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Abstract—A diagnostic scheme for actuator faults which can
occur on a robot manipulator using a model-based Fault Di-
agnosis (FD) technique is addressed. With the proposed FD
scheme it is possible to detect a fault, which can occur on
a specific component of the system. To detect actuator faults,
higher order sliding mode Unknown Input Observers (UIO) are
proposed to make analytical redundancy. The observers input
laws are designed according to the so-called Super-Twisting
Second Order Sliding Mode Control (SOSMC) approach and
they are proved to be capable of guaranteeing the exponential
convergence of the fault estimate to the actual fault signal. The
proposed approach is verified in simulation and experimentally
on a COMAU SMART3-S2 robot manipulator.

I. INTRODUCTION

The electromechanical components of an automatic system

are subject to the occurrence of faults. Faults can be caused by

particular environmental conditions such as the temperature,

the presence of objects in the workspace of the system, usage,

bugs in programming, electrical disturbances or unexpected

events. The faults can occur in an unpredictable way on a

particular component of the system. Some kind of faults can

cause critical injuries to the plant operators and to the plant

itself. Then, it is fundamental to assure the capability of the

diagnostic system to make a prompt detection of these events

possible [1]–[3].

The presence of a fault can be modeled as an unexpected

change in the system parameters or as the presence of un-

known signals in the plant. In a robot manipulator, a fault

can occur on a specific actuator, on a specific sensor or on

a mechanical component of the system. The occurrence of

actuator and sensor faults are more frequent, because of the

presence of electrical devices, which may be subject to many

possible criticalities.

Diagnostic devices are introduced to generate online di-

agnostic signals which are useful to detect and isolate the

fault presence. The diagnostic signals useful to detect the

presence of a fault are usually called residual signals. These

signals are obtained from the applied system inputs and the

measurements. Residual generators are typically based on

observers (see, for instance, [4]–[6]). However, noise and

uncertainties can reduce the performances of the observers.

Particular techniques are adopted in order to overcome this

drawback, such as the use of linear filters [6], generalized mo-

menta, see [7], [8], or Kalman filters [9]. These techniques, in

the presence of uncertainties typical of practical applications,

cannot guarantee an exact convergence of the observer state to

the system state. To reduce this problem, sliding mode based

techniques are also frequently adopted to accomplish the state

observation [10]–[12] because of their design simplicity and

robustness features. Usually, the Fault Diagnosis (FD) can be

dealt with by combining multiple sliding mode observers [6],

[13]–[15].

In this paper, a fault diagnosis scheme to deal with actuator

faults in robot manipulators is presented. It is based on

Unknown Input Observers (UIO) (see [11], [16], [17]) to

detect and identify actuator faults. Robustness of the observers

is enhanced by considering as input law of each observer

a second order sliding mode law, in particular of Super-

Twisting type [17]. It can be proved that with this input law,

a second order sliding manifold can be reached in finite time,

in spite of the uncertainties. As a consequence, the finite time

convergence to zero of the observation errors is theoretically

guaranteed, which implies the exponential convergence of the

fault estimate to the actual fault signal.

Simulation and experimental results are presented in the

paper. Comparisons between the results obtained with the pro-

posed scheme and those obtained by applying the Fault Detec-

tion scheme proposed in [18] are also presented. Simulations

are based on the identified model of a COMAU SMART3-S2

robot manipulator developed in [19], while experiments are

made directly on the robot itself.

II. THE CONSIDERED FAULT SCENARIOS

In this paper, the case of faults occurring on the inputs of

a robot manipulator is considered. In this situation, the real

torque applied by the actuators is unknown. That is, τ ∈ R
n

being the nominal torque calculated by the robot controller,

while ∆τ ∈ R
n being the input fault, the actual torque vector

which is the input of the robotic system, can be expressed as

τ (t) = τ(t) + ∆τ(t) (see Fig. 1). In practice, faults can be

caused by a damage that can occur on power supply systems,

or actuator mechanisms, or wirings (but we will not distinguish

among them).
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Fig. 1. The proposed FD scheme for actuator faults.

