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Abstract. We present an extension to the subgradient algorithm to produce primal as well as dual solutions.
It can be seen as a fast way to carry out an approximation of Dantzig-Wolfe decomposition. This gives a fast
method for producing approximations for large scale linear programs. It is based on a new theorem in linear
programming duality. We present successful experience with linear programs coming from set partitioning,
set covering, max-cut and plant location.
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1. Introduction

Since the work of Held and Karp [19,20] and Held, Wolfe and Crowder [21], in the early
seventies, the subgradient algorithm has been used in many different contexts to produce
lower bounds for large-scale linear programs, see e. g. [25] for more references about it.
This procedure is attractive because of its low computational cost. The literature contains
many experiences in which it has produced very good approximations to optimal dual
solutions. One drawback is that it does not produce values for the primal variables,
and then a different procedure has to be applied for their computation. This is usually
done based on the complementary slackness conditions, in some cases it can be done
in a combinatorial way, in others one has to solve a smaller linear program. Another
drawback of the subgradient algorithm is it has not a well defined stopping criterion.
In most practical cases, the stopping criterion is just based on a limit for the number of
iterations or the number of steps without an improvement.

The question of producing primal solutions with a subgradient algorithm has been
studied in [28], [22], [2] and [27]. They give proofs of convergence for different choices
of the step length. We do not know whether these methods have been tested with
large-scale problems.

We present an extension to the subgradient algorithm that will produce an approx-
imation to a primal solution. Additionally, this extension, while maintaining the same
low computational cost per iteration, it gives a much better stopping criterion. In general,
it produces a primal vector as well as a dual vector that can be used by themselves or
as the starting points for a more exact method. The convergence properties of subgra-
dient algorithms are not well understood; versions that converge in theory are too slow
computationally, and for the versions that are implemented there is not a known proof
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of convergence. Our algorithm falls in this category, it mimics convergent approaches,
but the emphasis is in numerical computations. We present successful experiments with
linear programs coming from combinatorial problems like set partitioning, set covering,
max-cut, and plant location. We have not done any experiments with linear programs
with a more general structure, these might turn out to be more difficult for this type
of method. When dealing with the dual variables, our algorithm has similarities with
theConjugate Subgradient methodproposed in [29,23]. What seems to be new is the
way of dealing with the primal variables. There we try to estimate the volume below
the faces that are active at an optimal dual solution. These volumes provide the primal
solution.

This paper is organized as follows. In Sect. 2 we review Dantzig-Wolfe decom-
position, lagrangean relaxation and the subgradient algorithm. In Sect. 3 we present
a theorem on linear programming duality that justifies the algorithm. In Sect. 4 we
present the extended subgradient algorithm. Section 5 contains some implementation
issues. In Sect. 6 we present experiments with different types of problems.

2. Lagrangean relaxation and subgradients

In this section we present an overview of Dantzig-Wolfe decomposition, lagrangean
relaxation, and the subgradient algorithm. Consider the linear program

minimizecx

Ax= b

Dx = e

x ≥ 0.

 (1)

and assume that

{x|Dx = e, x ≥ 0} =
{

x|x =
∑

λi gi ,
∑

λi = 1, λ ≥ 0
}
.

Dantzig-Wolfe decomposition [14] relies on the fact that (1) is equivalent to

minimize
∑
(cgi )λi∑

(Agi )λi = b∑
λi = 1,

λ ≥ 0.

 (2)

Then (2) is solved with a column generation approach. Each new column is obtained by
solving

minimize(c− π̄A)x

Dx = e

x ≥ 0,

 (3)

whereπ̄ are the dual values associated with the current basis in (2). There are cases
where this procedure might take a large number of iterations. In [5] there is empirical



The volume algorithm: producing primal solutions with a subgradient method 387

evidence that this procedure can be accelerated by mixing it with the subgradient method.
The method that we describe in this paper can be seen as a fast way to approximate
Dantzig-Wolfe decomposition.

Now we describe the subgradient method. Problem (2) is equivalent to

minimize
∑

cgiλi∑
(Agi − b)λi = 0∑
λi = 1,

λ ≥ 0,

 (4)

its dual is

maximizez

z+ π(Agi − b) ≤ cgi .

