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Foreword

The aim of this book is to present the basis for calculation of composite
structures, using continuum mechanics equations which enable the more elaborate
theories to be treated.

The first part is devoted to study of materials constituting the layers of laminated
composites. The constitutive equations for anisotropic and in particular orthotropic
materials are presented, with temperature and hygrometry effects taken into account.
Next the basic laws of mixtures are given, which enable the behaviour of
unidirectional layers to be predicted from the characteristics of their fibres and
matrix components.

The subject of the second part is multi-layer plates. We begin by presenting the
general equations of thin plates in Kirchhoff-Love analysis. Later, symmetrical
orthotropic plates are studied in detail for cases of bending, vibration and buckling.
The thermo-elastic behaviour of multi-layers plates is considered separately. Then
we tackle symmetric orthotropic moderately thick plates, using Reissner-Mindlin
type analysis. Examples of asymmetrical plates in Kirchhoff-Love theory are
analysed in detail. The cylindrical bending of laminated composites is treated in
both Kirchhoff-Love and Reissner-Mindlin type analysis, with bending, vibration
and buckling applications.

The third part of this book is devoted to beams. The first chapter of this part
treats tension-compression loading. The following chapter treats bending with
transverse shear deformations not taken in account. The last chapter of this part
presents bending taking into account transverse shear. Examples of bending,
vibration and buckling are considered for each case.

In the appendices, plate equations are developed by integrating local equations of
motion. Global equations are obtained from variational formulae of continuum
mechanics.
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Chapter 1

Constitutive relations for anisotropic
materials in linear elasticity

1.1. Introduction

Stress-strain or constitutive relations for anisotropic materials will be treated
first, and in particular the behaviour of orthotropic and transversely isotropic
materials, the latter including unidirectional composites.

Then, using tensor notation based on four indices and the conventional notation
with two indices, the expressions for changing axes in terms of stresses, strains,
stiffnesses and compliances will be detailed.

1.2. Four indices tensor notation
1.2.1. Constitutive relations

The reference state is a natural state without stress or strain, that is:
0;=0 and ¢;=0.
In linear elasticity theory the stress tensor @ is given as a function of the strain
tensor € by the tensorial relation:
o = C:¢, or with the indices:
0ij = CijkIEkl , with i,j,k,l =1,23.
The sign : indicates a tensor product. The Cyy; elements are the 81 components
of the elastic moduli tensor or stiffness tensor C. In a homogeneous medium the 81
elastic moduli Cjj are independent of the point considered.
Inversion of the constitutive relation provides the tensor expression:
€e=S:a, or using index notation:
€jj = Sijkl Oy -

The S, are the 81 components of the elastic compliance in the compliance

tensor S.



4 Analysis of composite structures
1.2.2. Properties of Cjyy and Sy,

1.2.2.1. Symmetry with respect to the last two indices

The stresses are given by:
0ij = Ciju€n = Cyji€ix -

As the strain tensor is symmetrical we have:
Ey =€y, hence 0 = Cyp ey -

By identification, the symmetry property is obtained:
Ciint = Cijix -

1.2.2.2. Symmetry with respect to the first two indices

The stresses are given by:
0ij =Cijui€u »or 0j; =C i€y -

As the stress tensor is symmetrical we have:
0 =0j, hence o;; = Cji€q -

By identification, the symmetry property is obtained:
Ciit =Cjin -

1.2.2.3. Symmetry of the first pair of indices with respect to the second pair

From the application of the first law of thermodynamics to elasticity, the state
function U, the internal energy, is identified with the strain energy W, .
The elementary strain energy per volume:
Oy ds,-j ,
is an exact derivative:
995 _doy
deyy  Og;
with 0 = Cyyey and oy = Cyyi€;; . After introduction in the equality above, we
obtain the symmetry property:
Cint = Cuij -
Given this property, the elementary volume strain energy:
dwy = a’,-jde,-j = Cijk,ek,de,j .

leads to, by integration, the volume strain energy:
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wq =+ Ciutiien = L0,E; =L Suoiou .
The compliances have the same symmetry properties as the stiffnesses.

1.3. Conventional two indices Voigt notation

Given the two first symmetry properties:
Ciit = Cjint = Cijiw »
the order of the first two indices (i, j) and the next two indices (k,I) does not affect
the modulus of elasticity values. As there are six distinct values for the group (i j )
and six distinct values for the group (k,!), there remain 36 independent elastic
moduli.
Given the third symmetry property:
Ciit = Chij »
the permutations of the (i, j) and (k,!) groups do not modify the elastic moduli
values. The number of independent values is therefore reduced to 21.
Taking account of the previous remarks, we can propose:
Cij =Cy»withCpy =Cyy,
where
I=ifor i=j, [=9-(i+j) for i#j,
and
J=k for k=1, J=9-(k+1) for k#l.
The index relationship 0 = Cyj €y being written in the explicit form:
0 = Cyj1i€n1 + Cina€a + Cyjaa€ay + 2Cy 3603 + 2Cy31€31 +2C;12612 5
the constitutive relation can be written in the matrix form:

- - - ar

o] [Ciunn Cuz Cna Cuz Cnz Cun|f en |
on| [Cliz Cuaz Cmz Cauxn Can Can|| 2
033| |Cuas Com33z Caaay Cizaz Gz Caann || €33
03| |Crizz Cas Ciazz Caaz C;ar Caznz || 2623
o3| |Cust Caa Caa Caanr Caizr Cannz || 263
o12] |Chiz Ca12 Caniz Cuanz Canz Cianz J| 2612

or in the index form:
o;=Cyéy,
with the convention:
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o, =0y and I =i for i=j,

o, =0; and I1=9-(i+j) for i#j,
and:
£;=€y and J =k for k=1,
&, =26y and J =9-(k+I) for k1.
The constitutive relation can also be written in the form:

(o] [Cu Ci2 Ci3 Ciu Cis Cig|[&
Oy |Gz Cnn Ca3 Cyy Cys Cy (| &
o C C C C C C E

3[o|C Cn Cx G Cos Cyelies)
O4| |Cia Cu C3q Cyq Cys Cyp || €4
05| [Ci5 Cys C35 Cys Css Cse || €5

06] [Ci6 Ca C36 Cas Cse Ces || €6 |

Similarly we have:
€, =S8;0,,0r =S¢, with §=C!,

1.4, Anisotropic material
1.4.1. Monoclinic material

The monoclinic material studied has the plane (M |x3,xl) as a plane of mirror

symmetry.
) % s
n' ¥, ,wn
< >
X3 M X2

Figure 1.1. Mirror symmetry axes

The two axes in (e)=(x,,X,,X3) and (e')=(x;,x;,x;)=(xl,—x2,x3) are
symmetrical about the plane (M |x 1,Xg ) The two vectors:

n=nX; +n,X, +n;X3, and
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L] ] * - * A * » LI
n =nlxl _nzxz +n3X3 = nlxl +n2X2 +n3X3 = nlxl +n2x2 +n3X3,
are symmetrical.

The components n; of n” in (e*) are equal to the n; components of n in (e).

The mirror symmetry property of the two vectors n" and n is written:

*
ni =n,— .

For the two symmetric stress vectors T(M‘n') and T(M[n), we have the same:

*

Ti =T .

The relation T(M|n)= (6(M))n is written in index form:
T‘- =0',-jnj in (e),
and:
* *

* . »
T; =oyn; in (e )

Given the preceding remarks, the second relation is written:

*

T, =oyn;,
hence, by identification:
*

U"j = 0'.:, .

. T * .
The components with the same indices o; and o of stress tensor in the two

axes (e‘) and (e) are equal.

For the strain tensor we have the same:
e,-;- =£;.

The constitutive relation ¢ = C: ¢ is written in index form:
O = Cyjyy€)y in the axes (),

and:

0,; = C,-:-k,e‘;, in the axes (e‘).

Given the previous properties, the second relation is written;
oy = Cii€n -

hence, by identification:
»*

Cijut = Cijkz .

7
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» - » * . .
The components with the same indices Cjj; and Cij,d of the stiffness tensor in

the two axes (e*) and (e) are equal.

Designating by a, the matrix of change of axes from (e) to (e*), the expression
for the change of axes for a fourth order tensor is written:
*
Cijkl = apiaqiarkaslcpqrs ,
and the mirror symmetry property requires:

*
Cijut = Cij -

The only non-zero components of the change of axes matrix:

I 0 O
a=|0 -1 0},
0 0 1

are:
a” =l, a =—1. 033=1.

The elastic modulus C; 111 is given by the expression for changing axes:

*
Ciin = aplaqlarlaslcpqrs ’
where the second index of a;; is equal to 1, in the summation for p only a;; =1 is

not zero, therefore we obtain:
-
Chim=Cnn -

The elastic modulus Cl' 112 is, with the same axes change, equal to:
»*
Ciiz =ap1301a,1a52C pgrs »
in the summation with a;, only a); = -1 is not zero, therefore we have:
*
Cinz ==Cyyp2-
. *
The mirror symmetry property Cyjjp =Cy;;, leadsto
Ciz=~Cinz-
hence:
Ciz =0.

The elastic moduli which possess the index 2 an odd number of times are zero.
The stiffness matrix in the monoclinic axes are thus of the form:
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[Chii Ciizz Ciias 0 Cpmy 0]

Ciizza Co2 Co3z 0 Cpyy O
Ciiza Cpa3 Cazzz 0 Gy O

0 0 0 Cyp3 0 Cppo
Chiat Co31 Gy 0 Gy O
Y 0 0 Cpia 0 Cppl

A monoclinic material is characterised by 13 elastic moduli.

With the two-index notation, for the mirror symmetry planer (M Ix,,x,), the

stiffness matrix is written:

Ch €2 C3 0 Cs 0
Cia Cyp Cy3 0 Gy O
C3 Cp Gy 0 Gy O
0 0 0 Cu 0 Cy
Cis Cs C3s 0 Css 0
(0 0 0 Ci O Ce

1.4.2. Orthotropic material

The orthotropic material studied has the two planes (M |x 3.X 1) and (M Ix,,xz)

as planes of mirror symmetry.
The non-zero components of the axes that change the matrix from

(€)= (xy.x2.%3) to [")= (x1,x5.-x3):

1 0 O
a={0 1 O],
0 0 -1

are:
a“=1, (122=l, 033 =-1.

According to the previous results, the elastic moduli with the index 3 an odd
number of times are zero.

The stiffness matrix in the orthotropic axes has the form:
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[Ciii Cuzz Cnizs O
Cizz Cpp Cp3z O

Cuaz Cyaz Cizz O

0 0 0 0 C3l3l 0
0 0 0 0 0 C1212J

S O O
o O O O

An orthotropic material is characterised by nine elastic moduli.

In addition, it is immediately obvious that the (M |x2,x 3) plane is also a plane of
mirror symmetry.

With the two-index notation, the stiffness and compliance matrices are
respectively equal to:

- -

€y € G3 0 0 0
C Cp C 0 0 O
c=|Cp Cn € 0 0 0
0 0 0 Cy O O
0 0 0 0 Cyx O
(0 0 0 0 0 Cgl
and
Sy S, Sy 0 0 0]
Sz S S 0O 0 O
§=|58 S» S» 0 0 0
O 0 0 S, 0 0

0 0 0 0 S5 0
0 0 0 0 0 Se

The inversion of the matrix C involves the calculation of the inverses of the two
matrices:

CI 1 Cl 2 Cl 3 C44 0 0
a= C|2 C22 C23 and b= 0 C55 0
Cl3 C23 C33 0 Y C66

Putting:
A =deta=C);C5)C33+2C,CpC 5 — C123C22 - C122C33 - C223C1| )
we obtain:
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5, = CynCx;-Ch . Sy = Ci13Cy3 = C12Cx3 S = _1__’
A A Cus

5. =Sl Cis s CiaCys —Ci13Coy . Sy = _1_,

Sy = CuCun —Cir S1s C1yCi3 — CCh s __L

A Ceo
The strains are given as a function of the stresses by the matrix relation:

6,1 [Sy Sz S 0 0 01][o]

& {Su Sn Sn 0 0 0 o,

€3 |_[Sa Sp Sy 0 0 0 o3

e | o o o s, 0 0],

£s 0 0 0 0 S O0|os

6] |0 0 0 0 0 Se)lo]

The elastic compliances S; can be expressed as a function of Young's
moduli E;, the Poisson coefficients v;; and the shear moduli Gj; .

In order to reveal these different values, three simple tensile and three shear tests
are proposed.

— In the case of a simple tensile loading in the direction x,, all the o, are zero
except O,.
The strains &;, given by the constitutive relation are equal to:
£) = 81101 ,E3 = 52101 ,63 = 53101, €4 =€5 =€ =0.
Young’s modulus E, in the x; direction is defined by the relation:
o
& = —L .
E,

T

!
-
<]

v l l ‘L__q

Figure 1.2. Simple tension
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The Poisson coefficients v, and v;; are given by:

£r = —Vppey =212
2 =Vp& = E 0y,
1

and:
V13
€3 = _Vl3£l =—-—=0).
E,
By identification, we obtain:
1 2 Vi3
S=—» $y==—=, Sy =——.
E E

— In the case of a simple tension loading in the x, direction and for a simple
tension in the x5 direction, we obtain:

Vay [ Va3 Vi V3 1
Sip==—7=, Sp=—, Sp=-—=and §;;=- =, Sp3=——", S3=—.

E' R TR 5P B Vg

- In the case of a simple shear in the x, and x; directions, all the O, are zero
except 04 .

A

v o) IU:
L<_J4’

-0y

04

Figure 1.3. Simple shear

The strains £; given by the constitutive relation are equal to:
£4 =S40,
E1 =€) =€3=E5=£4=0.
The shear modulus G,3 is defined by:
o

£4 =—>

Gy’
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hence:
1

Ss4 =——.
Ga3

— In the case of simple shear in the x3; and x, directions, and in the x; and x,

directions, we obtain:

1 1
Sss =—— and S¢q = —.
55 G 66 G

3t 12

~ The compliance matrix is written in the orthotropic axes in the form:

- -

1 _va _va 0 0 0
E, E; Ej
N2 1 7 T 0 0

E, E, E
Y3 vy 1 0 0 0
3

E, E,
0 0 0 L 0 0
G
0 0 0 0 —-l— 0
Gy
0 0 0 0 0 —l—
L G2 |

and from the symmetry properties of the elastic compliances we have the following
relation between the Poisson coefficients and Young’s moduli:

Vi Vi
L =L (no summation).
E E

~ The stiffness matrix is obtained by inversion of the compliance matrix and is
written, in the axes of orthotropy, in the following form:
Ch G2 G3 0 0 0]
Cpp Cp Cyy O 0 0
Ciy Cypy C33 O 0 0
0 0 0 Cyu4 O 0]’
0 0 0 0 Cs5 O
0 0 0 0 0 Ceg |
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with:
1-v,v Vay + VoV Vi + ViV
Cyy = Zs 32 E,, Cpy = 21 Aza 31 E, Cs= 31 Asz 21 E,,
Viy + ViV 1-v,,v Vay + Vv
C21 - 12 A13 32 E2’ C22 = A3| 13 E29 C13 = 32 A3l 12 E2,
Vi3 + VoV Vay Vi3 1-vivy,
Cy ='_—“—'A E;,, Cy =_—A E;, Cy =“"——A E,,
Cys =Gp3, Css =Gy, Ces = Gy,
and:

A=1-2V3Vp3v3 =V vy — VsV —Vy V.

1.4.3. Transversely isotropic material

The transversely isotropic medium proposed here has the (M lxz,x3) plane as
the isotropic plane.

If the (M Ixz,x3) plane is an isotropic plane, the elastic moduli with the same
indices in the two axes (¢)= (x1,%5,X3) and (e‘)= (x:,x;,x;) which are defined
by the following relations:

L]

X, =X
L .

X, =cosax, +sinax;,
L] .

X, =-—sinax; +cosoxy,

have the same value whatever the angle .

_ *
Xy =Xy

Figure 1.4. Isotropic plane

The matrix for changing the axes from (e) to (e‘):
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1 0 0
a=|0 cosa -sina|,
0 sina cosa

has the following non-zero components:

a“ = 1,
Ay =Ayy = cosQ,
ay; =—d,; =sina.

In the particular case where & = %, the non-zero components of a are:

a”=l,a32=l,a23=-—l.

The formula for changing the axes C,;k, =ap;iagiap A5 C pgps leads to:

*
Ciin =apa0ana0Cpgrs =Ciyyy s

pqrs
*
C2222 =ap2042a,2a2C pgrs = Caa33,

*
Ci3zz = ap3aq3ar3a53cpqrx = C2222 ’

»* .

Cnizz =Cyy33, C2323 = Cyn95.
* *

Ciaz =Cy» Ca131 = Cyypy»
* *

C2233 = Ca399 Ci212 =Cy313-

The property C,-:-k, =C ikl provides the relations:
C222 = Ca333: Ciyap = Chy33s Ca131 =Chp2 -

Given these relations, the stiffness matrix:

G Cuzz Cnnz O 0 0
Ciizz Cn2z Cp33 O 0 0
Ciizz Caa Cp;p O 0 0
0 0 0 Cpyy O o |’
0o 0 0 0 Gy O
0 0 0 0 0 Cpp

15
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involves six independent components. With the two-index notation we have:

(C)p Cp Cp O 0 0]

For any angle a we have:
ap =1,
ay; =cos, a3 =-sina,
ajy =sina, aiz; =cosa.

. *
In the formula for changing axes Cyp; =ap3a42a,2a52C g5, the only non-
zero ap; are:

aj, =cosa and aj; =sina,
so we obtain:
Can = c0s* @Coyy +cos’ asina (C2223 +Coyy +Co3py +Cpyy )
...+ cos? asin? a(C2233 +Ca359 + €333+ Cyyz9 + Capp3 + Caoyy )
... + cosasin’ a(C2333 +Cy335 +Cy3py + C3233)+ sin® @ Cyy55.

With Cyp9p =C3333, Cijjj =0 for i# j (no summation), and introducing the
property C ,;k, =C ikt » Ve obtain:

= cadd 2 02 ;4
Cappp =€08" @ Cyyyy +2€08° Xsin tJt(C2233 + 2C2323)+ sin” @ C,y, ,
or
4 . 4 _ 2 i 2
(l—-cos o —sin a)sz =2cos” asin a(sz +2C2323),

2 . 2 4 . 4 _ 2 .2
[(cos a + sin a)z—cos a —sin a]anz =2cos” asin a(C2233+2C2323),

2 2 _ 2 _ -2
2cos” asin” aCyyyy =2c0s” asin a'(sz33 + 2C2323).
This relation is satisfied whatever the angle « if we have:

Caa2z = Ca33 +2C 3,3

The application of the formula for changing axes to other elastic moduli does not
result in new relations.
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The stiffness matrix is written in the transverse isotropy axes in the following
form:

[ Ciiiy Cu22 Cihn 0 0 0 ]
Ciizz C33+2Cpn Cnas 0 0 0
Ch2 Cas Cp33+2Cy3 O 0 0

0 0 0 Cor3 0 0
0 0 0 0 Cpp O
o 0 0 0 0 Cuapl

A transversely isotropic medium is characterised by five independent elastic
moduli. Certain unidirectional fibre composites can be considered as transversely
isotropic materials. With the two-index notation we have:

KoY Ciy Ci2 0 0 0
Clz Cyp3+2Cy Cy3 0 0 o0
Cy, Cy3 Cyp3+2C44 0 0 O

0 0 0 Cy 0 O
0 0 0 0 Ce O
|0 0 0 0 0 Ces|

1.4.4, Isotropic material

In an isotropic material all directions are equivalent.

In axes (¢)=(x,.x,,x3) and (e')=(xz,x3,x|) the C,-;,d and Cyyy components
with the same indices have the same numerical value. The only non-zero terms of
the change in axes matrix:

0 0 1
a=|1 0 0},
010
are:
asy =l, aiy =l, (113:1.
The formula for changing axes:
L]
Cijut = apiagianagCpgs.
with the property:
*
Ciju = Cijkl ,

providing the relations:
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Cit =Ca22, Crnizz =Cp33s Ca323 = C3y31,

C222 =C3333, Ci133 =Ca11s C3131 = Cha12,

C3333 = Crrrs C2233 =Ca311. Cr212 = Ca23,
or:

Cint =Copp = Canys

Cizz = Cy33 = Caanps
Crap3 = (33 =Cyapp-

Putting C,y33 =4 and Cpyp3 = i, the relation Cypypy = Cjp33 +2C,554 gives:

Coypy =A+2u.
In all axes, the stiffness matrix is written in the following form:
[A+2u A A 0 0 0]
A A+2u A 0 0 O
A A A+2u 0 0 O
0 0 0 u 0 0
0 0 0 0O u O
[ O 0 0 0 0 uj

An isotropic material is characterised by the two elastic moduli A and u

termed the Lamé coefficient, or by Young’s modulus E and by Poisson’s coefficient
v . We recall the relations:

VE E
,1:—————, =G=———‘
(1+v)1-2v) o 2(1+v)
E=,u(3/1+2,u) b A
Avu 2A+u)

Determination of the compliance matrix involves the following expressions

A=(A+2u) 428 =322 (A+2u)= 4> (34 +2u),
C(A+2u)P -2 A+p 1

T ap’(a+2u) uBA+2u) E

11

=_,1().+2,u)-,12____ A __v
BT a4 (BA+2u)  2u(BA+2u)  E’
S =L =21V

y7i E
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The compliance matrix is written in all axes as:

L ¥y _ ¥ g 0 0 |
E E E
v v 0 0
E E E
vo_v 1 0 0 0
E E E
o o o 2I** 0
E
o o o o 21*v
E
0 0 0 0 0o 21v
L E d

1.4.5. Influence of temperature and humidity on the constitutive relation of an
orthotropic material

The variation of temperature AT results in a strain field defined by:
g =a,AT (i=1273), € =0 (i=4,56),
or:
Ei = a‘AT (i = 1,2,..-,6), With a4 = as = a6 = 0 .
o; being the coefficient of thermal expansion in the x, direction.

The variation of humidity An, equal to the relative variation of the mass of the

material, results in a strain field defined by:
g =Ban (i=12,3), & =0 (i=456),

g = BAn (i=12,..6), with B, =fs=F,=0.
B; being the coefficient of hygroscopic expansion in the x, direction.

or:

In general the elastic moduli depend on the temperature and the humidity.
When the temperature and humidity variations are small, the elastic moduli can
be assumed to be constant.
Taking into account the strains caused by the stress field due to the variations in
temperature and humidity, the constitutive relation is written as:
€ =8,0;, +a,AT + B,An (i,j=1.23),

y=l
£i = sljoj (i’j = 4v5’6)v

or.
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& =8;0; +AT + AN (i, j=1.2,...6),
a;=0,8,=0 (i=456).
In the orthotropic axes the thermal and hygroscopic effects are revealed as
expansions in the x; direction, and by the absence of angular distortion in the x;
and x, directions.

1.5. Matrix relations for a change of axes

In the direct orthotropic axes (¢)=(X;,X,,X3), the constitutive relations are

written:

6=Ce and €=S7.
Whereas in the off-axis co-ordinates (¢) = (x, ,X;,X3), we have:

6=Ce and €=So.
The matrix for changing axes from () to () is represented by a:

ay 4 a3
a=(ay an an

az dz 4as

1.5.1. Change of axes for stress and strain matrices

The following formula is proposed for the change of axes matrix:

Oij =pigO pq
in matrix form:
c=Mo ,

where M is a (6,6) matrix which will be determined.
The explicit expressions:
011 =ap1aqi0pq,
2 — — —
O11 =a4107) + 41192013 +a11a31013--
— 2 — —
.. +a3,a1021,a310 +a3)a3)023...

— — 2 —
..tas a0y +a3az03; +a310;3,
and:

023 =ap28530 g
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023 = Q1301 +4)3093013 + 033303

et @99013091,A730930 7 + 033033073

et 30303 +A330930 3 +a33033033,

enable the change of axes formula to be written in the matrix form:

[ou] [ &b
On a
O3 | _ ah
On | [anay
O3 ajay,
C12] [apayp

2
aj

‘1222
“%3
axan;
ay3ay

aay

2

asy 2a,,a3,
2

as 2apay,
2

ajy; 2ay3a3,

A3ay;  Axdiy +dynay)
dy3a3;  anday +aydy,

a3 asxp axa tdayay

2aya,,

2aya,

2aya,y
aya)y +apay,
aynay +ap,ay
a; ay; +a;ay

2a,a;,

2aay

2a3ap,
a8y +axay;
aj3ay, +anay,

a)1ay +aya; |

(12

21

The matrix M is made up of four sub-matrices (3,3) whose components can
easily be found by writing the transposed change of axes matrix:

a

aT = alz

ap

a,
az;
(X]

ay
ay

ay;

Decomposing the matrix M in four sub-matrices (3,3):

M
M=[ !
MZ

1 MIZ
i M22

the following rules can be proposed:

|

—The (i, /) component of the sub-matrix My, is equal to the square of the (i, J)

component of a’ .

- The (i, j) component of the sub-matrix M,, is equal to twice the product of

the two other terms of the row i of a” .
- The {i, /) component of the sub-matrix M, is equal to the product of the two

other terms of the column j of a’.
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— The (i, j) component of the sub-matrix M, is equal to the sum of the cross

products of the terms of the matrix obtained by removing row i and column j of a’.

In a similar manner we can develop the formula for changing the axes of the
strains:
Eij = apidgiEpg
in matrix form:
e¢=Ng,
with N being a (6,6) matrix which will be determined.

The explicit expressions:
€11 = aplaqlgpq '
2= = =
€11 = aj161) T ay1a21€52 +a11a31€13-
— 2 = —
- +8210118214021€22 + a21231E23-.-
— — 2 —
..+ a3 ay1€3) +a31a €33 +az s,
and:
€23 =850,
€53 = A1,a13Ey) +aanE); +aanE;..
et ya13821,09093Ey + apayp€y;...

o+ a3013E3; +apanEy +ayants;,

enable the formula for changing axes to be put in the form:

[ £ “ alzl a%l a%, a3 a3,
£n aly a3 a3, anasxy
€3 | _ aty as a3 andy
26y 2a13a;; 2apay 2apay apaxp tapap;
2¢3 2ap3a,; 2apay 2a3a3  apay +anpay
| 2612 | L2a,,a12 2ajay, 2a3ay; ayay +azay
asxyay apay &1 ]
ayay apan 15)
a3 ay; apany €33

30y +aay apay tarnag;y | |26y
aya) +apay  a;a taxay |26y

ayayp tagay apaxn taxag | szlzd
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As for the matrix M, the matrix:

N=[Nu Nn]’
Nau Np

consists of four sub-matrices (3,3) whose components are found as follows:

— The component (i, j) of the sub-matrix Ny, is equal to the square of the
component (i, j) of a” .
— The component (i, j) of the sub-matrix Ny, is equal to the product of the two

other terms of the row i of a” .
— The component (i, j) of the sub-matrix N, is equal to twice the product of

the two other terms of the column jof a” .
~ The component (i, j) of the sub-matrix N,, is equal to the sum of the cross

products of the terms of the matrix obtained by removing row i and column j of a’.

From the matrix a, we construct the matrix M such that ¢ = M@ . Similarly from

a”!, we can construct, in an analogous manner, the matrix M~! such that:

g=M7e.

"'=a” is obtained by exchanging the indices i and j of the

The matrix a~
orthogonal matrix a. The matrix M ™' is obtained by exchanging the indices i and j

of the terms a; which are involved in the matrix M, which results in:

[ 2 2 2
a ap, a3 2apa,3 2ay3a), 2a)\a), W
2 2 2
az a az; 2apay 2apay, 2ay,ay,
2 2 2
ay, as; ajz;y 2ay,a;, 2ayay 2ay,a3,

a3y apay anQy; 4yayy +a3a3, anay +a3a3; Gy dy; +ayay
a31ay; a3d); Gy;a)3 Aypdiy Haznd;;  a3ay +a3 a3 a34); Yanag

(@105, a2y 1305, G150, +a13ay,  a3ay, +ayay;  a,ay a0y, |

The matrix thus obtained is the transposed matrix N. We therefore have the
relation:

MIt=NT,

An analogous calculation, performed on the N matrix gives the equation:
N'=M".



24  Analysis of composite structures

1.5.2, Change of axes for stiffness and compliance matrices

We have just obtained the following relations:
e=Mo [1], a=N"e [2],
e=Ng [3], e=M"¢ [4].

In addition, the constitutive relations in the othotropic axes and off-axis are written:
=Cs (5], §=Se [T,
6=Ce¢ [6], e=S¢ ([8]

From relations [1], [5] and [4], we obtain:
6=Md=MCe=MCM'¢.

Identification with [6] gives:
Cc=MCM’".

From relations [3], [7] and (2], we obtain in a similar way:
e=Ne=NSo=NSN'o.

Identification with [8] leads to:
S=NSNT.

Multiplication of the left hand part of C=MCM/7 by N7 and the right hand part
by N gives:

N'CN=N"MCM'N,
or:

C=N"CN.

Multiplication of the members of S =NSN” by M” on the left and by M on the
right gives the equation:

M'SM =M'NSN'M,
hence:

S=M"SM.



Chapter 2

Orthotropic layer behaviour

2.1. Introduction

The expressions developed in the previous chapter for the change of axes will
now be applied to an orthotropic ply of any orientation in a composite. In the plate
theories which will be presented the assumption is made that the normal stress in the
X, direction is zero. This hypothesis leads to the introduction of column matrices of

stresses and strains with only five terms. From these we will deduce the formulae for
changing co-ordinates and the constitutive relations which will be used in the plate
theories.

2.2, Stiffness and compliance matrices in orthotropic co-ordinates

The orthoptropic layer studied here has the co-ordinate axes (0|X,,X2,x3 ) The
layer of thickness A is limited by the two planes perpendicular to (0|x 3) which are
defined by x; =-’2’- and x3 = --'2'-.

sz

Figure 2.1. Orthotropic axes

In the following, all the quantities defined in the orthotropic axes will be
overscored.
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In the orthotropic axes (€)= (X,,X,,x 3) the constitutive relation is expressed

as.
£=S:9,

and in the matrix form as
§=Sg0,

or:
5] [S) Si2 S35 0 0 o0][d]
& | (S12 Sxm -§23 0 0 0 (o,
| |83 S5 S35 0 0 0 |5
gl |0 o o 54 0 o]&
Zs 0 0 0 0 85 0|7
8] [0 0 0 0 0 S)]|5]

The compliance matrix can be written in terms of Young's moduli E;, the
Poisson coefficients v;; and the shear moduli Gj; in the form:

[ 1 vy v 0 0 0 ]
Ve L Y g o
E, E, E
Yo Ys L 40 g
s.| B E E ,
0 0 o 4 o 0
Gy
o o o0 o0 - o
Gy
0 0 0 0 0 L
i Gy, |
with:
Vi Vi
E” =—2 (no summation).

i 5
If the plane (Xz,x3) is a plane of isotropy, then:

or;
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A unidirectional layer in which the fibres are parallel to X, can, for a first
approximation, be considered as transversely isotropic.
The relation € = S@ is then written as:

& | [Su Si2 Stz 0 0 0|J
&l |52 Spn+iSu 5x» 0 0 0jo,
B | Sy, Sy Sp+iS4 0 0 0 |15,
& 0 0 0 Sy 0 005,
Es 0 0 0 0 Se¢ 0|55
[&| | O 0 0 0 0 Sg|lT6]
Similarly in the orthotropic axes (Z") the constitutive relation:

§=C:E,

can be written in matrix form as:
@ =CEg,

or:
(&) ] —f__n _E_-lz -5—13 0 0 0]§]
| [Ciz2 Cxn €3 0 0 0 115
53| _|Ci3 €3 C;3 0 0 0|5
Fsl |0 0 0 Cy 0 0 |&
Ts 0 0 0 0 Css O |5
6] |0 0 0 0 0 Cell%s)

In the particular case of the transversely isotropic unidirectional layer we then
have:

(7] [Ch  Cq Cix o 0 o]&]
7| |G, C,+2Cy Cn 0 0 0§
&y | _|Cr Cas Cy+2Cy 0 0 O || 5
g, 0 0 0 Cu 0 0|5
s 0 0 0 0 Ce O | &
5] | O 0 0 0 0 Ces |l 5.

2.3. Conventional matrices for changing axes

The angle @ between the vector x, of the off-axes (e)=(x,,X;,X5) and the
vector X, of the orthotropic axes (¢)=(X,,X;,x3), is measured on x.
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Figure 2.2. Off-axis directions

The matrix which enables us to go from the orthotropic directions (£) to the off-
axis directions (e):

cosa sina 0
a=|-sina cosa O],
0 0 1

is written in the form:

-

c s 0
a=|{-s5s ¢ 0f,
LO 01

with:
c=cosa and s =sinx.

From the transposed matrix of the axis change

c -5 0
a’ =|s ¢ 0],
0 0 1
we obtain the following two matrices M and N:

[(¢2 52 0 0 0 -2 | [ (2 s 0 0 0 -—cs |
s2 ¢ 0 0 0 2 52 ¢ 0 0 0 cs
M= 0O 0 1 0 O 0 N= 0 0 1 0 0 0
0 0 0 ¢ = 0 0 0 0 ¢ = 0
0 0 0 -5 ¢ 0 0 0 0 -5 ¢ 0
lcs —es 0 0 0 ¢ —sz_ Lch -2¢s 0 0 O c2—s2_
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2.4, Stress and strain matrices

The formulae for changing the directions for e =Mg& and 6 = NTs can be
written in the following forms:

_0'1— (62 s2 0 0 0 =2 “5'—1-
P! s2 ¢2 0 0 0 2 |52
o3 (o 0 1 00 o |57
o4 [0 0 0 ¢ s 0 |&
Os 0 0 0 -5 ¢ 0 g
(06] [es —cs 0 0 O cz—sz_La"(,_
and:
-El- Fcz s2. 00 0 2cs TG']—
0, s2 200 0 -2s |02
63| {0 0 10 O 0 |oy
s |0 0 0c -s o0 |ogf
Os 0 0 0 c 0 o5
106] |-cs es 00 O - s2_ K3

similarly, the formulae for changing the strain axes for strains € = N and E§=M'e
can be written:

Fé‘l— c? s2 0 0 0 -cs & |
1 1s2 2 0 0 0 o ||&
&1 10 0 t 0 0 O &
&4 1o 0 0 ¢ s 0 & |’
&y 0 0 0 -5 ¢ 0 Es
66| |2cs -2cs 0 0 0 c? -s2_ L €6 |
and:
&) [ 2 2 00 o es &
& s2 2 00 o -cs || €2
&l ] o 0 10 0 0 |I&
Bl o 0 0c¢-s 0 |e&
&5 0 0 0 s ¢ 0 Es
6 | [~2¢s 2¢s 0 0 O c? —s2_ | €6 |
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In the present case it may be noted that we go from M to its inverse NT by
replacing the angle & by —a in M. One can use the same transformation to go from

N to its inverse M7 .

2.5. Stiffness matrix in directions away from the orthetropic axes

The stiffness matrix C in the (e) space is given by the relationship:

C=MCMT,
which involves the matrix:

[ 2 2

c s 0

s2 ¢2 0

M= 0 0 1
o o0 0

0O 0 O

les —es O

a o o O

0 -2cs
0 2cs

0 0

s 0

c 0

0 c? —szd

—al E‘—12 513 0 0 0
Chb C; Cp3 0 0 O
—CMT= C_‘13 623 E:—33 _0 0 0
0 0 0 Cy4 O O
0 0 0 0 Cs5 O
(0 0 0 0 0 Cglj
that is:
[c2C,, +5%C,, s5%C), +c*Cp, Ty
c2C,, +5°C5y 5*Cpy +c*Cy, Cpy
oM o | Cia+s’Cyy s°C3+c’Cyy Cyy
0 0 0
0 0 0
—2¢5Ce 2¢5Ceq 0

s 00
2 ¢ 00
0 10
0 0 ¢
0 0 s
cs 2¢s 0 0
0 0
0 0
0 0
Cy —5Cae
sCss  ¢Css
0 0

0 cs
0 -cs
0 0
-5 0
c 0
0 ¢ —sZJ
cs(E“ "Elz)
Cs(§2 ‘§22
Cs(cla ~Cy
0
0
= 52)Cy

After multiplying the left-hand side by M and identification, one obtains:
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~ the components of the first column of C:
Cy, =c*Cy +5°Cp + 2c2s2((,_‘-,2 +2566),
Cyy = 252(Cyy + Cpp —4Cs )+ (c‘ + s4)5|2 ,
C31 =c*Ciy +5°Cp,
Cy =0,
Cs1 =0,
Cey = CS[CZEH -52Cy ‘(C2 "-‘2)(612 +2666)]'

— the components of the second column of C:
Cp =Cz~‘2(6u +Cp "4566)* (04 +54)Elz =Cyp
Cyy = s4C,y +c*Cpy +2¢2%5? (-C_‘,z +2C¢ ),
Cyy =5°Cj3 +¢’Cp,
Cy =0,
Cs; =0,
Cer = cs[szf‘.“ - czfn + (c2 -5? ) (az + 2566)],

— the components of the third column of C:
Ci3 =c’Ciy+57Cp = Cy),

- 2 25
Cpy=5°Ci3+c°Cyy =Cyy,

Cyy =Cy,
Cy3 =0,
Cs3 =0,

Ces = Cs(En - 623 )’

— the components of the fourth column of C:

Ciu =0,
C24 = 0,
C3 =0,
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— the components of the fifth column of C:

Cl5 = 0,
€y =0,
Gy =0,

C45 = CS(ESS _644)——' C54 ’
CSS = s2644 +C2655,
Ces =0,
— the components of the sixth column of C:
C16 = 65[626“ —32622 —(Cz —Sz)(—c—]z +2E66)]= C6l’
C26 = CS[SZE” —CZEZZ + (C2 —82)(612 +2€66):|= C62’

Ci6 = CS(EB "623)= Ce3,
Ca6 =0,
Cs6 =0,

C66 = CZSZ(E“ +E22 —2€|2)+(62 ‘32)2666'

The constitutive relation ¢ = Ce can then be written as:

q

o]l [Ch Cz2 C3 0 0 Cglle
o) |Gz Cpp Co3 0 0 Cyple:
03| |Ci3 €3 C33 0 0 Cy€3
oal |0 0 0 Cu Cis 0 ey
os| |0 0 0 Cu Cs5 0 | e
[06] [Ci6 C6 C6 O 0O C66_L_E6J

Note that for a =0 or a = 12‘— » the coefficients Cyg,Cyg,C3¢ and Cys5 are equal

to zero ( orthotropic materials whose directions of orthotropy coincide with the co-
ordinate axes).

2.6. Compliance matrix in directions away from the orthotropic axes

The compliance matrix S in (e) is given by the relationship:
S=NSNT,

which involves the matrix:
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(2 52 0 0 0 -cs
s2 ¢ 0 0 0 cs
N= 0 0O 1 0 0 0
0 0 0 ¢ = 0
0 0 0 -s ¢ 0
(2c5 ~2cs 0 0 O c? —s2_
The product of these two matrices is:
FEH EIZ §|3 0 0 0--(,'2 52 00 0 2cs ]
S-IZ 522 §23 0 0 0 52 C2 00 0 ~2cs
SNT < Sy Sy Sy 0 0 0o 0100 0
0O 0 0 S4 O O 0 0 0 ¢ -5 0
0 0 0 0 855 00 0035 ¢ 0
[0 0 0 0 0 Sefl-cs s 00 0 c?-s?]
that is:
—C2§||+s2§|2 52§“+(‘2§lz §|3 0 0 2CS(§““§|2)—
C2§l2 +52§22 52512 +C2§22 523 0 0 2CS(§|2—§22)
SNT = 834578y S8 +c8y Sy 0 o 2e5(313 - 553)
0 0 0 CS44 _SSM 0
0 0 0 sS4 cSss 0
L —cs§66 cs§66 0 0 0 (c2 —s2)§66 |

After multiplication of the left-hand side by N and identification, one obtains:

~ the components of the first column of S:
Sy =c*S, +5%5,, +C2s2(2§,2 + 3’.66)
Sy = czs2(§” +85 —566)+(c4 +s4)§lz,
83 = cz§|3 + s2§23,
Sa =0,
S5 =0,
Se = cs[ZCz:S_“ —252§22 —(02 -sz)(2§n + :5‘_66)],
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— the components of the second column of S:

Spp = czs2(§“ +§22 —§66)+ (c“ +s4)§,2 =85,

522 =S4§” +C4§22 +C2S2(2u§12 +§66)'

S5, =0,
Se2 = cs[2s2§“ - 202522 + (c2 - sz)(2§12 + 566 )],

— the components of the third column of S:

Sp3 = 02513 +5°8y = S31

— 2T 29 _
Sy3=5"S;3+¢°8p =53,

S33 =§33'
S43 =0,
S53 =O,

Se3 = 2cs(§,3 "§23)

— the components of the fourth column of S:

S|4 =0,
S =0,
Sy =0,

S“ =C2§44 +52§55,
Ssq =Cs(§55 ‘544)
564 =0,

— the components of the fifth column of S:

Sis =0,
st =0,
835 =0,

Sas = cs(§55 —§M)= Ssas
s55 = 32544 +C2§55,
Ses =0,
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— the components of the sixth column of S:

S = cs[2c2§“ -25%8y —(c2 —sz)(2§,2 +§66)]= Se1s
Sy = cs[2s2§“ —2c2§22 + (c2 —32)(23'—,2 + 8¢ )]= Se2:
36 = 2C5(§13 - §2a)= Se3

Si6=0,
Ss6 =0,

Ses =4c2s2(§“ +85 —2§lz)+ (c2 —32)2566.

The constitutive relation € = Se can then be written as:

~

e] [Su Sz Si3 0 0 Sefo
€] [Si2 S S 0 0 Sy|lor
e3|_|Si3 S;3 S, 0 0 Sy o3
£4 o 0 0 S4 Sa5 0 |log
Es 0 0 0 Ss5 Sss 0 {los
1€6] [Si6 S S36 0 0 Ses| 6|

As for the stiffnesses, note that for the compliances Sy, 526,536 and Sys are

zero fora =0 or a = —’21 (orthotropic axes coincide with the co-ordinate axes).

2.7. Orthotropic layer loaded in tension and in shegr
2.7.1. Simple tension

For the case of a layer loaded in simple tension in the x, direction, the only non-

zero component of the matrix is o .

Figure 2.3. Tension off-axis
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The constitutive relation € =Sa gives:

£ = 81,0y,
£y = 8201,
€3 = 8130,
£, =0,
£5=0,
£g = 8160]-

The layer undergoes three unit extensions in the x;, x, and X, directions as
well as an angular distortion in the two orthogonal directions x,; and x,.

For a =0 (fibres parallel to x,) or @ =12'- (fibres parallel to x,), the elastic

compliance S|4 is zero. The angular distortion is then zero.

The strains obtained are shown in the figures below.

A X;

/
/
o
/

-

>
/ xl

Figure 2.4. Strains when S} #0

A Xz

Figure 2.5, Strains when S5 =0
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2.7.2. Simple shear

When the layer described previously is loaded in simple shear in the two
directions x, and x,, the only component which is not zero in the stress matrix

iSG'6 .

Figure 2.6. Shear in off-axis directions

Given the constitutive relation € = Se, we have:
£ =51606, €, =0,
€y =850¢, E5=0,
€y =8306, € =360

The layer undergoes unit extensions in the x,, X, and xj directions, and an
angular distortion in the two directions x; and x,.
For =0 or a = —’Zi the elastic compliances S, Si¢ and S;¢ are zero. The

linear expansions are therefore zero.

The corresponding strains are represented by the following figures.

AX;

L

Figure 2.7. Strains when S;q 20, Sy 20,535 20
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/ol S|

Figure 2.8. Strains when S16 = S26 = S36 =0

2.8. Reduced stiffness matrix for the orthotropic layer
In this paragraph, we will describe the Qand Q of an orthotropic layer with

through thickness normal stress o3 zero. These matrices are introduced into the
theorems of Kirchhoff-Love and Reissner-Mindlin for multi-layer materials.

2.8.1. Reduced stiffness matrix Q in orthotropic co-ordinates

In the orthotropic co-ordinates (£), the constitutive relation @ = Cg is written
as:

(] [Ch G2 G 0 0 o0][§]
] |C1z2 Cp C;3 0 0 0 |&
03 = Cz3 Cy C33 O 0 0 || &
Fal 1o o o0 Gy 0 o0&
s 0 0 0 0 Css O |5&s

G6) O 0 0 0 0 Ce ]

When:
T; = Cj3€, + CyE, + Cy3E; = 0, the expansion £3 is equal to:
. __ 51351_1‘ Cpés
Cy '
The normal stresses:
T, = C &, +CpE, + Cpafy,

0, = Cp€ + 0k, + Oy,
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can then be expressed only in terms of £, and £, , using:

—2 —_— =
—l = E“ _g}_ El + Cl2 - Cl..g.CZJ 6—'2,
Cyi C33
CisC c3 )

By putting:
— ~ Ch & _= _CisCy
on=Ch-== Qn=Cr-——",
Cs3 Cs
T - -
Q22=C22—‘C—,—, Q66 = Ces»
_ - 3 _ _
Q44 =Cy4, Qss = Css,

the constitutive relation can be expressed in one of the following two forms:

(5] [0y @2 0 0 o |&]

2| (@2 @2 O O 0|5

Tel=| 0 0 Qg O 0 [[5]|

T4 0 0 0 Qu 0 ||&

3] [0 0 0 0 Qs &)
or.

AREIEZEEE KR C AN

A HNR

(5] [0 0 Q|5 * el
with:

Q;=Cy- C%Cn (1,j=12),

kx]
(-2-.‘;' = EU (i'j = 4,5,6).

