Impact of Altitude and Climate on Energy Measures

THE

Charles Bicknell, Shannon Donohue, and Katie Gustafson Thursday, October 13, 2011

Overview and Goals

- Energy measures often perform differently at high altitudes (above 3,000 ft)
 - Measure sizing, performance, efficiency and lifetimes may vary
- To give you some tools to determine whether measure savings might need to be reassessed for programs in high altitudes

Energy Code Climate Zones

Primary Differences - Air

- Relative to sea level, we in the Rocky Mountains, have:
 - Reduced Air Pressure/Density
 - Low Humidity
 - Temperature swings
- These impact:
 - Thermal capacity
 - Combustion efficiency
 - Solar intensity
 - Dielectrics
 - Vapor pressures

Energy Measures Impacted

- Motors
- Chillers/cooling towers/evaporative coolers/air conditioners
- Furnaces
- Boilers
- Gas water heaters
- Solar/PV systems
- Pumps
- Gas-filled windows/Plasma TVs
- Air compressors
- Fans
- Lighting with ballasts

Energy Measures Not or Minimally Impacted

- Non-sealed windows
- Compressors Refrigeration
- Non ballast lighting
 - (including incandescent/halogen)
- Closed systems (steam)
- Insulation/sealing
- Electric water heaters

Specific Measures

- Motors
- Air conditioners and furnaces
- Fans
- Chillers
- PV Systems

Motors

- Motor output (hp) and efficiency decreases as temperature increases.
- At altitude, motors are less efficient at dissipating heat and therefore must be derated.
- Service factors can compensate for output, but not for efficiency.

Motor Derating Factors

Manufacturer/motor specific

Altitude Above Sea Level	Ambient Temperature									
(meters)	30°C	35°C	40°C	45°C	50°C	55°C	60°C			
1000	1.06	1.03	1.00	0.96	0.92	0.87	0.82			
1500	1.03	1.00	0.97	0.93	0.89	0.84	0.80			
2000	1.00	0.97	0.94	0.90	0.86	0.82	0.77			
2500	0.95	0.93	0.90	0.86	0.83	0.78	0.74			
3000	0.91	0.89	0.86	0.83	0.79	0.75	0.71			
3500	0.87	0.84	0.82	0.79	0.75	0.71	0.67			
4000	0.82	0.79	0.77	0.74	0.71	0.67	0.63			

Example from Siemens •

dms/dt/StandardMotorsandDrives/NEMAMotors/docs/App%20Man%20Section%205%20Part%207%20Red uction%20Factors%20Info.pdf)

- Efficiency = Power out / Power in
- May be equivalent savings but have to look at manufacturer ratings

Heating and Cooling Systems

Similar derating tables

Manual S Capacity Correction Air Cooled Condenser Air Cooled Packaged						
Altitude Ft. Correction Factor						
2,000	0.98					
4,000	0.97					
6,000	0.95					
8,000 0.92						
10,000	0.90					

Manual S Capacity Correction Gas Furnace							
Altitude Ft. Correction Factor							
2,000	0.92						
4,000	0.84						
6,000	0.76						
8,000 0.68							
10,000	0.60						

*Natural draft

Mass = Heating/Cooling Capacity

- More CFM required at altitude to provide same cooling (or heating) capacity as sea level unit.
- Can compensate with higher blower speed or larger blower resulting in increased power draw.

Air Density and Heat Exchangers - Heating

Air Density and Heat Exchangers - Cooling

Fan Power Consumption

Corrected BHP = Altitude Correction Factor X Design BHP

Air	Altitude (feet)										
Temp	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
40	1.060	1.022	0.986	0.95	0.916	0.882	0.849	0.818	0.788	0.758	0.729
50	1.039	1.002	0.966	0.931	0.898	0.864	0.832	0.802	0.772	0.743	0.715
60	1.019	0.982	0.948	0.913	0.880	0.848	0.816	0.787	0.757	0.729	0.701
70	1.000	0.964	0.930	0.896	0.864	0.832	0.801	0.772	0.743	0.715	0.688
80	0.982	0.947	0.913	0.880	0.848	0.817	0.787	0.758	0.73	0.702	0.676
90	0.964	0.929	0.897	0.864	0.833	0.802	0.772	0.744	0.716	0.689	0.663
100	0.946	0.912	0.88	0.848	0.817	0.787	0.758	0.730	0.703	0.676	0.651

TABLE 7 - ALTITUDE-CORRECTION FACTORS

Fan Power Consumption (70 degrees)

Combustion Efficiency

Note: Natural derating applies for fixed injector (orifice) size and pressure.

