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ABSTRACT

As an integral part of reliable communication in wireless
networks, effective link estimation is essential for routing
protocols. However, due to the dynamic nature of wireless
channels, accurate link quality estimation remains a chal-
lenging task. In this paper, we propose 4C, a novel link
estimator that applies link quality prediction along with
link estimation. Our approach is data-driven and consists
of three steps: data collection, offline modeling and online
prediction. The data collection step involves gathering link
quality data, and based on our analysis of the data, we pro-
pose a set of guidelines for the amount of data to be col-
lected in our experimental scenarios. The modeling step
includes offline prediction model training and selection. We
present three prediction models that utilize different ma-
chine learning methods, namely, naive Bayes classifier, lo-
gistic regression and artificial neural networks. Our models
take a combination of PRR and the physical layer informa-
tion, i.e., Received Signal Strength Indicator (RSSI), Signal
to Noise Ratio (SNR) and Link Quality Indicator (LQI) as
input, and output the success probability of delivering the
next packet. From our analysis and experiments, we find
that logistic regression works well among the three models
with small computational cost. Finally, the third step in-
volves the implementation of 4C, a receiver-initiated online
link quality prediction module that computes the short tem-
poral link quality. We conducted extensive experiments in
the Motelab and our local indoor testbeds, as well as an
outdoor deployment. Our results with single and multiple
senders experiments show that with 4C, CTP improves the
average cost of delivering a packet by 20% to 30%. In some
cases, the improvement is larger than 45%.
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1. INTRODUCTION
Power consumption is one of the main concerns when using
battery-powered WSNs. Compared with the sensing com-
ponents and the processor unit, the radio is often one of the
most power hungry components in a wireless sensor [18].
Thus, reducing the total number of radio transmissions per
packet is one of the main goals of network protocols for
WSNs. For many sensor networks applications and deploy-
ments [17, 29, 26], the basic network structure is a multihop
tree topology: nodes in the network connect to the root
node(s) through one or more hops, forming a tree-like struc-
ture. Routing protocols establish the routing tree based on
the quality of the wireless links between the sender nodes
and the forwarding nodes such that the path cost of sending
a packet to the root is minimal. In this regard, accurate
link quality estimation is vital to achieve optimal routing
topologies. However, due to the dynamic nature of wireless
channels, accurate link quality estimation remains a chal-
lenging task. Most of the current link estimation metrics are
cost based, which means they compute the cost of delivering
a packet through a link based on the packet reception rate
(PRR). For example, CTP [14], the main collection protocol
in TinyOS [16], uses ETX [10] to create a routing gradient.

However, PRR based metrics have two problems. First,
since calculating PRR requires several packets, cost based
metrics tend to capture long term quality variations instead
of short temporal changes. Prior work [9, 2] has shown that
by taking advantage of long links of intermediate quality
can reduce the number of hops in the path, and ultimately,
reduce the number of transmissions for delivering a packet.
Nevertheless, identifying when an intermediate link is in a
high quality period is relatively hard for PRR based metrics
due to the long data packet intervals in many WSN appli-
cations and the convergence time of PRR itself. Second,
cost based metrics assume that the current link quality re-
mains the same as the last estimation, but this assumption
of stable link quality is often invalid due to the notoriously
frequent variations of wireless links. In this paper, we tackle
this problem by trying to predict the expected link quality
of the link based on historical information.

In addition to PRR, physical layer information is another
direct indicator of link quality. The CC2420 radio chip,
a widely used off-the-shelf low power radio chip, can pro-
vide the Received Signal Strength Indicator (RSSI) and Link
Quality Indicator (LQI) for received packets. Moreover, en-
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vironment noise level can also be detected by CC2420, so the
Signal to Noise Ratio (SNR) is also available. These param-
eters from physical layer (PHY) are directly related to the
wireless channel quality when a packet is received, so there
is usually a close correlation between the PHY parameters
and the link quality. In particular, there are routing proto-
cols that use LQI as link quality metric [1, 24]. However,
due to the short temporal dynamics of wireless channel and
differences in hardware calibration [7, 31], it is hard to find
a well defined correlation between the PHY parameters and
PRR over different links and even different networks. As a
result, state of art routing protocols only utilize PRR based
link estimation metrics such as ETX.
In this paper, we propose to use a machine learning ap-

proach to predict the short temporal quality of a link with
both physical layer information and PRR. Our prediction
models take the PHY parameters of the last received pack-
ets and PRR of the link as input, and predict the probability
of receiving the next packet. We show that these parameters
can reveal the current state of the wireless channel so that
the models can perform a more accurate quality estimation
than PRR. Our data-driven approach consists of three steps.
The first step involves link quality data collection, and based
on the analysis of the data we propose a set of guidelines for
the amount of data to be collected in our experimental sce-
narios. The second step includes offline prediction model
training and selection. We develop three prediction mod-
els that utilize different machine learning methods, namely,
naive Bayes classifier, logistic regression and artificial neu-
ral networks. From our analysis, we find that the logistic
regression works well among the three models with small
computational cost. Finally, the third step involves the im-
plementation of 4C, a receiver-initiated online link quality
prediction module that computes the short temporal link
quality. We conducted extensive experiments in the Mote-
lab [27], our local indoor testbed and a temporary outdoor
deployment. Our results show that with 4C, CTP improves
the average cost of delivering a packet by 20% to 30%. In
some cases, the improvement reaches 46%. We show that 4C
can help routing protocols identify short term high quality
links with small overhead, reducing the number of hops as
well as improving the overall transmission costs.
Our contributions are:
– Analysis and evaluation of the use of both PRR and the

physical layer information for link quality estimation. We
supplement the PRR based estimator with physical layer in-
formation to improve the estimation for intermediate quality
links while maintaining accurate estimation for stable links.
– Development and evaluation of prediction models to be

used for online link quality prediction. We show that these
models, with the appropriate set of parameters, can be im-
plemented in resource constrained nodes with very limited
computation capabilities and small overhead.
– Design and experimental evaluation of a receiver-initiated

online prediction module that informs the routing protocol
about the short temporal high quality links, enabling the
routing protocol to select temporary, low-cost routes in ad-
dition to the stable routes.
The rest of the paper is organized as the following. Sec-

tion 3 details the exploratory analysis for the physical layer
parameters, the data collection, the modeling process, in-
cluding the construction of the models, model training, and
an analysis of model selection for an actual implementation

in resource constrained nodes. Section 4 describes the im-
plementation details of 4C, and Section 5 presents the exper-
imental results of the CTP with 4C. Section 2 summarizes
the related research, and finally in Section 7 we conclude.