In the plate theorems of Kirchhoff-Love and Reissner-Mindlin we keep the
notations @ and & to represent the matrix columns of stress components:

6:1'52’66’&_4'65 , Or 51’52’56 N
and strains:

51’52'6—‘6’6_‘4’55’ or 6—'1,52,56,
which have just been introduced, and designate by Q the corresponding reduced
stiffness matrix.



40  Analysis of composite structures

2.8.2. Reduced stiffness matrix Q in the co-ordinates away from the orthotropic
axes

The change from the orthotropic axes () to the off-axis co-ordinates (¢) and its
transposition are written as:

c s 0 c -5 0
a=|-s ¢ Olanda” =|s ¢ 0.
0 01 0 0 1

The matrix axes change with respect to the stresses o =M@, involving the
matrix:

2 2

c s 0 0 0 -2cs
s2 ¢2 0 0 0 2
M = 0O o0 t 0 o0 0 ,
0 0 0 ¢ s 0
0 0 0 -5 ¢ 0
lcs —¢s 0 0 O c? —-32_

can be written for this case in the form:

(o, ] (2 2 —2¢s 0 O] 7, |

o, s> 2 2cs 0 0|0,

O¢|=lcs -cs ¢*-s> 0 0|5,

g, 0 0 0 c 5|04

LGS_ 0 0 0 -5 | Os |

or:

[0, ] (2 2 —2cs o f —

2 2T s o
2 _ 2l = Os -5 €} 0Os

| O | Lcs —-cs ¢” -5 || Og

keeping the notation M for the two new conventional change of axes matrices
associated with the two matrices of the stress components ,,0,,0¢,54,05 and

0,,03,0¢:
6¢=Mego.

The formula for changing the axes with respect to the strain matrices € =Ng,
with:



2 s2 0 0 O
s2 ¢ 0 0 0
N= 0 0 1 0 O
0 0 0 ¢ s
0 0 0 -5 ¢
| 2¢s -2c¢s 0 0 O
can be written as:
rb'l- —cz 52 -Cs
&y s? c? cs
€ |=|2cs —-2cs c?-s?
€, 0 0 0
1€s] | O 0 0
or:
(e, |2 s? ~cs
g =] s ? cs
L €6 L2cs -2cs % -5?
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—-Ccs ]
Ccs
0
0 ,
0
(‘2—52
0 off&]
0 0| &
0 0} ]|
Cc s E4
-3 C__E5__
o [ )
E: "olEs -5 cjl E |

So, by designating as N the new conventional axis change matrix:

e=NE.

The formula for changing axes, established for the stiffness matrices
C = MCMY7, leads to the relation:

Q=MQM".

Given the calculations already performed for the change of axes the reduced

stiffness matrix Q is of the form:

—Qn Qi Qs
Qi @ O
Q=101 Qi Des
0 0 0

] 0 0 0

with:

0

0

0
Qu
Qus

=

Qss
Oss
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o= C4_Q—n +5°0n +2C252(§12 +2§66)'
0y =5'0) +¢*0y + 20252(612 +2046 )'
0y, =c*s*(0y, + O _4666)+ (C4 +54)612'
Qs =c2s2(§“ +0xp ‘2612)+ ("2 '52)1666’
Ois = sk?0us - - 2 - 5*)Bia + 20}
Oz = cs[szan -0y + (6‘2 -5’ )(612 +204 )],
Qu= 02544 + s2§55,
Qss = 5°Quq +¢*0ss,
Qs = 05(655 -Qu )
It should be noted that the reduced stiffnesses Q,4, Qs and Q45 are zero for

a=0or a= —’25— These relationships can be written in matrix form:

or:

1
J

(0] | & s 2c%s? 4c?s? 0 0

0 s c* 2¢%s? 4c?s? 0 O ir— -
O c2s?  5? ct +5* —4c25? 0 0 g“
Qes c2s? %5t —2c%s? (02 —sz)z 0 0 gzz
Qi |=| s —¢s® —cs(c2 - sz) —2c‘s(c2 —sz) 0o o gnz ,
Q2 ces? =3 cs(c2 —-sz) 2cs(c2 —sz) 0 0 -Q-%
Ous 0 o0 0 0 RERY
Os| | 0 o0 0 0 @2 o2 |19
LQ45_ L 0 0 0 0 —cs ¢S

onl [ ¢ st 2¢%s? 4c?s?

Qn s4 ¢t 2c%s? 4c25? -an

Qi |_ cs? ¢%s? ct st —4c%s? 02

Oss Te2s? 52 -2c%s? (c2 —s2)2 Ou |

Oi6 s —cs? —cs(c2 - sz) - 2cs(c2 —sz) _Q_“

Q2] | cs® -cs cs(c2 —sz) 2CS(C2 - s2) ]

‘Q44- [ P Ll

Qss | = s2 c? g“:l.

[Q4s ) |—cs cs Oss
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2.9. Reduced compliance matrices of an orthotropic layer

Having presented the reduced stiffness matrix Q we will now derive the

reduced compliance matrices P and P for an orthotropic layer where the through-
thickness normal stress o3 is zero.

2.9.1. Reduced compliance matrix in orthotropic co-ordinates

In the orthotropic co-ordinates we have:

(51 [Py B2 0 0 o]
| |Po Pp 0 0 0|5
E6 =l 0 0 P66 0 0 66 ’
&4 0 0 0 Py 0|0y
&) [0 0 0 O Pss || O |
with:
Py == 02 Py =- _Q12
Q11Q22 Q12 011922 - Q12
_ 0, _ 1
Pzz =:—“—— 66 = ==
01922 - Q12 66
_ 1 -1
P44 ==, PSS - ——
Qa4 55

2.9.2. Reduced compliance matrix P in the direction away from the orthotropic axes

The formula for the change in co-ordinates for the reduced compliance matrix is
written as:

P=NPN’.

Given the preceding calculations for changing axes the reduced compliance
matrix P may be written as:

(P, Py P 0 O]
P Pp Py 0 O
P=|Pg Pg P 0 0|
0 0 0 Py Py
| 0 0 0 Py Py
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with:

I)“ = C4.ﬁl‘| +541322 +C2s2(2Flz + PT66),
Pp=s'P+c*Py +0232(2I_’12 +I—)66)’

A, =02s2(1_’11 +1—’22 "f_’ee)+(c4 +54)f—’12v

)+(c -5 )ZP«,,

)2P12+P66)]

B =CS[ZC Py -25"Py ~

P26=CS[252E1—2C2P22 (Cz

25 L 2%
Fyy = c Py + 5 Pss,

Pss =5 Pyy +¢* Py,
Pys =C5(1—)55 _ﬁu)-

It may be noted that the terms Py, Py and Py5 are zero for @ =0 or a

-

These relationships can be presented in the form:

or:

[Py,
Py
5!
Pes
P
Py
Pyy
Pss
Pys |

r

C4,
s4

252
4c2s?
2¢3s

2cs?

0

=]

c
c2s?
4c?s?
—2¢s3
-2c%s
0
0

0

4

s
c
252

4c2s?

—2¢s3

-2¢3s

2

y P,
[P
cs 55

|

2¢252

2c%s?
st
—8c2s2

- 2c's(02 - 52

2c‘s(c2 —sz)

0
0
0

2¢25?
2c%52
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Chapter 3

Elastic constants of
a unidirectional composite

3.1. Introduction

When an orthotropic material is in a plane stress state the relationships between
the stresses and strains involve the four elastic constants E;, E,, vi and Gj,. In

addition to these coefficients, when considering thermo-elasticity the coefficients of
thermal expansion a; and a, are also required.

In this chapter we are able to obtain the characteristics of a unidirectional
composite material as a function of the characteristics of the fibres and the matrix.

3.2. Density p

Designating as:
- M, My, M, the masses of the composite, fibres and matrix,

- P, O, P the densities of the composite, fibres and matrix,
—V, Vp, Yy the volumes of the composite, fibres and matrix,

the mass of the composite is:

M=M,+M,,
or:
V=PVt Py
Then:
v
1% = 2L the volume fraction of the fibres,
v

v . .
V,, =2 the volume fraction of the matrix,
v

and noting that V¢ +V,, =1, the density of the composite is:
P=Vpps+V, 0, =Vips + (1 "Vf) m .
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3.3. Longitudinal Young’s modulus E;

In the theory below we assume that, as shown in the figure, the fibres are
concentrated in the lower part of the composite and that the matrix occupies the
upper part. The composite is subjected to the longitudinal tensile force F.

Tx;

-FX, matrix X,

fibres

Figure 3.1. Longitudinal tension

In the model adopted here, we suppose that the longitudinal extensions resulting
from the tensile force F are the same in the composite, fibres and matrix, which can
be presented as:

£ = slf =€ .
We designate as:
- E £ E,, the Young’s moduli of the fibres and matrix,
- S, Sg, Sy the surface areas, orthogonal to X, , occupied by the composite,
fibres and matrix.

We note that, designating by ! the length of the composite:

and that:
N
Vi =—2.
A
The tensile stresses in the fibres and in the matrix are equal to:
Ulf = Ef £y,
0'1"' = Emglv

and the tensile force is given by:
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f m
F=Ss0] +S,01 .

The tensile stress ] in the composite is:

F
o, =E-=Vf0']f+VmO’1m =(VfEf +VmEm)€l'

The longitudinal Young’s modulus E; of the composite is defined by:
E =2,
£
and thus we obtain the relationship:
E, =V E; +V,E,, =V,E, +(1-V,)E,,,
which provides a satisfactory value of E|. It should be noted that, for cases where
E; >> E,, , then as a first approximation:

E, =V/Ej.

3.4. Poisson’s coefficient v,

With the loading described above the transverse extensions of the fibres and the
matrix are equal to:

£2f =-V e,
£ = -V,E,
where v and v, represent Poisson’s coefficients of the fibres and the matrix.
The change in thickness of the laminate is given by:
Ae=Ae; +Ae,, = efezf +e,E7,
where e, and e, are the thicknesses of the fibre and matrix parts.

Designating by b the width of the composite, it may be noted that:

v e bl e
V =_[..__._f.._—__f_’
v ebl e
and:
v, =<m
e

The transverse expansion of the composite is:

A
€, =—5=er{ +V,€7 =—(V,vf +V,,,v,,,)e,.
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Poisson’s coefficient v, of the composite is defined by:

)
Vig=——".

£y
From this we obtain the expression:

V12 =Vfo +vam =Vfo +(1—Vf )Vm,

which provides Poisson’s coefficient vy, .

3.5. Transverse Young’s modulus E,

The composite is subjected to the transverse tensile force F.

1x;

X |

matrix X,

=

Figure 3.2. Transverse tension

fibres

With the same model it is assumed that the transverse strains in the fibres and in
the matrix are equal:

=gl =™

The transverse extensions in the fibres and in the matrix are:

f_92
£ =<
2 s
Ey
£mz_c"Z
E,,

The thickness variation is equal to:
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Ae=Aey +Ae, =ered +enel,
f m = €fe2

the transverse extension of the composite is:

E, E

m

Vi
£, =%=erzf +V,€7 =(—f—+—lJaz.

The transverse Young's modulus E, of the composite is defined by the

expression:
1 _&
E, op
from which we obtain:
.L. == ﬁ_ + &"_ )
E, Ef E,

The transverse Young’s modulus E; is therefore equal to:

£, = EfE, - E, ‘
VimEg +ViEm +vf£'i
)
or:
E,= Em

1-v, 1= Em
Eg

The accuracy of the value of E, obtained by this expression is poorer than that
for E;. When E >> E,, , the expression for E; becomes:
- _Em
1-v, '

From the calculations above it may be noted that the two Young's moduli E,

E,

and E, are given by expressions analogous to those encountered when the
equivalent stiffnesses of two springs in parallel and in series are calculated.

3.6. Shear modulus G,

The composite is subjected to shear loading o¢ as shown on the following
figure:
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AX,
-a- 7 €6
6 .
matrix
. ] em
matrix X, 6
fibres f
fibres €6

Figure 3.3. Shear

Again with the same model, it is assumed that the shear stresses in the fibres and
in the matrix are equal:

e —m
0'6—0'6 =0¢ .

The angular distortions in the fibres and in the matrix are given by:

f _96
g =——,
Gy
em = 96
Gp

where G and G, represent the shear moduli of the fibres and the matrix.

The displacement in the X, direction of the upper plane of the composite with
respect to the lower plane is:

U=us+upy.
Given the displacements due to the fibre and matrix parts:
ur=e f£6f ,
Upy = EnE6
we obtain:
u= efeﬁf +e,E¢ =[(e;—ff+(e;—";}a6 .

The angular distortion of the composite is:

et (Y Vn |,
*"e |G, G, | %
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the Gj, of the composite is given by:

1 _%
G2 0g
s0:
_l__=V_f+V_'"_
Gy Gy Gy,
The shear modulus is:
Gme G
Glz= = G ,
Vme +Vme V. +V YUm
m f G
f
or:
G, = O

Gy

Once again the accuracy of G|; is less than that for E;. When G r>>G,,

have, as a first approximation:

m

Gy = .
12 l—Vf

3.7. Longitudinal thermal expansion coefficient o)

51

we

The composite is not subjected to any external force but experiences a

temperature variation of:
AT =T - TO .

In the model considered here we assume that the longitudinal extensions of the

fibres and of the matrix are identical, that is:

=gf —gm
£ =€ =¢ .

Only the longitudinal stresses due to the difference between the thermal

coefficients of the fibres, @, and of the matrix a,, are not zero.

The longitudinal expansions of the fibres and the matrix are equal to:
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The longitudinal stresses in the fibres and the matrix are:
of =E, (51 —afAT),
o =E, (e, - a,,,AT).
The resultant force of the tensile loads:
F=alfo +01"S,,,
being zero, we obtain the expression:
Vial +V,of" =0.

Introducing in this expression the stress values alf and og|", we obtain:

V,E, (e, -a,AT)+V,E, (e -a,AT)=0,

then:
(V,E; +V,E,)e =V ,a,E, +V,@,E, AT .

The coefficient of longitudinal thermal expansion a; of the composite being
defined by:
£
oy =—,
AT
we obtain the following expression:

_ V0 4V,0,En  Via E, +(1-V, ), E

m>~m

V,E; +V,E,, V,E, +(1-V,)E,

2]

3.8. Transverse expansion coefficient o,

The transverse expansions of the fibres and matrix are equal to:
v
ef =-—Lof +a,aT,
E,
m _ Ve _m
£y, =——0, +,AT,
m
replacing the longitudinal stresses by their values determined in the previous
paragraph we obtain:

£y =—V¢ (51 —afAT)+ apAT,

ey = v, (e - @,AT)+a,AT.
The thickness variation is given by:

Ae = Aes + Aey, =ef€2f +en€y ,
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The transverse expansion of the composite is:
Ae
€y =—= fozf +Vm€£n .
e

Introducing the values of £2f and 85" , we obtain:

&= —(vaf +V,V,. )e, +(Vfafvf +V,. 0.V )AT+(Vfa, +Vv,a, )AT.

As:
VearEs +VyanE,
s fv;E; by
we have:
e, = {_ (vaf +V.Vp )(VfafEf +V,.a,E, )
V,E; +V,E,

(Vv +V@Vn )V, E; +V,E,,)
VEL VL AT +(V,a; +V,e, AT,

oot

or:

€ = vam(VmE]_VfEm)(am_af)
2 V,E; +V,E,

+Vea, +V,a, }AT .

The coefficient of transverse thermal expansion «, of the composite given by:

=5
27 AT’
is equal to:
v,Ef—-Vv:E
o, =Vsas +Vmam+—l—l—-f—'"(am—af),
Ey +Em
Ve Vg
or:
v,E, -V E
a2=Vfaf+(l—Vf)am+————-—"'Ef fE"'(am—a.,).
__.___f___+ m
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Chapter 4

Failure criteria

4.1. Introduction

Having analysed the stresses and strains in composite materials we will now
present the main failure criteria for these materials.

The degradation of the composites is characterised by one of the following local
modes:
— damage dominated by fibre degradation (rupture, microbuckling, etc.),
~ damage dominated by matrix degradation (crazing, etc.),
— damage dominated by singularities at the fibre-matrix interface (crack
propagation, delamination, etc.).

Composite failure is a gradual process, as the damage in a layer results in a
redistribution of stresses in the laminate.

4.2. Maximum stress theory

Failure of the composite occurs as soon as the stress field no longer satisfies the
following relationships:
O\ <01 <Gy —04, <04 <Ty,,
0,,. <0, <0,,, —-05, <05<0s,,
63N<EJ <53”, —66,<5'-6 <¢76r,

in which &;,, (i =1,2,3) represents the failure stresses in tension, &;,. (i =1,2.3) the
failure stresses in compression, and &;, (i =4.5,6) the shear failure stresses.

In these expressions the failure stresses in tension and shear are positive, those in
compression are negative.

When the stress state in the composite is expressed as a function of a single
parameter which depends on the external loads, it is convenient to introduce for each
expression the loading coefficient F;, associated with the stress state leading to

failure.
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This stress state defined by:
E; = F;;0; (no summation),
leads to the loading coefficients:

O; O; .
Fi = r g =2 (12123,

i i

according to whether the normal stresses &; are positive or negative and:

Fig=——or F; = _Tir (i =4’5’6)'

i i
according to whether the shear stresses &; are positive or negative.

Failure occurs for the smallest value of the loading coefficients F;, , calculated

above, according to the failure mode given by the index i. For i = 1, 2 or 3, failure
occurs in tension or compression in the directions X, X, or X3, whereas for i =4,

5 or 6, failure occurs by shearing in the planes (X,,X;), (X;,X,) or (X,.X,).

4.3, Maximum strain theory

Failure of the composite occurs as soon as the strain field no longer satisfies the
following relationships:

Eipe <E <E |y, —E4 <E4 <&y,
Eyre <€) <Epy, —Es5, <E<Es,
E3rc<6_‘3<63n' _66r<£6<E6r'

in which £, (i =1,2,3) represent the failure strains in tension, Eipe (i=1,2,3) the
failure strains in compression and Z;, (i =4,5,6) the shear failure strains.

The failure strains in tension and shear are positive, whereas in compression they
are negative.

Just as for the maximum stress theory, if the strain state only depends on one
parameter we can define for each expression the maximum strain coefficient F;,

which is associated with the strain state leading to failure.

This strain state:

E, = F,.E; (no summation),
gives the loading coefficients:
E; Eire .
Fip == or Fj, =€ (i=1,2,3),

&; E;
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£ E
Fe =2 or F, =—2 (1=456),

& €
with, as for the maximum stress theory, the same remarks concerning the signs of
the sign convention and the failure modes.

4.4. Polynomial failure criteria

Composite failure occurs when the stress field no longer satisfies the expression:

F,G; + F;6,6; + F3.0,5 3 +...<1 G jok=1,2,..,6).

The coefficients F;, Fj; and Fy, ... in this criterion are found experimentally.

The different criteria described in the following paragraphs are of this type.

4.4.1. Tsai-Hill criterion

The Tsai-Hill criterion is of the form:
F;38; <1 (i,j=12..6),
Wl[h Flj = FI' .

As for the von Mises criterion, it is assumed that a change in hydrostatic pressure
has no influence on the failure of the material.
For an orthotropic material the Tsai-Hill criterion is written as:

al@, -7, )2 +b(F, 73 + (T3 -5,)* +dF; + et + fOE <.
The six constants a, b, ¢, d, e and f are determined from six independent loading
cases.

For failure by extension in the X, direction, then X, and finally X,, we obtain
the three following expressions:
(@+c)dl =1, (a+b)7} =1, (b+c)Fl =1,
which leads to:

1
— =—, b+c=-——_2,
oy O, O3,

for which the solution is:
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=i L, 1 1
2 Elzr 522r ESZr ’
k)
r 3r 1r
=4, 1 1
25, &, 5

For failure by shear in the plane (X,,X), then (X;,X,) and finally (X,,X,),
we obtain the three expressions:
dG} =1, eGk =1, f6} =],
which gives:

1 1 1
d=—, e=— f=—
O4r 5r Oé6r

By identification of the polynomial, we obtain the following non-zero
coefficients F;;:

1 1 1
Fll— 2 F22—:T' F33_ P
1lr O 3r
1 1
F44 - =2 F55 - =2 F66 - =2
4r 5r 6r
1[ 1 1 1
Fp=—| = +—-—1.
' 2 512, 6'—22, ESZr
1 1 1 1
F - A = ’
B 2 5'-22, 532r Elzr
1/ 1 1 1
Fy=——~| —+—-
! 2 6-32r a121' 6'-22,

In the expressions above the failure stresses, 7;, (i =1,2,3) will be taken equal
to the tensile failure stress &, for &; positive, and in compression &, for &;

negative.
Composite failure occurs when the stress field no longer satisfies the expression:

F 8} + F,87 + Fy07 +2F338,8,; +2F,,5,0, + 2F),5,5,...
ot FuTF + F82 + FeG¢ <1.

The mode or modes of composite failure are determined from the dominant
terms in the Tsai-Hill criterion.
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When the external loads are such that the stress field is defined by a multiplying
constant the Tsai-Hill loading coefficient Fp, is introduced for which failure

occurs. The stress field leading to failure of the composite is written as:
0; = Fy0;.
This is introduced into the expression for the criterion:
2 o — =
(Fry ) F;6,6; <1,
and the Tsai-Hill loading coefficient is obtained:

Fry =

In a composite the first failure occurs in the layer with the lowest loading
coefficient. In addition, the failure mode or modes correspond to the dominant terms
in the criterion.

In the case of a plane stress field defined by:

O03=0,4=05=0,
the Tsai-Hill criterion is written as:

F| |5 + Fpf 3 +2F,8,5, + FesT2 <.

For a transverse isotropic material with the isotropic plane (Xz,XJ). the two

corresponding orthotropic directions are equivalent. The coefficients in the Tsai-Hill
criterion are then equal to:

1 1
Fjy=— Fpn=F3=—-,
Cir O
1 1
Faa=—5 Fss=Fe =—5,
O4r Cor
1 1 1
F23 = —_ Fio = Fay =~
-2 =2 ’ 12 31 =2 !
25, 03 26,
and the criterion can be written in the form:
Gl Gi+6; F6,+0,) (1 2 \__ &2 &2+3}2
ot T T T |0ttt <1
oy, 02 O, G, Oy O4r Ger

When the stress state is plane stress (03 = 04 = 05 = 0), this reduces to:
=2 =2 == =2
6 0©, 0,0, 0
72 T2 6

=2 =2 =2 =2
olr 02r alr 06r

<l.

In the latter case, designating the stress values at failure by &, = Fy;,@, then the
Tsai-Hill loading coefficients at failure are:
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sV (5 Y 5.5 (5.}
—L |+ =2 —"1_2—24’ —
Ulr 02r O\ a6r

4.4.2. Tsai-Wu criterion

The Tsai-Wu criterion is written as:
F}b'—,' +EJEIEJ <l,

where the constants F; and Fj; are determined from independent tests.

— In the case of tensile and compression failure in the direction X,, we obtain
the equations:
= =2
FiO1p + F110in =1,
— =2
F]alrc + Fllalrc =1
in which the unknowns are Fy and Fj,.
The determinant of the system and the determinants associated with the two
unknowns being equal to:
A= a—lnalrc (Elrc - Eln )'
=2 _ =2
Ay =0y, ~ Oy,

A2 =01 ~Ojrer

we obtain:
Oy, +0, 1 1
Fl tre — 1rt +—,
Ulnalrc Uln alrc
1
Fll -

The constants F,, F,,,F3 and F33 are obtained from tensile and compression
tests in the X, and X directions.

— In the case of a shear failure in the plane (X,,X ), there are two equations:
= =2
F404r +F440.4r = l,
—Fu8, + FyuGi, =1,
with &, and —&4, being the shear stress. From this:



Failure criteria 61

1
=2
T4

In an analogous manner we obtain the values of Fs, Fs55 ,Fg and Fgg .

F4=0, F44=

- The coupling term Fj, can be obtained from a biaxial test but this is very

difficult to perform and in the absence of experimental results the following
expression for Fy, can be used:

|
2Ja-lrrb—lrc62n&-2rc
The expressions for 3 and Fy; are analogous to that for F),.

Fip ==

— The other coupling terms F,, Fis, ... are taken to be zero.

The non-zero coefficients in the Tsai-Wu criterion are therefore:
1 1 1 1 1 1

Fl—-__—+__ \ F2=:— — y F3=_ +— y
Ol O Ot O O3 O3y
1 1 1
Fi=-——7o— Fp=-——"— Fyj3y=-——0o—i
C1nOrc 0210 2c 03103
1 1
Fas =—3 Fss=—7 Foo = —5
T4y Os, 6r
i
Fiy = ~——————————,
2s/alrtolr<'02rta2rc
1
Fp3 = ~ —
2J02na2rc03rla3rc
1
) = -,
2\/03n03rcalrtalrc

and the criterion is written in the form:

F\G, + Fy8, + Fs03 + F|\B) + FpG7 + Fy81 +2F,5,5, ..

o+ 2F3 5,8 +2F, 543, + Fyu 8} + F5sGF + F 52 <.
If the stress field is defined by a multiplying constant we introduce the Tsai-Wu

loading coefficient Fry, expressing the stresses leading to failure in the form:

&'i. = Fm&, .
Introducing this into the Tsai-Wu criterion we obtain the expression:

—_ 2 = _
FrwFG; + FfyF;0,6; =1,
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which enables Fry to be calculated.
The first composite failure occurs in the layer with the smallest Tsai-Wu loading
coefficient.

For a plane stress state the criterion is written as:

Flﬁl +F2&2 +F“EI2 + F22322 +2F125:152 +F66562 <l1.

For a transversely isotropic material with the isotropic plane (XZ,X 3), the
coefficients are:

1 1 1 1
Oin Ire On O2rc
Fhy=-m—7— Fp=Fpy=-—"T—,
C1nO1re 02102
1 1
F44 — 2 F55 = F66 -2
4r 6r

The Tsai-Wu criterion is written as:
F,3, + By (@, +3,)+ F, 52 + Fp (52 + 57 )+ 2F,5,(5, + 73)...
v 2F 35,0, + Fyy 02 + Fgg (652 +3¢ )< 1.
and for the plane stress state this reduces to:

F,&, + Fy&, + F|\0} + F,0; +2F,0,0, + Fs0¢ <1.

4.4.3. Hoffman criterion

The Hoffman criterion has the form:
F}E" + FUE,EY_] <1,
with the non-zero coefficients:

F1=__1 + 1 ,F2=_l + 1 ,F3=__1 + 1 ’




1 1 |
F44=._2 'F55=__2 ’F66=_2’
4r aSr 6r
1 1 1 1
Flz = _‘2— — . D —
O3103%rc  O1nOlrc  O2102r
1 1 1 1
F23 = 'E EE— —— I aa—
O1nTyrc 0210 2sc 0310 3rc
1 1 1 1
F3l = _"i PR E— D —— e
O2n02rc  O3n03rc 0140y
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It may be noted that the coefficients Fy, F,, F3, F|, Fyy, F33, F44, Fs55 and
Fge are identical to those in the Tsai-Wu criterion, but the coupling coefficients

Fy, Fp3 and F3; are different.

Replacing &;,. by -0, in these coefficients, we obtain the coefficients of the

Tsai-Hill criterion for the tensile stresses.

The Hoffman criterion has the same form as the Tsai-Wu criterion:

F\G, + F,8, + [, + F|\G} + F,6% + F},0}% +2F,5,5,...

A 2Fpy T, Fy + 23,530 + FyuB2 + FygF2 + Fo52 <1.

In the case where the stress field leading to failure can be written as:
7, = Fyo;,
the Hoffman loading coefficient Fp is given by the expression:

FHFiEi +F}2{F‘Ua;,6:’ =1.

The composite layer where the first failure occurs is that with the smallest

Hoffman loading coefficient.

For plane stress the Hoffman criterion is written as:

F\G, + F,0, + F|\G} + F,07 +2F 18,0, + F02 <1.

For a transversely isotropic material with the isotropic plane (X,,X;), we have the

coefficients:
1 1 1 1
F|=_ +_—,F2=F3=_ +_ N
Oin Oy Ot Oapc
1 1
Fy=r——/— Fp=Fy=-—"7,
1 01re 02102,
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1 1
F44=j’F55=F66='_—’

4r 06r
1 1 2 1
F23=_E ———— | Fu=F=r—.
1101 O2102rc 201,04,

and the criterion:
— - = =2 —2 =2 = (= , =
FG,+ F,(5, +53)+ F, 0. + Fy, (02 + 84 )+ 2F,,5,(0, +3;3)...

A 2F B, + FauTL + Fegl2 4+ 52)<1,
which, for the special case of plane stress is written as:

F,&, + F,5, + F;,0 + F,05 +2F,5,0, + Fx0¢ <1.

4.5. Tensile and shear strength of a unidirectional layer
4.5.1. Tensile strength

The unidirectional layer shown below with 0 <a <Z | is subjected to a tensile

load in the x; direction, in an off-axis direction with respect to the orthotropic axes.

Figure 4.1. Off-axis tension

The co-ordinate change matrix and its transposed form are:

c s O c -s 0
a=—sc0,aT=s c O0f,
0 01 0 0 1

the change of axes matrix N being written as:
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c 52 -cs
N=|s c? cs ,

2cs —-2cs cl-s2

with the membrane stresses in the orthotropic axes given by:

=NTg,
or:
o) ct 5t 2cs o
— |V 2 2
0,|=| s ¢ -2cs || O],
O -es es =520
that is:
= _ 2
oy =c oy,
5'-2 =520'|,
6'-6=‘CSO'|.

Introducing these values in the maximum stress criterion:
Elrc <O <Oy,
Oy <02 <Oy,
_a_ﬁr < 56 < E()r'

we obtain the following expressions:

tod (o]
lrc <o < 12rl ,
C

o O
2rc <o < 2n

s? 52

O O
& <oy <52,
(&) CcS

65

The values of o for which there is no failure are located between the curves
shown as continuous lines on figure 4.2, It may be noted that, in this case, failure
occurs gradually as the angle a increases by tensile or compression failure of the
fibres, then by composite shear failure, and finally by matrix failure in tension or

compression.
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\.

|

Figure 4.2. Maximum stress criterion, simple tension
The Tsai-Hill criterion for a transversely isotropic layer with the isotropic plane

(%2, %3):
— \2 — N2 = = N
91 | 122} 192 .f %6 <1
Oy, Oar g2\ %er

may be written for this case as:
4 4 C2 s2 2.2

Using this criterion the tensile and compression failure stresses are equal to:

1 1
Oin = 1 Olpe =~
C4 + S4 0252 +C252 C4 S4 C252 c2s2
-2 =2 =2 —2 —2 =2 —2 —2
Oin O2n in O6r Olre O2rc Oire O6r

Failure does not occur as long as the tensile-compression stress o is located,
for a given value of &, between the two curves shown on the following figure:



Failure criteria

SR IQ!
v

0

(74

N

Figure 4.3, Tsai-Hill criterion, simple tension

4.5.2. Shear strength

The fibre orientation is chosen such that: 0 < < 121-

R

Figure 4.4. Off-axis shear

The membrane stresses in the orthotropic axes:

o st 2 0
o, |= s2 c2 ~2cs 0|,
O —cs o5 c?-s? O¢

are equal to:

67
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E] = 2CSO'6 .
52 = —2CSO'6 ,

66 = (C2 —52)0'6.
Introducing these values in the maximum stress criterion we obtain:
0 tof
Irc <0 < In ,
2cs 2cs

For a positive shear stress og, there is tension in the X, direction and
compression in the X, direction.

Applying the maximum stress criterion there is no failure for values of og¢
located in the grey zone represented in the figure below.
A F.

o,

T~ |

Figure 4.5. Maximum stress criterion for pure shear

When the shear stress is positive the Tsai-Hill criterion, for a transversely

isotropic later with isotropic plane (X,,X3), may be written, taking into account
the signs of &; and &, as:
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4c25?  actst 4c%s? (cz—sz)z 2
+ + + 3 og <1.

~2 =2 =2
Oin 2rc Olin O6r

The shear stress, which leads to failure in the unidirectional layer, is:

_ 1
O¢r = .
2 2
2 1 (c -s )2
4c2y? — +_2 + —
Oin O2rc O6r

When the shear stress is negative, there is compression in the X, direction and

tension in the X, direction and the failure stress is then given by:

1

O6r =~
2 1 ((_2 —sz)2
4c2s? S+t |t 3
Tirc  O2n Ger

As long as the shear stress is in the grey zone in the figure below there is no

failure.

. 5 |
| ——"
\6,, @

(Tn /\ ﬁ!.

() - »
f_ - X

_— 4 :

ot \/ ﬁ:-

|

Figure 4.6. Tsai-Hill criterion for pure shear
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4.6. Determination of failure stresses from three tension tests

The failure stress of a transversely isotropic layer, shown below, is obtained by a
tensile test in the x, direction.

X,
. 4

1

Figure 4.7. Tensile test off-axis

The tensile stress resuiting in failure is, according to the Tsai-Hill criterion,
given by:

2 2 —
Oln O2n Oin Og

For ¢ =0 and for a = %, we obtain the tensile failure stresses in the X; and

X, directions:

[STEY

For an angle a between 0 and %, the failure stress in shear is given by the

expression:
et + st st +c2s2 ol =1
2 2 2 =2 a” "
Oy O« Oy Osr
2
and equal to:
F. = cs
6r —
1 o2 =52 4
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Chapter 5

Multi-layer Kirchhoff-Love thin plates

5.1. Introduction

The Kirchhoff-Love theory, presented in the Appendices, which does not take
transverse shear strains into account, is used in the study of thin plates for which the
ratio of the thickness & to a characteristic dimension a of the mean surface is less
than 1/20.

In this chapter the general expressions for multi-layer plates which conform to
the Kirchhoff-Love theory will be presented.

The expressions for displacements and strains will first be recalled.

Then the plate equations will be presented for a specific case described below,
for equilibrium and vibrations.

The strains and global loads will be introduced, with the global stiffness matrix
of the composite and the classic decoupling.

Finally, the transverse shear stresses and composite strain energy will be
determined.

5.2. Kirchhoff-Love hypotheses for thin plates

The rectangular plate represented below has thickness h and transverse
dimensions a; and a,. It is termed thin if & is small compared to a; and a,. The

mean plane of the plate is in the plane (O]xl,xz) of the galileen reference
(g)=(0}xy.x5.%5).

The plate is made up of N elastic, linear, homogeneous, orthotropic layers of
constant thickness. For all these layers x; is the direction of orthotropy. The
interface between two successive layers is assumed to be perfect.

It should be noted that this plate is studied for small disturbances, i.e. small
transformations and small displacements.
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X3 AR
2 az
0
/ >
X
Sk :
al ;:,... 2
Xy
Figure 5.1. Thin plate

In the study of flexure and vibrations we assume that the displacements are small
compared to the plate thickness.
The normal transverse stress o, is ignored.

According to Kirchhoff-Love theory, the transverse shear strains £5,€£, and the
rotational inertia are ignored.

5.3. Strain-displacement relationships

According to Kirchhoff-Love theory, the displacement field is given by the
expressions:

P 0
uy = u{)(xl,x2|t)—x3 i‘?‘("hxﬂ')v

a 0
uy = “g(xlvlet)“x3 ii(xl»h")»

2
_ 0
Uy =y (xl'x2lt)'
and the strains by:
ou) 0%ul
=3 "X7553
ax] axl
oud 0%ul
&y =X
axz aX2
c _au? +aug 2x 0%u)
=L+ —2-2x, ,
" ax, o Ox,0x,
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E3=E6, =E5=0.
The strain field can then be written as:
g =€ +xx; (i=1,2,6),
with the membrane strains:

o_oud o ) o ou) oud
£l =—, & = 6 —=

=1, —2, Eg =—+
! dx; 2 ox,y x,  Oxy
and the curvatures:
0%ul 92ud 9%ul
K| ==, 2=, Kg =-2 .
Ox{ ox; ox, x,

5.4. Global plate equations

In the absence of buckling, the global plate equations are written in the following
form for the three sum equations:

8N1 8N6 azu?
LTy py =1,
dx;  dx; or?
6N6 8N2 azug
+—=4+py=1 ,
axl axz P2 0 t2
6N5 BN4 214;)
+—=+q3+p3=1 .
% | ox, at+tp3=io 2
and for the two moment equations:
M
oM, + oM ~Ng=0,
ox;  oxp
M
a—6— + 8M2 - N4 =0.
axl aX2
From these latter relationships we obtain the global equation:
2 2 2 2,0
9 A:‘ 429 Me 9 ltgz +q3+p3=loa ';3
ox; Ox;dx,  Ox; ot

Recalling the following expressions:

h h
Ni =J‘—2£UidX3. Mi =EﬁGiX3dX3,
2 2

h h
S
2 2
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5.5. Calculation of I

The plate being studied is made up of N orthotropic layers limited by planes
parallel to the mid-plane of the plate. For all the layers x, is the direction of

orthotropy, the positions of the layers in the plate thickness are shown below:

X3
layer N A
h
layer k J 2
b4
fuil™y
mean plane 0O A
h
2
layer 1 ¢

Figure 5.2. Distribution of layers in the composite

The layer £ is limited by the two planes of the equations x3 = z;_; and x3 =2, .
The expression which defines /g is:

h
Iy = F}, pdxy
2
or may be written, when applying layer by layer integration:
N
2
Iy = 2 pdxy,
k=1

where pk is the density of the layer k, which is independent of x;.
We thus obtain:

N
Iy = Zpk (2x = 2x-1)-
k=1

In the particular cases of single layer plates or multi-layer plates with layers of
the same density we have:

10=ph.
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5.6. Stress field

We now examine the distribution of layers presented in the previous section.
Designating by Q,-f- the reduced stiffness matrix of the layer k, the components

of the stress matrix are given by the expression:

of =0fe; (i, j=12.6),
which may be written as:

=Q,f. e}’ +x3xj),with L1 <X3< 2.

5.7. Global cohesive forces

The global cohesive loads are made up of global forces N; and the global
moments M, which are defined as:

h
Ni ='[2h U,-dx3 Mi =Izh O'iX:;(iXJ (l, Jj= 1, 2.6)

2 2
The global force component N; of the cohesion force is given by:
h
N, = Izh oidxy (i=1,2,6),
2

which, by layer-by-layer integration, is written as:

Introducing into the expression the constitutive relation:
_ k(.0
=067 + x3x, ),
we obtain:

N; = ZL lQue XK s

then:
N 2 Tk
Mo Yoh e+ 5|
k=1 Zy-y
or:
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N N
1
Ni= Y08 (et - )ed 5 Y 0h ek ~ ),
k=1 k=1

For the global moment M; analogous calculation leads to the following
expressions:

h N
2 “ i
M, = |30, xydx; = Y| ofxx,,
k=1 Z-1

y 30,8, T
.=ZJ‘Z Qu(s +X3K )x3dx3 EQU[—Z— j+—3lxj] ,

k-
! k=l 2ot

or:

:%g £(.2 q¢4.2%@-4J

Putting:

N
5= 20~ aa).
k=1

N
k

ZQlj( -22.),

1
ﬂ_
25

=Dy = %Z ( ZI::-I)’

the global cohesive forces N; and M; may be expressed as a function of the global
strains ep and «; by the expressions:

N; = A,Je} + B;x;,
and:

M; =Be) +Dyx; (i, j=1,2,6).
From the definition of the global stiffnesses of the cohesive forces, the global

stiffnesses A;;, B;; and Dj; are expressed respectively in N.m™}, N and Nm.

5.8. Composite global stiffness matrix

The six expressions giving the global cohesive forces N; and M;, as a function

of the global strains 8,-0 and x;, are written in the following matrix form:
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Bi¢ By Bes Die Dis Des || K¢

or in condensed form:
'N _ A Bl ¢°
M| (B D] x|

N = Ae? + Bk,
M =Be® + Dx.

or.

The sub-matrix A is the sub-matrix of the global membrane stiffness matrix

which relates the global membrane forces N to the global membrane strains e’

The sub-matrix D is the sub-matrix of the global flexure stiffness matrix which
relates the global flexural moments M to the global flexural strains « .

The sub-matrix B is the sub-matrix of global stiffness of membrane-flexure
coupling which relates the global membrane forces N to the global flexural strains

x and the global flexural moments M to the global membrane strains e’

5.9. Decoupling
5.9.1. Membrane-flexion decoupling
The terms of the sub-matrix of global stiffness for membrane-flexion coupling:
N
B; = %’;QS (z,f - zf_l)

indicate that the membrane forces cause flexural strains. In a similar way, flexural
forces cause membrane strains.
This coupling does not exist when the B;; are zero. If the plate shows mirror

symmetry with respect to its mean plane the B;; terms are zero.
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As it may be noted from the figure below showing a multi-layer plate with
mirror symmetry, for each layer k there is an associated symmetrical k' layer, with
respect to the mean plane.

A x;

b
layer k () Q;

a
mean plane o

- -a

layer k’ (@) Qi

-b

Figure 5.3. Mirror symmetry

The k and &k’ layers have the same reduced stiffnesses Q,v’j .

The contribution of the layer & to the global membrane-flexure coupling stiffness

is:
I & (bz 2)

= 'Z_Qij -a®),
whereas the contribution of the layer &k’ is:

N PYTR 2)

Bf = 205 (a -b?).
By summation, the terms thus obtained cancel each other out in pairs.
The global coupling stiffnesses of membrane-flexure coupling of a symmetrical

composite are zero:
BU =0.

5.9.2. Tension-shear decoupling

The terms of the global membrane ri gidity sub-matrix:

A = Zle 2% ~2g) Ay = ZQ% - 2i4)

k=1
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imply that the tension or shear loads respectively cause angular distortions or
dilatations.
This coupling does not exist when the terms A|g and A,q are zero. These cases

are known as tension-shear decoupling or plane decoupling. If the plate is made of

layers with opposite reduced rigidities Qlk(, and Qé‘ﬁ , and their thicknesses are the

same, the terms Q{‘(,(zk ~24_y) and Q§6 (zx = zg—1) cancel each other out in pairs.
In a balanced laminate, with each layer k of orientation & is associated a layer k’

of orientation —a . The stiffnesses Q,"ﬁ and Q§6 are respectively the opposite of the

reduced stiffnesses Q{‘é and Qé‘é.

A x,

layer k (@) Q,f- €k
mean plane 0
layer k’ (— a) - Q,-’; ‘ €k

Figure 5.4. Balanced laminate

From the expressions:
0l = 5B - s"Th - ool = 57)Bh - 205l - 7B
Q§6 = cs“@ﬂl"l - c3.s62"2 + cs(c2 ~s2 )_Q_,kz + 2cs(02 ~s? )66"6.
for opposite angles the reduced stiffnesses Q,k6 and Q,"(;, and the reduced stiffnesses
Qé‘(, and Qf(, are opposites.
The contribution of the layer k, of orientation & to the tension-shear coupling is
Aflg = Qfger with e} =24 ~ 7y,
whereas the contribution of the layer &’ of orientation -« is:
Afg = -Qfsey .
By summation, the terms thus obtained cancel out in pairs. The position of the layers

k and &’ in the composite has no influence on the values of the global membrane
stiffnesses.
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The global tension-shear coupling stiffnesses in a balanced composite are zero:
A = Ay =0.

5.9.3. Membrane-flexion and tension-shear decoupling

In the case of four identical layers with the stacking sequence (a,~a,-a,a)

represented on the figure below, there is both membrane-flexure decoupling and
tension-shear decoupling. The laminate is termed balanced symmetrical.

a tension —shear
mirror symmetry -a decoupling
membrane — flexion — } tension — shear
decoupling a decoupling

Figure 5.5. Balanced symmetrical laminate

In this case we have:

B,j =0, A16=A26 =0.

The global stiffness matrix of the composite is written as:

(A A2 O O 0 O
Ay Ap, O 0 0 O
0 0 A4 O 0 O
0 0 0 Dy Dy Dy
0 0 0 Dy Dy Dy
|0 0 0 Dy Dy Des

5.10. Global stiffnesses of a symmetrical composite
5.10.1. Symmetrical laminate (., B ) NS

The 4N orthotropic layers are identical and distributed in the composite by
repeating N times the angular sequence (a, ﬂ) then N times the sequence (ﬂ,a).
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The sequences are:

-(a,ﬁ,ﬂ.a) for N =1,

- (@.B.a.B,B.a,B.a) for N =2,

- (a0, 8,0, 8,0, 8,8.a, 8,2, B,a) for N =3,
and so on.

The global membrane stiffnesses are equal to:

w o
Ay = EQU (2 = 25 )
k=1

with:
% =—-2Ne+ke=(k—2N)e,
we obtain:
4N
=€) Ok -2n)-(k-2n -1)]= eZQ,, —eE(Qu+Q ).
k=1 k=1 k=1
or:

Aj = 2Ne(Q,~7 +Qif)°

The composite being symmetrical, the global membrane-flexure coupling terms

are zero:
B, =0.

The global flexural stiffnesses are given by:
LS ok -2
3 - if &k k=1 />

or, with the preceding notation:
3 4N
D, = %ZQ,.’]‘. [(k ~2N) —(k-2N - 1)3].
k=1

By calling the o and B layers located on the x,side negative and the 8 and a
layers on the x, side positive we obtain:

D.:% Z{Q,;'(k—zlv) ~{k-2N-1) ]+Q” k-2N +1)° (k-zN)-‘]}...

y
k=13, 2N-1

ot Ylosle-any - -2 -1yl ggle-2n 1y - - 2w}

k=2N+1,2N+3,...4N-|
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Then putting k =2p -1, D is written as:

. N{ alap-2n 1) —(2p-2n -2)]
i = ; pz=qu p P -

40P 2p-2NP -(2p-2N - 1)3]}...

ot 2§N:{Q,§’ [(2p 2N -1 -(2p-2N - 2)3]...

