
ar
X

iv
:1

21
1.

66
87

v4
 [

st
at

.M
L

]
 3

1
M

ay
 2

01
3

Robustness Analysis of Hottopixx,

a Linear Programming Model for Factoring Nonnegative Matrices

Nicolas Gillis∗

ICTEAM Institute, Université catholique de Louvain,

B-1348 Louvain-la-Neuve, Belgium.

Abstract

Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very
recently that it is tractable under the assumption that the input nonnegative data matrix is close
to being separable (separability requires that all columns of the input matrix belongs to the cone
spanned by a small subset of these columns). Since then, several algorithms have been designed
to handle this subclass of NMF problems. In particular, Bittorf, Recht, Ré and Tropp (‘Factoring
nonnegative matrices with linear programs’, NIPS 2012) proposed a linear programming model,
referred to as Hottopixx. In this paper, we provide a new and more general robustness analysis
of their method. In particular, we design a provably more robust variant using a post-processing
strategy which allows us to deal with duplicates and near duplicates in the dataset.

Keywords. Nonnegative matrix factorization, separability, robustness to noise, linear program-
ming, Hottopixx.

1 Introduction

Nonnegative matrix factorization (NMF) is a popular machine learning technique and allows one to
express a set of nonnegative vectors as nonnegative linear combinations of nonnegative basis elements
[9]. More formally, given a nonnegative matrix M ∈ R

m×n
+ corresponding to n vectors in an m-

dimensional space and a factorization rank r, the aim is to find a basis matrix U ∈ R
m×r
+ and a

weight matrix V ∈ R
r×n
+ such that the norm of the error M − UV is minimized. Although NMF is

NP-hard [10], Arora et al. [1] recently showed that it can be solved in polynomial time given that the
matrix M is close to being separable. A nonnegative matrix M ∈ R

m×n
+ is r-separable if and only if

it can be expressed as M = WH, where W ∈ R
m×r
+ , H ∈ R

r×n
+ , and each column of W is equal to a

column of M . In other terms, M ∈ R
m×n
+ is r-separable if and only if

M = W [Ir,H
′]Π = [W,WH ′]Π,

for some H ′ ∈ R
r×n
+ and some permutation matrix Π ∈ {0, 1}n×n. Any nonnegative matrix is n-

separable because of the trivial decomposition M = MIn with r = n, and the aim is to find a
decomposition where r is as small as possible. It is rather straightforward to check that the smallest
such r is the number of extreme rays of the cone generated by the columns of M , that is, cone(M) =
{Mx | x ∈ R

n
+}. Equivalently, if the columns of matrix M are normalized to sum to one, the smallest

such r is the number of vertices of the convex hull of the columns of M , that is, conv(M) = {Mx | x ∈
R
n
+,

∑n
i=1 xi = 1}; see [8] and the references therein for more details about the geometric interpretation

of the separable NMF problem.

∗E-mail: nicolas.gillis@uclouvain.be. The author is a postdoctoral researcher of the Fonds de la Recherche Scientifique
(F.R.S.-FNRS). This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.

1

http://arxiv.org/abs/1211.6687v4

It turns out that the separability assumption makes sense in several practical situations. For
example, in document classification, each column of M corresponds to a document (that is, a vector
of word counts) and is approximated with a nonnegative linear combination of the columns of matrix
W which correspond to different topics (that is, bags of words). Separability of M requires that, for
each topic, there exists at least one document discussing only that topic. In practice, this condition is
not often satisfied and it is more reasonable to assume separability of MT (that is, each row of H is
equal to a row of M) which requires that, for each topic, there exists at least one word used only by that
topic; see the discussions in [1, 2]. The separability assumption is also widely used in hyperspectral
imaging and is referred to as the pure-pixel assumption; see [7] and the references therein.

In practice, the input separable matrix M is perturbed with some noise and it is therefore desirable
to design robust algorithms; see [1, 2, 3, 4, 5, 7, 8]. In fact, in the noiseless case, the problem is rather
easy and reduces to identifying the vertices of the convex hull of a set of points. In this paper, we
will focus on the algorithm of Bittorf, Recht, Ré and Tropp [3], referred to as Hottopixx, which is
described in the next section. As we will see, the robustness analysis provided by the authors is rather
restrictive as it does not deal with duplicates nor near duplicates of the columns of W in the dataset:
the aim of this paper is to develop a more general analysis of their algorithm, and design a provably
more robust variant applicable to any noisy separable matrix (that is, allowing duplicates and near
duplicates in the data).

1.1 Hottopixx: a Linear Programming Model for Separable NMF

From now on, we will always assume that the columns of the input data matrixM have been normalized
in order to sum to one, that is,

(i) The zero columns of M have been discarded, and

(ii) Each column of M is updated using M(:, j)← M(:,j)
||M(:,j)||1

.

We will also always assume that we are given a noisy separable matrix M̃ = M +N where N ∈ R
m×n

is some noise added to the separable matrix M such that

||N ||1 = max
||x||1≤1

||Nx||1 = max
j
||N(:, j)||1 ≤ ǫ, for some ǫ ≥ 0.

The matrix M is r-separable if and only if

M = WH = W [Ir,H
′]Π = [W,WH ′]Π

= [W,WH ′]Π Π−1

(
Ir H ′

0(n−r)×r 0(n−r)×(n−r)

)

Π

︸ ︷︷ ︸

X0∈Rn×n
+

= MX0, (1)

for some W ≥ 0, H ′ ≥ 0 and some permutation matrix Π. Equation (1) shows that M is r-separable
if and only if there exists a nonnegative matrix X0 ∈ R

n×n
+ such that: (1) X0 contains (n− r) all-zero

rows and the r-by-r identity matrix as a submatrix (up to permutation), and (2) M = MX0. Notice
that because the columns of matrix M and W sum to one, the columns of the matrix H ′ have sum to
one as well. Based on these observations, Bittorf et al. [3] proposed to solve the following optimization
problem1 in order to identifying approximately the columns of the matrix W among the columns of

1In [3], the model assumes separability of MT so that (2) is equivalent to the model in [3] applied to M
T . We prefer

here to work with the columns.

2

the matrix M̃ :

min
X∈Rn×n

+

pT diag(X)

such that ||M̃ − M̃X||1 ≤ 2ǫ, (2a)

tr(X) = r, (2b)

X(i, i) ≤ 1 for all i, (2c)

X(i, j) ≤ X(i, i) for all i, j, (2d)

where p ∈ R
n is any vector with distinct entries. Intuitively, the model reads as follows: we have to

assign a weight in [0,1] (Equation 2c) to each column of M (that is, give a value to X(i, i) for all
i) for a total weight of r (Equation 2b). Moreover, we cannot use a column to reconstruct another
column with a weight larger than the corresponding diagonal entry of X (Equation 2d), while we have
to guarantee that the approximation error is small (Equation 2a). It is interesting to notice that the
problem is always feasible: in fact, X0 from Equation (1) is a feasible solution of (2) since the columns
of H ′ sum to one and

||M̃ − M̃X0||1 = ||(M +N)− (M +N)X0||1

≤ ||M −MX0||1 + ||N ||1 + ||N ||1||X
0||1 ≤ 2ǫ.

Finally, Bittorf et al. [3] identify approximately the columns of W by selecting the r columns of M̃
whose corresponding diagonal entries of an optimal solution of (2) are the largest; see Algorithm 1,
referred to as Hottopixx. Note that the corresponding optimal weight matrix H can be obtained by
solving another linear program; see Algorithm 2.

Algorithm 1 Hottopixx - Extracting Columns of a Separable Matrix by Linear Programming [3]

Input: A noisy r-separable matrix M̃ = WH + N , the noise level ||N ||1 ≤ ǫ and the number r of
columns of W .

Output: A matrix W̃ such that ||W̃ (:, P) −W ||1 is small for some permutation P .
1: Find the optimal solution X∗ of (2).
2: Let K be the index set corresponding to the r largest diagonal entries of X∗.
3: Set W̃ = M̃(:,K).

Algorithm 2 Near-Separable NMF using Hottopixx and Linear Programming [3]

Input: A noisy r-separable matrix M̃ = WH + N , the noise level ||N ||1 ≤ ǫ and the number r of
columns of W .

Output: An nonnegative factorization (W̃ , H̃) such that ||M̃ − W̃ H̃||1 is small.

1: Compute W̃ using Algorithm 1.
2: Solve H̃ = argminY≥0 ||M̃ − W̃Y ||1.