2. RELATEDWORK
Effective link quality measurement is a fundamental build-
ing block for reliable communication in WSNs. Woo et
al. [28] outlined an effective design for multihop routing and
confirmed that the PRR based metrics such as ETX [10]
are more suitable in cost-sensitive routing scenarios. They
also showed that window mean estimator with exponentially
weighted moving average (WMEWMA) is superior to other
well established estimation techniques such as moving av-
erage. Based on their design, Fonseca et al. [13] proposed
the 4Bit link estimator that combines information from the
physical, data-link and network layers using four bits. 4Bit
still uses ETX as its link quality metric, but it also employs
physical layer parameter as an indication of channel quality.
Physical Layer Parameters as Link Quality Metric:
Other than metrics based on packet reception, the correla-
tions between the physical parameters and PRR have been
well studied. Theoretically, PRR can be computed using
SNR and other radio parameters such as the modulation
scheme, encoding scheme, frame and preamble lengths [32].
However, experimental work with early platforms done by
Zhao et al. [30] showed that it is difficult to make good es-
timation for low and intermediate quality links using RSSI
values due to the short wireless channel coherence time. Lai
et al. [15] observed that the expected packet success rate
(PSR) can be approximated by SNR with a sigmoid func-
tion, and proposed an energy efficient cost metric that is
calculated with the reciprocal of PSR weighted by the dis-
tance between the measured SNR value and the“knee”point
in the sigmoid curve. Later work by Son et al. [21] confirmed
their findings, and also found a significant variation of about
6 dB in the threshold for different radios operating at dif-
ferent transmission powers. A more recent work by Senel et
al. [20] proposed a SNR based estimator: the receiver nodes
use a pre-calibrated SNR-PSR curve to estimate the PSR
with SNR processed by a Kalman Filter. There are also at-
tempts to create hybrid link estimators. Baccour et al. [4]
proposed F-LQE, a fuzzy logic link quality estimator that
utilizes linear membership functions to compute the quality
estimation based on the four characteristics: packet delivery
(PRR), link asymmetry, stability and SNR. 4C mainly dif-
fers from the above metrics in terms of modeling approach
as detailed in the following sections.
Link Burstiness: Prior research shows that most of the
link quality variations are observed in links with intermedi-
ate quality [30, 28, 8] (PRR between 10% and 90%). More-
over, intermediate links often show bursty patterns on pack-
ets reception, which implies that packet losses are corre-
lated [22, 2]. To quantitatively study the characteristics of
the bursty links, Srinivasan et al. [22] defined a β factor that
quantifies the burstiness of a link. Alizai et al. [2] proposed a
bursty routing extension (BRE) to the existing routing pro-
tocols, which utilizes a short term link estimator (STLE)
to detect short-term reliable links. STLE is designed based
on the heuristic that any link, no matter of what quality,
becomes temporarily reliable after three consecutive pack-
ets are received over that link. The sender switches back
to the original next hop immediately on packet loss. Our
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Figure 1: Packet Reception Rate (PRR), Received Signal Strength Indicator (RSSI) and Link Quality Indi-
cator (LQI) variation of an intermediate link over a period of 2 hours.
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Figure 2: Packet Reception Rate (PRR) as a function of Received Signal Strength Indicator (RSSI), Signal
to Noise Ratio (SNR) and Link Quality Indicator (LQI) for 160 hours of data for 72 links.

design is fundamentally different from STLE as we try to
capture bursts of high quality periods using models trained
with specific data traffic patterns instead of using heuristics.
Link Quality Prediction: Applying data-driven methods
on link quality prediction has been less studied. K. Farkas et
al. [12] made link quality predictions using a pattern match-
ing approach based on SNR. The main assumption is that
the behavior of links shows some repetitive pattern. The au-
thors suggest that the above assumption is valid for 802.11
wireless ad-hoc networks. Furthermore, they proposed XCo-
Pred (using Cross-Correlation to Predict), a pattern match-
ing based scheme to predict link quality variations in 802.11
mesh networks in [11]. 4C differs from XCoPred in sev-
eral aspects: 4C combines both PRR and PHY parameters
with prediction models trained off-line, whereas XCoPred
considers SNR only and uses cross correlation without prior
training. W. Yong et al. [25] used a decision tree classifier
to facilitate the routing process. Their approach is to train
the decision tree offline and then use the learned rules on-
line. The results show machine learning can do significantly
better where traditional rules of thumb fail. However, they
only considered RSSI in their input features and overlooked
other physical layer information, whereas our modeling ex-
plore much more parameters with different traffic patterns.

3. MODELING
We propose to use machine learning methods to build mod-
els that predict the link quality with information from both
physical layer and link layer. To predict the quality of the
wireless links, we use a combination of the PHY parameters
(RSSI, SNR and LQI) and the PRR filtered by a window
mean estimator with exponentially weighted moving aver-
age (WMEWMA) [28]. The intuition behind our approach
is quite simple. We supplement the WMEWMA estimator,
accurate mainly for high and low quality links that are sta-
ble in nature, with physical layer information to improve
the estimation for the intermediate quality links which are
highly unstable and show the most variation.
We first motivate our research with an exploratory anal-

ysis. Then, we formally define the problem trying to solve,
the modeling methods, and the procedure of model training.
The modeling results are presented in the end.

3.1 Exploratory Data Analysis
PHY information is a direct measurement of the wireless
channel quality when a packet is received, so we should ex-
pect some level of correlation between PHY information and
link quality. Figure 1 shows the PRR variation of a inter-
mediate link over 120 minutes, as well as the correspond-
ing RSSI and LQI variations in that period. The similar
variation patterns suggest that we can leverage the PHY in-
formation to predict link quality. Indeed, there are routing
protocols that operate based on LQI [1, 24]. However, due to
the short temporal dynamics of wireless channel and differ-
ences in hardware calibration, it is hard to find well defined
correlations between PHY information and PRR over dif-
ferent links and even different networks. We believe this is
the reason why widely used routing protocols like CTP [14]
often utilize PRR cost based link estimators.

One question we would like to explore is to what extent
we can correlate PHY parameters and PRR, such that we
could use them as input in the prediction process of expected
PRR. Figure 2 shows the relationships between PRR and the
different PHY parameters. The curves were obtained with
data collected as explained in Section 3.4. A simple visual
inspection of Figures 2(b) and 2(c) shows that both LQI
and SNR have a significant correlation with PRR. On the
other hand, Figure 2(a) shows that RSSI has values spread
over a wider range of PRR values for RSSI values in the −94
and −85 dBm range. The solid line shows the logistic fit for
each of the curves. As expected, both LQI and SNR present
very high R2 goodness of fit [6] values of 0.9386 and 0.8744
respectively. RSSI has a much lower R2 of 0.4348.

