
TriopusNet: Automating Wireless Sensor Network
Deployment and Replacement in Pipeline Monitoring

Ted Tsung-Te Lai1

Wei-Ju Chen 1

Kuei-Han Li1

 Polly Huang2,3

Hao-Hua Chu1,2

Department of Computer Science and Information Engineering1, Graduate Institute of Networking and Multimedia2,
Department of Electrical Engineering3

National Taiwan University, Taipei, Taiwan
{tedlai, r99922148, r98922022}@csie.ntu.edu.tw, phuang@cc.ee.ntu.edu.tw, hchu@csie.ntu.edu.tw

ABSTRACT
This study presents TriopusNet, a mobile wireless sensor net-
work system for autonomous sensor deployment in pipeline
monitoring. TriopusNet works by automatically releasing sensor
nodes from a centralized repository located at the source of the
water pipeline. During automated deployment, TriopusNet runs
a sensor deployment algorithm to determine node placement.
While a node is flowing inside the pipeline, it performs place-
ment by extending its mechanical arms to latch itself onto the
pipe’s inner surface. By continuously releasing nodes into pipes,
the TriopusNet system builds a wireless network of intercon-
nected sensor nodes. When a node runs at a low battery level or
experiences a fault, the TriopusNet system releases a fresh node
from the repository and performs a node replacement algorithm
to replace the failed node with the fresh one. We have evaluated
the TriopusNet system by creating and collecting real data from
an experimental pipeline testbed. Comparing with the non-
automated static deployment, TriopusNet is able to use less sen-
sor nodes to cover a sensing area in the pipes while maintaining
network connectivity among nodes with high data collection rate.
Experimental results also show that TriopusNet can recover
from the network disconnection caused by a battery-depleted
node and successfully replace the battery-depleted node with a
fresh node.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-time
and Embedded Systems, Signal Processing Systems.

General Terms
Design, Experimentation, Performance.

Keywords
Pipeline monitoring, sensor deployment, wireless sensor network.

1. INTRODUCTION
Pipelines are used everywhere to transport substances for human
living. For example, water pipelines deliver water to support hu-

man daily activities. Oil pipelines carry valuable natural resources
for fuel, electricity generation, or petrochemical production. Flow
assurance is a major safety concern for pipelines. For example,
water pipelines must deliver clean and uncontaminated water to
ensure human health. Therefore, proper monitoring of these pipe-
lines is important.

Traditional monitoring method requires humans to manually place
sensors along pipelines. However, this approach has several
drawbacks. First, pipelines can be hundreds or even thousands of
miles long. Because most pipelines have been built underground
or underwater, it is difficult for humans to access these pipelines
and install sensors. Second, directly sensing flows inside the pipe-
lines often require either breaking a pipe or limiting sensing points
to locations at pipe exits or joints. These challenges in pipeline
monitoring motivate the need for automated sensor deployment
and replacement.

To overcome these challenges, we have developed TriopusNet, a
mobile wireless sensor network system for autonomous pipeline
monitoring. Figure 1 illustrates the overview of TriopusNet. Hu-
man effort is strictly needed only at the start of the deployment to
prepare and deposit mobile sensors at the source of the water
pipeline. The system then automates in-field deployment and
replacement of mobile sensors by releasing them from the water
inlet and leveraging natural water flow propulsion inside pipes to
carry sensor nodes. Creating water flow propulsion might also
require human to manually turn on the faucet or use a remote-
control actuation device to automate this step. Each mobile sen-
sor node in TriopusNet is equipped with one motor that drives
three arms. These arms can be extended for the purpose of latch-
ing a traveling sensor node onto the pipe’s inner surface, thereby
fixing the node placement. Because of its mechanical resemblance
to octopus, the mobile sensor node is referred to as Triopus, pro-
nounced tree-o-pus.

TriopusNet runs a sensor deployment algorithm, which considers
both the sensing coverage in the pipes and the network connectivi-
ty among sensor nodes, and computes the deployment location for
each released sensor node. Upon arrival at its deployment loca-
tion, a traveling sensor activates its latching mechanism and at-
taches itself to the pipe inner surface. As more sensor nodes are
released and deployed, the system gradually builds an intercon-
nected wireless sensor network covering the entire pipeline, form-
ing TriopusNet. Automated sensor deployment enables large-scale
sensor deployment in pipeline because it reduces the level of hu-
man effort to only depositing sensor nodes at the start of the infra-
structure deployment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN'12, April 16-20, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1227-1/12/04...$10.00.

61

Figure 1. An overview of TriopusNet. The sensor nodes are released from the water inlet points. Each node equips with
mechanical arms that can latch to fix a sensor node onto the pipe’s inner surface, thereby controlling node deployment
inside the pipeline. Sensor network data is wirelessly transmitted to nearby gateway nodes.

Upon detection of low battery level (or a fault), the sensor node
retracts its mechanical arms to detach itself from the pipe’s inner
surface. Flow in the pipes carries the battery-depleted sensor node
to exit to a pipe outlet. To repair the network disconnection creat-
ed by the departed sensor node, the TriopusNet system releases a
fresh sensor node and runs the sensor replacement algorithm to
position the fresh sensor node and adjust the locations of existing
sensor nodes to fill any sensing area and repair any network dis-
connections.

Previous research [9] addresses the sensor deployment problem in
wireless sensor networks. They formulated this as an optimization
problem of how and where to place a minimum number of sensor
nodes to achieve the maximum sensing coverage and maintain the
best possible network connectivity while consuming the least
amount of communication energy. They developed optimizing
deployment algorithms to solve this problem. However, previous
studies fail to directly address the human effort problem, i.e., hu-
man effort is still needed for any in-field sensor deployment (and
replacement) at the locations determined by their optimizing de-
ployment algorithms. Though some previous systems [16][15]
assume sensor nodes capable of physical mobility, their mobility
models are often simulated [16] or require continuously traveling
sensor nodes without fixed deployment [15]. TriopusNet comple-
ments previous work by leveraging water propulsion to carry
sensor nodes from water inlet to scale down human effort, and by
creating mobile sensor nodes capable of positioning themselves at
locations determined by any optimizing deployment algorithm
developed by previous systems.

