Fundamental Graph Algorithms
Part Three

Outline for Today

» Topological Sorting, Part 11

 How can we quickly compute a topological ordering
on a DAG?

« Connected Components

« How do we find the “pieces” of an undirected graph?
« Strongly Connected Components

 What are the “pieces” of a directed graph?
 Kosaraju's Algorithm, Part I

« How do we find strongly connected components?

A Correction from Last Time

Theorem: When DFS(s) returns, the set of
nodes colored green by that call is
precisely the set of nodes reachable from
s along a path consisting purely of gray
nodes (we'll call this a gray path).

Theorem: When DFS(s) returns, the set of

nodes colored green by that call is
precisely the set of nodes reachable from

s along a path consisting purely of gray
nodes (we'll call this a gray path).

N N

e

\l/ A 4

o N o N AT

A 4 \T/ \T/
N N N
A P
A 4 A 4 A

4

Theorem: When DFS(s) returns, the set of
nodes colored green by that call is
precisely the set of nodes reachable from
s along a path consisting purely of gray
nodes (we'll call this a gray path).

Theorem: When DFES(s) returns, the set of

nodes colored green by that call is
precisely the set of nodes reachable from

s along a path consisting purely of gray
nodes (we'll call this a gray path).

338

® & -©

Lemma: Suppose that when DFS(s) is called, v is gray
and there is a path from s to v consisting solely of
gray nodes. Then v is green when DFS(s) returns.

Proof: DES(s) returns only after all recursive DES calls have
returned. DFS(v) always colors v green, so if v was gray
when DFS(s) was invoked, the only way v wouldn't be green
when DFS(s) ends is if DFS(v) is never called.

Suppose there is a node v where a gray s-v path P exists
when DFS(s) is called where DFES(v) is never invoked. Let x
be the first node on path P where DFS(x) wasn't invoked. x
can't be s, since DFS(s) is explicitly invoked, so x is preceded
by some node y in P. Consider these cases:

Case 1: DFS(y) is never invoked. But then x is not the first
node on path P where DFS was not called.

Case 2: DFS(y) was invoked. At this time, x would have
been gray, so DFS(y) would have called DFS(x).

In both cases, we reach a contradiction, so our assumption
must have been wrong. Thus all gray nodes reachable by a
gray path must been green when DFS(x) returns. W

Lemma: Suppose that v was gray when DFS(s)
was called and is green when DFS(s) ends. Then
there is a path from s to v consisting purely of
gray nodes.

Proof: Since v is green when DFS(s) returns and was
gray when DFS(s) was called, there must have been a
path P = s, x1, X2, ..., Xn, v from s to v formed by the
recursive calls to DFS. This means that xi1, x2, ..., Xn
must have been gray when DFS(s) was called, since
otherwise these calls would not have been made.
Consequently, P is a path consisting purely of gray
nodes from s to v, as required. B

Back to Topological Sorting...

Topological Sorting

« Goal: Order the nodes of a DAG G such
that if (u, v) is an edge in G, then u
appears before v.

* One simple algorithm is as follows:
repeatedly find a node with no incoming
edges, remove it, and add it to the result.

 As mentioned in Kleinberg and Tardos,
can be made to run in ®©(m + n) time.

A Completely Different Algorithm

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

1

<

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

A

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

. B

DFS on a DAG, Take II

'
® -

DFS on a DAG, Take II

A
C D
€

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

v N\
.
g

¢
¢
¢
¢
i ¢

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

A B

¢
¢
¢
¢
¢

¢
¢
¢
¢
i ¢

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

¢
¢
¢
¢
i ¢

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take II

DFS on a DAG, Take III

AVAN
\/

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

B
© B
-« [
)v(\‘ ‘/

DFS on a DAG, Take III

B
© B
-« [
)v(\‘ ‘/

DFS on a DAG, Take III

7
|

N\
| B
=
‘
A}
A}
A}
A}
“‘
‘
‘
A}
A}
A}
A}
A)

DFS on a DAG, Take III

vl ¢
—~ = B

DFS on a DAG, Take III

vl ¢
—~ = B

DFS on a DAG, Take III

) 3
.
A 3
A 3
A
A 3
‘
) 3
.
A
A 3
A
A 3
‘

DFS on a DAG, Take III

/N
B
\ /
WK
. / w A
.
)}
)}
)
)}
“‘
.
.
)
)}
)
)}
)}

DFS on a DAG, Take III

-

DFS on a DAG, Take III

e

DFS on a DAG, Take III

\ <4
-« |
‘
LY I'\
‘ Y 4 ‘
‘ Y 4 ‘
A Y V 4 A Y
‘ Y 4 ‘
A) V4 A)
‘
‘
A Y
‘
A Y
‘
A)