Based on these results, there are a couple of observations
we can make. First, our results agree with previous findings
in [15] and [21] for SNR. However, our results extend the
findings to LQI, and also show it is the PHY parameter that
has the best goodness of fit. Second, our results for RSSI
differ from those found in [23]. When collecting a larger
number of experimental traces, we find that the LQI has
a smaller variance than RSSI. We also noted that not all
the links with −87 dBm RSSI values have PRR larger than
85%. In our data traces we get extreme cases of intermediate
links with RSSI values larger than −87 dBm up to −74
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dBm. Finally, based on our data analysis, it is clear that we
should take advantage of PHY information to determine the
expected packet reception. The following sections show how
to use both PHY information and PRR to our advantage.

3.2 Problem Definition
The model we want to create takes W packets as input to
predict the reception probability of the next packet. In other
words, the input to our model is a vector that is constructed
from the the historical information of W packets. An input
vector (Inputi) is expressed as follows:

Inputi = [PKTi−1, PKTi−2, . . . , PKTi−W ]

and the output is the reception probability of the ith packet:

P (Receptioni|Inputi).

The packet vector PKTi is comprised of packet reception
rate and a subset of available physical layer information
PHYi corresponding to a packet. It is written as:

PKTi = [PRRi, PHYi], PHYi ⊂ (RSSI, SNR,LQI)i

All the values in a packet vector are discrete. PRRi is the
WMEWMA output and has a range between [0, 1]. The
physical parameters (RSSI, SNR and LQI) have different
ranges ([−55, 45],[0, 50] and [40, 110] respectively), so we
scale them down to the range [0, 1], such that the physi-
cal parameter vector PHYi is within the unit range of [0, 1].
With this notation, we can represent a lost packet as:

PKTi = [PRRi, 0]

where, PHYi = 0 since there is no physical parameter avail-
able for lost packets.
In real world sensor network applications, the data traffic

can be periodic (e.g. temperature monitoring) or aperiodic
(e.g. event detection). We account for this behavior by using
input vectors composed of data packets with fixed or random
inter-packet interval (I) times. With a fixed I, the input vec-
tor is composed of periodic packets separated by the same
time interval. For random I, we use a Bernoulli process to
select packets such that the time intervals between two con-
secutive packets follow a binomial distribution whose mean
equals to I. These two data composition methods enable
our link prediction scheme to deal with varying periodicity
of data as seen in real applications. We train models using
different average I values and data composition methods to
test the prediction performance under changing periodicity.

3.3 Prediction Methods
The modeling method should satisfy the following require-
ments to be considered practical for sensor networks:
– Small Training Data: The model should not need sig-
nificant deployment efforts for gathering training data for
extended periods of time. Otherwise, the overhead of gath-
ering data to train the model alone might outweigh the ben-
efits gained by using the model.
– Light Weight Online Prediction: While training the model
offline can be computationally costly, the implementation of
the online link prediction scheme using the trained model
should have low computational complexity and small mem-
ory requirements.
Based on these guidelines, we tried three methods:

Naive Bayes classifier (NB) is a simple probabilistic clas-
sifier based on Bayesian theorem with the conditional inde-

Parameters Values
Input Feature PRR+ {RSSI, SNR,LQI}
Number of Links (L) 20, 7, 5, 3, 2, 1
Number of Packets (P ) 36000, 10000, 5000, 1000, 500
Input Window (W ) 1, 2, 3, 4, 5, 10
Packet Interval (I) 0.1, 0.2, 0.5, 1, 10, 60 (seconds)

Table 1: Tunable Parameters

pendence assumptions: each feature in a given class is con-
ditionally independent of every other feature. Although the
independence assumption is quite strong and is often not
applicable, NB works quite well in some complex real-world
situations such as text classification [5]. Due to its simplic-
ity, we consider NB advantageous in terms of computation
speed and use it as a baseline of our comparison.
Logistic Regression (LR) is a generalized linear model
that predicts a discrete outcome from a set of input vari-
ables. It is an extensively used method in machine learning,
and is easy to implement in sensor nodes.
Artificial Neural Networks (ANN) is a non-linear mod-
eling technique used for finding complex patterns in the un-
derlying data. For modeling, we used a standard feedforward
network with one hidden layer of 5 perceptrons. The small
number of hidden units reduces the computational complex-
ity for faster online prediction on a sensor node.

3.4 Data Collection
In order to train the model, we collected packet traces from
two testbeds: a local wireless sensor network testbed and
the Motelab [27], a sensor network testbed composed of 180
Tmote Sky motes. The local testbed is comprised of 54
Tmotes, installed on the ceiling of a corridor in a typical
office building.

We implemented a collection program to record the phys-
ical layer information of every received packet of a wireless
link. During one data collection experiment, a sender node
continuously transmits packets to a receiver node with 100
milliseconds inter-packet interval (Tx-power=0dB, channel
26). Upon packet reception, the receiver node records the
sequence number, RSSI and LQI of the received packets.
In addition, the receiver measures the noise floor level by
sampling the environmental noise 15 times with 1 millisec-
ond interval after every reception. The measurement of the
noise floor level enables us to compute the SNR. We ran
the data collection program on 68 sender-receiver pairs in
different time slots to avoid inter-node interference. In to-
tal, we recorded information for approximately 5.4 million
packets over 160 hours of data collection. Each of the 68
packet traces contains records for 80,000 packets. Among
the 68 links, there are 12 low quality links (PRR < 10%),
14 intermediate links (10% < PRR < 90%), and 42 high
quality links (PRR > 90%).

For Motelab, we collected packet traces from 10 links for
one hour. Different from the local testbed data, only RSSI
and LQI was collected, and the inter-packet interval is set
to 62.5 milliseconds (64 packets per second). As we show in
Section 3.7, a dataset of this scale is more than enough to
train prediction models with satisfying accuracy.

3.5 Tunable Parameters
We varied several parameters in the training process to ex-
plore the optimal training parameter collection. Table 1
shows the different parameter combinations with regards to
the input data during the training of our models.
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Figure 3: Prediction errors for L = {1, 2, 3, 5, 7, 20}, P = 36000.
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Figure 4: Prediction errors for L = 5, P = {500, 1000, 5000, 10000, 36000}.