III. THE MANIPULATOR MODEL

In absence of faults, the dynamics of a n-joints robot

manipulator can be written in the joint space, by using the

Lagrangian approach, as

τ = B(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = B(q)q̈ + n(q, q̇) (1)

(see [20]) where q ∈ R
n is the generalized coordinates

vector, B(q) ∈ R
n×n is the inertia matrix, C(q, q̇)q̇ ∈ R

n

represents centripetal and Coriolis torques, Fv ∈ R
n×n is

the viscous friction diagonal matrix, and g(q) ∈ R
n is the

vector of gravitational torques. In this paper, it is assumed

that the term n(q, q̇) in (1) can be identified, while the term

B(q) is regarded as known. Now, introducing the variables

χ1(t) = q(t), χ2(t) = q̇(t), model (1) can be rewritten in the

state space representation as




χ̇1(t) = χ2(t)

χ̇2(t) = f(τ(t), χ1(t), χ2(t))

h(t) = χ1(t)

(2)

where the term f(τ(t), χ1(t), χ2(t)) is obtained after simple

algebraic manipulation of (1), i.e.,

f(τ(t), χ1(t), χ2(t)) = B−1(χ1(t)) (τ(t) − n(χ1(t), χ2(t))) .
(3)

As previously mentioned, when faults affect the actuators, the

input torque for the mechanical system is different from τ(t).
Then, in case of input faults, (1) becomes

τ(t) + ∆τ(t) = B(χ1(t))χ̇2(t) + n(χ1(t), χ2(t)) (4)

and, as a consequence, the state space representation is




χ̇1(t) = χ2(t)

χ̇2(t) = f(τ(t) + ∆τ(t), χ1(t), χ2(t))

q(t) = χ1(t)

(5)

where f(τ(t) + ∆τ(t), χ1(t), χ2(t)) is analogous to (3).

In practice, model (3) is not exactly known and must be

identified. Then, in case of faults, the following relationship

holds

f(χ1(t), χ2(t)) = B−1(χ1(t))(τ(t) + ∆τ(t)

− n̂(χ1(t), χ2(t))− η(t)),

η(t) = n(χ1(t), χ2(t))− n̂(χ1(t), χ2(t))

(6)

where η(t) is uncertain and n̂(q, q̇) is the known part of the

model. Yet, by virtue of the particular application considered,

η(t) can be assumed to be bounded. Obviously, to perform

fault diagnosis, one has to rely only on the known part of

model (3). Indeed, after a suitable identification procedure,

such as the one proposed in [19], it is possible (in absence

of faults) to determine only an approximated representation of

f(·), i.e.

f̂(τ(t), χ1(t), χ2(t)) = B−1(χ1(t))(τ(t) − n̂(χ1(t), χ2(t)))
(7)

so that the actually usable model is




χ̇1(t) = χ2(t)

χ̇2(t) = f̂(τ(t) + ∆τ(t), χ1(t), χ2(t))

q(t) = χ1(t).

(8)

IV. THE PROPOSED DIAGNOSTIC SCHEME

By relying on the so-called Unknown Input Observer (UIO)

approach [11], efficient estimators of the input torques can be

designed [3], [21]. In this paper, we propose to detect the

actuator faults by means of UIOs of sliding mode type. The

proposed UIOs can be jointly described as a multi-input-multi-

state second order sliding mode observer, as shown in the next

subsection.

A. Observer Design

Let us consider the observer{
˙̂χ1(t) = χ̂2(t) + z1(t)

˙̂χ2(t) = f̂(τ(t), χ1(t), χ̂2) + z2(t)
(9)

where χ̂1(t), χ̂2 ∈ R
2n are the observer states, and z(t) =

[z1(t), z2(t)]
T is an auxiliary input signal, which is designed

relying on the sliding mode approach, as will be clarified.

This signal is introduced in order to guarantee the convergence

of the observer states to the actual state of the system. Each

component of z(t) is an input law of the observer.

B. Dynamics of the Observer Error

The proposed fault diagnostic scheme requires to steer to

zero the signal e(t) = [e1(t), e2(t)]
T ∈ R

2n, the components

of which are given by
{
e1(t) = χ1(t)− χ̂1(t)

e2(t) = χ2(t)− χ̂2(t).
(10)

2104

 

 

 



By steering to zero these quantities, it is possible to guarantee

that the observer (9) gives a good estimation of the unknown

input, as it will be shown in the following.

The dynamics of the error variable e(t) is represented by a

second order dynamical system,




ė1(t) = e2(t)− z1(t)

ė2(t) = f(τ(t), χ1(t), χ2(t))

− f̂(τ(t) + ∆τ(t), χ1(t), χ̂2(t))− z2(t)

(11)

which can be rewritten as
{
ė1(t) = e2(t)− z1(t)

ė2(t) = B−1(χ2(t))(∆τ(t) − η(t)) − z2(t).
(12)

Now, two different Second Order Sliding Mode approaches

are studied to design the multi-input-multi-state UIO input law.

