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Preface

The use of symplectic space has been exploited in a number of fields
in physics for many years particularly in quantum mechanics including
the famous Yang-Mills field, relativity, gravitation, astrophysics, classical
mechanics, etc. “Symplectic” is a Greek word which was first introduced
in 1939 by Hermann Weyl in The Classical Groups, Their Invariants and
Representations. In elasticity, symplectic approach was first applied in the
early 1990s by one of the authors, Professor W. Zhong, to describe a new
approach for solving basic problems in solid mechanics which have long
been bottlenecks in the history of elasticity. It is based on Hamiltonian
principle with Legendre’s transformation whereby analytical solutions could
be obtained by expansion of eigenfunctions. The methodology is rational
and systematic with clear step-by-step derivation procedure. The advan-
tage of symplectic approach with respective to classical approach by semi-
inverse method is at least three-fold. First, the symplectic approach alters
the classical practice and concept of solution methodology and hence
allows the many basic problems previously unsolvable or too complicated to
be solved be resolved accordingly. For instance, the conventional approach
in plate and shell theories by Timoshenko has been based on the semi-
inverse method with trial 1D or 2D displacement functions, such as Navier’s
method and the Levy’s method for plates. The trial functions, however, do
not always exist except in some very special cases of boundary conditions
such as plates with two opposite sides simply supported. Using the symplec-
tic approach, trial functions are no longer required. Second, it consolidates
the many seemingly scattered and unrelated solutions of rigid body move-
ment and elastic deformation by mapping with a series of zero and nonzero
eigenvalues. Last but not least, the Saint-Venant problems for plain elasti-
city and elastic cylinders can be described in a new system of equations and
solved. The difficulty of satisfying end boundary conditions in conventional
problems which could only be covered using the Saint-Vanent principle can
also be solved.

ix
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In this book, the authors’ main objective is to introduce the major con-
cepts and application of symplectic elasticity through discussion in some
classical topics in elasticity. The rational approach of symplectic methodo-
logy has been very clearly elaborated in the selected examples. It should
be emphasized that the potential of symplectic methodology for deriving
analytical solutions is far more than what have been presented in this book.
It has been applied by the authors and others not only in more complicated
elasticity problems in thin and think plates with mixed boundary, shells,
piezoelectric structures, but also in anisotropic structures, vibration and
nonlinear dynamics, control theory, electromagnetism, waveguide, nano-
mechanics, quantum mechanics etc. The major parts of the topics will be
disseminated through various scientific and technical conferences and jour-
nals and the contents will be included in a future manuscript when the
theory becomes mature.

This book targets readers in engineering mechanics, nanomechanics,
applied mathematics, engineering structures at postgraduate and research
levels. Teachers at higher institutions may also find this book valuable for
either teaching or reference. The contents are also beneficial to relevant
parties in other disciplines such as physics, control, electronics, etc.

This book on symplectic elasticity was first published in Chinese en-
titled by Higher Education Press in 2002. As it is a new
approach with great research potential for further development and break-
through is unavailable to many researchers in the field who have no access
to Chinese language and literature, effort was initiated to translate the
original manuscript into English to arouse the interest of many researchers
and to promote better, wider and faster research progress using symplectic
approach in elasticity.

In this English edition, a number of printing errors in the Chinese edition
have been duly corrected. The authors are grateful to Professor L.H. He,
Dr Ziran Li, Dr Chao-Feng Lü, Miss Ling Qiao and Professor Baisheng
Wu for assisting in the translation and/or proofreading, in one way and
another. Appreciation should also be extended to Higher Education Press,
Beijing, for granting permission to publish this translated English edition.

Weian Yao
Wanxie Zhong
Chee Wah Lim
December 2008
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Preface to the Chinese Edition

Elasticity has been one of the most complex fields in various branches of
mathematical physics involving partial differential equations. The solution
procedure of such problems has been a bottleneck in the development of
elasticity. Considering “Theory of Elasticity” of S.P. Timoshenko as an
example, the solutions of various elasticity problems using the semi-inverse
method constitute a large portion of the text. The application of semi-
inverse method is due to the complexity of the system of equations. The
conventional method of solution is always confined to the solution of a
higher-order partial differential equation with a single variable by eliminat-
ing the various unknown functions. From the viewpoint of mathematical
systems, the solution of single variable systems belongs to the Lagrangian
approach which inevitably results in a higher-order partial differential equa-
tion. Hence, the effective methods in mathematical physics such as variable
separation and expansion of eigenfunctions become inapplicable. Conse-
quently, the semi-inverse method has been unable to achieve major break-
through for a long period.

In this book, the symplectic space formed by the original and dual
variables is introduced into elasticity in accordance with analogy theory
between structural mechanics and control optimization. As a result, it is
possible to apply the direct analytical methods of variable separation and
expansion of symplectic eigenfunctions. It then forms the symplectic ana-
lytical systems in elasticity and it is the breaking and unified approach that
is emphasized throughout the book. The solution of symplectic analytical
systems is based on a rational, systematic approach with clear step-be-step
derivation procedure. It alters the classical practice in elasticity of using the
semi-inverse method by presenting a new systematic and rational method of
solution. The many previous problems unsolvable or too complicated to be
solved using the semi-inverse approach can hence be resolved accordingly.
For instance, we have presented solutions for plate bending problems with
various boundary conditions, laminated composite plates and anisotropic

xi
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problems. In addition, the Saint-Venant problems for plain elasticity and
elastic cylinders can be described in a new system of equations and solved.
The difficulty of satisfying end boundary conditions in conventional prob-
lems which could only be covered using the Saint-Vanent principle can also
be solved.

Due to the difference in basic principle for elasticity problems using the
classical semi-inverse method and the symplectic analytical systems, the
rational approach of the latter can be completely and directly generalized
to more complex problems. More problems can thus be solved analytically
and larger solution domain can thus be obtained. The solution procedure
for various symplectic analytical systems is identical and only the alge-
braic derivation becomes more complicated for more complex problems.
Such algebraic complexity can be overcome by using symbolic mathematical
softwares.

The analytical concept for symplectic systems and conventional
approach for partial differential equation are just opposite. The conven-
tional concept tries to eliminate unknown variables as many as possible
thus increasing the order of partial differential equations. Since higher-order
differential equations are not conducive to numerical solution methods such
as finite element method, such elimination will cause problems in numerical
analysis. On the contrary, although there are more variables in symplectic
analytical systems, the order of differential equations is lower. There are
numerical advantages in dealing with lower-order differential equations and
an increase in the number of variables will not have significant impact on
the system. In other words, the association of symplectic analytical systems
with numerical methods will not only greatly highlight the excellence of the
former but also enhances the usefulness of computers for solving engineering
problems.

The book aims at introducing to the readers the methodology of sym-
plectic analytical systems in elasticity in a systematic manner. From basic
equations of elasticity and classical variational principle, it first describes in
detail the procedure of constructing Hamiltonian mixed energy variational
principle and Hamiltonian dual system of equations and subsequently the
symplectic analytical systems through discussion of various basic problems
in elasticity. The eigenvalue problem in the transverse direction, i.e. the
symplectic eigenvalue problem, can then be derived by applying the method
of separation of variables. Hence, the solution can be obtained by expand-
ing the eigenvectors. Many solutions with specific interpretation in physics
can be obtained via the eigenfunctions of specific eigenvalues and their
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corresponding Jordan form eigenfunctions. In general, a similar solution
methodology is applied throughout this book so that the readers are able
to master the solution procedure of symplectic analytical systems. Further-
more, the differences with respect to the classical semi-inverse can also be
clearly observed.

Analytical method is emphasized in this book because it is a major first
step in deriving new solutions for a system. The problems discussed in this
book are all fundamental problems in elasticity such as Timoshenko beam,
plane elasticity, laminated composite plate, plate bending, etc. It is empha-
sized here that the method of symplectic analytical system is absolutely
applicable to three dimensional problems such as cylindrical bodies. Such
complicated subjects are, however, not described in this book.

Introducing a new concept without sophisticated mathematics is a
unique feature in this book. The related contents of symplectic mathe-
matics as required in substitution of systems are discussed in detail in
Chapter 1. The mathematical preliminaries for calculus and matrix algebra
are at graduate level and omitting this part will not hinder the understand-
ing and master of symplectic analytical system in elasticity. The contents
in this book have been repeatedly introduced in courses for graduates and
higher level undergraduates. It not only helps the students familiarize a
new solution methodology but also widens very much their research vision.
The effect has been remarkable.

The research outcome in this book is completed via fundings from Key
Project of National Natural Science Foundation of China entitled “Hamil-
tonian Systems in Engineering Mechanics” and National “211” Engineer-
ing Construction Project entitled “Computational Engineering Science”.
Professor Haojiang Ding of Zhejiang University in China is gratefully
acknowledged for painstakingly and carefully reading through the manu-
script and providing many valuable suggestions. The unrelenting assistance
of Dr Qiang Gao for preparing all figures in this book and Dr Yongfeng Sui
for proofreading of manuscript are also gratefully acknowledged.

Although every care has been taken to ensure correctness of contents,
incompleteness is bound to exist in this book. The authors thank the readers
in advance for giving critical comments and pointing out mistakes.

Weian Yao
Wanxie Zhong
October 2001
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Foreword to the Chinese Edition

Theoretical mechanics has been for a long time the leading discipline in
the history of science. The development for centuries has resulted in mul-
tiple branches and the achievement has been remarkable. Mechanics as a
fundamental subject has helped in the development of many engineering
disciplines such as aeronautical and astronautical engineering, mechanical
engineering, civil engineering, chemical engineering, natural resources engi-
neering, material engineering, etc. Mean while, many theories and methodo-
logies have been developed in applied mechanics as compelled by the
requirement in various engineering applications. From the viewpoint of
applied mathematics, a problem is clearly described once the basic differen-
tial equations are constructed. The remaining task is to look for a solution.
Nevertheless, in many circumstances the solutions are extremely difficult
although the basic equations are already constructed.

Elasticity has been one of the most complex fields in various branches
of mathematical physics involving partial differential equations. The fun-
damental systems of equations in elasticity were established as early as the
beginning of the nineteenth century. However, for over a century of develop-
ment, the solutions were far from complete. Solution methodology has been
a bottleneck in the development of elasticity. The difficulty for strict solu-
tions in elasticity, in turn, drove the development of some applied branches
such as structural mechanics, thin-walled structures, plate and shell theo-
ries, as well as structural dynamics, stability, soil mechanics, fluid mechan-
ics, etc. These branches form the various systems in applied mechanics.
Although these applied theories simply the governing equations, analytical
solutions are still difficult to a large extent. Research collaboration between
mathematicians and mechanicians not only enriched mathematical physics
but also developed applied mechanics. Some representative works in this
period are Methods of Mathematical Physics by R. Courant and D. Hilbert,
and a set of texts by S.P. Timoshenko including Theory of Elasticity,
Theory of Elastic Stability, Theory of Plates and Shells, Vibration Problems

xv
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in Engineering, Mechanics of Materials, etc. This set of analytical solutions
became the classical solution systems in the field. The achievement in the
period was marvelous and it influenced the subsequent research develop-
ment in the field.

With the advent of computing machinery and high level programming
languages in the second half of the twentieth century, the surface of finite
element method in applied mechanics changed the situation rapidly. Based
on the theory of applied mechanics and powerful computational ability,
versatile numerical methods in finite element method were developed for
solving structural mechanics, solid mechanics, etc., described by linear equa-
tions. Large scale finite element systems were geared to solve sets of linear
algebraic equations with tens of thousands of unknown variables. It became
a powerful analytical tool for engineers and the status of computational
mechanics was established. The successful application of finite element
method in structural analysis swiftly extended to various aspects in compu-
tational mechanics, engineering and science with significant achievement.

The success of finite element method has not weakened the significance
of analytical methods because (i) it is a kind of numerical approximation
and its theory is based on analytical methods; and (ii) many problems
require analytical solutions such as crack tip singularity element in fracture
mechanics, element for infinite domain, etc. Besides, the application of finite
element method for analyses with local effect such as boundary effects in
shell theory, and the free boundaries and boundary singular points in com-
posite materials, etc., result in stiffness problems and therefore analytical
methods are still of significant importance.

Considering “Theory of Elasticity” of S.P. Timoshenko as an example,
the solutions of various elasticity problems using the semi-inverse method
constitute a large portion of the text. This method was introduced by Saint-
Venant in 1855–1856 to obtain certain solutions for torsion and bending of
elastic columns. Since then it became the classical solution methodology
for elasticity and its influence extends to the present moment. It is a trial
method which is valid only for a specific problem without generality. It
often obtains a certain solution but it cannot ensure complete solutions.
What bothers one is the way to obtain a specific trial in order to solve the
problem in hand.

The application of semi-inverse method is due to the complexity of the
governing system of equations. The conventional analytical method is con-
fined to the domain of single variable, using either stress function (method
of force) or displacement method (only the shallow shell theory applies
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the hybrid method). The various unknown functions are eliminated thus
resulting in a higher-order partial differential equation with a single vari-
able which is then solved. From the viewpoint of mathematical systems, the
solution of single variable systems belongs to the Lagrangian approach
which inevitably results in a higher-order partial differential equation.
Hence, the effective methods in mathematical physics such as variable sepa-
ration and expansion of eigenfunctions become inapplicable. Consequently,
the semi-inverse method has been unable to achieve major breakthrough
for a long period.

Hence, a question arises. Is it absolutely necessary to employ this clas-
sical approach of eliminating variables? In reality, the classical approach
is not the only avenue and dual theory and state symplectic space is the
answer.

Recalling the many years we learnt applied mechanics, we may observe
some problems. Classical analytical mechanics is the most fundamental
system. Lagrange equation, the principle of minimum action, Hamilton’s
canonical equation, canonical transformation, Hamilton-Jacoby theory, etc.,
are all very beautiful theoretical systems. Classical analytical mechanics is
also the basis of some fundamental branches of science such as statistical
mechanics, electrodynamics, quantum mechanics, etc. It is, however,
insufficiently appears in courses in applied mechanics. This is because it
is less relevant to courses in elasticity, structural mechanics, fluid mechan-
ics, vibration and stability, etc. Although control theory is originated from
mechanics, it is seldom introduced in courses in applied mechanics. For
instance, many existing texts in elasticity do not have much relevance with
analytical mechanics. Systems of theory and methodologies for these fields
are independent to a certain extent.

Control theory developed into modern control theory with the impact
of computational techniques. The modern control theory is not merely an
extension of the classical control theory but it has undergone fundamen-
tal changes in the basic theory with major breakthrough. The state space
method based on modern control theory can be traced back to the system
of Hamilton’s canonical equation which is in principle a system with dual
variables and dual equations.

Control theory underwent changes in system representation regulated
by its own rules during development. Its system of theory was thought to
have deviated further from applied mechanics. However, the real situation is
not. It has been proven that the mathematical problems of modern control
theory and structural mechanics map one-to-one and they are mutually
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similar. From the viewpoint of mathematics, the similarity is based on
the theory and fundamentals of dual variables and Hamiltonian systems.
It indicates that mechanics is able to gain advantage from the successful
experience of control theory. As a matter of fact, the teaching and research
in applied mathematics develops more and more towards systems of dual-
ity. From the observation above, the systems of dual variables should be
implemented in the various branches of applied mechanics in a natural and
systematic manner.

The development of information techniques of contemporary science and
technology has been applied to intelligent materials, intelligent structures,
precision weapon, etc., and the influence of control and remote sensing
via various channels has been observed. Structural control has received
increasing attention from now and then. Such development trend should not
be neglected in the teaching of applied mechanics. As the world now moves
towards “smartness”, mechanics will not be able to be “smart” if it is not
linked to control theory. In the United States, the mismatch in designs by
structure engineers and control engineers has not been beneficial for overall
rational design and there are voices to call for a “control-structure overall
design”. In fact, symplectic analytical systems can be applied to many other
subjects such as vibration, wave propagation, etc. The engagement of an
identical system of theory will encourage and make easy the assimilation
and association of various branches of science such as mechanics and modern
control, etc. It is also beneficial to teaching.

The advance from Lagrangian systems to Hamiltonian systems means
the advance from the conventional Euclidean geometry to symplectic
geometry. It is a breakthrough of the conventional concept which causes
the application of dual and mixed variables into the vast fields of mechan-
ics. In addition, symplectic systems can also be applied to mathematical
physics and further to other related disciplines. Introducing the application
of this approach in elasticity as a professional fundamental course to stu-
dents will unquestionably help them to achieve greater heights in research
in the future.
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Nomenclature

k = shear correction factor
l,m, n = direction cosines of the exterior normal vector n

n = exterior normal vector of the section
p = dual variable of the original variable (generalized momentum)
q = original variable (generalized displacement)
q = density of transverse load acting on beam or plate
u = displacement vector
u = displacement component along the rectangular coordinate

x-direction
uρ, uϕ = displacement components in polar coordinates system

v = displacement component along the rectangular coordinate
y-direction

vc = strain complementary energy density
vε = strain energy density
v = full state vector of symplectic space
w = displacement component along the rectangular coordinate

z-direction, or deflection of beam or plate
x, y, z = rectangular coordinates

A = cross-section area
C = stiffness coefficient matrix of the material
D = flexural rigidity of plate
E = modulus of elasticity for tension (Young’s modulus)
Ec = complementary energy for support displacements
Ew = external potential energy
Ep = total potential energy
Epc = total complementary energy
F = body force vector per unit volume
F n = projections of the force per unit area acting on the inclined plane

with exterior normal vector n

xix
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Fnx , Fny , Fnz = rectangular components of projections of the force F n

per unit area
Fs, Fsx, Fsy = shear force acting on cross-section of beam or plate

F t
sx, F

t
sy = total equivalent shear force of plate cross-section

Fx, Fy, Fz = rectangular components of body force vector F per unit
volume

G = elastic shear modulus
H = Hamiltonian density function
H = Hamiltonian matrix
I = moment of inertia of cross-section

In, I = unit matrix
J2n,J = unit symplectic matrix

L = Lagrange function
M = bending moment vector of the plate

Mx,My,Mxy = bending and torsional moment of beam or plate
S = flexibility coefficient matrix of the material
V = region of elastic body
Vc = strain complementary energy
Vε = strain energy
W = exterior work

γxy , γyz , γzx = shear strains in rectangular coordinates system
γρϕ = shear strain in polar coordinates system
δ = variational notation
ε = vector format of stain components

ε1, ε2, ε3 = principal strains
εx, εy, εz = linear strains in rectangular coordinates system

ερ, εϕ = linear strains in polar coordinates system
θ = rotational angle of cross-section, or volume strain
κ = curvature vector of the plate

κ, κx, κy, κxy = curvatures
λ = Lame’ constants or eigenvalue
µ = eigenvalue of Hamiltonian matrix
ν = Poisson’s ratio
ρ = density of materials, or polar radius in polar coordinates

system
σ = vector format of stress components

σ1, σ2, σ3 = principal stresses
σ, σx, σy, σz = normal stresses in rectangular coordinates system

σρ, σϕ = normal stresses in polar coordinates system
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Nomenclature xxi

τ, τxy , τyz , τzx = shear stresses in rectangular coordinates system
τρϕ = shear stress in polar coordinates system

φx, φy = bending moment functions of plate bending
ϕ = polar angle in polar coordinates system
ϕf = Airy stress function
ψ = eigenfunction vector of Hamiltonian matrix
ω = circular frequency
Γ = boundary of region V

Γu = boundary for specified displacements
Γσ = boundary for specified tractions
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Chapter 1

Mathematical Preliminaries

This chapter serves to improve the completeness and systemization of the-
ory introduced in this book. First of all, the basic concepts and basic el-
ements of mathematics relevant to this book are briefly introduced. It in-
cludes the Euclidean space, symplectic space, and Legendre transformation,
etc. In addition, it also briefly reviews the Hamilton principle and the
Hamilton canonical equations in analytical mechanics, as well as the re-
ciprocal theorems which are closely related to the contents of this book.
Readers who are familiar with the mathematical preliminaries may omit
this chapter and go directly to Chapter 2.

1.1. Linear Space

Linear space is one of the most basic concepts in linear algebra. It has been
not only extensively applied in many fields in modern mathematics, but also
exists as a common mathematical structure in various models in physics.
As the basic concepts and basic elements have been widely described and
proved in detail in many teaching materials1−3, only contents relevant to
this book will be particularly discussed without proofs in this section.

Definition 1.1. Let a linear space V in a real number field R has n lin-
early independent vectors (generalized vectors) {α1,α2, . . . ,αn} and every
vector α in V can be expressed as a linear combination of the vectors
{α1,α2, . . . ,αn} as

α = x1α1 + x2α2 + · · · + xnαn (1.1.1)

Then {α1,α2, . . . ,αn} is called a basis of V, denoted as {αi} in brief, and
{x1, x2, . . . , xn}T are the coordinates of α referring to basis {αi}. Here,
V is regarded as a n-dimensional linear space.

1
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Incidentally, the above definition indicates that a problem in an ab-
stract n-dimensional linear space can be completely described by general
n-dimensional vectors in a real number field R via a basis. In reality, many
properties and operations in linear space are eventually transformed to cor-
responding properties and operations of general vectors and matrices by
way of a basis. It is conducive to a better understanding and application if
discussion is done in a general n-dimensional vector space. It will become
clear through further discussion introduced as follows.

A basis in a n-dimensional linear space is not unique. Coordinate sys-
tems of a vector referring to different bases are different.

Let {αi} and {βj} are two bases in V and they are related by

{β1,β2, . . . ,βn} = {α1,α2, . . . ,αn}A (1.1.2)

where

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann


 (1.1.3)

is the transformation matrix from basis {αi} to basis {βj}. It must
be a nonsingular matrix. If {x1, x2, . . . , xn}T and {y1, y2, . . . , yn}T are the
coordinates of a vector γ referring to bases {αi} and {βj}, respectively,
then we have 



x1

x2

...
xn




= A




y1
y2
...
yn




or




y1
y2
...
yn




= A−1




x1

x2

...
xn




(1.1.4)

The transformation of a basis to another basis in a general vector space is
actually the transformation of coordinates.

The self-mapping of a linear space V in a linear space is usually regarded
as a transformation of V . In this regard, linear transformation is the most
basic and simplest transformation.

Definition 1.2. A transformation Ã in a linear space V in a real number
field R is called a linear transformation if, for any two vectors ξ,η in V
and any constant k in R, we have
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Ã(ξ + η) = Ã(ξ) + Ã(η) (1.1.5)

Ã(kξ) = kÃ(ξ) (1.1.6)

Here and subsequently, Ã(ξ) is denoted briefly as Ãξ.
Let {αi} be a basis in a linear space V, then the image {Ãαi} of the

vector upon linear transformation Ã can be linearly represented by basis
{αi} as

Ãα1 = a11α1 + a21α2 + · · · + an1αn

Ãα2 = a12α1 + a22α2 + · · · + an2αn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Ãαn = a1nα1 + a2nα2 + · · · + annαn


 (1.1.7)

or in matrix form, it is

{Ãα1, Ãα2, . . . , Ãαn} = {α1,α2, . . . ,αn}A (1.1.8)

where

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · · · · · · · · · ·
an1 an2 · · · ann


 (1.1.9)

Matrix A is the matrix resulted from linear transformation Ã referring
to basis {αi}. Obviously, {Ãαi} is another basis of the linear space and
matrix A is the transformation matrix if the latter is nonsingular.

Definition 1.3. Let Ã be a linear transformation in a linear space V in
a real number field R. If there exists a nonzero vector x with respect to a
number µ (inclusive a complex number) such that

Ãx = µx (1.1.10)

then µ is the eigenvalue of the linear transformation Ã and x the eigen-
vector of the linear transformation Ã corresponding to eigenvalue µ.

Let A be the matrix of linear transformation Ã referring to basis {αi}
in linear space V, µ be an eigenvalue of Ã, and {x1, x2, . . . , xn}T be the
coordinates of the corresponding eigenvector x referring to basis {αi}.
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Substituting into Eq. (1.1.10) yields

Ã{α1,α2, . . . ,αn}




x1

x2

...
xn




= µ{α1,α2, . . . ,αn}




x1

x2

...
xn




(1.1.11)

Substituting Eq. (1.1.8) into the above equation and applying the linear
independence characteristics of {αi} yield

A




x1

x2

...
xn




= µ




x1

x2

...
xn




(1.1.12)

or, equivalently, as

(µIn −A)




x1

x2

...
xn




= 0 (1.1.13)

where In is a n-order identity matrix, denoted briefly as I. Equa-
tion (1.1.13) will have a nonzero (nontrivial) vector solution, if and only
if, the determinant of the coefficient matrix is zero. Equivalently, µ is the
root of

f(µ) = |µI −A| = 0 (1.1.14)

The eigenvalue problem of a linear transformation can be transformed
to the eigenvalue problem of a matrix by the application of a basis. Equa-
tion (1.1.14) is the characteristic polynomial of matrix A. Therefore,
we will focus on the eigenvalue problem of a matrix in the following discus-
sion on eigenvalue problems. The properties can be extended to any general
linear transformation. An eigenvalue problem of a matrix has the following
properties.

Theorem 1.1. Let µ1, µ2, . . . , µt be t distinct eigenvalues of matrix
A, and αi1,αi2, . . . ,αimi (i = 1, . . . , t) be the linearly indepen-
dent eigenvectors corresponding to eigenvalue µi, then all eigenvectors
α11,α12, . . . ,α1m1 ; α21,α22, . . . ,α2m2 ; · · · ;αt1,αt2, . . . ,αtmt of A are
linearly independent.



December 16, 2008 15:56 B-599 9in x 6in ch01

Mathematical Preliminaries 5

Theorem 1.2. For every n×n matrix A, there exists a nonsingular n×n

matrix X (inclusive complex elements) such that matrix A can be trans-
formed to the Jordan canonical form

X−1AX = diag(D1,D2, . . . ,Dt) (1.1.15)

where

Di =




µi 1 0 · · · 0
0 µi 1 · · · 0
0 0 µi · · · 0
...

...
...

. . .
...

0 0 0 · · · µi


 (1.1.16)

is the Jordan part, and m1 + · · · +mt = n. Also, we have

X =
{
ψ

(0)
1 , . . . ,ψ

(0)
i ,ψ

(1)
i , . . . ,ψ

(mi−1)
i , . . . ,ψ

(mt−1)
t

}
(1.1.17)

or, in other words, there are mi vectors corresponding to the Jordan part
Di in matrix X, i.e. the basic eigenvector ψ(0)

i and the Jordan form eigen-
vectors ψ(k)

i (k = 1, 2, . . . ,mi − 1) corresponding to eigenvalue µi where k
denotes the kth-order Jordan form eigenvector.

Throughout this book, the order of Jordan form vectors is indicated as
a superscript as above.

Equation (1.1.15) can be written as1,2

AX = X · diag(D1,D2, . . . ,Dt) (1.1.18)

Expanding Eq. (1.1.18) yields

Aψ
(0)
i = µiψ

(0)
i

Aψ
(1)
i = µiψ

(1)
i +ψ(0)

i

· · · · · · · · · · · ·
Aψ

(mi−1)
i = µiψ

(mi−1)
i +ψ(mi−2)

i




(i = 1, 2, . . . , t) (1.1.19)

Equation (1.1.19) shows the general method for solving the basic eigenvec-
tor and the Jordan form eigenvectors.

The discussion above is not restricted to a Cartesian coordinate system.
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1.2. Euclidean Space

Vector addition and scalar multiplication are the two basic linear operations
of vectors in a linear space. However, such linear operations cannot be used
to describe the metric properties of vectors, such as length, orthogonality,
etc. The metric concept can be introduced into linear space via the opera-
tion of inner product. This concept will be particularly discussed without
proofs in this section.

Definition 1.4. Let V be a linear space defined in a real number filed R.
For any two arbitrary vectorsα,β in V, there exists a real number according
to a specified rule, termed the inner product and denoted as (α,β). The
inner product operation satisfies the following four conditions:

(1) (α,α) ≥ 0, (α,α) = 0 if and only if α = 0 (1.2.1a)

(2) (α,β) = (β,α) (1.2.1b)

(3) (α+ γ,β) = (α,β) + (γ,β),γ is an arbitrary vector in V (1.2.1c)

(4) (kα,β) = k(α,β), k is an arbitrary real number (1.2.1d)

A linear space satisfying the above conditions of inner product is called a
Euclidean space.

Having defined inner product, it is possible to measure the length, or-
thogonality, unit vector, etc. of vectors related to metric concept in Eu-
clidean space.

Let V be a Euclidean space. The norm of an arbitrary vector α is
defined as

‖α‖ =
√

(α,α) (1.2.2)

α is a unit vector if the norm of α is ‖α‖ = 1.

Example 1.1. For arbitrary vectors x = {x1, x2, . . . , xn}T, y = {y1,
y2, . . . , yn}T in a n-dimensional real vector space Rn, the inner product
is defined as

(x,y) = x1y1 + x2y2 + · · · + xnyn = xTy(= xTIy) (1.2.3)

It is obvious that the operation satisfy the four conditions of inner product
in Eqs. (1.2.1) and therefore they form an n-dimensional Euclidean space.
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The magnitude of vector x in Rn is

‖x‖ =

√√√√ n∑
i=1

x2
i (1.2.4)

For a particular linear space, there are various definitions of inner product
and therefore there exist different Euclidean spaces. The inner product in
Example 1.1 is the normal inner product of a n-dimensional real vector
space Rn. It is also the most common definition of inner product. The
following discussion on Rn always refers to this normal inner product.

Definition 1.5. Vectors α,β are orthogonal, denoted as α⊥β, if their
inner product (α,β) = 0.

If any two vectors in a nonzero vector set {αi} are orthogonal, then
the vector set {αi} is called an orthogonal vector set. If the vectors
are all unit vectors, then the vector set {αi} is called a normal orthog-
onal vector set. A basis formed by n (normal) orthogonal vectors in a
n-dimensional Euclidean space is called a (normal) orthogonal basis.

From Definitions 1.4 and 1.5, it is obvious that

Theorem 1.3. A zero vector is orthogonal to any vector. Conversely, a
vector which is orthogonal to any vector in the space must be a zero vector.

Theorem 1.4. An orthogonal vector set is a linearly independent
vector set.

Theorem 1.5. Any arbitrary (normal) orthogonal vector set in a
n-dimensional Euclidean space can be extended to a set of (normal) or-
thogonal bases.

Let V be a n-dimensional Euclidean space, {αi} be a set of normal
orthogonal bases, then the coordinates {x1, x2, . . . , xn}T of an arbitrary
vector β referring to basis {αi} can be expressed (expansion theorem) as:

xi = (β,αi) (i = 1, 2, . . . , n) (1.2.5)

Let {y1, y2, . . . , yn}T be the coordinates of another vector γ referring to
basis {αi}, then the inner product of β and γ is

(β,γ) =
n∑

i=1

xiyi = xTy(= xTIy) = (γ,β) (1.2.6)
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where

x = {x1, x2, . . . , xn}T, y = {y1, y2, . . . , yn}T (1.2.7)

Through the use of a normal orthogonal basis, the inner product operation
in a n-dimensional Euclidean space can be transformed to the normal inner
product operation in a n-dimensional real vector space Rn.

To discuss on the transformation equation of bases for a normal orthog-
onal basis, we introduce.

Definition 1.6. If a n× n matrix Q satisfies

QTQ = QQT = I (1.2.8)

then Q is an orthogonal matrix.
An orthogonal matrix has the following properties:

(1) The inverse matrix (i.e. transpose matrix) of an orthogonal matrix is
an orthogonal matrix.

(2) The determinant of an orthogonal matrix is equal to either 1 or −1.
(3) The product of two orthogonal matrices is an orthogonal matrix.

From Definition 1.6, it is obviously that

Theorem 1.6. The transformation matrix for normal orthogonal bases is
an orthogonal matrix.

The following discussion focuses on the most fundamental linear opera-
tor (transformation) in Euclidean space, i.e. the symmetrization operator.

Definition 1.7. Let V be a n-dimensional Euclidean space. If the linear
transformation Ã on arbitrary vectors α,β in V satisfies

(α, Ãβ) = (β, Ãα) (1.2.9)

then Ã is a symmetric operator of the Euclidean space V .
Obviously, the matrix of symmetric operator Ã for any normal orthog-

onal basis {αi} is a n × n real symmetric matrix A. A real symmetric
matrix (symmetric operator) is self-adjoint. The eigenvalue problem of
a self-adjoint operator is discussed in detail because of its needs in vibra-
tion theory and other problems in mathematical physics. There are some
theorems as follows regarding the eigenvalue problem of a real symmetric
matrix.
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Theorem 1.7. The eigenvalues of a real symmetric matrix are all real
numbers.

Theorem 1.8. Let A be a real symmetric matrix, then the eigenvectors
corresponding to different eigenvalues of A in Rn are mutually orthogonal.

Theorem 1.9. For an arbitrary n order real symmetric matrix A, there
exists a n-order orthogonal matrix Q such that QTAQ = Q−1AQ is
diagonal.

Theorem 1.9 shows that for an arbitrary symmetric matrix (operator),
there exists a normal orthogonal basis composed of eigenvectors. The cor-
responding eigenvalues are all real and there will be no Jordan form even
if there are repeated eigenvalues. The eigenvectors are all mutually orthog-
onal. As a result, the eigen-solutions span to a complete space and every
vector in this space can be constructed from a linear combination of the
eigenvectors (expansion theorem).

1.3. Symplectic Space

All conservative real physical processes can be described by a suitable
Hamiltonian system whose common mathematical fundamentals are the
symplectic spaces. A symplectic space is different from a Euclidean space
which studies the metric properties such as length, etc. It focuses on the
study of area, or the study of work and this is a mathematical structure
present throughout this book. Using a finite-dimensional symplectic space
as an example in this section, the basic concepts and basic properties of a
symplectic space are described and proved in detail4,5. The discussion lays
a sound mathematical foundation for the study in the following chapters.

Definition 1.8. Let V be a n-dimensional linear space defined in a real
number field R, and V ′ be the corresponding n-dimensional dual linear
space. We define

W = V × V ′ =
{(

q

p

)∣∣∣∣q ∈ V,p ∈ V ′
}

(1.3.1)

where the linear space W is called a 2n-dimensional phase space in a real
number field R constructed by V and V ′.
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It is emphasized here that the linear spaces V and V ′ have absolutely
different dimensions in actual problems, and there usually exists no direct
relation between the spaces. However, the product of their corresponding
components has a specific physical meaning. In this book, for instance, one
is usually the displacement and the other the stress, and the product of
their corresponding components has the dimension of work.

Definition 1.9. Let W be a 2n-dimensional phase space in a real number
field R. For any two vectors α,β in W, there exists a real number accord-
ing to a specified rule. This real number is termed the symplectic inner
product, denoted as 〈α,β〉, and it satisfies the following four conditions:

(1) 〈α,β〉 = −〈β,α〉 (1.3.2a)

(2) 〈kα,β〉 = k〈α,β〉, k is an arbitrary real number (1.3.2b)

(3) 〈α+ γ,β〉 = 〈α,β〉 + 〈γ,β〉,γ is an arbitrary vector in W (1.3.2c)

(4) α = 0 if 〈α,β〉 = 0 for every vector β in W (1.3.2d)

A phase space satisfying the above conditions of symplectic inner product
is called a symplectic space.

From Eq. (1.3.2a), the symplectic self inner product of every vector must
vanish, i.e. for every vector α

〈α,α〉 = 0 (1.3.3)

Example 1.2. For any two vectors x = {x1, x2}T, y = {y1, y2}T in a two-
dimensional real vector space R2, the symplectic inner product is defined as

〈x,y〉 = x1y2 − x2y1 (1.3.4)

It is obvious that Eq. (1.3.4) satisfies the four conditions of symplectic inner
product in Eqs. (1.3.2) and therefore it forms a 2-dimensional symplectic
space. Here, the symplectic inner product (1.3.4) represents the area of a
parallelogram constructed by x,y as its adjacent sides.

Obviously, we can generalize Eq. (1.3.4) to a 2n-dimensional real
vector space R2n. For any two vectors x = {x1, x2, . . . , x2n}T, y =
{y1, y2, . . . , y2n}T, the symplectic inner product is defined as

〈x,y〉 def= (x,J2ny) =
n∑

i=1

(xiyn+i − xn+iyi) = xTJ2ny (1.3.5)
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where

J2n =
[

0 In

−In 0

]
(1.3.6)

is called the unit symplectic matrix, denoted briefly as J . It is obvious
that Eq. (1.3.5) satisfies the four conditions of symplectic inner product in
Eqs. (1.3.2), and therefore it forms a 2n-dimensional symplectic space.

The determinant of a unit symplectic matrix is equal to 1. A unit sym-
plectic matrix has the following properties:

J2 = −I, JT = J−1 = −J (1.3.7)

Similarly, there are various definitions of symplectic inner product for a
phase space and therefore there exist different symplectic spaces. The sym-
plectic inner product defined in Eq. (1.3.5) is called the normal symplectic
inner product in a 2n-dimensional real vector space R2n. The following dis-
cussion on real vector space R2n always refers to this normal symplectic
inner product.

Definition 1.10. Vectors α,β are symplectic orthogonal if their sym-
plectic inner product 〈α,β〉 = 0. Otherwise, they are symplectic adjoint.

Hence from Eq. (1.3.2d), there exists a symplectic adjoint nonzero vector
for every nonzero vector. Virtually, α and Jα must be symplectic adjoint
if α �= 0.

If the vectors in a vector set {α1,α2, . . . ,αr,β1,β2, . . . ,βr} (r ≤ n)
satisfy

〈αi,αj〉 = 〈βi,βj〉 = 0

〈αi,βj〉 =

{
kii �= 0 (i = j)

0 (i �= j)


 (i, j = 1, 2, . . . , r) (1.3.8)

then the vector set {α1,α2, . . . ,αr,β1,β2, . . . ,βr} is called an adjoint
symplectic orthonormal vector set. If kii ≡ 1(i = 1, 2, . . . , r) in
Eq. (1.3.8), then the vector set {α1,α2, . . . ,αr,β1,β2, . . . ,βr} is called
normal adjoint symplectic orthonormal vector set. From the defini-
tion, it is obvious that:

Theorem 1.10. An adjoint symplectic orthonormal vector set is a linearly
independent vector set.
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Proof. Using proof by contradiction, assume {α1,α2, . . . ,αr,β1,

β2, . . . ,βr} is an adjoint symplectic orthonormal vector set and it is lin-
early dependent. Then there exists a vector, denoted as α1, which can be
expressed as a linear combination of the other vectors as

α1 = s2α2 + · · · + srαr + t1β1 + · · · + trβr

Hence, we have

〈α1,β1〉 = s2〈α2,β1〉 + · · · + sr〈αr,β1〉
+ t1〈β1,β1〉 + · · · + tr〈βr,β1〉 = 0

which contradicts 〈α1,β1〉 �= 0. Therefore, the original proposition is
tenable.

The basis formed by 2n (normal) adjoint symplectic orthonormal vec-
tors in a 2n-dimensional symplectic space is called a (normal) adjoint
symplectic orthonormal basis.

Theorem 1.11. Every adjoint symplectic orthonormal vector set in a
2n-dimensional symplectic space can be extended to an adjoint symplectic
orthonormal basis.

Proof. Let {α1,α2, . . . ,αr,β1,β2, . . . ,βr} be an adjoint symplectic
orthonormal vector set. A proof for n − r by mathematical induction is
established.

(1) For n− r = 0, {α1,α2, . . . ,αr,β1,β2, . . . ,βr} is an adjoint symplectic
orthonormal basis. The theorem is tenable for n− r = 0.

(2) Assume that the theorem is tenable for n − r = k, then consider the
case of n− r = k + 1.

As r < n, there exists a vector γ which cannot be expressed as a linear
combination of {α1,α2, . . . ,αr,β1,β2, . . . ,βr}. Denoting

αr+1 = γ −
r∑

i=1

siαi −
r∑

i=1

tiβi

where

si =
〈γ,βi〉
〈αi,βi〉 ti = − 〈γ,αi〉

〈αi,βi〉
It is obvious that αr+1 is symplectic orthogonal to {α1,α2, . . . ,αr,
β1,β2, . . . ,βr}. Besides, αr+1 is a nonzero vector from the definition
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and, hence, there exists a symplectic adjoint nonzero vector γ̃, or
〈αr+1, γ̃〉 �= 0. Obviously, γ̃ cannot be expressed as a linear combination of
{α1,α2, . . . ,αr,β1,β2, . . . ,βr}. Denoting

βr+1 = γ̃ −
r∑

i=1

s̃iαi −
r∑

i=1

t̃iβi

where

s̃i =
〈γ̃,βi〉
〈αi,βi〉 t̃i = − 〈γ̃,αi〉

〈αi,βi〉
It is obvious that βr+1 is symplectic orthogonal to {α1,α2, . . . ,αr,
β1,β2, . . . ,βr}, and also symplectic adjoint with αr+1, or 〈αr+1,βr+1〉 =
〈αr+1, γ̃〉 �= 0. Then {α1, . . . ,αr,αr+1,β1, . . . ,βr,βr+1} is an adjoint
symplectic orthonormal vector set. According to the assumption of mathe-
matical induction, the theorem is tenable for n−(r+1) = k. In other words,
{α1,α2, . . . ,αr,αr+1,β1,β2, . . . ,βr, βr+1} can be extended to an adjoint
symplectic orthonormal basis and the theorem is tenable for n− r = k+ 1.
According to mathematical induction, therefore, the theorem is tenable for
any n− r. Hence, the proposition is proven.

Deduction. Every normal adjoint symplectic orthonormal vector set in
a 2n-dimensional symplectic space can be extended to a normal adjoint
symplectic orthonormal basis.

The theorem and deduction above indicate that there exists a normal
adjoint symplectic orthonormal basis in a 2n-dimensional symplectic space,
but it is not unique. Based on a normal adjoint symplectic orthonormal
basis and its properties, the expansion theorem of a symplectic space can
be obtained directly.

Theorem 1.12. Let W be a 2n-dimensional symplectic space and {αi}
be a normal adjoint symplectic orthonormal basis, then the coordinates
{x1, . . . , xn, xn+1, . . . , x2n}T of any vector β in W referring to the basis
{αi} can be expressed as:

xi = 〈β,αn+i〉, xn+i = −〈β,αi〉 (i = 1, 2, . . . , n) (1.3.9)

Let {y1, . . . , yn, yn+1, . . . , y2n}T be the coordinates of another vector γ
referring to the basis {αi}, then the symplectic inner product of β and γ is

〈β,γ〉 =
n∑

i=1

(xiyn+i − xn+iyi) = xTJ2ny (1.3.10)
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where

x = {x1, x2, . . . , x2n}T, y = {y1, y2, . . . , y2n}T (1.3.11)

Through the use of a normal adjoint symplectic orthonormal basis, the
symplectic inner product operation in a 2n-dimensional symplectic space
can be transformed to the matrix operation of ordinary vectors (matrices).

To discuss the transformation equation of bases for a normal adjoint
symplectic orthonormal basis, we introduce

Definition 1.11. If a 2n× 2n matrix S satisfies

STJS = J (1.3.12)

then S is a symplectic matrix, where J is the unit symplectic matrix.
A symplectic matrix has the following properties:

(1) The inverse matrix of a symplectic matrix is a symplectic matrix.
(2) The transpose matrix of a symplectic matrix is a symplectic matrix.
(3) The determinant of a symplectic matrix is equal to either 1 or −1.
(4) The product of two symplectic matrices is a symplectic matrix.

For a normal adjoint symplectic orthonormal basis, it is obviously that:

Theorem 1.13. The transformation matrix for normal adjoint symplectic
orthonormal bases is a symplectic matrix.

The following discussion focuses on the most fundamental linear opera-
tor in a symplectic space, i.e. the Hamiltonian operator.

Definition 1.12. Let W be a 2n-dimensional symplectic space. If a linear
operator H̃ acting on arbitrary vectors α,β satisfies

〈α, H̃β〉 = 〈β, H̃α〉 (1.3.13)

then linear transformation H̃ is a Hamiltonian operator of the symplec-
tic space W .

Definition 1.13. If a 2n×2nmatrixH acting on arbitrary 2n-dimensional
vectors x,y satisfies

〈x,Hy〉 = 〈y,Hx〉 (1.3.14)

then matrix H is a Hamiltonian matrix.
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It is obvious that the definition of Hamiltonian matrix in Eq. (1.3.14)
is equivalent to the following definition

(JH)T = JH , or JHJ = HT (1.3.14′)

Obviously, the matrix of Hamiltonian operator H̃ referring to a nor-
mal adjoint symplectic orthonormal basis {αi} is a Hamiltonian matrix.
The eigenvalue problem of a Hamiltonian matrix (Hamiltonian operator)
is non-self-adjoint, hence it is possible to have complex eigenvalues or re-
peated eigenvalues. However, the said eigenvalue problem of a Hamiltonian
matrix (Hamiltonian operator) has its specific characteristics. Hamiltonian
matrices are used as examples in the following discussion. Certainly, the
relevant conclusion can be directly generalized to the Hamiltonian operator
of a finite-dimensional symplectic space.

Theorem 1.14. If µ is an eigenvalue of a Hamiltonian matrix with mul-
tiplicity m, then −µ is also an eigenvalue with multiplicity m. If zero is
an eigenvalue of a Hamiltonian matrix H , then the multiplicity number is
even.

Proof. Let the characteristic polynomial of a Hamiltonian matrix H be

f(µ) = |µI −H |
then according to the definitions of unit symplectic matrix in Eq. (1.3.6)
and Hamiltonian matrix in Eq. (1.3.14′), we have

f(µ) = |J(µI −H)J | = |µJJ − JHJ |
= |−µI −HT| = |−µI −H| = f(−µ)

As the expression above is true for every µ, the theorem is therefore proven.
Subsequently, the two eigenvalues ±µ are called mutually symplectic

adjoint eigenvalues of a Hamiltonian matrix. The nonzero eigenvalues of
a Hamiltonian matrix are usually divided into two sets:

(α) µi, Re(µi) < 0 or Re(µi) = 0 ∧ Im(µi) < 0
(β) µn+i = −µi

}
(1.3.15)

The eigenvalues in the (α)-set can be further arranged according to the
absolute values of µi, in an ascending order, for instance. Note that
Eq. (1.3.15) does not include the zero eigenvalue which is a special sym-
plectic eigenvalue with itself the mutually symplectic adjoint eigenvalue.
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Theorem 1.15. Let H be a Hamiltonian matrix, ψ(0)
i ,ψ

(1)
i , . . . ,ψ

(m)
i and

ψ
(0)
j ,ψ

(1)
j , . . . ,ψ

(n)
j be the basic eigenvectors and Jordan form eigenvectors

corresponding to the eigenvalues µi, µj , respectively. For µi +µj �= 0, there
exists symplectic orthogonality between the eigenvectors as follows:

〈ψ(s)
i ,ψ

(t)
j 〉 = ψ

(s)T
i Jψ

(t)
j = 0 (s = 0, 1, . . . ,m; t = 0, 1, . . . , n) (1.3.16)

Proof. A proof for r = s+ t by mathematical induction is established.
(1) For r = 0, i.e. s = 0 and t = 0, we have

Hψ
(0)
i = µiψ

(0)
i , Hψ

(0)
j = µjψ

(0)
j

because ψ(0)
i ,ψ

(0)
j are the basic eigenvectors corresponding to the eigenval-

ues µi, µj , respectively. Hence,

〈ψ(0)
i ,Hψ

(0)
j 〉 = 〈ψ(0)

i , µjψ
(0)
j 〉 = µj〈ψ(0)

i ,ψ
(0)
j 〉

Similarly,

〈ψ(0)
j ,Hψ

(0)
i 〉 = µi〈ψ(0)

j ,ψ
(0)
i 〉 = −µi〈ψ(0)

i ,ψ
(0)
j 〉

As H is a Hamiltonian matrix, the left-hand-sides of the two expressions
above are equal. After substituting and rearranging the expressions, we
have

(µi + µj)〈ψ(0)
i ,ψ

(0)
j 〉 = 0

Since µi + µj �= 0, Eq. (1.3.16) is tenable for r = 0.
(2) Assume that Eq. (1.3.16) is tenable for r = k, consider the case of

r = s+ t = k + 1.
Firstly, from Eq. (1.1.19), the eigenvectors ψ(s)

i and ψ(t)
j satisfy these

equations

Hψ
(s)
i = µiψ

(s)
i +ψ(s−1)

i and Hψ
(t)
j = µjψ

(t)
j +ψ(t−1)

j

respectively. Hence

〈ψ(s)
i ,Hψ

(t)
j 〉 = µj〈ψ(s)

i ,ψ
(t)
j 〉 + 〈ψ(s)

i ,ψ
(t−1)
j 〉

In accordance with the assumption of mathematical induction, Eq. (1.3.16)
is tenable for r = k. As a result, we have

〈ψ(s)
i ,ψ

(t−1)
j 〉 = 0
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hence,

〈ψ(s)
i ,Hψ

(t)
j 〉 = µj〈ψ(s)

i ,ψ
(t)
j 〉

Similarly,

〈ψ(t)
j ,Hψ

(s)
i 〉 = µi〈ψ(t)

j ,ψ
(s)
i 〉 = −µi〈ψ(s)

i ,ψ
(t)
j 〉

As H is a Hamiltonian matrix, the left-hand-sides of the two expressions
above are equal. After substituting and rearranging the expression, we have

(µi + µj)〈ψ(s)
i ,ψ

(t)
j 〉 = 0

Since µi + µj �= 0, Eq. (1.3.16) is tenable for r = k + 1 too. In accordance
with mathematical induction, Eq. (1.3.16) is tenable for any s and t, and
the proposition is proven.

The theorem above indicates that the basic eigenvectors and Jordan
form eigenvectors corresponding to the non-symplectic adjoint eigenvalues
are symplectic orthogonal. Subsequently, we discuss the relations among the
eigenvectors corresponding to the mutually symplectic adjoint eigenvalues.
For brevity of proofs in the remaining parts in this section, only one Jordan
chain is assumed to exist for each eigenvalue.

Theorem 1.16. Let ±µ �= 0 be a pair of mutually symplectic adjoint
eigenvalues of a Hamiltonian matrix H with multiplicity m, then there
exists an adjoint symplectic orthonormal vector set

{ψ(0),ψ(1), . . . ,ψ(m−1),φ(m−1),φ(m−2), . . . ,φ(0)}
such that

〈ψ(i),φ(j)〉
{

= (−1)ia �= 0; when i+ j = m− 1
= 0; when i+ j �= m− 1

(1.3.17)

where {ψ(0),ψ(1), . . . ,ψ(m−1)} and {φ(0),φ(1), . . . ,φ(m−1)} are, respec-
tively, the basic eigenvectors and Jordan form eigenvectors corresponding
to µ and −µ.

Proof. A proof for i by mathematical induction is established.
(1) For i = 0, let ψ(0) be the basic eigenvector corresponding to the

eigenvalue µ, and {φ(0), . . . ,φ(m−1)} be a set of arbitrary eigenvectors cor-
responding to the eigenvalue −µ.

Firstly, for any j ≤ m− 2, we have

〈ψ(0),Hφ(j+1)〉 = −µ〈ψ(0),φ(j+1)〉 + 〈ψ(0),φ(j)〉
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and

〈φ(j+1),Hψ(0)〉 = µ〈φ(j+1),ψ(0)〉 = −µ〈ψ(0),φ(j+1)〉
As H is a Hamiltonian matrix, the left-hand-sides of the two expressions
above are equal. Hence, we have

〈ψ(0),φ(j)〉 = 0 (j ≤ m− 2)

Next, according to Theorem 1.15, ψ(0) is symplectic orthogonal to all
other basic eigenvectors and Jordan form eigenvectors except that corre-
sponding to the eigenvalue −µ. Hence, ψ(0) must be symplectic adjoint with
φ(m−1). Otherwise ψ(0) will be symplectic orthogonal to all eigenvectors,
then ψ(0) ≡ 0. The conclusion is contradictory, i.e.

〈ψ(0),φ(m−1)〉 = a �= 0

Hence, Eq. (1.3.17) is true for i = 0.
(2) Assuming there exists a set of basic eigenvectors and Jordan form

eigenvectors {ψ(0), . . . ,ψ(m−1)} and {φ(0), . . . ,φ(m−1)} corresponding to
µ, −µ such that Eq. (1.3.17) is true for i ≤ k. Now consider the case of
i ≤ k + 1.

Firstly, denote that

t = −1
a
〈ψ(k+1),φ(m−1)〉

and

ψ̃
(k+1+p)

= ψ(k+1+p) + tψ(p) (p = 0, 1, . . . , (m− k − 2))

Obviously, {ψ(0), . . . ,ψ(k), ψ̃
(k+1)

, . . . , ψ̃
(m−1)} remains as a set of basic

eigenvectors and Jordan form eigenvectors corresponding to the eigenvalue
µ, and we have〈

ψ̃
(k+1)

,φ(m−1)
〉

= 〈ψ(k+1),φ(m−1)〉 + t〈ψ(0),φ(m−1)〉 = 0

Next, for every j < m− 1, we have

〈ψ̃(k+1)
,Hφ(j+1)〉 = −µ〈ψ̃(k+1)

,φ(j+1)〉 + 〈ψ̃(k+1)
,φ(j)〉

and 〈
φ(j+1),Hψ̃

(k+1)〉
= µ〈φ(j+1), ψ̃

(k+1)〉 + 〈φ(j+1),ψ(k)〉
= −µ〈ψ̃(k+1)

,φ(j+1)〉 − 〈ψ(k),φ(j+1)〉
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As H is a Hamiltonian matrix, the left-hand-sides of the two expressions
above are equal. Hence, we have

〈ψ̃(k+1)
,φ(j)〉 = −〈ψ̃(k)

,φ(j+1)〉

In accordance with the assumption of mathematical induction, Eq. (1.3.17)
is tenable for r = k. Hence, we have

〈ψ̃(k+1)
,φ(j)〉

{
= (−1)k+1a �= 0; for k + 1 + j = m− 1
= 0; for k + 1 + j �= m− 1

i.e. there exists a set of basic eigenvectors and Jordan form eigenvec-
tors {ψ(0), . . . ,ψ(k), ψ̃

(k+1)
, . . . , ψ̃

(m−1)} and {φ(0),φ(1), . . . ,φ(m−1)} cor-
responding to µ, −µ such that Eq. (1.3.17) is true for i ≤ k+ 1. Hence, the
theorem is proven.

Theorem 1.16 merely indicates that there exists an adjoint symplec-
tic orthonormal vector set {ψ(0),ψ(1), . . . ,ψ(m−1),φ(m−1), . . . ,φ(1), φ(0)}
formed by the eigenvectors corresponding to eigenvalues ±µ �= 0. If we take

φ̃
(j)

=
(−1)m−1−j

a
φ(j) (j = 0, 1, . . . ,m− 1) (1.3.18)

then {ψ(0),ψ(1), . . . ,ψ(m−1), φ̃
(m−1)

, φ̃
(m−2)

, . . . , φ̃
(0)} forms a normal ad-

joint symplectic orthonormal vector set. It should be noted that the Jordan
part corresponding to eigenvalue µ remains as the form of Eq. (1.1.16), while
the Jordan part corresponding to eigenvalue −µ should be rewritten as

D−µ =




−µ 0 0 · · · 0
−1 −µ 0 · · · 0
0 −1 −µ · · · 0
...

...
...

. . .
...

0 0 0 · · · −µ


 (1.3.19)

Then, we have

Hφ̃
(m−1)

= −µφ̃(m−1) − φ̃(m−2)

Hφ̃
(m−2)

= −µφ̃(m−2) − φ̃(m−3)

· · · · · · · · ·
Hφ̃

(1)
= −µφ̃(1) − φ̃(0)

Hφ̃
(0)

= −µφ̃(0)




(1.3.19′)
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In such a way, a Hamiltonian matrix can be ensured when the Hamiltonian
matrix H is transformed into a block diagonal matrix. Hence, we establish
symplectic orthonormalization which is the basis of the expansion theorem.

Subsequently, we assume that the Jordan form eigenvectors corre-
sponding to the (α)-set eigenvalues in Eq. (1.3.15) is again determined
by Eq. (1.1.16), while the Jordan form eigenvectors corresponding to the
(β)-set eigenvalues is determined by Eq. (1.3.19).

The discussion above concerns the adjoint symplectic orthonormal-
ity between the eigenvectors of the adjoint nonzero eigenvalues. From
Theorem 1.14, there must be an even multiple root if a Hamiltonian ma-
trix H has a zero eigenvalue. There usually exists the Jordan form for zero
eigenvalue, and their solutions for physical problems have special interpre-
tation in physics. The various physical problems will be introduced in due
course in the following chapters.

Due to the special property of zero eigenvalue µ = −µ = 0, the corre-
sponding basic eigenvectors and Jordan form eigenvectors form an adjoint
symplectic orthonormal vector set. In order to discuss their nature of sym-
plectic orthogonality, the following lemma is introduced.

Lemma. Let a Hamiltonian matrix H has a zero eigenvalue, and
{ψ(0),ψ(1), . . . ,ψ(2m−1)} be a set of arbitrary basic eigenvectors and Jor-
dan form eigenvectors corresponding to the zero eigenvalue. Then for any
1 ≤ p ≤ 2m− 1, 0 ≤ q ≤ 2m− 2, we have

〈ψ(p),ψ(q)〉 = −〈ψ(p−1),ψ(q+1)〉 (1.3.20)

and for even p+ q, we have

〈ψ(p),ψ(q)〉 = 0 (1.3.21)

Proof. Firstly, the eigenvectors ψ(p),ψ(q+1) corresponding to the zero
eigenvalue satisfies

〈ψ(p),Hψ(q+1)〉 = 〈ψ(p),ψ(q)〉

and

〈ψ(q+1),Hψ(p)〉 = 〈ψ(q+1),ψ(p−1)〉 = −〈ψ(p−1),ψ(q+1)〉

in accordance with Eq. (1.1.19). As H is a Hamiltonian matrix, the
left-hand-sides of the two expressions above are equal. Hence, we have
Eq. (1.3.20).
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Next, we can assume without the loss of generality that p = q + 2k
for even p + q where k is a nonnegative integer. Repeatedly applying Eq.
(1.3.20) and using Eq. (1.3.3) yield

〈ψ(q+2k),ψ(q)〉 = −〈ψ(q+2k−1),ψ(q+1)〉
= · · · · · · = (−1)k〈ψ(q+k),ψ(q+k)〉 = 0

Hence the proposition is proven.

Theorem 1.17. If there exists a zero eigenvalue with multiplicity 2m for
a Hamiltonian matrix H, then there also exists a set of basic eigenvectors
and Jordan form eigenvectors {ψ(0),ψ(1), . . . ,ψ(2m−1)} corresponding to
the zero eigenvalue such that these eigenvectors have adjoint symplectic
orthonormality as follows

〈ψ(i),ψ(j)〉
{

= (−1)ia �= 0 for i+ j = 2m− 1
= 0 for i+ j �= 2m− 1

(1.3.22)

Proof. A proof for i by mathematical induction is established.
(1) For i = 0, let {ψ(0),ψ(1), . . . ,ψ(2m−1)} be a set of basic eigenvectors

and Jordan form eigenvectors corresponding to a zero eigenvalue.
Firstly, using Eq. (1.1.19) for any j ≤ 2m− 2 yields

〈ψ(0),Hψ(j+1)〉 = 〈ψ(0),ψ(j)〉
On the other hand, as H is a Hamiltonian matrix, we have

〈ψ(0),Hψ(j+1)〉 = 〈ψ(j+1),Hψ(0)〉 = 0

hence

〈ψ(0),ψ(j)〉 = 0 (j ≤ 2m− 2)

Next, ψ(0) is symplectic orthogonal to all eigenvectors of nonzero eigen-
values as well as the Jordan form eigenvectors in accordance to Theorem
1.15, hence ψ(0) must be symplectic adjoint with ψ(2m−1). Otherwise it will
be symplectic orthogonal to all eigenvectors and this conclusion is contra-
dictory. Hence we have

〈ψ(0),ψ(2m−1)〉 = a �= 0

Hence Eq. (1.3.22) is true for i = 0.
(2) Assume that there exists a set of basic eigenvectors and Jordan form

eigenvectors {ψ(0),ψ(1), . . . ,ψ(2m−1)} corresponding to a zero eigenvalue
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such that Eq. (1.3.22) is true for i ≤ k(k ≥ 0). Now consider the case of
i ≤ k + 1.

(a) For odd k, we denote

t = − 1
2a

〈ψ(k+1),ψ(2m−1)〉

and take

ψ̃
(k+1+p)

= ψ(k+1+p) + tψ(p) (p = 0, 1, . . . , (2m− k − 2))

Obviously, {ψ(0), . . . ,ψ(k), ψ̃
(k+1)

, . . . , ψ̃
(2m−1)} is also a set of basic eigen-

vectors and Jordan form eigenvectors corresponding to the zero eigenvalue.
Furthermore, it still holds for i ≤ k(k ≥ 0) with respect to Eq. (1.3.22).
But here we have

〈ψ̃(k+1)
, ψ̃

(2m−1)〉 = 〈ψ(k+1),ψ(2m−1)〉 + t〈ψ(0),ψ(2m−1)〉
+ t〈ψ(k+1),ψ(2m−k−2)〉 + t2〈ψ(0),ψ(2m−k−2)〉

= −2ta+ ta+ (−1)t〈ψ(k),ψ(2m−k−1)〉 = 0

(b) For even k, from the lemma in Eq. (1.3.21), we have

〈ψ(k+1),ψ(2m−1)〉 = 0

Combining (a) and (b) yields a set of basic eigenvectors and Jordan form
eigenvectors {ψ(0), . . . ,ψ(2m−1)} corresponding to the zero eigenvalue such
that Eq. (1.3.22) is true for i ≤ k (k ≥ 0). Furthermore, they satisfy
〈ψ(k+1),ψ(2m−1)〉 = 0. From Eq. (1.3.20), for any j ≤ 2m− 2, we have

〈ψ(k+1),ψ(j)〉 = −〈ψ(k),ψ(j+1)〉
According to the assumption of mathematical induction, Eq. (1.3.22) is
tenable for i ≤ k (k ≥ 0). Hence we have

〈ψ(k+1),ψ(j)〉
{

= (−1)k+1a �= 0; when k + 1 + j = 2m− 1
= 0; when k + 1 + j �= 2m− 1

Therefore, Eq. (1.3.22) is tenable for i ≤ k + 1 with respect to
{ψ(0),ψ(1), . . . ,ψ(2m−1)}.

In other words, there exists a set of eigenvectors
{ψ(0),ψ(1), . . . ,ψ(2m−1)} corresponding to the zero eigenvalue such that
Eq. (1.3.22) is tenable for i ≤ k + 1. Therefore according to mathematical
induction, the theorem is proven.



December 16, 2008 15:56 B-599 9in x 6in ch01

Mathematical Preliminaries 23

Theorems 1.14 to 1.17 indicate that there exists an adjoint symplectic
orthonormal basis composed of the basic eigenvectors and Jordan form
eigenvectors of the Hamiltonian matrix H in a 2n-dimensional symplectic
space. Through normalization, a normal adjoint symplectic orthonormal
basis can be formed. The matrix formed by the column vectors is indeed a
symplectic matrix. The properties of Hamiltonian matrix above are verified
by a specific example as follows.