We experimented with different input feature vectors as
well as various W and I values during the training process.
W denotes the amount the historical packets needed to make
a prediction, whereas I decides the periodicity of the pre-
diction. The choice of them can greatly affect the prediction
quality and the feasibility of implementing the model on re-
source constrained sensor nodes. For the input feature, we
tried combination of PRR with all the physical information
(PRR+RSSI + SNR+ LQI) as well as PRR with one of
the parameters (PRR+RSSI/SNR/LQI).
The input vectors are composed of data combined from a

number of links (L) with a number of packets per link (P ).
Ideally, the training data should cover links with different
qualities such that the resulting model can cope with a large
spectrum of link quality variation. To ensure maximum link
diversity in terms of packet reception rate, we maximize the
difference between the L links in the reception rate such that
the average reception rates are evenly distributed from 0%
to 100%. Hence, a larger L implies better link diversity in
the training set. Note that although we only consider link
diversity in the reception rate dimension, future work will
explore this issue more deeply in a multi-dimensional space,
where each dimension quantifies a different characteristic of
the link, e.g., standard deviation and skewness.
The number of packets (P ) used from each link is also a

tunable parameter when training our models. From a prac-
tical point of view, for constructing the model using the pro-
posed approach in a different environment, the users need to
collect certain minimum amount (in terms of link diversity
and length) of traces to replicate conditions from the target
environment. We parameterize these constraints (L and P )
and explore the associated trade-off in the training process.
To find a balance between the training data size and predic-
tion accuracy, we vary the training dataset and compare the
accuracy of the resulting model. We tried several combina-
tions of link selection, ranging from using all the available
links to selecting only one.

3.6 Training Procedure
Once the parameters are set, we use the following steps to
train the models.
Packet Selection: Select L links from the collected data.
From each link, select P packets according to the I. As
described in Section 3.2, the time intervals between packets
can be either fixed or random based on the periodicity of I.

PRR Computation: Compute the PRR by applying the
WMEWMA filter on the selected packets. To mimic the
ETX calculation of 4Bit [13], we set the window size of the
WMEWMA filter to 5 packets and α to 0.9.
Input Vector Construction: Based on the input features,
we take the PHY parameters of W packets and combine
them with the most recent PRR value computed in the pre-
vious step to construct an input vector. We repeat this step
until all selected packets are used. The target vector is also
constructed during the process by checking the reception
status of the next packet of each input vector: we mark the
target (desired output) of an input vector as 1 if the next
packet is received, and 0 otherwise.
Model Training and Testing: Once the input vectors
and the target are constructed, we randomly select 60% of
the total input vectors as the training data and use the re-
maining 40% as the testing data. We train the three models
with the training data and then apply the trained models to
the testing data. The prediction results are compared with
the corresponding target vector to assess the performance.

The 4 steps described above will create, train and test
all three models with the same parameter set in MATLAB.
To avoid excessive training, we first run the procedure with
fixed input features to narrow down the reasonable input
data size (L and P ). We then fix the input data size and
run the training procedure for different combinations of in-
put features, W and I. Due to the simplicity of the NB
and LR models, training for each model needs less than one
minute on a regular PC. On the other hand, each training of
the more complex ANN based models can take up to several
hours. In the end, we repeat the procedure for more than
50 times using data from the local testbed and the Motelab
testbed, resulting in more than 150 models trained with dif-
ferent parameter sets for each testbed. Although the number
of models is large, their performance trend is relatively clear
as discussed in the following sections.

3.7 Modeling Results
Here we discuss the performance of our three models when
evaluated on the testing data. We plot the variation in the
mean square error (MSE) as a function of input features,
L, P , W and I. Based on the results, we propose the data
requirement of training (L and P ) as well as the model selec-
tion guideline (W ) for the experimental evaluation in Sec-
tion 5. Ideally, we would like to have the error as low as
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Figure 5: Prediction errors for W = {1, 2, 3, 4, 5, 10}. Trained with L = 5, P = 1000.
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Figure 6: Prediction errors of I = {0.1, 0.2, 0.5, 1, 10, 60} seconds. Trained with L = 5, W = 1.

possible when L, P and W are small and I is large. Note
that although we trained models for the local testbed and
the Motelab testbed respectively, their performance results
are very similar and the overall trend is the same. As such,
we only present the local testbed results for brevity.
Input Features: Our results show that the choice of PHY
parameters does not affect the prediction result much except
for the NB models, so we omit the figure for brevity. Also,
the LR and ANN models show better prediction capability
than the NB models, which can be observed from the figures
in this section. In the remainder of this section we show the
modeling results of using PRR+ LQI as the input feature.
Number of Links (L): Figure 3 shows the variation in
the prediction error of the three models as a function of L.
Across all three models, we see a common trend of decreas-
ing prediction error as L increases. For the NB models, the
performance when using fewer links is much worse than for
L = 20. However, for the LR and ANN models, the pre-
diction error is small (≈ 0.2) if L ≥ 2. This shows that
the performance for the LR and ANN models trained with
only two or more links is comparable to the ones trained
with multiple links. Hence, for modeling proposes, only a
few links with intermediate PRR are required to model the
variations in a large variety of links.
Number of Packets per Link (P ): Next, we plot the
variation in the prediction error of the models as a function
of P . From Figure 4, we observe that for high values of P
(36000), the prediction error of all three models is almost the
same with P values as low as 5000. In fact, the prediction
error increases significantly only after P is dropped below
1000. This shows that we only need around 1000 packets
per link to train the prediction models.
Window Size (W ): W corresponds to the amount of his-
torical information required by the model to predict the re-
ception probability of the next packet. Intuitively, large
W means more information will be made available to the
model, so it should improve the prediction performance at
the cost of more buffering and processing needs. However,
Figure 5 shows that the prediction error does not decrease
very rapidly as we increase W from 1 to 10, which implies
that only the most recent packet is important for the pre-
diction. Therefore, the LR and ANN models should work
reasonably well with a small window size such as W = 1.
Inter Packet Interval (I): Intuitively, the longer the I,

the older is the packet reception information used by the
model. Therefore, the prediction error should be worse be-
cause intermediate links may experience significant tempo-
ral dynamics. Figure 6 shows the prediction errors as the I
(aperiodic) increases from 100 milliseconds to 1 minute, with
the MSE of models trained with different P plotted together.
It shows that prediction error does not degrade much until
I = 1 minute, implying that our models are not sensitive to
I < 1 minute when L = 5, P = 1000. Moreover, the MSE of
models with different P shows that using higher P can re-
duce the prediction error. In our case, models trained with
P = 5000 is enough to provide similar accuracy comparing
to models with P = 36000. Periodic I gives similar results
and are omitted here.

Note that although shorter Is give better results, in prac-
tice a model trained with short I may not perform well when
there is a mismatch between the I and real packet sending
intervals. For example, a model trained with 1 second I as-
sumes that the average data rate is 1 packet/second, and
predicts the success probability of the next packet whenever
a new packet is received. However, if the actual packet in-
terval is 10 seconds, the prediction based on the 1 second
interval assumption will expire for 9 seconds, and may not
represent the success probability of the next packet. There-
fore, a model performs the best when the actual packet inter-
val matches the I value. A simple solution to this problem
is to train multiple models with different I values and do
best matching based on the data rate conditions seen in the
field. We explore the same I mismatch issue in Section 5.3,
and leave the full evaluation of the solution for future work.
Summary: These results are quite significant. They es-
sentially show that a user that wants to train a model just
needs to gather several minutes (2-10 minutes) worth of data
from only a few links (5-7 links) to reach an MSE that is
similar to models trained with much higher number of links,
and with significantly longer packet traces. Moreover, the
trained model only need one historical packet for the predic-
tion. We evaluate the statement experimentally in Section 5.