Many related systems [10][19] address fault management in wire-
less sensor networks. These systems use various techniques to
detect sensor node faults and errors, including information fusion
for fault detection, collaborative fault detection, etc. However,
these techniques do not eliminate the need for human effort to
perform in-field replacement of faulty sensor nodes. TriopusNet
complements previous work by using free water propulsion to
facilitate in-field sensor node replacement. Other previous tech-
niques [17] implement autonomic computing, in which systems
self-heal by activating redundant (or backup) components near
faulty components. These techniques deploy dense and/or redun-

dant sensor nodes which increases the deployment cost.
TriopusNet shares the autonomic computing concept such that a
small number of backup sensor nodes (i.e., equal to the number of
expected battery-depleted or faulty sensors) are deposited at a
pipeline inlet storage and released on an as-needed basis.

The main contributions of this work are:

 Different from traditional sensor network deployment in
which human effort is needed to place and replace sensors
manually, TriopusNet automates sensor deployment and re-
placement by leveraging natural water propulsion to carry
sensor nodes throughout pipes, thus scales down human ef-
fort in deploying and maintaining WSN in pipeline monitor-
ing.

 This study tests and evaluates TriopusNet by developing a
real prototype and pipeline testbed. Results show that auto-
mated sensor deployment in TriopusNet successfully pro-
duced quality deployment using no more sensor nodes than
non-automated static deployment. Results also indicate that
automated replacement in TriopusNet successfully replaced a
battery-depleted sensor node with a fresh sensor node while
recovering data collection rate from the departure of a bat-
tery-depleted sensor node.

The rest of this study is organized as follows. Section 2 provides
the system overview, assumptions, and limitations. Section 3 de-
scribes hardware design. Section 4 presents sensor deployment
and replacement algorithms. Section 5 describes the experimental
testbed. Section 6 gives experimental results. Section 7 discusses
limitations and future extensions. Section 8 reviews related work.
Finally, Section 9 concludes the study.

2. SYSTEM OVERVIEW, ASSUMPTIONS,
AND LIMITATIONS

To understand system assumptions and limitations, this sec-
tion first provides an overview of how the system dispatches and
places sensor nodes in pipelines (Fig. 1). The pipelines intercon-
nect a set of vertical and horizontal pipes, starting with a single
water inlet and ending at multiple water outlets (i.e., faucets). In

62

Figure 2. A TriopusNet node contains (a) gyroscope, (b) water pressure sensors, (c) relays, and (d) Kmote CPU board.
The first prototype uses three AAA batteries and three linear actuators. The second prototype uses a lithium battery and
one customized motor to drive three arms, resulting in a significant size reduction.

other words, pipelines form a virtual tree in which the inlet is the
root node, each faucet outlet is a leaf node, a pipe branch point is
an intermediate node, each pipe tube is an edge between parent
and child nodes, and each flow path is a downward path from the
root node to each leaf node. The inlet also serves as the storage
point where sensor nodes are deposited into a dispatch queue at
the start of deployment. The TriopusNet releases sensor nodes
from the dispatch queue while running the sensor deployment
algorithm. This approach forms an interconnected wireless net-
work that covers all possible flow paths with sensors.

The proposed system involves the following four steps.

1. Preparation Step: The pipeline spatial topology must be
measured a-priori as an input for automated sensor de-
ployment. Interested readers may refer to the PipeProbe
system [4] on obtaining pipeline spatial topology. The dis-
patch queue at the inlet must be filled with sensor nodes
ready to be released into the pipeline. Each faucet in the
pipeline is turned on, one after another, to create a running
flow path from the inlet to each outlet. That is, each faucet
must be turned on at least once such that sensor nodes can
travel and cover all possible flow paths in the pipelines.
Each faucet could be turned on either manually (i.e., by the
user) or automatically (i.e., by installing a remote-control
actuation device). This preparation step constitutes a one-
time manual effort at the start of deployment.

2. Sensor Deployment Step: Prior to releasing each sensor
node, TriopusNet runs the sensor deployment algorithm to
compute its deployment position. Sections 4.1 and 4.2 de-
scribe the sensor deployment algorithm. The system then
sends the “release” message including the deployment posi-
tion, to the head sensor node in the dispatch queue. The
head sensor node retracts its mechanical arms from the dis-
patch tube and starts its pipe journey. Note that the sensor
node requires no power for its physical movement as it uses
water flow for propulsion.

3. Sensor Latching Step: The sensor node continuously com-
putes its current location as it travels through the pipeline.
Section 4.4 describes the sensor localization algorithm.
When the sensor node approaches its deployment position,
it extends mechanical arms to attach itself to the pipe’s in-
ner surface. The sensor node then reports latch completion
to the system, and TriopusNet releases the next sensor node
(i.e., repeats Step 2). Thus, the deployment of sensor nodes
continues until TriopusNet covers all possible flow paths in
the pipeline.

4. Sensor Replacement Step: Sensor nodes consume battery
power during the data collection phase. At some time point,
some sensor node may report low-battery to the system. A
low-battery sensor node uses its remaining battery power to
retract its mechanical arms and detach itself from the pipe’s
inner surface. The sensor node is then carried by the water
current to a faucet, where it exits the pipeline. To recover
from the sensing area and network disconnection caused by
the departed sensor node, TriopusNet releases fresh sensor
nodes (from the dispatch queue) during replacement. Sec-
tion 4.7 describes the sensor replacement algorithm.

