Fundamental Graph Algorithms
Part Three



Outline for Today

» Topological Sorting, Part 11

 How can we quickly compute a topological ordering
on a DAG?

« Connected Components

« How do we find the “pieces” of an undirected graph?
« Strongly Connected Components

 What are the “pieces” of a directed graph?
 Kosaraju's Algorithm, Part I

« How do we find strongly connected components?



A Correction from Last Time



Theorem: When DFS(s) returns, the set of
nodes colored green by that call is
precisely the set of nodes reachable from
s along a path consisting purely of gray
nodes (we'll call this a gray path).
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Lemma: Suppose that when DFS(s) is called, v is gray
and there is a path from s to v consisting solely of
gray nodes. Then v is green when DFS(s) returns.

Proof: DES(s) returns only after all recursive DES calls have
returned. DFS(v) always colors v green, so if v was gray
when DFS(s) was invoked, the only way v wouldn't be green
when DFS(s) ends is if DFS(v) is never called.

Suppose there is a node v where a gray s-v path P exists
when DFS(s) is called where DFES(v) is never invoked. Let x
be the first node on path P where DFS(x) wasn't invoked. x
can't be s, since DFS(s) is explicitly invoked, so x is preceded
by some node y in P. Consider these cases:

Case 1: DFS(y) is never invoked. But then x is not the first
node on path P where DFS was not called.

Case 2: DFS(y) was invoked. At this time, x would have
been gray, so DFS(y) would have called DFS(x).

In both cases, we reach a contradiction, so our assumption
must have been wrong. Thus all gray nodes reachable by a
gray path must been green when DFS(x) returns. W



Lemma: Suppose that v was gray when DFS(s)
was called and is green when DFS(s) ends. Then
there is a path from s to v consisting purely of
gray nodes.

Proof: Since v is green when DFS(s) returns and was
gray when DFS(s) was called, there must have been a
path P = s, x1, X2, ..., Xn, v from s to v formed by the
recursive calls to DFS. This means that xi1, x2, ..., Xn
must have been gray when DFS(s) was called, since
otherwise these calls would not have been made.
Consequently, P is a path consisting purely of gray
nodes from s to v, as required. B



Back to Topological Sorting...



Topological Sorting

« Goal: Order the nodes of a DAG G such
that if (u, v) is an edge in G, then u
appears before v.

* One simple algorithm is as follows:
repeatedly find a node with no incoming
edges, remove it, and add it to the result.

 As mentioned in Kleinberg and Tardos,
can be made to run in ®©(m + n) time.



A Completely Different Algorithm
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procedure dfsTopoSort(DAG G):
for each node v in G:
color v gray

let result be an empty list.
for each node v in G:
if v is gray:
run DFS starting from v,
appending each node to result as
soon as it is colored green.

return reverse of result




Question 1: How do we know this actually
produces a topological sort?

Question 2: How efficiently does this
produce a topological sort?
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produces a topological sort?



Observation I

Lemma: Every node appears in the
generated list exactly once.

Proof: Nodes are added to the generated
list only when they turn green, which
can happen at most once. Moreover,
every node has DFS called on it at
least once, either by a recursive call or
when the top-level loop calls it.
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Lemma: If there is an edge (u, v) in G, then v will
be colored green before u is colored green.
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Take note of how
this proof works.
We'll see another
one just like it
later on.
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Question 2: How efficiently does this
produce a topological sort?



DFS Topological Sort

 The time complexity of this algorithm is as follows:

« Coloring all nodes gray can be done in G(n) time.

« DFS will be invoked exactly once on each node,
either by a top-level call in the loop or by a recursive
call. This means each node and edge will be visited
at most once by DFS. This step takes ©(m + n)
time.

 The top-level loop visiting nodes requires ®(n) work.
« Reversing a list of n elements requires ©(n) work.
« Total work required: @(m + n)

« Asymptotically the same as our previous algorithm,
but a lot easier to code up!



Connected Components
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Connected Components

 Let G = (V, E) be an undirected graph.

« Two nodes u, v € V are called connected iff
there is a path from u to v.

A connected component of GisasetC CV
with the following properties:

* C 1s nonempty.
 For any u, v € C: u and v are connected.

« Foranyu € C,ve V-C:uandv are not
connected.



Properties of Connected Components

« All of the following are true; it's an
interesting exercise to prove them:

 Any two connected components Ci1 and C:z
are either equal or disjoint.

 Every node in a graph belongs to exactly one
connected component.

 The connected components of a graph form a
partition of the nodes of the graph.