DFS on a DAG, Take III

\ <4
-« |
‘
LY I'\
‘ Y 4 ‘
‘ Y 4 ‘
A Y V 4 A Y
‘ Y 4 ‘
A) V4 A)
‘
‘
A Y
‘
A Y
‘
A)

DFS on a DAG, Take III

) 3 4) 3
. 4 .
A 3 24 A 3
A 3 4 A 3
) 3 Y) 3
A 3 4 A 3
‘w' |
) 3
.
) 3
A 3
) 3
A 3
‘

DFS on a DAG, Take III

DFS on a DAG, Take III

DFS on a DAG, Take III

procedure dfsTopoSort(DAG G):
for each node v in G:
color v gray

let result be an empty list.
for each node v in G:
if v is gray:
run DFS starting from v,
appending each node to result as
soon as it is colored green.

return reverse of result

Question 1: How do we know this actually
produces a topological sort?

Question 2: How efficiently does this
produce a topological sort?

Question 1: How do we know this actually
produces a topological sort?

Observation I

Lemma: Every node appears in the
generated list exactly once.

Proof: Nodes are added to the generated
list only when they turn green, which
can happen at most once. Moreover,
every node has DFS called on it at
least once, either by a recursive call or
when the top-level loop calls it.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
i1s called before DFES(u).

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v

to u, when DFS(v) terminates v will be green and u will

not be.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v).

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v). Since u and
v are gray at this time, there is a path from u to v of
gray nodes.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v). Since u and
v are gray at this time, there is a path from u to v of
gray nodes. Thus when DFS(u) terminates, v will be

green.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v). Since u and
v are gray at this time, there is a path from u to v of
gray nodes. Thus when DFS(u) terminates, v will be
green. Since the last step of DFS(u) turns u green, this
means that v became green before u.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v). Since u and
v are gray at this time, there is a path from u to v of
gray nodes. Thus when DFS(u) terminates, v will be
green. Since the last step of DFS(u) turns u green, this
means that v became green before u. B

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFES(u). Since there i1s no path from v

to u, when DFS(v) terminates v
not be. Thus v becomes green b

Otherwise, DFS(u) is called befo
v are gray at this time, there is
gray nodes. Thus when DFS(u)
green. Since the last step of DF
means that v became green before u. B

Take note of how
this proof works.
We'll see another
one just like it
later on.

Observation II

Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DES(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v). Since u and
v are gray at this time, there is a path from u to v of
gray nodes. Thus when DFS(u) terminates, v will be
green. Since the last step of DFS(u) turns u green, this
means that v became green before u. B

Question 1: How do we know this actually
produces a topological sort?

Question 2: How efficiently does this
produce a topological sort?

Question 2: How efficiently does this
produce a topological sort?

DFS Topological Sort

 The time complexity of this algorithm is as follows:

« Coloring all nodes gray can be done in G(n) time.

« DFS will be invoked exactly once on each node,
either by a top-level call in the loop or by a recursive
call. This means each node and edge will be visited
at most once by DFS. This step takes ©(m + n)
time.

 The top-level loop visiting nodes requires ®(n) work.
« Reversing a list of n elements requires ©(n) work.
« Total work required: @(m + n)

« Asymptotically the same as our previous algorithm,
but a lot easier to code up!

Connected Components

w
/0
w

Connected Components

 Let G = (V, E) be an undirected graph.

« Two nodes u, v € V are called connected iff
there is a path from u to v.

A connected component of GisasetC CV
with the following properties:

* C 1s nonempty.
 For any u, v € C: u and v are connected.

« Foranyu € C,ve V-C:uandv are not
connected.

Properties of Connected Components

« All of the following are true; it's an
interesting exercise to prove them:

 Any two connected components Ci1 and C:z
are either equal or disjoint.

 Every node in a graph belongs to exactly one
connected component.

 The connected components of a graph form a
partition of the nodes of the graph.

Finding Connected Components

Recall: When DFS(u) terminates, u and all gray
nodes reachable from u by gray paths will have
turned green and no other nodes will have been
colored green.

Suppose that we call DFS in a connected
component where we have previously not called
DES before.

