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PREFACE
 

In the present era, the increase in health awareness among consumers caused 
an enhanced demand for healthy and nutritious food options. Recently, 
coupled with consumers’ interest, plant-derived bioactive compounds have 
emerged potential and alternative therapeutic candidates that substitute 
synthetic compounds. Many functional foods contain bioactive compounds 
that can be derived from medicinal plants, fruits, vegetables, wastes, and 
byproducts. Currently, there is an increased demand for food from plant 
materials and plant-based bioactive compounds that are considered as fresh, 
natural, safe, and with high nutritive value while produced in sustainable 
ways. 

Bioactive compounds derived from natural food sources have ample 
scope to be used as nutraceuticals as therapeutics for chronic metabolic 
disorders viz. diabetes, cancer, hypertension, neurodegenerative diseases, 
cardiovascular diseases (CVDs), etc. Researchers in recent times have 
identified and determined the therapeutic roles of many of these bioactive 
compounds. The major hindrance in the use of bioactive compounds as 
nutraceuticals is their limited bioavailability and absorption in the body. To 
overcome this limitation, researchers are on the pursuit to design delivery 
matrixes and systems for nutraceuticals. Specially designed delivery systems 
have for nutraceuticals has shown a substantial potential to increase the 
bioavailability and bioaccessibility of varied bioactives. 

This book illustrates various applications of novel food processing 
extraction and encapsulation techniques and the health and safety aspects of 
plant-derived bioactive compounds and functional foods. The book consists 
of three main sections. The first part, Novel Extraction Methods of Bioac
tive Compounds, explores the principle and application of various advanced 
extraction techniques (like ultrasonic-assisted, microwave-assisted, rapid 
solid-liquid, supercritical fluid extraction [SFE], and other hybrid tech
nologies, etc.) for obtaining the valuable bioactive compounds from various 
foods or food processing waste/agriculture biomass/wastes and fermentation 
broths for industrial food applications. 

The second part, Encapsulation Methods of Bioactive Compounds, 
addresses the recent advancements in the various encapsulation technologies 
(such as spray drying, lyophilization, spray cooling, coacervation, liposomal 
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formation, ionic gelation, emulsion, and molecular inclusion complexation) 
to entrap various plant-derived bioactive compounds; their role and appli
cation in protection, and stabilization; and as targeted delivery system for 
enhanced nutritional health benefits. 

The third part, Health Promoting Activities of Bioactive Compounds, 
provides an overview of the health-promoting activities of various plant-
based bioactive compounds, safety aspects, and their uses in the develop
ment of health foods has been deliberated. 

This book volume, Novel Processing Methods for Plant-Based Health 
Foods: Extraction, Encapsulation, and Health Benefits of Bioactive 
Compounds, is a bouquet of the novel methods for processing of food and 
will be quite relevant for the food industry and academic professionals. It is a 
treasure chest of information and excellent reference source for researchers, 
scientists, students, growers, traders, processors, industries, and others for 
emerging food processing approaches for extraction and encapsulation of 
plant-based bioactive compounds and health-promoting properties of plant-
derived nutraceuticals and safety aspects in production of functional foods. 

This book has exceeded our anticipation due to the support of all 
contributing authors to this book, who have been most valuable in this 
compilation. Their names are mentioned in each chapter and in the list of 
contributors. We are pleased and obliged to all authors for their proficiency, 
pledge, and perseverance. We confident that this volume will provide valuable 
information on different areas of food industry including food processing, 
preservation, health-promoting properties, safety, and quality evaluation of 
plant-based foods. 

We would like to thank the editorial staff at Apple Academic Press, Inc. 
for their valuable assistance and great support. 

Also, we also wish to thank our friends and families for their unlimited 
support, encouragement, love, and affection during the course of editing this 
book volume. Finally, and most importantly we would like to commend our 
spouses Subhadra, Mohan Kumar and Aishwarya, for their understanding 
and patience throughout this project. 

We appeal to the reader to suggest your feedback that may benefit to 
improve the subsequent edition of this book. 

—Editors 
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CHAPTER 1
 

PRINCIPLES AND APPLICATIONS OF 
EXTRACTION TECHNOLOGIES IN THE 
FOOD INDUSTRY 

R. PANDISELVAM, B. L. DINESHA, and ANJINEYULU KOTHAKOTA 

ABSTRACT 

One of the important unit operations followed in the food industry 
is extraction. It is used for the extraction of valuable ingredients from 
natural foods. Beneficial active components from the sample matrix were 
recovered using polar as well as nonpolar solvents. Conventional extrac
tion methods (CEM) like squeezing, maceration, decoction, percolation, 
Soxhlet, and steam distillation have been used for several decades for 
oils, food colors, flavors, and essence extraction. These techniques have 
many disadvantages, such as laborious processes, toxic solvent residues, 
and thermal degradation of valuable substances. To overcome these disad
vantages, novel techniques like microwave-assisted extraction (MAE), 
ultrasonic-assisted extraction (UAE), supercritical fluid extraction (SFE), 
accelerated solvent extraction (ASE), and rapid solid-liquid extraction 
(RSLE) have been used in food industries in recent years. These are highly 
sustainable and green extraction techniques in terms of the precision and 
accuracy of analytical results. Both these conventional and novel methods 
were used for the extraction of essential oils, oleoresins, juices, bioactive 
compounds, food essences, pigments, pectins, vitamins, carbohydrates, 
proteins, etc. 
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1.1  INTRODUCTION 

Extraction is one of the important unit operations which is followed in the 
food industry. Food products are found in our prehistoric civilization as a key 
source of additives for nutritional, artistic, and religious applications [18]. 
Various food industries are adopted the extraction process, and it is a prime 
unit operation in the processing line. It is actually the process of separating 
one or more analytes of interest from the sample matrix to another phase 
[6]. More attention is to create in the food processing industry is extraction 
and separation process process. The solvent is added originally to extract 
compounds present in the materials, and separation is used to separate 
compounds dissolved in the solvent. Extraction can be achieved through two 
phases such as solid-liquid and solid-gas. Solid-liquid extraction technique 
has been used in the vegetable oil industry for a long time, and it is commonly 
called leaching [5]. 

Mechanical pressed extraction of oil from maize, rice bran, and soybean 
is not suitable because of rancidity and poor stability. Hence, the solvent 
extraction method is most preferred in commercial industries. Olive oil 
is commonly extracted by mechanical pressing as a first operation. The 
final recovery of virgin olive oil can be obtained by repressing the residue 
after the first pass by using solvent extraction. Peanut oil is extracted by 
mechanical extraction, and residual oil can be removed through solvent 
extraction [33]. 

The quality of oilseed meals obtained by mechanical pressing is good in 
terms of residual protein and is suitable for animal feed. Essential oils and 
natural aromatic flavors extraction practices are followed in the commercial 
industries. The extraction of functional food additives from food and agricul
tural waste is creating more opportunities [17]. In the sugar cane processing 
industry, extraction is used to separate the juice from sugar beets by using 
a multistage mechanical expeller. In this technique, water may be added in 
between the extraction process. Hence it can also be contemplated as a type 
of extraction [5]. 

Roller mills are used for the mechanical expression of cane juice. 
This process is a capital-intensive, time-consuming, and energy thorough 
operation. Hence novel cane sugar industries adopted the modern cane juice 
expellers. Including the mechanical extraction method, several conventional 
solvent and novel extraction methods are being used in food industries for 
several applications such as extraction of important bioactive compounds, 
food essences, colorants, flavors, oils, oleoresins, etc. [11]. 
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This chapter explores the potential applications of traditional and 
advanced extraction techniques in the food industry. 

1.2  CLASSIFICATION: CONVENTIONAL AND ADVANCED 
EXTRACTION TECHNIQUES 

Traditional extraction methods, viz. maceration, squeezing, percolation, 
and steam distillation have been used for many years in the food processing 
industries [16]. These traditional extraction techniques are very tedious and 
consume a higher amount of solvent. The solvents costs are high in the extrac
tion process, and also it will create environmental problems. Consequently, 
there is a growing demand for novel extraction techniques that have several 
advantages like reduced extraction time, low amount of solvent consump
tion, less possibility of cross-contamination, and environmental pollution [1]. 
Recently several novel extraction methods have been developed by many 
researchers. These methods have major disadvantages, such as the cost of 
operation [39]. 

1.2.1  CONVENTIONAL EXTRACTION METHODS (CEM) 

Conventional extraction methods (CEM) have been known for several 
decades back and are extensively used for the extraction of essential oils, 
food essences, flours, and colors. Further experiments are required to 
understand the mechanism of the extraction process [4]. It is feasible to 
differentiate the conventional liquid-solid extraction techniques. CEM like 
squeezing, distillation, counter-current extraction, maceration, and Soxhlet 
play a major role in liquid-solid extraction methods. Major disadvantages 
of these extraction techniques are the large quantity of solvent consumption, 
higher solvent evaporation rate and extraction time, fewer chances to select 
the proper solvent for the extraction process, and degradation of an important 
bioactive compound at higher temperature [22]. 

To control all these disadvantages, promising and new liquid-solid extrac
tion methods like microwave assisted [12], ultrasound-assisted based [10], 
supercritical fluid [25], accelerated solvent [7], solid-phase microextraction 
[35], enzyme-based [26] and rapid liquid-solid extraction methods [29] 
could be used. These novel extraction methods were used in the commercial 
industries and scientific community to study the sustainable development of 
natural products. Common objectives of all these techniques are extraction 
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of bioactive compounds from the sample matrix and bio-waste materials, 
detection, separation, and isolation of selective compounds. The economy 
of the extraction process depends on the viability, extraction yields, and 
economy of the process [10]. 

1.2.1.1  SQUEEZING 

Squeezing is a classical method of extraction to get essential food constituents 
such as oils, oleoresins, food essence, flours, and colors [3]. This extraction 
process is simple, and it is worked based on the principle of high impact 
force acting on sample mass by using screws, mortars, mullers, etc. Sample 
matrixes are made in the form of exudates and then fed into the mechanical 
screw press for valuable components extraction [2]. 

This solid-liquid extraction technique is abnormal since, here on, solvents 
were used for molecular extraction of inner components in the solid mate
rials. Extraction of essential oils and oleoresins from agricultural biomass 
and waste materials is found potential applications in the food industry. 
Thermal degradation of important bioactive compounds might be due to the 
induced higher temperature gradient and occurrence of peroxidation in the 
extracted oils and oleoresins. 

Crushing solid materials is a crucial problem in the release of many active 
elements. Consequently, some of the crave compounds get contaminated 
by unwanted compounds. Hence, the products obtained by the squeezing 
process are rarely used, and it is applied for the extraction of important 
compounds. In most cases, in order to isolate the specific compounds, it is 
crucial to resort to more sophisticated separation processes. For this reason, 
a limited number of applications were present in the squeezing-like ancient 
technique. Priority of discovering a new extraction technique, it is required 
a good yield of essential oils. Vongsak et al. [38] reported on the squeezing 
method of extraction for phytochemical constituents from M. oleifera 
leaves. 

1.2.1.2  MACERATION 

Maceration is an easy and cheaper extraction technique, and it could be 
done in small and large capacity steel containers in the form of the pilot 
to commercial-scale level. This is a kind of liquid-solid-based method of 
extraction work based on the process of osmosis and diffusion. Hence it is 
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considered a control technique for the extraction of many components from 
biomaterials [27]. 

Solids are placed into the inner container with solvent. To obtain maximum 
recovery, the hermetically sealed containers were used to agitate and in order 
to make the diffusion of extracted compounds in a batch process. The extrac
tion process is influenced by several factors such as temperature, type of 
solvent used for maceration, and contact time of solvent [36]. The kinetic 
energy of molecules within the solids was increased with the increasing 
temperature by assisting the microwaves or ultrasounds. Extraction of 
thermolabile and soluble compounds on therapeutic interest, the maceration 
technique is generally recommended. Particularly in this process, small 
quantities of solvent in several cycles were used for extraction [11]. 

The solvent absorption capacity depends on the sample matrix and the 
type of solvent in which important compounds are dissolved. Cujic et al. 
[13] used the maceration process for the extraction of important compounds 
from chokeberry fruit. In the case of the maceration technique, it is very 
difficult to maintain room temperature during the extraction process because 
extraction takes place in the aqueous phase. To overcome this problem, the 
infusion process can be done in 1–2 min. In this process, extraction is very 
fast, and simultaneously thermal degradation also takes place. Compara
tively, maceration is an excellent extraction method in the area of liquid-solid 
extraction. It is a simple extraction process, and the loss of contents in the 
sample matrix is also pertinent [11]. 