.+ Qf [(2p-21v)3 -(2p-2N - 1)3]}].

With g=N - p+1 for the first summation, and g= p~- N for the second, we
obtain:
1

p,-<| Sosl-20r - 20l oflle- 207 - 0-207 ]}
+i{Q.{’ (2g-1) -(29-2) ]+Q,}[2q -(2¢g-1)° ]}]

Introducing (1 - 2q)3 =-(2q- l)3 , (- 2q)3 = —(2q)3 , (2- 2q)3 =—(2q- 2)3 ,
the previous expression is written as:
2¢° ¥
p; =23 {osl2q) -a- 1)+ 0fl2g -1 - 2a-27]}.

U}
3 &

The coefficients of Q,.‘J’-' and Q,f are respectively equal to:
(2a) - (2g-1) = @a) - {20 - 324 +69-1]=12¢* 6g+1,
(2q-1 -(2g-2)° = (2¢-1)° —[(2q S —3(2g-1) +3(2g-1)- 1]

..=12¢% -18¢+7,
from which we obtain the expression:

D, = 2’ E[Q,] (1247 - 6g+1)+ 08 (1247 - 184+ 7).
1
Introducing: "

N N
2‘12: N(N+1X2N+l),and quN(N+l)’

p= 6 p 2
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we obtain:
3
D, = zg—{Q,.‘f[zN(N +1)2N +1)-3N(N +1)+ N]...
.+ QERN(N +1)2N +1)-9N(N +1)+ 7N]},
or.

D..

2
j = —3—N2e3[(4N +3)07 + (4N -3)0f8 |.

Designating by h = 4Ne the composite thickness, we have:
h 4
4y = E(Q.-'f +0f)

h3
D v [(4N +3)05 +(an -3)07 |.

‘:,.=

The membrane stiffnesses are independent of the number of layers, the flexural
stiffnesses depend on the number of layers and when the number becomes very large
they tend towards the value:

3
D; =%(Q§’ +Q,~f’).

which is independent of N.

5.10.2. Symmetrical cross-ply laminate (O.—’E)
NS

By introducing the expressions:

>

2 =0%. 05 =0\ 0} =0k, Q& =0
Q% =0 = Q3 =03 =0,

we obtain the global membrane stiffnesses:
A=Ay = 2N€(Q?| +0% )»

A;p =4NeQls,  Aqs = 4NeQpq,
A = Ay =0,
and the global flexural stiffnesses:
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D, = % N2e3[(41v +3)07) + (4N -3)0%, ]

D,, = % N2e3[(4N +3)03; + (4N -3)Q%, ]

16 16
Dy, =?N3e3Q,°2, Des =—3—N3e3Q36,

The global stiffness matrix is written:

(A, A, O 0 0

5.10.3. Symmetrical balanced laminate (a,—a)Ns

Since:
o =00, 017 =00, 0 =-0f.
03" =05, Qs =Q6 03 =-0%.
we obtain the global membrane stiffnesses:
Ay =4NeQf|, Ay =4NeQ%,,
A;; =4NeQY,, Ay =4NeQg,
Ajg = Ay =0,
and the global flexural stiffnesses:
16 16
Dy, = ?NaesQﬁ v Dy = —3-N3e3Q5’2,
D, =%6N3e3Q{'5, Dgs =%N3e3gg,
Dy =4N?*QZ, Dy =4N26°Q%,.

The global stiffness matrix is then:
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Ay A2 0 0 0 0]
Ay Ap, O 0 0 0
0 0 Ag O 0 O
0 0 0 Dy D Dy
0 0 0 Dy Dyp Dy

[0 0 0 Dig Dy Deg |

5.11. Global stiffnesses for an asymmetrical laminate
5.11.1. Asymmetrical laminate (c, ) N

The 2N orthotropic layers are identical, of thickness e and with the stacking
sequence (c, ) repeated N times.
The sequences are:

- (a‘ﬂ) for N=1,

- (. B.a.B) for N=2,

- (@.p,a,B.2,B)  for N=3,
and so on.

The global membrane stiffnesses are:

2N
Alj = ZQI’]( (Zk = g1 )'
k=1

with z;, = (k - N)e , we obtain:

2N ul
=200 N)- - -1l= Yo +0f).
=1 =1

or:
Aj = Ne(Q,-j’.‘ +of
The global membrane-flexion coupling stiffnesses are equal to:
2N
1 k(2 _ .2
= EZQU (Zk =2k ),
k=1
or:

ij='e_2_k§N [ P k- N"l)]
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By dissociating the layers of orientation & and f, we obtain;
2

B,,:% Z{Q,.‘;(k—lv)z—(k—zv ]+Q”k N+ - (k- NP}

Posing k = 2p -1, the previous expression becomes:
e % 2 2
B, =< Yoglep-n-02-@p-n-2P ) oflop- N1 -p-n -1 ]}
p=1
The coefficients of Q,-? et Qi'f being respectively equal to:

(2p-N-1? -(2p-N-2)? =(2p—N—l)2-—[(2p—N-l)2 —2(2p—N—1)+l],

(2p-N-1% -(2p-N-2)? =4p-2N -3,

and:

(2p-Nf ~@p-N -1 =(2p-N) -|@p-N) -22p-N)+1],

Qp-Ny -Q2p-N-1)*=4p-2N -1,
we find:

e2 4l B
B; = 7Z{Q,.‘}’(4p—21v ~3)+ Q) (4p-2N —1)}.
p=l

Introducing:

& NN +1)

p=l 2
we obtain:

2

B = %{Q,j’ RN(N +1)-N(2N +3))+ Q,.f 2NN +1)-NN + 1)]},

or.

2

=N lp2_pP )

B;=-N T(QU Qi )
The global flexural rigidities:
L )
3_ .3
- EZQ" (Zk — -1 )y
k=1
are, with the previous notation, given by:

-~=—2{Q,, (2p-N -1 -@p-N-2}|+0flep- N -@2p- N -1)]}.
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The coefficients of Q;f and Qif? being equal to:

@p-N-1P-(2p-N-2)° =(2p—N-—l)3—[(2p—N—l)3—3(2p—N—~1)2...
~+32p-N-1)-1],

@p-N-1) -(2p-N-2) =12p2 -6p(2N +3)+3N? +9N +7,

and:
@p-NP-Qp-N-1) =(2p-N) [(2p NY -32p-N)*+3(2p- N—IJ
2p-NP -Q2p-N-1) =12p> ~6p(2N +1)+ N2 +3N +1,
we have:

83 ul

j=_3_2{g,j [12p -6p( 2N+3)+3N2+9N+7]
p=l
08l12p? - 6p(aN +1)+3N2 +3N +1]}.

With:

ipz N N+l)(2N+l)

p=l
we obtain:

s

3
[4

D, —Ti{g,, RNV +1)2N +1)- 38 (N + 12N +3)+ N3N 49N +7))...
3 <

A QERN(V+ 12N +1)-3N(V +1)2N + 1)+ NN + 38 +1)]],

or:

D; =N’ E—(Q,] +0f )

Designating by h = 2Ne the composite thickness we obtain:
A = %(er +Qi§3)v
B, = ‘:—;, 5 -0f )

D; =§;(fo +0f])

For a given thickness &, the global membrane and flexural stiffnesses do not
depend on the number of layers. When the number of layers 2N becomes very large
the global membrane-flexure coupling terms Bj; tend to zero.
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5.11.2. Asymmetrical cross-ply laminate (0,%)N

Given the expressions:

ol

) i _no I_no i _p0
04 =02, 05H=0n, 05=01 Q& =0
x 0 z 0
Qi =16 =03 =0U2% =0,
we obtain:

~ the global membrane stiffnesses:

A=A, = Ne(QlOl +0% )
Ay, =2NeQ?,,

Ags = 2NeQY,
Ajg = Ay =0,

— the global membrane-flexure coupling stiffnesses:
2
€ 0
By, =-By = “N_z‘(Qu _ng )v
B, = Beg = Bjg = Bys =0,
— the global flexural stiffnesses:

3
3e 0 0
Dy =Dy =N ‘3—(Q11+Q22)’

D -2N3iQ°
12 = 3 12»

1€’ o
D¢ = 2N ?Qse,
Dyg = Dy =0.

The global stiffness matrix is of the form :

Ay A2 O By O
Ap Ay 0 0 -By
0 0 Ag O O
B, 0 0 Dy Dp

0 -B; O
0 0 0 0 0 Dg

O O O O O

J
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5.11.3. Asymmetrical balanced laminate (@s-a)x

Using the expressions:

- a 4 a - [74
o7 =01, Q12 =0Qi2. Qie =-Ci6»
4 a - _ o -a _ o
037 =02, Qe =066 Q26 =-C26>

leads to:

— global membrane stiffnesses:
Ay =2NeQfi, Ags = 2NeQés.
Ay, =2NeQ%, A =0,
A|2 = 2N€Qf12, A26 = 0,

— global membrane-flexure coupling stiffnesses:
Big = -Ne’Qf%  Byg =-Ne’Q%;
Byy =By = Bj = Beg =0,

- global flexural stiffnesses :
3 3
D||=2N3£3—Qﬁ, D66=2N3%Qg6v

3
e
D22 =2N3'?Q2a2, Dl6=0v
3e3 a
Dy, =2N —3—Q|2v Dy =0.

The global stiffness matrix is therefore written as:

Ay A O 0 0 Bl
A, Ay 0 0 0 By
0 0 Ag Big By O
0 0 Bg Dy Dy O
0 O By Dy Dyy O
[Bjg Bjg 0 O 0 Dgs

5.12. Examples of global stiffness matrices

5.12.1. Two layer plate

For the laminate as shown in figure 5.6:

91
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layer 2, «a,

layerl, o

—€

Figure 5.6. Two layer laminate

The components of the global stiffness matrix are:

A, =elo} +02),
2
-%lei-0}).

3
Dy =£3‘(Q:} +Q5)~

B;

5.12.2. Three layer plate

The components of the global stiffness matrix for the plate shown below:

3e
layer 3, a; 2 e
2

layer 2, @y  — 0

_£
2

layerl, a, 3e

2

Figure 5.7. Three layer plate

are equal to:

Ay =l0} + 02 +03),
B; = -¢*\Q; —Q,-?),

D; = :—;[13(@: +03)+ 0]
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5.12.3. Four layer plate

For the plate shown below:

2e
layer4, «a,
layer 3, a; 0
layer 2, a,

-e
layerl, o

—~2e

Figure 5.8. Four layer plate

the global stiffnesses are:
Ay =¢lo} +03 +03 +0f)

B = —%[3(9,} ~05)+0; -0}

b, =5 bloj +of)+ 0} +o])

5.12.4. Examples of decoupling

The stiffness matrices of a multi-layer plate made up of identical layers takes
particular forms for some special cases considered here.
- For membrane-flexure decoupling:

-

[ Al A Agg 0 0 0

App Ay Ay 0 0 0

Ag Ay A O 0 O
0 0 0 Dy Dy D
0 0 0 Dy, Dy Dy
0 0 0 Dig Dy Degg ]

with the stacking sequence (a.—a.a) : a symmetrical laminate.

— For membrane-flexure and tension-shear decoupling:
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A A, O 0 0 0
Ay Ay, 0 0 0 0
0 0 Ag O 0 0O
0 0 0 Dy Dy, D
0 0 0 Dy Dy Dy
[0 0 0 D Dy De

with the stacking sequence (@,-a,~a, @) : a balanced, symmetrical laminate.

— For tension-shear and flexure-torsion decoupling:

(Au A 0 B, O 0
Az A4 0 0 -By 0
0 0 Ag O 0 0
By 0 0 Dy D O
0 -By; 0 D Dy O
(0 0 0 0 0 Dl
with the stacking sequence (O,EJ or (0,2,0,E
2 2 2
Ay A, 00 0 By
Az Ap 0 0 0 By
0 0 Ag By By O
0 0 Bg D, D 0
0 0 By Dy Dy O
Bs B 0 0 0 Dy

: crossply asymmetrical,

with the stacking sequence (a,~a) or (a,-a,a,-a) : balanced asymmetrical.

— For membrane-flexure, tension-shear and flexure-torsion decoupling:

Ay A2 00
Az A 0 0
0 0 Ag O

0 0 0 D

0 0 0 Dy
(0 0o 0 o

0
0

0

S O O ©

with the stacking sequence (0,%,%,0) : symmetrical cross-ply.
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~ For the unbalanced composite of stacking sequence (@, a,~q):

An Ay Ag 0 0 By
Ap Apn Ay 0 0 By
Alg Ay Ags Big By O
0 0 Bg Dy Dp Dyl
0 0 By Dy Dy Dy
Bijg By O Dig Dyg Deg |

5.13. Boundary conditions
5.13.1. Definition of boundary conditions

It should be recalled that the so-called Kirchhoff boundary conditions for the
edge x| =a, of a rectangular plate, in the most usual cases are:

X3
a
[—
A N5 X3
Mg
/ I
% » Ng

>L,\/

Figure 5.9. Loading boundary conditions
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- simply supported edge:
ug =0,
N =N4=0,
M, =0,

- free edge in x, direction:

ud =uj =0,
Nl=0’
Ml=0’

— free edge in x, direction:

ul =ud =0,
N6 =O,
Ml =O,

- built-in edge:

ul =ud =u =0,

) 0

9 o,

ox,

~ free edge:

N, =N¢ =0,
oM

Ng+—=2=0,
ox,

Ml =0.

5.13.2. Effective global transverse shear load

The global cohesive forces provoke the five loadings N;, N5, Ng, M| and

Mg on the edge x| = a;. The zero condition for these five terms leads to a greater

number of conditions than those required by Kirchhoff-Love theory, which is four as
in the case of a simply supported or a built-in edge.
For the edge considered we will calculate the global moment associated with the

acting surface forces. On this edge we consider the point M %0 belong to the mean
plane, and the point M is defined by:

M0M=X3x3.
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The global moment in M ? of the cohesion forces on the edge x; = a; is defined
by:

h
M, =J3M°M><T(M|x,)dx3 =f2h x3X3 X(0) Xy + 02X + 03X, )dxs
2

2
h L] J
- {2 - [2 2
M, —I;,(‘qul*o'nxz)xsdxa* xljh012x3dx3 +sz.h0“x3dx3.
2 2

MM() =—M6x, +Mle.
Considering the rotation due to the global torsion moment ~M g measured on

X , Kirchhoff proposed replacing the moment —M ¢dx,X,, acting on the element of
the edge of length dx, , by the two forces M¢xy and —M x4 acting on the ends of

the element considered.
For the following element, of the same length dx;, taken in the sense of

. . oM
increasing x,, we replace the moment —[M,, +—a-—6dx2 dezx, by the two forces
X2

oM oM
Mg +—2dx, |xy and —| Mg +—2-dx, |x3, and so on,
aXZ axz
As shown in the following three figures, we can substitute from one to the next
. . . M
the global torsion moment —M (x, by the linear force density equal to 3 8 xy.
X2
%3 | oM |
‘ dx, - | ‘l}‘r st 'f'l'u'r'\ 4 u'l‘.-.‘l
| —_— oy, |
. At %
(
&| & X,
T SR S P ’

Figure 5.10. Couples acting on two elements next to the edge x, = a,
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A oM, .
A Mox gy, | | Mot A X
N I'=. i LA Y
) —>
\‘
| (4 M, )
Mg T ax, X
v.x, ¥ ax, 3

v

Figure 5.11. Equivalent forces acting on two elements next to the edge xj = a;

T r‘”’,l
X1 A X3

x4

i >
dxs

Figure 5.12. Linear equivalent force density acting on two half-elements
next to the edge x; = ay

The edge element shaded grey made up of the two preceding contiguous half
oM ¢

X2

elements is subjected to the force dx,Xy to which is added the force Nsdx;x4

caused by transverse shear.

Following the Kirchhoff-Love theory, we replace the global forces N5 and Mg
by the effective global transverse shear force defined by:
oM

X2

which leads, for the free edge case, to the condition:
oM

=0.
axz

N5+

For the edge x, = a,, we have the same:



Multi-layer Kirchhoff-Love thin plates 99

h h
MMO = J._zh MoMXT(M|x2)dx3 =.[2ﬁx3x3 /\(Ulzx' +022x2 +023x$)dx:; s

2 2

h h

{2 - |2 2

M, -I ;,(' 02X, +0'12x2)x3¢tx3 = "1_[ » T 22 X3dx5 +"2_[ n C12%3dxy
2 2 2

M =—M2x1+M6x2.

MO

An analogous study to the preceding one leads, as shown in the following three
figures, to the effective global transverse shear force:

oM
NF =N, + 228
4 LR
A x,
( oM 1
M - dx, '.ff.l!‘(-, dx,
| dx, |

—/ _/ 0

<+
dy, Mgdx X,

Figure 5.13. Couples acting on two contiguous edge elements Xy =4,

( IM -
| Mg+ 00, by A A
\ dx, J L!"IA M Xy
[ —

< ()

Xy

f - \ {f.l‘l

[ oM \ o

-| Mg +—2dx; [x3 V¥ -Mx,
\ ox, - v

Figure 5.14. Equivalent forces acting on two contiguous edge elements X3 =a,
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d M.
——— x R
=4, A x,

4

r.l’lll

Figure 5.15. Equivalent linear force density acting on two
contiguous edge half elements x, = a,

5.14. Determination of transverse shear stresses

The transverse shear stresses ai‘ and ag‘ in the layer k can be obtained after

determination of u, u and uj, from the two local equations of movement:

2
80’“ +80'12 +8013 =pa uy

dx; dx,  dx3 an?’
2
80'12 + 80'22 +6023 =pa uy ,
dox; Oxy  dx3 or?
which may be put in the form:
o5 _ 090, 30, pazul

ox, dx; ox, o’

ox; ox, - ox, ot

The transverse shear stress af , in the layer k, is given by the definite integral:

k X3 80'6 602 82u2 .
O4 =— + - d{ ,with z,  <x;<z,.
4 J._% ax, o, P ¢ k-1 S X3S 7
Layer-by-layer integration leads to the expression:
k- k 2
k_ J’ZI 80'6 60’2 | a u, I 806 802 k Jd u,
O, =— ¢ - -p dg .
¢ ; 4 .[ ox; ax2 e or? ox, ax2 or? ¢

The introduction of the displacements:
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ol
u; =u,0—x3 3 (i=12),
ox;
and the stresses:

Qu( +x3rr) (i, j=126),

enables us to write:

oe) .
=—ZJ.Z”[ [ f—J QZJ[ C-BTZ-J
' oe? oK,
[B_)c:—+{3;,]_]

82u 8 X3
_p[# e H ‘- uoﬁj

62u 83"0
.+0% ————+ 2 - 3_1|d¢.

After integration, we obtain the following expression for the transverse shear

stress O :

k-1 a€0 a 0 82 0
a"{ E“Qw dx, sz =i ,0'?“2-2— (z, —z,_,)...

=1

ok, 9%y V2
[Qo, o, +03; o, tp ale; ](Zl ’21—1)]---

660 86 92u?
[Qw ax, Qz; - p* —E":Tz‘](xs = 24y )

1 i 9K ka'(l ¢ Mg V2
z[Q” %, TP bt -2t)

In a similar way from the expression:

v (o[d0, dog 9% .
" —_J‘_ﬁ( ox, oy, L dg . with 2, Sxy <74,

we obtain:

< (v (00| aa6 ; 0%u, oo} aa* 0u
d 1 6 _ k Llag,
2:4-[ [8}(, dx, —P or? ¢- I ox, ax2 p ot? ¢

then:
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Al e 2 a0
ot =-Sf0 Lhagp 20y e, .
1

6j 2
=1 axz ot

oK ; aSuO
I ! 2
(Ql] a QG] axzj +p ax]ataz J(Zl —le—l ):l

dk 0%u?
k 3 2_ .2
0 =L +0l =Lt p (x2-22,)
( Li a 5 3x, x| 0 H!
The transverse shear stresses thus obtained, o and U;‘ , vary according to a

parabolic law with the thickness of each layer.

X3

layer N \

layer k+1 \

mean )
........... p lane ]aycr k / ’0
layer k~1 / 4

Figure 5.16. Transverse shear stress distribution

These transverse shear stresses satisfy the boundary conditions on the two outer
faces of the plate and the continuity conditions at each of the N -1 interfaces:

for x4 =% ofl(xhxz,%h):U;V(x,,xz,—g|t)=0,
for x, =—§ a"{xl,xz,—%k):aé(xl,xz,—%hj=0,
for x; = z, az(xl’xz'zk't)zU:“(XI'XZ'ZI(II)’

a;(xl’xz'zklt)zO'Sl)‘“(xl’xZ'zklt)'
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5.15. Strain energy

The strain energy of the plate:
W, _—J'_U 06,42 (i, j=1,2,3),
can be written in the form:

W, _—'[_U 0.6,dQ (i=1,2,..,6),

with the usual notation.

By calculating the triple integral as the superposition of the single integral in the
thickness and a double integral following the mean plane, we obtain:

W,,:% [ fz Iia,-e,-dx, dx,dx, .
2

According to Kirchhoff-Love theory, the strains €3, €4 and €5 are ignored and the
strain energy reduces to:

=%.“.z -’.—g;aieid’cg dx,dx, (i =12, 6)'

Introducing the strains:
£ = 6‘? +x3K;,

and the stresses:

_ k{0

=Qj (51 +x3K,-),
in the strain energy we obtain:

_ | & k(.0 ( 0 )
Wd—'z— s . QU Ei +X3K,~ €j+x1K} dX3 d.xldX2,
L k=t %!
then:

wo=LL 2 ObePe] +xsel + xe +x§x,«,»)dx3}dxldxz-

ey
Given the symmetry of the reduced stiffnesses Q,-’J‘- , we have:

Q,jejx —Q e K; —Q

from which:

w, ——” [ZL Q,J £ e + 2146 K +x3 j)dx3]dx|dx2.
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After integration through the thickness, we obtain:

1 il N
w21 {EQ{}(Z&—zk_l)e,."e;’+ZQ5.(zf_Zf_l)gioxj_"
k=1 k=1
N
...+—2Q,-f (zf "Z,?_I)K,-Kj}dxldxz (i, j=1,2,6).

The introduction of the global membrane Ay, flexural Dy; and coupling B

stiffnesses leads to the expression:

1 0,0 0 )dx .
W, =EJ.L(A,-J-£,- £j +2B€i K + DKk Jdxydx, (i, j=1,2,6).

In the case of a composite without membrane-flexure coupling, the strain energy
expression reduces to:

1 0 N .
Wa =E.UE(AU£?€J +Dij"i"j)dx|dxz (i, j=126).



Chapter 6

Symmetrical orthotropic
Kirchhoff-Love plates

6.1. Introduction

Since multi-layer plate calculations are complex we will limit ourselves, in the
present chapter, to symmetrical orthotropic plates which conform to the Kirchhoft-
Love theory.

In a symmetrical laminate the global coupling stiffnesses Bj; are zero.

In a cross-ply laminate the x, and x, directions are the directions of orthotropy
of the different layers. The reduced stiffnesses Q¢ and Q4 are zero, which results
in the global tension-shear coupling stiffnesses A;g and Ay¢ being zero, as well as
the global flexure-torsion coupling terms Dy and Djg .

For a cross-ply laminate we always have:

Bjj=0, Ajg=Ax =0, Dig=Dy =0.

It is for this particular case of symmetrical orthotropic plates that the analytical

methods of resolution are the easiest to apply. As indicated above, for a laminate

with mirror symmetry there is decoupling between membrane and flexure so that the
global constitutive relation for the composite:

Nl |A O e?
M| |o D}« |
can be decomposed into the two expressions:
N = Ae’,
M =Dx.

It is therefore possible to study separately the plate loaded in its mean plane
(membrane load) and the plate loaded transversely (flexural loading).
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6.2. Global plate equations

The global plate equations according to Kirchhoff-Love theory are written as:

ON,  ONg 0%ul

—+—24p =1 ,

axl aX2 ! 0 atz

dNg oN, 0%u?
-2 =] ,

ox, * ox, P2="%0 o’

2 2 2 0 0

OM, ,, 9 Ms I M, NS N,———au3 +N6——au3

ox} ox0x,  dx2  ox ox, ox,
0 aug aug azug

ot —]| Ng—=+N,— +py=1 .
8x2[ 6axl 23x2 tq3+py =1 32

6.3. Plate loaded in the mean plane

The global equations of motion of the plate are reduced when the volume effects
are zero for the two equations:

oN, ONg 02!
+ = 10 N
ox;  ox; ar?
8N6 BN2 Bzug
+ = IO R
ox;  Oxy or?

and the compatibility equations:
82£? + 8265’ 6252

] i Axox,

=0.

The global constitutive relation for the composite is written, in this case, in the
form:

0
N, Ay Ay 0 g

0
Ny|=lAn Apn O |& |
Ne|] [0 0 Ag]leq

the global membrane stiffnesses being equal to:
N
Aij = EQS (Zk ~ Zg- )
k=1

The global compliance matrix of the composite is found by inversion of the
constitutive relation:
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[ Ay _ L)
e’ AnAzlz“' A An":‘zz - A [N,
B AL AiAn Al N2
£ 11422 ~ A 11422 = App Ny
0 0
Putting this expression in the form:
7 -
(_L Y 0 "N
&) Ey E, i
Eg - —YB_ _1__ 0 _l s
0 E, E h
€e 1 | Ne
L
i G Ll
reveals the equivalent characteristics:
2
E, = AnAy ~AD _AyAy A}
: Aph 2 A
vip =14, Vig = A_xz,
2 Ay
Acs
G =TT
2=

which correspond to the Young’s moduli and shear and to Poisson’s coefficients of a
single layer, orthotropic plate which has the same membrane behaviour as the multi-

layer plate considered here.

6.4. Plate loaded transversely

The global equation of the motion of plates loaded transversely is:

32M, .o 3’Mg N M, rq=1o azug’~
ox? Ox;0xy  9x2 or?
The constitutive relation of the composite:
M| |Dn D2 0 Ik
My |=|D;; Dy 0 |Ky ],
M6 0 0 D66 Kg

involves the global flexural stiffnesses:
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N
D, =130tz - 21.).
3 k=1

Introducing the expressions:
M, = Dyx, + Dy,
M, = Dyyk) + Dyyky,

M6 = D66K6’
and the curvatures by:
3%u 9%ud 0%u)
K| =- 2 Ky =-— 2 K6="‘2 R
ox{ ox5 Ox, ox,
we obtain the global cohesive moments:
3%u 3%u
M, =-Dy—=--Dp—,
Bxl X9
azug) 3%ul
My =-Dyp—~Dp~——-.
ax, 8x2
82 0
Mg = -2Dgg——3 .
dx, dx,
Introducing these in the plate global motion equation we obtain:
94,0 %9 4.0 9249
Dyy 3 +2(Dyy + 2D )=—5-25 + Dy —2- — g + Iy —2- =0.
axl axl 8x2 ax2 ot

In the following section we will consider the case of a single layer, elastic, linear,
homogeneous, isotropic plate. When the transverse normal stress is zero the

constitutive relation may be written as:

o) 1 v 0 |g
E

O,y |= 7 v 1 10 €&y

os] 1™ 0 o %" €6

The stiffness matrix of the material being

1 v 0
= v 1 0 i,
1-v2 0 0 1-v
2

the global flexural stiffnesses are:
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3 3 3
L |(h rY |k
Di -3%[(3) -(-3) }"‘12 0y

Introducing the flexural stiffness modulus of the plate:
En’

the global flexural stiffness matrix of the plate may be written as:

1 v 0
D = DO v 1 0 .
1-v
00 —
2
The equation of motion of plates loaded transversely becomes:
0%u 0*uld 0% 0%ul
D +2[w, +(1-v)Dy | —=—2 3 _g+ly—2=0,
0 ox; o +-v) O’ax,zaxg 0 x5 ? or?
or:
o*ul o*uy  o%ud 3%l
axl axl sz 8x2 dt
where:
aZ 0
Dolap(lapug)—q+10 81‘23 =0.
t

We find, with I = ph, the classical equation for isotropic plates.

6.5. Flexure of a rectangular plate simply supported around its edge

The rectangular plate represented in figure 6.1, with dimensions @; and a,, is
simply supported around its edge. It is only subjected to the surface force density
qlxy.x3)%;.

The global equilibrium equation is written:

o*ud 3*ud a*ud
Dy, +2(Dy2 +2Dgs ) 2 =q.
axp x70x3 ox3

The edge conditions of displacement and load are:
—for x; =0 and x; =a;:

ug =0,
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0%u? 0%u?
M, =-Dy 23 -Dy 23 =0,
ox; ox;
—for xy =0 and x; =a;:
ug =0,
92u? 9%u?
M,==-D 3 -D 3 =0.
2 12 ax,2 22 ax§
X3
a
X
4(4‘1712)"3 2
ay
/ D
Xy

Figure 6.1. Transversely loaded plate

The load acting on the plate can be written using a double Fourier series:

. m,mq mzlz:xz
g(x1.x2) 2 qu,m, :
aj

m,—lmz—l l
Multiplying the two parts of this expression by:
. omxy . Nyix
sin——L sin—2—2 dx,dx;,
a az

and integrating over the mean plane of the plate we obtain:

ay a4, .nx, . n
I J. q(x,,x, )sin——Lsin—2—2dx,dx,...
m,x m,mx n \7ox n x
q 'gin TP o PTG o Lgin 2 zdxdx
mm, 2-
a; a, a a,

my=1 my=1
Given the expression:

200, M7xy . MaJixy . Ny . Np7ix aa
J‘GJ‘ sin——Lsin —2—2 sin L 5in 272 g, dx, = -1 25,,,,,5,,,,, ,
0 J0 a) aj a as ™ 2

the preceding equation becomes:
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9 [ ML G 12722 ajay
I J‘ g(xy. x5 )sin ==L sin 22 dx,dx, ——4—q,,l,,2 .
a a

The coefficients gy, of the double Fourier series are equal to:

4 (N X m X
- 12X i P27
Gmm, = a,azj f q(x;, x, )sm a . dxdx; .

For fixed values of m;and m,, that is for a given double-sinusoidal loading, the

solution to the global equilibrium equation:

ot u o%ud 0419 L My . M
Dy, +2(D|2 +2Dgg) 3 + Dy 3 =g sin ——L gin —2—2%.,
242 4 mymy
ax, ox{dx3 0x3 Q) a;
which satisfies the edge conditions for displacement and force is of the form:
. My mamx
ugmm =U31m sin——Lsin—2—2%
SRR 172 a) aj

Writing in the equilibrium equation and simplifying by the sine product we obtain:

4 2 2 4
m mn m,m mym K
( ! ) Dll+2( . ] ( 2 ] (Dl2+2D66)+[ 2 ] DZZ mym, =qm,rv12‘
a a a, a,

where:

3 __mm
mm, ~ « ’
[1ab3 7[4D

mym,

4 2 4
- m m mn m
Dy m, =[—GLJ Dy, +2[a—l] (az] (D2 +2D¢g )+ (‘(;Z’J Dy, .
1 ' 2 2

The transverse displacement is then:
q LY~ TR Y 4
0 = dmmy oo TN L TG

Imym, —
1 ADm,mz a, a,

with:

For any Ioading it is given by:

_ 2 qulm2 YA sin My,
a,

my =1 my=1 m.mz 4
The non-transverse displacements given by:
ou
ul = _\'3 3

ox, |
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3u3
u2 = _X3 a
Xy
are equal to:
X e 4 mmx, . mymx
u =- 33 Z Zm, ™ cos——Lgin—2-2
Ta my=1 my=1 mym, a a
X oo w9 . mx,  mymx
Uy = ——> Z Zmz 27 sin— "L cos —22.
7 a, m=t m,=1 mym, a a;
The strains are equal to:
214:(;) 2u0 aZug
£ = —X3 —2—, 82 =-Xx3 5 Eg = -2 .
Xi ox; ox, ox,

or:

2 r
T4y pTimmt Dmm, a a,
9mm mtx m,Jx
£ = ——>— E E:m,m2 2 cos—1" L cos —22
” a,a; my=1 my=1 mm, aQ a;

The stresses are given by:

k k
Ui =QUX3KJ-,
or:
0 2.0
Kk O7uy 4 07uy
o1 =-x31 On—— +tQn—5 |
1 ox3
0 2.0
k kK 07Uy g 07u3
07 =-x3l Qu——+0n—5 |
1 0x3
82u0
O'g =-2x Qk 3
xlax2
from which

mynx,

o -] 2
k _ Xq my k my k qmlmz . mlm:l
oy =— E E . nt ——-a Q2 |—%sin sin

a;
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2

X3 '"l my | ok | Gmmy MGG M TDO

—2 E E Q,2 0y, |——=sin sin ,
a, D al a,

=1 my=| mmy
D, mfx, mytx,
0 Q(,(,E 2”‘1”‘2 cos , cos P
n a,a; m=1 my=1 m,mz 1 2

The transverse shear stresses obtained by integration through the thickness of the
first two local equilibrium equations are given by:

d¢,

oy o, s

with z,_| € x, <z, , from which:
o4 =“L‘E 2 J-X:.mz o (le +2Q66)+ 2 0y, |14
iy 2 a, az

Qmm, . nyIx 710%24
X —27 gin 17 cog—22

o doy  do
0’:=—J. 99 , 99,

kL J‘X.‘ 90, 806
—g ox axz

d¢,

Dm,mz a a;
| &S . 2 2
K _ 3] m, nt, ( )
o =-— Yy '[_ﬁm, [—-J Q, +[—— Q15 +20, )|4ed¢...
! my=1 my=1 2 a az
q mamx, . mynx
M o5 UL Gy M2y
mym;, | a;

so after integration:

oo oo

rtgh S 5 Sm

m=l my=1] =1

2
o b +20ie| 72 o e -+1)-

2
k 2 2 Imm, . mx myx
02 (-‘3 _zk—l) D'l 2-sin ——L cos ——Z%,

nmm,

( ] (0% +20% J+[ 2

D) 2'"1

QII [ ) (Q12+2Q66)( ‘212-1)---
U=l my=1] 1=}

2 2
m k m k k 2 2 Amm m m nx
o tm ['a—‘) O +[;2-J (le +2Q66) (x3 "Zk-l) 222 cos——Lsin—2—2%.
1 2

'__——‘f_\r—-—\
S_S 5|3

Dm'm2 a, (12

The moments of the global cohesion toads are equal to:
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2.0 2.0
M, =Dy k| + DK, = Dua - +Dlza 2 )
ox? ox?
1 2
0%u? 0%u?
M, =Dk + DKy == Dy 3 23 + Dy, 3 23 )
Xy X3
a2 0
M() —D66K6 ——2066 u3 ]
ox, dx,

or:

o oo 2 2
1 . .
M, =;r-7 Z Z (ﬂJ Dy, +(ﬂ—J Dy, q':"'"z sin T2 iy 12T ,

my=l my=1 q a Dm,m2 a, a;
1 & 2 2 q
m m mm, . MJX; . My7X
M,=— E Z —L1 Dy, +| =2 | Dy, | =sin—t—Lsin 222
7 m =l my=1 4 a, l)mlm2 a a;
2 O O 4mm mymmx m, 7o
Mg = _2—D662 2’"1"'2 2 cos——Lcos—2—2 .
n al“Z m|=l mzzl mynty al a2

In the particular case of a square orthotropic single layer plate subjected to a
double sinusoidal loading:

LMy L
q(x,.x;)=-@sin—Lsin—2 , with @ >0,
a a

the previous results become:

— for the displacements:

a 3 w 1 .. mz
Uy = X531 — CO§ ——SIn —-,
/4 D“ +2(D|2 +2D66)+ D22 a a

aY o . X, )
u, = x;| — sin—-cos—=,
7| Dy, +2(Dy, +2D¢g )+ Dy, a a

a 4 o LTy L Txy
Uy =~ — sin—=-sin—=,
7| Dy +2(D|2 +2D66)+ Dy, a a

— for the strains:

a 2 o . b . 2
£ =X — sin —-sin—=,
n | Dy +2(Dl2 +2D66)+ D,, a a

a 2 o . 7le . m2
62 = —X3 -—_ sin——sin —=,
7| Dy +2(Dy, +2Dg)+ Dy a a
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a) o ™y M,
Eg = 2x3| — COS—-COS—=
m) D, +2(D; +2Dg)+ Dy @ a

— for the stresses:

2
o, = ‘xa(%) (@) +Q|2)

w Ty L T
sin—-—smn—-,

Dy, +2(Dy; +2Dgg )+ Dy a a

0, =Xy %JZ(QU +Q22)D“ +2(D,, Tsz)+ Dy sin%sin%,
2
T =243 %) Q% b+ 20D, fzz)(,(,)+ Dy, COS"?COS%—’
04 = % x; “’;—ZJ(Qn +20¢6 +Q22)D“ T2, sz()ﬁH b sin’—:—'—cos%,
7 =-2a7r- x5 —{—J(le s +Q“)Dn +2(Dy, TZD“)+ Dy, COS%I—Sin%.

The maximum deflection at the centre of the plate is:

ofaa) (a) o
MN2'2 7] Dy, +2(Dyy +2Dgs)+ Dy

It may be noted that uj,u;,€,€;,66.0,,0, and 0 vary linearly through the
plate thickness, whereas u3 is constant and 0, and O vary in a parabolic manner

with the thickness.
Also, uy,€,,&,,0, and G, are zero around the edge, whereas u, and o, are
zero for x,=0,x =aand x,=%. We note that u; and o5 are zero for

x; =0, x; =aand x; =%, and that £ and 0, are zero for x) = £ and x, = 4.
These conditions are illustrated in the following figures.

- For the displacements:

A A

X3 X3 X3

N\ N[ e
“1__§ U -\ uy

Figure 6.2. Variations in displacements
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X, A
uy=u3=0
a
_‘i Uy = 0
2
uy =u3=0
uy =u3 =0 a u =0
2
0 |
U =u3 = 0 a Xy
Figure 6.3. Zero displacement
- For the strains:
A A A
X3

X3 X3

e o K

Figure 6.4. Strain variations

sz

£1=6=0
a
a £ =0
2

£y =&, =0
£ =6=0 a ie6=0
2
>

0 El=€2=0 a X

Figure 6.5. Zero strain
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— For the stresses:

A A A

X3 X3 X3

. P i\ I
0 0
o) M ) M ¢
Figure 6.6. Stress variations

X, A
0,=0,=0
a
a 0g =0
2
Oy =0y = 0
O =0y = 0 f_‘ Oe = 0
2
0 |
Oy =0 = 0 a X
Figure 6.7. Zero stresses
— For the transverse shear stresses:
+ A
X3 X3
M 0 M 0
4+— 4—
o4 Os

Figure 6.8. Transverse shear stress variations
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x, A .
O5 =
a
g. 0'4=0
2
U4=0
2
—-»
0 05=O a X3

Figure 6.9. Zero transverse shear stresses

6.6. Free vibrations of a rectangular plate freely supported at its edge

The free vibrations of a symmetrical orthotropic plate are governed by the
equation:

4 0 4 0 4 0 2.0
Dy, 2 "3 +2(D; +2Dgs) 32“32 22 =+ 1 9 22 20.
ax) oxi ox5 dx3 or

The solution to this equation, which satisfies the boundary conditions around the
edge in displacement and load:
—for x; =0 and x| =ay:

ug =0,
3%ud 3%ud
M, =-Dy—=-Dj—=+ =0,
axl aXZ
—for xp =0 and x; =a,:
ug =0,
azug azug
Mz =-Dip == ~Dn—7 =0,
X1 X2
is of the form:
0 _p73 o . MyTX
Uz = Um.mz Sm-—la_—sm—Tsm(wml”'zt+ Prmym, )
1 2

By introducing into the global vibration equation and after simplification by:
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LMy . mMafixy . ( )
Sln‘—a—Slﬂ'——a——Sln wmn"‘zt + Py |+
1 2

we obtain the equation:
2 2
(""”] D, + z('"‘”] (ﬂz—’i} (D, +2Dgg ).
4 a, a

4
m,n
...+(";2—'] D22 Iowmlmz U3 =03

nymy

or.
ap 2 3
(= Dy, = 102y JU 2 m, =0,

4 2 2 4
. n m m m
D'"l"‘: =(a_l'J D, +2(—a'l_] ((I_ZJ (DIZ +2D66)+[—a_2"} Ds,,
1 1 2 2

which provides the natural frequencies:

N Sl e

D

2 mm;

with:

’
or:
Oy =7 I,

The natural frequencies of a square plate of side a are given by:

a2\ |miDy, +2mim2(Dy, + 2Dgg) + mi Dy,
Bpymy =| — .

a I,
For a symmetrical orthotropic plate such that:
Dy, =9Dyp,,

D|2 + 2D66 = 3022,
the natural frequencies are equal to:

2
7Y |D2n
me"Z —k[a) 10 ’
2

k= \/9mi1 +6m12m§ +mg = 3ml2 +mj.

with:
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For an isotropic plate, we have:

2
o =ifZ) [P
mm, a 10

k’= m12 +m% .

The influence of orthotropy on the order of appearance of the first four modes of
vibration is shown in the table below:

with:

Orthotropic plate Isotropic plate
Mode my my k m my k
1 1 1 1 1 2
2 1 2 7 1 2 5
3 1 3 2 1 5
4 2 1 13 2 2 8

Figure 6.10. Order of appearance of natural modes

Its influence on the representation of the modes, and in particular the nodal lines
(lines of zero transverse displacement), appears in the figure below:

Mode Orthotropic plate Isotropic plate
1
+ +
2 + +
3 ¥
— + i -
+
4
+ -_—
4+ i =
-1+

Figure 6.11. Nodal lines
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In the case of a symmetrical, orthotropic plate, it may be noted that the mode
my =1, my =3 appears before the mode m; =2, m, =2, the opposite order to that
for an isotropic plate.

6.7. Buckling of a rectangular plate simply supported at its edge

6.7.1. General case

The rectangular plate of transverse dimensions a, and a, is simply supported at

its edge. It is loaded in compression ~ N} and - N3, with N? >0 and N9 >0.

0
Nyxy

[ /)]

X2

2X3

/

“N?xl

/

Figure 6.12. Buckling loads

The global buckling equation:

32M1 82M6 82M2 _ Oazug _ Qazug -
2 2 N 2 N3 2 =0,
ox; ox,dx;  oxj ox; ox;
in which we have:

02u? 92!

M, =-Dy 23“D|2 23’
ox; ox}
a2u0 a2u0

My =-Dyy—~ Dy —3,

ax,z - axz
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9%u?
Mg = -2Dgg —2—,
dx, dx,
is written as:
a4 0 a4 0 a4 0 20 2.0
Dy =22+ 2Dyy +2Dgs)=—2+ Dy, - +n02 - +n92 =
ox) oxi dx5 ax; oxj ox3

The boundary conditions for a simply supported plate are:
~for x; =0 and x; =a;:
0

us =0,
0%u$ 3%uf
My =-Dy—--Dip—~=0,
ox{ ox)
~for x =0 and x; =a,:
ug =0,
0%u) 0%u?
M = —D 3 '—D 3 = 0
2 12 2 22 2
8x1 ax2
These conditions are satisfied by:
.My . Mo
ug =u? sin——Llgin—2—2
mym, al a2

which, after introduction into the global buckling equation and simplification, gives:
- 4 z 2 . 2 4
m m m m,mw
(4) D,,+2(LJ[ 2 ] (D,2+2D66)+( 2 J D,,...
a, a, a, a
/4 : n :
m o_[|m 3
Ame -z e o
a; a,

The critical buckling loads, corresponding to U 3' m, non-zero, are given by the
expression:

2 2 4
(ﬂ) N;u[ﬂJ N9 = 72 ['"_J D, ..
a, a, a;
2 2 4
...+z(ﬂJ ('"_J (D, +20“)+(&J Dy, |.
a, a, a,

which in the particular case where N ‘2) =kN ? , gives:
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4 2 2 4
[m ) Dn”{ml) ('“"l) (Dy; +2066)+[22) Dy,
NO = 72 o | ay a; - az .
=) )
a a;

If, in addition the plate is square a, =a, = a, we have:

Ny =

(z)z my D\, +2mim3(D,, +2Dg )+ miD,,
a

2 2
my +kmj
We will now examine different special cases.

6.7.2. Case of k=0

The plate is subjected to a compression load ~ N in the x, direction.

xl _Nl

Figure 6.13. Compression loading in one direction

The critical buckling load is given by the expression:
2
NO = ﬂ]

or:

2 2 2
(3
NP = —J ""“2} D,,+2m§(D,2+2D66)+m2“( il ] Dy
ay ma,

///2“17 ,

123

T o V2 4
1 m

( JD11+2( l)( 2}(D12+2D66) ( 2) Dy, |,
ay a) a; a
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For m, =1, this expression gives the series of curves plotted on the figure
below.

For a given width a, and fixed values of mj and m, the value of the ratio f‘-
2

which cancels the derivative of the critical buckling load:

2 3
oNy n of a m3(a
L= —||mf| 2 Du--ﬁ— —L 1Dy, |,
a(i) a2 a mi | 42

a

is:
1

a _m(Dy 4
a; my|\ Dy
For this value, the critical buckling load is:

2
0 om
Nl = 2{*—0—2J (\’DHDZZ + DIZ + 2D66)
2
The critical buckling load thus obtained is independent of m,; and its minimum
value is found for m, =1.