Finding Connected Components

Recall: When DFS(u) terminates, u and all gray
nodes reachable from u by gray paths will have
turned green and no other nodes will have been
colored green.

Suppose that we call DFS in a connected
component where we have previously not called
DES before.

All nodes in the connected component are
reachable from one another, and all nodes are

gray.

Therefore, DFS terminates having colored all
nodes in that connected component green and
coloring no other nodes green.
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procedure findCCs(graph G):
for each node v:
color v gray

let cc be an array of size n

let index = 0
for each node in v:
if v i1s gray:
run DFS(v), setting cc[u] = index
whenever a node u is colored green
index = index + 1

return cc




Analyzing the Runtime

 We do ©®(n) work initially coloring each
node gray.

 Across all iterations of DFS, each node is
visited exactly once and each edge is
visited exactly once. This takes ®(m + n)
time.

 Consequently, total work is ®@(m + n).

e Could we also use BFS here? If so, what
would the runtime be?



Strongly Connected Components



Directed Connectivity

In a directed graph G, we say v is reachable
from u iff there is a path from u to v.

In an undirected graph, if there is a path from
u to v, there is also a path from v to u.

In a directed graph, it is possible for there v to
be reachable from u, but for u not to be
reachable from v.

How would we generalize the idea of a
connected component to a directed graph?

































Strongly Connected Components

 Let G = (V, E) be a directed graph.

 Two nodes u, v € V are called strongly
connected iff v is reachable from u and u
1S reachable from v.

» A strongly connected component (or
SCC) of G is a set C C V such that

e C 1s not empty.

 For any u, v € C: u and v are strongly
connected.

« Foranyu € Candv € V- C: uand v are not
strongly connected.
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Properties of SCCs

 The following properties of SCCs are
true; it's a good exercise to prove them.

« Two SCCs C1 and C: are either equal or
disjoint.
 Every node belongs to exactly one SCC.

« The SCCs of a graph form a partition of the
nodes of the graph.



Finding SCCs

 Every graph must have a collection of
SCCs.

* In the undirected case, it was easy to find
all the connected components of a graph
by using DFS or BFS.

« Will this find all SCCs in a directed graph?

 Question: How can we determine all of
the strongly connected components of a
directed graph G?



A Beautiful Observation



Condensation Graphs

 The condensation of a directed graph G
is the directed graph G°¢“ whose nodes
are the SCCs of G and whose edges are
defined as follows:

(Ci1, C2) is an edge in G°¢¢ iff
Ju € C1, v € C2. (u, v) is an edge in G.

* In other words, if there is an edge in G
from any node in C1 to any node in Co,
there is an edge in G>¢¢ from C: to C-.










































An Amazing Result

« Theorem: For any directed graph G, the
condensation G°¢¢ of G is a DAG.

 Proof Sketch:
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SCCs and DAGs

« We now see that there is a close
connection between SCCs and DAGSs:
the SCCs of a graph form a DAG.

 Intuitively, you can think of a graph as a
two-layer structure:

« At a high level, a graph is a DAG of SCCs
showing the top-level connections between
clusters of nodes.

« At a lower level, you can see the connections
between nodes in the same SCC.



SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:
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SCCs and DAGs

« Now that we have found a connection
between SCCs and DAGSs, can we adapt any
of our algorithms on DAGs to find SCCs?

« Right now, our main operation on DAGS is
topological sort, and we have two
algorithms we can use:

 Repeatedly removing a source node. That won't
help us here, since we can't easily tell if a node
1s in a source SCC.

 Running DFS and reversing the result. So what
happens if we try that out?
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What's Going On?

It looks like if we look purely at the last node from
each SCC to turn green, we get a topological sort
of G5¢¢ in reverse.

 Here, each SCC is represented by a single node.

This helps us get a better sense for how the SCCs
are interlinked!

However, we still don't have a reliable way to
determine which node is the last node in each SCC
to turn green...

For starters, let's convince ourselves that this isn't
a coincidence.



Some Notation

We'll denote by f(v) the time at which node v is
colored green by the algorithm.

* flu) < f(v) means “node u was colored green
before node v was colored green.”

Note that every node is eventually colored
green, so this notation is well-defined.

Let C be an SCC. Define
f(C) = max, . f(V)

In other words, f(C) is the time at which the
last node in C was colored green.



Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).



Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

In other words:
*The last node in an

SCC To Turn green is
the tirst node DFS
visiTs in That sCC.,”
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first node in C visited by DFS, all nodes in C are
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