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Similarity and Dissimilarity

= Similarity
= Numerical measure of how alike two data objects are
= Value is higher when objects are more alike
« Often falls in the range [0,1]

= Dissimilarity (e.g., distance)

= Numerical measure of how different two data objects
are

= Lower when objects are more alike
= Minimum dissimilarity is often 0O
= Upper limit varies
= Proximity refers to a similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

s Data matrix

= N data points with p _x11 v Xpp e xlp_
dimensions
= TWO modes Yir o N o Xip
_xnl xnf xnp_
= Dissimilarity matrix i i
= N data points, but 0
d(2,1) 0

registers only the
distance

= A triangular matrix
= Single mode

d3,1) d(3,2) 0

d(nl) dn2) .. .. 0

48



Proximity Measure for Nominal Attributes

= Can take 2 or more states, e.qg., red, yellow, blue,
green (generalization of a binary attribute)

= Method 1: Simple matching

« m: # of matches, p: total # of variables

d (i, j) =57
= Method 2: Use a large number of binary attributes

= Creating a new binary attribute for each of the
M nominal states
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Proximity Measure for Binary Attributes

A contingency table for binary data
: .1 q r q+r
Object / 0 ; ; 4o
Distance measure for symmetric — e A P
binary variables: d(i, j) = r+3
- . g4r+8 -t
Distance measure for asymmetric
binary variables: d(3, j) = — =
. . C =TS8
Jaccard coefficient (similarity q
measure for asymmetricbinary SN jaccard(t, J) =
q+71—+Ss

variables):
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Dissimilarity between Binary Variables

= Example

Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4

Jack |M Y N P N N N
Mary |F Y N P N P N
Jim (M Y P N N N N

= Gender is a symmetric attribute
= The remaining attributes are asymmetric binary
= Let the values Y and P be 1, and the value N O

0+1

d ( jack , mar = = 0.33
(J v ) 2+0+1
1+1
d ( jack , jim ) = = 0.67
(J / ) 1+1+1
d(jim ,mary ) = 1+ 2 = 0.75

1+1+ 2



Standardizing Numeric Data

m /Z-Score: — o

= X: raw score to be standardized, y: mean of the population, o:
standard deviation

= the distance between the raw score and the population mean in
units of the standard deviation

= negative when the raw score is below the mean, "+"” when above
= An alternative way: Calculate the mean absolute deviation

L(|x X =m |+ |x,  —m |+ +|x, —m )

Se=w
where
m, = 1(x +X, X ) X —m
2f nf . lf f
o standardlzed measure (z-score): Zz‘f_ S

= Using mean absolute deviation is more robust than{lsing standard
deviation
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(O

Example:
Data Matrix and Dissimilarity Matrix

Data Matrix
point | attributel | attribute2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

Dissimilarity Matrix

(with Euclidean Distance)

x1 x2 x3 x4
x1 0
x2 3.61 0
x3 5.1 5.1 0
x4 4.24 1 5.39
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Distance on Numeric Data: Minkowshki Distance

s Minkowski distance: A popular distance measure

i) = Yo+ a5 -+ g~

where 7= (X, X, ..., X%p) and j = (X, X, ..., X,) are two
p-dimensional data objects, and A is the order (the
distance so defined is also called L-A norm)

= Properties
« d(i,j) > 0ifi=+]j, and d(i, i) = 0 (Positive definiteness)
« d(i, j) =d(, i) (Symmetry)
= d(i, j) <d(i, k) + d(k, j) (Triangle Inequality)

= A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

= h=1: Manhattan (city block, L, norm) distance

= E.g., the Hamming distance: the number of bits that are
different between two binary vectors

d(,j)= X —le |+|xl.2 _sz |+...+|xl.p —xjp |

= h=2: (L, norm) Euclidean distance

N . 2 . 2 . 2
a’(z,])—\/(|xl,1 le| +|xl,2 xj2| +...+|xl,p xj %)

p

= h—oo. “supremum” (L, norm, L norm) distance.

= This is the maximum difference between any component
(attribute) of the vectors

11— 00

P %
d(i, ]) — ililn Z ‘:Ij.j.f — :L‘jf|h’ = 111%.}{ ‘él'Iflif — (L‘jfl
f=1
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Example: Minkowski Distance

point | attribute 1| attribute 2 anhattan 1

! 2 L x1 x2 x3 x4

3 5
2 0 X2 5 0
4 S 3 3 6 0

AG|K|E

x4 6 1 7 0

I Euclidean (L,)

L2 x1 x2 x3 x4

4 x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39

2 Supremum

L, x1 x2 x3 x4

x1

x2

X3 x3

Wl |W|O
S

0 2 4 x4




Ordinal Variables

= An ordinal variable can be discrete or continuous
= Order is important, e.g., rank
= Can be treated like interval-scaled
= replace x; by their rank ry €l M}
= map the range of each variable onto [0, 1] by replacing
-th object in the Fth variable by

B :rl.f—l

if M ;o 1
= compute the dissimilarity using methods for interval-

scaled variables
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Attributes of Mixed Type

= A database may contain all attribute types

= Nominal, symmetric binary, asymmetric binary, numeric,

ordinal
= One may use a weighted formula to combine their effects
Sr §UNIU)

d(laj)_ f LY 2
2 _ 80

= [ is binary or nominal:

d;" = 0 if x¢ = x;¢, or d;(" = 1 otherwise
= f IS numeric: use the normallzed distance
= f is ordinal

= Compute ranks r; and , 1
= Treat z; as interval-scaled M, -
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Cosine Similarity

= A document can be represented by thousands of attributes, each
recording the freguency of a particular word (such as keywords) or
phrase in the document.

Document  teamcoach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 7 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

= Other vector objects: gene features in micro-arrays, ...
= Applications: information retrieval, biologic taxonomy, gene feature

mapping, ...
= Cosine measure: If d, and d, are two vectors (e.g., term-frequency
vectors), then

cos(d,, d,) = (d;» dy) /l|dil| [1d;]],
where e indicates vector dot product, ||d||: the length of vector d
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Example: Cosine Similarity

cos(d,, d,) = (d;» dy) /l|dil| [Id;l],
where e indicates vector dot product, ||d|: the length of vector d

Ex: Find the similarity between documents 1 and 2.

d] / OI
d 0

(5
(3,

3,0,2,0,0200)
2,0,1,1,0,1,0, 1)

4 4

ded,= 5*3+0*%0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25

[1d,||= (5*5+0%0+3*34+0%0+2%2+0*0+0*0+2%2+0*0+0%*0)0-5=(42)0-5
= 6.481

[1d,]|= (3*3+0%0+2%24+0%0+1%1+1*14+0%0+1%1+0*0+1%1)0-5=(17)0:5
=4.12

cos(d,, d,) =0.94
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= Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-
scaled

= Many types of data sets, e.g., humerical, text, graph, Web, image.
= Gain insight into the data by:
= Basic statistical data description: central tendency, dispersion,
graphical displays
= Data visualization: map data onto graphical primitives
= Measure data similarity
= Above steps are the beginning of data preprocessing.
= Many methods have been developed but still an active area of research.
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