0 to 1. Because the body is elastic, the displacement at 
x grows as rv(x), where v(x) is the final value of displacement of one 
face of the slit. Thus the work dissipated per unit length of one face 
of the slit is W = J:=0(1- r)q(x)d(rv(x)] = qy(x)v(x) J~(1- r)dr = 
qy(x)v(x)/2. This result must apply regardless of the actual way the 
stresses are reduced to zero, because the response of an elastic body 
is path-independent. The energy release due to the work of qy on v 

on both crack faces is 2 foh W(x), and so the energy release rate is 
7643 Replace factor ! .... factor 2 by factor 2 is due 
765s After !Cu(a)P2 insert (the complementary energy of the load, 

J u(P)dP, is zero for dead load) 
7654 Replace Since .... Equations 12.1.12. by Since 11 = (u2 j2Cu)- Pu, 

and since Pis here constant (dead load), we have bQ = -811/aa = 
C;;2(dCjda)u2 j2 = (P2 j2)dCjda, which is Eq. 12.1.12. 

76619 After Figure 12.2e. insert The reason that the different approaches 
give the same result is that the area of triangles such as 1521 in Fig. 
12.2e is second-order small 

7707 After Simites, 1986 insert ; Toya, M., Ono, T., Miyawaki, T. and 
Kikioka, K., 1991; Hutchinson, J.W., 1979 

7723 After k ':/; 1 insert ; Ba.Zant, 1988 
775u Replace when the ... Barrenblatt, 1959). by at a point whose loca

tion ensues from the condition K1 = 0 (Dugdale, 1960). 
775s Before Knauss, 1973 insert Barenblatt, 1959; 
7757 Replace ; here the by . (Note that in case (1) there is no unique 

function qy ( ~ 1) because the value of ~ f at the point of stress drop 
from qy to 0 depends on the solution of the boundary value problem, 
thus depending on the shape of the body.) 
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77720 Delete for two dimensional problems, 

77816 Replace At the same ... g ~ Gtg'(a)jg(a,). by Therefore, gat 
maximum load for various D should be approximately proportional to 
g( a). So, noting that for infinitely large specimen g = G 1 at a = a 1, 
we must have g ~ Gt g(a)jg(af) where a1 = ao + (ct/D). 

77911 After (3 > 10 insert (logf3 >a, a= 1, Fig. 12.11) 

78023 After 1987a) insert , which strongly depends on specimen shape 

78021 After 1987a) insert for a certain 3PB specimen 

7862 ReplaceR curve .... curves. by Equilibrium curves of Q(c) at P = 
canst. = Pu and R curve as their envelope. 

810(12.5.21) Delete = ~lk 

8109 Before Assuming insert if oal ~ 0; otherwise ~kl = 0 (crack closing). 
If all oal ~ 0, ~kl is symmetric. 

81016 After symmetric insert if all oai ~ 0 

8182 Replace (Bazant and Ohtsubo 1977) by (Bazant, Ohtsubo and Aoh, 
1979) 

82511 After Horii, insert ,Hutchinson, J. W. (1979), A course on nonlin
ear fracture mechanics, Dept. of Solid Mechanics, Tech. Univ. of 
Denmark, Lyngby (101 pp) (Sec. 12.1). 

82813 After Tada, insert ,Toya, M., Ono, T., Miyawaki, T. and Kikioka, 
K. (1991), "Analysis of delamination of laminated beams subjected 
to three- and four-point bending", Proc., Jap. Soc. of Mechanical 
Engrs 8, 136-142 (Sec. 12.1). 

848(Fig.13.7) Next to 8 insert o2W (3 times) 

86013 After positive definite. insert ,Bifurcation can occur at nonzero 
ou2i. Since the first bifurcation occurs at loading everywhere, ou2i = 

t 1: c d'a 1: • - 1: (1) 1: (2) Th c D2ij2uuj,2 10r two 1uerent vectors uu1,2 - uuj,2 or uuj,2 . ere1ore, 
first bifurcation occurs when detD~ij2 = 0. This condition is the same 
as detZij = 0 for L ---? oo. 