}
(5)

The subgradient algorithm operates as follows:

Step 1.Givenπ̄, find a tight inequality in (5), by solving

minimizez= (c− π̄A)x+ π̄b

Dx = e

x ≥ 0.

 (6)

Let x̄ be a solution of this. Thenv = b− Ax̄ is a subgradient at̄π.

Step 2.Updateπ̄ asπ̄ ← π̄ + sv. Heres is the step size, and the usual formula for
it is

s= f
UB− z̄

‖v‖2 , (7)

where f is a number between 0 and 2, andUB is an upper bound for the optimal
value.

If some of the constraints inAx= b are inequalities, instead of equations, and their
dual variables are required to be nonnegative, then one should take

max{π̄i ,0}
for those components, in Step 2.

Usually f is decreased after a certain number of iterations without an improvement.
The usual stopping criterion is given by a bound on the total number of iterations, or by
a bound on the number of iterations without an improvement.

If the Subproblem (6) can be solved efficiently, then each iteration has a very low
computational cost. There are many cases in the literature in which this procedure has
been very effective. Although there are convergence theorems, see [26,7,24], the con-
vergence properties are not well understood. In many cases, the subgradient algorithm
produces a good approximation to an optimal solution of (5), however it does not pro-
duce a primal vectorλ that solves (2) or (4). We are going to present an extension of
this procedure to produce an approximation to an optimal solution of (2) or (4).
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3. Volume and duality

This section is devoted to a theorem in linear programming duality that leads to the
computation of the primal variables (that are the dual variables in this section).

Fig. 1.

Theorem 1. Consider the linear program

maximizez

subject to

z+ aiπ ≤ bi , for i = 1, . . . ,m,

 (8)

whereπ is a vector withn − 1 components. Let(ẑ, π̂) be an optimal solution, and
suppose that that constraints1, . . . ,m′, m′ ≤ m, are active at this point. Let̄z< ẑ, and
assume that

z+ aiπ ≤ bi , fori = 1, . . . ,m′,
z≥ z̄,

}
(9)

defines a bounded polyhedron. For1 ≤ i ≤ m′, let γi be the volume between the face
defined byz+ aiπ ≤ bi and the hyperplane defined byz = z̄. The shaded region in
Fig. 1 illustrates such a volume. Then an optimal dual solution is given by

λi = γi∑m′
j=1 γ j

.

Proof. Consider the polyhedronP defined by (9), this is a full dimensional polytope.
denote byF0 to be the face defined byz≥ z̄, and byFi the face defined byz+aiπ ≤ bi .
Gauss’ divergence theorem says that for a closed bounded regionP whose boundary is
a piecewise smooth orientable surfaceS, and a constant vectorv,∫

S
v · n dS= 0, (10)
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wheren is the outer unit normal vector ofS. By takingv = ej (the j th unit vector) for
1≤ j ≤ n, we obtain ∫

S
n dS= 0, (11)

where0 denotes a vector of all zeroes. This implies

m′∑
i=1

δi

‖(1,ai )‖ (1,ai )− δ0(1,0 . . .0) = 0

whereδi is the area ofFi . Thus

(1,0 . . .0) =
m′∑

i=1

δi

δ0‖(1,ai )‖ (1,ai ),

so at this point we have the gradient of the objective function written as a nonnegative
linear combination of the gradients of the constraints that are active at the optimum.
This gives us an optimal dual solution.

Now we shall see that

γi = C
δi

‖(1,ai )‖ ,

whereC is a constant, andγi , as defined earlier, is the volume betweenFi and the
hyperplaneF0.

If δi = 0 thenγi = 0, so we have to consider the case whenδi > 0. For that we
apply Gausses theorem again as follows. Denote byQi the convex hull ofFi and(z̄, π̂),
see Fig. 2.

Fig. 2.
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Fig. 3.