1.2.1.3  DECOCTION 

The decoction is an extraction process in which the sample matrix was boiled 
with solvent for 30 min at boiling temperature. This technique is specially 
used for compact materials such as thermoresistive compounds. Fotakis et 
al. [21] reported on 10 herbal preparations and its metabolic activities. The 
results suggested that the extractability of phenolic compounds was posi
tively affected by infusion compared to the decoction process. The shelf life 
of the decoction-based extracts is very short; hence extracts may be used 
immediately after the extraction. 

Maceration is one of the alternative methods for digestion, which involves 
heating the sample matrix from 35 to 60°C with solvent. Moderate heating 
is allowed to obtain a higher extraction yield. The solvent power depends 
on the rate of change in temperature during the extraction process. Solvents 
used in the decoction process are highly volatile; hence refluxing condenser 
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system is required to use and recover solvent. Manousi et al. [28] reported 
that extracts obtained from digestion yield more compared to the maceration 
process. Consequently, the decoction is a sound method for the extraction 
of biological compounds from aromatic and medicinal plants, but it is not 
suitable for thermo-degradable compounds [9]. 

1.2.1.4  PERCOLATION 

A simple percolator contains a cylindrical type container filled with a sample 
matrix (Figure 1.1). A pump is used for circulating the extracting liquid. The 
nature of the extract depends on the sample matrix, and the percolator is made 
up of glass, iron, and steel materials. The sample requires good grinding, and 
the pulverization rate greatly depends on the effectiveness and the time of 
extraction [27]. The process of humidification is requisite for swelling of the 
particulate matrix within the solvent contact. The percolator was filled with 
a layer of sand and cotton. Interstitial granular spaces prevent the liquid flow 
without operation. Generally, the percolator was to fill with cotton and sand 
at the bottom in order to chunk the sample matrix and filtration element. In 
order to minimize the humidification of contents, the sample matrix is then 
added to the chromatographic column in a compact and uniform manner 
[35]. To soften the tissues, a preventive maceration process should be taken 
place. The extraction solvent is added at the head of the percolator, and it 
was in contact with the sample matrix to solubilization of liquid extract at 
dynamic action. In this method, osmosis and diffusion principles are used 
in like maceration process. The major material in the simple percolation 
process is extractant liquid which is continuously moved through the solid 
materials; this acts as a driving force in the percolator [3]. 

In the continuous percolation process, the sample matrix was fed 
continuously into the series of percolators, and extraction took place in 
counter-current motion by leachates. Extractant liquid obtained by succes
sive percolators was less in extracted substances. The solvent passing from 
the subsequent diffuser and extractable components increased the solutes 
concentration. In each diffuser, the concentration gradient goes increases 
hence optimization of distribution ratio, and soaking also increases [23]. The 
operation of the percolator takes place in 5 to 10 series of diffusers. 

Chanda et al. [9] conducted a comparative study on different extraction 
methods for antioxidants extraction from leaves of Syzygium cumini L. The 
results suggested that the best method for the extraction of antioxidants from 
Syzygium cumini L. leaves is the cold percolation method. This process does 
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not require any trained person to operate the percolator. To increase the 
extraction efficiency of the percolator, heat, microwaves, and ultrasounds can 
be used to accelerate the extraction process. However, briefly, percolation is 
a very fast process for the extraction of essential oils and other important 
products from plant materials. 

FIGURE 1.1  A commercial-scale percolator. 

1.2.1.5  SOXHLET EXTRACTION (SE) 

Soxhlet is a CEM. A large quantity of fresh sample matrix was added into 
the less solid-liquid ratio of extractant [27]. In the Soxhlet apparatus, the 
liquid used for extraction is in contact with the fresh sample matrix, and the 
liquid will get start boiling in the flask. This is a special extraction process 
used only for compounds of high thermal stability. Major advantages of this 
process are the use of less quantity of extractive solvent, continuous distilla
tion, and purification of the extract is possible [15]. 

The Soxhlet operator consists of a heating base, sample flask, cellulose 
thimble, condenser, inlet, and outlet water connections for the condenser 
(Figure 1.2). The material is placed in the cellulose-based thimble that is to 
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be placed on the heating coil inside the chamber. A distillation flask could be 
used to heat the solvent and sample matrix. As the liquid gets starts boiling, 
vapors stand up in the condenser mounted on the extractor. The vapors get 
condensate by using condensation liquid in the condenser and condensate 
liquid drops into the porous thimble in the extraction flask. This flask is 
inter-connected with the lateral siphon elbow, through which liquid extract 
gets separated [19]. 

FIGURE 1.2  Laboratory scale Soxhlet extractor. 

The repetitive vaporization and condensation take place in the distillation 
process. This repetitive solvent distillation and condensation process will 
take place until the extraction process completes. The extraction process 
can be done with nonpolar solvents such as n-hexane, ethanol, methanol, 
acetone, etc. Generally, the process of extraction takes place at 65 to 70°C 
with an extraction time of 2 to 3 h [20]. 

Major advantages of the Soxhlet extraction (SE) process are higher 
extraction yield and efficiency. Hence, it can be used for model extraction 
techniques for other novel extraction methods. The residual solvent present 
in the liquid extractant can be easily removed by applying desolventization 
up to some extent. Some of the disadvantages also exist in this extraction 
process, such as maximum solvent consumption, and more extraction time, 
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and this process is not suitable for heat-sensitive compounds. To overcome 
these disadvantages, semi-automatic and fully automatic temperature 
controller-based, SE units have been available in recent days [28]. 

1.2.1.6  STEAM DISTILLATION 

Steam distillation is a large-scale conventional extraction (CE) process in 
which essential oils, food colors, essence, and flavors can be extracted. The 
distillation unit consists of a sample flask or column in which the sample 
matrix is placed. Steam is passed through the column, and then volatile 
compounds rise up in the distillation flask or condenser (Figure 1.3). A simple 
distillation unit works based on the principle of vapor pressure difference in 
volatile substances. Hence it is called has solid-liquid extraction technique. 
Vaporized substances in the distillation were separated based on the volatile 
substances vapor pressure gradient. However, this method is used in the final 
effect extraction process. Distillation is simple and fast, and it will yield 
more compared to the other extraction methods. 

FIGURE 1.3  Rotary vacuum-based steam distillation unit. 
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Generally, water is used as the main fluid in the configuration of steam. 
This generated steam that has a higher latent heat value; hence it is especially 
acceptable for the extraction of oils and resins from plant materials. Wei et 
al. [40] have extracted bioactive compounds from the Flaveria bidentis (L.), 
and the study showed a higher extraction yield and a maximum of 96.8% 
purity of the extracted compounds. Nevertheless, in spite of its several 
advantageous applications, steam used in the extraction process will affect 
the critical molecules in extractant liquid [14]. 

1.2.2  NOVEL ADVANCED TECHNOLOGIES 

1.2.2.1 MICROWAVE-ASSISTED EXTRACTION (MAE) 

MAE is the new method of extraction, and it will use the microwave to 
heat the specimen with the solvent mixture in place to make faster extrac
tion of the analyte (Figure 1.4). Compared to the conventional sources of 
heat, microwaves transfer the heat from the inner layer to the surface of 
the sample matrix. Transfer of heat source basically acts on two processes 
such as conduction and convection. In this process, the microwaves cover 
the entire homogeneous volume, polar molecules of the product, and local
ized heating centers. Presently, MAE is using in commercial industries for 
the extraction and isolation of very important constituents from bio-waste 
materials [37]. This process is advantageous in terms of reduction in extrac
tion process time and consumption of solvent volume. Kaderides et al. [24] 
extracted the phenolic-based bioactive compounds by using MAE, and it 
was compared with ultrasound extraction. The results suggested that ther
mostable compounds were obtained after the filtration phase with high anti
oxidant activity. MAE can also be used as a pretreatment for the maceration 
process in the liquid-solid phase extraction process. The extraction process 
is accelerated by enhanced temperature, but at the same time, microwave 
energy is too high, and it is susceptible to solid matrix damage [8]. 

1.2.2.2 ULTRASONIC ASSISTED EXTRACTION (UAE) 

Ultrasonic assisted extraction (UAE) is one of the important novel extraction 
processes (Figure 1.5) in which pulses of high-intensity ultrasound waves 
pass through a liquid medium containing the immersed titanium probes. 
Incompressibility can be achieved due to particle implosion. The cavitation 
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was generated by a high-pressure vibration impulse. The cavitation phenom
enon consists of an impulse pressure wave generated through a lack of 
minute bubbles formation at the instant phase of pessimistic pressure, and it 
will burst in the succeeding phases of compression [31]. 

FIGURE 1.4  Laboratory scale microwave-assisted extraction unit. 

Due to change in pressure and temperature within the system collapse of 
each bubble take place. These bubbles collapsed near the solid-liquid inter
face; it is very significant in a homogeneous cavitation phase. As a matter 
of fact, the expansion of ultrasound cycles passes through liquid molecules 
and travels apart from each other. The cavity will be generated by liquid 
molecules of acceptable intense negative pressure better  than the tensile 
strength [28]. 

Cavitation bubbles are formed by liquid and inside the solid surfaces 
in the pre-existing weak points. These points were top-up together with 
gas in suspended solids and powdered materials. Proceeding to cavitation, 
micro-bubbles were swung in the irradiated liquid. Accordingly, the cellular 
structure was destructed by a chemical reaction. Inertial force re-compresses 
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the build-up half-cycle and rapidly develops the high power. The bubble will 
grown up in each successive cycle, causing the increases in size, and it will 
repeat even during the critical size. Thermal energy affects the bubble forma
tion in terms of collapsing the bubble. The bubble size reaches the resonant 
dimension, the cavity will develop to a critical dimension, and it will absorb 
the energy from ultrasonic radiations [31]. 

FIGURE 1.5  Ultrasonication-assisted extraction unit. 

Tiwari [37] conducted an experiment on the extraction of total carotene 
from pomegranate wastes by using a solvent and ultrasound-based extrac
tion process. The results suggested that a good remedy to avoid diffusion of 
solvent during the extraction process is the assistance of ultrasound in the 
extraction procedure. For extraction of vegetable oils, vegetables are filled in 
an extraction vessel with extractant liquid, and breaking of cellular structure 
was done by applying the squeezing technique. Extracted compounds were 
lost their beneficial activity due to ultrasound transformations generated. In 
ultrasound-based extraction, there are many factors to be considered in order 
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to get a higher yield. Hence, optimization of the various parameters increases 
the experimental time. This technique is used for extraction of active 
compounds from plants [28]. Squeezing is generally used for comparative 
extraction method for extraction of active ingredients from plants [31]. 

1.2.2.3  SUPERCRITICAL FLUID EXTRACTION (SFE) 

Supercritical fluid extraction (SFE) is a novel and simple liquid-solid 
extraction method. The process of SFE depends on the solvent used in the 
extraction system (Figure 1.6). Here carbon dioxide (CO2) acts as a main 
solvent and ethanol, methanol, etc., are the co-solvents used in the extraction 
process [36]. The properties of CO2 are intermediate in between gases and 
liquids; hence it is called supercritical fluid. The properties of CO2 at the 
supercritical state vary with the changing temperature and pressure. At the 
critical state, the control phase behavior in the extraction and separation 
process is very much important. In practical, the solubility of supercritical 
fluid (SF) is regulated continuously by small change in isobaric temperature 
and isothermal pressure. The main feature of the SFE systems is based on the 
ability to regulate the solvent power at a supercritical state [25]. Supercritical 
fluids have special characters such as diffusivity, viscosity, and density that 
are present in intermediate solid and liquid states. The major advantages of 
this technique are the extraction will take place with CO2 at atmospheric 
temperature and pressure [17]. SFE process is also called the green technique 
in solid-liquid extraction. Another major advantage of the SFE process is 
extraction speed and also density of SF is almost close to the conventional 
liquid phases [30]. 

It can be observed from the conventional liquids, the magnitude of 
viscosity may present in many orders. Diffusion coefficient larger than the 
typical ones can be observed in conventional fluids. CO2 acts as a main 
solvent in SFE process [16]. SFE offers several advantages such as the solvent 
expands through sample matrix relatively larger molecular size, faster, and 
cheaper extraction process, and higher diffusion coefficient. Supercritical 
CO2 have lower viscosity compared to the other solvents, good permeability, 
odorless, non-toxic, and eco-friendly [29]. 