Before stating robustness results, it is important to define the conditioning of matrix W , which is
a crucial characteristic of separable NMF problems. In fact, the better the columns of W are spread
in the unit simplex ∆m = {x ∈ R

m | x ≥ 0,
∑m

i=1 = 1}, the more noise tolerant the data will be.
In [1, 3], this conditioning is measured via the following parameter:

α = min
1≤k≤r,x∈∆r−1

||W (:, k) −W (:,R)x||1, where R = {1, 2, . . . , r}\{k},

and the matrix W is said to be α-robustly simplicial. (Notice that α ≤ 2 for any nonnegative matrix
W whose columns sum to one.) In other words, α is the minimum among the ℓ1-distances between

3

a column of W and the convex hull of the other columns of W . It is necessary that ||N ||1 ≤ ǫ < α
2

for any separable NMF algorithm to be able to approximately recover the columns of W from the
matrix M̃ = WH +N . In fact, if ǫ ≥ α

2 , any r-separable matrix M with r ≥ 2 can be perturbed so

that one of the columns of the perturbed matrix M̃ corresponding to a column of W belongs to the
convex hull of the other columns. In other words, we can perturb the matrix M so that it becomes
(r − 1)-separable and we could therefore not distinguish one of the columns of W from the columns
of M . For example, with

W =

(
α
2 Ir

(1− α
2)e

T

)

,H = Ir and N =

(
−α
2 Ir
0

)

, we have M̃ =

(
0r×r

(1− α
2)e

T

)

,

so that the matrix M = WH is r-separable with W α-robustly simplicial and ||N ||1 = α
2 , while M̃ is

1-separable.
In order to prove robustness results for Algorithm 2, Bittorf et al. [3] used the following observation:

Lemma 1. Suppose M is normalized and admits a rank-r separable factorization WH, and suppose
M̃ = M + N with ||N ||1 ≤ ǫ. If W̃ is such that ||W̃ (:, P) − W ||1 ≤ δ for some δ ≥ 0 and some
permutation P , then Algorithm 2 constructs a factorization (W̃ , H̃) satisfying ||M̃ − W̃ H̃||1 ≤ ǫ+ δ.

Proof. Denoting NW = W̃ (:, P)−W , we have

||M̃ − W̃ H̃||1 = argminY≥0 ||M +N − (W +NW)Y ||1

≤ ||M +N − (W +NW)H||1

≤ ||N ||1 + ||NWH||1 + ||M −WH||1

≤ ǫ+ δ,

since the columns of H sum to one.

Lemma 1 allows us to focusing on proving robustness results for Algorithm 1. In fact, any result
that applies to Algorithm 1 directly applies to Algorithm 2. In this paper, we will therefore focus our
attention on Algorithm 1, as it was implicitly done in [3].

We can now state the robustness result for Hottopixx proposed in [3]:

Theorem 1 ([3], Th. 3.2). Suppose M̃ = M+N where M is normalized, and admits a rank-r separable
factorization WH with W α-robustly simplicial and ||N ||1 ≤ ǫ. Suppose that the there is no duplicate
of the columns of W , and that for all columns with index j such that M(:, j) 6= W (:, k) for all k,

we have a margin constraint ||M(:, j) −W (:, k)||1 ≥ d0 for all k. Suppose also that ǫ < min(αd0,α2)
9(r+1) .

Then Algorithm 1 identifies correctly the columns of W , that is, it extracts a matrix W̃ satisfying
||W̃ (:, P)−W ||1 ≤ ǫ for some permutation P .

Note that the above robustness result only deals with input data matrices without duplicates nor
near duplicates of the columns of W (because of the margin constraint). In other terms, the columns
of W must be isolated for the robustness result to apply. This is a very unnatural condition. For
example, in document datasets, separability requires that, for each topic, there exists at least one word
used only by that topic; see Introduction. In this context, the additional margin condition requires
that, for each topic, there exists one and only one word associated with that topic, which is rather
impractical. In this paper, we propose a post-processing strategy for Hottopixx so that duplicates and
near duplicates are allowed in the dataset.

4

1.2 Conditioning and κ-Robustly Conical Matrices

Because the columns of the variable X in (2) are not required to sum to one, it turns out that it will
be easier to work with the following parameter measuring the conditioning of matrix W :

κ = min
1≤k≤r

min
x∈Rr−1

+

||W (:, k) −W (:,R)x||1, where R = {1, 2, . . . , r}\{k},

and the matrix W is said to be κ-robustly conical. We have that κ is the minimum among the ℓ1-
distances between a column of W and the convex cone generated by the other columns of W . If the
columns of W sum to one (which will always be assumed), κ ≤ 1 and we can relate α and κ as follows:

Theorem 2. For any α-robustly simplicial and κ-robustly conical nonnegative matrix W whose columns
sum to one, we have

κ ≤ α ≤ 2κ.

Proof. The first inequality follows directly from the definition. The second is proved in Appendix A.

Therefore, it is essentially equivalent to working with α or κ as they differ by a multiplicative
factor of at most 2.

1.3 Contribution and Outline of the Paper

In this paper, we provide a new analysis of Hottopixx (Algorithm 1). This in turn allows us to design
a post-processing strategy leading to a provably more robust variant (Algorithm 3) which is applicable
to any separable matrix (that is, duplicates and near duplicates are allowed in the dataset as opposed
to the original robustness result from [3]).

In the first part of the paper (Section 2), we analyze the case where no duplicates nor near
duplicates are allowed in the dataset, and focus on the following proposition:

Proposition 1. Suppose M̃ = M+N where M is normalized, admits a rank-r separable factorization
WH where W is κ-robustly simplicial with κ > 0, and has the form (1) with maxi,j H

′
ij ≤ β ≤ 1.

Suppose also that ||N ||1 ≤ ǫ and ǫ is sufficiently small. Then Algorithm 1 extracts a matrix W̃
satisfying ||W − W̃ (:, P)||1 ≤ ǫ for some permutation P .

Note that the condition on the entries of H ′ is implied by the margin constraint of Theorem 1 since

||M(:, j) −W (:, k)||1 ≥ d0 for all 1 ≤ k ≤ r ⇒ max
i

H(i, j) ≤ β = 1−
d0
2
,

see Lemma 4. Hence, by Theorem 1, Proposition 1 holds for ǫ < min(2α(1−β),α2)
9(r+1) . In Section 2, we

prove that

• ǫ ≤ κ(1−β)
9(r+1) is sufficient for Proposition 1 to hold (Theorem 3), while

• ǫ < κ(1−β)
(1−β)(r−1)+1 is necessary for Proposition 1 to hold for any r ≥ 3 and β < 1 (Theorem 4).

Hence, our analysis gets rid of the term α2 from Theorem 1, and is close to being tight.
In the second part of the paper (Section 3), we do not make any assumption on the input separable

matrix, and focus on the following proposition:

5

Proposition 2. Suppose M̃ = M+N where M is normalized and admits a rank-r separable factoriza-
tion WH where W κ-robustly simplicial with κ > 0. Suppose also that ||N ||1 ≤ ǫ and ǫ is sufficiently
small. Then Algorithm 1 extracts a matrix W̃ satisfying ||W − W̃ (:, P)||1 ≤ δ for some permutation
P and some δ ≥ 0.

We first show that it is necessary for Proposition 2 to hold that ǫ < κ
r−1 (Corollary 1), and that

δ ≥ 3 ǫ
α + 3

2ǫ for any ǫ < α
2 (Theorem 5). (We also show that this lower bound on δ applies to a

broader class of separable NMF algorithms.) Then, we propose a post-processing of the solution of
the linear program (2) (see Algorithm 3) for which the following result holds:

(Theorem 6) Let M = WH be a normalized r-separable matrix where W is κ-robustly conical with
κ > 0. Let also M̃ = M +N with ||N ||1 ≤ ǫ. If

ǫ <
ωκ

99(r + 1)
,

where ω = mini 6=j ||W (:, i)−W (:, j)||1 (note that ω ≥ κ), then Algorithm 3 extracts a matrix W̃ such
that

||W − W̃ (:, P)||1 ≤ 49(r + 1)
ǫ

κ
+ 2ǫ, for some permutation P .

Because the necessary condition ǫ < κ
r−1 also applies to Algorithm 3, the bound for ǫ of Theorem 6 is

tight up to a factor ω (and some constant multiplicative factor). Moreover, because of the necessary
condition on δ (see above), Theorem 6 is tight up to a factor r (and some constant multiplicative
factor). Finally, we show that it is necessary for Proposition 2 to hold that ǫ ≤ κ

(r−1)2 for any δ < κ+ ǫ

(Theorem 7) which demonstrates that Hottopixx cannot achieve a better bound than Algorithm 3.
We also compare Algorithm 3 with the algorithm of Arora et al. [1] in Section 3.4.

In the last part of the paper (Section 4), we illustrate our results on some synthetic datasets: we
show that the post-processing makes Hottopixx more robust to noise, and able to deal with duplicates
and near duplicates of the columns of W .

1.4 Notation

The set of m-by-n real matrices is denoted R
m×n; for A ∈ R

m×n, we denote the jth column of A by
A(:, j), the ith row of A by A(i, :), and the entry at position (i, j) by A(i, j); for b ∈ R

m×1 = R
m, we

denote the ith entry of b by b(i). Notation A(I,J) refers to the submatrix of A with row and column
indices respectively in I and J . The matrix AT is the transpose of A. The ℓ1-norm ||.||1 of a vector
is defined as ||b||1 =

∑

i |b(i)| and of a matrix as ||A||1 = maxj ||A(:, j)||1. The ℓ∞-norm ||.||∞ of a
vector is defined as ||b||∞ = maxi |b(i)|. We will denote by En the n-by-n matrix of all-ones, 0m×n

the m-by-n the matrix of all-zeros, and In the n-by-n identity matrix. We will also denote ei the ith
column of the identity matrix, e the all-one vector and 0 the all-zero vector; their dimensions will be
clear from the context. The vector of the diagonal entries of a matrix A is denoted diag(A) while its
trace is denoted tr(A) = eT diag(A). For a set K, |K| denotes its cardinality.

2 Analysis without Duplicates nor Near Duplicates

In this section, we focus on Proposition 1: we show that ǫ ≤ κ(1−β)
9(r+1) is sufficient for Proposition 1 to

hold (Theorem 3), while ǫ < κ(1−β)
(r+1)(1−β)+1 is necessary for any r ≥ 3 and β < 1 (Theorem 4).