To communicate with sensor nodes inside the pipelines, gateway
nodes must be installed prior to any sensor node deployment in-
side the pipelines. Figure 1 shows that gateway nodes are placed
at the inlet and each endpoint in pipelines. To ease manual de-
ployment effort, gateway nodes can be installed outside pipes. To
collect data from in-pipe sensor nodes, gateway nodes must have
wireless communication with at least one in-pipe sensor node.
Gateway nodes must also have a network connection to a laptop
(or desktop) computer for remote control, data logging, and auto-
mated sensor deployment and replacement algorithms.

The following list summarizes TriopusNet’s assumptions (particu-
larly where manual effort is needed) and limitations below:

 The spatial topology of pipelines must be known, including
the pipe length, the pipe’s internal diameter, horizon-

63

Figure 3. TriopusNet node schematic. An H-
arrangement of Switch 1 – 4 is used to control the motor.

Figure 4. The final TriopusNet node prototype

tal/vertical turns, and the faucet size. Interested readers may
refer to the PipeProbe system [4] on obtaining pipeline spa-
tial topology.

 In the absence of automatic faucets, manual effort is re-
quired to open each faucet in turn and at least once, such
that water runs through all pipelines to ensure complete
sensor deployment. In addition, manual effort is required to
open each faucet when a battery-depleted or faulty node
needs to flow out for replacement. Section 7 discusses how
to reduce this manual effort.

 The current sensor node measures 6 cm in diameter, which
does not fit inside all pipes or may get stuck in some pipes.
Given a limited budget in making this proof-of-concept
prototype, further engineering efforts may reduce its size.
Section 7 discusses how to further reduce the prototype size
in the future.

The current sensor prototype uses 2.4 GHz radio (CC2420) to
send/receive messages. High frequency radio is not the ideal
choice in water, as water absorbs radio waves and limits its trans-
mission range. In water, sonar and light are better communication
media than radio [12]. Given this study focuses on the deployment
method, we leave the choice of radio an issue to be addressed in
the future.

3. HARDWARE DESIGN
Figure 2 shows the components of a Triopus node, and figure 3
presents its block diagram and circuit design. The Triopus node
consists of (1) a wireless sensor mote called Kmote [6], (2) a mo-
tor that drives three mechanical arms for latching onto and
delatching from the pipe’s inner surface, (3) a spherical case that
encapsulates and waterproofs the node’s electrical components,
and (4) pressure and gyroscope sensors used for node localization.
The details of these components are described as follows.

The Kmote circuit is a clone of a standard TelosB mote, which
features a MSP430 microcontroller and CC2420 radio stack. It is
Tiny-OS compatible. The main difference between Kmote and
TelosB mote is that Kmote separates the CPU circuit board from
the USB program uploader circuit broad. In a field deployment,
Kmote needs only the CPU board, thus reducing the form factor
size of the Triopus node. The CPU board measures 35 mm (L) x
21 mm (W) x 7 mm and weighs approximately 4 grams.

For the latching & delatching mechanism, the first version of
Triopus node contains three linear actuators (model PQ-12) made

by Firgelli Technologies [7]. A linear actuator controls a mechan-
ical arm following a linear push and pull motion. To activate a
linear actuator for the push motion, the Kmote turns on switch
(SW) 1 and 4 to make current flow from left to right on the H-
bridge (the right-hand side of Fig. 3). To activate the linear actua-
tor for the pull motion, the Kmote turns on switch (SW) 2 and 3 to
reverse the current from flow right to left on the H-bridge. The
switches are simply relays controlled by GPIO. To reduce the
Triopus node size that is primarily occupied by three PQ-12 linear
actuators, the 2nd prototype replaced three motors (each driving a
separate mechanical arm) with one motor driving all three me-
chanical arms and replaced the three AAA batteries with a lithium
battery. Motor calibration was achieved by adding a spiral gear
that connects and pushes three separate gears moving all three
mechanical arms simultaneously. When a Triopus node needs to
attach to a pipe location, it extends mechanical arms until they
touch the pipe’s inner surface. To ensure that the latching mecha-
nism works well, three arms of a Triopus node point to three dif-
ferent angles and form a triangle. Because pipes have different
diameters, the arm’s stroke length must be long enough to touch
the pipe’s inner surface on three sides.

To localize in a vertical pipe segment, a Triopus sensor node
measures water pressure using an Intersema MS5541C [21] water
pressure sensor. The Intersema MS5541C pressure sensor gives
pressure readings within a range of 0 to 14 bars (with a resolution
of 1.2 mbars) and consumes less than 5 uA operating current. To
detect the horizontal pipe turns, the Triopus sensor node uses a
gyro-scope sensor [22] to measure the rotational motion along the
yaw (z) axis with a ±300°/s range. The gyroscope sensor module
is fixed precisely at the top of the upper half of the node’s hemi-
spheres such that the gyroscope lays flat on the horizontal plane to
obtain an accurate z-axis measurement. Figure 4 shows the final
prototype of a Triopus Node.

4. SYSTEM DESIGN
This section describes key software components that support au-
tomated sensor deployment and maintenance in TriopusNet. The
process of automating sensor deployment and maintenance in-
volves calculating the sensor deployment order, sensor deploy-
ment positions, etc. The goal of sensor deployment is two-fold:
(1) blockage-free movement and fixation of the sensors in the
pipelines, and (2) full sensing and network coverage. The follow-
ing subsections detail the individual software components as they
are activated in the process of a complete deployment and re-
placement of a battery-depleted node.

64

 (a)

 (b)

Figure 5. An example pipeline structure (a) with the cor-
responding virtual tree (b).

4.1 Sensor Deployment Order
This initial phase determines the deployment order of the sensor
nodes. Placing nodes close to the releasing point early may result
in blockage and hinder the movement of nodes destined for down-
stream positions. To avoid this problem, the sensor deployment
algorithm first transforms the physical layout of the pipelines into
a virtual tree, in which the inlet is the root node, each endpoint is a
leaf node, each pipe branch point is an intermediate node, and
each pipe segment is an edge between parent and child nodes.
Figure 5(b) shows the resulting virtual tree transformed from the
physical layout (Fig. 5(a)).