Example 1.3. Construct a normal adjoint symplectic orthonormal basis
composed of the basic eigenvectors and Jordan form eigenvectors of the
following Hamiltonian matrix

H =




1 −2 0 2 1 3
0 −1 0 1 1 1
0 −1 −1 3 1 0
0 0 0 −1 0 0
0 −1 0 2 1 1
0 0 0 0 0 1




Solution: First determine the eigenvalue of the Hamiltonian matrix H.
From

|µI −H | = µ2(µ− 1)2(µ+ 1)2

hence µ = 0,±1 are the eigenvalues of Hamiltonian matrix H. All of them
are eigenvalues with multiplicity 2.

Then we solve the eigenvectors. For the eigenvectors corresponding to
eigenvalue µ = 0, from

Hψ = 0

we obtain

ψ
(0)
0 =

{
1, 1, 0, 0, 1, 0

}T

As there is only a single Jordan form chain corresponding to the zero eigen-
value, a Jordan form solution exists. From

Hψ = ψ
(0)
0

we obtain

ψ
(1)
0 =

{
0, 0, 1, 0, 1, 0

}T
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Obviously, ψ(0)
0 is symplectic adjoint with ψ(1)

0

〈ψ(0)
0 ,ψ

(1)
0 〉 = 1

For the eigenvectors corresponding to eigenvalue µ = 1, from

Hψ = ψ

we obtain

ψ
(0)
1 =

{
1, 0, 0, 0, 0, 0

}T

Similarly, there exists the Jordan form eigenvectors corresponding to eigen-
value µ = 1. From

Hψ = ψ +ψ(0)
1

we obtain

ψ
(1)
1 =

{
0,

1
2
, 0, 0,

1
2
,

1
2

}T

For the eigenvectors corresponding to eigenvalue µ = −1 , from

Hψ = −ψ

we obtain

ψ
(0)
−1 =

{
0 0, 1, 0, 0, 0

}T

Similarly, there exists the Jordan form eigenvectors corresponding to eigen-
value µ = −1. From

Hψ = −ψ +ψ(0)
−1

we obtain

ψ
(1)
−1 =

{
−1

4
, 0, 0,

1
2
, − 1

2
, 0

}T

As there are only two vectors for the Jordan form chains correspond-
ing to eigenvalue µ = ±1, hence ψ(0)

1 and ψ(1)
−1, ψ

(0)
−1 and ψ(1)

1 must be
symplectic adjoint

a = 〈ψ(0)
−1,ψ

(1)
1 〉 = −〈ψ(1)

−1,ψ
(0)
1 〉 =

1
2
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Here ψ(1)
1 and ψ(1)

−1 are not symplectic orthogonal. Referring to the proof
of Theorem 1.16, denote

t = −2〈ψ(1)
1 ,ψ

(1)
−1〉 =

1
2

and take

ψ̃
(1)

1 = ψ
(1)
1 + tψ

(0)
1 =

{
1
2
,

1
2
, 0, 0,

1
2
,

1
2

}T

then the eigenvectors ψ(1)
−1 and ψ̃

(1)

1 are symplectic orthogonal. According
to Theorems 1.15 and 1.16, the other eigenvectors satisfy symplectic or-
thogonality. In this way an adjoint symplectic orthonormal basis formed by
the eigenvectors of Hamiltonian matrix H is

ψ
(0)
−1, ψ

(1)
−1, ψ

(0)
0 ; ψ̃

(1)

1 , ψ
(0)
1 , ψ

(1)
0

In addition, from Eq. (1.3.18) and via symplectic normalization, a normal
adjoint symplectic orthonormal basis

ψ
(0)
−1, ψ

(1)
−1, ψ

(0)
0 ; ψ̂

(1)

1 , ψ̂
(0)

1 , ψ
(1)
0

can be composed where

ψ̂
(0)

1 = −2ψ(0)
1 =

{−2, 0, 0, 0, 0, 0
}T

ψ̂
(1)

1 = 2ψ̃
(1)

1 =
{

1, 1, 0, 0, 1, 1
}T

It should be clearly stated here that the arrangement of
{α1, . . . ,αr,β1, . . . ,βr} for all adjoint symplectic orthonormal vector sets
expressed as Eq. (1.3.8) is adopted in this book. It is absolutely valid to
have another arrangement as {α1,β1,α2,β2, . . . ,αr,βr}, but in this case
the definition of unit symplectic matrix Eq. (1.3.6) should be rewritten as

J ′
2n =



J ′

2 0 · · · 0
0 J ′

2 · · · 0
...

...
. . .

...
0 0 · · · J ′

2


 where J ′

2 = J2 =
[

0 1
−1 0

]
(1.3.23)

Furthermore, other relevant definitions such as symplectic matrix, Hamilto-
nian matrix, etc. should be modified accordingly. This arrangement is com-
paratively more convenient for numerical analysis. The details are omitted
here.
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Table 1.1. The correlation between Euclidean space and symplectic space.

Euclidean space Symplectic space

inner product (α,β) — {length} symplectic inner product 〈α,β〉 —
{area}

unit matrix I unit symplectic matrix J
orthogonality

(x,y) = xTy(= xTIy) = 0
symplectic orthogonality

〈x,y〉 = xTJy = 0
(normal) orthogonal basis (normal) adjoint symplectic

orthonormal basis

orthogonal matrix QTQ= (QTIQ=)I symplectic matrix STJS = J
symmetry transformation

(α, Ãβ) = (β, Ãα)
Hamiltonian transformation

〈α, H̃β〉 = 〈β, H̃α〉
symmetric matrix AT = A(= IAI) Hamiltonian matrix HT = JHJ
The eigenvalues of real symmetric

matrix are real
If µ is an eigenvalue of a Hamiltonian

matrix, −µ is also its eigenvalue
The eigenvectors corresponding to

distinct eigenvalues of a real
symmetric matrix are orthogonal

The eigenvectors corresponding to
non-symplectic-adjoint eigenvalues of
a Hamiltonian matrix are symplectic
orthogonal

The eigenvectors of a real symmetric
matrix can form a normal orthogonal
basis

The eigenvectors of a Hamiltonian
matrix can form a normal adjoint
symplectic orthonormal basis

In this section, the basic concepts of a finite-dimensional symplectic
space are elaborated and some fundamental properties are briefly intro-
duced. It is of certainty that the many concepts and properties can be
directly generalized to an infinite-dimensional symplectic space. Towards
the end of this section, the correlation between a Euclidean space and a
symplectic space is presented in order to better describe the relevant con-
cepts and properties of a symplectic space for the benefit of readers.

1.4. Legengre’s Transformation

Legendre’s transformation in the scope of mathematics is introduced
in this section. It is the key to realize a transformation from the Lagrange
system to the Hamiltonian system.

Consider Legendre’s transformation in two variables6. Let f = f(x, y),
then

df = udx+ vdy (1.4.1)
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where

u =
∂f

∂x
, v =

∂f

∂y
(1.4.2)

Here we choose x, y as the independent variables. In reality, we may choose
any two of x, y, u, v as the independent variables to suit the problem under
consideration. If we choose u, y as the independent variables, we obtain
from Eq. (1.4.2):

x = x(u, y), v = v(u, y) (1.4.3)

while the function f can be expressed in terms of u, y as:

f̄(u, y) = f [x(u, y), y] (1.4.4)

then

∂f̄

∂y
=
∂f

∂x

∂x

∂y
+
∂f

∂y
= u

∂x

∂y
+ v

∂f̄

∂u
=
∂f

∂x

∂x

∂u
= u

∂x

∂u
=

∂

∂u
(ux) − x


 (1.4.5)

Equation (1.4.5) can be expressed as

v = − ∂

∂y

(
ux− f̄

)
= −∂g

∂y

x =
∂

∂u

(
ux− f̄

)
=
∂g

∂u


 (1.4.6)

where g(u, y) = ux− f̄ = x∂f/∂x− f . It shows that when the independent
variables change from x, y to u, y and using function f̄ , then x, v cannot
be directly expressed in terms of the partial derivative of f̄ with respect
to u and y as in Eq. (1.4.2). Instead, we should use function g which is
equal to the variable to be eliminated x multiplied by the partial derivative
of the former function with respect to this variable u = ∂f/∂x and minus
the original function f . Hence, x, v can then be expressed in terms of the
partial derivative of g with respect to u and y. This is the basic principle
of Legendre’s transformation.

The discussion above is merely for the Legendre’s transformation on
variable x. Of course, we may also perform Legendre’s transformation on
two variables x, y simultaneously, i.e. we may choose u, v as the independent
variables. In a similar way, using (1.4.2) yields:

x = x(u, v), y = y(u, v) (1.4.7)



December 16, 2008 15:56 B-599 9in x 6in ch01

28 Symplectic Elasticity

and function f can be alternatively expressed in terms of u, v, as

f̃(u, v) = f [x(u, v), y(u, v)] (1.4.8)

Introducing transformation function

g̃(u, v) = ux+ vy − f̃(u, v) (1.4.9)

it is obvious that following relation exists

∂g̃

∂u
= x+ u

∂x

∂u
+ v

∂y

∂u
− ∂f

∂x

∂x

∂u
− ∂f

∂y

∂y

∂u
= x

∂g̃

∂v
= u

∂x

∂v
+ y + v

∂y

∂v
− ∂f

∂x

∂x

∂v
− ∂f

∂y

∂y

∂v
= y


 (1.4.10)

i.e. x, y can be expressed in terms of the partial derivative of g̃ with respect
to u and v.

In this section, we introduce the Legendre’s transformation for two vari-
ables. The approach can be directly generalized from two variables to mul-
tiple variables. The details are omitted here.

1.5. The Hamiltonian Principle and the Hamiltonian
Canonical Equations

“The nature always chooses the simplest and most possible way.” This is a
famous principle of Fermat. The minimum action principle in classical me-
chanics is originated from the Hamiltonian principle. It is often described
in terms of the n-dimensional general displacement qi(i = 1, 2, . . . , n) with
finite degrees of freedom or in terms of vector q. Using q̇i to indicate dif-
ferentiation with respect to time, the Lagrange function of a dynamic
system (kinetic energy minus potential energy) is

L (q, q̇) or L (q1, q2, . . . , qn; q̇1, q̇2, . . . , q̇n) (1.5.1)

The Hamiltonian principle states that the actual path of a conservative
system from the initial point (q0, t0) to the terminal point (qe, te) is such
that the action A is a stationary value,

A =
∫ te

t0

L (q, q̇)dt; δA = 0 (1.5.2)
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Performing variation of Eq. (1.5.2) and integrating by parts yield

δA =
∫ te

t0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]T

· δqdt = 0 (1.5.3)

As δq is arbitrary, the Lagrange equation:

d
dt

(
∂L

∂q̇

)
=
∂L

∂q
(1.5.4)

is derived. Hence, the Hamiltonian principle (1.5.2) corresponds to the La-
grange equation (1.5.4), which is a system of second-order ordinary differ-
ential equations. The expression above only includes one class of variables
like displacement, and therefore it is a variational principle with a single
class of variables.

The Hamiltonian canonical system has already been developed in clas-
sical analytical mechanics. It transforms a class of independent variables q̇
(generalized velocity) of Lagrange function L into p (generalized momen-
tum, i.e. dual variable) by Legendre’s transformation

p =
∂L

∂q̇
(1.5.5)

From Eq. (1.5.5), we may solve q̇ such that q̇ is a function of p, q, or

q̇ = q̇(p, q) (1.5.6)

According to the principle of Legendre’s transformation, we introduce
a transformation function, i.e. the Hamiltonian function (kinetic energy
plus potential energy)

H (q,p) = pTq̇ − L (q, q̇(p, q)) (1.5.7)

Hence, Eq. (1.4.6) yields

∂L

∂q
= −∂H

∂q
; q̇ =

∂H

∂p
(1.5.8)

On the other hand, from Eq. (1.5.4)

∂L

∂q
=

d
dt

(
∂L

∂q̇

)
= ṗ (1.5.9)

we obtain

q̇ =
∂H

∂p
; q̇ = −∂H

∂q
(1.5.10)



December 16, 2008 15:56 B-599 9in x 6in ch01

30 Symplectic Elasticity

Equation (1.5.10) are the Hamiltonian canonical equations, in which
there are two classes of variables: the generalized displacement q and the
generalized momentum p. The variational principle corresponding to the
Hamiltonian equations (1.5.10) is

δ

∫ te

t0

[pTq̇ − H (q,p)] dt = 0 (1.5.11)

where q and p should be regarded as two unrelated variables with inde-
pendent variation. Equation (1.5.10) can be obtained directly when the
variational formula (1.5.11) is expanded.

The process of transforming from the variational principle with a sin-
gle class of variables in Eq. (1.5.2) to the variational principle with two
classes of variables in Eq. (1.5.11) bears a classical feature realized through
Legendre’s transformation.

1.6. The Reciprocal Theorems

An elastic system is a system without energy dissipation. Hence the strain
energy stored during the process of deformation must be equal to the work
done by the external force during the process. If applied in a quasi-static
process, the work done by the external force only depends on the state of
displacement state at the particular moment. If a linear infinitesimal defor-
mation problem is considered, the principle of superposition is applicable.
A series of reciprocal theorems can therefore be derived by combining the
principles of superposition and energy conservation.

1.6.1. The Reciprocal Theorem for Work7

Consider a linear system under the action of two sets of forces FA and
FB at two different positions as illustrated in Fig. 1.1. Because it is an
elastic system, the work done by the external forces during the process
of deformation is independent of the sequence of loading. It only depends
on the final state of the external forces. Now consider the outcome of two
different loading routes.

For the first loading route, the action of FA occurs first in a quasi-
static progressive manner and it is followed by the action of FB . FB is not
in action when FA is applied. Hence the only work done is by FA with
magnitude 0.5 FAuA, where uA is the displacement at A caused by FA.
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Fig. 1.1. Two different load processes.

After applying FA, the action of force FB on the system begins. The work
done by FB is 0.5 FBuB where uB is the displacement at B caused by
FB . During the process of loading FB , a displacement uAB at A (i.e. the
displacement at A caused by FB) occurs. As FA applied on, the system
remains, the additional work done by FA is FAuAB. Hence the total work
done by the external forces is

W1 =
1
2
FAuA +

1
2
FBuB + FAuAB (1.6.1)

For the second loading route, FB acts first on the system and follows
by FA. Following the same analytical procedure, we obtain the total work
done by the external forces as

W2 =
1
2
FBuB +

1
2
FAuA + FBuBA (1.6.2)

where uBA is the displacement at B caused by FA.
Because the final state due to different loading sequences does not

change, the ultimate deformation of structure for the two varying loading
sequences are identical. Therefore, we have W1 = W2 and

FAuAB = FBuBA (1.6.3)

Hence we establish the reciprocal theorem for work: in a system
undergoing arbitrary linear elastic deformation, the work done
by a first set of external forces due to the displacement caused
by a second set of external forces is equal to the work done by
the second set of external forces due to the displacement caused
by the first set of external forces. The reciprocal theorem for work in
elastic mechanics and structural mechanics is very useful. From this theorem
it is deduced the reciprocal theorem for displacement and the reciprocal
theorem for reaction.
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1.6.2. The Reciprocal Theorem for Displacement

Supposing FA = FB = 1 in Eq. (1.6.3), we obtain

uAB = uBA (1.6.4)

Hence, we establish the reciprocal theorem for displacement: in a
system undergoing linear elastic deformation, the displacement
at B caused by unit force acting at A is equal to the displacement
at A caused by unit force acting at B.

1.6.3. The Reciprocal Theorem for Reaction

Consider the settlement problem of supports as shown in Fig. 1.2. Let sA

and sB are the settlements at supports A and B, respectively. For a linear
elastic system, the state of system is independent of the order of settlement
of supports. It only depends on the final settlement shape. Now we consider
settlement in two different cases.

In the first case, sA takes place first and follows by sB. During the set-
tlement of sA, there are reactions FA and FBA at A and B, respectively.
During the process, there is no settlement at support B and therefore the
only work done is by the reaction FA at A, which is 0.5 FAsA. Then a
settlement sB at support B takes place and it generates the reactions FB

and FAB at B and A, respectively. There is no work done at support A
because A does not move. As reaction FBA at B exists during the pro-
cess, the work done is FBAsB. In addition, the work done by the gradually

Fig. 1.2. Support settlement.
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increasing reaction FB is 0.5 FBsB. Hence the total work is

W1 =
1
2
FAsA +

1
2
FBsB + FBAsB (1.6.5)

In the second case, sB takes place first and follows by sA. Following the
same procedure, we obtain the total work as

W2 =
1
2
FBsB +

1
2
FAsA + FABsA (1.6.6)

Because the final settlements states are identical, hence W1 = W2 and

FBAsB = FABsA (1.6.7)

Further, assuming sA = sB = 1 yields

FAB = FBA (1.6.8)

Hence, we establish the reciprocal theorem for reaction: in a system
undergoing linear elastic deformation, the reaction at B caused
by unit displacement at A is equal to the reaction at A caused by
unit displacement at B.

1.6.4. The Reciprocal Theorem for Displacement

and Negative Reaction

Suppose there is a unit external forcea acting at point A of an elastic system,
while there is unit support displacement at support B as illustrated in
Fig. 1.3. As the strain energy of a linear elastic system depends only on the
final states of loads and support displacements and is independent of orders
they are applied, we may consider the following two cases with different
orders of application.

aThe magnitude of unit external force and unit displacement is 1. These quantities are
omitted in the following equations.
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Fig. 1.3. The reciprocal for displacement and negative reaction.

In the first case, we apply a unit displacement sB = 1 at support B and
the displacement at A is uAB. There is no work at A because the unit force
at A has not been applied. The only work 0.5FBsB is done by the reaction
FB at B. Then we apply a unit external force FA = 1 at A, which results in
a reaction FBA at B. Again the reaction at B does no work because there
is no support displacement during this process. The only work uA × 1/2 is
due to the unit external force where uA is the displacement at A resulting
from the unit force at A. The work done by external forces corresponding
to this order of application is

W1 =
1
2
uA +

1
2
FB (1.6.9)

In the second case, we apply a unit external force at A first and the work
done by this external force is uA × 1/2. Then we apply a unit displacement
at support B. As then there exists a reaction FBA at B, the work done by
the external forces during the latter process is uAB×1+FBA×1+FB×1/2.
Hence the work done by the external forces corresponding to this order of
application sums up to

W2 =
1
2
uA +

1
2
FB + uAB + FBA (1.6.10)

These two orders of application correspond the identical final state of ex-
ternal influences and structural deformation. Therefore W1 = W2 and

FBA = −uAB (1.6.11)

As a result, we establish the reciprocal theorem for displacement
and negative reaction: in an arbitrary system undergoing linear
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elastic deformation, the reaction at support B caused by a unit
force acting at A is equal to the negative value of the displacement
at A caused by a unit displacement at support B.

When the hybrid method (i.e. partially the unknown quantities of some
displacements and partially the unknown quantities of redundant internal
force) is adopted to solve a system of structural mechanics, the symmetry
or antisymmetry of the canonical equation is reflected in the reciprocal
theorems for displacement, for reaction and for displacement and negative
reaction. The Hamiltonian system corresponds to the adoption of the hybrid
method, and the properties of Hamiltonian matrix reflects the reciprocal
theorems for displacement, for reaction, and for displacement and negative
reaction.

The chapter discusses some basic concepts, such as symplectic space,
Hamiltonian system, etc. from various aspects of mathematics and analyti-
cal mechanics. We will introduce in detail the solutions of symplectic Hamil-
tonian systems through some elasticity problems in the following chapters.
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Chapter 2

Fundamental Equations of Elasticity
and Variational Principle

Beginning with some fundamental concepts such as stress, strain, stress-
strain relationship, etc., this chapter briefly introduces the fundamental
equations of elasticity and the variational principle. The conventions of the
mechanical quantities are then discussed generally.

2.1. Stress Analysis

In a rectangular Cartesian coordinate system Oxyz, the state of stress at
an arbitrary point P in an elastic body can be described by six independent
components of stress1, which can be written as a vector

σ =
{
σx, σy , σz , τxy, τxz, τyz

}T
(2.1.1)

The positive directions of the stress components are shown in Fig. 2.1. The
three pairs of shear stresses are τxy = τyx, τxz = τzx, τzy = τyz.

If these components of stress are known, the stress acting at point P on
any inclined plane can be determined as

Fnx = σxl + τxym+ τxzn

Fny = τxyl+ σym+ τyzn

Fnz = τxzl + τyzm+ σzn


 (2.1.2)

where l,m, n are the direction cosines of the exterior normal vector n with
respect to the inclined plane, and Fnx, Fny, Fnz are, respectively, the pro-
jections of the force per unit area acting on the inclined plane on x, y, z.

Equation (2.1.2) can be expressed in the form of matrix as

F n = E(n)σ (2.1.2′)

37
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Fig. 2.1. Senses of positive stress components.

where

E(n) =



l 0 0 m n 0

0 m 0 l 0 n

0 0 n 0 l m


 (2.1.3)

Using Eq. (2.1.2), the expressions of stress components under rotation
transformation of coordinate systems can be obtained. Consider two sets
of rectangular Cartesian frames of reference Ox′y′z′ and Oxyz. Let the
direction cosines of the axes in Ox′y′z′ relative to the axes in Oxyz be

axes x y z

x′ l1 m1 n1

y′ l2 m2 n2

z′ l3 m3 n3
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Hence, by virtue of Eq. (2.1.2), the stresses acting on the plane with the
new x′-axis as the outer normal direction are

F1x = σxl1 + τxym1 + τxzn1

F1y = τxyl1 + σym1 + τyzn1

F1z = τxzl1 + τyzm1 + σzn1


 (2.1.4)

Then by projecting F1x, F1y, F1z on axes x′, y′ and z′, respectively, the
normal stresses and shear stresses acting on this plane are

σx′ = F1xl1 + F1ym1 + F1zn1

= σxl
2
1 + σym

2
1 + σzn

2
1 + 2τxyl1m1

+ 2τxzl1n1 + 2τyzm1n1 (2.1.5a)

τx′y′ = F1xl2 + F1ym2 + F1zn2

= σxl1l2 + σym1m2 + σzn1n2 + τxy(l1m2 + l2m1)

+ τxz(l1n2 + l2n1) + τyz(m1n2 +m2n1) (2.1.5b)

τx′z′ = F1xl3 + F1ym3 + F1zn3

= σxl1l3 + σym1m3 + σzn1n3 + τxy(l1m3 + l3m1)

+ τxz(l1n3 + l3n1) + τyz(m1n3 +m3n1) (2.1.5c)

Similarly, the normal stresses and shear stresses acting on the planes with
the new y′- and z′-axis as the outer normal directions are

σy′ = σxl
2
2 + σym

2
2 + σzn

2
2 + 2τxyl2m2

+ 2τxzl2n2 + 2τyzm2n2 (2.1.5d)

σz′ = σxl
2
3 + σym

2
3 + σzn

2
3 + 2τxyl3m3

+ 2τxzl3n3 + 2τyzm3n3 (2.1.5e)

τy′z′ = σxl2l3 + σym2m3 + σzn2n3 + τxy(l2m3 + l3m2)

+ τxz(l2n3 + l3n2) + τyz(m2n3 +m3n2) (2.1.5f)

The expressions in Eq. (2.1.5) are the formula of stress components under
rotation transformation of coordinate systems.

As a coordinate system rotates, there exists a specific coordinate system
on an inclined plane with its outer normal direction as one of the coordinate
axes such that the shear stresses acting on that plane vanish and only the
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normal stresses σx′ , σy′ and σz′ remain. This particular direction is called
the principal direction of stress and the corresponding normal stresses
are called the principal stresses. The normal stress σ and the direction
cosines of the principal direction l,m, n fulfill the following equations

(σx − σ)l + τxym+ τxzn = 0

τxyl + (σy − σ)m+ τyzn = 0

τxzl+ τyzm+ (σz − σ)n = 0


 (2.1.6)

Because the direction cosines do not vanish simultaneously, the determinant
of the coefficient matrix vanishes; i.e.∣∣∣∣∣∣∣

σx − σ τxy τxz

τxy σy − σ τyz

τxz τyz σz − σ

∣∣∣∣∣∣∣ = 0 (2.1.7)

On expanding the determinant, we have the eigenvalue equation of σ, which
can be written in a compact form as

σ3 − I1σ
2 + I2σ − I3 = 0 (2.1.8)

where

I1 = σx + σy + σz

I2 = σxσy + σxσz + σyσz − τ2
xy − τ2

xz − τ2
yz

I3 =

∣∣∣∣∣∣∣
σx τxy τxz

τxy σy τyz

τxz τyz σz

∣∣∣∣∣∣∣ (2.1.9)

I1, I2, I3 are independent of the choice of coordinate systems and they are
called the first, the second, and the third stress invariants, respectively. The
invariant I2 is often used in the Mises criteria in plastic yield.

As the stress components form a real symmetric matrix, there exist
three real roots of Eq. (2.1.7) denoted as σ1, σ2, σ3, which are the principal
stresses. Furthermore, there must exist three mutually orthogonal principal
directions.

The state of stress at an arbitrary point in an elastic body has been
discussed above.

Consider an elastic body acted upon by some external forces where Fx,
Fy, Fz denote the body force components per unit volume. Then the stress
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components fulfill the following equations of equilibrium

∂σx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
+ Fx = 0 (2.1.10a)

∂τxy

∂x
+
∂σy

∂y
+
∂τyz

∂z
+ Fy = 0 (2.1.10b)

∂τxz

∂x
+
∂τyz

∂y
+
∂σz

∂z
+ Fz = 0 (2.1.10c)

Equations (2.1.10) can be expressed by an operator matrix E(∇)2 as

E(∇)σ + F = 0 (2.1.10′)

where

E(∇) =



∂/∂x 0 0 ∂/∂y ∂/∂z 0

0 ∂/∂y 0 ∂/∂x 0 ∂/∂z

0 0 ∂/∂z 0 ∂/∂x ∂/∂y


 (2.1.11)

F =
[
Fx, Fy, Fz

]T
(2.1.12)

2.2. Strain Analysis

The state of strain at every point in an elastic body can be described by
six independent components of strain in a rectangular Cartesian coordinate
system Oxyz. They can be written as a vector

ε = {εx, εy, εz, γxy, γxz, γyz}T (2.2.1)

The sign convention of strain corresponds to that of stress described in the
previous section. Here, extension is regarded as positive while contraction
as negative. A positive shear strain implies a decrease in the angle between
the vectors along the positive axes; a negative shear strain otherwise. The
state of strain can be described by the displacement along the coordinate
axes u = {u, v, w}T. The strain-displacement relations for infinitesimal
deformation, are

εx =
∂u

∂x
; εy =

∂v

∂y
; εz =

∂w

∂z
;

γxy =
∂u

∂y
+
∂v

∂x
; γxz =

∂u

∂z
+
∂w

∂x
; γyz =

∂v

∂z
+
∂w

∂y


 (2.2.2)
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or in the form of a vector as

ε = Ê(∇)u (2.2.2′)

where

Ê(∇) =




∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

∂/∂y ∂/∂x 0

∂/∂z 0 ∂/∂x

0 ∂/∂z ∂/∂y




(2.2.3)

Obviously, the six components of strain are not independent. They sat-
isfy the equations of compatibility

∂2εx

∂y2
+
∂2εy

∂x2
=
∂2γxy

∂x∂y
,

∂

∂x

(
∂γxz

∂y
+
∂γxy

∂z
− ∂γyz

∂x

)
= 2

∂2εx

∂y∂z

∂2εx

∂z2
+
∂2εz

∂x2
=
∂2γxz

∂x∂z
,

∂

∂y

(
∂γxy

∂z
+
∂γyz

∂x
− ∂γxz

∂y

)
= 2

∂2εy

∂x∂z

∂2εy

∂z2
+
∂2εz

∂y2
=
∂2γyz

∂y∂z
,

∂

∂z

(
∂γyz

∂x
+
∂γxz

∂y
− ∂γxy

∂z

)
= 2

∂2εz

∂x∂y

(2.2.4)

These equations are also called Saint–Venant equations. If the region oc-
cupied by the object is multiple-connected, Eq. (2.2.4) ensure the existence
of the solution of Eq. (2.2.2), but the solution, namely, the displacement
function may turn out to be multiple-valued.

Similar to stress, the strain components transform under rotation of
coordinate systems3.

The displacement components in the new coordinate system follow the
transformation

u′ = ul1 + vm1 + wn1

v′ = ul2 + vm2 + wn2

w′ = ul3 + vm3 + wn3


 (2.2.5)
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The corresponding strain components are

εx′ =
∂u′

∂x′
; εy′ =

∂v′

∂y′
; εz′ =

∂w′

∂z′
;

γx′y′ =
∂u′

∂y′
+
∂v′

∂x′
; γx′z′ =

∂u′

∂z′
+
∂w′

∂x′
; γy′z′ =

∂v′

∂z′
+
∂w′

∂y′




(2.2.6)

Substituting Eq. (2.2.5) into Eq. (2.2.6) and using the formula of partial
derivative as follows

∂

∂s
() = cos(s, x)

∂

∂x
() + cos(s, y)

∂

∂y
() + cos(s, z)

∂

∂z
() (2.2.7)

We obtain the expressions of strain components under rotation transforma-
tion of coordinates systems

εx′ = εxl
2
1 + εym

2
1 + εzn

2
1 + γxyl1m1 + γxzl1n1 + γyzm1n1 (2.2.8a)

εy′ = εxl
2
2 + εym

2
2 + εzn

2
2 + γxyl2m2 + γxzl2n2 + γyzm2n2 (2.2.8b)

εz′ = εxl
2
3 + εym

2
3 + εzn

2
3 + γxyl3m3 + γxzl3n3 + γyzm3n3 (2.2.8c)

γx′y′ = 2εxl1l2 + 2εym1m2 + 2εzn1n2 + γxy(l1m2 + l2m1)

+ γxz(l1n2 + l2n1) + γyz(m1n2 +m2n1) (2.2.8d)

γx′z′ = 2εxl1l3 + 2εym1m3 + 2εzn1n3 + γxy(l1m3 + l3m1)

+ γxz(l1n3 + l3n1) + γyz(m1n3 +m3n1) (2.2.8e)

γy′z′ = 2εxl2l3 + 2εym2m3 + 2εzn2n3 + γxy(l2m3 + l3m2)

+ γxz(l2n3 + l3n2) + γyz(m2n3 +m3n2) (2.2.8f)

It is observed that the expressions of strain components under rotation
transformation of coordinates system are the same as the corresponding
stress components if we denote strain components as εxy = 0.5γxy, εxz =
0.5γxz, εyz = 0.5γyz. Hence, there exist three mutually orthogonal principal
directions and the corresponding principal strains ε1, ε2, ε3. The principal
strain ε and its direction cosines l,m, n fulfill the following equations

(εx − ε)l + εxym+ εxzn = 0

εxyl + (εy − ε)m+ εyzn = 0

εxzl + εyzm+ (εz − ε)n = 0


 (2.2.9)

Because the direction cosines do not vanish simultaneously, the determinant
of the coefficient matrix vanishes. On expanding the determinant, we have
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the cubic equation of ε

ε3 − J1ε
2 + J2ε− J3 = 0 (2.2.10)

where

J1 = εx + εy + εz

J2 = εxεy + εxεz + εyεz − ε2xy − ε2xz − ε2yz

J3 =

∣∣∣∣∣∣∣
εx εxy εxz

εxy εy εyz

εxz εyz εz

∣∣∣∣∣∣∣ (2.2.11)

J1, J2, J3 are independent of the choice of coordinate systems and they are
called the first, the second, and the third strain invariants, respectively. The
first strain invariant J1 represents the expansion of a unit volume due to
strain and it is called the volume strain. J2 is often used in the plastic yield
criteria of isotropic materials in terms of strain.

2.3. Stress-Strain Relations

The equations of equilibrium (2.1.10) and the strain-displacement relations
(2.2.2) are independent of the material properties. Hence, they are applica-
ble to any cases having linear elastic infinitesimal deformation. The gen-
eralized Hooke’s law, on the other hand, couples the characteristics of
elasticity and material properties via the stress-strain relations. The gener-
alized linear stress-strain relations4 are given by

σx = c11εx + c12εy + c13εz + c14γxy + c15γxz + c16γyz

σy = c21εx + c22εy + c23εz + c24γxy + c25γxz + c26γyz

σz = c31εx + c32εy + c33εz + c34γxy + c35γxz + c36γyz

τxy = c41εx + c42εy + c43εz + c44γxy + c45γxz + c46γyz

τxz = c51εx + c52εy + c53εz + c54γxy + c55γxz + c56γyz

τyz = c61εx + c62εy + c63εz + c64γxy + c65γxz + c66γyz




(2.3.1)

where cij = cji(i, j = 1, 2, . . . , 6). The equations above can be expressed
concisely in vector form as

σ = Cε (2.3.1′)

where C is the stiffness coefficient matrix of the material.
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Using the inverse expressions of Eq. (2.3.1), the generalized Hooke’s law
can also be given in the following form

εx = s11σx + s12σy + s13σz + s14τxy + s15τxz + s16τyz

εy = s21σx + s22σy + s23σz + s24τxy + s25τxz + s26τyz

εz = s31σx + s32σy + s33σz + s34τxy + s35τxz + s36τyz

γxy = s41σx + s42σy + s43σz + s44τxy + s45τxz + s46τyz

γxz = s51σx + s52σy + s53σz + s54τxy + s55τxz + s56τyz

γyz = s61σx + s62σy + s63σz + s64τxy + s65τxz + s66τyz




(2.3.2)

where sij = sji (i, j = 1, 2, . . . , 6) are the flexibility coefficients representing
the elastic nature of materials, and they form the flexibility coefficient
matrix S. The above expression can be rewritten in a compact form as

ε = Sσ = C−1σ (2.3.2′)

During the deformation of an elastic body, the work done by an external
force is converted into strain energy stored in the elastic body. For lin-
ear stress-strain relation, the strain energy per unit volume or the strain
energy density can be expressed as

vε(ε) =
1
2
εTCε (2.3.3)

Hence the stress-strain relation (2.3.1) can also be expressed in terms of
the strain energy density as

σ =
∂vε(ε)
∂ε

(2.3.4)

Apply Legendre’s transformation to all the independent variables ε of the
strain energy density vε, i.e. by introducing a function (strain comple-
mentary energy density)

vc(σ) = σTε− vε(ε) =
1
2
σTSσ =

1
2
σTC−1σ (2.3.5)

Then we can express strain ε in terms of stress σ as

ε =
∂vc(σ)
∂σ

(2.3.6)

Obviously, as long as stress or strain are not all zero, we have

vε(ε) > 0 and vc(σ) > 0 (2.3.7)
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From Eq. (2.3.1), there are 21 independent elastic constants for the most
general form of an anisotropic elastic body. If the elastic body possesses
symmetric interior structure, so does its elastic property. The generalized
Hooke’s law can then be simplified.

If an elastic body exhibits one plane of elastic symmetry at any interior
point, then the elastic properties for any two mirror points on opposite sides
of the plane are identical. The axis (or direction) perpendicular to the plane
of elastic symmetry is called the elastic principal axis (or direction) of the
material. Supposing the z-axis is an elastic principal axis of the material,
then the generalized Hooke’s law (2.3.1) simplifies to

σx = c11εx + c12εy + c13εz + c14γxy

σy = c12εx + c22εy + c23εz + c24γxy

σz = c13εx + c23εy + c33εz + c34γxy

τxy = c14εx + c24εy + c34εz + c44γxy

τxz = c55γxz + c56γyz

τyz = c56γxz + c66γyz




(2.3.8)

Now the number of independent elastic constants reduces to 13.
If the elastic body has three mutually perpendicular planes of elastic

symmetry at any interior point, it is called an orthotropic solid. It has
three orthogonal elastic principal axes and the number of independent elas-
tic constants becomes 9. Suppose the coordinate planes coincide with the
planes of elastic symmetry, then the generalized Hooke’s law (2.3.8) further
simplifies to

σx = c11εx + c12εy + c13εz

σy = c12εx + c22εy + c23εz

σz = c13εx + c23εy + c33εz

τxy = c44γxy

τxz = c55γxz

τyz = c66γyz




(2.3.9)

In other words, all the elastic coefficients representing the coupling effects of
tension-shearing and shearing–shearing along the elastic principal directions
vanish. This is an important elastic property of an orthotropic material.
But when the coordinate axes do not coincide with the principal axes of
material, the matrix of elastic coefficients becomes a fully populated matrix
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with various coupling effects. However the number of independent elastic
constants is still 9 and such property is called generalized orthotropy.

If the elastic body has an isotropic plane at any interior point, namely
the elastic properties are identical in all directions with respect to the plane,
it is called a transversely isotropic solid. The axis perpendicular to that
plane is the elastic rotation axis of symmetry of material, and there are only
five independent elastic constants. If the z-axis coincides with the elastic
rotation axis of symmetry, then Eq. (2.3.9) further simplifies to

σx = c11εx + c12εy + c13εz

σy = c12εx + c11εy + c13εz

σz = c13εx + c13εy + c33εz

τxy =
1
2
(c11 − c12)γxy

τxz = c55γxz

τyz = c55γyz




(2.3.10)

Finally, for an isotropic elastic material, there are only two independent
elastic constants. The generalized Hooke’s law can then be stated as

σx = λθ + 2Gεx; τxy = Gγxy

σy = λθ + 2Gεy; τxz = Gγxz

σz = λθ + 2Gεz τyz = Gγyz


 (2.3.11)

where λ and G are the Lame’ constants. The volume strain, θ, is

θ = εx + εy + εz =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(2.3.12)

For isotropic materials, the stress-strain relation is always expressed in
terms of the modulus of elasticity (or Young’s modulus) E and
Poisson’s ratio ν as

εx =
1
E

[σx − ν(σy + σz)]; γxy =
2(1 + ν)

E
τxy

εy =
1
E

[σy − ν(σx + σz)]; γxz =
2(1 + ν)

E
τxz

εz =
1
E

[σz − ν(σx + σy)]; γyz =
2(1 + ν)

E
τyz




(2.3.13)
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in which the relations between the modulus of elasticity E, Poisson’s ν and
Lame’ constants are given by

E =
G(3λ+ 2G)
λ+G

; ν =
λ

2(λ+G)
(2.3.14)

or

λ =
Eν

(1 + ν)(1 − 2ν)
; G =

E

2(1 + ν)
(2.3.15)

where Poisson’s ν must satisfy

0 ≤ ν ≤ 0.5 (2.3.16)

For ν = 0.5, the material is incompressible.
For isotropic materials, the strain energy density can be expressed as

vε(ε) =
1
2
(λ + 2G)(ε2x + ε2y + ε2z)

+λ(εxεy + εxεz + εyεz) +
1
2
G(γ2

xy + γ2
xz + γ2

yz) (2.3.17)

and the complementary strain energy density is given by

vc(σ) =
1

2E
[σ2

x + σ2
y + σ2

z − 2ν(σxσy + σxσz + σyσz)

+ 2(1 + ν)(τ2
xy + τ2

xz + τ2
yz)] (2.3.18)

Although an isotropic continuum is restricted by Eq. (2.3.16), the re-
striction may not be mathematically necessary. For instance, the funda-
mental equations for plate bending to be discussed later are equivalent to
the case with a negative Poisson’s ν.

2.4. The Fundamental Equations of Elasticity

From the analyses of stress, strain and the stress-strain relations in the
previous three sections, there are 15 fundamental equations of equilibrium
in elasticity in the region V :

(1) Equations of equilibrium (2.1.10).
(2) Strain-displacement relations (2.2.2.).
(3) Stress-strain relations (2.3.1).
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In addition to satisfying the above fundamental equations within the
region, the solution to elasticity problems must also fulfill the corresponding
boundary conditions. The boundary Γ of region V is usually separated into
two parts: Γσ for specified surface boundary tractions and Γu for specified
displacements.

The boundary conditions on Γσ are

Fnx = σxl + τxym+ τxzn = Fnx

Fny = τxyl + σym+ τyzn = Fny

Fnz = τxzl + τyzm+ σzn = Fnz


 on Γσ (2.4.1)

where Fnx, Fny, Fnz are the projections of the known force per unit area
acting on the surface boundary on the coordinate axes x, y and z, respec-
tively, and l,m, n are the direction cosines of the exterior normal vector n
of the surface boundary. The boundary conditions (2.4.1) can be expressed
in matrix as

F n = E(n)σ = F n on Γσ (2.4.1′)

The boundary conditions on Γu are

u = u, v = v, w = w on Γu (2.4.2)

where u, v, w are the specified displacements. Similarly, the boundary con-
ditions (2.4.2) can also be expressed in vector as

u = u on Γu (2.4.2′)

Having had the governing partial differential equations and the bound-
ary conditions, the question remains for obtaining the solution. The tradi-
tional approach for solving partial differential equations is to eliminate as
many unknown functions as possible in order to reduce the number of ba-
sic unknown functions in the equations. This approach results in relatively
higher-order partial differential equations. Hence, two ways of traditional
solution methodology for elasticity problems are formed, i.e. the displace-
ment solution method and the stress solution method. Although a hybrid
solution method exists in theory, it has been rarely applied except for some
cases in shell analysis.

For displacement solution method, the basic unknown functions are re-
ferred to the displacements of each point in the elastic body. By using
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strain-displacement relations (2.2.2) and generalized Hooke’s law (2.3.11)
and eliminating the components of strain and stress, we obtain three equa-
tions of equilibrium involving only three unknown functions u, v, w, which
belong to the same kind of variables. For isotropic materials, the equations
of equilibrium in terms of displacement functions u, v, w are

(λ +G)
∂θ

∂x
+G∇2u+ Fx = 0

(λ+G)
∂θ

∂y
+G∇2v + Fy = 0

(λ+G)
∂θ

∂z
+G∇2w + Fz = 0




(2.4.3)

where ∇2 is the Laplace operator.

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.4.4)

The volume strain θ should be substituted by Eq. (2.3.12). These equations
are called Lame equations.

We are now ready to impose the boundary conditions. On boundary Γu

for specified displacements, the boundary conditions are (2.4.2) while on
boundary Γσ for specified boundary tractions, the boundary conditions in
terms of displacements are

λθl +G

(
∂u

∂x
l+

∂u

∂y
m+

∂u

∂z
n

)
+G

(
∂u

∂x
l +

∂v

∂x
m+

∂w

∂x
n

)
= Fnx

λθm+G

(
∂v

∂x
l +

∂v

∂y
m+

∂v

∂z
n

)
+G

(
∂u

∂y
l+

∂v

∂y
m+

∂w

∂y
n

)
= Fny

λθn+G

(
∂w

∂x
l +

∂w

∂y
m+

∂w

∂z
n

)
+G

(
∂u

∂z
l +

∂v

∂z
m+

∂w

∂z
n

)
= Fnz




(2.4.5)

Equation (2.4.3) and boundary conditions (2.4.2), (2.4.5) are the fundamen-
tal differential equations and boundary conditions for displacement solution
method.

Contrary to the displacement solution method, the stress solution
method considers the stress components as the basic unknown functions by
eliminating displacement and strain components. Thus the six Beltrami–
Michell partial differential equations2,3 are formed and they are the strain
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compatibility equations in terms of stress. For three-dimensional elasticity
problems, it is rather difficult to solve these equations simultaneously with
the equations of equilibrium. The expressions of equations are thus omitted
here. For the stress solution method, the stress functions adopted usually
satisfy the equations of equilibrium spontaneously. Hence the solution is
merely determined by the equations of compatibility. The stress solution
method, especially the solution method by stress functions, is always ap-
plied to problems in plane elasticity and axisymmetric revolution body.
Again, only one kind of variables is involved in this solution methodology.

2.5. The Principle of Virtual Work5,6

According to general definition in mechanics, the displacement ud and the
corresponding strain εd satisfying the strain-displacement relations (2.2.2)
and displacement boundary conditions (2.4.2) are called, respectively, the
admissible deformation displacement and the admissible deformation strain,
or admissible displacement and admissible strain in short. Obviously,
the admissible displacement and its corresponding admissible strain are not
unique. There are infinite sets of admissible displacement and admissible
strain and the ones which satisfy the equations of equilibrium are the true
displacement and the true strain, respectively. On the other hand, the stress
σs satisfying the equations of equilibrium (2.1.10) and traction boundary
condition (2.4.1) is called statically admissible stress, or admissible stress
in short. Similarly, there are infinite sets of admissible stress and the one
which satisfies the strain compatibility equations is the true stress. When
solving elasticity problems, it is possible to search for the true stress field
in the entire statically admissible stress field (stress solution), or to search
for the true displacement field in the entire admissible displacement field
(displacement solution).

Firstly, we obtain the following identity via integration by parts
∫

V

σTÊ(∇)udV = −
∫

V

[E(∇)σ]TudV +
∫

Γ

[E(n)σ]TudΓ (2.5.1)

Hence, the statically admissible stress field σs and the admissible deforma-
tion displacement field ud fulfill

∫
V

FTuddV +
∫

Γ

FT
nuddΓ =

∫
V

σT
s εddV (2.5.2)
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which expresses the principle of virtual work: for an elastic body, the
work done by an external force with respect to an arbitrary set
of admissible deformation displacement is equal to the work done
by an arbitrary set of statically admissible stress with respect
to the admissible strain corresponding to the stated admissible
deformation displacement.

We denote

ud = u+ δu (2.5.3)

where u denotes the actual displacement field and δu denotes the vir-
tual displacement. The latter is a quantity with a small deviation to
the actual displacement field consistent with the displacement constrains.
Hence the virtual displacement vanishes over the boundary Γu for specified
displacements,

δu = 0 (2.5.4)

As ud and u are both admissible displacement fields and if we take the
actual stress field as the statically admissible stress field, by means of
Eq. (2.5.2), we derive∫

V

FTδudV +
∫

Γσ

FT
nδudΓ =

∫
V

σTδεdV (2.5.5)

which states the principle of virtual displacement: for an elastic
body in equilibrium, the external virtual work done by an exter-
nal force with respect to a virtual displacement is equal to the
internal virtual work of the elastic body. Conversely, if the external
virtual work with respect to an arbitrary virtual displacement is equal to the
internal virtual work, the elastic body must be in equilibrium. The principle
of virtual displacement is sometimes called the principle of virtual work.

2.6. The Principle of Minimum Total Potential Energy

Irrespective of displacement or stress solution methods, it has been enor-
mously difficult to seek analytical solutions for elasticity problems. Hence,
various approximate theories, such as the theories of beam, thin-walled bar,
plate shell, etc. were established. Even with practical theories, analytical
solutions are limited to a certain extent due to the complexity of partial
differential equations. Particularly, it is almost impossible to obtain an-
alytical solutions if the boundary conditions are complicated. Hence, the
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seeking of solutions for elasticity problems has long been a “bottleneck” in
the development of theory of elasticity. Similarly, research in the solution
methodology has also been a main subject of interest in elasticity.

Because exact solutions in elasticity are difficult, approximate solutions
become significant. The method of variation is one of the most effective
methods among the approximate methods. It is the theoretical foundation
of some numerical methods, for instance, the finite element method. This
method has gained enormous success. The functional of the variational prin-
ciple has close relations with energy, hence, it is also called the variational
principle of energy.

Since the external forces are invariant during the process of virtual dis-
placements, based on Eq. (2.3.4), Eq. (2.5.5) can be written as

δEp(u) = δ(Vε(u) + Ew(u)) = 0 (2.6.1)

where

Vε(u) =
∫

V

vε(ε)dV (2.6.2)

Ew(u) = −
∫

V

FTudV −
∫

Γσ

FT
nudΓ (2.6.3)

in which Vε and Ew are the strain energy and the potential energy of ex-
ternal forces of the elastic body, respectively, and Ep, a functional of dis-
placement, is the total potential energy.

Equation (2.6.1) only indicates the vanishing of the first variation of to-
tal potential energy. It is also a condition for equilibrium. It is observed that
the potential energy of external forces is a first-order functional of displace-
ment u, and the strain energy is a second-order functional of displacement.
Hence, we have

Vε(u+ δu) = Vε(u) + δVε(u) + Vε(δu)

Ew(u+ δu) = Ew(u) + δEw(u)

}
(2.6.4)

Using Eqs. (2.6.1) and (2.3.7), we obtain

Ep(u + δu) = Ep(u) + Vε(δu) ≥ Ep(u) (2.6.5)

It states that the actual solution corresponds to minimum potential energy.
Hence, we have the principle of minimum total potential energy: for
all admissible displacement fields, the actual displacement field of
an elastic system corresponds to minimum total potential energy
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of the elastic body. The minimum of total potential energy indicates a
state of stable equilibrium.

2.7. The Principle of Minimum Total Complementary
Energy

For an elastic body in equilibrium, the statically admissible stress field is

σs = σ + δσ (2.7.1)

where σ is the actual stress field and δσ is the virtual stress which is a
quantity with a small deviation to the actual stress field and yet making σs

a statically admissible stress field. Hence on the boundary Γσ for specified
forces, we have

δF n = E(n)δσ = 0 (2.7.2)

As σs and σ are both statically admissible stress fields and if the actual
displacement field is taken as the admissible deformation displacement field,
by means of Eq. (2.5.2), we derive∫

V

εTδσdV −
∫

Γu

uTE(n)δσdΓ = 0 (2.7.3)

Since displacements are invariable during the generation of virtual stress,
and based on Eq. (2.3.6), Eq. (2.7.3) can be written as

δEpc(σ) = δ[Vc(σ) + Ec(σ)] = 0 (2.7.4)

where

Vc(σ) =
∫

V

vc(σ)dV (2.7.5)

Ec(σ) = −
∫

Γu

uTE(n)σdΓ (2.7.6)

Vc and Ec are the strain complementary energy and the complementary
energy for support displacements, respectively, and Epc, a functional of
stress, is the total complementary energy of elastic body.

Similarly, Eq. (2.7.4) only indicates the vanishing of the first variation
of total complementary energy. It also represents the deformation compati-
bility conditions. It is observed that the complementary energy for support
displacements is a first-order functional of reaction E(n)σ, and the strain
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complementary energy is second-order functional of stress σ. Hence, we
have

Vc(σ + δσ) = Vc(σ) + δVc(σ) + Vc(δσ)

Ec(σ + δσ) = Ec(σ) + δEc(σ)

}
(2.7.7)

According to Eqs. (2.7.4) and (2.3.7), we obtain

Epc(σ + δσ) = Epc(σ) + Vc(δσ) ≥ Epc(σ) (2.7.8)

It states that the actual solution corresponds to minimum complementary
energy. Hence, we have the principle of minimum total complemen-
tary energy7: for all admissible stress fields, the actual stress field
of an elastic system corresponds to minimum total complemen-
tary energy of the elastic body. The minimum of total complementary
energy indicates a state of stable equilibrium.

For exact solutions, the relation between the total potential energy and
the total complementary energy of an elastic system is

Ep + Epc = 0 (2.7.9)

Associating with Eqs. (2.6.5) and (2.7.8), we obtain a series of inequalities

−Ep(u+ δu) ≤ −Ep(u) = Epc(σ) ≤ Epc(σ + δσ) (2.7.10)

2.8. The Hellinger–Reissner Variational Principle with Two
Kinds of Variables

Both the principle of minimum potential energy and the principle of min-
imum complementary energy are subjected to specified constraints. From
the viewpoint of multiple kinds of variables, they are the principles of con-
ditional extremum8.

For the principle of minimum complementary energy, for instance,
the independent variable function σ satisfies the equation of equilibrium
(2.1.10) and the boundary conditions for specified surface tractions (2.4.1).
In order to get rid of these constraints, we introduce the Lagrange multi-
pliers ξ,η. Substituting Eqs. (2.1.10) and (2.4.1) into the variation formula
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(2.7.4), a new functional

Π2 =
∫

V

{vc(σ) + ξT[E(∇)σ + F ]}dV

−
∫

Γu

uTE(n)σdΓ −
∫

Γσ

ηT(E(n)σ − F n)dΓ (2.8.1)

is obtained. For functional Π2, σ is considered as an independent variable
function without any constraints. The variation of Π2 with respect to σ is∫

V

{δσT[ε− Ê(∇)ξ]}dV +
∫

Γu

(ξ − u)TE(n)δσdΓ

+
∫

Γσ

(ξ − η)TE(n)δσdΓ (2.8.2)

As δσ is arbitrary, we have

ε = Ê(∇)ξ (2.8.3)

ξ = u on Γu (2.8.4)

ξ = η on Γσ (2.8.5)

It states that the Lagrange multipliers ξ,η are the displacement u.
Substituting u for ξ,η in the functional Π2, the Hellinger–Reissner
variational principle with two kinds of variables is

δΠ2 = 0 (2.8.6)

where

Π2 =
∫

V

{vc(σ) + uT[E(∇)σ + F ]}dV

−
∫

Γu

uTE(n)σdΓ −
∫

Γσ

uT(E(n)σ − F n)dΓ (2.8.7)

By means of the identity (2.5.1), another form of variational principle
with two kinds of variables is obtained.

δΠ′
2 = 0 (2.8.8)

where

Π′
2 =

∫
V

{σTÊ(∇)u − vc(σ) − FTu}dV

−
∫

Γu

(u− u)TE(n)σdΓ −
∫

Γσ

FT
nudΓ (2.8.9)
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2.9. The Hu–Washizu Variational Principle with Three
Kinds of Variables

For the Hellinger–Reissner variational principle with two kinds of variables,
the strain ε in terms of the displacement u is derived from Eq. (2.2.2). If
this constraint is relaxed, we obtain the Hu–Washizu variational principle
with three kinds of variables. It was published by Haichang Hu in China
in 1954 and by Washizu in USA in 1955, respectively. Although the Hu–
Washizu variational principle can also be derived by introducing Lagrange
multipliers, only derivation by Legendre’s transformation is employed here.

First of all, we apply Legendre’s transformation on all the independent
variables σ of strain complementary energy density vc(σ) in Hellinger–
Reissner variational principle. By introducing a function (strain energy
density)

vε(ε) = σTε− vc(σ) =
1
2
εTCε (2.9.1)

stress σ can be expressed in terms of strain ε as

σ =
∂vε(ε)
∂ε

(2.9.2)

Obviously, Eqs. (2.9.1), (2.9.2) and (2.3.5), Eq. (2.3.6) are in dual. Equa-
tion (2.9.1) can be rewritten as

vc(σ) = max
σ

[σTε− vε(ε)] (2.9.3)

Substitution of the above expression into the formula of the Hellinger–
Reissner variational principle in Eqs. (2.8.6) and (2.8.8), respectively, results
in two forms of the Hu–Washizu variational principle with three
kinds of variables

δΠ3 = 0 (2.9.4)

Π3 =
∫

V

{σTε− vε(ε) + uT[E(∇)σ + F ]}dV

−
∫

Γu

uTE(n)σdΓ −
∫

Γσ

uT(E(n)σ − F n)dΓ (2.9.5)



December 16, 2008 15:56 B-599 9in x 6in ch02

58 Symplectic Elasticity

and

δΠ′
3 = 0 (2.9.6)

Π′
3 =

∫
V

{σTÊ(∇)u− σTε+ vε(ε) − FTu}dV

−
∫

Γu

(u− u)TE(n)σdΓ −
∫

Γσ

FT
nudΓ (2.9.7)

It is not necessary to apply Legendre’s transformation on all stress com-
ponents of σ. Depending on the circumstances, it is completely valid to
apply Legendre’s transformation on a portion of the stress components
while keeping the other stress components unchanged. Hence, the mixed
energy and its corresponding variational principle can be derived. Apply-
ing the mixed energy variational principle to the analysis of chains
of substructures yields a theory similar to the theory in control optimiza-
tion. If it is applied with respect to the longitudinal direction of an elastic
column, a Hamiltonian system is derived. Using the methods of mathemat-
ical physics, such as separation of variables and expansion of eigenvector, a
breakthrough on the restriction of Sturm–Liouville’s problem (self-adjoint
operator) can be established. This approach is applicable for solving the
Saint–Venant problem.

In the Hu–Washizu variational principle with three kinds of vari-
ables: displacement, stress and strain are the independent variables. It en-
compasses the equations of equilibrium (2.1.10), the strain-displacement
relations (2.2.2.) and the stress–strain relations (2.3.1). Although such de-
velopment created satisfaction among researchers, however, many stress
functions widely used in solutions of classical stress analysis are not in-
cluded. From the viewpoint of similarity of plate bending and plane elas-
ticity problems9, it is not correct to consider the stress function as a less
known variable. We can also introduce the multi-variable variational
principle of three-dimensional elasticity10 for residual deformation.
It does not only include displacement, stress and strain, but also stress
function and residual strain, a total of five kinds of fundamental variables.
It covers five kinds of fundamental equations: the equations of equilibrium,
strain-displacement relations, stress–strain relations, compatibility equa-
tions of deformation and stress–stress function. The variational principle
can be used to derive the various aforementioned classical variational prin-
ciples, and therefore, it can be regarded as the most general variational
principle hitherto. In Chapter 8, the multi-variable variational principle
for plate bending and plane elasticity problems will be discussed in detail,
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while the multi-variable variational principle for three-dimensional elastic-
ity problems will be omitted.

2.10. The Principle of Superposition and the Uniqueness
Theorem

An important, specific character of the elasticity systems above is the lin-
earity of the fundamental equations and boundary conditions. As they are
linear system, the superposition principle is applicable. Let u, ε,σ be the
solutions of an elastic system subject to body forces F and surface trac-
tions F n, and u′, ε′,σ′ be the solutions corresponding to F ′and F ′

n. Then
u+u′, ε+ ε′,σ+σ′ are the solutions corresponding to body forces F +F ′

and surface tractions F n + F ′
n.

The principle of superposition is very useful. It can divide a complicated
problem into the solutions of several simpler problems. In this book we
only discuss the solutions of linear elasticity systems. Large displacement
and large deformation are not considered and, therefore, the principle of
superposition is absolutely applicable.

The uniqueness of solution is discussed below. Suppose there exist two
sets of solutions

σ(1), ε(1), u(1) and σ(2), ε(2), u(2) (2.10.1)

for an elastic system with prescribed body forces F and surface tractions
F n. Both solutions satisfy the equations of equilibrium (2.1.10), strain-
displacement relations (2.2.2.) and generalized Hooke’s law (2.3.1), as well
as the identical boundary conditions for specified surface tractions (2.4.1)
and specified displacements (2.4.2). According to the principle of super-
position, the difference of the two solutions

σ̃ = σ(1) − σ(2), ε̃ = ε(1) − ε(2), ũ = u(1) − u(2) (2.10.2)

are also the solutions for the elastic system. However, these solutions cor-
respond to an elastic body without any body forces and surface tractions.
Obviously, the external virtual work done by external forces for any virtual
displacements vanishes. According to the principle of virtual displacement
(2.5.5), the internal virtual work vanishes when an elastic body is in a state
of equilibrium, or ∫

V

σ̃Tδε̃dV = 0 (2.10.3)
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Further, as the virtual strain δε̃ is arbitrary, we have σ̃ = 0, and subse-
quently ε̃ = 0. If the elastic body is constrained completely by support
without any rigid displacement, we have the displacement ũ = 0. Hence,
the two sets of solutions σ(1), ε(1),u(1) and σ(2), ε(2),u(2) are identical. It
states the uniqueness theorem of solution for elasticity problems: the
stress state and strain state satisfying all equations of elasticity
and boundary conditions are unique. Furthermore, if rigid dis-
placement of the elastic body is constrained completely by sup-
port, the displacement is also unique.

2.11. Saint–Venant Principle

As far as exact solution of elasticity problems are concerned, the solutions
are different for different boundary conditions. However, in many practical
circumstances, it is rather difficult to accurately determine the actual dis-
tribution of surface tractions. Even if the exact distribution of surface trac-
tions is known, there is formidable mathematical complexity if the boundary
conditions are to be satisfied strictly.

In 1855, French scientist Saint–Venant presented the famous Saint–
Venant principle to overcome the problem. It states that if a system
of forces in equilibrium acts on any portion of the surface of an
elastic body, the resultant stress and deformation thus caused are
localized in the vicinity of the applied forces, and they decrease
rapidly with the increase of distance from the region of applica-
tion. For instance, consider the bending of bar with uniform cross section.
The exact distribution of forces acting at the end of the bar can be neglected
and replaced by a statically equivalent system of forces to be solved. The
corresponding approximate solution is called the solution of Saint–Venant’s
problems. According to the principle, the state of stress and deformation
at regions far enough from the end of bar are little affected. Thus, the
Saint–Venant solution is applicable.
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Chapter 3

The Timoshenko Beam Theory and Its Extension

Using the Timoshenko beam, an elastic system in a single continuous
coordinate system, as an example, the derivation of a Hamiltonian system
from the fundamental equations of elasticity is introduced in this chapter.
Subsequently, some effective methods of mathematical physics such as the
methods of separation of variables and expansion of eigenvector are used
to obtain the solutions. At the same time, the physical interpretation of
symplectic orthogonality is given. The problem of wave propagation in a
Timoshenko beam is also discussed.

3.1. The Timoshenko Beam Theory

It is well known the classical theory of Euler–Bernoulli beam assumes that
(1) the cross-sectional plane perpendicular to the axis of the beam remains
plane after deformation (assumption of a rigid cross-sectional plane); (2) the
deformed cross-sectional plane is still perpendicular to the axis after defor-
mation. The classical theory of beam neglects transverse shearing defor-
mation where the transverse shear stress is determined by the equations
of equilibrium. It is applicable to a thin beam. For a beam with short ef-
fective length or composite beams, plates and shells, it is inapplicable to
neglect the transverse shear deformation. In 1921, Timoshenko presented a
revised beam theory considering shear deformation1 which retains the first
assumption and satisfies the stress-strain relation of shear.

Let the x-axis be along the beam axis before deformation and the xz -
plane be the deflection plane as shown in Fig. 3.1. The bending problem
of a Timoshenko beam is considered. The displacements û(x, z), ŵ(x, z) at
any point (x, z) in the beam along the x- and z-axis, respectively, can be
expressed in terms of two generalized displacements, i.e. the deflection of
beam axis w̃(x) and the rotational angle of the cross section θ̃(x)

û(x, z) = −zθ̃(x), ŵ(x, z) = w̃(x) (3.1.1)

63
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Fig. 3.1. Bending of Timoshenko beam.

Then according to the strain-displacement relation (2.2.2), the strains com-
ponents are

εx = −z dθ̃
dx
, γxz =

dw̃
dx

− θ̃ (3.1.2)

Substituting Eq. (3.1.2) into the stress-strain relation (2.3.13) and neglect-
ing the effect of higher-order small stress quantities σy , σz yield

−z dθ̃
dx

=
1
E
σx,

dw̃
dx

− θ̃ =
1
G
τxz (3.1.3)

Multiplying both sides of the first equation in Eq. (3.1.3) by z and
integrating over the cross-sectional area; and further integrating both sides
of the second equation directly over the cross-sectional area, we obtain

−I dθ̃
dx

=
1
E

∫
A

zσxdA = − 1
E
M̃ (3.1.4a)

A

(
dw̃
dx

− θ̃

)
=

1
G

∫
A

τxzdA =
1
G
F̃s (3.1.4b)

where I is the moment of inertia about the y-axis of the cross section of
beam, A is the cross-sectional area, and M̃, F̃s are the bending moment and
shear force on the cross section, respectively. When deducing the above
equations, we assume constant shear stresses on the cross section which,
however, are not true in actual situations. Hence a shear correction fac-
tor k of the cross section is always introduced in Eq. (3.1.4b) to rectify the
inappropriate assumption. Equation (3.1.4) can then be expressed as

M̃ = EI · κ̃, F̃s = kGA · γ̃ (3.1.5)
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where

κ̃(x) =
dθ̃
dx
, γ̃ =

dw̃
dx

− θ̃ (3.1.6)

are the generalized strains corresponding to the bending moment M̃ and
shear force F̃s. Physically, they are referred as the relative rotational angle
between two adjacent cross sections and the shear angle of cross section,
respectively. To determine the shear correction factor k, it is usually neces-
sary to assume beforehand the type of shear stress distribution on various
shapes of cross sections. Different assumption results in different numerical
values. For example, k = 1 ∼1.2 for a rectangular cross section while oth-
ers may be referred to Ref. 2. An infinite shear correction factor, k → ∞,
implies negligible effects of transverse shear deformation and the model
degenerates to the classical theory of Euler–Bernoulli beam.

