
E-Gesture: A Collaborative Architecture for Energy-efficient Ges-

ture Recognition with Hand-worn Sensor and Mobile Devices 

Taiwoo Park
 

Computer Science 
KAIST 

Daejeon, 305-701, Republic of Korea 

twpark@nclab.kaist.ac.kr 

Jinwon Lee† 

Computer Science 
KAIST 

Daejeon, 305-701, Republic of Korea 

jcircle@nclab.kaist.ac.kr 

Inseok Hwang
 

Computer Science 
KAIST 

Daejeon, 305-701, Republic of Korea 

inseok@nclab.kaist.ac.kr 

Chungkuk Yoo
 

Computer Science 
KAIST 

Daejeon, 305-701, Republic of Korea 

ckyoo@nclab.kaist.ac.kr 

Lama Nachman
 

Intel Corporation 
 

Santa Clara, CA 95052 USA 

lama.nachman@intel.com 

Junehwa Song
 

Computer Science 
KAIST 

Daejeon, 305-701, Republic of Korea 

junesong@nclab.kaist.ac.kr 

Abstract 
Gesture is a promising mobile User Interface modality 

that enables eyes-free interaction without stopping or imped-
ing movement. In this paper, we present the design, imple-
mentation, and evaluation of E-Gesture, an energy-efficient 
gesture recognition system using a hand-worn sensor device 
and a smartphone. E-gesture employs a novel gesture recog-
nition architecture carefully crafted by studying sporadic 
occurrence patterns of gestures in continuous sensor data 
streams and analyzing the energy consumption characteris-
tics of both sensors and smartphones. We developed a 
closed-loop collaborative segmentation architecture, that 
can (1) be implemented in resource-scarce sensor devices, 
(2) adaptively turn off power-hungry motion sensors without 
compromising recognition accuracy, and (3) reduce false 
segmentations generated from dynamic changes of body 
movement. We also developed a mobile gesture classifica-
tion architecture for smartphones that enables HMM-based 
classification models to better fit multiple mobility situations. 

Categories and Subject Descriptors 
C.3.3 [Special Purpose and Application Based Sys-

tems]: Real-time and embedded systems 

General Terms 
Design, Experimentation, Measurement, Performance 

Keywords 
Energy Efficiency, Mobile Gesture Recognition, Closed-

loop Collaborative Architecture, Hidden Markov Model 

1 Introduction 

Smartphones have become a constant companion that 

users keep close by and interact with throughout the day. As 
a result, users often interact with their smartphones in mo-
bile situations like walking on the street, driving a car, and 
jogging at a park. Unlike conventional keyboard- and touch 
screen-based interaction, hand gestures can simplify on-the-
move interaction with a phone by reducing the need to take 
it out and look at it. With the support of a flexible and pro-
grammable gesture-based UI, a user can seamlessly interact 
with various mobile applications without taking her eyes off 
of the road while driving or slowing her pace while jogging.  

An important challenge in designing a system to support 
gesture-based mobile UIs is efficient use of the strictly lim-
ited energy of mobile and sensor devices. Figure 1(a) repre-
sents a typical gesture-processing pipeline for a system con-
sisting of a hand-worn sensor node and a mobile device [12, 
21]. The basic processing sequence consists of three stages: 
(1) collecting and sending sensor data from an accelerometer 
and/or a gyroscope to the mobile device, (2) detecting and 
segmenting hand movement samples which may or may not 
be intended gestures, and (3) classifying the samples as one 
of several predefined gestures or noise, using methods such 
as Hidden Markov Model (HMM). A major concern for 
such a system is that it may quickly drain the batteries of 
both devices, as they require power-hungry sensors and ra-
dio transceivers to be continuously powered. For instance, 
our measurements of the additional power draw needed to 
support gesture processing indicate that a smartphone that 
lasts for 24 hours under normal use would last only 17 hours 
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with a typical gesture-support system. 
In addition, gesture processing often becomes more 

complex as a user moves around. Body movements under 
different mobile situations incur different characteristics of 
mobility noise, leading to different sensor-data waveforms 
for the same hand gestures. Moreover, highly mobile situa-
tions like running lead to many non-gestural hand move-
ments such as swinging. Hence, the prevalence of mobility 
noise and non-gestural movements require careful considera-
tion when designing gesture-based mobile UI systems. 

In this paper, we propose E-Gesture, a collaborative ar-
chitecture for energy-efficient gesture recognition that great-
ly reduces energy consumption while achieving high recog-
nition accuracy

1
 under dynamic mobile situations. We ob-

serve and characterize users’ everyday gestural interactions 
as well as the effect of gesture recognition on computational 
load and energy consumption. Our observations led us to 
redesign the typical mobile gesture-processing pipeline. As 
shown in Figure 1(b), we designed a multi-level collabora-
tive architecture in which different modules perform given 
processing tasks in cooperation with each other at two dif-
ferent levels: (1) a sensor node and a mobile device collabo-
ratively perform recognition processing by taking different 
parts of the task, and (2) the accelerometer and gyroscope 
collaboratively perform front-end segmentation processing. 

1.1 Collaborative Approach to Energy-
Efficient Mobile Gesture Recognition 

We observe that users mostly perform gestural interac-
tions discretely or sporadically; this leads to intermittent or 
fragmented bursts of signals instead of continuous, spread 
ones. Based on these observations, we note that there are 
several advantages to performing continuous data manipula-
tions such as gesture segmentation at the front end of pro-
cessing, i.e., in a sensor node. With this approach, a large 
part of the data stream can be filtered out at an early stage, 
greatly reducing costly data transfers.  

However, developing an efficient sensor-side segmenta-
tion architecture presents several practical challenges. First, 
only lightweight segmentation architectures are practical due 
to sensor devices’ limited computing resources. Second, we 
discovered that the gyroscope is the most energy-consuming 
component (i.e., 56%). Controlling the gyroscope to save 
energy without sacrificing segmentation accuracy is a key 
challenge. Finally, dynamic mobility situations seriously 
attenuate the energy-saving benefits of sensor-side segmen-
tation. Elevated noise under mobile situations frequently can 
cause falsely identified segments, which leads to needlessly 
powering-on the radio transceiver and gyroscope. For exam-
ple, a 90% false segmentation rate while a user ran would 
nullify any energy saved through sensor-side segmentation. 

To address these challenges, we propose a closed-loop 
collaborative segmentation architecture on the sensor-side 
which combines the advantages of two different segmenta-
tion methods based on the accelerometer and gyroscope. 

Our approach is energy efficient and robust to transitions 
between common forms of mobility. First, it is lightweight 
enough to be implemented in a resource-scarce sensor node, 
as it utilizes a simple but effective threshold-based algorithm. 
Second, selective activation of the gyroscope provides con-
siderable energy savings and a high level of segmentation 
accuracy. We observe that the characteristics of the accel-
erometer-based segmentor are low-energy and low-accuracy 
(2.47mW and 10-20% errors), whereas those of the gyro-
scope-based segmentor are high-energy and high-accuracy 
(26.1mW and 5-10% errors). Thus, we use the gyro-based 
segmentor only to validate the gesture segments detected by 
the accel-based segmentor. Finally, our architecture remains 
energy-efficient in the face of transitions between mobile 
situations by continuously reconfiguring itself. We observe 
that the accel-based segmentor is mobility-vulnerable, i.e., 
error rates of up to 90% while a user is running. In contrast, 
the gyro-based segmentor is mobility-robust, with errors of 
5-10% even in mobile situations. This inspired us to allow 
the gyro-based segmentor to give feedback to the accel-
based segmentor when invalidating false segments. As a 
result, the accel-based segmentor can be fit to the current 
mobility situation by regulating the false segment ratio even 
during mobility situation transitions. 

In addition to the energy-efficient architecture, we have 
extended our gesture classification architecture to effectively 
deal with different common mobility situations. We devel-
oped and compared two HMM architectures: (1) adaptive 
and (2) multi-situation HMM architecture. Adaptive HMM 
adapts to the current mobility situation by continuously up-
dating HMMs. The Multi-situation HMM achieves the best 
accuracy under known mobility situations by training HMM 
for each situation in advance. 