Lemma 2. Suppose M̃ = M + N where M is normalized and ||N ||1 ≤ ǫ < 1, and suppose X is a
feasible solution of (2). Then, for all 1 ≤ j ≤ n,

||X(:, j)||1 ≤ 1 +
4ǫ

1− ǫ
and ||M(:, j) −MX(:, j)||1 ≤

4ǫ

1− ǫ
.

6

Proof. For all 1 ≤ j ≤ n,

1− ǫ ≤ ||M(:, j)||1 − ||N(:, j)||1 ≤ ||M(:, j) +N(:, j)||1 = ||M̃(:, j)||1,

from which we obtain

2ǫ ≥ ||M̃ (:, j) − M̃X(:, j)||1 ≥ ||M̃X(:, j)||1 − ||M̃(:, j)||1

≥ ||MX(:, j)||1 − ||NX(:, j)||1 − (1 + ǫ)

≥ ||X(:, j)||1 − ǫ||X(:, j)||1 − 1− ǫ,

since the columns of M sum to one and M and X are nonnegative. This implies that ||X(:, j)||1 ≤
1+3ǫ
1−ǫ = 1 + 4ǫ

1−ǫ , and ||NX(:, j)||1 ≤ ||N ||1||X(:, j)||1 ≤ ǫ
(
1+3ǫ
1−ǫ

)

. We then have

2ǫ ≥ ||M̃(:, j) − M̃X(:, j)||1 = ||M(:, j) +N(:, j) − (M +N)X(:, j)||1

≥ ||M(:, j) −MX(:, j)||1 − ǫ− ǫ

(
1 + 3ǫ

1− ǫ

)

,

hence ||M(:, j) −MX(:, j)||1 ≤ 3ǫ+ ǫ
(
1+3ǫ
1−ǫ

)

= 4ǫ
1−ǫ .

Remark 1. Note that a sum-to-one constraint on the columns of X could be added to the model (2)
while keeping linearity, and would make the analysis simpler. In fact, we would directly have ||X(:
, j)||1 = 1 and ||M(:, j) −MX(:, j)||1 ≤ 4ǫ for all j, and the error bounds from Theorems 3 and 6
could be slightly improved. However, we stick in this paper with the original formulation proposed in
[3].

Lemma 3. Let M̃ = M+N where M is normalized, admits a rank-r separable factorization WH where
W is κ-robustly conical with κ > 0, and ||N ||1 ≤ ǫ < 1, and has the form (1) with maxi,j H

′
ij ≤ β < 1.

Let also X be any feasible solution of (2), then

X(j, j) ≥ 1−
8ǫ

κ(1− β)(1 − ǫ)
,

for all j such that M(:, j) = W (:, k) for some 1 ≤ k ≤ r.

Proof. Let K be the set of r indices such that M(:,K) = W . Let also 1 ≤ k ≤ r and denote j = K(k)
so that M(:, j) = W (:, k). By Lemma 2,

||W (:, k) −WHX(:, j)||1 ≤
4ǫ

1− ǫ
. (3)

Since H(k, j) = 1,

WHX(:, j) = W (:, k)H(k, :)X(:, j) +W (:,R)H(R, :)X(:, j)

= W (:, k)
(

X(j, j) +H(k,J)X(J , j)
)

+W (:,R)y,

where R = {1, 2, . . . , r}\{k}, J = {1, 2, . . . , n}\{j} and y = H(R, :)X(:, j) ≥ 0. We have

η = X(j, j) +H(k,J)X(J , j) ≤ X(j, j) + β

(

1 +
4ǫ

1− ǫ
−X(j, j)

)

, (4)

since ||H(k,J)||∞ ≤ β and ||X(:, j)||1 ≤ 1 + 4ǫ
1−ǫ (Lemma 2). Hence

||W (:, k) −WHX(:, j)||1 ≥ (1− η)

∥
∥
∥
∥
W (:, k)−W (:,R)

y

1 − η

∥
∥
∥
∥
1

≥ (1− η)κ. (5)

7

Combining Equations (3), (4) and (5), we obtain

1−

(

X(j, j) + β

(

1 +
4ǫ

1− ǫ
−X(j, j)

))

≤
4ǫ

κ(1 − ǫ)
,

which gives, using the fact that κ, β ≤ 1,

X(j, j) ≥ 1−
8ǫ

κ(1− β)(1 − ǫ)
.

Theorem 3. It is sufficient for Proposition 1 to hold that

ǫ ≤
κ(1 − β)

9(r + 1)
.

Proof. If ǫ = 0, the proof is given in [3, Th. 3.1]: for each 1 ≤ k ≤ r, there exists a unique j ∈
{1, 2, . . . , n} such that M(:, j) = W (:, k) and X(j, j) = 1 (this follows easily from the fact that the
entries of p are distinct). (Note that, in the noiseless case when ǫ = 0, duplicates and near duplicates
are allowed in the dataset since β can be equal to one.) Otherwise ǫ > 0 and β < 1. Let X be a
feasible solution of (2) (which always exists since the feasible set of (2) is non-empty). If we prove
that the r diagonal entries of X corresponding to the columns of W are larger than all the other ones
(because β < 1, the are no duplicates of the columns of W in the dataset), then we are done. In fact,
these columns will then be identified by Algorithm 2 and we will have ||W − W̃ (:, P)||1 ≤ ǫ for some
permutation P . (Notice that we do not need an optimal solution: any feasible solution identifies the
columns of W .)

Let K be the set of r indices such that M(:,K) = W . Assume that

X(k, k) >
r

r + 1
for all k ∈ K. (6)

Since tr(X) = r and X ≥ 0, we have

∑

j /∈K

X(j, j) = r −
∑

k∈K

X(k, k) < r − r
r

r + 1
=

r

r + 1
< X(k, k) for all k ∈ K,

implying that X(j, j) < X(k, k) for all k ∈ K, j /∈ K which gives the result. It remains to show that
(6) holds. By Lemma 3,

X(k, k) ≥ 1−
8ǫ

κ(1 − β)(1 − ǫ)
> 1−

9ǫ

κ(1− β)
,

since 8
1−ǫ < 9 for any ǫ ≤ κ(1−β)

9(r+1) ≤
1
18 as κ > 0, β < 1 and r ≥ 1. Finally, for ǫ ≤ (1−β)κ

9(r+1) , X(i, i) > r
r+1

and the proof is complete.

Remark 2. The proof of Theorem 3 actually does not make use of the constraints X(i, j) ≤ X(i, i)
for all i, j. The reason is that the assumption maxi,j H

′
ij ≤ β < 1 implies that there is no duplicate of

the columns of W in the dataset (if β = 1, ǫ = 0 and Algorithm 2 is guaranteed to work [3, Th. 3.1]).
This implies that for being able to reconstruct sufficiently well each column of W , the corresponding
diagonal entry of X must be large independently of the other entries of the corresponding column of
X.

Therefore, in case there is no duplicate in the dataset (or some some pre-processing has been used
to remove them), these constraints can be discarded (a similar observation was made in [3]). Moreover,
since Theorem 3 only requires feasibility in that case, any feasible solution of the corresponding relaxed
linear program will correctly identify the columns of W .

8

Theorem 4. For Proposition 1 to hold when r ≥ 3 and β < 1, it is necessary that

ǫ <
κ(1 − β)

(r − 1)(1 − β) + 1
. (7)

Proof. See Appendix B.

Theorem 4 shows that the sufficient condition derived in Theorem 3 is close to being tight. In
particular, if r is assumed to be bounded above, then it is tight up to some constant multiplicative
factor (in practice r is often assumed to be small). We believe it is possible to improve the bound of
Theorem 3 to match the one of Theorem 4 (up to some constant multiplicative factor). Unfortunately,
we were not able to derive such a sufficient condition; this is a topic for further research.

Remark 3 (Cases r = 1, 2). Theorem 4 does not apply when r = 1, 2 because:

• The rank-one separable NMF problem is trivial. In fact, if M admits a rank-one separable
factorization whT and M̃ = M +N with ||N ||1 ≤ ǫ, then ||M̃(:, j) − w||1 ≤ ǫ for all j.

• The rank-two case is particular because it is not possible to construct very bad instances. In
fact, all rank-two separable NMF problems are essentially equivalent to each other because the
columns of M belong to the line segment [W (:, 1),W (:, 2)].

To conclude this section, we provide a necessary condition for Proposition 2:

Corollary 1. For Proposition 2 to hold for any δ < κ
2 and r ≥ 3, it is necessary that

ǫ <
κ

r − 1
,

Proof. In fact,

ǫ <
κ(1− β)

(1− β)(r − 1) + 1
≤

κ(1− β)

(1− β)(r − 1)
=

κ

r − 1
,

while the matrix M̃ = WH + N constructed in the proof of Theorem 4 satisfies ||W − W̃ (:, P)||1 ≥
r−2
r−1κ ≥

κ
2 where W̃ is the matrix extracted by Algorithm 1 and P is any permutation.