The equation of motion of Timoshenko beam is derived as follows3.
Consider an infinitesimal segment of the beam as shown in Fig. 3.2. The
loads acting on the beam include the transverse distributed force q̃(x) and
the distributed external moment m̃(x). Besides, there are the transverse
inertia force due to the deflection of beam w̃(x)

q̃I(x) = −ρA∂
2w̃

∂t2
(3.1.7)

and the inertia moment due to the rotational angle of cross section θ̃(x)

m̃I(z) = −ρI ∂
2θ̃

∂t2
(3.1.8)

Fig. 3.2. Stress analysis on a segment of Timoshenko beam.



December 16, 2008 15:56 B-599 9in x 6in ch03

66 Symplectic Elasticity

The dynamic equations are then(
F̃s +

∂F̃S

∂x
dx
)
− F̃s + (q̃ + q̃I)dx = 0

(
M̃ +

∂M̃

∂x
dx
)
− M̃ + F̃sdx+ (m̃+ m̃I)dx = 0




(3.1.9)

or

∂F̃s

∂x
+ q̃ = ρA

∂2w̃

∂t2
,

∂M̃

∂x
+ F̃s + m̃ = ρI

∂2θ̃

∂t2
(3.1.10)

Substituting Eqs. (3.1.5) and (3.1.6) into Eq. (3.1.10) and eliminating the
internal forces and strain, the equations of motion in terms of displacements
are

∂

∂x

[
kGA

(
∂w̃

∂x
− θ̃

)]
+ q̃ = ρA

∂2w̃

∂t2

∂

∂x

(
EI

∂θ̃

∂x

)
+ kGA

(
∂w̃

∂x
− θ̃

)
+ m̃ = ρI

∂2θ̃

∂t2




(3.1.11)

The solution of these differential equations requires the relevant bound-
ary conditions and initial conditions. The initial conditions are

w̃ = w0(x) and θ̃ = θ0(x) for t = 0 (3.1.12)

while there are normally three types of boundary conditions:

(a) Simply supported boundary w̃ = 0, M̃ = 0 (3.1.13a)

(b) Clamped boundary w̃ = 0, θ̃ = 0 (3.1.13b)

(c) Free boundary M̃ = 0, F̃s = 0 (3.1.13c)

To analyze vibration problems, we usually use Fourier expansion for
time t and transform the time domain into the frequency domain. These
quantities then have a multiplier eiωt resulting in w̃ = weiωt, θ̃ = θeiωt etc.

In the frequency domain, the equations of motion (3.1.11) are
simplified to

d
dx

[
kGA

(
dw
dx

− θ

)]
+ ρAω2w + q = 0

d
dx

(
EI

dθ
dx

)
+ kGA

(
dw
dx

− θ

)
+ ρIω2θ +m = 0




(3.1.14)
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The following discussion commences with the equations of motion (3.1.14).
First, the x-coordinate is modeled as the time coordinate of the Lagrangian
system and the Hamiltonian system. A dot is used to indicate differentiation
with respect to the x-coordinate, i.e. (̇) = d/dx, and further denote

q = {w, θ}T, q̇ = {ẇ, θ̇}T (3.1.15)

Then the principle of potential energy corresponding to the equation of
motion (3.1.14) is

δ

∫ L

0

L (q, q̇)dx = 0 (3.1.16)

and Lagrange density function is

L (q, q̇) =
1
2
q̇TK22q̇ + q̇TK21q +

1
2
qTK11q − gTq (3.1.17)

where

K22 =

[
kGA 0

0 EI

]
, K21 =

[
0 −kGA
0 0

]

K11 =

[
−ρAω2 0

0 kGA− ρIω2

]
, g =

{
q

m

}
(3.1.18)

The variation of Eq. (3.1.16) yields the differential equation

d
dx

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (3.1.19)

which is the Lagrange equation with the time coordinate t replaced by
the space coordinate x. Substituting Eq. (3.1.17) into the above equation
yields

K22q̈ + (K21 −K12)q̇ −K11q + g = 0 (3.1.20)

which is the matrix (vector) form of Eq. (3.1.14) where K12 = KT
21.

The equation above is the fundamental equation and the principle of
potential energy of the Lagrange system with a single kind of variables for
solving the dynamic problem of Timoshenko beam. For ω = 0, obviously,
the equation above degenerates to the fundamental equation and the prin-
ciple of minimum potential energy of static bending of Timoshenko beam.
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As the vector q in the Lagrange equation (3.1.19) for Timoshenko beam
is two-dimensional, it is not difficult to solve it directly in the displacement
space. In order to better describe to the readers the concepts and physi-
cal interpretation of Hamiltonian systems and symplectic mathematics, the
derivation and solution of Hamiltonian system for bending of Timoshenko
beam is presented in this chapter. Certainly, the approach can be general-
ized to the n-dimensional cases. This is the main intention of this chapter.

3.2. Derivation of Hamiltonian System

To derive Hamiltonian system4−8 from Eq. (3.1.20), we first introduce the
dual variable of variable q according to Legendre’s transformation

p =
∂L

∂q̇
= K22q̇ +K21q (3.2.1)

By virtue of Eq. (3.2.1), the solution of q̇ is

q̇ = −K−1
22 K21q +K−1

22 p (3.2.2)

Then we introduce the Hamiltonian density function

H (q,p) = pTq̇ − L (q, q̇)

= pTAq − 1
2
qTBq +

1
2
pTDp+ hT

q p− hT
p q (3.2.3)

where

A = −K−1
22 K21, B = K11 −K12K

−1
22 K21

D = K−1
22 , hq = 0, hp = −g (3.2.4)

Hence from Eqs. (1.4.6) and (3.1.19), we obtain the equations of dual Hamil-
tonian system as

q̇ =
∂H

∂p
= Aq +Dp+ hq

ṗ =
∂L

∂q
= −∂H

∂q
= Bq −ATp+ hp


 (3.2.5)

Introducing the full state vector

v =

{
q

p

}
(3.2.6)
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the equations of Hamiltonian dual system (3.2.5) can also be expressed as

v̇ = Hv + h (3.2.7)

where

H =

[
A D

B −AT

]
, h =

{
hq

hp

}
(3.2.8)

As K22 and K11 are both symmetric matrices, B and D are also symmet-
ric matrices. It is then not difficult to prove that matrix H satisfies the
condition of Eq. (1.3.14) and, therefore, it is a Hamiltonian matrix.

Obviously, the Hamiltonian density function can also be expressed in
terms of Hamiltonian matrix as

H (q,p) = −1
2
vT(JH)v + hTJv (3.2.9)

Both systems of Eqs. (3.2.5) and (3.2.7) are all systems of first-order
equations. The time differential of the full state vector is only present on
the left-hand-side of the equations while q and p only present on the right-
hand-side. Hence, the original system of n second-order differential equa-
tions (3.1.20) can be transformed into a system of 2n first-order differential
equations (3.2.5). Thus we complete the transformation from Lagrange sys-
tem to Hamiltonian system.

The Hamiltonian density function is a quadratic form of q and p as
expressed in Eq. (3.2.3). It becomes a quadratic homogeneous form if there
is no external force. This is a special characteristic of a linear system. For
a nonlinear system, H (q,p) is a general function of q and p without dif-
ferential of x.

The Hamiltonian density function H (q,p) is also known as the mixed
energy density. The corresponding Lagrange density function L (q, q̇) is
also the total potential energy density. It is noted that the deformation
energy function in accordance with the variational principle of elasticity
discussed earlier employs either strain (displacement related), i.e. vε(ε), or
stress, i.e. vc(σ), as the independent variables. Such expressions are not
the expressions of mixed energy, but rather the strain energy density or
the strain complementary energy density. The expression of Hamiltonian
function employs displacement and its dual variable as the independent
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variables. It is neither the strain energy nor the strain complementary en-
ergy, but rather the mixed energy density. The mixed energy density is
indefinite, it can be either positive or negative. However, the strain en-
ergy density and the strain complementary energy density are both positive
definite.

It may be a little contradictory to the convention in the discussion above.
Similarly, in many discussions on dynamics systems, the Lagrange function
in a form of the difference of kinetic energy and potential energy is also
rather puzzling. Nevertheless, the corresponding Hamiltonian function con-
structed as the sum of kinetic energy and potential energy is comparatively
easier to be comprehended. Similar situation can be observed if a Hamilto-
nian system for dynamics is derived by modeling the spatial x-coordinate
as the temporal t-coordinate. Here, contrary to the case of dynamics, con-
fusion is due to the Lagrange function as the total potential energy density
while the Hamiltonian function as the mixed energy.

The theory of Hamiltonian system has long been introduced in analyti-
cal dynamics in classes because it has been regarded as a subject concerned
with dynamics only. But now it is clear that the theory is also applicable to
the spatial x-coordinate and is not limited to dynamics. Many mathemati-
cians have already asserted that the theory of Hamiltonian system is a set
of mathematically constructed system9−11. The functions can be separated
from their specific physical meaning when discussed. Much information for
applied mechanics can be acquired much from the theory.

The theory of Hamiltonian system is general and it is not limited to
linear systems. The many approaches used currently to solve linear elastic-
ity problems embody the content of linear Hamiltonian system. This is an
extraordinary point in this book. It should be emphasized that the Hamil-
tonian system is also applicable to nonlinear elasticity systems although
only linear systems are discussed in this book.

Finally, the physical meaning of the dual variable p is discussed. From
Eq. (3.2.1), we have

p = K22q̇ +K21q

=
{
kGA(ẇ − θ), EIθ̇

}T

=
{
Fs, M

}T
(3.2.10)

as the internal force. Referring to Fig. 3.2, Fs is consistent with w and M is
consistent with θ on the plane with x-axis as its normal. While on the plane
with x-axis opposite its normal, the internal force and displacement on the
plane are in opposite directions. Hence the full state vector of Timoshenko
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beam is

v = {w, θ; Fs, M }T (3.2.11)

The expressions of Hamiltonian matrix and mixed energy density are

H =




0 1 (kGA)−1 0

0 0 0 (EI)−1

−ρω2A 0 0 0

0 −ρω2I −1 0


 (3.2.12)

H (w, θ, Fs,M) = Fsθ +
1
2
ρω2(Aw2 + Iθ2)

+
1
2
F 2

s

kGA
+

1
2
M2

EI
+ qw +mθ (3.2.13)

3.3. The Method of Separation of Variables

There are generally two kinds of solution methodology for the system of dual
equations (3.2.7): direct integration and separation of variables. Direct in-
tegration is rather difficult for the two-point boundary-value problem here.
When the dimension n is not too high, the precise integration method
is applicable. As elasticity problems concern continuous bodies, there are
equivalently infinite unknown variables. For a continuous body or a case of
high dimension n, the method of separation of variables is more appropriate.
The latter is, actually, also applicable to cases of low dimension n.

According to the theory of ordinary differential equation, it is necessary
to solve the linear homogeneous system of equations in advance before
solving the linear inhomogeneous system of Eqs. (3.2.7). That is, we first
solve

v̇ =Hv (3.3.1)

where v is a 2n-dimensional vector and H is a Hamiltonian matrix. The
method of separation of variables requires to seek a solution in the
form of

v(x) = ξ(x)ψ (3.3.2)



December 16, 2008 15:56 B-599 9in x 6in ch03

72 Symplectic Elasticity

where ξ(x) is a function of x and it is independent of any components of
vector ψ; and ψ is a 2n-dimensional vector which is independent of x, or

ψ =
{
ψ1, ψ2, · · ·, ψ2n

}T
(3.3.3)

which is a function of some transverse quantities. Substituting Eq. (3.3.2)
into Eq. (3.3.1) yields

(Hψ)i

ψi
=
ξ̇(x)
ξ(x)

(i = 1, 2, . . . , 2n) (3.3.4)

The left-hand-side of this expression is independent of x, and the right-
hand-side is independent of subscript i. Hence, the quality can only be
equal to a constant which is denoted as µ. Then we have

Hψ = µψ (3.3.5)

and

ξ(x) = eµx (3.3.6)

Equation (3.3.5) is the eigenvalue problem of Hamiltonian matrix.
Characteristics of the eigenvalue problem of Hamiltonian matrix has

been presented in Sec. 1.3.
If µ is an eigenvalue of a Hamiltonian matrix, then −µ must also be

an eigenvalue. Hence the 2n eigenvalues of the 2n-dimensional Hamiltonian
matrix H can be divided into two sets as follows

(α)µi, Re(µi) < 0 or Re(µi) = 0 ∧ Im(µi) < 0 (i = 1, 2, . . . , n)

(3.3.7a)

(β)µn+i = −µi (3.3.7b)

The eigenvalues in the (α)-set can be arranged in an ascending order
according to the value of Re(µi).

The eigenvectors of Hamiltonian matrix are mutually adjoint symplec-
tic orthogonal. Let ψi and ψj be the eigenvectors corresponding to the
eigenvalues µi and µj , respectively. They satisfy

〈ψi,ψj〉 = ψT
i Jψj = 0 for µi + µj �= 0 (3.3.8)

The eigenvector which is symplectic adjoint with ψi must be the eigenvector
of eigenvalue −µi (or the Jordan form eigenvector).
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As the Hamiltonian matrix H is not a symmetric matrix, it is possible
to have repeated eigenvalues and also Jordan form eigenvectors. If ψ(0) is
the basic eigenvector of repeated eigenvalues µ, we can obtain each of the
Jordan form eigenvectors ψ(1), . . . ,ψ(k) according to Eq. (1.1.19) from the
following equations

Hψ(1) = µψ(1) +ψ(0)

Hψ(2) = µψ(2) +ψ(1)

· · · · · · · · ·
Hψ(k) = µψ(k) +ψ(k−1)




(3.3.9)

For the basic eigenvector ψ(0), the solution of the associated original
problem (3.3.1) is

v(0) = eµxψ(0) (3.3.10)

The Jordan form eigenvectors ψ(1), . . . ,ψ(k) cannot be used directly
to obtain the solution of homogenous equation (3.3.1) in the form of
Eq. (3.3.10), but they can be used to construct the solution of the orig-
inal equation (3.3.1), as

v(1) = eµx[ψ(1) + xψ(0)]

v(2) = eµx

[
ψ(2) + xψ(1) +

1
2
x2ψ(0)

]
· · · · · · · · ·
v(k) = eµx

[
ψ(k) + xψ(k−1) + · · · + 1

k!
xkψ(0)

]




(3.3.11)

It should be emphasized here that the eigenvalues µ = 0 is a special
case not included in Eq. (3.3.7). As a result, the expressions (3.3.7) are
not strictly correct. The case with µ = 0 is very common in the study of
elastic statics, and the Jordan form usually exists. As the dual eigenvectors
mix with the Jordan form solutions, the development of theory becomes
rather inconvenient to a certain extent. We should seek the subspace of
eigen-solutions associated with zero eigenvalue in advance, and then re-
duce the dimension of Hamiltonian matrix such that the zero eigenvalue is
eliminated. Hence, the grouping in Eq. (3.3.7) applies.

The eigen-solutions of zero eigenvalue form an important portion of the
solutions of elasticity. They frequently appear in the following chapters.
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3.4. Reciprocal Theorem for Work and Adjoint Symplectic
Orthogonality

The property of adjoint symplectic orthogonality between the eigen-
solutions of Hamiltonian matrix has been introduced in Sec. 1.3. Sym-
plectic orthogonality is a mathematical term. It is the key for symplectic
subspace and solution by expansion of transverse quantities of eigenvec-
tors. In this section, the adjoint symplectic orthogonality is demonstrated
via the reciprocal theorem for work with physical interpretation for better
understanding12.

After obtaining the eigen-solutions (µi,ψi), (µj ,ψj) for the homoge-
nous equations (3.3.1) of a mechanical system by means of the method of
separation of variables, the solution of the original equation (3.3.1) can be
formed by

vi = eµixψi, vj = eµjxψj (3.4.1)

Equation (3.3.1) is derived from a conservative system and, therefore, the
reciprocal theorem for work is applicable.

For a segment of beam a ≤ x ≤ b, denote the generalized displacements
and the generalized internal forces on cross section x = a corresponding
to the solution vi are, respectively, qai and pai, while they are qbi and
pbi on cross section x = b. Similarly, the generalized displacement and the
generalized internal force corresponding to the solution vj are qaj , paj and
qbj ,pbj . It is clear that the work done by the generalized internal force
of solution vi with respect to the generalized displacement of solution vj

on this section of beam is (noted that the generalized internal force is in
opposite direction to the generalized displacement at x = a).

pT
biqbj − pT

aiqaj =
[
e(µi+µj)b − e(µi+µj)a

]
(p̂T

i q̂j

)
(3.4.2)

where p̂, q̂ etc. are respectively the values of related physical quantities,
which are independent of x, in eigenvector ψ after separating the variables
of Eq. (3.4.1).

On the other hand, the work done by the generalized internal force pj

of solution vj in the generalized displacement qi of solution vi is

pT
bjqbi − pT

ajqai = [e(µi+µj)b − e(µi+µj)a](p̂T
j q̂i) (3.4.3)

These two works are equal according to the reciprocal theorem. Then,[
e(µi+µj)b − e(µi+µj)a

](
p̂T

j q̂i − p̂T
i q̂j

)
= 0 (3.4.4)
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Thus, ψi and ψj are symplectic orthogonal when (µi + µj) �= 0, i.e.

〈ψi,ψj〉 ≡ (ψi,Jψj) ≡ ψT
i Jψj = p̂T

j q̂i − p̂T
i q̂j = 0 (3.4.5)

Therefore, there is specific physical meaning to state that symplectic
orthogonality is equivalent to the reciprocal theorem for work.

The derivation above is referred on the basic eigenvectors. For a re-
peated eigenvalue, it is possible to have Jordan form eigenvectors. In this
respect, the property of symplectic orthogonality can be proved in a sim-
ilarly manner. Let µi be a repeated eigenvalue with multiplicity mi + 1
and the corresponding basic eigenvectors and Jordan form eigenvectors are
ψ

(0)
i , . . . ,ψ

(mi)
i . Hence the solution formed by the first-order Jordan form

eigenvector ψ(1)
i is

v
(1)
i = eµix(ψ(1)

i + xψ
(0)
i ) (3.4.6)

Obviously, the work done by the generalized internal force of solution v(1)
i

with respect to the generalized displacement of solution vj is

W1 =
[
e(µi+µj)b − e(µi+µj)a

]
p̂

(1)T
i q̂j +

[
be(µi+µj)b − ae(µi+µj)a

]
p̂

(0)T
i q̂j

(3.4.7)

On the other hand, the work done by the generalized internal force of
solution vj with respect to the generalized displacement of solution v(1)

i is

W2 = [e(µi+µj)b−e(µi+µj)a]p̂T
j q̂

(1)
i +[be(µi+µj)b−ae(µi+µj)a]p̂T

j q̂
(0)
i (3.4.8)

According to the reciprocal theorem for work, W1 = W2. Then

[e(µi+µj)b − e(µi+µj)a](p̂T
j q̂

(1)
i − p̂(1)T

i q̂j)

+ [be(µi+µj)b − ae(µi+µj)a](p̂T
j q̂

(0)
i − p̂(0)T

i q̂j) = 0 (3.4.9)

From Eq. (3.4.5), ψ(0)
i and ψj are symplectic orthogonal when µi +µj �= 0.

Hence

〈ψ(1)
i ,ψj〉 ≡ (ψ(1)

i ,Jψj) ≡ ψ(1)T
i Jψj = 0 when µi + µj �= 0 (3.4.10)

Thus, ψ(1)
i and ψj must be also symplectic orthogonal. In the same

way, ψ(2)
i , . . . ,ψ

(mi)
i and ψj are also symplectic orthogonal by repeat-

edly applying the reciprocal theorem for work. When µj is a repeated
eigenvalue with multiplicity mj + 1, we can prove that the eigenvectors
ψ

(s)
i (s = 0, 1, . . . ,mi) corresponding to µi are all symplectic orthogonal to
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the eigenvectors ψ(t)
j (t = 0, 1, . . .mj) corresponding to µj by virtue of the

reciprocal theorem for work in a similar way.

〈ψ(s)
i ,ψ

(t)
j 〉 = ψ

(s)T
i Jψ

(t)
j = 0 when µi + µj �= 0 (3.4.11)

The eigenvectors corresponding to non-symplectic adjoint eigenvalues
are symplectic orthogonal and this property is shown above by applying
the reciprocal theorem for work. Now we discuss the adjoint symplectic
orthogonality between the eigenvectors corresponding to eigenvalues which
are symplectic adjoint. Let µj be an eigenvalue which is symplectic adjoint
with the nonzero repeated eigenvalue µi with multiplicity m+1(µj = −µi)
then its multiplicity must also be m+ 1.

First, the work done by the generalized internal force of solution v(0)
j

with respect to the generalized displacement of solution v(m)
i is

W1 = (b− a)(p̂(0)T
j q̂

(m−1)
i ) +

1
2
(b2 − a2)(p̂(0)T

j q̂
(m−2)
i )

+ · · · + 1
m!

(bm − am)(p̂(0)T
j q̂

(0)
i ) (3.4.12)

On the other hand, the work done by the generalized internal force of
solution v(m)

i with respect to the generalized displacement of solution v(0)
j

is

W2 = (b− a)(p̂(m−1)T
i q̂

(0)
j ) +

1
2
(b2 − a2)(p̂(m−2)T

i q̂
(0)
j )

+ · · · + 1
m!

(bm − am)(p̂(0)T
i q̂

(0)
j ) (3.4.13)

According to the reciprocal theorem for work, W1 = W2. Hence,

(b− a)(ψ(m−1)T
i Jψ

(0)
j ) + · · · + 1

m!
(bm − am)(ψ(0)T

i Jψ
(0)
j ) = 0 (3.4.14)

Since Eq. (3.4.14) is true for any arbitrary a, b, therefore ψ(0)
j is symplectic

orthogonal to all ψ(0)
i , . . . ,ψ

(m−1)
i . Furthermore, ψ(0)

j must be symplectic

adjoint with ψ(m)
i . Otherwise, ψ(0)

j is symplectic orthogonal to any vector,

then ψ(0)
j is a zero vector, thus it leads to a contradictory conclusion. In

the same way, ψ(0)
i must be mutually symplectic adjoint with ψ(m)

j .

Next, we prove that it is possible to have ψ(1)
j adjoint symplectic

orthogonal with ψ(s)
i (s = 0, . . . ,m). Applying the reciprocal theorem to
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v
(1)
j and v(m−1)

i , and making use of the symplectic orthogonality between

ψ
(0)
j and ψ(0)

i , . . . ,ψ
(m−1)
i , we can prove that ψ(1)

j is symplectic orthogonal

with any of ψ(0)
i , . . . ,ψ

(m−2)
i in a similar way as discussed above. Applying

the reciprocal theorem to v(1)
j and v(m)

i , we derive

ψ
(0)T
j Jψ

(m)
i +ψ(1)T

j Jψ
(m−1)
i = 0 (3.4.15)

As ψ(0)
j and ψ(m)

i are symplectic adjoint, ψ(1)
j must be also symplectic ad-

joint with ψ(m−1)
i . Then, we discuss the symplectic orthogonality between

ψ
(1)
j and ψ(m)

i . Obviously, the Jordan form eigenvector ψ(1)
j can be super-

posed on any basic eigenvectors Cψ(0)
j . Equation (3.3.9) remains valid if

ψ
(k)
j is substituted by ψ(k)

j + Cψ
(k−1)
j (k = 1, 2, . . . ,m), and the adjoint

symplectic orthonormality proved above remains unchanged. As ψ(0)
j is

symplectic adjoint with ψ(m)
i , it is always possible to have ψ(1)

j + Cψ
(0)
j

symplectic orthogonal to ψ(m)
i by choosing an appropriate constant C and

denoting ψ(k)
j +Cψ

(k−1)
j as ψ(k)

j (k = 1, 2, . . . ,m). Here, ψ(1)
j is symplectic

adjoint with ψ(m−1)
i while it is symplectic orthogonal to the other vectors

ψ
(s)
i (s �= m − 1). Similarly, it is possible to have ψ(2)

j , . . . ,ψ
(m)
j adjoint

symplectic orthogonal to ψ(s)
i (s = 0, 1, . . . ,m) through proper selection.

Hence, there exists an adjoint symplectic orthonormal vector set for eigen-
values which are mutually symplectic adjoint, as

〈ψ(s)
i ,ψ

(t)
j 〉 ≡ ψ(s)

i Jψ
(t)
j =

{
�= 0; for s+ t = m

= 0; for s+ t �= m
(3.4.16)

The proof for Jordan form above is confined to the condition µi �= 0.
The case of zero eigenvalue should then be considered. The eigen-solutions
of a zero eigenvalue are usually very important in structural statics and
elastic statics, particularly in Saint–Venant problems, etc13. Because a zero
eigenvalue has itself the symplectic adjoint eigenvalue, the eigenvector cor-
responding to this zero eigenvalue is symplectic orthogonal to all the other
eigenvectors corresponding to the nonzero eigenvalues. Applying the recip-
rocal theorem for work, we can prove that the eigenvectors corresponding
to zero eigenvalue can themselves be adjoint symplectic orthonormal. The
proof is more complicated than the case of nonzero eigenvalues and it omit-
ted here. Interested readers are referred this section and Theorem 1.17 in
Sec. 1.3 for establishing the proof.
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Having established the adjoint symplectic orthogonality of eigenvectors,
the problem can be normalized into a standard form in order to facilitate
its application for eigen-solution expansion.

3.5. Solution for Non-Homogeneous Equations

The sections above discuss solutions of homogeneous equations. In this
section, we discuss the solution of non-homogeneous equation (3.2.7).

First, according to the theorem of expansion of eigenvectors, the full
state vector is

v(x) =
n∑

i=1

[ai(x)ψi + bi(x)ψn+i] (3.5.1)

where ψi(i = 1, 2, . . . , 2n) are the eigenvectors of eigenvalues µi associ-
ated with the homogeneous equation. It is assumed here that the eigenvec-
tors have been normalized with respect to adjoint symplectic orthogonality.
Hence,

ψT
i Jψj = ψT

n+iJψn+j = 0

ψT
i Jψn+j =

{
1, for j = i

0, for j �= i


 (i, j = 1, . . . , n) (3.5.2)

At the same time, the known external force vector function h(x) is expanded
in eigenvectors as

h(x) =
n∑

i=1

[ci(x)ψi + di(x)ψn+i] (3.5.3)

where ci and di are known functions given by

ci(x) = −ψT
n+iJh(x), di(x) = ψT

i Jh(x) (3.5.4)

which is determined by the adjoint symplectic orthonormalization relation
(3.5.2).

Next, substituting Eqs. (3.5.1) and (3.5.3) into Eq. (3.2.7) and using the
adjoint symplectic orthonormalization relation (3.5.2) yield

ȧi = µiai + ci, ḃi = −µibi + di (1 ≤ i ≤ n) (3.5.5)

Hence the original problem is decoupled into 2n first-order nonhomogeneous
differential equations with one unknown. There is a standard method for
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solving first-order differential equations with one unknown and general so-
lutions are

ai(x) = Aieµix +
∫ x

0

ci(ξ)eµi(x−ξ)dξ

bi(x) = Bie−µix +
∫ x

0

di(ξ)e−µi(x−ξ)dξ


 (3.5.6)

Hence the general solution of original problem is

v(x) =
n∑

i=1

[Aieµixψi +Bie−µixψn+i] + v(x) (3.5.7)

where v(x) is a particular solution corresponding to the nonhomogeneous
term h(x) formed by Eq. (3.5.6) and Ai, Bi (i = 1, 2, . . . , n) are unknown
constants to be determined by imposing the boundary conditions at both
ends.

Certainly Eq. (3.5.7) can also be written as

v(x) =
n∑

i=1

[Aivi(x) +Bivn+i(x)] + v(x) (3.5.8)

where vi,vn+i(i = 1, 2, . . . , n) are the solutions formed by Eq. (3.4.1) and
the solutions of the homogeneous equation (3.3.1) corresponding to the
eigenvectors ψi,ψn+i.

3.6. Two-Point Boundary Conditions

The equations in the study of elasticity are elliptic and conditions on the
boundary are necessary. For a system with a single coordinate, it becomes
the boundary conditions at two ends. This is the so-called two-point bound-
ary value problem in mathematics.

There are 2n unknown constants of integration in 2n first-order differen-
tial equations and there should be a total of 2n conditions for such two-point
boundary value problem with n conditions in general at each end. It is rea-
sonable or otherwise there will be numerical instablility due to the presence
of exponents. For instance, the boundary conditions of Timoshenko beam
usually are

Free end: Fs = 0, M = 0

Simply supported end: w = 0, M = 0

Fixed end: w = 0, θ = 0

(3.6.1)
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There are two conditions at each end and these are ideal boundary con-
ditions. There is a variety of other combinations of boundary conditions
which are omitted here.

There are various solution methods for two-point boundary value prob-
lems. The method of expansion of eigenvectors is an effective approach,
particularly in two- and three-dimensional problems in elasticity.

Since there are only n boundary conditions at each end, it is rather dif-
ficult to solve directly at each end. In general, we combine the conditions
at both ends to establish a set of algebra equations for the solutions. There
are various ways to establish the equations, but we should observe the sym-
metry of equations which represents the reciprocal theorems. A variational
method is provided here5,13. For the boundary conditions in Eq. (3.6.1),
either the force or the displacement is known. In variational principle, this
corresponds to the boundary Γσ for specified forces or the boundary Γu

for specific displacements. For the ends at x = 0 and x = l, the respective
boundary conditions are denoted as Γσ0,Γσl and Γu0,Γul. In fact, these
ends are only discrete points, for example, Γuf + Γσf are n conditions.
Hence we can express the boundary conditions in a most general form, as

[q = q0]Γu0 ; [p = p0]Γσ0 at x = 0 (3.6.2a)

[q = ql]Γul
; [p = pl]Γσl

at x = l (3.6.2b)

It states that a portion of the conditions is designated for specified forces
while the remaining portion is designated for specified displacements for n
conditions at the end. The expressions in Eq. (3.6.2) are not only applicable
to the three different boundary conditions (3.6.1) for a Timoshenko beam,
but also to other more general two-point boundary value problems.

With the boundary conditions stated, it is now possible to formulate the
Hamiltonian mixed energy variational principle which is equivalent to
the dual equations (3.2.5) and boundary conditions (3.6.2).

δ

{∫ l

0

[pTq̇ − H (q,p)]dx− [pT(q − ql)]Γul

− [pT
l q]Γσl

+ [pT(q − q0)]Γu0 + [pT
0 q]Γσ0

}
= 0 (3.6.3)
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Expanding the variational expression (3.6.3) yields

∫ l

0

[
(δpT)

(
q̇ − ∂H

∂p

)
− (δqT)

(
ṗ+

∂H

∂q

)]
dx

+ [pTδq]lx=0 − [(δpT)(q − ql)]Γul
− [pT

l δq]Γσl

+ [(δpT)(q − q0)]Γu0 + [pT
0 δq]Γσ0 = 0 (3.6.4)

Because δp and δq in the region are arbitrary, we have the dual equations
(3.2.5). At the two ends there exists

[(δq)T(p− pl)]Γσl
− [(δpT)(q − ql)]Γul

− [(δq)T(p− p0)]Γσ0 + [(δpT)(q − q0)]Γu0 = 0 (3.6.5)

Further, since δp and δq are arbitrary on Γu for specified displacements and
on Γσ for specified forces, respectively, we obtain the boundary conditions
(3.6.2).

In accordance with the solution method by expansion of eigenvectors
discussed earlier, the solution of the original problem can be expressed as

v(x) =
n∑

i=1

[Aivi(x) +Bivn+i(x)] =
n∑

i=1

[Aieµixψi +Bie−µixψn+i]

(3.6.6)

It should be stated here that the factors of particular solution v(x) associ-
ated with inhomogeneous term have been eliminated by using the principle
of superposition. Accordingly, the values of each specified displacement and
specified force q0, ql,p0,pl in Eqs. (3.6.2) and (3.6.3) should be regarded
as the known values after the elimination of particular solution.

As expansion of eigenvectors is applied to Eq. (3.6.6), all differential
equations in the region are satisfied. Further substitution of Eq. (3.6.6)
into the variational principle (3.6.3) yields only the remaining variational
equation (3.6.5) at the ends.

As an application of the variational equation (3.6.5), we first discuss a
simple example of a semi-infinite beam. Let l → ∞ and assume the eigen-
values in Eq. (3.6.6) be arranged according to the rule in Eq. (3.3.7). As
exp(−µil) → ∞, we have Bi = 0(i = 1, 2, . . . , n). Then only n boundary
conditions at x = 0 remain in the variational equation (3.6.5) for determin-
ing the n constants Ai(i = 1, 2, . . . , n).
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Substituting the expression at x = 0

v(0) =
n∑

i=1

[Aiψi] =
n∑

i=1

[
Ai

{
qi

pi

}]
(3.6.7)

into Eq. (3.6.5), we obtain

−


(

n∑
i=0

δAiqi

)T

 n∑

j=0

Ajpj − p0






Γσ0

+



(

n∑
i=0

δAipi

)T

 n∑

j=0

Ajqj − q0






Γu0

= 0 (3.6.8)

Rearranging Eq. (3.6.8), we have

n∑
i=0




 n∑

j=0

Ajp
T
i qj − pT

i q0




Γu0

−

 n∑

j=0

Ajq
T
i pj − qT

i p0




Γσ0


δAi = 0 (3.6.9)

Since δAi(i = 1, 2, . . . , n) is arbitrary, a set of algebraic equations for solving
the n constants



c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn







A1

A2

...

An




=




d1

d2

...

dn




(3.6.10)

can be established where

cij = (pT
i qj)Γu0 − (qT

i pj)Γσ0 ; (i, j = 1, 2, . . . , n)

di = (pT
i q0)Γu0 − (qT

i p0)Γσ0 ; (i = 1, 2, . . . , n)

}
(3.6.11)

Solving Eq. (3.6.10) yields the values of Ai and the solution of the original
problem is then obtained.

Furthermore, we can prove by using symplectic orthogonality that

cij − cji = (pT
i qj)Γu0 − (qT

i pj)Γσ0 − (pT
j qi)Γu0 + (qT

j pi)Γσ0

= (pT
i qj)Γu0+Γσ0 − (qT

i pj)Γσ0+Γu0 = ψT
j Jψi = 0 (3.6.12)
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Therefore, the coefficient matrix of the set of Eqs. (3.6.10) must be a sym-
metric matrix. The significance of symplectic orthogonality is again ob-
served here.

Obviously, if the boundary conditions at x = 0 are all specified displace-
ments, the set of Eqs. (3.6.10) for determining the coefficients should be

cij = pT
i qj ; (i, j = 1, 2, . . . , n)

di = pT
i q0; (i = 1, 2, . . . , n)

}
(3.6.13)

If the boundary conditions at x = 0 are all specified forces, the set of
Eqs. (3.6.10) for determining the coefficients, after uniformly modifying
the signs, should be

cij = pT
j qi; (i, j = 1, 2, . . . , n)

di = pT
0 qi; (i = 1, 2, . . . , n)

}
(3.6.14)

Finally, we discuss the boundary conditions of an elastic support, i.e.
there are elastic supports attached to the boundaries Γσ0,Γσl for specified
forces in addition to the boundary Γu0,Γul for specified displacements. The
stiffness matrices of elastic supports are denoted asR0 andRl, respectively.
Here, the corresponding Hamiltonian variational principle can be estab-
lished by adding deformation energy of elastic supports to Eq. (3.6.3), as

δ

{∫ l

0

[pTq̇ − H (q,p)]dx− [pT(q − ql)]Γul

− [pT
l q]Γσl

+ [pT(q − q0)]Γu0 + [pT
0 q]Γσ0

+
[
1
2
qTRlq

]
Γσl

+
[
1
2
qTR0q

]
Γσ0

}
= 0 (3.6.15)

If the solution method of expansion of eigenvectors in Eq. (3.6.6) is
applied, the variational equation (3.6.15) becomes

[(δq)T(p− pl +Rlq)]Γσl
− [(δpT)(q − ql)]Γul

− [(δq)T(p− p0 −R0q)]Γσ0 + [(δpT)(q − q0)]Γu0 = 0 (3.6.16)

Hence for the semi-infinite beam with elastic supports, the coefficients
cij(i, j = 1, 2, . . . , n) of Eq. (3.6.10) should be rewritten as

cij = (pT
i qj)Γu0 − (qT

i pj − qT
i R0qj)Γσ0 (3.6.17)
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It should be noted and considered that the variational equation above is
derived under the condition of real eigenvectors ψ. If complex eigenvectors
exist, they should be transformed into real canonical equation in advance.

For real Hamiltonian matrix H, the eigenvalue µi and its correspond-
ing eigenvector ψi (or vi) are both either real or complex simultaneously.
Furthermore, if µi and ψi (or vi) are the complex eigen-solutions of Hamil-
tonian matrix H , then the complex conjugates of µi and ψi (or vi), i.e.
µ∗

i and ψ∗
i (or v∗i ), are also the complex eigen-solutions. It should be clear

that symplectic adjoint and complex conjugate are two different concepts.
For concise expressions, the complex conjugate eigen-solutions are as-

sumed to have been arranged in an appropriate order. Assuming that the
eigenvalues µk(1 ≤ k < n) in expansion (3.6.6) are complex and their com-
plex conjugate eigenvalues are µk+1, hence

µk+1 = µ∗
k, vk+1 = v∗k (3.6.18)

As the left-hand-side of solution (3.6.6) is real, the unknown constants on
the right-hand-side of Eq. (3.6.6) must be in complex conjugate pairs

Ak+1 = A∗
k (3.6.19)

Hence, we have

Akvk +Ak+1vk+1 = 2 Re(Ak)Re(vk) − 2 Im(Ak)Im(vk)

= A′
kv

′
k +A′

k+1v
′
k+1 (3.6.20)

In this way, solution of the original problem can be expressed in the form
of Eq. (3.6.6). For complex eigen-solutions, the expansion of vectors should
be regarded as the real part Re(vk) or the imaginary part Im(vk) of the
complex eigenvector vk. Because the symplectic adjoint eigenvalues of µk

and µk+1, i.e. −µk and −µk+1, are a pair of complex conjugate eigenvalues,
the terms related to Bi can be treated in a similar way. Thus, we have hith-
erto accomplished the transformation of canonical equations from complex
form to real form. Subsequently, the unknown constants can be determined
in the same way as discussed above.

3.7. Static Analysis of Timoshenko Beam

The methods introduced in the last few previous sections can be applied
to solve various problems of Hamiltonian system. In this section we begin
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to discuss the bending of Timoshenko beam in detail8. At a first instance,
we consider the special case ω = 0, i.e. the static bending of Timoshenko
beam. Here, the Hamiltonian matrix (3.2.12) degenerates to

H =




0 1 (kGA)−1 0

0 0 0 (EI)−1

0 0 0 0

0 0 −1 0


 (3.7.1)

After separating the variables of homogeneous equation (3.3.1), we obtain
the eigenvalue equation (3.3.5), as

(H − µI)ψ = 0 (3.7.2)

For nontrivial solution of Eq. (3.7.2), the determinant of its coefficient
vanishes

det(H − µI) = µ4 = 0 (3.7.3)

Hence, the solution of eigenvalue equation (3.7.2) is a repeated zero eigen-
value with quadruple multiplicity.

For solving the eigenvector, first we solve

Hψ = 0 (3.7.4)

to obtain the basic eigenvector

ψ
(0)
0 = {1, 0, 0, 0}T (3.7.5)

The eigenvector

v
(0)
0 = ψ

(0)
0 (3.7.6)

is the solution of the original problem (3.3.1) which implies rigid body
translation of beam. As there is only one chain for the eigenvalue equation
(3.7.4), a Jordan form eigenvector exists.

From Eq. (3.3.9), the following equation

Hψ
(1)
0 = ψ

(0)
0 (3.7.7)

should be solved for the first-order Jordan form eigenvector. The solution is

ψ
(1)
0 = {0, 1, 0, 0}T (3.7.8)
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According to Eq. (3.3.11), the solution formed by ψ(1)
0 for the original

problem (3.3.1) is

v
(1)
0 = ψ

(1)
0 + xψ

(0)
0 = {x, 1, 0, 0}T (3.7.9)

which implies rigid body rotation of beam. Through direct examination,
the basic eigenvectors ψ(0)

0 and ψ(1)
0 are symplectic orthogonal.

〈ψ(1)
0 ,ψ

(0)
0 〉 ≡ (ψ(1)

0 ,Jψ
(0)
0 ) ≡ ψ(1)T

0 Jψ
(0)
0 = 0 (3.7.10)

Hence a second-order Jordan form eigenvector exists.
Similarly, we solve the equation

Hψ
(2)
0 = ψ

(1)
0 (3.7.11)

and obtain the second-order Jordan form eigenvector as

ψ
(2)
0 = {c, 0, 0, EI}T (3.7.12)

The solution formed by ψ(2)
0 for the original problem (3.3.1) is

v
(2)
0 = ψ

(2)
0 + xψ

(1)
0 +

1
2
x2ψ

(0)
0

=
{

1
2
x2 + c, x, 0, EI

}T

(3.7.13)

which implies pure bending of beam. Through direct examination, the
basic eigenvectors ψ(0)

0 and ψ(2)
0 are again symplectic orthogonal.

〈ψ(2)
0 ,ψ

(0)
0 〉 ≡ (ψ(2)

0 ,Jψ
(0)
0 ) ≡ ψ(2)T

0 Jψ
(0)
0 = 0 (3.7.14)

Hence a third-order Jordan form eigenvector exists.
Similarly, we solve the equation

Hψ
(3)
0 = ψ

(2)
0 (3.7.15)

and obtain the third-order Jordan form eigenvector as

ψ
(3)
0 =

{
0,

EI

kGA
+ c, −EI, 0

}T

(3.7.16)

The solution formed by ψ(3)
0 for the original problem is

v
(3)
0 = ψ

(3)
0 + xψ

(2)
0 +

1
2
x2ψ

(1)
0 +

1
6
x3ψ

(0)
0

=
{

1
6
x3 + cx,

1
2
x2 +

EI

kGA
+ c; −EI,EIx

}T

(3.7.17)
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which implies constant shear force bending of beam. By direct exami-
nation, the basic eigenvectors ψ(0)

0 and ψ(3)
0 are symplectic adjoint.

〈ψ(3)
0 ,ψ

(0)
0 〉 = ψ

(3)T
0 Jψ

(0)
0 = EI �= 0 (3.7.18)

Hence, a fourth-order Jordan form eigenvector does not exist and thus the
Jordan chain is terminated. There is a total of four eigenvectors for this
Jordan chain and it is completely consistent with the solutions that the
zero eigenvalue is a quadruple root of eigenvalue equation (3.7.2).

Besides knowing ψ(3)
0 and ψ(0)

0 are mutually symplectic adjoint, it is
also easy to examine directly that ψ(1)

0 and ψ(2)
0 are mutually symplectic

adjoint, or

〈ψ(1)
0 ,ψ

(2)
0 〉 = 〈ψ(3)

0 ,ψ
(0)
0 〉 = EI �= 0 (3.7.19)

By assigning

c = − EI

2kGA
(3.7.20)

symplectic orthogonality of ψ(2)
0 and ψ(3)

0 can be verified. Symplectic or-
thogonality of the other eigenvectors are satisfied automatically. Hence,
ψ

(0)
0 ,ψ

(1)
0 ,ψ

(3)
0 and ψ(2)

0 form a set of adjoint symplectic orthonormal basis.
Thus we have established all basic eigenvectors and Jordan form eigenvec-
tors for the static bending of Timoshenko beam.

These physical interpretation of these solutions is explicit. The symplec-
tic adjoint solutions of rigid translation and rigid rotation are, respectively,
the solutions of constant shear force bending and pure bending. The Jordan
form solutions with zero eigenvalue are typical. These solutions with spe-
cific physical interpretation are also common in plane and three-dimensional
Saint–Venant problems in elastic statics.

3.8. Wave Propagation Analysis of Timoshenko Beam

In Sec. 3.2, the derivation of wave propagation problem of Timoshenko
beam into Hamiltonian system with a set of dual equations (3.2.7) has been
established where the Hamiltonian matrix H and the Hamiltonian density
function H are expressed in Eqs. (3.2.12) and (3.2.13), respectively.

We discuss the eigenvalue problem of Hamiltonian matrix H first8.
Expanding the determinant as follows

det(H − µI) = 0 (3.8.1)



December 16, 2008 15:56 B-599 9in x 6in ch03

88 Symplectic Elasticity

the characteristic polynomial is

µ4 + µ2ρω2

(
1
E

+
1
kG

)
+
ρ2ω4

kGE
− ρω2A

EI
= 0 (3.8.2)

It shows that if µ is an eigenvalue, then−µ must be also an eigenvalue. This
is consistent with a Hamiltonian matrix. Equation (3.8.2) is a quadratic
equation in unknown µ2 with discriminant[

ρω2

(
1
E

+
1
kG

)]2

− 4
[
ρ2ω4

kGE
− ρω2A

EI

]

= ρ2ω4

(
1
E

− 1
kG

)2

+
4ρω2A

EI
> 0 (3.8.3)

Hence, µ2 must be a real root. Furthermore, there are three different cases
for µ2: (1) there are two negative roots, (2) there are a positive root and a
negative root, (3) there are a negative root and a zero root. The separation
is according to

ρ2ω4
cr

kGE
− ρω2

crA

EI
= 0, i.e. ω2

cr =
kGA

ρI
(3.8.4)

(1) For ω2 > ω2
cr, there are two negative roots for µ2. The eigenvalues can

be denoted as

µ1i, µ2i; −µ1i, −µ2i (3.8.5)

Hence solution of the full state vector is

v1(x) = eiµ1xψ1; v2(x) = eiµ2xψ2,

v3(x) = e−iµ1xψ3, v4(x) = e−iµ2xψ4 (3.8.6)

and solution of the problem (3.1.11) before separating the time
variable is

ṽ1(x, t) = ei(µ1x+ωt)ψ1

ṽ2(x, t) = ei(µ2x+ωt)ψ2

ṽ3(x, t) = ei(−µ1x+ωt)ψ3

ṽ4(x, t) = ei(−µ2x+ωt)ψ4




(3.8.7)

where ṽ = {w̃, θ̃, F̃s, M̃}T. Obviously, it indicates propagation of two
pairs of waves with velocities ω/µ1 and ω/µ2, and traveling along −x
and +x, respectively.
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(2) For ω2 < ω2
cr, there are a positive root and a negative root for µ2. The

negative root indicates propagation of a pair of waves along the positive
and negative directions of x. The positive root yields

v1(x) = e−µ1xψ1, v3(x) = eµ1xψ3 (3.8.8)

which indicates local vibration capable of creating resonance. Such phe-
nomenon is important and it will be discussed in detail in the next
section.

(3) For ω2 = ω2
cr, there is a zero root for µ2, i.e. there are two zero roots

for µ and there will be Jordan form solutions. First, from Hψ = 0, or

0 +θ +Fs/kGA +0 = 0

0 +0 +0 +M/EI = 0

−kGA2w/I +0 +0 +0 = 0

0 −kGAθ −Fs +0 = 0




(3.8.9)

the basic eigenvector is

ψ(0)
cr = {0, −1, kGA, 0}T (3.8.10)

Next, the Jordan form eigenvector is solved from Hψ
(1)
cr = ψ

(0)
cr , or

0 +θ +Fs/kGA +0 = 0

0 +0 +0 +M/EI = −1

−kGA2w/I +0 +0 +0 = kGA

0 −kGAθ −Fs +0 = 0




(3.8.11)

The solution is

ψ(1)
cr = {−I/A, 0, 0, −EI}T (3.8.12)

Indeed the sub-order eigenvector can be superposed by an arbitrary aψ(0)
cr .

By virtue of eigenvector ψ(0)
cr and according to Eq. (3.3.10), the solution

of homogeneous equation (3.3.1) is

v(0)
cr = ψ(0)

cr , ṽ(0)
cr (x, t) = eiωcrtψ(0)

cr (3.8.13)

However, the sub-order eigenvector itself is not a solution. It follows the
form of Eq. (3.3.11) to construct the solution of (3.3.1), as

v(1)
cr = [ψ(1)

cr + xψ(0)
cr ], ṽ(1)

cr = eiωcrtv(1)
cr (3.8.14)
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It is easy to verify directly that ψ(0)
cr and ψ(1)

cr are mutually symplectic
adjoint.

For ω2
cr, there is still a negative root µ2 = −A(1 + kG/E)/I for µ2. We

have

µ3,4 = ± i

√
A

I

(
1 +

kG

E

)
(3.8.15)

The corresponding eigenvectors satisfy

0 +θ +Fs/kGA +0 = µw

0 +0 +0 +M/EI = µθ

−kGA2w/I +0 +0 +0 = µFs

0 −kGAθ −Fs +0 = µM




(3.8.16)

and the eigenvectors are

ψi =
{
− 1
kGA

,
1

µiEI
,
A

µiI
, 1
}T

(i = 3, 4) (3.8.17)

These two vectors are also mutually symplectic adjoint. In addition to the
two pairs of symplectic adjoint vectors above, it can be verified directly
that the other vectors are symplectic orthogonal.

From the point of view of wave propagation, the phase velocity ap-
proaches infinity because ω2

cr �= 0. This is a conclusion with respect to a
monochromatic wave. As wave propagation represents a process of energy
transmission, it is more meaningful to observe its group velocity.

3.9. Wave Induced Resonance

For wave propagation of Timoshenko beam, ω2 < ω2
cr yields a positive root

and a negative root for µ2. Suppose that µ2
1 < 0, µ2

2 > 0, then

µ1 = −i
π

l
, µ3 = i

π

l
; (3.9.1)

µ2 = −λ, µ4 = λ (3.9.2)
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where

l2 =
2π2

ρω2
(

1
E + 1

kG

)
+
√

4ρω2 A
EI + ρ2ω4

(
1
E − 1

kG

)2 (3.9.3)

λ2 =

√
ρω2

A

EI
+

1
4
ρ2ω4

(
1
E

− 1
kG

)2

− 1
2
ρω2

(
1
E

+
1
kG

)
(3.9.4)

The following equations

−µw +θ +Fs/kGA +0 = 0

0 −µθ +0 +M/EI = 0

−ρω2Aw +0 −µFs +0 = 0

0 −ρω2Iθ −Fs −µM = 0




(3.9.5)

should be solve for the eigenvectors corresponding to the eigenvalues above.
As µ has been chosen such that the determinant of coefficient matrix van-
ishes, hence

w =
1
A

(
1
E

+
µ2

ρω2

)
M, θ =

1
µEI

M ;

Fs = −µ
(

1 +
ρω2

µ2E

)
M




(3.9.6)

The eigenvectors corresponding to the eigenvalues in Eq. (3.9.1) are

q1 =




1
A

(
1
E

− π2

ρω2l2

)

i
l

πEI


 , p1 =


 i

π

l

(
1 − ρω2l2

π2E

)
1


 (3.9.7a)

q3 =




1
A

(
1
E

− π2

ρω2l2

)

−i
l

πEI


 , p3 =


−i

π

l

(
1 − ρω2l2

π2E

)
1


 (3.9.7b)

These are two complex eigenvectors, and q1,p1 and q3,p3 are respectively
complex conjugate vectors.
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The eigenvectors corresponding to the eigenvalues in Eq. (3.9.2) are

q2 =




1
A

(
λ2

ρω2
+

1
E

)

− 1
λEI


 , p2 =



λ

(
1 +

ρω2

λ2E

)
1


 (3.9.8a)

q4 =




1
A

(
λ2

ρω2
+

1
E

)
1

λEI



, p4 =




−λ
(

1 +
ρω2

λ2E

)
1


 (3.9.8b)

These are real vectors. Although there are complex vectors q1,p1 and
q3,p3, it is clear through direct examination that q1,p1 (or q3,p3) and
q2,p2 (or q4,p4) are symplectic orthogonal.

The physical interpretation of eigen-solutions is given here. For solutions
of µ2 and µ4, the real vectors indicate local vibration as shown by their
mode shapes. These modes do not exist in region with two infinite ends. In
a region x ≥ 0 with one infinite end, the eigen-solution of (µ2,ψ2) exists
and it approaches zero at x → ∞ because of the presence of factor e−λx.

For solutions of µ1 and µ3, the eigenvalues are purely imaginary. Hence the
solutions of the original problem are

ṽ1 = ei(ωt−πx/l)ψ1, ṽ3 = ei(ωt+πx/l)ψ3 (3.9.9)

Obviously, these are traveling waves along the x-direction where ṽ1 trav-
els along the positive x-direction while ṽ3 travels along the negative
x-direction.

Having analyzed the properties of solutions, we present the boundary
value problem. Consider a semi-infinite region x ≥ 0 with an incidence wave
at infinity and an attached mass at x = 0. With no external excitation in
the entire region, the response of structure is analyzed here.

Let the dynamic stiffness matrix (D’Alembert’s principle) due to the
attached mass at the end x = 0 be

R = −ω2R0 (RT
0 = R0) (3.9.10)

then the solution according to the analysis above is

ṽ = eiωt[A1e−iπx/lψ1 +A2e−λxψ2 + eiπx/lψ3] (3.9.11)
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At boundary x = 0, we have

p = A1p1 +A2p2 + p3, q = A1q1 +A2q2 + q3 (3.9.12)

in which factor eiωt has been eliminated because it has no effect on the
variational expression (3.6.16).

Although of q and p in Eq. (3.9.12) with undetermined constants A1

and A2 have been obtained, the expressions are complex. Only real solutions
are required here. As p1 and p3, and q1 and q3 are two pairs of mutually
complex conjugate vector functions, a real solution exists only if A1 = 1
and A2 is real. Hence, at x = 0

q =




1
A

[
2
(

1
E

− π2

ρω2l2

)
+A2

(
λ2

ρω2
+

1
E

)]

− 1
λEI

A2


 (3.9.13a)

p =



A2λ

(
1 +

ρω2

λ2E

)

A2 + 2


 (3.9.13b)

with only one undetermined real constant A2. Substituting the expression
above into Eq. (3.6.16) and noticing p0 = 0, we have

A2

{[
λ

A

(
2
E

+
ρω2

λ2E2
+

λ2

ρω2

)
− 1
λEI

]

−
[

1
A

(
λ2

ρω2
+

1
E

)
; − 1

λEI

]
R




1
A

(
λ2

ρω2
+

1
E

)

− 1
λEI






=
2

λEI
+
[

2
A

(
1
E

− π2

ρω2l2

)
; 0

]
R




1
A

(
λ2

ρω2
+

1
E

)

− 1
λEI


 (3.9.14)

The undetermined constant A2 can then be solved using this equation.
It should be noted that resonance will occur if the coefficient of A2 on

the left-hand-side of the expression above approaches zero. The matrix R
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at the end represents the boundary conditions at x = 0. Resonance may
occur under various boundary conditions. Such resonance occurs as a result
of the propagation and reflection of wave and it is called wave induced
resonance14 which should not be overlooked.

There are two essential requirements for the existence of wave induced
resonance, i.e. the coexistence of propagating wave and non-propagating
wave, and the existence of boundary constraints or partial nonhomogeneity.
With respect to the former, for any given ω, there are many more non-
propagating waves in an elastic medium than the propagating waves. For
the latter, boundary conditions or partial nonhomogeneity do always exist.
Propagating wave is specifically indicated by the presence of factor ei(ωt−kx)

while eµx+iωt shows the presence of non-propagating wave. Attention should
be paid to these points when solutions are derived15,16.
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Chapter 4

Plane Elasticity in Rectangular Coordinates

In this chapter we introduce in detail the Hamiltonian system of plane
elasticity in rectangular coordinates. Based on the method of separation of
variables and the solution of eigenvalue problems in the transverse direction,
we establish a complete system of symplectic solution for plane problems.
Accordingly we can obtain directly the solutions for problems in a plane
rectangular domain. Emphasis will be given on the eigen-solutions of zero
eigenvalue and the analytical solutions of Saint–Venant problems.

4.1. The Fundamental Equations of Plane Elasticity

Strictly speaking, every elastic body is a space body and, therefore, the
governing three-dimensional partial differential equations should be solved.
However, many problems in engineering practices can be represented by
plane elasticity models after simplification and treatment by mechanics.
They are usually divided into plane stress and plane strain problems.

Research in plane stress problems deals with thin plates with con-
stant thickness. In such problems, the dimension of body in one coordinate
direction (for instance, the y-axis) is much smaller than dimensions in the
other two coordinate directions. We further assume that the body forces
and lateral surface forces are parallel to the plane of plate and distributed
uniformly across the thickness. Additionally the geometric constraints of
plate do not vary across the thickness likewise.

As the plate is very thin and the external forces are constant across the
thickness, it is reasonable to approximately assume constant stress across
the thickness. In addition, if there is no force acting on both faces of the
plate, we have within the plate

σy = τxy = τyz = 0 (4.1.1)

97
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and the other stress components σx, σz and τxz are all functions of x, z only.
From the stress-strain relations (2.3.13), we obtain

γxy = γyz = 0; εy = −ν(σx + σz)/E (4.1.2)

and the simplified stress-strain relations for plane stress problems are

εx =
1
E

[σx − νσz ]; εz =
1
E

[σz − νσx]; γxz =
2(1 + ν)

E
τxz (4.1.3)

The expressions above can be rearranged as

σx =
E

1 − ν2
(εx + νεz)

σz =
E

1 − ν2
(εz + νεx)

τxz =
E

2(1 + ν)
γxz




(4.1.4)

The displacements w, u are also functions of x, z only. Their relations with
strains are

εz =
∂w

∂z
; εx =

∂u

∂x
; γxz =

∂u

∂z
+
∂w

∂x
(4.1.5)

and the equations of equilibrium (2.1.10) can be simplified to

∂σx

∂x
+
∂τxz

∂z
+ Fx = 0 (4.1.6a)

∂τxz

∂x
+
∂σz

∂z
+ Fz = 0 (4.1.6b)

In addition, there are the corresponding boundary conditions. For example,
the boundary conditions on the boundary Γσ for specified tractions are

Fnx = σxl + τxzn = Fnx

Fnz = τxzl + σzn = Fnz

}
on Γσ (4.1.7)

where l, n are direction cosines of the exterior normal vector n of the bound-
ary surface with the positive directions of x and z, respectively. Likewise,
the boundary conditions on the boundary Γu for specified displacements are

u = u, w = w on Γu (4.1.8)

Equations (4.1.3) to (4.1.8) constitute the complete differential equations
and boundary conditions of plane stress problems.
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Contrary to plane stress problems, research in plane strain problems
deals with long cylindrical solids (cylindrical solids of infinite length strictly
speaking). In such problems, the dimension of body in one coordinate di-
rection (for instance, the y-direction) is much larger than dimensions in the
other two coordinate directions. We further assume that the body forces
and lateral surface forces are parallel to the cross section of the cylinder
and distributed uniformly along the y-direction. Additionally the geometric
constraints of cylinder do not vary along the y-direction likewise.

As any cross section can be considered as a symmetry plane, the dis-
placement of any point is parallel to the xz -plane, i.e.

w = w(x, z), u = u(x, z), v = 0 (4.1.9)

From the geometric equation (2.2.2), we have

εy = γxy = γyz = 0 (4.1.10)

According to the stress-strain relation (2.3.13), we obtain

τxy = τyz = 0, σy = ν(σx + σz) (4.1.11)

and the simplified stress-strain relations for plane strain problems are

εx =
1 − ν2

E

(
σx − ν

1 − ν
σz

)

εz =
1 − ν2

E

(
σz − ν

1 − ν
σx

)

γxz =
2(1 + ν)

E
τxz




(4.1.12)

The other fundamental equations, such as the strain-displacement geomet-
ric relations, the equations of equilibrium and boundary conditions, are
identical with those of plane stress problems, as in Eqs. (4.1.5) to (4.1.8).

Incidentally, if we denote

E1 =
E

1 − ν2
, ν1 =

ν

1 − ν
(4.1.13)

then Eq. (4.1.12) can be rewritten as

εx =
1
E1

[σx − ν1σz]; εz =
1
E1

[σz − ν1σx]; γxz =
2(1 + ν1)

E1
τxz

(4.1.14)
which is absolutely identical with Eq. (4.1.3).
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For the eight unknown physical quantities u,w, εx, εz, γxz and σx, σz , τxz

the fundamental equations and boundary conditions of plane strain prob-
lems and those of plane stress problems are identical. The only difference
lies in the interpretation equation (4.1.13) of elastic constants. Henceforth
we do not distinguish these two classes of problems which are referred as
plane elasticity problems. The fundamental equations and boundary con-
ditions to be satisfied are from Eqs. (4.1.3) to (4.1.8).

There has been extensive and profound research in plane elasticity1,2.
Most of the solution methods are based on the Airy stress function of
biharmonic equation. In this approach, Eq. (4.1.6) can be transformed to a
homogeneous equation

∂σx

∂x
+
∂τxz

∂z
= 0,

∂τxz

∂x
+
∂σz

∂z
= 0 (4.1.15)

by virtue of a special solution. Then, the Airy stress function ϕf(x, z) is
introduced such that

σx =
∂2ϕf

∂z2
, σz =

∂2ϕf

∂x2
, τxz = − ∂2ϕf

∂x∂z
(4.1.16)

In this way the homogeneous equation (4.1.15) is satisfied. In order to have
the stress expressions satisfy the deformation compatibility equations, the
Airy stress function ϕf(x, z) should fulfill

∇2∇2ϕf =
∂4ϕf

∂x4
+ 2

∂4ϕf

∂x2∂z2
+
∂4ϕf

∂z4
= 0 (4.1.17)

The corresponding boundary conditions can be expressed in terms of stress
functions accordingly. This is the stress solution methodology with one kind
of variable. Other solution methodologies include the trial-and-error polyno-
mials approach in rectangular coordinates; the trial-and-error trigonometric
functions approach in polar coordinates3; and rational solution approach
by complex functions4; etc. It is difficult for the trial-and-error solutions to
satisfy the boundary conditions which have been commonly dealt with by
the Saint–Venant principle. The solution method by complex functions is
a significant advancement and it is applicable to structures made of single,
homogeneous material and with common boundary geometry. It is not con-
venient for some special domains such as a rectangle, etc. and also difficult
for composite materials.

At this point, there has been detailed discussion on numerous research
works in elasticity. A large portion has been devoted to the discussion on
static problems of rectangular domain in rectangular coordinates. In this
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chapter, we continue to introduce the Hamiltonian system method based
on the specific, exemplary problem. It is a generalization of the method
introduced last chapter on the set of partial differential equation.

4.2. Hamiltonian System in Rectangular Domain5

Consider a rectangular domain as shown in Fig. 4.1

V : 0 ≤ z ≤ l, −h ≤ x ≤ h (4.2.1)

where l is comparatively larger than h. There are surface forces acting on
both side boundary surfaces (x = ±h)

σx = F x1(z), τxz = F z1(z) at x = −h (4.2.2a)

σx = F x2(z), τxz = F z2(z) at x = h (4.2.2b)

and there are body forces Fx, Fz in the domain acting along the x- and
z-directions, respectively.