1.2 Implementation and Evaluation 
We have implemented an E-Gesture prototype using a 

wearable sensor node, i.e., a wrist-watch type sensor node 
with TinyOS, and off-the-shelf mobile devices i.e., Nokia 
N96 and Nexus One. We partially ported the widely-used 
HMM Toolkit, HTK [1], to the smartphones. To the best of 
our knowledge, ours is the first port of HTK to embedded 
mobile devices. Also, we have shown the practicality of the 
E-Gesture prototype by building two gesture-based applica-
tions on top of the prototype. 

To evaluate the performance of E-Gesture, we carefully 
select a set of eight intuitive hand gestures for mobile-user 
interactions, as shown in Figure 2. In addition, we examined 
four common mobility situations: Standing (STAND), Walk-
ing (WALK), Running (RUN), and Riding a car (RIDE). Our 
results show that E-Gesture can improve the energy efficien-
cy of the sensor and the mobile device by up to 2.4 times 

                                                                                                                                                                                                                                                                                                             

1 If the term ‘accuracy’ is used without any specification, it re-

fers to the overall gesture recognition accuracy. Note that there are 

two types of specific accuracy referred in this paper: segmentation 

accuracy and classification accuracy. 

 
Figure 2. Eight Gestures used for Gesture Collection 
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and 2.8 times respectively, and classify gestures at an aver-
age accuracy of 94.6% under dynamically changing mobility 
situations. Note that HMMs trained using only the standing 
situation fail in situations other than standing, providing 
only 69.78% accuracy in our dynamic environment. 

The rest of this paper is organized as follows. We dis-
cuss related work in Section 2. Section 3 presents the E-
Gesture framework including energy-efficient segmentation 
and mobility-considered classification architectures. Section 
4 describes implementation details, and Section 5 gives the 
evaluation results. We discuss lessons and considerations in 
Section 6, and conclude the paper in Section 7. 

2 Related work 
Gesture recognition has been extensively studied [8, 15] 

for the last two decades. A rich body of work has focused on 
vision-based method [7, 26], but these are not suitable for 
mobile environments due to limited wearability, high energy 
and computational costs, and sensitivity to light conditions. 

Recently, hand-worn accelerometer and gyroscope sen-
sor-based gesture recognition has been successfully used in 
mobile and pervasive computing. This approach is appealing 
because it is low cost, low power, requires only lightweight 
processing, and can be implemented with compact form fac-
tors. Several projects have proposed gesture recognition 
systems based on a wide range of sensing form factors, e.g., 
Wii Controller [18, 22], Intel PSI board [19, 20], SAM-
SUNG Pen [3], Microsoft XWand [25], VTT Soapbox [12], 
GIT Watch [13, 17], and ETH Wearable Computer [8, 23]. 
These systems have been used for a diverse set of purposes, 
e.g., controlling mp3 players and other appliances, or writ-
ing numbers and characters in the air. 

Most existing gesture recognition systems, however, 
have not prioritized the energy efficiency of sensor and mo-
bile devices in real mobile situations. In typical systems, 
sensor devices continuously capture hand motions at a high 
rate (e.g., 100 Hz) and transmit the raw data to a mobile 
device, expending considerable energy from both devices. 
With the recent proliferation of smartphones, mobile users 
often demand long-lasting interactions throughout the day 
(e.g., controlling their smartphones even while on-the-go). 
Hence, it is critical to make the energy efficiency of sensors 
and mobile devices a first-class consideration. 

Sensor-side gesture segmentation is essential to extend-
ing battery lifetimes. It not only reduces data transmission, 
but also gives many opportunities to turn off power-hungry 
motion sensors. E-Gesture employs a threshold-based seg-
mentation method to automatically detect short pauses at the 
start and end of gestures. Different from complex segmenta-
tion methods such as sequence analysis [8] and probability 
calculation [14], the threshold-based method is lightweight 
enough to be implemented in a resource-scarce sensor de-
vice, e.g., 4KB RAM and 8MHz CPU. However, deploying 
the threshold-based method in mobile situations has revealed 
that further engineering is required to deal with the noise 
caused by body movements. Recently, G. Raffa, et al. [21] 
developed an efficient architecture for gesture recognition, 
focusing on early filtering of unwanted data. However, this 
work does not address the problem of false gesture segmen-

tation due to non-gestural body movements, which can sig-
nificantly degrade both accuracy and energy efficiency. We 
carefully designed the E-Gesture architecture to save energy 
without compromising accuracy even in mobile situations.  

Also, automatic gesture segmentation provides a natural 
user experience. The simplest way to implement sensor-side 
segmentation is to use a button, i.e., continuously indicate 
the start and stop of gestures through button push/release [15, 
17, 22]. In order to do this, users must wear an external but-
ton on their fingers or hold it in their hand. Unlike a wrist-
watch-like sensor, wearing a button all day is burdensome 
and un-natural, limiting the usability of a hand gesture sys-
tem. Furthermore, button-based segmentation does not elim-
inate the need for automatic gesture segmentation. Addition-
al correction is still required because users have difficulty 
precisely indicating the beginning and end of gestures. 

Efficient use of scarce power resources is a longstanding 
challenge for sensor and mobile systems. Several projects 
are generally related to E-Gesture in that they carefully trig-
ger sensors to save energy, e.g., a hierarchical sensor man-
agement scheme that activates power-hungry sensors only 
when triggered by power-efficient ones [24], energy-
efficient context monitoring frameworks that selectively turn 
on and off sensors depending on application demands and 
the current context [9, 10, 11], or an accelerometer-based 
filter to reduce the power-on time of a power-hungry GPS 
sensor [6] or a gyroscope [16]. Unlike these systems, E-
Gesture is specialized for gesture recognition. Instead of 
dealing with only low-level sensors, our approach achieves 
both a high level of segmentation accuracy as well as ener-
gy-efficiency. In terms of sensor control schemes, existing 
systems can be characterized as open-loop sensor controls. 
Our system, however, employs closed-loop controls, provid-
ing continuous feedback via the closed control loop. This 
ability is essential to rapidly adapt to dynamic situational 
changes, which are common in mobile environments. E-
Gesture continuously reconfigures itself, and, as a result, is 
both adaptive and robust. 

Many gesture classification algorithms have been pro-
posed to classify a segmented gesture into one of many pre-
defined gestures or as garbage, e.g., HMM, Template match-
ing [5, 23], Dynamic Time Wrapping (DTW) [15], and 
light-weight HMM [2]. Among these, HMM has been wide-
ly used since it has shown the best accuracy [3, 8, 12, 14]. A 
typical HMM-based gesture classifier is trained with gesture 
samples from stationary situations. Hence, it is prone to mis-
classifying gesture segments that show different sensor data 
characteristics in other mobility situations. To address this 
problem, E-Gesture employs a novel gesture classification 
architecture to fit HMMs to multiple mobility situations.  

3 E-Gesture Architecture Design 
The E-Gesture framework facilitates the development 

and provision of gesture-based UIs for mobile applications, 
providing APIs and an efficient runtime. The architecture 
spans over a sensor device and a mobile device, which are a 
wristwatch-type sensor mote and a smartphone, respectively. 

Sensor-side Architecture: the sensor device effectively 
performs motion sensing and gesture segmentation as shown 



in Figure 3(a). For accurate motion sensing, we use a 3-axis 
accelerometer and 3-axis gyroscope. While the accelerome-
ter is often used in gesture recognition systems [3, 5, 8], 
recent research demonstrates that additional use of a gyro-
scope can improve gesture classification accuracy [21] by up 
to 4% because it can detect rotational movements. In partic-
ular, we develop a novel gesture segmentation architecture 
for computationally limited sensor devices, which achieves a 
high level of energy efficiency under dynamically changing 
mobility situations. For this, we develop the accelerometer-
based and gyroscope-based segmentor, and feedback con-
troller (see Section 3.1). In addition, a mobility noise filter 
removes false segmentation in on-the-go situations. 

Mobile device-side Architecture: the mobile device ef-
fectively performs sensor brokering, feature extraction, ges-
ture classification, and provides an application interface as 
shown in Figure 3(b). The sensor broker receives the seg-
mented gesture data over ZigBee or Bluetooth from the sen-
sor and then interprets the data. To achieve accurate classifi-
cation under dynamic mobility situations, we propose two 
mobile gesture classification architectures, i.e., adaptive and 
multi-situation HMMs (see Section 3.2). In addition, the 
application interface manages interactions with applications. 