3 Dealing with Duplicates and Near Duplicates using Post-Processing

In this section, we investigate Proposition 2 and propose a variant of Hottopixx (see Algorithm 3)
which is provably robust for any noisy separable matrix. In Section 3.1, we present a simple necessary
condition for Proposition 2 to hold. In Section 3.2, we show that, for each column of W , there is
a subset of the columns of M̃ close to that column of W such that the sum of the corresponding
diagonal entries of any feasible solution X of (2) is larger than r

r+1 . Therefore, using an appropriate
post-processing of the solution X of (2) (see Algorithm 3), we can approximately recover the columns
of W , given that the noise level ǫ is smaller than some upper bound. In Section 3.3, we show that
Hottopixx (Algorithm 1) cannot achieve this bound which proves that Algorithm 3 is more robust.
Finally, we compare Algorithm 1 with the algorithm of Arora et al. [1] in Section 3.4.

9

3.1 Preliminary Necessary Conditions

Recall the aim is to identifying, among the columns of M̃ , r columns gathered in the matrix W̃ in
such a way that ||W − W̃ (:, P)||1 ≤ δ for some permutation P and some δ ≥ 0. Since ||W ||1 = 1, we
will assume that δ < 1 otherwise the separable NMF problem is trivial since the solution W̃ = 0 gives
the result. It actually makes sense to impose δ < κ ≤ α ≤ 1: this guarantees for a solution W̃ to have
distinct columns since two columns of W can potentially be at distance κ; for example with

W =

κ
2 0
0 κ

2
1− κ

2 1− κ
2

 ,

extracting twice the first column would give the result with δ = κ, which is not desirable. Moreover,
as shown in Section 1.1, it is necessary that ǫ < α

2 ≤ κ for any separable NMF algorithm to being
able to extract approximately the columns of W .

Theorem 5. For any 0 ≤ ǫ < α
2 , it is necessary that δ ≥

(
3 ǫ
α + 3

2ǫ
)
for Proposition 2 to hold.

Proof. Let us consider M̃ = M +N = WH +N where

W =

1 0 1
2 −

α
4

0 1 1
2 −

α
4

0 0 α
2

 ,H =

1 0 0 1− λ 0
0 1 0 0 1− λ
0 0 1 λ λ

 ,

and N =

0 0 ǫ
4 0 0

0 0 ǫ
4 0 0

0 0 − ǫ
2 0 0

 ,

where W is α-robustly simplicial (and α
2 -robustly conical), and where λ is such that the middle point

between M(:, 4) and M(:, 5) is
(

M̃(:, 3) + 2N(:, 3)
)

, that is,

M̃ (:, 3) + 2N(:, 3) =

1
2 −

α
4 + 3ǫ

4
1
2 −

α
4 + 3ǫ

4
α
2 −

3ǫ
2

 =

1
2 −

λα
4

1
2 −

λα
4

λα
2

 =
1

2
(M(:, 4) +M(:, 5)),

which requires λ = 1− 3 ǫ
α ≥ 0. Let p = (−K,−K,K2,−1, 0)T for any K sufficiently large. It can be

checked that

X =

1 0 0 µ 0
0 1 0 0 µ
0 0 0 0 0
0 0 0.5 0.5 0.5− µ
0 0 0.5 0.5− µ 0.5

where µ =
1− λ

2− λ
,

is a feasible solution of (2). By Lemma 7, there exists K sufficiently large such that X∗(3, 3) = 0
for any optimal solution X∗. Using Lemma 7 again we have X∗(1, 1) = X∗(2, 2) = 1 for any optimal
solution X∗ for K sufficiently large. Hence, for K sufficiently large, the third column of M will not
be extracted and the fourth or fifth will be, hence

||W̃ −W ||1 = ||W̃ (:, 3) −W (:, 3)||1 = ||M(:, 4) −W (:, 3)||1 = ||M(:, 5) −W (:, 3)||1

= ||(1− λ)W (:, 1) − (1− λ)W (:, 3)||1

= 3
ǫ

α
‖W (:, 1) −W (:, 3)‖1

= 3
ǫ

α

(

1 +
α

2

)

= 3
ǫ

α
+

3

2
ǫ.

10

Using the same construction2 as in Theorem 5 but taking λ = 1− ǫ
α , we have

M̃(:, 3) = W (:, 3) +N(:, 3) =
1

2
(M(:, 4) +M(:, 5)) ,

for which ||W̃ (:, P) − W ||1 ≥
ǫ
α + ǫ

2 for any permutation P , where W̃ is the matrix extracted by

Hottopixx. We notice that the corresponding matrix M̃ can also be obtained from a 4-separable
matrix M4 = W4H4 where

W4 =
(
M(:, [1 2]) M(:, 4) − v M(:, 5) − v

)
,H4 =

1 0 0 0 0
0 1 0 0 0
0 0 0.5 1 0
0 0 0.5 0 1

,

v = (ǫ/4, ǫ/4,−ǫ/2)T , and
N4 =

(
03×2 v v v

)
,

and we have M̃ = WH + N = W4H4 + N4 = M̃4. Therefore, no algorithm to which only the noisy
separable matrix M̃ and the noise level ǫ are given as input can approximately extract the columns of
W among the columns of M with error smaller than O

(
ǫ
α

)
. In fact, the matrix M̃ above has two

solutions to the noisy separable NMF problem and there is no way to discriminate between them (the
original matrix could be 3- or 4- separable):

• If the algorithm returns a matrix W̃ with three columns, then if the original matrix was M4 we
have max1≤j≤4min1≤k≤3 ||W4(:, j) − W̃ (:, k)||1 ≥

ǫ
α .

• Similarly, if the algorithm returns a matrix W̃ with four columns, then

– if the third column is not extracted and the original matrix was M , we have

max
1≤j≤3

min
1≤k≤4

||W (:, j) − W̃ (:, k)||1 ≥
ǫ

α
, while

– if the third column is extracted and the original matrix was M4, we have

max
1≤j≤4

min
1≤k≤4

||W4(:, j) − W̃ (:, k)||1 ≥
ǫ

α
.

The reason is that the distance between each pair of columns of M is at least ǫ
α .

Note that the algorithm of Arora et al. [1] achieves this optimal error bound O
(
ǫ
α

)
; see Theorem 8

in Section 3.4. However, it requires the parameter α as an input so that the construction above
does not prove their algorithm is optimal up to some constant multiplicative factor. In fact, for the
3-separable matrix M , W is α-robustly simplicial while, for the 4-separable matrix M4, W4 is α′-
robustly simplicial with α′ ≤ 2 ǫ

α = ||W4(:, 3) −W4(:, 4)||1. It is possible to adjust the construction
so that W and W4 have the same condition number, proving that the algorithm of Arora et al. [1] is
optimal. It suffices to add a row and a column to the input matrices as follows

M ′ =

(
M

(
1− α

ǫ

)
We

0 1− α
ǫ

)

, and M ′
4 =

(
M4

(
1− α

ǫ

)
W4e

0 1− α
ǫ

)

,

(and updating W,W4,H and H4 accordingly) where M ′ is 4-separable with conditioning ǫ
α while M ′

4

is 5-separable with the same conditioning.

2AMatlab code is available at https://sites.google.com/site/nicolasgillis/code and contains this construction,
along with the one of Theorem 5.

11

https://sites.google.com/site/nicolasgillis/code

3.2 Cluster Identification

We now prove that there is a cluster of columns of M̃ around each column of W for which the sum of
the corresponding diagonal entries of any feasible solution X of (2) is large. More formally, defining
the clusters around the columns of W as

Ωρ
k =

{

j
∣
∣
∣ ||M̃ (:, j) −W (:, k)||1 ≤ ρ

}

1 ≤ k ≤ r, (8)

we are going to prove that ck =
∑

j∈Ωρ

k
X(j, j) is large for any feasible solution X of (2), given that ǫ

is sufficiently small.

Lemma 4. Let W ∈ R
m×r
+ have its columns sum to one, and let h ∈ ∆m. Then, denoting k =

argmax1≤i≤r h(i), we have

||h||∞ = h(k) ≥ 1−
ρ

2
⇒ ||W (:, k)−Wh||1 ≤ ρ.

Proof. Let us denote denote R = {1, 2, . . . , r}\{k}, we have

||W (:, k) −Wh||1 = ||(1− h(k))W (:, k) −W (:,R)h(R)||1

≤ (1− h(k))||W (:, k)||1 + (||h||1 − hk)||W (:,R)||1

≤ 2(1− h(k)) ≤ ρ.

Lemma 5. Let M = WH be a normalized r-separable matrix where W is κ-robustly conical with
κ > 0. Let also M̃ = M + N where ||N ||1 ≤ ǫ < 1, and X be a feasible solution of (2). Then, the
total weight ck =

∑

j∈Ωρ
k
X(j, j) assigned to the columns of M̃ in Ωρ

k defined in (8) satisfies

ck ≥ 1−
16ǫ

κρ(1 − ǫ)
for all 1 ≤ k ≤ r.

Proof. Let 1 ≤ k ≤ r and R = {1, 2, . . . , r}\{k}, and let us denote the indices corresponding to the
columns of M̃ not in Ωρ

k as
Ω̄ρ
k = {1, 2, . . . , n}\Ωρ

k.