The working temperature of supercritical CO2 extraction process take 
place at normal atmospheric temperature hence, it is used for extraction of 
heat-sensitive materials. Single technique including extraction and separa
tion are significantly increases the processing time. The operating condi
tions such as temperature and pressure depend on variable solvent power. 
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De-Silva et al. [14] reviewed on applications of SFs in the extraction of 
bioactive compounds. SFs technology offers many advantages compared to 
the traditional extraction techniques. Nevertheless, the major disadvantages 
of this technique are lower dissolution power led to the water-solubilizing 
capacity for water-soluble compounds. Generally, solvents such as ethanol, 
methanol, and acetone could be used in the novel extraction process. Putnik 
et al. [33] published the review article on extraction technologies on high-
added value compounds from plant materials. 

FIGURE 1.6  Laboratory scale supercritical fluid extraction unit. 

1.2.2.4  ACCELERATED SOLVENT EXTRACTION (ASE) 

ASE is mostly used for important compounds extraction in phase of liquid at 
high pressure and above the boiling temperature. The high pressures created 
by an increase in temperature beyond solvent boiling point. Desorption of 
analytes from the sample it might be due to an increase in temperature at 
accelerated condition. As per Fick’s law of diffusion, extraction of constitu
ents from the plant materials and their solubility enhanced with elevating the 
temperature at lower time of extraction [31]. 

At higher pressure and temperature, the use of solvents is viable to affect 
the extraction procedure by changing the physicochemical properties of the 
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sample-solvent system. Effect of pressure at significant level is responsible 
to puncturing of sample and makes them in pores structure. The solvent in 
the liquid state is a critical function of the ASE process [32]. Major advan
tages of supercritical fluids are highest solvent strength, extraction process 
take place at atmospheric pressure, higher extraction yield and efficiency. 
Further superiority of this process is the use of pure solvents and no changes 
in the phase of atmospheric conditions. Hence, packed reactors and traps are 
not required for extraction and recovery of analytes from the sample matrix 
system [31]. 

Comparison of nutritional constituents in sweet potatoes using conven
tional and novel extraction techniques is reported by Cai et al. [7]. The nega
tive decisions were obtained for the separation of phenolics/flavonoids by 
adopting three novel extracting methods. These negative results might be due 
to static extraction system and feasible deterioration bioactive compounds at 
the specific operating conditions. Even though, ASE is an excellent method 
for extraction of heat-abiding compounds at higher temperatures above the 
boiling point temperature. Sample matrix system in contact with the solvent 
at high temperature remains solid entire experimental period. Accelerated 
solvent-based extraction system generates the high pressure, hence, the 
sample used in this process is prepared at laboratory level [32]. 

1.2.2.5 RAPID SOLID-LIQUID EXTRACTION (RSLE) 

Naviglio et al. [29] introduced the RSLE through the utilization of Naviglio 
extractor. Naviglio is an extraction process in which extractor constituted 
a reasonable alternative solution in solid-liquid extraction technique and 
escort notable advantage in obtaining high quality extracts. In the first step of 
the extraction process heat the system by the mechanical menace. Conven
tional methods of extraction like steam distillation, Soxhlet, percolation, and 
ultrasound methods are based on principles of osmosis and diffusion. These 
principles increase the extraction yield and efficiency with increasing the 
temperature. In the event of an increase in temperature put up the thermally 
degradable compounds. 

RSLE is necessary for extraction cycles of 30 numbers, to complete the 
vegetable oil extraction process. Compared to the conventional maceration 
process, the RSLE has approved and comprehensive method. Furthermore, 
water is used as an extracting medium in case of RSLE. It is used in many 
applications such as oil plant materials because of lower extraction time. The 
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major advantage of this technology is cheaper and low energy when compared 
to the other novel extraction technique. Posadino et al. [32] reported that 
polyphenolic antioxidants extraction by using Cagnulari grape. RSLE is a 
green extraction technique that can be used to extract antioxidants, and those 
can be used for the food and nutraceuticals applications. 

1.2.3  COMPARISON OF DIFFERENT EXTRACTION TECHNIQUES 
BASED ON YIELD 

Among the several extraction techniques explained above, the novel extrac
tion techniques give a higher extraction yield. In general, 20 to 40% more 
yield can be obtained by using advanced extraction techniques. Optimized 
extraction temperature in both conventional and novel extraction methods 
ranges between 50°C and 60°C. Therefore, the same yield can be expected 
from all the extraction methods. In the SFE, supercritical CO2 has been used 
instead of organic solvents, and these were called eco-friendly processes. 
Extraction process yield is more at minimum extraction time compared to 
the other conventional methods [24]. 

1.2.4  COMPARISON OF DIFFERENT EXTRACTION TECHNIQUES 
BASED ON TIME AND SOLVENTS CONSUMPTION 

Generally, CEMs were required longer extraction time, i.e., 500 to 700 min 
and novel extraction methods like SFE, UAE, and MAE were required quiet 
shorter extraction time, i.e., 1 to 30 min. There is a 10 times reduction in 
extraction time in case of novel methods. Organic solvents consumption 
in CEM is about 100 to 200 ml, where as in the case of novel extraction 
methods will consume 50 ml. Hence, there will be 4 times decrease in solvent 
consumption in case of novel methods in comparison with the conventional 
methods [34]. 

1.2.5  DIFFERENT EXTRACTION METHODS: ADVANTAGES AND 
DISADVANTAGES 

The extraction process depends on solid matrix compositions and surface 
complications. The alternative procedure and techniques connected to an 
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extraction procedure is based on contact of liquid-solid phase and it is a 
very complicated process. Complexity of solid matrix composition majorly 
depends on the solid-liquid phase. Hence, it is very important to select a suit
able extraction method for solid-liquid extraction method. Types of solvents 
and operating conditions are responsible for selecting suitable extraction 
techniques. Most important chemical compounds and their behavior were 
used at different sample–solvent ratio. Large extent operating conditions for 
extraction of vegetable oils depends on different geometry of solids, solvents 
used for extraction, temperature, and ratio to mix solvents. Some of the 
numerical mathematical models are used to find out the model constants for 
extraction yield and efficiency [26]. 

Compared to above mentioned classical techniques, more, and efficient 
contemporary extraction techniques such as supercritical based fluids, 
ultrasound, microwave, accelerated solvent-based and RSLE are used in 
Naviglio extractor. This would be improving the characteristics of extract 
and extraction efficiency. RSLE is a very much important liquid-solid  
extraction process, it will work based on the osmosis and diffusion [10].  
The major attributes for differentiation of the liquid-solid based extraction  
methods are presented in Table 1.1. 

TABLE 1.1  Attributes for Differentiation of Liquid-Solid based Extraction Types 

Extraction 
Methods 

Solvent Extraction 
Time 

Extraction 
Yield 

Quality 
of Extract 

Stability 
of Extract 

References 

Squeezing Polar More Definitive Fair Fair [5] 
Maceration Basic Maximum Definitive Excellent Excellent [7] 
Decoction Basic More Definitive Excellent Excellent [10] 
Percolation Basic Medium Restricted Superior Superior [11] 
Soxhlet Basic Prolong Definitive Deficient Deficient [17] 
RSLE Nonpolar Minimum Exhaustive Great Great [26] 

1.3  FUTURE PROSPECTIVES 

In this chapter, it was explored the major concept of conventional and 
advanced extraction methods used in the food industries. It is very much 
important to understand the molecular scale opportunities of these extraction 
techniques in food industries. Solvent-free extraction method has become 
the main issue in the question of industrial application. Present and past 
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literature data conform to the solvent-free original extraction methods. In 
analytical chemistry, the degree of maturity and molecular scale process are 
relevant to the solvent-free extraction methods. This chapter will be ambi
tious about the challenges and widen potential commercial applications. 
Hence, novel solvent-free extraction techniques can be used in future food 
and nutraceutical applications. 

1.4  SUMMARY 

Extraction is the most important unit operation in the processing industries. 
These industries adopted the most convenient extraction technique for 
extraction of the food-industrial colorants, essence, important bioactive 
compounds, essential oils, and oleoresins. Soxhlet method of extraction is 
widely used in commercial industries for extraction of oil from biological 
material. Usually, food materials are subjected to mechanical shear using 
expellers to release the volatiles in a virgin state. Polar solvents were involved 
in the new solvent extraction methods. Major disadvantages in the new 
solvent extraction methods are hazardous and flammable solvents, emission 
of toxic substances during extraction; it is not selective and consumes more 
time. It is very much important to increase the extraction yield of volatile 
substances, physiochemical, and functional properties by selecting the alter
native correct solvent. Microwaves, SFs, and ultrasounds were used in the 
solid-liquid extraction process for extraction of essential oils. Application of 
RSLE is very much useful for herbal, cosmetic, pharmaceutical, food, and 
beverage industries. 
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CHAPTER 2
 

NOVEL EXTRACTION METHODS: 
PROFILING OF NATURAL 
PHYTOCHEMICALS 

BHUPINDER KAUR, SALAM MAHESHKUMAR SINGH, and  
PREM P. SRIVASTAV 

ABSTRACT 

In the diversified floral assemblage in tropical and subtropical regions, 
various plants are harbor reservoirs of valuable substances, viz., antioxidants, 
polyphenols, starch, pectin, pigment, flavonoids, fat, crude fiber, protein, 
and minerals, along with secondary metabolites. The recovery of these 
compounds is dependent on the type of grinding and extraction technique. 
Cryogenic grinding is a very promising pathway to retain the thermo-labile 
components, which are normally degraded during ambient grinding. Also, 
the old extraction techniques have some disadvantages, such as a long 
extraction time and high solvent consumption. In complying with the greener 
perspectives, modern extraction techniques (single/combined) are suitable 
alternatives to conventional ones. 

2.1  INTRODUCTION 

Nowadays, the natural extracts from plant sources, such as fruits, vegetables, 
flowers, herbs, shrubs, spices, and their byproducts (seeds, peels, leaves, 
bark, roots, and stem) have gained imperative attention of researchers owing 
to their bioactive composition [60]. Plant extracts contain vitamins, minerals, 
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fiber, therapeutic phytochemicals, amino acids, sugars, and other micronu
trients [2], which are necessary for human health, growth, and development 
(Figure 2.1). Some of these compounds have unique functionalities like 
antioxidant, antimicrobial, antiproliferative, anti-inflammatory, and metal 
chelation activities and can be implemented for the treatment and preven
tion of cancer, cardiovascular, and other chronic diseases [57]. The natural 
constituents of some fruits make them a probable source of detoxification 
also. 

Antioxidants are basically employed to retard the oxidation process by 
quenching the free radicals like reactive oxygen species (ROS), superoxide 
dismutase, and reactive nitrogen species. Synthetic antioxidants like butylated 
hydroxytoluene, butylated hydroxyanisole, dodecyl gallate, propyl gallate, 
octyl gallate, ethylene diamine tetra-acetic acid, and tertiary-butylhydroqui
none are under strict vigilance for their use in food applications, owing to 
their potential health hazards [52]. The significance of natural antioxidants 
has been highlighted by many researchers as important nutraceuticals on 
account of many health benefits [37, 69]. Therefore, the trend of using natural 
antioxidants from plant sources has been growing continuously with merits of 
their easy availability and low cost. 

The preliminary and very crucial step for the compositional analysis 
of medicinal plants is extraction. It is one of the key steps involved in the 
identification, purification, and recovery of high-value ingredients [45]. 
Every bioactive compound requires a specific extraction technique, solvent, 
time, temperature, and pressure with respect to its polarity, chemical affinity, 
and molecular structure based on the presence of hydroxyl groups and 
aromatic and aliphatic rings [6]. 

Recently, a number of advanced extraction techniques have been 
explored for the efficient isolation of value-added compounds (Figure 2.1). 
New extractive strategies like the use of co-solvents and a combination of 
different techniques are being used in various industries in order to improve 
the recovery of the target molecules and pharmacological profile of extracts 
along with reducing the extraction time and wastage of solvents. Moreover, 
this will favor environmental safety; as it will reduce the disposal of solvents. 
The efficiently extracted phenolic antioxidants can be successfully used as 
an ingredient in the development of nutraceuticals, functional foods, novel 
foods, and drugs. 