3.1 Energy Savings of Sensor-side Segmentation 
Sensor-side Savings: We show that sensor-side segmen-

tation saves energy for the sensor device as well as the mo-
bile device. We first look into the energy usage pattern of 
our sensor device (see Section 4 for details). Figure 4 sum-
marizes the energy usage

2
 of each component. The gyro-

scope consumes the most in the sensor device (56%), using 
10 times more energy than the accelerometer (5.3%). Hence, 
reducing the power-on time of the gyroscope would signifi-
cantly improve overall energy efficiency. We integrate our 
gyroscope control scheme into the closed-loop collaborative 
segmentation discussed in Section 3.2.  

Figure 4 shows that radio transmission consumes the se-
cond most amount of energy (21%). This observation moti-
vates the need for sensor-side segmentation. Since gestures 
occur sporadically, the radio transceiver should be triggered 
only after a segment has been detected. According to recent 
work [21], over the course of a typical user’s day only 5% of 
continuous sensor data would be identified as part of a ges-
ture. Note that other basic activities such as CPU operation 
and radio listening consume relatively little energy (17%). 

Mobile-device-side Savings: We then look into the en-
ergy usage pattern of our mobile device, i.e., the Google 
Nexus One (see Section 4 for detail). Figure 5 summarizes 
the energy usage

3
 of each major operation. In particular, we 

measure energy consumption with and without sensor-side 
segmentation. The main difference is that, without sensor-
side segmentation, the mobile device must receive all raw 
data from the sensor device and extract segments from it. 
Note that, in both cases, the same sets of gesture segments 
are processed at the gesture classification stage. 

As we can see, sensor-side segmentation yields signifi-
cant energy savings, i.e., from 82.25 mW to 29.33 mW. 
With sensor-side segmentation, the radio transceiver not 
continuously listening for data reduces the energy consump-
tion of the mobile device by 64%. The savings is mainly due 
to the sleep mode of the Bluetooth radio transceiver. In the 
Nexus One, sleep mode is automatically triggered if no data 
is received for a predefined time, i.e., 0.63 sec. More im-
portantly, the infrequent occurrence of gesture segments 
greatly increases the time spent in sleep mode. Note that 
sensor-side segmentation hardly affects the energy required 
for gesture classification by HMM, which is still low com-
pared to radio receiving. In Section 5.2, we discuss the re-
sults of experiments measuring the current draws and energy 
consumption of the mobile device, including the effects of 
gesture-occurrence frequency. 

3.2 Gesture Segmentation in Sensor Device 
We propose a closed-loop collaborative segmentation 

architecture, which achieves low-energy consumption and 
high-accuracy under dynamic mobility situations. As shown 
in Figure 4, the excessive energy consumption of the gyro-
scope strongly suggests that reducing the power-on time of 
the gyroscope is a promising strategy for saving energy in 
the sensor device. However, energy efficiency must be con-
sidered in tandem with accuracy. Our architecture is de-
signed to achieve acceptable accuracy while limiting the 
energy expended by the sensors. 

Furthermore, our architecture addresses several chal-
lenges raised in real mobile settings. First of all, the dynamic 
changes of mobility situations (e.g., a user may sit, run, and 

 
(a) Sensor-side Architecture        (b) Mobile device-side Architecture 

Figure 3. E-Gesture Architecture 

                                                                                                                                                                                                                                                                                                             

2 Each second, a sensor samples 22 bytes of data from the ac-

celerometer and gyroscope at 40Hz, and transmits via Zigbee (see 

Section 5.2 for details). Basic consumption includes CPU opera-

tion and radio listening  (LPL, 4% duty cycle). 
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Figure 4. Energy Consumption Profile of Sensor Device 

 
Figure 5. Energy Consumption Profile of Mobile Device 

                                                                                                                                                                                                                                                                                                             

3 Results are drawn from Nexus One, under dedicated usage 

without turning on the display, GPS, WiFi, cellular service, etc. 

The average length of gestures is 1s and the average time gap be-

tween gestures is 10s. For gesture classification, HMM based on 

HTK [1] is used to classify 8 gestures (see Section 5.2). 
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then walk) continuously threaten energy efficiency. Intensive 
body movements elevate noise levels, frequently generating 
false segments that unnecessarily consume sensor energy. As 
a result, our architecture continuously reconfigures itself as 
the mobility changes, keeping the false segmentation rate 
within 8%-20% regardless of the mobility situation (see Sec-
tion 5.4). Finally, sensor devices’ resource constraints limit 
our implementation choices. We employ threshold-based 
gesture segmentation methods, which are effective but sim-
ple enough to be implemented in the sensor device. 

3.2.1 Accel- vs. Gyro-based Segmentation 
Accel-based Gesture Segmentation. The idea of accel-

based gesture segmentation is to approximate the force ex-
erted by a hand (HF) as follows. 

HF = )(___ 222 GravityGzAccelyAccelxAccel   

The HF is zero if there is no hand motion. The ad-
vantage of this approximation is that HF is independent of 
the wristwatch sensor’s orientation; it is difficult to correctly 
determine the orientation of a sensor device only using the 
accelerometer. Furthermore, HF can be used to simply mod-
el many types of hand gestures [3]. 

We assume that a gesture is triggered if the HF is greater 
than a threshold, AccelThreshold, i.e., a small constant such 
as 0.15G for the standing situation. The triggered gesture 
can be assumed to have stopped if the HF is less than the 
threshold. However, such a loose stop condition induces a 
gesture splitting problem [3, 5], the unexpected splitting of a 
single gesture. To avoid gesture splitting, we set an addi-
tional temporal threshold. Segments that occur within the 
temporal threshold of one another are assumed to be part of 
the same gesture and are merged. A gesture is assumed to 
have stopped if its duration is greater than the threshold. We 
empirically determine the value of the temporal threshold, 
i.e., 375 ms. Figure 6(a) is an example segmentation based 
on this method for the ‘earpose’ gesture while running.  

Gyro-based Gesture Segmentation The main idea of gy-
roscope-based gesture segmentation is to approximate the 
norm of hand rotation (HR) as follows. 

HR= 
222 ___ zGyroyGyroxGyro   

Rotational movement around any axis can increase the 
HR value. Similar to accel-based HF, gyro-based HR can be 
used to segment the gesture. We assume that a gesture is 
triggered if the HR is greater than a GyroThreshold, i.e., a 
small constant such as 25 degree/sec in our empirical study. 
The triggered gesture is assumed to have ended if the HR is 
less than the threshold. As opposed to accel-based segmenta-

tion, gyro-based segmentation did not produce any split ges-
tures from the samples we collected, as shown in Figure 6(b). 
Thus, we did not set a temporal threshold for gyroscope-
based segmentation. 

Segmentation Accuracy of Accel and Gyro Interestingly, 
we found that gyro-based segmentation provides higher 
segmentation accuracy than accel-based segmentation, re-
gardless of the mobility situation. We tested the segmenta-
tion accuracy of the two methods based on real continuous 
motion data containing both gestures and non-gestures. Data 
collected from 7 participants were tested user-dependently 
under four mobility situations, i.e., RIDE, STAND, WALK 
and RUN. Section 5 elaborates on the collected motion data. 
For each method and each mobility situation, we empirically 
found a threshold that minimized the false-positives (FPs) 
without incurring false-negatives (FNs). As shown in Table 
1, the thresholds of the gyro-based method were the same 
regardless of the mobility, whereas thresholds for the accel-
based one generally increased with the degree of mobility. 

Figure 7 shows differences between the average FPs for 
two segmentation methods, with bars indicating the mini-
mum and maximum. Gyro-based segmentation achieves a 
low FP error rate, i.e., less than 8% on average, while accel-
based segmentation achieves 15% on average. Note that the 
threshold of the gyro-based method is fixed for all mobility 
situations. We conjecture that the difference in segmentation 
accuracy is mainly a result of the different sensing modali-
ties and capabilities of the sensors. The rotational move-
ments measured by the gyroscope are dominated by hand 
rotation, rather than body rotation; body rotation is normally 
less frequent and much slower than hand rotation, and can 
be easily filtered out by our GyroThreshold. In contrast, 
linear movements measured by an accelerometer are not 
caused by hand motions alone; gravity and body movements 
also impact the measured values. As a result, the accel-based 
method might generate more segmentation errors than the 
gyro-based. As in Figure 6, several small waves were gener-
ated in the accel-based method due to the running move-
ments of the body, but not in the gyro-based method. 

