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Abstract

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a
well-known combinatorial optimization problem referred to as the maximum-edge biclique problem
(MBP), and has many applications, e.g., in web community discovery, biological data analysis and
text mining. In this paper, we present a new continuous characterization for MBP. Given a bipartite
graphG, we are able to formulate a continuous optimization problem (namely, an approximate rank-
one matrix factorization problem with nonnegativity constraints, R1N for short), and show that
there is a one-to-one correspondence between (i) the maximum (i.e., the largest) bicliques of G and
the global minima of R1N, and (ii) the maximal bicliques of G (i.e., bicliques not contained in any
larger biclique) and the local minima of R1N. We also show that any stationary points of R1N must
be close to a biclique of G. This allows us to design a new type of biclique finding algorithm based
on the application of a block-coordinate descent scheme to R1N. We show that this algorithm,
whose algorithmic complexity per iteration is proportional to the number of edges in the graph,
is guaranteed to converge to a biclique and that it performs competitively with existing methods
on random graphs and text mining datasets. Finally, we show how R1N is closely related to the
Motzkin-Strauss formalism for cliques.

Keywords: maximum-edge biclique problem, biclique finding algorithm, algorithmic complexity,
nonnegative rank-one approximation.

1 Introduction

Many real-world applications rely on the discovery of complete bipartite subgraphs, i.e., bicliques; for
example in web community discovery, biological data analysis and text mining, see [13], [16], [12] and
the references therein. In fact, in many practical situations, two distinct groups of objects interact
(e.g., Internet users vs web sites, genes vs experimental conditions, and texts vs words) and one would
like to find highly connected pairs of subgroups in these datasets.

Some algorithms aim at detecting all bicliques, which is computationally challenging. In fact, there
might be an exponential number of such subgraphs [1] and, for large datasets (e.g., in web community
discovery or in text mining), it might therefore be hopeless to write down all of them.

Finding instead only the largest biclique(s) is comparatively easier. However, the corresponding
optimization problem, called the maximum-edge biclique problem, is NP-hard [15]. In practice, one
then often tries to find good but not necessarily optimal solutions, i.e., to find large or maximal
bicliques.
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1.1 Outline of the Paper

After introducing a formulation for the maximum-edge biclique problem in Section 2, we propose in
Section 3 a new continuous characterization based on a rank-one matrix approximation problem with
nonnegativity constraints, herein referred to as approximate rank-one nonnegative factorization (R1N).
Hence, given a bipartite graph G, we are able to construct an instance of R1N, namely R1Nd(G), with
the following properties:

• The set of global minima of R1Nd(G) coincides with the set of largest bicliques of G (i.e., the
maximum bicliques).

• The set of local minima of R1Nd(G) coincides with the set of bicliques of G not contained in
any larger biclique (i.e., the maximal bicliques).

• Any stationary point of R1Nd(G) is close to a biclique of G.

Building on these facts, Section 4 introduces a new type of biclique finding algorithm that relies on the
application of a simple nonlinear optimization scheme (block-coordinate descent) to R1Nd(G), whose
iterations only require a number of operations proportional to the number of edges of the graph. This
method is then compared to a greedy heuristic, to the existing algorithm of Ding et al. [4] and to
the root node level heuristics of the commercial mixed-integer programming solver Gurobi [11] on
some synthetic and text datasets, and is shown to perform competitively. Finally, we show how our
formulation is closely related to the Motzkin-Strauss formalism for the maximum clique problem [14].

1.2 Notation

The set of m-by-n real matrices is denoted Rm×n; for A ∈ Rm×n, we denote the ith column of A by
A:i or A(:, i), the jth row of A by Aj: or A(j, :), and the entry at position (i, j) by Aij or A(i, j);
for b ∈ Rm×1 = Rm, we denote the ith entry of b by bi. Notation A(I, J) refers to the submatrix
of A with row and column indices respectively in I and J . The matrix AT is the transpose of A.
The ℓ2-norm ||.||2 is defined as ||b||22 = bT b; ||.||F is the related matrix norm called Frobenius norm
with ||A||2F =

∑

i,j(Aij)
2. The ℓ1-norm ||.||1 is defined as ||b||1 =

∑

i |bi|. The support of x is denoted

supp(x), it is the set of nonzero entries of x. The cardinality of the set S is denoted |S|. ForM ∈ Rm×n,
we also let M+ = max(0,M), M− = max(0,−M), min(M) = mini,j(Mij) and ||M ||2 be the standard
matrix 2-norm of M , i.e., ||M ||2 = maxx∈Rn,||x||2=1 ||Mx||2 = σmax(M) where σmax(M) is the largest
singular value of M . We note A ◦ B the component-wise multiplication of matrices A and B with
(A ◦B)ij = AijBij. The inequality M ≥ 0 means that M is component-wise greater or equal to zero,
and for N ∈ Rm×n inequality M ≥ N means that M is component-wise greater or equal than N . The
m-by-n matrix of all ones (resp. zeros) is denoted 1m×n (resp. 0m×n).

2 Maximum-Edge Biclique Problem

A bipartite graph G = (V,E) is a graph whose vertices can be divided into two disjoint sets V1 and V2

such that there is no edge between two vertices in the same set, with V = V1 ∪ V2 and E ⊆ (V1 × V2).
A biclique is a subset of vertices that induce a complete bipartite subgraph, i.e., a bipartite subgraph
where all the vertices are connected by an edge. The so-called maximum-edge biclique problem in
a bipartite graph G is the problem of finding a biclique in G with maximum number of edges. The
corresponding decision problem: Given B, does G contain a biclique with at least B edges? has been
shown to be NP-complete [15]. Therefore, the problem of finding the biclique with maximum number
of edges in G is at least NP-hard.

Let A ∈ {0, 1}m×n be the biadjacency matrix of the bipartite graph G = (V1 ∪ V2, E) with
V1 = {s1, . . . sm} and V2 = {t1, . . . tn}, i.e., A(i, j) = 1 if and only if (si, tj) ∈ E. With this notation,
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the maximum-edge biclique problem in G can be formulated as follows

max
u,v

∑

ij

uivj

ui + vj ≤ 1 +Aij , ∀i, j, (1)

u ∈ {0, 1}m, v ∈ {0, 1}n,

where ui = 1 (resp. vj = 1) means that node si (resp. tj) belongs to the solution, ui = 0 (resp. vj = 0)
otherwise. The first constraints ensure that if Aij = 0 then either ui or vj is equal to zero, i.e., if there
is no edge between si and tj then they cannot both belong to a feasible solution. They are equivalent
to the more natural constraints uivj ≤ Aij ∀i, j, but present the advantage of being linear. Hence,
there is one-to-one correspondence between the bicliques of G and the feasible solutions of (1).

In the rest of this paper, we will use a more convenient formulation: because A, u and v are binary,
and uivj ≤ Aij ∀i, j, one can check that

∑

ij

uivj =
∑

ij

(uivj)
2 =

∑

ij

Aijuivj = ||A||2F − ||A− uvT ||2F = |E| − ||A− uvT ||2F .

Hence (1) can be equivalently reformulated as follows

min
u,v

||A− uvT ||2F
ui + vj ≤ 1 +Aij , ∀i, j, (MB(G))

u ∈ {0, 1}m, v ∈ {0, 1}n,

where the objective function counts the number of edges outside the biclique, and its minimization
is therefore equivalent to maximizing the edges contained in the biclique. Notice that the optimal
objective function value of MB(G) is equal to |E|−|E∗|, where |E∗| is the size of the largest biclique(s)
of G (i.e., the optimal value of (1)). We will be particularly interested in the

• Maximum bicliques, which are the largest bicliques in G (i.e., of size |E∗|), corresponding to the
optimal solutions of MB(G), and the

• Maximal bicliques, which are bicliques not contained in any larger biclique.

3 Continuous Characterization of the Maximum-Edge Biclique Prob-
lem

First, let us define the following problem: given an m-by-n real matrix R ∈ Rm×n, find its best
nonnegative rank-one approximation, i.e., solve

min
u∈Rm,v∈Rn

||R − uvT ||2F such that u ≥ 0, v ≥ 0. (R1N)

From now on, we say that a pair of vectors (u, v) coincides with another pair (u′, v′) if and only if
they correspond to the same rank-one matrix, i.e., if and only if uvT = u′v′T .

Then, given a parameter d ≥ 0, a bipartite graph G and its biadjacency matrix A ∈ {0, 1}m×n, we
define the following instance of R1N:

min
u∈Rm,v∈Rn

||M − uvT ||2F such that u ≥ 0, v ≥ 0, (R1Nd(G))

where M is the matrix A where the zero values have been replaced by −d, i.e.,

Mij =

{

1 if Aij = 1
−d if Aij = 0

, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2)
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Although R1Nd(G) is a continuous optimization problem, we are going to show that for any d suffi-
ciently large

• Any of its global minimum coincides with a binary optimal solution of the corresponding (dis-
crete) biclique problem MB(G), and vice versa (Theorem 2).