The first approach is the so-called Super-Twisting [17], while

the second approach is based on the so-called Sub-Optimal

algorithm. More precisely, the second approach is applied to

have the possibility of making a performance comparison. The

two proposals will be depicted in the next subsections.

C. Super-Twisting based Observer

The design of the observer input laws which are the compo-

nents of z(t) = [z1(t), z2(t)]
T

using a Super-Twisting based

approach (see [17]) is given by
{
z1(t) = λ

√
|s′(t)|sign(s′(t))

z2(t) = αsign(s′(t))
(13)

where s′(t) = e1(t) = χ1(t) − χ̂1(t). It can be proved that a

suitable choice of λ and α exists such that, starting from any

initial condition [e1(0), e2(0)]
T , the condition

{
e1(t) = 0

e2(t) = 0
(14)

is guaranteed in finite time (the proof of this claim can be

developed as in [17]). To implement the proposed procedure,

the terms α and λ have been choosen after an experimental

tuning procedure. Note that the term z2(t) is a discontinuous

signal and, by virtue of the filtering action considered in [22],

the second equation of the system (12) can be rewritten as

z2eq(t) = B−1(χ2(t))(∆τ(t) − η(t)) (15)

where z2eq(t) is the equivalent input signal corresponding to

the discontinuous signal z2(t), see [23]. Thus, theoretically, the

equivalent input signal is the result of an infinite switching

frequency of the discontinuous term αsign(s′(t)). In fact,

the implementation of the observer produces high switching

frequency (since, in practice, one can only implement z2(t)
as in (13) and not z2eq(t)) making necessary the application

of a filter to obtain useful information from signal z2(t). The

filter has to eliminate the high frequency components of such

a signal. It can be of the form

p
·

zeq(t) + zeq(t) = z2(t). (16)

Indeed, in [24] and [25], it was shown that

lim
p→0

zeq(t) = z2eq(t), p ∈ R

Then, by taking a small p it is possible to assume that the

equivalent input law (15) is similar to the output of the filter.

D. Sub-Optimal Algorithm based Observer

The observer input laws of Sub-Optimal type are given by




z1(t) = 0

ż2(t) = α′WMAXsign {s′′(t)− 0.5s′′MAX}

z2(0) = 0

(17)

where s′′(t) = e2(t)+βe1(t) is the sliding variable and, in this

case, s′′MAX represents the last extremal value of the sliding

variable s′′(t), and β > 0. It can be proved that a suitable

choice of α′WMAX exists such that the Sub-Optimal input

laws guarantee the exponential stability of the tracking error

of this observer (the proof of this claim can be developed as

in [26]). Also in this case, in practice, α′ and WMAX are

choosen relying on an experimental tuning procedure.

E. Residual Generation for Actuator Faults

The residual signal considered for fault diagnosis is obtained

in both cases from the input law z2(t).
Let the following 5th order low-pass filter be introduced (s

is the Laplace operator)

F(s) =
b

1− as−1 − as−2 − as−3 − as−4 − as−5
. (18)

The residual signal useful to detect actuator faults is given

by

ri(t) =

{
0 if | ℓ(t) ∗B(q(t))z2i(t) |< Ti

1 if | ℓ(t) ∗B(q(t))z2i(t) |> Ti

∀ i (19)

where ℓ(t) indicates the impulse response of F(s), ∗ indicates

the convolution product, and Ti are suitable thresholds chosen

on the basis of the amplitude of the noise which is present on

the system. More specifically, the maximum amplitude of the

typical noise signal has been estimated during the experiments

and the thresholds have been determined so as to slightly

overcome this amplitude.

F. Identification of the Actuator Faults Signals

The input signal z2(t), independently of the type of the

observer adopted, between the two proposals previously de-

scribed, is useful also to give an estimation of the shape of

the fault signal ∆τ . That is, the estimation ∆̂τ of the input

fault ∆τ is given by

∆̂τ = ℓ(t) ∗B(q(t))z2(t) (20)

and z2i(t) can be obtained from both (13) or (17).

The following theorems are proved.

Theorem IV.1 (Convergence of the ∆̂τ to ∆τ by using the

Super-Twisting input laws). Using the input laws (13) in the

observer (9), a choice of the terms α and λ exists such that the
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condition [e1(t), e2(t)]
T = 0, 0 being the null vector ∈ R

2,

is reached in finite time. Then, in absence of noise η(t), the

signal ∆̂τ converges to ∆τ exponentially.