A

Ny

Figure 6.14. Critical buckling loads

The buckling of a plate loaded in compression in the x; direction occurs in such

a way that there can be several half-waves in the compression direction and only one
in the perpendicular direction (m, =1).
The critical buckling load is then given by the expression:

2 2 2
NP=[£) (mlaz) Dll+2(D12+2D66)+[ 4 ]Dzz ,

as a) mas

and the minimum obtained for:



Dy 4
LI TR L
az D3
is equal to:
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2
N{) =Z(%) ("D“Dzz +D|2 +2D66)'

The intersection of the two plots of critical buckling load, relative to the two
successive values m and m; +1, is found by equating:

which gives successively:

ot

ma,

a

[(ml +1) - my {

a;

T
N =| Z
l"'l a
Y
1m|+| a2

I

ma;

aq

(ml + 1)(12

aj

)

2

| 1
D= ——
a,] " {m,z (m, +1)?

Dll

2

2
J D“ +2(D12 +2D66)+[

oV
JDzzv
a

ma

2 : 2
a
Dy +2(Dyy +2Dgg)+| ———| Dy, |,
(my +1ay
a,

2
(my +1)a,
[ J “+[(ml+l)a2J D2

. 2
a;

a,

mi
or:

a

(_

a

J4 _ (m +1)2 -m
T

2
J =m1(m|+l) F“—

! by,
(m, +1)?

D
22

1)

This expression enables the length a; to be calculated for a given value of a,,

for which the critical buckling load is identical for the modes m; and m; +1.

When a plate is subjected to a compression load - N ?

in the x, direction, the

buckling of the plate occurs such that there exists:
—inthe x, direction: a single half-wave (m, =1),

- in the x, direction:

- a haif-wave for: 0< a < (4
a

I
D“ 4
Dy |’
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Dy,

|-
LK)
[ =y
/N

W

(=,
N
[ %] —
N———

|

- two half-waves for: (4—1)1—]] < —

rq s

- my half-waves for: | m? Dy <2 m?(m? +1)2 Dy |4 .
Dy D

The critical load corresponding to this intersection is given by:

2
P m; +1
N? =(—J [ \’DIIDZZ +2(D12 +2D66) :nl ‘/D“Dzz :|,

ap m|+l
2
/4 mi +(m +1)
N =| = i 1 DDy, +2(Dy, +2D
1 [azj[ iy my +1) 11022 12 66) |

For the special case of a plate for which:
Dy =9Dp,,
D12 + 2D66 = 3022,

we have:
2 2
/4 mya a
N? ={ — 3 172 +m% 1 D22 N
a q mja;
the critical buckling load, obtained for m, =1, is equal to:
2 2
/4 mya a;
N =l = |3 2224+ 2L | Dy, .
a a may

The minimum critical load:

2
Ny =12{'”—J Dy, ,
a;

is obtained for:

= J3—ml B
or, for the first two modes:
3 and 4 Zﬁ .
az a

The intersection of the plots m; =1 and m; =2 is obtained for:
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and the corresponding critical load equal to:
21z}
NP =—2-[ ) Dy, .
az
If the plate is square (a; =a; =a), the critical buckling load obtained for

m =1,is:
N, —16( J Dy, .
6.7.3. Case of k=1

The plate is subjected to the same compression load — N in the x; and x,

[ 1"

NYx,
—_—
—Nl"z
—_—
a)
4 4
—f

X, NIO

directions.

Figure 6.15. Identical compression loads in two directions

The critical buckling load is then given by the smallest value of:

m 4 m 2 m 2 n 4
Dy +2 ZL | 122 | (Dyy +2Dg6)+| 22 | Dy
o__2q a a a
Nl = 3 3 .
[ﬂ} ,{'_";)
al (12

In the case where:
Dy =9Dy,,
Dy; +2Dgg = 3D,
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we have:

- 2 2
m m
m oM
a; a,

and for a square plate:

2 2 2
o (« !3m +m ’
Nl = (—') 1 2 D22 .

a mlz +m§

The critical buckling load, obtained for m) = m, =1, is equal to:

2
0 4
Nl ={—) Dzz .
a

6.7.4. Case of k= -1/2

The plate is subjected in the x, direction to the compression load — N and in

the x, direction to the tensile load 1 NY.

X, NPX,
X2
Ny
Bl
N{’x
5 X2
1

Figure 6.16. Compression and tension loads
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The critical buckiing load is equal to the smallest value of:
m ¥ m 2 m 2 m ¢
—L| Dy +2 1| | =2 | (Dy; +2Dge)+| =2 | Dy
0_,2.9 aj a) a
Nl =7 2 3 .
m| _1fm
a; 2{ a,
For the particular case already described we have:
2 N2 2
a az
2
i 2 2
m| _tfm
and for a square plate:

NO-Z[”)Z !3"1]2"'"1%! D
1 =4 22

a 2m} —m?

0
Ny = Dy,

The critical buckling load, obtained for m; =m, =1, is:

2
N? = 32(2) D22 .
a

129

The tensile load in the x, direction increases the critical buckling load; with

k=-1/2 it is twice as high as in the case of k =0 and four times as high as the

caseof k=1.
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Chapter 7

Thermo-elastic behaviour of composites

7.1. Introduction

The important roles played by a temperature variation AT and by the absorption
of humidity A#n were noted previously in the presentation of the laws of the

behaviour of an orthotropic material. Both effects work in the same way, so the
discussion here will be limited to a temperature variation AT .

In composites cured above room temperature there appear, on return to their
normal temperature of use, residual stresses which may be large. These originate
from the different values of the thermal expansion coefficients for the fibres and
matrix.

After having presented the constitutive relations of an orthotropic material in its
orthotropic axes and off-axis we examine the definition of these expressions in
matrix form in plate theory for which the transverse normal stress is zero.

Then we introduce the global constitutive relation of the composite in thermo-
elasticity which allows the study of the behaviour of a multi-layer plate in tension,
flexure, vibration and buckling.

7.2. Constitutive relation for an orthotropic material
7.2.1. Constitutive relation in orthotropic axes

The thermal strains, resulting from the change in temperature AT and noted £;
in the orthotropic axes (¢), are:
E;=a@AT (i=12..,6) or ©=aAT,
with &y =05 = &g =0.

The strains £; due to the stresses &; and to the thermal dilatation £;’ are given
by:
£ =5;5;+&8; (Lj=12,..6)or E=85+82.
These may be expressed as a function of the variation in temperature AT using the
expressions:

£ =5;8, +@AT (i.j=1.2..,6) or E=SG+TAT .
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In an explicit manner we have:

(&) [Su S S35 0 0o o[a] [&]
| |82 Sn S 0 0 0|5 &,

1173 _|513 813 S3 0 0 0Ty 18],
&4 0 0 0 Su 0 0 (o}

£s 0 0 0 0 S 0| 37s 0
&) [0 0 0 0 0 Sg|T6] O]

The stresses &; are given as a function of £; and of &;’ by:
5;=Cyle;~&;) (i.j=12..6) or 5=ClE-¥),
and as a function of the variation in temperature AT by:
5; =C;(E; -a@,AT) (i.j=12,..6) or 8= C(E-aAT).
These two latter expressions can be written in the form:

G, =C;; -C AT (i,j=12,...6),with C’;=C;@,

or.
% =Ceg-C’AT, with C’=Ca.

The matrix C’= Cd is equal to:

[Ci Cp Gy 0 0 0]&]
Cp Cn C 0 0 O |m,
C'= C; Cp Cy _0 0 0o
0 0 0 Cyq 0 O0])O0
0 0 0 0 Cys O01]O0
|0 0 0 0 0 Cgj0)
or:.
[C _C—_-llal + §2‘72 +C3,
C'2| |Ci@ +Cnl, + i,
Ch - Ci30; + Cp3 +C330, _
0 0
0 0
L 0 3 L 0 J

The constitutive relation may be written in the form:
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(5] [Ch €2 Cs 0o o o |&] [Cy]
Ty |Ci2 Cxp C3 0 0 0 &) |CH
53]_|Cis €3 C 0 0 0 15| ICy) 0
4] |0 0 0 Cyu 0 O&]| |0

Fs 0 0 0 0 Css 0|5 0
5] [0 0 0 0 0 Cellé] | O

7.2.2. Constitutive relation in orthotropic off-axes

By introducing the conventional matrices for changing the axes M and N, the
strains in the base (e) off-axis of orthotropy are:
e=Ne = N(S5 + &)= NS5 +aar),
or:
£¢=NSNTe + NaAT .
The strains can be written as:
e=Se+S’AT,
with:
S’=Na.

The matrix S’ is given by:

[¢2 2 0 0 0 -ecs ~_a_|-
s2 ¢ 0 0 0 cs a,

g=| © 0 1 0 0 O 5-'-1’
0 0 0 ¢ s 0 0
0 0 0 -5 ¢ 0 0
[2¢5 —2cs 0 0 O cz—-szJ_Od

or:

—5’1- —Cz-a-l +520_!'2-

Sy |sPa +cta,

55 &

0| 0 '

0 0

_§‘6 ] _20s((7| -a, )j

in an explicit form we have:
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The stresses are given by:

&, (Su S2 Sz 0 0 Sefoy] _5’1—
& Sz S»n Sn 0 0 Sylo,| |5,
E3|_1S3 S Su 0 0 Syjo; + 5
£, 0 0 0 S4 S O |o, 0
£ 0 0 0 S S5 0 }os 0
(€] 1S S6 S 0 0 Sefog] |5%]

o = Md = M(Cz - C’AT)= MCMTe - MC’AT

or:
a=Ce-C'AT,
with:
C’=MC’.
The matrix C’ given by the product:
’C2 s2 0 O O —2L‘s —FC—“(_Z_] +E:12(72 +6l36_'(-3
52 C2 O O 0 2cs azal + 62252 + 52353
Mc|0 0 1 0 0 0 Ci3@, + Cp@@, + 33y
0 0 0 ¢ s 0 0
0 0 0 -5 ¢ 0 0
les —es 0 0 0 2-s52 0
is equal to:
FC’l-‘ ~C2E‘”+.§'26l2 (?1‘*' Czaz+52622 6‘?24- C2as+52623
C’Z szé_” +CZE|2 (7[ + 52612 +C2622 52 + 82613 +C2623
s Ci3ly + Cppy + Cyy@
0 0
0 0
LC’6J CS(Eu - E12)5‘71 +C5(a2 ‘513)072 + cs(fn -Cyp )‘73
The constitutive relation is written as:
o] [Cu Ca C3 0 0 C4lla] [Cy]
03 Cip Cp Cp 0 0 Cxlle| |C
o3| _(C3 € Gy 0 0 GCylley) |Ch AT
g, 0 0 0 Cu Cy4 O |lg, 0 '
Os 0 0 0 C4 Cs5 0 |lg 0
106 [Ci6 C6 Ci¢ 0 0 Cejles] [C6]

AT .

ay
ay
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7.3. Constitutive relation when the normal transverse stress is zero
7.3.1. Constitutive relation in orthotropic axes

Given the notations introduced above we have the expression:
& =Q(e-aAT),
or:
8 = Q& - Q’AT, with Q’=Qa,
which is written as :

0 @, 0 0 of&]
_ 612 622 _0 0 0 |
Q=0 0 Qg 0 O01}0]
0 0 0 Q, O0}O
o 0o o 0 0s)o0]

or:

) M= — = — ]
Q' Q11 + Q120
Q| |Qna +0xra,

0 |= 0

0 0
L 0 ; L 0 J

The constitutive relation is written in the form:

7] [0u G, 0 0 of]5 F(TJ
| |02 On 0 0 0|5 0"
O¢i=| O 0 Qe O 0 |& |-} 0 |AT
Ts| | O 0 0 Qu O |&|]O
5s] Lo 0 0 o0 Os)&] o]

7.3.2. Constitutive relation in orthotropic off-axes

The conventional formulae for changing axes and the preceding expressions
allow us to write:
o =Mad = M(Qz - Q’AT)= MQM"e - MQ’AT .
The constitutive relation is now in the form:
6=Qc-Q’AT,
where the matrix:
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Q=MQ’,
is equal to:
(¢ 52 —2es 0 0][0,&+0,3 |
st c? 2cs 0 0| QLa, +§22(72
Q={cs -cs c*-s2 0 0 0 ,
0 0 0 c s 0
(0 0 0 -s cff 0 |

or:
[}Czéu +5%0,, @ +§CZQ_12 +52§22352

sQyy +¢20 ) +15°0,, +°0 )@,
Qs |=| osl0,-0p )7 +C5(Q—12 —622)672

0 0

0 0

The constitutive relation is written as:

— - ~ - e -

o4 On Q2 Q6 O 0 1¢ ]
o, Qu On Q@ 0 0 |e, 2
O6 |=1Qis Q26 Qs O O |&6|-[Q% |AT.
o, 0 0 0 Qu 0QOus|ées 0
os] 0 0 0 Qs 0sles] |0

7.4. Global cohesion forces
The resultants of the global cohesion forces are equal to:
h
N, =J'2,, o.dxy, (i=1,2,6),
2

or.

N
N, = g L 1‘4 lo% (9 + xyx,)- 0* ATax, ,

N N
1
N =Y 08z — 2 )e) +EZQ";‘ (Z’f ~ % )Kf"'
k=1 k=1
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Introducin g

ZQ’k ~ 241

the resultant of the global cohesion forces is written as:

N; = A;e) + Bk, - A AT (i, j=1,2,6).

The moments of the global cohesion loads are given by:

M;= Fh O;xydxy ,
2

from which:
M=y ok (e + xyx, )- 0 AT |y, .
k=)
<33 0iet -t s+ S0t - 22.)
i"EZQu 2k Tk JE +32Q,, Tk T2k~ )K
k=l k=1
1N (2 2
) ZQ’.' (Zk = 2k )AT
k=1
By putting:

10 (2 2
B= EZQ’.‘ (Zk - Zk—l)v
k=1
the moments of the global cohesion loads may be written in the form:

M;=B;e) +Dyx; - BAT (i, j=1,2,6).

7.5. Global composite constitutive relation

The global composne constitutive relation is written in exphcn matrix form as:

N [Aan A As By B Big|el] [A1]
Ny |A2 An Ax By By By | ed| |An
Ne | _| A Ax Ass Big Ba Bes||ed | | A
M, By, B, B Dy Dy Dy |k | | B
My| Bz Bn By Dip Dy Dyllx,| | B2
1Bic B Bes Die Die Des || kg | LB's

and in conventional form as:
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s Bl

or:
N =Ae® + Bk - A’AT,
M = Be® + Dx - B’AT,
with:
yo 14,
A= EQ’.' (2 = 241), B =52Qi (23 ’Zf-l) (i=12.6).
k=1 k=1
7.6. Decoupling

7.6.1. Composite with mirror symmetry

In the case of mirror symmetry the terms:

N N
By =%§Q,§ (ZE "ZI%—I)’B’i =%§Q? (ZZ -2 )’

of the global composite constitutive relation are zero.
This, which may then be written as:

Ml A Az A4 O O O] €ﬂ [ A ]
Ny| {A2 A A O 0 0 [ |A
Ne| |As A6 A 0 0 0 |ted| | A%
M || 0 0 0 Dy Dy Dglx| |0
M2 0 0 0 D12 D22 D26 Ky 0

LM(S_ [0 0 0 Dy Dy Desng| L O]
or.

N=Ac" -A’AT,

M =Dx,

shows that a plate, which is not loaded by external forces, will only show membrane
strains.

7.6.2. Balanced composite

In the case of a balanced composite we have seen previously that the global
stiffnesses Ajq and Apg are zero.
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For two layers of the same thickness and with opposite angles the values of:
0% =cs(@), - 612)51 + Cs(anz -0 )‘72 ,

are opposite and the term:

6—2Q6 k= Zk-1)

of the global composnte constitutive relation is zero.
This is written as:

- r

(Nl Ay Ay 0 By By By Fglo’ (A ]
Ny | |Az Ap O By By Bylled| | A
Ng 0 0 Ag Big By Bes | el 0
M| By By Big Dy Dy Digi[ry| { B
My| |Bi2 By By Dip Dy Dyllxy| |B2
Meg| |Bie By Bes Dyg Das Des |

7.6.3. Balanced symmetrical composite

Given that Ajg=A3 =0, B; =0 and A'¢=0, B";=0, the constitutive

relation is written as:

(N ] (A A2 0 0 0 0 ed) [Ay]
Nyl Az A4 0 0 0 0 [l&] |A
Ne| |0 0 A O 0 0 e | |0 AT
M, 0 0 0 Dy Dy Dl 0
M, 0 0 0 Dy Dy Dylx, 0
(Mg} | 0 0 0 Dy Dy Degs|lng| | O

7.7. Balanced symmetrical composite loaded in the mean plane

For such a composite the global constitutive relation which is written as:

oo Sl

gives:
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k=0,
N =Ac? - A’AT,
or:
0 ’
Nyl JAnr A O |j& | A}
N2 = A12 A22 0 83 - A,z AT .
Ne|l | 0 0 Agfledl |0
The membrane strains are written as:
e =AIN+A'A’AT.
Designating by A,;- the term of row i and column j of A~!, the preceding

expression is written as:

0 * ’ * ’
€ Ay A 0 [Ny | A A +Ap A,
*® * *
€3 |=|An Ay 0 | N, |+| AL A +AS,AY AT .
el | 0 0 Ag|Ng 0

The global constitutive relation for the composite is written as:

e =nA"? -:i+A"‘A’AT ,

or:
e®=hA'e+AT'A’AT .
This expression can be written in the form:
1 vg,
o o 0
E E
€l vlo 12 o] |af
&l=|-2 — 0 [o;|+|a] T,
Eg El E2 1 O¢ 0
°© 0
] G
with the equivalent characteristics:
o__1 o_ 1 o _ 1
Ef =—F, Ey=—r, Gp=—rp,
hA; hA;, hAgs
* *
Vo oA o Ap
2577 VY =05,
A Ap

L] »
@) = AA\HARA,, OF = ARA AR A,



Chapter 8

Symmetrical orthotropic
Reissner-Mindlin plates

8.1. Introduction

Exact theories for a multi-layer rectangular plate, simply supported around its
edge, loaded in flexure, vibration and buckling, were developed by N. J. Pagano and
S. Srinivas. They enable the areas of application of plate theories to be defined. The
Kirchhoff-Love theory only provides acceptable deflections, natural frequencies and
critical buckling loads for thin plates whose ratio of thickness to the characteristic
dimension of the mean surface is less than 1/20. Reissner-Mindlin theory, in which
the transverse shear strains are constant through the plate thickness, gives
satisfactory results for flexure, vibration and buckling of moderately thick plates
whose ratio of thickness to the characteristic dimension of the mean surface is
between 1/5 and 1/20.

8.2. Moderately thick plate, Reissner-Mindlin assumptions

As indicated in the Appendix, in Reissner-Mindlin theory the hypotheses of
Kirchhoff-Love theory are used without ignoring the transverse shear strains.

8.3. Displacements, strains and stresses

The displacement field:
u = “?(xl'x2it)+ X3y (xl’le’)*
uy = ud(xy, x50+ x30, (xy, %, |t)
uy = “g(xl”‘z“)'
leads to the strain field:

.qu—g. + x3 _awz y
ox, ox,

81=_+X3"—‘, 82'—- €3=0,
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Es =Yy 5 0
ox, ox ax, " T ox
which given the notations introduced above can be written in the form;
8,’ =E‘-O+X3Ki (l=l,2,6),

ou) a_u;’_+ (aw,+aw2} €4=W2+au° ou

ou
Eg =Yt
dx,
ouy
Es =y +——
ox;

The stresses in the k layer are given by the expression:
of =0je; (i, j=12,4,56).

8.4. Global plate equations

The global plate equations according to Reissner-Mindlin theory are written as:

dN, N, 0% %y,
— sy p =1g—L+ 1, —5E,
ax, ox, PT0G2 T
dNg ON, ok %y,
—C 24 p, = ly—E+1,—%,
o, o, P2 (] a2 1 32
oNs ON, 0 3u3 au3 ad 8u3 au3
—+—+ N +N N +N
d9x;, Ox, 3):,( 'ox, $x, ox, axz 6 ax, ox, 2ox, ox, |
0%ud
et qy+ py=Iy—>,

93 ¥ P3 ] 32
oM, oM, 0% %y,
—+———-Ny=1l,——+1I .
ox, ox, ! 82 2 o2
oM ¢ +8M2 N =1 82u2 vl 821//2.
dx, ox, $T T g2

8.5. Calculation of I;and I,

For these calculations, we retain the layer distribution in the plate thickness
adopted previously. With this distribution we obtained:

N
Iy = Eﬂk(zk - 25).-
k=1
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In addition, we have the rotational inertias:

h
I =I2h pxadxy ,
"2
or:
N oo &
k k[ 2
11=Zf P x,dx3=52p [xst:_.’
k=1 - k=1
from which:
| Al k
I =5ZP (Zk _Zk—l)v
k=1
and:
h
I, =J.2;, pxgdx, )
2
then:
N N
) 1 k[ 3
I =Z p 3dx3=§20 [xs]zk,.'
k=1 7 k=1
or:

I =‘;-gpk(22 —22—1)-

In the case where the plate is a single layer or multi-layer with layers of the same
density, the preceding expressions are equal to:
3 2
[()=;0hs 1|=(). [2=£h—— h—

=" .
12 12°

8.6. Global cohesive forces

As with Kirchhoff-Love theory we have the expressions:

_ 0
N; = Ay +B,.jxj,

M, =Bt +Dyx; (i, j=1,2.6),
to which we add:

h
N, = j_2h odx, (i=4,5).
2

The transverse shear stresses in the k layer are given by:
k k , .
of =Qj¢; (i.j=4,5),
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where &; is constant throughout the plate, and the transverse shear stresses are

therefore constant through the thickness of the k layer.
In order to take account of the variation in transverse shear stresses throughout
the thickness the global transverse shear force is taken to be equal to:

N N
‘KQZL Qje vy =K;; 3 05 (2, = %)e
k=1 1 k=1

the summation convention does not apply to the underlined indices i and j, they have
the same values as the indices i and j not underlined.
The global transverse shear loads are written as:

= K; A€ (i, j=4,5),

N
= 205 = a)

where the Kij are correction coefficients for the transverse shear, the effective

with:

Il

calculation of which will be described in a later paragraph.

8.7. Global stiffness matrix of the composite

The global constitutive relation for the composite is written in the following
matrix form:

[N, ] [AW Ax Ae By By By 0 0 ] -510
N, Ay Ay Ay By By By 0 0 £
Ng A Ay A Big By Bes 0 0 £
M| By B; By Dy Dy Dy 0 0 K
M, | |By; By By Dy Dy Dy 0 0 K|
Mg B By Bes Dig Dy Des 0 0 Ks
Nl O 0 0 0 0 0 Kydy KeAglle,
(N[ [0 0 0 0 0 0 KuAs KssAss| e ]

where:
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[N4]=[K44A44 K4sA45][€4]
Ns| | K4sAss KssAss | €s

in the case where Ky = K45 = K55 = K, this latter expression becomes:
{N4] - K[A‘“ Ags ][54]
Ns Ags  Ass || €5

8.8. Transverse shear correction coefficient

In the case of an orthotropic monolayer plate Uflyand, Reissner and Mindlin
respectively proposed for K the values £, 2 and —’{21

8.8.1. Uflyand coefficient

The transverse shear stress g4 from the global equilibrium equation:

805 +.aa} +_aog _

0,
axl aXZ 8x3
is equal to
X3 806 802
= —+—=1{d{ .
g4 f—g( ox;  Oxy J ¢

In the case of a single layer orthotropic plate, loaded in flexure, the expression:

o, =Q,-jx3xj,

gives:
o, = (011K + 012 )x3,
0, = (Qiax, + 0y x5,
O = QeeKe X3

Included in the expression for &4, we have:

a X
04 = —[L(Q(,ﬁxs)+'—(Q12K| + 0K )M_ng? '

axl BX2 >
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o (27 a5 W) w2(4dd
e 5] 55

we obtain:

nt[ 9 2 4x?
o4 =—8'l:a_xl‘(Q66’(6)+E(Q|2’(l +Q22K2)}[ -%]

From the global constitutive relation of the orthotropic plate we have:

since:

M, = Dy 1k + Dyx,,
M; = DKy + Dyyky,

M6 =D66K6,
with:
3 3 3
1 h h h
s efl] (3] e
we obtain:
3
M, =‘1‘2‘(Qn"1 +0p,K,),

%

M, =72‘(Q12"| +Qpnk,),
P

M = 75 QesKe-

The stress 04 is written as:

3 8M6 8M2 4X§
=— + 1- .
74 Zh( ox;  dx, )[ h?

Given the global equilibrium equation:

aM6 + .(?.Ml - N4 =0,
ox;  0Oxp
the transverse shear stress g, is equal to:
3N 4x}
LY P
2h h
similarly:
_3Ns[ 4x3
37 Ton B2
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The maximum transverse shear stresses, obtained for x5 =0, are equal to:
3N, 3N
G4MIX = ’ asmax = *
2h 2h
From the global composite constitutive relation we have:
N4 = KA44€4 = KhQ44€4 s
and from the material constitutive relation we have:
04 = Qs

The transverse shear stresses are thus given by:
Ns
Kn

4
Oy =——, Og=
4 Kh' 5

147

By identification with the maximum transverse shear stress calculated above we

obtain the Uflyand transverse shear correction coefficient:

k=2
3

8.8.2. Reissner coefficient

The transverse shear strain energy is equal to:

a
d-zj _[ I (0484 + 055 )dxydrydxy,

introducing:
T4 Og
£4=—1, Eg=—,
Qus’ Qss
we have:
ay fay
W, =~ I I j' I5_ \dxsdrydy, .

Qss

With the values of the transverse shear stresses already obtained:
N 4x3 N 2

0'4—-3-—i l——x~3 and Os =3—5- 4X3

2h h? 2h h?

we obtain:

2 2
Wd:_‘[alj'azj' 9 (N4+N5 1_4X3 dx:;de{in,
Q44 Oss h?
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with:
h 4x? 2 h 8x2 16x% 8x3 l6x5—;
3150 = [l 1T s = o 28
L L h 3n2 spt | n
2 2 ——

2

h
[ o) ln sGF 16lef | s
-g h? 2 32 spt | 15

we find:

a N
d__J‘IJ‘ 928h 4 5 dxydx, .
4h* 15| Qaq Q55
Introducing Ay = hQyq and Ass = hQss, the transverse shear strain energy is
equal to:

a) ra N
Wd=§jl_|.2 4 =3 Ndx,dx; .

The global constitutive relation of the composite supplies the transverse shear
strains:

N N
E4 = 4 and £5 = 3

KAy KAss

Putting this into the general formula for the transverse shear strain energy we

obtain:
a, ea N
lI z.r 4—'—+05—— dxydxpdx; .
Ass

The global transverse shear forces being equal to:
h h
N4=th4dX3 and N5=Fh05(1x:;,
2 2

the transverse shear strain energy is written as:

a, pa N
Wy =— 'I |2 T3 ey,
A44 Ass

The transverse shear correction Reissner coefficient, obtained by equating the
two strain energies calculated above, is equal to:
5

6
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8.9. Boundary conditions

The Kirchhoff boundary conditions, for the edge x; = a,; of a rectangular plate,

1

are:

Figure 8.1. x; = ay edge

— for a simply supported edge:
Ny=Ng=0, M;=0, y,=0, uj=0,

— for a simply supported edge in x, direction:
N =0, M,;=0, y,=0, uj=uj=0,

— for a simply supported edge in x, direction:

— for a built-in edge:

V=V, =0, u

— for a free edge:
N1=N5=N6=0, M1=M6 =0.

8.10. Symmetrical orthotropic plate

The global constitutive relation of a symmetrical orthotropic plate is written as:
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er_ —A” A12 0 0 0 0 —(510_
N2l |42 4 0 0 0 0 |i¢?
Ne| |0 0 A6 0 0 0 |
M| ]0 0 0 Dy Dy 0 |g
M, 0 0 0 Dy Dy 0 |k,
_M6J [0 0 0 0 0 Dellxg]

For such a plate we therefore have:
Ny = Ay &) + Apey, M, =Dk, + Dy, N, =KAye,,
Ny = Ape) + A€, My =Dk, + Dyk,, Ns = KAss¢s,
Ng = Agel, Mg = Dy

8.11. Flexure of a rectangular orthotropic symmetrical plate simply supported
around its edge

The multi-layer plate studied here, of dimensions a; and a, is subjected to the
surface force density of q(x, WXy )x 3-

X3
az

T q(x,,x2 )"3 X2

a)

J% 5

Figure 8.2. Transversely loaded plate

The equilibrium equations are:

oMy,
ox, Ox,
%+%'_N4 :0’

ax 1 ax 2



Symmetrical orthotropic Reissner-Mindlin plates 151

oNs + oN,
ox; ox,
with the global cohesion forces:

+g=0,

0 d oud
M, =D, an + Dy, aV’z N,= KAM[W2 +5—3“J,
Xy X3 X3

0 d oud
M, =Dy — adt +1)22_V’£’ Ns = KAss[Wn +—3]’

ox, ox, ox,
oy, , oY,
Mg = Dgg| —+—=|.
6 6{ ox, ¥ ox,

For a double sinusoidal loading:
.omDg  myfixy
461 £2) = G, i "L 5in T2
a
the solution which satisfies the equilibrium equations:

a2y/, a ') aZV/l 82w2 aug
Dy —=L+D +D + - KA +—=|=0,
11 axf 12 3x,9x, 66 8x§ ax,0x, 55| ¥ o,

2 2 2 0
66[_8_&_4..8__&]...0'2 aa 2/2 + Dy, aaV/Z - KA [V/2+%3_J=0’
X

ax,axz axl2 19X7 xz ax2

2.0 2.0
mss[ﬂ’ll-+a—"—3]+ m[a% +—Q—%J+q=0,

Ox 2 ox 7
and the boundary conditions:

—for x; =0and x; =a,:
ul =0, y,=0,

an

oY,
=0,
ox,

M, =D, — o
2

+ Dy,

—~for x =0and xy =ay:
ug':O, '//l=

9y,
ox)

(173

M, =D,— E
Xy

+ D22 = 0,

is of the form:

v, =¥,

"'l'"z
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o m,mx
v, ‘P,f,l,,,? A cos 22
a, a,
u® LMy My
Uy = U,,,,,l sin——=sin—=—=.

a, a;
Including this in the equilibrium equations and changing the sign, we obtain:

1),l D66 + KAss [¥ i m, + =22 (D, + Dgg )‘P,,,],,,z...
al a2 a a,
m X m-7Ix
it Sngd 1 .: 27%v2
KA:,SU,,,‘,,,2 } ——sin——= =0,

01 a; a,

2 2

mllt mzﬂ 1 m27t m,ﬂ 2

(Dy; + Deg )\Prmmz Dy, + Dgg + KAy ¥oum, -
a a4 a, a;

m27t
KAMU mmy
a,

} LT N L Yy T

ay a,

2 2
ml” 2” 2 ml mzﬂ 3
P RAG W),y + 2 KAy PR + Kass +| 22| KAy U3, -
a; a, a, a

o>
_qmmz sin_’r_l_l—ls"‘_'n_zzg__z_ :0
' a, a,
The three coefficients ‘{”lnm . ‘P’imz and U 3”" are solutions to the system:
V%2 1 172
Hy Hyp Hgll "mm 0
Hy Hyp Hp|Y.. 15| O |
H H H 3
13 23 33 Umlm Amym,
with:
T 2 n ? m m,m
m, 1 2
H, =|—=| Dy +| ——| Des + KAss, le”_‘—‘_(Dn*Dw)
1 a, a a
/4 2 : n
m
Hy=|——|Dpt D + KAy, H; =——KAss,
a; 1 q;
n : 4 : n
m m m
Hyy=| ——| KA + —2= | KAy, Hyy =—2—KAy
1 a, a,

For the loading:
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. MaTtxy

ny =1 my =]
we obtain the solutions:

mlm‘l mzmz
n=3 3w, st :
m,mz l a2

m=1m,y=1

Wa = i i si mlﬂ:xl mzmz
2 — = m.mz l a2 ’
=1
0_ 2 2 "'1"3‘1 m2m2
“3 = n——,
=1my=1 ay az
with:
1 _HppHyp-HpaHy
mymsy - D mym,
2 _HpHj-HyHy
ntynm, D ”'I'”Z'
2
3 _HyHyp-Hj
mmy mmy

2 2 2
D=(H1|H22 "”12)”33+2H12H|3H23‘”11”23‘”22”13-

8.12. Transverse vibration of a rectangular orthotropic symmetrical plate
simply supported around its edge

The rectangular plate of dimensions a; and a, is simply supported around its

edge and not subjected to any given force.
In the case of a symmetrical plate, we have [, =0. The equations of global

vibration are written as:

oM, oM, 0%y,
—4—=>=-Ng =], ——,
axl axz 5 2 a[z
oM, oM, 0%y,
—2 4 —= N =] ,
axl axZ 4 2 alz
ONs 0N, _ I, azu;"
dx, dx, or?

with the global cohesion forces:
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) ) oul
DllaL+Dl a'/’z N, =K-444['//2 +a—3]
X1 49 X2
) ) oul
M2—D12—a£—+D2 aulzz N5=KA55 l//1+3x% R
dy; 9y,
Mg = Dgg] —L + =22 |
6 66( dx;  dx;

Including the latter in the global equations we obtain the three expressions:

%y, Iy, y, oy 3“3 N’y
D D D - KA =1,—L
3 + Dy ox 0%, + D) — +8x,8x s| Y1 +

D KL78 +82W2 +D oy, +D i —~ KAy v, + au3 =1 v,
6 axlaX2 axlz 12 axlaX2 2 axz 44 2 axz 2752 atz ’

oy, 0% oy, 0%} 0%ud
KA + + KA + =] .
”[ o, ol “lo, a2 | %o

The solution which satisfies these conditions at the edges:

—for x;=0and x, =q;:

ul=0, y,=0,
a'/’n a'//
M, =D +D =0,
1 Thew x 125 3,
—for x,=0and x;, =a,:
ud=0, y, =0,
d
M2 = Dlz a'l,l +Dz2 wz =0,
a ] ax2
is of the form:
v, =¥ cos T sinm—zm—cz—sin(a),,,,,,21+¢),,,,,l ),
1772 al a2 () 1752
2 an I T,
v, ‘Pml,,,z a ——cos p sm( mm,’+¢’m,mz)
u3 = U,f,l,,,z T i 2702 sm( mm2t+¢m,m2)
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Putting these values into the global vibration equations and after simplifying we
obtain the system:

Hy - IZwi,mz Hy, Hy, ‘*’.‘n,m, 0
2
Hy, Hy 12“’».,»:2 Hy Wom =01,
Hy, Hpy Hy -1 ow.i,m, U:«,mz 0
with:
2
n my mm my%
Hy =| == D +| == D66+KA55’ Hy, =—1=—22(D;; + Dgs ),
a ) aq 4
mym mz mr
Hy =| 2= | Dy +| == | Dgs + KAy, H\3=——KAg;,
a, a a
z) mym : m,m
m
Hyy =| —=| KAss +| —2= | KAy, Hpy =—2—KAy.
a a; a,
This homogeneous algebraic system in ¥}, o ‘l’,f,l,,,z and U;I,,,z has a solution

other than the trivial solution for the @, - solution of the third degree equation in
1

2
mm,
6 4 2 _

—Awmlml+melm2—Cwmlm2+D—0,

with:
A=I Iy,
B=(H 1|+H22)1210+H3312'
C= (Hl H, - Hn)’o*[("u+H22)H33"H|23"H§3]12~
D=(H||H22‘H|22)H33+2H|2H|3H23"H11H223‘H22H123'

For the fixed values of m, and m,, we obtain three antisymmetric modes of
vibration.

8.13. Buckling of a rectangular orthotropic symmetrical plate simply supported
around its edge

The rectangular plate of dimensions a, and a, is simply supported around its

edge. It is subjected to the membrane loads ~ N and - NJ.
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AL L L]

X
0 2
N;x,
—
-N3x,
—_—

W1
rF 7 777

Figure 8.3. Buckling loading

The global buckling equations:

+ 256 N, =0,
ox;  Ox, S
oM +8M2 ~N, =0,
dx;  dx,
N, ON 0%ud 9%u?
54 A_Nl() 23—N3 23=,
ox, Ox, ox; ox;
with:
d 0 ou?
M, =Dy a'/’x +Dy, a'/’z . Ny KAM[Wz +—‘3‘Jo
1 X2 ox,
oy oy ou?
M, —Dlza—l‘*Dzz—_z’ N = KAss['/’l +— |,
X, ox, ox,
dy,  dy,
Mg =Dyl —+—= |,
6 66[ ox, ox
are written:

a'xl2 la.X2 ax% axla.X2 axl
oy, ‘v, v, *w, du3
(a.xla.X2 axlz 12 axlaxZ n ax% 4 Wz X2
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The boundary conditions, for a simply supported plate are:

—for x; =0and x; =ay:

ud =0, y, =0,
oy dy
M1=D|15;—l+0125‘2‘=0»
1 2
—for xy =0and x; =aj:
ul =0, y, =0,
1% 1%
Mz =D12—67L+Dzz-a—x—2—=0.
1 2

These conditions are satisfied by:

mymx) . mom
8 =W¥! cos—lgin—2=2
mm, a a
1 2
.My mo fx
u/2=‘l’2 sin——L cos 22,
mm; al a2
. My mymx
ug =U3' sin——Lgin =272
O] a a,

Putting these into the global buckling equations and changing the sign we obtain:

mym;,
2

2 2
(M] Dl,+(."'_z’£] Dy + KAgg [¥1 4 MEMA (L 2
a

mr mmx, . mymx
ot —KAGUD b cos——Lsin—2"2 = (),
a ; m a a
1 1 2
T m,m /3 2 T :
mz m, 1 n, n 2
{——a - (D1 + Dgg )W m, + (———a Dy +| —= | Dgg + KAy ¥y, .-
1 2 2 a
m,m . myx ., mx
+ 22 KALUD  Lsin—"Lcos—22 =,
a "2 a a
2 1 2
n /4 n 2 n 2
ny | my 2 1 n,
——I(Aﬁ,‘l’,,,.m2 +—KA44‘PMI,"2 +|| — | KAss+| —— | KAy
a, a, a, a,
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. : 1 2 3 . . . .
The algebraic system in ¥ , ¥ and thus obtained i
g y mmy® Y mm, U mam, 0 s written in the

form:
1
H“ le Hl3 mymy
Hy Hpy 2” 23 mmy | =1V 1
mn myt 0
Hy; Hjy; 1133‘[—l NP‘( 2 JNO i
L % 2
with:
Y 2 T m,m
mam
Hy =(—l—) Du+(—l— Des + KAss, Hyy =———2—(Dy; + Dgs),
m,m 2 mr ? z
m
sz—( 2 JD22+(—1_) Des + KAw, Hyy =—=KAss,
a, a, al
/4 : n ’ ul
m m m
Hy = 4= KA + - KAy, H23=—LKA44
. a, a;

In the particular case where N 5’ =kN 10 , this system has a solution other than the

trivial solution for the N ,0 solution of the equation:

Hy Hp Hy;
Hy; Hpy H 3 =0,

2 2
mz moz
Hy3 Hp Has—[(——l ) +k( 2 ]}N?
a) az
Hy3(Hy,Hyy —HyppH\3)= Hy(Hy Hys — HpHys)...

2 2
ot {Hyy - [M) +1{”;2”J NOWH, Hy, - HE)=0.

or:

a 2

The critical global buckling force is given by:
1

2 2
ma ) [ mon [
aq a,
+ HlS(H12H23 'H22H13)‘ st(Hqua "leHn)
H\Hy-H)

0

N{ Hg,...




Chapter 9

Asymmetrical multi-layer
Kirchhoff-Love plates

9.1. Introduction
In a previous chapter we studied symmetric muiti-layer plates using the
Kirchhoff-Love theory. In this chapter we will look at the behaviour of asymmetric

plates in flexure, vibration and buckling. We will limit the discussion to cross-ply or
balanced antisymmetric plates.

9.2, Flexure of a cross-ply asymmetrical plate

The rectangular plate of dimensions a, and a, is freely supported in the

direction orthogonal to its perimeter. It is only subjected to the distributed surface
force q(x,.xz )x, on its upper face.

X3
a;

T Q(Xth )"3 X2

aj

Xy

Figure 9.1. Cross-ply asymmetrical plate in flexure



160  Analysis of composite structures

Figure 9.2, Schematic diagram of edge of a cross-ply asymmetrical plate

The global stiffnesses of the composite satisfy the expressions:
A6 = A =0, Dyg =Dy =0,
B3 = Bes = Big = B =0,
Ap = Ay, Dy =Dy, By =-B

The global constitutive relation for the composite:

Nl Ay A2 O By 0 0 el
No| {Az2 Ay O 0 -B; 0 (&
Ne| |0 0 A O 0 0 [g
M| |Bhn O O Dy Dy O |kl
M, 0 -By; 0 Dy Dy 0 (i
Mg] [ O 0 0 0 0 Des || xg

with, according to Kirchhoff-Love theory:

80 _ au? EO _ 8ug 6'0 _ au? + Bu(z)
L7 7% o ¢ " ox, ox
9%ul 32u 3%u
K== , Ky=-— , Kg=-2 ,
2 p) 2
x{ X3 ox, 0x,
provides the global membrane cohesion forces:
ou ouy 0!
Ny=Ay—t+4,—2 ’311_23 ,
ox, dx, ox;
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ou? oud 0%ud
Ny=A,—-+A,—2+B 2
1273 x 1 3%, 1 ox
oud  oud
N. = 1 +—2 2
6 A“[ ax2 axl }
and flexure
ouy azu° 82 9
M =B Dy, -D
1 Iy 1 o 3 12 ax2
ouy 0%u? 0%u
M,=-B,—%~-D 1-D 3
2 s o, 12 ax? n o2
0%u?
Mg =-2D 2
6 % 9x,0x, '
which, introduced into the global equilibrium equations:
Q.N_l-*.i}yﬁ_:()’
dx;  0xp
_a__]v6_+§_lv_2_=0‘
ox;  Oxy
2 2
J A:‘+28 Mo +a A':2+q 0,
axl axlaX2 axz
gives the expressions:
aZul aZ 82 al 0
Ay ox? +A66 (Al2+A6(7/a - a 3 1=0,
azu 0%ud azu" 0%ul
Ay + Age )1+ L4 A\ 2+ B —2 =0,
(412 "‘”ax,ax2 Age ox? 1 ox? 1 o) 3
0*ud  9*uf 9*u 9%u)  9%u?
D + +2(Dy; +2Dgg )——5-B,|| —--—2L |=4.
“[ ot oxd s “)axfax; x o | ¢

The boundary conditions for a freely supported plate in the direction at right
angles to the edge are written:
—for x, =0 and x| =a,:

au 0%u 9%ul
uj =0, M,—B“—a——D 2 -Dp—-=0,
X ox{ oxj
up us 32ud
uz =0, Ny=Ay—+Ap——=-8 =0,
ox ax, oxt
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~for x;=0and x, =a,:

0
u3 =0, M2=‘Bngﬂ‘
X2
ou?
W =0, Ny=Aa,20 44,32

ox,

The displacement field, which satisfies both the boundary conditions and the
global equilibrium equations of the plate, subjected to the double sinusoidal loading:

0%ud 0%u?
Dy, 23 =Dy, 23 =0,
ox; ox;
a aZ 0
u2 +B,, "23 =0.

.M . mayJix
q"llmz sin #s,n.__z—z .
a; aj
is of the form:
mymx mo
u{)=Ul cos——1Lgjn—2=2
mym; al a2
. myax mo
u(2]= 3”" sin— =L cos—2—2
17772 al 02
LMy . monx
wd =U3  sin T Lgjp 12702
mm al a2
Introducing these into the global equilibrium equations we obtain, after
simplification, the followmg system for Um,m , U,il,,,? and U,?,'m2
2
mr mym L m2ﬂ
An — 1 Ags |Umm, + (Al2 + Ag U2 Uom, -
a, a, 1
mr
..._( J B“U’"Imz 0,
a,
2 x 2
(A2 + Ag U, mmy, T[] —— | Ags + Ay WUpm, -
al a, al az
mym
+[ 2 ) B\U,, =0,
a, '

m7 my T

mymy q"'n"'z

I

»U’
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which may be written in the form:

Ul
Hyy Hypy Hjz||“mm 0
2
Hyo Hy Hn|U,. |=| 0 |
Hi3 Hy Hy gyl [/~
with:
mr m,m
H, =(_1‘] A11+[ 2 Ages
zY mom )
m
Hy = "‘l—] Agg [*‘2— Ay,
a; a,
. 4 . 4] o 2 2
m m m
H13=( . ] [ 2 J Dn+2{—l—][ )(DI2+2D66)
a a, a, a;

The determinant of the system and the determinants associated with the three
unknowns are equal to:
2 2 2
By, = (Hnsz - an)Haa +2H\aH\3H,3 - Hy \Hy3 —HpHij,

1
Am,mz = (H|2H23 —H3Hp )qmlmz ’

2
Bomy = (Hi2Hy3 = Hy H23)dmm,

3 2
— (Hnsz - HIZ)qm,mzv

a2 UH[
liERE

or:

-

4

2 2
m m
=2 D“ +2[—-1 ) (—2] (DlZ +2D66)

az

+ 2466

a) ay
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a2

)

...—Alz[Alz +2A66] qml'"') .

We therefore obtain:

1 2 A3
1 — M 2 =__Mm 3 . mym
mm ’ mm ' mmy, .
(L Am,m2 1My A'"|’"2 1My Amlmz

For a loading of the form:

ml’v‘l '"2"-"‘2
alx1.x2)= Z Zq’"l"'z ’
aj

my=1m,=1 a

we obtain the displacemcntS'

mlml n /s
1=3 S0k, con :
a,

q

my=t my=i{
0_ Y\ 2 qn T M
uy; = Z U pm, Sin . cos——a—-,
m=1l my=I1 t 2
- . M, . mafx
ud = Z 2”3-'" T Sl WL L Y
177%2 a a
my=1 my=1 1 2

from which we can determine the strains and stresses.