• Any local minima of R1Nd(G) coincides with a maximal biclique of G, and vice versa (Theo-
rem 1).

• Any stationary point of R1Nd(G) is close to a biclique of G (Section 3.4).

Intuitively, the reason is the following. If a −d entry of M is approximated by a positive value
in R1Nd(G), say p, the corresponding term in the objective function will be equal to (−d − p)2 =
d2 + 2pd + p2. As d increases, it becomes more and more costly to approximate −d by a positive
number (because of the 2pd term) and we will show that, for d sufficiently large, negative values of M
have to be approximated by zeros. Since the remaining values of M (not approximated by zeros) are
all ones, the optimal rank-one solutions will be binary, as in MB(G).

To illustrate this, let us consider the bipartite graph G displayed on Fig. 1, its biadjacency matrix

Figure 1: Graph corresponding to the biadjacency matrix A from Equation (3).

A, and the corresponding matrix M as defined in Equation (2) with d = max(m,n) = 3, i.e.,

A =





1 0 1
0 1 1
1 1 1



 , and M =





1 −3 1
−3 1 1
1 1 1



 . (3)

The bipartite graph G contains

• Two maximum bicliques (s2, s3, t2, t3) and (s1, s3, t1, t3), corresponding to the two optimal solu-
tions of MB(G), [u∗ = (0, 1, 1), v∗ = (0, 1, 1)] and [u′ = (1, 0, 1), v′ = (1, 0, 1)] respectively.

• Two maximal (but not maximum) bicliques (s3, t1, t2, t3) and (s1, s2, s3, t3) corresponding to the
two feasible solutions of MB(G),

[

u† = (0, 0, 1), v† = (1, 1, 1)
]

and [u‡ = (1, 1, 1), v‡ = (0, 0, 1)]

respectively.

Let us now consider R1Nd(G). Without loss of generality, one can impose the norm of u to be
equal to one, with

u(x, y) =





x
y

√

1− x2 − y2



 , where

{

x ≥ 0, y ≥ 0
x2 + y2 ≤ 1

.
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For u fixed, the optimal solution in v is given1 by

v(x, y) = argminw≥0 ||M − u(x, y)wT ||F = max
(

0,MTu(x, y)
)

.

Fig. 2 displays the surface of the objective function ||M−u(x, y)v(x, y)T ||F with respect to parameters

Figure 2: Objective function ||M − u(x, y)v(x, y)T ||F .

x and y. We distinguish two global minima:

1.
[

x∗ = 0, y∗ =
√
2
2

]

with u(x∗, y∗) =
(

0,
√
2
2 ,

√
2
2

)

and v(x∗, y∗) =
(

0,
√
2,
√
2
)

, coinciding with the

maximum biclique (u∗, v∗).

2.
[

x′ =
√
2
2 , y′ = 0

]

with u(x′, y′) =
(√

2
2 , 0,

√
2
2

)

and v(x′, y′) =
(√

2, 0,
√
2
)

, coinciding with the

maximum biclique (u′, v′).

We also distinguish two local minima
[

x† = 0, y† = 0
]

and
[

x‡ =
√
3
3 , y‡ =

√
3
3

]

: one can check that

they coincide with (u†, v†) and (u‡, v‡) respectively.
In conclusion, we have then observed a one-to-one correspondence between the global (resp. local)

minimizers of R1Nd(G) and the maximum (resp. maximal) bicliques of G.

3.1 Additional Definitions and Notations

Let G be a bipartite graph, A its biadjacency matrix, and M the matrix defined in Equation (2)
depending on the parameter d. The pair (u, v) is a stationary point of R1Nd(G) if and only if it
satisfies its first-order optimality conditions, i.e., if and only if

u ≥ 0, µ = (uvT −M)v ≥ 0 and ui µi = 0 ∀i, (4)

v ≥ 0, λ = uT (uvT −M) ≥ 0 and vi λi = 0 ∀i. (5)

Of course, we are only interested in nontrivial solutions and, assuming that u 6= 0 and v 6= 0, one can
check that conditions (4)-(5) are equivalent to

u = max

(

0,
Mv

||v||22

)

and v = max

(

0,
MTu

||u||22

)

. (6)

1The first-order stationarity condition of R1Nd(G) for variables v is given by v = max
(

0,MTu/||u||22
)

, see Section 3.3.
Therefore, local and global minimizers of R1Nd(G) must satisfy this condition, hence they exactly correspond to the
local and global minimizers of the problem in the new variables (x, y).
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For x ∈ Rn, let us define

B+(x, r) = { y ∈ Rn
+ | ||y − x||2 ≤ r },

the ball centered at x of radius r intersected with the nonnegative orthant. The pair (u, v) is a local
minimum of R1Nd(G) if and only if there exists ǫ > 0 such that for all u′ ∈ B+(u, ǫ) and v′ ∈ B+(v, ǫ),
we have ||M − uvT ||2F ≤ ||M − u′v′T ||2F . The pair (u, v) is a global minimum of R1Nd(G) if and only
if ||M − uvT ||2F ≤ ||M − u′v′T ||2F for all u′ ∈ Rm

+ and v′ ∈ Rn
+.

Given a positive real number d, we define the following three sets of rank-one matrices:

• Sd(G), corresponding to the set of nontrivial stationary points of R1Nd(G), i.e.,

Sd(G) = {uvT ∈ Rm×n | (u, v) satisfies (6), u 6= 0 and v 6= 0 }.

• Ld(G), corresponding to the set of nontrivial local minima of R1Nd(G).

• Gd(G), corresponding to the set of nontrivial global minima of R1Nd(G).

By definition, Gd(G) ⊆ Ld(G) ⊆ Sd(G).

Let us also define the following three sets of binary rank-one matrices:

• F (G), corresponding to the set of feasible solutions of MB(G), i.e.,

F (G) = {uvT ∈ Rm×n | (u, v) is a feasible for MB(G)}.

• B(G), corresponding to the set of maximal bicliques of MB(G), i.e., uvT ∈ B(G) if and only if
uvT ∈ F (G) and uvT corresponds to a maximal biclique of G.

• H(G), corresponding to the set of maximum bicliques of MB(G), i.e., uvT ∈ H(G) if and only
if uvT ∈ F (G) and uvT corresponds to a maximum biclique of G.

By definition, H(G) ⊆ B(G) ⊆ F (G).

In the rest of this section, we show that if the graph G contains at least one edge (i.e., if A 6= 0),
then

• For any d ≥ max(m,n), Gd(G) = H(G), see Theorem 2.

• For any d ≥ max(m,n), Ld(G) = B(G) = Sd(G) ∩ F (G), see Theorems 1 and 3.

• For any d ≥ 2max(m,n)
√

|E|, there is a simple rounding operator Φ such that Φ(Sd(G)) ⊆ F (G),
see Section 3.4.

3.2 Key Lemmas

Throughout this section, we will need several results concerning the following (unconstrained) rank-one
approximation problem: given a m-by-n real matrix M ∈ Rm×n, find its best rank-one approximation,
i.e., solve

min
u∈Rm,v∈Rn

||M − uvT ||2F . (R1U(M))

The following lemma is a well-known result concerning R1U(M) see, e.g., [7, Ch. 2].
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Lemma 1. The local minima of R1U(M) are global minima. All other stationary points are saddle
points.

We also have that (u, v) is a pair of singular vectors of matrix M with singular value σ = uTMv
if and only if

σu = Mv, σv = MTu and ||u||2 = ||v||2 = 1,

or, equivalently, if and only if

u =
Mv

||Mv||2
and v =

MTu

||MTu||2
.

The pair (u, v) is a stationary point of R1U(M) if and only if
(

u
||u||2 ,

v
||v||2

)

is a pair of singular vectors

of M , and it is an optimal solution if it is associated with the maximum singular value of M , i.e.,
||u||2||v||2 = σmax(M) [9].

We will also need the following Lemma which shows that if the minimum entry min(M) of matrixM
is smaller than the Frobenius norm of the nonnegative part ofM , then the best rank-one approximation
of M must contain at least one nonpositive entry.

Lemma 2. For any matrix M such that min(M) ≤ −||M+||F , any optimal solution (u, v) of R1U(M)
is such that uvT contains at least one nonpositive entry.