Applying the principle of minimum potential energy to the problem
above yields

δEp = δ

{∫ l

0

∫ h

−h

(vε − wFz − uFx)dxdz

−
∫ l

0

[(wF z2 + uFx2)x=h − (wF z1 + uFx1)x=−h]dz

}
= 0 (4.2.3)

Fig. 4.1. Plane problem in rectangular domain.
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where the strain energy density is

vε =
E

2(1 − ν2)

[(
∂u

∂x

)2

+
(
∂w

∂z

)2

+ 2ν
(
∂u

∂x

)(
∂w

∂z

)]

+
E

4(1 + ν)

(
∂u

∂z
+
∂w

∂x

)2

(4.2.4)

In addition, there are the corresponding boundary conditions at both
end (z = 0 or l) which will be discussed in due course.

Here, the z-coordinate is treated as the time coordinate and differen-
tiation with respect to z is indicated by a dot, i.e. (̇) = ∂/∂z. Then the
Lagrange density function is the integrand in Eq. (4.2.3)

L (w, u, ẇ, u̇) = vε − wFz − uFx (4.2.5)

First of all, the dual variables of displacement w, u, i.e. the stresses σz , τxz,

σ =
∂L

∂ẇ
=

E

1 − ν2

(
ẇ + ν

∂u

∂x

)

τ =
∂L

∂u̇
=

E

2(1 + ν)

(
u̇+

∂w

∂x

)



(4.2.6)

are introduced by applying Legendre’s transformation in accordance with
the rule of Hamiltonian system. Hence the original variable q and the dual
variable p are

q = {w, u}T, p = {σ, τ}T (4.2.7)

From Eq. (4.2.6), we obtain

ẇ = −ν ∂u
∂x

+
1 − ν2

E
σ, u̇ = −∂w

∂x
+

2(1 + ν)
E

τ (4.2.8)

Next, applying the equations of equilibrium (4.1.6) and eliminating σx and
ẇ by virtue of stress-strain relations (4.1.4) and (4.2.8) yield

σ̇ = −∂τ
∂x

− Fz (4.2.9a)

τ̇ = −∂σx

∂x
− Fx

= − E

1 − ν2

∂2u

∂x2
− Eν

1 − ν2

∂ẇ

∂x
− Fx

= −E∂
2u

∂x2
− ν

∂σ

∂x
− Fx (4.2.9b)
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Then Eqs. (4.2.8) and (4.2.9) form a set of Hamiltonian dual equations




ẇ

u̇

σ̇

τ̇




=




0 −ν ∂
∂x

1 − ν2

E
0

− ∂

∂x
0 0

2 (1 + ν)
E

0 0 0 − ∂

∂x

0 −E ∂2

∂x2
−ν ∂

∂x
0







w

u

σ

τ




+




0

0

−Fz

−Fx




(4.2.10)

It is also possible to introduce the Hamiltonian density function

H (w, u, σ, τ) = σẇ + τu̇ − L (w, u, ẇ, u̇)

=
1 − ν2

2E
σ2 +

1 + ν

E
τ2 − νσ

∂u

∂x

− τ
∂w

∂x
− 1

2
E

(
∂u

∂x

)2

+ wFz + uFx (4.2.11)

to obtain the Hamiltonian dual equations directly, i.e. the matrix form of
Eq. (4.2.10), as

q̇ =
∂H

∂p
= Aq +Dp

ṗ = −∂H

∂q
= Bq −ATp−X




(4.2.12)

where

A =


 0 −ν ∂

∂x

− ∂

∂x
0


 , B =


0 0

0 −E ∂2

∂x2




D =




1 − ν2

E
0

0
2(1 + ν)

E


 , AT =


 0

∂

∂x

ν
∂

∂x
0


 X =

[
Fz

Fx

]
(4.2.13)
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The transpose of an operator matrix here should be noted as not just simple
transposition but it refers to the adjoint operator matrix. With respect to
differentiation, it includes integration by parts, as

∫ h

−h

pTAqdx =
∫ h

−h

qTATpdx− [νσu+ τw]h−h (4.2.14)

There is no difference within the domain −h < x < h. The remaining
boundary term and the boundary terms of B make up the boundary con-
ditions of the problem.

With Hamiltonian density function, the Hamiltonian variational princi-
ple (or mixed energy variational principle) can be stated as

δ

{∫ l

0

∫ h

−h

[pTq̇ − H (q,p)]dxdz−
∫ l

0

[(X
T

2 q)x=h − (X
T

1 q)x=−h]dz

}
= 0

(4.2.15)

where

X1 =
{
F z1, F x1

}T
, X2 =

{
F z2, F x2

}T
(4.2.16)

The variation of Eq. (4.2.15) yields the set of dual equations (4.2.12) in the
domain and the boundary conditions (4.2.2) on both side boundary sur-
faces (x = ±h). Actually, the Hamiltonian variational principle (4.2.15) can
be also derived from the Hellinger–Reissner variational principle with two
kinds of variables. For rectangular plane problems, the Hellinger–Reissner
variational principle yields

δ

{∫ l

0

∫ h

−h

[
σx
∂u

∂x
+ σz

∂w

∂z
+ τxz

(
∂u

∂z
+
∂w

∂x

)
− vc − Fxu− Fzw

]
dxdz

−
∫ l

0

[(wF z2 + uFx2)x=h − (wF z1 + uF x1)x=−h]dz

}
= 0 (4.2.17)

where

vc =
1

2E
(σ2

x + σ2
z − 2νσxσz) +

1 + ν

E
τ2
xz (4.2.18)

Because the z-direction is assigned longitudinal and the x-direction trans-
verse, the transverse stress σx should be eliminated. The variation of
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Eq. (4.2.17) with respect to σx yields

σx = E

(
∂u

∂x

)
+ νσz (4.2.19)

Substituting the expression above into Eq. (4.2.17) and eliminating σx yield
the Hamiltonian variational principle (4.2.15).

Subsequently we introduce the full state vector v and the operator
matrix H, as

v =

{
q

p

}
=




w

u

σ

τ



, H =

[
A D

B −AT

]
(4.2.20)

Then the Hamiltonian dual equations (4.2.12) can be rewritten as

v̇ =Hv + h; h = {0T, −XT}T (4.2.21)

In order to discuss the properties of operator matrix H, we introduce
unit symplectic matrix

J =

[
0 I2

−I2 0

]
(4.2.22)

and denote

〈v1,v2〉 def=
∫ h

−h

vT
1 Jv2dx =

∫ h

−h

(w1σ2 + u1τ2 − σ1w2 − τ1u2)dx

(4.2.23)

It is clear that Eq. (4.2.23) satisfies the four conditions of symplectic inner
product as expressed in Eq. (1.3.2). Hence, the full state vectors v form
a symplectic space according to the definition of symplectic inner product
(4.2.23).

For the purpose of examining the properties of operator which is in-
dependent of load, we should consider the homogeneous linear differential
equation

v̇ =Hv (4.2.24)

and the homogeneous boundary conditions

E
∂u

∂x
+ νσ = 0, τ = 0 at x = ±h (4.2.25)



December 16, 2008 15:56 B-599 9in x 6in ch04

106 Symplectic Elasticity

By integration by parts, it is easy to prove that

〈v1,Hv2〉 =
∫ h

−h

vT
1 JHv2 dx

=
∫ h

−h

[
νσ1

∂u2

∂x
+ τ1

∂w2

∂x
− Eu1

∂2u2

∂x2
− νu1

∂σ2

∂x

−w1
∂τ2
∂x

− 1 − ν2

E
σ1σ2 − 2(1 + ν)

E
τ1τ2

]
dx

=
∫ h

−h

[
−νu2

∂σ1

∂x
− w2

∂τ1
∂x

− Eu2
∂2u1

∂x2
+ νσ2

∂u1

∂x

+ τ2
∂w1

∂x
− 1 − ν2

E
σ2σ1 − 2(1 + ν)

E
τ2τ1

]
dx

+
[
u2

(
E
∂u1

∂x
+ νσ1

)
+ w2τ1 − u1

(
E
∂u2

∂x
+ νσ2

)
− w1τ

]h

−h

= 〈v2,Hv1〉 +
[
u2

(
E
∂u1

∂x
+ νσ1

)
+ w2τ1

]h

−h

−
[
u1

(
E
∂u2

∂x
+ νσ2

)
+ w1τ2

]h

−h

(4.2.26)

As a result, if v1,v2 are continuously differentiable full state vectors satis-
fying the boundary conditions (4.2.25), there exists an identity

〈v1,Hv2〉 = 〈v2,Hv1〉 (4.2.27)

Hence the operator matrix H is a Hamiltonian transformation (operator
matrix) in a symplectic space.

It is observed from Eq. (4.2.26) that Eq. (4.2.27) remains an identity as
long as v1,v2 fulfill the boundary conditions even for clamped and simply
supported boundaries.

4.3. Separation of Variables and Transverse
Eigen-Problems6

The common method of separation of variables is not applicable to Lame
equations. However, after transforming the equations into Hamiltonian dual
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equations, it is natural to apply the method of separation of variables to
the resulted homogeneous equations (4.2.24). Let

v(z, x) = ξ(z)ψ(x) (4.3.1)

and substitute it into Eq. (4.2.24), we obtain

ξ(z) = eµz (4.3.2)

and the eigenvalue equation

Hψ(x) = µψ(x) (4.3.3)

where µ is the unknown eigenvalue and ψ(x) is the eigenvector which is
to satisfy the homogeneous boundary conditions (4.2.25). Here, the longi-
tudinal z-coordinate has been separated and, therefore, it is an eigenvalue
problem on the transverse cross section. As it is a continuous body, there
are infinite dimensions in the transverse direction.

It has been proved in the section above thatH is a Hamiltonian operator
matrix. This eigenvalue problem has special properties as that of eigenvalue
problem of Hamiltonian matrix of finite dimensions discussed in Chapters 1
and 3, i.e.

(1) If µ is an eigenvalue of a Hamiltonian operator matrix H,−µ is also
an eigenvalue.
As the Hamiltonian eigenvalue problem discussed here has infinite di-
mensions, there are infinite eigenvalues which can be divided into two
sets

(α) µi, Re(µi) < 0 or Re(µi) = 0 ∧ Im(µi) < 0 (i = 1, 2, . . .)

(4.3.4a)

(β) µ−i = −µi (4.3.4b)

The eigenvalues in the (α)-set are arranged in an ascending order ac-
cording to the magnitude |µi|.

(2) The eigenvectors of Hamiltonian operator matrix are mutually adjoint
symplectic orthogonal. Letψi andψj be the eigenvectors corresponding
to the eigenvalues µi and µj , respectively, then for µi + µj �= 0, they
are symplectic orthogonal

〈ψi,ψj〉 =
∫ h

−h

ψT
i Jψjdx = 0 (4.3.5)
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The eigenvector symplectic adjoint with ψi must be the eigenvector (or
the Jordan form eigenvector) corresponding to eigenvalue −µi.

With the adjoint symplectic orthogonal relation, the full state vector v
on any transverse cross section can always be expanded in terms of eigen-
solutions,

v =
∞∑

i=1

(aiψi + biψ−i) (4.3.6)

where ai and bi are undetermined coefficients while ψi and ψ−i are eigen-
vectors satisfying the following adjoint symplectic orthonormal relations

〈ψi,ψj〉 = 〈ψ−i,ψ−j〉 = 0

〈ψi,ψ−j〉 =

{
1 (i = j)

0 (i �= j)


 (i, j = 1, 2, . . .) (4.3.7)

It should be noted that the validity of expansion of eigen-solutions de-
pends on the completeness of these eigen-solutions in full state vector space.
Such completeness problem also exists in the Sturm–Liouville problem. It
can be first transformed into an integral equation with a symmetrical kernel
and then the completeness will be proven by the Hibert–Schmidt theory.
There is a complete set of theory in functional analysis on the spectrum
analysis of symmetric operators. The completeness theorem constitutes an
important part of these subjects.

The operator in hand is a Hamiltonian operator which is not self-adjoint.
Therefore, the situation is more complicated. Although its eigenvalue spec-
trum has certain characteristics, e.g. Eq. (4.3.4), the eigenvalues are not
necessarily real and Jordan forms are also possible. The kernel of integral
equation corresponding to the Hamiltonian operator is also of Hamiltonian
type, i.e. it is an eigenvelue problem of Hamiltonian integral equation.
There is a lot of subjects, for examples, adjoint symplectic orthonormal
relation of the eigenvectors, completeness problem similar to the Hibert–
Schmidt theory, degenerated kernel integral equation, etc. which are not
explored yet. Consequently, the theory of spectrum analysis for Hamilto-
nian operators as well as its completeness theorem should be available in
functional analysis. In summary, it is a very vast field of research and a
large amount of work is to be completed.

In this book, we deal with the Hamiltonian solution of elasticity. There-
fore, we do not discuss these problems further.
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4.4. Eigen-Solutions of Zero Eigenvalue

The zero eigenvalue is a very special eigenvalue in the Hamiltonian eigen-
value problems. It is not included in the expression (4.3.4). The eigen-
solution of this eigenvalue contains particular significance in elasticity.

Repeated zero eigenvalue exists for elastic problems in a rectangular
domain because the boundaries at both sides (x = ±h) are free. To ob-
tain the eigen-solution of zero eigenvalue, we solve the following differential
equation

Hψ(x) = 0 (4.4.1)

Expanding the equation yields

0 −ν du
dx

+
1 − ν2

E
σ +0 = 0

−dw
dx

+0 +0 +
2(1 + ν)

E
τ = 0

0 +0 +0 −dτ
dx

= 0

0 −E d2u

dx2
−ν dσ

dx
+0 = 0




(4.4.2)

Certainly, the eigen-solution should fulfill the homogeneous boundary con-
ditions (4.2.25) at both sides (x = ±h).

Equation (4.4.2) and boundary conditions (4.2.25) shows that the solu-
tion can be decoupled into two sets. The first set of equations with respect
to w, τ consists of the second and the third equations of Eq. (4.4.2) and the
second equation of boundary conditions (4.2.25), while the second set with
respect to u, σ consists of the first and the fourth equations of Eq. (4.4.2)
and the first equation of boundary conditions (4.2.25). Solve the former
yields

w = c1, τ = 0 (4.4.3)

while solving the latter yields

u = c2, σ = 0 (4.4.4)

where c1 and c2 are arbitrary constants. Therefore, the linearly independent
basic eigen-solutions are

ψ
(0)
0f =

{
1, 0; 0, 0

}T
(4.4.5)

ψ
(0)
0s =

{
0, 1; 0, 0

}T
(4.4.6)
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Here, there are two chains denoted by the subscript f and s, respectively.
From Eqs. (4.3.1) and (4.3.2), these eigenvectors are the solutions of the
original equations (4.2.24) with boundary conditions (4.2.25),

v
(0)
0f = ψ

(0)
0f , v

(0)
0s = ψ

(0)
0s (4.4.7)

These two solutions are physically interpreted, respectively, as rigid body
translations along the z- and x-direction.

Next, we solve for the Jordan form eigen-solutions of zero eigenvalue.
We consider the following equation

Hψ
(i)
0 = ψ

(i−1)
0 (4.4.8)

where superscript i, i − 1 denote the ith, (i − 1)th order Jordan form (or
basic) eigen-solution.

To obtain the first-order Jordan form eigen-solution on chain one, we
first solve the following equations with homogeneous boundary conditions
Eq. (4.2.25),

Hψ
(1)
0f = ψ

(0)
0f (4.4.9)

and we obtain

ψ
(1)
0f = {0, −νx; E, 0}T (4.4.10)

Here the first-order Jordan form eigenvector ψ(1)
0f is no longer the solution

of the original equations (4.2.24) with homogeneous boundary conditions
(4.2.25). However, the solutions can be constructed similar to expression
(3.3.11), as

v
(1)
0f = ψ

(1)
0f + zψ

(0)
0f (4.4.11)

The components of displacement and stress are

w = z, u = −νx, σ = E, τ = 0 (4.4.12)

This solution is physically interpreted as uniform tension along the axial
direction.

Similarly, the first-order Jordan form eigen-solution on chain two, can be
obtained by first solving the following equations with homogeneous bound-
ary conditions Eq. (4.2.25)

Hψ
(1)
0s = ψ

(0)
0s (4.4.13)
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and we obtain

ψ
(1)
0s = {−x, 0; 0, 0}T (4.4.14)

Likewise, the first-order Jordan form eigenvector ψ(1)
0s is no longer the so-

lution of the original equations (4.2.24) with homogeneous boundary con-
dition (4.2.25). The solution of the original equation thus is composed of

v
(1)
0s = ψ

(1)
0s + zψ

(0)
0s (4.4.15)

The components of displacement and stress are

w = −x, u = z, σ = 0, τ = 0 (4.4.16)

This solution is physically interpreted as in-plane rigid body rotation.
Having obtained the first-order Jordan form eigen-solutions, we can now

solve the second-order Jordan form eigen-solutions. On chain one, we need
to solve the following equation

Hψ
(2)
0f = ψ

(1)
0f (4.4.17)

Solving the third expression of Eq. (4.4.17) yields τ = −Ex+ c where c is
an arbitrary constant. As this expression cannot simultaneously satisfy the
homogeneous boundary conditions τ = 0 at x = ±h, hence there exists no
solution and this chain of Jordan form eigen-solution is terminated.

Consider the other chain of Jordan form; the second-order Jordan form
solution can be obtained by solve the following equation

Hψ
(2)
0s = ψ

(1)
0s (4.4.18)

Obviously, we can first obtain w = τ = 0. Then from the first expression
and the integration of the fourth expression of Eq. (4.4.18), we get

u
(2)
0s =

1
2
νx2 + c3x+ c4, σ

(2)
0s = −Ex+

Eν

1 − ν2
c3 (4.4.19)

Substituting the expression above into the first equation of boundary con-
ditions (4.2.25), we find out that the boundary conditions are satisfied for
c3 = 0 while c4 is an arbitrary constant. Hence

ψ
(2)
0s =

{
0,

1
2
νx2 + c4; −Ex, 0

}T

(4.4.20)

and the solution of original equation thus constructed is

v
(2)
0s = ψ

(2)
0s + zψ

(1)
0s +

1
2
z2ψ

(0)
0s (4.4.21)
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in which the components of displacement and stress are

w = −xz, u =
1
2
(z2 + νx2) + c4, σ = −Ex, τ = 0 (4.4.22)

This solution is physically interpreted as pure bending.
It should be noted that the presence of c4 is equivalent to superposing

a basic eigen-solution to the Jordan form eigen-solution. Similar to the
discussion in Sec. 1.3, the eigen-solutions become symplectic orthogonal if
an appropriate value for c4 is assigned.

Subsequently, we solve the third-order Jordan form eigen-solution. The
corresponding equation is

Hψ
(3)
0s = ψ

(2)
0s (4.4.23)

Obviously, u = σ = 0 is obtained. Integrating the third expression of
Eq. (4.4.23) and substituting the boundary condition τ = 0 at x = ±h, we
obtain

τ
(3)
0s =

1
2
E(x2 − h2) (4.4.24)

Further substituting into the second expression of Eq. (4.4.23) and inte-
grating yield

w
(3)
0s = −(1 + ν)h2x− c4x+

1
6
(2 + ν)x3 (4.4.25)

Hence

ψ
(3)
0s =




−(1 + ν)h2x− c4x+
1
6
(2 + ν)x3

0
0

1
2
E(x2 − h2)




(4.4.26)

and the solution of original equation thus constructed is

v
(3)
0s = ψ

(3)
0s + zψ

(2)
0s +

1
2
z2ψ

(1)
0s +

1
6
z3ψ

(0)
0s (4.4.27)

in which the components of displacement and stress are

w = −(1 + ν)h2x− c4x+
1
6
(2 + ν)x3 − 1

2
xz2

u =
1
2
νx2z + c4z +

1
6
z3

σ = −Exz
τ =

1
2
E(x2 − h2)




(4.4.28)

This solution is physically interpreted as constant shear force bending.
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Finally, we examine whether a higher-order Jordan form eigen-solution
exists. The corresponding equation is

Hψ = ψ
(3)
0s (4.4.29)

Integrating the fourth expression

−E d2u

dx2
− ν

dσ
dx

=
1
2
E(x2 − h2) (4.4.30)

from x = −h to x = h yields

−
[
E

du
dx

+ νσ

]x=h

x=−h

= −2
3
Eh3 (4.4.31)

According to the homogeneous boundary condition (4.2.25), the left-hand-
side of the expression above vanishes. Therefore, there exists no solution
and the chain of Jordan form eigen-solution is terminated.

At this point, we have obtained all eigen-solutions of zero eigenvalue
and discussed their specific physical interpretation. Obviously, the solutions
v

(0)
0f and v(1)

0f on chain one are related to symmetric deformation states with

respect to x = 0 while the solutions v(0)
0s ,v

(1)
0s ,v

(2)
0s and v(3)

0s on chain two
are related to antisymmetric deformation states.

The different order eigenvectors corresponding to a zero eigenvalue
are mutually adjoint symplectic orthogonal. As the eigenvectors ψ(0)

0f and

ψ
(1)
0f on chain one are the symmetric deformation while the eigenvectors

ψ
(0)
0s ,ψ

(1)
0s , ψ

(2)
0s and ψ(3)

0s on chain two are antisymmetric deformation, the
eigenvectors of chain one and chain two must be mutually symplectic or-
thogonal.

There are only two vector functions on the Jordan form chain of sym-
metric deformation ψ(0)

0f and ψ(1)
0f which are adjoint but not symplectic

orthogonal. In respect, it can be verified that

〈ψ(0)
0f ,ψ

(1)
0f 〉 =

∫ h

−h

ψ
(0)T
0f Jψ

(1)
0f dx =

∫ h

−h

Edx = 2Eh �= 0 (4.4.32)

We then continue to consider the adjoint symplectic orthonormality
on Jordan form chain two of antisymmetric deformation ψ(0)

0s , ψ(1)
0s , ψ(2)

0s

and ψ(3)
0s . Through direct verification or by applying the proof similar to

Theorem 1.17, we can prove that ψ(0)
0s is symplectic orthogonal to ψ(1)

0s and
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ψ
(2)
0s while ψ(0)

0s and ψ(3)
0s are symplectic adjoint

〈ψ(0)
0s ,ψ

(3)
0s 〉 =

∫ h

−h

[
1
2
E(x2 − h2)

]
dx = −2

3
Eh3 �= 0 (4.4.33)

Through direct verification or following the conclusion of Eq. (1.3.20), we
also know that ψ(1)

0s and ψ(2)
0s are symplectic adjoint

〈ψ(1)
0s ,ψ

(2)
0s 〉 = −〈ψ(0)

0s ,ψ
(3)
0s 〉 =

2
3
Eh3 �= 0 (4.4.34)

while ψ(1)
0s and ψ(3)

0s are symplectic orthogonal.
Finally we consider the symplectic orthogonal relation of ψ(2)

0s and ψ(3)
0s

which can be satisfied through an appropriate choice of c4. From

〈ψ(2)
0s ,ψ

(3)
0s 〉 =

∫ h

−h

{
Ex

[
1
6
(2 + ν)x3 − (1 + ν)h2x− c4x

]

+
1
2
E(x2 − h2)

(
1
2
νx2 + c4

)}
dx = 0 (4.4.35)

we have

c4 = −
(

2
5

+
ν

2

)
h2 (4.4.36)

The adjoint symplectic orthonormality of eigenvectors corresponding
to zero eigenvalue has been established so far, i.e. an adjoint symplectic
orthonormal vector set has been constituted. Similar to Chapter 3, the
solutions of axial translation, transverse translation and rigid body rotation
are adjoint to, respectively, the solutions of tension, constant shear force
bending and pure bending.

The six eigen-solutions of zero eigenvalue are the basic solutions of
two-dimensional Saint–Venant problem. These solutions span a complete
symplectic subspace of zero eigenvalue. There are three independent plane
rigid-body translations and a total of six independent rigid-body transla-
tions at both end surfaces of beam. Thus, the six independent solutions of
Saint–Venant problem are matched.

It is noted that there is no solution for the set of Eqs. (4.4.17) or (4.4.29)
with homogeneous boundary conditions (4.2.25). It only indicates termina-
tion of the corresponding Jordan form chain of eigen-solutions, i.e. there
exists no further eigen-solution. This method can be further applied to
solve for the inhomogeneous particular solutions for cases with uniformly
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Fig. 4.2. Plane rectangular domain with uniform load.

distributed load. By using the Jordan form on chain one in Eq. (4.4.17), we
can obtain the inhomogeneous particular solution along the z-direction for
uniformly distributed load. Similarly, by using the Jordan form on chain
two in Eq. (4.4.29), we can obtain the inhomogeneous particular solution
along the x-direction for uniformly distributed load.

As an example, for a rectangular domain with uniformly distributed
force q acting on surfaces x = ±h as illustrated in Fig. 4.2, we can obtain
an inhomogeneous particular solution by using the Jordan form solution.

Apparently, the boundary conditions on both side boundary surfaces
(x = ±h) are

(σx =)E
∂u

∂x
+ νσ = −q, τxz = 0 at x = −h (4.4.37a)

(σx =)E
∂u

∂x
+ νσ = q, τxz = 0 at x = h (4.4.37b)

For Jordan form particular solution, we solve

Hψ̃ = kψ
(3)
0s (4.4.38)

Integrating the fourth equation

−E d2ũ

dx2
− ν

dσ̃
dx

=
1
2
kE(x2 − h2) (4.4.39)

yields

E
dũ
dx

+ νσ̃ =
1
6
kE(3h2x− x3) + c (4.4.40)

and further substituting the boundary conditions (4.4.37) yields

k =
3q
Eh3

, c = 0 (4.4.41)
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And therefore we have

(σ̃x =)E
dũ
dx

+ νσ̃ =
q

2h3
(3h2x− x3) (4.4.42)

Making use of Eq. (4.4.42) and the first equation of Eq. (4.4.38) simulta-
neous, we obtain

σ̃ =
q

h3
x3 − 9q

5h
x (4.4.43)

and

dũ
dx

= −q(1 + 2ν)
2Eh3

x3 +
3q(5 + 6ν)

10Eh
x (4.4.44)

From to the second and third equations of Eq. (4.4.38) and the boundary
conditions (4.4.37), we derive

τ̃ =
dw̃
dx

= 0 (4.4.45)

Without the loss of generality, we establish a particular solution of
Eq. (4.4.38) as

ψ̃ =




w̃ = 0

ũ = −q(1 + 2ν)
8Eh3

x4 +
3q(5 + 6ν)

20Eh
x2

σ̃ =
q

h3
x3 − 9q

5h
x

τ̃ = 0




(4.4.46)

Obviously ψ̃ is not the particular solution of the original problem in
Eq. (4.2.21). However, the particular solution of the original problem can
be constructed as

ṽ = ψ̃ + k

(
zψ

(3)
0s +

1
2
z2ψ

(2)
0s +

1
6
z3ψ

(1)
0s +

1
24
z4ψ

(0)
0s

)
(4.4.47)

The corresponding stress field is

σ =
q

h3
x3 − 9q

5h
x− 3q

2h3
xz2

τ =
3q
2h3

z(x2 − h2)

σx =
q

2h3
(3h2x− x3)




(4.4.48)
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and the corresponding displacement field is

w =
q

10Eh3
xz[5(2 + ν)x2 − 3(6 + 5ν)h2 − 5z2]

u = −q(1 + 2ν)
8Eh3

x4 +
3q(5 + 6ν)

20Eh
x2

+
3νq

4Eh3
x2z2 − 3q(4 + 5ν)

20Eh
z2 +

q

8Eh3
z4




(4.4.49)

Having solved a particular solution, we may discuss the solution of homo-
geneous equation based on the superposition principle.

Further problems with different forms of distributed load such as lin-
early distributed load, parabolic distributed load, etc. can be solved in a
same way.

4.5. Solutions of Saint–Venant Problems
for Rectangular Beam

The Saint–Venant principle is particularly emphasized in the semi-inverse
method in elasticity. It states local influences of a system of forces in self-
equilibrium. Equivalently, the local effects decay drastically with respect
to distance. It is a special characteristic of an exponential function which
is inherent in the eigen-solutions of nonzero eigenvalues.

Exponential functions do not appear in the solutions of zero eigenvalues
and, therefore, the solutions are not sensitive to self-equilibrium system of
forces on a certain cross section. The influence of non-equilibrium external
load on the cross section propagates to farther region through the solutions.
The solution of zero eigenvalue explicitly divides the problem with local and
non-local characteristics.

The Saint–Venant principle is applicable to the current problem for
l � h in a rectangular domain. The influence of self-equilibrium forces at
both ends (z = 0 or l) is only confined to the vicinity of the region. It is then
appropriate to neglect the solutions of nonzero eigenvalues and, therefore,
to apply only the solutions of zero eigenvalue in the expansion theorem, as

v = a1ψ
(0)
0f + a2ψ

(1)
0f + a3ψ

(0)
0s + a4ψ

(1)
0s + a5ψ

(2)
0s + a6ψ

(3)
0s (4.5.1)
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or

w = a1 − a4x+ a6

(
−6 + 5ν

10
h2x+

2 + ν

6
x3

)

u = −a2νx + a3 − a5

(
4 + 5ν

10
h2 − ν

2
x2

)

σ = a2E − a5Ex

τ =
1
2
a6E(x2 − h2)




(4.5.2)

Every term in the expansion of Eq. (4.5.1) has specific physical meaning,
likewise each of the undetermined coefficients a1 ∼ a6 has its physical
meaning. For instance,

a1 — axial displacement (4.5.3a)

a2 · (2hE) — axial force (4.5.3b)

and these two parameters constitute a set of parameters for symmetric
deformation. The set of parameters for antisymmetric deformation includes

a3 — transverse displacement (4.5.4a)

a4 — rotation angle of cross section (4.5.4b)

a5 · (2Eh3/3) — bending moment (with deformation) (4.5.4c)

a6 · (2Eh3/3) — shear force (with deformation) (4.5.4d)

The Hamiltonian variational principle (4.2.15) can be rewritten in terms
of scalar quantities as

δ

{∫ l

0

∫ h

−h

[
σẇ + τu̇ − 1 − ν2

2E
σ2 − 1 + ν

E
τ2

+ νσ
∂u

∂x
+ τ

∂w

∂x
+

1
2
E

(
∂u

∂x

)2

− wFz − uFx

]
dxdz

−
∫ l

0

[F x2u+ F z2w]x=hdz +
∫ l

0

[
F x1u+ F z1w

]
x=−h

dz

}
= 0

(4.5.5)
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Hence a1, a2 of symmetric deformation and a3, a4, a5, a6 of antisymmetric
deformation are two decoupled sets which can be solved independently.

First, a1, a2 of symmetric deformation in the expansion of Eq. (4.5.2)
are taken and substituted into Eq. (4.5.5). We have

δ

{∫ l

0

[(2Eh)a2ȧ1 − Eha2
2 − a1FN − a2W ] dz

}
= 0 (4.5.6)

where

FN =
∫ h

−h

Fzdx+ F z2 − F z1 (4.5.7a)

W = −
∫ h

−h

Fxνxdx− νh(F x2 + Fx1) (4.5.7b)

Apparently, FN is the axial resultant force while W represents the effect
of lateral force on the axial tension. The independent variables in the vari-
ational equation (4.5.6) are a1 and a2 only. The results are

ȧ1 = a2 +
1

2Eh
W, ȧ2 = − 1

2Eh
FN (4.5.8)

which can be physical interpreted as the axial strain equation and the equi-
librium equation, respectively. It is noted here that W is resulted from
the self-equilibrium external forces on the cross section and also Possion’s
ratio ν. This term propagates the influence of axial displacement to a far-
ther region and, therefore, attention should be paid when the Saint–Venant
principle is applied in such problems.

Next, a3, a4, a5, a6 of antisymmetric deformation in the expansion of
Eq. (4.5.2) are taken and substituted into Eq. (4.5.5). We have

δ

{∫ l

0

[
1
3
Eh3(2a5ȧ4 − 2a6ȧ3 − a2

5 + 2a4a6) − a3FS − a4M − a5θ − a6U

]
dz

+
[

4
15

(1 + ν)Eh5a5a6

]l

z=0

}
= 0 (4.5.9)
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where

FS =
∫ h

−h

Fxdx+ F x2 − Fx1 (4.5.10a)

M = −
∫ h

−h

Fzxdx− h(F z2 + F z1) (4.5.10b)

θ =
∫ h

−h

Fx

(
−4 + 5ν

10
h2 +

ν

2
x2

)
dx− 2

5
h2(F x2 − F x1) (4.5.10c)

U =
∫ h

−h

Fz

(
−6 + 5ν

10
h2x+

2 + ν

6
x3

)
dx− h3(F z2 + F z1)

(
4 + 5ν

15

)
(4.5.10d)

Explanation on these variational equations is required.
First of all, a3, a4 of the variables of variation a3, a4, a5, a6 represent

a displacement mode. On the other hand, a5, a6 do not represent a pure
internal force mode but rather a mixed mode because the corresponding
ψ

(2)
0s and ψ(3)

0s not only include distribution of internal forces but also dis-
placement. The displacement portion in this mixed mode includes some
correlative deformation. Since the mode is an eigenvector which has been
adjoint symplectic orthonormalized, the coefficient of a2

6 in variational equa-
tion (4.5.9) vanishes. However, the term a4a6 still exists and it relates a3, a6

and a4, a5 to form a chain.
It is observed from Eq. (4.5.10) that FS ,M are respectively the shear

force and bending moment on the cross section while θ, U represent the
effect of the lateral force and axial force on the transverse and axial
displacements.

Performing variation on Eq. (4.5.9) yields

ȧ3 = a4 − 3
2Eh3

U (4.5.11a)

ȧ4 = a5 +
3

2Eh3
θ (4.5.11b)

and the equations of equilibrium

ȧ5 = a6 − 3
2Eh3

M (4.5.11c)

ȧ6 =
3

2Eh3
FS (4.5.11d)
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The general solution can be obtained by directly integrating
Eq. (4.5.11). In order to obtain the solution of a specific problem, the con-
stants of integration need to be determined by substituting the boundary
conditions at both ends z = 0 and z = l.

The force boundary conditions in the variational principle (4.5.9) are
natural boundary conditions, and therefore they can be derived via varia-
tion directly as

a5 = a6 = 0 at z = 0 or l (4.5.12)

which can be interpreted physically as zero bending moment and shear force
at the ends.

As displacement boundary conditions involve the respective modes, they
can better be derived from the natural boundary conditions of variational
principle. For example, for fixed end boundaries, Eq. (4.5.5) with added
relevant end terms becomes

δ

{∫ l

0

∫ h

−h

[
σẇ + τu̇− 1 − ν2

2E
σ2 − 1 + ν

E
τ2 + νσ

∂u

∂x
+ τ

∂w

∂x

+
1
2
E
(∂u
∂x

)2

− wFz − uFx

]
dxdz −

∫ h

−h

[σw + τu]z=l
z=0dx

−
∫ l

0

[F x2u+ F z2w]x=hdz +
∫ l

0

[F x1u+ F z1w]x=−hdz
}

= 0

(4.5.13)

which yields the displacement boundary conditions. The corresponding
Eq. (4.5.9) then becomes

δ

{∫ l

0

[1
3
Eh3(2a5ȧ4 + 2a6ȧ3 − a2

5 + 2a4a6)

− a3FS − a4M − a5θ − a6U
]
dz

− 2
3
Eh3

[
a5a4 − a6a3 +

2
5
(1 + ν)h2a5a6

]l

z=0

}
= 0 (4.5.14)

Hence the boundary conditions at the fixed ends are

a4 + 0.4(1 + ν)h2a6 = 0

a3 − 0.4(1 + ν)h2a5 = 0

}
at z = 0 or l (4.5.15)
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Although this equation seems somewhat strange, from Eq. (4.5.2)

w = −a4x+ a6

(
−6 + 5ν

10
h2x+

2 + ν

6
x3

)

u = a3 − a5

(
4 + 5ν

10
h2 − ν

2
x2

)



(4.5.16)

Therefore Eq. (4.5.15) expresses zero equivalent rotation angle and zero
equivalent displacement respectively, or∫ h

−h

xwdx = 0,
∫ h

−h

(
1 − x2

h2

)
udx = 0 (4.5.17)

Having derived the boundary conditions, the solutions of the Saint–
Venant problem can be solved easily.

Example 4.1. Let a cantilevered beam be fixed at z = 0 and free at z = l.

Determine the solution if the beam is subjected to unit uniform load on
side x = h.

Solution. From Eq. (4.5.10), we know

FS = 1, M = 0; θ = −0.4h2, U = 0 (4.5.18)

Integrating Eqs. (4.5.11d) and (4.5.11c), and substituting the free boundary
condition

a5 = a6 = 0 at z = l (4.5.19)

yield

a6 =
3

2Eh3
(z − l), a5 =

3
4Eh3

(z − l)2 (4.5.20)

Further integrating Eqs. (4.5.11b) and (4.5.11a), and substituting the fixed
boundary condition

a4 + 0.4(1 + ν)h2a6 = 0

a3 − 0.4(1 + ν)h2a5 = 0


 at z = 0 (4.5.21)

yield

a4 =
1

4Eh3
[z3 − 3z2l + 3zl2] +

3
5Eh

[l(1 + ν) − z] (4.5.22)

and

a3 =
1

16Eh3
[z4 − 4z3l + 6z2l2] +

3
10Eh

[l(1 + ν)(2z + l) − z2] (4.5.23)
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Substituting a3 ∼ a6 into Eq. (4.5.2) results in the displacement field and
stress field of the cantilevered beam. For example, the deflection of the
beam axis is

u(0, z) =
1

16Eh3
[z4 − 4z3l + 6z2l2] +

3
10Eh

[l(1 + ν)(2z + l) − z2]

− 3(4 + 5ν)
40Eh

(z − l)2 (4.5.24)

It should be noted that the solution obtained here is not the ex-
act solution of the original problem, but rather the approximate solu-
tion of Saint–Venant problem. If the inhomogeneous boundary conditions
are satisfied by a particular solution, then the original problem can be
transformed to the corresponding one with homogeneous equations and
homogeneous boundary conditions. Further we can obtain an analytical so-
lution by means of expansion of eigen-solutions of zero eigenvalue. The
latter is the elastic exact solution if the distribution of external forces
(a force system in equilibrium) at the free end is the same as that of the
solution.

Thus, we have obtained all the Saint–Venant solutions through the
method of separation of variables in Hamiltonian dual system. Saint–Venant
solutions are eigen-solutions of zero eigenvalue. In conclusion, the complete-
ness of the solutions above have been proved by rational derivation.

The conclusion above can be positively affirmed by applying rational
derivation. The traditional semi-inverse solution method requires solutions
via trial and error. It is not possible to confirm the number of solutions,
whether the search is complete, nor the method to determine the remaining
solutions, for example, the solution with local effect. On the contrary, the
rational method clearly shows that the solution with local effect is the one
corresponding to the eigenvalues with nonzero real part (it can be proved
that there exists no pure imaginary eigenvalue in elasticity described in a
rectangular coordinate system7). This salient will be introduced in the next
section.

4.6. Eigen-Solutions of Nonzero Eigenvalues

The eigen-solutions of zero eigenvalue correspond to the solutions of Saint–
Venant problems. On the other hand, the solutions of the portion cov-
ered by the Saint–Venant principle corresponding to the eigen-solutions
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with nonzero eigenvalues are very important for satisfying the boundary
conditions at two ends (z = 0 or l) or when there are sudden changes of
external loading within the region.

Expanding the eigenvalue equations (4.3.3) yields

0 −ν du
dx

+
1 − ν2

E
σ +0 = µw

−dw
dx

+0 +0 +
2(1 + ν)

E
τ = µu

0 +0 +0 −dτ
dx

= µσ

0 −E d2u

dx2
−ν dσ

dx
+0 = µτ




(4.6.1)

This is a system of ordinary differential equations with respect to x which
can be solved by first determining the eigenvalue λ with respect to the
x-direction. The corresponding equation is

det




−µ −νλ (1 − ν2)/E 0

−λ −µ 0 2(1 + ν)/E

0 0 −µ −λ
0 −Eλ2 −νλ −µ


 = 0 (4.6.2)

Expanding the determinant yields the eigenvalue equation

(λ2 + µ2)2 = 0 (4.6.3)

The eigenvalues are repeated roots λ = ±iµ, hence, the general solution is

w = Aw cos(µx) +Bw sin(µx) + Cwx sin(µx) +Dwx cos(µx)

u = Au sin(µx) +Bu cos(µx) + Cux cos(µx) +Dux sin(µx)

σ = Aσ cos(µx) +Bσ sin(µx) + Cσx sin(µx) +Dσx cos(µx)

τ = Aτ sin(µx) +Bτ cos(µx) + Cτx cos(µx) +Dτx sin(µx)




(4.6.3′)

It shows that the partial solutions relevant to A and C are the solutions
of symmetric deformation with the z-axis while the partial solutions rele-
vant to B and D are the solutions of antisymmetric deformation with the
z-axis.
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4.6.1. Eigen-Solutions of Nonzero Eigenvalues

of Symmetric Deformation

The general solution of symmetric deformation is

w = Aw cos(µx) + Cwx sin(µx)

u = Au sin(µx) + Cux cos(µx)

σ = Aσ cos(µx) + Cσx sin(µx)

τ = Aτ sin(µx) + Cτx cos(µx)




(4.6.4)

where the constants are not all independent. Noting that the expression is
true for an arbitrary x, the substitution of Eq. (4.6.4) into Eq. (4.6.1) yields


−µ νµ (1 − ν2)/E 0

−µ −µ 0 2(1 + ν)/E

0 0 −µ µ

0 Eµ2 −νµ −µ







Cw

Cu

Cσ

Cτ




= 0 (4.6.5)

and

−µ −νµ (1 − ν2)/E 0

µ −µ 0 2(1 + ν)/E

0 0 −µ −µ
0 Eµ2 νµ −µ







Aw

Au

Aσ

Aτ




=




νCu

Cw

Cτ

νCσ − 2EµCu




(4.6.6)

As the determinant of coefficient matrix of Eq. (4.6.5) vanishes, the non-
trivial solutions are

Cw = Cu, Cσ = Cτ =
Eµ

1 + ν
Cu (4.6.7)

Since Eq. (4.6.6) are compatible, we have

Aw = −Au − 3 − ν

(1 + ν)µ
Cu

Aσ = − Eµ

1 + ν
Au − E(3 + ν)

(1 + ν)2
Cu

Aτ =
Eµ

1 + ν
Au +

2E
(1 + ν)2

Cu




(4.6.8)
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Therefore, there are only two independent constants. Although Au and Cu

are chosen here as the independent constants, it is also possible if other
constants are chosen. Substituting Eqs. (4.6.4), (4.6.7) and (4.6.8) into the
boundary conditions (4.2.25) yields

Auµ sin(µh) + Cu

[
µh cos(µh) +

2
1 + ν

sin(µh)
]

= 0

Auµ cos(µh) + Cu

[
−µh sin(µh) +

1 − ν

1 + ν
cos(µh)

]
= 0




(4.6.9)

For nontrivial solution to exist, the determinant of coefficient matrix
vanishes. Hence, we have

2µh+ sin(2µh) = 0 (4.6.10)

Obviously, −µ must be a root if µ is a root which is consistent with
the characteristics of Hamiltonian operator matrix. It is also clear that
there are no nonzero real roots for Eq. (4.6.10). Because Eq. (4.6.10) is
a real equation, the roots are complex conjugates which are denoted as
2µh = ±α± iβ where α and β are real and positive. It is possible to discuss
the roots in the first quadrant only, as

2µh = α+ iβ (4.6.11)

Equation (4.6.10) can be solved by numerical methods. In this respect,
Newton’s method is able to provide fast convergent numerical solutions
but it requires an initial approximate root which can be obtained by an
asymptotic method. Because trigonometric functions are periodic, a root
for β > 0 exists in the complex domain for each 2π-increment for 2µh.
Hence, we denote

α = 2nπ + α′ (4.6.12)

where 0 ≤ α′ < 2π. For large positive β, Eq. (4.6.10) can be approxi-
mated as

(α′ + 2nπ) + iβ − 1
2i

e−i(α′+iβ) ≈ 0 (4.6.13)
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Separating the real and imaginary parts of Eq. (4.6.13) yields

α′ + 2nπ +
1
2
eβ sinα′ ≈ 0 (4.6.14a)

β +
1
2
eβ cosα′ ≈ 0 (4.6.14b)

For large positive β, we have

2β
eβ

→ 0+ (4.6.15)

hence we deduce

cosα′ → 0− (4.6.16)

In addition, we have sinα′ < 0 from Eq. (4.6.14a) and the asymptotic
solution is

α→ 2nπ − π

2
− ε (4.6.17a)

where n = 1, 2, 3, . . .. Substituting Eq. (4.6.17a) into Eq. (4.6.14a), we have
approximately

β → ln(2α) (4.6.17b)

The expression (4.6.17) can be taken as the initial approximate root in
Newton’s method which subsequently yields numerically the eigenvalues.
Table 4.1 lists the first five eigenvalues.

Only roots in the first quadrant are listed in the table. Each µn in real-
ity has its symplectic adjoint eigenvalue −µn and their complex conjugate
eigenvalues, i.e. there are totally four eigenvalues in which two belong to
the (α)-set while the other two the (β)-set. It is obvious from Eq. (4.6.10)
that the nonzero eigenvalues are all single roots.

Having solved the eigenvalues µn, the nontrivial solution of Eq. (4.6.9) is

Au = cos2(µnh) − 2
1 + ν

, Cu = µn (4.6.18)

Table 4.1. Nonzero eigenvalues for symmetric deformation.

n = 1 2 3 4 5

Re(µnh) π
2

+ 0.5354 3π
2

+ 0.6439 5π
2

+ 0.6827 7π
2

+ 0.7036 9π
2

+ 0.7169

Im(µnh) 1.1254 1.5516 1.7755 1.9294 2.0469
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The other constants are determined from Eqs. (4.6.7) and (4.6.8). Hence,
the corresponding eigenvector function is

ψn =




wn

un

σn

τn




=




−
[
cos2(µnh) +

1 − ν

1 + ν

]
cos(µnx) + µnx sin(µnx)

[
cos2(µnh) − 2

1 + ν

]
sin(µnx) + µnx cos(µnx)

Eµn

1 + ν
[−(1 + cos2(µnh)) cos(µnx) + µnx sin(µnx)]

Eµn

1 + ν
[cos2(µnh) sin(µnx) + µnx cos(µnx)]




(4.6.19)

As the eigenvalues are complex, the eigen-solutions are also complex. The
solution of original problem corresponding to Eq. (4.2.24) is

vn = eµnzψn (4.6.20)

4.6.2. Eigen-Solutions of Nonzero Eigenvalues

of Antisymmetric Deformation

The general solution of antisymmetric deformation is

w = Bw sin(µx) +Dwx cos(µx)

u = Bu cos(µx) +Dux sin(µx)

σ = Bσ sin(µx) +Dσx cos(µx)

τ = Bτ cos(µx) +Dτx sin(µx)




(4.6.21)

where the constants are not all independent. Substituting Eq. (4.6.21) into
Eq. (4.6.1) yields the equations




−µ −νµ (1 − ν2)/E 0

µ −µ 0 2(1 + ν)/E

0 0 −µ −µ
0 Eµ2 νµ −µ







Dw

Du

Dσ

Dτ




= 0 (4.6.22)



December 16, 2008 15:56 B-599 9in x 6in ch04

Plane Elasticity in Rectangular Coordinates 129

and


−µ νµ (1 − ν2)/E 0

−µ −µ 0 2(1 + ν)/E

0 0 −µ µ

0 Eµ2 −νµ −µ







Bw

Bu

Bσ

Bτ




=




νDu

Dw

Dτ

νDσ + 2EµDu




(4.6.23)

As these two sets of equations are compatible, hence we obtain

Bw = Bu − 3 − ν

(1 + ν)µ
Du; Dw = −Du

Bσ =
Eµ

1 + ν
Bu − E(3 + ν)

(1 + ν)2
Du; Dσ = − Eµ

1 + ν
Du

Bτ =
Eµ

1 + ν
Bu − 2E

(1 + ν)2
Du; Dτ =

Eµ

1 + ν
Du




(4.6.24)

Here Bu and Du are chosen as the independent constants. Substituting
Eqs. (4.6.21) and (4.6.24) into the boundary conditions (4.2.25) yields

Buµ cos(µh) +Du

[
µh sin(µh) − 2

1 + ν
cos(µh)

]
= 0

−Buµ sin(µh) +Du

[
µh cos(µh) +

1 − ν

1 + ν
sin(µh)

]
= 0




(4.6.25)

Setting the determinant of coefficient matrix to vanish yields

2µh− sin(2µh) = 0 (4.6.26)

Obviously, −µ must be a root if µ is a root. Similarly, there are no
nonzero real roots for Eq. (4.6.26). Denote the roots in the first quadrant as

2µh = α+ iβ (4.6.27)

where α and β are positive real numbers.
Likewise, Newton’s method can be applied to solve Eq. (4.6.26). Simi-

lar to the derivation in the previous section, the approximated asymptotic
solution is

α→ 2nπ +
π

2
− ε, β → ln(2α) (4.6.28)
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Table 4.2. Nonzero eigenvalues for antisymmetric deformation.

n = 1 2 3 4 5

Re(µnh) π + 0.6072 2π + 0.6668 3π + 0.6954 4π + 0.7109 5π + 0.7219

Im(µnh) 1.3843 1.6761 1.8584 1.9916 2.0966

where n = 1, 2, 3, . . . , which can then be used as the initial approximate
root for Newton’s method to solve for the eigenvalues. Table 4.2 lists the
first five eigenvalues.

Obviously, there exists a symplectic adjoint eigenvalue −µn for each
µn as well as their complex conjugate eigenvalues. There are totally four
eigenvalues in which two belong to the (α)-set while the other two the (β)-
set. From Eq. (4.6.26), the antisymmetric nonzero eigenvalues are all single
roots.

The eigenvector function corresponding to the eigenvalue µn is

ψn =




wn

un

σn

τn




=




−
[
sin2(µnh) +

1 − ν

1 + ν

]
sin(µnx) − µnx cos(µnx)

[
− sin2(µnh) +

2
1 + ν

]
cos(µnx) + µnx sin(µnx)

− Eµn

1 + ν
[(1 + sin2(µnh)) sin(µnx) + µnx cos(µnx)]

Eµn

1 + ν
[− sin2(µnh) cos(µnx) + µnx sin(µnx)]




(4.6.29)

The nonzero eigenvalues and eigen-solutions for antisymmetric deformation
are complex. The solution corresponding to the original problem (4.2.24) is

vn = eµnzψn (4.6.30)

Thus, we have obtained all eigen-solutions of nonzero eigenvalues. Ex-
cept the symplectic adjoint eigenvectors corresponding to the symplectic
adjoint eigenvalues, the remaining eigenvectors are symplectic orthogonal
including symplectic orthogonality between them and the eigenvectors of
zero eigenvalue. Adjoint symplectic orthogonality is a very important char-
acteristic. If normalized, the eigenvectors can be further expanded according
to the expansion theorem and this is very helpful for solving the problem.
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The eigen-solutions of these nonzero eigenvalues decay with distance
depending on the characteristics of eigenvalues. The solutions in (α)-set
decay along the positive z-direction while the solutions in (β)-set decay
along the negative z-direction. All of these solutions are covered in the
Saint–Venant principle.

These eigen-solutions have one common characteristic, i.e. they are sym-
plectic orthogonal to the eigen-solutions of zero eigenvalue. As they are
symplectic orthogonal to ψ(0)

0f , ψ(0)
0s , ψ(1)

0s , the distributed forces of these
solutions on the cross section are in self-equilibrium, hence the solutions
satisfy the requirement of the classical Saint–Venant principle. In short,
self-equilibrium of the force system is the key salient point of the classical
Saint–Venant principle. However, the satisfaction of this requirement is not
sufficient for the eigen-solutions of zero eigenvalue.

The eigen-solutions of homogeneous equation has been discussed above.
Subsequently, we consider external forces or two point boundary value
problems.

4.7. Solutions of Generalized Plane Problems
in Rectangular Domain

The discussion above concerns the solutions of homogeneous equation
(4.2.24). With external load, the original equation is Eq. (4.2.21) where the
inhomogeneous term h is related to the given external load. While there
are various solution methods, it is most effective by means of eigenvectors
and the expansion theorems.

Substitute the expansion expression of eigenvector in Eq. (4.3.6) to the
full state vector v in Eq. (4.2.21), we obtain the ordinary differential equa-
tions with respect of ai, bi.

The eigen-solutions of singly repeated eigenvalue µi have been intro-
duced in Sec. 3.5 at length. The differential equations have been decoupled
into

ȧi = µiai + ci, ḃi = −µibi + di (4.7.1)

where

ci = 〈h,ψ−i〉, di = −〈h,ψi〉 (4.7.2)

The subscripts i and −i(i = 1, 2, . . .) denote the corresponding eigenvalues
belonging to (α)- and (β)-sets, respectively.
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If the eigenvalues ±µi are repeated eigenvalues, for example, triple roots,
then there are correspondingly six unknown functions a(0)

i , a
(1)
i , a

(2)
i and

b
(0)
i , b

(1)
i , b

(2)
i . We assume the eigenvectors include Jordan form eigenvec-

tors ψ(0)
i ,ψ

(1)
i ,ψ

(2)
i and ψ(2)

−i ,ψ
(1)
−i ,ψ

(0)
−i which have been transformed into

a set of normal adjoint symplectic orthonormal vectors, and in addition,
ψ

(2)
−i ,ψ

(1)
−i ,ψ

(0)
−i satisfy Eq. (1.3.19′). Then, the equations for solving six

functions a(0)
i , a

(1)
i , a

(2)
i and b(0)i , b

(1)
i , b

(2)
i are

ȧ
(0)
i = µia

(0)
i + a

(1)
i + c

(0)
i , ḃ

(0)
i = −µib

(0)
i + d

(0)
i

ȧ
(1)
i = µia

(1)
i + a

(2)
i + c

(1)
i , ḃ

(1)
i = −µib

(1)
i − b

(0)
i + d

(1)
i

ȧ
(2)
i = µia

(2)
i + c

(2)
i , ḃ

(2)
i = −µib

(2)
i − b

(1)
i + d

(2)
i




(4.7.3)

where

c
(j)
i = 〈h,ψ(2−j)

−i 〉, d
(j)
i = −〈h,ψ(2−j)

i 〉 (j = 0, 1, 2) (4.7.4)

Hence, for Jordan form solutions we need to solve the system of differential
equations (4.7.3) one by one.

The solutions ai, bi of Eqs. (4.7.1) or (4.7.3) can be substituted into the
corresponding boundary conditions to determine the integration constants
which then form the solution of the original problem.

The approach above also provides a method to solve the particular solu-
tion for the inhomogeneous term h. Once the particular solution is obtained,
the general solution can then be expressed as the sum of the particular solu-
tion and the homogeneous solution according to the superposition principle.
In summary, the problem can be treated in advance with the particular so-
lution and then transformed into the solution of homogeneous equation
(4.2.24).

The following discussion is restricted to the solution of homogeneous
equation (4.2.24). The corresponding boundary conditions should be de-
rived by subtracting the boundary values of the particular solution from
the original boundary values.

The end boundary conditions for specified displacements are

w = w0(x), u = u0(x) at z = 0

w = wl(x), u = ul(x) at z = l

}
(4.7.5)



December 16, 2008 15:56 B-599 9in x 6in ch04

Plane Elasticity in Rectangular Coordinates 133

where w0, u0, wl, ul are the specified displacements at the ends.
Equation (4.7.5) can be expressed as

q0 = q̄0(x) =
{
w0(x), u0(x)

}T
at z = 0

ql = q̄l(x) =
{
wl(x), ul(x)

}T
at z = l


 (4.7.6)

where q0, ql denote the values of variable q at z = 0 and z = l, respectively.
The end boundary conditions for specified forces are

σ = σ0(x), τ = τ0(x) at z = 0

σ = σl(x), τ = τ l(x) at z = l

}
(4.7.7)

where σ0, τ0, σl, τ l are the specified tractions at the ends. Equation (4.7.7)
can be expressed as

p0 = p0(x) =
{
σ0(x), τ0(x)

}T
at z = 0

pl = pl(x) =
{
σl(x), τ l(x)

}T
at z = l


 (4.7.8)

where p0,pl denote the values of variable p at z = 0 and z = l, respectively.
The boundary conditions at both ends (z = 0 or l) can also be mixed

boundary conditions which are left for the readers to accomplish.
As homogeneous equation (4.2.24) with homogeneous boundary condi-

tions (4.2.25) at both ends (z = 0 or l) is considered here, the corresponding
Hamiltonian mixed energy variational principle (4.2.15) degenerates to

δ

{∫ l

0

∫ h

−h

[pTq̇ − H (q,p)]dxdz + Ue

}
= 0 (4.7.9)

where the Hamiltonian density function is

H =
1 − ν2

2E
σ2 +

1 + ν

E
τ2 − νσ

∂u

∂x
− τ

∂w

∂x
− 1

2
E

(
∂u

∂x

)2

(4.7.10)

Here the effect Ue at z = 0 and z = l has been considered. For boundary
conditions (4.7.5) with specified displacements at both ends (z = 0 or l),
we have

Ue =
∫ h

−h

pT
0 (q0 − q̄0)dx−

∫ h

−h

pT
l (ql − q̄l)dx (4.7.11)
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For boundary conditions (4.7.7) with specified forces at both ends (z = 0
or l), we have

Ue =
∫ h

−h

qT
0 p0 dx−

∫ h

−h

qT
l pl dx (4.7.12)

The solution of homogeneous equations (4.2.24) by the method of sep-
aration variables has been discussed in the previous several sections. The
analytical expressions of eigen-solutions of zero eigenvalue and of nonzero
eigenvalues have also been presented. Based on expansion theorems, the
general solution of homogeneous equations (4.2.24) for the plane elasticity
in rectangular domain is

v =
1∑

i=0

a
(i)
0f v

(i)
0f +

3∑
i=0

a
(i)
0s v

(i)
0s +

∞∑
i=1

(ãivi + b̃iv−i) (4.7.13)

where a(i)
0f , a

(i)
0s , ãi, b̃i are undetermined constants.

There are complex eigenvectors vi,v−i for the current problem here
because the corresponding nonzero eigenvalues are all complex. The pres-
ence of complex operation is, of course, troublesome. The problem is es-
sentially real, complex numbers appear due to the eigen-solutions. When
establishing algebraic equation to satisfy the boundary conditions at both
ends (z = 0 or l), it is better to deal with real numbers. In addition, the
extremum condition using the variational principle involves only real num-
bers. With reference to the derivation of Eq. (3.6.20), Eq. (4.7.13) can be
transformed into a real canonical equation as

v =
1∑

i=0

a
(i)
0f v

(i)
0f +

3∑
i=0

a
(i)
0s v

(i)
0s

+
∞∑

i=1,3,...

[aiRe(vi) + ai+1Im(vi) + biRe(v−i) + bi+1Im(v−i)]

(4.7.14)

It should be noted that i = 1, 3, . . . refers to eigen-solutions of eigenvalues
Im(µ) > 0 only in the expansion of Eq. (4.7.14). Thus the transformation
from complex form to real canonical equation is completed.

The expression (4.7.14) is real and it satisfy the partial differential equa-
tions (4.2.24) and boundary conditions (4.2.25) on both side (x = ±h). The
variational equations corresponding to the two point boundary conditions
can be obtained by applying the variational principle.
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Performing variation on Eqs. (4.7.9) and (4.7.11) with respect to the
boundary conditions (4.7.5) for specified displacements at both ends (z = 0
or l) yields

∫ l

0

∫ h

−h

[
(δpT)

(
q̇ − δH

δp

)
− (δqT)

(
ṗ+

δH

δq

)]
dxdz

−
∫ h

−h

(δpT
l )(ql − ql)dx+

∫ h

−h

(δpT
0 )(q0 − q0)dx = 0 (4.7.15)

Since q,p are in the form of expanded eigenvectors (4.7.14), the first term
of the variational equation vanishes. The remaining variation equations of
two point boundary conditions are

∫ h

−h

(δpT
l )(ql − ql)dx−

∫ h

−h

(δpT
0 )(q0 − q0)dx = 0 (4.7.16)

In this way, the boundary conditions (4.7.5) for specified displacements
can be expressed as the variational equation (4.7.16). Substituting z = 0
and z = l into Eq. (4.7.14), q0, ql and p0,pl then become functions of
undetermined constants a(i)

0f , a
(i)
0s , ai, bi. These undetermined constants are

the parameters of variation and they can be obtained by solving the simul-
taneous equations derived from variation. These simultaneous equations
are the canonical equations. From the solution which satisfies all governing
equations except the boundary conditions at two ends (z = 0 or l) and the
compatibility condition represented by the equations of variation (4.7.16),
we know the simultaneous equations obtained are the force canonical break
equations.

A very simple example is presented here. Consider a simple tension
problem of a semi-infinite strip fixed at z = 0, the stress distribution at the
fixed end is determined here.

With reference to the problem, there is only the tension stress σ∞ for
z → ∞ and the deformation is symmetric with respect to z-axis. The
solution is then formed from Eqs. (4.4.5), (4.4.11) and the eigen-solution of
nonzero eigenvalue of symmetric deformation (4.6.20). Only eigen-solutions
of (α)-set in Eq. (4.7.14) are adopted, i.e. Re(µi) < 0. Hence the expansion
of general solution is

v =
(σ∞
E

)
v

(1)
0f + a0v

(0)
0f +

∞∑
i=1,3,...

[aiRe(vi) + ai+1Im(vi)] (4.7.17)



December 16, 2008 15:56 B-599 9in x 6in ch04

136 Symplectic Elasticity

Fig. 4.3. Stress analysis with fixed end.

where v(1)
0f indicates the stress at z → ∞, and a0 the rigid body transla-

tion which has no effect on stress. The eigen-solutions of (α)-set decay as z
increases, thus consistent with the far-end boundary condition at z → ∞.

These terms are those covered by the Saint–Venant principle which has the
most significant influence on the eigen-roots closest to the imaginary axis.
Substituting Eq. (4.7.17) into the equation of variation (4.7.16) and adopt-
ing i = 1, 3, . . . , 39, a total of 20 eigen-solutions of nonzero eigenvalues in
the calculation yield σz/σ∞ at the fixed end z = 0 as illustrated in Fig. 4.3.
The figure shows that there is stress singularity at the edge corner. Fluctu-
ation of stress observed is common when truncated finite terms are adopted
in the expansion. Such phenomenon has been observed, for instance, when
finite terms in a Fourier series are assumed.

In this chapter, we discuss the problem of plane elasticity in rectangular
domain with free side boundary surfaces. Problems with other boundary
conditions can be solved in a similar way. In conclusion, the Hamiltonian
system approach can be applied to problems with various combinations of
boundary conditions.
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Chapter 5

Plane Anisotropic Elasticity Problems

The structural analysis of composite materials is always based on the anal-
ysis of anisotropic materials. The solution of anisotropic elasticity problems
is more complicated than isotropic problems. Based on symplectic system
of isotropic elasticity, the Hamiltonian system is further extended to plane
anisotropic elasticity problems in this chapter and thus a complete sym-
plectic solution methodology for these problems is established. A rational
analytical solution for Saint–Venant problems is derived by the expansion
of eigenvector subspace of zero eigenvalue.