3.2.2 Closed-loop Collaborative Segmentation 
Figure 8 shows the operational flow of closed-loop col-

laborative segmentation. The observations above inspired 
the collaborative segmentation approach. That is, we only 
use the high-energy, high-accuracy gyro-based segmentor to 
validate the gesture segments detected by the accel-based 
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Figure 6. Accel and Gyro-based Segmentation Example 

Segmentation method 
Mobility Situation 

RIDE STAND WALK RUN 

Accel-based 0.15G 0.15G 0.2G 0.35G 

Gyro-based 25 degree/sec 

Table 1. Optimal Thresholds for Mobility Situations 

 
Figure 7. Segmentation Accuracy 
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segmentor, thereby achieving low-energy as well as high-
accuracy. Moreover, we introduce the closed-loop re-
configuration of accel-based segmentor to continuously 
adapt to the dynamic changes of mobility situations. 

The keys to our closed-loop collaborative segmentation 
are twofold. First, the accel- and gyro-based segmentors are 
connected in series, and the latter is only activated when the 
former detects gesture segments. This reduces the power-on 
time of the highest-energy gyroscope. Likewise, the radio 
transceiver is activated when the gyro-based segmentor vali-
dates the segments from the accel-based segmentor. Second 
and more importantly, the gyro-based segmentor adaptively 
reconfigures the accel-based segmentor under dynamically 
changing mobility situations, thereby minimizing false seg-
mentation by the accel-based segmentor. Thus, fewer activa-
tions of subsequent components like the gyroscope and radio 
transceiver reduces overall energy consumption. 

Specifically, we found that on-the-go situations require a 
high threshold for the accel-based segmentor to avoid FP 
segments. Such FP segments, resulting from increased body-
movement noise, would waste energy as well as trigger ac-
tions unintended by the user. In contrast, stationary situa-
tions require a low threshold to avoid FN segments, which 
users may perceive as unresponsiveness. The following two 
experiments demonstrate that threshold adaptation is crucial 
under different mobility situations. First, we measure the FP 
ratio while fixing the threshold to the lowest value (0.15G) 
in four mobility situations (see Table 1). As shown in Figure 
9, the FP ratio under WALK and RUN increases to 100%. 
Second, we measure the FN ratio, fixing the threshold to the 
highest value (0.35G). As in Figure 10, the FN ratio under 
RIDE and STAND increases to 10%. Note that gyro-based 

methods show stable accuracy in both types of errors with a 
constant threshold of 25 degree/s, for all mobility situations. 

Runtime Threshold Adaptation Policy. We developed a 
runtime threshold adaptation policy. Figure 8 illustrates our 
linear feedback controller implementing this policy. It is 
simple to implement in resource-limited sensors and respon-
sive to mobility changes. More sophisticated controllers 
would be inappropriate given sensors’ resource constraints. 

Our key policy idea is as follows. The gyro-based seg-
mentor monitors FPAccel, denoting the ratio of FPs segment-
ed by accel-based segmentor but invalidated by the gyro-
based segmentor. It then regulates FPAccel by adaptively con-
trolling the threshold of the accel-based segmentor. In effect, 
the threshold is raised if the FPAccel exceeds the maximum 
tolerable limit (denoted as MAX_FP). On the other hand, 
the threshold is lowered if FPAccel is below the minimum 
tolerable limit (denoted as MIN_FP). Our experimental re-
sults characterize the tolerable range of FPAccel; a properly 
configured accel-based segmentor typically yields 5~10% 
more FPs than those of the gyro-based segmentor. 

In our current implementation, we conservatively fix the 
MIN_FP and MAX_FP to 8% and 20%, respectively, in 
order to cope with runtime and inter-user variability. To 
measure FPAccel at the gyro-based segmentor, we set the 
window size to 20 sec, sliding every 1 sec, which is similar 
to existing body activity recognition methods [4]. According 
to our experiments under dynamically changing mobility 
situations, this implementation achieves a near-zero (0.39%) 
FN ratio. It also achieves an FP ratio (10%) that is compara-
ble to the optimal threshold  (see Section 5.4 for details). 

3.2.3 Mobility Noise Filter 
While closed-loop collaborative segmentation mostly 

removed false gesture segments caused by dynamic mobility 
changes, some false gesture segments still occurred, espe-
cially in on-the-go situations. Notably, a “hand swing” ges-
ture was the most frequent false gesture since people natu-
rally swing their hands while walking or running. In re-
sponse, we developed a simple but effective filtering heuris-
tic, i.e., discard gestures longer than 2 sec. We observe that 
hand swings are often much longer than legitimate gestures. 
By default, we immediately start data transmission upon 
detecting a gesture segment. But the radio transceiver and 
the gyroscope are turned-off after a timeout to avoid false 
gestures caused by non-gestural hand swings. Our experi-
ments show that in a RUN situation, this noise filter reduces 
radio transmission energy by 28% and 20% of gyroscope 
energy (see Section 5.2). 

3.3 Gesture Classification in Mobile Device 
Accuracy is a primary consideration when performing 

gesture classification on a mobile device. However, mobility 
noise caused by body movements seriously degrades accura-
cy due to changes in sensor data characteristics. Moreover, 
noise levels frequently change over time, which reduces the 
effectiveness of conventional approaches that build and train 
an HMM model per gesture only in a stationary situation. In 
our experiments, the accuracy of an HMM trained for 
STAND drops from 98.4% to 53.3% under RUN. 
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To address this challenge, we propose two mobile ges-
ture classification architectures, i.e., adaptive and multi-
situation HMMs, which can accurately classify gestures un-
der dynamic mobility situations. In this work, we do not aim 
to explore the most effective mobile gesture classification 
architecture, but to determine whether our proposed archi-
tectures can improve classification accuracy under dynamic 
mobility situations. 

3.3.1 Basic Gesture Classification Architecture 
The core of our gesture classification is HMM [1]. For 

each gesture, an HMM model is built and trained based on a 
set of collected gesture samples. We train the model using 
the standard Baum-Welch re-estimation algorithm. We also 
build a garbage HMM model to filter out non-gestural 
movements or undefined gestures that frequently occur, e.g., 
‘raising a hand to eat food’. As commonly used in other ges-
ture recognition works[2, 8], ergodic topology [14] is used 
to derive a garbage model using trained gesture models.  

At runtime, a potential gesture segmented by the sensor 
device is classified as one of the defined gestures or garbage. 
We calculate a Feature Vector (FV) series containing 18 
elements, i.e., raw data, delta data, and integral data for each 
axis of the 3D accelerometer and the 3D gyroscope from the 
segmented samples. From the FV series, we use the Viterbi 
algorithm [1] to efficiently calculate the likelihood of each 
gesture model. Then, the gesture model M with the highest 
likelihood is selected as the classified gesture. However, if 
the garbage model is picked up, we reject the gesture. In our 
current implementation, we configure HMM using common 
gesture classification techniques [12, 17, 21], i.e., 8-state 
left-right HMM model, Continuous Density HMM (CHMM) 
with one Gaussian mixture without data quantization. 

3.3.2 Adaptive vs. Multi-situation HMM 
Based on basic HMM, we propose two mobile gesture 

classification architectures (see Figure 11). We discuss their 
advantages and disadvantages later in the Discussion Section. 

Adaptive HMM Architecture. The idea of an adaptive 
HMM architecture is to update the HMM models continu-
ously to better fit the models to the current mobility situation. 
For runtime HMM adaptations, we employ supervised Max-
imum Likelihood Linear Regression (MLLR) [1] which has 
been developed and widely used for speaker adaptation in 
speech recognition. Based on a small amount of adaptation 
data, MLLR computes a set of linear transformations that 
reduce the mismatch between an initial model set (including 
a garbage model) and the adaptation data. It is implemented 
based on HERest.exe in the HMM Toolkit [1]. To acquire 
gesture adaptation data, we borrow the negative update 
scheme from previous research [15]. In this scheme, adapta-
tion data is obtained whenever a gesture is incorrectly classi-
fied during system use, which potentially means a transition 
to another mobility situation. Upon detecting a classification 
error, the user notifies the system and provides the correct 
gesture by pressing a corresponding button. 