VR
LYK
N
F-N

——
=
~
+
&
+
N
S 3
N—
£y

+
/N
ERE;
N—_———
[ 8
~—
|3

4
my
_J All-..
aj

2
: J Ait Biidmm, -

2
J All Bllqmmz
as

When the number of layers is large, we can take By, =0. The previous

expressions become:
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0
1

ul =uj =0,

.M, s
- Gmym, SiN———8in—=—=

| & a a

o__1 ; :
u3 = ”4 Zl zl 4 m 4 2 2 .
my=1 m,= (ﬂ] +(—2J D, +2(ﬂ) (EJ (Dy; +2Dg)

a, a a4 @

In the case of a square plate of edge a subjected to the loading:

. X . X,
q;, sin—-sin—=,
a a

we obtain:
my . X
a’B,,q;; cos —Lsin =2
a a

0
ul = =y
3 2
27 [(All_AIZ)(DII+D12+2DG6)"BII ]

Uy

. X
a3B“q, 1 sin —t cos —2=
9 a a

2”3[(A1| - A;2 XDy + Dy +2Dgg ) - B}, ]

u

.~ S (%
04(A|| —Alz)q“ SlnTlSIHTZ

2”4[(/‘11 - A;XDyy + Dyy +2Dgg)- BY ]

u§ =

When we take By =0, we have:

u? =u(2) =0,
Ly .
atqyysin=Lsin =2
0 a a
u3

7 271'4(D“ +D12 +2D66).

9.3. Vibration of a cross-ply asymmetrical plate

The rectangular plate of dimensions a, and a, is freely supported in the

direction orthogonal to its perimeter. It is not subjected to any given volume or
surface loading.

Introducing the global membrane loads:
ou) oud 9%ul

LA, —2-B
ox, 2

N =A —_—
! 11 P 1 ox;
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2
Ny=Ap— aul +A, = 9y + By —5 o
ox Xy a 2 ax2
ou? au
N 1 2
6 A“[ ox, ax, }
and the flexural moments:
0 2.0 2.0
M, =B“§ﬂ._D”a uz3 —Dlza Uy ,
ax[ axl ax2
0 2.0 2.0
M, =‘B|1?‘u—2“D12 ? 1423 - Dy, ? 1423 ,
axz axl ax2
92u?
Mg =-2D i
6 5 9x,0x,
into the equations for global vibration
2.0
oN, +3N6 =108 o
ox, dx, or?
2.0
N, +8N2 =108 uy
axl axZ a’z
2 2 2 2.0
aMl+2aM6+aM2=loau3’
ox} ox;0x;  ox} or?
gives the three equations:
a%ul 82 0 0%u? u 02%u?
Ay —-+ L+(A) + Agg)=—2-B 3=y —L,
t ox} Ao oz ox} (42 A(Na 19x; " dx} ° o
62 9%u? 9%u? u? 9%u?
A, +Ag) Z4A 2 +B 3= 2
( 12 A66 laX2 A66 a 2 11 2 11 axg 0 az
o*u? 9%*u? 9%u? %l 9%? %u!
“D“ “"T3+ 43 —‘2(D12 +2D66) 2 32 +B“ 3‘ - 32 =IO 23 .
ox;  dx; Ox{ox; ox ox; ot

The boundary conditions for a supported plate free to move in the direction
normal to the edges are:

—for x; =0 and x; =aq,:

oul 0%u? o%u
u3 =0, Ml—Bual - Dy —-~ Dy ——=- =0,
ax, X3
ou oud 9%u§
2=0, N A“al”” 2By, =0,
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—for x, =0and x, =a,:
oud 9%ud 0%u)

=0, M,=-B,,—%-D 3_p =0,
3 2 lla 2 12 a 2 11 ax%
au ou? 9%u?
u=0, N,=A,—++A,—2+B 3 =0.
1 2 128 lla2 11 axg

The displacement field defined by:

1 mlml . MaTxy . ( )
ul -Umlm2 a ———-sin = SI\@pp p,  + Popymy
0 _ 42 . mypax mymxy . ( )
uy = Um,m2 sin a €os a SIN\Wppym,  + Ponym, o
3 mln.'xl . Myfxy . ( )
u3 —Umlm2 a ——s a0 SIN\@y my t + Py, s

satisfies the boundary conditions at the edges and the global vibration equations
which, after simplification, lead to the system:

2 2
m, 7 m,m | m,m m,m
(—L‘J Ay +[ 2 J Ags = ’o(l'm,m2 mm, +———2= (A, + AU . .

a, a, aq a4
mn ’
-( al ) B“U,,,l,,,2 0,
1
2 2
mT m,mT n, myz )
=2 (A12+A66) mm, (_l_} A66+( )All Iwm,mz U;,nq .
a a a, a,
"12”
+( , ] B“U,,",,,2 =0,

4 4
m7 myn mr i 2
_( 1 ) B“U,l"l,nz ( E ) BllUmlm, [ l ) +[ : ] Dy
a, a; 4 2
mn : my ’
+2{—l—] (—L] (D'Z +2D66) lowmu"'z U'::'l'"2 =0,

a a;

which can be written in the following matrix form:

2
Hy - lyw Hyy Hy3

0 M|M2 mlmz 0
2
le H22 —loa)mlmz H23 Umlmz =|0],
2
Hyy H 3 Hy3 ~ 1w S 0

mym, myny
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with:
m m,m
Hy = —I—J An'*[ 2 JAas»
a; a,
n : m,m 2
H22= & + 7 A“,
\ 4 a,

/4 ¥ n ¢
H,, = ["LJ +(L”2_J D,
a, a,
mT myz
Hy, —‘—L‘—L(Alz + Agg )»
a a

=
1]
—L
’3
e
L
=

This algebraic system has a solution other than the trivial

solution

! =U? =y3 =0 for the values of which cancel the
mym, mym, mym, mymy,
determinant:
2
Hy —low,, Hy, H3
2
Hy, Hy -loo,, Hy, =0,
2
Hys Hy3 Hy -lw,, .
2 2
(Hn - 10‘”3.,»12 )(sz = lowy m, )(H33 —loWp m, )+ 2H ) H\3H ;...
2 2 2 2 2 2
. (Hn ~ 1y, )H23 - (sz =@ pm, )Hls - (Hss — lLywp, m, )le =0,
which is written in the form:
-AwS  +Bw* -cCow? D=0,
mym, mym; mymy
with:
=13,

=(Hyy +Hyy + Hy3)1§,

A
B

= Hiy - H} H2)1
C=WHnHy +HpHyy + HyHy - Hiy - Hiz - Hy Jl,
D

2 2 2
=(H|1H22 —le)H33+2H12”13”23—H11H23 -HyHj3,

or:
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] ool e

+(—'—”—J2[ el J2 [42 - A, (A, + 2%)]-{('"0—11”]6 +[%)6J3ﬁ Iy,

H(HZH()()
NG GGG GRS

8 8
*{(—EJ =] }A“ B,
}

For each couple (m;,m, ), we obtain three natural frequencies.

4 4 2 2
= {(-—‘- +(——2—J }AnAm +[-;'——) (-;2—} [Alzl - Ap (A, +2A66)]
2

2.0 2.0
N u u
In the case when the membrane inertias I 2' and I p 22 are neglected,
ot '

the previous system can be written, with the same notation, in the form:

Ul
Hy Hy, Hy; mima 0
Hy Hp H»s Upmy =101

2
H H Haqy - Iow 3 0
3 Hy Hyp-lo,, Um,mz

and the determinant becomes:
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Hyy Hy Hyz

Hy, Hpy Hys =0,
2

Hy; Hy Hy-lw,,

2 2
(Hquz ‘le)(Hsz ~low, .. )+ 2H1pH 3Hyy -HyH3; ~HyHL =<0,

For each couple (m;,m, ), we obtain the natural frequency:

2 2
w2 =i(H33+ 2H\ H\3Hy3 - Hy His ‘szﬂxa]’

™I HyHy-Hb
or:

2 = p-bR

mm o\ Py )
with:

-
]

[(;_:]‘ {:;72]‘ J , z(;_;ﬂ;_;)’ (0 +2D45),

e R b
ot [(':—:) +['—:21) ]A«; B},

P = {(%I +('Z—:J4}A”Aﬁ6 +(-':T‘J2(%22—J2[A3‘ - Ap(A +244)].

When By, is negligible, we have:
|| m ¥ m ¥ m 2 m 2
2 1 2 1 2
) =—||—| +|—=| Pu+2d—||—=1| (D +2D, .

9.4. Buckling of a cross-ply asymmetrical plate

The rectangular plate of dimensions a, and a, is supported freely in the
direction orthogonal to its perimeter. The edges x; =0, x; =ay, x =0 and
x5 =a; are respectively subjected to the loads N? , —N? , Ng and —Ng, with
Nlo and Ng being positive.
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VLl ] b

7777

Figure 9.3, Buckling asymmetrical cross-ply plate

By introducing the global membrane loads:

ou? ou? 02!
N1=A1181+A1282'n 3,
X1 X2 axl
0 0 2.0
auz 8 u
Ny =Apo—+A)—=+B) '
a axz ax%
oul  oud
N¢ = ——= ],
6 A66[ aX2 axl
and the flexural loads:
ou? 9%u? 92u?
M,=B,—~-~D 3 - p 3
1 it axl 11 Bx,2 12 axg
ou’ 92u? 9%u?
Mz""Bn‘—z“Dn 2 D, 23»
dx, ox| ax;
9%u?
M, =-2D .,
6 % dx,0x,
into the global buckling equations:
oN, + ONg -0,
axl aX2
dNg ON,

=642 1,
axl aX2

171
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2 2 2
8M1+2a M6+82M2_ oa u3 Noazu3 =0

ax?  Taxdx, ox2 ' ox? R
we obtain:
32 2 0 aZu aJuO
+ App + Agg)—2 3 =0,
8 A«: ( 12 A66 ax0x, 1 8x,3
82 0%u? 3%u? a3u?
A+ 24 A 2B 30,
( 12 A(xs/a ox, + Ags 312 1 ax§ 3
%u?  o%u? %u? %ul 3%
D 34— 3 [+2(D, +2Dgg )——2~ By | —-—=2.|...
“( ox;  ox; J (s “)ax,’axg " ox;  ox;
2, 2,
+1v°a N°a 2 =0.
xl aX2

The boundary conditions for a plate freely supported in the direction normal to
its edges are:
—for x; =0 and x; =qy:

a 32 0 82 0
Wy =0, M,=B,>1-Dy :423 - Dy, 1423 =0,
al 3x| aXZ
ouy oud 3%u
ud =0, Ny=A +A -B =0,
2 1 11 a 12 I 131 aXl
—for x, =0 and x, =a,:
oul 0%ud o%ul
0 2 3 3
uy =0, My=-B,—=-D -D =0,
3 2 " %x, 12 a2 " ox
ou) oul 0%u?
up =0, Ny=A,—-+A—2+B,—2=0.
1 2= A2 x, 1y ) 1 a2

The displacement field, which satisfies the boundary conditions and the global
equations, has the form:

mmy . myix

u? =U!  cos—Lgin 22
mymy al a2
. M myx

ug=U2 sin ——L cos —2—%,
mm, a a
. My . MyfX

ud =U3  sin A ZLgin —2772
mym, al a2

By introducing this into the global buckling equations we obtain, after
simplification, the system:
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2 2
mr mym mr mym
|'(‘al—‘) Ay +[___a2 ] A&]U'In,m, +‘—al —2- (A, +A66)U31|m2'“

1 a2

a;
mmT myn { l” 2 myn 2 2
— (A12+A66)Um,mz+ — | A t| —— | Ay [Upm, -
a a a, a,
. 3
+("’2 ]B,,U,f,,,, 0,
a2 {iddr]

2 2 2 2
ot BN (v apg)~| T2 N0 - 2 Nolyd o,
a az a, a; o

of the form:
1
H,, H, Hy, Unm, | |0
Hy, Hy 2”23 Ur%rlmz =101,
vl 0
Hyy Hy Hu“—l” Ny - i N3 L™
i a; a, ]
with:

T 2 m,r 2
Hn={_“—) An*( : ]A(’G'

a, a,

n : mym 2
H22=[—1J A66+[ 2 ]A“,

a a,

mn ¢ m,m ¢ T : my 2
Hyy = ["‘I"J ( : ] D“+2[—l—][ 2 ](DIZ+2D66)'

a; a a, a;

nmma m,m
H, ___1_;(,4'2 + Agg ),
a a
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3
m,
H =[—2—) B,,.
a,

The critical buckling loads are the values of N {) and Ng for which

U ,l,,lm!, U 3,l,,,2 and U 3,,,,,2 are not simultaneously zero, i.e. the values which cancel
the determinant of the system:
Hy Hyp Hy;
Hy; Hyp 2”23 ) =0,
mr 0 mymw 0
Hy3 Hj3 Hj “[‘LJ Ny ‘( J N3
a a
or:
m, 7T 2
m
(Hnsz‘lez Hy; - [ ! J NO { 2 ] Ng +2H H3H ...
a, a;
-H HYL, -H,,H}%=0
1 nfp=y,
from which:
2 2 2
mr N mr N° = H 2H\,H\3Hy ~H\ Hyy - HpyHjy
1 2 83 + 2 .
a, a; HyHy ~Hj,

The critical buckling loads are given by:

2
mlﬂ 0 "I2ﬂ' Rl
— | Ny + N =Hy--L

ay a, Ry’

4 4 2 2
Hy = il I i D, + T || M (Dy; +2Dy),
a, a, a, a,

2 2 4 4 8 8
m+(m,n) mzn] (MJ +(m27r] Am(""”) +(m2ﬂ) ale
a, a a a, a, a
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4 4 2 2
m m,n mz )\ ( mym
Ry=|| == | +| = |Ande+| == | —— [AIZI_A12(AI2 +2A66)]'
a, a, ay a,
In the case when N 3 =kN ,0 , we obtain the critical buckling loads:

2

with:
{2 ) ez
ezl (2
{(-':T'] +(':—22] }A“ B2,
p3=[(g_;)‘{r;_:]‘},,w(g_:)z[%y[ﬁ-A,z(,,,,,m)].

When the number of layers is large, B;; is negligible and the critical buckling
loads are given by:

4 4 2 m 2
(i"_l] +(ﬂ] Dn+2[—"}—l‘] [i] (D12 +2Dgg)
a) ay aj aj
2
n - 5 5 .
,’f.l_ +k _'n_z
[ll (12

9.5. Flexure of a balanced asymmetrical plate

ND =

The rectangular plate of dimensions a, and a, is freely supported in the
direction of its perimeter. It is only subjected on its upper face to the surface force
q(x 11 X2 )"3 .
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X3

q(x,,x2 )"3

ay

X1

Figure 9.4. Asymmetrically balanced plate in flexure

Figure 9.5. Schematic representation of edges of a balanced asymmetrical plate

The global stiffnesses of the composite are such that:
Ag = A6 =0, Dy =Dy =0,
By = By = By = Bge =0.

The constitutive relation of the composite is written:

M [Ar A2 0 0 0 Bl
N, A, Ap O O 0 By | &)
Ng 0 0 Ag B By 0 [l
M, 0 0 Bg Dy Dp 0 flgg!
M, 0 0 By D Dp 0 |k
Big Bjge 0 0 0 Dg

-L J
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with:
SR S UK S S A
Lo ox, ox, ox,
8%u) 9%u 0%u)
Ky == v Ky =- v Kg==2
ox{ ox; ox, dx,
By introducing the global cohesion loads:
ou) oul 0%u)
N =A,—+A -2B 2
1= Angs x 123" x 16 xdx, |
ou? ouy 9%u?
N, = A, —L + Ay, —2% — 3
2o ox, 2 ox, % dx,0x;,
oul  oul 0%u) R
N = —44+—21|-B ~ By —,
6 A66[ axz axl ] 16 ax]2 26 a 2
and:
0 0 2 2.0
M|=B|6%l—+?—l‘l—D|a"3 90°u3
BXZ ox| aXl 0 )
0 0 2.0 2.0
M3y = By Q| Sz =Dy ? 1423 - Dy 2 u23 :
dxy  Ox ox{ ox;
oy au 9%
M¢ =B +B ————-ZD =,
677180y ®ax, 6 3x,0x,
into the global equmbnum equations:
i&.{.% = 0,
axl ax2
oNg aN2
ax; axz '
2
alv:‘+28M"’+aMz+q 0,
axl axla.X'2 ax2
we obtain:
82 0 a2ul aZuO a3u0 83“0
—L +(A, +A 2 - i -B 1 =0,
axl A«, 2 “)ax,axz 16 axfaxz 26 ox)
8214 0%ud 0%ud o 0%ud
Ap +A L+ 2+A - Bjg—2 =3By —2-=0,
(4 “’ax,axz Ao ox? e ox; 2 ' ox; 2 dx,0x3
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a4 0 a4 0 a4 0 3.0 3.0
D”—#'f'Z(D]z +2D66) 2“32 +D22 123 —3816 azul - 26 a u; .o
ox, Ox; 0x; ox; ox; ox, ox;
a3u0 a3u0
-B -3B =gq.

9 77 A ax?

The boundary conditions for an edge freely supported in the edge direction are:
—for x; =0 are x; =aq,:

0 0 2,0 2.0
0 ou; Ou 0°u 0°u
u3 =0, M =Byg| —+—% —Dll'_;_DIZ 23 =0,
ox;  Oxy ox; ox3
0 0 2.0 2.0
0 duy  duy o“u 9°u
up =0, Ng = Ags + ~Bjg— - By —=-=0,
dxy  Ox oxj ox)
—for x,=0and x, =a,:
0 0 2.0 2.0
0 ou;j du d“u d“u
u3 =0, My =By —+—21-Dj,—3 Dy > =0,
ox;  Odxy oxi x3

?ﬁ+au9 _B 0%uf B 0%ul
ox;  dx Ox{ ox3

u3 =0, Ng=Ag

The displacement field for the plate subjected to a double sinusoidal load:

. mlml . m2m2
qmlm2 SIHTSIHT .

which satisfies the global equilibrium equations and the boundary conditions is of
the form:

. myx my7x
u? =U! sin TITL o 2702
mym, al a2

v

m7ax; . mynx
ud =U?  cos T i 22
mm, a a
1 2
. mmxy  mymx
ug =U;m sin——Lgjn 22
1742 a) a,
Introducing these expressions in the global equilibrium equations we obtain,

after simplification, the system for U 'l".'"z U 3,1,,,2 and U 3,1,,,2 :

2 2
m myT 1 mma m,mw 2
(“—l J Ay +(—2 ] Ass |U mym, +—=—2— (4, +A66)Umlmz"'
az a, a2



Asymmetrical multi-layer Kirchhoff-Love plates

2
myrt i o mym my
a, a a,

2
mm myn mn myn
e T +A66)Urlnlm2 (—L-) Ase*( ) Ay U:.,m2
aq 4 a) a

2
ml” ml” mzﬂ 3 _
e T ————— Blﬁ + 826 UmlmJ —0,
a a; a,
2 n n n 2
my| [ mo m m m
-3 ) B+ = B26 Urln,mz -—=)| == By
a, a, a, q a;

2 4
myn 2 mmr
...+ :{—‘2'_] B26 Um'm2 + ’("l_J D“...
02 al

2 2
mn msm
+2(—l—] ( 2 ) (D)3 +2Dgs ) + [ ) Dzz]Um,m, Dmym,y s
a a a

which can be written as:

1

Hy H;; Hp U';.Mz 0
Hyp Hy Hp (UL, 1= O |
Hy3 Hjy Hajy3 Dy,
mymy
with:
z\ mom )
Hy, =["¢") An+(—2—'] Ages
a, a,
Y mom )
Hy =(“l“‘) A«)+[—2—‘] Ay,
a a
Y mr V( myz ) T
’133'-'(_—l ]Dn+2(_l ] r J(D12+ZD“)+["'2 )Dzz-
a, a, a, a,
msT m,m
Hy -‘I—'a—z‘(/‘lz +A66)'

179
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The determinant of the system and the determinants associated with the three
unknowns are:

2 2 2
Amlmz =(H11H22‘H12)H33 +2H1yH 3H 3 —Hy\Hys —HpHi3,
,,,l,,,z =(H1pHp3 — Hi3H 2 )Gmm,
,,,I,,,z = (Hy2Hy3 ~ Hy H 3 )qmm, »

,,,l,,,z ( 1H22_H12)qm|m2’

or.
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2 2 2
m m m m
Ko, =70°—L ( ) A+ ( 2) Ags [—'] B|6+{———2-J By |..-
a, a a a, a,
m 2 ]
(Al2 + Ags) BlG —2 | By Dy »
az a; a, ]
m 2 m 2 m 2
m
B, =7 (—] A+ [ 2) Ags [—‘] Agg + —ZJ Ay ..
a, a, a a,

2 2
‘(ﬂ] [_'ﬁz_] (A +A66)2 Drym, -
a, a,

The displacements are given by:

1 2 3
1 —_mmy 2 = m U3 = _Imm
mymy A'"|'"2 mym; A"'l'"z myn, Amlm2
For a load of the type:
. MaTxoy
glx1.x2) 2 zqmm ~—Lsin T as
ml-lmz-l 2

we have the displacements

- Ul s mlml mz"’fz
"'1'"2 ’
a,

ml—l mz-l
W0 = U2 cos ™™ g M2y
u = m,mz a .
my=1m,=1 4 2
2 ZU m,mcl szDcz
m,mz a
m =l my=| 2

from which we obtain the strains and stresses.

When the number of layers is large, we can take Bjg = Byg = 0. The previous
expressions then give:
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The previous results for a square plate of side a and for a load:

. Dy . Dy
gy sin—-sin—=,
a a

become:
Ay =[§)8{[(All + Ags NAgs + An)-(Ay +A66)2][Dll +2(Dy, +2Dgg )+ Dy ]..

¥ 2(A1 + As J(3Byg + By )(Byg +3Bag )~ (Ags + Ay )3Byg + By ) ..

. (A” + &6)(316 +3By )2 }’
5

Aln = 'Z [(Aas + Ay )(3BI6 +Bza)—(A12 +A66)(BI(J +3326)]‘Iu’
5
A}, = % [(4) + Ags By + 3B )~ (A1 + Agg J(3Byg + By )y,
4
y 4
A3u = 7 [(An +A66)(A66 +A22)—(A12 "’A(»c)z]qu'
and:
1
= A sin—L cos —2,
" a a
2
uo = A” cosﬁsm 2 N
A3
ud = M gin —Lgin =2
" a a

When B¢ and B, are very small we have:
u? = ug =0,
Xy .
a4q“ sin—L sin —2-
a a
y .
74Dy, +2(Dy; +2Dgg )+ Dy |

uf =

9.6. Vibration of a balanced asymmetrical plate

The rectangular plate of dimensions a, and a, is freely supported in the
direction of its perimeter. It is not subjected to any given external loading.

By introducing the global membrane ioads:
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au a 0 82
N =A —L4+A B
"ox, o, 8x,8x2
8 au° 9%u?
N,=A,—L+A —,
2 12 5 a l 2 5. a X, 26 ax‘axz
ou’ ou o%u? a2u?
N, = S, (.p —3-B, —3
6 A66[ ox, ale 16 ox? % ox3

and flexural loads:

2.0 2.0
", Blﬁ{au,+au2] p, % _p 9%u)

axz axl axiz 12 ax% '
oul  Oud 0%ud 9%ul
M, = By| —+—11-Dy, 23 -Dy, 23 ,
ax2 a-xl axl aX2
ou? ous 0%ud
M¢=B¢—-+B - 2Dgg —2—,
6 16 5 % 265 o, 66 3%, 0%,
into the global vibration equations:
dN, N ONg 82
ox, Ox, fo 812 '
2
6N6+8N2 =108 ug’
ox, Ox, or?
2 2 2 2.0
8)\'211+28 M6+8A'§2= Oau;'
Ox; ox;0x,  0x; or
we obtain the three equations:
0%u 0%u a’u" 9%u? 9%ud 02ul
A —L+ A, +A 2__3B 3 By — =1y —L,
i1 aXlz A66 Xz ( 12 %Iaxlaxz 16 axfaxz 26 ax23 0 atz
2.0 2,0 2.0 3.0 30 2.0
(A + Ag) 9wy +Asca ,‘22 +Azza uzz ‘Bma u; =3By i u32 = oa “22 ,
aXIaX2 axl aX2 a.xl a.X|aX2 at
84 0 aauo 9%u? 930 PEMY
D 3. +2(Dy, +2D i-+D 3 -3B e L.
11 axl ( 12 66/a za 2 22 ax; Iﬁa za X, 26 axg
ax 0 3.0 2
_Blﬁ 3826 a u22 +Ioa u3 _0
ox;} 0x,0x; or’

The boundary conditions for a plate freely supported in the direction of the
perimeter are:
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—for x; =0 and x; =q,:

p) 0 82 0 82 0
u§ =0, M, =Bjg| -b+=2 |-Dy, 142 - Dy, u23 =0,
ax2 axl axl 8x2
au? oud 9%ul 0%l
uy =0, Ng= -B -B =0,
: 6 = fAes oy ox | S ax? T a2
—~for x, =0and x, =a,:
up aug 3%uf 0%u§
u3 =0, My =By s T P27 D2 =0,
X2 X1 axl 8x2
2 2.0
0 ou? au2 8 u) 9“u
u) =0, N6— a a _826 23 =0.
4] x| axl 6x2
The displacement fields defined by:
0 _ gt L Ll WL 100 I
uy —Umlm2 sin a cos = S‘“(wm,m2’+¢’m,m2 )
™y my .
uy —U2 os L lsmusm(a)ml,nzt+(omm )
a a, 1"
0 _,,3 LMy . My,
uy = Umlm2 sin Tsm—az———sm(a)ml,,,zt + Prym, )

satisfy the boundary conditions and the equations of motion.

Introducing these expressions in the global vibration equations, we obtain, after

simplification, the following system in Um my Urim and U 3'."!2 :

2
mz m,m mz m,n
( : ) A+ ( az ] A66_10w3||n12 U;‘n,m, +—L;(A12+A66)

a, 2 a4

2
my| [ m mym
- 3(—1“} By +( J By U;,mz =0,
a, aQ, a,

2
mm m,n m
al —= (Al2 + Ag U, mym, ( . ) A66+[ ) Ay = Ioa’m,m2 U:.,mz---
1 a a,

m | mm mym
-—= ( ) By + { J By U::,m, =0,
a, a a,
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2 2 2
myz| [ mm my”x 1 mzr|( mr
-—— — Blﬁ +| — B26 U'"]"'z - e Blﬁ"’
a, a, a, ay a

2 4
mzﬂ 2 mr
+ {_—] 326 Umlm2 + (“—' Dl 1o
a; a

2 2 4
mn m-T M
Iy + 2(;] (—2——] (Dlz + 2D66 )+(—az_"'] D22 - Ioa)'z,lm2 [j'::'lm2 = Ov
2

mm, O
2 =
le H22 10‘0"11'"2 H23 nym, - O ’
2 0
Hy, Has Hy~low, . 11U om,

with:

4 2 4
Hiy, =(__.""” D, + 2[-—'"'”] ('"2”} (D, + 21)66)+[—2”) Dy,
a, a, a; a
mzr m,m
Hypy =222 (A); + Ag)

=

w

#

|

3
S
—
a|_§
ol
N——_—
~N

&

= %

+
N
lé
!
N——
()

[~}

5

This algebraic system has a solution other than the trivial solution

Vo2 o3 = , L
mmy = U mymy =y mmy = 0 for the values of @, ,,, which cancel the determinant:
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2
Hyy - Ioa’,,,],,,2 Hy, Hj,
H12 Ioa)m‘mz H23 =0,
2
Hy3 Hy; Hy -l

(Hn - Ly}, my )(sz 10‘0".lm2 )(Has - Lo} iy )+ 2H3H 3H ...
‘(Hu - Iowm,m2 )H23 ‘(sz Iowmm2 )H|23 "(Hss -Iowf.,m, )H122 =0,

which is written in the form:

A0S  +Bot -Cw? +D=0,

mm; mym, mym;
with:
A=13,
B=(Hy +Hy + Hy)I3,
C=(H1|H22+H22”33+H33H11—le ~Hf; - Hza)’ov
D= (Hquz—le)H33+2H12”13”23-H11H23-H22H13v
or:

B[[ ) (s A2 (1 ) (22 o
-+ z(_ail’iﬂ st )2 (D1 + 21)66)+(”;22” )4 Dy ]13,

a2

2 2\ 2\ 2
{L"n_) Bm(ﬂz_J By | ..
a, a,
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(A
o [LTapAE. ]Azz}%

( 1”] [ 2”) [4,, Ay - Ay (Ar +2A«,)]]---

2 2 4
mn mmn My m-n
[ ! ] D, +z[—' J (——2 J (D12+2D66)+(-——2 J 022]...
a a; a, a,
2 2

2 2 2 2 2
...—(-——'"‘”) [[-—'"'”) Ay, +(——"’2”] A ("' ”} B, + {-——'"Z”J BZ(,J
a; a, a, a; a,
my7t 2 mm 2 mym : mr myr i
e =} — A66 + Azz Bl6 826 .
a, a a, a, a,

For each value of the couple (m;,m; ), we obtain the three natural frequencies.
2.0 2.0

N o“u
In the case where the membrane inertias I 2 2‘ and Iy = 22
' t

are negligible,

the previous system is written as:
i

Hy Hy, Hy, U';.mz 0

Hi; Hyp Hy; Upm, =101

H H Hyy -1 w 3 0
i3 Hn Hy-lop,, jv)

with the previous values of Hj;. The determinant becomes:
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Hy Hy, Hy3

Hyy Hp Hy =0,
2

Hy3 Hy Hy-lop,

2 2 2 2
(Hquz ‘le)(H33 —Iowmlm2)+2H,2H13H23—H“H23 —HpHi3 =0.

For each couple (m;,m, ), we obtain the natural frequency:

2 2
2 I[H +2H12H13H23-H11H23-H22H13}
33 ,

=7 2
MU () Hy Hy-Hj

or:

m : m 2 m —2 ] m ’ m ? 2

—] [(—] A [— A (—) B{—J BJ
L
2 2 2] 2 2 2

el ]

a, a a, ]\« a

4 4 m 2 m 2
P, =[(ﬂ'—J Ay +(ﬂ3—] An]A«, +(—l] (—2—) (41142 ~ A (A +24g)]-
a, a, a a,

When B¢ and B,g are negligible, the previous expression reduces to:

m 4 m 2 m 2 m 4
L—l) Dy, +Z(—l) {—21(012 +2066)+(“—2) Dy,
0l =xt a; a; aj a

mm, 1 0
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9.7. Buckling of a balanced asymmetrical plate

The rectangular plate of dimensions a, and a, is freely supported in the
direction of its perimeter. The edges x; =0, x; =a), x, =0 and x; =a, are

respectively subjected to the loads N, - N?, N§ and - NJ, with N and NJ

[ 1" ]

positive.

/777

Figure 9.6. Buckling of balanced, asymmetrical plate

Xy

By introducing the global membrane loads:

ou? oul 92u?
=A hated 3 +A ur2 _ 3 ,
"ax,  Pox, ' oxox,
ou? du, 9 02u?
Ny=A,—L+A -2B, —3-,
2 1273 . 2T o, 26 3x,0x,
ou?  9ud 924! 92u?
N, = 1 + 2 -B 3 -B k] ,
6 Aee(—‘—axz ™ ] 16 "—axlz 26 ———axz
and flexural loads:
oul  oul 92ul 92u?
Ml‘Blﬁs'_l‘ a_z_ -Dyy—+~Di—5-
Xy 0X) ox{ ox3

2 22 ’
8x|2 a).‘z
ou) oud 9%uld
Mg = Bjg—L + Byg —%— 3
6 16 Bxl 2 8x2 66 3xlax2
into the global buckling equations:

0 0 2.0 2.0
M2=326[ai+aﬁ}_l)l 97u3 -D 9 u3
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oV, +8N6 -0,
ox; Ox,
_%4.8_1\,1:0’
ox, ox,
2 2 2 2 2
ox; ox;0x,  Ox3 ax, ax2
we obtain:
aZ a2 0 aZu a3u0 aSuO
A, —L+ Ay + Agg ) —=2 3~ By —2 =0,
aXI A66 a 2 ( 12 A66/a a x, 16 axfaxz 26 axg
32 3%u? 9%ud 93u? 93u?
A +Ag) 2 4 A 2 _pB 3 _3B 3_ =0,
(40 A3 ,ax2 + s a2 T Cad T P oxex?
84 0*u? 0*u? 93u? 93uf
D, —+2(D); +2Dgs)—25+D 3 3B —! L

an? ax, PR Y 8x,28x2 B R

3 3 2 2
...—1316a 2 3By Quz +N°a 2 N"a";:o.
ox; Ox,0x? ox; Ox;

The boundary conditions for an edge freely supported in the direction of the
perimeter are:

—for x; =0 and x; =a,:

Jdu ou? 9%u® a%u?
=0, M, =B, —~+—2|-D i_D 3 =0,
u3 1 16[ax2 axl) T 8x,2 12 axg
oul  oul 3%ul 9%
0 1 2 3 3
u=0, No=A | —L+22|_p -B =0,
! ¢ A«’[ax2 ale : ox} % ox2
—for x, =0and x; =a,:
oud  u? 0%l 9%ul
u3 =0, My =By =L+ |-Dy, 3 - Dy, 23 =0,
312 ax, ox Xi x5
p) 0 p) 0 aZ 0 82 0
43 =0, Ng=Ag o+ |-Bg =3B T2 g,
ax2 a'xl axl 8x2

The displacement fields which satisfy the boundary conditions and the global
equations are of the form:
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. mymx myax
u?:Ul sin——Lcos —2—2
nyny al a2
maxy . M
u) =U?  cos—Lgin—22
mmy al az
. MyX| . Mfix
ug =U3  sin—Lgin 222
mmy, al a2

By introducing these into the global buckling equations, we obtain after
simplification, the system:

2
m ms mmw m,m
( al J All (_—2—] A66 Urln,mz al z (A12+A66) mmy
1

2
mr mym mr my
—= 2= (A, +A66)Urlnlmz + [ . ) Age + [ 2 } At U,?.,mZ "
a, a a,

2
mal|lm mym
-—= ( . ) Bl6+{ ) By Ui.,mz =0,
a, a; a,
myft | f myn m,m n,m n 2
~—221 3 315 —= st Urlnm S| Byg...
a, a, a, o a,
m,n m ¢
+3( ] Bog U2, + [ ! ] D,,...
a a
mm 2 m,m 2 m,m ¥
...+2("l—) ( 2 J (Dlz +2D66)+(_2—] D22...
a a; a

2
ml N() "12” Ng U;m =O,
a] a2 17702

which is written in the form:
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Hyy Hyp Hy3
Hy, Hpy Hy,
z\ mom \
0 0
Hi3 Hyp Hy-|——| N -[=2=|N
L aq a

with:

=
1}
}
3
My
f_&a\
al_?
=N
%
oy
[+ 2}
+
Ve
n|3
Y
N——
~N
o
Y

The critical buckling loads are the values of N,O and Ng for which

1 2
U"'l’"z ’ U"'l'"z
the determinant of the system:
Hyy Hy Hyj
Hy, Hyp Hys
2 2
mz 0 _{ ma 0
Hi3 Hp H33'[—) Ny ‘[ ] N3
a aj

or:

mm, 0

2 -

mymy |~ 01,
0

mymy

and U ?nm are not simultaneously zero, i.e. for values which cancel
17%2

2 2
2 mm 0 m- 0
(Hquz “le) Hss"(—a] ) Ny _(__az J N; |+2H3H3H ...

2
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from which:
2 2
(ml J Nl (m2”) N2 H33+2H12H13H23"H“H23—H22H13 ‘
1

2
a a HyHy-Hp

The critical buckling loads are given by:

2
oz Ny + m27t N3 =Hy+ R
a; a, Rz

4 2 2 4
n n
Hay =[ﬁ—) D, +Z(—ﬁ-J (mz J Dy +2D66)+[22_'] Dy,
2

i
al§
~
/N
ls.
=N
~—_———
>
+
—
z‘n
N
N’
~N
£ J
r 1
—
n|_§
el E
~—
=
(=)
+
/’“‘R
3
Y
N——_——
=
N

4 4 2, 2
R, =|: M) An +[m722’£] Azz}"‘«»"’(mj [mmJ [Aquz ‘AIz(AIZ +2A66)]‘

In the particular case where N 8 =kN ? , we obtain the critical buckling loads:
0_ ”2 (P + _Pl]

{ 2 7| 1
™ +k My L &
aQ, a,
with:

4 2 2 4
m m m

P =( ) Dy, +z[ ‘] {_2) (Dyy +2Dsc)+[_zJ Dy,
al al 02 02
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P, =2 %)2[%;—]2 (A, + A“)H%)ZB“ +[%22—)2 BZ(,J...

2 e \2 T 2 2 P
m m m
—| A+ % Ags —L | Big+| =% By |
a a; _[ a, a, |

P, =[(i”l]4 Ay +[’:—22J4 AZZ}A“ +(TLJ2['—:£J2[A,,A22 - A (A +244)].

a 2

When Bg and B,¢ are very small, the critical buckling loads are given by the

expression:

4 2 2 4
m m m m
L‘a_l‘) D, +2[;‘1] (G—ZJ (DIZ +2D66)+{a_2) Dy,
1 2 2
N = g2 > > :
m, m,
-1 + ki —=




Chapter 10

Cylindrical flexure of
multi-layer Kirchhoff-Love plates

10.1. Introduction

An infinitely wide plate is said to be in cylindrical flexure when the
displacements, strains and stresses are independent of the cartesian co-ordinate x; .

In this chapter we will study, based on the Kirchhoff-Love theory for which

transverse shear strains are neglected, the static, vibration and buckling behaviour of
an infinitely wide plate.

10.2. Strain-displacement relationship

In cylindrical flexure the displacement field is of the form:
w = u?(x,|t)+ XY (’ﬁ")'
uy = u(x,|r),
Uy = ug(xl |t)
and the strain field is written:

e = o N oy o)
== 13—, &g ,
Bxl axl axl
£y =0, €4 =0,
o
€3 =0, Es =Y +—-—
axl
In Kirchhoff-Love theory the transverse shear strain €4 is zero, which gives:
_ ou
vi=-—7F—.
axl

The displacements are given by the expressions:
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oul
—x =2,
ox,

Uy = “g(xl")’

w =uf ()

the strains:
£ =€) + x3x,
£6 = 82 ,
E)=E3=E4=E5=0,
involve, as non-zero terms, the membrane strains:
0 _ a“?
= 5;1_,
o _ a”g
= a—x,
and the curvature:
B 0%uj
ox} '

£

] =

10.3. Global constitutive relation

This is written:

My | By, By By Dy Dp
Mg| |Big By Bes Dis D

and gives the global membrane loads:

ou! ouy 0%l
—t+tAs 5~ Bu——-
axl axl axl

Ny =4y
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Na=A ou +A ouy _ 0%u?
2 12 o, 26 o, 12 _ax, ’
au, 8u2 a2u3
N¢ = Am Asﬁ —a—x‘f
X1 1
and flexure:
0 P 0 az 0
Ml=13naul +Big =2 Dy u23'
axl axl axl
0 auO aZuO
My = By =+ Bys—2-Dj —3,
x| ox, ox?
o g oM, p o3 9%ul
6~ P16 66 5~ ~16
ox; ox; ax}

10.4. Global plate equations

In the case of cylindrical flexure the global equations:

aNl azuP
—+p =1 .
o, =1l 2
N , ~_, 9%
__axl P2 =1y 2
oy ad), L, 9k
o2 8x| |a g3+t p3=lo—
give the following expressions:
— static:
dN,
—+p; =0,
dx, P =
dNg
—5 +p, =0,
dx, P2
2
d
Ltgy+py=0,
I
—vibration:
oN, -] o%u)

FE O

197
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ox, or?’

’M,; _ ! *ug

a2 St

— buckling:

g,

dx,

g _,

dx,

d’M, _NO d’ul _

dr ' dxd
10.5. Flexure

In the particular case where the volume loads are zero, by putting into the global
equilibrium equations:

dN,_O
dx,
dx,
d*M,
—2+q=0,

1
the global cohesion loads:

du? du? d?ul
N, =Ay dxl + A ? Bn—‘ia—’
1
Ny = A dul dul B, d’ u3 ’
du? du? d*ul
M, =B;,,— —L Bm—L“Dn =t
1 dx, dx;
we obtain the three equationS'
d*u) d?ud d*ul

All

+ A -B
dx12 16 dxlz 11 dx1

=0,
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d*u} dul d’ul

1 J _
AlG dx,2 +A66 dx,2 —Bl6 dxf, =0,
D d“ug_B dJu?_ d*ul =q
1 dx;‘ 11 dxl3 16 dx?

10.5.1. Elimination of u} and uJ

2u0 d2u0
The first two equations, which have just been written, enable 2’ and 22
dx dxi

. ) .
to be expressed as a function of -—-—1—3— , with the help of the two expressions:
1

d’u) _ AeeBi — ABis d’u3
dx} AiyAgs — Ajs  dxi ‘
dz“g = AuBi —AisBy d3“2
A Ayhg - Al dx

Putting these into the third equation, we obtain the expression:
D, -B AssB11 ~ AigBis -B A Big — AjgByy dd“(s)
nTBnT T 5 ~ Dy 2 3
AnAgs — Als AnAg —Ajg | dx

=q,

which has the form:

4 0
p4 ':3 =q,
dx,
with:
2 2
D=Dy - As6 Bi1 + A11Bis — 2416811816

2
Ap1Ase — Afs

The integration of this equation and taking into account the boundary conditions

allows us to determine ug . u? and ug are then found by integration of:

d’uy = AssBi1 — AieBis d*uf
dx AnAgs — Ajs  dxi

d?u3 _ AuBis ~ ABy) d’u3
A AnAgm Al A

’
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10.5.2. Simply supported plate subjected to a sinusoidal load

10.5.2.1. General case

The plate is simply supported on two edges X, =0 and x, =q,, and is

subjected to the loading:
my g

q(x1) = g, si

Figure 10.1. Plate under cylindrical flexure

The boundary conditions at the edges x; =0 and x, = q, are:

ug =0,
d d*ud
N, = Audul + A —= u2 - By, ! L =0,
dx, dx, dx}
du? du? d*ud
N6—Al6 —L A66 —2 - By dx23 =0,
1
d du du
M, =B, ul + By 2 - Dy, 2.
dx dx, dxl
The displacement field defined by:
=U,',,| cos—'ﬂ—m—',
a,
ul =U3'. cole,
a
uy =U,, sin 2L

a,
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satisfies the previous conditions as well as the global equilibrium equations. By
introducing these into the latter we obtain the system:

I 2 3
T n x
-2 A“U,‘"l i J A16U2 [m, ) BnU:., cos 0L = 3
a a a, a

[ m, 2 mT 2 m ’ m, o
-| == AwUn, - —'—) AU +[-L— BjsU,, |cos——L =0,
a, a a) a;
[ m7 ’ mm ; V4 ¢ m,mx
- == BIIU}nl - ;] BmU;, + —l' DnUml Qm, |8 il =0,
a, a, a,
which, after simplification, can be written in matrix form:
[‘ 2 2 3]
mn mr m
[_al,—) Ay ( a ] Ag - — J By, 1
mr 2 m 2 myw Um' 0
Elae || 46 -|—=|Bis U,::, =
a| al _;I
mr 3 /4 3 m 4 U;"l A
1 m
-[—J By, —(—l ] B ( ] Dy,
a aj a
L J

The determinant of this system:

8

mn

A‘( al J (AnAech +2416B,,B1s — A B} _A“BE"_A?(’D“)'
1

as well as the determinants:

5
A, _(m, J (A66Bll _Al6Blﬁ)qm|

a,

a

4
8, =["‘”IT”] (AHA66 - Alz(a)qml!