3.8 Performance Gain with Prediction
We also compare the prediction performance of our models
with a Bernoulli process, an informed estimator based on the
full knowledge of the link PRR ahead of time. We set the
success probability of the Bernoulli process to be equal to
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Figure 7: Prediction accuracy for links of varying PRR of models trained with L = 5, P = 5000, W = 1 and
I = 10 seconds.

the PRR, so the 1/0 trail generated by the Bernoulli process
can be used to predict packet reception based on the overall
link quality. We apply our models and the Bernoulli process
on several empirical intermediate quality links and compare
the prediction accuracy of different modeling methods and
varying input features.
The prediction accuracy is computed as the ratio of the

correctly predicted packets to the total number of packets of
the link. Figure 7(a) shows the performance of the NB, LR,
ANN models and the Bernoulli process for wireless links of
varying PRR. We see that for I = 10 seconds our predic-
tion models consistently outperform the Bernoulli process.
This result illustrates that our modeling approach can better
adapt to link quality variations than the Bernoulli process.
It also shows that LR based model can provide very good
prediction accuracy at low computational costs. Figure 7(b)
shows the prediction accuracy of LR models with different
input features. In almost all cases, we see that the pre-
diction models perform better than the Bernoulli process.
Moreover, we see that the best prediction result is achieved
by using both PRR and LQI in our input feature, followed
by PRR and LQI only cases. We see that PRR does a better
job than LQI, except for very good links on which the LQI
based predictor performs better. The intuition behind this
result is that although PRR is a good estimate for links with
stable quality, it is too stable to account for the rapid qual-
ity variations. Additionally, LQI changes too drastically on
wireless channel variations, making it unstable for long term
estimations (unless the link is consistently good). By using
the combination of LQI and PRR as input, the LR model
can supplement the PRR with LQI, and therefore performs
better in estimating link quality for intermediate links.
Note that in some cases, the accuracy of Bernoulli pro-

cess is even worse than the average PRR of the link. In
essence, the packet losses/successes are often correlated [8]
and therefore the underlying packet reception distribution
is not a Bernoulli process. For example, suppose a 5-packet
trace of the form 11110 is collected with PRR = 80%. A
Bernoulli process with p = 0.8 will predict this sequence
with prediction accuracy at least of 80% in only a 6 cases,
namely 11110, 11111, 01110, 10110, 11010 and 11100. In all
other 26 cases, the prediction accuracy will be < 60%, so the
expected prediction accuracy (weighed over the likelihood of
each sequence) will be less than the PRR value. This simple
example shows the difficulties a link estimator faces: even if
it captures the PRR correctly, the correct prediction is still
not guaranteed.

4. ESTIMATOR DESIGN
In this section we present the design of the 4C link estimator.
We first show how we integrate the prediction based link

Figure 8: Overall Design of 4C.

estimation with the existing link estimator, then discuss the
main challenges and details of the model implementation.

4.1 Overview
4C shares a similar approach with the Short Term Link Es-
timator (STLE) [2]. It works in parallel with an existing
link estimator, using information from overheard packets to
predict the link quality of neighboring nodes. If 4C finds
that it can provide a better path cost than the parent node
of a sender, it will send beacon packets to the sender to an-
nounce itself a temporary parent as detailed in Section 4.3.
After reception of this beacon, the sender will switch its next
hop from the parent node designated by the routing protocol
to the temporary parent. Thereafter, the sender will send
future packets to the temporary parent until the number of
consecutive lost packets exceeds a threshold, or the tempo-
rary parent denounce itself. In this case, the sender node
will switch back to the old parent node.

In essence, both STLE and 4C attempt to reduce the to-
tal number of transmissions per packet by using temporary
routes on the basis of a stable network topology established
by the routing protocol such as CTP. However, there are two
main differences between STLE and 4C. First, they apply to
different traffic patterns. 4C is focused on providing a more
informed link estimation whereas the main goal of STLE is
to detect short term reliability of intermediate links using a
simple heuristic procedure: 3 consecutive packet receptions
means the link is usable, and a loss means the links is no
longer usable. On the other hand, 4C can fit to a wide range
of traffic patterns by utilizing appropriate models. For ex-
ample, experimental results in Section 5 show that with the
logistic regression model, 4C works the best when tested us-
ing similar traffic patterns used for training. On the other
hand, STLE is most suited for bursty link discovery, there-
fore its heuristic-based approach applies specifically to only
a bursty traffic pattern. Second, STLE is mainly a qual-
itative measurement whereas 4C is quantitative in nature.
STLE can identify whether an intermediate link reliable or
not, but it can not specify how reliable the intermediate
link is. In contrast, 4C is designed to give a quantitative
estimation of the link quality.
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4.2 Overall Design
Figure 8 presents the overall design of the 4C. In general,
4C operates in the intercept (overhearing) nodes and inter-
acts with all three core components in CTP: the forwarding
engine, which handles data packet sending and forwarding,
the routing engine, which is in charge of choosing the next
hop (parent) based on the link estimation as well as process-
ing network-level information such as congestion detection,
and the link estimator that is responsible for estimating the
quality of the links to single-hop neighbors.
4C works in two stages: link prediction and path evalua-

tion. In link prediction, 4C uses the data packet overheard
by the forwarding engine and ETX from the link estimator
to estimate the link quality of neighboring nodes. When
the forwarding engine overhears a packet from a node, it
passes the packet to 4C. 4C records the packet information,
i.e., sequence number, packet sender and PHY parameters
in its neighbor table. Then, 4C queries the link estimator
for the link ETX of the sender, and takes the reciprocal of
the returned ETX to get the estimated PRR. Finally, the
underlying prediction model takes the estimated PRR and
the PHY parameters as the input and outputs a reception
probability for the next packet.
In the path evaluation stage, 4C uses the predicted re-

ception probability to evaluate the path cost for the sender
assuming the intercept node is the sender’s parent. This is
done by adding the path cost of the intercept node itself with
the reciprocal of the predicted reception probability. If the
calculated path cost is smaller than the actual path cost of
the sender by a threshold, 4C sends beacons to the sender,
announcing itself to be the temporary parent. 4C sets the
threshold adaptively so that the additional overhead intro-
duced by the announcement beacon will not offset the po-
tential gain of using the temporary parent. The temporary
parent announcement process is discussed in Section 4.3.
On the sender side, after receiving the announcement bea-

con, 4C notifies the forwarding engine about the temporary
parent. The sender then starts forwarding its traffic to the
temporary parent. The temporary parent continues to be
the sender’s next hop until one of the following three events
happens: temporary parent denounces its parent status, the
routing engine assigns a new parent, or the number of con-
secutive packet losses exceeds a threshold. If any of the
above three cases occurs, the sender will switch back to the
parent designated by the routing engine.
An important design decision is which prediction method

4C should use. To implement a prediction model on conven-
tional sensor network hardware, we need to select a model
that is the most suitable for online link prediction. While
the NB based model is the fastest, it has the worst per-
formance out of the three approaches. The LR and ANN
based models are even in performance, but the ANN model
has computational complexity several orders of magnitude
higher than the LR model. Hence, we decide to favor the
LR model for implementation on sensor nodes.

