AERODERIVATIVE, INDUSTRIAL, AND LIGHT INDUSTRIAL GAS TURBINES— A COMPARISON

by Jeff Haught

Facilities Engineering Advisor Anadarko Petroleum Corporation The Woodlands, Texas

Jeff Haught is a Facilities Engineering Advisor for Anadarko Petroleum Corporation, in The Woodlands, Texas. He currently is responsible for midstream gas plants and gathering systems as well as oversight of the company's large rotating equipment in various locations around the world. He began his career as a machinery engineer at the Arco refinery in Los Angeles, then moved to Prudhoe Bay, first with Arco and then with Conoco. After assignments with Conoco in S.E. Asia, the Gulf of Mexico, and Russia, Mr. Haught joined Anadarko in 1996 for major project work in Algeria. Since then, he has held positions in engineering and maintenance throughout the company.

Mr. Haught received his B.S. degree (Mechanical Engineering, 1979) from the University of California, Santa Barbara. He is a member of both ASME and PMI. He is a registered Professional Engineer in the States of Texas and California.

The following is a copy of the author's PowerPoint submittal. It has received no editing.

Aeroderivative, Industrial, and Light Industrial Gas Turbines A Comparison

The purpose of this Tutorial is to compare Industrial, aeroderivative, and light industrial gas turbine characteristics and their applications. It will also provide some example economic comparisons for different applications and constraints

Slide 1.

Aeroderivative Engines

- ·Based of aircraft flight engine
- ·Lightweight, fabricated casing
- Modular construction
- •Rolling element bearings
- •Two separate oil systems, gas turbine and driven equipment
- •Synthetic oil required because of higher bearing temperatures

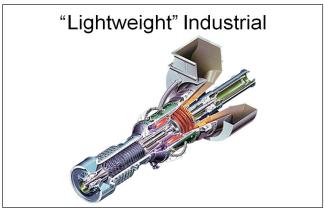
Aeroderivative Engines

- Better response to load changes (less GG mass)
- Condition maintenance may be easier due to more inspection ports.
- · Higher firing temperatures
- · Higher efficency, better fuel consumption
- Higher NOX and CO

Slide 3.

Slide 4.

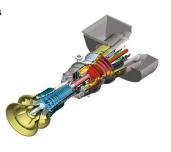
Slide 2.


Industrial Engines

- · Robust design
- · Cast main casings
- · Common lube oil system
- · Mineral oil suitable
- · Hydrodynamic bearings
- · Lower firing temperatures

Slide 5.

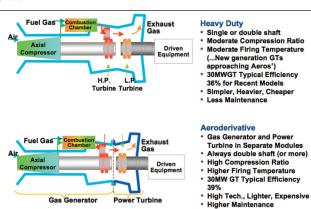
Industrial Engines


- · Lower in emissions than other engines
- · Lower firing temperatures
- Lower efficiency, 32-25% simple cycle

Slide 9.

"Lightweight" Industrial

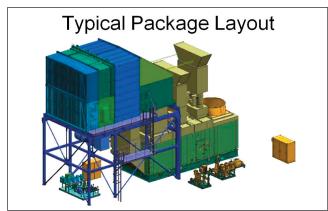
- · Fabricated Main Casings
- · Hydrodynamic bearings
- · Mineral lube oil
- Common lube oil system



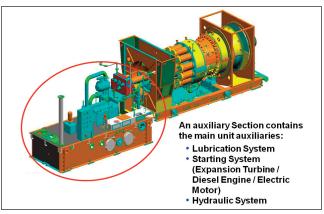
Slide 6.

Industrial Engines

Slide 7.


Slide 8.

Slide 10.


Application Considerations

- · Original capital cost
- · Sparing philosophy
- · Maintenance turn-around time
- Maintenance access
- Field service availability
- · Cost of fuel gas
- Weight of package
- Emissions requirements

Slide 11.

Slide 12.

Slide 13.

Slide 14.

Slide 15.

Slide 16.

Application Considerations

Slide 17.

Application Considerations

Slide 18.

Case Studies

- · Capital Cost
- · Installed cost
- Fuel cost
- · Heat rate
- · CO and NOX penalties or credits
- Off design performance (if required)
- · Design points/alternate operating conditions
- · Replacement/repair costs

Slide 19.

