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Minimal Resource Allocating Networks for Discrete
Time Sliding Mode Control of Robotic Manipulators
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Abstract—This paper presents a discrete-time sliding mode con-
trol based on neural networks designed for robotic manipulators.
Radial basis function neural networks are used to learn about
uncertainties affecting the system. The online learning algorithm
combines the growing criterion and the pruning strategy of the
minimal resource allocating network technique with an adap-
tive extended Kalman filter to update all the parameters of the
networks. A method to improve the run-time performance for
the real-time implementation of the learning algorithm has been
considered. The analysis of the control stability is given and the
controller is evaluated on the ERICC robot arm. Experiments
show that the proposed controller produces good trajectory
tracking performance and it is robust in the presence of model
inaccuracies, disturbances and payload perturbations.

Index Terms—Adaptive filters, discrete-time sliding mode con-
trol, minimal resource allocating networks, nonlinear systems, ra-
dial basis function networks, robotic manipulators, robust control.

I. INTRODUCTION

R OBOTICmanipulators are highly nonlinear dynamic sys-
temswith unmodeled dynamics and uncertainties [1] that,

being commonly used in industrial tasks, are expected to main-
tain good dynamic performance. The design of ideal controllers
for such systems is a challenge for control engineers, mainly
because of the nonlinearities and the coupling effects typical
of robotic systems. Different approaches have been followed in
order to cope with this problem, such as, for instance, feedback
linearization [2], [3], model predictive control [4], [5], advanced
PID control [6], adaptive [7] and sliding mode control [8]–[11].
In general, control approaches unable to guarantee some ro-
bustness can make the performance of the system, in terms of
convergence, quite poor. As discussed in [12], global feedback
linearization is possible in theory, but is difficult to achieve in
practice as a consequence of uncertainties deriving from incom-
plete knowledge of the kinematics and dynamics, from joint and
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link flexibility, actuator dynamics, friction, sensor noise, and un-
known loads. This imposes to couple the inverse dynamics ap-
proach with robust control methodologies [2], [13].
It is well known that sliding mode methods provide notice-

able robustness and invariance properties to matched uncertain-
ties [14]–[16], and they are computational simpler with respect
to other robust control approaches. Recent literature contains a
number of results about sliding mode control of manipulators,
in some cases coupled with fuzzy control and or neuro-fuzzy
techniques [17]–[23]. The largest part of these papers, however,
uses the continuous-time dynamic model of the manipulator to
design, leaving not addressed the issue of digitalization of the
control law.
Digital control systems are currently receiving consider-

able credit as a consequence of the recent advances in digital
microprocessor technology, and relevant interest is currently
growing in the design of controllers based on the discrete
model of the system. Nevertheless, the discrete-time counter-
part of sliding mode control design has received only a limited
attention [24]–[29]. Indeed, compared with continuous time
sliding-mode strategies, the design problem in discrete-time
has received much less coverage in the literature. This is due
to its major drawback, consisting in the presence of a sector,
of width depending on the available bound on uncertainties,
where robustness is lost because the sliding mode condition
cannot be exactly imposed. For this reason, only ultimate
boundedness of trajectories can be guaranteed, and the larger
are the uncertainties affecting the system, the wider is the
bound on trajectories which can be guaranteed. As a possible
solution to this problem, this paper proposes the design of
the discontinuous control law, within the sector, based on an
estimation, as accurate as possible, of uncertainties affecting
the system.
Owing to their learning capabilities and universal approxi-

mation properties [30], Neural networks (NNs) will be used
here to perform this approximation. It is well known in fact,
that the learning ability of neural networks has been widely uti-
lized in different industrial applications [31]–[38] and in partic-
ular to make controllers learn nonlinear characteristics of robots
through experimental data, without a prior knowledge of their
parameters and structure [39], [40]. Early NN-based control
schemes for robotic manipulators produced good simulations
or even experimental results [41], [42]. More recently, stable
neural network control schemes have been investigated, such
as nonlinearly parameterized NN-based adaptive control [43],
[44] and linearly parameterizedNN-based adaptive control [45],
[46] for robotic manipulators. All these results proved that the
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stable NN-based control have the potential to deal with the dif-
ficulties for the control of robotic manipulators with unmod-
eled dynamics and uncertainties. The two books [47], [48] pro-
vide a good review of neural networks for the control of robotic
manipulators.
In this paper, an online learning procedure is proposed to