All nodes in the connected component are
reachable from one another, and all nodes are

gray.

Therefore, DFS terminates having colored all
nodes in that connected component green and
coloring no other nodes green.

@/@

procedure findCCs(graph G):
for each node v:
color v gray

let cc be an array of size n

let index = 0
for each node in v:
if v i1s gray:
run DFS(v), setting cc[u] = index
whenever a node u is colored green
index = index + 1

return cc

Analyzing the Runtime

 We do ©®(n) work initially coloring each
node gray.

 Across all iterations of DFS, each node is
visited exactly once and each edge is
visited exactly once. This takes ®(m + n)
time.

 Consequently, total work is ®@(m + n).

e Could we also use BFS here? If so, what
would the runtime be?

Strongly Connected Components

Directed Connectivity

In a directed graph G, we say v is reachable
from u iff there is a path from u to v.

In an undirected graph, if there is a path from
u to v, there is also a path from v to u.

In a directed graph, it is possible for there v to
be reachable from u, but for u not to be
reachable from v.

How would we generalize the idea of a
connected component to a directed graph?

Strongly Connected Components

 Let G = (V, E) be a directed graph.

 Two nodes u, v € V are called strongly
connected iff v is reachable from u and u
1S reachable from v.

» A strongly connected component (or
SCC) of G is a set C C V such that

e C 1s not empty.

 For any u, v € C: u and v are strongly
connected.

« Foranyu € Candv € V- C: uand v are not
strongly connected.

¢
4

L

wh N BN Ew g,

04

L 4

—----------------------------..

-

| A

)

L 4

B e S .

v -
C N B N N N N N N N N B N B N N N N N B B N B B B N N N N)

Properties of SCCs

 The following properties of SCCs are
true; it's a good exercise to prove them.

« Two SCCs C1 and C: are either equal or
disjoint.
 Every node belongs to exactly one SCC.

« The SCCs of a graph form a partition of the
nodes of the graph.

Finding SCCs

 Every graph must have a collection of
SCCs.

* In the undirected case, it was easy to find
all the connected components of a graph
by using DFS or BFS.

« Will this find all SCCs in a directed graph?

 Question: How can we determine all of
the strongly connected components of a
directed graph G?

A Beautiful Observation

Condensation Graphs

 The condensation of a directed graph G
is the directed graph G°¢“ whose nodes
are the SCCs of G and whose edges are
defined as follows:

(Ci1, C2) is an edge in G°¢¢ iff
Ju € C1, v € C2. (u, v) is an edge in G.

* In other words, if there is an edge in G
from any node in C1 to any node in Co,
there is an edge in G>¢¢ from C: to C-.

An Amazing Result

« Theorem: For any directed graph G, the
condensation G°¢¢ of G is a DAG.

 Proof Sketch:

An Amazing Result

« Theorem: For any directed graph G, the
condensation G°¢¢ of G is a DAG.

 Proof Sketch:

——
—y

An Amazing Result

« Theorem: For any directed graph G, the
condensation G°¢¢ of G is a DAG.

+ Proof Sketch:
o {j |

An Amazing Result

« Theorem: For any directed graph G, the
condensation G°¢¢ of G is a DAG.

 Proof Sketch:

@ N

SCCs and DAGs

« We now see that there is a close
connection between SCCs and DAGSs:
the SCCs of a graph form a DAG.

 Intuitively, you can think of a graph as a
two-layer structure:

« At a high level, a graph is a DAG of SCCs
showing the top-level connections between
clusters of nodes.

« At a lower level, you can see the connections
between nodes in the same SCC.

SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:

SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:

 Repeatedly removing a source node.

SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:

 Repeatedly removing a source node. That won't
help us here, since we can't easily tell if a node
1s in a source SCC.

SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:

 Repeatedly removing a source node. That won't

help us here, since we can't easily tell if a node
1s in a source SCC.

 Running DFS and reversing the result.

SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:

 Repeatedly removing a source node. That won't
help us here, since we can't easily tell if a node
1s in a source SCC.

 Running DFS and reversing the result. So what
happens if we try that out?

ACKIJIGFDBIHE

ACKIJIGFDBIHE

®@ Goe@®HE

What's Going On?

It looks like if we look purely at the last node from
each SCC to turn green, we get a topological sort
of G5¢¢ in reverse.

 Here, each SCC is represented by a single node.

This helps us get a better sense for how the SCCs
are interlinked!

However, we still don't have a reliable way to
determine which node is the last node in each SCC
to turn green...

