
CS787: Advanced Algorithms Fall 2009

Homework 1 Solutions

Lecturer: Shuchi Chawla TA: Keith Langston

Exercises

1. Let T be the collection of maximum bottleneck paths. We show that if T is not a tree, then its
cycle(s) can be eliminated while preserving the maximum bottleneck property. Suppose that
T contains a cycle C. Let e be the edge in C with minimum weight. Since e ∈ T , there exist
two vertices u and v such that the maximum bottleneck path P between u and v contains e.
The bottleneck of this u–v path is at most ce. Rerouting this path along the other side of C
(i.e. not using e) results in another u–v path. The bottleneck of this new path is at least the
bottleneck of P , since all edges along this alternate path have weight at least ce. Hence, the
cycle C can be eliminated by safely removing e from T .

The following modified Kruskal’s algorithm finds T : Consider edges in decreasing order of
weight, and pick each edge that does not form a cycle with previously included edges. Just
like Kruskal’s, this algorithm runs in O(m log n) time.

2. Let G = (X,Y ;E) be a bipartite graph. Suppose that G has a perfect matching M . Then for
each S ⊆ X, |Γ(S)| ≥ |S| since Γ(S) contains all vertices in Y that are matched to vertices
in S. Similarly, |Γ(T)| ≥ |T | for all T ⊆ Y .

Now assume that G does not have a perfect matching and let M be a maximum matching
of G. We treat G as a flow network (having invisible source s, sink t and a few more edges)
and M as a flow in G. Let S be the set of vertices in X that can be reached from the source
in the residual network. Let u ∈ S and v be one of u’s neighbors. Then v must be matched,
otherwise we could find an augmenting path (the path from s to u, (u, v), followed by (v, t))
and increase the flow. Suppose that v is matched to w. Then w ∈ S, because (1) if v is
matched to u, then w = u ∈ S; (2) if u 6= w, then the edges (u, v) and (v, w) are in the
residual network, so w is also reachable from s. Let there be k matched vertices in S. From
the above observations, we can conclude that |Γ(S)| = k < |S|. (The last inequality holds
because all unmatched vertices of X are contained in S). This shows that Hall’s conditions
is violated by some S ⊆ X.

3. (a) Flip the coin twice. If it comes up H followed by T, output H; if it comes up T followed
by H, output T; otherwise, repeat. By symmetry we can see that the probability of
outputting H is indeed 1/2. The probability that two consecutive coin tosses have
different outcomes is 2p(1−p), hence the expected number of tosses required is 2/(2p(1−
p)) = 1/(p(1− p)).

(b) This idea is to write p in binary. Let’s say H corresponds to 0 and T correspond to 1. Flip
coins until the generated sequence differs from the binary expansion of p. Output the
result of the last toss. The probability of getting the “wrong” outcome at any position
is 1/2, regardless of the value of p. Hence the expected number of tosses needed is 2.

1

(c) We first show that picking an integer uniformly at random from [1, n] requires O(log n)
tosses of a fair coin (in expectation). The basic idea is to toss a coin dlog ne times to
get a binary number of length dlog ne. With probability less than 1/2, this number
will be strictly larger than n, so we must try again. We need to try this at most twice
(in expectation) in order to generate an integer in [1, n]. Therefore, the expected total
number of coin tosses is less than 2 dlog ne. Given such a random number generator, we
can shuffle a deck of n cards as follows: Generate a random number k between 1 and
n. Take out the k-th card from the bottom and put it on top of the deck. Decrement n
by 1 and repeat until n reaches 0. n random numbers need to be generated, hence the
number of coin tosses needed is less than 2n dlog ne.

Problems

1. (a) The reduction is as follows.

i. Add an edge e′ = (t, s) to G. Let G′ be the resulting graph. Set ce′ =
∑

e∈E fe and
`e′ = −M where M is a very large positive integer (e.g. M = 1 +

∑
e∈E |`e|).

ii. Run MCC on G′.
iii. Let f be the min-cost circulation of G′. Then, f (ignoring the flow on e′) is a

min-cost max-flow of G.