The algorithm subsequently runs a post-order traversal of the
virtual tree, in which the resulting node traversal sequence is also
the order of node deployment in pipe segments. Consider the ex-
ample in Figure 5(b). The post-order traversal sequence is {n1, n2,
n3, n4, n5, n6, n7}. Following that traversal order, the algorithm

starts the first sensor deployment at the pipe segment p1 (ending at
n1) then the pipe segment p2 (ending at n2), and so forth until
reaching pipe segment p7. This post-order deployment sequence is
important for two reasons. (1) It assures that sensor deployment
covers all pipe segments. (2) It orders the deployment of a down-
stream sensor to precede the deployment of its upstream sensors.
This prevents a newly released sensor from traveling past one or
more latched sensors that may cause knocking-off or blocking in
narrow pipes.

4.2 Sensor Deployment
Before sensor nodes can be released, the sensor deployment algo-
rithm computes first the coarse-grain positions – the pipe segment
and the approximate latching point. This computation process
ensures satisfactory sensing coverage. A Triopus node’s capabili-
ties can be modeled as a coverage function of radio distance and
sensing quality. A sensing quality utility function can thus be
defined based on the sensor capability or application requirement.
This study uses a simple coverage function in which each sensor
monitors a disk area with a sensing range (radius) R. In this study,
full sensing coverage over the monitored pipelines requires any
pipe distance between two neighbor sensors to be less than or
equal to 2*R. Sensing coverage means that the sensor network is
able to monitor the health of the pipelines in full. Note that this
sensor deployment algorithm is not limited to a simple sensor
coverage function, but can perform other sensor coverage func-
tions as well.

Assume that the new sensor node is placed in segment S and the
sensing range is R. Subtracting 2*R distance from the most recent-
ly deployed sensor node in segment S gives the position of the
new sensor node. If segment S is not long enough to accommodate
the new sensor node, the new sensor node is placed in the next
segment on the sensor deployment order sequence (Sec 4.1). To
bootstrap for the leaf segments, the gateway node at the faucet is
considered the only node at the beginning. For intermediate seg-
ments, i.e., segments with multiple downstream branches, the first
sensor node in an intermediate segment is placed at the position
such that the distances to all immediate downstream nodes are less
than or equal to 2*R.

4.3 Sensor Movement
Because sensor mobility leverages the force of water flow within
the pipe, an endpoint faucet must be turned on to generate a run-
ning flow path. The sensor movement algorithm computes first
the flow paths from the inlet to each outlet. The algorithm then
selects a path intersecting the pipe segment the node is positioned
to. Consider the example in Fig. 5(b). A sensor deployment at the
pipe segment p3 requires the running flow path (root → n7 → n6

→ n4 → n3) to power its movement. Turning on the endpoint fau-
cet n3 and turning off all other faucets create this flow path.

4.4 Sensor Localization
As a sensor node travels along its flow path, it continuously calcu-
lates and updates its location so that it knows when it has arrived
at its assigned location. This study adopts the pipeline localization
technique from the PipeProbe system [4], which uses a combina-
tion of pressure and gyroscope sensors to detect vertical and hori-
zontal pipe turns. As pipelines have many segments, a flowing
sensor node can track its location by counting the number of turns
encountered on the flow path between the root inlet and the leaf
faucet. To determine the segment offset distance from the last turn,
the algorithm infers vertical distance offset from the change in
water pressure and horizontal distance offset by multiplying node
velocity by the traveled time. Since the sensor node was designed

65

Figure 6. Pipeline Testbed

Figure 7. The lengths (cm) of testbed and 4 test scenarios

with its weight density equal to the water density, the node’s flow
velocity approximates the water flow velocity.

4.5 Sensor Latching
When a sensor arrives at its assigned location, it latches onto the
pipe’s inner surface and turns on its radio to listen to beacon
packets from downstream sensor nodes or gateway node. The
sensor node measures the packet received rate for the link quality.
Stable link quality is important because a single link failure may
lead to a network partition in a tree-based network topology. Up-
on detecting a low packet received rate, the sensor node moves
one increment closer to its downstream sensor node. This sensor
downstream movement requires unlatching from the pipe inner
surface, moving forward for t seconds, and re-latching onto the
pipe’s inner surface. The sensor node repeats this latching step
until a pre-defined link quality threshold is met.

A tricky case is to ensure the first sensor node of an intermediate
segment is connected to the sensor nodes of all downstream seg-
ments. This sensor node moves downstream until all immediate
downstream sensor nodes from all branches are reachable. If a
sensor node arrives at the exact branching point but is still unable
to reach all downstream sensor nodes, the sensor node moves into
one of the unreachable downstream segment until it connects to a
sensor node in that segment.

Upon successful attachment to a pipe location, the sensor node
sends a “latching completion” packet to the system, including its
latching position. The system continues to re-lease and deploy

sensor nodes over other segments until it reaches full sensing and
network coverage.

4.6 Data Collection
Upon completion of the sensor deployment, TriopusNet enters the
data collection phase and runs the collection tree protocol (CTP)
[5] implemented in TinyOS 2.1. To balance the load over its net-
work traffic, this study uses the support for anycast to multiple
sinks provided by CTP. In the pipeline scenario, each gateway
node acts as a sink for data collection. To reduce the hop count
and packet loss rate, a sensor node forwards packets to the gate-
way node with the least CTP routing cost. Previous study in tun-
nel monitoring [11] shows that multi-sink collection trees work
effectively in node deployments with linear topology.

4.7 Sensor Replacement
Each sensor node continues to monitor its battery level and net-
work connectivity while the system collects pipeline health data.
Network connectivity can break as the node battery runs low. This
issue is particularly disruptive due to TriopusNet’s tree-like con-
nectivity. A single node failure in such a network can easily result
in network partitions, i.e., persistent data losses. Therefore, the
system must be able to recover when the battery of a sensor node
runs out.