Let also j be such that W (:, k) = M(:, j). By Lemma 4, maxj∈Ω̄ρ
k
||H(:, j)||∞ < 1 − ρ

2 = β. The

rest of the proof is similar to that of Lemma 3. By Lemma 2, ||W (:, k) −WHX(:, j)||1 ≤
4ǫ
1−ǫ and

||X(:, j)||1 ≤ 1 + 4ǫ
1−ǫ . We have

WHX(:, j) = W (:, k)H(k, :)X(:, j) +W (:,R)H(R, :)X(:, j)

= W (:, k)
(

H(k,Ωρ
k)X(Ωρ

k, j) +H(k, Ω̄ρ
k)X(Ω̄ρ

k, j)
)

+W (:,R)y,

where y = H(R, :)X(:, j) ≥ 0, and

η = H(k,Ωρ
k)X(Ωρ

k, j) +H(k, Ω̄ρ
i)X(Ω̄ρ

i , j)

≤ ||X(Ωρ
k, j)||1 + β(||X(:, j)||1 − ||X(Ωρ

k, j)||1) ≤ ck + β

(

1 +
4ǫ

1− ǫ
− ck

)

.

The first inequality follows fromH(i, j) ≤ 1 for all i, j and ||H(k, Ω̄ρ
k)||∞ ≤ β; the second fromX(i, j) ≤

X(i, i) for all i, j (hence ck ≥ ||X(Ωρ
k, j)||1), and β ≤ 1. Finally, (1 − η)κ ≤ ||W (:, k) −WHX(:, j)||1

≤ 4ǫ
1−ǫ leading to ck =

∑

j∈Ωρ
k
X(j, j) ≥ 1− 8ǫ

κ(1−β)(1−ǫ) = 1− 16ǫ
κρ(1−ǫ) .

12

Algorithm 3 Extracting Columns of a Separable Matrix by Linear Programming and Clustering

Input: A r-separable matrix M̃ = WH+N with W κ-robustly conical, the noise level ||N ||1 ≤ ǫ and
the factorization rank r.

Output: A matrix W̃ such that ||W̃ (:, P) −W ||1 is small for some permutation P .

1: Compute the optimal solution X of (2).
2: Initialize K = {k | X(k, k) > r

r+1} and ν = 2ǫ.

3: while |K| < r and ν ≤ 2||M̃ ||1 do
4: Compute K with Algorithm 4 using input mj = M̃(:, j) 1 ≤ j ≤ n, x = diag(X) and ν;
5: ν ← 2ν;
6: end while
7: W̃ = M̃(:,K) ;

Algorithm 4 Cluster Extraction

Input: A set of points mj 1 ≤ j ≤ n, a vector of weights x ∈ R
n
+ such that

∑n
i=j x = r, and ν ≥ 0.

Output: A index set K of centroids corresponding to clusters with weight strictly larger than r
r+1 .

1: D(i, j) = ||mi −mj||1 for 1 ≤ i, j ≤ n.
2: Si = {j | D(i, j) ≤ ν} for 1 ≤ i ≤ n;
3: w(i) =

∑

j∈Si
x(j) for 1 ≤ i ≤ n;

4: K = ∅;
5: while max1≤i≤nw(i) >

r
r+1 do

6: k = argmaxw(i);
7: K ← K ∪ {k};
8: For all j ∈ Sk : w(j)← 0;
9: For all i /∈ Sk and j ∈ Sk such that j ∈ Si : w(i)← w(i)− x(j);

10: end while

If we can guarantee that ck > r
r+1 for all 1 ≤ k ≤ r, then the sum of the diagonal entries of

X corresponding to columns of M̃ not in any Ωρ
k will be smaller than r

r+1 . Therefore, if instead of
picking the r largest diagonal entries of X, we cluster the diagonal entries of X depending on the
distances between the corresponding columns of M̃ , we should be able to identifying the columns of
W approximately; see Algorithm 3.

Lemma 6. Let mj ∈ R
m 1 ≤ j ≤ n, x ∈ R

n
+ be such that

∑n
j=1 x = r, and ρ ≥ 0. Let also

Ωk = {mj | ||mj −wk||1 ≤ ρ} for 1 ≤ k ≤ r where wk ∈ R
m 1 ≤ k ≤ r. Suppose

•
∑

j∈Ωk
xj >

r
r+1 ,

• ω = mini 6=j ||wi − wj ||1 > 6ρ, and

• For all 1 ≤ k ≤ r, there exists 1 ≤ j ≤ n such that ||mj − wk||1 ≤ ǫ ≤ ρ.

Then, for any (ρ+ ǫ) ≤ ν ≤ 2(ρ+ ǫ), Algorithm 4 identifies a set K with r indices such that

max
1≤k≤r

min
j∈K
||mj − wk||1 ≤ 3ρ+ 2ǫ. (9)

Moreover, if Algorithm 4 identifies a set K with r indices for some ν < ρ+ ǫ, then K satisfies (9).

Proof. First notice that the index set K extracted by Algorithm 4 cannot contain more than r indices.
In fact, Algorithm 4 only identifies clusters with weight strictly larger than r

r+1 while the total weight
∑n

i=1 x is equal to r. It remains to show that K contains at least r indices.
Let first consider the case (ρ + ǫ) ≤ ν ≤ 2(ρ + ǫ). Let Si 1 ≤ i ≤ n be the sets computed by

Algorithm 4 before entering the while loop. We observe that

13

• For mj ∈ Ωk and mj′ ∈ Ωk′ where j 6= j′ and k 6= k′, we have mj /∈ Sj′ and mj′ /∈ Sj. In fact,

||mj −mj′ ||1 = ||(mi − wk) + (wk − wk′) + (wk′ −mj′)||1 ≥ ω − 2ρ > 4ρ ≥ ν.

• For all 1 ≤ k ≤ r, there exists mj ∈ Ωk such that w(j) > r
r+1 . By assumption, for all

1 ≤ k ≤ r, there exists mj ∈ Ωk such that ||mj − wk||1 ≤ ǫ, hence for all mi ∈ Ωk we have
||mj −mi||1 = ||(mj − wk) + (wk −mi)||1 ≤ ρ+ ǫ ≤ ν while

∑

i∈Ωk
x(i) > r

r+1 .

• If mi /∈ ∪1≤k≤rΩk and w(i) > r
r+1 , then ||mi − wk||1 ≤ 3ρ + 2ǫ for some 1 ≤ k ≤ r. Suppose

||mi − wk||1 > 3ρ+ 2ǫ for all k, then for all mj ∈ ∪1≤k≤rΩk

||mi −mj ||1 ≥ ||(mi − wk) + (wk −mj)||1 > 3ρ+ 2ǫ− ρ ≥ ν.

Therefore,
∑

j∈Si
x(j) ≤ r −

∑

k

∑

j∈Ωk
xi < r − r r

r+1 < r
r+1 , a contradiction.

Let then k be such that ||mi−wk||1 ≤ 3ρ+2ǫ. This implies that if mj ∈ Si, then either mj ∈ Ωk,
or mj /∈ ∪k′ 6=kΩk′ . In fact, if mj ∈ Ωk′ for some k′ 6= k, then

||mi −mj ||1 ≥ ||(mi − wk) + (wk − wk′) + (wk′ −mj)||1

≥ ω − 3ρ− 2ǫ− ρ > 2ρ− 2ǫ ≥ ν,

a contradiction.

These observations imply that there are at least r disjoint sets Si with weight larger than r
r+1 , each

corresponding to a different cluster Ωk. Therefore, Algorithm 4 will identify them individually and
(9) will be satisfied.

For the case ν < ρ+ ǫ, the result follows directly from the observations above: any point mi with
w(i) > r

r+1 must satisfy ||mi−wk||1 ≤ 3ρ+2ǫ for some 1 ≤ k ≤ r. Moreover, for all k there must exist
j ∈ K such that ||mj −wk||1 ≤ 3ρ+2ǫ. In fact, suppose there exists k such that ||mj −wk|| > 3ρ+2ǫ
for all j ∈ K. Then, mi /∈ ∪j∈KSj for all i ∈ Ωk (see above) hence

∑

i∈Sj ,j∈K

x(i) < r −
r

r + 1
= r

r

r + 1
,

which implies that K cannot contain more than r − 1 indices, a contradiction.

Theorem 6. Let M = WH be a normalized r-separable matrix with W κ-robustly conical. Let also
M̃ = M +N with ||N ||1 ≤ ǫ. If

ǫ <
ωκ

99(r + 1)
, (10)

where ω = mini 6=j ||W (:, i) −W (:, j)||1, then Algorithm 3 will extract a matrix W̃ such that

||W − W̃ (:, P)||1 ≤ δ = 49(r + 1)
ǫ

κ
+ 2ǫ, for some permutation P .

Proof. Let X be a feasible solution of (2), let the r clusters Ωρ
k 1 ≤ k ≤ r be defined as in Equation (8)

and let ck =
∑

j∈Ωρ
k
X(j, j). If ρ < ω

6 and ck > r
r+1 , then, by Lemma 6, Algorithm 4 will identify a

set K with r indices such that

max
1≤k≤r

min
j∈K
||W (:, k) − M̃ (:, j)||1 ≤ δ = 3ρ+ 2ǫ,

for any ν ∈ [ρ + ǫ, 2ρ + 2ǫ]. Therefore, starting with ν = 2ǫ ≤ (ρ + ǫ) and multiplying it by two
at each iteration will eventually give a value of ν in [ρ + ǫ, 2ρ + 2ǫ]. (Note that Algorithm 4 could
return a set K with r indices for ν smaller than ρ + ǫ, see Lemma 6. Note also that the number of

14

iterations performed by Algorithm 3 is at most log2
(ρ+ǫ

ǫ

)
.) If ǫ = 0, then ck = 1 for all 1 ≤ k ≤ r

while ρ = 0 < ω
6 , and the loop is entered at most once (if the entries of p are distinct, then it is not

entered because exactly r diagonal entries of an optimal solution of (2) will be equal to one, each
corresponding to a different column of W [3, Prop. 3.1]). Otherwise ǫ > 0 and it remains to guarantee
that ρ < ω

6 and ck > r
r+1 . By Lemma 5,

ǫ

1− ǫ
<

ρκ

16(r + 1)
⇒ ck >

r

r + 1
.