We first show that f is a maximum flow of G. Clearly, f is a feasible flow of G, since
it satisfies the capacity constraints of all edges, and flow is conserved at every vertex
other than s and t. To show maximality, we consider the cost of circulation f . If f is
not a maximum flow of G, then there exists an augmenting path P in the residual graph
Gf . We can augment the circulation in G′ by pushing flow along the cycle formed by
P and e′. Since `e′ = −M , the increase in the circulation cost must be negative. This
contradicts our assumption that f is a min-cost circulation. Therefore, f is a maximum
flow of G.
Next, we show that f is a min-cost max-flow of G. Let f̃ be any maximum flow of G.
The cost of the flow f̃ is `(f̃) =

∑
e∈E f̃e`e. We augment f̃ to a circulation of G′ by

setting f̃e′ = |f̃ |. The cost of the circulation f̃ is
∑

e∈E f̃e`e + f̃e′`e′ = `(f̃)− |f |M . We
see that the difference between the cost of a max flow and that of the corresponding
circulation is always −|f |M . Since f is a min-cost circulation, we can conclude that f
has minimum cost among all max flows of G.

(b) (For convenience, we allow the residual graph to contain multiple edges.) For every edge
e = (u, v) ∈ E, we add one or two edges in the residual graph:

i. if fe < ce, add an edge e1 = (u, v) to the residual graph with ce1 = ce − fe and
`e1 = `e;

ii. if fe > 0, add an edge e2 = (v, u) to the residual graph with ce2 = fe and `e1 = −`e.
Intuitively, sending flow along e1 corresponds to sending more flow along e, while sending
flow along e2 corresponds to taking away some flow from e.

2

(c) Let f be a circulation. Let C be a negative-cost cycle in the residual graph Gf and
`C be its cost. Suppose that we saturate C by pushing δ units of flow into C. It is
straightforward to verify that the augmented circulation f+C has cost `(f)+δ ·`C . Since
`C < 0 and δ > 0, the cost of the circulation always decreases after each augmentation.
Assuming that all capacities are integral, the cost is decreased by at least mine∈E |`e|
each time. Since the minimum circulation cost is finite (a lower bound is −

∑
e∈E ce|`e|),

the algorithm always terminates.

(d) Let f be the output of the algorithm. Suppose that a different circulation f∗ has a
smaller cost than f . Consider the difference g = f∗ − f , which is also a circulation.
(Note: g may not be feasible in G.) Observe that g is feasible in Gf . (In case this is
not obvious, consider for each edge e the following two cases: (1) fe ≥ f∗e ; (2) fe < f∗e .)
Moreover, since `(f∗) < `(f), g has negative cost in Gf . Hence, g contains a negative-
cost cycle, which implies that Gf has a negative-cost cycle — a contradiction to the
assumption that the algorithm has terminated.

2. To compute the expected running time, we divide the process of selection into r = log n
rounds, where in round i the size of the list under consideration is between 2r−i and 2r−i+1,
and analyze the expected running time of each round separately. Essentially what we need
to do is compute the expected number of recursive calls to reduce the size of the list under
consideration by half.

Let A be an unordered list of n distinct elements and we use SELECT to find the k-th largest
element of A. Suppose that at the beginning of some round i, the list Ai under consideration
has size `. Now, we call an iteration in this round “good” if the length of the list decreases by a
factor of at least 3/4 in the worst case, and “bad” otherwise. The probability that an iteration
is good is at least 1/2, because this happens whenever we pick elements ranked between 1/4
the size of the list and 3/4 the size of the list. Furthermore, we need only dlog 2/(log 4/3)e = 3
good iterations to reach the next round. So the expected number of iterations in this round
is at most 6. The time per iteration in this round is O(`), so the expected total time for this
round is also O(`). By linearity of expectation, the total expected running time is the sum of
the expected running times of all the rounds, which is O(n+n/2 +n/4 + · · ·+ 2 + 1) = O(n).

An alternate way to analyze the running time is to compute the expected length of the list at
every step. If we start with a list of length n, then in expectation we throw out n/2−k(n−k)/n
items (compute this yourself!). This expression is smallest when k = n/2, in which case, the
expected number of remaining elements is at most 3n/4. Thus the expected size of the list
decreases by a constant factor every time, and we can use this along with Markov’s inequality
to analyze the number of rounds.