This chapter addresses the importance and applications of cryogenic 
grinding and novel extraction techniques (such as High-pressure extraction 
(HPE), Supercritical fluid extraction (SFE), Pressurized liquid extraction 
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(PLE), Microwave-assisted extraction (MAE), Microwave-ultrasonic 
assisted aqueous enzymatic extraction (MUAAEE), Ultrasound-assisted 
extraction (UAE), and Ultrasonic-assisted extraction integrated temperature-
induced cloud point extraction (UAE-TICPE) for obtaining the valuable 
bioactive compounds. It also emphasizes on the bioactivities of phyto
chemical compounds. 

FIGURE 2.1  Processing of various plant extracts. 
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2.2  CRYOGENIC GRINDING 

Fruits and vegetables are rich sources of health-promoting components, which 
can be degraded during their processing. The different unit operations have an 
adverse effect on product quality, thermo-labile biomolecules (antioxidants 
and polyphenols), and volatile oils [16, 18]. Size reduction is a conventional 
way performed by impact and attrition, which is carried out to reduce the 
particle size. In ambient or conventional grinding, the temperature rise is 
quite high, which results in loss of heat-labile bioactive components, leading 
to partial loss of organoleptic and nutritional properties of food products. 

Additionally, there is more probability of heat generation during the 
production of finer particles due to prolonged grinding time. The tradi
tional grinding at ambient temperature caused an increase in temperature 
(43–95°C) which resulted into loss of volatile oils (mace: 14%; oregano and 
cinnamon: 17%; cumin: 18–19%; nutmeg: 37%; coriander: 40%) [62]. The 
fat/oil content in samples is of high concern, because heat makes the fat to 
melt, which leaks out of vials and degrades the powder quality with lump 
formation. This leaked fat can be oxidized and there might be the generation 
of dark compounds that is ultimately undesirable and unacceptable. 

Therefore, cooling can be used to overcome the increased temperature 
issue; which will have a considerably positive impact on the quality retention 
of the product. The low temperature during grinding could be achieved with 
airflow cooling systems like cold air, coolant, or water circulation around the 
jacket of the grinder. However, this technique is not sufficient to significantly 
reduce the temperature rise of the product to a level, which is safe enough, so 
as not to affect its quality characteristics [18]. 

In contrast, the cryogenic grinding could be used as a solution to limit 
the effects of heating during the grinding process. Cryogenic grinding can be 
defined as the production of powdered material accompanied by cryogenic 
liquids like liquid nitrogen, liquid oxygen, and liquid helium [30]. Liquid 
nitrogen has been used for many studies in the agricultural field that provides 
refrigeration effect at – 195.6°C by absorbing heat generated in the grinding 
operation. The cryogenic grinding not only retains the valuable compounds 
but enhances the recovery also. The earlier work on the use of cryogenic 
grinding in an agricultural area is majorly highlighted on spices and mango 
byproducts by several researchers, such as: 

• Barnwal et al. (cinnamon and turmeric) [5]; 
• Ghodki and Gowsami (black pepper) [16]; 
• Kaur and Srivastav (mango peel) [31]; 
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•  Kaur et al. (mango seed) [30]; 
•  Meghwal and Gowsami (fenugreek) [43]; 
•  Saxena et al. (coriander) [58]; 
•  Sharma et al. (cumin) [62]; 
•  Singh and Goswami (cloves) [63]. 

The aforementioned studies provide the information on fundamental 
aspects of powder properties and the process optimization parameters. The 
cryo-ground products have improved shelf life and enhanced quality due to 
more retention of color, flavor, aroma, volatile, and bioactive components 
which is directly proportional to high consumer acceptance [4, 46]. Thus, 
cryogenic grinding is attractive technology, which avoids the oxidative and 
evaporation reactions [59] in natural products. The efficiency of cryogenic 
grinding is very much dependent on certain parameters of grinding equipment 
like, peripheral speed, amplitude, number of rotor ribs, feed rate, moisture 
content, sieve mesh number, and moisture content. Hence optimization of 
these processing parameters is very important. Generally, ball mill is used for 
cryo-grinding operations and fractures the particles by impact force. There 
is no chance of choking in ball mill, so it is easy to operate comparatively to 
other small-scale mills viz. pin, rotor, and hammer mill and less amount of 
energy is needed for the grinding operation [31]. 

2.3  TRADITIONAL EXTRACTION TECHNIQUES 

Maceration, percolation, infusion, decoction, and Soxhlet extraction (SE) are 
the well-known traditional methods for extraction of antioxidants from plant 
sources. The nature of the solvent used for extraction along with the extrac
tion time and temperature plays a dominant role in deciding the antioxidant 
yield and capacity. To achieve optimum recovery of phenolic antioxidants 
basically polar solvents like ethanol and methanol are preferred over acetone 
and ethyl acetate. A combination of solvents have been used to extract bioac
tives from rosemary, sage, sumac, rice bran, wheat grain bran, mango seed 
kernel, citrus peel, and many other fruit peels [1, 50]. 

2.3.1  MACERATION 

Maceration is a valuable and simple extraction method which involves 
soaking of raw material (whole, coarse or fine) in a particular solvent for 
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not less than 3 days with repeated agitation at ambient temperature, until the 
expected compounds are dissolved [3]. Generally, the biochemical constitu
ents are released by rupturing the cell structure, and as a result, the organized 
tissues are transformed into a suspension of intact cells. This technique is 
commonly used in wine processing and has been widely used in medicinal 
plants research. As compared to other extraction methods, it has the demerit 
of low efficiency and long extraction time. 

2.3.2  PERCOLATION 

Percolation is an exhaustive extraction procedure that extracts the soluble 
constituents of a plant material. The samples are moistened with menstruum 
prior to percolation followed by addition of more menstruum for proper 
soaking and extraction (24 h). 

2.3.3  INFUSION AND DECOCTION 

An infusion and decoction are dilute solution of easily soluble constituents 
of plant materials. The harder plant materials like seeds, bark, and roots are 
crushed and immersed in boiling/cold water, allowed to stand 15–30 min 
and then filtered [21]. They are very suitable for extracting water-soluble 
and heat-stable constituents of aromatic plants as it prevents the loss of 
volatile oils. This process is typically used in the preparation of Ayurvedic 
extracts (quath/kawath). Concentrated infusion and decoction are prepared 
by modified percolation or maceration and can be used either as whole or 
after suitable dilution. The main drawback of infusion is that they are quickly 
susceptible to microbial attack, so it should be disposed within 12 hours of 
preparation. 

2.3.4  SOXHLET EXTRACTION (SE) 

The traditional Soxhlet method is a simple, easy-to-use, effective, and well-
established standard procedure. A large spectrum of environmental (sediment 
and soil) and biological (plant and animal tissues) samples can be processed 
by this method. In this technique, the solvent is heated in a chamber and vapor
izes into the sample thimble to extract the desirable compounds, condenses, 
and drip back. The SE helps to displace the transfer equilibrium, because the 
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sample is infused with the fresh volume of solvent repeatedly throughout the 
process [35]. The higher yield of oil due to an increase in extraction time 
and temperature, has been reported by several researchers while using the 
Soxhlet technique [10, 27, 33, 48]. Lumley et al. [38] explained that it might 
be because of the solvent’s enhanced ability to overcome forces that strongly 
bind lipids within the sample matrix. PLE gave better results and lower yield 
compared with SE and UAE [55]. The unfavorable factor is that it is not 
environmentally friendly, as it involves the use of hazardous and flammable 
solvents and may contribute to the pollution problem. 

2.4  ADVANCED EXTRACTION TECHNIQUES 

Extraction methods are widely used for separation of components from chem
ical and biological mixtures and has a wide range of applications. Advanced 
methods like SFE, HPE, UAE, MAE, and PLE have been recognized as 
important extraction tools with several advantages like reducing the solvent 
volume and extraction time, which in turn improves the quality and whole
someness of the final product [23]. They can be more advantageous, when 
used in combination with other extraction techniques (Table 2.1). Additionally, 
these techniques are eco-friendly in terms of solvent and energy consumption. 

2.4.1  MICROWAVE-ASSISTED EXTRACTION (MAE) 

MAE is a simple and effective extraction technique that combines microwave 
energy and traditional solvent extraction. It is based on the absorption of 
microwave energy by charged particles and polar compounds in the sample. 
The cell structure of plant materials is disordered by electromagnetic waves 
via ionic conductance and dipole rotation [64]. The electromagnetic field of 
microwaves induces the rotation of dipoles to break the hydrogen bonding. 
This causes the quick movement of dissolved ions and enables solvent diffu
sion into the matrix, which results in high extraction rates [19]. 

Its effectiveness is related to the dielectric properties of polarizable 
materials, higher dielectric constant is directly proportional to the energy 
absorption by molecules [26]. This interaction between microwave radiation 
and sample helps to attain the boiling point of the solvent and transfer the 
heat by conduction. By using appropriate parameters to avoid the loss of 
thermo-labile components, this technique improved the extraction quality 
of bioactive compounds and reproducibility. The yield of phenolic and 



  

Method Extraction Yield Sample Compounds Extraction Conditions References 
Medium 

Conventional Extraction Techniques 

Soxhlet extraction n-hexane	 23.5–27.4 Mango peel Oil	 105°C, 60 min [31] 
mg/g 

Maceration Refined olive oil 1244.5 Tomato peels Lycopene	 80°C, 45 min Biomass to oil ratio: [32] 
mg/g 2.5% (w/v) Magnetic stirring: 400 rpm 

Combination of water	 828 mg/g Ornithogalum	 Total 47.1°C, 5,000 bar, 42.12 min Solvent [42] 
maceration and UAE polysaccharides to solid ratio (37.2 ml/g) 

Modern Extraction Techniques 

HPE Water	 324.89 Korean Total phenols 25°C, 5,000 bar, 5 min Solvent to raw [56] 
mg/g barberry material ratio (1:10) 

SFE CO2	 
330 mg/g Tomato trans-Lycopene 62°C; 446 bars; 20 min [28] 

PLE Neutral glass	 34.55 Green tea Caffeine 150°C; 40 bars; 10 min [11] 
mg/g leaves 

MAE Methanol: water 126.3 Olive leaf Luteolin glucoside 80°C; 6 min [64] 
(80:20, v/v) mg/g and isomers 

MUAAEE Water	 852.3 Tiger nut Oil 2% hemicellulase: pectinase: cellulose [26] 
mg/g (1/1/1, w/w/w); Particle size: <600 μm; 

Microwave and ultrasound power: 300, 
460 W; Radiation time and temp.: 30 
min, 40°C; Enzymolysis pH and temp.: 
4.9, 45°C; liquid-to-solid ratio: 10 
ml/g; Extraction time: 180 min 
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Method Extraction Yield Sample Compounds Extraction Conditions References 
Medium 

UAE Ethanol 16.1 mg/g Alfalfa Total saponins 76.8°C; 2.84 h; Liquid-to-solid ratio: [20] 
11.4 ml/g; Power: 112 W; Ethanol 
concentration: 78.2% 

UAE-enzymatic Water 5.98 mg/g Mulberry wine Total anthocyanins 52°C, 315 W; 0.22% enzyme, 94 min [71] 
extraction residues 

UAE coupled TICPE PEG-based 2.61–3.15 Euonymus Total flavonoids 90°C, 15 min; PEG-400: 16% (w/w); [39] 
aqueous solution mg/g alatus Particle size: 80 mesh; Liquid-to-solid 

ratio: 60:1 
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flavanones decreases sometimes while using an additional cycle of MAE, 
and this may be due to the oxidation of compounds [21]. 

MAE is not suitable for the extraction of bioactive compounds that 
are non-polar, because energy is transferred by dielectric absorption only. 
Factors affecting Microwave extraction are solvent, extraction time, micro
wave power, matrix characteristics, extraction temperature and pressure. 

2.4.2  ULTRASONIC-ASSISTED EXTRACTION (UAE) 

Ultrasonic-assisted extraction (UAE) does not involve the application of heat. 
It is one of the easily adapted extraction techniques because it uses organic 
solvent and water bath with ultrasound assistance at low operating temperature 
[71]. Basically, it consists of a specific quantity of solvent and high-frequency 
sounds to obtain maximum extraction of the compounds embedded in the 
solid mass. The higher interface between solvent and sample area favors the 
increase in the solubility of compounds and mass transfer rate [39]. 