Proof. If M = 0, the result is trivial. Otherwise we have min(M) < 0 since min(M) ≤ −||M+||F . Let
(u, v) be an optimal solution of R1U(M) and assume uvT does not contain any nonpositive entry, i.e.,
uvT > 0. Since the negative values of M are approximated by positive ones and since M has at least
one negative entry, we have

||M − uvT ||2F > ||M−||2F . (7)

By the Eckart-Young theorem (see, e.g., [9]), the optimal rank-one approximation uvT must satisfy

||M − uvT ||2F = ||M ||2F − σmax(M)2 = ||M ||2F − ||M ||22 .

Moreover,
||M ||2F = ||M+||2F + ||M−||2F and ||M ||22 ≥ min(M)2,

hence we have
||M − uvT ||2F ≤ ||M+||2F + ||M−||2F −min(M)2 ≤ ||M−||F

which is in contradiction with Equation (7) hence we cannot have uvT > 0.

3.3 Local and Global Optima of R1Nd(G)

In this section, we show that, for any d ≥ max(m,n), Ld(G) = B(G) and Gd(G) = H(G).

Lemma 3. If G = (V,E) is a bipartite graph with at least one edge and d ≥
√

|E|, then Ld(G) ⊆ B(G).

Proof. Let A ∈ {0, 1}m×n be the biadjacency matrix of G with A 6= 0, and M ∈ {−d, 1}m×n be
defined as in Equation (2). Let (u, v) be a nontrivial local minimum of R1Nd(G), i.e., uvT ∈ Ld(G).
Let us denote the (non-empty) support of u as K = supp(u) and the (non-empty) support of v as
L = supp(v), and define u′ = u(K), v′ = v(L) and M ′ = M(K,L) to be the subvectors and submatrix
with indexes in K, L and K × L respectively. Let us also define G′ as the bipartite graph whose
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biadjacency matrix is given by A(K,L). Observe that (u′, v′) must be a local minimum of R1N(G′)
otherwise (u, v) would not be a local minimum of R1Nd(G). In fact, the objective functions of these
two problems differ only by a constant factor: we have ||M−uv||2F = ||M ′−u′v′T ||2F + ||M ||2F −||M ′||2F .
Suppose now there is a −d entry in M ′, we have

min(M ′) = −d ≤ −
√

|E| = −||M+||F ≤ −||M ′
+||F .

Moreover, (u′, v′) is located in the interior of the feasible domain R|K|
+ × R|L|

+ of R1N(G′) since it is
positive. Therefore, it is also a local minimum of the unconstrained problem, i.e., it is a local minimum
of R1U(M ′). By Lemma 1, this must be a global minimum. This is a contradiction with Lemma 2:
(u′, v′) should contain at least one nonpositive entry since min(M ′) ≤ −||M ′

+||F . Therefore M ′ does
not contain any −d entry, and we have M ′ = 1|K|×|L|.

Since (u′, v′) is a global minimum of R1U(M ′) and M ′ = 1|K|×|L|, we must have u′v′T = M ′ =
1|K|×|L|. Therefore uvT is binary and coincides with a feasible solution (ub, vb) of MB(G), implying

that uvT ∈ F (G).
It remains to show that uvT ∈ B(G). Assume the pair (u, v) corresponds to a biclique of G which

is not maximal, i.e., without loss of generality ∃i /∈ supp(u) such that (ub + ei, vb) corresponds to a
larger biclique of G where ei is the ith column of the identity matrix. Then for any 0 < ǫ ≤ max(v′)−1,
one can check that the solution (u+ ǫei, v) is strictly better than (u, v) for R1Nd(G): in fact, entries
of M corresponding to edges contained only in the larger biclique {i} × L are now approximated by
values between 0 and 1 (instead of 0); a contradiction which implies uvT ∈ B(G).

It is interesting to notice that the converse of Lemma 3 above is not true, i.e., B(G) * Ld(G) for
any d ≥

√

|E|. For example, with

A =

(

1 1 1 1
1 1 0 1

)

, (8)

the maximal biclique corresponding to the first row of M , i.e., u = (1, 0) and v = (1, 1, 1, 1) does
not correspond to a local minima of R1Nd(G). In fact, it is not even a stationary point since, for
d =

√

|E| =
√
7, we have Mv

||v||2
2

= (1 0.88)T 6= u.

However, this holds for any d ≥ max(m,n):

Theorem 1. If G is a bipartite graph with at least one edge and d ≥ max(m,n), then B(G) = Ld(G).

Proof. Because
√

|E| ≤ √mn ≤ max(m,n), by Lemma 3, we have Ld(G) ⊆ B(G) for any d ≥
max(m,n). It remains to show that B(G) ⊆ Ld(G), which is done in Appendix A.

Remark 1 (Tightness of the bound). The smallest lower bound on d which guarantees that B(G) ⊆
Ld(G) is given by max(m,n)− 1. In fact, it is shown in Appendix A that for any d > max(m,n)− 1,
B(G) ⊆ Ld(G). Moreover, using the biadjacency matrix from Equation (8), one can check that
the maximal biclique u = (1, 0) and v = (1, 1, 1, 1) is not a local minimum of R1Nd(G) for any
d < max(m,n)− 1 because Mv

||v||2
2

6= u (since M(2, :)v > 0).

We can now prove that Gd(G) = H(G) for any d ≥ max(m,n), which is straightforward:

Theorem 2. If G is a bipartite graph with at least one edge and d ≥ max(m,n), then Gd(G) = H(G).

Proof. By Theorem 1, any local minimum (u, v) of R1Nd(G) coincides with a feasible solution (ub, vb)
of MB(G) corresponding to a maximal biclique of G, i.e., uvT = ubv

T
b . In that case, the objective

functions of R1Nd(G) and MB(G) only differ by a constant factor, with ||M−uvT ||2F = ||A−ubvTb ||2F +
(mn−|E|)d2. Hence, (u, v) is globally optimal if and only if (ub, vb) corresponds to a maximum biclique
of G.
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Corollary 1. R1N is NP-hard.

Proof. This is a consequence of Theorem 2 and NP-hardness of MB(G) [15].

In other words, it is NP-hard to find the best possible rank-one nonnegative approximation of a
matrix which contains negative entries. Note that if the matrix to be approximated is nonnegative,
then an optimal solution can be computed in polynomial time: this is a well-known result combining
Eckart-Young and Perron-Frobenius theorems.

Corollary 1 is closely related to the complexity of nonnegative matrix factorization (NMF), defined
as follows: given a nonnegative matrix M ∈ Rm×n

+ and a factorization rank r, solve

min
ui∈Rm

+
,vi∈Rm

+
,1≤i≤r

∥

∥

∥

∥

∥

M −
r
∑

i=1

uiv
T
i

∥

∥

∥

∥

∥

2

F

.

In fact, each rank-one subproblem in NMF (i.e., finding the best uiv
T
i with respect to the corresponding

residual M −∑k 6=i ukv
T
k � 0) is a R1N problem. We refer the reader to [7, Ch. 5] and [8] for more

information on the link between R1N and NMF.

3.4 Stationary Points of R1Nd(G)

In this section, we focus on stationary points of R1Nd(G): we show how they are related to the feasible
solutions of MB(G). These results, combined with the ones above, will be used in Section 4 to design
a new type of biclique finding algorithm.

3.4.1 Stationarity of Maximal Bicliques

The next theorem states that, for d ≥ max(m,n), the only nontrivial feasible solutions of MB(G) that
are stationary points of R1Nd(G) are the maximal bicliques, i.e., B(G) = Sd(G) ∩ F (G).

Theorem 3. If G is a bipartite graph with at least one edge and d ≥ max(m,n), then B(G) =
F (G) ∩ Sd(G).

Proof. Let us show that uvT ∈ B(G) if and only if uvT ∈ F (G) and uvT ∈ Sd(G). Let then uvT ∈ B(G)
and let us assume without loss of generality that u and v are binary. By definition, uvT belongs to
B(G) if and only if uvT belongs to F (G) and is maximal, i.e.,

(*) ∄i such that ui = 0 and M(i, j) = 1,∀j s.t. vj = 1,

(**) ∄j such that vj = 0 and M(i, j) = 1,∀i s.t. ui = 1.

Noting L = supp(v), we have

vj =
||v||1
|L| = 1, ∀ j ∈ L.

Moreover we have d ≥ max(m,n) so that (*) is equivalent to

∄ i such that ui = 0 and M(i, :)v > 0.

Therefore, either ui = 0 andM(i, :)v ≤ 0, or ui = 1 = ||v||1
|L| = M(i,:)v

||v||2
2

. These are exactly the stationarity

conditions for u, cf. Equation (6). By symmetry, (**) is equivalent to the stationarity conditions for
v, so that we can conclude that uvT ∈ B(G) if and only if uvT ∈ F (G) and uvT ∈ Sd(G).
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3.4.2 Limit Points of Sd(G)

It would be interesting to have the opposite affirmation: for d sufficiently large, does any stationary
point of R1Nd(G) correspond to a maximal biclique of MB(G)? Unfortunately, we will see later that
this property does not hold. However, as d goes to infinity, we now show that the points in Sd(G) get
closer to feasible solutions of MB(G), see Theorem 4 below.