Examples of Savings Adjustments Relative to Sea Level

		Altitude	Altitude
Measure	Efficiency	Correction	Correction
		5,000ft	10,000ft
ري ا	78%	N/A	N/A
Jace	85%	1- 2%	2-4%
-urr	90%	1-3%	3-7%
	95%	2-4%	5-10%
al	SEER 13	N/A	N/A
entr AC	SEER 15	1-3%	2-4%
Ŭ	SEER 17	2-4%	3-5%

Solar Radiation – PV and Thermal

The thin air and low humidity at high altitudes reflect and absorb less solar radiation than at sea level. Anyone with a goggle tan has experienced this effect.

Dogfunk.com

Solar thermal and photovoltaic systems can capitalize on this high intensity of sunlight hitting the ground.

Solar PV

PV System Output

Solar Heat Gain Through Windows

- Provides free heat in the winter.
 - High solar heat gain is effective.
- Adds to cooling load in summer.
 - Low solar heat gain is effective.

Passive Solar Design

THE-

Conclusion

- Air density affects equipment performance
 - Heat transfer
 - Combustion
 - Solar radiation/heat gain
- Have to consider derating

Questions

ADDITIONAL RESOURCES

Equipment size increase to achieve sea level output.

Item	2000 m	3000 m	4000 m	5000 m
Diesel engines	25%	40%	55%	70%
Air compressors	35%	55%	75%	95%
Vacuum pumps	20%	30%	40%	50%
Transmission lines	10%	20%	30%	40%
Transformers	5%	15%	25%	35%
Electrical machines	5%	15%	25%	35%

Jimenez, D., Chapter 25: High altitude intermittent chronic exposure: Andean mines. Source unknown.

	Altitude Corrections								
Altitude (Feet)	Baron Inches Mercury	neter Lbs <i>l</i> Sq In Atmosphere	Specific Volume Cu Ft/Lb	Rel. Dens. SP or HP Corr. Factor	Air Density Lbs/Cu Ft	CFM Transport Factor	CFM Correction Factor		
0	29.92	14.7	13.34	1	0.075	1.08	1		
100	29.81	14.64	13.389	0.996	0.0747	1.076	1.004		
200	29.7	14.58	13.439	0.993	0.0745	1.073	1.007		
300	29.6	14.52	13.488	0.989	0.0742	1.068	1.011		
400	29.49	14.46	13.538	0.985	0.0739	1.064	1.015		
500	29.38	14.4	13.587	0.981	0.0736	1.06	1.019		
5000	24.89	12.2	16.035	0.832	0.0624	0.899	1.202		
5200	24.71	12.12	16.167	0.825	0.0619	0.891	1.212		
5400	24.52	12.04	16.299	0.819	0.0614	0.884	1.222		
5600	24.34	11.96	16.431	0.813	0.061	0.878	1.232		
5800	24.16	11.88	16.563	0.807	0.0605	0.871	1.242		
6000	23.98	11.8	16.695	0.799	0.0599	0.863	1.252		
6200	23.8	11.7	16.803	0.794	0.0596	0.858	1.26		
6400	23.62	11.6	16.911	0.789	0.0592	0.852	1.268		
6600	23.45	11.5	17.018	0.784	0.0588	0.847	1.276		
6800	23.27	11.4	17.126	0.779	0.0584	0.841	1.284		
7000	23.09	11.3	17.234	0.774	0.0581	0.835	1.292		
7200	22.9	11.22	17.397	0.767	0.0575	0.828	1.304		
7400	22.7	11.14	17.56	0.76	0.057	0.821	1.316		
7600	22.51	11.06	17.724	0.753	0.0565	0.814	1.329		
7800	22.31	10.98	17.887	0.746	0.056	0.806	1.341		
8000	22.12	10.9	18.05	0.739	0.0554	0.789	1.353		

THE CADMUS GROUP, INC.