In the food industry, high-intensity low-frequency (HILF) having 
frequency in the range of 20–100 kHz and low-intensity high-frequency 
(LIHF) with more than 100 kHz frequency are used. HILF causes an increase 
in permeability of cells via high-intensity shock waves and bubble cavitation. 
Contrarily, LIHF does not alter the physicochemical properties of the mate
rial. During UAE, the choice of solvents like ethanol, methanol, and hexane 
is an important parameter for better cavitation phenomena that are influenced 
by its physical properties like polarity, viscosity, vapor pressure, and surface 
tension. It is less expensive and can extract a large quantity of bioactive 
compounds within a short period and without using a large amount of solvent 
as compared to traditional extraction techniques. The cons of UAE related to 
experimental extraction are its lack of reproducibility and repeatability [20]. 

2.4.3  SUPERCRITICAL FLUID EXTRACTION (SFE) 

Supercritical fluid extraction (SFE) is one of the most interesting extraction 
techniques, since the extraction of bioactive compounds is carried out near 
ambient temperature, and prevents the bioactive substance from thermal 
decomposition. It uses supercritical fluid (SF) as a solvent, which is in its 
supercritical state, i.e., above its own critical pressure and temperature. 
The behavior of SF is similar to solubility to liquid as well as diffusivity 
to gas and also dissolves a wide variety of natural products. However, near 
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their critical points, their solvating properties drastically change due to the 
small pressure and temperature. Various SF can be exercised based on their 
pressure and temperature along with variable extraction times, flow rates, 
and modifiers [6] and literature is available on the use of NH3, CO2, N2O and 
NH3 as extraction solvents [23]. 

CO2 becomes SF at 73.8 bar and above 31.1°C and has poor solubility for 
polar compounds. Therefore, to extract polar compounds, a small amount of 
ethanol or methanol (5–10%) is added and produces analytes at concentrate 
form as CO2 vaporizes at ambient temperature [28]. The high initial cost is 
the major drawback of this extraction technique. 

2.4.4  PRESSURIZED LIQUID EXTRACTION (PLE) 

PLE is another technique that nowadays is regarded as green extraction 
technique and commonly referred as accelerated solvent extraction (ASE). 
However, when water is used as extractant, some terms such as subcritical 
water extraction, superheated water extraction or hot liquid water extraction 
are frequently used. It is a method of extracting a sample under high tempera
ture (50–200°C) and pressure (35–207 bar) using conventional solvents [8]. 
It is carried out in dynamic mode by enabling the continuous flow of solvent 
through the sample and static mode by applying constant heat and pressure 
to sample and solvent for a specific time interval [7]. 

Liquid solvents at elevated temperatures reduce the viscosity of the solvent 
and can infiltrate without breaking down the thermally labile compounds. 
The extraction temperature positively influences the diffusion rate, mass 
transfer, extractability, and decreases the surface tension and viscosity of the 
solvents. Moreover, at elevated pressure, liquid solvent maintains the liquid 
phase to disrupt the plant cell by applying pressure on the matrix. Thus, 
this technique is used to enhance the extraction performance as compared 
to those techniques carried out near room temperature and atmospheric 
pressure [11]. Different parameters that influence the extraction process and 
performances are amount of size and its composition; nature, volume, and 
flow of the solvent; the number of cycles; and extraction time. 

2.4.5  PHYTONIC EXTRACTION 

It is an unconventional extraction technique in which a new solvent-based 
on non-chlorinated fluoro-hydrocarbons, such as hydrofluorocarbon-134a 
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(HFC-134a) or 1,1,1,2 tetra-fluoroethane is used to extract the high quality 
natural essential oils, flavors, and bioactive compounds from the medicinal 
plants. These solvents are non-toxic and eco-friendly refrigerant, commonly 
used in car air conditioners and nebulizers. The extracted product can be used 
directly without any clinical trial. HFC-134a is a nonflammable solvent that 
doesn’t mix easily with triglycerides and mineral oils [17]. Additionally, it 
doesn’t dissolve plant wastes, therefore replaced with chlorofluorocarbon, as 
HFC-134a doesn’t deplete the ozone layer. This process is gentle, cool, and 
requires low energy. Hence, the products are not exposed to higher temperatures. 

2.5  POLYPHENOLS 

Phenolic compounds are widely distributed phytochemicals in nature and 
abundant source of antioxidants. The most significant secondary metabolites 
are synthesized naturally in plants through shikimic acid and phenylpropanoid 
pathways. They are a group of small molecules having phenol as a basic unit 
with versatile functionalities. Additionally, Hintz et al. [25] compiled the 
information regarding the biological activities of bioactive polyphenols viz., 
phenolic acids, lignans, stilbenes, and flavonoids (anthocyanins, flavanols, 
and catechins). 

2.5.1  PHENOLIC ACIDS 

Phenolic acids are a major class of polyphenols available in free, conjugated, 
and bound form. The main pillars of phenolic acids are hydroxybenzoic acid 
(vanillic, syringic, gentisic acid, etc.), and hydroxycinnamic acid (chloro
genic, caffeic, sinapic, ferulic acid, etc.). Generally, phenolic acids can be 
digested and absorbed in the upper part of the gastrointestinal (GI) tract in 
aglycone form [66]. They are capable of modulating metabolic processes and 
exhibiting in vitro antioxidant activity resulting in the promotion of better 
health. The mechanism of action of these compounds is especially related to 
reduce risk of chronic diseases. 

2.5.2  FLAVONOIDS 

Flavonoids are hydroxylated phenolic structures with a C3–C6 aromatic 
ring linkage. They are classified as flavones, flavanols, flavanones, 
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isoflavones, anthocyanins, and proanthocyanidins. Out of which, 80% are 
found in ferns and higher plants. Every class of flavonoids is metabolized 
differently in the body and its physicochemical properties affect the diges
tion, absorption, and biotransformation, which help the organs to func
tion more efficiently while protecting them against everyday toxins and 
stressors [39]. 

Research on flavonoids received an added impulse because they act 
as estrogen agonists after menopause due to low-estrogen environment 
and reduce the need for hormone replacement therapy dosage [70]. The 
mechanism related to the metabolic process of flavonoids is still not 
elaborated clearly. Nevertheless, it has widely been known for centuries 
because of its broad spectrum of biological activities. In herbal medicine, 
anthocyanin rich substances have long been used to treat a number of health 
conditions involving blood vessel health, high blood pressure, diabetes, and 
urinary tract infections (UTI). 

2.5.3  TANNINS 

Tannins are a group of water-soluble, relatively high molecular weight 
compounds that occur in complexes with alkaloids, polysaccharides, and 
proteins. They may have long chains of gallic acid coming from central 
glucose core and are grouped into hydrolysable and condensed tannins 
[68]. The natural tannins help in giving the structure, texture, and flavor to 
fermented wine made from fruit skin. It has been cited those tannins caused 
the decline in feed intake, feed efficiency, protein digestibility, growth rate, 
and net metabolizable energy in experimental animals. Therefore, tannin-
containing foods are categorized as low-nutrition foods. 

2.5.4  STILBENES 

Stilbenes are a small family derived from the phenylpropanoid pathway and 
produced in a number of unrelated plant species [9]. They are chromophores 
that can undergo photoisomerization as do azobenzenes, but they also 
show photodimerization. An extensive literature suggests that stilbenes are 
found in inducible and constitutive defense mechanisms produced by biotic 
elicitation and enzymes released during the elimination of toxic compounds. 
They exist as cis and trans isomers, namely (Z)-stilbene (cis-stilbene), i.e., 
unstable, and sterically hindered and 1,2-diphenylethylene: (E)-stilbene, i.e., 
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stable, and not sterically hindered, respectively. However, the detailed func
tions of these compounds have not been properly explored. 

2.6  BIOACTIVITIES OF PHYTOCHEMICALS 

There is enough literature on the biological activities of phytochemicals 
present in berries, apple, mango, pomegranate, potato, tomato, spinach, 
giloy, moringa, mint, thyme, curry leaf, ginger, turmeric, and fenugreek 
extracts [25, 31, 41, 49, 67]. The major studied compounds responsible for 
these activities are resveratrol, malic acid, β-carotene, lycopene, curcumin, 
menthol, thymol, berberine, gingerol, capsaicin, eugenol, gallic acid, ellagic 
acid, and epigallocatechin. 

2.6.1  ANTIOXIDANT ACTIVITY 

The cellular redox results into a very unstable and uncontrolled production 
of free radicals. They have the tendency to react readily with organic 
substrates (DNA, protein, and lipid) and lead to DNA strand breakage, 
protein denaturation and lipid oxidation [61]. The natural phytochemicals 
are considered to play an important role against diseases related to oxidative 
stress like allergies, asthma, arthritis, neurodegenerative diseases, sepsis, 
coronary heart disease, atherosclerosis, autoimmune disorders, hemodialysis, 
diabetes, hypertension, and cancer [67]. The free radicals are scavenged 
by bioactive compounds (majorly from fruits and vegetables) and act as 
antioxidant agents. More recently, herbs and spices have been recognized as 
significant sources of phytochemicals too [53]. 

2.6.2  ANTIMICROBIAL ACTIVITY 

The side effects of some synthetic antibiotics namely, benzoyl peroxide, 
erythromycin, clindamycin, and triclosan have been reported. Hence, the 
development of novel therapeutic agents with high antibacterial activity 
but less possible side effects is the need of time [65]. Gallic acid, ellagic 
acid, gallotannins, methyl gallate, tannic acid and polygalloyl glucose type 
phenols were mainly investigated in plant-based extracts that effectively 
suppressed the main spoilage bacteria and fungi [13, 14, 29, 68]. 
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The hydrolysable compounds can interact with proteins to inhibit enzyme 
activities and iron-complexing properties, which can restore the growth of 
bacteria. Interestingly some herbs namely thyme, oregano, basil, rosemary, 
and sage exhibit very strong antimicrobial activity [25]. 

2.6.3  ANTIPROLIFERATIVE ACTIVITY 

Lately, the antiproliferative effect of natural extracts has been gaining the 
global attention. The anticancer activities of fruits and their polyphenolic 
compounds have been reported by several researchers on cell lines of 
prostate, lung, breast, leukemia, colon, cervical and colorectal cancer cells 
[15, 36, 47, 54]. Moreover, triterpenes lupeol and mangiferin owe their 
chemopreventive action to the induction of permeability in mitochondria 
[51]. Interestingly, the cell lines showed specific response with respect to a 
few factors such as cultivar, tissue, and extract source and growth environ
ment [47]. The antiproliferative activity of extracts also depends on their 
phenolic and flavonoid contents [34]. 

2.6.4  METAL CHELATING ACTIVITY 

The transition-metal ions (Fe2+, Mg2+, Cu2+) play a very important role in 
the functionality of free radicals during oxidative phosphorylation. These 
metal ions are captured by various chelating agents to inhibit their action. 
Some compounds like gallates (methyl gallate), tannins (ellagitannins and 
gallotannins) and pentagalloyl glucose, are natural metal chelating agents 
[40, 44]. Engles et al. [14] reported that gallotannins has almost 10 times 
higher iron-binding capacity than EDTA, which depends on a number of 
galloyl groups. 

2.7  SUMMARY 

For the past few decades, the replacement of artificial antioxidants with natural 
ones has been becoming a field of mounting interest for researchers. Natural 
extracts contain numerous health-promoting polyphenolic antioxidants, 
which should be fractionated very carefully and efficiently. These beneficial 
components might act as a source of fragrances, flavoring compounds, dyes, 
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bio-sorbents, agrochemicals, and new drugs. Suitable advanced grinding 
and extraction technologies should be used for the industrial exploitation of 
such beneficial bioresources, which in the long run will contribute widely to 
the socio-economic growth of the human race. This chapter highlights the 
advantages of cryogenic grinding and advanced extraction methods (HPE, 
SCFE, PLE, MAE, MUAAEE, UAE, and UAE-TICPE). 
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CHAPTER 3 

EXTRACTION OF VALUE-ADDED AND 
HIGH-VALUE FOOD PRODUCTS 

PRADIP B. DHAMOLE, SHEETAL KOTHAWALE, and S. S. LELE 

ABSTRACT 

Extraction of the desired product from an aqueous solution or solid biomass 
requires an efficient extraction method. The selection of a suitable extraction 
method is important as it not only affects the extraction efficiency but also 
determines the downstream processing steps. An ideal extraction method 
would give maximum extraction efficiency and will selectively extract the 
desired component/product from the source. Principles of various extraction 
methods (physical, chemical, biological, and hybrid), their performance, 
advantages, and limitations, along with examples, are presented in this 
chapter. 