For starters, let's convince ourselves that this isn't
a coincidence.

Some Notation

We'll denote by f(v) the time at which node v is
colored green by the algorithm.

* flu) < f(v) means “node u was colored green
before node v was colored green.”

Note that every node is eventually colored
green, so this notation is well-defined.

Let C be an SCC. Define
f(C) = max, . f(V)

In other words, f(C) is the time at which the
last node in C was colored green.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

In other words:
*The last node in an

SCC To Turn green is
the tirst node DFS
visiTs in That sCC.,”

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are

gray.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s. This means there is a gray
path from s to v for every v € C.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s. This means there is a gray
path from s to v for every v € C. Thus every
node v € C will be green when DFS(s) returns.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s. This means there is a gray
path from s to v for every v € C. Thus every
node v € C will be green when DFS(s) returns.

Since the last step of DFS(s) is to color s green,
this means that s is colored green only after all
other nodes in C are colored green.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s. This means there is a gray
path from s to v for every v € C. Thus every
node v € C will be green when DFS(s) returns.

Since the last step of DFS(s) is to color s green,
this means that s is colored green only after all
other nodes in C are colored green. Therefore,
f(s) = f(v) for any v € C.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s. This means there is a gray
path from s to v for every v € C. Thus every
node v € C will be green when DFS(s) returns.

Since the last step of DFS(s) is to color s green,
this means that s is colored green only after all
other nodes in C are colored green. Therefore,
f(s) = f(v) for any v € C. Since by definition
flC) = max _ . f(v), this means f(C) = f(s).

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v € C is
reachable from s. This means there is a gray
path from s to v for every v € C. Thus every
node v € C will be green when DFS(s) returns.

Since the last step of DFS(s) is to color s green,
this means that s is colored green only after all
other nodes in C are colored green. Therefore,
f(s) = f(v) for any v € C. Since by definition
flC) = max _ . f(v), this means f(C) = f(s). B

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively.

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(Cz2) = f(x2).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to xo.

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,

contradicting that they belong to different SCCs.

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)

returns.

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)
returns. Thus x1 becomes green after xz, so f(xz2) < f(x1).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)
returns. Thus x1 becomes green after xz, so f(xz2) < f(x1).

Otherwise, DFS(x1) was called before DFS(x2).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)
returns. Thus x1 becomes green after xz, so f(xz2) < f(x1).

Otherwise, DFES(x1) was called before DFS(x2). When
DFS(x1) is called, all nodes in C1 and C2 are gray, so there
is a gray path from x: to xa.

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)
returns. Thus x1 becomes green after xz, so f(xz2) < f(x1).

Otherwise, DFES(x1) was called before DFS(x2). When
DFS(x1) is called, all nodes in C1 and C2 are gray, so there
is a gray path from xi1 to x2. Thus when DFS(x1) returns, xz
will be green.

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)
returns. Thus x1 becomes green after xz, so f(xz2) < f(x1).

Otherwise, DFES(x1) was called before DFS(x2). When
DFS(x1) is called, all nodes in C1 and C2 are gray, so there
is a gray path from xi1 to x2. Thus when DFS(x1) returns, xz
will be green. Since DFS(x1) colors x1 green just before it
returns, this means that xi1 was colored green after xz, so

fx2) < fixa).

Theorem: Suppose we run DFS starting at each node in
G. Let C1 and C:z2 be SCCs in G. If (u, v) is an edge in
G where u € C1 and v € Cz, then f(C2) < f(C1).

Proof: Let x1 and x2 be the first nodes DFS visits in C:1 and Cz,
respectively. By our lemma, f(C1) = f(x1) and f(C2) = f(x2).
Therefore, we will show f(xz2) < f(x1).

Note x2 is reachable from xi, since we can go from xi1 to u,
across (u, v), and from v to x2. However, x:1 is not reachable
from x2, since then x1 and x2 would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x2) is called before DFS(x1). Since x1 is
not reachable from x2, x1 will not be green when DFS(xz2)
returns. Thus x1 becomes green after xz, so f(xz2) < f(x1).

Otherwise, DFES(x1) was called before DFS(x2). When
DFS(x1) is called, all nodes in C1 and C2 are gray, so there
is a gray path from xi1 to x2. Thus when DFS(x1) returns, xz
will be green. Since DFS(x1) colors x1 green just before it
returns, this means that xi1 was colored green after xz, so

fix2) < fix1). A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311