Multi-situation HMM Architecture. The idea of the 
multi-situation HMM architecture is to build HMM models 
for each mobility situation. Since multi-situation HMMs 

reflect the unique characteristics of gesture data in each mo-
bility situation, they capture gestures performed under dif-
ferent mobility situations. To train the multi-situation 
HMMs, a sufficient amount of gesture data per situation 
needs to be collected offline. The garbage model is derived 
from all models in the same way as the basic model. At run-
time, the multi-situation HMM models are decoded at once 
by the Viterbi algorithm. Among all HMM models, the 
Viterbi algorithm finds the gesture model under a specific 
mobility situation that best-fits a given gesture segment. In 
greater detail, a HMM model is built and trained for each 
pair of <gesture, mobility situation>. If the 
number of defined gestures is M and the number of mobility 
situations is N, we build and train M * N HMM models. 
Given a gesture segment, a “Viterbi score” is calculated for 
each gesture model and each mobility situation, and the best 
candidate is selected. Based on our preliminary observations, 
we assume that STAND, WALK, RUN, and RIDE are rep-
resentative mobility situations. Thus, we collect gesture 
samples in four different mobility situations and train four 
HMM models for each gesture. 

4 Implementation 

4.1 E-Gesture Prototype 
As shown in Figure 12, we have implemented an E-

Gesture prototype with a smartphone and a wristwatch-style 
sensor device. The prototype has been deployed on two 
smartphones: a Nokia N96 (Dual ARM 264MHz CPU and 
128MB RAM) and a Google Nexus One (QSD 8250 1GHz 
CPU and 512MB RAM). For the Nokia N96, we used S60 
3.2.0 SDK with TRK debugger. We used the Symbian C++ 
library to develop the Bluetooth module and other miscella-
neous parts, as well as the Open C++ library to develop 
HMM-based classification modules. For the Google Nexus 
One, we used Android SDK 2.1 and NDK rev.3. 

We used a sensor mote with many sensors, including a 3-
axis accelerometer (i.e., ADXL335) and a 3-axis gyroscope 
(i.e., 3 XV-3500CB) for gesture recognition. The At-
mega128L processor is equipped with 4KB RAM and oper-
ates at 7.3728 MHz. In addition, the mote supports Blue-
tooth and ZigBee, a vibrator for tactile feedback, and a ring 
button for user annotation. Currently, we sample the accel-
erometer and the gyroscope at a rate of 40Hz. The data is 
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transmitted over ZigBee since it was impossible to control 
the on/off of our Bluetooth chipset, which automatically 
goes into power-save mode after 4 secs without transmission. 
Due to the absence of a Zigbee chipset on the smartphones, 
we attached a bridge node to the smartphones for Zigbee-
Bluetooth conversion. The bridge node consumes 31.35 mW 
under the same setting for gesture data transmission as noted 
in Figure 5. The sensor platform was developed in NesC on 
TinyOS 1.1.15 and consists of about 1,300 lines of code. 

Latency of hardware components. One potential con-
cern for our segmentation architecture is the latency of turn-
ing on the gyroscope and the radio transceiver at runtime. 
The turn-on latency of the gyroscope causes a few gesture 
samples to be dropped, degrading the recognition accuracy. 
Most widely used gyroscopes, e.g., Analog Devices 
ADXRS620 or Invensense IDG-500, typically take 50ms for 
startup. At a sampling rate of 40Hz, this latency causes two 
samples to be dropped. In our tests, such drops led to accu-
racy losses of only 0.4% or less. We reduced the latency by 
carefully examining alternate gyroscopes and using Epson 
XV-3500CB, which takes less than 30ms for startup. This 
allowed us to save one more sample from being dropped, 
and provided accuracy that was equivalent to not controlling 
the gyroscope’s power at all. 

The latency of the radio transceiver is also important 
since it dictates an application’s responsiveness to user in-
teractions. The radio transceiver in the sensor node, i.e., 
CC2420, achieves less than 0.6ms startup time, meaning that 
its latency is negligible; a single gesture interaction mostly 
finishes within 1 to 2 seconds. 

HTK Porting to Mobile Device. The key contribution of 
our implementation is porting the HMM Toolkit (HTK) [1] 
to a smartphone. To the best of our knowledge, we are the 
first to have performed this port, and we intend to make it 
available to other HTK communities. The limited memories 
of smartphones, especially the Nokia N96, was a major chal-
lenge. To address this problem, we extended the default 
stack size to 80KB and allocated most big stack variables on 
the large heap memory (16MB). Finally, we confirmed suc-
cessful working of HVite module which is responsible for 
classification in HTK. We currently train the HMM 
parameters on a desktop and then copy the model files, i.e., 
commands, dict, macros, and lattice, to the smartphones. At 
runtime, a smartphone generates an input file based on ges-
ture segments received from the sensor device, and passes 
this file to HVite module for gesture classification. 

Application Interface. E-Gesture APIs allow application 
developers to specify gesture-based UIs easily without hav-
ing to be concerned with low-level gesture recognition de-
tails such as energy-efficiency and accuracy under dynamic 
mobility situations. Table 2 shows the set of APIs currently 
supported by E-Gesture. registerQuery() is a key API which 
specifies both a gesture of interest and a callback function 
in the application, which is called when the registered ges-
ture is detected. In addition, we provide gesture property 
APIs to easily derive the properties of recognized gestures.  

4.2 Prototype Application and Field Experience 
Using our E-Gesture prototype, we have developed two 

gesture-based applications: Swan Boat and Mobile mp3 
player. By using E-Gesture, we could easily define and 
quickly implement application-specific gesture UIs to take 
advantage of our energy- and accuracy-aware architecture. 

Swan Boat is a collaborative exergame using hand ges-
tures and treadmill running as its major game inputs. It is a 
team-race in which pairs of runners sail a virtual boat, close-
ly collaborating to maneuver their boat along curved courses. 
The boat is steered by the pair’s pace differential. Gestural 
interactions make Swan Boat more exciting and competitive, 
as shown in Figure 12. Players can attack other teams’ boats 
using punching gestures, and can make their boat skim the 
surface of the water by flapping their hands.  

The first Swan Boat prototype was implemented with na-
ïve gesture processing components, without considering 
energy and mobility issues. User studies revealed major 
problems with the game’s gesture recognition engine such as 
(1) rapid sensor battery depletion, and (2) frequent misclas-
sification of gestures. The batteries of the sensor nodes had 
to be recharged every day, and users frequently complained 
of missed gesture inputs. We identified that the major causes 
of poor gesture recognition were that treadmill running gen-
erated a substantial amount of body movement noise. Even 
worse, players continuously changed their running pace or 
even stopped during play, which led to frequent changes in 
the noise characteristics. Misclassified or ignored gestures 
and even unintended FP gestures frequently damaged users’ 
gaming experience. As one player stated: “I almost gave up 
attacking the opponents because my punches didn’t work. 
Rather I tried to get faster than others to win the game.”  

We re-engineered Swan Boat by employing E-Gesture. 
As a result, players and operators reported that (1) the bat-
tery recharge cycle was extended by more than two times 
and (2) misclassifications and FPs were reduced by more 
than half while ignored cases were nearly eliminated. This 
feedback is consistent with our experimental results in Sec-
tion 5, which show that E-Gesture dramatically reduces er-
rors in high mobility situations. 

Class E-Gesture APIs 

Gesture Set 
Browsing 

browseGestureSet() 

Gesture Set 
Customization 

addGesture(Name, TrainSamples[]) 
deleteGesture(GestureName) 

Gesture Query 
QID = registerQuery(AppName,  

GestureName,CallbackListener) 
deregisterQuery(QID) 

Gesture 
Property 

Gesture.power(), Gesture.numOfRepeat() 
Gesture.angle(), Gesture.distance() 
Gesture.startTime(), Gesture.endTime() 

Table 2. E-Gesture APIs 
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Mobile mp3 player is an mp3 player featuring eye- and 
touch-free controls even while the user is walking or running 
(see Figure 12). While listening to music from a Bluetooth 
headset connected to the smartphone, a user can control the 
mp3 player through a hand-worn sensor node. Unlike con-
ventional touch-based applications, our mobile mp3 player 
features intuitive gesture commands as shown in Figure 2. 
For example, ‘left/right knob’ adjusts the volume, ‘left/right 
flick’ skips forward/backward in the play list, and ‘ear-
pose/laydown’ answers an incoming call (and pauses the 
music) and hangs up (and resumes the music). All these 
commands are eye-free, ensuring seamless running without 
endangering the user by taking her eyes off the road. In addi-
tion, tactile feedback is used to acknowledge of these actions 
and enrich a user’s experience. 