3.1  INTRODUCTION 

The selection of an appropriate extraction method is of utmost importance as 
it decides the further downstream processing. There is hardly any production 
line without an extraction process in food, biotechnology, pharmaceutical, 
and bioenergy. The challenge in the extraction of a solute/product from a 
solid matrix/biomass/cell or solution is that the desired molecule is usually 
embedded within the matrix or dissolved in a complex solution. An important 
parameter in the selection of the extraction process is the yield which should 
be maximum without affecting the properties of the product. In addition, it 
should also extract no/minimal amounts of undesirable components. 
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Therefore, an ideal extraction method should: (i) give high yield; (ii) 
preserve the biological activity or other important properties; (ii) require less 
time; (iii) require less energy; (iv) extract only the target compound (selec
tivity should be high); (v) have low environmental impact; (vi) be safe; (vii) 
require less unit operations. Conventional extraction methods (CEMs) lack 
some of these characteristics, and hence, there is a need of advanced extrac
tion methods, which would fulfill most of the criteria of an ideal extraction 
method. 

This chapter focuses on advanced extraction methods for extraction 
of high-value/value-added products from various food or food processing 
waste/agriculture biomass/waste and fermentation broths. 

3.2  ADVANCED EXTRACTION METHODS 

A number of advanced extraction methods are being explored nowadays. 
The various methods of extraction can be broadly classified into physical, 
chemical, biological, and hybrid methods (Figure 3.1). Physical methods 
include solvent extraction, ionic liquid extraction, supercritical and 
subcritical fluid extraction, pressurized liquid extraction (PLE), salting out, 
sugaring out, polyol-induced extraction (PIE), cloud point extraction (CPE), 
and polymer-salt and polymer-polymer based aqueous two-phase system 

FIGURE 3.1  Types of extraction methods. 



 

 

Solute/Product Source Method of Efficiency References 
Extraction 

Astaxanthin Shrimp waste SC-CO2 39% [67] 
Bioactives Food and agriculture SFE 70–80% [30] 

byproducts 
Bioactives Food (fruits, ginger, Subcritical 40% [30] 

tea, etc.) 
Bioactives Plant and food Subcritical ~ 80% [27]
 
(antioxidants)
 
Carotenoids Fruits, vegetables, Ionic liquid – [67]
 

industrial waste extraction 
Carotenoids Fruits, vegetables, SFE 50% [67] 

industrial waste 
Coffee oil Spent coffee grounds Solvent extraction 14.7 wt.% [69] 
Essential oil Plants Supercritical fluid 27.5% [82] 

extraction 
Lipids (tocopherol) Spent coffee grounds Solvent extraction 93% [49] 
Lycopene Tomato processing Solvent extraction 75.75% [63] 

waste 
Lycopene Tomato peels SC-CO2 60.85% [65] 
Lycopene Tomato peel residues Surfactant assisted 25% [62] 

extraction 
Natural products Herbal medicinal Ionic liquid 83.5% [78]
 
(flavonoids, terpenoids) plants extraction
 

Phenolics Spent coffee ground Subcritical 47% [43]
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(ATPS) (Table 3.1). Chemical methods that are covered in this chapter are 
acidic and alkaline extraction methods (Table 3.2). Enzyme-assisted extrac
tion (EAE) is the biological method. Hybrid methods combine any two or 
even three different methods. 

TABLE 3.1 Applications of Various Physical Extraction Methods 

Hybrid methods include ultrasound-assisted extraction (UAE), micro
wave-assisted extraction (MAE), ultrasound-assisted microwave extrac
tion (UAME), ultrasound/microwave-assisted enzymatic extraction, and 
microwave-assisted aqueous two-phase extraction (MAATPE), and reactive 
extraction. 

Efficient extraction methods are also needed in the analysis of the compo
nent in a product or a raw material. For analytical purposes, the important 
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criteria for the selection of extraction method are the efficiency. Further, 
the method should not lead to the release of undesired component which 
would hinder the quantification process. Economics is generally not impor
tant for analytical methods since the quantity of raw material processed is 
small, and hence, the energy and other requirements are also low. Thus, a 
method selected for quantification may not be suitable for production of the 
compound on a large scale. 

TABLE 3.2  Applications of Various Chemical and Biological Extraction Methods 



Solute/Product Source Method of Efficiency References 
Extraction 

Edible oil Soybean Enzymatic 90% [29] 

Ginger oleoresin Ginger Enzymatic 80% [59] 
Lignans Flax hulls and seeds Enzymatic 70% [64] 
Lignin Softwood kraft pulp Acidic 50–70% [44] 
Lycopene Whole tomato, peel, fruit pulper Enzymatic 18-fold higher [89] 

waste and industrial waste purification 
Niacin Cereals Alkaline 21% [38] 
Pectin Pomelo peel Acidic 12.1–20.5% [83] 
Pectin Pomelo peel Alkaline 13.9–24.2% [83] 
Phenolic acid Rice bran Enzymatic 72.7% [42] 

3.2.1  PHYSICAL METHODS 

3.2.1.1 SOLVENT EXTRACTION 

Solvent extraction (also known as liquid-liquid extraction (LLE)) is one of 
the most widely used extraction method for extraction of target compounds 
from solutions. Compounds are separated based on its solubility in two 
different immiscible liquids. Hydrophilic compounds are extracted with 
polar solvents such as ethanol, methanol whereas non-polar solvents, e.g., 
hexane, are employed for extraction of lipophilic compounds. Solvent should 
be immiscible with the solution, have high selectivity for the desired solute/ 
compound, should be easy to recover, inert, safe, and stable. 

Efficiency of solvent extraction depends on choice of solvent, mass 
transfer, selectivity of solvent towards the desired solute and solubility of 
solvent with the solution. Limitations of the use of organic solvents for the 
recovery of natural products are toxicity of the solvent, poor product quality, 
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energy intensive solvent recovery process [41] and safety of the process. It 
is applied for the extraction of essential/edible oil. Extraction of seed oil is 
usually performed using a non-polar solvent (petroleum ether or n-hexane). 
This method is used instead of the mechanical system (i.e., seed pressing) to 
recover a larger quantity of oil [41]. In the production of coffee oil from the 
coffee powder [69], carotenoids from tomato processing waste, extraction of 
spices from plants and lipid component extraction from food [49]. 

3.2.1.2 IONIC LIQUID EXTRACTION 

Ionic liquid extraction uses ionic liquids (ILs) as green solvent in conjugation 
with other extraction processes like LLE, UAE, MAE, and so on [64]. ILs 
can be used as an alternative to conventional solvents due to their unique 
physicochemical properties. ILs can be designed in a large number of cation 
and anion combinations which helps them to adjust their properties in terms 
of hydrophobicity and solution behavior [35, 78]. Mechanism of ILs is based 
on ion exchange which is different than traditional solvents. Low toxic, high 
selectivity, high ionic conductivity, and good thermal stability are some of 
the advantages of this process [35]. These qualities of ionic liquid extraction 
led to its vast applications. Using IL as a solvent, bioactive compounds 
(flavonoids, alkaloids, etc.), and essential oils can be extracted from plants. 
Also, carotenoids can be isolated from food byproducts [64, 78]. 

ILs are also being applied as surface-bonded stationary phases and mobile 
phase additives in chromatography separations. For selective transport of 
organic compound IL supported membrane are used [35]. On the other hand, 
as ILs are mostly obtained from fossil sources, their nature as green solvent 
is also questionable. Some ILs are toxic (Imidazolium-based ILs) and can 
cause potential environmental impact [34]. Designing ILs is a high-cost 
process and there is also difficulty in recovering extracted ions which makes 
them impractical for industrial application [35, 64, 78]. 

3.2.1.3 SUPERCRITICAL AND SUBCRITICAL FLUID EXTRACTION 

Supercritical and subcritical fluid extractions are the new age effective green 
methods as it avoids the use of harmful solvents [30]. Supercritical fluid (SF) 
extraction has been widely applied for the abstraction of biologically active 
components and essential oils from food byproducts, plants, and algae. The 
method has high solubility, selectivity, and high extraction yield in a short 
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time (three times higher than distillation) [82]. Supercritical fluid extraction 
(SFE) is established on the unique property of SF which shows a diffusivity 
and density values between liquid and gas [30, 82]. With changing pressure 
and temperature, the density of SF can be changed enormously. Due to such 
qualities, it is viable to separate out desired constituents from a multicompo
nent concoction using SF (CO2, water) as a solvent [64]. 

The feed containing solute is put into an extraction vessel. Fluid has been 
constantly added to the vessel so as to mix solute with SF. The ambient 
pressure and temperature (above the critical point of solute) is supplied to 
the mixture. Finally, with the help of the separator, SF comprising recovered 
components are separated out by lowering the pressure and collected in 
a collection vessel [6, 43, 82]. There is no production of toxic waste and 
solvent can also be easily recovered. 

Currently CO2 has been applied to carry out almost 90% of SFE because 
of its low critical temperature (32°C) and critical pressure (71.8 bar) that 
enables extraction of thermally labile food compounds [64]. Moreover, it 
has been used in the extraction of essential oils [82], extraction of non-polar 
bioactive compounds from food and agricultural waste [64, 67], recovery 
of natural flavors and essence from lime peels, coffee, basil [6] and target 
compound extraction from plant and food byproduct [30]. Although there 
are some limitations such as SFs fail in extraction of polar analytes and it 
requires high pressure and high capital investment. 

On the other hand, polar components can be removed efficiently by 
subcritical water extraction as it has the advantage of using water as the only 
solvent. Subcritical water extraction is used in isolation of antioxidants from 
byproducts and wastes from the food industry [6, 30]. It is a safe, environ
mentally friendly, and suitable alternative to other conventional methods. It 
is also called pressurized hot water extraction or superheated water extraction 
[27]. This extraction technique uses water at its subcritical state as a solvent. 
Subcritical water can be maintained in the liquid form between boiling point 
temperature (100°C) and critical point temperature (374°C) and a pressure 
greater than 50 bars to extract polar and semi-polar solutes [6, 30, 43]. 

Subcritical water extraction is performed in batch or continuous system. 
Continuous system is most applied because the extraction bed is fixed and 
direction of solvent flow is up to down which easily cleans up solutes. 
The water is pumped into the extraction vessel in which food byproduct 
is present. Oven is used to heat the vessel and pressure restrictor maintain 
the appropriate pressure. Solute from byproduct is transferred to water by 
mass transfer principle [27, 30, 43]. Nitrogen is mostly used as an inert gas 
to purge the system to prevent oxidation during extraction. The method is 
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highly selective, time conserving and cause no loss of bioactivity of extracts. 
As a result of so many advantages, subcritical water extraction is applied in 
the separation of phenolics from food byproducts and anthocyanin extraction 
from coffee pulp [6, 27, 43]. Separation of polysaccharides, proteins, and 
antioxidants from biomass as well as flavoring compounds from spices can 
also be carried out using subcritical liquid extraction [27, 30]. Sometimes 
ethanol has been used as a cosolvent to increase water polarity which can 
lead to loss of bioactivity and high temperature can cause thermal degrada
tion of component [27]. 

3.2.1.4 PRESSURIZED LIQUID EXTRACTION (PLE) 

PLE is also called accelerated solvent extraction (ASE), pressurized solvent 
extraction and pressurized hot water extraction (when water is the solvent) 
[57]. It is considered as highly effective method for extraction of solute from 
the solid mass as compared to conventional ones. PLE is a technique which 
provides green extraction method that uses solvents at a high pressure and 
temperature as compared to conventional extraction (CE). The pressure and 
temperature must be high enough to maintain solvent in a liquid state so that 
it penetrates into the solid sample which is being extracted [6, 36]. 

High temperature and pressure will enhance the mass transfer and 
solubility. The equipment used in this method needs to support both, high 
temperature and pressure. The working of the whole process of pressurized 
liquid extraction is automatic to attain the exhaustive extraction [64]. 
Pressurized extraction gives high extraction yield with less extraction 
time. However, further purification will be required if other molecules get 
extracted with the desired molecule [36, 64]. 

There are various sizes of extraction cells in which the solid feed is filled 
with solvent in the vessel and covered with two filtration nozzles. After 
loading the feed, the system begins to pressurize and heat the feed auto
matically. The pressure can be retained up to 3,000 psi and temperature up 
to 200°C. When the system is in a equilibrate state, solvent including desired 
components and byproducts, is collected into a collector, automatically [6, 
90]. The method is employed for carotenoid extraction from food matrices, 
extraction of bioactive compounds from plant extracts, separation of organic 
contaminants from food samples and extraction of alkaloids from food waste 
[6, 36, 64, 75, 90]. PLE uses a low amount of solvent, however, high pres
sure requires expensive pressurized vessels. Also, one needs to be careful 
while separating thermally sensitive molecule using PLE [57]. 
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3.2.1.5  SALTING OUT 

Salting out process is a separation process, basically applied to proteins but 
not limited to the extraction of proteins. High salt concentration helps the 
proteins to precipitate; therefore, it is also known as salt-induced precipita
tion or salt fractionation [61]. The process of salting-out uses the decreased 
solubility of components present in suspension containing salt at elevated 
ionic strength leading to precipitation of molecules. Selective precipitation 
of desired component is based on the type of salt and its concentration. 