Proof: The proof that the condition [e1(t), e2(t)]
T = 0

is achieved in finite time can be developed as in [17] (see

Theorem 1). Once the condition

e2(t) = χ2(t)− χ̂2(t) = 0 (21)

is established, one has also that, by virtue of the existence of

the so-called equivalent control, which is obtained by filtering

z2(t) in (20) with the filter (18) (see [24], [22], and [25]), the

signal ∆̂τ converges to ∆τ exponentially.

A similar result can be established for the Sub-Optimal input

law (17).

Theorem IV.2 (Convergence of the ∆̂τ to ∆τ by using the

Sub-Optimal input laws). Using the input laws (17) in the

observer (9), a choice of the terms WiMAX and α∗ exists such

that the observer error state vector [e1(t), e2(t)]
T reaches the

origin exponentially. Then, in absence of noise η(t), the signal

∆̂τ converges to ∆τ exponentially.

Proof: The proof that the condition [e1(t), e2(t)]
T = 0 is

achieved exponentially can be developed as in [26] and [27]

(see theorems 1 and 2, respectively). Since

lim
t→∞

e2(t) = 0 (22)

i.e.,

lim
t→∞

χ2(t)− χ̂2(t) = 0 (23)

one has also that

lim
t→∞

χ̇2(t)− ˙̂χ2(t) = 0 (24)

then,

lim
t→∞

z2(t) = B−1(q(t))∆τ(t). (25)

Finally, by using the filter (18), one has

∆̂τ (t) → ∆τ(t) (26)

V. A CASE STUDY

A. The considered manipulator

The fault diagnosis technique described in this paper has

been experimentally verified on a COMAU SMART3-S2 an-

thropomorphic rigid robot manipulator which is a classical

example of industrial manipulator (see Fig. 2). It consists of

six links and six rotational joints driven by brushless electric

motors.

For the sake of simplicity during the experiments the robot

has been constrained to move on a vertical plane. Then, it

is possible to consider the robot as a three link-three joint, in

the sequel numbered as {1, 2, 3}, planar manipulator (see Fig.

2). Yet, the method proposed in this paper holds for n-joints

robots even of spatial type.

Fig. 2. The SMART3-S2 robot and the three link planar manipulator.

The controller has a sampling time of 0.001[s], a 12 bit D/A

and a 16 bit A/D converters. The joints positions are acquired

by resolvers fastened on the three motors, holding mechan-

ical reducers with ratio {207, 60, 37} respectively, while the

maximum torques are {1825, 528, 71}[Nm].

B. Parameters identification

The adopted identification procedure is based on the Maxi-

mum Likelihood (ML) approach, as explained in [19] (in the

absence of faults). To perform the identification, the dynamical

model (1) can be written in the following form

Y = Φ(q, q̇, q̈)θo + V (27)

where the nonlinear matrix function Φ(·) ∈ R
3N×9 represents

model (1) in a parametrized linear form, N being the number

of sampled data, and 3 being the number of the considered

joints. The term θo = [γ1 . . . γ9]
T , γi ∈ R, represents the

unknown parameter vector to be estimated, while Y ∈ R
3N is

the torque applied by the actuators, and V ∈ R
3N is the noise

acting on Y , which is the input of the robotic system. The

parametrization of θo is shown in Table I, see [19], while

in Table II the values of the identified parameters for the

considered robot are reported (expressed in SI units).

Parameter Meaning

γ1 m3b
2

3
+ J3

γ2 J3 +m3(l22 + b2
3
) + J2 +m2b

2

2

γ3 J3 +m3(l21 + l2
2
+ b2

3
)+

J2 +m2(l21 + b2
2
) + J1 +m1b

2

1

γ4 m1b1 +m2l1 +m3l1
γ5, γ6 m2b2 +m3l2, m3b3

γ7, γ8, γ9 Fv1, Fv2, Fv3

TABLE I
PARAMETRIZATION OF THE MANIPULATOR MODEL.

θML γ1 γ2 γ3 γ4 γ5
E[θML] 0.297 10.07 87.91 57.03 9.21
V ar[θML] 0.003 0.04 0.2 0.06 0.02

θML γ6 γ7 γ8 γ9
E[θML] 0.316 66.3 14.71 8.29
V ar[θML] 0.003 0.3 0.1 0.02

TABLE II
AVERAGE VALUE AND VARIANCE FOR THE ESTIMATED PARAMETERS.