4.3 Temporary Parent Announcement
A question we need to explore is when should a node an-
nounce to be a temporary parent such that the overhead
of announcement beacons will not offset the cost gain. To
investigate the problem, let’s assume the following scenario.
Since a routing gradient has already been established by

CTP, each node should have an associated path cost, which

denotes the number of transmissions needed to deliver one
packet to the root node. We define the path cost of a sender
node S as CS , and the path cost of the sender’s parent, P ,
as CP . Similarly, we define the cost of sending a packet on
the link S → P as CS→P .

Let’s assume the packets sent by S are overheard by node
T . T decides to be the temporary parent of S, so it needs to
send beacons to notify S. In order to guarantee the reception
of the notification, T needs to send CT→S beacons to the
sender on average. Moreover, another CT→S beacons are
needed when T decides to renounce its temporary parent
status. Together, we note the cost of sending notification
beacons as Cbeacon = 2× CT→S .

Suppose the temporary parent T forwards n data packets
for S during the process. The potential cost gain will be:

GAIN = n× ((CP + CS→P )− (CT + CS→T ))− Cbeacon

The gain should be greater than 0, so we have

n× ((CP + CS→P )− (CT + CS→T ))− Cbeacon > 0,

which transforms to

CP + CS→P > CT + CS→T +
2

n
× CT→S . (1)

Formula (1) can be viewed as the criteria for intercept nodes
to announce the status of temporary parents. If it is satis-
fied, an announcement of temporary parent will be beneficial
even counting the beacon overhead. An important parame-
ter here is n, the number of packets that will be forwarded
by the temporary parent. In our implementation, we take
a conservative stance and set n = 1. In this case, as long
as the sender sends more than one packet to the temporary
parent, the overall cost will be further reduced.

4.4 Implementation Issues
A critical issue is the computation speed of the prediction
module. A logistic regression classifier, if implemented naive-
ly, requires a vector multiplication and sigmoid function to
compute the predicted reception probability for the next
packet. In the resource constrained sensor networks, it is not
feasible to do this natively in terms of computational cost.
Furthermore, 4C is a part of the network stack, which nor-
mally demands agile response to network events. As such,
prediction speed is one of the main concerns of the model
implementation. 4C uses PLAN, a pairwise linear approx-
imation proposed by H. Amin et al. [3] to implement the
sigmoid function. PLAN approximates the sigmoid func-
tion with 5 line segments and requires only one bit shift
and addition operation to compute a sigmoid. In addition,
optimizations are made to avoid the use of floating point
operations. Our implementation running on a Tmote Sky
mote requires 0.5 ± 0.004 milliseconds to compute a pre-
diction, well within the time constraints of the networking
processing stack in TinyOS.

In addition to speed, another issue is the extendibility of
the prediction module. By design, the prediction module is
implemented with a generic interface, so that the module can
be replaced by other models as long as the input is the same.
The LR prediction module accepts the coefficients from a
LR model as its parameter, so it can be easily extended
to use different LR models by changing the coefficients. In
our experiments, we used several LR models trained with
different parameters as discussed in Section 5.
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Figure 9: Cost comparison of 4C, STLE and 4Bit. Actual node pairs in (a) are listed in Table 2.

There are also stability issues to consider. A practical
problem occurs when CTP selects a new parent due to link
quality variations of the neighboring nodes, the path cost
change need some time to propagate. In this routing infor-
mation propagation stage, 4C should not announce any tem-
porary parent because the routing gradient of the network
will likely be changed. To avoid this situation, we added
some hysteresis to the process. We use a counter to sup-
press temporary parent announcements: if a parent change
from the routing engine is detected, it will stop forwarding
packets to the temporary parent immediately, and set the
suppression counter to a preset value H. The counter value
will decrease by 1 after each packet is sent to the new parent
until it reaches 0. While the counter is not 0, 4C will not
send any temporary parent announcement. In other words,
4C will not operate after a parent change until H packets
are sent to the new parent. In our experimental evaluation,
we set the H value to 3.
To avoid excessive retransmission, we also set an addi-

tional threshold to the maximum number of packet losses
when forwarding packets to a temporary parent. This was
implemented to avoid a broken link situation. If the link
from a sender to its temporary parent is broken, the tempo-
rary parent will not be able to denounce itself. In this case,
if the forwarding engine is using a temporary parent, it will
switch back to the old parent after 5 packets are lost.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
Our experimental evaluation can be divided in two stages. In
the first stage, we run single sender experiments to compare
the performance of 4C, STLE [2] and 4Bit [13] under the sim-
ilar experimental settings used by the authors of STLE. In
the second stage, we further extend the evaluation of 4C un-
der more realistic settings with multiple sender experiments,
in which all nodes in the network send packets to the root
node periodically. Because the multiple sender experiments
better emulate typical WSN traffic pattern than the single
sender experiments, we believe the multiple sender experi-
ments can provide us more thorough evaluation in terms of
delivery cost. The detailed experimental settings and results
are discussed in the following sections.
We conducted experiments on the Motelab testbed, our

local indoor 54 node testbed and a 21-node outdoor testbed.
For all local testbed and outdoor experiments, we set the ra-
dio output power level of CC2420 to −25dB, packet length
to 30 bytes and use wireless channel 26 to avoid 802.11 inter-
ference. For the Motelab experiments, the parameters are
the same except for the radio output power is set to max
(0dB) for better connectivity.

Label Node Pair Description

V1 183 → 50 Vertical
V2 137 → 9 Vertical
D1 183 → 9 Diagonal
D2 137 → 50 Diagonal
H1 9 → 50 Horizontal
H2 183 → 137 Horizontal

Table 2: Node pairs in the Motelab experiments.

5.2 Single Sender Experiment Results
Due to the similarity of STLE and 4C design, it is reason-
able to compare the performance of these two link estima-
tors. To provide a plausible comparison, we implemented
the STLE based on the design of Alizai et al. [2] to the best
of our ability 1. We followed the experimental settings in [2]
and conducted a series of single sender experiments in both
Motelab and the local testbed.