Lemma 4. For any bipartite graph G and d ≥ 0, the set Sd(G) is bounded; in fact, ∀uvT ∈ Sd(G):

||uvT ||2 = ||u||2||v||2 ≤
√

|E|.

Proof. For any uvT ∈ Sd(G), we have by (6)

||u||2 =
∣

∣

∣

∣

∣

∣
max

(

0,
MT v

||v||22

)

∣

∣

∣

∣

∣

∣

2
≤ ||max(0,MT )v||2

||v||22
≤ ||max(0,MT )||F

||v||2
=

√

|E|
||v||2

.

Lemma 5. For any bipartite graph G and uvT ∈ Sd(G), if Mij = −d and (uv)ij > 0, we have

0 < ui <
||u||1
d+ 1

and 0 < vj <
||v||1
d+ 1

.

Proof. By optimality condition (6), we have

0 < vj||u||22 = M(:, j)T u ≤ ||u||1 − (d+ 1)ui ⇒ 0 < ui <
||u||1
d+ 1

.

The corresponding result for v is obtained similarly.

Theorem 4. For any bipartite graph G, as d goes to infinity, every stationary point of R1Nd(G) gets
arbitrarily close to some feasible solutions of MB(G), i.e., ∀ǫ > 0, ∃D s.t. ∀d > D:

min
ubv

T
b
∈F (G)

||uvT − ubv
T
b ||F < ǫ, ∀uvT ∈ Sd(G). (9)

Proof. Let G be a bipartite graph, and A be its biadjacency matrix. Let uvT ∈ Sd(G). Without
loss of generality, we assume that uvT > 0 ; otherwise, we consider the subproblem with the vectors
u(K) and v(L) where K (resp. L) is the support of u (resp. v) and the graph G′ corresponding to
the biadjacency matrix A(K,L). In fact, it is clear that if (u(K), v(L)) is close to a feasible solution
of MB(G′), then (u, v) is for MB(G). We also assume without loss of generality that ||v||2 = 1 (this
is because uvT ∈ Sd ⇒

(

λu 1
λ
vT
)

∈ Sd,∀λ > 0). Lemma 4 implies that ||u||2 ≤
√

|E|. By optimality
condition (6),

u = Mv and v =
MTu

||u||22
. (10)

Therefore, (u/||u||2, v) > 0 is a pair of singular vectors of M associated with the singular value

||u||2 > 0. If M = 1m×n, the only pair of positive singular vectors of M is
(

1√
m
1m, 1√

n
1n

)

so that

uvT = M coincides with a feasible solution of MB(G).
Otherwise, when M 6= 1m×n, we define

I =
{

i
∣

∣

∣Mij = 1,∀j
}

and J =
{

j
∣

∣

∣Mij = 1,∀i
}

, (11)
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and their complements Ī = {1, 2, . . . ,m}\I, J̄ = {1, 2, . . . , n}\J ; with

M(I, :) = 1|I|×n and M(:, J) = 1m×|J |.

These two sets clearly correspond to a biclique I × J in G (since A(I, J) = 1|I|×|J |) or, equivalently,
to a (binary) feasible solution (ūI , v̄J ) for problem MB(G), where ūI is equal to one for indices in I
and to zero otherwise (similarly for v̄J and J). We are now going to show that uvT gets arbitrarily
close to ūI v̄

T
J as d increases, which will prove our claim.

Using Lemma 5 and the fact that ||x||1 ≤
√
n||x||2 ∀x ∈ Rn, we get

0 < u(Ī) <

√

m|E|
d+ 1

1|Ā| and 0 < v(J̄) <

√
n

d+ 1
1|B̄|. (12)

Since ||v||2 = 1 and ||u||2 ≤
√

|E|, we obtain

||u(Ī)vT − 0||F = ||u(Ī)||2||v||2 <
1

d+ 1

(

m
√

|E|
)

, and (13)

||uv(J̄ )T − 0||F = ||u||2||v(J̄ )||2 <
1

d+ 1

(

n
√

|E|
)

. (14)

It remains to show that u(I)v(J)T coincides with a biclique of the (complete) graph generated by
A(I, J) = 1|I|×|J | since u(Ī)vT and uv(J̄)T tend to zero as d goes to infinity.

Noting kv = ||u||1
||u||2

2

and using Equation (10), we get v(J) =
1|J|×mu

||u||2
2

= kv 1|J |. Combining this with

Equation (12) gives

1− |J̄ |
√
n

d+ 1
< ||v||22 − ||v(J̄)||22 = ||v(J)||22 = |J |k2v ≤ ||v||22 = 1. (15)

Moreover, Equation (10) also gives u(I) = 1|I|×nv = ||v||11|I| so that

|J |kv1|I| ≤ u(I) = (||v(J)||1 + ||v(J̄)||1)1|I| <
(

|J |kv + |J̄ |
√
n

d+ 1

)

1|I|. (16)

Finally, multiplying Equation (16) by kv1
T
|J |, combining it with (15) and noting that we have kv ≤ 1

since ||v||2 = 1, we obtain

(

1− |J̄ |
√
n

d+ 1

)

1|I|×|J | < u(I)v(J)T <

(

1 +
|J̄ |√n
d+ 1

)

1|I|×|J |. (17)

We can conclude that uvT gets arbitrarily close to a feasible solution ūI v̄
T
J of MB(G) as d increases;

more precisely, ||uvT − ūI v̄
T
J ||F ≤ O(1d).

Example 1. Let

A =

(

0 1
1 1

)

and M =

(

−d 1
1 1

)

,

and G be the graph corresponding to the biadjacency matrix A. Clearly,

(

0 1
0 1

)

belongs to the set

H(G), i.e., it corresponds to a maximum biclique of G. By Theorem 2, for d ≥ 2, it belongs to Gd(G),
i.e., [u = (1, 1), v = (0, 1)] is a global minimum of R1Nd(G).
For any d > 1, one can check that the singular values of M are different and that the outer product
of the singular vectors associated with the second singular value is positive. Since it is a positive sta-
tionary point of the unconstrained problem, it is also a stationary point of R1Nd(G). As d goes to
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infinity, it must get closer to a biclique of MB(G) (Theorem 4). Moreover, M is symmetric, so that
the right and left singular vectors are equal to each other. Fig. 3 shows the evolution2 with respect to
d of this positive singular vector (v1, v2), which is such that (v1 v2)

T (v1 v2) ∈ Sd(G). It converges to

(0 1), which means that the outer product of the left and right singular vectors converges to

(

0 0
0 1

)

,

a biclique, i.e., a member of F (G) (not in B(G)).

Figure 3: Evolution of (v1, v2).

Let us define the following rounding operator:

Φ : Rm×n
+ → {0, 1}m×n : X →

{

Φ(X)ij =

{

0 if Xij ≤ 0.5
1 if Xij > 0.5

}

1≤i≤m,1≤j≤n

.

Corollary 2. For any bipartite graph G,

d ≥ 2max(m,n)
√

|E|, (18)

and uvT ∈ Sd(G), we have Φ(uvT ) ∈ F (G).

Proof. Let G be any bipartite graph and its biadjacency matrix A. The condition

max
uvT∈Sd(G)

min
ubv

T
b
∈F (G)

max
ij

(

uvT − ubv
T
b

)

ij
<

1

2
,

is clearly sufficient to guarantee that rounding any stationary point of R1Nd(G) will generate a biclique
of G. Looking back at Theorem 4, one can check that this is satisfied, cf. Equations (13), (14) and
(17), for d given by (18). We use the fact that |E| ≥ max(m,n) can be assumed without loss of
generality, i.e., that each row and each column of A has at least one nonzero entry. In fact, if A
contains a column (resp. row) of all zeros then it can be discarded because, for any stationary point
(u, v), the corresponding entry of u (resp. v) must be equal to zero, cf. optimality conditions (6).

2By Wedin’s theorem (cf. matrix perturbation theory [17]), singular subspaces ofM associated with a positive singular
value depend continuously on d.
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4 Biclique Finding Algorithm

In this section, we present a heuristic scheme designed to find large bicliques in a given graph, whose
main iteration requires a number of operations proportional to the number of edges |E| in the graph.
It is based on the previously established links between the maximum-edge biclique problem MB(G)
and the approximate rank-one nonnegative factorization problem R1Nd(G), see Theorems 1 and 2,
and Corollary 2. We compare its performance on random graphs and text mining datasets with that
of three other algorithms requiring O(|E|) operations per iteration, and to the heuristics applied at
the root node level by Gurobi, a commercial mixed-integer programming solver [11].