Let F̄0 = F0 ∩ Qi . Notice that the faces ofQi other thanF̄0 andFi are defined by
inequalities like

cπ ≤ d,

where the variablez is absent. This means that the normals to these faces are orthogonal
to the z axis. Then if we use formula (10) withv = e1 on Qi , the only faces with
v · n 6= 0 areFi andF̄0. We have

Ai = δi

‖(1,ai )‖ ,

whereAi is the area of̄F0. Let h = ẑ− z̄, then the volume ofQi is γi = 1
2h Ai .

Sinceδ0 =∑ Aj , we have

δi

δ0‖(1,ai )‖ =
Ai∑
Aj
= γi∑

γ j
.

ut
Roughly speaking, this theorem suggests that given a vector(z̄, π̄) one should look at the
active faces, and compute the volume of their projection over the hyperplanez= z̄− ε,
on a neighborhood of̄π, and for some small value ofε. Letλi be the ratio of the volume
below Fi to the total. Then one should compute

(1,0 . . .0)−
m′∑

i=1

λi (1,ai ). (12)

If this is 0 we have a proof of optimality, otherwise we have a direction of improvement,
see Fig. 3. We present an algorithm in Sect. 4 that computes approximations to these
volumes.
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4. The volume algorithm

We describe below a modification of the subgradient algorithm to produce primal
solutions. The basic idea comes from applying Theorem 1 to (5). This tell us that in
a neighborhood of an optimal solution of (5), the probability that (6) will produce a face
i is λi ; this is an optimal solution of the primal problem (2) or (4). So we modify the
subgradient algorithm in order to estimate these probabilities. If one looks only at the
dual variables, the algorithm below has similarities with the Conjugate Subgradient
method [29,23] and the Bundle method [24].

Volume Algorithm

Step 0.We start with a vector̄π and solve (6) to obtain̄x andz̄.
Setx0 = x̄, z0 = z̄, t = 1.

Step 1.Computevt = b− Ax̄ andπ t = π̄ + svt for a step sizes given by (7).
Solve (6) withπ t , let xt andzt be the solutions obtained. Thenx̄ is updated as

x̄← αxt + (1− α)x̄, (13)

whereα is a number between 0 and 1.

Step 2.If zt > z̄ updateπ̄ andz̄ as

π̄ ← π t, z̄← zt .

Let t ← t + 1 and go to Step 1.

If x0, . . . , xt is the sequence of vectors produced by (6), then

x̄ = αxt + (1− α)αxt−1+ · · · + (1− α)t x0.

So we should look at̄x as a convex combination of{x0, . . . , xt}. Our goal is to use the
coefficientsα, (1− α)α, . . . , (1− α)t as an approximation of an optimal solutionλ of
the master problem (2) in Dantzig-Wolfe decomposition.

Let us call Step 1 a minor iteration, and an update in Step 2 a major iteration. We
might have a sequence of minor iterations before finding an improvement. During this
stage we have a tentative set of dual valuesλ associated with the inequalities of (5), then
when problem (6) produces an inequalityi , we increase its dual value toα+ (1− α)λi ,
and we multiply all the other dual values by(1− α). The idea behind this is that we are
moving in a neighborhood of(z̄, π̄) and we are trying to estimate the volumes below
the faces that are active in this neighborhood; see Theorem 1.

We use these dual values to define the directionv, while in the subgradient algorithm,
the direction is given by only one active face. If no further improvement is found, the
valuesλ should approximate an optimal solution of (2). Notice that we do not keep
a vectorλ explicitely, all this information is in the primal vectorx̄.

Another idea to approximate these volumes would be to just count the number of
times that a face is produced by (6). We prefer the power series described above, thus if
a face appeared only early in the procedure its weight would decrease exponentially.
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We should stop when‖v‖ and|cx̄− z̄| are both below a certain threshold.
The idea of taking a convex combination of the new and the old direction at each

iteration of the subgradient algorithm, appears in [8,7,3] and maybe others with the
intention of accelerating solution convergence. However, there is no mention of any
means for obtaining primal solutions.

5. Implementation details

In this section we give further details on how we computedα in (13), and f in (7).
The valueα could be set to a fixed value for a number of iterations and could be

decreased afterwards. We used an idea from the Conjugate Subgradient method [29,23]
as follows. Letv̄ = b− Ax̄ andvt = b− Axt , and letαmax be an upper bound. Then
we would computeαopt as the value that minimizes‖αvt + (1− α)v̄‖. If αopt < 0 we
would setα = αmax/10. Otherwise we would setα = min{αopt, αmax}. Typically we
would start withαmax= 0.1 and we would decrease its value near the end. This should
increase the precision of the primal solution.