5.1. The Fundamental Equations of Plane Anisotropic
Elasticity Problems

Consider in the scope of isotropic elasticity a thin plate with constant thick-
ness and with body forces and forces on side boundary surfaces parallel
to the plane of plate. These forces are constant through the thickness of
plate. Such problems can be simplified to plane stress problems. On the
other hand, for long cylindrical solids with body forces and forces on side
boundary surfaces parallel to the cross section of cylinder and all forces
are constant in the longitudinal direction, they can be simplified to plane
strain problems. For an anisotropic body, the specific geometries and load-
ing conditions above are not the sufficient conditions for simplification to
plane elasticity problems. It is necessary for the anisotropic materials to
have an elastic symmetric plane which is consistent with the plane of load
in order for the problems to be approximately treated as plane elasticity
problems.

Consider a thin plate with constant thickness. At any point in the do-
main, there exists an elastic symmetric plane of material which is parallel to
the plane of plate. Let Oxz -plane be the mid-plane of plate, i.e. the dimen-
sion along the y-axis is far smaller than the other two dimensions. Assume
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that the body forces and forces on side boundary surfaces are parallel to
the plane and all forces are constant through thickness. Further assume the
geometric constraints are also constant through thickness. Such problems
can be approximately simplified to plane stress problems. Similar to the
plane isotropic elasticity problems, it is required to solve the eight physi-
cal quantities u, w, εx, εz, γxz and σx, σz , τxz. As compared to isotropic
problems, the only difference here is the stress-strain relation


εx

εz

γxz


 =


 s11 s13 s15
s13 s33 s35
s15 s35 s55






σx

σz

τxz


 (5.1.1)

or in another form 

σx

σz

τxz


 =


 b11 b13 b15
b13 b33 b35
b15 b35 b55






εx

εz

γxz


 (5.1.2)

where bij are the reduced stiffness coefficients whose determinant is
denoted as d in brief. For an elastic body the deformation energy density
is positive definite.

For such problems, the strain-displacement relation and equation of
equilibrium remain as Eqs. (4.1.5) and (4.1.6), respectively, and the bound-
ary conditions on Γσ for specified forces and on Γu for specified displace-
ments remain as Eqs. (4.1.7) and (4.1.8), respectively.

Consider a long cylindrical solid with an elastic symmetric plane of
material Oxz at every point and the elastic principal axis y is consistent
with the axis of the cylinder. In addition, the body forces and forces on
the side boundary surfaces are parallel to the cross section. These forces
as well as the geometric constraints are constant along the y-axis. Then,
such problems can be simplified to plane strain problems. The stress-strain
relation of plane strain problems is


σx

σz

τxz


 =


 c11 c13 c15
c13 c33 c35
c15 c35 c55






εx

εz

γxz


 (5.1.3)

while the other fundamental equations remain as Eqs. (4.1.5) to (4.1.8).
The fundamental equations and boundary conditions of plane strain prob-
lems are the same as those of plane stress problems. The only difference
lies on the interpretation of elastic constants. Likewise, the two kinds of
problems are treated as similar cases and they are generally referred as
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the plane anisotropic elasticity problems. The fundamental equations and
boundary conditions are Eqs. (5.1.1) or (5.1.2) and Eqs. (4.1.5) to (4.1.8),
respectively.

5.2. Symplectic Solution Methodology for Anisotropic
Elasticity Problems

Consider a rectangular domain as illustrated in Fig. 5.1

V : 0 ≤ z ≤ l, −h ≤ x ≤ h (5.2.1)

where l is relatively larger. The forces on side boundary surfaces (x = ±h)
are

σx = F x1(z), τxz = F z1(z) at x = −h (5.2.2a)

σx = F x2(z), τxz = F z2(z) at x = h (5.2.2b)

And there are body forces Fx and Fz acting along the x- and z-directions,
respectively, in the domain.

There are the corresponding boundary conditions at the two ends
z = 0, l. For instance, the boundary conditions for specified displacements
are

w = w, u = u at z = 0 or l (5.2.3a)

while the boundary conditions for specified forces are

σz = σz, τxz = τxz at z = 0 or l (5.2.3b)

The fundamental equations and boundary conditions of anisotropic elas-
ticity problems mentioned above can be derived from the Hellinger–Reissner

Fig. 5.1. Plane problem in rectangular domain.
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variational principle

δ

{∫ l

0

∫ h

−h

[
σx
∂u

∂x
+ σz

∂w

∂z
+ τxz

(
∂u

∂z
+
∂w

∂x

)

− vc − Fxu− Fzw]dxdz + v1
e + v2

e

}
= 0 (5.2.4)

where

vc =
1
2

(
s11σ

2
x + s33σ

2
z + s55τ

2
xz

)
+ s13σxσz + s15σxτxz + s35σzτxz (5.2.5)

v1
e = −

∫ l

0

{[
F x2u+ F z2w

]
x=h

− [
F x1u+ F z1w

]
x=−h

}
dz (5.2.6)

v2
e =



−

∫ h

−h

[σz (w − w) + τxz (u− u)]lz=0 dx on Γu

−
∫ h

−h

[σzw + τxzu]lz=0 dx on Γσ

(5.2.7)

We are now ready to derive the Hamiltonian system. First we treat the
longitudinal z-coordinate as the time coordinate and indicate differentiation
with respect to z using a dot, i.e. (̇) = ∂/∂z. Next, the transverse stress σx

should be eliminated. The variation of Eq. (5.2.4) with respect to σx is

σx =
1
s11

(
∂u

∂x
− s13σ − s15τ

)
(5.2.8)

where σz , τxz are briefly denoted as σ, τ. Substituting Eq. (5.2.8) into
Eq. (5.2.4) and eliminating σx, yield the mixed energy variational principle
of Hamiltonian system

δ

{∫ l

0

∫ h

−h

[σẇ + τu̇− H (w, u, σ, τ )]dxdz + v1
e + v2

e

}
= 0 (5.2.9)

where the Hamiltonian density function is

H =
1

2s11d
(b55σ2 + b33τ

2 − 2b35στ ) − 1
2s11

(
∂u

∂x

)2

− τ
∂w

∂x
+

1
s11

∂u

∂x
(s13σ + s15τ ) + Fxu+ Fzw (5.2.10)

Obviously, the dual variables of displacements w, u are stresses σ, τ.



December 16, 2008 15:56 B-599 9in x 6in ch05

Plane Anisotropic Elasticity Problems 143

The variation of Eq. (5.2.9) yields the Hamiltonian dual equations as

v̇ = H v + Q (5.2.11)

where v is the full state vector

v = {w, u, σ, τ}T (5.2.12)

H is an operator matrix

H =




0
s13
s11

∂

∂x

b55
s11d

− b35
s11d

− ∂

∂x

s15
s11

∂

∂x
− b35
s11d

b33
s11d

0 0 0 − ∂

∂x

0 − 1
s11

∂2

∂x2

s13
s11

∂

∂x

s15
s11

∂

∂x




(5.2.13)

and Q is an inhomogeneous term related to body forces.

Q = {0, 0, −Fz , −Fx}T (5.2.14)

The boundary conditions (5.2.2) on the two side boundary surfaces can
be expressed as

1
s11

(
∂u

∂x
− s13σ − s15τ

)
= F x1; τ = F z1, for x = −h (5.2.15a)

1
s11

(
∂u

∂x
− s13σ − s15τ

)
= F x2; τ = F z2, for x = h (5.2.15b)

To discuss the property of operator matrix H , we denote

〈v1,v2〉 def=
∫ h

−h

vT
1 Jv2dx

=
∫ h

−h

(w1σ2 + u1τ2 − σ1w2 − τ1u2)dx (5.2.16)

where J is a unit symplectic matrix

J =
[

0 I 2

−I 2 0

]
(5.2.17)
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Obviously, Eq. (5.2.16) satisfies the four conditions (1.3.2) of symplectic
inner product. Hence, the full state vector v forms a symplectic space in
accordance with the definition (5.2.16) of symplectic inner product.

First, we discuss the corresponding homogeneous linear differential
equations of Eq. (5.2.11)

v̇ = H v (5.2.18)

and the homogeneous boundary conditions of Eq. (5.2.15) on the side
boundary surfaces (x = ±h)

1
s11

(
∂u

∂x
− s13σ

)
= 0; τ = 0 at x = ±h (5.2.19)

It is obvious via integration by parts that if v1, v2 are continuously differ-
entiable full state vectors satisfying the boundary conditions (5.2.19), we
then have the identity

〈v1,H v2〉 = 〈v2,H v1〉 (5.2.20)

It states that the operator matrix H is the Hamiltonian operator matrix
in the symplectic space.

Thus we have transformed the plane anisotropic elasticity problems into
Hamiltonian system which can then be solved using the conventional pro-
cedure of Hamiltonian system.

Similar to the plane isotropic problems, the method of separation of
variables can be applied to solve the system of Eqs. (5.2.18), i.e. assume
that

v(z, x) = ξ(z)ψ(x) = eµzψ(x) (5.2.21)

where µ is an eigenvalue and ψ(x) is the eigenvector function. The eigen-
value equation is

Hψ(x) = µψ(x) (5.2.22)

which must satisfy the homogeneous boundary conditions (5.2.19) on the
side boundary surfaces (x = ±h).

As H is a Hamiltonian operator matrix, the eigenvector functions are
adjoint symplectic orthogonal. Once the eigenvalue and eigenvector func-
tions are determined, the expansion theorem can be applied to solve this
problem.
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5.3. Eigen-Solutions of Zero Eigenvalue

For problems with free homogeneous boundary conditions (5.2.19) on the
side boundary surfaces (x = ±h), there exist the basic eigen-solutions1

and the Jordan form eigen-solutions of zero eigenvalue. Such solutions in
elasticity have significant physical interpretation. To determine the eigen-
solutions of zero eigenvalue, we solve the following differential equation

Hψ(x) = 0 (5.3.1)

which can be expanded into

0 +
s13
s11

∂u

∂x
+
b55
s11d

σ − b35
s11d

τ = 0

−∂w
∂x

+
s15
s11

∂u

∂x
− b35
s11d

σ +
b33
s11d

τ = 0

0 +0 +0 −∂τ
∂x

= 0

0 − 1
s11

∂2u

∂x2
+
s13
s11

∂σ

∂x
+
s15
s11

∂τ

∂x
= 0




(5.3.2)

The eigen-solutions should also satisfy the homogeneous boundary condi-
tions (5.2.19) on the side boundary surfaces.

Solving Eq. (5.3.2) and substituting into the boundary conditions
(5.2.19) yield the basic eigen-solutions of zero eigenvalue as

ψ
(0)
0f = {1, 0, 0, 0}T (5.3.3)

ψ
(0)
0s = {0, 1, 0, 0}T (5.3.4)

It shows that there are two chains which are denoted by subscripts f and s,
respectively. These two eigenvectors are the solutions of the original equa-
tion (5.2.18) and boundary conditions (5.2.19)

v
(0)
0f = ψ

(0)
0f , v

(0)
0s = ψ

(0)
0s (5.3.5)

which are physically interpreted as the rigid body translations along the
z- and x-directions, respectively.

Besides the basic eigenvectors, the remaining eigenvectors are all Jordan
form eigenvectors which form two chains. To obtain the first-order Jordan
form eigen-solution on chain one, we solve the following equation with
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homogeneous boundary conditions (5.2.19)

Hψ
(1)
0f = ψ

(0)
0f (5.3.6)

The solution is

ψ
(1)
0f =

{
w

(1)
0f u

(1)
0f σ

(1)
0f τ

(1)
0f

}T

=
{
s35
s33

x,
s13
s33

x,
1
s33

, 0
}T

(5.3.7)

The first-order Jordan form eigenvector ψ(1)
0f is not the solution of the orig-

inal equation which, however, can be used to construct solution to the
original equation by

v
(1)
0f = ψ

(1)
0f + zψ

(0)
0f (5.3.8)

The components of displacement and stress are

w = z +
s35
s33

x, u =
s13
s33

x, σ =
1
s33

, τ = 0 (5.3.9)

This solution is physically interpreted as the simple axial tension. As the
material is anisotropic and in general s35 �= 0, the deformed cross section
remains a plane but is not parallel to the original cross section.

It is easy to verify that ψ(1)
0f and ψ(0)

0s are symplectic orthogonal while

ψ
(1)
0f and ψ(0)

0f are mutually symplectic adjoint

k1 =
〈
ψ

(0)
0f , ψ

(1)
0f

〉
=

2h
s33

�= 0 (5.3.10)

Hence there is no second-order Jordan form eigen-solution on this Jordan
chain and the chain is terminated. It should be noted here that k1 has a
special physical meaning, i.e. the extensional rigidity of cross section.

Similarly, the first-order Jordan form eigen-solution on chain two can
be obtained by solving the following equation with homogeneous boundary
conditions (5.2.19)

Hψ
(1)
0s = ψ

(0)
0s (5.3.11)

The solution is

ψ
(1)
0s = {−x, 0, 0, 0}T (5.3.12)
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Likewise, the first-order Jordan form eigenvector ψ(1)
0s is not the solution of

the original equation which, however, can be use to construct solution to
the original equation by

v
(1)
0s = ψ

(1)
0s + zψ

(0)
0s (5.3.13)

The components of displacement and stress are

w = −x, u = z, σ = 0, τ = 0 (5.3.14)

The solution is physically interpreted as the in-plane rigid body rotation.
Through direct examination, we know thatψ(1)

0s is symplectic orthogonal
to both ψ(0)

0f and ψ(0)
0s . Hence, there exists the second-order Jordan form

eigen-solution which can be obtained by solving the following equation with
homogeneous boundary conditions (5.2.19)

Hψ
(2)
0s = ψ

(1)
0s (5.3.15)

The solution is

ψ
(2)
0s = {w(2)

0s , u
(2)
0s , σ

(2)
0s , τ

(2)
0s }T

=
{
− s35

2s33
x2 + g1, − s13

2s33
x2 + g2, − 1

s33
x, 0

}T

(5.3.16)

Hence, the solution of the original equations can be constructed as

v
(2)
0s = ψ

(2)
0s + zψ

(1)
0s +

1
2
z2ψ

(0)
0s (5.3.17)

The components of displacement and stress are

w = − s35
2s33

x2 + g1 − xz

u = − s13
2s33

x2 + g2 +
1
2
z2

σ = − 1
s33

x

τ = 0




(5.3.18)

From the cross-sectional stress distribution, we know that there are only
normal stresses but not shear stresses on the cross section. The normal
stresses result in a constant force couple. Hence, Eq. (5.3.18) represents the
solution of pure bending.



December 16, 2008 15:56 B-599 9in x 6in ch05

148 Symplectic Elasticity

By examining, we know that ψ(2)
0s is symplectic orthogonal to both ψ(0)

0f

and ψ(0)
0s and, therefore, there exists the third-order Jordan form eigen-

solution. Solving the following equation with homogeneous boundary con-
ditions (5.2.19)

Hψ
(3)
0s = ψ

(2)
0s (5.3.19)

yields the third-order Jordan form solution as

ψ
(3)
0s =

{
w

(3)
0s , u

(3)
0s , σ

(3)
0s , τ

(3)
0s

}T

=




(s33s55 + s13s33 − 2s235)x3 + (2s235 − 3s33s55)h2x

6s233
− g2x

(s15s33 − 2s13s35)x3 + (2s13s35 − 3s15s33)h2x

6s233
s35
3s233

(h2 − 3x2)

1
2s33

(x2 − h2)




(5.3.20)

Hence, the solution of the original equations can be constructed as

v
(3)
0s = ψ

(3)
0s + zψ

(2)
0s +

1
2
z2ψ

(1)
0s +

1
6
z3ψ

(0)
0s (5.3.21)

The components of displacement and stress are

w = w
(3)
0s + zw

(2)
0s − 1

2
xz2

u = u
(3)
0s + zu

(2)
0s +

1
6
z3

σ = σ
(3)
0s + zσ

(2)
0s

τ = τ
(3)
0s




(5.3.22)

From the cross-sectional stress distribution, we know that the shear forces
are constant. Hence, Eq. (5.3.22) represents the solution of constant shear
force bending.
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As ψ(3)
0s and ψ(0)

0f are symplectic orthogonal while ψ(3)
0s and ψ(0)

0s are
mutually symplectic adjoint

k2 =
〈
ψ

(3)
0s , ψ

(0)
0s

〉
= −〈

ψ
(2)
0s , ψ

(1)
0s

〉
=

2h3

3s33
�= 0 (5.3.23)

Hence this Jordan chain is terminated. It should noted here that k2 has a
special physical meaning, i.e. the flexural rigidity of cross section.

We have obtained all six eigen-solutions of zero eigenvalue. By choosing
appropriate constants g1 and g2

g1 = −s35h
2

6s33
; g2 =

(3s13s33 + 4s235 − 6s33s55)h2

30s233
(5.3.24)

we can ensure the symplectic orthogonality of ψ(1)
0f and ψ(2)

0s , as well as

ψ
(2)
0s and ψ(3)

0s . The other eigenvectors satisfy the adjoint symplectic or-
thonormal relation. Table 5.1 shows the adjoint symplectic orthonormal
relation between the six eigen-solutions where 0 denotes the two quanti-
ties are naturally symplectic orthogonal; g1 or g2 denotes that symplectic
orthogonality can be fulfilled by an appropriate choice of g1 or g2; and ∗

denotes symplectic adjoint relation.
Here we again observe the adjoint solutions of axial translation, trans-

verse translation and rigid body rotation are, respectively, the solutions of
simple tension, constant shear force bending and pure bending. These six
eigen-solutions of zero eigenvalue constitute a complete symplectic subspace
and they are the basic solutions of the Saint–Venant problem.

Table 5.1. The adjoint symplectic orthonormal relation
between eigen-solutions of zero eigenvalue for plane anisotropic
elasticity problems.

ψ
(0)
0f ψ

(1)
0f ψ

(0)
0s ψ

(1)
0s ψ

(2)
0s ψ

(3)
0s

ψ
(0)
0f 0 ∗ 0 0 0 0

ψ
(1)
0f 0 0 0 g1 0

ψ
(0)
0s 0 0 0 ∗

ψ
(1)
0s 0 ∗ 0

ψ
(2)
0s 0 g2

ψ
(3)
0s 0



December 16, 2008 15:56 B-599 9in x 6in ch05

150 Symplectic Elasticity

5.4. Analytical Solutions of Saint–Venant Problems

Consider a plane strip domain (h � l) with transverse and longitudinal
loads. The Saint–Venant principle is always applied to such problems where
the effect of self-equilibrium system of forces at two ends is localized in
the vicinity of the two ends. It implies that the eigen-solutions of nonzero
eigenvalues can be neglected. Only eigen-solutions of zero eigenvalue are
adopted in the expansion theorem, as

v = a1ψ
(0)
0f + a2ψ

(1)
0f + a3ψ

(0)
0s + a4ψ

(1)
0s + a5ψ

(2)
0s + a6ψ

(3)
0s (5.4.1)

or

w = a1 + a2w
(1)
0f − a4x+ a5w

(2)
0s + a6w

(3)
0s

u = a2u
(1)
0f + a3 + a5u

(2)
0s + a6u

(3)
0s

σ = a2σ
(1)
0f + a5σ

(2)
0s + a6σ

(3)
0s

τ = a6τ
(3)
0s




(5.4.1′)

where ai(i = 1, 2, . . . , 6) are undetermined functions. Substituting
Eq. (5.4.1) into the mixed energy variational principle of Hamiltonian
system (5.2.9), after simplification and rearrangement, yields

δ

{∫ l

0

(
k1a2ȧ1 + k2a5ȧ4 − k2a6ȧ3 − 1

2
k1a

2
2 −

1
2
k2a

2
5

+ k2a4a6 − FNa1 −Wa2 − FSa3 −Ma4 − θa5 − Ua6

)
dz

+ (k3a2a5 + k4a5a6)|lz=0 + ṽ2
e

}
= 0 (5.4.2)

where

k3 = −2s35h3

3s233
; k4 =

2s55h5

15s233
(5.4.3)

FN =
∫ h

−h

Fzdx+ F z2 − F z1 (axial force) (5.4.4a)

W =
∫ h

−h

[w(1)
0f (x)Fz + u

(1)
0f (x)Fx]dx

+w
(1)
0f (h)(F z2 + F z1) + u

(1)
0f (h)(F x2 + Fx1) (5.4.4b)
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FS =
∫ h

−h

Fxdx+ F x2 − F x1 (shear force) (5.4.4c)

M =
∫ h

−h

(−x)Fzdx− (F z2 + F z1)h (bending moment) (5.4.4d)

θ =
∫ h

−h

[w(2)
0s (x)Fz + u

(2)
0s (x)Fx]dx

+w
(2)
0s (h)(F z2 − F z1) + u

(2)
0s (h)(F x2 − Fx1) (5.4.4e)

U =
∫ h

−h

[w(3)
0s (x)Fz + u

(3)
0s (x)Fx]dx

+w
(3)
0s (h)(F z2 + F z1) + u

(3)
0s (h)(F x2 + Fx1) (5.4.4f)

The boundary term v2
e is simplified to ṽ2

e . As the boundary conditions
for specified forces, a2, a5, a6 are not arbitrary variational quantities, the
related boundary terms can be neglected and we have

ṽ2
e = −[FNa1 + F Sa3 +Ma4]lz=0 (5.4.5)

where FN, F S and M are respectively the known axial force, shear force
and bending moment at both ends (z = 0 or l).

For specified displacements, the boundary conditions are

ṽ2
e = −[k1a1a2 + k2a4a5 + 2k3a2a5 + 2k4a5a6

− k2a3a6 −Wa2 − θa5 − Ua6]lz=0 (5.4.6)

where

W =
∫ h

−h

wσ
(1)
0f dx (5.4.7a)

θ =
∫ h

−h

wσ
(2)
0s dx (5.4.7b)

U =
∫ h

−h

(wσ(3)
0s + uτ

(3)
0s )dx (5.4.7c)

The variation of Eq. (5.4.2) yields the equations as

k1ȧ2 + FN = 0

k1ȧ1 − k1a2 −W = 0

}
(5.4.8)
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k2ȧ6 − FS = 0

k2ȧ5 − k2a6 +M = 0

k2ȧ4 − k2a5 − θ = 0

k2ȧ3 − k2a4 + U = 0




(5.4.9)

The six equations above are differential equations in the domain for
Saint–Venant problems considering body forces and boundary conditions.
The general solutions can be obtained by ordinary integration. In general,
equilibrium equations in the domain and boundary conditions cannot be
strictly satisfied. The satisfaction only implies the equilibrium of cross sec-
tion. By using a particular solution to treat in advance the inhomogeneous
terms in the domain and at both side bounding surfaces (x = ±h), the prob-
lem can be transformed into the corresponding homogeneous equations. In
this way, the solution strictly satisfies all differential equations in the do-
main and boundary conditions at both side bounding surfaces (x = ±h).
Hence, the exact elasticity solution can be established.

The integration constants resulted from integrating Eqs. (5.4.8) and
(5.4.9) can be determined by the boundary conditions at both ends
(z = 0 or l). The boundary conditions for cases with specified forces at
the ends (z = 0 or l) are

k1a2 = FN

k2a6 = −FS

k2a5 = M


 at z = 0 or l (5.4.10)

Obviously, these conditions can be physically interpreted as the equality
of axial force, shear force and bending moment to the specified values,
respectively.

The boundary conditions for cases with specified displacements at two
ends (z = 0 or l) are

k1a1 + k3a5 = W

k2a4 + k3a2 + k4a6 = θ

k2a3 − k4a5 = −U


 at z = 0 or l (5.4.11)

Obviously, these conditions can be physically interpreted as the equality
of equivalent displacement and angle of rotation to the specified values,
respectively.
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For clamped boundary conditions, W = θ = U = 0 in the expression
above. The usual fixed boundary conditions of Saint–Venant problems are

w = u =
∂u

∂z
= 0 at x = 0, z = 0 or l (5.4.12)

or

w = u =
∂w

∂x
= 0 at x = 0, z = 0 or l (5.4.13)

Substitute the general solution of Eqs. (5.4.8) and (5.4.9) into the cor-
responding boundary conditions yields the analytical solution of Saint–
Venant problems. The solutions of two classical problems are presented
as follows.

1. Solution of eccentric tension

Let a cantilever be fixed at z = 0 with an eccentric axial force F acting at
the other end z = l with eccentricity e. Solving Eqs. (5.4.8) and (5.4.9) and
substituting into the corresponding boundary conditions (5.4.10) yield

a1 =
Fz

k1
+ f1; a2 =

F

k1
; a3 = −Fez

2

2k2
+ f2z + f3

a4 = −Fez
k2

+ f2; a5 = −Fe
k2

; a6 = 0




(5.4.14)

where constants f1, f2, f3 represent translation of a rigid body. The con-
stants can be determined by the clamped boundary conditions (5.4.11),
(5.4.12) or (5.4.13). The stress field corresponding to the solution (5.4.14) is

σz =
F

2h
+

3Fex
2h3

; σx = τxz = 0 (5.4.15)

The stress distribution is the same as that of an isotropic rod. The deflection
of the axis of beam is

u (0, z) = −3Fes33

4h3
z2

+




F [10zs33s35 − e(4s235 + 3s13s33)]
20hs33

for boundary condition (5.4.11)

0 for boundary condition (5.4.12)

Fzs35
2h

for boundary condition (5.4.13)

(5.4.16)
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The first part of the expression above is the solution of classical mechanics
of material and it is the same as that of isotropic beam. The second part
(rigid body translation) is resulted from the different assumptions of fixed
end, which are high-order small quantities as compared with the first part.
It shows that the different assumptions of fixed end have no effect on the
stress distribution and deformation within the domain. They only cause
small differences in rigid body translation.

2. Solution of cantilever with uniformly distributed load

Let an anisotropic cantilever with uniformly distributed load q acting on one
side boundary surface x = −h. Assume that z = 0 is clamped while z = l is
free. First of all we solve the Jordan form Hψ = ψ

(3)
0s with inhomogeneous

boundary conditions to give a particular solution of the original problem, as

σ̃z =
qx3

h3

(
s235
s233

− 2s13 + s55
4s33

)
+
qx

h

[
9 (2s13 + s55)

20s33
− 4s235

5s233

]

− qs13
2s33

− qs35
2h3s33

z
(
h2 − 3x2

)
+

3q
4h3

xz2

σ̃x =
q

4

(
2 − 3

x

h
+
x3

h3

)

τ̃xz =
qs35

2h3s33
x

(
h2 − x2

)
+

3q
4h3

z
(
h2 − x2

)




(5.4.17)

We further transform the original equation into a homogeneous one, and
then solve the corresponding homogeneous equation. Finally the stress field
in the domain is

σz =
3q
4h3

x(l − z)2 +
qs35

2h3s33
(l − z)(h2 − 3x2)

−
[
q

(
s235
s233

− 2s13 + s55
4s33

)(
3x
5h

− x3

h3

)]

σx =
[
q

4

(
2 − 3

x

h
+
x3

h3

)]

τxz =
3q
4h3

(z − l)(h2 − x2) +
[
qs35

2h3s33
x(h2 − x2)

]




(5.4.18)

If the distribution of the external forces at the free end (form a equilibrium
system of forces) is the same as Eq. (5.4.18), then Eq. (5.4.18) is the exact
elasticity solution of the problem.
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If we do not treat the inhomogeneous terms by applying Eq. (5.4.17)
in advance but rather solve Eqs. (5.4.8) and (5.4.9) directly, we obtain an
approximate solution, i.e. omit all terms in square brackets in Eq. (5.4.18).
Obviously, for problems in plane strip domain (h� l), the terms in square
brackets are higher-order small quantities. It clearly shows that the rational
method by expanding eigenvectors of zero eigenvalue for solving the Saint–
Venant problems is very effective and practical.

As only the eigen-solutions of zero eigenvalue are applied, the boundary
conditions at both ends (z = 0 or l) cannot be satisfied strictly in general.
We have to introduce the relaxed boundary conditions (5.4.10) or (5.4.11)
where the effect is localized in the vicinity in accordance with the Saint–
Venant principle. To strictly satisfy the boundary conditions we have to
include the eigen-solutions of nonzero eigenvalues. Moreover, for complex
problems such as a general rectangular domain or a short beam, the Saint–
Venant principle is no longer applicable because the transverse dimension h
is not a higher-order small quantity comparing to the longitudinal dimen-
sion l. Hence, we need to apply the eigen-solutions of nonzero eigenvalues
in the expansion theorem in order to solve the problems.

5.5. Eigen-Solutions of Nonzero Eigenvalues

The eigenvalue equation for eigen-solutions of nonzero eigenvalues is
Eq. (5.2.22). First, we should solve the eigenvalues λ̃, which satisfies the
following equation

det




−µ s13
s11

λ̃
b55
s11d

− b35
s11d

−λ̃ s15
s11

λ̃− µ − b35
s11d

b33
s11d

0 0 −µ −λ̃

0 − 1
s11

λ̃2 s13
s11

λ̃
s15
s11

λ̃− µ




= 0 (5.5.1)

Expanding the determinant yields the eigenvalue equation

s33λ̃
4 − 2s35λ̃3µ+ (s55 + 2s13)λ̃2µ2 − 2s15λ̃µ3 + s11µ

4 = 0 (5.5.2)

which has four roots

λ̃i = λiµ (i = 1, 2, 3, 4) (5.5.3)
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For an ideal elastic body, we can prove that for λi there are only complex
roots or pure imaginary roots but no real roots2. There are no repeated roots
in general, i.e. there are two different pairs of complex conjugate roots. We
only discuss the general case in this section while the other cases can be
discussed in a similar way. If there are four different roots λi, the general
solution of Eq. (5.2.22) can be expressed as

w =
4∑

i=1

Ai exp(λiµx)

u =
4∑

i=1

Bi exp(λiµx)

σ =
4∑

i=1

Ci exp(λiµx)

τ =
4∑

i=1

Di exp(λiµx)




(5.5.4)

where constants Ai, Bi, Ci, Di are not independent. Substituting Eq. (5.5.4)
into Eq. (5.2.22) and choosing Di (i = 1, 2, 3, 4) as independent constants
yield

Ai =
s35λi − s33λ

2
i − s13

λiµ
Di

Bi =
s15λi − s13λ

2
i − s11

λ2
iµ

Di

Ci = −λiDi




(i = 1, 2, 3, 4) (5.5.5)

Further substituting Eq. (5.5.5) into Eq. (5.5.4) yields

w =
4∑

i=1

[
s35λi − s33λ

2
i − s13

λiµ
Di exp(λiµx)

]

u =
4∑

i=1

[
s15λi − s13λ

2
i − s11

λ2
iµ

Di exp(λiµx)
]

σ =
4∑

i=1

[−λiDi exp(λiµx)]

τ =
4∑

i=1

[Di exp(λiµx)]




(5.5.6)
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From Eq. (5.2.8), we obtain

σx =
4∑

i=1

[
− 1
λi
Di exp(λiµx)

]
(5.5.7)

Substituting Eqs. (5.5.6) and (5.5.7) into the homogeneous boundary con-
ditions (5.2.19) of side bounding surfaces yields

4∑
i=1

[Di exp(−λiµh)] = 0

4∑
i=1

[−Di exp(−λiµh)]/λi = 0

4∑
i=1

[Di exp(λiµh)] = 0

4∑
i=1

[−Di exp(λiµh)]/λi = 0




(5.5.8)

For nontrivial solution, the determinant of this coefficient matrix vanishes.
Denote β = 2µh, by rearranging and simplifying, we obtain∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

λ1 λ2 λ3 λ4

exp(λ1β) exp(λ2β) exp(λ3β) exp(λ4β)

λ1 exp(λ1β) λ2 exp(λ2β) λ3 exp(λ3β) λ4 exp(λ4β)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5.5.9)

The equation above is the transcendental equation for solving nonzero
eigenvalues in which numerical methods are required. Substituting the
eigenvalues into Eq. (5.5.8) yields the trivial solution of Di and, hence,
the corresponding eigenvector functions are obtained.

All eigen-solutions of nonzero eigenvalues are covered in the Saint–
Venant principle. Together with the eigen-solutions of zero eigenvalue, they
constitute a complete adjoint symplectic orthonormal basis and the expan-
sion theorem is then applicable. This is very important for the solution
method. The solution method for solving isotropic elasticity problem can
be applied to solve general anisotropic elasticity problems. Here we ob-
serve that there is no essential difference between the solution method of
anisotropic problems and that of isotropic problems except derivation of
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the former is somewhat more complicated. This approach differs very much
from the classical semi-inverse method because it is more rational. There-
fore, the Hamiltonian system and symplectic mathematical methods have
tremendous potential applications.

5.6. Introduction to Hamiltonian System for Generalized
Plane Problems

Consider a homogeneous anisotropic infinite cylindrical solid with rectan-
gular cross section. Let y-axis be the axial direction of this column and the
external load be independent of y. This is a plane strain problem if y is
the elastic principal axis. For general anisotropic materials, however, the
displacement v along the y-direction will warp and, therefore, the problem
is a generalized plane strain problem3.

As the geometric properties, material properties and external loads are
all independent of y-coordinate, all components of stress, strain and dis-
placement are only functions of x, z. Displacement v has a term εy0 which
is linearly dependent on y but independent of x, z. The value of εy0 can be
determined from zero axial force on the cross section. For brevity, this term
is not taken into consideration here.

For generalized plane strain problems, the strain-displacement relations
(2.2.2) can be simplified as

εx =
∂u

∂x
; εy = 0; εz =

∂w

∂z

γxy =
∂v

∂x
; γxz =

∂u

∂z
+
∂w

∂x
; γyz =

∂v

∂z




(5.6.1)

These strain components are functions of x, z. The stress-strain relation is
Eq. (2.3.1). Hence the deformation energy along the y-direction is

Vε =
∫ l

0

∫ h

0

[
1
2
c11ε

2
x + c13εxεz + c14εxγxy + c15εxγxz + c16εxγyz +

1
2
c33ε

2
z

+ c34εzγxy + c35εzγxz + c36εzγyz +
1
2
c44γ

2
xy + c45γxyγxz + c46γxyγyz

+
1
2
c55γ

2
xz + c56γxzγyz +

1
2
c66γ

2
yz

]
dxdz =

∫ l

0

∫ h

0

L dxdz (5.6.2)
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where strain components (5.6.1) have been substituted. Now the z-
coordinate is treated as the time coordinate and an overdot denotes
differentiation with respect to z, i.e. (̇) = d/dx. First we introduce the
dual variables

∂L

∂u̇
= c15

∂u

∂x
+ c35ẇ + c45

∂v

∂x
+ c55u̇+ c55

∂w

∂x
+ c56v̇ = τxz (5.6.3a)

∂L

∂v̇
= c16

∂u

∂x
+ c36ẇ + c46

∂v

∂x
+ c56u̇+ c56

∂w

∂x
+ c66v̇ = τyz (5.6.3b)

∂L

∂ẇ
= c13

∂u

∂x
+ c33ẇ + c34

∂v

∂x
+ c35u̇+ c35

∂w

∂x
+ c36v̇ = σz (5.6.3c)

The primal variable q and the dual variable p are

q = {u, v, w}T, p = {τxz, τyz, σz}T (5.6.4)

respectively. Denote

C d =



c55 c56 c35

c56 c66 c36

c35 c36 c33


 , C e =



c11 c14 c15

c14 c44 c45

c15 c45 c55


 (5.6.5)

and

C t =



c15 c45 c55

c16 c46 c56

c13 c34 c35


 (5.6.6)

then the Lagrange function L can be expressed as

L (q , q̇) =
1
2
q̇TC dq̇ + q̇TC t

(
dq
dx

)
+

(
dq
dx

)T

C e

(
dq
dx

)
(5.6.7)

Next, from Eq. (5.6.3), we obtain

q̇ = −C−1
d C t

dq
dx

+ C−1
d p (5.6.8)

According to Legendre’s transformation, the Hamiltonian function is

H (q ,p) = pTq̇ − L (q , q̇)

=
1
2
pTC−1

d p − pTC−1
d C t

dq
dx

−
(

dq
dx

)T

Bc
dq
dx

(5.6.9)
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where

Bc = C e −CT
t C−1

d C t (5.6.10)

It is noted that matrices C e and C d are diagonal principal submatrices of
the matrix of three-dimensional elastic constants. Both of them are sym-
metric and positive definite matrices and their inverse matrices exist. Fur-
thermore, Bc is a symmetric matrix.

Having derived the Hamiltonian density function, we can express the
Hamiltonian variational principle (or mixed energy variational principle) as

δ

{∫ l

0

∫ h

0

[pTq̇ − H (q ,p) −XTq ]dxdz

−
∫ l

0

[(X
T

2 q)x=h − (X
T

1 q)x=−h]dz

}
= 0 (5.6.11)

where q ,p are independent variable vector functions which has mutually
independently variationals. The body force is X and the surface tractions
are X 1,X 2. These external forces are in self-equilibrium, independent of
y-coordinate and without components along the y-axis.

Performing variation on Eq. (5.6.11) and integrating by parts yield the
Hamiltonian dual system of equations as{

q̇

ṗ

}
=

[
A D

B −AT

]{
q

p

}
−

{
0

X

}
(5.6.12)

where

A = −C−1
d C t

∂

∂x
, AT = CT

t C−1
d

∂

∂x

B = −Bc
∂2

∂x2
, D = C−1

d


 (5.6.13)

The boundary conditions are

CT
t C−1

d p + Bc
∂q

∂x
= X 2 at x = h (5.6.14a)

CT
t C−1

d p + Bc
∂q

∂x
= X 1 at x = −h (5.6.14b)

Introducing the full state vector v and operator matrix H , we have

v =

{
q

p

}
, H =

[
A D

B −AT

]
(5.6.15)
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The Hamiltonian dual equation (5.6.12) can be abbreviated to

v̇ = H v + h; hT = {0T, −XT} (5.6.16)

The operator matrix H is independent of external load. Hence we in-
vestigate the homogeneous linear differential equation

v̇ = H v (5.6.17)

and the homogeneous boundary conditions on the side boundary surfaces

CT
t C−1

d p + Bc
∂q

∂x
= 0 at x = ±h (5.6.18)

Using an approach similar to the preceding few chapters, we can prove that
the operator matrix H is a Hamiltonian operator matrix of symplectic
geometric space.

At this point, we have derived the Hamiltonian system from the general-
ized plane problems. The system can be solved in a general way as discussed
although the derivation is more complicated.

For example, the method of separation of variables can be applied to
solve the homogeneous equation (5.6.17). Let

v(z, x) = ξ(z)ψ(x) (5.6.19)

and substituting into Eq. (5.6.17) yield

ξ(z) = eµz (5.6.20)

and the eigenvalue equation

Hψ(x) = µψ(x) (5.6.21)

where µ is the undetermined eigenvalue and ψ(x) is the eigenvector which
has to satisfy the homogeneous boundary conditions (5.6.18) on the side
boundary surfaces (x = ±h).

It has been mentioned repeatedly that the eigenvalue problem of
Hamiltonian operator matrix has certain characteristics. The eigenvectors
are adjoint symplectic orthonormal. The solution can be obtained via eigen-
vector expansion theorem.

A zero eigenvalue with Jordan form eigenvectors exists for a prob-
lem with free boundary conditions (5.6.18) on the side boundary sur-
faces (x = ±h). For the present problem, there are eight eigenvectors of
zero eigenvalue. These eigenvectors form three chains and they are adjoint
symplectic orthonormal. Hence, they form a symplectic subspace. The de-
tails are omitted. Interested readers are referred to the related chapters in
monograph4.
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Chapter 6

Saint–Venant Problems for Laminated Composite Plates

In this chapter, the theory of Hamiltonian system is introduced for the
problems of laminated composite plates. A method for solving these prob-
lems is developed using expansion of eigenvector of Hamiltonian operator
matrix in the transverse direction. All the six eigen-solutions of zero eigen-
value are obtained, and hence an analytical method for solving the Saint–
Venant problems is established.

6.1. The Fundamental Equations

We will discuss in this chapter the plane stress elasticity problems of a n-
layered laminated composite plate as shown in Fig. 6.1 where x0, x1, . . . , xn

etc. are known and l � xn.
It is assumed here that each layer of the laminated plate is made of an

orthotropic material with stress-strain relation as

εxi

εzi

γxzi


 =



s1i s2i 0

s2i s4i 0

0 0 s6i





σxi

σzi

τxzi


 (i = 1, 2, . . . , n) (6.1.1a)

or 

σxi

σzi

τxzi


 =



b1i b2i 0

b2i b4i 0

0 0 b6i





εxi

εzi

γxzi


 (i = 1, 2, . . . , n) (6.1.1b)

where subscript i denotes the ith layer. For brevity, the subscript i will
be often omitted subsequently unless stated otherwise due to possible
confusion.

Then the complementary strain energy reads

vc =
1
2
(s1σ2

x + s4σ
2
z + 2s2σxσz + s6τ

2
xz) (6.1.2)

163
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Fig. 6.1. A n-layered composite plate.

The geometric relations of strain-displacement is independent of material
and they remain as

εz =
∂w

∂z
; εx =

∂u

∂x
; γxz =

∂u

∂z
+
∂w

∂x
(6.1.3)

Similarly, the equilibrium equations remain as

∂σx

∂x
+
∂τxz

∂z
+ Fx = 0

∂τxz

∂x
+
∂σz

∂z
+ Fz = 0 (6.1.4)

where Fx, Fz are body forces along the x- and z-directions, respectively, in
the domain.

In addition, there should be boundary conditions. It is assumed here
that on both surfaces of the plate the forces are prescribed as

σx = Fx1(z), τxz = F z1(z) for x = 0 (6.1.5a)

σx = Fx2(z), τxz = F z2(z) for x = xn (6.1.5b)

At the two ends z = 0 and l there are also the corresponding boundary
conditions. For instance, the boundary conditions for specified forces are

σz = σ(x), τxz = τ (x) at z = 0 or l (6.1.6)

while the boundary conditions for specified displacements are

u = u(x), w = w(x) at z = 0 or l (6.1.7)

Laminated composite plates are different from homogeneous plates
because there exists discontinuity of elastic properties in the body. The dis-
placements and stresses at the interface should fulfill continuity condition
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of displacement and equilibrium condition of stresses, as

ui(xi) = ui+1(xi), wi(xi) = wi+1(xi)

σxi(xi) = σx,i+1(xi), τxzi(xi) = τxz,i+1(xi)

}
(6.1.8)

The governing differential equations and boundary conditions for lam-
inated composite plates are presented above. We can, of course, establish
the corresponding Hellinger–Reissner variational principle as

δ

{∫ l

0

∫ xn

x0

[
σx
∂u

∂x
+ σz

∂w

∂z
+ τxz

(
∂u

∂z
+
∂w

∂x

)
− vc − Fxu− Fzw

]
dxdz

−
∫ l

0

[(wF z2 + uFx2)x=xn − (wF z1 + uFx1)x=x0 ] dz

}
= 0 (6.1.9)

The boundary conditions at the two ends (z = 0 or l), to be discussed later,
have not been incorporated in Eq. (6.1.9). The variation of Eq. (6.1.9) yields
all the governing differential equations and boundary conditions.

The problem for laminated composite plates is a classical subject which
can be solved numerically by methods such as the finite element method,
etc. However, the theory and analysis are not very complete. The classical
solution approach always refers to the Lagrangian system with one kind of
variable. This approach is difficult in expressing the continuous conditions
of displacement and stress equilibrium (6.1.8) at the interface and it causes
complication in the analytical solutions.

Because the symplectic system involves two kinds of variables, the conti-
nuity condition at the interface can be easily satisfied and thus analytical so-
lution is possible. Although all layers of the laminated plates discussed here
are assumed orthotropic, the method here is also applicable to anisotropic
laminated plates where more complicated derivation will be involved.

6.2. Derivation of Hamiltonian System

In the following derivation of the Hamiltonian system1,2, let z-coordinate
be treated as the time coordinate and an overdot be used to indicate differ-
entiation with respect to z, i.e. (̇) = ∂/∂z. Here, z-axis is longitudinal while
x-axis is transverse, and the transverse stress σx should be eliminated. The
variation of Eq. (6.1.9) with respect to σx is

σx =
1
s1

(
∂u

∂x
− s2σ

)
(6.2.1)
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where σ and τ are respectively the abbreviations of σz and τxz. Then the
boundary conditions (6.1.5) can be expressed as

1
s1

(
∂u

∂x
− s2σ

)
= F x1(z), τ = F z1(z) at x = 0 (6.2.2a)

1
s1

(
∂u

∂x
− s2σ

)
= F x2(z), τ = F z2(z) at x = xn (6.2.2b)

and the continuous conditions of displacement and stress equilibrium at the
interface are

ui(xi) = ui+1(xi)

wi(xi) = wi+1(xi)

1
s1i

(
∂ui

∂x
− s2iσi

)∣∣∣∣
x=xi

=
1

s1,i+1

(
∂ui+1

∂x
− s2,i+1σi+1

)∣∣∣∣
x=xi

τi(xi) = τi+1(xi)



(6.2.3)

Substituting Eq. (6.2.1) into Eq. (6.1.9) yields the Hamiltonian mixed
energy variational principle as

δ

{∫ l

0

n∑
i=1

∫ xi

xi−1

[σẇ + τu̇ − H (w, u, σ, τ )]dxdz

−
∫ l

0

[(wF z2 + uFx2)x=xn − (wF z1 + uF x1)x=x0 ]dz

}
= 0

(6.2.4)

where the Hamiltonian density function is

H =
s2
s1
σ
∂u

∂x
− τ

∂w

∂x
+

1
2b4

σ2 +
1
2
s6τ

2 − 1
2s1

(
∂u

∂x

)2

+ Fxu+ Fzw

(6.2.5)

It is clear the dual variables of displacements w and u are σ and τ respec-
tively, and then the full state vector is

v =
{
w, u; σ, τ

}T
(6.2.6)

The variation of Eq. (6.2.4) yields the dual system of equations as

v̇ =Hv +Q (6.2.7)
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where

H =




0
s2
s1

∂

∂x

1
b4

0

− ∂

∂x
0 0 s6

0 0 0 − ∂

∂x

0 − 1
s1

∂2

∂x2

s2
s1

∂

∂x
0




Q =




0

0

−Fz

−Fx




(6.2.8)

To discuss the characteristics of operator matrix H, we denote

〈v1,v2〉 def=
∫ xn

x0

vT
1 Jv2dx =

∫ xn

x0

(w1σ2 + u1τ2 − σ1w2 − τ1u2)dx (6.2.9)

where J is a unit symplectic matrix

J =
[

0 I2

−I2 0

]
(6.2.10)

Obviously, Eq. (6.2.9) satisfies the four conditions of symplectic inner prod-
uct (1.3.2). Hence, according to definition of symplectic inner product
Eq. (6.2.9), the full state vector v forms a symplectic space.

We first discuss the corresponding homogeneous of Eq. (6.2.7)

v̇ = Hv (6.2.11)

and the homogeneous boundary conditions on both side boundary surfaces

1
s1

(
∂u

∂x
− s2σ

)
= 0, τ = 0 for x = x0 and xn (6.2.12)

By integrating by parts, if v1,v2 are continuously differentiable full state
vectors satisfying the boundary conditions (6.2.12) on the surfaces and the
continuity conditions (6.2.3) at the interface, we have an identity

〈v1,Hv2〉 = 〈v2,Hv1〉 (6.2.13)

It states that the operator matrix H is the Hamiltonian operator matrix
in the symplectic space.

Thus, the Hamiltonian system for laminated composite plates has been
derived. Subsequently, we apply the usual solution method of Hamiltonian
system for solving the problem.
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The method of separation of variables can be applied to solve the system
of Eqs. (6.2.11). Assume that

v(z, x) = eµzψ(x) (6.2.14)

where µ is the eigenvalue and ψ(x) the eigenvector. The eigenvalue
equation is

Hψ(x) = µψ(x) (6.2.15)

The solution has to satisfy the homogeneous boundary conditions (6.2.12)
on the surfaces and the continuity conditions (6.2.3) at the interface.

As H is the Hamiltonian operator matrix, the eigenvectors are adjoint
symplectic orthogonal. Once the eigenvalue and eigenvectors are estab-
lished, the expansion theorem can be applied to solve this problem.

6.3. Eigen-Solutions of Zero Eigenvalue

For the free homogeneous boundary conditions (6.2.12) on the surfaces,
there are the basic eigen-solutions and Jordan form eigen-solutions of zero
eigenvalue1,2. These eigen-solutions in elasticity have important physical
interpretations. To determine the basic eigen-solutions of zero eigenvalue,
we need to solve the following differential equation

Hψ(0) = 0 (6.3.1a)

while for the Jordan form eigen-solutions, we need to solve

Hψ(k) = ψ(k−1) (6.3.1b)

where k = 1, 2, . . . denotes the kth order Jordan form eigen-solution. Ex-
panding Eq. (6.3.1) yields

0 +
s2
s1

∂u(k)

∂x
+

1
b4
σ(k) +0 = 0[w(k−1)]

−∂w
(k)

∂x
+0 +0 +s6τ (k) = 0[u(k−1)]

0 +0 +0 −∂τ
(k)

∂x
= 0[σ(k−1)]

0 − 1
s1

∂2u(k)

∂x2
+
s2
s1

∂σ(k)

∂x
+0 = 0[τ (k−1)]

(6.3.2)
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The eigen-solutions have to satisfy the homogeneous boundary conditions
(6.2.12) on the two surfaces and the conditions of continuous displacement
and force equilibrium at the interface (6.2.3).

First, solving Eq. (6.3.1a) yields two basic eigen-solutions of zero
eigenvalue

ψ
(0)
f = { 1, 0, 0, 0}T ; v

(0)
f = ψ

(0)
f (6.3.3)

ψ(0)
s = { 0, 1, 0, 0}T ; v(0)

s = ψ(0)
s (6.3.4)

These are the solutions of the original problem (6.2.11) and they can
be physically interpreted as the rigid displacements along the z- and
x-directions, respectively. They are also the starting points of two Jordan
chains.

Next, we seek to solve the first-order Jordan form eigen-solutions. Sub-
stituting Eq. (6.3.3) into Eq. (6.3.2) yields the first-order Jordan form eigen-
solution on chain one as

ψ
(1)
fi =

{
0,

s2i

s4i
x+ ri + d1,

1
s4i

, 0
}T

i = 1, 2, . . . , n (6.3.5)

where

r1 = 0, ri+1 = ri − xi

(
s2(i+1)

s4(i+1)
− s2i

s4i

)
(i = 1, 2, . . . , n− 1) (6.3.6)

Here d1 is an undetermined constant. The solution of the original problem
formed by Eq. (6.3.5) is

v
(1)
f = ψ

(1)
f + zψ

(0)
f (6.3.7)

Obviously, it can be physically interpreted as the solution of simple tension.
As the vectors ψ(1)

f and ψ(0)
f are mutually symplectic adjoint, we have

k1 = 〈ψ(0)
f ,ψ

(1)
f 〉 =

n∑
i=1

1
s4i

(xi − xi−1) �= 0 (6.3.8)

Therefore, the next order Jordon form of ψ(1)
f does not exist. The constant

k1 has a particular physical interpretation, i.e. the extensional rigidity of
cross section.

For chain two, substituting Eq. (6.3.4) into Eq. (6.3.2) yields the first-
order Jordan form eigen-solution as

ψ(1)
s = {d2 − x, 0, 0, 0}T (6.3.9)
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where constant d2 is determined by the symplectic orthogonality condition
of ψ(1)

s and ψ(1)
f , as

d2 =
c1
k1

(6.3.10)

in which

c1 =
1
2

n∑
i=1

1
s4i

(x2
i − x2

i−1) (6.3.11)

The constant d2 also has a particular physical interpretation, i.e. the posi-
tion of neutral axis in pure bending.

Solution of the original problem formed by Eq. (6.3.9) is

v(1)
s = ψ(1)

s + zψ(0)
s (6.3.12)

which, obviously, is the solution for rigid rotation.
As vector ψ(1)

s is symplectic orthogonal to both ψ(0)
f and ψ(0)

s , the next
order Jordon form solution exists. Substituting Eq. (6.3.9) into Eq. (6.3.2)
yields

ψ
(2)
si =

{
0, u

(2)
si ,

d2 − x

s4i
, 0

}T

(i = 1, 2, . . . , n) (6.3.13)

where

u
(2)
si = − s2i

2s4i
(x− d2)2 + qi + d3 (6.3.14)

in which

q1 = 0, qi+1 = qi +
1
2
(xi − d2)2

(
s2(i+1)

s4(i+1)
− s2i

s4i

)
(i = 1, 2, . . . , n− 1)

(6.3.15)

The solution of the original problem is expressed as

v(2)
s = ψ(2)

s + zψ(1)
s +

1
2
z2ψ(0)

s (6.3.16)

and the corresponding stress field is

σi =
1
s4i

(d2 − x) (i = 1, 2, . . . , n), τ = 0 (6.3.17)

It implies that the shear stress vanishes and the bending moment is constant
on the cross section. Hence, Eq. (6.3.16) is the solution for pure bending.
From Eq. (6.3.17), we note that the normal stress on the cross section is no
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longer linear due to the differing material elastic constants of each layer,
but rather it is piecewise linear. The cross section has axial displacement
w = z(d2 − x) and it remains as a plane.

Because ψ(2)
s and ψ(0)

f are symplectic orthogonal by a proper choice of

d2, and also ψ(2)
s is symplectic orthogonal to the basic eigen-solution ψ(0)

s ,
the next order Jordon form solution exists. Substituting Eq. (6.3.13) into
Eq. (6.3.2) yields

ψ
(3)
si =

{
w

(3)
si , 0, 0,

1
2s4i

(x− d2)2 + pi

}
(i = 1, 2, . . . , n) (6.3.18)

where

w
(3)
si =

s6i + s2i

6s4i
(x− d2)3 + (x− d2)(s6ipi − qi − d3) + ti + d4 (6.3.19)

in which

p1 = − 1
2s41

d2
2,

pi+1 = pi − 1
2
(xi − d2)2

(
1

s4(i+1)
− 1
s4i

)
, (i = 1, 2, . . . , n− 1) (6.3.20)

t1 = 0, ti+1 = ti − 1
6
(xi − d2)3

(
s6(i+1) + s2(i+1)

s4(i+1)
− s6i + s2i

s4i

)

− (xi − d2)(s6(i+1)pi+1 − qi+1 − s6ipi + qi), (i = 1, 2, . . . , n− 1)

(6.3.21)

The solution of the original problem is expressed as

v(3)
s = ψ(3)

s + zψ(2)
s +

1
2
z2ψ(1)

s +
1
6
z3ψ(0)

s (6.3.22)

and the corresponding stress field is

σi =
z

s4i
(d2 − x), τi =

1
2s4i

(x − d2)2 + pi (i = 1, 2, . . . , n) (6.3.23)

It implies that the shear stress on the cross section is constant. Hence
Eq. (6.3.22) is the solution for constant shear bending. In addition, it can
be shown that the shear stress at x = 0 and x = xn vanishes while it
reaches the maximum at the neutral axis x = d2 and furthermore, the cross
section does not remain a plane. Warping of cross section is not negligible
especially when the elastic properties between the inner and outer layers
differ markedly.
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As vectors ψ(3)
s and ψ(0)

s are mutually symplectic adjoint, the next order
Jordon form eigen-solution does not exist. The symplectic orthogonality of
ψ

(3)
s to both ψ(2)

s and ψ(1)
f and the decoupling between the two chains can

be fulfilled by proper choice of constants d3, d1 and d4, as

d1 =
c2
k2
, d3 =

c4 + c5
2k2

, d4 = − c3
k1

(6.3.24)

where

c2 =
n∑

i=1

{
s2i

8s24i

[(xi − d2)4 − (xi−1 − d2)4]

+
1

6s4i

(
ri +

s2i

s4i
d2

)
[(xi − d2)3 − (xi−1 − d2)3]

+
s2i

2s4i
pi[(xi − d2)2 − (xi−1 − d2)2]

+ pi

(
ri +

s2i

s4i
d2

)
(xi − xi−1)

}
(6.3.25)

c3 =
n∑

i=1

1
s4i

{
s6i + s2i

24s4i
[(xi − d2)4 − (xi−1 − d2)4] +

1
2
(s6ipi − qi)

× [(xi − d2)2 − (xi−1 − d2)2] + ti(xi − xi−1)

}
(6.3.26)

c4 =
n∑

i=1

1
s4i

{
s6i + s2i

30s4i
[(xi − d2)5 − (xi−1 − d2)5]

+
1
3
(s6ipi − qi)[(xi − d2)3 − (xi−1 − d2)3]

+
1
2
ti[(xi − d2)2 − (xi−1 − d2)2]

}
(6.3.27)

c5 =
n∑

i=1

{
− 1

20
s2i

s24i

[(xi − d2)5 − (xi−1 − d2)5]

+
1

6s4i
(qi − s2ipi)[(xi − d2)3 − (xi−1 − d2)3]

+ piqi(xi − xi−1)

}
(6.3.28)
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Table 6.1. The adjoint symplectic orthogonality
between the eigen-solutions of zero eigenvalue.

ψ
(0)
f ψ

(1)
f ψ

(0)
s ψ

(1)
s ψ

(2)
s ψ

(3)
s

ψ
(0)
f 0 ∗ 0 0 d2 0

ψ
(1)
f 0 0 d2 0 d1, d4

ψ
(0)
s 0 0 0 ∗

ψ
(1)
s 0 ∗ 0

ψ
(2)
s 0 d3

ψ
(3)
s 0

k2 =
n∑

i=1

1
3s4i

[(xi − d2)3 − (xi−1 − d2)3] (6.3.29)

in which k2 is physically interpreted as the flexural rigidity of the cross
section.

Table 6.1 presents the adjoint symplectic orthogonality between the
six eigen-solutions of zero eigenvalue where * denotes symplectic adjoint
relation; 0 denotes symplectic orthogonality; and di(i = 1, 2, 3, 4) denote
that symplectic orthogonality can be satisfied through proper choice of di.

Hence the six solutions ψ(0)
f ,ψ

(1)
f ,ψ

(0)
s ,ψ

(1)
s ,ψ

(2)
s and ψ(3)

s constitute all
the eigenvectors of zero eigenvalue for laminated composite plates, and they
form a set of adjoint symplectic orthogonal basis for symplectic subspace
corresponding to zero eigenvalue.

The distribution of axial displacements w(3)
s and shear stresses τ (3)

s cor-
responding to the Jordan form eigen-solution ψ(3)

s for laminated composite
plate are presented in the following two examples.

Example 6.1 A symmetrically laminated composite plate is composed of
three orthotropic layers with geometric parameters

n = 3, x0 = 0, x1 = 1.0, x2 = 3.0, x3 = 4.0.

The material properties of the outer layers (i = 1, 3) are

b1i = b4i = 1.0989, b2i = 0.32967, b6i = 0.384615.

and the material properties of the inner layer (i = 2) are

b12 = b42 = 0.10989, b22 = 0.032967, b62 = 0.0384615.
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Fig. 6.2. The distribution of w
(3)
s and τ

(3)
s for Example 6.1.

The distribution of axial displacements and shear stress corresponding
to the Jordan form eigen-solution ψ(3)

s is illustrated in Fig. 6.2.

Example 6.2 An unsymmetrically laminated composite plate is composed
of three orthotropic layers with geometric parameters

n = 3, x0 = 0, x1 = 1.0, x2 = 3.0, x3 = 4.5.

The material properties of the first layer are

b11 = 1.0, b21 = 0.25, b41 = 0.7, b61 = 0.2.

the material properties of the second layer are

b12 = 0.1, b22 = 0.02, b42 = 0.09, b62 = 0.034.

and the material properties of the third layer are

b13 = 0.5, b23 = 0.15, b43 = 0.3, b63 = 0.15.

The distribution of axial displacement and shear stress corresponding
to the Jordan form eigen-solution ψ(3)

s is illustrated in Fig. 6.3.
From Eq. (6.3.19) and the distribution of w(3)

s in the illustrations, it
is noted there is a sudden change for w(3)

s at the interface on the cross
section of the laminated plates especially when the elastic properties differ
considerably. Hence the assumption of plane conditions before and after
deformation is not applicable.
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Fig. 6.3. The distribution of w
(3)
s and τ

(3)
s for Example 6.2.

6.4. Analytical Solutions of Saint–Venant Problem

The eigenvectors of zero eigenvalue for laminated composite plates do not
have exponential functions. They are not sensitive to the self-equilibrium
forces on the cross section. The effect of non-self-equilibrium external load-
ing on the cross section propagates to regions far away through these
solutions. Hence, it is possible to neglect those eigen-solutions of nonzero
eigenvalues according to Saint–Venant principle, i.e. only the eigen-solutions
of zero eigenvalue are included in the expansion theorem, or

v = a1ψ
(0)
f + a2ψ

(1)
f + a3ψ

(0)
s + a4ψ

(1)
s + a5ψ

(2)
s + a6ψ

(3)
s (6.4.1)

Substituting into the variational formula (6.2.4) and rearranging yield

δ

{∫ l

0

(k1a2ȧ1 + k2a5ȧ4 − k2a6ȧ3 − 1
2
k1a

2
2 −

1
2
k2a

2
5 + k2a4a6 − FNa1

−Wa2 − FSa3 −Ma4 − θa5 − Ua6)dz + [k3a5a6]lz=0 + ṽ2
e

}
= 0

(6.4.2)

where

FN =
∫ xn

x0

Fzdx+ F z2 − F z1 (axial force) (6.4.3)
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W =
n∑

i=1

∫ xi

xi−1

(
s2i

s4i
x+ ri + d1

)
Fxdx

+
[
s2n

s4n
xn + rn + d1

]
F x2 − d1F x1 (6.4.4)

FS =
∫ xn

x0

Fxdx+ Fx2 − F x1 (shear force) (6.4.5)

M =
∫ xn

x0

(d2 − x)Fzdx+ (d2 − xn)F z2 − d2F z1 (bending moment)

(6.4.6)

θ =
n∑

i=1

∫ xi

xi−1

u
(2)
si (x)Fxdx+ u(2)

sn (xn)F x2 − u
(2)
s1 (0)F x1 (6.4.7)

U =
n∑

i=1

∫ xi

xi−1

w
(3)
si (x)Fzdx+ w(3)

sn (xn)F z2 − w
(3)
s1 (0)F z1 (6.4.8)

k3 =
1
2
(c5 − c4) (6.4.9)

The boundary conditions at the two ends (z = 0 or l) have been considered
in the variational principle (6.4.2). Similar to the preceding chapter, for
boundary conditions (6.1.6) corresponding to specified surface tractions at
the ends, we have

ṽ2
e = −[FNa1 + FSa3 +Ma4]lz=0 (6.4.10)

where

FN =
∫ xn

0

σdx; F S =
∫ xn

0

τdx; M =
∫ xn

0

(d2 − x)σdx

(6.4.11)

while for boundary conditions (6.1.7) corresponding to specified displace-
ments, we have

ṽ2
e = −[k1a1a2 + k2a4a5 − k2a3a6 + 2k3a5a6 −Wa2 − θa5 − Ua6]lz=0

(6.4.12)
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where

W =
n∑

i=1

∫ xi

xi−1

[
w

s4i

]
dx (6.4.13)

θ =
n∑

i=1

∫ xi

xi−1

[
w

s4i
(d2 − x)

]
dx (6.4.14)

U =
n∑

i=1

∫ xi

xi−1

u

[
1

2s4i
(d2 − x)2 + pi

]
dx (6.4.15)

The variation of Eq. (6.4.2) yields

δa1 : k1ȧ2 + FN = 0 (6.4.16)

δa2 : k1ȧ1 − k1a2 −W = 0 (6.4.17)

δa3 : k2ȧ6 − FS = 0 (6.4.18)

δa4 : k2ȧ5 − k2a6 +M = 0 (6.4.19)

δa5 : k2ȧ4 − k2a5 − θ = 0 (6.4.20)

δa6 : k2ȧ3 − k2a4 + U = 0 (6.4.21)

The boundary conditions at ends z = 0, l are required for solving the
equations above. The boundary conditions at both ends (z = 0 or l) can
be provided by the variation of Eq. (6.4.2). For example, the boundary
conditions for specified force are

k1a2 − FN = 0

k2a6 + F S = 0

k2a5 −M = 0


 at z = 0 or l (6.4.22)

while the boundary conditions for specified displacements are

k1a1 = W

k2a4 + k3a6 = θ

k2a3 − k3a5 = −U


 at z = 0 or l (6.4.23)

Equations (6.4.16) to (6.4.21) can be solved readily with the boundary
conditions above. The analytical solutions for some classical Saint–Venant
problems are presented as follows. Here we assume a cantilevered plate with
left end fixed and right end free. The plate domain and both boundary
surfaces are free of external load.
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1. Solution for simple tension

Let an axial force F be applied at x = d2 on the right end, the solution is

a1 =
F

k1
z, a2 =

F

k1
, a3 = a4 = a5 = a6 = 0

(6.4.24)

The cross section remains plane and is parallel to the original plane be-
fore deformation. The distribution of normal stresses can be represented
as a step function. From Eqs. (6.4.16) to (6.4.21), it is obvious that the
conclusion above remains valid if the plate is only subjected to distributed
longitudinal forces and the corresponding resultant force on the cross sec-
tion acts along x = d2.