The replacement mechanism requires collaboration between the
battery-depleted node and good nodes. First of all, the battery-
depleted node informs the downstream gateway at the endpoint,
so the faucet can be turned on to allow node movement. The bat-
tery-depleted node retracts its mechanical arms to flow to an end-
point for node retrieval. At the same time, the battery-depleted
node’s downstream nodes are also flushed out to prevent clogging
inside the pipeline. This is due to the size of the current prototype
being too big for a node to pass through its downstream nodes.
For the node retrieval method, we adopt a similar approach from
the SmartBall commercial product [23]. A fishing net with a tail is
inserted at the ends of pipelines to catch any outgoing sensor
nodes. Therefore, a sensor node will not remain inside the pipe
when its battery dies.

Flushing out the battery-depleted sensor node and its downstream
nodes produces an uncovered monitoring area in the system. To
repair this uncovered area, each upstream node unlatches itself
from the pipe sequentially and flows downstream to find the
gateway node or its downstream neighbor node. Each sensor
node repeats the process of detachment, movement, localization,
and reattachment until the uncovered area reaches the root loca-
tion. The system then releases fresh nodes from the dispatch
queue to cover the remaining area.

With a smaller prototype in the future, it is possible that the
Triopus node can pass through any upstream and downstream
nodes. Therefore, the new node can replace the battery-depleted
node without having to move the entire set of nodes in the net-
work. Section 7 discusses how to further reduce the prototype size
in the future.

To determine battery depletion, a sensor node simply uses its
battery voltage to estimate residual energy and sets a low-battery
threshold that triggers node replacement.

66

Table 1. Results for automated sensor deployment

Scenarios
of test
runs

Node-to-node
coverage distance (cm)

Mean Std.

of node deployed

TriopusNet Static

Data
collection
rate (%)

Positional
error (cm)

Time to
deployment
(sec)

of
latching
per node

1 5 193.7 65.1 3.6 7 97.6 6.1 103.7 2.3

2 5 156.8 35.4 4 7 98.4 8.0 117.5 1.6

3 5 166.3 45.4 4 4 98.7 7.94 139.1 2

4 5 173.4 69.3 6 12 98.8 12.6 185.9 2.2

Overall 20 172.7 58.0 4.35 7.5 98.4 9.22 136.5 2.1

Figure 8. Real node locations of three test runs from
Scenario 4. It shows the dynamic of each deployment.

5. EXPERIMENTAL DESIGN
This section describes the experimental testbed, procedure, and
performance metrics.

5.1 Experimental Testbed
Figure 6 shows the pipeline testbed used to evaluate performance
of TriopusNet. This testbed connects 6 transparent pipe tubes and
2 water valves and forms a pipeline network that starts with one
vertical path, followed by a horizontal path, and forks into two
paths in the middle of horizontal path. These 6 transparent pipe
tubes, each measuring 10 cm in diameter, enable direct observa-
tion of how well the sensor nodes flow and latch/de-latch inside
the pipes. The two valves at the end of each horizontal path con-
trol the volumetric flow rate on each flow path. Figure 7 lists the
lengths of each pipe tube segment in the testbed.

5.2 Performance Metrics
The following list defines the metrics used to evaluate the perfor-
mance of TriopusNet.

 Data collection rate: This measures the percentage of data
packets successfully received by the gateway nodes com-
pared to all packets sent from sensor nodes.

 Coverage distance: This measures the total pipeline length
covered by the deployed nodes.

 Number of nodes deployed: This counts the number of
nodes deployed to cover a given sensing area.

 Time to deployment: This measures the time to complete the
node deployment for a test scenario.

 Time to replacement: This measures the time to replace a
battery-depleted node.

 Energy Consumption: This measures the energy to com-
plete the node deployment for a test scenario or to replace a
battery-depleted node.

5.3 Experimental Procedure
This study uses four test scenarios in Figure 7 to test TriopusNet’s
performance. Each scenario has different pipe area coverage. Sce-
narios #1, #2, and #3 have the single-outlet sensing areas, and
Scenario #4 involves a multi-outlet sensing area. System parame-
ter settings are: the packet received rate (PRR) threshold = 95%,
water flow velocity = 12.5 cm/sec, and each node’s sensing range
R >= radio range.

To measure node deployment performance, each test scenario was
repeated five times for a total of 20 (= 4 scenarios * 5 runs per
scenario) test runs. The procedure for each test run involved the
following steps. (1) All sensor nodes were returned to the water
inlet point. (2) In the current testbed, opening and closing a faucet

to create a running flow path is manual. For the single-outlet sce-
narios (#1, #2, and #3), the target faucet was turned on to create a
flow path before starting the node deployment. In the multi-outlet
scenario (#4), each of two faucets was turned on to create two
different flow paths for node deployment. (3) After the system
deployed all nodes in the pipes, data collection was performed by
running the multi-sink collection tree protocol (CTP). During data
collection, sensor nodes transmitted data packets back to the
gateway nodes/sinks. The gateway is a laptop computer wired to
Kmote. Data was logged during both node deployment and data
collection for performance analysis.

To measure sensor node replacement performance, scenario #4
began from a 6-node configuration. Each of the last two down-
stream sensor nodes was selected in turn by setting its battery
level to low. When the test began, the selected node reported a
“low-battery level” message and triggered the system’s node re-
placement. For each low-battery node replacement, we repeated
the test 5 times. Over all, there were 10 test runs of node replace-
ment. Each test run involved the following steps. (1) All nodes
were restored to their initial configuration. (2) The system started
the data collection phase. (3) The selected node reported low-
battery level and triggered node replacement. Data were recorded
before, during, and after node replacement for performance analy-
sis.

67

Figure 9. Coverage distances in L-shape and in I-shape
pipe

Figure 10. CDF of data collection rate

Figure 11. Data collection rate vs. number of transmission
hops to gateways.

