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Similarity and Dissimilarity

 Similarity
 Numerical measure of how alike two data objects are
 Value is higher when objects are more alike
 Often falls in the range [0,1]

 Dissimilarity (e.g., distance)
 Numerical measure of how different two data objects 

are
 Lower when objects are more alike
 Minimum dissimilarity is often 0
 Upper limit varies

 Proximity refers to a similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

 Data matrix
 n data points with p 

dimensions
 Two modes

 Dissimilarity matrix
 n data points, but 

registers only the 
distance 

 A triangular matrix
 Single mode
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Proximity Measure for Nominal Attributes

 Can take 2 or more states, e.g., red, yellow, blue, 
green (generalization of a binary attribute)

 Method 1: Simple matching

 m: # of matches, p: total # of variables

 Method 2: Use a large number of binary attributes

 creating a new binary attribute for each of the 
M nominal states

p
mpjid ),(
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Proximity Measure for Binary Attributes

 A contingency table for binary data

 Distance measure for symmetric 

binary variables: 

 Distance measure for asymmetric 

binary variables: 

 Jaccard coefficient (similarity
measure for asymmetric binary 

variables): 

Object i

Object j
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Dissimilarity between Binary Variables

 Example

 Gender is a symmetric attribute
 The remaining attributes are asymmetric binary
 Let the values Y and P be 1, and the value N 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y P N N N N
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Standardizing Numeric Data

 Z-score: 

 X: raw score to be standardized, μ: mean of the population, σ: 
standard deviation

 the distance between the raw score and the population mean in 
units of the standard deviation

 negative when the raw score is below the mean, “+” when above

 An alternative way: Calculate the mean absolute deviation

where

 standardized measure (z-score):

 Using mean absolute deviation is more robust than using standard 
deviation 
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Example: 
Data Matrix and Dissimilarity Matrix

point attribute1 attribute2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

Dissimilarity Matrix 

(with Euclidean Distance)

x1 x2 x3 x4
x1 0
x2 3.61 0
x3 5.1 5.1 0
x4 4.24 1 5.39 0

Data Matrix

0 2 4

2

4

x1

x2

x3

x4
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Distance on Numeric Data: Minkowski Distance

 Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two 
p-dimensional data objects, and h is the order (the 
distance so defined is also called L-h norm)

 Properties

 d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

 d(i, j) = d(j, i) (Symmetry)

 d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

 A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

 h = 1:  Manhattan (city block, L1 norm) distance
 E.g., the Hamming distance: the number of bits that are 

different between two binary vectors

 h = 2:  (L2 norm) Euclidean distance

 h  .  “supremum” (Lmax norm, L norm) distance. 
 This is the maximum difference between any component 

(attribute) of the vectors
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Example: Minkowski Distance
Dissimilarity Matrices

point attribute 1 attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

L x1 x2 x3 x4
x1 0
x2 5 0
x3 3 6 0
x4 6 1 7 0

L2 x1 x2 x3 x4
x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0

L x1 x2 x3 x4
x1 0
x2 3 0
x3 2 5 0
x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum 
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Ordinal Variables

 An ordinal variable can be discrete or continuous
 Order is important, e.g., rank
 Can be treated like interval-scaled 

 replace xif by their rank 
 map the range of each variable onto [0, 1] by replacing

i-th object in the f-th variable by

 compute the dissimilarity using methods for interval-
scaled variables
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Attributes of Mixed Type

 A database may contain all attribute types
 Nominal, symmetric binary, asymmetric binary, numeric, 

ordinal
 One may use a weighted formula to combine their effects

 f is binary or nominal:
dij

(f) = 0  if xif = xjf , or dij
(f) = 1 otherwise

 f is numeric: use the normalized distance
 f is ordinal 

 Compute ranks rif and  
 Treat zif as interval-scaled
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Cosine Similarity

 A document can be represented by thousands of attributes, each 
recording the frequency of a particular word (such as keywords) or 
phrase in the document.

 Other vector objects: gene features in micro-arrays, …
 Applications: information retrieval, biologic taxonomy, gene feature 

mapping, ...
 Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency 

vectors), then
cos(d1, d2) = (d1  d2) /||d1|| ||d2|| ,

where  indicates vector dot product, ||d||: the length of vector d
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Example: Cosine Similarity

 cos(d1, d2) =  (d1  d2) /||d1|| ||d2|| , 
where  indicates vector dot product, ||d|: the length of vector d

 Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25
||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5

= 6.481
||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5

= 4.12
cos(d1, d2 ) = 0.94
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Summary
 Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-

scaled

 Many types of data sets, e.g., numerical, text, graph, Web, image.

 Gain insight into the data by:

 Basic statistical data description: central tendency, dispersion,  
graphical displays

 Data visualization: map data onto graphical primitives

 Measure data similarity

 Above steps are the beginning of data preprocessing. 

 Many methods have been developed but still an active area of research.
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