estimate the uncertainties affecting the system and radial basis
function networks (RBFNs) have been considered for this esti-
mation. These networks have been widely used for nonlinear
system identification [49], [50] because of they have the ability
both to approximate complex nonlinear mappings directly
from input-output data with a simple topological structure that
avoid lengthy calculations [50] and to reveal how learning pro-
ceeds in an explicit manner [51], [52]. The considered on-line
learning algorithm is based on the extended minimal resource
allocating network (EMRAN) technique [51]–[53], that adds
hidden neurons to the network based on the innovation of each
new RBFN input pattern which arrives sequentially. As stated
in [51], [52], to obtain a more parsimonious network topology,
a pruning strategy is introduced. This strategy detects and
removes as learning progresses those hidden neurons which
make little contribution to the network output. If an observation
has no novelty then the existing parameters of the network are
adjusted by an extended Kalman filter (EKF) [52], [54]. In this
paper, the performance of the filter is improved by an on-line
adjustment of the noise statistics obtained by a suitably defined
estimation algorithm; the proposed adaptive extended Kalman
filter (AEKF) is able to adaptively estimate the unknown sta-
tistical parameters [55], [56]. To minimize the computational
effort for real-time implementation, a “winner neuron” strategy
is incorporate in the learning algorithm [52].
The paper is organized as follows. The on-line learning al-

gorithm is described in Section II. In Section III details on the
considered control are discussed. Results on robot arm exper-
imental tests are reported in Section IV. The paper ends with
comments on the performance of the proposed controller.

II. LEARNING ALGORITHM

The standard approach to implement an extended minimal re-
source allocating network (EMRAN) is based on a sequential
learning algorithm and an extended Kalman filter (EKF) [52],
[54]. In particular the sequential learning algorithm adds and re-
moves neurons online to the network according to a given crite-
rion [51]–[53] and an EKF is used to update the net parameters.
For the real-time implementation of the considered algorithm
the computational load has been reduced by a “winner neuron”
strategy [52]. In this paper the EMRAN algorithm is improved
by an AEKF in order to take into account the time-varying noise
statistics [55], as shown in the following of this section.

A. Radial Basis Function Neural Network

A RBFN with input pattern and an output
implements a mapping according to

(1)

where is a given function from to , denotes the
Euclidean norm, , are the weights or
parameters, , , are the radial basis func-
tions centers (called also units or neurons) and is the number
of centers [50]. The terms

(2)

with , are called the hidden unit outputs.
The RBFN is used for the estimation of the uncertainties af-

fecting the robotic system. The uncertainty dynamics can be
taken into account through the network input pattern , that
must be composed of a proper set of system input and output
samples acquired in a finite set of past time instants [57] as spec-
ified in (33).
Theoretical investigation and practical results show that the

choice of the nonlinearity , a function of the distance
between the current input and the centre , does not signifi-
cantly influence the performance of the RBFN [50]. Therefore,
the following gaussian function is considered:

(3)

where and the real constant is a scaling or
“width” parameter [50].
For the further analysis of Section III-B, the following as-

sumption reflecting the universal approximation capability of
NNs is made [30], [58]:
Assumption 2.1: The RBFN input pattern is con-

tained within a known, arbitrary large compact set . In-
side this compact set, exist an optimal set of weights ,

such that the approximation error of the optimal
neural network, with enough centers and the same structure of
(1), is arbitrarily small.

B. Minimal Resource Allocating Network Algorithm

The learning process of EMRAN involves allocation of new
hidden units, pruning and “winner neuron” strategies as well as
adaptation of network parameters [52]–[54]. The network starts
with no hidden units and as input-output data are
received, where is the desired output of the net, some of
them are used to generate new hidden units based on a suitably
defined growth criteria. In particular at each time instant the
following three conditions are evaluated to decide if the input

should give rise to a new hidden unit:

(4)

(5)