Figure 12. CDF of positional errors

6. EXPERIMENTAL RESULTS
This section describes the results collected from test runs in the
experimental testbed.

6.1 Results for Automated Sensor Deploy-
ment
Table 1 shows the results collected from 20 test runs of automated
sensor deployment. To evaluate the quality and efficiency of the
automated sensor deployment, this study first shows the node
locations and then measures the coverage distance, the number of
nodes deployed, the data collection rate, the node’s positional
error, the time to deployment, and energy overhead from mechan-
ical latching.

6.1.1 Node Locations
Figure 8 shows the locations of deployed nodes in three test runs
(labeled A, B and C) in Scenario #4. This figure also draws the
node locations of a static deployment, where nodes are fixed 90
cm apart. This 90 cm measurement is based on repeated meas-
urements for an average radio range between two sensor nodes in
a straight pipe. Static deployment is a good baseline for perfor-
mance comparison because it is the most commonly-used method
in sensor deployment. It might have better data collection ratio,
but it would need a lot more redundant nodes to hop the data.

In the TriopusNet system, each test run produces different node
locations. The average node-to-node distance over all scenarios is
172.7 cm, with a standard deviation of 58 cm. This large variation
implies that the radio range varies significantly from location to
location. Examining the dataset reveals that the average radio
range is approximately 90 cm for connecting nodes in the same
pipe tube. However, the radio range can reach up to 170 cm for
nodes placed in different tubes. Figure 9 provides statistics sup-
porting this observation. The I-shape in this figure indicates radio

range for adjacent nodes in the same tube, whereas the L-shape
indicates nodes in different tubes. The reason for variation in the
radio range is when two adjacent nodes are in different pipe seg-
ments (L-shape case), radio signals can travel through air, and
therefore travel far. In comparison, for two adjacent nodes within
the same pipe segment, radio signals travel mostly in water, which
absorbs energy and limits its range. This highlights the benefits of
using an online sensor deployment algorithm over a static sensor
deployment. In comparison to the static deployment which on
average uses 7.5 nodes for deployment, TriopusNet uses only 4.35
nodes.

6.1.2 Data Collection Rate (DCR)
To quantitatively evaluate whether a network is well connected,
this study measures the ratio of data being successfully collected
at the gateway. In each test run of each scenario, each sensor node
sent 1000 data packets to a gateway node. In other words, if a
scenario involved 5 sensor nodes, a total of 5000 data packets
were sent from all sensor nodes. Based on four scenarios and 20
test runs, this study logs the ratio of successfully received packets
at the gateway nodes over all transmitted packets from each indi-
vidual node. Figure 10 depicts the cumulative density function
(CDF): 80% of the sensor nodes show a data collection rate ex-
ceeding 99%, and all sensor nodes have a data collection rate
higher than 86.5%.

The data collection rate varies depending on how far the sensor
node is from the gateway. Figure 11 plots the average data collec-
tion rate for nodes with different transmission hop counts to the
gateway node. This figure also plots the lower-bound data collec-
tion rate assuming an exact 95% data collection rate (DCR) for
every hop. This can be calculated by taking the n-th power of the
DCR threshold in the sensor deployment algorithm, where n is the
transmission hop count to reach a gateway node. Note that the
sensor nodes only latch when the measured per-hop DCR exceeds
the threshold. This result also supports that the latching is reliable

68

Figure 13. CDF of the number of latching for all nodes

Table 2. Time to replacement

The low
battery
node

of
test
run

Time to
replacement (sec)

Mean Std.

of
latching
per node

Transmission
hops to inlet

2nd last 5 223.4 38.8 2.2 3

Last node 5 152.3 24.1 2.3 4

and the data collection rate does not go below the lower-bound
data collection rate.

6.1.3 Positional Accuracy
Figure 12 shows the (CDF) of positional errors in each of the 4
scenarios and an assemblage of all scenarios. The dataset for the
CDF is based on 18 location estimates of the node in scenario #1,
20 estimates in scenario #2, 20 estimates in scenario #3, and 30
estimates in scenario #4, for a total of 88 location estimates. The
overall median error is 7.14 cm, and 90% of the errors are less
than 20.45 cm. Node positional accuracy is important for achiev-
ing sensing coverage in node deployment, as sensing range and
coverage are calculated from node locations. From a practical
viewpoint, this positional accuracy is sufficient for most pipeline
applications, such as pinpointing the location of pipe leakage.

6.1.4 Time to Deployment
Table 1 summarizes the average time required to fully deploy
nodes in each of the four scenarios. Note that the deployment time
excludes the time required for humans to manually turn on/off
faucets, because these steps could be automated in the future. If
the flow velocity is set at 12.5 cm/sec, the average time to deploy
nodes is less than 2.5 minutes.

6.1.5 Energy Consumption
The primary energy consumer in the sensor node is in the motor
and relays that drive the three mechanical arms. To quantify the
energy spent on the mechanical motor and relays, the energy con-
sumed by a single act of latching was measured first. This step
consumes 1.01W and takes two seconds, which is less than 1% of
the overall energy budget given a 3.7V Polymer Lithium Ion Bat-
tery at 600mAh. Subsequently, the number of latching processes
required to fix a node deployment was measured (e.g., this may
involve repeating the data collection rate measurement and node
movement as described in Section 4.5). In total, data were collect-
ed from deploying 88 nodes over 20 test runs in four scenarios.
Figure 13 shows the CDF on the numbers of required latching per
node deployment. The average is 2.35 (latching), whereas 90% of
nodes required less than 5 (latching).

6.2 Results for Automated Sensor Replace-
ment
Scenario #4 was selected to determine the effects of automated
sensor replacement, as it is the most representative scenario
among the four scenarios. Each of the last two downstream nodes
was set to low battery to trigger automated node replacement five
times. The resulting data was then measured to determine the data
collection rate and time to replacement.

