$$
\begin{aligned}
& 1-\sqrt{r} r^{r} \quad \sqrt{r}-r \sqrt{r} r \sqrt{r} \\
& \frac{r \sqrt{r}+r \sqrt{r}}{\partial-\sqrt{4}} \times \frac{\partial+\sqrt{4}}{\partial+\sqrt{4}}=\frac{19 \sqrt{r}+19 \sqrt{r}}{r \partial-4}=\sqrt{r}+\sqrt{r}, \\
& \frac{1}{\sqrt{r}-1} \times \frac{\sqrt{r}+1}{\sqrt{r}+1}=\frac{\sqrt{r}+1}{r} \quad \longrightarrow(\sqrt{r}+\sqrt{r})-\vec{r}-1 \\
& =\sqrt{r}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vris/ Vкir VIN VTI } \\
& \{1\},\{r, r, 6\},\{d, 4, \vee, \wedge, 9\}, f(1 \cdot, 11,1 r, 1 r, 1 \varepsilon, 10,17\} \\
& \text { nsl } \\
& n_{-r} \\
& \eta_{-1} \mathcal{E}
\end{aligned}
$$

$$
\begin{aligned}
& p(1)= \\
& p(-1)=\text {. } \\
& Q(Y)=? . \Rightarrow Q(Y)=P(1)+P(-1)=0+0 \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& -1 r^{r} \quad-\frac{\Delta}{r} 1^{r} \\
& S=\frac{1}{P} \Rightarrow \frac{-(r m-1)}{r}=\frac{r}{r-m} \Rightarrow \\
& (-r m+1)(r-m)=9 \Rightarrow-r_{m}+r_{m}{ }^{r}+r-m=9 \Rightarrow r_{m}^{r}-\gamma_{m}-V=0 \Rightarrow r^{m=-1} \\
& m=-1 \Rightarrow r^{r}-r x+r=n \rightarrow x^{r}-x+1 \Rightarrow \Delta<-x
\end{aligned}
$$

(

$$
y=a x^{r}+b x+d
$$

$$
(1,11) \Rightarrow 11=a+b+0 \Rightarrow a+b=4 \Rightarrow\left\{\begin{array}{l}
Y a=+1 r \Rightarrow a s+\psi \\
b
\end{array}\right.
$$

$$
(-r, 0) \Rightarrow b=f a-r b+0 \Rightarrow r a-r b=0
$$

$$
\left.y_{5} r x^{r}+\varepsilon n+c\right) \Rightarrow f(-1)=r-\varepsilon+\partial=r
$$

屏

$\left\langle\sqrt{12} x^{5}\right.$
$4 \sqrt{1 .} 1^{r}$
$\sqrt[5]{1015}$
$4 \sqrt{v} 1$
$\sqrt{x-11}+r=\sqrt{x} \stackrel{95}{\Rightarrow} x=14$

$$
O A=\sqrt{(14)^{r}+F^{r}}=\sqrt{F^{r} F^{r}+f^{r}}
$$

$$
O A_{5} \sqrt{F^{r}(I V)}=\varepsilon \sqrt{V}
$$

(rn-r|<rx

$$
\begin{aligned}
& g(x)=f^{-1}(x)
\end{aligned}
$$

 ? نَ

$$
\left.\begin{array}{rl}
(a,-a) \in f^{-1} \Rightarrow & (-a, a) \in f \\
& a=-a+\frac{r}{a} \Rightarrow
\end{array}\right)
$$

$$
\begin{aligned}
& \frac{\log ^{r}}{r \log r^{r}} 5 \cdot \Lambda \Rightarrow \log r^{r}=1,4 \log ^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{1} \\
& \rightarrow 4 \\
& f_{(x)}
\end{aligned}
$$