4.1 A New Biclique Finding Algorithm

For d sufficiently large, stationary points of R1Nd(G) are close to bicliques of MB(G) (Corollary 2).
Since R1Nd(G) is a continuous optimization problem, any standard nonlinear optimization technique
can in principle be used to compute such a stationary point. One can therefore think of applying an
algorithm that finds a (good) stationary point of R1Nd(G) in order to localize a (large) biclique of the
graph generated by A (the better the stationary point, the larger the biclique).

Of course, solving R1Nd(G) up to global optimality, i.e., finding the best stationary point, is as hard
as solving MB(G). However, one can hope that the nonlinear optimization scheme used will converge
to a relatively large biclique of G (i.e., with an objective function close to the global optimum) ; this
hope will be confirmed empirically later in this Section.

We choose to use a block-coordinate descent method, i.e., solve alternatively the problem in the
variable u for v fixed, then in the variable v for u fixed, since the optimal solutions for each of these
steps can be written in closed form, cf. Equation (6). We also propose, instead of fixing the value
of parameter d to the value recommended by Corollary 2, to start with a lower initial value d0 and
gradually increase it (with a multiplicative factor γ > 1) until it reaches an upper bound D equal
to the recommended value. Convergence of the resulting scheme, Algorithm 1, is proved in the next
theorem.

Theorem 5. The Φ-rounding of every limit point of Algorithm 1 generates a biclique of G, the bipartite
graph generated by A.

Proof. When an exact two-block coordinate descent is applied to an optimization problem with a
continuously differentiable objective function and a feasible domain equal to the Cartesian product
of two closed convex sets (the two blocks correspond to Rm

+ and Rn
+ in this case), every limit point

of the iterates is a stationary point [10]. After a finite number of steps of Algorithm 1, parameter
d attains the upper bound D = 2max(m,n)

√

|E| and no longer changes, so that we can invoke this
result and, using Corollary 2, guarantee that the resulting limit points can be rounded to generate a
feasible solution of MB(G), i.e., a biclique of G.

Note that the normalization of u (u ← u/max(u)) performed by Algorithm 1 at each iteration
only changes the scaling of the solution uvT and allows (u, v) to converge to binary vectors. Also note
that the stationary points of R1Nd(G) which do not correspond to maximal bicliques are either saddle
points or local maxima. In fact, Theorems 1 and 3 state that, for d ≥ max(m,n), Ld(G) = B(G) =
Sd(G) ∩ F (G). We can actually prove the following

Theorem 6. Let (u, v) be a nontrivial saddle point of R1Nd(G) and let us note K and L the supports
of u and v respectively. Then M(K,L) contains at least one −d entry and (u(K),v(L)) is a saddle
point of R1U(M(K,L)).

Proof. The proof is similar to the one of Theorem 1, see Appendix B.
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Algorithm 1 Biclique Finding Algorithm based on R1N

Input: Bipartite graph G = (V,E) described by biadjacency matrix A ∈ {0, 1}m×n, initial values
v0 ∈ Rn

++, d0 > 0, and parameter γ > 1.

1: Set parameter D = 2max(m,n)
√

|E| and initialize variables d← d0, v ← v0;
2: for k = 1, 2, . . . do

3:

u ← max (0, (1 + d)Av − d||v||1) (= max(0,Mv)) ; (19)

u ← u/max(u) ;

v ← max

(

0,
(1 + d)ATu− d||u||1

||u||22

)

(

= max

(

0,
MTu

||u||22

))

; (20)

d ← min(γd,D) ;

4: end for

Theorem 6 suggests that it is very unlikely for Algorithm 1 to converge to a biclique of G which
is not maximal: in fact, when restricted to positive entries of u and v, that is, u(K) and v(L),
updates (19) and (20) correspond to the power method [9]. It is well-known that the power method
applied to matrix M , when initialized with a vector which is not orthogonal to the singular subspace
corresponding to the largest singular value of M , necessarily converges to a singular vector associated
with the largest singular value (corresponding to a global minimum of R1U(M)). When initialized
with a randomly generated vector, the probability for the power method to converge to a saddle
point is therefore equal to zero. On all the numerical experiments we performed, Algorithm 1 never
converged to a biclique which was not maximal.

Finally, one can easily check that Algorithm 1 requires only O(|E|) operations per iteration, the
main cost being the computation of the matrix-vector products Av and ATu (the rest of an iteration
requiring only O(max(m,n)) operations).

4.1.1 Parameters

It is not clear a priori how the initial value d0 should be selected. We observed that it should not be
chosen too large: otherwise, the algorithm often converges to the trivial solution: the empty biclique.
In fact, in that case, the negative terms (d||v||1 and d||u||1) in (19) and (20) will dominate, even during
the initial steps of the algorithm, and the solution will be set to zero3.

On the other hand, the algorithm with d = 0 is equivalent to the power method applied to A ≥ 0,
and then converges (under the condition stated above) to the best rank-one approximation of A. We
observed that when d0 is chosen small, the iterates will in general converge to the same solution (the
one obtained when initializing the algorithm with the best rank-one approximation of A).

In order to balance positive and negative entries in M , we found appropriate to choose an initial
value of d such that ||M+||F ≈ ||M−||F , i.e.,

d0 ≈
||A||F
√

|Z|
=

√

|E|
|Z| , (21)

where |Z| is the number of zero entries in A, with |E|+ |Z| = mn. We chose d0 =
√

|E|
|Z| for our tests,

which appears to work well in practice.

3In practice, we used a safety procedure which reduces the value of d whenever u or v is set to zero and reinitializes
u and v to their previous value.
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The algorithm does not seem to be very sensitive to the multiplicative factor γ, and selecting values
around 1.1 gives good results; this value will be used for the computational test below.

We use an a priori limit on the number of iterations as main stopping criterion. Moreover, if the
solution becomes nearly integer in the sense that

vi ≤ 0.01 or vi ≥ 0.99 for all i, and wj ≤ 0.01 or wj ≥ 0.99 for all j,

the algorithm is terminated prematurely, as it is unlikely to further modify the rounded solution.
It turns out that the algorithm converges rather fast in practice, as fewer than 50 iterations are
usually required. In particular, for all runs on the synthetic datasets presented in the next section
(i.e., a total of 1700 graphs, each initialized with 100 different randomly generated vectors), the
algorithm converged in at most 44 iterations (the average being 22.5). The code is available at
https://sites.google.com/site/nicolasgillis/code.

4.2 Other Algorithms in O(|E|) Operations

We briefly present here two other algorithms designed to find large bicliques using O(|E|) operations
per iteration.

4.2.1 Greedy Heuristic

The simplest heuristic one can imagine is to add, at each step, the vertex which is connected to the
most vertices in the other side of the bipartite graph. Once a vertex is selected, the vertices which are
not connected to the chosen vertex are deleted. The procedure is repeated on the remaining graph
until one obtains a biclique, which is necessarily maximal.

4.2.2 Motzkin-Strauss Formalism

In [4], Ding and co-authors extend the generalized Motzkin-Strauss formalism, defined for cliques (see
Section 5 for more details), to bicliques. They define the optimization problem

max
x∈Fα

x ,y∈Fβ
y

xTAy, (22)

where A is the biadjacency matrix of G, Fα
x = {x ∈ Rn

+|
∑n

i=1 x
α
i = 1}, F β

y = {y ∈ Rn
+|
∑n

i=1 y
β
i = 1}

and 1 < α, β ≪ 2. Multiplicative updates for this problem are then provided:

x←
(

x ◦ Ay

xTAy

) 1

α

, y ←
(

y ◦ ATx

xTAy

)

1

β

. (MS)

This algorithm does not necessarily converge to a biclique: if α and β are not sufficiently small, it may
only converge to a dense bipartite subgraph (a bicluster). In particular, for α = β = 2, it converges
to an optimal rank-one solution of R1U(A), as Algorithm 1 does for d = 0. For our tests, we choose
α = β = 1.05 as recommended in [4]. The updates (MS) have a computational cost comparable to
that of Algorithm 1 (O(|E|) operations) since their main cost is the computation of the matrix-vector
products Ay and ATx.

In order to evaluate the quality of the solutions provided by this algorithm when it did not converge
to a biclique, we considered the following two different post-processing procedures to convert a bicluster
into a biclique:

1. Extract from the generated bicluster a biclique using the greedy heuristic presented above. We
will refer to this variant of the algorithm based on the MS updates post-processed with the
Greedy algorithm as Greedy MS.
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2. Use the updates (MS) recursively on the extracted bicluster, i.e., rerun it on the positive subma-
trix while decreasing the values of parameters α and β with α← 1+ α−1

2 and β ← 1+ β−1
2 . We

will refer to this variant of the algorithm based on the MS updates used recursively as Recursive
MS.