(6)

where is the residual vector,
is the centre of the hidden unit that is nearest to and
represents the number of past network outputs to calculate the
output error . The terms , , and are thresholds
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to be suitably selected. As stated in [51], [52], these three condi-
tions evaluate the novelty in the data. If all the criteria of (4)–(6)
are satisfied, a new hidden unit is added and the following pa-
rameters are associated with it:

(7)

(8)

(9)

where determines the overlap of the response of a hidden unit
in the input space as specified in [52] and [54]. If the observation

does not satisfy the criteria of (4)–(6), an EKF is
used to update the following parameters of the network:

(10)

The updating equation is given by

(11)

where the gain matrix is expressed by

(12)

with the gradient matrix of the function with re-
spect to the parameter vector [52] and [54], is
the variance of the measurement noise and is the error
covariance matrix. This matrix is updated by

(13)
where is the identity matrix and is introduced to
avoid that the rapid convergence of the EKF algorithm prevents
the model from adapting to future data [52], [54]. The
matrix is positive definite symmetric and is the number
of parameters to be adjusted. When a new hidden neuron is
allocated, the dimension of increases as follows to take
into account the new parameters introduced by adding the new
hidden neuron [52]:

(14)

In (14), is an estimate of the uncertainty in the initial values
assigned to the parameters and the dimension of the identity
matrix is the number of new parameters introduced by adding
the new hidden neuron. As stated in [51] and [52], to keep the
RBF network in aminimal size a pruning strategy removes those
hidden units that contribute little to the overall network outputs
over a number of consecutive observations. To carry out this
pruning strategy, for each observation the vectors

, of hidden unit outputs are computed
[see (2)] and each element , ; of
these vectors is normalized with respect to the highest element
of all vectors

(15)

with and . The hidden units for which
all their normalized elements (15) are less than a threshold for

consecutive observations are removed and the dimensionality
of all the related matrices are adjusted to suit the reduced net-
work [51], [52].
The weakness of the above algorithm is that all the parame-

ters of the network, including all the centers of the hidden neu-
rons, widths and weights, have to be update at every step; the
size of the matrices to be update becomes large as the number
of hidden neurons increases. Therefore, for the real-time im-
plementation of the considered algorithm, it is necessary to re-
duce the online computation effort and to this purpose a “winner
neuron” strategy is incorporate in the learning algorithm [52].
The “winner neuron” is defined as the neuron in the network that
is closest (in some norm sense) to the current input data. The
criteria for adding and pruning the hidden neurons are all the
same as in the above algorithm; the difference, in the “winner
neuron” strategy, is that if the observation does not
meet the criteria to add a new hidden neuron [see (4)–(6)], only
the network parameters related to the selected “winner
neuron” are updated by the EKF algorithm. In particular, the up-
dating (11) becomes

(16)

with

(17)

In (16), the gain matrix is expressed by

(18)

with the gradient matrix of the function with
respect to the parameter vector and is the
error covariance matrix which is updated by

(19)

where is the number of parameters to be adjusted.
The EKF can be implemented once estimates of and
are available. In general, a complete and reliable informa-

tion about these estimates is not available; on the other hand it
is well known how poor knowledge of noise statistics may se-
riously degrade the Kalman filter performance. This problem is
here dealt with introducing an adaptive adjustment mechanism
of and values in the EKF equations.

C. Adaptive Estimation of and

A considerable amount of research has been performed on
the adaptive Kalman filtering [55], [59]–[62], but in prac-
tice it is often necessary to redesign the adaptive filtering
scheme according to the particular characteristics of the
problem faced. The adaptive procedure here proposed refers to

. Under proper assump-
tions given in [55], it is possible to define a simple and efficient
estimation algorithm based on the condition of consistency,
at each step, between the residuals , , and
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their predicted statistic , . Imposing
such a condition, one-stage estimates and ,

, of and , , respec-
tively, are obtained at each step. To increase their significance,
the one-stage estimates and , ,

are average obtaining the relative smoothed version

and , . After proper calculations [55], the

following recursive form of estimates and ,
, is found:

(20)

(21)

where
•

,

•

,

• and are the number of one-stage estimates

and , , respectively, yielding the
smoothed estimates.