5 Performance Evaluation 
We have conducted extensive experiments to evaluate E-

Gesture. We demonstrate its energy efficiency in each mo-
bility situation, as well as its overall efficiency under a real-
istic mixed-mobility usage pattern. We also analyze the ef-
fects of dynamic threshold adaptation, which suppresses FPs 
and FNs in a nearly mobility-independent fashion. Finally, 
we test the classification accuracy of adaptive and multi-
situation HMMs in dynamic mobility situations. 

5.1 Gesture Collection 
As previously mentioned, we used a set of eight intuitive 

hand gestures. Figure 2 shows the gesture names and their 
descriptions, which we used to instruct participants during 
gesture collection. Next, we examined four common mobili-
ty situations: Standing (STAND), Walking (WALK), Running 
(RUN), Riding a car (RIDE). During the STAND situation, 
we requested that users stand upright while performing ges-
tures. During the WALK situation, users walk continuously 
on a treadmill at about 3 mph. During the RUN situation, 
users run at about 5 to 7 mph on a treadmill. During the 
RIDE situation, users perform gestures while riding in the 
passenger seat of a compact hatchback, i.e., a KIA Picanto. 
Interestingly, we observed that mobility noise during RIDE 
situations is the lowest, which is quite different from our 
expectations. While sensor noise caused by car movements 
was negligible, sitting posture allows users to gesture more 
stably, similarly to the STAND situation. 

We collected gesture samples of the aforementioned 
specification from 7 participants, each of whom was a male 
graduate student ranging in age from 24 to 36. For each mo-
bility situation, each participant performed the set of ges-
tures 30 times. As a result, we have collected 8 gestures  30 
times  4 situations  7 participants = 6720 gesture samples 
in total. Participants wore the sensor node on their left wrist 
and ring button on their left index finger. We recommended 
that the participants complete each single gesture within 5 
sec. We also asked participants to push and release the but-
ton on their left index finger to annotate each gesture seg-
ment, providing ground truth for our later analysis. We col-
lected samples over 45 hours in total, spanning 6 days within 
a period of three weeks. 

In addition to gesture samples, we also logged “non-
gesture samples” which were collected during “waiting” 
periods between gestures. The test workload consisting of 
non-gesture and gesture samples was then used to replay 
realistic, sporadic user behavior with a gesture-based mobile 
application. In our collected data, gesture and non-gesture 
samples accounted for 40% and 60% of the collected data, 
respectively. Based on the collected data, we synthesized 
test workloads with a desired gesture ratio by properly mix-
ing gesture samples and non-gesture ones; the default ratio 
of gesture sample in the workload is configured to 10% in 
the following experiments. 

5.2 Overall Energy-efficiency of E-Gesture 
In this subsection, we demonstrate the energy-efficiency 

of E-Gesture under a dynamic mobility situation. For the 
experiment, we use the wearable sensor device and Nexus 
One smartphone as described in Section 4. 

5.2.1 Sensor-side Energy Efficiency 
Energy Profiling: Figure 14(a) illustrates our measure-

ment setup for energy profiling the sensor device. The sen-
sor node is powered by a coin-size Li-Ion battery (3.7V, 250 
mAh) [16]. Due to the compact form factor of the wearable 
sensor device, the battery capacity of a sensor device is 
commonly smaller than that of a mobile device, e.g., 1400 
mAh in our setting. We measure the voltages (Vs) across a 
resister (5 Rs) in real-time with a digital multimeter. The 
current consumed by the sensor device can be calculated by 
dividing the Vs by Rs. Then, the instantaneous power con-
sumption is derived as follows.  

Ps(t) = (Vbatt – Vs)  (Vs(t)/ Rs) 

The energy consumption is finally obtained as follows. 

Table 3 shows the profiled results of per-component en-
ergy consumption for the gyroscope, accelerometer, radio 
transceiver, as well as the basic consumption. 

Alternatives and Metrics: We compare the energy con-
sumption of three different sensor-side architectures: (1) no 
sensor-side segmentor that continuously samples and sends 
raw acceleration and gyroscope data to the mobile device, 
(2) naïve sensor-side segmentor that continuously samples 
raw acceleration and gyroscope data, but sends only the 
segmented data to the mobile device through sensor-side 
segmentation, and finally, (3) the closed-loop sensor-side 
segmentor used in E-Gesture, which adaptively turns on the 
gyroscope only when needed for segmentation and sends 
only the segmented data to mobile device. Based on our 
measurements, we also estimate the battery lifetime under 
the condition of no processing other than gesture processing. 
Since no prior work explicitly proposed automatic and sen-
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sor-side gesture segmentation in different mobility situations, 
it is difficult to find alternatives for direct comparison. 
Nonetheless, we carefully suggest that the previous works 
mostly fall into the category of (1) or (2). 

Sensor Data Workload: Due to the immobility of our 
setup as shown in Figure 14(a), it is impractical to measure 
the real-time energy consumption of the sensor device while 
it is actively used in mobile situations. Instead, we used the 
workloads collected from sensors used under real mobility 
situations, and computed their energy consumption based on 
the per-component energy consumption we profiled. To en-
sure a realistic workload reflecting a user who changes her 
mobility situation from time to time, we assume a user who 
uses E-Gesture applications for eight hours a day, including 
four hours of STAND (covering mostly stationary situations 
including standing and sitting), two hours of RIDE, and one 
hour of WALK and RUN, respectively. Then, without loss 
of generality, we constructed scaled-down 20-min versions 
of workloads while preserving the above ratios of each situa-
tion. The workloads consist of both gesture and non-gesture 
data collected in Section 5.1.  

Experimental results: Table 3 shows the results of our 
experiments. Our closed-loop segmentor provides signifi-
cant energy savings for the sensor device. It reduces energy 
consumption by 58.7%, providing 2.4 times longer battery 
lifetime compared to approaches without a sensor-side seg-
mentor. Interestingly, the naïve segmentor reduces energy 
consumption by only 15.2%. This is mainly because the gy-
roscope, which is the most energy-consuming component, 
runs continuously in the naïve case. 

5.2.2 Mobile Device-side Energy Efficiency 
Energy Measurement: Figure 14(b) shows our meas-

urement setup to profile the energy consumed by the mobile 
device. This is similar to the setup for the sensor device. Our 
test bed is a Google Nexus One powered by a Li-Ion battery 
(3.7 V, 1400 mAh), running Android OS 2.2. To exactly 
measure the energy consumed for gesture processing, we 
turned off irrelevant services and components including GPS, 
WiFi, cellular services, and the display. We also shut down 
all other applications. The battery voltage (Vbatt) is measured 
with the Battery Indicator Application. To generate a real-

time sensor data workload, we implement a simple data 
sender that feeds the workload synthesized in Section 5.1. 

Alternative: We compare the energy consumption of 
two different mobile device-side architectures: with and 
without sensor-side segmentation, which represent E-
Gesture and existing HMM-based gesture processing sys-
tems, respectively. In the architecture with sensor-side seg-
mentation, the mobile device needs to receive only the seg-
mented data and classify gestures by running HMMs. In the 
alternative without sensor-side segmentation, the mobile 
device continuously receives raw data from the sensor de-
vice, segments data, and classifies gestures by HMM. 

Experimental results: Figure 15 shows the run-time en-
ergy consumed by our Google Nexus One for 30 seconds. 
The mobile-side architecture without sensor-side segmenta-
tion shows much higher energy consumption. This is mainly 
because the rapidly incoming raw data prevents the Blue-
tooth module of the mobile device from entering sleep mode. 
The current draw of the device when actively receiving data 
is 17 mA, whereas in sleep mode it only draws 1.8 mA. In 
both architectures, the computations with HMM rapidly 
raise the current up to 55 mA, as they actively drive the CPU. 
However, running the HMM occurs sporadically while re-
ceiving data over Bluetooth is continuous. Hence, the energy 
consumption of the Bluetooth dominates the overall energy 
consumption of mobile device. 