3. (a) Let Xi be a random variable that takes value 1 if the ith element is uniquely covered,
and 0 otherwise. Let X =

∑n
i=1Xi be the number of uniquely covered elements. Then

E[Xi] = Pr
[
ith element uniquely covered

]
= Fp(1−p)F−1. By linearity of expectation,

E[X] =
∑n

i=1 E[Xi] = nFp(1− p)F−1.
We find the value of p maximizing E[X] by looking at the derivative of E[X] with respect

3

to p:

(E[X])′ = nF ((1− p)F−1 − (F − 1)p(1− p)F−2) = 0 (0.0.1)
=⇒ 1− p = (F − 1)p (0.0.2)
=⇒ p = 1/F. (0.0.3)

It can be verified that p = 1/F is a global maximum. The maximum value of E[X] is
n(1− 1/F)F−1.

(b) We apply the algorithm in part (a) directly (setting p = 1/F). For an element x with
frequency Fx, the probability that x is uniquely covered is (Fx/F)(1− 1/F)Fx−1. Since
Fx ∈ [F/2, F], we have Fx/F ≥ 1/2, and (1− 1/F)Fx−1 > (1− 1/F)Fx ≥ (1− 1/F)F ≥
1/4, therefore the probability is at least 1/8 (here we assumed F ≥ 2). By linearity of
expectation, the expected number of uniquely covered elements is at least n/8. This
is a constant factor approximation since an optimal solution uniquely covers at most n
elements.

(c) Let S be the set of n elements. We partition S into k = dlog2me subsets S1, . . . , Sk.
For 1 ≤ i ≤ k, Si = {x ∈ S | the frequency of x is in (2i−1, 2i]}. (Note: we put elements
with frequency 1 into S1.) Then, for 1 ≤ i ≤ k, we construct the following instance of
Unique Set Cover: The set of elements is Si; the subsets are the ones in the original
instance, except that we remove all elements not in Si from the subsets. By taking
F = 2i and running the algorithm in part(b) on this instance, we get a constant factor
approximation for this instance.
Let OPT be an optimal solution for the original instance. Let U be the elements in S
uniquely covered by OPT . By the pigeonhole principle, there exists some Si containing
at least OPT/ log2m elements of U . So, the optimal solution for instance Si uniquely
covers at least OPT/ log2m elements. Suppose that the algorithm in part (b) gives a
solution with size c · OPT/ log2m for some constant c. By picking exactly the same
subsets in the original instance, we have got a O(logm)-approximation.

(d) Pick a minimal collection of subsets C that covers S. Clearly, C contains at most n
subsets. We are going to discard all sets not in C and run the algorithm from part (c) on
this collection. As in part (c), we partition S into subsets according to the frequencies
of the elements. However, this time we look at the frequency of an element in C rather
than the whole collection of m subsets. Thus there are only log n partitions. By the
pigeonhole principle, the largest partition has at least n/ log n elements. Applying the
constant factor approximation algorithm in part (b) to the collection C with this partition
of elements, the expected number of uniquely covered elements is at least n/(8 log n).
This gives a O(log n)-approximation for Unique Set Cover.

4. We can model the game as a bipartite graph G = (X,Y ;E) where E = {(x, y)|x ∈ X, y ∈
Y, x and y have appeared in the same movie }. We claim that P1 has a winning strategy if
and only if G has a perfect matching. Given this claim, a polynomial-time algorithm for
determining which of the two players has a winning strategy is simply finding a maximum
matching of G: if the matching covers all vertices, then P1 has a winning strategy, otherwise

4

P0 has a winning strategy. The proof below also shows how to compute the winning strategy
in polynomial time.

The proof of the claim is as follows. Suppose that G has a perfect matching M . Then P1

has the following winning strategy: Whenever P0 names an actress x, P1 names the actor y
matched to x in M . Since y ∈ Y is matched to exactly one vertex in M , P0 can never force
P1 to name the same actor twice. Hence, P1 always wins using this strategy. Now suppose
that G does not have a perfect matching. Then by Hall’s theorem, there exists a subset of
actresses S ⊆ X such that |Γ(S)| < |S|. We want S to be a minimal such subset, i.e., every
proper subset S′ of S satisfies |Γ(S′)| ≥ |S′|. Let S′ be any subset of S with |S′| = |Γ(S)|.
Consider the subgraph G′ of G induced by V ′ = S′ ∪ Γ(S), i.e., we only consider the vertices
V ′ and edges with both endpoints in V ′. Since S is a minimal set violating Hall’s condition,
we know that G′ satisfies Hall’s condition, and hence G′ has a perfect matching M ′. Going
back to G, we conclude that there exists a matching for G in which every y ∈ Γ(S) is matched
to some x ∈ S. Now, we can describe P0’s winning strategy: P0 starts by naming an actress
in S that is not matched (in particular, any vertex in S\S′). Then, P1 is forced to name an
actor in Γ(S). Now, since every vertex of Γ(S) is matched to some vertex in S, P0 can simply
copy P1’s strategy in the case where a perfect matching exists and forces a win. To compute
the winning strategy, note that we can use max flow to find some set S with |Γ(S)| < |S|.
Now pick some S′ ⊆ S of size |Γ(S)|. Try to find a perfect matching on the graph G′ induced
by S′ ∪ Γ(S). If one exists, we use it to construct a winning strategy as in the proof. If not,
then we recurse on the graph G′ by reapplying Hall’s theorem. Each time we find a smaller
and smaller set S, and eventually terminate with a minimal one.