5
m,
A, =[_‘—‘] (Aan - AmBn)‘Im,'
t

a
give the values of the constants U rin, :

3
1 ___[ a, ] (A«an - AiBis )‘Im,
o\ mm (AIIA66 - A,zJD“ +2A16B, B¢ — Age B}, — A By
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3
U2=(al] (A11B16 — A16B11)am,
™ |\ mn 2 2 ’
! (A11A66 ‘A16)Dll +2A16By1B16 - AgsBi1 ~ A1 B
4 2
U2 _[al] @u&%-Aw%m
™A myn 2 2 '
1 (A11A66 —Am)Dll +2A16B) 1By — AssBf1 - A1 B

the maximum deflection, obtained at x; = 521- , is equal to:

M gy
2 mm (A

- )
11466 — Al6)Dll +2A6B)1B16 - AssBfi ~ Aj1Bs

10.5.2.2. Asymmetrical cross-ply composite (O,%)N,

The following global stiffnesses being zero:
Alg = Ay =0, Dyg =Dy =0,
Bys = By = Bj; = Bgs =0,

we obtain:
3
o <[ @ By qm,
™ \mn | A,Dy, -Bj
U? =o,

m
4
™ \m7% | A,Dy-Bh

10.5.2.3. Asymmetrical balanced composite (a,~ct) N

The following global stiffnesses being zero:
Ag = Ay =0, Dig =Dy, =0,
By = By =By =By =0,
we have:
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4
U 3 = a, A66q'"l
m .
'\ miT | AgDy, - B

10.5.2.4. Symmetrical composite

As the membrane-flexure global coupling stiffnesses are zero:

10.5.2.5. Displacement field

Given the values of U'ln.' U,f,l and U;:,l obtained previously, we have the
following expressions for the displacements:

m mymx
u =(Ul —)c3——l——U3 )cos—'—l,

m m
! a) 1 ay
nnymnx
uy =U2 cos—! ',
ml al
mmx
Uy =U3' sin ——1
1 al

10.5.2.6. Strain field

The non-zero strains are then given by the following expressions:

__mron mz . .3 my e,
& =———\U, —x;—U, [sih——
a 1 a
m m,mx
£ = - 17 2 17Xy
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10.5.2.7. Stress field

The stresses in layer k are given by:
of =0fe; (i, j=126),

where the Q,f are the reduced stiffnesses of layer k. We then obtain:

mn mnr . M7x .
alk = —#[Q‘kl[uflﬂl - x3 a;U’::’l ]+ Q’kGU'il Js“l# (l = 1’ 2’ 6)'

1 1 a)

10.6. Vibrations

10.6.1. General case

The plate studied is supported on two supports separated by a; .
Putting into the global vibration equations:

Wy, Ol

ox,  ° or 2 '
EN_(S= IO 82"2 ,
axl or’
*M, 9%l

=y —>,
ox? or?

the global cohesion loads:

ou? ou?d 02u?
Ny =Ay—t+Ag—2-B,—>
1 1 o, 16 3 x, 1 P
ou! oud 0%ud
N.=A htad U o 3 ,
6 163" v, + Age = o, 16 ——ax,
ou? ouy 9%u?
M,=B,—+B—*-D;—>,
1 N5 o, 1673~ X 1 ox?
we have three equations of motion:

0%u? 0%l 83u0 azu?
All 2 +Al6 2 —Bll 3 —10 2
ox{ ox{ ox; ot
02u? 02u? a%u? 0%u
Ajg 21 + Agg 22 —Byg 33 =1 22,
ox; ox; ox; or
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B, M ’uf +B LN 8314(2) _p, L4 84u3 -1, 0%ul
ox; ox; ox; o’
The solution, which satisfies the boundary conditions at x; =0 and x; =q,:
ug =0,
dz 0
Ny=A— du, +Ag—= du2 - By =0,
dxl dxl dx:
duf dul d*uf
N¢ = AlG —~ A66 —2- By =0,
1 dx]
2, o
Ml-'B“ dul +B|6 du2 D“d —0.
dx, dx, d"l

is of the form:

m,mx
u,°=U,’,, cos—1—1
1 al

m,mx
ul =U3r. cos——1
a

sin(a),,,'t +@,, )

sin(a),,,I 1+ @, )

.My
w3 =U,, sm—'—’—sm(wmle,,|| )
a
Putting these expressions into the global equations of motion and after
simplification, we obtain the system:

2 2 3
mn 1 mn 2 m 2 .1
- —a‘ AUy, - ——a‘ AU, ( a‘ ) B“U + 10, U, =0,
i 1 1
2 2
n n /4
- %— AU, - ";‘ AUL, (";' )31603 + 1wl UL =0,
1 1 1
3 3 4 ‘
n 4 /4
S BnU"n. -| 22 BI6U31| +(L"l—') DnU Iow U3 =0,
al al al

which is written in the following matrix form:

_ X , -
mn mn mn
An ’0“’3', —= | A -1 == By
a, a, a, |
mn mym ma ) Um | 19
—— 1 A —— A66-10w31, - == By Upi, =|0].
a, q, a, 3
ma ’ myr ) ) Um] L9
By, ~| == By —— | Dy '10‘03:,
a, a; 1

-
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This system has a solution other than the trivial solution U ’l" =U ’i = U; =0
1 1 1
for the values of @,, which cancel its determinant, that is for the @y, solution to

the equation:

2 2 4
mr m m
(—“‘—J Ay ‘Iow:, (‘j—) Ase‘lowzu, [ al ] Dy, - 10‘”3:,
1 1 1
mzr ’ ma\' [ z)
2 m
...+{ J Al6B“Blﬁ ( 1 ] Alﬁ ( 1 J D“ —100)3'1 oo s
a, a, a
m7 /4 ] mz ) z)
m m
( l J B}, [ I ) Ags — Io(l)ml "[#J Bjg [ l J % The 10‘”3.,}=0.
q q a,

of the form:

- 3’1’"2 ’:I'"Z wz'n’"z =0,
with:

A=13,

2 2
B =(”’_|”_J {Au + Agg +(£n,_7t] DllJlg'
1 a;
C=(#J [AuAm‘Anze*(”;l:t) [(An + Ag)Dyy — By - Bm] Iy,

Dz[”;ll ][(A“A“ Al6)Dll+2AléBllB|6 Aes Bl - A“B‘Gl

For each value of m;, we obtain three natural frequencies.

10.6.2. Asymmetrical cross-ply composite (O,g—)N,

We have:
Ajg =A% =0, Dyg =Dy =0,
By = Bye = Byy = Bgg = 0.

The coefficients A, B, C and D are equal to:
A=13,
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n 2 mw
B=("_I—J A“+A66 ( ! ) D“ 10,
a, a;
mx ¢ mn ’
c =(a;] A Age +('—al J [(An + Ags )Dyy "3121] Iy,
1
m
D—( al J (AIIDII ‘Bu)A
]

In this particular case, the equation for the natural frequencies is:

or:

-

2 2 2
mn 2 2 4 mn mr
(—L‘] Ags = 190y, 1110Wp, ’(—l‘] Ay +[—] Dy, IOwn
a a; a;

6
mr
+(‘al—’) (AnDn ‘3121 )l =0.

The discriminant of the equation in 10(4)31
|

r 12

4 2
m,z m o

A=(—‘l ) i An+ ( ) Dy, "4[“"-) (AnDn ‘3121)’
a L a, a,

is always positive.
So we obtain, for each value of m,, the following three natural frequencies:
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1 (mn 2 mr 2 [ /4 2 T /4
2 m m
o, == —=— | {A+ ==| Dy - Jl A, - 22| Dy | +4 22 B2 L
20| @ a; a | a;
B )
lmﬂz( mnz [ mn2 T 7:2
2 1 1 1 m 2
=— —1| {A1 + D+ | Ay =|— | Dyy | + Bii ¢
m2 =275 oy 11 a 11 11 a 11J {al 11
1{mnm 2
2 1
@, 3= IO(——] Age-
10.6.3. Balanced asymmetrical composite (ot,~c) N
We have:
Aig = Ay =0, Dig =Dy =0,
By =Bi; = By; = B =0.
The coefficients A, B, C and D are equal to:
A=13,
m 2 m
B=| 2| | A + A +| = D,l 12,
a a,
m mr
¢= Tl_ [AHA66+[ . )[(All+A66)Dll—BIZG]]IO'
1
m 2
D= ’al— (AséDn‘Bw)An'
1
In this case the determinant is written:
mn 2
ke SN - 2
[ a J A“ I()a)ml 0 0
n 2 n 3
0 (m—l-] Age — Iow?, *(ﬂ—) B |=0,
a; ! a)
mn X mn 4
0 —[——] Bl6 (—‘—-] D“ '—lowm
1 a
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from which:

2 2 2
mn mn 7
(‘—L—J Ay —10“’3:, Igwr:, ‘(“'I—J Agg +[—L‘] Dy, ’o“’:ﬁ,---
a a a
mr 2
[ l J (A%Dn Ble) =0.

For each value of m;, we obtain the following three natural frequencies:

2 2 - 2

n n 2 ] T ?

m m

Oy ==—| == | {46 +| == | Du=y| s =| =—| Dui | +4 ——| Bi5 ¢
" 21, a a a a
0 t 1 | !

2

m 2

+ —_— Blﬁ '

a

2

mr

O 2 =5 —— | {46 +| —— | D1+, A —| —— | Dui
20y q a, a |

2
V[ mm

w:., 3 —1—("—") A
o 9

10.6.4. Symmetrical composite

We have:
Bij = 0 .
The coefficients A, B, C and D have the values:
A=13,
Bz{m,n A11+A«,+(ml”] b, |12,
a

4
mT m
C=[‘;“—‘ AnAoo'Alzc ( al J (An“‘A«v)Dn Iy,
1 1

8
D=[M (AHA66 —A,26)D“.

a

and the equation for the natural frequencies is written :
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2 2
mn 2 mn
bt Ul A” - Io(l)m = Al6 0
a ' aq
2 2
mr m 2
— | A6 —— | A6 —low,, 0
a, ay !
4
mr 2
0 0 T D“ "Ioa)ml
or:
3 4 2
m,T mn
(25 1, 1, | o A,
1 I

4
+(%"EJ (41 Agq - A,z,,)} =0,

1

For fixed m,, the three natural frequencies are:

2
1 T

“’3.,.1 =7(——~”Z ) [An + Agg +\[(A11‘A66)2+4A126]»
ol a

2
2 1 m 2 2
wm12=51—-(—‘ J[An‘*%—\/(/‘n“%e) +4A16}
) ol 4

If the composite shows tension-shear decoupling we have:
Ay = Az =0,

2
Wl =| ™7 Ay
! a Iy’

2
r M7 As
“ma =\ 5| 7y
0

4
wl . =| M7 Dy,
™3 a) Iy

For an isotropic mono-layer plate we have the following particular values:

Eh
Ay =0h=
1-v

and:

2
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Eh
= Qcch = ,
Ase = Qs 2(1+v)
En’
Dy = T
12(l—v )
10 = l)h .
The natural frequencies are written:
w _ mr E
AN AP
m, a p(l _ V2)
_ mT E

Cm, 2 a; V2o(1+v)

o = T E
3 [a[ J 12p(1—V2) -

10.7. Buckling
10.7.1. General case

The plate studied lies on two simple supports x; =0 and x; = a,, and is only

subjected to compression loading — N, with N 9 >0.

Figure 10.2. Plate subjected to buckling

Introducing into the global buckling equations:
dN,

dx,

(]
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dNg _
dx,
d’M,  odu
2 I -5
dx;| dx}
the global cohesion loads:
du? dug dzug
Ny =4 ——+Ag——-By ,
dx dx, 2
du? dug dzug
N¢ = Ajg———+Age—=-Bjs ,
dx dx; dxl2
du) du d2uf
M) =B —L+Bc—2-Dy 7
dx) dx 1
we arrive at the three equations:
d d2 0 d3 0
A +Al6 uzz - By u33 =0,
dxl dx{ dxj
2 3.0
d*uf d? u2 d’uj3
Ajg——+ Ags Big—5-=0,
{ dx;
d>uf d3 0 d*ul Od u
B\ ——-+Bjg—~ Dy dx3 Ny 23 =
i 1 1 1
The displacement field:
=U ,l,,l cos TL
ay
uz _ U2 os 2L
q
ug =U3l sinml—ml,
1 a]

satisfies the previous equations as well as the boundary conditions
x;=0and x; =q,:

ul =0,
0 0 2.0
d
N, —Audul + A duy - By, 1423 =0,
dx, dx, dx;
du? du® d?u?
Ng=A,—+ Z_B 3 =0,
6 16 dx, Agg dx, 16— 3

at
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du) du2

Ml—Bll'dx—+Bl6 _0.

dul
- Dy,
dx, d_xl
Introducing this into the global buckling equations we obtain the set of

equations:
n 2 my 2 my 3 nmymmx
m 1 1 2 1 3 17X
- — | AW, -]— | AgUZ + B WU, [cos———=0,
( a ) 11 m [ a, J 16 m, ( a ] 13 m a

A
my
Ay Ay -—=8, !
al m, 0
ml” 2
A6 Age — Bis Up =10
1
mn mn mn 2 U'::'l 0
-2 By, 1By (-I—J Dy - N}
K a ay ]

The critical buckling loads, which correspond to the out-of-plane equilibrium
configuration, are the values of N |0 which cancel the determinant of the previous
system:

2 2
m, mn

- == (AMBH _Al6Bl6)Bll ~E (AI(JBII —AIIBI6)Blﬁ
a, a;

a

2
ot ("'”) Dy, - N? {(414¢ ~ A2 )=0.

For each value of m,, the critical buckling load N IO of the mode m; is given
m

by:

2 2
NO =['"1”) D, - AgsBii + A\ Bl - 2Al6BllBl6
@ AnAgs ~ Al
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The critical buckling load for the first mode 1 is:

2
NO = T D, - A668121 + AnBlzs —2A16B11By6 .
' la A Ags — Al

10.7.2. Cross-ply asymmetrical composite (0,121) N

We have:
Ayg = Ay =0, Dyg =Dy =0,
Bjg = Byg = Byy = Beg = 0.
The critical buckling load is:

10.7.3. Balanced asymmetrical composite (a,~c) -

We have:
Ajg = Ay =0, Dyg =Dy =0,
By, = By, = By, =B =0.

The critical buckling load is given by:

2 2
mr B
N? =(—' ND“—-“J.
my al A66

10.7.4. Symmetrical composite
We have:
In this case the critical buckling load value is:
2
mm
N? = (——l ] D“ .
m ay

For a single layer isotropic plate we have:

2 3
0 _ mn Eh )
" [ “ ) 12(1-v?)




Chapter 11

Cylindrical flexure of multi-layer
Reissner-Mindlin plates

11.1. Introduction

After having studied one-dimensional cylindrical flexure according to the
Kirchhoff-Love theory, we will now examine the use of Reissner-Mindlin theory, in
which the transverse shear strains are taken into account, for the study of the
cylindrical flexure of an infinitely wide plate in flexure, vibration and buckling.

11.2. Strain-displacement relationship

In cylindrical flexure we have a displacement field of the form:
u = “lo(xn|')+ xa'l’l("'l|')’

_.0
Uy =uy (xlll)'
_.0
uy = “3(*1")»
which leads to the strains:
ouy ay,
El =—% x3 -_—,
ox, ox,
_ aug
ox,
oul
Es =¥+,
ox,

€, =€3=6,=0.

11.3. Global constitutive relation

From the expressions:
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ﬁ
[Mi] [An An A6 By By Byl ox
Ny | |A2 Ayn A By By By 800
Ne |_{A6 Ax Ass Bis Ba Bes a’;—z
M| |Byy By Big Dy Dy Dy aV/ll '
Mj| |Bia By By D3 Dy Dy EN
(Mg | |Bis By Bes Dig Dyg Deg J 0

0
Ns| (KA KA ||t E

we obtain the global membrane loads:

Ny = Ay g‘;? + A6 ?;? + By %Z/ll ,

Ny =4y, 31;? +Ag 31;9 + By %fll ,

Ne = Ag ?;j: + Age gl;? + By ?::ll '
with flexure:

M, =By, 3';: + B¢ 3';? +Dyy %fll '

M; =By, af + B zl;? +Dyy %fll ,

Mg “316%+B66%+D16%_':13

and transverse shear:
0

d ou’
Ny= KA,,{!//, +5u_3J Ng= KASS[% +£]-
X, ax,

11.4. Global plate equations

In the case considered here for cylindrical flexure the global equations:
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oN, Bzu, 82u/
—+p =1 +1

ax, P =1g o 3 Th EYERN

ONg 0%ud
—_— = R

ax  PrTla

oM, 32 %y,
—-N —L 47 ,

axl 5= a 52 2707 ot 2

8M6 32u2

=N, =1, ,

ox, MY

ONs 9 ous 0%u)
—+ N +gy+py=1
ox, a[‘aJ‘“ Pa=loga

lead to the following expressions:
— static:

N dM
g—l"f'pl=0, l—1\/5=0,
dxl (Lrl

N M
fi_()—+p2=0’ _d’_'6__N4=0)
dx, dx,

dNs +q5+ 0,

dx, a3 +py=

— vibration:

2.0 2 2 2
8N1_108u|+1|8y/l‘ aMl_N5=Ilaul+128y/l,
dx, or? o2 ox or? or?
ONg 9%ud oM g 0%ul
<= , -Ny=1, ,
ox) or* 0x t?
aNs . 3%l
ox| 0 at

- buckling:
vy, My
dxl dxl
g g, Ms o
dx dx,
dNs _yodluy
dx, ' dx?

In this chapter we will limit ourselves to the case of an asymmetric cross-ply
laminate (O’ZZL)N‘ for which the following global stiffnesses are zero:

Ag = Ay = A5 =0, Dyg =Dy =0, Big =By =Bj; =Bg =0.
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11.5. Flexure

The plate rests on two simple supports at x; =0 and x; = a,, the volume forces
are zero and the loading is defined by:

q(xl ) =dqm, sin il .
a

3

X3

q(x)xs
7.
7

Figure 11.1. Plate in cylindrical flexure

Introducing:
du? dy
N, =A11‘(‘lx‘l‘+BnE‘Lv
1 1
du?®
N, =A,—L-,
2 12 dx,
dx,
as well as:
du? dy
M, —Bu'le— D,,-E'—,
1 1
dy
M, =D, —L,
1
M6 =0,
and:
N4 =0,
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in the global equations:
dN,
dx
dNs _

(]

we obtain the four equations:
2.0 2

And uz, +Bnd '/;1 =0,
dx; dx;
dzug
dx}
d*u) d’y, du?
B + Dy —5- = KAss| y +—2 | =0,
1 dxl 1 dx, ss| ¥

=0,

Ase

dy, u3
KA + +g=0.
55( dxl Xmz q

The boundary conditions at x; =0 and x, =g, are:
d 0
Nl A“ dul +B“ '// O, N6= ﬂ"2—=0,
dx, dx, dx,

du) dy,

M, =B +D =0, u) =0.
1 “dx "W d.xl 3

The displacement field:

_yl nmzx,
=Up, cos—,

219
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satisfies the boundary conditions and the global equilibrium equations. Introducing
the displacements in the global equilibrium equations, we obtain the system:

(m‘”J A”U (m'”J B”‘*P cos—’ﬂ:O,
q, a, 9
2

_(M] A66U3|| cos-’-nl—jul_=0,

2
S B”U,',,l— m,/t DII‘P - KAs; ‘Pl el U3 cos 2L _ g,

a q q
2
- KAgs| T} 4| BT g3 Le g, Lsin T g
a a
4 1 1

The second equation immediately gives U 3!1 =0, from which ug =0

After simplification, the three remaining equations lead to a matrix set

( 2 x 2
m m
( ! ] a0 [—' ] B
a; a
0 mr
a,

. |en] Lo
m, T m,7 m
( . J B, —— KAss KAss +(‘l_) D,,
a, a,
The determinant of the set:
mr mT m, 7w
A—( . JAHKASS KAss + [ : )Dn _[ : }BnKAss
a a a,

mx mr 2
[ al J AHK ASS _( ! ) KASS(A“DII Bll)’
1

and the determinants:

3
mx
A= ( , ] By KAssq,, ,
t

2 2 2
m m m
A, =(_]—) [KAss ( l ) D, Ay, [ J B}, Ay
a a a
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3
mn
A, =‘( a J AllKASSqm,
1

provide the solution:

3
v <[ By1qm, ,
™ \m7) Dy -Bf)

2
mn
: J (A,,D,,—B“)+A“KA55 dm,

m mr 2 ’
! KAss(Aan ‘Bn)
3
‘Pl - a) Allqm, .
™ m% | A\Dy, - BY

We then obtain:
— for the displacements:

mfx
U = (U,',l| +Jc3\!’,',,I )cos——'—'.

a
Uy =0.
=173 oin
uy =U,, sin—-—,
ay
— for the strains:
. mx
£ —-——(U' +x3‘i’,£,|)sm—l——'—,
) LU LT
6’5—[‘{’,"' —U, ) ,
a
€2=£3=e4=e6=0.
~ for the stresses in layer k:
mn k(l l)-mlm‘l :
Q,ls, =- P L Um, +x3¥p, sm—a—— (z = 1,2),
| 1

(O UNTE m,mx,
o5 -Q55£5-Q55(‘P +— o m,)cos_

oy =0k =0f =0.
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11.6. Vibrations
The plate studied, subjected to no loads, is resting on two simple supports

separated by a; .
Introducing the global loads:

ou? 1%
N, = A —-+B,, =L,
1 11 o, 11 o,
ou?
N, =A|2€:—v
t
ouy
N¢ = —,
6 ox,
ou? oy
M, =B, —+ D, —*+,
1 11 o, 1 o,
dy
M, =D, 3;1—,
1
Mg =0,
N4 =0,
ou?
N5 = KASS(WI +ﬁ],

aN, . 3% 3%y,

ax ozl
ONs _ I 0%ud
x oA’
M -1, w3
ox; or? or?
oM 0%ul
3x16 -Ny=1, or? ’
oNs _ ! 0%u)
ax o’
we obtain the five equations:
Ay az"z? +B,, az";' =1, a2uz{’ +1, az";‘ :
ox; ox{ or ot
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g _, 3%l

Ao w2 %t
0%ul oy ol 9%u? oy
B L+D Lo KA w+—> |=1 Ly, —2L,
1t axlz 1 ax12 55 1 axl 1 8t2 2 atz
0%ud
0="h Y

oy, 0%ud 9%uj
KA + =1 .
”[ x,  oxd | ° oo’

The boundary conditions at x; =0 and x, = q, are:

ou? oy
N, =A,—L+B,—L=0,
L= AT x = o,
0
Ne = Ags uz =0,
ox,
My =5, 20, 20
1 1 axl 11 axl ’
ug =0.
The displacement field:

mmx,
uy =U,'"| cos :1 ! sm(a)mlt+¢m' ),
1

ug = U,f,‘ co sm(wm‘t + P, )
. mmx
u? =U,f,| sin — lsm(a),,,‘t+(oml)
mx, .
v, = ‘P,',,I cos 27 sm(a)mll + P, ),

a
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satisfies the boundary conditions and the global equations of motion. Introducing the

displacements into the global equations and after simplification, we obtain:

B 2 ) 2

mw 2 1 mn 2 1

[T“} A“ - Ioﬂ)ml Uml + (—;l—) B“ - Ilwml \le = 0,
1 1

r 2
[——) Ags — lgw}, U2 =0,
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[ 2 2
m m 3 2
( al ) B, - 1,0}, rln, +_al KAssU,, + [_—a J Dy + KAss - Lo, ;., =0,
1 1

2 yy2
Ile|Um| = O,

From the fourth equation, we have U’il =0, from which u? =0.

The three other equations can be put in the following matrix form:

2
mm
( L J Ay - 10) 0
a,
7 2
0 [m J KAss"o‘”m
a,
2
mn 2 mT
[4‘} By, - L, —= KA
a a
, -
(‘"}l—”] B, - 1,0,
- m U'l"‘ 0
—L= KA Un |=|0
i v | o
mr 2 ™
(_I‘J Dy, + KAgs - 1w},
a,

This set has a solution other than the trivial solution U’ln =U ’3" = 0, ‘P"n =0
i 1

for the values of @, which cancel its determinant, from which the equation for the

natural frequencies in Wy

2 2
mn mz m
[—lj An"o“’:}. ( l ] KA — 1), m, ( al ) Dy, + KAgs —- 12“’3.l
1

a,

2
- ['"'”] KAgs ~ Lo}, (”"”} B, - L,
a; a,

2 2
mn m
...—[—'—KASSJ (—L-) Ay - Ty} |=0,
a a,

of the form:
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~-Aw® +Bw* -Cw? +D=0,

mym, nymy mm,

[ 2 2
B= ( al ) Dy + KAss \Ig [ P ) [(Au+KA55)1012‘23“101,—KA551|2],
1

2 2 2
ma\ | mn
C= —a'— [[ p ] (A1|+KA55)D||10+A11KASSII ) 12+I°}
i 1 @

2
mx
o ] B, (B, 1o +2KAss1, ),

a)

6
mr 2
D=(—l— (DnAn—Bn)KAss'

a
are derived.
For each value of m; we obtain three natural frequencies.

11.7. Buckling

The plate studied, resting on two simple supports at x, =0 and x; =aq,, is only

loaded in compression — N0, with N? >0.

Figure 11.2. Plate in buckling situation

By introducing the global loads:
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0
N, =A,— duy
dx,

du
Ny =Ap—
dxl

Ns = KASS['I’! +—=

J

+Bll

duj
dx

dWl
dx,

into the equations for global buckling:

Ny _

we obtain the four equations:

d

Ay + By,

d2W|
;

=0,
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2.0 2.0
KA”[‘“’" +4 “3}—N,°d “ -0

dx,  dx} dx{
The boundary conditions at x; =0 and x;, = a, are written:
du? dy
Ny=Ay—t+B——=
dx dxy

dul
NG—A()G —= —0,

du? dy
M, =B, —+D,—1+=0,
dx dx,
ud =0.
The displacement field:
m,ax
up =U,‘,, cos——L,
1 al
m,x
u) =U} cos——L,
1 al
. max
u?=U;},| sin ——1
a,

m,m
v, =¥, cos——L,

satisfies the boundary conditions and the global buckling equations. By introducing
the values of u?,u),u? and y, into the equations of global buckling, we obtain the
set:

|:_.[m ﬂ] A“Ul [ml )B“\y'l“ cosﬁﬁ=0,
a, a, a;

_(:"n_"] AgU2, cos ™1 -,
a

ay

(’”‘”J B, U, ('"‘ ) Dy ¥, KAS{‘P' +’"*”U3 } cos 2L -
a a

a,

2 2
m7 mr m .
- KAgs| == +| == | U, |+ N} 2= | U} tsin——L=0.
| 1
a a a,

The second equation gives U;l =0, then ug =0.
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After simplification, the three remaining equations provide the following matrix

set:
[ V.4 2 mr 2 ]
m
("'—l ] Ay 0 [—l JBII
a ay [ 1
2 UmI
mn 0 mn 3
O {——I—J (KASS _Nl) —l—KAss ljml = 0
n 2 mr ¥/ 2 ‘y'l"l 0
('”'ll_'} Bl _I—KASS ('I—J Dll +KA55 )
a q )

The critical buckling loads are the values of N 10 which cancel the determinant of
the homogeneous system, hence the equation:

4
mr m W4
—= Au(KAss—Nxo —= Dy, + KAss |-| == Bu(KAss‘Nn)
a a a

4
n
'(ﬂl") Au(KAss )2 =0,
a,

which is written as:

2
2
[":111 J (AnDn 3121)+ AnKAss}(KAss"1\’10)"!411(’0‘55)2 =0,

and for which the solution is:
2
Ay (KAss)

N10=KA55— 3 .

mT

( al ] (A11011—311)+A11KA55
1

The critical buckling loads are given by:
2
mr
{*a'—] (Aan - BIZI)KASS
1

2
m
( p; J (AuDu-Bn)*'AnKAss
1

N =
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Chapter 12

Symmetrical multi-layer beams
in tension-compression

12.1. Introduction

In this and the two following chapters we will study multi-layer symmetric
beams, which are composites for which the ratio of width over length is small.

The determination of equivalent stiffnesses allows us to use the formulae and
methods currently used in strength of materials studies.

The present chapter is devoted to the longitudinal behaviour of multi-layer
symmetric beams in static and vibration loading.

12.2. Strains, stresses, global equation of tension-compression

The global constitutive relation for a symmetrical plate subjected to membrane
loads may be written as:

0
Ny A A A || &

N = AEO or N2 = A|2 A22 A26 5(2) R
0
Ne| |As A Ass ] s

or, after inversion:
»*

0 - L]
£ A A || M
- » L3 L]
EO=A l1\’ or Eg = AlZ A22 A26 N2 .
0 * * *
€6 Ajg Ay Ass || Ne

—
._:
—

In the case of tension loading in the x, direction, we have:
N, =Ng =0,
and the global strains are equal to:
9= ANy,
or:
&) = AN,
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£, = ANy,
&g = Al.6Nl'
with:
A" = A2l — Ax
11 A )
A" = _A1246 ~ A6 426
ip = - SRR
A" = M2~ Aphie
16"
2 2
A= (Aquz - AIZ)A66 +2A12A16A06 ~ A1 Ads — Agy A,
and:
0= au{) 9= aug 0= auf’ + aug
" Tt o % T oy ox

The stresses in layer k are determined from the expressions:
of =0kl =okaliNy,
or:
of = (QlklAl.l +0hA;, + Qs Ars )va
o} = (QlkZAl.l +05,4p +Q§6AI‘G)NI'
o¢ = (Qlk6Al‘l + QA1 + QéeAl.s)Nl-

From these calculations, the boundary conditions at the free edges of each layer

0'5 =0'§ =0 are not satisfied. However, globally they are satisfied. The stresses

obtained from the theory developed above are not correct near the free edges where
the stress state is three-dimensional. To minimize the influence of the free edges, the

ratio of width over height of the section should be sufficiently large.
By introducing the expression:

or.
_ 1 ou
A;] ax] ’

Ny

into the global equation:

we obtain the equation:
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1 %) 0%
* 2 +tp = 10 2
A“ Bxl 8
with:
& k
Iy = ZP (2 = 241,
k=1

12.3. Single layer orthotropic beam

In this particular case, the global membrane stiffnesses may be written:

Aj =hQ;,
with:
— — B
G I-vipvy 2 vy
g, =k _ vaE
2 S vavy 1=viava;
12Y21 12Y21
The global compliances are given by:
E,
Al‘l - Ay _ =_l__ _Q22 _ =l 1-vipvy ‘
AnAp-Ah h0,0,»-05 h__EE _VviaEvnE,
(l—V|2V21)2 (1“V12V2|)2
Al.l =‘l—‘,
Eh
_ VizEy
Ap=——t2 1 CGn 1 1-Vigvy ,
AjAp - A h 0,0, -05 h EE,  vy,EV,E,
(1-vyvy P (1—V12V2|)2
1.2 = _ﬂ;_,
E\h
Ajg =0
The membrane strains are equal to:
& = ANy,

0 __ a*
£; = ApN),
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€9 =0,
and the stresses to:

e * — * Nl
o) = (QnAn +Q12A12)N| =

— . — *
oy = (leAu +Q22A12)N1 =0,

O¢g = 0.
Also, we have:
IO = M .
Multiplying by b the two members of the following equations:
0 0
Ny = 1_ i’i=ElhﬂL,
A“ axl axl
oN, 0%u?
—_— 4 = ,
o, p, = ph o2
IO
AL w2 a?
and putting N = N,b, g, = p;b and § =bh, we derive the classic equations:
ouf
N=ES—L,
1 axl
oN 9%u
._._+ 3 .
ax, G0 =P8 32
2,0 2.0
u 0°u
ES—-+ :
! x} %0 =#5 or’

12.4. General equations for beams in tension-compression

By introducing, for multi-layer symmetric beams, the equivalent characteristics:

b
ES)y =—,
(eh =
(Ps)o =Ilob,
as well as:
90 = p1b,

we obtain, in tension-compression, the following global equations:
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(ks 240
—(ES)O axl ’
0%u)
‘lo“(ps)o EYER
0%u? 0%u?
(ES), ax,; +q9 = (0S), alzl

If we assume, as we do in the classical approach for beam theory in tension-
compression, that the displacement u, only depends on x; and on ¢, we have:

wy = up (x,]e),

ou;

3; .

For an orthotropic beam we have:

£1=

¢ i
ox,

where E* is Young’s modulus in the direction of orthotropy %, of layer .

0'," =EkE| =F

The axial load is then given by:

N= ffaldx3¢x2_j J'__E—dx3dx2,

V- I_ZL, F i,

1
or.

with:

12.5. Built-in beam under its own weight and subjected to a force

The beam OA of length [, mean plane (lel,xz), built-in at O is subjected at A
to the force Fx; and to the action of its weight, x, is descending vertical.
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xz*

Fx,

v
v

Figure 12.1. Beam in tension

The integration of the equation of equilibrium:

2.0
d uy —__%
dx} (ES),
gives, in the case where g, is constant, the displacement ul:
0
ﬂl_ = —_q_Q_.(xl + C),
dy,  (ES)

2
u? =-Jo —XL+Cx|+D ,
(ES),| 2
and the axial force:
du?
N-= (ES)OET =—gqo(x, +C).

The two integration constants C and D are obtained from the two conditions:
u? (0)=0,
N()=F,
from the system:
D=0,

=~qo(1+C),
the second equation of which gives:

c=4 L4
o0
The displacement u? and the axial load N are therefore equal to:

u = (EXS‘)O [F + qo(l _—xi‘—)]
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N =F+qy(l-x;).
The elongation of the beam is equal to:

AWﬁﬁggp»%g)

We can find the expression for uP by integrating the expression:

d _ N

dy  (ES)
The expression for the axial force is:
N = F+q0(l—xl),
so we obtain:

u = I Fx; + Ix —x—lz- +C
1 (ES)O t ¥ 90] X4 2 .

The built-in condition u?(()) =0, gives C=0.

12.6. Vibration of a built-in beam

237

The beam OA, of length /, mean plane (OIx,,xz) and subjected to no external

load, is built-in at O and at A.
o

A
l

ANN
Q
/77877

Figure 12.2, Beam under longitudinal vibrations

Xy

The longitudinal vibrations of the beam are governed by the equation:

9%u

aZO
(£5h 28 < o), 2.

ox}

The solution to this equation, which satisfies the displacement boundary

conditions:
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u(0f)=0,
2o

is of the form:
u?(xllt)= U,ll sin

Introducing this into the equations of motion we obtain the expression:
nux, .
p Lsin(w,t +9,),

Mlul sin(w,t + @, ).

il sin(w,t + ¢, )= —a),% (pS)OU,ll sin

2
—{ — 1 (ES)aU,, sin
(%) eshos

which, after simplification provides the natural frequencies:

o =% /.LES%
LY (es)y



Chapter 13

Symmetrical multi-layer beams in flexure
without transverse shear strain

13.1. Introduction

In this chapter we will develop the theory of beams in flexure neglecting
transverse shear strains. We will examine flexure, vibration and buckling.

Bernoulli’s theory, used in the strength of materials approach, will be applied
here.

13.2. Strains, stresses, equations of motion

The global constitutive relation of a symmetric plate subjected to flexural loads
is written as:
M| {Dn Dy Dy || ki
M =Dk or Mz = D|2 022 D26 K2 |,
Me| [Di6 Dy Des j| X6

after inversion it is written as:

» * *
Kol | P Dz Dis | M)
* *
k=DM or |k, |=|Dy; Dy Dy l[M,].
* * *
kKe| |Die D Des || M6

In the case of flexure in-plane (lel,x 3 ), we have:
M,=Mg=0,
as well as the curvatures:
Kj= D,' M
or:
x; =DM,
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Ky =DMy,
K¢ = DI.6M1 s
with:
2

p* = D2Des ~ Dis

===
b = _P12Des = DisD26

12 = D )
Dt = D1aD26 —~ Dy Dye

16 = ,
D—( D —DZ)D +2 Dy - Dy D3 — Dyy D}

=\Dy1Dy3 — Dy3 Pes + 2D13 Dy D6 — Dy Dig — Doy Dy,

and:
0%ul 0%ul 9%ul
Kl:—'_’—', 2=_——2, K6=—2 .
ox; ox; 0x,0x,
The expressions:

82u0 * 82u0 * 82u0 1 *

3 =-DnM\. ——-=-DiM,, 3 83 =—=DyeM,,
axl axz X10Xx2 2

show that u? depends on the two variables x; and x,.

The term sz is at the origin of a curvature of the mean surface of the beam in

the transverse plane which is orthogonal to the axis of the beam. The contact of a
beam resting on two simple parallel supports is not a line contact.

When D;(, is not zero, bending-twisting appears which is superposed on the

previous phenomenon. This bending-twisting is zero for symmetric cross-ply beams.
These two actions mean that rectilinear contact cannot be maintained across the
whole width of the beam when it is loaded.
These phenomena can be neglected when the ratio of width over length is small.

In this case we can assume that ug only depends on x; and ¢.

The stresses in layer k are calculated from the expression:
k k.. _ k *
oi =x305iK; =x30;; Dy ;M
or:
k _ kp* kK £k n*
oy = xa(QnDn +012Dy, +QI6DI6)M1v

= x3(Qlk6Dl.l +Q36D1; + Q6D )Ml'
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These expressions show that the free edge boundary conditions are not satisfied;
they are only globally satisfied. To minimize the influence of the free edges the ratio
of height over width must be sufficiently small.

The transverse shear stress o'f , in layer k, is obtained by integration of the first

equation of local motion.

In the case of flexure, the first equilibrium equation:

i lod do do
1, %% 993 _g,

ax 1 ax 2 aX 3

is written, if we assume that u;? only depends on x;:

do, doy
Bxl aX3 '
for o is independent of x,, hence:
Xy 30'
O'é( =—J‘ p——d{ , with 2, Sx3< 2,
—E aXl

The layer by layer treatment enables the stress 0§ to be written in the form:

ZI" 3o ge [ 2ty

Zjy aXl Zx-q aXl

From the expression:
of = x3(QlllD;l +0/,Dp +QIJGDI.6)MI'
and the global equilibrium equation:

M _No=0
dx, o
we obtain:
doi
o —L x;(Q“D“ +0{, Dy, +Q16D16)
X

The transverse shear stress ag‘ can therefore be written as:

k-l
i P i . i *
os ==Ns 2_‘; (annDu+anzD|2+QljoDm)§d§---
=t

[ (ohoi, +0bpi; + oliJg |
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or:

j=

Kn* cnkn* cnkn* Y2 2
-+(QuDu +012Dy2 +QI6D16)(x3 = Zj-| )]

The global plate equation:
2 2 2
O*M,  ,9'M, +82M2 Noa ul _oN® 0%l _N032u3

- L e i o* 2 2
T2 Z(annDn +0/, D1 +QIJGDI6)(ZJ' _Zj“)'"

8x12 axlaxz ax% ax, 6 axlaxz axz
reduces, for beams, to the following:

2 2
ang, N"a 2+q=1,
ox; ox;

2.0
0 uy
or’

with:

Iy =2~:pk( =24,

q= ‘I3+Ef3 k= Zke1):

By mtroducmg the global flexural moment:
Dyy O}

we obtain the equation:

1 64u3 _N? 0% rq= 0%ul
Dn axl

M, =-

0~ 7 »
ox} or2
which in the following particular cases becomes:
— flexure:
1 d*?
e e
Dy, dx,
— vibration:

)

1 84143 I 3%l

7 =0,
D“ axl ot

— buckling:
1 d*u Nod ul

o~ 3 =0.
Dll dxl dxl

=[0

2.0
0 uy
¢’
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13.3. Monolayer orthotropic beam

The global flexural stiffnesses are equal to:

h3—
P =
with:
= Ey = Ey
Qu=—"" Qpn=T—"",
1-vv2 I-viavay
— v, E vy E
O, =2k __vaki

I=vipvyr  1=wipvy
The corresponding global compliances are equal to:

. Dy, 12 0, 12
n-= 2 1373 A A2 3
DDy =Dy h° Q110»n -0 Eh
D = - Dy, 12 O __12v
12 — 2 - 3 = — — = 3
Dy Dy, — Dy h” 0102 - 012 Eih
D;() =0.
The strains are given by:
& = x3D) M),

*
£y = x3D1M,,
g = 0,
and the stresses by:

A D +0.D" 12xM
g, =x3(QllDll +Q|2D|2)M| =—-h33—l

L

oy = x3(§I2D;l +622D;2)M1 =0,

O¢ =0,

Ns({= .« = )\ A? 6Ns( h?
05=—2i(Q1|Dn+Q|2012)(—4"‘x§]=—"5‘(——"X32]-~-

h?
2
A PR R I 1Y
2h h

Multiplying by b the two parts of the following equations:

oM |
-Ng=0,
ox, 5

1 9% __Elh3 0%u)

_D;l ox} 12 ox} '

243
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2 2.0 2.0
GA:I_NI(,81?+ =Ioau23,
ox; ox; or
3940 2.0 2,0
_Eh au: _Nloau; +q=pha 1423,
12 9x ox; ot

and putting:

M, =Mb, Ty=Nsb, N°=N'b, qy=qb, S=bh, Iy=

we obtain the following well-known expressions:

_ oM ;.
’ ox,
0%l
M, =-E :
f2 ox?
2
M, 097U - 3%u3
;N 2 T 90 =P —=
ox; ox{ a
_EJ o%ud _ 0 0% N _psazug
YR o g o

13.4. General beam equations

In this section, we will write the global equations for beams in flexure with the
notations used for isotropic beams. We wiil detail these equations in the case of

b
12’

flexure in the plane (le,,x 3) and in the plane (le,.xz). It will be assumed, as for

the classic flexural theory of beams, that the transverse displacement only depends

on x; and .

13.4.1. Flexure in the plane (Olx,,x;)

Introducing, for symmetrical monolayer beams, the equivalent characteristics:

b
El)y =—,
( )0 D-

11

(pS)O =Iyb,
as well as:

90 =9gb,
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we obtain, in flexure, the global equations:

= (e, 24
1
2
My, =—(El), 9 “3
ox
1
M 52,0 N
f2 0 0°u; y
.—N + - m |
ox} ox? 90 = )o -
a“uo 0 9%u? J2,0
- \El o s 3
(El), ox} az 40 = (05), -
This case corresponds to that we used in the general composite theory.
4__//\
0 a.u--u-u.' ----------- ’
02 xl

\ A ¥

Figure 13.1. Beam element deformed in the plane (0|x| X 3)

In addition, starting from the displacement field defined by:
u(M|r)=u(og))+ Ql)x0 M,
with:
UOs)r)=udxs, Q()=ayx; and OLM = xpx, + x3x4,
we obtain the displacements:
= x3a2(xl|')'

0
Uy = Uy (xllt).
The strain tensor therefore has the components:
¢ aa
1 =X =
dx,

oul
— 73
Eg = 2613 ——ax—+(12.
1
0

The hypothesis that €5 =0 gives @, = —%ﬁ—, from which:
Xy

245
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ouy
by ==X3 =,
ax,
02ud
3
£ =-x3
ox?
The axial stress in layer k of an orthotropic beam:
9%u?
of =-E*'x;—2,
ox;

where E* is Young's modulus in the direction of orthotropy x, of layer k.
By definition, the flexural moment is equal to:

b h

- 2 12
Mfz —x: 'rbrh (xzxz +x3x3)XO’|deX3dx2,

2 2

or:
bk
Mfz =J‘_2£ _22 O'|X3dX3dX2,
2 2
from which:
9%u?
M, =—(EI)y—=,
f2 ax,2
with:

bk N
2 ko2 b k(3 _ 3
(EI)O =J‘2bj_ih E x3dedx2 =§2E (Zk —zk—l)'
272 k=1
A positive flexural moment results in a negative curvature.

The global beam equations are written:

M
S
-T, =0,
ox, ’
M 2.0 2.0
b o2t 4 g, = (ps), L8

ox? ox? o
The shear force is given by:

T3 _ E)Mfz - —(EI)O 83ug
axl axi;

and the flexural moment by:
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9%u
M, =—(El)y—=<.
f2 0 oxt
The global beam equation can be presented in the form:
9*u? 9% 9%u
—(El)y—22-N° =L+ g0 = (08)y —
( )0 axl4 ax|2 90 ( )0 atz

13.4.2. Flexure in the plane (lel,xz)

This is the case generally used to present beam theory in strength of materials

studies.
X, T

..........

Figure 13.2. Beam element deformed in the plane (Ole , xz)

The displacement field is expressed:
UM|r)= U(og)r)+ Q()x0M,
where:
U(Oxlt)= udxy, Qt)=ayx; and OgM = x,X; + x3X5.
The displacement vector has the components:
u = —x2a3(x,|t).

0
U = uz(x,|t),
and the corresponding strains are equal to:
da
£ = —X3—,
dx,
0
Uy
66 = 26]2 = 'a—""a3.
Xy
The assumption £ =0 leads to:
0

ou
a, = —=, as well as:
ox,
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U =-x Bug
! 3 ox, ’
£ = —x azug
=-x, .
: ox?
The axial stress in layer k, of an orthotropic beam is equal to:
9%ud
0’1" = -Eka ———‘2—‘ s
ox;
and the flexural moment to:
b h
Mf3 = X3 'beh (x2x2 +x3x3)X0'1X1dx2dx3 N
2 2
b h
Mf3 = _J‘2b 2h leZﬂzdx:;,
2 2
or:
3%ud
M, =(EI),—2,
5 Bxlz
with:
b LA P
(ET), = IZth E* x3dxydx; = EZEI‘ ()’3 - )’3—1)-
22 k=1

Contrary to the previous case, here the flexural moment and the curvature have
the same signs.
Since:

bk
th Oy Xpdxydey =-M
2 2

the global beam equations are given by the following expressions:

oM Lot o
ox, 2
aZMfJ 0 d U a2ug
- 2 2 + (1 (M)O 2!
ox; ox; ot
where the flexural moment and the shear force are given by the expressions:
M = EI I’
5 0 8x12
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oM 3.0
_ f =_(EI)06 uy .

Ty =—
™ ax
The global equation is written therefore:
9'u) %] 9%u
-(EI 2 _NO—22 44, =(p5), —=.
( )0 ax: axlz 0 ( )0 atz

13.5. Simply supported beam subjected to sinusoidal loads

249

The beam OA of length I rests at O and A on two simple supports. The beam, of

mean plane (0|x,,x2) is subjected to a sinusoidal load:

. "ml
4o = g, Sin——.

X34 T‘Io"s
0 { ' >
A éa X

Figure 13.3. Beam subjected to a sinusoidal load

The global equilibrium equation is written:
- (EI), d%ug +¢0=0,
dx{
and the boundary conditions are:

u3(0)=u3(1)=0,
Mg (0)=M (1)=0,

with:
d*ul
M =—(El)y—>.
S dx|2
The transverse displacement:

ug(x)= U,? sin—'l?i,

satisfies the boundary conditions and the global equilibrium equation. By

introducing it into the latter we obtain the expression:
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4
[~(fl-’5) (EI)0U3+q,,]sin ”’;"1 =0,

which has as solution:
4
U3 - _l__ dn
" Aax) (El)’

4
0 = _l._ _&’_ i _n_jﬁ
u0(x) (M) sin ™

13.6. Vibrations of a simply supported beam

The beam OA, of length [ and mean plane (O|x,,x2), rests at O and A on two

simple supports.
The transverse vibrations of the beam are governed by the equation:

a*ul 32u
El +(os =0
( )0 ox ;‘ ( )0 o 2

The boundary conditions are:
u$(0)=u3()=o.