Table 4 summarizes the results. As expected, sensor-side 
segmentation reduces the energy consumed by the mobile 
device by 64.3%. It is worth noting that the savings is still 
26.2% if we take into account the energy consumed by the 
Zigbee-Bluetooth bridge node. Table 4 also shows a more 
detailed breakdown of the total energy consumption of the 
mobile device. We see that receiving data over Bluetooth 
dominates the energy consumption of the mobile device, and 
that sensor-side segmentation is essential for saving energy. 

The results show that going to sleep as much as possible 
is critical to saving energy for the Bluetooth transceiver. 
However, it is hard to explicitly and immediately trigger 
Bluetooth sleep mode in modern smartphones. Instead, sleep 
mode is automatically triggered if no data has been received 

 
Energy 
Consumption 

Battery 
Lifetime 

No sensor-side segmentor 46 mW 20 hrs 

Naïve sensor-side segmentor 39 mW 23.7 hrs 

Closed-loop segmentor 19 mW 48.7 hrs 

Table 3. Sensor-side Energy Efficiency Measurement 

 Energy Consumption (mW) Battery 
Lifetime 

(hrs) 
Data 

Receiving 
Segment-

ation 
Running 
HMM 

Without sensor-side 
segmentation 

82.25 
42.1

*
 

73.34 1.95 6.96 

With sensor-side 
segmentation 

29.33 
74

*
 

22.68 - 6.65 
*
: Under assumption that 3G and WiFi are turned on 

Table 4. Mobile-side Energy Efficiency Measurement 

 
Figure 15. Real-time Energy Consumption in Mobile Device 
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for a predefined time. In our case, this means that the gesture 
occurrence period is closely related to opportunities to enter 
sleep mode. Figure 16 illustrates our detailed analysis of the 
power consumed by the radio transceiver as the gesture oc-
currence period varies. It suggests that gaps between ges-
tures of 1 sec or longer lead to more sleeping. Gaps of less 
than 0.4 sec are too short and provide very little savings. 
Fortunately, gestures in daily life are very likely to occur 
less frequently than every 1 sec: according to data we col-
lected in real settings, the average gesture interval was about 
13 sec, which is sufficiently apart. 

5.3 Energy-efficiency per Mobility Situation 
In this subsection, we demonstrate the energy-saving ef-

fectiveness of our sensor-side gesture segmentation: Accel-
based Segmentor (AS), Gyro-based Segmentor (GS), Feed-
back Controller (FC), and mobility Noise Filter (NF). We 
measure the energy usages of a single sensor node for five 
different combinations of energy-saving methods, i.e., AS 
only, AS+GS, AS+GS+NF and AS+GS+NF+FC, while in-
creasing the user’s mobility. None is the case that the sensor 
device sends raw data continuously. At each setting, we 
measure the total energy consumption for 20 minutes. 

As shown in Figure 17, we obtain significant energy sav-
ing for low-mobility situations (STAND and RIDE) by ap-
plying any combination. However, in-depth analysis reveals 
that AS alone dominates overall energy saving. This is be-
cause the low-mobility situations produce little noise from 
body movement or hand swings, which AS does not filter 
out. Energy consumption tends to increase with mobility, but 
enabling more methods cumulatively contributes to energy 
savings. Applying all methods consumes the least, and is 
hardly affected by increases in mobility. As discussed in 
Section 3.1, GS filters out noise caused by body movements, 
while NF suppresses non-gestural hand swings. Since those 
effects are common in high-mobility situations, we can 
clearly observe the energy savings of GS and NF in WALK 
and RUN situations. 

Most importantly, FC achieves considerably more ener-
gy savings than methods without it. The essential goal of 
FC-based accelerometer adaptation is to maintain the FP 
ratio without being affected by mobility changes. Hence, FC 
provides near-mobility-free gesture segmentation as shown 
in Figure 17. We further elaborate on the benefits of FC and 
its on-the-fly adaptation behavior in Section 5.4. 

Figure 18 shows the energy consumed by the accelerom-
eter, gyroscope, radio transmission, and basic processing. 
The measurement is based on the energy consumption pro-
file in Figure 4, i.e., 2.4mW, 26.1mW, 9.8mW, and 
7.975mW, respectively. During RIDE situations (see Figure 
18(a)), most energy savings is due to AS, which eliminates 

unnecessary operation of the gyroscope and radio transceiv-
er. Enabling GS further halves the radio transmission cost by 
eliminating the transmission of invalid gesture segments. 
Figure 18(b) shows the RUN situation. We can see that AS 
has little effect and is easily overwhelmed by high mobility 
noises. GS is also ineffective for energy saving. Enabling 
NF reduces 28% of the radio transmission energy and 20% 
of gyroscopic operation since NF halts both the gyroscope 
and radio transceiver if a segment exceeds 2 secs. Finally, 
we can verify that FC provides well-balanced energy savings 
from the gyroscope (49%) and radio (52%). This is mainly 
because FC enhances the early filtering of AS, thus reducing 
the activity of the gyroscope and radio. The remaining ener-
gy consumption is necessary for gesture detection. 

5.4  Run-time Threshold Adaptation 
We evaluate the effectiveness of the adaptive threshold 

control in closed-loop collaborative segmentation. We con-
duct experiments to analyze how the threshold of the accel-
based segmentor is adjusted under continuously changing 
mobility, and how both FPs and FNs are suppressed. The 
FPs are important because they lead to unnecessary energy 
consumption. FNs are important because they annoy users 
by rejecting normal gestures.  

To this end, we construct a test workload representing 
continuously changing mobility situations. We use the sam-
ple data of four types of mobility situations collected in Sec-
tion 5.1. In order to maintain continuity, we use the original 
time sequence without separating gesture samples and non-
gesture ones, denoted as: {STAND1…N}, {WALK1…N}, 
{RUN1…N}, and {RIDE1…N}. Simply concatenating those 
four data sequences gives only three significant changes of 
mobility. To double the number of changes, we split each 
data sequence into halves, shuffle, and concatenate. This 
leaves the following test workload: {STAND1…N/2, 
WALK1…N/2, RUN1…N/2, RIDE1…N/2, RUNN/2+1…N, 
WALKN/2+1…N, RIDEN/2+1…N, STANDN/2+1…N}. While pro-
cessing the workload, we determine whether those segments 
are truly gestures or FPs. Also, we count FNs, i.e., failures to 
detect button-annotated sections. 

Figure 19 illustrates the time plot of threshold values for 
a user along the 75-min experiment period, as well as the 
fluctuation of the FP ratio. As in the figure, the FP ratio 
stays within the range of 8% to 20% regardless of the mobil-
ity situation. Also, thresholds are consistent with the mobili-
ty changes, i.e., high thresholds for WALK and RUN situa-
tions and low thresholds for RIDE and STAND situations. 
We see some latency to find the correct threshold and stabi-
lize, less than 2 minutes in our experiment. However, most 
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threshold changes are just after a mobility change, thereby 
successfully suppressing segmentation errors resulting from 
an incorrect threshold. 

To see the effect on segmentation accuracy of an adap-
tive threshold, we compare it to a naïve segmentor statically 
configured with the maximum and the minimum thresholds 
taken from the highest mobility (RUN) and the lowest 
(STAND), respectively. Figure 20 demonstrates that the 
adaptive threshold gives near-optimal results in terms of the 
overall FP ratio and the ratio of FN samples. Applying the 
maximum threshold gives the best suppression of the FP 
ratio (10.88%), but fails in the FN ratio by allowing 6% of 
FNs. Conversely, applying the minimum threshold elimi-
nates all FNs but quadruples the FP ratio, wasting substan-
tial energy. Note that the adaptive threshold achieves a very 
low (1.12%) FN ratio while keeping the FP ratio to close to 
10% of the maximum threshold. 

5.5 Gesture Classification Performance 
In this section, we demonstrate the classification perfor-

mance of E-Gesture under dynamic mobility situations by 
quantitatively analyzing the effects of the adaptive and mul-
ti-situation HMMs. To discuss whether our system achieves 
acceptable accuracy, we introduce an imaginary mobile ges-
ture classifier, Mobility-Aware HMM, which is assumed to 
accurately infer a user’s current mobility situation at no cost. 
Then, it classifies the gesture by using the situation-specific 
HMMs trained with gesture samples from the detected situa-
tion, thereby achieving the optimal accuracy. To show the 
baseline accuracy, we also compare the basic HMM which is 
trained only with the gesture samples from STAND situation. 
The initial training status of adaptive HMM is the same as 
that of basic HMM. 