The ammonium sulfate is added to a solution of macromolecule to a 
concentration just below the precipitation point of the component of interest. 
The mixture is centrifuged to separate precipitated compounds. Unwanted 
components which are precipitated at the bottom of centrifuge tubes are 
discarded, and to the aqueous mixture (supernatant), more salt is added to a 
concentration sufficient to salt out the desired components. The mixture is 
again centrifuged and protein precipitate is recovered while the supernatant 
is discarded [14, 61]. Salting out minimizes the unfolding stress to protein 
encapsulates, the used salt has no harmful effect on protein, no heating 
process is required and there is no use of hazardous solvents. Sometimes 
high salt concentration may induce unwanted chemical reactions and can 
damage biological components. 

ATPS consisting of an aqueous solution, solvent, and salt is also known 
as salting out. Addition of salt into solution containing solvent leads to 
two-phase formation; upper phase is a solvent rich phase and the bottom 
phase is aqueous phase containing salts. The target molecule moves from 
aqueous solution to the solvent rich phase. This phenomenon is widely used 
for extraction of erythromycin from fermentation broth [45], allicin from 
garlic [47], succinic acid [71], carboxylic acids and acetoin from broth [11]. 
Different solvents such as acetonitrile (ACN), ethanol, [45, 47] ethyl acetate 
and some ILs are also explored. Salts such as NaCl, MgSO4, KH2PO4 and 
K2HPO4 are used. Major drawback of salting-out process is the recovery 
of salt from the lower aqueous phase. Also, some of the salts are corrosive, 
reactive, change the environment conditions and denature the product. 

3.2.1.6  SUGARING OUT 

Sugaring out is a newly discovered physical method of extraction reported 
in 2008, which uses ACN, water, and sugars [76]. The sugaring out method 
uses monosaccharide (C5/C6 sugars) or disaccharides as a phase separating 
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agent [24]. Sugaring out is based on the theory that when sugar is added into 
a water and ACN solution, hydrogen bonds are formed between sugar and 
water molecules replacing water-solvent bond leading to new phase forma
tion. It results in formation of two-phase, ACN forming the upper phase 
while lower phase abounding water and sugar [20, 24]. The phase separation 
is rapid and it requires no external energy. 

Various parameters that affect sugaring out are temperature, type of sugar 
(C5 and C6) used, concentration of sugar, volume ratio of solvent to aqueous 
solution. Low temperature and high sugar concentration favors sugaring 
out. Initial reports on sugaring out mainly used ACN as a solvent. However, 
recent studies have explored various other solvents such as butyl acetate, 
ethyl acetate, pentanol, butanol, propanol, and acetone. There are some 
reports on use of ILs [72]: 

• 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4); 
• 1-Butyl-3-methylimidazolium triflate ([Bmim]OTF); 
• 1-Butyl-3-methylimidazoliumbromide ([Bmim]Br); 
• 1-Ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4); 
• 1-Hexyl-3-methylimidazoliumbromide ([Hmim]Br). 

The method is used in various food and pharmaceutical applications which 
include extraction of phenolic compounds (vanillin, syringaldehyde, ferulic 
acid, p-coumaric acid) from lignocellulosic hydrolysates, fermentation products 
(acetoin, succinic acid, lactic acid (LA), antibiotics, and 2,3-butanediol) [12, 
13, 54, 69, 79]. This method is more suitable for fermentation products since 
the bottom sugar rich phase can be re-used as a carbon source. It is also used for 
separation of ACN from reverse phase-HPLC eluent generated during protein 
separation [24]. Solute molecule extracted into solvent rich phase could be 
back-extracted by evaporating the solvent by vacuum distillation [12, 13, 79]. 

3.2.1.7  POLYOL INDUCED EXTRACTION (PIE) 

Polyol induced extraction (PIE) is another recently developed method based 
on ATPS between water/ACN mixture. Polyol is a molecule with more than 
two hydroxyl groups such as glycerol, ethylene glycol and sorbitol. Similar 
to salting out and sugaring out, polyol (sugar alcohol) based ATPS uses 
polyol as a mass separating agent. PIE was reported for extraction of water 
from organic solvents [18]. PIE is relatively less explored method despite 
many advantages such as non-toxicity of most of the polyols, biodegrad
ability, and reusability of polyols. This method can be used for extraction 
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of various compounds from aqueous solutions. Polyols such as glycerol, 
erythritol, xylitol, sorbitol, and maltitol were used as mass separating agent 
for extraction of vanillin from aqueous solutions [7]. Better phase separation 
was obtained with polyols having higher number of hydroxyl groups. Phase 
separating performance of various polyols was ranked as [7]: 

maltitol > sorbitol > xylitol > erythritol > glycerol 

Essential oils were extracted using glycerol as a mass separating agent 
without losing the main components of essential oils [17]. Different leaves 
(dried) were used for extraction of essential oils and the extraction was 
carried out between – 20°C and 20°C. The highest partitioning and recovery 
were obtained at – 10°C. Thus, PIE due to its low heat, less time and low 
cost could be a promising extraction method for extraction of heat sensitive 
components. 

3.2.1.8  CLOUD POINT EXTRACTION (CPE) 

Cloud point is the property of non-ionic surfactants. Non-ionic surfactants 
form micelle in aqueous solution, and on increasing the temperature above 
cloud point temperature it separates into two phases. During the micelle 
formation, the hydrophobic tail of nonionic surfactants forms an inner 
hydrophobic core. A hydrophobic compound gets trapped into the micellar 
core. The micelles settle with time or heating above a cloud point tempera
ture leads to two phase formation. The lower phase is called coacervate or 
surfactant rich phase. The upper phase is called lean, aqueous phase or dilute 
phase. Hence, CPE is also a type of ATPS. The desired component/product 
is extracted into the surfactant rich phase. 

CPE has many advantages over other extraction methods such as 
concentration of the product in a coacervate phase, reduction in further 
downstream processing volumes, low amount of surfactant requirement and 
easy to tune physiochemical properties. CPE is widely used for analytical 
purposes; however, it is also explored for other non-analytical applications. 
CPE finds a good number of applications in fermentation processes where 
substrate or product inhibition occurs, i.e., large concentrations of substrate 
or product inhibits the fermentation process. Some of the examples are 
butanol fermentation [23]; lipase [82]; and red monascus pigments [88]. It 
is also used for the extraction of some phenolic compounds produced during 
the hydrolysis of lignocelluloses [22] and chlorophyll from spinach [46]. It 
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can be used for extraction of high value low volume products which are 
hydrophobic in nature. 

One of the major limitations of CPE is the back-extraction of solute from 
the coacervate phase. Some of the methods investigated for back-extraction 
include changing the pH of the solution and microemulsion formation with 
other solvents [31]. Further, the aqueous phase contains surfactant levels 
(close to its critical micellization concentration) that might act as a pollutant 
if not recovered. 

3.2.1.9  POLYMER-SALT AND POLYMER-POLYMER BASED ATPS 

Aqueous two-phase extraction method based on salt (sulfate, phosphate)
polymer (dextran, Poly-ethyl glycol (PEG)) or polymer-polymer works as two 
immiscible aqueous solutions that act as an extractants [37]. In polymer-salt 
aqueous two-phase extraction, salt takes up most of the water and polymer 
forms aggregate and starts to separate out. Phase separation is accomplished 
either by settling under gravity or by centrifugation leading to the formation 
of two immiscible phases. The upper phase is hydrophobic polymer phase 
while the lower phase has inorganic salt. Mostly, low molecular weight 
polymer and high salt concentration favor the partition of proteins [37]. This 
single-step approach increases fold purification and recovery yield while a 
polymer-polymer system is formed by mixing two different polymers (PEG, 
dextran). The system leads to formation of aggregates and thus polymers begin 
to split amongst two separate phases due of steric exclusion. The exclusion 
depends on the pH, ionic strength and temperature of the solution and type of 
polymers. The upper phase is formed by more hydrophobic (PEG) polymer, 
while the lower phase is formed by hydrophilic polymer (dextran) [37, 81]. 

In both the methods, the target product, such as biomolecule is concen
trated in one of the phases and the contaminants in the other. Both methods 
are non-toxic and can be operated at large scale. Salt-polymer has an 
advantage over polymer-polymer by being low operational cost and isola
tion process while polymer-polymer separation operates at mild conditions 
than salt-polymer [37, 81]. Separation of drug residues from milk, honey 
can be carried out by salt-polymer system whereas extractive fermentation 
of products like LA can be taken out by polymer-polymer separation [37, 
81]. Extraction of low molecular weight compounds as high value products 
such as enzymes and proteins for the food industry can be obtained by both 
separation methods [81]. 
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3.2.2  CHEMICAL METHODS 

3.2.2.1 ACIDIC EXTRACTION 

Acid extraction or acid hydrolysis is widely used in the treatment of ligno
cellulosic materials for biochemical and biofuel production. Dilute acid 
hydrolysis breaks the lignin structure and the glycosidic bonding between 
the cellulose molecules by HCl with H2SO4 as a catalyst to form monosac
charides [1, 4]. During extraction, the matrix structure of fiber is disrupted 
by acid into polysaccharide components, and additionally facilitates the 
degradation of these components into monosaccharide. Such type of extrac
tion is carried out in two ways, low temperature high acid concentration or at 
high temperature with low acid concentration [1]. 

Due to faster acting reactions in shorter time, this method leads to higher 
sugar yield and good reproducibility. Acid extraction has been employed in 
food and chemical industries for cellulose extraction from biomass to use it 
for the production of bioethanol and to change cellulose and hemicellulose 
into valuable products [1]. Despite so many application acid extractions have 
plenty of drawbacks. The use of acid at high concentration might trigger 
severe environmental alarms. Acid extraction needs high quality material 
of construction since acids are corrosive [4]. Also, extreme conditions (high 
temperature and pressure) under acidic conditions leads to the generation 
of inhibitors (such as acetic acid, phenolic acids, etc.), which inhibit the 
fermentation process. 

3.2.2.2  ALKALINE EXTRACTION 

Alkaline extraction is a low cost and widely used method. It applies alkali 
(NaOH and KOH) for extraction of proteins, polysaccharides from food [84], 
soluble dietary fiber from fruit peels and phenolic acids from lignocelluloses 
[22]. Alkali treatment hydrolyzes the cell wall of biomass (mostly made of 
hemicellulose) that leads to release of desired product [19]. 

Alkaline solution is added to dried powdered biomass and mixed for a 
sufficient time so as to release the target molecule in the solution. Tempera
ture plays an important role in alkaline extraction. Hence, concentration of 
alkali, type of alkali, time, speed of agitation, temperature, and solid/liquid 
ratio needs to be optimized for improved extraction of target molecule. The 
residue (solid biomass) is filtered out from the solution and it is followed 
by solvent extraction [21]. The process requires a small amount of solvent 
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and lesser time compared to enzymatic extraction. Scale-up to industrial 
production is also easy due to ease in availability of solvent [19, 39]. 
Alkaline extraction is also used in the isolation of proteins and starch from 
canola and cereals like rice [19], for vitamin (niacin) extraction from cereals 
[39] and can be coupled with spectroscopy for determination of iodine in 
food sample [28]. Recovery of alkali or neutralization is a major problem 
with alkaline extraction. Also, high concentration of alkali may damage the 
product. 

3.2.3  BIOLOGICAL METHOD 

3.2.3.1 ENZYME ASSISTED EXTRACTION (EAE) 

Enzyme assisted extraction (EAE) has been considered widely as one of the 
most effective, sustainable, and environmentally friendly method into sepa
ration technology [29]. It is carried out by enzymes in trivial environment by 
means of specificity and selectivity while retaining the biological capabilities 
of bioactive compounds [89]. The basis of the enzymatic extraction is the use 
of enzyme as a catalyst for the plant cell wall disruption through hydrolyzing 
it in mild surrounding, so as to discharge the intracellular components [59, 
89]. This method has benefits over another method as it lowers impact on 
the environment, the enzymes used are highly efficient and specific, and 
also preserves original properties of natural product. EAE reduces solvent 
consumption, gives higher yield, and requires lower energy as compared to 
physicochemical methods. 