Then to set the value off we define three types of iterations. Each time that we do
not find an improvement we call this iterationred. If zt > z̄ we compute

d = vt · (b− Axt).

If d< 0 it means that a longer step in the directionvt would have given a smaller value
for zt , we call this iterationyellow. If d ≥ 0 we call this iteration green.

At each green iteration we would multiplyf by 1.1. After a sequence of 20 con-
secutive red iterations we would multiplyf by 0.66.

6. Computational experiments

In this section we describe successful results with three types of large scale linear pro-
grams. Their only common characteristic is that all come from combinatorial problems.
The stopping criterion for the volume algorithm was

|cx̄− z̄|
z̄

< 0.02, and

∑ |vi |
m

< 0.01,

wherem is the number of rows of the matrixA. We compared with the simplex method
and the interior point method implemented in OSL [13].

6.1. Set partitioning problems

The linear programming relaxation of a set partitioning problem can be described as

minimize cx

Ax= 1

x ≥ 0,
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Fig. 4.

Fig. 5.

whereA is a matrix with 0-1 coefficients, and1 denotes a vector of ones. The instances
come from applying the global approach described in [1] to a major airline’s crew
scheduling. The columns ofA correspond to crew trips and the rows correspond to
flights that have to be covered.

We relaxed all equations, and problem (6) became

minimize(c− πA)x+ π1

0≤ x ≤ 1.

}
(14)

For a problem with 2504 rows and 50722 columns, we plot in Fig. 5 the value ofz̄
with a continuous line and the value ofcx̄ with bullets. We plot in Fig. 4 the value of
(
∑ |vi |)/m, wherem is the number of equations.

In Table 1 we present computing times on an IBM RS 6000/590 for 2 instances. The
label V corresponds to the time taken by the volume algorithm. Given the dual values
produced by the volume algorithm, we computed reduced costs, using this information
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and the primal values we selected a set of columns and we applied the dual simplex
method to this smaller problem using the reduced costs instead of the original objective,
then we priced out the remaining columns, the time taken by this part appears under the
label V-D. We also applied the dual simplex method from scratch to the entire problem,
this time appears under D. It is known that the dual simplex method performs better
than primal simplex for set partitioning problems, and our experience confirms this.
Finally we applied an interior point method, it was the primal-dual barrier algorithm
with a predictor-corrector method. This time appears under B.

Table 1.

name rows columns V (secs.) V-D (secs.) D (secs.) B (secs.)
sp6 2504 50722 440 135 3283 1299
sp7 2991 46450 895 428 5753 2048

Then we tried these instances as set covering problems, i. e. with inequalities

Ax≥ 1

instead of equations. The subgradient algorithm has been used to obtain dual solu-
tions and lower bounds in [17,4,9,10] and others. For problems with “small costs”,
a subgradient method has been used to produce primal solutions, see [10].

In Table 2 we display the solution times on an IBM RS 6000/590 for the set covering
trials. For set covering problems, our experience is that the primal simplex method is
more effective than dual simplex. We applied the volume algorithm and we used the
primal vector to start the primal simplex method. The times of these two phases appear
under V and V-P. Under the label P we present the time taken by the primal simplex
method starting from scratch. The time taken by the interior point algorithm appears
under B.

Table 2.

name rows columns V (secs.) V-P (secs.) P (secs.) B (secs.)
sp6 2504 50722 471 134 4970 1831
sp7 2991 46450 645 171 5517 2311

6.2. Max cut problems

Given a graphG = (V, E), the max-cut problem consists of finding a partition of the
set of nodes into two sets that maximizes the total weight of the edges between the two
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sets. For a complete graph, a linear programming relaxation is given by

maximize c x

subject to

xi j + xjk + xik ≤ 2,

xi j − xjk − xik ≤ 0,

− xi j + xjk − xik ≤ 0,

− xi j − xjk + xik ≤ 0,

for all i , j, k.