Parameters and of estimators (20) and (21) are chosen on
the basis of two antagonist considerations: low values would
produce noise estimators which are not statistically significant,
large values would produce estimators which are scarcely sen-
sitive to possible rapid fluctuations of the true and

, [55]. In other words, the one-stage esti-
mates are made by averaging past samples in order to increase
the statistical significance of estimators; if the samples are too
far the filter has a low reactivity, while if the samples are too
near estimators have a low statistical significance [55]. During
filter initialization, the starting values and ,

, in (20) and (21), respectively, must be chosen on the
basis of the a priori available information. In case of lack of
such information, a large value of is useful to prevent
divergence.
The EMRAN estimation algorithm [51], [52] enhanced by

the AEKF, called EMRANAEKF algorithm, is summarized as
follows:
1. For each observation do: compute
the overall network output:

where is the number
of hidden units;

2. Calculate the parameters required by the growth criterion
—

—

—
3. Apply the criterion for adding a new hidden unit: if

and and then
allocate a new hidden unit with
—
—
—
else
—adapt process or measurement noise coefficients as
stated in [55]:

,

,
— update only network parameters related to the
selected “winner neuron”:

— update the error covariance matrix re-
lated to the selected “winner neuron”:

end
4. Check the criterion to prune hidden units:
— compute the hidden unit outputs:

,
— compute the normalized outputs:

, ;
— if , for consecutive obser-
vations then prune the th hidden unit and reduce the
dimensionality of the related matrices end

5. and go to step 1.

III. CONTROL DESIGN

A. Preliminaries

From the Euler-Lagrangian formulation, the equations of mo-
tion of a robot manipulator can be written as [63]

(22)

where is the vector of generalized coordinates (rota-
tional joint configurations), is the inertia ma-
trix, represents centrifugal and Coriolis torques,

is the diagonal matrix of the viscous friction co-
efficients, is the vector of gravitational torques
and is the vector of torques acting at the joints. As
well known, the robot model (22) is characterized by the struc-
tural properties given in [63]. Introducing the state vector

, the control input
, and considering possible uncertainties affecting model (22),
this latter can be expressed as

(23)
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Fig. 1. ERICC manipulator.

where , depend on the uncertainties, while the
nominal model is given by ,

...

...

(24)
Note that all the terms present in (23) and (24) can be easily
computed from (22).
Assumption 3.1: In view of the existence of physical bounds

on achievable positions and velocities by the robot arm, it is
assumed that the uncertain terms , are norm
bounded.
A planar two-link manipulator with revolution joints [63] will

be considered in this paper, in order to illustrate the feasibility
of the proposed control algorithm. Therefore, the variable is

, where , denote the joint displacements of
the two considered rotational joints 2 and 3 of Fig. 1. The arm
dynamics is described by (22) with and the detailed
model can be found in [63] and [64].

B. Sliding Mode Controller Design

In this section, the development of a NN-based discrete-time
sliding mode control (NNSMC) law is described, aimed at
solving the trajectory tracking problem in the joint space of the
considered planar two-link manipulator.
Control design will be carried out in the discrete time frame-

work, and discretization after control design (performed in the
continuous-time framework) will be avoided, in accordance
to the discussion reported in [65]. In this sense, the design
approach used belongs to the so called “classical” sliding
mode design techniques in the framework of discrete-time

sliding modes [26], [66]. In this context, several approaches
are available in literature for the discretization of a linear plant
using ZOH method [67]–[69], showing that inherent properties
of SMC are not maintained after discretization. However, due
to the presence of strong nonlinearities in the robot model, a
simpler approach has to be preferred for the plant discretization,
using the Euler method. Finally, consider that the plant dis-
cretization method is likely not to seriously affect closed loop
performances, since the control design is performed directly in
the discrete time domain [65].
Considering a sampling time , and discretizing the uncer-

tain model (23) by Euler method, one has

(25)

with

Moreover

[see (24) for ], where with some abuse of notation we have
written , , 2, ,
, , 2. Finally, is given by

(26)

with

Assumption 3.2: It is assumed that and
are invertible matrices , for the chosen .
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Remark 3.1: According to Assumption 3.1, the matrix
and the uncertain terms and are bounded by
known constants

The control law ensuring the robust tracking of a reference
variable by the sampled
position will be described
in the following. Define the discrete-time tracking error as

, and consider
the following discrete-time variable:

(27)

with , , 2 such that . Using (25), it
can be shown that

(28)

Remark 3.2: Note that is always computable at the time
instant . In fact, from (25) the term present in (27)
can be replaced by , producing
(28).
Moreover, consider the following sliding surface:

(29)

If an ideal sliding mode is achieved on (29), variable
asymptotically converges to zero. As a consequence, due to
(27), the tracking error is asymptotically vanishing. The
following result shows that the achievement of a quasi sliding
motion on the surface (29) implies that the tracking error can
be made arbitrarily small in norm.
Theorem 3.1: Consider the arm model (25) and Remark 3.1.