We test gesture classification on gesture samples while 
varying mobility situations, i.e., RIDESTANDWALK 
RUN. Out of 240 gesture samples collected for each situa-
tion, we used two thirds for training, and a third for testing. 
Similar to other personalized gesture classifiers [15], our 
classification test is performed user-dependently, and results 
are averaged over 7 participants. We measure accuracy and 
processing time. The accuracy is the ratio of correctly clas-
sified gestures over the total number of gesture samples. The 
processing time is the total elapsed time to process all test 

gesture samples, and is measured on our Google Nexus One. 
Figure 21 shows the classification accuracy and total 

processing time for four mobility situations. As expected, 
mobility-aware HMM shows the highest accuracy and the 
lowest processing time. Multi-situation HMM achieves fair-
ly good accuracy compared to the optimal mobility-aware 
HMM. However, it takes four times longer to classify ges-
tures than the mobility-aware HMM mainly due to having 
more HMM models. To run the multi-situation HMM even 
in a resource-limited mobile device, further processing op-
timization may be necessary. Unfortunately, adaptive HMM 
exhibits a low accuracy of less than 90%, which seems to be 
unacceptable for the purpose of mobile interaction, although 
it outperforms the basic HMM. This is mainly due to the 
lack of re-training samples, which leads to poorer fitting for 
each mobility situation than multi-situation HMM. The pro-
cessing time of adaptive HMM is much less than that of 
multi-situation HMM. It is only twice as long as the basic 
and mobility-aware HMMs, which build a single HMM for 
each gesture with no adaptation costs. 

Table 5(a) details classification accuracy for each mobil-
ity situation. As expected, mobility-aware HMM retains a 
high level of accuracy regardless of mobility situation. Most 
importantly, multi-situation HMMs demonstrate their ro-
bustness under multiple mobility situations even in high-
mobility situations, i.e. RUN. In contrast, the accuracy of 
basic HMM rapidly decreases as mobility increases 
(STANDWALKRUN). In particular, basic HMM 
shows poor accuracy in RUN situation mainly due to elevat-
ed noise levels, i.e., only 53.3%. Interestingly, it also fails to 
classify accurately in RIDE situation, i.e., 40.3%. We con-
jecture that limited space in a RIDE situation makes the ges-
ture samples somewhat unique, and does not match the basic 
HMM trained with the samples from STAND. Adaptive 
HMM also fails to accurately classify gestures under RIDE 
and RUN although it moderately improves accuracy. 

Table 5(b) shows the breakdown of classification errors. 
We define a deletion error as a gesture sample that is mis-
classified as garbage, and a substitution error as a gesture 
sample A that is misclassified as gesture B. Note that dele-
tion errors are present in all settings. While mobility-aware 
shows the lowest deletion error rate of 2.76%, most deletion 
errors are also eliminated in multi-situation HMM, leading 
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Figure 19. Time Behavior of Adaptive Threshold Figure 20. FP and FN 
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Figure 21. Accuracy and Processing Time      Table 5. Detailed Accuracy Analysis 

 



to 4.21% deletion errors. However, adaptive HMM could 
not reduce the deletion errors as well as the multi-situation 
HMM, which explains why adaptive HMM is less accurate 
than multi-situation HMM. In general, substitution errors 
occur less often than deletion errors when using a garbage 
model [14]. However, substitution errors are more disruptive 
than deletion errors and cannot be corrected by simple retri-
als. Note that both HMMs exhibit a fairly low substitution 
error rate of around 1%. 

6 Discussion and Future Work 
In this section, we discuss design alternatives and future 

extensions, as well as share our lessons in developing ges-
ture-based UIs and applications.  

Mobility detection. Instead of dynamic threshold adap-
tion and gesture classification, one might consider an alter-
native architecture, i.e., detecting the current mobility situa-
tion automatically [4, 10] and using it to control the thresh-
old and use the most appropriate HMM, respectively. How-
ever, this architecture is unlikely to be practical in our set-
ting. First, it is difficult to accurately detect mobility situa-
tions solely based on a hand-worn sensor device. The accel-
erometer in the hand-worn device would not isolate body 
movements alone since it measures the combination of hand 
motion, gravity, and body movement. To accurately detect a 
mobility situation, we would likely require additional sen-
sors tightly attached to the body. However, this requirement 
burdens users with additional devices that must be carried at 
all times. While mobile devices may have built-in sensors, 
the devices are rarely tightly attached to the body. 

Comparison between gesture classifiers. The proposed 
HMM architectures, adaptive and multi-situation HMM, 
each have advantages and disadvantages relative to each 
other. First, adaptive HMM is advantageous because it 
copes well with new mobility situations, supporting a di-
verse and fine-grained range of situations such as 
slow/middle/fast walking. The processing time for adaptive 
HMM increases slightly relative to the basic HMM that exe-
cutes MLLR upon a classification error. Unfortunately, 
adaptive HMM could not achieve the best accuracy under 
known situations, due to the scarcity of training data availa-
ble at runtime that is needed to tune the parameters for each 
situation. Besides, error-oriented adaptation requires manual 
correction for misclassified gestures, a significant inconven-
ience that would fall on the user.  

In contrast, multi-situation HMM shows the best accura-
cy under known mobility situations since the HMM parame-
ters can be fit to those situations due to a large amount of 
offline training data. However, its processing time could be 
high. Since the Viterbi decoding time is proportional to the 
number of HMM models, multi-situation HMM takes N 
times longer time than the basic HMM, where N is the num-
ber of mobility situations. Also, multi-situation HMM may 
not respond well to new mobility situations.  

We believe that our experiences provide directions for 
the design of future all-around mobile gesture classifiers. 
First, improved accuracy is required in not only diverse but 
unknown mobility situations. Second, burdening the user 
with tasks like error correction is not ideal. Third, the 

amount of training data needs to be as small as possible. 
Finally, techniques must be lightweight enough to be runna-
ble on mobile devices. We envision that continued engineer-
ing of our current architecture will bring us closer to an ideal 
all-around mobile gesture classifier.  

Experiences in Developing Gesture-based UI. One of 
our lessons in developing gesture-based UI and applications 
is that selecting appropriate gestures requires broad 
consideration of the surrounding situations in case of 
possible gesture-context mismatches. We discuss and share 
the common issues we frequently encountered. 

Physical feasibility. We found that a certain gesture may 
not be matched to the user's physical context. For example, 
clapping while running can disrupt the runners' balance. 

Physical availability. A user's hand may not be always 
free to perform a gesture. For example, clapping may be 
impossible while holding a heavy shopping bag. 

Space allowance. Space should be considered before 
selecting gestures. For example, large gestures like throwing 
are hard to perform in a narrow space like the inside of a car. 

Social acceptance. A gesture should be socially 
acceptable in a given situation. For example, a gesture like 
throwing would be inappropriate in a conference room. 

Privacy concern. Users may care about privacy; they 
may mind exposing what they are doing to others. 
Needlessly large gestures in public places to check an SMS 
will let others know that the user is doing so. 

Intuitiveness. A gesture should be intuitively coupled to 
its intended function. Users maybe be confused if the gesture 
of drawing a circle is used to transmit a message. 

Inter-gesture distinction. The gesture vocabularies 
should be carefully chosen to be sufficiently distinct from 
one another. We have experienced that a certain 
combination of gestures like {left knob, left slide} caused 
frequent confusion, yielding insufficient precision of 88%. 

7 Conclusion 
In this paper, we have presented E-Gesture, an energy-

efficient, accurate gesture recognition framework for dynam-
ic mobility situations. Spanning a wearable sensor device 
and an off-the-shelf mobile device, E-Gesture recognizes the 
gesture through closed-loop collaborative segmentation and 
multi-situation HMM classification. Evaluation with seven 
users in four mobility situations shows that it achieves stable 
classification accuracy, i.e., 94.6%, while reducing the ener-
gy consumption of a sensor and a mobile device by 58.7% 
and 64.3%, respectively. 
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