Both variants will be tested in Section 4.4.

4.3 MIP Root Node Heuristics

Besides the three O(|E|) algorithms described above, we also compare our algorithm against the
sophisticated procedures implemented at the root node level in Gurobi, a commercial mixed-integer
programming (MIP) solver [11]. Three different formulations were considered:

1. The original formulation (1), which is a (nonconvex) binary integer program with a quadratic
objective function.

2. A convex mixed integer reformulation of (1) where a new continuous nonnegative variable t
appears as the objective function and an additional convex constraint t2 ≤ (

∑

i ui)(
∑

j vj) is

introduced. As the latter can be rewritten as 4t2 + (
∑

i ui −
∑

j vj)
2 ≤ (

∑

i ui +
∑

j vj)
2, the

resulting problem is a mixed integer binary second-order cone problem.

3. A linear binary reformulation of (1) where each quadratic term uivj in the objective function is
linearized. More precisely, the objective function is replaced by a sum of binary variables sij for
all pairs (i, j) such that Aij > 0, and the corresponding linking constraints 2sij ≤ ui + vj are
introduced.

Parameters TimeLimit=1 and NodeLimit=1 were provided to the solver4 in order to use only root node
heuristics and limit the total CPU time spent to one second (which is already more than an order of
magnitude larger than what the competing O(|E|) algorithms require, see Table 1).

Preliminary testing revealed that the convex second-order cone formulation is not competitive at
all, and that the results of the linear reformulation are inferior to those of the original quadratic
formulation, probably because of the large number of additional variables introduced in the linear
reformulation. Hence, in the next section, we only report results for the original quadratic formulation.

4.4 Results

In this section, we present some numerical results for synthetic and text mining datasets. All the
experiments were performed on a desktop computer running MATLAB R2012b (64 bits) on an IntelR©

CORE i5-2320 CPU @ 3GHz processor equipped with 6 Go of RAM.

4.4.1 Synthetic Data

For each density (0.1, 0.3, 0.5, 0.7 and 0.9), 100 bipartite graphs with 200 vertices (100 on each side,
i.e., m = n = 100) are randomly generated (the probability that an edge belongs to the graph is equal
to the density). We then perform, for each graph, 100 runs with the same random initializations and
each algorithm is allotted a maximum of 100 iterations, except for the greedy heuristic, which is always
run until completion and only once for each graph (since it does not require a random initialization),
and the MIP heuristic, also run once with a one-second time limit.

Table 1 gives the average computational times measured by MATLAB for the different algorithms
when tested on graphs with different densities (note that, on a multi-processor machine, MATLAB
reports the sum of the CPU times used on each processor). We observe that

4Additional tweaking of parameters MIPFocus, Heuristics, PreQLinearize, MIQCPMethod and RINS did not lead to
better results.
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Table 1: Average computational time for solving 100 biclique problems on 100-by-100 randomly
generated bipartite graphs, for various densities of the biadjacency matrix.

Density Greedy Algorithm 1 Greedy MS Recursive MS MIP

0.05 0.19 0.19 1.06 1.07 150.5
0.1 0.22 0.16 1.16 1.16 145.8
0.15 0.21 0.19 1.18 1.20 141.4
0.2 0.19 0.22 1.18 1.18 137.1
0.3 0.23 0.20 1.19 1.22 129.4
0.4 0.17 0.21 1.21 1.25 122.5
0.5 0.25 0.25 1.24 1.37 116.6
0.6 0.28 0.29 1.24 1.52 157.7
0.7 0.23 0.30 1.31 1.79 175.4
0.8 0.42 0.33 1.43 2.23 108.2
0.85 0.51 0.33 1.57 2.67 102.8
0.9 0.62 0.34 1.74 3.82 102.7
0.95 0.82 0.36 2.02 5.26 76.0

• Greedy and Algorithm 1 are the fastest algorithms. On dense graphs, for which the greedy
heuristic requires more iterations to identify a biclique, Algorithm 1 is slightly faster.

• Greedy MS and Recursive MS require roughly the same computational time on sparse graphs
and actually return the same solutions (see Fig. 5): the reason is that the MS updates are
able to identify a biclique by themselves, and no post-processing is required. For dense graphs,
Recursive MS is slower because it recursively calls the MS updates until it identifies a biclique
(while Greedy MS only calls the greedy heuristic once).

• MIP is the slowest, as we allowed it to run for one second on each graph (also note that the
one-second time constraint provided to Gurobi applies to wall time and not total CPU time).

Fig. 4 displays the performance profile for these experiments [5], where the performance function
at ρ ≤ 1 is defined as the percentage, among all graphs and all runs, of bicliques whose sizes (i.e.,
number of edges) is larger than ρ times the size the largest biclique found by any algorithm in the
corresponding graph, i.e.,

performance(ρ) =
#{bicliques | size ≥ ρ× size of best biclique found}

#runs
.

On such a performance profile, the higher the curve, the better ; more specifically, the left part of
the graph measures efficiency, i.e., how often a given algorithm produces the best biclique among its
peers, while the right part estimates robustness, i.e., how far from the best non-optimal solutions are.
These two aspects are also reported more quantitatively in Table 2, which displays the value of the
performance function at ρ = 1 (Efficiency, i.e., how often a given algorithm finds a biclique with largest
size) and the smallest value of ρ such that the performance function is equal to 100% (Robustness,
i.e., the relative size of the worst biclique found).

We observe on the performance profile that both Algorithm 1 and MS perform better than the
greedy heuristic. The variant of MS using recursive post-processing performs slightly better than
the one based on the use of the greedy heuristic. Nevertheless, Algorithm 1 generates in general
better solutions: it is more efficient (16% of its solutions are ‘optimal’, the second best being the
MS algorithms with 6%) and more robust (all solutions are at most a factor 0.31 away from the best
solution, the second best being the greedy heuristic with 0.29). Despite the larger amount of CPU
time spent, Gurobi performs on average rather poorly on these instances.
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Figure 4: Performance profile for random graphs (densities from 0.1 to 0.9).

Table 2: Efficiency and Robustness of the different algorithms on 100 randomly generated graphs.
(All corresponds to Fig. 4, Sparse to Fig. 5 left, and Dense Fig. 5 right.)

Greedy Algo. 1 Greedy MS Rec. MS Gurobi

All 1% — 0.29 16% — 0.31 6% — 0.17 6% — 0.17 1% — 0

Sparse 0% — 0.27 33% — 0.32 18% — 0.19 18% — 0.19 9% — 0.38

Dense 7% — 0.65 26% — 0.79 8% — 0.62 2% — 0.63 0% — 0.07

It is worth noting that the algorithms behave quite differently on sparse and dense graphs. Using
the same setting as before, Fig. 5 displays performance profiles for sparse graphs (on the left, with
densities 0.05, 0.1, 0.15 and 0.2) and dense graphs (on the right, with densities 0.8, 0.85, 0.9 and 0.95).

Figure 5: Performance profiles for random graphs: sparse (left, from 0.05 to 0.2) and dense (right,
from 0.8 to 0.95).

For sparse graphs, Algorithm 1 is the best overall performer. Both versions of MS coincide, and the
greedy heuristic performs significantly worse. The Gurobi heuristics now perform better, especially
for smaller values of ρ: they are slightly more robust than Algorithm 1 (0.38 vs. 0.32), but are still
significantly less efficient (9% vs. 33%).

For dense graphs, the Gurobi heuristics seem quite ineffective (in fact, for 0.95 density, they
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terminate before the one-second time limit and return a very poor solution, see Fig. 5). Recursive
MS performs slightly better than the Greedy MS (although is is slightly less efficient) which performs
slightly better than the greedy heuristic. Algorithm 1 performs the best: it is more efficient as it
finds the best solution in 26% of the runs (the second best being Greedy MS with 8%), and it is more
robust as all solutions are at most a factor 0.79 away from the best solution (the second best being
the greedy heuristic with 0.65).

4.4.2 Text Datasets

If parameter D in Algorithm 1 is chosen smaller than the value recommended by Corollary 2, the
algorithm is no longer guaranteed to converge to a biclique. However, the negative entries in M will
force the corresponding entries of the solutions of R1Nd(G) to be small (cf. Theorem 4). Therefore,
instead of a biclique, one gets a dense submatrix of A, i.e., a bicluster. Algorithm 1 can then be used as
a biclustering algorithm and the density of the corresponding submatrix will depend on the choice of
parameter D between 0 and 2max(m,n)

√

|E|. We test this approach on the six text mining datasets
(with sparse matrices) described in Table 3.