M, Ok)=mp, (r)=0.

with:
9%u
M, =—(El)y—=.
f2 0 axf
The boundary conditions and the global equation of vibration are satisfied by:
nix;

ug(x|t) = U,3, sin—l—sin(w,,t + o, )

The equation of motion which becomes:

4
[(%) (ET), - (PS)owr% ]U,? sin n7;3\71 sin(w,t +¢,)=0,

provides the natural frequencies:

2
EI
w, =| 2% ’—( j", with: n=1,2,3,....
! (08)y
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13.7. Buckling of a simply supported beam

The beam OA of length I, has the mean plane (0|xl,x2). It is articulated at O

and rests at A on a simple support without friction. The beam is only subjected at A
to the compression force —Fx,, with F >0.

X34

Figure 13.4. Beam buckling

The differential equation of global buckling is:

d*ul +Fd u3

' :
and the boundary conditions are written as:

u3(0)=u3(1)=0,
Mg (0)=M, (1)=0,

(ET),

=0,

with:
2
M, =(Er), 2 “3
: dxt
]
The transverse displacement:
(x) U sin ?',

satisfies the differential equation of global buckling and the boundary conditions.
The buckling equation which becomes:

[( e )4(51) (%sz]ug nL 2o,

leads to the critical buckling forces:

F -(",” ] (ED)p.
For the first buckling mode the critical force is:
2
n“(EI
e

12
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Chapter 14

Symmetrical multi-layer beams in flexure
with transverse shear strain

14.1. Introduction

Having considered beams neglecting the transverse shear strains, we will now
examine the influence of these strains on the transverse displacements, the natural
frequencies and the critical buckling load.

The theory presented in this chapter corresponds in strength of materials to the
Timoshenko beam theory for flexure.

14.2. Strains, stresses, global equations

The global constitutive relation for a symmetric plate in flexure is written:

M, Dy, Dy; Dy | K

Ny Ay Ass || €4
M, |=I1Dy; Dy Dyllx, '[N ]=K[ A ’
M D. D. D 5 Ags  Ass || Es
6 16 26 66 || K6

and after inversion:

Kl Dl.l Dl‘2 Dl.6 Ml » »
Ky |=| Dy Dy Dy || M, |, falo L) As A‘:s Ny
- * * 65 K A45 A55 NS
K¢ D\g Dys Dgg || M
with:
l=an’ K2=awzo K6=au,l+av,2_;
ax, ox;y dxy  ox
and:
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In the case of flexure in the x5 direction, we have:
M2 =M6 =O and N4=O,

hence:
al// *
'a—l =DM,
Xy
al// *
=2 =DM,
axz
dy; dy, o«
—+—%=DcM;,
ax2 ax, 16701
and:
a“(s) AZS
+y = Ns,
o, Va2 x5
8ug A;5
+y = N,
o, v x5
with:
. D,,D.. - D
D, = 22 6; 2%
D" = _DPiDes — Di6Dye
12 D ’
D Dy3Dy6 — Dy Dy
16 = D ,
2 2
D= (DuDzz - DIZ)D66 +2Dyy Dy¢Dyg — Dy D36 — D22D126'
and:
- A“
Asg =
A Ass — Als
. A
Ags =— 4

Ay Ass ~ Als

From these expressions ¥, ¥, and u) depend on x; and x,.

As in the previous chapter, when the ratio of length over width is large, we can
assume that ¥, and u? only depend on x; andon¢?.

The stresses in layer &, determined with the help of:
of =x30fx; = ;308D M, (i, j=12.6),

A
k 5 ..
of =0} j=Q,.’,‘.%N5 (i.j =4,5),
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are written:
of xs(Qan + 04Dy + 0 Dy )Mlv
05 = xs(leDn +03Dp; +Q26DIG)MI'
o6 = xs(QusDn +Q3Dp + Q66Dl6)Ml'
and:
oy = ';L‘(QMAas +Q45A55)N5’
o5 = %(Q‘ts"‘«as +Q55A55)

The boundary conditions for stress at the free edges of the beam are not satisfied.
Their influence is minimized when the ratio of height to width is sufficiently small.

The global plate equations in flexure reduce to two equations:

oM, 3’y
-Ny=1,——,
axl 5 2 atz
2 2.0
Ny N0811,+q=1081;3'
axl axl at
which, after the introduction of:
I dy,
1= D“ ar,

D}, ox{  Ags| o

K (azug N au/,J NO 0%u N azug

2 0 2
1 9%y, K[auJHIIJ Izau/,

x| o P P

In the following particular cases we have:

- flexure:
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2.0
If{d 1423 +d'l’x +q=0,
A\ ax? oy,

— vibration:
L%, K (w3
Dy, ax12 A;5 ox, l

— buckling:
1 d%, K (dud
D}, dx? A dx

+'/,‘)=0,

1 dxz

Ass| dx]  dx i

14.3. Monolayer orthotropic beam

In addition to the global stiffnesses:

- 12 * 12v
n=—7Dip=- 12

Eh En’
we have:
. 1 1
55 =—— = ——.
Ass  Gy3h

The strains are equal to:
»
£ = x3D M,

£, = x;Dp M),
A‘
55 NS’
K

£5=

63 = 84 = 66 = 0,
and the stresses to:

o, = x3(§nD|.1 +612D;2)Ml =

K (d%? L v ]—NO d?ul

=0.

12x,
%)

g, = xa(anszn +§22D;2)M| =0,

Ml’
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»*

— A
05 =Qss ,25

U3=04 =06=0'

N,

Multiplying by b the two members of:

_1 9y, Eih’ 3y,
M] = = y
D“ ox, 12 dx,
0
N5 = ——— au3 +V/| =KG|3h 8_1'4:5_+'//l y
ox, ox,
aM, 3%y,
halall NI ,
ax| 3T L at2
2 2
axl a'xl ot
En’ azw, 8143 ph 9%y,
- KG;h +
12 ax? v VT e
%l oy, 0 0% 0%
KG;h +—1I-N +g= ,
. ( x2  ox, : ox} o or’

and introducing:

M, =Mpb, T=Nsb, N°=N'b, q,=qb, S=0bh,

we obtain the following expressions:

an
M = E,l
5"
T= KG”S[%—+W1),
0%,
aMfz T 82'//1
a-’f| 2 a!z '
aT 0 0% 0%ul
-N +qy = pS 2,
" o AT
2%y, ou R%
Eily, 2L~ KG,,S A
il —5 ax, 13 (al v 2757
0%ud oy 0%u? 9%u)
KGpS| —2+—L|-N"—F2+q, = .
. (axf ax, ax2 0 e

bh*
Iy =—o,
22 12
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14.4. General beam equations

As in the previous chapter, we will detail the equations for flexure in the planes
(Ofx;,x3) and (0|x,,x2).

14.4.1. Flexure in the plane (lel , x,)

Introducing, for multi-layer, symmetric beams, the equivalent characteristics:

(B =2, (08)y = Iob . (KGS)y =,
Dy Ass
as well as:
9o = qb ’
with:
Al = Aus
» Ay Ass A35
N
Ay = EQ; (zk Zl«—-l)’
k=1
and:
(o1)y =150,

we obtain, in flexure, the following global equations:

o

=(EI ,
My, = (Eo5

*y
e
%%-Noa;x"; o=l 2,
(E1), aa:? _(Kcs)o(%%+ ,)= (of), aa:lz’l ,
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With the following expressions for the displacements:
Uy = x30, (xl I’)’

Uy = u3(x, II),
we obtain:
— the strains:

£ = x3—=,
=55,
8u3
€5 = ——+Q,
axl
— the stresses in layer k of an orthotropic beam:
da,

x
P ox,

du
5 = Gn(g—}*az]

X

of = Ef

— the flexural moment:

Mf2 = Izb Izh le3ﬂ3ﬁz,
2 2

S B -2).

= (51)0%9’1. with (El), =
k=1

Xy

[SCRRN

- the shear force:

Ty = (KGS), [?T‘?+a2)

with :

(KGS), I J' KGndx3dx2-KbZG,3 — 7).
2

The global beam equations:

9’a
-7, = —t
a X, 3 (p ) atz
a7, 082143 9%ud
~N = (p5), 252,
Bx, ox - 1t (pS)O %

259

are written, after introduction of the expressions for M ; and Tj, in the following

form:
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0’ ou? o’
El 2 _(KGS), —> = (ol z
(e G- eosh o+ = o 22

14.4.2. Flexure in the plane (le, Xy )

From the expressions:
Uy ==x04 (xl It)’

Uy = “g(xllf)’

we obtain:
an
El = _.X2
ox,
oul
6 =3 03,
Xy
as well as
Ja
o =‘Elkxz——a 2,
X1

0
k_ k[ Ou3
Og =G| —=-0a;5 |.
ox,
The flexural moment is equal to :
b

h
Mf; = —fb[iﬁ 01X2dx2dX3 ’
2 2
N

day . b
My, =(EI)0—£]1,wnh (EI), =52E1k()’£ -)’2—1)»
k=1

or:

and the shear force to:
b

h
7= [ [ oudnadn.
2 2

du,
T, = (KGS), (;Tn_%)’ with (KGS), = szc;,2 Yk = Yeo1)-
k=1

or:

The global beam equations can be written:
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agilf’ +T, = (ol a;g’ ,
%f—— N"%z;“lziwo =(0S)y 6;422 ,
or:
(E1) a;x? + (Kc;s)o[fz.,f:i -~ ) = (o1}, %’?—
sl 2302, 2

14.5. Simply supported beam subjected to a sinusoidal load

The multi-layer beam OA, with mean plane (O]x, X 2) and of length [, rests at O

and A on two simple supports. It is subjected to a sinusoidal load:
)17[\’,

90 =4y sin

A
X
3 I qoX3

0 | ' >
A

Figure 14.1. Beam subjected to a sinusoidal load

The global equilibrium equations are written:

2 0
(1 g~ (ks o =0

1 |
d’ud dy
KGS)| —2+—L |+ ¢ =0,
( )O[ dx12 dxl J 9o
and the boundary conditions are:
u3(0)=u3(t)=0,
M, (0)=M,(1)=0,
with:
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dy,
dxy
The displacements field defined by:

. nax
ug =U,? sin—L,

M, =(EI),

_wl niux;
v, =¥, cos—,

satisfies the equilibrium equations and the boundary conditions. The
equilibrium equations provide the system:

{(i'lf)z (E1), W) + (KGs)O(%U,? +! J}cos "’ID“ =0,
[(KGS) [( 1 J U3+—‘P } q,,]sin”’;"l =0,

which can be presented in the form:
(%) e+ wosly ks
I 1 [‘P,, } ) [ 0 ] .
%(KGS)O ("I” )2 (KGS), Ua] Lan
Given the values of the determinant of the system:

A=($)"(mo<ms)o,

and of the determinants relative to the two unknowns ‘P,t and U 3 :

=5k 0.~ e+

the solution to the system is:

\yl — L ’ dn
" ¥4 (EI)O’

;s (ﬂ) (EI), + (KGS),

l

Finally, the displacement field is defined by:

: (nl” ) (E1)o(KGS), " =(7’l;)4[“(1’7£)2 (g;(;"]éﬁ"

two
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3
l q, nmx,
= — cos ,
Vi ‘( nw ] (E), l
4 2
1
u;) -[L 1+ 22 (E )0 In__gin 21
nm 1 | (KGS), |(EI), !
The maximum deflection, obtained at x| = -% , is equal to:
4 2
y = — Rhidds _In_
nm 1) (KGS), |(EI),
If we ignore the transverse shear strains, it is equal to:

4
73 = 1 An
=) @

and the relative variation of the deflection is:

Up-U,; _(nzY' (ED)
U} ! | (KGS), "

14.6. Vibration of a simply supported beam

The beam OA of length | and mean plane (le,,x,), rests on two simple

supports at O and at A. It is not subjected to any given load.
The transverse vibrations of the beam are governed by the two equations:

3%y du3 3%y
El ~(KGS)o| 23 4y, |= (1), S¥L,
e, 58~ wosh{ 5oL v |- 38

%ud Ay ) _ 9%u
resh{ Gt 5ot
The boundary conditions are written:
ug( t)= ug(l|1)= 0,
Mg, (O)= M (Ir)=o0,

with:

dyy
My, =(El)0—é;l—.

The following expressions for ug and y;:
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ug (xl |t)= U,? sin 22 sin(w,? + @, ),

nx;

sin(w,? + @, )

satisfy the boundary conditions and the global equations of motion which become:

[(g)z (E1), ! +(KGS)({£I£U3 +\v,t)...

)= ¥ cos

= (pl)y 2! ]cos "1 in{ayt +9,) =0,

2
{(KGS)O{(-"I—”) Ul+ %\P,{]— (0S),2U> }sin "’l‘"' sin(w,t +9,)=0.

After simplification, we obtain the system:

nmw

(_I_)Z(EI)O +(KGS), - (ol )y} %(KGS)O {qf‘ } _ [O]

2 (kGs), (%)2 (KGS) — (08 )y0n

which has a solution other than the trivial solution ¥} =0 and U =0 for the values
of w, which cancels the determinant of the system. The equation for the natural
frequencies:

{(flﬁ)z (EI)y +(KGS), - (ol )y ? }[(115)2 (KGS), - (ps)oa;,f]...

...—[i'lﬁ(ms)o]2 =0,

is written:

)\ nn '\
(pl)o (PS)() a): - {[(n_) (Er )o + (KGS)O ](PS )0 + (—l—) (KGS)O(PI)() ]w3

1

+(il’5)4 (E1)y(KGS), =0,

or:
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o e ) R
The discriminant of this equation:
-] (]
n z( nz J’ (KGS), [(EI)O , (KGS), ]_ A( nz J“ (E1),(KGS),

(=)

1] (o), | (1), (0S), RN
oo - o] -
+2{_;£) (l(ﬁi)o[( o (xcs)}

( +
is positive.

or:

El
p)o ( )

The natural frequencies are equal to:
) { [ El), KGS } KGS

w’l.l 2

J 0 KGS } KGS), } (151)0(1<Gs)0
(o1)o(05), |
fz%{(ﬂ:ﬁﬂ )

e

For each value of n, there are two natural frequencies.

If we neglect the inertia of rotation, the two global vibration equations may be
written:

(El), Py —(KGS), (%—g-w,):o

axl xl
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0%l oy 0%u?
KGS Rl |y P Ry
( )0( ax12 axl J (m)o atz
With:

dadad sin(a),,t +@, ),

uy (x, It) =U} sin

v (x,]t) =] cosﬂlzx—‘sin(a),,t +9,),

we obtain the system:

(1’75)2 (EI), + (KGS), fli(KGS Jo [W'{ ] ) [0]
i 2 (kG (nz_”)z(KGS)o ~(as)paz [.U7) 1O

and the equation for the natural frequencies:
4 2
n /4
7] (Ez)()(ms)o—[(—", ) (Ez)o+(ms)o]<m>ow3 -0,

for which the solution is:

w; = Lﬁlﬁl% :

The values of natural frequencies thus obtained are lower than those calculated
neglecting the transverse shear strains:

(e

1
the corresponding relative error is equal to:
o} -0} _ 1

14.7. Buckling of a simply supported beam

The beam OA, of length [ and mean plane (O|x1,x2 ), is subjected at A, as shown
in figure 14.2, to the force —Fx,, with F>0.
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X3A

>

1¢
0 A ;; —Fxl Xy

Figure 14.2, Beam buckling

The differential equations for global buckling are written:
d’y, du))
EIl - (KGS )yl —+w, |=0,
( )0 dxlz ( )0 dxl |
2.0 2.0
(kGS),| & =i v |_pd 2 =0,
dxi  dx dxi
and the boundary conditions:
u3(0)=uf(t)=0,
Mfz (0)= Mf2 (l)= O,

with;

dy,

M, =(El)y—.

2 ( )0 dx,
The buckling equations and the boundary conditions are satisfied by:

Fia3

ug =U,?Sinnl l,

v = ‘l’,', cos m:xl .

Introduction into the buckling equations leads to the two expressions:

2
[(%] (E1 )0 ‘{’,1 + (KGS)O(-nliUS + ‘{’,{ )]cosﬁ:x—'- =0,

2 2
[(Kcs)o[("—l’i] U;?+-'fllv,i]—(i’lf) FU,?]sin "’;’“ =0,

and the system:

267
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which has a solution other than the trivial solution for the values of F which cancel
its determinant, that is for the F solution of the equation:

[111)4 (E1)y(KGS), —(flﬁﬂ(i’f)z (ET)y + (KGS)O}F =0.

l

The critical force of the buckling mode n is equal to:
2
(flﬁ) (El),
Nl 2 (EI)
I | (KGS),

These values are lower than those obtained when we neglect the transverse shear

strains:
2
= n
F, (T] (ED-

The corresponding relative error is:
F,-F, _ 1
F, 1+ nr ? (EI )0
I ) (KGS),
The first buckling mode is characterized by the critical force:
= (El),
12
7 (El)y
Ay
1*(KGS),

n

F|=
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Chapter 15

Global plate equations
neglecting large transverse displacements

15.1. Introduction

In this appendix, we present the plate analysis equations, integrating the local
equations when the three absolute values of displacements are low in comparison
with the plate thickness, and when the absolute values of the components of
displacement vector gradient are much lower than one.

We will limit this study to the resultant forces and moments and the inertia
forces in the Reissner-Mindlin and Kirchhoff-Love type analyses.

15.2. Hypothesis relating to plates

A plate is a continuum limited by two parallel planes corresponding to the lower
and top surfaces of the plate, and by a cylindrical surface (edge of the plate)
orthogonal to the faces of the plate.

The middle plane of the plate is equidistant from the lower and upper surfaces
and these are separated by a distance A.

The middle plane of the plate is located in the plane (0|x,,x2) of the reference
axes (0|x,,x2‘x3).

The rectangular plate as shown below has the middle surface represented by a
rectangle, the dimensions of which are @, and a, respectively.

The plate is specified as “thin” if the thickness is small in comparison with the
middle surface dimensions, which is the case when the thickness to characteristic

dimension of the middle surface ratio is lower than 1/20. The term “moderately
thick” is used when the ratio is between 1/5 and 1/20.
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xs A

L3
2 a;
0

a >

Figure 15.1. Thin plate

In this appendix, we assume that the absolute values of displacements u; are
small in comparison with h and that the absolute values of the partially derived
. duy;
functions 3;1— are less than 1.

15.3. Reissner-Mindlin and Kirchhoff-Love plate theories

In these two plate analyses, we are assuming that ¥, and u, depend on x;, x,,

X3, and ¢, and u3 depends on x;, x, and ¢ only. The chosen displacement field is
written as:

u =“?(xlvlet)'*szn(xlvlef)v
u, = ug(xl,X2|l)+X3W2(xl,x2|’),
u3 =ug(xl,X2|t)v

The strain field is then defined by:

duy 9y, dup  duy oy, oV,
&, =—+ , =t —= + ,
"ok, o 7 ox,  ox o dx, Ox
du, v, ou
€9y = +xy—=, 263=W+—,
2=73 ) 3 ax, 1B =¥ o,
oul
€33 =0, 203 =Yy +
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We consider the set of particles M placed on a line segment AB, which is

orthogonal to the middle surface of the plate and goes through particle M 0 placed
in the centre.

With the chosen displacement field, the particles placed on the line segment AB
are placed on the line segment A’B" after deformation of the plate as shown below:

Figure 15.2. Displacement field

The particles placed on the line segment AB are defined by:

M®M = x;x;, with —%Sx, S% and OM’ = x,x, + x,X,.

Starting from the relation:
MM =M"M’ +M°'M + MM’
and introducing the displacement vectors of particles M 0and M, we obtain:

MM’ = MM + U(M]r)- u(m %)),
SO:
MM’ = xyx, + (u? + X3¥, )x, +(u§’ + X0, )m2 +UiXg..
...—(u,"xl +udx,y +uix, ),

M'M’ = x3 (WX, + WX, +x3).

This last equation shows that the particles placed on a line segment AB remain
aligned after deformation of the plate and are placed on the line segment A'B’.

This displacement field chosen corresponds to the moment field:
u(M)= ulm )+ axMM,
with:
U(Molt)= ulx, +udx, +uix,y, =Qx, +Q,x;, M™M = x;x,,
we obtain the relation:
U(M|t)= (u? + X382, )x, + (ug - X382, )xz +udxsy,
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which, identifying the chosen displacement field, gives the two relations:

Q=-y,, Q; =y,
which represent the two infinitesimal rotations of the line segment AB measured
respectively on x; and X, . These two rotations are shown in the figure below:

X3 X3
Q =~y Q, =y,
Xy x; X X;

Figure 15.3. Infinitesimal rotations

The middle surface of the plate is defined by the vectorial equation:
£{x,, x,]r)= OM® = OM® + UM ),

_ 0 0 0
f(xl,x2|t)— XXy + XXy Uy Xy +UyX,y +UyXy,

f(x,,xz't)= (x, +u?)x1 +(x2 +ug)x2 +u§’x3.

The two partially derived functions of f with respect to x; and x,:

a_f— 1+§_lf£ X +ai(2)_x +§ﬁx
ox, ox, ' o, 2 ox, 3
0 0 0
_Qf_=aix1+ l+a_uZ_ x2+a£x3’
ox, dx, ox, dx,

correspond to the tangential plane of the middle surface of the plate which goes
through M o

The principal parts, i.e. the first order terms, of the scalar products of the two
previous vectors with the vector M"M’ are respectively equal to:

0
Mo’M, i = x3('//l +a—u3_]’

0
M'M’ of x3['/’2 +§i‘i}
x
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The hypothesis in the Kirchhoff-Love analysis is to say that the transverse shear
strains £, and &,; are zero, so the infinitesimal rotations are expressed in terms of

ug with the two following relations:

ou

Wl B Bxl ’
__
2 8x2

Putting these values into the two previous scalar products, we obtain the following
equations:

MM - mom O 0,
ox, ox,
which show that the line A’B’ is orthogonal to the middle surface of the plate.
B
M
w|
A

Figure 15.4. Displacements in Kirchhoff-Love type analysis

In Reissner-Mindlin type analysis, we have the displacement fieid:

0
uy =uyp +xayy,

0
Uy =uy +x3y,,

uy = ug.
separated into the membrane displacement field:
ul' =u,
Wd =ud,
ujy =0,
and the bending displacement field:
ul =xy,,
uf =x,,

uf =il
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In a similar manner, the strain field:

ou v, ou)  ud dy,  dy,
11=a 35 2Tt + )
X, ox; dx, Ox dx, ox
aug a(llz auo
£y = F X, =2, g, =Y, +—,
b7 ox, 3 o, 13 =V o,
ou?
€33 =0, 2t =Y, +a—3’
X2
is separated into a membrane displacement field:
£ = au,O e = u + aug
“ axl ’ 12 8x2 ax, ’
) 0
24 =29 2e3 =0,
BX2
85’3 =0, 285”3 = 0’
and bending:
dy, Jdy
= L f 1 2
€l =x5—, 2/, =x;] =—+ ,
i = %3 " i2 3( o,  ox )
ou’
- 2 f 3
€4, =x , 26 +—,
n =573 , 3=¥ ox,
du?
ed; =0, 2ezf3=u/2+a—3
X2

In Reissner-Mindlin type analysis, the membrane displacements and strains
depend only on the two functions u?(xl,let) and ug(x,,xz |t), while the bending
displacements and strains depend only on the three functions ¥, (xl,x2|t),

0
wz(xl.x2|t) and uj3 (x,,let).
But in Kirchhoff-Love type analysis, we have the displacement field:

o_ . oul
u =uy —x3—,
axl
o 93
Uy =uy —xX3——,
8x2
Uy = ug,
separated into a membrane displacement field:
=,
ul =uj,

uy =0,
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and bending:
uf = —x ou
i 3 axl ’
f aug
u2 ==X3 T,
aXZ
ll:{ =U3
Similarly, the non-zero components of the strain tensor:
i
ax( } axl
0 2.0
¢ du;  0%uy
2 = L}
a 2 axZ
oul  oud 9%ud
2612 = .—l_ + _2. -_— 3

3 ]
dx, Ox, 0x,0x,
are separated into the membrane strains:

0
m _ aul
=5
axl
0
m o _ a"2
€22 =5
aXZ
m_ Oul  uj
2812 = y
aX2 ax,
and bending:
9%u)
81}; = "Xq N
ox;
! 9’uy
€3 =X ,
ox;
9%ud
28{2 = "2X3 3 .
ox,0x,
These last expressions present the curvature of the middle surface:
9%ud
Kiy=- 2
ox{
2.0
Koo = = a Uy
n=

277
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2K, =2
12 Ox,0x,

In Kirchhoff-Love type analysis, the membrane displacements and strains
depend only on u?(xl,let) and u) (x,,let), but the bending displacements and

strains depend only on u (x, ,let).

15.4. Global plate equations
15.4.1. Force equations

The resultant forces are defined as:
h

NU = jzh U,}dX3 s
2
and they satisfy the symmetry condition Nj; =N

Multiplying the two members of the motion equations:

ax}' a 2
by dxj, and integrating through the thickness from-% to %, the three force
equations are obtained:

h
y o dx3 + dxz = p——dx3-

_ Ox; ﬁ
2 2

- For i =1, the equation is:

do u ; 00 " 3o u LY
h—id.x % S 2 + [2, S, +‘|'2,l fidxs =J'2h p=Sldx;.
ox; _k ox, 2 oxy 2 2T or?
2 2 2 2 2
The first term of this equation is equal to:
h h
=~ d0 J (5 oN
J._ﬁ ax, 3 axl _ﬁ e Bxl
2 2
in a similar manner, the second term is equal to
29 d N
P;.—U—”'d"s =2 (2, oppaxy = 212
-5 aX2 aXZ __2_ ax2
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The third term becomes:
h
do h h
r —a—lldX3 —-[0'13] —0’13(X1,XZ,-2-|I]—0'|3(XI,Xz,——z-ll].
2 2
The boundary conditions applied on the upper and lower surfaces give the two
relations:

h
013(X1,X2,5't)= TB(XI,let),
h -
Uli{xl ,x2,—5|t)= 713(«'1 ,x2|t),

in which 7'y and 73 are the surface forces applying on the two faces respectively.

From this:
’ oo
J>v TQdX:; = 1'13 1'13 .
2
For the body forces:
h
j.z,, fidxy = py(xy.x,)t),
2
the following equation is obtained:
h
Ny N 4 - 9%u,
=tttz Ti3t p =F p—dxj.
ox;  0x; —g ar?

-~ For i =2, the following equation:
o0 9o " 90 u LTS
j 992 gy + J' 9922 4y, +J.2h—23-dx3+jzhf2dx3=."2hp——dx3,
1 ox Xy - a = aX3 s = a
2 2 2
which with the previously introduced notation will be written as:

aNZl 8N22 J“ 62u2
—2L 2 et 4+ py = |2 p—Pdx,.
O, | oxy | BTIBTP2T )L PTR
- For i =3,ina similar manner:

J' ) 35231 J‘z 3032 J‘z .a—a_l‘ldx3 +j;£f3dx3 —Jh,, pgaz—dxss

and:

8N31 + E)N32

+Ti =T+ py = -—dx
axl axz 33-T33+P3 r P
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15.4.2. Moment equations

The resultant moments are equal to:

h
M’J = Fh O'in3dX3 ,
"2
and satisfy the condition M; =M
Multiplying the two members of the motion equations by x3dx; and integrating

through the thickness of the plate, we obtain the moment equation:

k30, h h 22,
Fh T xydxy + |3, fixzdxs = | 2, p—F xydx; .
_Z axl Z -Z ot
2 72 2

—Fori=1,the equation is written as:

: do do : do u
2 200 gy, + f 9912 y dv, + f 13 e d, + J' 2 fixydxs..
—5 ax —2- axZ 5 a.x3 —5

h
e
I WP "5 : x3de'
> or?
from the first term:

h h
Jdo d oM
2 “xdx=—P0' x3dxq = i
I:ll_ axl 3 3 axl _% 173753 aXl
and the second term:
h
do > oM
2 12y dx, = Oy x3dxy = —12
.D T ok, AT TG

The third term is equal to:

Lpy ﬁ P h

2 13 - _f2
X3dx; (Ulaxa 3 J. n O13dxy,

2

_k a.X3 3 - a
2
$0, using the previous notation:
h
8013 L ]— ( )_
" 3 xydxy = |0y3x3 )% ~ N3 =\{r3 +73 )~ Ny3.
-5 9%
2 2

Let, for the relative integral of the body forces:
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h
J:2£f1x3dx3 =y (xy, % t),

2
we then obtain the equation:
h a2
aM“ aMlz + - \h Py 0 3]
— L+ —=-Npj3+lr3 +7 L+ =I2 xydxy.
o, ox, 13 (13 13/5 H __;P a2 3 3

- For i =2, in a similar way we obtain the equation:
h

_ﬁ axl
2

which can be written as:

h

oM, My, s __\h 5 9%,

— e Noy+lty 4+ T + =I2 x3dxy,
ax, e 23 (23 23)‘2' M _gp EW I

using the previous notation.
The equation written with i = 3 has no physical application.

15.5. Plate equations in Reissner-Mindlin analysis
15.5.1. Calculation of second members

The Reissner-Mindlin displacement field is:
u = u?(xl’x2|')+XJWl(xl'x2|')’
Uy = ug(xl ,x2|t)+ XYy (x, ,x2|t),
uy = “(JJ(XPXZ")’

By introducing:

h

Iy = J.2;, pdxy ,
2

and:

ul

L= J'_zh pxydxy,

2

2 ¥ 2 90 :
F Ju X3d.X3 +Izh (_;722 X3dX3 +J'2 23 x3dxsy +Izh frxadxsy...
-— 00Xy — Ox3 -

281
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the second members of the three force equations are equal to:

2 2
k2 h 2.0 2 2.0 2
0 D= [ 2 D a1 T P
-3 ot -3 ot at ot
h o o2 h 520 2.0
0°u =~ d°u o°u
2 p—%3=f2 p—dxy =1,
—g or? —g 12 or?
By introducing:
h
5 .2
12 =J-2h px3dx3,
2
the second members of the two moment equations are equal to:
%uf 32 %) 92
_rp ﬁf%—fﬂ{ ' W']Xsd"f’l arzl ”27'/2/1’

h 2 h 2.0 2 2.0 2
r 0“u o“u oy 0‘u Iy
2hp 22 X3dX3= 2’! 2 +X3 2 X3dX3 =Il 22+12——-2—.
- ot -3 t ot

15.5.2. Global plate equations

In the case where the u; are equal to 0, and also 773 and 7;; are zero except

733 = g3, the plate equations are written as:

aN“ ale =7 azu? I le//l
ot otk =l th—75»
axl aXZ t dt
ONyz , ONp -] 9%u3 ! %y,
- -t tPr=lo—~+t I —5—,
dx;  Oxy ' ot
oNy;  ON 9%ud

a]3+ Bigy+py=1Ip 23,

Xy sz ot

2.0 2

ag'lll+8M12_N”=Ila:;1 +1 3((2/1’

Xy axz ot or
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2.0 2
9 “2 +12——-a Va .

or? or?

My My _

Noyy=1
ax,  oxg 2

15.5.3. Boundary conditions

n and s are respectively the local normal and tangential co-ordinates on the plate
edge, and the conditions around the perimeter of the middle surface of the plate, for
an edge in the following case:

— simply supported:
N,=N,=0, M,=0, y,=0, ui=0,
— hinged free in the normal direction:

N,=0, M,=0, y,=0, u=ul=0,

- hinged free in the tangential direction:
N,=0, M,=0, v =0, u)=uj=0,

Ug =u, =“Z(!)=O' Ws =¥, =0,

- free:
N,=N,=N;=0, M, =M =0.

15.6. Plate equations in Kirchhoff-Love analysis
15.6.1. Calculation of second members

With the Kirchhoff-Love displacement field:
ou’
u = “?(Xl ’*"2|’)‘ X3 =2

ox,
0
0 ouy
Uy =u,y (xl,let)—xg )
ox,
0

Uy = “J(le)‘z")'

the second members are obtained:

h h

9%u = [ 0%u) 9%ud 0%ul 0 uld

2 Ly _[2 i 3 - 1 3

o by, = —x de, =1, 24 _p 94
[% a I_%p( a | 0 %t loxar?
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h h
0%u = (9248 03u? 02 93u?
2I:’f’—zz—‘i"3=."2'1 2 o |a =l -l
-5 ot 3 ot Ox,0t ot dx,0t
h h
02u 0%u? 92u?
2 3 — 12 3
fﬁp——dxatz 3-[_1/0 02 3=1y o2
2 2
and:
h 2 h 2.0 3.0 2.0 3,0
P,,pa . xadxfﬁ. Py 2 ey = O 2
_5 ot 20 o ox, 0t or 0x,01?
93u? 929 93u?
r P xsdx3 —r - |xydxy = 1 21, 3
axzaz ot Ox,0t

As in Klrchhoff—Love type analysis, the rotation inertia where I; and I, appear

are neglected and the second members are written as:

h 2 2.0 h 2 2.0
tha u 3=Ioa u J‘zhpa u 3=Ioa u
R or? - or? or?
; 0 u,y =1 0%ul
‘% P) 2 o 2
and:
h h
0%u 0%u
Fh P 2' X3dX3 =0, Fh P 22 x3dx3 =
— ot -2 or

15.6.2. Global plate equations

In the particular case where 4; =0, 7,3 =0, 1‘,?3 =0 except forr3+3 =q3, we

have:

2.0
6N11+8N12+ 1=Ioa uy i
dx;  Odx, a2

az 0
3N12+8N22+p2=10 uy
dx;  Ox, or?
oN oN 9%u?

Ny ONyy OBt gt py =1, 3,23 ’

ox, 3x2
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ox;  ox, o
axl axz

Differentiating the two members of the last two equations respectively with
respect to x; and x,, we obtain the two equations:

’Myy  °My; Ny _

0,
oxf  Ox0x;  dx
0’My My Ny _
Bxlaxz 8x22 8x2 '
leading to the following relation:
2 2 2 2.0
9 Mz“ 429 Mz 9 Mzzz +q,+p3=10a "23 .
axl axlax2 ax2 ’ at

15.6.3. Boundary edge conditions

In the particular case previously considered, we have for an edge:
- simply supported:

N,=N,=0, M,=0, ul=0,
- hinged free in the normal direction:

N,=0, M,=0, u«?=u=0,

- hinged free in the tangential direction:
Ns =0, M" =0, ug =ug =0,

- clamped:
u2=u?=u§)=0. gl£=0.
on
— free:
N,=N,=0, aM‘+N3=O, M, =0

s
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Chapter 16

Global plate equations
for large transverse displacements

16.1. Introduction

We will now derive the global plate equations by integrating the non-linear
equations of motion that the Kirchhoff stress tensor satisfies, for the case where the
absolute value of u; is not small in comparison with the plate thickness.

This configuration allows the buckling of plates to be studied. In addition, the
absolute values of u; and u, are small in comparison with the plate thickness, and

the absolute values of partially derived functions of u; and u; with respect to x,,

x5 and x; are less than 1.
We will clarify these relations in both Reissner-Mindlin and Kirchhoff-Love
type analyses.

16.2. Local plate equations

The components 0',-5-( of the Kirchhoff stress tensor are written in this appendix

o; and satisfy the local relations:

0 ou; 0%u,
—]1 8y +—L |oy, = L,
Ox ; [[ w ox, ]ok’}+f' p or?

J
In the present plate analysis, we consider the displacement field to be written as:

U =u,(xl,x2.x3|t),
uy =u2(x|,x2,x3|t),
iy =u3(x,,x2|t),

and in the local plate equations, we only conserve as non-linear terms those
containing the partially derived functions of u3 with respect to x| and x,.

Under these conditions, the local equations of movement are written as:
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—fori=1:
d du d%u
j
aalj azul
+fi= ,
an fl P atz
30'“ 80'12 80'13 aZMI
+f1= ,
Bxl ax2 * 8x3 f] p atz
~fori=2:
d du 0%u
3 [(5& +a iJakj:I fr=p 3 22 ,
j
ad'zj +fy= azuz
Ox 2 o2’
30'12 80'22 80'23 32142
axl aX2 * ax3 +f2 p a;z '
~fori=3:
Jd du 9%u
5 3 2,
3,[( 3k+ak]0k,]+f3 paz
) dus 9%u,
BXj(a3]+akja )+f3—p 312 .
a.xl a 1 ax2 ax2 a aX2
du, 0%uy
+ outo +0,;,— |+
33[ 33 lBal 2Jax2) fi patz

16.3. Global plate equations

16.3.1. Global plate summation equations

Multiplying the two members of the local equation of movement i =1 by dx,

and integrating through the thickness of the plate from —; to E, we obtain the

2
relation:
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80'“ 8012 2 0'13 }2' _ h aZul
J: ox, s I I '—dxs +f ﬁfldxii “leﬂp?—dxg,
2 > 2

including the following mtegrals.

h h
> 30 3 (5 oN

2 ___l_l-dx =2 g dx = 11 N
f_g ax 2 ax I_k HE3 7,

h h

2 30 9 (~ oN

2 _idx =——12 o dx =——l-2—,

I‘% ox; 37y, J. AT ox;

h h

7 9013 2 h
Ithx3 —[0,3] =03 X1, X2, If —0y3 xlvxzv‘—l’ .
_E X3 2 2

From the edge boundary conditions on the top and lower surfaces, we have:

80'3 -
J'z '—dxa 3=T03 T3,
2

let:
h
J_Zﬁ fidxy = Pl(xl'x2|t)'

2
we now obtain the equation:

oN|; . ON|;
RS EFEabl PAFIY SuRNIY Sy —-—dx
o ox, BT+ = I o 2 3

An analogous transformation of the local equation i = 2 gives:

h
9912 4. + (2 3022 7 9023 3%
o o 2 = s,
2
then:
901y , _ 9N 90y N
dx3 , dxq = ,
Ih oxy ox; J._ﬁ 0x, 3 ox,y
2 2
do - =
I a—”<u3-r23 723 fz,,fzdx3=l)z,
2 2

from which the second equation:
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—12 4
dx;  0x,

+733 - Ty +p; —.r p'-a—zdx

From the local equation i =3, we obtain by integrating through the thickness of
the plate the following relation:

2
h h h
) du; 9%u
+]|2 —| 033+ 013 ==+ 093 —= |dxsy + |2 fadxy = |2, p—=dxa,
_ﬁax3( BFOG NG 3l = )40 52
2 2 2
in which the following terms appear
h
> Jdu Ju
J =J‘2 O3+ 0y —+ 0y — |dx;,
1 —%axl[ 13 llaxl lzasz 3
h
d du du
Ji=—|2|0o)3+0 —3+cr —2 |dxy,

duy Ju;
Jy -T(Nl3+N“—+N|2 J because u3 does not depend on x3,

Jl = aN13 +_3_(N gl_‘i.f.leaﬁ),

axl axl i axl

or:

3N23 d au au3
Jy = N Ny —=1,
2% 55, axz[ 125 | =34+ Ny

h

d Jdu
J3 —I ﬁa [033 to3 5 ? +023$)d"3v

a 3 8u3
Jy=lopn+o3—=+0 ,
3 l: 33 l3al 23 axz]
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or;
Ji=th -t +1h ™ (x,,xz,%p)—rl‘] ?;?[xl,xz, —|t)
+13 (x,,xz,h "J‘ 2 0y (xl’xz’ 'Il’)
o, 2 P 2

let:

h

2, fydx3 = p3,

2

we thus obtain the third summation equation:

dN,;  ON n, J duy duy ) @ du, iy
Wy Ny 2N Ny 2 in, 2
o on, Tan| Var o 2an |Tan| a2

)au

+ - + + k)

...+T33"1'33 +(Tl3 +Tz3 I xl.XZ,"z‘lf ™
1

h
o _\Ouy h _‘-5 9%u,
~\ta + Ty )— X, x5 —=|t {+ p; = —=x;.
(13 23)&“( 12 X2 2‘) P3 _gﬁ 52
16.3.2. Global plate moment equations

Multiplying the two members of the local equation of movement i =1 by x3dx;

and integrating through the thickness of the plate from—g to ’21, we obtain the

relation:
do * oo * 9o
J.Zh Wyydx, +j2h 2 12 xydxy +I2h o, B3 ydxy + I fixadx,...
-5 0X -5 0x; -3
h
62
J‘ h o x3dx;,
> or’
in which the following terms appear:
* 0 2 oM
2 Iy dx =-——J.E O Xydx =——l—l—,
_g dx 3 oxy J-1 T ax,

h h
80'12 _ d 2 _ aMlz
_[h 3%, %dx3-—$‘[_ﬁ012xadx3- o,
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h
3 9013
)

-2 dx
5 0%3

h h
)
X3dX3 = zh——(0'13X3)(i.X3 - zh Ul3d.XJ...
2% ]

\h
= [o'laxa ]fﬁ -Ni= (Tl+3 ‘”13)5"1\'13-
2
In other respects, we let:

Eﬁflxiidxii = H (xnvle’)~

2
The first moment equation is written as:
aM“ aMlZ + - h 5 32
——+—==-Np+lt3+73 )=+ j L xydx
o, o, 13 ( 13 13) 2 M= 9P 52 3%

2
The second moment equation is obtained in the same manner by multiplying the
two members of the local equation i =2 by x3dx; and by integrating through the

thickness of the plate, which give5'

h
= d0 Jo do
_zg axlz Xydxy + J:; E 22 x3dx;y + f; ox,s T2 x3dx;y + r faxadxs...

0%u
[ o553 s

3 or
with:
h
do oM
2 9912 4. 12
B ox T oy
2
h
P" a:22x3dx ag'lzz i
—E X9 Xy
h h

h
Jdo > d > _\h

F" = x3dxy =J.2;,"—‘(0'23x3)d"3 "J'Z;. 0 y3dxy = (7;3 +123)——N23,

-3 Ox; -3 ox; = 2

h
J_Zﬁ faxzdxy =, (x, 2 X I')
2

from which the second moment equation:
ox, ox,

h 2

_\h = du
-Ny +(";3 +723)5+/‘2 = I_thTzzxadxy
2
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16.4. Global plate equations for static, vibration and buckling cases
16.4.1. Global plate equations

In the particular case where:
L +
T3 =Ty =T =Ty =T33=0, 733 =¢q3,
My =py =0,
the five equations of the plate analysis involve:

- the three summation expressions

Ny INy 3%u,

—_— = ——dx
axl aX2 h I ot 2
N1y , Ny 9%u

+
ox, | ox, P2 I "p o 7y
aNl3 aN23 a 6“3 au3 a a 6143
N +N N +N
ox on, am| Mam 23 Tag | 2ax T 23,
ﬁ 32u3

— the two moment equations

My, M, 3%u

—+——=£-Ny3= dxs,

ax, ox, 13 Izp 52 X3dxy
h

oMy, oMy 9%u,

— =4 =2 Ny = dx

ax, ax, 23 fhp o2 x3 3

16.4.2. Global plate equilibrium equations
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The non-linear terms are neglected and the five global equations of equilibrium

are written as:
.aﬂl_ + .a_NQ + p

axl 8x2
ONyy [ ONy |

ox;  Odxy

=0,

p2=01
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— B g+ p; =0,
ax ax2 BTPs
Sl VI P VR
ox; ox, 13

X1 X2

The elimination of N ; and N,; in the last three equations gives:
2 2
9 Mzu 429 My +8 My +as
a‘xl axlaxZ ax2

16.4.3. Global plate vibration equations

Neglecting the non-linear terms, we thus obtain the global plate vibration
equations:

h 2
_aslvl_l.;..a_l!l.;;-Ph p—a———uLdX:;,
X1 ax2 -

h
oN;, ON 0%u
8_12+_2;=‘zhp_72dx3,
oo 2

h 2
8N13 8N23 J" d uy
—L 2 = |2 p——Zdx,,
dx;  Oxy _gp at

h 2
aM“ aMlz aul
12 N =‘2 x3dxs,
o, o, 13 _gP ) 3ax3

My My 0%u
-Ny = dx
o, o, 23 r P Jlr3 3-

Eliminating N3 and N3 in the three last equations we have:

2 2 2 h

9* ul
ox} ox,0x, ox3 8 I p B

h
o0 (5 0u
b — 2hp 2

o, 1P o x3dx;.
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16.4.4. Global plate buckling equations

The global plate buckling equations which involve the non-linear terms of the
equations of plate analysis, are written as:
Ny, + oNj; 0

axl 8x2

a.xl axz ’

aN,3 8N23 32u3 82u3 82u3

3 + 3 +N“ 3 +2lea 3 +N22 2 =0,
X1 X2 x| X10X2 ox3

§a£4_11_+%;_ Nj3 =0,
Xy 8x2

8M12+8M22 N23=0,

where the first two equations have been used to write the third one. The elimination
of N3 and N3 in the last equations gives the following relation:

2 2 2 2 2
6 M“ +28 M12+a M22+N“6 1423+2N12 6 X} +N228 us =0
2
Ox0x, ox3

ax} dxiOxy  9x? x{

16.5. Reissner-Mindlin global plate equations

Taking account of the calculations of the second member developed in the
previous chapter, the global plate equations are written as:

aN“ ale azll? azl//l
—+—=4+p =1 +1 ,
axl ax2 ! 0 2 ! a[2
ON,, ONy, oy 9%y,
+ +p,=1 1 ,
axl axz P2 0 2 1 atz
BNB 3N23 a au;) aug
—=t—=4— N, —+ N, —=|...
ox, ox, ox| ax,  ox,
0 oud ou) 29
+—{ Ny 2+ Nyy—2 |4gy+py =1 3,
axz[ 127y | 22 ax, GBrpP3=1y Y
M, oM, “Noa=1 %u] +1 %y,
ax, ax, g a2
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0%u) %y
~Ny =1, —%+1,—2%
o, o, n=1 2

ot

16.6. Kirchhoff-Love global plate equations

The simplifying hypothesis of Kirchhoff-Love type analysis and the previous
calculations enable us to write the global equations of the plate analysis in the
following form:

Wy Wi\ azu{’,

ox,  Ox, or?
2,0

aN12+aN22+ _ a U,

=1, 2%
ox, Ox, P2="0 or?

aN|3 4+ 000 aN23 a [N“ au3 le au3 J”‘
2

ox;, Ox, ax, ox, ox

d oul ou 0%ud
N +N tqy+py=1 ,

axz( nzal ny - J 93+ Ps 0812

oM, oM,

9 Pz _ =,

ox, orx, B

Rl PRl - T VY|

ox, ox, B

Alternatively, we have the equation:
2 2 0 0
My My | My +1(N“ o |y, ] )

ox? ox;0x,  9x3 O




Chapter 17

Global plate equations:
Kirchhoff-Love theory
variational formulation

17.1. Introduction

The object of this appendix is to present the Kirchhoff-Love plate theory, in
which the transverse shear is not taken into account.