In single sender experiments, only the sender node sends
packets to the root node with a fixed interval using CTP.
In each experiment, we keep the same sender/root pair but
employ different link estimators to compare the communica-
tion costs of CTP with 4C, STLE and 4Bit under the same
network condition. We vary the node pairs and packet send-
ing interval (SI) to study how these link estimators perform
under varying conditions. Please note that SI is different
from the inter-packet interval (I) used in model training: SI
represents the data rate in the application layer, whereas I
is a parameter used in the training. We use the average de-
livery cost as the performance parameter, which refers to the
number of communications needed to deliver a packet to the
sink. It is the sum of the send attempts including retrans-
missions, at each hop along the path. Figure 9 illustrates
results from these experiments.
Motelab Experiments: To emulate the network environ-
ment of the original STLE experiments as close as possible,
we used three of the node configurations selected in [2]: ver-
tical, diagonal and horizontal. Vertical configuration means
the source and destination are on different floors and on the
same end; diagonal configuration means the source and des-
tination are on different floors but on the opposite ends; and
in the horizontal configurations the source and destination
are on the same floor and on the opposite ends. The actual
node pairs used are listed in Table 2. For each node pair, we
let the source node send packets with SI = 200 milliseconds
for 15 minutes using 4C, STLE and 4Bit. 4C uses an LR
model trained with data collected form the Motelab using
the following parameters: input features = PRR + LQI,
L = 5, P = 1000, W = 1 and fixed I = 200 milliseconds.

Figure 9(a) shows the average delivery costs of the Mote-
lab experiments. In the vertical configurations, the costs

1We tried getting the STLE code a few times from the Feb. to
Aug. 2010, but the code was never provided by the authors.
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Figure 10: Cost comparison of multiple sender experiments run on the local testbed and the outdoor testbed.
Y axis denotes the average delivery cost (lower is better). Labels in the x axis in figure (a), (b) and (c) note
the experiment conditions: the number 10, 30 or 60 is the sending interval, and the letter L, or H represents
the network density. The gray boxes on top of the bars represent the beacon overhead, and the percentages
on the top indicate the reduction rates of 4C over STLE and/or 4Bit.

of all three link estimators are similar due to the short dis-
tance between the source and destination in terms of routing.
However, STLE may have a larger cost as it can be seen in
the V1 case. In the diagonal cases, both STLE and 4C out-
perform 4Bit. Finally, in the horizontal cases, usually the
most common case of nodes on the same horizontal plane
for many applications, 4C clearly outperforms both STLE
and 4Bit. STLE may provide better performance compared
with 4Bit in some cases (H1), or comparable in some other
cases (H2). It is clear that overall, the original CTP with
4Bit has higher delivery costs comparing with STLE and 4C.
The results show in the most common cases for real deploy-
ments (horizontal), 4C can perform significantly better than
STLE. In the vertical and diagonal cases, its performance is
at least comparable to STLE.
Local Testbed Experiments: We repeat the single sender
experiments with three node pairs in the local testbed to
verify the results. Also, to test the effect of packet sending
interval, we vary the SI from 100 milliseconds to 10 seconds.
In all these experiments, 4C always employs the prediction
model trained with a I that matches the actual SI.
Figure 9(b) presents the cost comparison between CTP

with 4C, STLE and 4Bit link estimator run on three node
pairs. Due to the topological constrains of the testbed, all
the node pairs are of horizontal configuration. The result
is similar to the horizontal experiment results from Mote-
lab: either 4Bit or STLE have the highest cost, whereas 4C
has the lowest cost in all the experiments. Furthermore, Fig-
ure 9(c) shows that with varying data rates, 4C outperforms
STLE and 4Bit in all our experiments.
These results lead us to believe that overall, 4C can har-

ness the potential of intermediate links better than STLE
does under different network environments and varying traf-
fic rates. Even in the worse performance cases, the delivery
cost of 4C is still comparable with that of STLE or 4Bit.

5.3 Multiple Sender Experiment Results
We continue our evaluation using multiple sender experi-

Model L P W I

M1 5 1000 1 10 seconds, periodic
M2 5 1000 1 10 seconds, aperiodic
M3 5 5000 1 60 seconds, aperiodic

Table 3: Model parameters used in the experiments.

ments, which try to emulate the traffic pattern of a typical
data collection application where all the nodes in the net-
work send packets to a single root node. Similar to the sin-
gle sender experiments, the nodes send packets for one hour,
using CTP with 4C, STLE and 4Bit respectively in each ex-
periment. Furthermore, we repeat every experiments three
times to minimize the effects of temporary network irregu-
larities. Due to the relatively low data rate in many WSNs
applications, we focus on communication costs and reliabil-
ity, and leave latency and throughput for future work.

We vary network density and packet sending interval (SI)
in these experiments. Network density refers the the number
of nodes we include in each experiment. In the local testbed
experiments, we used two densities: high density, which in-
cludes all the 54 nodes in the testbed, and low density, which
includes 18 nodes in a line topology. For SI, we use 10, 30
and 60 seconds in the local testbed, and 10 seconds in the
outdoor testbed. The sending intervals are longer than what
we used in the one sender experiments because i) traffic rates
in these intervals are more aligned with some real WSN ap-
plications, and ii) longer intervals can reduce network con-
gestion given the larger number of senders. Moreover, to
avoid correlated interferences, the actual packet sending in-
terval is randomly chosen from [ 1

2
SI, 3

2
SI].

To evaluate the performance of models trained with dif-
ferent parameters, we use three LR models based on the
modeling results discussed in Section 3.7. As seen in Fig-
ure 6, LR models trained with L = 5, P = 1000 are enough
to provide good prediction results when I = 10 seconds,
whereas models trained with L = 5, P = 5000 perform well
when I = 60 seconds. So, the first two models we chose (M1
and M2) are trained with input features = PRR + LQI,
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L = 5, P = 1000, W = 1, periodic and aperiodic I = 10
seconds. The third one (M3) has the same parameters as
M2 except for P = 5000 and the aperiodic I = 60 seconds.
The model parameters are listed in Table 3.
In the outdoor testbed, we repeat our experiments to ver-

ify the results. Model M1 and M2 are used, and the SI is 10
seconds. The network density is fixed to 21 nodes. All other
parameters are the same as local testbed experiments. Un-
fortunately, we could not verify our results in the Motelab
testbed with multiple senders due to time constrains.
Figure 10(a), 10(b) and 10(c) compare the delivery costs

