
MPI, continued

Outline

• Finish MPI discussion
- Review blocking and non-blocking communication

- Introduce one-sided communication

• Sources for this lecture:
- http://mpi.deino.net/mpi_functions/

Today’s MPI Focus – Communication Primitives

• Collective communication
- Reductions, Broadcast, Scatter, Gather

• Blocking communication
- Overhead

- Deadlock?

• Non-blocking

• One-sided communication

3

Quick MPI Review

• Six most common MPI Commands (aka, Six Command
MPI)

- MPI_Init

- MPI_Finalize

- MPI_Comm_size

- MPI_Comm_rank

- MPI_Send

- MPI_Recv

• Send and Receive refer to “point-to-point”
communication

• Last time we also showed collective communication
- Reduce

4

Deadlock?

int a[10], b[10], myrank;
MPI_Status status; ...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);

MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD); }

else if (myrank == 1) {
MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

}
...

5

Deadlock?

Consider the following piece of code:

int a[10], b[10], npes, myrank;
MPI_Status status; ...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

MPI_COMM_WORLD); ...

Global Sum using Butterfly

Example: MPI Code for Butterfly Allreduce

• This is a class time exercise!

MPI_Allreduce

Global Sum using Allreduce

• Write the same program!

Matrix-Vector Multiplication

Serial Algorithm

MPI Version

Homework

•Include the parallel and serial
algorithms of Matrix Mupltiply and
compare their timing on a parallel
machine. Use a 1000x1000 double
matrix and a 1000 element vector.

More difficult p2p example: 2D relaxation

Replaces each interior value by the average of its
four nearest neighbors.

Sequential code:

for (i=1; i<n-1; i++)

for (j=1; j<n-1; j++)

b[i,j] = (a[i-1][j]+a[i][j-1]+

a[i+1][j]+a[i][j+1])/4.0;

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPI code, main loop of 2D SOR computation

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPI code, main loop of 2D SOR computation, cont.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPI code, main loop of 2D SOR computation, cont.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPI_Scatter()

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPI_Scatter Example

Distribute Data from input using a scatter operation

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MPI Gather

MPI_Gather Example

Non-Blocking Communication

• The programmer must ensure semantics of the send
and receive.

• This class of non-blocking protocols returns from the
send or receive operation before it is semantically
safe to do so.

• Non-blocking operations are generally accompanied by
a check-status operation.

• When used correctly, these primitives are capable of
overlapping communication overheads with useful
computations.

• Message passing libraries typically provide both
blocking and non-blocking primitives.

Non-Blocking Communication

• To overlap communication with computation, MPI
provides a pair of functions for performing non-
blocking send and receive operations (“I” stands for
“Immediate”):

int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

These operations return before the operations have been
completed.

• Function MPI_Test tests whether or not the non- blocking send
or receive operation identified by its request has finished.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status
*status)

• MPI_Wait waits for the operation to complete.

int MPI_Wait(MPI_Request *request, MPI_Status *status)
CS4230

Improving SOR with Non-Blocking Communication
if (row != Top) {

MPI_Isend(&val[1][1], Width-
2,MPI_FLOAT,NorthPE(myID),tag,MPI_COMM_WORLD, &requests[0]);

}

// analogous for South, East and West

…

if (row!=Top) {

MPI_Irecv(&val[0][1],Width-2,MPI_FLOAT,NorthPE(myID),

tag, MPI_COMM_WORLD, &requests[4]);

}

…

// Perform interior computation on local data

…

//Now wait for Recvs to complete

MPI_Waitall(8,requests,status);

//Then, perform computation on boundaries
CS4230

Taking Time in MPI

• MPI_Wtime

One-Sided Communication

CS4230

MPI Constructs supporting One-Sided
Communication (RMA)

• MPI_Win_create exposes local memory to RMA
operation by other processes in a communicator

- Collective operation

- Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote
memory

• MPI_Get retrieves data from remote memory into
local memory

• MPI_Accumulate updates remote memory using local
values

CS4230

MPI_Put and MPI_Get

int MPI_Put(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Win win);

int MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Win win);

Specify address, count, datatype for origin and target,
rank for target and MPI_win for 1-sided
communication.

CS4230

MPI Critique (Snyder)

• Message passing is a very simple model

• Extremely low level; heavy weight
- Expense comes from λ and lots of local code

- Communication code is often more than half

- Tough to make adaptable and flexible

- Tough to get right and know it

- Tough to make perform in some (Snyder says most) cases

• Programming model of choice for scalability

• Widespread adoption due to portability, although not
completely true in practice

CS4230
31