Table 3: Text mining datasets [18] (sparsity is given in %: 100 ∗ |Z|/(mn)).

Data m n |E| sparsity

classic 7094 41681 223839 99.92
sports 8580 14870 1091723 99.14
reviews 4069 18483 758635 98.99
hitech 2301 10080 331373 98.57
ohscal 11162 11465 674365 99.47
la1 3204 31472 484024 99.52

Fig. 6 compares Algorithms 1 and MS for varying values of their parameters: in the Motzkin-Strauss
formalism, we tested each value for α = β in the interval [1.3, 1.9] with step size 0.025 and, for
Algorithm 1, we tried D = d010

x for each value of x in the interval [3, 9] with step size 0.25 (d0 given
by Equation 21). For each value, we performed 10 runs (same initializations for both algorithms and
500 iterations) and plotted all the non-dominated solutions (i.e., for which no other solution has both
larger size and higher density) for each dataset. We observe that our approach consistently generates
better results since its curves dominate the ones of the Motzkin-Strauss formalism, i.e., the biclusters
it finds are denser for the same size or larger for the same density.

Table 4 gives the average computational time for the different algorithms to computing one bicluster
for the different datasets. We observe that both algorithms spent roughly the same computational
time: the main effort per iteration of both algorithms is essentially the same (two matrix-vector
products) while a fixed number of 500 iterations is performed (no early termination or post-processing
were performed, as opposed to the experiments performed in the previous section).

Table 4: Average computational time in seconds spent by the different algorithms for computing one
bicluster on each text dataset.

classic sports Reviews hitech ohscal la1

MS 3.97 6.23 4.81 2.27 4.81 5.24
Algorithm 1 2.39 6.81 4.89 2.13 4.57 3.74
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Figure 6: Relative size vs. density for the Motzkin-Strauss formalism for biclique (MS, dashed line)
and Algorithm 1 based on R1Nd(G) (solid line). The x-axis indicates the relative sizes of the extracted
clusters (i.e., number of entries in the extracted submatrix divided by the number of entries in the
original matrix) while the y-axis indicates the density of these clusters (number of nonzero entries
divided by the total number of entries) for the text datasets of Table 3.
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Finally, we mention that Algorithm 1 can be further enhanced in the following ways:

• It is applicable to weighted graphs, i.e., non-binary biadjacency matrices; and Theorems 1, 2
and 4 can be adapted: Lemma 2 still holds for d ≥ ||M+||F , and the lower bound max(m,n) on
d in Theorem 1 can be replaced by max(m,n)maxij(A), where A is the weighted biadjacency
matrix.

• It is possible to give more weight to a given side of the biclique by adding regularization terms
to the cost functions. For example, one can consider the following objective function

min
u≥0,v≥0

||M − uvT ||2F + α||u||22 + β||v||22

which our algorithm can handle after some straightforward modifications (namely, the optimal
solution for u when v is fixed can still be written in closed-form, and vice versa).

• If A ∈ {0, 1}n×n is the adjacency matrix of a (non bipartite) graph G = (V,E) with no self loop
where V = {v1, . . . , vn}, i.e., A(i, j) = 1 ⇔ (vi, vj) ∈ E i 6= j and A(i, i) = 0 for all i, then
MB(G) corresponds to the problem of identifying two disjoint sets of nodes where all the nodes
of one set are connected by an edge to all the nodes of the other set. In fact, MB(G) reduces
to identifying the largest block of ones in any binary matrix. Therefore, all the results of this
paper apply to this particular problem.

5 Maximum Clique and Motzkin-Stauss Formalism

In this last section, we show how our formulation is related to the Motzkin-Stauss formalism for max-
imum clique finding.

Given a graph G, the maximum clique problem looks for a complete subgraph (i.e., a clique) with
maximum number of vertices (or equivalently with maximum number of edges, because a clique with
n vertices has

(

n
2

)

edges). The optimal solution is denoted ω(G) and called the clique number of G.
Given the adjacency matrix B of G, it was shown by Motzkin and Strauss [14] that the following

quadratic program, called Motzkin-Strauss QP,

c∗ = max
x∈Rn

xTBx such that x ≥ 0 and eTx = ||x||1 = 1, (23)

satisfies c∗ = (1−1/ω(G)). Moreover, there is a close link between local maxima of (23) and maximal
cliques of G [6]. In particular, slightly modifying the problem using a quadratic penalty (namely,
setting Bii =

1
2 for all i) leads to a one-to-one correspondence between these two sets [2].

IfG is bipartite, Ding and co-authors extended this formalism to bicliques [4], [3], see Equation (22).
They proved that optimal solutions (x∗, y∗) of (22) such that the nonzero elements of x∗ (resp. y∗)
are equal to each other define maximal bicliques in G. However, no other theoretical guarantee is
provided, and it is not clear for example whether there is a one-to-one correspondence between global
(resp. local) minima of (22) and the maximum (resp. maximal) bicliques of G.

We now briefly explain how our continuous formulation R1Nd(G) of MB(G) is actually closely
related to the formalism introduced by Motzkin and Strauss for the clique problem. First, observe
that R1Nd(G) can be equivalently reformulated as

q∗ = min
σ≥0,u≥0,v≥0

||M − σuvT ||2F such that ||u||2 = 1, ||v||2 = 1. (24)

Since ||M − σuvT ||2F = ||M ||2F − 2σuTMv + σ2, the function ||M − σuvT ||2F is (convex) quadratic in
σ and, for any (u, v), the optimal value for σ (corresponding to the stationarity conditions) is given
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by σ∗ = max(0, uTMv). In fact, either uTMv is nonnegative and σ∗ = uTMv, or it is negative and
σ∗ = 0; the corresponding objective value is ||M ||2F −max(0, uTMv)2.

If the graph G has at least one edge (otherwise the problem is trivial since M < 0), then M has
at least one positive entry (i.e., Mij = 1 for some i, j), implying q∗ < ||M ||2F (take for example u = ei
and v = ej , where ek is the kth column of the identity matrix, as a feasible solution). In that case,
we must then have σ∗ = u∗TMv∗ > 0 for any nontrivial stationary point (σ∗, u∗, v∗) of (24). Since
||M − σ∗u∗v∗T ||2F = ||M ||2F − (u∗TMv∗)2, the triplet (σ∗, u∗, v∗) minimizes ||M − σu∗v∗T ||2F if and
only if it maximizes (u∗TMv∗)2 or equivalently u∗TMv∗ since it is positive. Finally, if M has at least
one positive entry, the problem

p∗ = max
u≥0,v≥0

uTMv such that ||u||22 = 1 and ||v||22 = 1, (25)

satisfies q∗ = ||M ||2F − (p∗)2. This problem is very similar to the Motzkin-Strauss formalism (23),
except that we now have a constraint on the ℓ2-norm of the variables (instead of ℓ1), and that matrix
M is not the biadjacency matrix of G (but is closely related to it, similarly as in [2] for the clique
problem).

Therefore, all results of this paper actually apply to formulation (25) above. In fact, one can
check that the first-order stationarity conditions for (25) are, up to a constant factor, the same as
for R1Nd(G), so that there is a one-to-one correspondence between global minima, local minima and
stationary points of (25) and R1Nd(G).

6 Conclusion

Given a graph G, we have proposed a new continuous characterization for the maximum-edge biclique
problem based on an approximate rank-one matrix factorization problem, namely R1Nd(G). We
proved that there is a one-to-one correspondence between the maximal (resp. maximum) bicliques of
G and the local (resp. global) minima of R1Nd(G). We also showed that the stationary points of
R1Nd(G) are close to bicliques of G. Based on these results, we presented a heuristic biclique-finding
algorithm whose iterations require O(|E|) operations per iteration. We experimentally demonstrated
its efficiency on random graphs and text mining datasets. Finally, we showed how R1Nd(G) is closely
related to the Motzkin-Strauss formalism for cliques.
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A Proof of Theorem 1

Let us show that B(G) ⊆ Ld(G) for any d ≥ max(m,n). Let uvT ∈ B(G), with u and v binary without
loss of generality. The binary rank-one matrix uvT belongs to Ld(G) if and only if there exists ǫ > 0
such that for all x ∈ B+(u, ǫ) and y ∈ B+(v, ǫ), we have ||M − uvT ||2F ≤ ||M − xyT ||2F .