2. Solution for pure bending

Let a concentrated couple m be applied to the right end of the plate, the
solution is

a3 = m

(
z2

2k2
+
k3

k3
2

)
, a4 =

m

k2
z, a5 =

m

k2
, a1 = a2 = a6 = 0

(6.4.25)
The cross section remains plane and rotates at an angle about axis x = d2.
The normal stress is a piecewise linear function. Similarly, the conclusion
above remains valid if all components of forces on the cross section results
in a resultant couple.

3. Solution of constant shear bending

Let a shear force F be applied to the right end of the plate, the solution is

a1 = a2 = 0

a3 =
F

k2

[
−1

6
z3 +

1
2
lz2 +

k3

k2
(l + z)

]

a4 =
F

k2

(
lz − 1

2
z2 +

k3

k2

)

a5 =
F

k2
(l − z)

a6 = − F

k2




(6.4.26)
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Here, the cross section does not remain plane after deformation due to the
existence of w(3)

s . The shear stress on the cross section vanishes at both
boundary surfaces (x = 0 or x = xn), it is convexly distributed and reaches
the maximum at the neutral axis x = d2.

In this section, an analytical method by expansion of symplectic sub-
space of zero eigenvalue is presented for solving Saint–Venant problems of
multi-layered laminated composite plates. However, it should be empha-
sized that considering only the eigen-solutions of zero eigenvalue is not
suitable if the thickness of plate xn is not a higher-order small quantity
as compared with the length of plate l, or if the stress singularity at the
end, such as the stress at the layer interface, is analyzed3. For such prob-
lems, it is necessary to add the eigen-solutions of nonzero eigenvalues into
the variational principle and then obtain the solutions by expansion. In
other words, the nonzero eigenvalues and the corresponding eigen-solutions
should first be solved, and then the expanding theorem is applied. The
details are omitted here.
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Chapter 7

Solutions for Plane Elasticity in Polar Coordinates

This chapter discusses the Hamiltonian system of plane elasticity problems
in polar coordinates. By treating the radial coordinate and circumferential
coordinate, respectively, as the time coordinate, two different forms of the
Hamiltonian systems are established, and thus an analytical method for
solving plane elasticity problems in circular and annular domains is pre-
sented. Special attention is focused in the Hamiltonian system with radical
coordinate treated as time coordinate.

7.1. Plane Elasticity Equations in Polar Coordinates

The solution of plane elasticity problems in rectangular coordinates has
been discussed in Chapter 4. For problems in circular, annular or wedge
domain, it is more convenient to deal in polar coordinates. An arbitrary
point in a polar coordinate system can be represented by the distance be-
tween this point and the origin ρ (radius) and the angle ϕ between the
ρ-direction and a certain axis, for example, the x-axis, as shown in Fig. 7.1.

Consider an element abcd formed by two radial planes separated by an
angle dϕ and two cylindrical surfaces with radii ρ and ρ+ dρ, respectively,
as shown in Fig. 7.1. The stresses acting on the element are also shown in
the figure.

Neglecting any body forces and for an infinitesimal dϕ, we have

sin
dϕ
2

≈ dϕ
2
, cos

dϕ
2

≈ 1 (7.1.1)

Projecting all forces acting on the element on the central radial axis ρ yields

(
σρ +

∂σρ

∂ρ
dρ

)
(ρ+ dρ) dϕ− σρρ dϕ

181
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Fig. 7.1. Plane problem in polar coordinates.

−
(
σϕ +

∂σϕ

∂ϕ
dϕ

)
dρ

dϕ
2

− σϕdρ
dϕ
2

+
(
τρϕ +

∂τρϕ

∂ϕ
dϕ

)
dρ · 1 − τρϕdρ · 1 = 0 (7.1.2a)

while projecting on the tangent of circumferential curve yields(
σϕ +

∂σϕ

∂ϕ
dϕ

)
dρ · 1 − σϕdρ · 1

+
(
τρϕ +

∂τρϕ

∂ϕ
dϕ

)
dρ

dϕ
2

+ τρϕdρ
dϕ
2

+
(
τρϕ +

∂τρϕ

∂ρ
dρ

)
(ρ+ dρ)dϕ− τρϕρdϕ = 0 (7.1.2b)

Simplifying the above expressions and neglecting all third-order infinitesi-
mal quantities yield the equilibrium equation in polar coordinates as

∂σρ

∂ρ
+

1
ρ

∂τρϕ

∂ϕ
+
σρ − σϕ

ρ
= 0 (7.1.3a)

∂τρϕ

∂ρ
+

1
ρ

∂σϕ

∂ϕ
+

2τρϕ

ρ
= 0 (7.1.3b)
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Then we derive the geometric equations in polar coordinates. The dis-
placement components along the radial axis ρ and circumferential curve ϕ
are denoted as uρ and uϕ, respectively. As the radial displacement of edge
ad of the element abcd is uρ while that of edge bc is uρ + (∂uρ/∂ρ)dρ, the
radial strain is

ερ =

(
uρ +

∂uρ

∂ρ
dρ

)
− uρ

dρ
=
∂uρ

∂ρ
(7.1.4)

In general, there are two parts for the circumferential strain εϕ as follows:

(1) A component due to radial displacement uρ

(ρ+ uρ)dϕ− ρdϕ
ρdϕ

=
uρ

ρ
(7.1.5)

(2) A component due to circumferential displacement uϕ

(
uϕ +

∂uϕ

∂ϕ
dϕ

)
− uϕ

ρdϕ
=

1
ρ

∂uϕ

∂ϕ
(7.1.6)

Hence, the resultant circumferential strain is

εϕ =
1
ρ

(
uρ +

∂uϕ

∂ϕ

)
(7.1.7)

Now we consider shear strain. Let the element abcd be deformed into
a′b′c′d′.

It is obvious from Fig. 7.2 that the shear strain γρϕ is

γρϕ = γ + (β − α) (7.1.8)

where γ denotes the rotation angle of edge ad due to the radial displacement
uρ, as

γ =
∂uρ

ρ∂ϕ
(7.1.9)
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Fig. 7.2. Shear strain in polar coordinate.

β denotes the rotation angle of edge ab due to the circumferential displace-
ment uϕ, as

β =
∂uϕ

∂ρ
(7.1.10)

and α is the change of angle from a to a′, as

α =
uϕ

ρ
(7.1.11)

Hence, the shear strain is

γρϕ =
∂uρ

ρ∂ϕ
+
∂uϕ

∂ρ
− uϕ

ρ
(7.1.12)

From Eqs. (7.1.4), (7.1.7) and (7.1.12), the strain-displacement relations in
polar coordinates are

ερ =
∂uρ

∂ρ

εϕ =
1
ρ

(
uρ +

∂uϕ

∂ϕ

)

γρϕ =
∂uρ

ρ∂ϕ
+
∂uϕ

∂ρ
− uϕ

ρ




(7.1.13)
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Subsequently, we consider the strain-stress relations in polar coordi-
nates for plane stress problems. They are identical with the relations in
rectangular coordinates, i.e.

ερ =
1
E

(σρ − νσϕ)

εϕ =
1
E

(σϕ − νσρ)

γρϕ =
2(1 + ν)

E
τρϕ




(7.1.14)

For plane strain problems, the strain-stress relations remain the same form
as the above expressions, except E, ν must be interpreted differently, see
Eq. (4.1.13) for details.

7.2. Variational Principle for a Circular Sector

Many useful solutions of elasticity can be described in polar coordinates.
The typical domain is a circular sector

R1 ≤ ρ ≤ R2, −α ≤ ϕ ≤ α (7.2.1)

as illustrated in Fig. 7.3.

Fig. 7.3. A circular sector in polar coordinates.
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For problems in circular sector domain, the corresponding Hellinger–
Reissner variational principle is

δ

∫ α

−α

∫ R2

R1

[
σρ
∂uρ

∂ρ
+
σϕ

ρ

(
uρ +

∂uϕ

∂ϕ

)
+ τρϕ

(
∂uϕ

∂ρ
− uϕ

ρ
+

1
ρ

∂uρ

∂ϕ

)

− 1
2E

(σ2
ρ + σ2

ϕ − 2νσρσϕ + 2(1 + ν)τ2
ρϕ)

]
ρdρdϕ = 0 (7.2.2)

where uρ, uϕ, σρ, σϕ, τρϕ are treated as mutually independent variational
quantities. The variation of Eq. (7.2.2) yields the equilibrium equations
(7.1.3) and the stress-strain relations (7.1.14) in terms of displacement com-
ponents. In Eq. (7.2.2), free boundary conditions are treated as the natural
boundary conditions of variation. If there are displacement boundary condi-
tions, the corresponding boundary terms should be added to the expression
above.

The Hamiltonian system and the method of separation of variables are
valid for problems in polar coordinates. However, it is necessary to perform
substitution of variables first. Here we introduce the transformation

ξ = ln ρ, i.e. ρ = eξ (7.2.3)

and denote

ξ1 = lnR1, ξ2 = lnR2 (7.2.4)

Thus the variational principle (7.2.2) can be written as

δ

∫ α

−α

∫ ξ2

ξ1

[
σρ

ρ

∂uρ

∂ξ
+
σϕ

ρ

(
uρ +

∂uϕ

∂ϕ

)
+
τρϕ

ρ

(
∂uϕ

∂ξ
− uϕ +

∂uρ

∂ϕ

)

− 1
2E

(σ2
ρ + σ2

ϕ − 2νσρσϕ + 2(1 + ν)τ2
ρϕ)

]
ρ2dξdϕ = 0 (7.2.5)

With the new variables introduced as follows

Sρ = ρσρ, Sϕ = ρσϕ, Sρϕ = ρτρϕ (7.2.6)
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the variational equation (7.2.5) can be expressed as

δ

∫ α

−α

∫ ξ2

ξ1

[
Sρ
∂uρ

∂ξ
+ Sϕ

(
uρ +

∂uϕ

∂ϕ

)
+ Sρϕ

(
∂uϕ

∂ξ
− uϕ +

∂uρ

∂ϕ

)

− 1
2E

(S2
ρ + S2

ϕ − 2νSρSϕ + 2(1 + ν)S2
ρϕ)

]
dξ dϕ = 0 (7.2.7)

Hence there are only multipliers with constant coefficients in the equation of
variation (7.2.7). Although it is much easier, there are still five independent
variables uρ, uϕ, Sρ, Sϕ, Sρϕ. Furthermore, the new domain becomes

ξ1 ≤ ξ ≤ ξ2, −α ≤ ϕ ≤ α (7.2.8)

It is equivalent to the rectangular domain in rectangular coordinates. Al-
though the two coordinate directions are symmetrical in a rectangular do-
main, the simulated radial ξ-direction and the simulated circumferential
ϕ-direction have different characteristics. Hence, it is necessary to consider
the Hamiltonian systems corresponding to two different directions: the ra-
dial Hamiltonian system with ξ-coordinate treated as time coordinate and
the circumferential Hamiltonian system with ϕ-coordinate treated as time
coordinate.

7.3. Hamiltonian System with Radial Coordinate Treated
as “Time”

If ξ is treated as time coordinate, ϕ becomes the transverse direction
and, therefore, the transverse forces should be eliminated. The variation
of Eq. (7.2.7) with respect to Sϕ yields

Sϕ = E

(
uρ +

∂uϕ

∂ϕ

)
+ νSρ (7.3.1)

Substituting into Eq. (7.2.7) and eliminating Sϕ yield the Hamiltonian
mixed energy variational principle as

δ

∫ α

−α

∫ ξ2

ξ1

[
Sρ
∂uρ

∂ξ
+ Sρϕ

∂uϕ

∂ξ
+ Sρν

(
uρ +

∂uϕ

∂ϕ

)
+ Sρϕ

(
∂uρ

∂ϕ
− uϕ

)

+
1
2
E

(
uρ +

∂uϕ

∂ϕ

)2

− 1
2E

((1 − ν2)S2
ρ + 2(1 + ν)S2

ρϕ)

]
dξdϕ = 0

(7.3.2)
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The dual variables of displacements uρ, uϕ are Sρ, Sρϕ respectively.
Denoting

q =
{
uρ, uϕ

}T
, p =

{
Sρ, Sρϕ

}T
(7.3.3)

and representing differentiation with respect to ξ as a dot, Eq. (7.3.2) can
be expressed as

δ

∫ α

−α

∫ ξ2

ξ1

[pTq̇ − H (q,p)]dξdϕ = 0 (7.3.4)

where the Hamiltonian density function is

H (q,p) = −Sρν

(
uρ +

∂uϕ

∂ϕ

)
− Sρϕ

(
∂uρ

∂ϕ
− uϕ

)

− 1
2
E

(
uρ +

∂uϕ

∂ϕ

)2

+
1

2E
[
(1 − ν2)S2

ρ + 2(1 + ν)S2
ρϕ

]
(7.3.5)

This is the variational principle expression of Hamiltonian system for
field problems. Expanding the variational equation (7.3.4) yields the
Hamiltonian dual system of equations.

q̇ = Aq +Dp

ṗ = Bq −ATp

}
(7.3.6)

where the operator matrices are

A =




−ν −ν ∂·
∂ϕ

− ∂·
∂ϕ

1


 , AT =




−ν ∂·
∂ϕ

ν
∂·
∂ϕ

1




D =




1 − ν2

E
0

0
2(1 + ν)

E




B =




E E
∂·
∂ϕ

−E ∂·
∂ϕ

−E ∂2·
∂ϕ2







(7.3.7)

Introducing the full state vector

v =
{
qT pT

}T
=

{
uρ, uϕ; Sρ, Sρϕ

}T
(7.3.8)
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then Eq. (7.3.6) can be written as

v̇ =Hv (7.3.9)

where the Hamiltonian operator is

H =

[
A D

B −AT

]
(7.3.10)

No external load is included in the derivation above and the equations
are homogeneous. Besides, the boundary conditions at two ends (ξ = ξ1 or
ξ = ξ2) are not involved. In the Hamiltonian variational principle (7.3.4)
the free boundary conditions are treated as natural boundary conditions.
The free boundary conditions at ϕ = ±α are

E

(
uρ +

∂uϕ

∂ϕ

)
+ νSρ = 0, Sρϕ = 0 at ϕ = ±α (7.3.11)

To discuss the property of operator H, we introduce a unit symplectic
matrix

J =

[
0 I2

−I2 0

]
(7.3.12)

Denote

〈v1,v2〉 def=
∫ α

−α

vT
1 Jv2dϕ

=
∫ α

−α

(uρ1Sρ2 + uϕ1Sρϕ2 − Sρ1uρ2 − Sρϕ1uϕ2)dϕ (7.3.13)

Obviously Eq. (7.3.13) satisfies the four conditions of symplectic inner prod-
uct (1.3.2). Hence, the full state vectors v form a symplectic space according
to the definition of symplectic inner product (7.3.13).

Based on integration by parts, it is easy to verify that

〈v1,Hv2〉 = 〈v2,Hv1〉 +
[
uϕ2

(
Euρ1 + E

∂uϕ1

∂ϕ
+ νSρ1

)
+ uρ2Sρϕ1

]α

−α

−
[
uϕ1

(
Euρ2 + E

∂uϕ2

∂ϕ
+ νSρ2

)
+ uρ1Sρϕ2

]α

−α

(7.3.14)

For continuously differentiable full state vectors v1,v2 satisfying the bound-
ary conditions (7.3.11), we have the identity

〈v1,Hv2〉 = 〈v2,Hv1〉 (7.3.15)
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Hence, the operator H is a Hamiltonian operator matrix in symplectic
space.

Similar to the cases in Chapter 4, the dual equation (7.3.9) with bound-
ary conditions (7.3.11) is a linear Hamiltonian system. Therefore, the su-
perposition principle is applicable and the method of separation of variables
is particularly effective. Let

v(ξ, ϕ) = eµξψ(ϕ) (7.3.16)

where µ is the unknown eigenvalue and ψ(x) is the eigenvector which is a
function of ϕ. The eigenvalue equation is

Hψ(ϕ) = µψ(ϕ) (7.3.17)

The eigenvector ψ(ϕ) is required to satisfy the boundary conditions
(7.3.11).

At this point, H has been proved as a Hamiltonian operator matrix
and the properties of Hamiltonian operator matrix have been repeatedly
elaborated in various previous chapters, i.e.

(1) If µ is an eigenvalue of a Hamiltonian matrix, −µ is also an
eigenvalue.

As a Hamiltonian eigen-problem with infinite dimensions is discussed
here, there are infinite eigenvalues which can be divided into two sets:

(α) µi,Re(µi) < 0 or Re(µi) = 0 ∧ Im(µi) < 0 (i = 1, 2, . . .) (7.3.18a)

(β) µ−i = −µi (7.3.18b)

The eigenvalues in the (α)-set are further arranged in an ascending order
according to |µi| and then the (β)-set can be arranged correspondingly.

(2) The eigenvectors of Hamiltonian operator matrix are adjoint sym-
plectic orthogonal. Let ψi and ψj be the eigenvectors corresponding to the
eigenvalues µi and µj , respectively. For µi + µj �= 0, the eigenvectors are
symplectic orthogonal

〈ψi,ψj〉 =
∫ α

−α

ψT
i Jψjdϕ = 0 (7.3.19)
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The eigenvector, which is symplectic adjoint with ψi, is the eigenvector (or
the Jordan form eigenvector) corresponding to eigenvalue −µi.

To obtain eigen-solutions of nonzero eigenvalues, the eigen equation
(7.3.17) is expanded as

−(µ+ ν)uρ −ν duϕ

dϕ
+

1 − ν2

E
Sρ +0 = 0

−duρ

dϕ
+(1 − µ)uϕ +0 +

2(1 + ν)
E

Sρϕ = 0

Euρ +E
duϕ

dϕ
+(ν − µ)Sρ −dSρϕ

dϕ
= 0

−E duρ

dϕ
−E d2uϕ

dϕ2
−ν dSρ

dϕ
−(1 + µ)Sρϕ = 0




(7.3.20)

This is a set of ordinary differential equations with respect to ϕ. The eigen-
value λ with respect to the ϕ-direction should first be solved by using the
eigenvalue equation

det




−(µ+ ν) −νλ (1 − ν2)/E 0

−λ (1 − µ) 0 2(1 + ν)/E

E Eλ ν − µ −λ
−Eλ −Eλ2 −νλ −(1 + µ)


 = 0 (7.3.21)

Expanding the determinant yields the characteristic polynomial

λ4 + 2(1 + µ2)λ2 + (1 − µ2)2 = 0 (7.3.22)

and the solutions are

λ1,2 = ±(1 + µ)i, λ3,4 = ±(1 − µ)i (7.3.23)

The general solutions for different µ are different. Here µ is yet to be
determined.
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(1) For µ �= 0,±1, Eq. (7.3.23) give four distinct roots and the general
solution is

uρ = A1 cos[(1 + µ)ϕ] +B1 sin[(1 + µ)ϕ]

+C1 cos[(1 − µ)ϕ] +D1 sin[(1 − µ)ϕ]

uϕ = A2 sin[(1 + µ)ϕ] +B2 cos[(1 + µ)ϕ]

+C2 sin[(1 − µ)ϕ] +D2 cos[(1 − µ)ϕ]

Sρ = A3 cos[(1 + µ)ϕ] +B3 sin[(1 + µ)ϕ]

+C3 cos[(1 − µ)ϕ] +D3 sin[(1 − µ)ϕ]

Sρϕ = A4 sin[(1 + µ)ϕ] +B4 cos[(1 + µ)ϕ]

+C4 sin[(1 − µ)ϕ] +D4 cos[(1 − µ)ϕ]




(7.3.24)

The constants are not independent and they are required to satisfy
Eq. (7.3.20), i.e.

−(µ+ ν)A1 −ν(1 + µ)A2 +
1 − ν2

E
A3 +0 = 0

(1 + µ)A1 +(1 − µ)A2 +0 +
2(1 + ν)

E
A4 = 0

EA1 +E(1 + µ)A2 +(ν − µ)A3 −(1 + µ)A4 = 0

E(1 + µ)A1 +E(1 + µ)2A2 +ν(1 + µ)A3 −(1 + µ)A4 = 0




(7.3.25)

−(µ+ ν)B1 +ν(1 + µ)B2 +
1 − ν2

E
B3 +0 = 0

−(1 + µ)B1 +(1 − µ)B2 +0 +
2(1 + ν)

E
B4 = 0

EB1 −E(1 + µ)B2 +(ν − µ)B3 +(1 + µ)B4 = 0

−E(1 + µ)B1 +E(1 + µ)2B2 −ν(1 + µ)B3 −(1 + µ)B4 = 0




(7.3.26)

−(µ+ ν)C1 −ν(1 − µ)C2 +
1 − ν2

E
C3 +0 = 0

(1 − µ)C1 +(1 − µ)C2 +0 +
2(1 + ν)

E
C4 = 0

EC1 +E(1 − µ)C2 +(ν − µ)C3 −(1 − µ)C4 = 0

E(1 − µ)C1 +E(1 − µ)2C2 +ν(1 − µ)C3 −(1 + µ)C4 = 0




(7.3.27)
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and

−(µ+ ν)D1 +ν(1 − µ)D2 +
1 − ν2

E
D3 +0 = 0

−(1 − µ)D1 +(1 − µ)D2 +0 +
2(1 + ν)

E
D4 = 0

ED1 −E(1 − µ)D2 +(ν − µ)D3 +(1 − µ)D4 = 0

−E(1 − µ)D1 +E(1 − µ)2D2 −ν(1 − µ)D3 −(1 + µ)D4 = 0




(7.3.28)

There is a redundant equation in each of the four sets of equations and
hence there is only one independent coefficient in each of the four sets of
coefficients Ai, Bi, Ci, Di. Let A1, B2, C1, D2 be chosen as the independent
coefficients, solving the four sets of equations yields

A2 = −A1

A3 =
Eµ

1 + ν
A1

A4 = − Eµ

1 + ν
A1




;

C2 =
−3 + ν − µ− νµ

3 − ν − µ− νµ
C1

C3 =
Eµ(3 − µ)

3 − ν − µ− νµ
C1

C4 =
Eµ(1 − µ)

3 − ν − µ− νµ
C1




(7.3.29)

and

B1 = B2

B3 =
Eµ

1 + ν
B2

B4 =
Eµ

1 + ν
B2




;

D1 =
3 − ν − µ− νµ

3 − ν + µ+ νµ
D2

D3 =
Eµ(3 − µ)

3 − ν + µ+ νµ
D2

D4 =
−Eµ(1 − µ)

3 − ν + µ+ νµ
D2




(7.3.30)

(2) For µ = ±1, Eq. (7.3.23) yield roots ±2i and zero where zero is a
double root. The general solution is

uρ = A1 cos(2ϕ) +B1 sin(2ϕ) + C1 +D1ϕ

uϕ = A2 sin(2ϕ) +B2 cos(2ϕ) + C2ϕ+D2

Sρ = A3 cos(2ϕ) +B3 sin(2ϕ) + C3 +D3ϕ

Sρϕ = A4 sin(2ϕ) +B4 cos(2ϕ) + C4ϕ+D4




(7.3.31)

Similarly, these coefficients are not independent and they are required
to satisfy Eq. (7.3.20). Substituting Eq. (7.3.31) into Eq. (7.3.20) yields
C2 = C4 = D1 = D3 = 0. Thus, the general solution (7.3.31) for µ = ±1
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can still be presented in the form of Eq. (7.3.24). The relations between the
coefficients remain as Eqs. (7.3.29) and (7.3.30). Hence, the general solu-
tion of eigen-solution for µ �= 0 is given by Eq. (7.3.24) in all subsequent
discussion.

(3) The case for µ = 0 is actually not included in the grouping in
Eq. (7.3.18). Zero eigenvalue is a special case which has particular physical
interpretation and should be discussed separately. Such cases have been
repeatedly discussed in the previous few chapters.

The general solution of eigen-solution correspond to nonzero eigenval-
ues has been discussed above. It should be noted that the general so-
lution (7.3.24) is also required to satisfy, in addition to the relations in
Eqs. (7.3.29) and (7.3.30), the boundary conditions (7.3.11).

For elasticity problems of homogeneous materials, the solutions can be
divided into two parts: the symmetric deformation and the anti-symmetric
deformation with respect to ϕ = 0. The symmetric conditions are

uϕ = 0, Sρϕ = 0 at ϕ = 0 (7.3.32)

while the anti-symmetric conditions are

E
∂uϕ

∂ϕ
+ νSρ = 0, uρ = 0 at ϕ = 0 (7.3.33)

Obviously in the general solution (7.3.24), sets A and C correspond to the
eigen-solutions of symmetric deformation while sets B and D correspond
to the eigen-solutions of anti-symmetric deformation.

Before presenting the eigen-solutions, the expansion theorem of eigen-
vectors is introduced first.

Every full state vector v can be represented by eigen-solutions, that is

v =
∞∑

i=1

(aiψi + biψ−i) (7.3.34)

where ai and bi are undetermined factors. It should be emphasized that
Eq. (7.3.34) includes all eigenvectors corresponding to Eq. (7.3.18) and
zero eigenvalue. In addition, normal adjoint symplectic orthonormalization
of the eigenvectors have been completed, i.e.

〈ψi,ψ−j〉 = δij , 〈ψi,ψj〉 = 〈ψ−i, ψ−j〉 = 0 (i, j = 1, 2, . . .)

(7.3.35)

where δij is the Kronecker delta.
For a Hamiltonian operator matrix of infinite dimension, there is a

completeness problem for basis which should be demonstrated strictly in
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terms of mathematics. However, it can be treated as a complete system
in elasticity solution methodology and the proof of completeness is left for
mathematicians3.

7.4. Eigen-Solutions for Symmetric Deformation in Radial
Hamiltonian System

The eigenvalue equation for symmetric deformation is Eq. (7.3.17) and the
boundary conditions are the symmetric conditions (7.3.32) and the free
boundary conditions at ϕ = α

E

(
uρ +

∂uϕ

∂ϕ

)
+ νSρ = 0, Sρϕ = 0 at ϕ = α (7.4.1)

7.4.1. Eigen-Solutions of Zero Eigenvalue

As repeatedly emphasized in the previous few chapters, zero eigenvalue
is associated with special cases which should first be analyzed. The basic
equation for eigen-solutions of zero eigenvalue is

Hψ
(s0)
0 = 0 (7.4.2)

Expanding the above equation yields

−νu(s0)
ρ0 −ν du(s0)

ϕ0

dϕ
+

1 − ν2

E
S

(s0)
ρ0 +0 = 0

−du(s0)
ρ0

dϕ
+u(s0)

ϕ0 +0 +
2(1 + ν)

E
S

(s0)
ρϕ0 = 0

Eu
(s0)
ρ0 +E

du(s0)
ϕ0

dϕ
+νS(s0)

ρ0 −dS(s0)
ρϕ0

dϕ
= 0

−E du(s0)
ρ0

dϕ
−E d2u

(s0)
ϕ0

dϕ2
−ν dS(s0)

ρ0

dϕ
−S(s0)

ρϕ0 = 0




(7.4.2′)

From the last two equations we obtain

d2S
(s0)
ρϕ0

dϕ2
+ S

(s0)
ρϕ0 = 0 (7.4.3)

The general solution is

S
(s0)
ρϕ0 = c1 cosϕ+ c2 sinϕ (7.4.4)
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Substituting Eq. (7.4.4) into the third of Eq. (7.4.2) yields

E

(
u

(s0)
ρ0 +

du(s0)
ϕ0

dϕ

)
+ νS

(s0)
ρ0 = −c1 sinϕ+ c2 cosϕ (7.4.5)

Further substituting Eqs. (7.4.4) and (7.4.5) into the symmetric conditions
(7.3.32) and the boundary conditions (7.4.1) leads to

c1 = c2 = 0 (7.4.6)

and hence

S
(s0)
ρϕ0 = E

(
u

(s0)
ρ0 +

du(s0)
ϕ0

dϕ

)
+ νS

(s0)
ρ0 = 0 (7.4.7)

Solving simultaneously Eq. (7.4.7) and the first of Eq. (7.4.2), we obtain
the solution

S
(s0)
ρ0 = 0 (7.4.8)

and

u
(s0)
ρ0 +

du(s0)
ϕ0

dϕ
= 0 (7.4.9)

Substituting S(s0)
ρϕ0 = 0 into the second of Eq. (7.4.2) yields

du(s0)
ρ0

dϕ
− u

(s0)
ϕ0 = 0 (7.4.10)

Solving simultaneously Eqs. (7.4.9) and (7.4.10) yields

u
(s0)
ρ0 = c3 cosϕ+ c4 sinϕ

u
(s0)
ϕ0 = −c3 sinϕ+ c4 cosϕ


 (7.4.11)

Substituting the solution into the symmetric conditions (7.3.32) yields
c4 = 0. Therefore the symmetric basic eigenvector of zero eigenvalue is

ψ
(s0)
0 =

{
cosϕ, − sinϕ, 0, 0

}T
(7.4.12)

The eigenvector (7.4.12) is the solution v(s0)
0 = ψ

(s0)
0 of the original

problem and it is physically interpreted as the unit rigid body translation
along the symmetry axis.
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The first-order Jordan form eigen-solution exists because there is only
one chain for the eigen-solution of zero eigenvalue. The corresponding equa-
tion is

Hψ
(s1)
0 = ψ

(s0)
0 (7.4.13)

Similar to the derivation earlier, we obtain S
(s1)
ρϕ0 = 0 from the last two

equations in Eq. (7.4.13) and the corresponding boundary conditions.
Substitute S(s1)

ρϕ0 = 0 into the third equation of the expanded Eq. (7.4.13)
and solve simultaneously with the first equation, the solutions are

S
(s1)
ρ0 = E cosϕ (7.4.14)

and

u
(s1)
ρ0 +

du(s1)
ϕ0

dϕ
= −ν cosϕ (7.4.15)

Substituting S(s1)
ρϕ0 = 0 into the second equation of Eq. (7.4.13) yields

du(s1)
ρ0

dϕ
− u

(s1)
ϕ0 = sinϕ (7.4.16)

Solving the simultaneous equations of Eqs. (7.4.15) and (7.4.16) yields

u
(s1)
ρ0 =

1 − ν

2
ϕ sinϕ+ c3 cosϕ+ c4 sinϕ

u
(s1)
ϕ0 =

1 − ν

2
ϕ cosϕ− 1 + ν

2
sinϕ− c3 sinϕ+ c4 cosϕ


 (7.4.17)

Substituting the solution into the symmetric conditions (7.3.32) yields
c4 = 0. Besides, term c3 is a basic eigen-solution which can be superposed
arbitrarily. Therefore the symmetric first-order Jordan form eigenvector of
zero eigenvalue is

ψ
(s1)
0 =

{
1 − ν

2
ϕ sinϕ,

1 − ν

2
ϕ cosϕ− 1 + ν

2
sinϕ, E cosϕ, 0

}T

(7.4.18)

Although this vector is not the direct solution of the original problem
(7.3.9), the solution can be constituted according to Eq. (7.4.18) as

v
(s1)
0 = ψ

(s1)
0 + ξψ

(s0)
0 (7.4.19)
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and the corresponding stress field is

σρ =
1
ρ
E cosϕ, σϕ = 0, τρϕ = 0 (7.4.20)

Obviously a resultant force along the symmetry axis at two ends (ξ = ξ1
or ξ = ξ2) is resulted as

FN =
∫ α

−α

(−σρ cosϕ+ τρϕ sinϕ)ρdϕ = −E
2

(2α+ sin 2α) �= 0

FS =
∫ α

−α

(−σρ sinϕ− τρϕ cosϕ)ρdϕ = 0

M =
∫ α

−α

(τρϕρ
2)dϕ = 0




(7.4.21)

For ξ1 → −∞(R1 = 0), we have

ṽ
(s1)
0 =

1
FN
v

(s1)
0 (7.4.22)

This is the solution of an elastic wedge acted by a unit concentrated force at
the apex R1 = 0 and along the symmetry axis (see Fig. 7.4). It is consistent
with the published solution in the open literature. For an angle α = π/2,
the solution (7.4.22) becomes the solution of a semi-infinite plane acted by
a concentrated force.

As eigenvectors ψ(s1)
0 and ψ(s0)

0 are symplectic adjoint, i.e.

〈ψ(s0)
0 ,ψ

(s1)
0 〉 =

∫ α

−α

ψ
(s0)T

0 Jψ
(s1)
0 dϕ =

1
2
E(2α+ sin 2α) �= 0 (7.4.23)

Equation (7.4.18) is the dual solution of Eq. (7.4.12), and thus the Jordan
form chain of symmetric eigen-solution of zero eigenvalue is terminated.

Fig. 7.4. An elastic wedge acted by a concentrated force at the apex and along the
symmetry axis.
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7.4.2. Eigen-Solutions of Nonzero Eigenvalues

From Eqs. (7.3.24) and (7.3.29), the general eigen-solution symmetric with
respect to ϕ = 0 for nonzero eigenvalues is

uρ = A1 cos[(1 + µ)ϕ] + C1 cos[(1 − µ)ϕ]

uϕ = −A1 sin[(1 + µ)ϕ] +
−3 + ν − µ− νµ

3 − ν − µ− νµ
C1 sin[(1 − µ)ϕ]

Sρ =
Eµ

1 + ν
A1 cos[(1 + µ)ϕ] +

Eµ(3 − µ)
3 − ν − µ− νµ

C1 cos[(1 − µ)ϕ]

Sρϕ = − Eµ

1 + ν
A1 sin[(1 + µ)ϕ] +

Eµ(1 − µ)
3 − ν − µ− νµ

C1 sin[(1 − µ)ϕ]



(7.4.24)

Although the general solution (7.4.24) satisfies the differential equa-
tion (7.3.17) within the domain and the symmetric conditions (7.3.32),
the boundary conditions (7.4.1) have not been satisfied. Substituting
Eq. (7.4.24) into Eq. (7.4.1) yields

− Eµ

1 + ν
A1 cos[(1 + µ)α] +

Eµ(1 + µ)
3 − ν − µ− νµ

C1 cos[(1 − µ)α] = 0

− Eµ

1 + ν
A1 sin[(1 + µ)α] +

Eµ(1 − µ)
3 − ν − µ− νµ

C1 sin[(1 − µ)α] = 0



(7.4.25)

The determinant vanishes as A1 and C1 are not zero simultaneously. Thus
the transcendental equation for nonzero eigenvalue µ with respect to sym-
metric deformation is derived as

sin(2µα) + µ sin(2α) = 0 (7.4.26)

Apparently −µ must be an eigenvalue if µ is an eigenvalue and it vali-
dates one of the characteristics in Eqs. (7.3.18) for symplectic eigenvalue
problems. In addition, it can be proved that there is no pure imaginary
root.

It is possible to apply the Newton method to solve Eq. (7.4.26). For
nonzero eigenvalue, the transcendental equation (7.4.26) can be written as

sinx
x

= − sin 2α
2α

where x = 2µα (7.4.27)

There solution can be divided into two cases: α > π/2 and α < π/2. The
right-hand-side is positive for the former while it is negative for the latter.
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Fig. 7.5. The curve of function sinx/x.

For α > π/2, there exist stress singularity when ρ → 0 and hence a real
root in 0 < x < π.

According to the characteristics of the transcendental equation above,
discussion for roots x in the first quadrant of the complex plane is only
needed. As there are complex roots for relatively large |x|, the existence of
complex roots should be estimated. From the function curve of sinx/x as
illustrated in Fig. 7.5, there is a root in π/2 < α ≤ π. For η = − sin 2α/2α <
0.1284, there are two real roots in 2π < x < 3π, otherwise there are complex
roots in 2π < Re(x) < 3π. To solve for complex roots, the asymptotic
method can be applied to obtain an initial value for iteration.

Substituting x = 2nπ + a+ ib (n = 1, 2, . . . ; a > 0, b > 0) into

ηx = sinx ≈ i
2
e−ix (7.4.28)

and grouping the real part and imaginary part yield

2ηb ≈ eb cos a; 2η(2nπ + a) ≈ eb sina (7.4.29)

As b is relatively larger, we obtain

a ≈ π

2
− ε, b ≈ ln(4ηnπ + 2ηa) (7.4.30)

where ε is a higher-order small quantity. Based on the asymptotic solu-
tion (7.4.30), the Newton method can be applied to obtain the complex
eigenvalues.

For α = π, it is equivalent to the solution of a crack. Here the solutions of
Eq. (7.4.27) are x = π, 2π, 3π, . . . , which is equivalent to µ = 1/2, 1, 3/2, . . ..
Noticing that Sρ = ρσρ, Sρϕ = ρσρϕ, there is singularity ρµ−1 at the apex
for ρ→ 0.
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Table 7.1. The eigenvalue 2µα for symmetric deformation of a sector domain.

1
α/(◦) 2 4 6 8 10 12

3 5 7 9 11 13

π
180 2π 4π 6π 8π 10π 12π

3π 5π 7π 9π 11π 13π
−3.313595

170 2π + 0.395112 4π + 0.887387 6π + 1.516289 8π + 1.521668 10π + 1.525936 12π + 1.529418
+2.603832 +2.131078 ±0.584204i ±0.995763i ±1.257540i ±1.456962i

−3.471163
160 2π + 0.992428 4π + 1.474761 6π + 1.489566 8π + 1.499908 10π + 1.507612 12π + 1.513610

+1.910136 ±1.065548i ±1.498203i ±1.788172i ±2.009485i ±2.189284i

−3.601216
150 2π + 1.419095 4π + 1.453587 6π + 1.473863 8π + 1.487460 10π + 1.497315 12π + 1.504837

±0.742802i ±1.491782i ±1.887954i ±2.165877i ±2.381868i ±2.558770i

−3.704010
120 2π + 1.397618 4π + 1.439762 6π + 1.463809 8π + 1.479576 10π + 1.490837 12π + 1.499344

±1.056610i ±1.734300i ±2.119570i ±2.394128i ±2.608348i ±2.784264i
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The roots of several eigenvalues computed for different angles α are
presented in Table 7.1. Only roots for Re (2µα) > 0 are listed in the table.

After solving the roots of eigenvalues, the ratio of A1 to C1 can be
obtained from Eq. (7.4.25). They are then substituted into Eq. (7.4.24)
to give the expressions of eigenvectors which are the basic components of
expansion solution.

7.5. Eigen-Solutions for Anti-Symmetric Deformation
in Radial Hamiltonian System

The differential equation for anti-symmetric deformation and the free
boundary conditions on ϕ = α are the same as those of symmetric de-
formation, i.e. Eqs. (7.3.17) and (7.4.1) while the symmetric conditions
(7.3.32) should be replaced by the anti-symmetric conditions (7.3.33).

7.5.1. Eigen-Solutions of Zero Eigenvalue

The basic equation for anti-symmetric eigen-solution of zero eigenvalue is

Hψ
(a0)
0 = 0 (7.5.1)

From the last two equations of Eq. (7.5.1), we obtain

S
(a0)
ρϕ0 = c1 cosϕ+ c2 sinϕ (7.5.2)

Substituting the above equation into the third of Eq. (7.5.1) yields

E

(
u

(a0)
ρ0 +

du(a0)
ϕ0

dϕ

)
+ νS

(a0)
ρ0 = −c1 sinϕ+ c2 cosϕ (7.5.3)

Substituting Eqs. (7.5.2) and (7.5.3) into the boundary conditions (7.4.1)
and the anti-symmetric conditions (7.3.33) yields c1 = c2 = 0, and subse-
quently S(a0)

ρϕ0 = 0.
Then substituting Eqs. (7.5.2) and (7.5.3) into Eq. (7.5.1) and solving

the simultaneous equations yield

S
(a0)
ρ0 = 0 (7.5.4)

and

u
(a0)
ρ0 = c3 cosϕ+ c4 sinϕ

u
(a0)
ϕ0 = −c3 sinϕ+ c4 cosϕ


 (7.5.5)
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Substituting the above equation into the anti-symmetric conditions (7.3.33)
yields c3 = 0, hence the basic eigenvector of zero eigenvalue for anti-
symmetric deformation is

ψ
(a0)
0 =

{
sinϕ, cosϕ, 0, 0

}T
(7.5.6)

The eigenvector (7.5.6) is the solution of the original problem, v(a0)
0 =

ψ
(a0)
0 , and it can be physically interpreted as the unit rigid body translation

along the direction perpendicular to the symmetry axis.
Similarly, the first-order Jordan form solution exists because there is

only one chain for the eigen-solution of zero eigenvalue. The corresponding
equation is

Hψ
(a1)
0 = ψ

(a0)
0 (7.5.7)

Similar to the derivation above, from the last two equations of Eq. (7.5.7)
and the boundary conditions we obtain

S
(a1)
ρϕ0 = 0 and E

(
u

(a1)
ρ0 +

du(a1)
ϕ0

dϕ

)
+ νS

(a1)
ρ0 = 0 (7.5.8)

Substitute Eq. (7.5.8) into the first and the second equations of the
expanded expression of Eq. (7.5.7), the solutions are

S
(a1)
ρ0 = E sinϕ (7.5.9)

and

u
(a1)
ρ0 +

du(a1)
ϕ0

dϕ
= −ν sinϕ,

du(a1)
ρ0

dϕ
− u

(a1)
ϕ0 = − cosϕ (7.5.10)

Solving the simultaneously Eq. (7.5.10) yields

u
(a1)
ρ0 = −1 − ν

2
ϕ cosϕ+ c3 cosϕ+ c4 sinϕ

u
(a1)
ϕ0 =

1 − ν

2
ϕ sinϕ+

1 + ν

2
cosϕ− c3 sinϕ+ c4 cosϕ


 (7.5.11)

Substituting the solutions into the anti-symmetric conditions (7.3.33) yields
c3 = 0. Because term c4 is a basic eigen-solution which can be superposed
arbitrarily, therefore, the anti-symmetric first-order Jordan form eigenvec-
tor of zero eigenvalue is

ψ
(a1)
0 =

{
−1 − ν

2
ϕ cosϕ,

1 − ν

2
ϕ sinϕ+

1 + ν

2
cosϕ, E sinϕ, 0

}T

(7.5.12)
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The solution of the original problem in Eq. (7.3.9) thus constituted is

v
(a1)
0 = ψ

(a1)
0 + ξψ

(a0)
0 (7.5.13)

and the corresponding stress field is

σρ =
1
ρ
E sinϕ, σϕ = 0, τρϕ = 0 (7.5.14)

It results in a resultant force perpendicular to the symmetry axis at the
origin as

FN =
∫ α

−α

[−σρ cosϕ+ τρϕ sinϕ]ρdϕ = 0

FS =
∫ α

−α

[−σρ sinϕ− τρϕ cosϕ]ρdϕ = −1
2
E[2α− sin(2α)] �= 0

M =
∫ α

−α

[τρϕρ
2]dϕ = 0




(7.5.15)

For ξ1 → −∞(R1 = 0), we have

ṽ
(a1)
0 =

1
FS
v

(a1)
0 (7.5.16)

That is the solution of an elastic wedge acted by a unit concentrated force
at the apex R1 = 0 and along the direction perpendicular to the symmetry
axis (see Fig. 7.6).

As eigenvectors ψ(a1)
0 and ψ(a0)

0 are symplectic adjoint, i.e.

〈ψ(a0)
0 , ψ

(a1)
0 〉 =

1
2
E[2α− sin(2α)] �= 0 (7.5.17)

Equation (7.5.12) is the dual solution of Eq. (7.5.6). Thus the Jordan form
chain for anti-symmetric eigen-solution of zero eigenvalue is terminated.

Fig. 7.6. An elastic wedge acted by a concentrated force at the apex and normal to the
symmetry axis.
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At this point, we should review the anti-symmetric solution in strip domain
in Chapter 4. The shortness of Jordan form chain of eigenvectors of zero
eigenvalue indicates the missing of some solutions. Here, it is noticed that
v

(a0)
0 and v(a1)

0 correspond to the solutions for lateral translation of rigid
body and constant shear bending in a strip domain. The corresponding
solutions for rotation of rigid body and pure bending are missing. The
eigen-solutions of eigenvalues µ = ±1 in a sector domain to be discussed in
the following sections provide an answer to the query.

7.5.2. Eigen-Solutions of µ = ±1

From Eqs. (7.3.24) and (7.3.30), the general solution for eigen-solutions
of nonzero eigenvalues corresponding to anti-symmetric deformation with
respect to ϕ = 0 is

uρ = B2 sin[(1 + µ)ϕ] +
3 − ν − µ− νµ

3 − ν + µ+ νµ
D2 sin[(1 − µ)ϕ]

uϕ = B2 cos[(1 + µ)ϕ] +D2 cos[(1 − µ)ϕ]

Sρ =
Eµ

1 + ν
B2 sin[(1 + µ)ϕ] +

Eµ(3 − µ)
3 − ν + µ+ νµ

D2 sin[(1 − µ)ϕ]

Sρϕ =
Eµ

1 + ν
B2 cos[(1 + µ)ϕ] − Eµ(1 − µ)

3 − ν + µ+ νµ
D2 cos[(1 − µ)ϕ]



(7.5.18)

Although the general solution (7.5.18) satisfies differential equations
(7.3.17) in the domain and the anti-symmetric conditions (7.3.33), it has
not satisfy the boundary conditions (7.4.1). Substituting Eq. (7.5.18) into
Eq. (7.4.1) yields

− Eµ

1 + ν
B2 sin[(1 + µ)α] +

Eµ(1 + µ)
3 − ν + µ+ νµ

D2 sin[(1 − µ)α] = 0

Eµ

1 + ν
B2 cos[(1 + µ)α] − Eµ(1 − µ)

3 − ν + µ+ νµ
D2 cos[(1 − µ)α] = 0



(7.5.19)

The determinant vanishes as B2 and D2 are not zero simultaneously. Hence
the transcendental equation for nonzero eigenvalue µ with respect to anti-
symmetric deformation is

sin(2µα) − µ sin(2α) = 0 (7.5.20)
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Obviously, −µ must be an eigenvalue if µ is an eigenvalue. This prop-
erty validates one of the characteristics of symplectic eigenvalue problems
(7.3.18).

Apparently, µ = ±1 is a root of Eq. (7.5.20) for an arbitrary α.
Hence, the eigen-solutions of eigenvalues µ = ±1 exist for anti-symmetric
deformation.

For µ = 1, we obtain B2 = 0 from Eq. (7.5.19). As D2 is an arbitrary
constant, D2 = 1 is assumed without loss of generality. Then the basic
eigen-solution of µ = 1 is

ψ
(a0)
1 =

{
0, 1, 0, 0

}T
(7.5.21)

The solution corresponding to the original problem (7.3.9) is

v
(a0)
1 = eξψ

(a0)
1 =

{
0, ρ, 0, 0

}T
(7.5.22)

and it is physically interpreted as rotation of rigid body about the origin.
For µ = −1, we obtain from Eq. (7.5.19)

B2 =
1 + ν

1 − ν
D2 cos(2α) (7.5.23)

Without loss of generality, it is assumed D2 = 1− ν and the eigen-solution
of µ = −1 is

ψ
(a0)
−1 =




2 sin(2ϕ)

(1 + ν) cos(2α) + (1 − ν) cos(2ϕ)

−2E sin(2ϕ)

−E cos(2α) + E cos(2ϕ)




(7.5.24)

The solution corresponding to the original problem is

v
(a0)
−1 = exp(−ξ)ψ(a0)

−1 = ρ−1ψ
(a0)
−1 (7.5.25)

and the stress field corresponding to this eigen-solution is

σρ = − 2
ρ2
E sin(2ϕ)

σϕ = 0

τρϕ =
1
ρ2
E[cos(2ϕ) − cos(2α)]




(7.5.26)
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This stress field results in a concentrated couple of forces at the apex of the
elastic wedge.

FN =
∫ α

−α

(−σρ cosϕ+ τρϕ sinϕ)ρdϕ = 0

FS =
∫ α

−α

(−σρ sinϕ− τρϕ cosϕ)ρdϕ = 0

M =
∫ α

−α

(τρϕρ
2)dϕ = E(sin(2α) − 2α cos(2α))




(7.5.27)

For general cases, i.e. α �= α̃ (tan(2α̃) = 2α̃, α̃ ≈ 0.715π),M �= 0, then
the eigen-solution is equivalent to a concentrated couple acting at the apex
of wedge. Thus v(a0)

1 and v(a0)
−1 are, respectively, the rotation of rigid body

and pure bending solutions in a sector domain. They correspond to the
rotation of rigid body and pure bending solutions in strip domain. Here,
ψ

(a0)
1 and ψ(a0)

−1 are symplectic adjoint, as

〈ψ(a0)
1 , ψ

(a1)
−1 〉 = E[sin(2α) − 2α cos(2α)] = M �= 0 (7.5.28)

and the solution of the wedge with a unit concentrated couple acting at the
apex (see Fig. 7.7) is

v =
1
M
v

(a0)
−1 =

1
ρM

ψ
(a0)
−1 (7.5.29)

In particular, we notice from Eq. (7.5.27) that M = 0 when α = α̃ and
ψ

(a0)
1 and ψ(a0)

−1 are no longer symplectic adjoint but rather they are sym-
plectic orthogonal. Hence, there exist eigenvectors symplectic adjoint with
ψ

(a0)
1 and ψ(a0)

−1 , respectively. However, it is rather puzzling here because
the stress components given by Eq. (7.5.29) become infinite. What is then

Fig. 7.7. The elastic wedge acted by a concentrated couple at the apex.
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the solution of the elastic wedge with a concentrated couple at the apex
in such a special instance? This is just the so-called paradox of an elastic
wedge. Although it is possible to apply a semi-inverse method to obtain the
solution of this paradox4,5, this solution methodology is rather irrational
and cannot be applied directly to other similar problems. In addition, the
solution is unable to provide a reasonable explanation for the paradox as
to what actually happens.

It should also be noted from Eq. (7.5.20) that for α �= α̃, µ = ±1
are nonrepeated single roots in general. Hence, there are no Jordan form
eigen-solutions for µ = ±1 and the eigenvectors ψ(a0)

1 and ψ(a0)
−1 are the

eigenvectors of µ = ±1. However, for α = α̃, µ = ±1 are double roots
of Eq. (7.5.20). In accordance with the derivation above there is only one
eigen-solution chain for each of µ = ±1. Hence, there exist other Jordan
form eigenvectors of eigenvalues µ = ±1 in addition to the eigenvectors
ψ

(a0)
1 and ψ(a0)

−1 .

By virtue of the method of mathematical physics, the equation for the
Jordan form eigenvectors of µ = 1 can be obtained by solving the following
equation

Hψ
(a1)
1 = ψ

(a1)
1 +ψ(a0)

1 (7.5.30)

Neglecting the details of derivation, the general solution of Eq. (7.5.30) is

uρ = c2 cos(2ϕ) + c3 sin(2ϕ) − 1 − ν

2
ϕ− (1 − ν)c0

uϕ = −c2 sin(2ϕ) + c3 cos(2ϕ) + c1

Sρ =
E

1 + ν

[
c2 cos(2ϕ) + c3 sin(2ϕ) − 1 + ν

2
ϕ− (1 + ν)c0

]

Sρϕ =
E

1 + ν

[
−c2 sin(2ϕ) + c3 cos(2ϕ) +

1 + ν

4

]




(7.5.31)

Substituting Eq. (7.5.31) into anti-symmetric conditions (7.3.33) and
boundary conditions (7.4.1) yields the coefficients as

c0 = c2 = 0, c3 = − 1 + ν

4 cos(2α̃)
(7.5.32)

and c1 denotes the basic eigenvector ψ(a0)
1 which can be superposed arbi-

trarily. Thus for α = α̃, the Jordan form eigen-solution corresponding to
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µ = 1 is

ψ
(a1)
1 =

1
4 cos(2α̃)




−(1 + ν) sin(2ϕ) − 2(1 − ν)ϕ cos(2α̃)

−(1 + ν) cos(2ϕ)

−E[sin(2ϕ) + 2ϕ cos(2α̃)]

E[cos(2α̃) − cos(2ϕ)]




(7.5.33)

For µ = −1, the Jordan form eigen-solution can be obtained by soling
the following equation

Hψ
(a1)
−1 = −ψ(a1)

−1 +ψ(a0)
−1 (7.5.34)

Neglecting the details of derivation, the eigen-solution satisfying the anti-
symmetric conditions (7.3.33) and the boundary conditions (7.4.1) is

ψ
(a1)
−1 =




−2ϕ cos(2ϕ) +
5 − ν

2
sin(2ϕ) + (1 + ν)ϕ cos(2α̃)

(2 − ν) cos(2ϕ) + (1 − ν)ϕ sin(2ϕ) + (1 + ν)(1 + 2α̃2) cos(2α̃)

−1
2
E sin(2ϕ) + Eϕ[2 cos(2ϕ) − cos(2α̃)]

E[ϕ sin(2ϕ) − α̃ sin(2α̃)]




(7.5.35)

Apparently the solution (7.5.35) can be superposed arbitrarily with any
basic eigenvectors. The solution of the original problem corresponding to
Eq. (7.5.35) is

v
(a1)
−1 = exp(−ξ)(ψ(a1)

−1 + ξψ
(a0)
−1 ) = ρ−1(ψ(a1)

−1 +ψ(a0)
−1 ln ρ) (7.5.36)

and the corresponding stress field is

σρ =
E

ρ2

{
−1

2
sin(2ϕ) + ϕ[2 cos(2ϕ) − cos(2α̃)] − 2 sin(2ϕ) ln ρ

}

σϕ =
E

ρ2

[
ϕ cos(2α̃) − 1

2
sin(2ϕ)

]

τρϕ =
E

ρ2
{ϕ sin(2ϕ) − α̃ sin(2α̃) + [cos(2ϕ) − cos(2α̃)] ln ρ}




(7.5.37)
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The solution results in a concentrated couple of forces at the apex of the
elastic wedge as

M̃ =
∫ α̃

−α̃

τρϕρ
2dϕ = −2Eα̃2 sin(2α̃) �= 0 (7.5.38)

Hence, the solution of paradox of elastic wedge with unit concentrated
couple of forces acting at the apex is

v =
1
M̃
v

(a1)
−1 =

1
ρM̃

[ψ(a1)
−1 +ψ(a0)

−1 ln ρ] (7.5.39)

which corresponds to the special Jordan form solution in Hamiltonian sys-
tem. The solution for the paradox with forces acting on two sides can be
obtained in the same way6.

Obviously, ψ(a0)
1 and ψ

(a1)
−1 as well as ψ(a1)

1 and ψ
(a0)
−1 are mutually

symplectic adjoint, as

〈ψ(a0)
1 , ψ

(a1)
−1 〉 = 〈ψ(a0)

−1 , ψ
(a1)
1 〉 = M̃ �= 0 (7.5.40)

whereas ψ(a1)
1 and ψ(a1)

−1 can be made symplectic orthogonal by a proper
choice of constant c1. Consequently, we have obtained all eigen-solutions
for µ = ±1 for angle of the wedge α = α̃.

It is interesting to note that ψ(a0)
1 and ψ(a0)

−1 are symplectic adjoint for
α �= α̃ while ψ(a0)

1 andψ(a1)
−1 are symplectic adjoint for α = α̃. It implies that

the eigen-solution for rotation of rigid body is always symplectic adjoint
with the eigen-solution of pure bending acted by a concentrated couple. It
further implies there are special dual relations between the eigen-solutions.

7.5.3. Eigen-Solutions of General Nonzero Eigenvalues

There are infinite eigenvalues for Eq. (7.5.20) in addition to the roots
µ = ±1. Besides, it can be proved that there is no pure imaginary root
for Eq. (7.5.20). Based on the characteristics of eigenvalue equation, it is
only necessary to determine the real roots for µ > 0 and the complex roots
in the first quadrant of the complex domain. For nonzero eigenvalues, the
transcendental equation (7.5.20) can be written as

sinx
x

=
sin(2α)

2α
where x = 2µα (7.5.41)

From the viewpoint of singular solution, we are more concern with the
root for |µ| < 1. First, we consider the wedge domain α < π/2 where
the right-hand-side of Eq. (7.5.41) is positive. As the function sinx/x is
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monotonously decreasing in 0 ≤ x < π, there is no root for |µ| < 1 and
hence no root for Re(µ) < 1.

Next, we consider the singularity in π/2 < α ≤ π where the right-hand-
side of Eq. (7.5.41) is negative. From Fig. 7.5, it is observed that there are
only solutions of µ = 1 for 2α < 2α̃ (tan 2α̃ = 2α̃, α̃ ≈ 0.715π); there exist
real roots µ < 1 for 2α̃ < 2α ≤ 2π; and µ = 1/2, 1, 3/2, . . . for α = π. There
are many complex roots of µ for other different values of α. The solution
methodology is similar to that of symmetric deformation and, therefore, the
details are omitted here. The numerical solutions are presented in Table 7.2.

The corresponding eigenvectors should be derived after obtaining the
eigenvalues. The procedure is as follows: the ratio of B2 to D2 is obtained
from Eq. (7.5.19), then D2 = 1 is assume without the loss of generality,
finally the constants are substituted into Eq. (7.5.18) to obtain the eigen-
vectors. These eigen-solutions are the basic components of the expansion
method with external loads and boundary conditions at ρ = R1 and ρ = R2.
The numerical computation can be accomplished by a computer program.
As the procedure has been clarified, the synthesis of specific equations is
thus neglected.

The case of a sector domain with free side boundaries has been discussed
at length above. In fact the sides are not necessarily free. The solution
methodology is also valid for cases with clamped sides or sides with mixed
boundary conditions due to different materials.

For the case with external forces acting on the side edges, the solutions
can be obtained by applying the eigenvector expansion method. Accord-
ingly, a number of eigen-solutions have been covered by the Saint–Venant
principle. The readers are referred to Chapter 4 for equality of the actual
solution procedure for the expansion method and the problem in a strip
domain. Through the solution procedure above, it is observed that some of
the common solutions in elasticity courses correspond to the eigen-solutions
of some special eigenvalues. The procedure for solution derivation in a
Hamiltonian system is completely rational and, furthermore, the solutions
for stress and displacement are obtained at the same time. Since the con-
cept is clear and the methodology can be outlined explicitly, the symplectic
approach has significant advantage. In addition, the expansion method can
also be outlined explicitly.

The main advantage of an analytical method is its capability of de-
riving an exact solution. Because the method is only applicable to prob-
lems in regular domains, a finite-element method is thus required to do the
computation for the whole structure. If the components (substructures)
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Table 7.2. The eigenvalue 2µα for anti-symmetric deformation of a sector domain.

α/(◦) 1 3 5 7 9 11
2 4 6 8 10 12

180 π 3π 5π 7π 9π 11π
2π 4π 6π 8π 10π 12π

170 2π − 2.948172 4π − 2.524356 6π − 1.736228 8π − 1.622449 10π − 1.617676 12π − 1.613832
−0.349066 −0.749255 −1.520924 ±0.821515i ±1.137183i ±1.362919i

160 2π − 2.718902 4π − 1.677034 6π − 1.658695 8π − 1.646442 10π − 1.637574 12π − 1.630808
−0.698132 ±0.706814i ±1.308939i ±1.654492i ±1.905229i ±2.103549i

150 2π − 2.456159 4π − 1.702609 6π − 1.676738 8π − 1.660332 10π − 1.648846 12π − 1.640282
−1.047247 ±1.201317i ±1.710587i ±2.036754i ±2.279830i ±2.474288i

120 2π − 2.094435 4π − 1.719585 6π − 1.688385 8π − 1.669172 10π − 1.655959 12π − 1.646228
−1.470587 ±1.459254i ±1.946271i ±2.266485i ±2.507054i ±2.700211i
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compose of regular domains, an analytic method can be applied to deter-
mine the relevant stiffness matrix which can then be linked to the parent
structure through the relations of substructures. Although solutions to in-
finite domain problems in a finite-element method are rather inconvenient,
the infinite domain can often be made up by a regular outer infinite domain
and an inner local domain. The stiffness matrix of the regular outer infi-
nite domain can be given by the expansion method of Hamiltonian system,
and it is then linked to the inner finite domain. In this way, the stiffness
matrix of the regular outer infinite domain is exact. This step is of great
significance for solving this kind of problems numerically.

An important application of problems in sector domain is the computa-
tion of singularity in fracture mechanics. The properties of singularity are
determined by the eigenvalue µ which depends on the material disposition
adjacent to the tip of crack and is independent of field properties far away.
The intensity of singularity is dependent to the surrounding structural and
loading conditions. For such cases, a finite element method is required be-
cause the whole structure is complicated. Here the sectorial domain at the
crack can be regarded as a super-element of the whole structure. The sec-
torial element can be solved by the analytical method. Here an element
stiffness matrix for the circle with centre at the tip of crack should be given
in order to link with the other parts of the structure. In this way, the stress
intensity factor can be computed. The element stiffness matrix of sectorial
domain can be computed by the eigenvector expansion method with the
variational principle. In fact this eigenvector expansion method is also ap-
plicable even for the singularity problem of adhesive interface of different
medium.