A quasisliding motion on the surface (29) is enforced by the
control law , with

(30)

and

if

otherwise
(31)

with , and

(32)

where is the maximum input torque supplied by joint actu-
ators, i.e., . The approximation of , is per-
formed by a neural network of the form (1) with

the output and the input pattern
defined as

(33)

The desired output of the network has the
form given by (26). The algorithm used for net training mini-
mizes the NN functional approximation errors

by the procedure described in Section II and under the As-
sumption 2.1.

Proof: Inserting (30) in gives

(34)

The imposition of the condition produces,
considering (26) and (34)

(35)

with given by

(36)

Condition (35) is fulfilled if

(37)

Unlikely continuous-time sliding modes, for discrete-time sys-
tems the plant cannot be permanently restricted to the designed
surface. What can be ensured is the following decreasing con-
dition , which unfortunately cannot be
ensured , but can be guaranteed outside a given region. In
fact, it is easy to verify that condition (37) is guaranteed by

given in (31) when . On the contrary, when
, i.e., inside the sector, the sliding mode condi-

tion cannot be imposed exactly and an estimation of
is used, given by a neural network of the form (1). Replacing

by in (34), and setting , control law (31)
is obtained, for . From a theoretical viewpoint, for
the universal approximation capability of NNs (see Assumption
2.1), the error introduced by this approximation can be made ar-
bitrarily small. The previous developments can be summarized
as follows: the variable tends to the region
because of the choice of given in (31). Once such region
is entered, it approximately holds in view of the
approximation capability of NNs. Because of the expression of
the sliding surface (29), this implies that the tracking error is ar-
bitrarily small in norm.
Remark 3.3: It is worth noticing that Assumption 2.1 is based

on the possibility, only theoretical, to have a sufficiently large
number of centers. Considering implementation aspects, it is
reasonable to expect that the error norm is not arbitrarily but
negligibly small.

IV. EXPERIMENTAL IMPLEMENTATION

The proposed controller has been implemented on an ERICC
robot arm (see Fig. 1), built by Barras Provence, France. The
robot is installed in the Robotics Laboratory at the Dipartimento
di Ingegneria dell’Informazione, of the Università Politecnica
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delle Marche. In Fig. 1, is shown the robot with labels indicating
the three base joints. Other two joints (not indicated in Fig. 1)
are for wrist movements. In this section, the experimental setup
and results are discussed.

A. Experimental Setup

The considered robot has five degrees of freedom but for the
sake of simplicity only links 2 and 3 have been utilized in the ex-
periments. Anyway, the developed experimental validation over
a real planar robot can give the feasibility of this industrial appli-
cation. The two considered rotational joints 2 and 3 are actuated
by two dc motors with reduction gears. Position measurements
are obtained by means of potentiometers and velocity measure-
ments by tachometers. The ERICC command module consists
of a power supply module, which provides the servo power for
the system; a joint interface module, which contains the hard-
ware to drive the motors and provides sensor feedback from
each joint; and a processor module to run user developed soft-
ware. In order to implement complex control algorithms, a new
controller is used in this setup in place of the original ERICC
processor module. This system, including hardware and soft-
ware, combines an experimental apparatus with an easy-to-use
software platform based on a dSPACE controller board [70]. In
particular the control law is implemented on a dSPACE DS1102
real-time controller board. A sampling time of 0.01 s has been
used.