Taking ǫ < ωκ
99(r+1) and ρ = 98

6 (r + 1) ǫκ < ω
6 completes the proof since

ρ =
98

6
(r + 1)

ǫ

κ
> 16(r + 1)

ǫ

κ

(
1

1− ǫ

)

,

because 96
1−ǫ < 98 for any 0 ≤ ǫ < 1

49 .

It can be checked that all the results from Section 2 apply to Algorithm 3. In fact, by assumption,
all the matrices considered did not contain duplicate nor near-duplicate of the columns of matrix
W in which case we showed that r diagonal entries of X have weight at least r

r+1 . This implies
that Algorithm 3 will not enter the while loop, hence it is equivalent to Algorithm 1. In particular,
Corollary 1 also applies to Algorithm 3, that is, it is necessary that

ǫ <
κ

r − 1
, for any δ <

κ

2
.

This shows that the bound of Theorem 6 for ǫ is tight up to a factor ω (and some constant multiplicative
factor). Moreover, by Theorem 5, the bound for δ is tight up to a factor r (and some constant
multiplicative factor).

Remark 4 (Computational Cost). The main additional cost of Algorithm 3 compared to Algorithm 1
is to computing and storing the distance matrix D. This requires O(mn2) floating point operations
and O(n2) space in memory. This is negligible as computing MX already requires O(mn2) operations,
while storing X requires O(n2) space in memory.

Remark 5 (Choice of the vector p). Because of the post-processing procedure in Algorithm 3, it is
not necessary for Theorem 6 to hold that the vector p has distinct entries. However, it will still be
useful in practice to impose this condition. In fact, this will incite the weights to be concentrated in
fewer diagonal entries of X so that typically fewer loops will have to be performed to obtain a set K
containing r indices. In particular, in the exact case (that is, ǫ = 0) or in the case there is no duplicate
and near duplicate in the dataset (see above), the loop will not be entered.

Remark 6 (More Sophisticated Post-processing Strategies). It is possible to design better post-
processing procedures but we wanted here to keep the analysis simple. In particular, if the input matrix
M̃ does not satisfy the conditions of Theorem 6, it may happen that no set K computed in the loop of
Algorithm 3 contains r elements. Therefore, one should keep in memory the largest set extracted so far,
or design more sophisticated strategies. For example, if less than r clusters have been extracted, the con-
dition that the weight of each extracted cluster must larger than r

r+1 can be relaxed; this variant has been
implemented in the Matlab code available at https:// sites.google.com/ site/nicolasgillis/code .

Remark 7 (Pre-processing). Another possible way to deal with duplicates and near duplicates would
be to use an appropriate pre-processing. In [5], k-means is used to reduce the number of data points
and get rid of the duplicates. In fact, their algorithm cannot deal with duplicates, even in the noiseless
case (note that their robustness result is only asymptotical, that is, it only holds when th noise level ǫ
goes to zero). Arora et al. [1] also use some pre-processing in their algorithm (before processing any
data point, its neighbors have to be discarded). However, it seems difficult to combine a robustness
analysis with a pre-processing strategy (in fact, Arora et al. [1] need the conditioning α as an input to
do so); this is a topic for further research.

15

https://sites.google.com/site/nicolasgillis/code

3.3 Repartition of the Weights inside a Cluster

In this section, we show that Hottopixx (Algorithm 1) cannot provide better bounds than Algorithm 3.
The reason is the following: inside a cluster Ωρ

k, there is no guarantee that all the weight will be assigned
to a single diagonal entry of X. In the proof of Theorem 7, we show that the weight may be equally
distributed inside a cluster. This construction allows us to show that ǫ ≤ κ

(r−1)2 is necessary for

Proportion 2 to hold for any δ < κ+ ǫ, which proves our claim.

Theorem 7. For any r ≥ 3 and δ < κ+ ǫ, it is necessary for Proposition 2 to hold that

ǫ ≤
κ

(r − 1)2
.

Proof. See Appendix C.

Remark 8. It remains an open question whether there exists a bound on the noise level to guarantee
Hottopixx to be robust for any separable matrix, that is, one that also contains duplicates and near
duplicates (note that, by Theorem 7, this bound, if it exists, has to be smaller than κ

(r−1)2).

3.4 Comparison with the Algorithm of Arora et al. [1]

In this section, we compare the theoretical bounds for Algorithm 3 obtained in Theorem 6 with the
ones of the algorithm of Arora et al. for which the following holds.

Theorem 8 ([1], Th. 5.7). Let M = WH be a normalized r-separable matrix with W α-robustly
simplicial. Let also M̃ = M +N with ||N ||1 ≤ ǫ. If

ǫ <
α2

20 + 13α
, (11)

then the algorithm proposed by Arora et al. [1] extracts a matrix W̃ such that

||W − W̃ (:, P)||1 ≤ 10
ǫ

α
+ 6ǫ, for some permutation P .

There are two bounds to compare. First, there is the bound on noise level ǫ allowed to have
any error guarantee. The one from Equation (11) does not dominate the one from Theorem 6, see
Equation (10). In fact, α and κ only differ by a factor of at most two (Theorem 2) while ω (≥ κ ≥ α

2)
can potentially be arbitrarily larger than α (take for example the columns of W as the vertices of a
flat triangle). Hence, for some highly ill-conditioned matrices, Algorithm 3 can tolerate much higher
noise levels.

Second, there is the bound on the error: the algorithm of Arora et al. dominates the one of
Algorithm 3, but only up to a factor r (which is usually small in practice). This is not very surprising
since the algorithm of Arora et al. is optimal in terms of the error bound; see Section 3.1. However, the
algorithm of Arora et al. requires the parameter α as an input, which, we believe, is highly impractical.
At least, we do not know of an efficient way to compute α (and this issue is not discussed in their
paper). Moreover, it was observed in [3] that Hottopixx performs better than the algorithm of Arora
et al. on some synthetic datasets.

To conclude, Algorithm 3 is, to the best of our knowledge, the provably most robust algorithm for
separable NMF for which the condition number α is not required as an input.

16

4 Numerical Experiments

In this section, we present some numerical experiments to show the superiority of Algorithm 3 over
Hottopixx in case there are duplicates and near duplicates of the columns of W in the data set,
otherwise both algorithms coincide since the post-processing will not be entered (cf. the discussion
after Theorem 6). All experiments were run on a two-core machine with 2.99GHz and 2GB of RAM
using a CPLEX implementation to solve the LP (2); the code was developed in [6], and is available at
https://sites.google.com/site/nicolasgillis/code. We use the constructions from the proof
of Theorem 7 with the following parameters: κ = 0.1 and K = 5, while we vary the value of the rank
r and the noise level ǫ. Moreover, we duplicate each column of W twice (that is, each column of W
is present three times in the data set), and permute the columns of M̃ at random in order to avoid a
bias towards the natural ordering. Finally, we slightly perturb the vector p in the objective function
to make its entries distinct (since we also duplicated the entries of p) by adding to each entry a value
drawn from the normal distribution with mean zero and standard deviation 0.1.

10
−3

10
−2

10
−1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (ε)

P
er

ce
nt

ag
e

of
 c

ol
um

ns
 o

f W
 e

xc
tr

ac
te

d

Hottopixx
Algorithm 3

10
−3

10
−2

10
−1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (ε)

P
er

ce
nt

ag
e

of
 c

ol
um

ns
 o

f W
 e

xc
tr

ac
te

d

Hottopixx
Algorithm 3

10
−3

10
−2

10
−1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (ε)

P
er

ce
nt

ag
e

of
 c

ol
um

ns
 o

f W
 e

xc
tr

ac
te

d

Hottopixx
Algorithm 3

10
−3

10
−2

10
−1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level (ε)

P
er

ce
nt

ag
e

of
 c

ol
um

ns
 o

f W
 e

xc
tr

ac
te

d

Hottopixx
Algorithm 3

Figure 1: Comparison of Hottopixx and Algorithm 3 on the near-separable matrices from Theorem 7
with duplicates of the columns of W . From left to right, top to bottom: r = 10, 20, 30, 40.

Figure 1 displays the percentage of columns of W correctly extracted by the two algorithms for
different values of the rank r and of the noise level ǫ (hence the higher the curve, the better). As
shown in Theorem 7, Hottopixx cannot extract one of the columns of W , even for small noise levels.

17

https://sites.google.com/site/nicolasgillis/code

More interestingly, Algorithm 3 clearly outperforms Hottopixx for larger noise levels. For example, for
r = 40 and ǫ = 0.046 (see the plot in the bottom right corner of Figure 1), Hottopixx only identifies
35% of the forty columns of W while Algorithm 3 identifies 95% of them. The reason for this behavior
is the following: when the noise is large, the set of feasible solutions of (2) is typically larger (because
the constraint ||M −MX||1 ≤ 2ǫ is relaxed). For ǫ sufficiently large, this allows all duplicates of some
columns of W corresponding to small entries of p to be given a large weight, hence some columns of
W are extracted more than once. This is not possible with the post-processing which clusters these
entries together, and is then able to extract other columns of W whose corresponding diagonal entries
of X are smaller.