Case Studies								
EVALUA	ATION PROCEDURE FOR	REINJECTION COM	IPRESSOR PACKAGE					
Tenderer:	Date:							
Responsible Person:	Location:							
	Calculation 3 - I	Reinjection Lifecycle Co	sts :					
	Calculation of OPEX vs P							
	Annual figures ar	e based on 97% plant upti	me.					
Data to be entered from tender								
Monthly Support Contract Cost	\$1,000	SUS						
Fired Hour Charge		\$US/equiv hr						
Data to be entered from commercial evaluation -								
	\$25,000,000	\$US						
Reference data								
NOx Polluter Pays Cost	633	\$US/ton						
CO2 Polluter Pays Cost		SUS/ton						
Fuel Gas Cost/MBTU		\$US/MMBTU						
Turbine Heat Rate		BTU/kW-hr						
	10000							
Power	29000	W						
Fired Hours per Year	2.000							

Slide 20.

	Case Studies												
	PRODUCTION PROFILE DATA		ANNUAL PERFORMANCE TOTALS			OPEX COSTS				LIFECYCLE COST			
	Annualised Gas Production	instriantane ous Gas Production Rate	Fuel Gas Consumption	NOx Emissions	CO2 Emissions	Fired Hour Consumption	Support Contract	Fuel Gas Consuption	MOx	CO2	Total DPEX	Lifeoyole cost weighting factor	Lifeogole Co Summation
	Annualised 10°6 Sm3/d	instant 1016 Sm34d	Annualised MMBTUlyr	Annualised tonnes/yr		Annualised equiv hely	Annualised	Annualised	Annualised	Annualised	Annualised		\$US MPY OPEX-CAP
		0.000	2,413,380,000	67	125	0.0			-\$2.197	-\$2,746	-\$6,031703		-\$54,318,5
2		0.000	2,413,380,000	67	125	0.0				-\$2,746 -\$2,746	-\$6,031,703 -\$6,031,703	0.9535	-\$5,751 -\$5,228
1		0.000	2,413,380,000	87	125	0.0				\$2,746	-\$6,031,703	0.788	-\$4,752
÷		0.000	2,413,380,000	67	125	0.0			-\$2.197	-\$2,746	-\$6,031,703	0.7164	\$4,32
5		0.000	2,413,380,000	87	125	0.0			-\$2,197	-\$2,746	-\$6,031,703	0.8512	-\$3,927
8		0.000	2,413,380,000	67	125	0.0				-\$2,746	-\$6,031,703	0.582	-\$3,570
7		0.000	2,413,380,000	87	125	0.0	-\$1,200,000	-\$4,826,760		-\$2,748	-\$6,031,703	0.5382	\$3,248
8		0.000	2,413,380,000	87	125	0.0		-\$4,826,760	-\$2,197	\$2,746	-\$6,031,703	0.4883	-\$2,85
9		0.000	2,413,380,000	67	125	0.0			-\$2,197	-\$2,746	-\$6,031,703	0.4448	-\$2,682
10		0.000	2,413,380,000	67	125	0.0				\$2,748	-\$6,031,703	0.4044	-\$2,435
		0.000	2,413,380,000	67	125	0.0			-\$2,197	-\$2,746	-\$6,031,703	0.3676	-\$2,217
12		0.000	2,413,380,000	87	125	0.0			-\$2,197	-\$2,746	-\$6,031,703	0.3342	-\$2,015
13		0.000	2,413,380,000	67	125	0.0				-\$2,746	-\$6,031,703	0.3038	-\$1,830
14		0.000	2,413,380,000	87	125	0.0				\$2,748	-\$6,031,703	0.2782	-\$1,885
15		0.000	2,413,380,000	67	125	0.0			-\$2,197	-\$2,746	-\$6,031,703	0.2511	-\$1,514
16		0.000	2,413,380,000	87	125	0.0			-\$2,197	\$2,748	-\$6,031,703	0.2283	-\$1,377
17		0.000	2,413,380,000	67	125	0.0			\$2,197	\$2,746	-\$6,031,703	0.2075	-\$1,251
19	-	0.000	2,413,380,000	67	125	0.0			-\$2,197	-\$2,746	-\$6,031,703	0.1886	-\$1,137
19	1	0.000	2,413,380,000	87	125	0.0	-\$1,200,000	-\$4,826,760	-\$2,197	\$2,748	-\$6,031,703	0.1715	-\$1,034

	Turbine 1	Turbine 2	Turbine 3	Turbine 4	Turbine 5
Change	Base Case	Increased Heat Rate	Increased CAPEX	Increased Emmissions	Increased Monthly Support Contract
NPV OPEX	-\$29,319,562	-\$32,369,680	-\$29,319,562	-\$29,331,132	-\$35,152,65
NPV CAPEX	-\$25,000,000	-\$25,000,000	-\$30,000,000	-\$25,000,000	-\$25,000,00
NPV TOTAL Life	-\$54,319,562	-\$57,369,680	-\$59,319,562	-\$54,331,132	-\$60,152,65

Slide 21. Slide 22.