6.2.1 Data Collection Rate
The data collection rates of the system before a node reported
low-battery level and after the node was replaced were 0.989 and
0.984 respectively. This small difference suggests the effective-
ness of the automated replacement. The data collection rate with-
out automated replacement was 0.81. The reasons for the high
data loss rate without automated replacement were: (1) In the
presence of a network hole or an uncovered area, some sensor
nodes selected a new route to reach the gateways. These new
routes were longer than the original routes, and hence increased
the chance of packet losses. (2) In the cases of network partition,
isolated nodes reported zero data collection rate.

6.2.2 Time to Replacement
The time to recover from a battery-depleted node depends on the
location of the node and the size of the network. If the node is far
from the root node, the system must repeat the cycle of detecting
an uncovered area and then progressively shifting each upstream
node to fill a moving area toward the root node. Table 2 shows the
average time to replacement. Note that replacing the 2nd last node
requires flushing and replacing its downstream node (i.e., the last
node). As a result, replacing the 2nd last node has a longer average
time to replacement than replacing the last node.

7. DISCUSSION
The prototype evaluation in this study demonstrates the feasibility
of the TriopusNet system. However, there are several assumptions
and limitations that require future extensions before practical in-
field deployment.

The size of the current TriopusNet node prototype is too big to be
flushed out independently in small-diameter pipes. In the experi-
ment, when a battery-depleted node detaches from the pipes, its
downstream nodes must be flushed out first such that the battery-
depleted node does not get clogged by any downstream nodes in
the pipe. Flushing good downstream nodes can be prevented by
further minimizing the node size such that the battery-depleted
node can easily pass through any downstream nodes without
clogging the pipes. In addition, the upstream nodes do not have to
move downstream for network coverage hole repair because the
new node would be able to flow directly to the coverage hole to
fix the network disconnection without being blocked by nodes
already inside the pipeline. It would also benefit the time to re-
placement in section 6.2.2. For example, in our current testbed,
the time for a node to travel from inlet to outlet is 44 seconds on
average. In other word, it means that to replace a battery-depleted
node only require 44 seconds at most. Reducing the node size is
possible with current micro-mechanical design, particularly on
folding the mechanical arms that occupy majority of the space in a
sensor node.

Since the mobility of TriopusNet node relies on water flow in
pipes, node placement requires controlling or obtaining the direc-
tion of the water flow in the pipes. In our experiment, we manually

69

turn on one water outlet at a time, so each released node flows on
the path leading to its assigned pipe location. Removing this manual
effort is possible with automatic touch-free faucets. By attaching a
sensor-trigger node to activate/deactivate the infrared sensor in each
automatic faucet, the TriopusNet gateway controls each faucet by
sending signals to the sensor-trigger node.

We envision an opportunistic node placement scheme in which each
deployed sensor node is equipped with a water flow sensor. By
gathering water flow information from all deployed nodes inside
pipes, the system can infer the current flow path. The system
opportunistically releases new nodes whose destinations must match
the current water flow path.

8. RELATED WORK
Related research can be categorized into 2 classes: (1) mobile
WSN deployment and (2) WSN in pipeline monitoring.

8.1 Mobile WSN Deployment
Deployment has been a notorious issue in successful sensor
network application. Previous research [8] provides a guideline
for successful sensor network deployment. The human effort
involved in installing and maintaining sensors is a tremedous cost,
especially in remote on-site field deployment. There have been
related systems that automate sensor deployment. For examples,
Liu et al. [20] developed a breadcrumb system that leverages the
mobility of a firefighter to deploy sensors in an environment. A
firefighter carries a lightweight dispenser device that
automatically drops and releases sensor nodes along a firefighter’s
path. These dropped sensors automatically form a WSN and
localize the fireflighter without human attention and effort.

Purohit et al. developed the SensorFly system [18], which is a
controlled-mobile aerial sensor network platform for indoor
emergency response. When SensorFly is deployed, the nodes
perform collaberative localization during flying, which is similar
to the deployment algorithm in Section 4. Unlike the current
project, SensorFly mobility relies on a battery to power the
helicopter-like device, whereas the proposed Triopus node
mobility relies on water flow. A Triopus node only consumes
energy when it performs latching and delatching tasks.

8.2 Wireless Sensor Network for Pipeline
Monitoring
Recent projects involving WSN technologies for monitoring water
pipelines include the PipeNet project [1], the NAWMS project [2],
the HydroSense project [3], and the PipeProbe project [4].

The PipeNet project [1] detects, localizes, and quantifies leaks and
bursts in water pipelines. PipeNet attaches a variety of acoustic,
vibration, pressure, and flow sensors to wireless sensor nodes
mounted on pipelines, externally and internally, to detect faults
and anomalies. The signals received from these sensor nodes are
analyzed to identify and locate leaks. In PipeNet’s deployment,
human effort is required to install and repair each sensor node on-
site. In contrast, the proposed TriopusNet releasing method elimi-
nates these human efforts to install and maintain sensors in the
pipes.

The NAWMS project [2] detects the water outflow rate for each
pipe and outlet. This method attaches a vibration (accelerometer)
sensor to each pipe to separate the water outflow rate for an indi-
vidual pipe from the master household water meter. By calibrating
and deriving the relationship between the standard deviation of
pipe vibration and the mean flow rate in the pipe, the NAWNS
system can infer a pipe’s water flow rate from the sensed vibra-
tion level produced by each flowing pipe. In TriopusNet, the lo-

calization algorithm needs to obtain the water flow rate at each
pipe to compute the location of Triopus node. The NAWNS pro-
ject’s method can be used to calculate the water flow rate.

 HydroSense [3] proposes a novel single-point sensing technique
that identifies the water usage activities of each water outlet using
a single pressure sensor installed at one point within a building.