Note that the computational time of the post-processing strategy is negligible and takes in average
about 5% percent of the total time needed to solve the LP (2).

5 Conclusion and Further Work

In this paper, we have proposed a provably more robust variant of Hottopixx based on an appropriate
post-processing of the solution of the linear program (2) (see Algorithm 3). In particular, we proved
that Algorithm 3 is robust for any input separable matrix M (Theorem 6), while our analysis is close
to being tight.

It would be interesting to improve the bound of Theorem 6 or show that the bound is tight. It
would also be particularly interesting to design more robust or computationally more effective (or
both?) separable NMF algorithms. In particular, the following question seems to be open: does it
exist a polynomial-time algorithm to which only the noisy separable matrix M̃ and the noise level ǫ are
given as input, and that achieves an error of order O

(
ǫ
α

)
? Such an algorithm would be optimal (see

Section 3.1). Note that the algorithm of Arora et al. [1] achieves this bound but requires the parameter
α as an input, which is highly impractical (there does not seem to be an easy way to evaluate α).

Acknowledgments

The author would like to thank Robert Luce (T.U. Berlin) for some insightful discussions and for
pointing out an error in Lemma 2 in a previous draft. The author would also like to thank the
reviewers for their feedback which helped improve the paper significantly.

A Proof of Theorem 2

Proof of Theorem 2. Let

k = argmin1≤j≤r min
x∈Rr−1

+

||W (:, j) −W (:,J)x||1, where J = {1, 2, . . . , r}\{j},

w = W (:, k), and y= W (:,R)x∗ where

x∗ = argminx∈Rr−1

+

||W (:, k) −W (:,R)x||1, where R = {1, 2, . . . , r}\{k},

so that, by definition, ||y − w||1 = κ. If y = 0, we are done since κ = ||w||1 = 1 ≥ 1
2α as α ≤ 2.

Otherwise y 6= 0 and we define z = y
||y||1

= λ−1y. By definition, ||w − z||1 ≥ α since z belongs to the
convex hull of the columns of W . We have

α ≤ ||w − z||1 = ||w − (λ+ 1− λ)z||1 ≤ ||w − λz||1 + (1− λ)||z||1 = κ+ (1− λ) ≤ 2κ

since κ = ||w − λz||1 ≥ ||w||1 − ||λz||1 = 1− λ, and the proof is complete.

18

B Proof of Theorem 4

The following lemma shows that if one of the coefficients in the objective function of a linear program
is much larger than all the other ones, then the corresponding entry of any optimal solution must be
smaller than the corresponding entry of any feasible solution. Although the result is clear intuitively,
we provide here a simple proof.

Lemma 7. Let consider the following linear program

min
x∈Rn

cTKx such that Ax = b and l ≤ x ≤ u, (12)

with l, u ∈ R
n, l ≤ u, and cK = (K, c̃) ∈ R

n where K ∈ R is a parameter. Let us denote x∗K an
optimal solution of (12) depending on K. Assume there exists a feasible solution xf of (12) such that
xf (1) = s. Then, for any K sufficiently large, x∗K(1) ≤ s.

Similarly, if cK(1) = −K and there exists a feasible solution such that x(1) = t, Then, for any K
sufficiently large, x∗K(1) ≥ t.

Proof. Let V 6= ∅ be the set of vertices of the feasible set of (12), and V̄ = {x ∈ V | x(1) > s}. Notice
that because the feasible set of (12) is a polytope, there always exists an optimal solution in V. Let
us denote d = minx∈V̄ x(1) > s. Assume there exists an optimal solution x∗K such that x∗K(1) > s.
This implies that there exists an optimal solution x̄∗K ∈ V̄ (since any optimal solution is a convex
combination of optimal vertices in V). Therefore,

Kd− ||c̃||2||u||2 ≤ cTKx∗K = cTK x̄∗K = Kx̄∗K(1) + c̃T x̄∗K(2:n) ≤ cTKxf ≤ Ks+ ||c̃||2||u||2,

which is absurd for any K > 2||c̃||2||u||2
d−s .

The linear program (2) can be written in the form of (12); in fact, 0 ≤ X ≤ 1 while the mn
additional variables necessary to express the constraint ||M − MX||1 ≤ 2ǫ linearly will be in the
interval [0, 2ǫ]. Therefore, Lemma 7 applies to (2).

Proof of Theorem 4. We prove the result with the following construction: Let

W =

(
κ
2 Ir

(1− κ
2)e

T

)

,

which is κ-robustly conical. Let also

H =
(

Ir βIr + (Er − Ir)
1−β
r−1

)

,

so that maxi,j H
′
ij = β (note that β must be larger than 1

r since the columns of H ′ sum to one), N = 0,

M̃ = WH +N , p = (1, 2, 3, . . . , r − 1,−K,−1,−2, . . . ,−(r − 1),−K2)T for K sufficiently large, and

ǫ =
κ(1− β)

(r − 1)(1 − β) + 1
≤

κ

r − 1
.

Assume that

X =

(1− δ)Ir−1 +
δ−ω
r−1 Jr−1 0 (1− δ)

(

βIr−1 +
1

r−1Jr−1

(
1−ω
1−δ − β

))

0

δ−ω
r−1 e

T 1 1−δ
r−1

(
1−ω
1−δ − β

)

eT 0

ωIr−1 0 ωIr−1 0
0 0 0 1

19

where Jr−1 = Er−1 − Ir−1,

δ = (2− β)ω and ω =
ǫ

κ(1 − β)
, implying X(n, n) = ω + (r − 1)(δ − ω) = 1,

is a feasible solution of (2) (note that n = 2r). By Lemma 7, there exists K sufficiently large such that
any optimal solution X∗ must satisfy X∗(n, n) = 1. Using Lemma 7 again, there exists K sufficiently
large such that X∗(r, r) = 1. Therefore, for K sufficiently large, the rth and nth column of M̃ will be
extracted implying

||W − W̃ (:, P)||1 = min
1≤j≤r−1

||W (:, j) −M(:, n)||1

= ||W (:, 1) −M(:, n)||1 = κ
r − 2 + β

r − 1
>

r − 2

r − 1
κ ≥ ǫ,

and the proof will be complete.
It remains to show that X is feasible: Clearly, tr(X) = r. For the constraints 0 ≤ X ≤ 1, we check

that

0 ≤ ω =
ǫ

κ(1 − β)
=

1

r(1− β) + 1
≤ δ = (2− β)ω =

(1− β) + 1

r(1− β) + 1
≤ 1,

and

0 ≤
1

r − 1

(
1− ω

1− δ
− β

)

≤ 1 since
1− ω

1− δ
=

r − 1

r − 2
≥ 1.

For X(i, j) ≤ X(i, i) for all i, j, we only have to check that

1− δ ≥
δ − ω

r − 1
⇐⇒ (r − 1)(r − 2)(1 − β) ≥ (1− β).

It remains to verify that ||M(:, j) −MX(:, j)||1 ≤ 2ǫ for all 1 ≤ j ≤ 2r:

• 1 ≤ j ≤ r − 1. Letting J = {1, 2, . . . , r}\{j}, we have

||M(:, j) −MX(:, j)||1 =

∥
∥
∥
∥
M(:, j) − (1− δ)M(:, j) −

δ − ω

r − 1
M(:, j + r)

∥
∥
∥
∥
1

=

∥
∥
∥
∥
δM(:, j) − ωM(:, j + r)−

δ − ω

r − 1
M(:,J)e

∥
∥
∥
∥
1

= ω ‖M(:, j) −M(:, j + r)‖1

+ (δ − ω)

∥
∥
∥
∥
M(:, j) −

1

r − 1
M(:,J)e

∥
∥
∥
∥
1

= ωκ(1− β) + (δ − ω)κ = 2ωκ(1− β) = 2ǫ.

• r + 1 ≤ j ≤ 2r − 1. Letting R = {1, 2, . . . , r}\{j − r} and wj = W (:,R) e
r−1 , we have

||M(:, j) −MX(:, j)||1

= ‖M(:, j) − ωM(:, j) − (1− δ)βW (:, j − r)− (1− ω − β(1 − δ))wj‖1

= (1− ω)

∥
∥
∥
∥
M(:, j) −

r − 2

r − 1
βM(:, j − r)−

(

1− β
r − 2

r − 1

)

wj

∥
∥
∥
∥
1

= (1− ω)

∥
∥
∥
∥
M(:, j) −

(

1−
1

r − 1

)

βW (:, j − r)−

(

1− β + β
1

r − 1

)

wj

∥
∥
∥
∥
1

=
β(1− ω)

r − 1
‖W (:, j − r)− wj‖1 =

β(1− ω)κ

r − 1
≤

(1− ω)κ

r

=
(r − 1)(1 − β)κ

r((r − 1)(1 − β) + 1)
≤

(1− β)κ

(r − 1)(1 − β) + 1
= ǫ,

In fact, 1−δ
1−ω = r−2

r−1 , β ≤
1
r , and, by construction, M(:, j) = βW (:, j − r) + (1− β)wj .