of the local testbed experiments. In each figure, the labels in
the x axis note the experiment conditions: the number 10, 30
or 60 represents the SI, and the letter L or H represents the
network density (18 and 54 nodes respectively). The gray
boxes on top of the bars represent the beacon overhead, i.e.,
the number of beacons sent per data packet delivered. The
percentages on the top of the bars are the reduction ratio of
4C compared to STLE and 4Bit results. Next, we discuss
the results in terms of delivery cost and beacon overhead.
Delivery cost refers to the number of send attempts needed
to deliver a packet to the sink. From Figure 10(a), a signif-
icant cost reduction of 4C over 4Bit (more than 46%) can
be observed on the experiments with 10 seconds SI. Since
the LR model (M1) used in 4C is also trained with I = 10
seconds, this reduction gain implies that the 4C is indeed
selecting better routes comparing with 4Bit. The cost re-
duction is less significant as the SI increases, but the cost
of 4C is still comparable with STLE and 4Bit even in the
worst case. On other hand, STLE generally shows lower cost
than 4Bit, but 4C is able to outperform STLE in almost all
cases. Similar gain can be observed in Figure 10(b). In
Figure 10(c), which shows the results of 4C using model
trained with I = 60 seconds, we see that cost gain is more
pronounced in high SI scenarios, i.e., SI = 30 and 60, than
SI = 10 seconds cases. This indicates that the training
parameters of the model indeed affect the prediction perfor-
mance: the models trained with I = 10 seconds can do well
under the same network traffic rate, but when the traffic
pattern and I are misaligned, the model can not effectively
predict the packet reception probability anymore. However,
even in these cases the performance of 4C is comparable to
4Bit, the default link estimator of CTP. Our outdoor ex-
periment confirmed this observation. In Figure 10(d) we
observe that 4C shows more than 10% improvement over
4Bit in terms of average delivery cost.
Beacon Overhead is the average number of beacons sent
by the routing protocol while it delivers one packet to the
sink. The number of beacons represents the overhead of the
routing protocol for maintaining a routable network struc-
ture. Figure 10 show that beacon overheads (depicted as
gray box on top) of 4C, STLE and 4Bit are similar in al-
most all experiments, which indicates that 4C does not incur
significant overhead comparing to the CTP with 4Bit.

6. DISCUSSION
Advantages of a Data-Driven Approach: According
to the communication theory, the PRR-SNR correlation can
be derived from the frame size, the coding scheme and the
bit error rate defined by the modulation format [19]. For
example, the link layer models proposed in [32] provide de-
terministic functions to calculate PRR with SNR for a va-
riety of modulation formats and coding schemes. Although

these models are useful in network simulation, this idealized
approach can not provide accurate PRR estimation for in-
termediate quality links which show large PRR variance [30,
15]. Moreover, research [7, 31, 21] shows that the actual
correlation between PRR and PHY parameters may be dif-
ferent due to hardware specific variations. As shown by Son
et al. [21], even at the same measured signal strength at the
receiver, the signals from different sources may have differ-
ent levels of distortion, in turn affecting the packet reception
differently. Therefore, in order to find the right function to
calculate PRR based on SNR, a user will need to collect
PRR/SNR data across all possible node pairs in a network,
and the function coefficients for each node pair may be dif-
ferent. This level of complexity will render this approach
infeasible for any network with more than dozens of nodes.

We account for this problem with the data driven ap-
proach. With a sufficient large training dataset collected
from actual links in the network, the machine learning al-
gorithms can find the optimal function by minimizing the
error between the output and the actual packet reception.
From a modeling perspective, this approach can be viewed
as a way to find the best overall correlation between PRR
and PHY parameters given a training dataset, whereas the
communication theory approach is a way to find the best
correlation for a node pair. Therefore, the trained models
can represent the optimal correlation over the underlying
network as a whole. In addition, our model combines the
PRR and a variety of PHY parameters to estimate the link
quality instead of using only SNR. Another difference is that
the 4C employs a receiver-initiated design, which means the
quality estimation happens on the receiver side.
Training Data Requirements: Amajor concern of a data
driven approach is the data requirement. In the previous
sections we show that our modeling approach can indeed
capture the underlying PRR distribution with small amount
of data. The performance improvement when modeling pa-
rameters and actual conditions matched, implies that there
are some repeatable patterns in packet reception. There-
fore, a sufficiently large training set is necessary to capture
the underlying PRR distribution. Both the simulation and
experimental results show that a training set consisting of
packet reception data collected from a few links for several
minutes is sufficient to train the prediction model. If suffi-
cient training data is available, our model can find correla-
tions that exceed the hundred of milliseconds, and extend to
many tens of seconds as shown in our results in Section 5.
Limitations: The evaluation results show that the perfor-
mance of prediction models is similar with state-of-art link
estimator when there are non-negligible network dynamics,
e.g. changing packet sending interval. As discussed in Sec-
tion 5, 4C performs on par with 4Bit when the actual traffic
pattern does not match the modeling parameter, indicating
that the prediction is inaccurate in this case. This is due to
the fact that 4C only incorporates one prediction model, and
consequently, can not adapt to varying network conditions
from the original training set very well. However, we showed
that the training can be done with a small amount of data,
and 4C could potentially use multiple models trained with
freshly collected data for different network conditions. Fur-
thermore, it is possible to apply online learning algorithms
in 4C such that the prediction model can evolve with the
changing network conditions. We leave task of examining
the 4C performance with other network dynamics, such as
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varying radio power and packet size, to future work.

7. CONCLUSIONS
In this paper we showed the usefulness of link quality pre-
diction based on different machine learning methods, such
as, naive Bayes classifier, logistic regression and artificial
neural networks. Our models take a combination of PRR
and PHY information as input, and output the reception
probability of the next packet. We showed that users need
very little data (5-7 links for a couple of minutes) in order
to train the models in the environments tested. Our anal-
ysis showed that logistic regression works well among the
three models with the additional advantage of having the
small computational cost. Using this knowledge, we imple-
mented 4C, a novel link quality estimator in TinyOS. We
conducted extensive experiments in the Motelab and our lo-
cal indoor testbeds, as well as an outdoor deployment. Our
results show improvements in the order of 20% to 30% com-
pared with 4Bit and STLE estimators in single and multiple
sender experiments, with some cases improving performance
by more than 45%. Future research directions involve incor-
porating time information to the existing input vector to
help the model adapt better to varying traffic patterns and
the use of online learning algorithms for link quality predic-
tion under dynamic conditions.
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and K. Wehrle. Bursty traffic over bursty links. In SenSys
’09, pages 71–84. ACM, 2009.

[3] H. Amin, K. M. Curtis, and B. R. Hayes-Gill. Piecewise
linear approximation applied to nonlinear function of a
neural network. IEE Proceedings - Circuits, Devices and
Systems, 144(6):313–317, 1997.
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