86313 Replace Generalization .... Effects by Stability and Bifurca
tion for Geometrically Nonlinear Deformations 

8646 Replace (Sec. 11.2).... form by (Eq. 11.3.16) may generally be 
written as 

8657 Before Rudnicki insert The condition of first bifurcation at nonzero 
OO'ij is, by the same argument as before, equivalent to the same L/h---? 

00. 

8665 Replace Bifurcation and Stable by Stable Post-Bifurcation 

870(13.4.3) Insert missing matrix brackets and braces 
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90716 After limit insert (consider 0 1 and 0 2 as variable and possibly neg
ative). 

9163 After noting that insert the complementary energy is differentiated 
at constant P, i.e., constant aN, 

9164 Before we have insert and considering that <7N is kept constant 
during small .6.a, 

9205 Replace for small . . . nearly by because the structure is elastic, they 
reduce 

936(13.10.26) Replace 6a = ... (6€) by 6a = Ev.(o£-0€11
), 0€11 = (1-f,;)(o€) 

9367 Replace 6€ (three times) by 6€ 

9372 After h -+ O.insert Localization first occurs at 6a increasing or 
constant everywhere, in which case a solution with continuous 6€(x) 
is possible and is given by the half sine wave in Fig. 13.51. 

9402o After Ba.Zant, z. P. (1983) insert ,Ba.Zant, Z.P. (1983b), "Fracture 
in concrete and reinforced concrete." Preprints, IUTAM Prager Symp. 
on Mechanics of Geomaterials: Rocks, Concrete, Soils, ed. by z. P. 
Ba.Zant, Northwestern University, 281-316. 

9542o Replace g by 9* 
95419 Replace or energy by g =energy 

9549 Replace 1£ by 1£* 

95822 Delete shear correction coefficient (1. 7) 

9601 Delete O:ij .••.•• tensor (11.1) 

9603 After length (3.1) insert 'lor shear correction coefficient (1.7) 

9633 After Aoh, K. ... 806, insert 818, 

9647 After Ba.Zant, Z. J. insert 935, 

9648 After Bazant, z. P .... 771, insert 772, 

96417 After Biot, ... insert , 707 

9651 Delete Chawalla, E., 139 

96523 After Cohn, ... 946 insert '/Coleman, B.D. 634, 701 

96727 After Galambos, T.V., insert 50, 

96718 After Gyftopoulos, E. P., 703 insert ,Haase, R., 635, 702 

96710 After Hall, A. S., .... 632 insert ,Hall, M., 644, 702 

9689 After Huseyin, K., insert 302, 

96812 After Hutchinson, J.W., ... 480 insert 501, 770 

96924 After Kienzler, .... 826 insert 'JKikioka, K., 770, 828 

9703 After Mac Gregor, J. G., insert 536, 

97015 After Ling, F. H., 362 insert ,Lin'kov, A.M., 644, 702 
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9709 Delete Me Gregor, J. G., 536 

971 12 After Newell, A. C., 480 insert ,Newman, M., 644, 702 

971 18 After Misner, .... 948 insert fJMiyawaki, T., 770, 828 

971 19 After Miyazaki, N., 631 insert Mizel, V. J., 634, 701 

97112 After Onat, .... 947 insert 10no, T., 770, 828 

97426 After Toupin, .... 759 insert ,-Toya, M., 770, 828 

97523 After Wagner, H., 370, 417 insert , 446, 448, 484 

97524 After Wright, J., 844, 950 insert tjWu, B.-S., 304 

9763 After Zhang, W., 632 insert 1Zhong, H.-X., 304 
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97713 After axial load rotation, 17 insert ,axial-torsional buckling, 381 

97927 After elastica, 39 insert ,elastic foundation, 314 

9791 After damping effect, 148 insert , 153, 166, 173 

98019 After foundation modulus, 314 insert ,foundation, elastic, 314 

981 13 After Lagrange-Dirichlet theorem insert 645 

98216 After size effect, 777 insert , 914 

98318 After warping, 371 insert ,torsional buckling 381, 385, 500 

98313 After Trefftz criterion, 210, insert 221, 253, 256 

Let us not seek profoundly mysterious and new for
mulae ... for all the perplexities of life. ... Depth 
of thought and penetration are revealed in the art 
of discerning something new in that which we have 
long known. 

-Tomas Garrigue Masaryk 
(Ide81y Humanity, 1901) 
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