SEER / EER Climate/ Condition Adjustments

Carrier AC Model 24ACB4 Cooling Capacities

24ACB4

DETAILED COOLING CAPACITIES#

EVADOR	DATOR AIR		CONDENSER ENTERING AIR TEMPERATURES *F (*C)																
EVAPOR	ASI'ON AIN		76 (23.9)			86 (29.4)			96 (36)			106 (40.6)			115 (45.1)		125 (51.7)		
CEM	EWB	Capacit	y MBtuh	Total Svs	Capacit	y MBtuh	Total Svs	Capacit	y MBtuh	Total Svs	Capacit	y MBtuh	Total Svs	Capacit	y MBtuh	Total Svs	Capacit	ty MBtuh	Total Sys.
	"F ("C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**
							24ACB41	8A30 Outdo	or Section Wi	th CAP++24	4A** Indoor	Section							
	72 (22.2)	21.57	11.21	1.17	20.52	10.80	1.82	19.45	10.89	1.49	18.33	9.97	1.67	17.18	9.55	1.88	15.98	9.09	2.11
626	67 (19.4)	19.60	13.63	1.18	18.65	13.23	1.88	17.67	12.81	1.50	16.65	12.40	1.69	15.60	11.96	1.90	14.45	11.51	2.13
	62 (16.7)	17.82	16.04	1.19	16.96	15.63	1.84	16.08	15.22	1.51	15.18	14.79	1.70	14.29	14.29	1.91	13.44	18.44	2.18
	57 (13.9)	17.16	17.16	1.20	16.49	16.49	1.85	15.79	15.79	1.51	15.06	15.05	1.70	14.29	14.29	1.91	18.44	18.44	2.13
	72 (22.2)	22.01	11.78	1.19	20.92	11.87	1.84	19.79	10.95	1.51	18.62	10.52	1.70	17.42	10.09	1.91	16.12	9.62	2.14
600	67 (19.4)	20.08	14.54	1.21	19.08	14.18	1.86	18.00	18.71	1.58	16.94	13.28	1.71	15.84	12.84	1.92	14.66	12.87	2.15
	62 (16.7)	18.27	17.29	1.22	17.38	16.86	1.87	16.50	16.41	1.54	15.70	15.70	1.72	14.86	14.86	1.98	13.95	13.95	2.16
	57 (13.9)	17.96	17.96	1.22	17.28	17.28	1.87	16.48	16.48	1.54	15.70	15.70	1.72	14.87	14.87	1.98	13.95	13.95	2.16
	72 (22.2)	22.34	12.82	1.22	21.20	11.90	1.87	20.08	11.47	1.54	18.83	11.04	1.72	17.58	10.60	1.98	16.24	10.18	2.16
676	67 (19.4)	20.35	15.42	1.28	19.81	15.00	1.88	18.25	14.57	1.55	17.15	14.18	1.74	16.02	13.68	1.95	14.80	18.21	2.18
	62 (16.7)	18.68	18.46	1.24	17.86	17.86	1.89	17.05	17.06	1.56	16.22	16.22	1.75	15.88	15.88	1.95	14.87	14.87	2.18
	57 (13.9)	18.63	18.63	1.24	17.86	17.86	1.89	17.05	17.06	1.55	16.22	16.22	1.75	15.88	15.88	1.95	14.87	14.37	2.18

DETAILED COOLING CAPACITIES#

EVAPORATOR AIR		COND	ENSER ENT	ERING AIR 1	EMPERATURES °F (°C)			
			75 (23.9)		85 (29.4)			
CEM	EWB	Capacit	y MBtuh	Total	Capacit	Total		
	° F (° C)	Total	Total Sens‡		Total	Sens‡	KW**	
							24ACB41	
	72 (22.2)	21.57	11.21	1.17	20.52	10.80	1.32	
525	67 (19.4)	19.60	13.63	1.18	18.65	13.23	1.33	
525	62 (16.7)	17.82	16.04	1.19	16.96	15.63	1.34	
	57 (13.9)	17.16	17.16	1.20	16.49	16.49	1.35	
	72 (22.2)	22.01	11.78	1.19	20.92	11.37	1.34	
600	67 (19.4)	20.03	14.54	1.21	19.03	14.13	1.36	
000	62 (16.7)	18.27	17.29	1.22	17.38	16.86	1.37	
	57 (13.9)	17.96	17.96	1.22	17.23	17.23	1.37	
	72 (22.2)	22.34	12.32	1.22	21.20	11.90	1.37	
675	67 (19.4)	20.35	15.42	1.23	19.31	15.00	1.38	
015	62 (16.7)	18.68	18.46	1.24	17.86	17.86	1.39	
	57 (13.9)	18.63	18.63	1.24	17.86	17.86	1.39	

Air Flow Calculations

Doguino	d CEM at Al	titude Required Sea Level Flow Rate
Require	α εΓΜ αι Αι	Density Ratio
Ma Air Dens	anual S ity Correction	Required Percent Increase in CFM to Maintain Coil
Altitude Ft.	Density Ratio	Capacity
1,000	0.964	50%
2,000	0.93	ø ^{45%}
3,000	0.896	2 40%
4,000	0.864	3 0%
5,000	0.832	¥ 25%
6,000	0.801	15%
7,000	0.772	Ž a 10%
8,000	0.743	L 5%
9,000	0.715	2,000 4,000 6,000 8,000 10,000
10,000	0.687	Elevation Feet Above Sea Level

Furnace TRM Savings

Therm Savings

$$= Unit \ Capacity * \left(\frac{1}{78 \ AFUE - AFUE_{EE}}\right) * \frac{Heating \ Load \ Hours}{100}$$

Unit Capacity = kBtuh 100 = conversion from kBtuh to therms

AC Energy and Demand Savings

$$\Delta kW = Capacity * \left(\frac{12}{13 \ EER} - \frac{12}{EER_{EE}}\right)$$

$\Delta kWh = \Delta kW * EFLH$

EER = Energy Efficiency Ratio EFLH = Equivalent Full Load Hours