$$
f f\left(-\frac{\partial}{r}\right) \cdot E \| f(x)=-r+r^{a x+b}
$$

$$
\begin{aligned}
& \left.A\right|_{-r} ^{0} \Rightarrow-r^{r}=-r_{r}^{b} \Rightarrow r_{s}^{b} \Rightarrow r_{s 1} \\
& \left.B\right|_{0} ^{-\frac{1}{P}} \Rightarrow=-r^{-\frac{a}{p}+1} \Rightarrow-\frac{Q}{p+1}=r \\
& \text { as (} \\
& \text { Fn (} \text { V }^{\prime \prime} \\
& -\frac{a}{p}=1 \rightarrow a a_{5}-p
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=-r+r \\
& f\left(\frac{\partial}{r}\right)=-r+r+r\left(r-\frac{p}{r}\right)+1 \\
& =-\varepsilon+r^{4}=4 \varepsilon-r=40
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? = كr, } f^{-1}(r) \\
& \log _{r}(1+\sqrt{r}) r^{r} \log _{r}(r+\sqrt{r}, r) \quad \log _{r}(r-\sqrt{r}) r^{r} \quad \log _{r}\left(\sqrt{r^{r}-1}\right) \\
& \frac{r^{x}+r^{-x}}{r}=r \Rightarrow t+\frac{1}{t}=r \Rightarrow t^{r}-r t+1 s 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (0, تَ }
\end{aligned}
$$

$$
\begin{aligned}
& \tan \left(\frac{d \pi}{\mu}\right) \cos \left(\frac{v \pi}{4}\right)+\tan \left(\frac{9 \pi}{\mu}+\frac{\pi}{4}\right) \sin \left(9 \ldots-\frac{4}{}\right) \\
& (-\sqrt{\mu})\left(-\frac{\sqrt{r}}{r}\right)+(-\sqrt{r})\left(\frac{\sqrt{r}}{r}\right)=\text { ju }
\end{aligned}
$$

$$
\begin{align*}
& y=a+b \cos x \tag{11}\\
& y_{\text {max }}=a_{+}|b|=r \stackrel{b<a}{\Rightarrow} a-b_{5} r^{r} \\
& y\left(\frac{v_{x}}{r}\right)=0 \Rightarrow 0=a+b\left(\frac{l}{r}\right) \Rightarrow a=\frac{-b}{r} \\
& -\frac{b}{r}-b_{s} r \Rightarrow-\frac{r}{r} b-r
\end{align*}
$$

$$
\begin{aligned}
& T=\frac{9 \pi}{r}+\frac{r_{\pi}}{r}, \frac{r_{\pi}}{r}=4 \pi \\
& \frac{r x}{|b|}=4 \alpha \Rightarrow|b|=\frac{r}{r} \\
& c=\frac{y_{\text {max }}+y_{\text {min }}}{r}=\frac{1-r}{r}=-1 \\
& y_{\text {max }}=|a|+C=1 \Rightarrow|a|=r \\
& y_{\text {min }}=-|a|+C=-r \Rightarrow-|a|=-r \rightarrow|a|, r
\end{aligned}
$$

k ir $x \neq k \pi$

$$
\begin{aligned}
& b_{r}^{\prime}! \\
& \left.-x-\frac{\pi}{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{r}{c} r \quad-\frac{\partial}{r} l^{\prime} \\
& f_{(Y) s}^{\prime} r\left(\frac{\frac{4}{r \alpha r^{r}}(r)-(r)(r)}{F}\right)\left(\frac{r}{r}\right)=r\left(\frac{1-4}{r}\right)=\frac{-10}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { べは } \\
& \text { av (' } \\
& 00000000
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{r_{n}} \frac{1}{04} r^{r} \\
& \frac{1}{1 \varepsilon} r \\
& \frac{1}{4} l^{\prime} \\
& n(s)=\Lambda! \\
& n(A)=Y!x d!x Y \\
& 5 \sin \cdot 5 \\
& \text { [rint }
\end{aligned}
$$

$$
\begin{aligned}
& \text { adartalab_math }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{1+F F+4 \lambda}{14}=\frac{19 r}{14}=1 Y \\
& 710 y \\
& \text { - 小先 } \\
& \sigma^{r}=\frac{\partial(r)^{r}+f(1)^{r}+v(r)^{r}}{14}=\frac{r_{0}+r^{r}+r \lambda}{14}=\frac{\partial r}{14} \\
& c v=\frac{\frac{\sqrt{1 r}}{r}}{1 r}=\frac{\sqrt{14}}{1 R^{2}}=2 /(a) \\
& \text { - Jレに }
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{v} p_{0}^{\prime} & \frac{r A}{\omega}+r+f \\
= & \Lambda+d+\frac{r}{d} \\
= & 1 r+y=1 r, 4
\end{aligned}
$$

$$
15,4, y
$$

$$
1 r_{1} r \mid
$$

$1 \varepsilon \wedge r^{r}$ $1 \varepsilon, \varepsilon \leqslant$