From the Kirchhoff-Love displacements u,, u, and u,, we calculate the Von
Karman strains used when the transverse displacement u3 is higher than u,

and u,.

The plate equations are obtained from variational formulation. From these
equations, we write the relations for bending, vibration and buckling of plates.

17.2. Von Karman strains

The components of the Green-Lagrange strain tensor:
eb <M 2 94 duy duy |
2 a.xj ax,' a.t" axj
provide a linear part:
du, Ou;

1y oui (%)

2{ dx; ox;
and a non-linear part;

19wy duy _ L 3wy duy | Oy Dy | Juy Suy

2 ax,- axj 2 ax,- ax] ax,- axl ax,- axl

When the transverse displacement uj3 is higher than u; and u,, the non-linear

term:
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[9un iy +i'2?_'z]

ox; dx; Ox; Ox;
can be neglected with respect to:
1 9uy duy
2 0x; Ox; ’

Under these conditions, the Green-Lagrange strains are reduced to Von Karman
strains:

Ou; Ouj ) 10duzdu
VK _ LIS R P ctar Bhvdas: 3
“i [ax ¥ ox; )+ 2 0x; Ox;

The displacement field of Kirchhoff-Love theory:

d 0
i = “?(xhlet)“ X3 ‘ai:i‘("l’let)'

a 0
up = ug(x,,x2[t)—x3 ‘axii‘(xhle’)’

0
Uy = (xhlet)v

leads to the Von Karman strain field:

2
ou? 02u? 8u0
7 L AL BN 3

axl 3x1 axl

2
eYk - oud _x 0%l +l ou
oxy ax% ox;

VK__ au?+au‘2’ s a2l 1au3 ou
2| ox, ax, 3ax,ax2 2 0x; Oxp

We can introduce in the strain relations:

pL o1 Oui 05| 10w duy
']_2 3x1 ax,- 2ax,- an’

the expression:
du

k
T =&y twy,
ox;

which leads to:

1
g{; =& +-5(8k,' + Wy ngj +wkj)’
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Kirchhoff-Love theory variational formulation

L 1
Eij =Ej +5(Ekl'ekj + Epi Wy + Egj Wy +wkiwkj) .

For the case:

O<|e,.j'<|w,.j|<l,

we have:

0< |£,-jek,I < |a),-jek,| <lew]

and:

0< |£,.jwk,| < |w,.ja)k,| <|wy].
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Taking into account these inequality relations, we can neglect |£ki€kj‘v lsk,-a)kj|

and ’wk,-skjl compared to lwk,-a)kjl.

The Kirchhoff-Love displacement field gives the partial derivatives

oy _ ou s 9%ul ouy _ ou! s 3%ud 21_4_1_=_8ug
ax, axl 8x|2 ' aX2 ax2 axlaX2 ' 8x3 axl '
Ouy _ ouy ~xs 0%uy  Ouy _ ou 3 3%u _Bli=_aug
ox; Ox Ox;0xy  0Oxg Oxy ox3 "o ox;
uy _ 0uy uy _ ou3 du _
axl 8x| ' 8x2 8x2 ' 8x3 '
from which we can calculate:
I u) %] e oL ou  oud . 9%ul
™ ax ax? 12772 3x,  ox 3 9x0x,
oud 9%
£ =5 v €3=0,
0x; ax%
€33 = 0, €y = 0,
and:
1{ou)  Oud
Wy =25 "5 |
2 ax2 axl
ous
Wy = Tk
*2
0
J 4
P

If the transverse displacements are significant, the @ component

infinitesimal rotation is neglected compared to ;3 and w;;.

of
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Thus the Von Karman strains are obtained:

1 2 %_ 32u§)

VK _
&y =6 +

—_ = X —
2 3 axl 3 axlz 2

ox, |’

1 (aug ]2
+ = |
ox,
1
4+ —
2[

0%u!

. L, ol 9%
€ TEpt Wy =7T"-x3——
2 aX2 ax2

0 0

VK 1 1 au, auz
£y =€y +—Wy0,, =—| —+

12 12 5 @3 @3 2(8x2 o,

VK _ VK _ _VK _
£13 =& =¢&33 =0.
The Von Karman strains €;; are as follows:

2
) 0 a2 0 d 0
L L 194 |

= axl - axlz 2 axl

2
0 2.0 0
_auz X a u3 + l[au3] i

25 a3 o,

£ P
272 ax, dx,

E13 =€y =£33=0.

]-x

The Kirchhoff-Love virtual displacement field:

oous
bu, =a‘lo(xl'x2|t)—x3 ax3 (x,,let).
1

oo’
du, = &‘g(xl»xz|’)‘ X3 —{EJ_(X"XZII)'

Ouy = &g(xl,let).

is associated with the Von Karman virtual strains:

o0& &l oul 9&

1{ ou)  Aud 0%ui 1 9u) oud
=— L4+ —2[-x o2
ox0x, 2 dx, ox,

1 0uy ou?

by, =220 _ ,
oduy &)  oud o9&
5522=a Loyt 2,
xZ ax2 ax2 axZ
1080 982) 0%  1(oul 98 3u 3du?
ey =— + X3 Py =W
2 aX2 axl axlaxZ 2 a.x'z axl axl axZ

68[3 =§€23 =6€33 =0.

3 Ox;0x; 2 dx; Ox,

),
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17.3. Variational formulation

The variational formulation of a problem with fixed surface efforts is written:
2
J' 00,42 - I F,du,dS — j' f,é’udQ+I p%——audg 0,

where u; satnsﬁes the relation V ;.

17.3.1. Virtual work of internal forces

The virtual work of the internal forces 6W; is given by:
-oW; = I 0j0€;dQ .

Decomposing the volume integral into a simple integral and a double integral,
we obtain the following relation:

h
—5W J. I Ul|5€l]+0225€22 +20'|25€|2)dX3 as .
2
Replacing the virtual strains with this expression, we obtain:

h
0 odu) %6y  oul Aul
—OW. = 2 — SR Bduias By I
8&42 250 oud dou)
40y, - Xyt o
a 2 axz ax2 aXZ

odu; . Adu3 &y  oul 8&43 ou) odu
et -2 +—= _— dxy +dS.
012[ ox, ¥ dax, o ox;0x, dx, Ox, ¥ dx, dx, 3

By introducing the resultant forces and moments:

h
Nij =Izh O'Ud.X3 and M,j =Fh aijx3dx3 ’
2 2

96u! 926 oul o) 06u’
_6“]«'=J.liNll -My === = +Ny == 24 +Nop Z..

we have:

a ] axz axl a l ax2

32&24,+ 9u§ 9du3 N a&?+aa4g
dx; 2 9x, ax, dx,  Ox

=My
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3%6u? oud 98l  oul Al
-2M N 373 3 273 114ds.
T 'Z(axz ox, ox ox, ||

Using the derivative formula uv’= (uv)-u'v, we obtain the following relations:

M "ai‘ ° ——[M ‘*‘ ]*aé‘i:‘ ta L
_aa (agzln&o) 381:11&3,
?;? aéi? ai]{ 1 ?;;? &‘3}—8—3,_[1\,”%‘%]&9'
” aaf‘: =%(N225u°) a;v? &3,

M22

P&y (., &) My A&l B[, sl
2 = M22 had = M22 aee
dx;  Ox; k ox, ox, Ox, Ox, k ox,

d (oM *M
( 22 &‘;) 22 &40
ax2 k ax2 x2

ufosd (. ol 3 aud). o
N = N Sud |- Ny —2 (&,
2 Oxy 0xj ax2L 2 dx, 3 ox, 2 ox, 3

ax2 axl a
&l 9 {M a&g’]_aM,z Oou? L2 (. 94l J

ol & 0 N P} oN
le[ 1 +———2—J=-a—g(/v12&l?) a 12 &lo +——(N12&42) a 12 &42,

—_— M
' 9x,0x, Ox, ? ox, ox, Ox, axZL 12 9x,
oM, 0&u]
ox, Ox,
o du 9 (oM, . o 8 My oo
B - IM Ouy Suy...
Mz ox,0x, axl( 2 ox, ax2L ox, 3xlax2 3

3 ( (83)_ 3 (Myy 20), My oo
axzk ox, ax,k ox, ax,ax2
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ul 9l uosd) 9, 93 o) 2 oul ). o
N N 2350 |- 2 vy 24 (s
'z(axz P S Tl I T e I R P

d ou d oul )< o
—| N, —=du N, —= |bus,
+a [ 125" 5 3) axz[ 12 3

allowing us to write the virtual work of body forces as below:

ul ouy oM, M
5W I ‘ {N“&ll +N|2&lz +[N“a—+N12 ax3 + 1l + 12 }&lg

2 axl aX2
o &l | 9 ol oul
axl 8x2 aXZ 8 aXZ

aX| aXZ

8M|2 8M22 0 8&43 8&49 _ aN“ 8N|2 0
+—_———= 6!13 M|2 al M22—8x2 das J;‘ _aXI +—-——ax2 &‘l

+ aN|2+8N22 &lg+ azM“ +282M|2+62M22 +i N 8ug
dx;  Oxp a-"lz oxdx;  o9x3 0

Taking into account the formula:
I gj,;dS = I g jnds,

the virtual work of the internal forces is also written:

)ﬁ
e

au oM, oM oM oM
+(Nyamy +N22'12;a z [ ax,“ + axf Jn, +[ ax:2 + axzn )nz]&c;’...

8511 oo’
~(Myny + Mygny) 3 - (Mny + Myny ) ——2 }ds'--
X ox,

- W, =«[r (Nyyny + Nygny Jouy +(Njpn, + N jon, Jou3 +[(Nllnl + Ny

1

_J‘ {[BNH +6N,2}&‘?+(8N|2 +aN22)&g+[a;MZn +282M'2...

axl a.rz axl axZ Xy axlaxz

a My ) a143 au3 0 ous au,
Ny 2B 4N Np 2B 4N ds.
o2 | ox [ L PR P L P R R g
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17.3.2. Virtual work of transverse surface forces

The virtual work developed by the transverse forces g, (xl,xz It)x 3 applied on
the top surface of the plate is equal to:
Wy, = J‘S' q;0u;dS

or:
oWy, = Is q30u3dS ,

in fact, the integration applied on the top surface of the plate is reduced to an
integration applied to the middle plane of the plate.

17.3.3. Virtual work of external lateral surface forces

The virtual work of the external lateral surface forces applied to the perimeter of
the plate is given by the following relation:

Wy, = J;F F,6u,dS .

Decomposing the surface integral to a simple integral applied on the thickness of
the plate and to a simple integral applied to the outline of the middle surface of the
plate, the previous relation is written:

Wy = jr J’i F,6u,dx, |ds .

On introducing the virtual displacement du; , this relation becomes:

h
odu) 0
(m,’;‘ =J.r|J:E[Fl(&40—x3 a J Fz(&lo X3 a 2 J+F3&lg}dx:;Fs.

h
Qi(xhle’) 2, Fi(x,xp,x3fr)dxy (i=1,2,3),

Let:

2 Filxy,xp,53ft)xades (=1,2),

x
=M [ I

C (XI,X2|I)

|

the virtual work developed by the surface forces applied on the outline of the plate is
written:

odu obu3
&VFr = J.F[Ql&l? + Qzalg + Q3&l0 Cl '— )ds .

-C
ox, ? ox,
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17.3.4. Virtual work of body forces

The virtual work developed by the body forces is obtained using the relation:
Wy = fisuda,
f Q f i

which, decomposing the triple integral to a simple integral applied to the thickness
of the plate and to a double integral applied to the middle surface, is written:

h
W, =fs J?hf,-é'u,-dg ds .
2

The introduction of virtual displacements leads to:
0

h
SW 2 ddu odu
f =‘[€ {J‘_zglrfl(&l? _x3 __ale ]+ fz[&lg -x3 __ax23 ]+ fq&l;)}dx] }ds .

h

pi(xl’x2|t)= J‘_‘zf,_fi (xl,xz.x3|t)(1x3 (i=123),
2
h

m; (Xl'xz|')= J:zﬁ fi(-‘lvxzvxal')xsdx_x (i=12),
2
the virtual work developed by the body forces is written:

0 0
W, = L{pl&? + Py + pydu —m, ! ! }dS .

ox, I ox,

The differentiation formula wv’= (uv)'-u'v allows us to write:

Let:

) om
W, = J.s|:p15u? + pydud + p3&4g —-é—;(ml&tg)+ 3;-1—1-&49...

...—52;(m25u§’)+

oty &49]d$.
aX2
With:

.[ng']ds = jrgj"jds f

the virtual work developed by the body forces is as written below:

om, om
W, = Sl + prduld +| pa+ —L+—2 15l |ds...
f L{Pl  +Pp0uy (Pa ax, oy |

—J‘r(mlnl +myn,y )&gds
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17.3.5. Virtual work done by inertial forces
The virtual work done by inertial forces is written as:
2

which, on decomposmg the volume integral to a simple integral and a double
integral, becomes:

W, pr—&;dn ds .

On introducing the v1rtual displacement, we obtain:
2 0 3 0
oW, J’ f Ju 88 I 80— 3, 9 |
ot ax or? ox,

2.0 3 : 0 2
+ a 1422 a u3 &10_13 3&3 a u3 &‘3 dx3 ds
o > ax,9r 0x, at

Let:
ul h h
Iy =j2,, pdxy, I =F,, px3dxy, I =-[2,, pridxs,
2 2 2

thus we obtain:

a%u? 9%u 924 03u?
w, =11 L1 3 1&ud 4|1 2_J 3 \&u)...
ISK O a2 'ax,at2 : 0 or? ‘axzaxz ?
0%l a8 -1, 0% _1, 0%u \odud
or? ox,0r2 | ox

2.0 30 0
R AL . “ %3 | gs.
or? ox,01% | Oxy

Kirchhoff-Love analysis neglects the terms I, and I, compared with I, . The
virtual work developed by the inertia forces is reduced to the following relation:

u o %) oo %Y oo
awa=J's10[ — ol + — &9 + — &3 |ds .
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17.3.6. Variational formulation

Taking into account the previous relations, the variational formulation of plates

in Kirchhoff-Love type analysis is written as:
0

ou
Ir[(Nllnl +N|2"2)5“? +(Npn +N22"2)5“g +[(N11”| +Nppn, )‘ax—3
i

oul oM oM oM oM
+{N N =3 + I + 12 + 12 + —_= 2 0...
( P 22"2/a x5 ( o, ox, ]” ( o, ox, ) 2]‘5‘3

0

odu;
'(Mn”l +M12"2) 3
Xy

Ny NG a0, [N ONp oo [3My  ,3'M),
- = |0 —=+—==bu 2
Is {( ox, ¥ ax, | ¥ ox, ¥ ax, | ° ¥ ox? ¥ ox,0x,

a M22 ad au3 8:43 d ous ou3 0
N +N +—| Ny—=+N o Th
axz axl [ "ox, a l 29k, aX2 aX2 12 X 2 aX2

oo’
~(Mny + Mpny ) —> 3 = }d v
X2

odu; &
_I ‘13&‘3‘15—,[ [Ql&‘? +0,8u3 +Q30u3 — C, S0 ]ds---
5 r ox, ox,

“L[Pl‘s"? + P25“(2) (1’3 + 3’"1 +— Iy

X,  Ox, ] g:! ! Ir('nl”l ""2”2)&45)(1&..
2 2
.[ ’()(a ul &40 ° 142 5“0 aau3 ]is =0,

o1’ or’

0 0
where u?, uJ and u) satisfy the relation ‘s/(‘)‘uo,\f&zo,\/c’ho,‘v/a(su-1 and V Ll

ox, ox,
Or:
M,y Ny 8214, o [N, ONy 0%ud
- -1 & 2T T -

”[ ox, Tax, TP Tl M B Ty, Tl - (i

My My My 0 oul ou
+ +2 + —| Ny, =24+ N, —|...

[ axlz a.xlaxZ ax% a 9%, a l 12 a 2

8 oud ouy om, Jm 9%u
N, —~+N +qq+ L 1] 3 \6ul \dS...
o [ ng, they } 43 p3+ax,+ax2 oatz] 3]5
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+J'r {(Nu"l +Nppny — Q) Juy + (NIan +Nyn, -0, )&‘(2)

au° au°
[(Nu"l +N12"2) (Nlan +N22"2/ 3+

ox, ox,

ax, ox, |\

dou?
ot

M My
ox, ox,

) 0
~(Myny + My, - ) 8&3 }ds =0,
X2

0 0
0dus and V 9u; .

where u?, ug and ug satisfy the relation v&;",v&&v&;’,v 3
x| X3

17.4. Global plate equations, boundary edge conditions
17.4.1. Global plate equations

The relation just obtained is satisfied, whatever the values of u?,&u),dud,
Q%uy Odu)

and 3 it is still true if these values are imposed as zero on the perimeter
ox, X5
I" of the middle surface § of the plate.

From the variational formulation:

oN,, oN,, 32 0[N Ny 0%u)
—_—t—= Ou; =1 &ud
Is {[ ox, ¥ ox, TP Ot ox, RS ax2 ot |
azM” aleZ azMzz a aug aug)
2 — | Ny=—+Np—|..
+[ ox} ¥ 0x,0x, ¥ ox? ¥ ox,| ' ox N ox,

d au3 ou dm; Om, 0%u)
N N -1 audlds = 0,
axz( 123 v + Ny o, ]* g3+ p3+ o, + o, 0 52 3

where u,u) and u, satisfy the relation Véul,V & and Vv &u)...
Ao =8u) =5l =0onT,
we obtain, for all the middle surface, the following equations:

oN,, ON,, a%u)
—L 4 +py=1ly—-
dx; Ox, Pr="1o
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Ny, Ny 9%ud
+p,=1 ,
ox, 8x2 Pa=lo5a
aZM“ alez aZM22 a a 9 au3
+2 + N +N
A2 xdx,  oxl ax1 "ax, ' ox, |
d au3 ou om, om, 9%u?
—I| N +N + + + =] .
-t axz[ 123, % 23- ) J 93+ D3 %, | o, 032

17.4.2. Boundary edge conditions

309

Taking the three equations in the variational formulation, we obtain the

following formulation:

Ir{(Nlnnl +Nyyn, -0, )5“? +(Nyany + Nogny —Q, )3

au
==+ (Nyyn +Nyn,)

Nyn +Nn
nm ‘“ax, o,

[ ox, ox,
[E)M,2 LMy

ox, ox,

& 0
-(Mn, + M pn, —Cz)aa 4 }ds =0,
X2

) 2 — 0y +mn +m2"2:]&‘g“(Mll"l +Mn, - Cy)

a&‘g and

23 +[aM“ + My Jn,...

85143
ax,

v o0&

where u{, u3 and uj satisfy the relation ¥&u),Vvu2,Véu3,v 3
Xy

from which we deduce the edge boundary conditions:
Q, =Nyn; + Nypn,,
Q; = Nyyny + Nyyn,,

0x,

au" au" oM
Q; =(Nyn, +N|2"2)a +(Nyyn, + Noypny ) =2 +[ =
Xl a Xy axl

dx, dx,
Cl = M“nl +M12"2,
Cy =Mpn + Myn,.

oMy, My,
o+ +—= n23 +m,n| +"12n2,

Subsequently in this appendix, the particular case is applied where:

aX2

’
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my=my=0.
On introducing for all M points of the perimeter I" the direct local co-ordinates:
(6)=(n.7.x,),
where n is orthogonal and external to the edge, and where t is tangential to it and:
n=nX; +n,X,,
T=X3XN=-n,X; +mX,.
The components of the virtual displacement vector:
OU = Sulxy +udx, + &udxy = uln +0udT+ Sulx,,
are linked by:
&uf = &uln, —&uln,,
ud = &uln, +8uln,.

Figure 17.1. Local axes associated with the edge

The partial differential functions of &49, with respect to x; and x,, and in
relation to n and s, are linked by:
odu) _ aous - o) .
ax am ' 9
&) o) - o&u .
dx, on > 3 U

The simple integral in the virtual work of internal forces:

a 0
-oW, = J.I‘ ((Nll"l + Nygny Joup + (N ppn, + N, i3 +[(N“nl ' lenZ)B?—m
1

0
M M d M
...+(N12nl +N22n2)au3 +{a 1 +a 12 jnl +( M12 +a 22 )nzkg...

ox, ax, ox, ox, ox,
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odu? odu!
'(M11"1+M|2"2) 3 3 — (M 30, + Myyn,) J}ds-
x) ox,
is written as:

- oW, = J.r([N“"l2 +Nynj + 2N12"|"2]&‘2 + =Ny = Ny,

...+N12( —n2)5u +{[N“nl+N22n2 +2N,2n,n2]a— [—-(N“ sz)n,nz...

ot N,z(n,2 )]au3 [aM“ + agiiz ]n +[834:2 + ag:z an}aug’...

- [Mllnl +Mpn3 + 2M12”|"2]

M, (nl2 -n} )]8?:3 ]ds

—[‘(Mn Mzz)"n”z

31

The resultant forces and moments do not have the following components in the

local axes (b):
N" =N“n|2 +N22"§ +2N12n|n2,
2.2

N, =—(Nj = Ny)mn, +N|2("| -n ),
M, =M|1"12 +Mzz"% +2M,nn,,

2 _ .2
M, =-(M - My)nn, +M|2("| ‘"2)'

By introducing:

Bug aug aM“ aMlz 8M|2 8M22
Ny=N, =3+ N, 234 :
37T 9 * Os ox) ¥ dx, m dx, ¥ dxy "2

The virtual work of internal forces is as written below:

0 0
oW, =J}(N,,5uf,’ SN0+ NGl - m, 20y 904 ]ds...

on * 0s
’.[ [aN“ L )&?+[8N,2 L )au;’ +[82M“ 49 M
N

ox, Ox, dx, ox, ox? Ox,0x,

a M22 a au3 8u3 8 au au3 0
N +N N +N ds.
ax’ ax,[ Hor T [Tan | 2 ax, T 2k, |0

The virtual work developed by the surface forces applied on the edge of the plate

is given by:
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h
ow, = | fﬁ (R, 8, + F,0u, + Fy2) s .
2

By introducing the virtual displacements:

0
&4" =&42_X3 8&3 .
on
0
8, = 80 - 1, 224
ds
&43 = &lg N
we obtain:

2 s

h
odus obu;
W = J.r lfﬁliFn[&t,? - X5 an3 }+ F{é‘u? — X~ 3 J
ot Fyu ]dx3}ds.

Let:

h h
Qn = Ph F"dX3, Q; = I2h Fst3, Q3 = fzh F3dX3,
2 2 2

h h
c, =f2h Fx3dx3, C, =I2h F,x3dx;,
2 2
thus the virtual work developed by the surface forces applied on the outline of the
plate is written as:

odus oduy
WF: = J‘F(Qn&‘r? +Qs&‘? +Q3&2 -C, a_nJ—Cs 853 ]ds .

The boundary edge conditions are written as:

O, =N,
Q. =N,,
Q3 = N;,
C,=M,,
C,=M,.

In Kirchoff-Love type analysis, the third and fifth conditions are combined into a
single condition that includes the transverse shear effort that we obtain when we
transform the following term:

&3
-M; —3ds,
r ds
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which is present in the virtual work of the internal forces. Using the differentiation
formula for a product we obtain:

[ 2

fr—M, ag:, ds = J'r — 8udds - [M,&QL.

The last term between the brackets is zero when the edge I” has no angular points,
otherwise there is a transverse force acting at the point being considered.
The virtual work of internal forces is written as:

oM, oud
- oW, = fr(zv,,&l,? +N,u’ +(1~/3 E» ]&4" an3 )ds-[Msc)‘ug’]r..

Ny  ONp Yoo [ON)y 0Ny Yoo |O2My L 0°M,,
- —_— —iE et 5y 2
J.s {( ox, ¥ ox, P ox; * dx, A ox} ¥ 0x,0x,

azMzz a a“_‘; au3 a a 8143
N +N N +N 9tds,
i ax22 a-x‘[ . ax, 2 5x, axZ aX2 12 55, a 2 5%, a s

and the virtual work of effort applied at the edge is written as below:

o)
SWp = jr[Qné‘u,? + Qg + 057 8uf - €, ]ds+ZF.-&%-
t

M, .o

Mé'uods+ ds,
( H 3)

The edge boundary conditions are written as:

Qﬂ =Nn’
QJ =N5‘
oM,
Y
Q3 3T 0s
c, =M,

Fi =—[M:i]=Ms_i —M:;'
The last condition only applies for the rough points.

17.5. Global plate equations in static, vibration and buckling cases

The global plate equations:

ON,, . N, 0%u?
— b5t p, =] —,
axl ax: pl 0 atz
2.0
Mg Ny, o, 0%

axl ax2 at2 ’
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2 2 2
a M” +28 M12 +a M22 a N“ au3 le au3
a Xy ax2

ox? ox0x,  ox? 3x,
8 oul ous 9 0%ud
o [le a1, 2 +Ny o, )""13‘*1’3 Io‘gt‘zi,
are written as:
— static:
——+—%+p; =0,
8x1 axz Pr
8N12 +8N22 +py =0,
axl aX2
%M My, M
i O°My; (2 4 g3+ p3 =0,
axl axlax2 ax2
— vibration:
20
aN“ +8N12 =103 uy
axl aX2 atz ’
2
Ny Ny _ lo 0%u?
dx;  Oxy a
2 2
32M“ +23 Ml2 +8251222 =Ioa ug’
ox? ox10xy  9x3 or?
— buckling:
axl aXZ ’
axl axz
2 2 2 2.0 2.0
M M ‘M d d
9 1149 M2 O My “23 +2N, 23
o] ddxy  gul ox; ox;9x;
2.0 0
+N228 1423 + BN“+8N12\8143 8N12 +8N22\3u3 =0’
axZ axl aX2 )8xl axl aX2 }aXZ
taking into account the first two relations, the third equation is reduced to:
2 2 2 2.0 2.0
a M“ +2a Ml2 +a M22 +N”a u3 +2Nl2 a u3 +N228 u3

ox} ox,0x,  ox? ox? dx,0x, ox2



Chapter 18

Global plate equations:
Reissner-Mindlin theory
variational formulation

18.1. Intreduction

This appendix, which refers to different subjects to the previous one, presents the
Reissner-Mindlin theory of plates taking into account transverse shear.

18.2. Von Karman strains

Including the Reissner-Mindlin displacement field:
u = “P(Xw‘zl')*‘ xa'l’l(xlvlef)v
Uy = “g(xl'x2|’)+ X3V (xl'x2|t)v
uy = “2(*1»"2")’

in Von Karman strains:

VK _ [au: +i’ﬁ]+1§"_a§_“;

] ox ax,- 2 axi axj ’
leads to:
au? an 1 au3
= + —_— | — ,
fu 1 ’ ax] 2 ax,
au2 aV’z 1 au3
=—%4 Il Bk
€n o, 3 ox, ' 2| ox,
£33 =0,
0 0 5.0
£ =l duy +8u2 +x a'/’1 +aV/2 +_l_au:; du;3 ‘
2{dx; dx 8x2 ox, 2 dx; dx;
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oaf,
B ox, ’

ey =4y, + 348
B=3¥2 o, |

With the virtual displacements of Reissner-Mindlin plate theory:
oy = Juf)(x,,x2|t)+ X306y, (xl’x2|t)’
uy = &‘g(xl’XZII)"' X360y, (xlvlet)’
Ouy = &42(}:, V Xy It)
are associated the virtual strains:

&) xy Sy , duf A%uf

5511 =

axl axl axl axl ’
0 0 0

(5822 - 8&42 +x3 851//2 + 8u3 8&3 ,

dx, ox;  Ox, dxp
5833 =0,

0 0

56'12 =l 8&41 + 8&42 + x3 85'//1 + a(sl/lz .

2 axz axl 812 8x|

WA ou a&9+au2 o&uS
2 aXZ axl axl aXZ ’

1 o
83 =—| & ,
13 2[ v+ o, J

18.3. Variational formulation

The variational formulation of the elasto-dynamic problem with surface forces
applied is written as:

L," §0€;dQ ~ LF FbudS - _fg fidu,dQ + _[Qp%&ng =0,

where u; satisfies the relation Véu;.
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18.3.1. Virtual work of internal forces
The virtual work of internal forces dW; is presented by the relationship:
— oW, j 0,06,dS2,

which can be written as:

-oW, = f [I a“é'e” + 0,060, +20,06,; +20,,0€;3...
2

ok 202306, )dx,s ]ds.

Including the virtual strains within the virtual work of the internal forces gives:
h
% oSy, ou dduy
~OW. = 2 || g, 2, 09¥) Oty T3
' J;‘{fgl:( i axl 3 axl axl axl
o6 tx oy, 8u3 8&43
odx, Y ax, ax2 ox,

0o 38y (20w, 30w;), ud 98 duf 38
| Ox;  Ox 0x, ox, dx, ox;  Ox; ox, |

ou? ou;
w0y Sy, + ax3 J+023[5w2 + ax‘3 ]]dx, st,

i 2

"t 0y

...+012

and the introduction of the resultant forces and moments allows the following
expression to be written:

0 05s0
- oW, =,[ {Nlna& +My, 9o, +N“§_uia&43

ox, ox, dx, odx,
odu oy, au3 8&43
—=+M +N
a 275, ox X5 258, aX2 axZ
0 0
9, +a§uz M, oy, +a5u/2
dx,  dx; dx, ox,

oul Odu)  Ouy Adu) ou)
A Np| =2+ 22 [+ N[ 6 1.
* 12 aXZ a.xl ¥ axl ax2 * 13 '/,l * axl

+N22

...+N‘2

0
wt Noyy{ Oy + a§l3 ]jldS.

X3
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With the following relationships:

118(-:1? =£T(N11&?)—-a£ll—l&?»

1" a(i/:l =aaTl(M115W|)—agi:l oy,
Nu%‘?‘a:;lg =5%[N11%§&49J‘%[Nu%§']&4&
Nz BE;Z{’ =%(N225"g)— a;\;zz &u3,
M, ag:/;z =5i—2(M225'//2)— 3aMx§z ov3,
sz%g—aa(zg =£;[N22 %Eg—&g]—g)%(’vzz %]5’43’
le{ aailzlo +§%12J=%(N12&4?)—a£—'22&4? +5%(N125“3)“ a;::llz &3,
M,z(a;::‘ +a§%}= 522—(M125y/1 )~ 8;;,2 Sy, +—£—1(M,25y/2 )-..

——— agi:z Sy,

udos) audomd) o, ad o) (., .o
Np| =2 —2+—= = N & |- N 8.
|2[ dxy Ox; ¥ dx; 0Oxj ax,L 12 ox5 3 ax1L 12 dx; 3

we obtain:
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0
duy.

ouy
—W J‘ ’ [N“&ll +N|2&42 +M“5V/| +M125'//2 [N“ a 3 +N12 ax van
2

...+N13J6u§)j|+5—z—

2

0
...+N22%ZL+N23]&43:|}(1S
2

. {(%@h)&f +["’_Na+%2_Ja,g +(%+M-N,,)5w,...
S _

oud
{Nu&‘? + Npdud + M, 8y, + M 5,8y, +(N12 Bx—J
1

axl aX2 ax| a.X2 axl aXZ
aMlz aMzz a au3 au3
— =4 —22 ~ N, |0 N N N
+[ o, + o, 23 [0V, t a no |+ 25 o, +N)3

d o’ ou?
...ﬁag;z-[/v,2 E» T +Ny, = 2 +N23H§u;’ ds

The relation:
J.g”dS Igln ids |

allows the virtual work of the internal forces to be written as:
- oW, = L.{(Nllnl + Nypny )oup +(Nyany + Nogny )ou3 + (M yny + M 30,y ).

au" ou?
+(Myn, + M pn, ), +|:(Nn"| +Nppny )= o, +(Npan + sz"z)ax3

+ (N|3nl + N23n2 )]&lg) }ds

_J‘ (%+M_nz]&,9 +(3N12 +2’VA)&,3+[W_H+W_12_N”J5%W
S

ox;  Ox, dx;  0x, ox, dax,
oM, oM, d ou ous
—L =5 =Ny |0, +| =—| Njy=—+ Ny —+ N3 |...
+( ox, o, 3 |0V, x| o, + N2 ox, + N3

0
| N, 2 Buy L M3 vy, | 6 Las.
ax2 a Xy
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18.3.2. Virtual work of transverse surface forces

The virtual work developed by the surface forces g, (xl,xz It)k'S operating on the
top surface of the plate is equal to:
&VF, =J-s q,&d,dS y
t

or.
&V = &lods .
F “qu 3

18.3.3. Virtual work of external lateral surface forces

This virtual work is given by the expression:
(4 z’:

or.
h
| [ [}, F dxs}is ,
or.
= _[ ‘f Fo(8a® + x,8w, )+ Fy (6l + x;38w, )+ Fy8u Jaxy Vs
With:

x>

0; (x1.x,lr)= ;.Fi(xhxz-xalf)dxa ((=1,23),

= 1
|

Cilx1xalr)= |2, Filxy xp, x3f)xadry  (i=1,2),

N |

we obtain the relation:

oWy, = [ (016840 + 026843 + 0848 + C8w, + C16v, )is

18.3.4. Virtual work of body forces

The virtual work is obtained from:

Wy = IQ fiu;dQ,
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or:
h
Wf =-[S _zﬁf:&‘tdxii ds,
2
or:
h
W, =J.s I_zﬁ[fl(&‘?"‘%‘s'//l)"’ fz(&tg+x35v/2)+ f3&4§’]dx3}ds.
2
Let:
"
Pi(xl'let)= _zﬁf,‘(x|,x2,x3't)dx3 (i=l,2,3),
2
h
mi(xl'x2|’)=J‘2 f,-(xl,xz,xglt)x3dx3 (i=12),

Y

thus we obtain:
oW, = '[S (pl&l? + pydu3 + pydus +m Sy, +mydy, )ds :

18.3.5. Virtual work done by inertial forces

The virtual work done by inertial forces is:

2
W, =fnpa Y sudQ

or2
or:
h
= 9%,
= 2 5.
oW, fs J._ﬁp By a5,
h
3 9%u? oy
= 2 1 oY |s,0
oW, _L[J'_%p[{ o ok (6u? + x,00,)..
%) 97 9%ul
+( 8t22 + X3 8:/;2 (&tg+x36|//2)+ 8123 &ud | dx, tdS.
With:

h h h
Iy =_[2h pdxy, 1 =th pxydxy, 1y =I2h pxidss,
2 2 2

321
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we obtain:
aZuo aZW 0 aZuo aZW
ot 8214 oy
+ 1 Ly, —ZL |8y +l 1, —=2+1 2 &
[ Yot o v Yot 7 o Va-

2
AL &43]ds
a2

18.3.6. Variational formulation

The variational formulation of the Reissner-Mindlin theory of plates is given by:
(Nyyny + Nygny )oul + (Nyany + Nogny Youl + (M ny + Myyn, )6
r 1M 12712 JoM| 121 22112 JOu2 171 1212 JOYy...

ou ou
+(Many + Mpn, By, +{ (N + 1\’12"2)‘——a +(Nyan + Nygny )=
X} ox,

-+ (N13n1 + N23n2 )]&g }ds
aNll aNlZ 0 aNlZ aN22 0 aMll aMl2
. —+—= du ou —= N |oy,...
J.S [( aXl * aX2 ! * axl * aXZ 2 * ax| * aX2 13 '//]

oM oM d oul oul
+["a'—x:l+Tzn"N23)5'//2 [a (Nn o, =2+ Ny, axz +N13)

d aug ou 0
N +Ny—2+N ds...
a [ 125" ox X, 22 ox X, 23]%‘3

“L (Pn&? + P 8ud + pydul +m Sy, + mydy, )dS...
azu, 3’y )< o0 82“2 3’y ) o0
1 +1 oy + +1 Suj...
J‘SH o o || % e e T

0%u! 0%y, azu" oy 0%ud
+|1 Ly S —2 41 25 +1 35u°ds 0,
(1 2 2 ) v, + aﬁ 2 Wat iy Y

or?
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where u?,u?, 19, w, and i, satisfy the relation v&:",v&;;’,v&;",v&/, and Vdy,.
1,U2, U3, ¥, 2 1 k 2

Therefore:
Ny, , 9Ny 32 D 3’W, |50
- Gl S 1 _p ;...
I {[ ox, Ox, i “ar a2 :
+ oNy, +3N22 tp =1 32“2_1 oy, Su°
N T, Tk, P27 T e |
oM,, oM, 32“1 %y,
+——+—==-Njy+m -1 -1 o, ...
ox, ox, S YR Y Vi
oMy, oM 9%u3 3y,
4l —2+—=-Nyy+my -, —=-1 4
o, | ax, L BTMThTa Tl |0
I oul ou d ou ous
et —| Njy—=+ N p—+Nj |[+—| Np—=+Npy—>+Ny |..
ax,[ T Ll o e P M

aZuO

+J‘r{(Nn"n +Npn, -0, )5“? +(N|2"1 +Njpn, ‘Qz)&‘g---

+{(M 1, + M yny ~C)0y, +(Myyn + Mypn, - C, )y, ...

)au"

on?
[(Nn"ﬁ‘le"z 3 == i N
X

(NIZ"I +Nyny
\ ox

S N|3nl + N23n2 _Q3]&lg }ds = 0,

whereu! 13, u3, w, and y, satisfy the relation Véu),Vdu), V&),V Sy, and Véy,.

18.4. Global equations, boundary edge conditions

18.4.1. Global plate equations

Taking the variational formulation previously presented:
&4? =0 and Oy, =0on ",

we obtain:
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2,0 2
J'{(aN“ NI SN WAl 4 J&u?...

axl ax2 at2 at2
+ oNy, +aN22 tps =1 9%uy —J *y, Sl
SRR e
oM, oMy, ’u} oy,
et —+—=-N3+m -1, —~1 S
ax  ox, RTMThTGa 8t2 232 [V
| —=—=+— Ny +m, -1 —I o
o oy BTMThga ThTa Ve
N
d ou ou ] ou ou
= (N,, ax?+N‘2a3+N‘3]+a (lea? N2262+N23)

aZ 0
et Gy + py=Tog—=> |8l }dS =0,
or?
where 1) and y; satisfy the relation V&u! and VSy, /& =0 and Sy;=0on I.

Thus, the global equations of plates can be written:

2.0 2
a;/n 8;1,2+p Iy aaull +1, aau:l’
X X2 t
INy;  ON %y . 9°
Tt =l
1 2
oM, oM, 3%uy %y,
ox, o, ox, “Nrm=hza- 3t2 +h ot
oM, My 82u2 3%y,
ax, | ax, mtm=hoamthTat
oN,; N ON 53 +_a_ N, 2 au3 e, au3
ox ox ox dx ox
1 2 1 X1 2

d au3 ou 0%
+—IiN +N +qy+py=1 .
axz( 125" X 23 ax, Q3+ p3 =1y 32

In the following part of this appendix, we take m; =m, =0.
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18.4.2. Boundary edge conditions

Substituting the five global equations of plate analysis in the variational
formulation, we obtain:

J.r{(Nu"l +Nigny = 0))0ul + (Nigny + Nygny =0, )8s3...
et (M“nl + M|2n2 - Cl )6'//] + (M|2n| + M22n2 - C2 )6'//2...
oud oul
e + [(N“nl + lenz )5‘2“ + (lenl + N22n2 )""‘—3"‘...
X, ox,

et N13nl + N23n2 "Q}]&l? ds =0,

From which we get the boundary edge conditions:
Q) =Nyny + Nygny,
Q) = Nyany + Nypny,
0 0
Q3 = Nygm + Nygny + (N + 1\’12"2)%13—+ (Nyany + Nogny )aﬂ
x) ox,
Cy =My +Mpn,,
Cy =Myn| + Myn,.
Introducing the local axes (b)=(n,t,x;), where n and Tt are respectively
orthogonal and tangential to I", enables us to write:
Sul = &uln, ~&uln,,

&:2 = &lgnz + &4271, R

Figure 18.1. Local axes attached to an edge

In addition:
083 o) 9duf
dx; an ' 3

ny,
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a&g_a&gn +aaug’n
ox; on * o5 ¥

and:
Oy =8y ,ny — Sy gny,
(51//1 =5!//,,n2 +é'l//sn|.

The following integral in the virtual work of the internal forces:

U =J;_ {(Nu”n +Nppny Jup +(Nypm, +Noyyn, Joud +(Myn, +Myn, )y, ...

oul du?
ot (Mypmy + My ), +|:(Nu”| +Nppn, )a—3-+ (Nyony + Nypn, )—£3—
Xy ax2

AN+ N23n2]5u§)}ds,
becomes:
W, = [N 2+ Nyyn? +2N ]&40 +|=(Ny; = Nayy)
i = I 117 2 1217 j iy 11 22/Mng...

2 2Vlc0 2 2
ot NlZ("l ) )]&‘s +[M11"1 +Mpn) +2M12"1"2]‘5Wn +[- (M} -Mp)nn,...

oul
...+M12¢!|2 f’l%)jl&l//_‘. + [ [N] ,nlz +N22n% +2N|2n|n2]a—n3+|:—(N“ —sz)nlnz...

ds

The introduction of:

p) 0
...+N12(n12—n§)]——u—3+N13n,+N23n2 } &lg ds.

Nn =N“n|2+N22n%+2N|2nln2,
2 2

N =—(N11“N22)+N12("1 —"2)s

M" =M“n12+M22n%+2M12n1n2,

2.2
Mg =—(My —Mpy)mn, +M12("1 ‘”2)’
allows us to write:
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— oW, = IF[N,,&S +N,6ul + M, 0y, + M Sp,..

" on S os
The virtual work developed by the surface forces, which are applied to the plate
edge, is:

0 0
+[N a—u3—+N %-'Q'Nl:;nl + N23n2}5u(3):|ds.

Wy, = jr[ J'g,, (7,6, + F,0u, + Fﬁu?)}ds,
7

with:
o, =&l + x36v,,
dug =¥ + x30p
Suy = &y,
from which:
h
9 0 0
W = -[r J.2h [F,, (é‘u,, + x35u/,,)+ F, (Jus + X300 )
2
ot F36ul ]d x3 ]ds.
Let:
h h Ll
Qn = [ Fadrs, 0, =[% Fudxs, 03 =2, Fadxs,
2 2 "2
h h
Cy _j . Foxydxs, C, _J'zh F, x3dx3,
2 2

thus we obtain:

W = J.F(Q,,é‘uﬂ +0,8u? + Q383 + C 0w, + Cso'ws)ds .

The boundary conditions are written as:
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Q,=N,,

o, =N,

Qs =N3+Nn%+N:
dn

C’l =M’l’

C,=M,,

with:
N3 =N13n| +N23n2.

0
du;

os '

18.5. Global static, vibration and buckling equations

The global plate theory equations:

Ny, N N, tp =] azu? +] 821//,
ox,  ox, ' % a2 'g2
Ny Ny, _, uy 3,
ax, ax2 2 0 t2 ! atz ’
aM“+8M12_N =7 azu? P azwl
ox, ox, B T e
—c -N I I .
a.xl aX2 » ! afz 2 a’z
0 0
ox;, 0dx, Ox ox, ox,
0 ou’ oud
vt —| Ny =2 4+Nyy—2 |4 qs+p, =1
axz( 12 ax, 22 ox, 93+ P 0
are written as:
- static:
—_—+ +p =0,
ox,  0Ox, Py
N oN
a 12 + 22 +p2 =0,

ox,  dx,



Reissner-Mindlin theory variational formulation

—+—=-N;3 =0,

ox, ox, b

oM, M,

— L —=2 - Ny =0,

ax, ax, 3

—L +—2 44q,+p, =0,
o ax, BT
- vibration:

ON); +8N12 =7 9uj ] oy,

x, 9, o o

N,y +6N22 - az“2 +1 %y,

axl axz - aI ! 812 '
—+—=~Njy =1, ——+1 ,

axl ax2 13 l 2 6’2

oM, oM 92 o
—;2+_—22—_N23_Il 2 2 22‘

ox, dx, or’ ot

ox, axz O 9

— buckling:

oNy, + oN |, -0

ax, aXZ ’

axl axZ ’

SR N, =0,

ox, ox, 1

=272 Noo=0,

ax, ax2 2

ON;;  ON 9%u 9%ud 2ud
S+ B N, e 42N 44Ny, 2 3 =0,

Xy X5 ‘ x,axz ax2
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