7.6. Hamiltonian System with Circumferential Coordinate
Treated as “Time”

In the former three sections, a Hamiltonian system with ξ treated as
the time coordinate and the transverse ϕ direction forces eliminated by
Eq. (7.3.1) was derived based on the transformation (7.2.3). In fact, ϕ can
also be treated as time and thus ξ becomes the transverse direction7. In a
similar way, the transverse forces should be eliminated in accordance with
the variational principle. The variation of Eq. (7.2.7) with respect to Sρ

yields

Sρ = E
∂uρ

∂ξ
+ νSϕ (7.6.1)
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Substituting into Eq. (7.2.7) and eliminating Sρ yield (for case without
external forces in the domain)

δ

∫ α

−α

∫ ξ2

ξ1

{
Sρϕ

∂uρ

∂ϕ
+ Sϕ

∂uϕ

∂ϕ
+ Sϕ

(
uρ + ν

∂uρ

∂ξ

)
− Sρϕ

(
uϕ − ∂uϕ

∂ξ

)

+
1
2
E

(
∂uρ

∂ξ

)2

− 1
2E

[(
1 − ν2

)
S2

ϕ + 2 (1 + ν)S2
ρϕ

]}
dξdϕ = 0

(7.6.2)

This is the mixed energy variational principle in a Hamiltonian system. The
dual variables of the displacements uρ, uϕ are, respectively, Sρϕ, Sϕ. Let

q =
{
uρ, uϕ

}T
, p =

{
Sρϕ, Sϕ

}T
(7.6.3)

and denote differentiation with respect to ϕ by a dot, then Eq. (7.6.2) can
be written as

δ

∫ α

−α

∫ ξ2

ξ1

[pTq̇ − H (q,p)] dξdϕ = 0 (7.6.4)

where the Hamiltonian density function is

H (q,p) = Sρϕ

(
uϕ − ∂uϕ

∂ξ

)
− Sϕ

(
uρ + ν

∂uρ

∂ξ

)

− 1
2
E

(
∂uρ

∂ξ

)2

+
1

2E
[
(1 − ν2)S2

ϕ + 2(1 + ν)S2
ρϕ

]
(7.6.5)

This is a Hamiltonian system expression for field problems and it is in the
form of variational principle. Expanding the variation expression yields the
Hamiltonian dual equations

q̇ = Aq +Dp

ṗ = Bq −ATp

}
(7.6.6)

where

A =


 0 1 − ∂·

∂ξ

−1 − ν
∂·
∂ξ

0


, AT =


 0 −1 + ν

∂·
∂ξ

1 +
∂·
∂ξ

0




D =




2(1 + ν)
E

0

0
1 − ν2

E


, B =


−E ∂2·

∂ξ2
0

0 0







(7.6.7)
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In the Hamiltonian variational principle (7.6.4), the free boundary con-
ditions are treated as variational natural boundary conditions. The free
boundary conditions on two sides ξ = ξ1 and ξ = ξ2 are

E
∂uρ

∂ξ
+ νSϕ = 0, Sρϕ = 0 (7.6.8)

No external loads have been applied and no boundary conditions at ϕ = ±α
have been imposed in the derivation above. Hence, the resultant equations
are a set of homogeneous equations.

Introduce a full state vector

v =

{
q

p

}
=

{
uρ, uϕ, Sρϕ, Sϕ

}T
(7.6.9)

then Eq. (7.6.6) can be rewritten as

v̇ =Hv (7.6.10)

where the Hamiltonian operator matrix is

H =

[
A D

B −AT

]
(7.6.11)

The dual equation (7.6.10) with the boundary conditions (7.6.8) is a lin-
ear system. Thus the superposition principle is applicable, and the method
of separation of variables is particularly effective. Let

v(ξ, ϕ) = eµϕψ(ξ) (7.6.12)

where µ is the eigenvalue and ψ(ξ) the eigenvector which is a function of ξ.
The eigenvalue equation is

Hψ(ξ) = µψ(ξ) (7.6.13)

In addition, the eigenvector ψ(ξ) is required to satisfy the boundary con-
ditions (7.6.8).

To discuss the properties of the operator matrix H, denote

〈v1,v2〉 =
∫ ξ2

ξ1

vT
1 Jv2dξ (7.6.14)

where J is a unit symplectic matrix defined in Eq. (7.3.12). Obviously
Eq. (7.6.14) satisfies the four conditions of symplectic inner product (1.3.2).
According to the definition of symplectic inner product (7.6.14), the full
state vectors v form a symplectic space.
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By integration by parts, if v1,v2 are continuously differentiable full state
vectors which satisfy the boundary conditions (7.6.8), we have an identity

〈v1,Hv2〉 ≡ 〈v2,Hv1〉 (7.6.15)

Hence, the operator matrix H is a Hamiltonian operator matrix in the
symplectic space. The eigenvalue problem of Hamiltonian operator matrix
H has some special characteristics, i.e. −µ is also an eigenvalue if µ is an
eigenvalue of H . These eigenvalues can be divided into two sets:

(α) µi,Re(µi) < 0 or Re(µi) = 0 ∧ Im(µi) < 0 (i = 1, 2, . . .)

(7.6.16a)

(β) µ−i = −µi (7.6.16b)

Furthermore, the eigenvectors are adjoint symplectic orthonormal.
Having determined the eigenvectors, the eigenvector expansion method

can be implemented. The relevant discussion is entirely the same as what
presented in the foregoing sections and, therefore, the details are omit-
ted here.

The following discussion is restricted to the solution of eigenvectors.

7.6.1. Eigen-Solutions of Zero Eigenvalue

The eigen-solutions of zero eigenvalue are not included in the classifica-
tion in Eq. (7.6.16), but they are the most important eigen-solutions. The
equations for eigen-solution of zero eigenvalue are listed as follows:

0 +uϕ − duϕ

dξ
+

2(1 + ν)
E

Sρϕ +0 = 0

−uρ − ν
duρ

dξ
+0 +0 +

1 − ν2

E
Sϕ = 0

−E d2uρ

dξ2
+0 +0 +Sϕ − ν

dSϕ

dξ
= 0

0 +0 −Sρϕ − dSρϕ

dξ
+0 = 0




(7.6.17)

From the fourth equation and the boundary conditions (7.6.8), we have

Sρϕ = 0 (7.6.18)
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then substituting into the first of Eq. (7.6.17) yields

uϕ = eξ = ρ (7.6.19)

Solving simultaneously the second and third expression of Eq. (7.6.17)
yields

uρ = c1eξ + c2e−ξ, Sϕ =
E

1 − ν
c1eξ +

E

1 + ν
c2e−ξ (7.6.20)

then substituting the solution into boundary conditions (7.6.8) yields the
integral constants

c1 = c2 = 0 (7.6.21)

Hence, the basic eigenvector of zero eigenvalue is

ψ
(0)
0 =

{
0, eξ, 0, 0

}T
(7.6.22)

It is the solution of the original problem (7.6.10), as

v
(0)
0 = ψ

(0)
0 (7.6.23)

and it is physically interpreted as rigid body rotation.
The Jordan form eigenvector exists as there is only one chain for this

eigenvector of zero eigenvalue. The corresponding equation is

0 +uϕ − duϕ

dξ
+

2(1 + ν)
E

Sρϕ +0 = 0

−uρ − ν
duρ

dξ
+0 +0 +

1 − ν2

E
Sϕ = eξ

−E d2uρ

dξ2
+0 +0 +Sϕ − ν

dSϕ

dξ
= 0

0 +0 −Sρϕ − dSρϕ

dξ
+0 = 0




(7.6.24)

Similar to the solution procedure of the basic eigen-solution (7.6.17), from
the first and the fourth equations and the boundary conditions (7.6.8), we
obtain

uϕ = ceξ, Sρϕ = 0 (7.6.25)

As uϕ = ceξ implies a basic eigen-solution which can be superposed arbi-
trarily, it is possible to assume c = 0 without loss of generality.
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Similarly, solving simultaneously the second and the third expression of
Eq. (7.6.24) yields

uρ = c3eξ + c4e−ξ +
1 − ν

2
ξeξ

Sϕ =
E

1 − ν
c3eξ +

E

1 + ν
c4e−ξ +

E

2
eξ

(
ξ +

2 − ν

1 − ν

)



(7.6.26)

where c3, c4 are undetermined constants. Substituting the solution into the
boundary conditions (7.6.8), the constants are

c3 = −1
2

[
1 + (1 − ν)

R2
2 lnR2 −R2

1 lnR1

R2
2 −R2

1

]

c4 = − (1 + ν)R2
2R

2
1

2(R2
2 −R2

1)
ln

(
R2

R1

)



(7.6.27)

Thus the first-order Jordan form eigenvector is

ψ
(1)
0 =




c3ρ+ c4
1
ρ

+
1 − ν

2
ρ ln ρ

0

0

E

1 − ν
c3ρ+

E

1 + ν
c4

1
ρ

+
E

2
ρ

(
ln ρ+

2 − ν

1 − ν

)




(7.6.28)

which is not the solution of the original problem (7.6.10). The actual solu-
tion is

v
(1)
0 = ψ

(1)
0 + ϕψ

(0)
0 (7.6.29)

which is physically interpreted as the pure bending of a curved beam.
As the eigenvectors ψ(1)

0 and ψ(0)
0 are mutually symplectic adjoint,

〈ψ(0)
0 ,ψ

(1)
0 〉 =

E[(R2
2 −R2

1)2 − 4R2
2R

2
1 ln2(R2/R1)]

8(R2
2 −R2

1)
> 0 (7.6.30)

the second-order Jordan form eigenvector does not exist. This fact can be
proved by directly solving the solution.

It is well known that there are six eigen-solutions of zero eigenvalue for
plane problems in a rectangular domain. These solutions are not covered
by the Saint–Venant principle. For problems in a sector domain, there are
only two eigen-solutions of zero eigenvalue and this fact is similar to the
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Hamiltonian system with radial coordinate treated as “time”. Apparently,
four eigen-solutions are missing. The eigen-solutions of zero eigenvalue do
not decay with increasing or decreasing coordinate ϕ. Because the eigen-
solutions of pure imaginary eigenvalues also do not decay with increasing or
decreasing coordinate ϕ, they are basic solutions requiring further analysis.

7.6.2. Eigen-Solutions of µ = ±i

To obtain the eigen-solutions of nonzero eigenvalues, the eigenvalue equa-
tion (7.6.13) should be expanded as

−µuρ +uϕ − duϕ

dξ
+

2(1 + ν)
E

Sρϕ +0 = 0

−uρ − ν
duρ

dξ
−µuϕ +0 +

1 − ν2

E
Sϕ = 0

−E d2uρ

dξ2
+0 −µSρϕ +Sϕ − ν

dSϕ

dξ
= 0

0 +0 −Sρϕ − dSρϕ

dξ
−µSϕ = 0




(7.6.31)

This is a system of simultaneous ordinary differential equations with respect
to ξ which can be solved by firstly determining the eigenvalues λ in the ξ
direction. The corresponding characteristic polynomial is

det




−µ 1 − λ 2(1 + ν)/E 0

−1 − νλ −µ 0 (1 − ν2)/E

−Eλ2 0 −µ 1 − νλ

0 0 −1 − λ −µ


 = 0 (7.6.32)

Expanding the determinant yields

λ4 − 2(1 − µ2)λ2 + (1 + µ2)2 = 0 (7.6.33)

and the solutions are

λ1,2 = ±(1 + iµ), λ3,4 = ±(1 − iµ) (7.6.34)

The expressions of general solutions are different for different eigenvalues
µ which are still undetermined. From the expressions in Eqs. (7.6.34), there
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is a repeated root 0 in addition to the roots 2 and −2 for µ = ±i. Hence,
the general solution is

uρ = A1 +A2ξ +A3e2ξ +A4e−2ξ

uϕ = B1 +B2ξ +B3e2ξ +B4e−2ξ

Sρϕ = C1 + C2ξ + C3e2ξ + C4e−2ξ

Sϕ = D1 +D2ξ +D3e2ξ +D4e−2ξ




(7.6.35)

The constants are not independent. Substituting Eq. (7.6.35) into
Eq. (7.6.31) yields

A2 = − (1 + ν)(3 − ν)
E(1 − ν)

µC1; D1 = µC1; C2 = D2 = 0

B1 = µA1 +
(1 + ν)2

E(1 − ν)
C1, B2 =

(1 + ν)(3 − ν)
E(1 − ν)

C1




(7.6.36)

and

A3 =
1 − 3ν

2E
µC3, B3 =

5 + ν

2E
C3, D3 = 3µC3

A4 = −1 + ν

2E
µC4, B4 = −1 + ν

2E
C4, D4 = −µC4


 (7.6.37)

Substituting Eqs. (7.6.35)–(7.6.37) into the boundary conditions (7.6.8)
yields

C1 = C3 = C4 = 0 (7.6.38)

The eigen-solution corresponding to eigenvalue µ = i is

ψ
(0)
i =

{
1, i, 0, 0

}T
(7.6.39)

and that corresponding to µ = −i is

ψ
(0)
i =

{
1, −i, 0, 0

}T
(7.6.40)

The solutions of the original problem (7.6.10) thus formed are

v
(0)
i = eiϕψ

(0)
i and v

(0)
−i = e−iϕψ

(0)
−i (7.6.41)
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respectively. These two solutions are mutually complex conjugate eigen-
solutions. Separating the real and imaginary parts yields

v
(0)
iR =

{
cosϕ, − sinϕ, 0, 0

}T
(7.6.42a)

v
(0)
iI =

{
sinϕ, cosϕ, 0, 0

}T
(7.6.42b)

which correspond to rigid body translations along two perpendicular
directions.

Obviously ψ(0)
i and ψ(0)

−i are not mutually symplectic adjoint but rather
they are symplectic orthogonal. Therefore, there exist next order Jordan
form solutions. For instance, for the first-order eigen-solution corresponding
to µ = i, the equation is

Hψ
(1)
i = iψ(1)

i +ψ(0)
i (7.6.43)

This is an inhomogeneous equation. The general solution for the corre-
sponding homogeneous equation is given by Eqs. (7.6.35)–(7.6.37) while
the particular solution of the inhomogeneous equation is

{
2

1 − ν
iξ, −1 + ν + 2ξ

1 − ν
, 0, 0

}T

(7.6.44)

Superposing Eqs. (7.6.44) and (7.6.35) yields the general solution of
Eq. (7.6.43). Substituting the general solution into the side boundary con-
ditions (7.6.8) yields

ψ
(1)
i =

{
iu(1)

ρ , u
(1)
ϕ , S

(1)
ρϕ , iS(1)

ϕ

}T

(7.6.45)

where

u
(1)
ρ =

1
2
(1 − ν)ξ + a(1 − 3ν)e2ξ + b(1 + ν)e−2ξ

u
(1)
ϕ = −1

2
[1 + ν + (1 − ν)ξ] + a(5 + ν)e2ξ + b(1 + ν)e−2ξ

S
(1)
ρϕ = E

(
1
2

+ 2ae2ξ − 2be−2ξ

)

S
(1)
ϕ = E

(
1
2

+ 6ae2ξ + 2be−2ξ

)




(7.6.46)
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and

a =
−1

4(R2
1 +R2

2)
, b = −aR2

1R
2
2 (7.6.47)

The corresponding solution of the original problem is

v
(1)
i = eiϕ(ψ(1)

i + ϕψ
(0)
i ) (7.6.48)

The solution above is the Jordan form solution of µ = i. For the Jordan form
solution of µ = −i, it is only required to determine the complex conjugate
of Eq. (7.6.45).

The complex expression of Eq. (7.6.48) is better be transformed into
the real form. Separating the real part and imaginary parts of Eq. (7.6.48),
yields

v
(1)
iR =




ϕ cosϕ− u
(1)
ρ sinϕ

−ϕ sinϕ+ u
(1)
ϕ cosϕ

S
(1)
ρϕ cosϕ

−S(1)
ϕ sinϕ




; v
(1)
iI =




ϕ sinϕ+ u
(1)
ρ cosϕ

ϕ cosϕ+ u
(1)
ϕ sinϕ

S
(1)
ρϕ sinϕ

S
(1)
ϕ cosϕ



(7.6.49)

Both of the real solutions are the solutions of the original problem.
Besides the eigen-solutions with zero eigenvalue (7.6.23) and (7.6.29),

the eigen-solutions (7.6.43) and (7.6.49) with µ = ±i cannot be covered with
Saint–Venant principle yet. The six solutions formed the basic solutions of
the bending problem of curved beam.

Similar to a straight beam, therefore, the bending problem of a curved
beam can be solved through the expansion of the six eigen-solutions
ψ

(0)
0 ,ψ

(1)
0 ,ψ

(0)
i ,ψ

(0)
−i ,ψ

(1)
i and ψ(1)

−i as the basis. Consequently, all local ef-
fects which decay with respect to distance are neglected in accordance with
the Saint–Venant principle.

7.6.3. Eigen-solutions of General Nonzero Eigenvalues

In the previous two sections, the non-decaying eigen-solutions of µ = 0
and µ = ±i are analyzed. The general solution for the eigen-solutions of
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µ �= 0,±i with four different roots as given by Eq. (7.6.34) is

uρ = A1eλ1ξ +A2eλ2ξ +A3eλ3ξ +A4eλ4ξ

uϕ = B1eλ1ξ +B2eλ2ξ +B3eλ3ξ +B4eλ4ξ

Sρϕ = C1eλ1ξ + C2eλ2ξ + C3eλ3ξ + C4eλ4ξ

Sϕ = D1eλ1ξ +D2eλ2ξ +D3eλ3ξ +D4eλ4ξ




(7.6.50)

The constants are not independent and they are required to satisfy
Eq. (7.6.13). If Aj (j = 1, 2, 3, 4) are chosen as the independent constants,
then the constants are related by

Bj =
(1 + λj)λ2

j − (1 + νµ2)λj − µ2 − 1
µ(µ2 + 1 + λj − νλj − νλ2

j )
Aj

Cj =
−Eµλ2

j

µ2 + 1 + λj − νλj − νλ2
j

Aj

Dj =
Eλ2

j (1 + λj)
µ2 + 1 + λj − νλj − νλ2

j

Aj




(j = 1, 2, 3, 4) (7.6.51)

Substituting Eqs. (7.6.49) and (7.6.50) into the boundary conditions (7.6.8)
yields a set of four homogeneous equations. Setting the determinant of co-
efficient to zero yields the transcendental equation of eigenvalue µ. Subse-
quently, substituting the eigenvalues into the homogeneous equations yields
ratios between the constants Aj (j = 1, 2, 3, 4). Consequently, the corre-
sponding eigenvectors are determined.

Having obtained the eigenvectors, the expansion theorem can be applied
to derive the solution. The solution procedure is similar to the discussion
in the previous few chapters and thus the details are omitted here.
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Chapter 8

Hamiltonian System for Bending of Thin Plates

In this chapter we introduce in detail the theory of analogy between plane
elasticity and thin plate bending problems. We then present another set of
fundamental equations for the classical bending theory of thin plates. We
further establish the Pro-H-R variational principle and the Pro-Hu–Washizu
variational principle for bending of thin plate and derive the multi-variable
variational principles for thin plate bending and plane elasticity. Based on
the analogy theory, subsequently, the Hamiltonian system and its symplec-
tic geometry theory are directly applied to the thin plate bending problem
to derive a system of Hamiltonian symplectic solution. Consequently the
thin plate bending problem can be analyzed using a rational Hamiltonian
approach.

8.1. Small Deflection Theory for Bending of Elastic
Thin Plates

Plate is one of the most important structural elements and the solution
for mechanics of plate has long been an important research area in solid
mechanics. A plate with a ratio of thickness to minimum characteristic
dimension greater than 1/5 is called a thick plate. A plate with a ratio
smaller than 1/80 is called a membrane plate. For a ratio between 1/80
and 1/5, the plate is called a thin plate. The middle plane dividing the
plate into two equal parts is called the neutral plane. The neutral plane is
normally assigned as the xy-plane with the positive direction of the z-axis
pointing downwards.

If a thin plate is stable when subject to external loads acting on the
neutral plane, it becomes a plane stress problem. If all external loads are
normal to the neutral plane, we have mainly bending deformation where the
z-displacement of each point on the neutral plane is called the deflection
of plate. If the deflection is less than or equal to 1/5 of the thickness, it is
a small deflection problem.

225
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The basic assumption of small deflection theory of thin plate was first
established by Kirchhoff and hence it is called the Kirchhoff hypoth-
esis. It states that a straight line normal to the neutral plane remains
straight and normal to the deflected plane after deformation. Besides,
the length of line is invariant before and after deformation which is com-
monly known as transverse inextensibility. According to this hypothesis we
have

γxz = γyz = εz = 0 (8.1.1)

We can also deduce that there is only transverse displacement w dur-
ing bending for every point on the neutral plane. Bending occurs with-
out displacements along the x- and y-direction on the neutral plane.
Hence

(u)z=0 = (v)z=0 = 0, (w)z=0 = w(x, y) (8.1.2)

Because of εz = 0, the displacement w is independent of the transverse
z-coordinate and it is only a function of the in-plane coordinates x and y, or

w = w(x, y) (8.1.3)

From γxz = γyz = 0 and the geometric relations (2.2.2), we have

∂u

∂z
= −∂w

∂x
,

∂v

∂z
= −∂w

∂y
(8.1.4)

Integrating the above expression with respect to z and making use of
Eq. (8.1.2) yield

u = −z ∂w
∂x

, v = −z ∂w
∂y

(8.1.5)

Further applying the geometric relations (2.2.2) yields

εx = −zκx, εy = −zκy, γxy = 2zκxy (8.1.6)

where

κx =
∂2w

∂x2
, κy =

∂2w

∂y2
, κxy = − ∂2w

∂x∂y
(8.1.7)

are curvature and twisting curvature of the plate, respectively.
Equation (8.1.7) is the curvature-deflection relation which can also be



December 16, 2008 15:56 B-599 9in x 6in ch08

Hamiltonian System for Bending of Thin Plates 227

expressed in terms of operator matrix K(∂) as

κ =K(∂)w (8.1.7′)

where

κ = {κy, κx, κxy}T (8.1.8)

and the operator matrix K(∂) is

K(∂) =




∂2

∂y2

∂2

∂x2

− ∂2

∂x∂y




(8.1.9)

From Eqs. (8.1.5) and (8.1.6), the displacements u, v and the strain com-
ponents εx, εy, γxy are linearly distributed through the thickness of plate.
These quantities vanish on the neural mid-plane and they have maxima on
the top and bottom surfaces.

Since the normal stress perpendicular to the neutral plane is consider-
ably small and negligible as compared with σx, σy and τxy, the stress-strain
relations (2.3.13) can be simplified as

σx =
E

1 − ν2
(εx + νεy)

σy =
E

1 − ν2
(εy + νεx)

τxy =
E

2(1 + ν)
γxy




(8.1.10)

Substituting Eq. (8.1.6) into Eq. (8.1.10) yields

σx = − Ez

1 − ν2
(κx + νκy)

σy = − Ez

1 − ν2
(κy + νκx)

τxy =
Ez

1 + ν
κxy




(8.1.11)

Figure 8.1 shows a rectangular differential element of the plate formed
by two pairs of planes parallel to the xz - and yz -coordinate planes.
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Fig. 8.1. Directions of positive internal forces on plate.

The normal stresses on the side of element result in a couple of forces (i.e.
bending moment). The moment per unit length is

Mx =
∫ h/2

−h/2

(−σxz)dz = D(κx + νκy)

My =
∫ h/2

−h/2

(−σyz)dz = D(κy + νκx)




(8.1.12)

whereD is the flexural rigidity (bending stiffness) of plate expressed as

D =
Eh3

12(1 − ν2)
(8.1.13)

The shear stresses τxy also result in a couple (i.e. torsional moment) and
the moment per unit length is

Mxy =
∫ h/2

−h/2

τxyzdz = D(1 − ν)κxy (8.1.14)

Combining Eqs. (8.1.12) and (8.1.14) yields the moment-curvature relation

m = Cκ or κ = C−1m (8.1.15)

where

m = {My,Mx, 2Mxy}T (8.1.16)

and the elasticity coefficient matrix of material is

C = D




1 ν 0

ν 1 0

0 0 2(1 − ν)


 (8.1.17)
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The strain energy density in terms of curvature is

vε(κ) =
1
2
κTCκ =

1
2
D[κ2

x + κ2
y + 2νκxκy + 2(1 − ν)κ2

xy] (8.1.18)

and the moment-curvature relation (8.1.15) can also be expressed in terms
of the strain energy density as

m =
∂vε(κ)
∂κ

= Cκ (8.1.19)

On transforming all independent variables κ of strain energy density vε in
accordance with Legendre’s transformation, i.e. introducing the following
function (strain complementary energy density)

vc(m) = mTκ− vε(κ) =
1
2
mTC−1m =

6
Eh3

[M2
x +M2

y − 2νMxMy

+ 2(1 + ν)M2
xy] (8.1.20)

we can express curvature κ in terms of moment m as

κ =
∂vc(m)
∂m

= C−1m (8.1.21)

Referring to the element in Fig. 8.1, the following shear forces

FSx =
∫ h/2

−h/2

(−τxz)dz, FSy =
∫ h/2

−h/2

(−τyz)dz (8.1.22)

exist on the sides in addition to moment. According to Eq. (8.1.1), τxz, τyz

should vanish if the stress-strain relations is applied directly. In fact these
are higher-order quantities comparing with σx, σy and τxy and their ef-
fect on deformation is negligible. However, they are necessary for ensur-
ing equilibrium and their values can be determined from the equations of
equilibrium.

Consider a rectangular differential plate element with sides dx, dy and
thickness h for a plate with transverse load q(x, y). The internal forces
acting on the four sides are illustrated in Fig. 8.2.

Projecting all forces acting on the element onto the z-axis, we obtain
the following equation of equilibrium

∂FSx

∂x
+
∂FSy

∂y
− q = 0 (8.1.23)
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Fig. 8.2. Equilibrium of internal forces on plate element.

Taking moments of all forces acting on the element with respect to the
y-axis and neglecting higher-order small quantities, we obtain the following
equation of equilibrium

∂Mx

∂x
− ∂Mxy

∂y
− FSx = 0 (8.1.24)

In the same way, we obtain

∂My

∂y
− ∂Mxy

∂x
− FSy = 0 (8.1.25)

Since there are no forces in the x- and y-directions and no moments with
respect to the z-axis on the element, Eqs. (8.1.23)–(8.1.25) completely define
the state of equilibrium of the element, or they are the equilibrium equations
of internal forces for plate bending. Substituting Eqs. (8.1.24) and (8.1.25)
into Eq. (8.1.23), we obtain the equilibrium equation in terms of bending
moment and torsional moment as

∂2Mx

∂x2
− 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
= q (8.1.26)

In terms of the following operator matrix

K̂(∂) =
{
∂2

∂y2
,

∂2

∂x2
, − ∂2

∂x∂y

}
(8.1.27)

Equation (8.1.26) can be expressed as

K̂(∂)m = q (8.1.28)
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Finally, substituting the moment-curvature relation (8.1.15) and the
curvature-deflection relation (8.1.7) into the equation above, we obtain
the basic governing equation in terms of displacement for bending of thin
plates as

∇2∇2w =
q

D
(8.1.29)

where ∇2 is the two-dimensional Laplace operator

∇2 =
∂2

∂x2
+

∂2

∂y2
(8.1.30)

The various boundary conditions for thin plate are discussed here. We
consider a rectangular plate as an example and assume the x- and y-axes
are parallel to the sides of plate. We focus on the side AB of plate at y = b.

From statics viewpoint, the distributed torsional moment is equivalent
to shearing force. Hence the torsional moment Mxydx acting on one side
with differential length dx can be replaced equivalently by two forces of
magnitude Mxy acting on two opposite sides as shown in Fig. 8.3. The tor-
sional moment [Mxy + (∂Mxy/∂x)dx]dx acting on the adjacent side with
differential length dx can be replaced equivalently by two forces of magni-
tude Mxy +(∂Mxy/∂x)dx acting on two opposite sides. On the intersecting
boundary the resultant force is (∂Mxy/∂x)dx which can be replaced by
distributed shear force ∂Mxy/∂x along dx. When it is combined with the
original transverse shear force FSy, we obtain the total equivalent shear
force on side AB as

FVy = FSy − ∂Mxy

∂x
(8.1.31)

Fig. 8.3. Static equivalence for torsional moment on side AB of plate.
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The positive direction of equivalent distributed shear force FVy coincides
with that of FSy. It should be noted that there are two concentrated forces
(Mxy)A and (Mxy)B at the ends A and B of side AB. As there are also con-
centrated forces on the adjacent sides, there will be a resultant concentrated
force at each corner, 2(Mxy)B at point B, for instance.

Thus we obtain the various boundary conditions along y = b of the
plate. In general, we have

(1) For a clamped edge, the deflection and rotation must be zero, i.e.

(w)y=b = 0,
(
∂w

∂y

)
y=b

= 0 (8.1.32)

(2) For a simply supported edge, the deflection and bending moment must
be zero, i.e.

(w)y=b = 0, (My)y=b = 0 (8.1.33)

(3) For a free edge, the bending moment and total equivalent shear force
must be zero, i.e.

(My)y=b = 0, (FVy)y=b = 0 (8.1.34)

If two adjacent sides are both free, there should be a further corner con-
dition. Assuming point B is the corner of two adjacent free sides without
support, there is

2(Mxy)B = 0 (8.1.35)

while there is

(w)B = 0 (8.1.36)

if there is a support at point B. The boundary conditions for other edges
can be obtained in a similar way.

8.2. Analogy between Plane Elasticity and Bending
of Thin Plate

The fundamental equation for thin plate bending is a biharmonic equation
(8.1.29) established by Lagrange and Germain in the 19th century. Since
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then the basic problem lies in the solution of this equation. Although very
effective for isotropic plate with two opposite sides simply supported, the
classical semi-inverse methods such as Naiver’s method and Levy’s method
are difficult to be applied to cases with complicated boundary conditions,
especially for bending of anisotropic plates.

The Airy stress function satisfying the biharmonic equation1−6 has
been adopted for the classical solutions of plane elasticity problems. Be-
cause the fundamental equations are the same, the plane elasticity prob-
lem and the thin plate bending problem must be similar to each other.
This fact has been noticed by many researchers7, such as Southwel8.
As these two types of problems have their respective backgrounds and
the corresponding solution methodologies, the analogy has not been fully
exploited.

For the fundamental equation of thin plate bending (8.1.29), the effect of
transverse load q can be solved via a particular solution and subsequently
applying the principle of superposition. Hence, we consider the homoge-
neous equation with q = 0 in the first instance

∇2∇2w = 0 (8.2.1)

Referring to Sec. 4.1, we know that the Airy stress function ϕf for plane
elasticity also satisfies the biharmonic equation

∇2∇2ϕf = 0 (8.2.2)

Taking advantage of such similarity, the analogy between the two kinds
of problems can be established9. For instance, curvatures κy, κx, κxy of
plate bending correspond to stresses σx, σy, τxy of plane elasticity; and mo-
ment Mx,My, 2Mxy of plate bending correspond to strains εx, εy, γxy of
plane elasticity. Except the reversal of the sign of Poisson’s ratio ν, the
moment-curvature relation (8.1.19) corresponds one-to-one to the strain-
stress relation (4.1.3) of plane elasticity.

According to the analogy, we introduce the bending moment func-
tions φ = {φx, φy}T for thin plate bending corresponding to the
displacement u, v of plane elasticity. Hence, there exist the following rela-
tions between moment and bending moment function for thin plate bending
corresponding to the geometric relation (4.1.5) of plane elasticity,

My =
∂φx

∂x
, Mx =

∂φy

∂y
, 2Mxy =

∂φx

∂y
+
∂φy

∂x
(8.2.3)
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In terms of the operator matrix

Ê(∇) =




∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x




(8.2.4)

they can be expressed as

m = Ê(∇)φ (8.2.5)

The homogeneous equation (8.1.26) is satisfied by substituting Eq. (8.2.3)
into the equation.

Now we introduce some properties of bending moment function.
Similar to rigid body displacements of plane elasticity, at a first instance,

it should be noticed that the functions

φx = a0 − a2y, φy = a1 + a2x (8.2.6)

where a0, a1, a2 are arbitrary constants do not result in any bending mo-
ment. These functions are called null moment functions.

Next, the transformation equations of bending moment functions φx,
φy under rotation of coordinate system should be considered. For rotation
of coordinate system at an angle α, the bending moments transform as

M ′
x = Mx cos2 α+My sin2 α− 2Mxy sinα cosα

M ′
y = Mx sin2 α+My cos2 α+ 2Mxy sinα cosα

M ′
xy = Mxy(cos2 α− sin2 α) + (Mx −My) sinα cosα


 (8.2.7)

Accordingly, φx and φy transform as

φ′x = φx cosα+ φy sinα

φ′y = −φx sinα+ φy cosα

}
(8.2.8)

It is obvious that Eq. (8.2.3) is still valid in the new coordinate system
(x′, y′). Hence the transformation rule for φx, φy is the same as that of
vector and they can be termed bending moment function vector.

Next we discuss the boundary conditions. For simplicity, we consider a
straight boundary with n denoting the normal and s the tangential direction
and (n, s) forms a right-hand system. Denoting (φn, φs) as the bending
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moment function on the boundary, the shear force on the lateral edge from
Eq. (8.1.24) is

FSn =
∂Mn

∂n
− ∂Mns

∂s
=

1
2

(
∂2φs

∂n∂s
− ∂2φn

∂s2

)
(8.2.9)

From theory of thin plate bending, there are the normal bending mo-
ment Mn and equivalent shear force FVn on the boundary Γσ with specified
forces. The boundary conditions in terms of bending moment function are

(Mn =)
∂φs

∂s
= Mn,

(
FVn = FSn − ∂Mns

∂s
=
)
− ∂2φn

∂s2
= FVn (8.2.10)

The differential terms in Eq. (8.2.10) are only with respect to the boundary-
coordinate s and upon integration we have

φs = φs =
∫ s

s0

Mnds′ + a1

φn = φn =
∫ s

s0

(s′ − s)FVnds′ + a0 + a2s


 (8.2.11)

where a0, a1, a2 are undetermined constants and the rests are all known
function. Since there may be separated segments of force conditions on the
boundary, it is not possible to eliminate all a0, a1, a2 of each segment. How-
ever, in the light of arbitrariness of null moment functions, it is always pos-
sible to eliminate the three constants of one particular segment. Referring
to plane elasticity, φn, φs correspond to the normal and tangential displace-
ments un, us. Hence the force boundary conditions of thin plate bending
correspond to the displacement boundary conditions of plane elasticity. In
addition, there are equilibrium conditions at corners for thin plate bending.

From the theory of thin plate bending, deflection w and rotation θn

should be specified on the boundary Γu with specified displacements. These
are functions of s. Hence, the boundary conditions in terms of curvatures are

κns

(
= − ∂2w

∂n∂s

)
= κns

(
= −∂θn

∂s

)
, κs

(
=
∂2w

∂s2

)
= κs

(
=
∂2w

∂s2

)
(8.2.12)

Integrating Eq. (8.2.12) along boundary s yields displacement boundary
conditions which θn and w are specified. The boundary conditions (8.2.12)
can also be represented in terms of the components of curvature in the
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original coordinate system as

κx sinα+ κxy cosα = κs sinα+ κns cosα

κxy sinα+ κy cosα = κs cosα− κns sinα

}
(8.2.13)

where angle α is the anticlockwise rotation from the axis x to the normal n.
Apparently, the boundary conditions (8.2.12) or (8.2.13) are the same as
the boundary conditions for specified forces in plane elasticity.

There exists corresponding relationship between the fundamental equa-
tion and boundary conditions of thin plate bending and those of plane
elasticity. In other words, there is analogy between thin plate bending and
plane elasticity. Hence, similar to the principle of minimum potential energy
in plane elasticity, we can derive the principle of minimum complementary
energy for thin plate bending in terms of bending moment function

min
φx,φy

Epc = min
φx,φy

(Vc + Ec) (8.2.14)

where the strain complementary energy is

Vc =
∫∫

V

6
Eh3

[(
∂φx

∂x

)2

+
(
∂φy

∂y

)2

− 2ν
∂φx

∂x

∂φy

∂y

+
1 + ν

2

(
∂φy

∂x
+
∂φx

∂y

)2
]
dxdy (8.2.15)

and the complementary energy for support displacement is

Ec = −
∫

Γu

(Mnθn − FVnw)ds = −
∫

Γu

(
θn
∂φs

∂s
+ w

∂2φn

∂s2

)
ds (8.2.16)

Since the specified deflection w and rotation θn are both functions of s,
integrating by parts yields

Ec =
∫

Γu

(
φs
∂θn

∂s
− φn

∂2w

∂s2

)
ds−

[
φsθn + w

∂φn

∂s
− φn

∂w

∂s

]s1

s0

(8.2.17)

where s0, s1 are the ends of the boundary Γu with specified displacements.
The variation of Eq. (8.2.14) yields the following differential equations

∂2φx

∂x2
+

1 + ν

2
∂2φx

∂y2
+

1 − ν

2
∂2φy

∂x∂y
= 0

∂2φy

∂y2
+

1 + ν

2
∂2φy

∂x2
+

1 − ν

2
∂2φx

∂x∂y
= 0




(8.2.18)
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which indicates strain compatibility. In reality, it is also possible to derive
Eq. (8.2.18) from the strain compatibility equation

E(∇)κ = 0 (8.2.19)

where the operator matrix is

E(∇) =



∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x


 (8.2.20)

The boundary conditions (8.2.12) on the boundary Γu with specified dis-
placements can also be derived directly from the variational principle be-
cause they are the natural boundary conditions of the principle of minimum
complementary energy.

Similarly to the Hellinger–Reissner variational principle for plane elas-
ticity, we can derive the Pro-H-R variational principle for thin plate
bending as

δΠ2 = δ

{∫∫
V

[κTÊ(∇)φ− vε(κ)]dxdy −
∫

Γu

(φsκns + φnκs)ds

−
∫

Γσ

[κns(φs − φs) + κs(φn − φn)]ds
}

= 0 (8.2.21)

where φs, φn etc. are described in Eq. (8.2.11).
Considering φx, φy , κy, κx, κxy as independent variables and perform-

ing δΠ2 = 0 yield the curvature compatibility equation (8.2.19) and the
moment-curvature relation

Ê(∇)φ =
∂vε(κ)
∂κ

(8.2.22)

as well as the boundary conditions (8.2.12) on Γu with specified displace-
ments and boundary conditions (8.2.11) on Γσ with specified forces.

Similar to the Hu–Washizu variational principle in plane elasticity, we
may derive the Pro-Hu–Washizu variational principle for thin plate
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bending10 as

δΠ3 = δ

{∫∫
V

[κTÊ(∇)φ− κTm+ vc(m)] dxdy

−
∫

Γσ

[κns(φs − φs) + κs(φn − φn)] ds

−
∫

Γu

(φsκns + φnκs) ds
}

= 0 (8.2.23)

Again, considering φx, φy, κy, κx, κxy andMy,Mx,Mxy as independent vari-
ables and performing δΠ3 = 0 yield the curvature compatibility equation
(8.2.19), the relationship of bending moment functions and bending mo-
ments (8.2.5) and the moment-curvature relationship (8.1.21), as well as
the boundary conditions (8.2.12) on Γu with specified displacements and
(8.2.11) on Γσ with specified forces.

It should be emphasized that Eqs. (8.2.21) and (8.2.23) are respectively
named the Pro-H-R variational principle and Pro-Hu–Washizu variational
principle for plate bending because they have been derived from the analogy
between plate bending and plane elasticity. Different from the Hellinger–
Reissner variational principle and Hu–Washizu variational principle for
plate bending, deflection w does not appear in the Pro-H-R variational
principle and Pro-Hu–Washizu variational principle for plate bending. It
could be solved after obtaining curvature κ. Certainly, it is also possible to
derive the Pro-H-R variational principle and Pro-Hu–Washizu variational
principle for plane elasticity from the Hellinger–Reissner variational prin-
ciple and Hu–Washizu variational principle for plate bending. The details
are omitted here.

The analogy between plane elasticity and plate bending is listed in the
Table 8.1. They have isomorphism when expressed in terms of mathematical
terms.

The analogy theory for plate bending and plane elasticity finds impor-
tant applications in finite element analysis. It is well known that, the finite
element method for plane elasticity has been well developed as compared to
the finite element method for plate bending. From the established analogy
principle above, the derivation of elements for plate bending may refer to
the similar methods and expressions of elements for plane elasticity10. The
analogy principle has proven that for each plane compatible element there
exists a corresponding equilibrium plate element, and vice versa11. Most of
the previous research focused on modeling of equilibrium plate element but
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Table 8.1. The analogy between plane elasticity and thin plate bending.

Plane elasticity Thin plate bending

Airy stress function ϕf Transverse deflection w(x, y)
In-plane displacement vector
u = {u, v}T

Bending moment function vector
φ = {φx, φy}T

Strain ε = {εx, εy, γxy}T Bending moment
m= {My, Mx, 2Mxy}T

Stress σ = {σx, σy , τxy}T Curvature κ = {κy , κx, κxy}T

Strain-displacement relation ε = Ê(∇)u Relationship between moment and
moment function m= Ê(∇)φ

Relationship between stress function
and stress σ =K(∂)ϕf

Deflection-curvature relation
κ =K(∂)w

Strain-stress relation ε = C−1σ Moment-curvature relation m= Cκ

Rigid body displacement Null moment function
Boundary conditions for specified

forces Γσ
σx cos α + τxy sin α = 0
τxy cos α + σy sinα = 0

ff Boundary conditions for specified
displacements Γu

κy cos α + κxy sinα = 0
κxy cos α + κx sinα = 0

ff

Boundary conditions for specified
displacements Γu, u = u, v = ν

Boundary conditions for specified forces
Γσ , φs = φs, φn = φn

The principle of minimum potential
energy

The principle of minimum
complementary energy

H-R variational principle:
u, v; σx, σy , τxy ; without ϕf

Pro-H-R variational principle:
φx, φy ; κy, κx, κxy; without w

Hu–Washizu variational principle:
u, v; σx, σy , τxy ; εx, εy, γxy ;
without ϕf

Pro-Hu–Washizu variational principle:
φx, φy ; κy, κx, κxy; My, Mx, 2Mxy;
without w

Pro-H-R variational principle H-R variational principle
Pro-Hu–Washizu variational principle Hu–Washizu variational principle

the outcome has been discouraging12. The recent works of the authors and
others have verified that the difficulty of satisfying C1 continuity in plate el-
ements can be avoided at the outset if we begins from the analogy principle.
Following the methods and expressions of plane elastic elements (compat-
ible or incompatible) and via appropriate transformation, it is possible to
construct a series of plate bending elements with excellent properties.

8.3. Multi-Variable Variational Principles for Thin Plate
Bending and Plane Elasticity

The variational principle is a basic issue in elasticity. It is of great impor-
tance not only in theory but also in practical applications. The classical
variational principles include (i) the principle of minimum potential energy
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and the principle of minimum complementary energy with one kind of vari-
ables; (ii) the Hellinger–Reissner variational principle with two kinds of
variables; and (iii) the Hu–Washizu variational principle with three kinds
of variables. These variational principles have attracted close attention and
wide applications.

The Hu–Washizu variational principle has been satisfactory. The only
concern is the exclusion of the stress function widely used in classical stress
analysis and solution. The stress functions are, however, not physical quan-
tities and it is not a problem if they do not appear in the variational func-
tional. In other words, the stress function can be considered as some kind
of auxiliary variables but not the regular variables. Actually, there has
been much success in adopting displacement functions rather than stress
functions in finite element numerical analysis. The use of stress functions
has been less common now. From the analogy between plate bending and
plane elasticity, stress functions appear in the variational principle in a
natural manner and it results in the Pro-Hu–Washizu variational principle.
The Pro-Hu–Washizu variational principle for plate bending corresponds
to the Hu–Washizu variational principle for plane elasticity while, likewise,
the Hu–Washizu variational principle for plate bending corresponds to the
Pro-Hu–Washizu variational principle for plane elasticity. The two cases
above can be synthesized to obtain the multi-variable variational principle
for plate bending and plane elasticity13 involving stress function and resid-
ual strain besides displacement, stress and strain. It also contains the five
kinds of fundamental equations in elasticity including equilibrium equation,
strain-displacement relation, stress-strain relation, compatibility equation,
and stress–stress function relation. It is the most generalized variational
principle at present.

8.3.1. Multi-Variable Variational Principles

for Plate Bending

For plate bending problems with residual deformation, there are five kinds
of fundamental equations in the domain. They can be classified into:

(1) Equation of equilibrium

K̂(∂)ma = K̂(∂)m0a = q (8.3.1)

where m0a = {M0ay,M0ax, 2M0axy}T is a particular solution of the in-
homogeneous bending moment vector resulting from an external load q;
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while ma is a general solution of the inhomogeneous bending moment
vector resulting from the external load. There are infinite general solu-
tions which can be regard as the variational variables.

(2) Relation between bending moment function and bending moment

m = ma + Ê(∇)φ (8.3.2)

(3) Curvature-deflection relation

κ = κ0 +K(∂)w − ∂vc(ma −m0a)
∂ma

(8.3.3)

where κ0 is the residual deformation caused by factors with known
quantity such as temperature difference, etc.

(4) Compatibility equation

E(∇)(κ− κ0) = 0 (8.3.4)

(5) Curvature-moment relation

κ =
∂vc(m)
∂m

(8.3.5)

Next we discuss the boundary conditions. The boundaries are not lim-
ited to straight edges but they can be any smooth curves without corners
for simplicity. The positive normal of the plate boundary curve is denoted
as n and the tangential direction is denoted as s. The (n, s) system forms
a right-hand system and the angle between n- and x-axis is α. The radius
of curvature of the boundary curve is ρ and the outside of convex is taken
as positive. For an arbitrary function g along the boundary, we have

∂g

∂n
=
∂g

∂x
cosα+

∂g

∂y
sinα

∂g

∂s
= −∂g

∂x
sinα+

∂g

∂y
cosα


 (8.3.6)

Additionally according to the definition of curvature, we have

∂α

∂s
=

1
ρ

(8.3.7)

Since transformation of bending moment function is the same as
transformation of a vector, the bending moment functions along the
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boundary are

φn = φx cosα+ φy sinα, φs = −φx sinα+ φy cosα (8.3.8)

and then

∂φs

∂s
= −∂φx

∂s
sinα+

∂φy

∂s
cosα− 1

ρ
(φx cosα+ φy sinα)

=
∂φx

∂x
sin2 α+

∂φy

∂y
cos2 α−

(
∂φx

∂y
+
∂φy

∂x

)
sinα cosα− φn

ρ

= M̂y sin2 α+ M̂x cos2 α− 2M̂xy sinα cosα− φn

ρ

= M̂n − φn

ρ
(8.3.9)

where M̂x etc. indicate the corresponding bending moments represented
by the bending moment function vector. Hence the equation for bending
moment normal to the boundary in terms of bending moment function is

M̂n =
∂φs

∂s
+
φn

ρ
(8.3.10)

Similarly, we have

∂φn

∂s
− φs

ρ
=
∂φx

∂s
cosα+

∂φy

∂s
sinα

= (M̂x − M̂y)
1
2

sin(2α) +
∂φx

∂y
cos2 α− ∂φy

∂x
sin2 α

= (M̂x − M̂y)
1
2

sin(2α) +
1
2

(
∂φx

∂y
+
∂φy

∂x

)
cos(2α)

+
1
2

(
∂φx

∂y
− ∂φy

∂x

)
= M̂ns +

1
2

(
∂φx

∂y
− ∂φy

∂x

)
(8.3.11)

Taking partial derivative of both sides with respect to s yields

∂

∂s

(
∂φn

∂s
− φs

ρ

)

=
∂M̂ns

∂s
− 1

2

(
∂2φx

∂x∂y
− ∂2φy

∂x2

)
sinα+

1
2

(
∂2φx

∂y2
− ∂2φy

∂x∂y

)
cosα
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=
∂M̂ns

∂s
−

(
∂M̂y

∂y
− ∂M̂xy

∂x

)
sinα−

(
∂M̂x

∂x
− ∂M̂xy

∂y

)
cosα

=
∂M̂ns

∂s
− F̂Sn = −F̂Vn (8.3.12)

Hence, the total distributed shear forces along the boundary in terms of
bending moment function is

F̂Vn = − ∂

∂s

(
∂φn

∂s
− φs

ρ

)
(8.3.13)

The tangential curvature and normal twisting curvature along the
boundary in terms of deflection w are derived as follows. From

∂

∂s

(
∂w

∂n

)
=

∂

∂s

(
∂w

∂x
cosα+

∂w

∂y
sinα

)

=
∂

∂s

(
∂w

∂x

)
cosα+

∂

∂s

(
∂w

∂y

)
sinα+

1
ρ

∂w

∂s

= (κ̂y − κ̂x)
1
2

sin(2α) − κ̂xy cos(2α) +
1
ρ

∂w

∂s

= −κ̂ns +
1
ρ

∂w

∂s
(8.3.14)

the twisting curvature along the boundary can be expressed as

κ̂ns = −∂θn

∂s
+

1
ρ

∂w

∂s
(8.3.15)

Similarly, we derive

∂2w

∂s2
=

∂

∂s

(
−∂w
∂x

sinα+
∂w

∂y
cosα

)

= − ∂

∂s

(
∂w

∂x

)
sinα+

∂

∂s

(
∂w

∂y

)
cosα− 1

ρ

∂w

∂n

= κ̂x sin2 α+ 2κ̂xy cosα sinα+ κ̂y cos2 α− 1
ρ

∂w

∂n

= κ̂s − 1
ρ

∂w

∂n
(8.3.16)
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and the tangential curvature along the boundary is

κ̂s =
∂2w

∂s2
+
θn

ρ
(8.3.17)

Having derived the above equation for the boundary, the boundary condi-
tions according to the classical plate theory can be obtained. For instance,

(1) The boundary conditions for deflection and rotation on the displace-
ment boundary Γu are

w = w and θn =
∂w

∂n
= θn (8.3.18)

(2) The boundary conditions for bending moment and total distributed
shear forces on the force boundary Γσ are

Mn = Man +
∂φs

∂s
+
φn

ρ
= Mn

FVn = FVan − ∂

∂s

(
∂φn

∂s
− φs

ρ

)
= FVn




(8.3.19)

(3) The boundary conditions for deflection and bending moment on the
boundary Γs with simply support are

w = w and Mn = Man +
∂φs

∂s
+
φn

ρ
= Mn (8.3.20)

where w, θn;Mn, FVn are specified functions along the boundary.
Besides, there are the boundary conditions for the complete boundary

Γ = Γu + Γσ + Γs

∂vc(ma −m0a)
∂Mas

= 0,
∂vc(ma −m0a)

∂(2Mans)
= 0 (8.3.21)

which, in terms of mechanics, imply the same tangential curvature and
normal twisting curvature generated by the general and particular solutions
of the inhomogeneous bending moment vector.

Denoting

ε̃ ≡ma −m0a, σ̃ ≡ ∂vc(ma −m0a)
∂ma

=
∂vc(ε̃)
∂ε̃

(8.3.22)

and using Eqs. (8.3.1), (8.3.3) and (8.3.4) yield

K̂(∂)ε̃ = 0, E(∇)σ̃ = 0 (8.3.23)
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The boundary conditions (8.3.21) on boundary Γ can be rewritten as

σ̃n = τ̃ns = 0 (8.3.24)

Equations (8.3.22)–(8.3.24) are analogous to a plane elasticity problem
without surface forces and with free boundaries. The unique solution can
only be no “deformation” but with “rigid body displacement” in the do-
main. Hence we have

ε̃ = ma −m0a = 0 (8.3.25)

It indicates that Eqs. (8.3.1) to (8.3.5) and boundary conditions (8.3.18)
to (8.3.21) constitute all definite conditions for plate bending problems.

Finally the multi-variable variational principle with five kinds of
independent variables w,κ,ma,φ,m is

δΠm = 0 (8.3.26)

where the functional is

Πm =
∫∫

Ω

{mT
aK(∂)w + κTm− vc(m) − vc(ma −m0a)

− (κ− κ0)T[ma + Ê(∇)φ] − qw}dxdy

+
∫

Γu

[
(w − w)FVan − (θn − θn)Man + φn

(
∂2w

∂s2
+
θn

ρ

)

− φs

(
∂θn

∂s
− 1
ρ

∂w

∂s

)]
ds

+
∫

Γσ

[
wFVn − θnMn + φn

(
∂2w

∂s2
+
θn

ρ

)
− φs

(
∂θn

∂s
− 1
ρ

∂w

∂s

)]
ds

+
∫

Γs

[
(w − w)FVan − θnMn + φn

(
∂2w

∂s2
+
θn

ρ

)

− φs

(
∂θn

∂s
− 1
ρ

∂w

∂s

)]
ds (8.3.27)

On performing variation on the functional Πm, the terms in do-
main Ω yield Eqs. (8.3.1) to (8.3.5). When transformed into the natural
coordinate system, the terms on boundary Γ generated during integration
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by parts yields

∮
Γ

[Manδθn − FVanδw − (κs − κ0s)δφn − (κns − κ0ns)δφs] ds (8.3.28)

Associating Eq. (8.3.28) with the integral term of Γu and rearranging
yield

∫
Γu

[
(w − w)δFVan − (θn − θn)δMan − δφn

(
κs − κ0s − ∂2w

∂s2
− θn

ρ

)

−δφs

(
κns − κ0ns +

∂θn

∂s
− 1
ρ

∂w

∂s

)]
ds (8.3.29)

and hence we obtain the boundary conditions (8.3.18) on Γu for specified
deflection and rotation and

κs = κ0s +
∂2w

∂s2
+
θn

ρ
, κns = κ0ns − ∂θn

∂s
+

1
ρ

∂w

∂s
(8.3.30)

Subsequently, associating Eq. (8.3.28) with the integral term of Γσ and
rearranging yield

Z
Γσ

»„
Man +

∂φs

∂s
+

φn

ρ
− Mn

«
δθn −

„
FVan − ∂

∂s

„
∂φn

∂s
− φs

ρ

«
− FVn

«
δw

−
„

κs − κ0s − ∂2w

∂s2
− θn

ρ

«
δφn −

„
κns − κ0ns +

∂θn

∂s
− 1

ρ

∂w

∂s

«
δφs

–
ds

+

»
φnδ

∂w

∂s
−

„
∂φn

∂s
− φs

ρ

«
δw − φsδθn

–b

a

(8.3.31)

where a, b are the starting and ending points of the corresponding boundary
segments. From Eq. (8.3.31), we obtain the boundary conditions (8.3.19)
on Γσ for specified normal bending moment and total distributed shear
forces and

κs = κ0s +
∂2w

∂s2
+
θn

ρ
, κns = κ0ns − ∂θn

∂s
+

1
ρ

∂w

∂s
(8.3.32)
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Finally, associating Eq. (8.3.28) with the integral term of Γs and rear-
ranging yield∫

Γs

[
(w − w)δFVan +

(
Man +

∂φs

∂s
+
φn

ρ
−Mn

)
δθn

− δφn

(
κs − κ0s − ∂2w

∂s2
− θn

ρ

)

− δφs

(
κns − κ0ns +

∂θn

∂s
− 1
ρ

∂w

∂s

)]
ds− [φsδθn]ba (8.3.33)

From Eq. (8.3.33), we obtain the boundary conditions (8.3.20) on Γs for
deflection and bending moment specified and

κs = κ0s +
∂2w

∂s2
+
θn

ρ
, κns = κ0ns − ∂θn

∂s
+

1
ρ

∂w

∂s
(8.3.34)

The normal twisting curvature and tangential curvature on the bound-
ary in terms of deflection w are Eqs. (8.3.15) and (8.3.17), respectively,
hence Eq. (8.3.3) on the boundary expressed in terms of natural coordi-
nate is

κs = κ0s +
∂2w

∂s2
+
θn

ρ
− ∂vc(ma −m0a)

∂Mas

κns = κ0ns − ∂θn

∂s
+

1
ρ

∂w

∂s
− ∂vc(ma −m0a)

∂(2Mans)




(8.3.35)

Substituting Eqs. (8.3.30), (8.3.32) and (8.3.34) into Eq. (8.3.35) yields the
boundary conditions (8.3.21) for the complete boundary Γ.

The terminal term [φsδθn]ba on Γσ and Γs generated during variation
cancels out because of the presence of δθn = 0(θn = θn) at the intersections
of any two of Γσ, Γs and Γu; or the presence of terms with opposite signs
at the intersections. Similarly, the terminal term on Γσ[

φnδ
∂w

∂s
−

(
∂φn

∂s
− φs

ρ

)
δw

]b

a

(8.3.36)

cancels out because of the presence of δw = δ(∂w/∂s) = 0 (w = w) at
the intersections of Γσ and either Γu or Γs; or the presence of terms with
opposite signs at the intersections. Therefore the summation of the terminal
terms in Eqs. (8.3.31) and (8.3.33) vanishes at all times and there is no new
condition.
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The derivation above shows that Eq. (8.3.26) includes and only includes
all the five kinds of fundamental equations (8.3.1) to (8.3.5) and the bound-
ary conditions (8.3.18) to (8.3.21) for plate bending. It is the most gener-
alized multi-variable variational principle for plate bending.

The Hu–Washizu variational principle for plate bending can be derived
from the multi-variable variational principle for plate bending. Taking
κ0 = 0 (without initial incompatibility), φ = 0, ma = m0a, and taking
extremum with respect to m in Eq. (8.3.26), the Hu–Washizu variational
principle

δΠ3 = δ

{∫∫
Ω

{mT
aK(∂)w + vε(κ)−κTma − qw}dxdy

+
∫

Γu

[(w − w)FVan − (θn − θn)Man]ds

+
∫

Γσ

[wFVn − θnMn]ds+
∫

Γs

[(w − w)FVan − θnMn]ds
}

= 0

(8.3.37)

can be obtained. All other classical variational principles can certainly be
derived accordingly and the details are omitted here.

8.3.2. Multi-Variable Variational Principle

for Plane Elasticity

For plane elasticity problems with residual deformation, there are five kinds
of fundamental equations in the domain. They can be classified into:

(1) Strain compatibility equation

K̂(∂)εa = K̂(∂)ε0a (8.3.38)

where ε0a is a known quantity of the initial incompatible strain caused
by factors such as temperature, etc.

(2) Strain-displacement relation

ε = εa + Ê(∇)u (8.3.39)

(3) Relation between stress and stress function

σ = σ0 +K(∂)ϕf − ∂vε(εa − ε0a)
∂εa

(8.3.40)
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where σ0 is an inhomogeneous particular solution corresponding to the
known body force F .

(4) Equation of equilibrium

E(∇)σ = E(∇)σ0 = F (8.3.41)

(5) Stress-strain relation

σ =
∂vε(ε)
∂ε

(8.3.42)

In general, the boundary conditions are:

(1) Normal and tangential displacements on the displacement boundary Γu

un = un and us = us (8.3.43)

(2) Normal and shear stresses on the force boundary Γσ

σn = σn and τns = τns (8.3.44)

(3) Normal displacement and shear stress on the simply support
boundary Γs

un = un and τns = τns (8.3.45)

where un, us, σn, τns are specified functions on the boundary.

Besides, there are the boundary conditions for the complete boundary
Γ = Γu + Γσ + Γs

εas − ε0as = ηans − η0ans = 0 (8.3.46)

where εas, ηans etc. denote the extensional strain along the boundary curve
and the change of curve of the boundary curve due to the corresponding
deformation quantities7. We have

εas = εax sin2 α− γaxy sinα cosα+ εay cos2 α

γans = (εay − εax) sin(2α) + γaxy cos(2α)

ηans = −1
2
∂γans

∂s
+

(
∂εay

∂x
− 1

2
∂γaxy

∂y

)
cosα+

(
∂εax

∂y
− 1

2
∂γaxy

∂x

)
sinα

(8.3.47)
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where α is the angle between the normal of boundary n and the positive
direction of x-axis.

Denoting

m̃ ≡ εa − ε0a, κ̃ ≡ ∂vε(εa − ε0a)
∂εa

=
∂vε(m̂)
∂m̂

(8.3.48)

where m̃ = {M̃y M̃x 2M̃xy}T, and using Eqs. (8.3.38), (8.3.40) and (8.3.41)
yield

K̂(∂)m̃ = 0, E(∇)κ̃ = 0 (8.3.49)

The boundary conditions (8.3.46) on Γ can be rewritten as

M̃n = F̃Vn = 0 (8.3.50)

Equations (8.3.48)–(8.3.50) are completely analogous to a plate bending
problem without transverse loads and with free boundaries. The unique
solution can only be no “deformation”, i.e. no “bending moment”, in the
domain. Hence we have

m̃a = εa − ε0a = 0 (8.3.51)

It indicates that Eqs. (8.3.38) to (8.3.42) and boundary conditions (8.3.43)
to (8.3.46) constitute all definite conditions for plane elasticity problems.

Finally the multi-variable variational principle with five kinds of inde-
pendent variables ϕf ,σ, εa,u, ε is

δΠM = 0 (8.3.52)

where the functional is

ΠM =
∫∫

Ω

{(εa − ε0a)TK(∂)ϕf + σTε− vε(ε) − vε(εa − ε0a)

− (σ − σ0)T[εa + Ê(∇)u]}dxdy

+
∫

Γu

[(un − un)σn − unσ0n + (us − us)τns − usτ0ns]ds

+
∫

Γσ

[un(σn − σ0n) + us(τns − τ0ns)]ds

+
∫

Γs

[(un − un)σn − unσ0n + us(τns − τ0ns)]ds (8.3.53)
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On performing variation on the functional ΠM , the terms in domain
Ω yield Eqs. (8.3.38) to (8.3.42). When transformed into the natural coor-
dinate system, the terms on boundary Γ generated during integration by
parts yields ∮

Γ

[
(εas − ε0as)δ

(
∂ϕf

∂n

)
− (ηans − η0ans)δϕf

− (σn − σ0n)δun − (τns − τ0ns)δus

]
ds (8.3.54)

The first two terms provide the boundary conditions (8.3.46) and associat-
ing the remaining two terms with the terminal terms of integration yields
the boundary conditions (8.3.43) to (8.3.45).

The derivation above shows that Eq. (8.3.52) includes and only includes
all the five kinds of fundamental equations (8.3.38) to (8.3.42) and the
boundary conditions (8.3.43) to (8.3.46) for plane elasticity. It is the most
generalized multi-variable variational principle for plane elasticity.

Similarly, taking εa = ε0a ≡ 0, i.e. eliminaing initially incompatible
quantities in the multi-variable variational principle for plane elasticity
(8.3.52), the Hu–Washizu variational principle for plane elasticity

δΠp3 = δ

{∫∫
Ω

[σTε− vε(ε) − σTÊ(∇)u − FTu]dxdy

+
∫

Γu

[(un − un)σn + (us − us)τns]ds

+
∫

Γσ

[unσn + usτns]ds

+
∫

Γs

[(un − un)σn + usτns]ds
}

= 0 (8.3.55)

can be obtained. All other classical variational principle can certainly be
derived accordingly.

The multi-variable variational principle are not only applicable to
elasticity problems with residual deformation but also applicable to the
derivation of multi-variable variational principle for shallow shell accord-
ing to the analogy between plate bending and plane elasticity. Conse-
quently, it offers an opportunity for solving relevant problems of shallow
shell.
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8.4. Symplectic Solution for Rectangular Plates

A system of symplectic solution can be derived by introducing plane
elasticity problems into the Hamiltonian system. A system of symplec-
tic solution for thin plate bending can also be established via the anal-
ogy between thin plate bending and plane elasticity. Similar to plane
elasticity, the system of symplectic solution is applicable to both rect-
angular domain and sectorial domain. The analytical solutions for rect-
angular thin plate bending are presented here and the following three
sections.

The relevant equations are introduced into the symplectic system in
virtue of the Pro-H-R variational principle (8.2.21). Here, we let y(b1 ≤
y ≤ b2) be transverse direction and its corresponding boundary conditions
can be free, simply support or clamped. The x-coordinate is treated as time
coordinate in the Hamiltonian system where an overdot indicates differen-
tiation with respect to the x-coordinate, or (̇) = ∂/∂x. From Eqs. (8.1.12)
and (8.2.3), we have

κx =
1
D

∂φy

∂y
− νκy (8.4.1)

Substituting Eq. (8.4.1) into Eq. (8.2.21) to eliminate κx yields the
Hamilton mixed energy variational principle as

δ

{∫ xf

x0

∫ b2

b1

[
κyφ̇x + κxyφ̇y − νκy

∂φy

∂y
+ κxy

∂φx

∂y

+
1

2D

(
∂φy

∂y

)2

−D(1 − ν)κ2
xy −D(1 − ν2)

2
κ2

y

]
dydx

−
∫

Γσ

[κns

(
φs − φs

)
+ κs

(
φn − φn

)
]ds−

∫
Γu

(φsκns + φnκs)ds
}

= 0

(8.4.2)

where φx, φy, κy, κxy are independent variables for variation. The variation
of Eq. (8.4.2) in the domain yields the Hamiltonian dual equations

v̇ =Hv (8.4.3)
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where the Hamiltonian operator matrix H is

H =




0 ν
∂

∂y
D(1 − ν2) 0

− ∂

∂y
0 0 2D(1 − ν)

0 0 0 − ∂

∂y

0 − 1
D

∂2

∂y2
ν
∂

∂y
0




(8.4.4)

and v = {φx, φy, κy, κxy}T is the full state vector.
It should be noted that the full state vector does not include deflection

w which can be obtained after solving v. To be specific, deflection w can
be obtained by first solving κx according to Eq. (8.4.1) and then directly
integrating κx, κy, κxy.

