Introduction to Parallel Computing

Mohammad Javad Rashti

Introduction to Parallel Computing

What is Parallel Computing?

- Traditionally a computer has <u>one CPU (Central Processing</u> Unit)
 - User program is a sequence of instructions
 - One CPU can execute program instructions in sequence

What is Parallel Computing?

- Using <u>multiple CPUs</u> to solve the problem(s) in parallel
- Partitioning: Domain or functional decomposition
- <u>Supercomputer</u>: A highly-parallel computing system used for running parallel programs

Why do we need Parallel Programming?

- Need to run the program <u>faster</u>
- Need to run the program with <u>higher precision</u>
- Need to run <u>multiple programs</u> simultaneously
- The program does not fit a single computer's resources

IBM BlueGene Supercomputer

Introduction to Parallel Computing

What Limits a Sequential Computer?

- Power limits
 - More frequency means much more power
- Transmission speeds
 - Light: 30cm/ns
 - Cooper: 9cm/ns
- Physical limits
 - 7nm transistors ~ 15 atoms
- Economical limits

 $P \cong f^3$

Applications of Parallel Programming

- High Performance Computing (HPC)
 - Grand Challenge Problems (Scientific and industrial)
 - Scientific simulation is the third pillar of science
- Big Data & Business Problems

Grand Challenge Problems

- Weather and Climate Simulation

 Weather forecast, Global warming, ...
- Pharmaceutical Simulations
 - Simulation of new drugs and their effects
- Physics, Astronomy and Molecular Dynamics
 - Simulation of cosmic phenomena
- Fluid and Structural Dynamics
 - Building a bridge
 - Building an aircraft or rocket

Big Data Applications

• Data Mining

lacksquare

 ${\color{black}\bullet}$

Web Search WWW J101011110001010001001011110001101100. 1000100101111000110110001101010 110 Medical Data Analysis 11110 (1000101001100001101011100001100 1000100101111000110110001101010101000 00011001 00001' L100' 01004 01111 011111 0111100101000101000110000 01000100101111000110110 01000101001100001101011 010111110001101100011010 101001100001101011100001*

Big Data Applications

Supercomputer Use Cases

• **Top500.org** Supercomputer List: updated

Semi-annually Application Area System Share

Big Users of Supercomputers

Top500 Supercomputers by Segment

PARALLEL COMPUTING ARCHITECTURES

Flynn's Matrix

Classify based on data and instruction

Memory Classification of Parallel Architectures

- Shared Memory
 - Global Address Space (GAS)
 - Uniform Memory Access (UMA)
 - Non-uniform Memory Access (NUMA)
- Distributed Memory

Supercomputer Topology Models

- Shared Memory Symmetric Multi-processing (SMP)
 - Multiple CPU sockets on the MB
 - Memory is symmetrically shared among them
 - Single OS manages the whole node
 - Example: regular multi-socket server nodes
 - AMD Hyper-transport and Intel Quick-path

Supercomputer Topology Models

Corr

- Shared Memory Non-uniform Memory Access (NUMA)
 - Each NUMA node has its own "close" memory banks

CPU

CPU

CPU

CPU

1/0

Controller

AMD HT

Supercomputer Topology Models

Supercompute Topology Mode

- Distributed Memory Clusters
- 426 out of top 500 supercomputers

Tianhe2 – World's fastest supercomputer cluster – 33 PFLOPS, 3M cores Introduction to Parallel Computing

HOW TO PROGRAM IN PARALLEL?

Steps in Developing Parallel Programs

- Understand the problem
 - and the existing sequential code
- Is the problem parallelizable?

Calculate the potential energy for each of several thousand independent conformations of a molecule. When done, find the minimum energy conformation.

Parallelizable

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the formula:

F(k + 2) = F(k + 1) + F(k)

Amdahl's Law

Amdahl's Law states that for a fixed workload, potential program speedup is defined by the fraction of code (q) that cannot be parallelized:

Speedup
$$= \frac{1}{q}$$

- If none of the code can be parallelized, q = 1 and the speedup = 1 (no speedup). If all of the code is parallelized, q = 0 and the speedup is infinite (in theory).
- If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run twice as fast.

Steps in Developing Parallel Programs

- Find the critical work flow / hotspots
 - Where most of the work is done
 - Use profilers and performance analyzers on the sequential code
- Identify data dependencies
 - Inhibitors to parallelization
- Restructure the sequential program
 - Remove bottlenecks such as I/O out of the hotspots
- Partition the problem
 - Domain or functional decomposition

Example of Problem Partitioning

GCM: Global Climate Model

Atmosphere

Oceans

Vegetation

Domain Decomposition Processors in adjacent blocks communicate their result.

Functional Decomposition

Steps in Developing Parallel Programs

- Arrange for Inter-process Communications
- Do we need communication?

- Embarrassingly Parallel problems
- Example: Inverting image color

- Most of the problems need communication
- Example: 3D Heat diffusion
- Communications are <u>Overhead</u>
 - <u>Reduce</u> the data to be moved
 - <u>Avoid</u> unnecessary communication in the code
 - <u>Overlap</u> communication with computation or communication

Concepts of Communication

- Latency & Bandwidth
- Explicit vs. implicit
- Synchronous vs. Asynchronous
- Scope
 - Point-to-point
 - Collective