B. Structure and Validation of Implemented NNs

Training and testing phases of considered NNs have been per-
formed online with data acquired on a set of planned trajectories
chosen with different shapes and bounds on trajectory deriva-
tives [71] and considering different payload configurations for
the robot. In particular, a RBFN is designed to estimate uncer-
tainties of controlled links 2 and 3. The
set of experimental data used to train the NNs is given by the
pairs , , where and have
the form specified in (26) and (33), respectively. As measure
of the performance of the proposed estimation algorithm resid-
uals have been calculated, ,
and whiteness test is computed. The considered algorithm re-
quires careful selection of the threshold parameters , ,

and of parameter , as defined in (4)–(6), which control
the growth characteristics of the network; i.e., if small thresh-
olds are chosen more units are added to the NN. The param-
eters and control the pruning strategy (15); it is important
to take into account the system nonstationarity to select these
parameters. In other words, slowly dynamic variations imply
a bigger and a smaller . The parameters , , and

related to the AEKF algorithm used to update the net-
work parameters of (10) are chosen by trial and error. In the
considered experimental tests the numeric values of these pa-
rameters are selected as reported in Table I. A sample of the
performed estimation tests is given in Figs. 2–4 for the esti-
mation of the uncertainty . In particular, Fig. 2 shows the
hidden neurons evolution history for the EMRANAEKF algo-
rithm as it learns sequentially to estimate from the training
data set , . Residuals of the performed

Fig. 2. Evolution of hidden neurons due to growing and pruning for the esti-
mation of ; data window for 60 s.

Fig. 3. Residuals obtained by the estimation performed by the network
(a) ; (b) .

TABLE I
LEARNING ALGORITHM PARAMETERS

estimation shown in Fig. 3(a) and (b), confirm that the imple-
mented NNs are accurate, in particular the mean square of the
error (MSE) is and for joint 2 and 3,
respectively.
The whiteness test on the estimation errors , ,

3 (residuals) has been used for network validation [72]. The
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Fig. 4. Sample covariance of the residuals obtained by the estimation per-
formed by the network (a) ; (b) . The whiteness test passes with

.

whiteness of residuals is usually evaluated by computing the
sample covariances

(38)

with . If , , 3 are white-noise sequences,
then the quantities

(39)

will have, asymptotically, a chi-square distribution [72].
The independence between residuals can be verified by testing
whether , , 3, the level of the -distri-
bution, for a significant choice of . Typical choices of range
from 0.05 to 0.005. In Fig. 4(a) and (b), the sample covari-
ances of residuals and are reported; the whiteness
test passes with .

C. Experimental Results

Experimental results have been collected for trajectory
tracking tasks performed in the robot joint space. Reference
trajectories have been generated by the nonlinear sliding mode
discrete-time system reported in [71] that provides smooth
trajectories according to user-selectable bounds on trajectories
derivatives that can be changed during robot operation. The
parameters of the discrete-time SMC law for both joints, are

Fig. 5. Reference trajectories used for experiments: (a) joint 2; (b) joint 3.

TABLE II
SMC PARAMETERS FOR BOTH JOINTS

reported in Table II. A set of experimental results is reported
in Figs. 6–11, obtained for the robot following the reference
trajectories depicted in Fig. 5 (with bounds ,

, , 3 for joint speed and acceleration,
respectively). In these figures, the performance produced by the
proposed NN-based SMC are illustrated for the robot following
the reference trajectories of Fig. 5 with and without a payload.
Figs. 6 and 7 show the performance when the robot is without

a payload. In particular the tracking errors are displayed in
Fig. 6 and the voltage control inputs from the dSPACE con-
troller board are depicted in Fig. 7. Figs. 8 and 9 show the
performance when the reference robot motion trajectories are
the same as before (see Fig. 5) and the robot moves a payload
of 2 Kg; the tracking errors are displayed in Fig. 8 and the
voltage control inputs from the dSPACE controller board are
depicted in Fig. 9. Comparing with the performance of a robot
controller based on a standard discrete-time SMC (without any
approximation inside the sector) and based on a PID solution
(considering for the robot the same task as in Fig. 5), the
proposed NN-based SMC produces smaller tracking errors as
reported in Table III. In this table, to summarize the experi-
mental results of Figs. 6–9, the IAE criterion is used, i.e., the
integral of the absolute value of the tracking errors

(40)
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Fig. 6. Results for the robot without a payload—Tracking errors: (a) joint 2;
(b) joint 3.