The HydroSense system senses and recognizes the unique “water
hammer” pressure fingerprint produced by each water fixture. By
training and recognizing individual fixture’s fingerprint, the sys-
tem can accurately infer which water fixture is turned on or off.
The idea of single-point sensing also eliminates the human cost of
a sensing system. However, HydroSense does not focus on sensor
network deployment, whereas TriopusNet aims to reduce human
effort in deploying a network.

 The PipeProbe project [4] developed a mobile sensor node for
determining the spatial topology of hidden water pipelines behind
walls. It works by dropping a tiny sensor capsule into pipeline. As
this capsule traverses the pipeline, it collects water pressure and
gyroscope readings to determine the 3D spatial pipeline layout.
The proposed system assumes the pipeline layout is known. Thus,
PipeProbe can be used first to discover the pipeline layout if such
information is not available.

9. CONCLUSION
This study presents TriopusNet, a mobile wireless sensor network
system for autonomous sensor deployment in pipeline monitoring.
TriopusNet scales down human effort in deploying and
maintaining WSN infrastructure inside pipes. To show the
benefits and feasibility of TriopusNet, we have prototyped and
tested the system in a real pipeline testbed. Experimental results
have demonstrated that automated sensor deployment was able to
produce quality node placement using no more nodes than non-
automated static sensor deployment. Results have also
demonstrated that automated sensor replacement was able to
successfully restore sensing and network coverage from the
departure of a battery-depleted node. We believe that TriopusNet
provides an alternative and promising strategy to automate sensor
deployment and replacement in pipeline monitoring.

10. ACKNOWLEDGMENTS
We would like to thank our shepherd Gian Pietro Picco and the
anonymous reviewers for their insightful comments to improve
the quality of this paper.

11. REFERENCES
[1] I. Stoianov, L. Nachman, S. Madden and T. Tokmouline.

PIPENET: A Wireless Sensor network for pipeline monitor-
ing. In IPSN, 2007.

[2] Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman and M. B.
Srivastava. NAWMS: Non-Intrusive Autonomous Water
Monitoring System. In SenSys, 2008.

[3] J. Froehlich, E. Larson, T. Campbell, C. Haggerty, J.
Fogarty, and S. Patel. HydroSense: Infrastructure- Mediated
Single-Point Sensing of Whole-Home Water Activity. In
Ubicomp, 2009.

[4] T. S. Lai, Y. H. Chen, P. Huang and H. H. Chu. PipeProbe: A
Mobile Sensor Droplet for Mapping Hidden Pipeline. In
SenSys, 2010.

[5] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss and P. Levis.
Collection Tree Protocol. In SenSys, 2009.

[6] Kmote, INTECH
http://www.tinyosmall.com/product_p/100-101.htm

70

[7] PQ12-P Linear Actuator, Firgelli.
http://store.firgelli.com/pq12-p-linear-actuato12.html

[8] G. Barrenetxea, F. Ingelrest, G. Schaefer and M. Vetterli.
The hitchhiker's guide to successful wireless sensor network
deployments. In SenSys, 2008.

[9] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-
optimal Sensor Placements: Maximizing Information while
Minimizing Communication Cost. In IPSN, 2006.

[10] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S.
Nair, S. Zahedi, E. Kohler, G. Pottie, M. Hansen and M.
Srivastava. Sensor Network Data Fault Types. ACM Trans.
on Sensor Networks, Vol. 5, No. 3, Article 25, May 2009.

[11] M. Ceriotti, M. Corra, L. D'Orazio, R. Doriguzzi, D. Facchin,
S. T. Guna, G. P. Jesi, R. L. Cigno, L. Mottola, A. L. Mur-
phy, M. Pescalli, G. P. Picco, D. Pregnolato and C. Torghele.
Is there light at the ends of the tunnel? Wireless sensor net-
works for adaptive lighting in road tunnels. In IPSN, 2011.

[12] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin and P. Corke.
Data collection, storage, and retrieval with an underwater
sensor network. In SenSys, 2005.

[13] G. Chen, S. Hanson, D. Blaauw and D. Sylvester. Circuit
Design Advances for Wireless Sensing Applications. Pro-
ceedings of the IEEE, Vol.98, No.11, pp.1808-1827, Nov.
2010.

[14] Y. C. Wang, C. C. Hu and Y. C. Tseng. Efficient Placement
and Dispatch of Sensors in a Wireless Sensor Network. IEEE
Trans. on Mobile Computing, Vol. 7, No. 2. pp. 262-274, Feb,
2008.

[15] M. Laibowitz and J. A. Paradiso. Parasitic mobility for per-
vasive sensor networks. In Pervasive, 2005.

[16] K. Dantu, B. Kate, J. Waterman, P. Bailis and M. Welsh.
Programming Micro-aerial vehicle swarms with Karma. In
SenSys, 2011.

[17] T. Bourdenas, M. Sloman and E. C. Lupu. Self-healing for
Pervasive Computing Systems. Architecting Dependable Sys-
tems VII, Springer-Verlag 2010.

[18] A. Purohit, Z. Sun, F. Mokaya and P. Zhang. SensorFly:
Controlled-mobile Sensing Platform for Indoor Emergency
Response Applications. In IPSN, 2011.

[19] S. Guo, Z. Zhong and T. He. FIND: faulty node detection for
wireless sensor networks. In SenSys, 2009.

[20] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J. A. Stankovic
and D. Siu. Automatic and Robust Breadcrumb System De-
ployment for Indoor Firefighter Applications. In MobiSys,
2010.

[21] MS5541C Pressure Sensor
http://www.intersema.ch/products/guide/calibrated/ms5541

[22] The STMicroelectronics LISY300AL gyroscope chip
http://www.st.com/stonline/books/pdf/docs/14753.pdf

[23] SmartBall, Pure Technologies
http://www.puretechltd.com/products/smartball/smartball_lea
k_detection.shtml

[24] ROBOBEES project
http://robobees.seas.harvard.edu

71

	p61-lai

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