Let then x ∈ B+(u, ǫ) and y ∈ B+(v, ǫ), and let us note Su, Sv, Sx and Sy the supports of u,
v, x and y respectively. For ǫ < 1, since u and v are binary, we have Su ⊆ Sx and Sv ⊆ Sy (i.e.,
ui = 1 ⇒ xi > 0 and vj = 1 ⇒ yj > 0). This implies that for ǫ < 1, ||M − uvT ||2F ≤ ||M − xyT ||2F if
and only if

||M(Sx, Sy)− u(Sx)v(Sy)
T ||2F ≤ ||M(Sx, Sy)− x(Sx)y(Sy)

T ||2F .
Let us note S̄u = Sx\Su and S̄v = Sy\Sv. Since x ∈ B+(x, ǫ), there exists δu such that x = u + ǫδu
with ||δu||2 ≤ 1 and δu(S̄u) ≥ 0 since u(S̄u) = 0; symmetrically there exists δv such that y = v + ǫδv
with ||δv||2 ≤ 1 and δv(S̄v) ≥ 0.

Let us analyze the four submatrices of M(Sx, Sy) corresponding to the decomposition Sx = Su∪ S̄u

and Sx = Su ∪ S̄u.

1. Submatrix (Su, Sv). Since M(Su, Sv) = 1|Su|×|Sv|, u(Su) = 1|Su| and v(Sv) = 1|Sv|,

e1 = ||M(Su, Sv)− x(Su)y(Sv)
T ||2F ≥ ||M(Su, Sv)− u(Su)v(Sv)

T ||2F = 0.
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2. Submatrix (S̄u, S̄v). Since u(S̄u) = 0, v(S̄v) = 0 and ||M(S̄u, S̄v)||2F ≤ |S̄u||S̄v|d2 ≤ mnd2 for
d ≥ 1,

e2 = ||M(S̄u, S̄v)− x(S̄u)y(S̄v)
T ||2F = ||M(S̄u, S̄v)− ǫ2δu(S̄u)δv(S̄v)

T ||2F
≥ ||M(S̄u, S̄v)||2F − 2

√
mndǫ2||δu(S̄u)δv(S̄v)

T ||2F .

In fact, recall that ||A−B||2F = ||A||2F − 2
∑

ij AijBij + ||B||2F ≥ ||A||2F − 2||A||F ||B||F .

3. Submatrix (Su, S̄v). Since u(Su) = 1|Su|, v(S̄v) = 0|S̄v|, d ≥ 1 and ǫ < 1,

e3 = ||M(Su, S̄v)− x(Su)y(S̄v)
T ||2F

= ||M(Su, S̄v)− ǫ(1|Su| + ǫδu(Su))δv(S̄v)
T ||2F

= ||M(Su, S̄v)− ǫ1|Su|δv(S̄v)
T − ǫ2δu(Su)δv(S̄v)

T ||2F
≥ ||M(Su, S̄v)− ǫ1|Su|δv(S̄v)

T ||2F − 2
√
mn(d+ 1)ǫ2||δu(Su)δv(S̄v)

T ||F .

In fact, one can check that |M(Su, S̄v) − ǫ1|Su|δv(S̄v)
T | ≤ d + 1 for ǫ < 1 since |δv(S̄v)| ≤ 1

implying that ||M(Su, S̄v)− ǫ1|Su|δv(S̄v)
T ||2F ≤ mn(d+ 1)2.

Because (u, v) corresponds to a maximal biclique, there must be at least one −d entry in each
column of M(Su, S̄v). Let us analyze each column separately. For any i ∈ S̄v, let us note ni ≥ 1
the number of −d entry in the column M(Su, i). We have

||M(Su, i)− ǫ1|Su|δv(i)||2F = ni(−d− ǫδv(i))2 + (|Su| − ni)(1 − ǫδv(i))2

≥ nid
2 + (|Su| − ni) + 2ǫδv(i)(nid− |Su|+ ni)

= ||M(Su, i)||2F + 2ǫδv(i)(nid+ ni − |Su|)
≥ ||M(Su, i)||2F + 2ǫδv(i).

In fact, nid ≥ d ≥ max(m,n) ≥ |Su| (it is then actually sufficient to take d > max(m,n) − 1).
Finally, recalling that δv(S̄v) ≥ 0 and summing on index i ∈ S̄v, we obtain

e3 ≥ ||M(Su, S̄v)− u(Su)v(S̄v)
T ||2F + 2ǫ||δv(S̄v)||1

−2
√
mn(d+ 1)ǫ2||δu(Su)δv(S̄v)

T ||F .

4. Submatrix (S̄u, Sv). By symmetry, the same can be done as for the submatrix (Su, S̄v), and we
have

e4 = ||M(S̄u, Sv)− x(S̄u)y(Sv)
T ||2F

≥ ||M(S̄u, Sv)− u(S̄u)v(Sv)
T ||2F + 2ǫ||δu(S̄u)||1

−2
√
mn(d+ 1)ǫ2||δu(Su)δv(S̄v)

T ||F .

Combining the above results and noting C = 2
√
mn(d+ 1), we have

eT = e1 + e2 + e3 + e4

= ||M(Sx, Sy)− x(Sx)y(Sy)
T ||2F

≥ ||M(Sx, Sy)− u(Sx)u(Sy)
T ||2F + 2ǫ||δu(S̄u)||1 + 2ǫ||δv(S̄v)||1

−Cǫ2||δu(S̄u)δv(S̄v)
T ||2F − Cǫ2(||δu(S̄u)δv(Sv)

T ||2F + ||δu(Su)δv(S̄v)
T ||2F ).
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Recalling that ||x||1 ≥ ||x||2 for any x ∈ Rn, ||xyT ||F = ||x||2||y||2 for any x ∈ Rn and y ∈ Rm, and
that ||δu||2 ≤ 1 and ||δv||2 ≤ 1, we have that for any 0 < ǫ < 1

C

eT ≥ ||M(Sx, Sy)− u(Sx)u(Sy)
T ||2F

+ǫ||δu(S̄u)||
1

2

2

(

2− Cǫ||δu(S̄u)||
1

2

2 ||δv(S̄v)
T ||2 − Cǫ||δu(S̄u)||

1

2

2 ||δv(Sv)
T ||2

)

+ǫ||δv(S̄v)||
1

2

2

(

2− Cǫ||δv(S̄v)||
1

2

2 ||δu(S̄u)
T ||2 − Cǫ||δv(S̄v)||

1

2

2 ||δu(Su)
T ||2

)

≥ ||M(Sx, Sy)− u(Sx)u(Sy)
T ||2F + 2ǫ(1− Cǫ)(||δu(S̄u)||

1

2

2 + ||δv(S̄v)||
1

2

2 )

≥ ||M(Sx, Sy)− u(Sx)v(Sy)
T ||2F .

Finally, for any d ≥ max(m,n), uvT ∈ B(G), 0 < ǫ < 1
2mn(d+1)2

, x ∈ B+(u, ǫ) and y ∈ B+(v, ǫ), we
have ||M − uvT ||2F ≤ ||M − xyT ||2F .

B Proof of Theorem 6

Let (u, v) be a nontrivial saddle point of R1Nd(G) (hence uvT ∈ Sd(G)). Let us denote the (non-
empty) support of u as K = supp(u) and the (non-empty) support of v as L = supp(v), and define
u′ = u(K), v′ = v(L) and M ′ = M(K,L) to be the subvectors and submatrix with indexes in K, L
and K×L respectively. Let us also define G′ as the bipartite graph whose biadjacency matrix is given
by A(K,L).

Observe that (u′, v′) must be a saddle point of R1N(G′) otherwise (u, v) would not be a a saddle
point of R1Nd(G). In fact, the objective functions of these two problems differ only by a constant
factor: we have ||M−uv||2F = ||M ′−u′v′T ||2F + ||M ||2F −||M ′||2F . By stationarity of (u, v), Equation (6)
gives

u′ =
M ′v′

||v′||22
and v′ =

M ′Tu′

||u′||22
.

Therefore, (u′/||u′||2, v′/||v′||2) > 0 defines a pair of singular vectors of M ′ associated with the singular
value ||u′||2||v′||2 > 0.

If M ′ does not contain any −d entries, then (u′, v′) = (1|K|,1|L|) is the unique pair of positive

singular vectors (up to a constant factor). We then have that uvT ∈ F (G). By Theorem 3, uvT ∈
B(G) = Ld(G) is then a local minima since F (G) ∩ Sd(G) = B(G) = Ld(G) for any d ≥ max(m,n), a
contradiction.

Therefore M ′ contains at least one −d entry. By Lemma 2, any pair of singular vectors of M ′

associated with the largest singular value of M ′ must contain a least one non-positive entry. Therefore,
(u′, v′) is a pair of positive singular vectors of M ′ not associated with the largest singular value of M ′,
i.e., it is a saddle point of R1U(M ′).

An example of such a saddle point is given in Example 1.
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