Herexi j should take the value 1 if the edgei j appears in the cut, and 0 otherwise. These
are called thetriangle inequalitiesand they define facets of the cut polytope, see [6]. It
was pointed out in [15] that this linear program can be very difficult to solve with the
simplex method, even for small graphs. So we tried it with the objective of all ones.
Our first observation was that dual simplex performed better than primal simplex. For
the smaller case below, primal simplex did not move from the origin after two hours of
pivoting. As for set partitioning we relaxed all triangle inequalities, so problem (6) was
of the type

minimize c̄ x+ πb

0≤ x ≤ 1.

We tried one instance with 60 nodes and one with 80 on an IBM RS 6000/590. In Table 3
we present the time taken by the volume algorithm under V. The time taken by primal
simplex starting from the primal vector given by our algorithm appears under V-P. The
time taken by the dual simplex method starting from scratch appears under D. Because
of its high storage requirements we were not able to run the interior point method on
these problems.

Table 3.

nodes variables constraints V (secs.) V-P (secs.) D (secs.)
60 1770 136880 215 933 3242
80 3160 328640 339 6102 55921

6.3. Facility location

The uncapacitated facility location problem consists of selecting a subset from a set of
possible locations of facilities, that should serve a set of customers. A linear program-
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ming relaxation of it is

minimize
∑

ai xi +
∑

ci j fi j

subject to∑
i

fi j = 1,1≤ j ≤ n, (15)

fi j ≤ xi ,1≤ i ≤ m, 1≤ j ≤ n, (16)

0≤ xi ≤ 1, 0≤ fi j ≤ 1.

If we relax inequalities (15), and we drop the indexi , we obtain subproblems as below

minimizeax+
∑

c̄ j f j

subject to

f j ≤ x, for all j,

0≤ x ≤ 1, 0≤ f j ≤ 1.

This can be solved as follows. Set to 0 any variablef j with c̄ j ≥ 0. Then compute

µ = a+
∑
c̄ j<0

c̄ j .

If µ < 0 setx = 1, otherwise setx = 0. Set f j = x if c̄ j < 0.
An algorithm based Dantzig-Wolfe decomposition was given in [18], an ascent

method has been used in [16], the subgradient algorithm to obtain a lower bound has
been used in [11], a primal subgradient algorithm to produce primal solutions and an
upper bound has been given in [12]. We decided to try the volume algorithm, using this
relaxation. We took an instance from [5] with 250 possible locations and 163 customers
and conducted solution runs on an IBM RS 6000/590. In Fig. 6 we plot the value of
(
∑ |vi |)/n. We plot in Fig. 7 the value of the lower bound with a continuos line and the

value of of the primal vector with bullets.

Fig. 6.
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Fig. 7.

In Table 4 we present the computing times for two instances taken from [5]. We did
not compare with the simplex method because we are taking advantage of the special
structure.

Table 4.

locations customers time (secs)
250 163 39.2
276 241 48.8

7. Final remarks

We have presented a way to produce approximate solutions in Dantzig-Wolfe decom-
position with a subgradient algorithm. The instances where we had success share the
following properties:

• All variables are bounded between 0 and 1.
• All coefficients in the matrix are 0, 1 or−1.
• Problem (6) could be solved in linear time, with respect to the size of the input.

The first two imply that ifπ t andπ t+1 are “close”, then the constraints

z+ π(Axt − b) ≤ cxt

and

z+ π(Axt+1− b) ≤ cxt+1

of (5) do not form a “sharp” angle. We believe that this is a key property necessary
for this type of approximate algorithm. While combinatorial problems seem to be very
good candidates, we expect problems with more general coefficients to be more difficult
for this approach.
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This algorithm is very easy to implement. Other than keeping the original data, the
storage requirements are minimal. Since no matrix inversion is required, no numerical
difficulties arise.

Another attractive feature of this algorithm is that it can be trivially parallelized.
For instance, for solving (14) the most expensive operation is to compute(c− πA).
Here each column can be treated independently by different processors. The other
expensive operation is to computev = b− Ax̄, in Step 1. Here each row can be treated
independently.
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