Fig. 7. Results for the robot without a payload—Control inputs: (a) joint 2;
(b) joint 3.

where , 2 and is test time. The parameters of the con-
sidered PID controller are given in Table IV. Figs. 10 and 11
report the norm of the sliding surfaces [see (32)], for the
experimental tests of Figs. 6–9. From Figs. 10(a) and 11(a) it is
evident that the NN-based SMC causes the sliding surface to

Fig. 8. Results for the robot with a payload—Tracking errors: (a) joint 2;
(b) joint 3.

Fig. 9. Results for the robot with a payload—Control inputs: (a) joint 2;
(b) joint 3.

decrease and to remain remarkably below the sector threshold
of width [see (32)], compared with the standard SM con-
troller [see Figs. 10(b) and 11(b)]. Tests with time-varying
disturbances affecting the voltage control inputs have been also
performed. The reference trajectory is the same as in Fig. 5.
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Fig. 10. Results for the robot without a payload—Norm of the sliding surface:
red dashed line denotes the threshold , blue continuous line denotes the norm
of the sliding surface [see (32)]; (a) NN-based SMC; (b) standard SMC.

Fig. 11. Results for the robot with a payload—Norm of the sliding surface: red
dashed line denotes the threshold , blue continuous line denotes the norm of
the sliding surface [see (32)]; (a) NN-based SMC; (b) standard SMC.

The tracking errors are shown in Fig. 12 and the voltage control
inputs from the dSPACE control board are depicted in Fig. 13.
Comparing with the performance of a NN-based SM robot
controller equipped with a standard EKF (called EKF-EMRAN

Fig. 12. A time-varying disturbance acts on the voltage control inputs—
Tracking errors: (a) joint 2; (b) joint 3.

Fig. 13. Time-varying disturbance acts on the voltage control inputs—Control
inputs: (a) joint 2; (b) joint 3.

SMC), i.e., without the online adjustment of the noise statistic,
the proposed NN-based SMC equipped with the AEKF (called
AEKF-EMRAN SMC) produces smaller tracking errors as
reported in Table V; the IAE criterion is used to summarize the
experimental results of Figs. 12 and 13. Fig. 14 reports the norm
of the sliding surfaces [see (32)], for the experimental
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Fig. 14. Results with a time-varying disturbance acting on the voltage control
inputs—Norm of the sliding surface: red dashed line denotes the threshold ,
blue continuous line denotes the norm of the sliding surface [see (32)];
(a) AEKF-EMRAN SMC; (b) EKF-EMRAN SMC.

TABLE III
PERFORMANCE COMPARISON—FIGS. 6–9

TABLE IV
PID CONTROLLER PARAMETERS

TABLE V
PERFORMANCE COMPARISON—FIGS. 12 AND 13

tests of Figs. 12 and 13. From Fig. 14(a) it can be noted that
the AEKF-EMRAN SMC produces a smaller sliding surface
compared with the EKF-EMRAN SMC [see Fig. 14(b)].

V. CONCLUDING REMARKS

In this paper, a NN-based discrete-time SMC algorithm has
been proposed for the control of a planar robotic manipulator.

The approximation capability of NNs is used to learn about
system uncertainties and it is guaranteed that the tracking error
is arbitrarily small in norm. An extended minimal resource al-
locating network algorithm has been analyzed for the on-line
learning of system uncertainties. This algorithm increases the
number of RBFN hidden neurons depending on the input-output
data and an adaptive extended Kalman filter is used to update all
the parameters of the RBFN. The filter adaptation mechanism
has been introduced for the adjustment of the noise statistics
in order to allow the filter to cope with realistic operating con-
ditions. A pruning strategy is also considered to remove those
hidden units which end up to give a contribution to the net-
work output. This permits to have a more parsimonious network
topology that leads to a reduction in the prediction time. More-
over, for the real-time implementation the computational load of
the algorithm has been reduced by a “winner neuron” strategy.
The proposed control law has been tested on a ERICC robot arm.
Experimental evidence shows good trajectory tracking perfor-
mance as well as robustness in the presence of model inaccu-
racies, disturbances and payload perturbations. The developed
controller provided remarkably improved tracking performance
both with respect to the standard discrete-time SMC law and to
a PID based controller.
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