5. To prove that the given family is 2-universal we need to show the following:

For all x, y ∈ [m] and x 6= y, Pra,b[ha,b(x) = ha,b(y)] ≤ 1/n.

Suppose that x, y ∈ [m] and x 6= y. We want to count the number of pairs (a, b) such
that ((ax + b) mod p) mod n = ((ay + b) mod p) mod n. Let r = (ax + b) mod p and
s = (ay + b) mod p. Note that r 6= s, otherwise ax+ b ≡ ay + b(mod p) =⇒ a(x− y) ≡ 0(
mod p) =⇒ x = y. As an intermediate step, we want to count the number of pairs (r, s) ∈
[p] × [p] satisfying r mod n = s mod n and r 6= s. Fixing r, the number of choices for s
is at most dp/ne − 1 = bp/nc ≤ (p − 1)/n. Thus the total number of such pairs is at most
p(p−1)/n. Now, given such a pair (r, s), we want to count the number of pairs (a, b) satisfying{

r = (ax+ b) mod p
s = (ay + b) mod p

.

It can be verified that this system always has a unique solution with a 6= 0 (provided that x 6= y
and r 6= s). Hence, the number of pairs (a, b) such that ((ax+ b) mod p) mod n = ((ay+ b)
mod p) mod n is at most p(p − 1)/n. Since the family has p(p − 1) hash functions, the
probability that a randomly picked function maps x and y to the same output is at most 1/n.

6. We first compute the expected number of rounds, then use Markov’s inequality to show the
high probability result we want.

5

Let us first see how the number of balls reduces over time in expectation. Suppose that at
the beginning of some round we have m balls and n bins. Then the probability that any
particular ball in this round is involved in a collision is 1 − (1 − 1/n)m−1. Therefore, the
expected number of balls remaining after this round is m −m(1 − 1/n)m−1. Let mi be the
number of balls remaining after round i − 1, so m1 = n. In order to simplify the above
expression, we are going to consider two special cases.

(a) Case 1: mi ≥ n/4. The expected number of remaining balls is mi+1 ≤ mi − mi(1 −
1/n)n ≤ mi(1− 1/4) (using n ≥ 2).

(b) Case 2: mi < n/4. The expected number of remaining balls is mi+1 ≤ mi − mi(1 −
(mi − 1)/n) = mi(mi − 1)/n.

Now suppose for a moment that the number of balls remaining after each round is exactly
equal to its expectation. (Of course, this doesn’t really happen.) Then, we stay in the first
case for some constant number of rounds (5). In the second case, the number of balls goes
down in the following manner: n/4 → n/16 → n/256 → · · · → n/22i+1 → · · · . In order for
the number to go down to one, we need 22i+1

> n, which gives i = O(log log n).

However, the number of remaining balls is not exactly equal to its expectation. So instead
we will use the following trick and employ Markov’s inequality: Call a round “good”, if the
number of balls remaining after this round is no more than 2 times its expectation. Then
Markov’s inequality tells us that any particular round is good with probability at least 1/2.
Now if we look at the series {mi}, with mi+1 ≤ 2mi(mi − 1)/n, we note that we still require
only O(log log n) good rounds for mi to decrease down to 1. (Note that in the bad rounds,
mi may not decrease by much but at least it doesn’t increase.)

How many rounds do we need to see in expectation before we have had O(log log n) good
rounds? We can apply Markov’s inequality again to see that we need only O(log log n) rounds
for our failure probability to go down to any desired constant. We can get better failure
probabilities by applying more advanced concentration results which we haven’t discussed in
class yet.

6