For the purpose of discussing the property of operator matrix H, we
introduce the unit symplectic matrix

J =

[
0 I2

−I2 0

]
(8.4.5)

and denote

〈v1,v2〉 def=
∫ b2

b1

vT
1 Jv2dy

=
∫ b2

b1

(φx1κy2 + φy1κxy2 − κy1φx2 − κxy1φy2) dy (8.4.6)

Obviously Eq. (8.4.6) satisfies the four conditions of symplectic inner prod-
uct (1.3.2). Hence the full state vectors v forms a symplectic geometric
space in accordance with the definition of symplectic inner product (8.4.6).

Integration by parts yields

〈v1,Hv2〉 = 〈v2,Hv1〉 +
[
φy2

(
1
D

∂φy1

∂y
− νκy1

)
+ φx2κxy1

]b2

b1

−
[
φy1

(
1
D

∂φy2

∂y
− νκy2

)
+ φx1κxy2

]b2

b1

(8.4.7)

For v1,v2 satisfying the corresponding homogeneous boundary
conditions for free, simply supported or clamped boundary, there
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exists an identity

〈v1,Hv2〉 ≡ 〈v2,Hv1〉 (8.4.8)

Hence H is a Hamiltonian operator matrix.
Having transformed the equation into Eq. (8.4.3), the method of sepa-

ration of variables can be applied directly. Assuming

v(x, y) = ξ(x)ψ(y) (8.4.9)

and substituting the above expression into Eq. (8.4.3) yield

ξ(x) = eµx (8.4.10)

and the eigenvalue equation

Hψ(y) = µψ(y) (8.4.11)

where µ is the unknown eigenvalue and ψ(y) is the eigenvector satisfying
the boundary conditions on both sides y = b1 or b2.

The Hamiltonian operator matrixH has its special characteristics which
have been repeatedly presented in the previous chapters, i.e.:

(1) If µ is an eigenvalue of a Hamiltonian matrix, −µ is also an eigenvalue.
The infinite eigenvalues can be divided into two sets

(α) µi, Re(µi) < 0 or Re(µi) = 0 ∧ Im(µi) < 0 (i = 1, 2, . . .)

(8.4.12a)

(β) µ−i = −µi (8.4.12b)

The eigenvalues in the (α)-set are arranged in ascending order according
to |µi|.

(2) The eigenvectors of Hamiltonian operator matrix are mutually adjoint
symplectic orthogonal. Let ψi and ψj be respectively the eigenvectors
of the eigenvalues µi and µj , then for µi + µj �= 0, they are symplectic
orthogonal

〈ψi,ψj〉 =
∫ b2

b1

ψT
i Jψjdx = 0 (8.4.13)

The eigenvector which is symplectic adjoint with ψi is the eigenvector of
eigenvalue −µi (or the Jordan form eigenvector).
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Having derived the adjoint symplectic orthonormal relations, every full
state vector v can be expanded by the eigen-solutions, i.e.

v =
∞∑

i=1

(aiψi + biψ−i) (8.4.14)

where ai and bi are undetermined constants, and ψi,ψ−i are eigenvectors
which fulfill the following normal adjoint symplectic orthonormal relations

〈ψi,ψj〉 = 〈ψ−i,ψ−j〉 = 0

〈ψi,ψ−j〉 = δij

}
(i, j = 1, 2, . . .) (8.4.15)

The eigenvalues and eigenvectors for different boundary conditions are
different. Similar to the plane elasticity problems, the eigen-solutions with
nonzero eigenvalues can be obtained by first expanding the eigenvalue equa-
tion (8.4.11) as

0 +ν
dφy

dy
+D(1 − ν2)κy +0 = µφx

−dφx

dy
+0 +0 +2D(1 − ν)κxy = µφy

0 +0 +0 −dκxy

dy
= µκy

0 − 1
D

d2φy

dy2
+ν

dκy

dy
+0 = µκxy



(8.4.16)

This is a set of simultaneous ordinary differential equations with respect
to y. The eigenvalue λ for the y-direction is required first. The eigenvalue
equation is

det



−µ νλ D(1 − ν2) 0
−λ −µ 0 2D(1 − ν)
0 0 −µ −λ
0 −λ2/D νλ −µ


 = 0 (8.4.17)

Expanding the determinant yields the eigenvalue equation

(λ2 + µ2)2 = 0 (8.4.18)
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with repeated roots λ = ±µi as the eigenvalues. Hence, the general solutions
of nonzero eigenvalues are

φx = A1 cos(µy) +B1 sin(µy) + C1y sin(µy) +D1y cos(µy)

φy = A2 sin(µy) +B2 cos(µy) + C2y cos(µy) +D2y sin(µy)

κy = A3 cos(µy) +B3 sin(µy) + C3y sin(µy) +D3y cos(µy)

κxy = A4 sin(µy) +B4 cos(µy) + C4y cos(µy) +D4y sin(µy)




(8.4.19)

The constants are not all independent. There are only four independent con-
stants, for instance, A2, B2, C2, D2 are chosen as the independent constants.
Substituting Eq. (8.4.19) into Eq. (8.4.16) yields the relations between these
constants as

A1 = −A2 − 3 + ν

µ(1 − ν)
C2

A3 = − µ

D(1 − ν)
A2 − 3 − ν

D(1 − ν)2
C2

A4 =
µ

D(1 − ν)
A2 +

2
D(1 − ν)2

C2




(8.4.20a)

C1 = C2

C3 =
µ

D(1 − ν)
C2

C4 =
µ

D(1 − ν)
C2




(8.4.20b)

and

B1 = B2 − 3 + ν

µ(1 − ν)
D2

B3 =
µ

D(1 − ν)
B2 − 3 − ν

D(1 − ν)2
D2

B4 =
µ

D(1 − ν)
B2 − 2

D(1 − ν)2
D2




(8.4.20c)

D1 = −D2

D3 = − µ

D(1 − ν)
D2

D4 =
µ

D(1 − ν)
D2




(8.4.20d)
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It should be noted that Eq. (8.4.20) is only the relation between the con-
stants in the solution (8.4.19) of the basic eigenvectors with nonzero eigen-
values µ. If Jordan form eigen-solution exists, we should solve the following
equation

Hψ(k) = µψ(k) +ψ(k−1) (k = 1, 2, . . .) (8.4.21)

where superscript k denotes the kth order Jordan form eigen-solution.
The Jordan form eigen-solution is related to its sub-order eigen-solutions.
The general solution is formed by superposing a particular solution resulted
from the inhomogeneous term ψ(k−1) and the solution of (8.4.19).

Substituting the general solution (8.4.19) and Eq. (8.4.20) into the cor-
responding boundary conditions on both sides y = b1 or b2 yields the tran-
scendental equation for nonzero eigenvalues and the relevant eigenvectors.
Then solution can be obtained by the method of eigenvector expansion.
Some typical boundary conditions are discussed in the following sections
and other boundary conditions can be solved in a similar way.

8.5. Plates with Two Opposite Sides Simply Supported

Bending for plate simply supported on both opposite sides has been a well
developed subject. This subject is chosen again here for solution because
it is a classical case corresponding to the solution of Jordan form with
nonzero eigenvalues. Besides, the methodology presented can be applied
to plates with different boundary conditions for which the classical semi-
inverse solution methodology fails.

For a plate with two opposite sides y = 0 and y = b simply supported,
the boundary conditions are

w = 0, My = 0 at y = 0 or b (8.5.1)

Expressed in terms of a full state vector they are

φx = 0,
1
D

∂φy

∂y
− νκy = 0 at y = 0 (8.5.2a)

φx = a1,
1
D

∂φy

∂y
− νκy = 0 at y = b (8.5.2b)

It has been introduced in Sec. 8.2 that for boundaries with specified
force conditions, the unknown constant a1 can be determined according



December 16, 2008 15:56 B-599 9in x 6in ch08

258 Symplectic Elasticity

to Eq. (8.2.11) while the unknown constants on y = 0 have been eliminated
through null moment functions.

Eigen-solutions are only applicable to homogeneous equations and ho-
mogeneous boundary conditions. The unknown constants in the boundary
conditions should be solved first because they are inhomogeneous terms.

The a1 term can be solved from the following equation

Hψ0 = 0 (8.5.3)

with boundary conditions on two sides as

φx = 0,
1
D

∂φy

∂y
− νκy = 0 at y = 0 (8.5.4a)

φx = 1,
1
D

∂φy

∂y
− νκy = 0 at y = b (8.5.4b)

The solution is

ψ0 =
{
y

b
, 0, 0,

1
2bD(1 − ν)

}T

(8.5.5)

and the corresponding solution for Eq. (8.4.3) is

v0 = ψ0 (8.5.6)

From Eq. (8.4.1) and the curvature-deflection relation (8.1.7), the deflection
of plate after integration is

w = − xy

2bD(1 − ν)
+ c1x+ c2y + c3 (8.5.7)

As it does not satisfy the boundary conditions w = 0 on both sides in
Eq. (8.5.1), the solution of a1 does not contain physical meaning and it
should be abandoned. This solution is actually a spurious solution of the
original problem due to the replacement of w = 0 by κx = 0 in the boundary
conditions.

Therefore with respect to bending of plate simply supported on oppo-
site sides we can only discuss the solution with homogeneous boundary
conditions as

φx = 0,
1
D

∂φy

∂y
− νκy = 0 on y = 0 or b (8.5.8)

It is easy to verify that the eigen-solutions of zero eigenvalue for the eigen-
value problem (8.4.11) with boundary conditions (8.5.8) does not have
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physical meaning. The general eigen-solutions of nonzero eigenvalues are
Eqs. (8.4.19) and (8.4.20). Substituting the solutions into the homogeneous
boundary conditions (8.5.8), and equating the determinant of coefficient
matrix to zero yield the transcendental equation of nonzero eigenvalues for
plates simply supported on opposite sides as

sin2(µb) = 0 (8.5.9)

The solutions are real double roots

µn =
nπ

b
(n = ±1,±2, . . .) (8.5.10)

and the corresponding basic eigenvector is

ψ(0)
n =




φx

φy

κy

κxy




=




D(1 − ν)
µn

sin(µny)

D(1 − ν)
µn

cos(µny)

sin(µny)

cos(µny)




(8.5.11)

Then the solution to Eq. (8.4.3) is

v(0)
n = exp(µnx)ψ(0)

n (8.5.12)

From Eq. (8.4.1) and the curvature-deflection relation (8.1.7), the deflection
of plate after integration is

w(0)
n = − 1

µ2
n

exp(µnx) sin(µny) + c1x+ c2y + c3 (8.5.13)

where the integration constants can be determined by the boundary con-
ditions w = 0 on both sides y = 0 or b. We obtain c1 = c2 = c3 = 0,
and then

w(0)
n = − 1

µ2
n

exp(µnx) sin(µny) (8.5.14)

Because the eigenvalue µn is a double root, the first-order Jordan form
eigen-solution exists. From Eq. (8.4.21), the first-order Jordan form eigen-
solution can be obtained by solving

Hψ(1)
n = µnψ

(1)
n +ψ(0)

n (8.5.15)
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and imposing the boundary conditions (8.5.8). The solution is

ψ(1)
n =




−3 + ν

2µ2
n

D sin(µny)

3 + ν

2µ2
n

D cos(µny)

− 1
2µn

sin(µny)

1
2µn

cos(µny)




(8.5.16)

and the solution to Eq. (8.4.3) is

v(1)
n = exp(µnx)(ψ(1)

n + xψ(0)
n ) (8.5.17)

From Eq. (8.4.1), curvature-deflection relation (8.1.7) and boundary condi-
tions w = 0 at both sides y = 0 or b, the deflection of plate after integra-
tion is

w(1)
n =

1 − 2µnx

2µ3
n

exp(µnx) sin(µny) (8.5.18)

These eigenvectors are adjoint symplectic orthogonal because H is a
Hamiltonian operator matrix. Obviously the eigenvector symplectic adjoint
with ψ(0)

n must be ψ(1)
−n, i.e.

〈ψ(0)
n , ψ

(1)
−n〉 = −2Db

µ2
n

�= 0 (n = ±1,±2, . . .) (8.5.19)

while the other eigenvectors are symplectic orthogonal to each other.
From the eigenvalues and eigenvectors with adjoint symplectic orthog-

onality property, the general solution for plate bending simply supported
on both opposite sides can be expressed as

v =
∞∑

n=1

[f (0)
n v(0)

n + f (1)
n v(1)

n + f
(0)
−nv

(0)
−n + f

(1)
−nv

(1)
−n] (8.5.20)

according to the expansion theorem. The equation above strictly satisfies
the homogeneous differential equation (8.4.3) in the domain and the homo-
geneous boundary conditions (8.5.8) while f (k)

n (k = 0, 1;n = ±1,±2, . . .)
are unknown constants which can be determined by the boundary condi-
tions on both ends x = x0 or xf .
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After determining the constants f
(k)
n , the solution of the original

problem (8.1.29) is

w = w +
∞∑

n=1

{f (0)
n w(0)

n + f (1)
n w(1)

n + f
(0)
−nw

(0)
−n + f

(1)
−nw

(1)
−n} (8.5.21)

where w is a particular solution with respect to the transverse load q.
It has been mentioned earlier that the classical semi-inverse Naiver’s

method and Levy’s method are very effective for plates simply supported on
both opposite sides. For instance, the solution in Fourier series by applying
Levy’s method is

w = w +
∞∑

n=1

{[Anch(µnx) +Bnµnxsh(µnx)

+Cnsh(µnx) +Dnµnxch(µnx)] sin(µnx)} (8.5.22)

Although the four basic functions in the outer parentheses in Eqs. (8.5.21)
and (8.5.22) are different, they constitute the identical sub-space. The ex-
panded solution of Eq. (8.5.21) is completely equivalent to the classical
Levy solution. Hence the various classical analytical solutions for plate
bending simply supported on both opposite sides can also be derived from
Eq. (8.5.21) or Eq. (8.5.20).

For example, the particular solution for a fully simply supported plate
−a/2 ≤ x ≤ a/2, 0 ≤ y ≤ b with uniformly distributed load q is

w =
q

24D
(y4 − 2by3 + b3y) (8.5.23)

and the corresponding curvatures and bending moments are

κy =
q

2D
y(y − b); κx = κxy = 0 (8.5.24)

Mx =
1
2
qνy(y − b); My =

1
2
qy(y − b); Mxy = 0 (8.5.25)

respectively. Through this particular solution, the problem can be trans-
formed into a homogeneous equation (8.2.1), and in symplectic space the
solution to Eq. (8.4.3) is required. Here the boundary conditions for simple
supports at x = ±a/2 should be rewritten as

Mx = −Mx, κy= − κy at x = ±a/2 (8.5.26)
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after eliminating the effects resulted from the particular solution.
Substituting Eq. (8.5.20) into the boundary conditions (8.5.26), the
solution is

f
(0)
n = f

(0)
−n = f

(1)
n = f

(1)
−n = 0 (n = 2, 4, 6, . . .)

f
(0)
n = −f (0)

−n = −q[3 + 2αnth(αn)]
2Dbµ3

nch(αn)
(n = 1, 3, 5, . . .)

f
(1)
n = f

(1)
−n =

q

Dbµ2
nch(αn)

(n = 1, 3, 5, . . .)




(8.5.27)

where

αn =
anπ

2b
(n = 1, 3, 5, . . .) (8.5.28)

The result is absolutely identical to the classical Levy solution.
Although the solutions in dual system derived from expansion of eigen-

vectors are the same as the classical Levy solution, the respective theoretical
foundations are essentially different in principle. The classical Levy solution
is effective for plates simply supported on both opposite sides because the
eigenvalues are all real and therefore the solution by expansion is very con-
venient. However, the semi-inverse solution procedure is difficult for other
types of boundary conditions. As the solution methodology by expansion
of eigenvectors presented here has been derived via a complete rational
approach, it can be generalized accordingly to solve problems with other
types of boundary conditions. The method will be shown in the next two
sections.

8.6. Plates with Two Opposite Sides Free

For a plate with two opposite sides y = ±b free, the boundary conditions
are

My = 0, FVy = 0 at y = ±b (8.6.1)

Expressed in terms of a full state vector they are

φx = 0, φy = 0 at y = −b (8.6.2a)

φx = ã = a1 − a2b, φy = a0 + a2x at y = b (8.6.2b)

As these are force boundary conditions, from Eq. (8.2.11), there are un-
known constants a0, ã1, a2 where ã1 has been divided into two parts
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according to the null moment functions (8.2.6). These constants are in-
homogeneous terms which should be solved first9 similar to the previous
section.

First, the a0 term should be solved from the following equation

Hψ0
0 = 0 (8.6.3)

with boundary conditions

φx = 0, φy = 0 at y = −b (8.6.4a)

φx = 0, φy = 1 at y = b (8.6.4b)

The solution is

ψ0
0 =

{
0,

y + b

2b
,

−ν
2bD(1 − ν2)

, 0
}T

(8.6.5)

and the corresponding solution for Eq. (8.4.3) is

v0
0 = ψ0

0 (8.6.6)

From Eq. (8.2.3), the corresponding bending moments are

M0
x0 =

1
2b
, M0

y0 = 0, M0
xy0 = 0 (8.6.7)

and from Eqs. (8.1.24) and (8.1.25), the shear forces are

F 0
Sx0 = 0, F 0

Sy0 = 0 (8.6.8)

Further from the curvature-deflection relation (8.1.7), the deflection of plate
after integration is

w0
0 =

x2 − νy2

4bD(1 − ν2)
+ rigid body displacement (8.6.9)

The physical interpretation of v0
0 is pure bending.

Next the a1 term should be solved from the following equation

Hψ1
0 = 0 (8.6.10)

with boundary conditions

φx = 0, φy = 0 at y = −b (8.6.11a)

φx = 1, φy = 0 at y = b (8.6.11b)
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The solution is

ψ1
0 =

{
y + b

2b
, 0, 0,

1
4bD(1 − ν)

}T

(8.6.12)

and the correspondingly solution for Eq. (8.4.3) is

v1
0 = ψ1

0 (8.6.13)

From Eq. (8.2.3), the corresponding bending moments are

M1
x0 = 0, M1

y0 = 0, M1
xy0 =

1
4b

(8.6.14)

and from Eqs. (8.1.24) and (8.1.25), the shear forces are

F 1
Sx0 = 0, F 1

Sy0 = 0 (8.6.15)

Further from the curvature-deflection relation, the deflection of plate is

w1
0 = − xy

4bD(1 − ν)
+ rigid body displacement (8.6.16)

The physical interpretation of v1
0 is pure torsion.

Finally, the a2 term should be solved. As a2 in the expression of φy in
Eq. (8.6.2b) has a multiplier x, the solution corresponds to the next-order
Jordan form of the inhomogeneous solution ψ0

0 with respect to φy = 1.
Hence the a2 term should be solved from the following equation

Hψ2
0 = ψ0

0 (8.6.17)

The coefficient of a2 in the expression of φx in Eq. (8.6.2b) is −b and its
influence only exists in the boundary conditions of ψ2

0. Hence boundary
conditions on both opposite sides are

φx = 0, φy = 0 at y = −b (8.6.18a)

φx = −b, φy = 0 at y = b (8.6.18b)

The solution is

ψ2
0 =

{
(1 − ν)(b2 − y2)

4b(1 + ν)
− y + b

2
, 0, 0,

νy

2bD(1 − ν2)

}T

(8.6.19)

and the correspondingly solution for Eq. (8.4.3) is

v2
0 = ψ2

0 + xψ0
0 (8.6.20)
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From Eq. (8.2.3), the bending moments are

M2
x0 =

x

2b
, M2

y0 = 0, M2
xy0 =

νy

2b(1 + ν)
(8.6.21)

and from Eqs. (8.1.24) and (8.1.25), the shear forces are

F 2
Sx0 =

1
2b(1 + ν)

, F 2
Sy0 = 0 (8.6.22)

Further from the curvature-deflection relation, the deflection of plate is

w2
0 =

x3 − 3νxy2

12bD(1 − ν2)
+ rigid body displacement (8.6.23)

The physical interpretation of v2
0 is constant shear bending in the direction

of x-axis.
Solving the inhomogeneous boundary terms a0, a1, a2 yields three solu-

tions with specific physical interpretation for thin plate bending. They are
the pure bending solution, pure torsion solution and constant shear bend-
ing solution. It should be noted that from the fundamental equations of
thin plate (8.1.29), it is also possible to derive into the Hamiltonian sys-
tem and solve by the method of separable variables. Then there are six
eigen-solutions of zero eigenvalue, i.e. three plate rigid body displacements
w = c1x + c2y + c3 and the solutions corresponding to v0

0,v
1
0,v

2
0. Due to

application of analogy principle, the plate deflection has been replaced by
curvature and direct appearance of three rigid body displacements of thin
plate have also been avoided. Hence the dual solutions are represented by
the particular solutions of inhomogeneous boundary terms.

After obtaining the three inhomogeneous particular solutions, we
then discuss the solutions corresponding to the homogeneous boundary
conditions.

The homogeneous boundary conditions for plate bending with both op-
posite sides free are

φx = 0, φy = 0 at y = ±b (8.6.24)

Obviously the eigen-solutions satisfying Eqs. (8.4.11) and (8.6.24) are only
eigen-solutions of nonzero eigenvalue. They can be divided into two sets,
i.e. the symmetric and the antisymmetric solutions with respect to x.

Substituting solutions with only A and C terms in Eq. (8.4.19) into the
homogeneous boundary conditions (8.6.24) and equating the determinant
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of coefficient matrix to zero yield the transcendental equation of nonzero
eigenvalues for symmetric plate deformation with both opposite sides free as

2µb(1 − ν) = (3 + ν) sin(2µb) (8.6.25)

Let eigenvalues µn be a solution to Eq. (8.6.25), the corresponding eigen-
solution for symmetric deformation is

ψn =




−3 + ν

1 − ν
sin2(µnb) cos(µny) + µny sin(µny)

−3 + ν

1 − ν
cos2(µnb) sin(µny) + µny cos(µny)

µn

D(1 − ν)2
{[(3 + ν) cos2(µnb) − 3 + ν] cos(µny)

+(1 − ν)µny sin(µny)}
µn

D(1 − ν)2
{[2 − (3 + ν) cos2(µnb)] sin(µny)

+(1 − ν)µny cos(µny)}




(8.6.26)

and the solution for the corresponding problem (8.4.3) is

vn = exp(µnx)ψn (8.6.27)

Further from Eq. (8.4.1) and the curvature-deflection relation (8.1.7), the
deflection of plate after integration is

wn = exp(µnx)
{

1 + ν − (3 + ν) cos2(µnb)
D(1 − ν)2µn

cos(µny) − y sin(µny)
D(1 − ν)

}
(8.6.28)

It is also possible to apply the Newton method commonly used in plane
elasticity to solve the eigenvalues. For instance, the first several eigenvalues
for a plate with Poisson’s ratio ν = 0.3 are listed in Table 8.2.

Apparently, for each n (n > 1), there are two symplectic adjoint eigen-
values µn and −µn and their respective complex conjugate eigenvalues.

Table 8.2. Nonzero eigenvalues for symmetric deformation of thin plate with
both opposite sides free (ν = 0.3).

n = 1 2 3 4 5

Re(µnb) = 1.2830 π + 0.6973 2π + 0.7191 3π + 0.7313 4π + 0.7393

Im(µnb) = 0 0.5446 0.8808 1.0730 1.2101
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There are four eigenvalues in total. As the eigenvalue µ1 corresponding to
n = 1 is real, it has only a symplectic adjoint eigenvalue −µ1. In this case,
there are only two eigenvalues. These eigenvalues are all single roots.

Substituting solutions with only B and D terms in Eq. (8.4.19) into the
homogeneous boundary conditions (8.6.24) and equating the determinant
of coefficient matrix to zero yield the transcendental equation of nonzero
eigenvalues for antisymmetric plate deformation with both opposite sides
free as

2µb(1 − ν) + (3 + ν) sin(2µb) = 0 (8.6.29)

The corresponding eigen-solution for antisymmetric deformation is

ψn =




−3 + ν

1 − ν
cos2(µnb) sin(µny) − µny cos(µny)

3 + ν

1 − ν
sin2(µnb) cos(µny) + µny sin(µny)

µn

D(1 − ν)2
{[(3 + ν) sin2(µnb) − 3 + ν] sin(µny)

− (1 − ν)µny cos(µny)}
µn

D(1 − ν)2
{[(3 + ν) sin2(µnb) − 2] cos(µny)

+ (1 − ν)µny sin(µny)}




(8.6.30)

and the solution for the corresponding problem (8.4.3) is

vn = exp(µnx)ψn (8.6.31)

From Eq. (8.4.1) and the curvature-deflection relation (8.1.7), the deflection
of plate after integration is

wn = exp(µnx)
{

1 + ν − (3 + ν) sin2(µnb)
D(1 − ν)2µn

sin(µny) +
y cos(µny)
D(1 − ν)

}
(8.6.32)

Similarly, the first several eigenvalues for a plate with Poisson’s ratio
ν = 0.3, for instance, can be obtained by applying the Newton method and
they are listed in Table 8.3.

Again and apparently, for each n(> 2), there are two symplectic adjoint
eigenvalues µn and −µn and their respective complex conjugate eigenvalues.
There are four eigenvalues in total. As the eigenvalues corresponding to
n = 1, 2 are real, they have only symplectic adjoint eigenvalues. In these
cases, there are only two eigenvalues in each case. These eigenvalues are all
single roots.
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Table 8.3. The nonzero eigenvalues for antisymmetrical deformation of thin
plate with both sides free (ν = 0.3).

n = 1 2 3 4

Re(µnb) = 0.5π + 0.5690 0.5π + 0.7863 1.5π + 0.7100 2.5π + 0.7259

Im(µnb) = 0 0 0.7439 0.9865

From the eigenvalues and eigenvectors obtained and based on the adjoint
symplectic orthogonality property, the solution can be established by using
the expansion theorem.

A simple example for pure bending of a semi-infinite rectangular thin
plate is presented here. We take b = 1 and x = 0 clamped, while x → ∞
is a free end with unit bending moment. The bending moment distribution
at the clamped end is solved.

According to the definition of problem, there is only bending moment
at x → ∞ and the deformation is symmetric with respect to the x-axis.
Hence the expanded equation is constructed from Eq. (8.6.6) and the sym-
metric eigen-solutions (8.6.27) of nonzero eigenvalue with Re(µn) < 0 in
Eq. (8.6.27) as

v = 2v0
0 +

∑
n=1

fn exp(µnx)ψn (8.6.33)

The expanded equation (8.6.33) satisfies the differential equation in the
domain and the boundary conditions on sides y = ±b and at the infinite end
x→ ∞. The clamped boundary conditions at x = 0 is used to determine the
constants fn, (n = 1, 2, . . .). In practical applications, it is only necessary
to solve the first k terms in Eq. (8.6.33). Then the variational formula for
the boundary conditions at x = 0 is∫ b

−b

[κyδφx + κxyδφy]x=0dy = 0 (8.6.34)

Since there are complex eigenvalues and eigen-solutions, in practice,
Eqs. (8.6.33) and (8.6.34) should be transformed into a real canonical equa-
tion before solving by expansion of eigenvectors. The relevant details can
be referred to Chapter 3.

For a thin plate with Poisson’s ration ν = 0.3, the bending moment
distribution at the clamped end by using k = 11 and 21 in the computation
is presented in Fig. 8.4.

The figure shows that there is a stress singularity at the corner and
the bending moment Mx → −∞. The fluctuation of bending moment
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Fig. 8.4. Bending moment distribution at the clamped end for pure bending of a semi-

infinite thin plate.

distribution appears and it is due to truncation of series expansion in
computation.

8.7. Plate with Two Opposite Sides Clamped

For a plate with two opposite sides y = ±b clamped, the boundary condi-
tions are

w = 0, θ =
∂w

∂y
= 0 at y = ±b (8.7.1)

Expressed in terms of a full state vector they are

1
D

∂φy

∂y
− νκy = 0, κxy = 0 at y = ±b (8.7.2)

There are six eigen-solutions with zero eigenvalue (including Jordan
form eigen-solution) but they are all solutions without real physical
interpretation14. There are simply the spurious solutions of the original
problem due to the replacement of w = ∂w/∂y = 0 by κx = κxy = 0. Hence
only the eigen-solutions of nonzero eigenvalues for plate with opposite sides
clamped are discussed here. Likewise the solutions can be divided into two
sets: (1) solutions for symmetric deformation with respect to x-axis; and
(2) solutions for antisymmetric deformation with respect to x-axis.

Substituting solutions with only A and C terms in Eq. (8.4.19) into the
homogeneous boundary conditions (8.7.2) and equating the determinant of
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Table 8.4. Nonzero eigenvalues of symmetric deformation for plate with both op-
posite sides clamped.

n = 1 2 3 4 5

Re(µnb) π
2

+ 0.5354 3π
2

+ 0.6439 5π
2

+ 0.6827 7π
2

+ 0.7036 9π
2

+ 0.7169

Im(µnb) 1.1254 1.5516 1.7755 1.9294 2.0469

coefficient matrix to zero yield the transcendental equation of nonzero eigen-
values for symmetric plate deformation with both opposite sides clamped as

2µb+ sin(2µb) = 0 (8.7.3)

It is identical to Eq. (4.6.10). The first several eigenvalues are listed in
Table 8.4.

Only roots in the first quadrant are listed in Table 8.4. For each µn there
are a corresponding symplectic adjoint eigenvalue −µn and their complex
conjugate eigenvalues. There is a total of four eigenvalues. It is obvious from
Eq. (8.7.3) that these nonzero eigenvalues are all single roots.

Having solved eigenvalues µn, the corresponding eigenvectors can be
expressed as

ψn =




−
[
cos2(µnb) +

1 + ν

1 − ν

]
cos(µny) + µny sin(µny)[

cos2(µnb) − 2
1 − ν

]
sin(µny) + µny cos(µny)

µn

D(1 − ν)
{−[1 + cos2(µnb)] cos(µny) + µny sin(µny)}

µn

D(1 − ν)
{cos2(µnb) sin(µny) + µny cos(µny)}




(8.7.4)

and the solution for the corresponding problem (8.4.3) is

vn = exp(µnx)ψn (8.7.5)

Further from the curvature-deflection relation and boundary conditions
(8.7.1), the deflection of plate is

wn = − exp(µnx)
Dµn(1 − ν)

{sin2(µnb) cos(µny) + µny sin(µny)} (8.7.6)

Substituting solutions with only B and D terms in Eq. (8.4.19) into the
homogeneous boundary conditions (8.7.2) yield the transcendental equa-
tion of nonzero eigenvalues for antisymmetric plate deformation with both
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Table 8.5. Nonzero eigenvalues of antisymmetric deformation for plate with both
opposite sides clamped.

n = 1 2 3 4 5

Re(µnb) π + 0.6072 2π + 0.6668 3π + 0.6954 4π + 0.7109 5π + 0.7219
Im(µnb) 1.3843 1.6761 1.8584 1.9916 2.0966

opposite sides clamped as

2µb = sin(2µb) (8.7.7)

It is identical to Eq. (4.6.26). The first several eigenvalues is listed in
Table 8.5.

Apparently, for each µn there are a corresponding symplectic adjoint
eigenvalue −µn and their complex conjugate eigenvalues. There is a total
of four eigenvalues. Obviously the nonzero eigenvalues of antisymmetric
deformation are also single roots.

Having solved eigenvalues µn, the corresponding eigenvectors can be
expressed as

ψn =




−
[
sin2(µnb) +

1 + ν

1 − ν

]
sin(µny) − µny cos(µny)[

2
1 − ν

− sin2(µnb)
]

cos(µny) + µny sin(µny)

− µn

D(1 − ν)
{[1 + sin2(µnb)] sin(µny) + µny cos(µny)}

µn

D(1 − ν)
{− sin2(µnb) cos(µny) + µny sin(µny)}




(8.7.8)

and the solution for the corresponding problem (8.4.3) is

v̄n = exp(µnx)ψn (8.7.9)

Further from the curvature-deflection relation and boundary conditions
(8.7.1), the deflection of plate is

wn =
exp(µnx)
Dµn(1 − ν)

{− cos2(µnb) sin(µny) + µny cos(µny)} (8.7.10)

Based on the eigenvalues and eigenvectors, the general solution for
plate with both opposite sides clamped can be solved from the expansion
theorem. Thus analytical solution of the original problem can be obtained.
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A specific example for bending of a fully clamped rectangular plate
under uniformly distributed load q is presented. As the problem is sym-
metric with respect to x-axis, the expanded expression can only be con-
structed from the symmetric eigen-solutions of nonzero eigenvalues (8.7.3)
to (8.7.6) as

v =
∞∑

n=1

(fnvn + f̃nṽn + f−nv−n + f̃−nṽ−n) (8.7.11)

and the deflection of plate is

w = w∗ +
∞∑

n=1

(fnwn + f̃nw̃n + f−nw−n + f̃−nw̃−n) (8.7.12)

where vn,v−n are eigenvectors corresponding to the eigenvalue µn listed
in Table 8.4 and their respective symplectic adjoint eigenvalue −µn, while
ṽn, ṽ−n are eigenvectors corresponding to the complex conjugate eigenval-
ues ±µn. A particular solution caused by distributed load q in the domain is

w∗ =
q

24D
(y2 − b2)2 (8.7.13)

The corresponding curvatures are

κ∗x = κ∗xy = 0, κ∗y =
q

6D
(3y2 − b2) (8.7.14)

Equation (8.7.11) satisfies the homogeneous differential equation in the
domain and the homogeneous boundary conditions on two sides (8.7.2).
fi, f̃i (i = ±1,±2, . . .) are the unknown constants which can be determined
by the boundary conditions κy = κxy = 0 at two ends x = ±a. In practical
applications, it is only necessary to solve the first k terms in Eq. (8.7.11).
Then the variational formula for the boundary conditions at two ends x =
±a is ∫ b

−b

[(κy − κ∗y)δφx + (κxy − κ∗xy)δφy ]x=a

x=−a
dy = 0 (8.7.15)

Since there are complex eigenvalues and eigen-solutions, in practice
Eq. (8.7.11) should be transformed into a real canonical equation before
solving.

For a thin plate with Poisson’s ratio ν = 0.3, the result by using k =
4 is listed in Table. 8.6. The values in parentheses in the table are the
solutions obtained by expansion of different series with many more terms1.
The solutions obtained are in excellent agreement with those in Ref. 1.
However, the solutions of the present method converge more quickly.
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Table 8.6. Analytical solution of a fully clamped plate under uniform load.

a
b

Dw(0,0)

16qb4
Mx(a,0)

4qb2
My(0,b)

4qb2
Mx(0,0)

4qb2
My(0,0)

4qb2

1.0 0.00127(0.00126) 0.0514(0.0513) 0.0513(0.0513) −0.0229(−0.0231) −0.0229(−0.0231)
1.1 0.00151(0.00150) 0.0539(0.0538) 0.0581(0.0581) −0.0231(−0.0231) −0.0267(−0.0264)
1.2 0.00173(0.00172) 0.0554(0.0554) 0.0639(0.0639) −0.0228(−0.0228) −0.0300(−0.0299)
1.3 0.00191(0.00191) 0.0563(0.0563) 0.0687(0.0687) −0.0222(−0.0222) −0.0327(−0.0327)
1.4 0.00207(0.00207) 0.0568(0.0568) 0.0726(0.0726) −0.0213(−0.0212) −0.0350(−0.0349)
1.5 0.00220(0.00220) 0.0570(0.0570) 0.0757(0.0757) −0.0203(−0.0203) −0.0368(−0.0368)
1.6 0.00230(0.00230) 0.0571(0.0571) 0.0780(0.0780) −0.0193(−0.0193) −0.0382(−0.0381)
1.7 0.00238(0.00238) 0.0571(0.0571) 0.0798(0.0799) −0.0183(−0.0182) −0.0393(−0.0392)
1.8 0.00245(0.00245) 0.0571(0.0571) 0.0812(0.0812) −0.0174(−0.0174) −0.0401(−0.0401)
1.9 0.00250(0.00249) 0.0570(0.0571) 0.0822(0.0822) −0.0165(−0.0165) −0.0407(−0.0407)
2.0 0.00253(0.00254) 0.0570(0.0571) 0.0829(0.0829) −0.0158(−0.0158) −0.0412(−0.0412)
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8.8. Bending of Sectorial Plates

The bending of rectangular plates in symplectic system has been dis-
cussed in the previous several sections. The symplectic system is certainly
also applicable to the bending of sectorial plates15. In this section the
bending of sectorial plates in polar coordinates as shown in Fig. 8.5 is
discussed.

The basic equations for plate bending in a polar coordinate system
include:

(1) The curvature-deflection relations

κϕ =
1
ρ

∂w

∂ρ
+

1
ρ2

∂2w

∂ϕ2

κρ =
∂2w

∂ρ2

κρϕ = − ∂

∂ρ

(
1
ρ

∂w

∂ϕ

)




(8.8.1)

(2) The relations between bending moment and curvature




Mϕ

Mρ

2Mρϕ


 = D




1 ν 0

ν 1 0

0 0 2(1 − ν)






κϕ

κρ

κρϕ


 (8.8.2)

whereD is flexural rigidity of plate. The strain energy density of plate is

vε(κϕ, κρ, κρϕ) =
1
2
D[κ2

ϕ + κ2
ρ + 2νκϕκρ + 2 (1 − ν) κ2

ρϕ] (8.8.3)

Fig. 8.5. Bending of a sectorial plate.
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(3) The equations of equilibrium

∂Mρ

∂ρ
− 1
ρ

∂Mρϕ

∂ϕ
+
Mρ −Mϕ

ρ
= FSρ

1
ρ

∂Mϕ

∂ϕ
− 2
ρ
Mρϕ − ∂Mρϕ

∂ρ
= FSϕ




(8.8.4a)

and

∂FSρ

∂ρ
+
FSρ

ρ
+

1
ρ

∂FSϕ

∂ϕ
= q (8.8.4b)

The total distributed shear forces as a result of continuous distributed tor-
sional moment and transverse shear forces along the boundary are

FVρ = FSρ − 1
ρ

∂Mρϕ

∂ϕ
, FVϕ = FSϕ − ∂Mρϕ

∂ρ
(8.8.5)

The positive directions of internal forces are shown in Fig. 8.1. As load
q can be treated by a particular solution according to the superposition
principle, it is possible to consider the homogeneous equation q = 0 first.

According to the analogy between plate bending and plane elasticity,
deflection of plate bending w corresponds to the Airy stress function of
plane elasticity. Hence the displacements uρ, uθ of plane elasticity in po-
lar coordinates correspond to bending moment functions φρ, φϕ of plate
bending in polar coordinates. The relations between bending moment and
bending moment function are

Mϕ =
∂φρ

∂ρ
, Mρ =

1
ρ

(
φρ +

∂φϕ

∂ϕ

)
, Mρϕ =

1
2ρ

(
∂φρ

∂ϕ
+ ρ

∂φϕ

∂ρ
− φϕ

)
(8.8.6)

It can be verified through substitution that the homogeneous equations
(8.8.4) is satisfied.

Similar to rigid body displacements in plane elasticity, the functions

φρ = a0 sinϕ+ a1 cosϕ, φϕ = a0 cosϕ− a1 sinϕ+ a2ρ (8.8.7)

do not result in any bending moment. Here a0, a1, a2 are arbitrary con-
stants. And equivalently Eq. (8.8.7) are the null moment functions in po-
lar coordinates.

Similar to the Hellinger–Reissner variational principle for plane elastic-
ity in polar coordinates, the plate bending Pro-H-R variational principle in
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polar coordinates is

δ

∫ α

−α

∫ R2

R1

{
κϕ
∂φρ

∂ρ
+
κρ

ρ

(
φρ +

∂φϕ

∂ϕ

)

+ κρϕ

(
∂φϕ

∂ρ
− φϕ

ρ
+

1
ρ

∂φρ

∂ϕ

)
− vε

}
ρdρdϕ = 0 (8.8.8)

Deflection w is not present in this variational principle. It can be obtained
by integration after solving the curvature. Considering κϕ, κρ, κρϕ, φρ, φϕ as
independent variables, variation of Eq. (8.8.8) yields the relations between
bending moment and curvature

∂φρ

∂ρ
=
∂vε

∂κϕ
,

1
ρ

(
φρ +

∂φϕ

∂ϕ

)
=
∂vε

∂κρ
,

1
ρ

(
∂φρ

∂ϕ
+ ρ

∂φϕ

∂ρ
− φϕ

)
=

∂vε

∂κρϕ

(8.8.9)

and the curvature compatibility equation
∂κϕ

∂ρ
+
κϕ − κρ

ρ
+

1
ρ

∂κρϕ

∂ϕ
= 0

1
ρ

∂κρ

∂ϕ
+
∂κρϕ

∂ρ
+

2κρϕ

ρ
= 0


 (8.8.10)

The boundary conditions for sides ϕ = ±α are the same as those of rectan-
gular plates because the sides are straight edges. For example, the deflection
w and normal rotation θn are specified along the displacement boundary Γu.
The boundary conditions expressed in terms of tangential curvature κs and
normal curvature κns are

κs = κs =
∂2w

∂s2
, κns = κns = −∂θn

∂s
(8.8.11)

Similarly, the normal bending moment Mn and equivalent shear force FVn

are specified along the force boundary Γσ. The boundary conditions ex-
pressed in terms of bending moment functions are

φs = φs =
∫ s

s0

Mnds′ + a1

φn = φn =
∫ s

s0

(s′ − s)FVnds′ + a0 + a2s




(8.8.12)

Equations (8.8.1) to (8.8.10) constitute another set of basic equations
for sectorial plates. As these basic equations are in analogy to those for
plane elasticity in polar coordinates, the various plane elasticity solution
methodologies for a sectorial domain are completely applicable.
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8.8.1. Derivation of Hamiltonian System

Similar to plane elasticity in a sectorial domain, we introduce the
transformation

ξ = ln ρ, i.e. ρ = eξ (8.8.13)

and denote

ξ1 = lnR1, ξ2 = lnR2 (8.8.14)

sρ = ρκρ, sϕ = ρκϕ, sρϕ = ρκρϕ (8.8.15)

Hence the Pro-H-R variational principle (8.8.8) can be expressed as

δ

∫ α

−α

∫ ξ2

ξ1

{
sϕ
∂φρ

∂ξ
+ sρ

(
φρ +

∂φϕ

∂ϕ

)
+ sρϕ

(
∂φϕ

∂ξ
− φϕ +

∂φρ

∂ϕ

)

− 1
2
D[s2ϕ + s2ρ + 2νsϕsρ + 2(1 − ν)s2ρϕ]

}
dξdϕ = 0

(8.8.16)

We further treat ξ as the time coordinate in Hamiltonian system, and denote
(̇) = ∂/∂ξ. The variation of Eq. (8.8.16) with respect to sρ yields

sρ =
1
D

(
φρ +

∂φϕ

∂ϕ

)
− νsϕ (8.8.17)

Substituting into Eq. (8.8.16) and eliminating sρ yield

δ

∫ α

−α

∫ ξ2

ξ1

{pTq̇ − H (q,p)}dξdϕ = 0 (8.8.18)

where

q = {φρ, φϕ}T, p = {sϕ, sρϕ}T (8.8.19)

and the Hamiltonian density function is

H (q,p) = νsϕ

(
φρ +

∂φϕ

∂ϕ

)
+ sρϕ

(
φϕ − ∂φρ

∂ϕ

)
− 1

2D

(
φρ +

∂φϕ

∂ϕ

)2

+
1 − ν

2
D

[
(1 + ν)s2ϕ + 2s2ρϕ

]
(8.8.20)
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The variation of Eq. (8.8.18) with respect to q,p yields the system of dual
equations

v̇ =Hv (8.8.21)

where v = {φρ φϕ sϕ sρϕ}T is the full state vector. The operator matrix is

H =




ν ν
∂

∂ϕ
D

(
1 − ν2

)
0

− ∂

∂ϕ
1 0 2D (1 − ν)

1
D

1
D

∂

∂ϕ
−ν − ∂

∂ϕ

− 1
D

∂

∂ϕ
− 1
D

∂2

∂ϕ2
ν
∂

∂ϕ
−1




(8.8.22)

Similar to the foregoing sections, Eq. (8.8.21) can be solved by the method
of separation of variables. Let

v(ξ, ϕ) = eµξψ(ϕ) (8.8.23)

where µ is the unknown eigenvalue and ψ(x) is the eigenvector which is
only a function of ϕ. The eigenvalue equation is

Hψ(ϕ) = µψ(ϕ) (8.8.24)

The eigenvector ψ(ϕ) is also required to satisfy the corresponding homoge-
neous boundary conditions on two sides ϕ = ±α.

For v1,v2 satisfying the homogeneous boundary conditions for free,
clamped or hinged support boundary conditions on sides ϕ = ±α, respec-
tively, it is easy to verify that there exists an identity∫ α

−α

vT
1 JHv2dϕ ≡

∫ α

−α

vT
2 JHv1dϕ (8.8.25)

where

J =

[
0 I

−I 0

]
(8.8.26)

Hence JH is a symmetric operator, or equivalently H is a Hamiltonian
operator matrix.

For some specified problems with special boundary conditions there may
exist zero and µ = ±1 eigenvalues. Such solutions can be obtained via ra-
tional derivation and the solutions are relevant to problems to be discussed.
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Similar to plane elasticity, the general solution for eigen-solutions of general
nonzero eigenvalues is

φρ = A1 cos[(1 + µ)ϕ] +B1 sin[(1 + µ)ϕ]

+C1 cos[(1 − µ)ϕ] +D1 sin[(1 − µ)ϕ]

φϕ = A2 sin[(1 + µ)ϕ] +B2 cos[(1 + µ)ϕ]

+C2 sin[(1 − µ)ϕ] +D2 cos[(1 − µ)ϕ]

sϕ = A3 cos[(1 + µ)ϕ] +B3 sin[(1 + µ)ϕ]

+C3 cos[(1 − µ)ϕ] +D3 sin[(1 − µ)ϕ]

sρϕ = A4 sin[(1 + µ)ϕ] +B4 cos[(1 + µ)ϕ]

+C4 sin[(1 − µ)ϕ] +D4 cos[(1 − µ)ϕ]




(8.8.27)

The constants are not all independent. There are only four independent
constants. Substituting Eq. (8.8.27) into Eq. (8.8.24) yields

A2 = −A1

A3 =
µ

D(1 − ν)
A1

A4 = − µ

D(1 − ν)
A1




;

C2 =
−3 − ν − µ+ νµ

3 + ν − µ+ νµ
C1

C3 =
µ(3 − µ)

D(3 + ν − µ+ νµ)
C1

C4 =
µ(1 − µ)

D(3 + ν − µ+ νµ)
C1




(8.8.28)

and

B1 = B2

B3 =
µ

D(1 − ν)
B2

B4 =
µ

D(1 − ν)
B2




;

D1 =
3 + ν − µ+ νµ

3 + ν + µ− νµ
D2

D3 =
µ(3 − µ)

D(3 + ν + µ− νµ)
D2

D4 =
−µ(1 − µ)

D(3 + ν + µ− νµ)
D2




(8.8.29)

Further substituting Eqs. (8.8.28) and (8.8.29) into the corresponding
homogeneous boundary conditions for two sides ϕ = ±α yields the gen-
eral transcendental equation for nonzero eigenvalues and the corresponding
eigenvectors. The eigenvalues and eigenvectors for different boundary con-
ditions are different. The typical sectorial plate with two opposite sides free
is discussed in the following section.
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8.8.2. Sectorial Plate with Two Opposite Sides Free

Consider a sectorial plate with two opposite sides free. From Eq. (8.8.12)
and transformation (8.8.13), the boundary conditions can be expressed in
terms of a full state vector as

φρ = φϕ = 0 at ϕ = −α (8.8.30a)

and

φρ = ã1 φϕ = ã0 + a2eξ at ϕ = α (8.8.30b)

For force boundary conditions, there are three unkown constants according
to Eq. (8.8.12). Three constants for ϕ = −α have been eliminated by virtue
of arbitrariness of null moment functions while for convenience of discussion
two constants ã0, ã1 for ϕ = α have been transformed into

φρ = a0 sinα+ a1 cosα, φϕ = a0 cosα− a1 sinα+ a2e
ξ at ϕ = α

(8.8.30b′)

according to the null moment functions (8.8.7). As eigen-solutions deal
with homogeneous equations and homogeneous boundary conditions, the
undetermined inhomogeneous constants in boundary conditions should be
solved first similar to in the solution procedure for rectangular plate.

First the a0 term should be solve from the following equation

Hψ = 0 (8.8.31)

with the boundary conditions

φρ(−α) = φϕ(−α) = 0, φρ(α) = sinα, φϕ(α) = cosα (8.8.32)

The solution is

ψ̃0 =




1
k0

[(3 + ν)ϕ sinϕ− (1 − ν) sin2 α cosϕ] +
1
2

sinϕ

1
k0

[(3 + ν)ϕ cosϕ− (1 − ν) cos2 α sinϕ] +
1
2

cosϕ

− 2ν cosϕ
D(1 − ν)k0

2 sinϕ
D(1 − ν)k0




(8.8.33)
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where

k0 = 2(3 + ν)α− (1 − ν) sin(2α) (8.8.34)

The solution for the original problem (8.8.21) is

ṽ0 = ψ̃0 (8.8.35)

and the corresponding deflection and bending moment are

w̃0 =
ρ[2(ln ρ− 1) cosϕ− (1 + ν)ϕ sinϕ]

D(1 − ν)k0
+ rigid body displacement

(8.8.36)

M̃ρ0 =
2(1 + ν) cosϕ

ρk0
, M̃ϕ0 = 0, M̃ρϕ0 =

2 sinϕ
ρk0

(8.8.37)

Further from Eqs. (8.8.4a) and (8.8.5), the shear forces and total distributed
shear forces along the boundary are

F̃Sρ0 = −2cosϕ
ρ2k0

, F̃Sϕ0 = −2sinϕ
ρ2k0

(8.8.38)

F̃Vρ0 = −4 cosϕ
ρ2k0

, F̃Vϕ0 = 0 (8.8.39)

Obviously, the internal forces result in a unit bending moment on the edge
surface ξ1 = lnR1(ρ = R1)

F =
∫ α

−α

ρF̃Vρ0dϕ+ [2M̃ρϕ0]α−α = 0

Mx =
∫ α

−α

[ρF̃Vρ0 − M̃ρ0]ρ sinϕdϕ+ [2ρ sinϕM̃ρϕ0]α−α = 0

My =
∫ α

−α

[M̃ρ0 − ρF̃Vρ0]ρ cosϕdϕ− [2ρ cosϕM̃ρϕ0]α−α = 1




(8.8.40)

Taking ξ1 → −∞, ṽ0 becomes the solution of a wedge with a unit bending
moment acting at the apex (Fig. 8.6).

Next the a1 term should be solved from the following equation

Hψ = 0 (8.8.41)

with boundary conditions

φρ(−α) = φϕ(−α) = 0, φρ(α) = cosα, φϕ(α) = − sinα (8.8.42)
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Fig. 8.6. A wedge with bending moment at the apex.

The solution is

ψ̃1 =




1
k1

[(3 + ν)ϕ cosϕ+ (1 − ν) cos2 α sinϕ] +
1
2

cosϕ

− 1
k1

[(3 + ν)ϕ sinϕ+ (1 − ν) sin2 α cosϕ] − 1
2

sinϕ

2ν sinϕ
D(1 − ν)k1

2 cosϕ
D(1 − ν)k1




(8.8.43)

where

k1 = 2(3 + ν)α+ (1 − ν) sin 2α (8.8.44)

The solution for the original problem (8.8.21) is

ṽ1 = ψ̃1 (8.8.45)

and the corresponding deflection and bending moment are

w̃1 = −ρ[2(lnρ− 1) sinϕ+ (1 + ν)ϕ cosϕ]
D(1 − ν)k1

+ rigid body displacement

(8.8.46)

M̃ρ1 = −2(1 + ν) sinϕ
ρk1

, M̃ϕ1 = 0, M̃ρϕ1 =
2 cosϕ
ρk1

(8.8.47)

Further from Eqs. (8.8.4a) and (8.8.5), the shear forces and total distributed
shear forces along the boundary are

F̃Sρ1 =
2sinϕ
ρ2k1

, F̃Sϕ1 = −2cosϕ
ρ2k1

(8.8.48)

F̃Vρ1 =
4 sinϕ
ρ2k1

, F̃Vϕ1 = 0 (8.8.49)
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Fig. 8.7. A wedge with torsion moment at the apex.

Obviously, the internal forces result in a unit torsion moment on the edge
surface ξ1 = lnR1(ρ = R1)

F =
∫ α

−α

ρF̃Vρ1dϕ+ [2M̃ρϕ1]α−α = 0

Mx =
∫ α

−α

[ρF̃Vρ1 − M̃ρ1]ρ sinϕdϕ+ [2ρ sinϕM̃ρϕ1]α−α = 1

My =
∫ α

−α

[M̃ρ1 − ρF̃Vρ1]ρ cosϕdϕ− [2ρ cosϕM̃ρϕ1]α−α = 0




(8.8.50)

Taking ξ1 → −∞, ṽ1 becomes the solution of a wedge with a unit torsion
moment acting at the apex (Fig. 8.7).

Finally, the a2 term should be solved. As a2 in the expression of φϕ in
Eq. (8.8.30b′) has a multiplier eξ, the solution corresponds to eigenvalues
of 1. Hence the a2 term should be solved from the following equation

Hψ = ψ (8.8.51)

with boundary conditions

φρ(−α) = φϕ(−α) = 0, φρ(α) = 0, φϕ(α) = 1 (8.8.52)

The solution is

ψ̃2 =




cos(2α) − cos(2ϕ)
2 sin(2α)

sin(2ϕ)
2 sin(2α)

+
1
2

− cos(2ϕ)
2D(1 − ν) sin(2α)

+
cos(2α)

2D(1 + ν) sin(2α)

sin(2ϕ)
2D(1 − ν) sin(2α)




(8.8.53)

The solution for the original problem (8.8.21) is

ṽ2 = eξψ̃2 = ρψ̃2 (8.8.54)
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and the corresponding deflection and bending moment are

w̃2 =
ρ2

4D sin(2α)

[
cos(2ϕ)
1 − ν

+
cos(2α)
1 + ν

]
+ rigid body displacement

(8.8.55)

M̃ρ2 =
cos(2α) + cos(2ϕ)

2 sin(2α)
, M̃ϕ2 =

cos(2α) − cos(2ϕ)
2 sin(2α)

, M̃ρϕ2 =
sin(2ϕ)
2 sin(2α)

(8.8.56)

Further from Eqs. (8.8.4a) and (8.8.5), the shear forces and total distributed
shear forces along the boundary are

F̃Sρ2 = 0, F̃Sϕ2 = 0 (8.8.57)

F̃Vρ2 = − cos(2ϕ)
ρ sin(2α)

, F̃Vϕ2 = 0 (8.8.58)

Obviously, the internal forces result in a unit vertical concentrated force at
the apex.

F =
∫ α

−α

ρF̃Vρ2dϕ+ [2M̃ρϕ2]α−α = 1

Mx =
∫ α

−α

[ρF̃Vρ2 − M̃ρ2]ρ sinϕdϕ+ [2ρ sinϕM̃ρϕ2]α−α = 0

My =
∫ α

−α

[M̃ρ2 − ρF̃Vρ2]ρ cosϕdϕ− [2ρ cosϕM̃ρϕ2]α−α = 0




(8.8.59)

Taking ξ1 → −∞, ṽ2 becomes the solution of a wedge with a unit vertical
concentrated force acting at the apex (Fig. 8.8).

For α = π/2, π, it should be noted that the solutions (8.8.55) and
(8.8.56) are infinite and they are similar to the paradox for a plane elastic
wedge. The solution should be in Jordan form. Solving the Jordan form
yields solutions of special semi-plate and cracked plate subject to a vertical
concentrated force. The details are omitted here.

Fig. 8.8. A wedge with a vertical concentrated force at the apex.
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In fact, it is certainly possible to derive the Hamiltonian system and
establish the solution by the method separable variables from the bihar-
monic equation of deflection in polar coordinates. There are then six spe-
cial eigen-solutions of zero and ±1 eigenvalues, i.e. three plate rigid body
displacements and the solutions corresponding to ṽ0, ṽ1, ṽ2. As the method
presented here replaces deflection with curvature in order to avoid three
plate rigid body displacements, the corresponding dual solutions are ex-
pressed in the form of particular solutions of inhomogeneous boundary
conditions.

Having established the three inhomogeneous solutions, the solution of
homogeneous boundary conditions is considered below.

For a plate with both opposite sides free, the homogeneous boundary
conditions are

φρ = φϕ = 0 at ϕ = ±α (8.8.60)

Obviously only eigen-solutions of nonzero eigenvalues satisfy Eqs. (8.8.24)
and (8.8.60). The solutions can be divided into two sets: symmetric defor-
mation and antisymmetric deformation with respect to ϕ = 0. It is clear
from Eq. (8.8.27) that A and C correspond to eigen-solutions of symmetric
deformation while B and D corresponds to eigen-solutions of antisymmetric
deformation.

Substituting solutions with only A and C terms in Eq. (8.8.27) into the
homogeneous boundary conditions (8.8.60) and equating the determinant
of coefficient matrix to zero yield the transcendental equation of nozero
eigenvalues for symmetric plate deformation with both opposite sides free as

(3 + ν) sin(2µα) − µ(1 − ν) sin(2α) = 0 (8.8.61)

The corresponding eigen-solution is

ψs =




D(1 − ν){−(3 + ν + µ− νµ) sin[(1 − µ)α] cos[(1 + µ)ϕ]

+ (3 + ν − µ+ νµ) sin[(1 + µ)α] cos[(1 − µ)ϕ]}
D(1 − ν)(3 + ν + µ− νµ)

{sin[(1 − µ)α] sin[(1 + µ)ϕ]− sin[(1 + µ)α] sin[(1 − µ)ϕ]}
µ{−(3 + ν + µ− νµ) sin[(1 − µ)α] cos[(1 + µ)ϕ]

+ (1 − ν)(3 − µ) sin[(1 + µ)α] cos[(1 − µ)ϕ]}
µ{(3 + ν + µ− νµ) sin[(1 − µ)α] sin[(1 + µ)ϕ]

+ (1 − ν)(1 − µ) sin[(1 + µ)α] sin[(1 − µ)ϕ]}




(8.8.62)
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The solution for the original problem (8.8.21) is

vs = exp(µξ)ψs = ρµψs (8.8.63)

and the corresponding deflection is

ws = ρµ+1

{
3 + ν + µ− νµ

1 + µ
sin[(1 − µ)α] cos[(1 + µ)ϕ]

+ (1 − ν) sin[(1 + µ)α] cos[(1 − µ)ϕ]
}

+ rigid body displacement (8.8.64)

Substituting solutions with only B and D terms in Eq. (8.8.27) into the
homogeneous boundary conditions (8.8.60) and equating the determinant
of coefficient matrix to zero yield the transcendental equation of nonzero
eigenvalues for antisymmetric plate deformation with both opposite sides
free as

(3 + ν) sin(2µα) + µ(1 − ν) sin(2α) = 0 (8.8.65)

The corresponding eigen-solution is

ψa =




D(1 − ν){(3 + ν + µ− νµ) cos[(1 − µ)α] sin[(1 + µ)ϕ]

− (3 + ν − µ+ νµ) cos[(1 + µ)α] sin[(1 − µ)ϕ]}
D(1 − ν)(3 + ν + µ− νµ)

{cos[(1 − µ)α] cos[(1 + µ)ϕ]− cos[(1 + µ)α] cos[(1 − µ)ϕ]}
µ{(3 + ν + µ− νµ) cos[(1 − µ)α] sin[(1 + µ)ϕ]

− (1 − ν)(3 − µ) cos[(1 + µ)α] sin[(1 − µ)ϕ]}
µ{(3 + ν + µ− νµ) cos[(1 − µ)α] cos[(1 + µ)ϕ]

+ (1 − ν)(1 − µ) cos[(1 + µ)α] cos[(1 − µ)ϕ]}




(8.8.66)

The solution for the original problem (8.8.21) is

va = exp(µξ)ψa = ρµψa (8.8.67)
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and the corresponding deflection is

wa = −ρµ+1

{
3 + ν + µ− νµ

1 + µ
cos[(1 − µ)α] sin[(1 + µ)ϕ]

+ (1 − ν) cos[(1 + µ)α] sin[(1 − µ)ϕ]
}

+ rigid body displacement (8.8.68)

Having established the eigenvalues and eigenvectors and knowing the
adjoint symplectic orthogonality property, the general solution for sectorial
plate with both opposite sides free can be solved according to the expansion
theorem as

v = a0ṽ0 + a1ṽ1 + a2ṽ2 +
∞∑

n=1

(bnvn + cnv−n) (8.8.69)

where vn,v−n are the symplectic adjoint eigen-solutions corresponding to
eigenvalues µn and −µn, and a0, a1, a2 and bn, cn (n = 1, 2, . . .) are unknwon
constants. Equation (8.8.69) satisfies all governing equations in the domain
and free boundary conditions on both opposite sides ϕ = ±α. Substituting
the equation into the boundary conditions at two ends (ρ = R1 and R2)
and subsequently determining the relevant constants yield the analytical
solution of the problem.

This chapter presents another different set of basic governing equa-
tions and solution methodology for the classical theory of plate bend-
ing based on the analogy principle. It presents a contrasting approach
with respect to the widely adopted classical methodology in Ref. 1. The
classical methodology adopts displacement and biharmonic equation while
the new methodology adopts force and bending moment function vector.
The classical methodology adopts a trial and error approach which con-
sequently limits the possibility of obtaining an analytical solution. For
instance, analytical solutions can only be established for a rectangular
plate simply supported on both opposite sides whereas for other boundary
constraints the classical methodology has been impractical. Based on the
Hamiltonian system, the new methodology adopts a rational approach via
some effective methods such as separation of variables, eigenfunction, sym-
plectic orthogonal system, expansion theorem, etc. to establish analytical
solutions. The new methodology presents a breakthrough which has thus
far restricted the applicability of the classical trial and error methodology.
The solutions for rectangular plates with opposite sides free or clamped
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presented in this chapter, as well as solutions for sectorial plates, are ex-
amples which the classical methodology has been either impractical or
inapplicable.

In fact, based on the analogy principle, it is not only possible to solve
the bending problem of isotropic plates but also the bending problem of
anisotropic plate16. The details are left for the readers.

It should also be emphasized here that the Hamiltonian system for bend-
ing of plate introduced in this chapter has been based on the analogy prin-
ciple using the bending moment function vector. It is equally possible to
directly derive the Hamiltonian system from the biharmonic equation of
the deflection of plate bending. The latter is the displacement Hamiltonian
system which is required in the research of vibration and stability problems.
The relevant contents are not introduced in this chapter.
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