C. The manipulator control algorithm

To carry on the experiments on the COMAU SMART3-S2

manipulator it is necessary to control the robot. A particular

control scheme is considered in this work, which consists of
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an inverse dynamics control performing a non ideal feedback

linearization, combined with a robust second order sliding

mode controller of Sub-Optimal type, the application of which

to a COMAU SMART3-S2 manipulator has already been

described in [27].

VI. SIMULATION RESULTS

In this section, the performances of the proposed FD scheme

for robot manipulators are verified, by simulating actuator

faults. Note that random noise with variance equal to 1[N2m2]

is added on the input signals, in order to make the simulations

be more realistic. To carry out simulations, a discrete version

of model (5) has been implemented together with the discrete

version of the observer (9) with the input laws (13) relevant

to the Super-Twisting approach.

The presence of actuator faults ∆τ is simulated by intro-

ducing a sinusoidal fault signal on the first component of ∆τ

(which is relevant to joint 1) and by introducing two abrupt

fault signals on the second and third components of ∆τ (which

are relevant to joint 2 and 3, respectively). As one can see from

Fig. 3, 4, 5, the fault shapes are correctly identified.

Note that the presence of the three actuator faults in simu-

lation is simultaneous. As can be seen in Fig. 3, the thresholds

are violated for a short time when the fault occurs on actuator

2, which shows the obvious existence of a slight interaction

among the system components.
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∆
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. 
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Fig. 3. Simulation of FD and fault identification on the first actuator (∆τ

and ∆̂τ signals). Detection and identification of the faults by using the Super-
Twisting input law.
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Fig. 4. Simulation of FD and fault identification on the second actuator

(∆τ and ∆̂τ signals). Detection and identification of the faults by using the
Super-Twisting input law.

VII. EXPERIMENTAL RESULTS

In this section the proposed scheme is experimentally tested

on the COMAU SMART3-S2 manipulator. The faults presence

is introduced in the control system by adding a fault signal to

the 3-dimensional control variable.

More specifically, the case of abrupt faults on the actuators

of each joint is considered, that is a −50[Nm] fault signal

acting on the first actuator, a -20[Nm] fault signal acting on

0 1 2 3 4 5

−2

0
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4

Time [s]

∆
τ

3
 [
N

m
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Actuator fault signal
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−2

0

2

4

Time [s]

∆
τ

3
 e
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Fault signal reconstruction

Fig. 5. Simulation of FD and fault identification on the third actuator (∆τ

and ∆̂τ signals). Detection and identification of the faults by using the Super-
Twisting input law.

the second actuator, and a -10[Nm] fault signal acting on the

third actuator are considered. Note that these faults signals

are approximatively the 20% of the maximum torque allowed

by the corresponding actuator. As can be seen from Fig. 6-

8 for the Super-Twisting UIOs and from Fig. 9-11 for the

Sub-Optimal UIOs, the fault signals are correctly detected,

isolated, and identified. The Super-Twisting approach, as for

the fault occurred on the first and second actuators, provides

better performances, while as for the fault occurred on the

third actuator, the Sub-Optimal approach shows a superior

capability to avoid false alarms.
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Fault signal reconstruction

Fig. 6. FD experiment on the first actuator (∆τ and ∆̂τ signals). Detection
and identification of the faults by using the Super-Twisting input law.
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Fig. 7. FD experiment on the second actuator (∆τ and ∆̂τ signals).
Detection and identification of the faults by using the Super-Twisting input
law.
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Fig. 8. FD experiment on the third actuator (∆τ and ∆̂τ signals). Detection
and identification of the faults by using the Super-Twisting input law.

VIII. CONCLUSIONS

The problem of finding and isolating faults which can occur

on a robot manipulator has been addressed. A diagnostic

scheme for actuator faults has been proposed. The proposed
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Fig. 9. FD experiment on the first actuator (∆τ and ∆̂τ signals). Detection
and identification of the faults by using the Sub-Optimal input law.
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Fig. 10. FD experiment on the second actuator (∆τ and ∆̂τ signals).
Detection and identification of the faults by using the Sub-Optimal input law.

scheme allows one to detect and isolate faults, even multiple

and simultaneous, on the actuators of the robotic system.

The detection of the faults presence is performed relying on

higher order sliding mode Unknown Input Observers (UIOs).

The observer input laws are designed according to the so-

called Super-Twisting Second Order Sliding Mode Control

(SOSMC). Simulations and experimental results on a real

COMAU SMART3-S2 are presented in order to compare

the proposed approach with a previously proposed approach,

which relies on the so-called Sub-Optimal Second Order

Sliding Mode Control (SOSMC).
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