20

C Proof of Theorem 7

Proof of Theorem 7. We prove the result with the following construction: Let

W =

κ
2 Ir

(1− κ
2)e

T

0r×r

 , H =

(
Ir−1 0 λIr−1

1
r−1e

0 1 (1− λ)eT 0

)

,

where λ = 2 ǫ
κ ,

N =

0(r+1)×r 0(r+1)×1 0(r+1)×(r−1) 0(r+1)×1

ǫeT 0 01×(r−1) ǫ

0(r−1)×(r−1) 0(r−1)×1 Z 0(r−1)×1

 ,

where Z = xIr−1 + y(Er−1 − Ir−1) with x = 1
r−1ǫ and y = −x

r−2 . The matrix Z has been constructed

so that ||Z(:, j)||1 ≤ ǫ for all j,
∑

j Z(i, j) = 0 for all i, and
∥
∥
∥M̃(:, j) − 1

r−1M̃(:,I)e
∥
∥
∥
1
= 2ǫ for all

j ∈ J = {r + 1, r + 2, . . . 2r − 1} and I = J \{i}. Let also M̃ = WH +N ,

κ

(r − 1)2
< ǫ ≤

κ

2(r − 1)
so that λ ≤

1

r − 1
,

and
p = (1, 2, . . . , r − 1,K3,K2,K2 + 1, . . . ,K2 + r − 1,−K)T ,

for K sufficiently large. Assume

X =

(1− 2ǫ
κ)Ir−1 0 λ r−2

r−1Ir−1

(

1− 2ǫ(r−1)
κ

)

eT

0 0 0 0
0 1

r−1e
1

r−1Er−1 0
2ǫ
κ e

T 0 0 (r − 1)2ǫκ

,

is feasible for (2). Letting X∗ be any optimal solution, by Lemma 7, there exists K sufficiently
large such that X∗(r, r) = 0. By Lemma 8 (see below), this implies that X∗(j, j) ≥ 1

r−1 for j ∈ J .

Using Lemma 7 again, we have that for K sufficiently large X∗(j, j) = 1
r−1 for all for j ∈ J , and

X∗(n, n) ≥ (r − 1)2ǫκ . Therefore, since

2ǫ(r − 1)

κ
>

1

r − 1
⇐⇒ ǫ >

κ

2(r − 1)2
,

and

1−
2ǫ

κ
>

1

r − 1
⇐⇒ ǫ <

(
r − 2

r − 1

)
κ

2
≤

κ

4
,

the first r − 1 columns and the last column of M̃ will be extracted so that

||W − W̃ ||1 = ||W (:, r)− M̃(:, n)||1 = κ+ ǫ,

and the proof will be complete.
It remains to show that X is feasible. We clearly have tr(X) = r, 0 ≤ X ≤ 1, and X(i, j) ≤ X(i, i)

for all i, j because ǫ ≤ κ
2(r−1) while, for ||M̃(:, j) − M̃X(:, j)||1 ≤ 2ǫ for all j, we have

• 1 ≤ j ≤ r − 1.

||M̃ (:, j) − M̃X(:, j)||1 =
2ǫ

κ
||M̃ (:, j) − M̃(:, n)||1 = 2

r − 2

r − 1
ǫ ≤ 2ǫ.

21

• j = r. This follows from Lemma 8.

• r + 1 ≤ j ≤ 2r − 1. This follows from the construction of matrix Z.

• j = 2r. M̃(:, j) = M̃X(:, j) since M̃(:, j) = 1
r−1W (:, 1:r − 1)e.

Lemma 8. Let W,H,N and M̃ = WH + N be the matrices constructed in Theorem 7. Let also
R = {1, 2, . . . , n}\{r}. Then

min
x≥0
||M̃(:, r)− M̃(:,R)x||1 = 2ǫ, (13)

and the unique optimal solution of (13) is given by

x† =

0(r−1)×1
1

r−1e

01×1

 ∈ R
2r−1.

Proof. Let x∗ = (y, z, w) be an optimal solution of (13) where y, z ∈ R
r−1
+ and w ∈ R+. We have to

show that x∗ = x†. From x∗, let us construct another optimal solution x′ = (y′, z′, 0) such that all
the entries of y′ and z′ are equal to each other. Because M̃(:, n) = 1

r−1M̃(:, 1:r − 1)e, we take w = 0,
replace z ← z + w

r−1 and obtain an equivalent solution. Let us denote R̄ = R\{n} and

g(y, z) =

∥
∥
∥
∥
M̃(:, r)− M̃(:, R̄)

(
y

z

)∥
∥
∥
∥
1

.

By symmetry, one can check that g(y, z) = g(y(P), z(P)) for any permutation P of {1, 2, . . . , r − 1}
(this simply amounts to permuting the first and last r−1 columns of M(:, R̄)). By convexity, (y′, z′) =
1
|Π|

∑

P∈Π(y(P), z(P)), where Π is the set of all possible permutations of {1, 2, . . . , r − 1}, is also an

optimal solution of (13) hence all entries of y′ and z′ are equal to each other, and ||y′||1 = ||y||1 and
||z′||1 = ||z||1.

Therefore, denoting y′(i) = a
r−1 and z′(i) = b

r−1 for all 1 ≤ i ≤ r − 1, the optimization problem
(13) can be reduced to

min
a,b≥0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0(r−1)×1
κ
2

1− κ
2

0
0(r−1)×1

− a

κ
2(r−1)e

0
1− κ

2
ǫ

0(r−1)×1

− b

λκ
2(r−1)e

(1− λ)κ2
1− κ

2
0

0(r−1)×1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1

(14)

≡ min
a,b≥0

h(a, b) =
κ

2
|a+ λb|+

κ

2
|1− (1 − λ)b|+

(

1−
κ

2

)

|1− a− b|+ ǫ |a| .

Let us show that (a∗, b∗) = (0, 1) is the unique optimal solution, for which h(0, 1) = κλ = 2ǫ. First,
note that (0, 0) cannot be optimal since h(0, 0) = 1. For a + b > 1, the subdifferential of h in a is
larger than 1− ǫ > 0, while, for 0 < a+b < 1, the subdifferential of h in b is κλ−1 = 2ǫ−1 < 0 (recall
that λ = 2ǫ

κ , ǫ ≤
κ

2(r−1) , κ ≤ 1, and r ≥ 3) hence a∗ + b∗ = 1 at optimality. Substituting a = 1 − b
above, we obtain

b∗ = argmin0≤b≤1 2|1 − (1− λ)b| = 1,

which is unique as the slope at b = 1 is negative (since 0 ≤ λ ≤ 1/2).
Finally, we have b∗ = 1, a∗ = 0 is the unique solution of (14) implying that y′ = y = 0 and that the

minimal objective function value of (13) is 2ǫ. Moreover, this implies ||z′||1 = ||z||1 = 1. It remains

22

to show that the entries of z are equal to each other, that is, show that the unique solution to the
following system

∥
∥
∥
∥
∥
∥

0(r−1)×1
κ
2

0(r−1)×1

−

λκ
2 Ir−1

(1− λ)κ2
Z

 z

∥
∥
∥
∥
∥
∥
1

= 2ǫ,

is z∗ = 1
r−1e, which is clearly the case as the only z such that Zz = 0 and ||z||1 = 1 is z∗. This

completes the proof.

References

[1] S. Arora, R. Ge, R. Kannan, and A. Moitra, Computing a nonnegative matrix factorization
– provably, in Proceedings of the 44th symposium on Theory of Computing, STOC ’12, 2012,
pp. 145–162.

[2] S. Arora, R. Ge, and A. Moitra, Learning topic models - going beyond svd, in Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS ’12, 2012,
pp. 1–10.

[3] V. Bittorf, B. Recht, E. Ré, and J.A. Tropp, Factoring nonnegative matrices with linear
programs, in Advances in Neural Information Processing Systems 25, 2012, pp. 1223–1231.

[4] E. Elhamifar, G. Sapiro, and R. Vidal, See all by looking at a few: Sparse modeling for
finding representative objects, in IEEE Conference on Computer Vision and Pattern Recognition,
2012.

[5] E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, A convex model for nonnegative
matrix factorization and dimensionality reduction on physical space, IEEE Transactions on Image
Processing, 21 (2012), pp. 3239–3252.

[6] N. Gillis and R. Luce, Robust near-separable nonnegative matrix factorization using linear
optimization. arXiv:1302.4385, 2013.

[7] N. Gillis and S.A. Vavasis, Fast and robust recursive algorithms for separable nonnegative
matrix factorization. arXiv:1208.1237, 2012.

[8] A. Kumar, V. Sindhwani, and P. Kambadur, Fast conical hull algorithms for near-separable
non-negative matrix factorization, in International Conference on Machine Learning (ICML),
2013.

[9] D.D. Lee and H.S. Seung, Learning the parts of objects by nonnegative matrix factorization,
Nature, 401 (1999), pp. 788–791.

[10] S.A. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. on Optimization,
20 (2009), pp. 1364–1377.

23

	1 Introduction
	1.1 Hottopixx: a Linear Programming Model for Separable NMF
	1.2 Conditioning and -Robustly Conical Matrices
	1.3 Contribution and Outline of the Paper
	1.4 Notation

	2 Analysis without Duplicates nor Near Duplicates
	3 Dealing with Duplicates and Near Duplicates using Post-Processing
	3.1 Preliminary Necessary Conditions
	3.2 Cluster Identification
	3.3 Repartition of the Weights inside a Cluster
	3.4 Comparison with the Algorithm of Arora et al. AGKM11

	4 Numerical Experiments
	5 Conclusion and Further Work
	A Proof of Theorem ??
	B Proof of Theorem ??
	C Proof of Theorem ??