EAE aids in recovery of lycopene from tomato processing waste as well 
as extraction of biomolecules such as phenols from natural sources for appli
cation in food processing [59, 89]. EAE has been widely used for extraction 
of bioactives from plant material. Some of the applications of EAE include 
the use of laccase in the pulp and paper industry, vanillin from vanilla green 
pods, extraction of carotenoids from marigold flowers, oil extraction from 
different seeds such as tomato seeds, grape seed. Polysaccharides and edible 
oil can also be extracted efficiently by EAE from biomass and oilseeds, 
respectively (Table 3.2) [29, 59]. Additionally, enzymes can improve extrac
tion efficiency up to 97% by combining with microwave, ultrasonic, and SF 
methods [32, 59]. Cost of the enzymes is a major constraint in the applica
tion of EAE. So, they are less suitable for industrial application, plus they are 
not always feasible because their behavior is limited by static environmental 
conditions [32, 59]. 
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3.2.4  HYBRID METHODS 

Hybrid methods are a combination of two or more methods. For example, 
a biological method can be combined with a physical method or a chemical 
method (Table 3.3). 

TABLE 3.3  Applications of Various Hybrid Extraction Methods 

Solute/Product Source Method of Extraction Efficiency References 
Carboxylic acid Fermentation broth Reactive extraction 65% [3] 
Lactic acid Fermentation broth Reactive extraction 97% [74] 
Lycopene Dry tomato pomace UAE 70% [50] 
Pectin Orange peels MAE 19.24% [52] 
Pectin Sisal waste Enzymatic ultrasound-

assisted extraction 
31.1% [80] 

Penicillin G Mycel-containing 
broth 

Reactive extraction 96% [5] 

Soluble dietary 
fiber 

Papaya peels UAE 36.99% [84] 

3.2.4.1 ULTRASOUND-ASSISTED EXTRACTION (UAE) 

UAE is a simple, fast, inexpensive, and has low environmental impact. 
UAE is capable of efficiently extracting valuable components from 
biomass by operating with many samples at one time [5, 10]. Hybrid 
method UAE is centered on the ultrasound pressure wave proliferation 
through solvent which results in a cavitation phenomenon [53]. Ultra
sound waves produce frequency exceeding threshold of nearly 20 kHz. 
During the process, ultrasound frequency leads to the formation of bubble 
and develop extreme negative pressure which break down the bubbles 
formed by cavitation. As the bubbles break down close to cell walls, the 
cell wall disrupts mechanically, and consequently, mass transfer improves 
and solvent infiltrates the cells and discharge the desired components [53, 
54, 90]. This reduces the consumption of solvent as well as processing 
time and increase the extraction rate. 

Extraction of heat sensitive bioactive components from fruit and vegetable 
such as carotenoids, phenols, anthocyanins, aroma, natural color, and phenol 
are some of the applications of UAE [8]. Extraction of antioxidants, volatile 
compounds, capsaicinoids, and aroma compounds can also be extracted from 



 

 

 

61 Extraction of Value-Added and High-Value Food Products 

herbs and spices using UAE. Further, UAE is also applied for extraction 
of oil from various oleaginous seeds such as soybean, sunflower, almond, 
flaxseed, etc. [8]. Nonetheless, high frequency ultrasound energy can cause 
occasional but deleterious effect on compounds. 

3.2.4.2 MICROWAVE-ASSISTED EXTRACTION (MAE) 

Microwave-assisted extraction (MAE) is another hybrid method which 
combines microwave and conventional solvent technique. MAE uses non
ionizing electromagnetic waves of frequency up to 300 GHz [53]. Heating 
occurs in selective manners in a closed system with practically no environ
mental loss. Energy of an electromagnetic radiation while traveling through 
a medium may be absorbed and converted into thermal energy. Heating of 
the medium takes place through two ways, i.e., ionic conduction and dipole 
rotation [26, 40]. 

Microwave produces electric field that leads to migration of charge 
carriers. This phenomenon is referred as ionic conduction [58]. Heating is 
caused due to the friction of charge carriers and medium [26]. Dipolar mole
cules try to follow the electric field in the same alignment. Collisions take 
place between the dipoles and surrounding molecules, resulting in heating. 
Dipole interaction and ionic conduction takes place together resulting in the 
conversion of microwave energy into thermal energy. High temperature and 
pressure are generated inside the oven. This high temperature evaporates the 
moisture present in cell which reduces mechanical strength of the cell wall 
and cell ruptures releasing the contents [5]. 

MAE reduces the solvent consumption, improves product quality, and 
accelerate extraction rate due to high temperature (37% high extraction 
efficiency than traditional solvent extraction) [6]. Factors affecting the effi
ciency of microwave extraction are size of the material, moisture content, 
selection of solvent and its concentration, microwave frequency, solid/liquid 
ratio, temperature, and pressure [77]. 

Choice of solvent is one of the important factors since its capacity to 
solubilize the desired solute and the amount of energy the solvent can absorb 
are vital. Also, the concentration of solvent (i.e., solid/liquid ratio) is another 
parameter having significant effect on extraction efficiency. High solvent 
volume would solubilize the solute and enhance extraction. 

MAE has some limitations, e.g., high capital cost and additional filtration 
step for removal of the solid residue after the extraction. Operating conditions 
such as elevated temperatures possibly damage heat-sensitive compounds or 
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just in case when solvents are volatile and non-polar, the efficiency of MAE 
can be very poor [6, 53, 90]. 

MAE facilitates isolation of polysaccharides, proteins, and phenolic 
compounds from food waste and biomass as well as extraction of essential 
oil from plant leaves and seeds [6, 53, 90]. MAE is also explored for extrac
tion of total phenolics, catechin, hesperidin, and isoflavone from different 
plant species [87]. It has been commonly employed in food safety analysis 
as a relatively inexpensive separation method nowadays. It can also be 
applied in the extraction of herbs and spices and nutraceutical products 
from plants [6, 53]. 

3.2.4.3  ULTRASOUND-ASSISTED MICROWAVE EXTRACTION 
(UAME) 

It is a newly developed hybrid technique that combines ultrasound and 
microwave radiation that exhibits the advantages of both methods by inten
sifying the traditional process [69]. UAME is very fast and highly efficient 
and hence has a great potential as a new method for process intensification. 
UAME has been used in the extraction of polysaccharides from fruits, essen
tial oil extraction from plants [9] and glycoprotein extraction from cereals 
like barley [33]. UAME was done in totally separate extractor known as 
ultrasound microwave extractor. For the extraction of compounds, micro
waves offer easy and appropriate heating, however it limits the mass transfer 
while on the other hand ultrasonic waves helps in enhancing mass transfer 
rate but it cannot produce sufficient amount of sensible heat [9, 33]. 

Cavitation (due to ultrasound) disrupts the cell wall and significantly 
enhances the extraction of desired component whereas microwave improves 
the migration of dissolved molecules due to rapid heating of the entire sample. 
Microwave radiation also helps in solvent penetration into the biomass/solid 
mass and helps in enhancing the solubility of the compound [8]. Even though 
the method requires high power input, it has shortened extraction time and 
increases the extraction yield as compared with the conventional method [70]. 

3.2.4.4  ULTRASOUND/MICROWAVE-ASSISTED ENZYMATIC 
EXTRACTION 

Ultrasound and microwave methods are coupled separately with enzymatic 
extraction which is a recently emerged hybrid method as a way to decrease 
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biochemical reaction time in traditional methods [34, 59]. In enzymolysis 
ultrasonic-assisted extraction (UAE), enzymes catalyze efficient disruption 
of cell walls by hydrolysis and trigger the discharge of bioactive compounds. 
Ultrasonic waves generate sufficient energy which creates super agitation 
and allows the effective mass transfer between immiscible phases [38]. 

In the case of the microwave-assisted enzymatic method, microwave 
heating is used to support and facilitate the natural compound removal from 
plant resources and enzymes leads to hydrolysis of cell wall of biomass. Thus, 
the combined capability of microwave and enzymatic extraction utilizes the 
microwave energy and enzymatic treatment leading to increased recovery 
of extracts from biomass [2]. Rapid extractions, no use of toxic solvents, 
and no production of undesirable byproducts are some of the advantages of 
microwave-assisted and ultrasound-assisted enzymatic extraction methods. 
It also increases extraction yield up to 10–11% [2]. Both the techniques can 
be applied for polysaccharides extraction from biomass [9, 59] and protein, 
polyphenols extraction from food waste [38, 85]. Microwave-assisted 
enzymatic method can separately aid the extraction of vegetable oil from 
oilseeds [2] as well as extraction of toxic metals (arsenic, selenium) from 
food [34]. Enzymolysis ultrasonic method can carry out the extraction of 
flavonoids of high antimicrobial and antioxidant activity from plant residue 
[59]. However, cost of the methods and extra purification steps may limit the 
application of these methods to laboratory scale [59]. 

3.2.4.5  MICROWAVE-ASSISTED AQUEOUS TWO-PHASE 
EXTRACTION (MAATPE) 

Microwave-assisted aqueous two-phase extraction (MAATPE) combines the 
advantages of microwave extraction and ATPS. Microwave helps in breaking 
the bonds between the matrix and the target molecule and ATPS separates the 
molecule from the solution without altering its biochemical properties [86]. 
Thus, while acting as an extracting agent in MAATPE; the two-phase system 
combines extraction and purification and creates a single-stage process [16]. 
ATPS can be formed by combining either two distinct hydrophilic polymers 
(polyethylene glycol, ethanol, dextran, etc.), or a hydrophilic polymer and a 
salt (phosphate, sulfate, etc.), in addition to water [51, 86]. It is a rapid and 
effective method. There is no need of additional separation step and has great 
potential for industrial application. 

Simultaneous extraction and purification of alkaloids (90%) was achieved 
using MAATPE consisting of ethanol and ammonium sulfate [86]. In this 
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case, the powdered dry biomass remained at the interface of the bottom 
saline phase (aqueous phase) and top solvent rich phase. Salt not only helped 
in mixing the components but also in absorbing the microwave radiations. 
Higher conductivity of the saline bottom phase could result in strong heating 
and molecular agitation leading to breaking of bonds between the target 
molecule and the matrix. The target molecule would get extracted into the 
bottom phase first (due to microwave heating) and would be transferred to 
the top phase subsequently (due to salting out) [86]. MAATPE can be used 
in separation of phenolic compounds from fruit seed [16], isoflavonoids 
extraction from leaves and to separate active constituents from fermentation 
broth [16, 51]. 

3.2.4.6 REACTIVE EXTRACTION 

Reactive extraction is a simple, novel, low cost, and environmentally safe 
process of producing high purity product. It is applied to separate organic 
acid, mainly carboxylic acids such as LA from fermentation broth and waste
water [15]. Carboxylic acid and its derivatives are used in the food industry 
as solvents, food additives, antimicrobials, and flavorings [56]. Reactive 
extraction is a separation process based on the reactions between extractant 
and the solution from which the desired solute is to be extracted. The solute 
forms a complex with extractant and is extracted into a solvent phase. 

Reactive extraction reactor operates as a single unit of reaction and extrac
tion. Reaction complex formed at the interface of the extractant containing 
organic phase and the solute containing the aqueous phase is then transferred 
in the organic phase by diffusion and solubilization mechanism [15, 56]. 
Both phases are immiscible. Type of solvent plays an important role in reac
tive extraction as solvent properties affects the structure of complex formed 
[25]. In recent years supercritical CO2 has been used as a green replacement 
for traditional organic extractants. The method is also applied for biodiesel 
production from Jatropha seeds and food waste [73], for recovery of antibiotic 
(penicillin G) from fermentation broth [48]. One of the major limitations of 
reactive extraction is back-extraction of target molecule from the complex. 

3.3  SUMMARY 

Choice of extraction method is of utmost importance since it decides the 
downstream processing of the product molecule. Advanced extraction 
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methods are highly efficient in the extraction of desired molecule. Physical 
methods are simple and easy to use as compared to chemical methods, which 
usually lead to secondary products. Biological methods are environment 
friendly. However, they are expensive and slow. Hybrid methods are an 
attractive alternative, which utilizes the benefits of one or more methods. 
Hence, a method should be selected based on the nature/properties of 
biomass/broth from which the compound is to be extracted and the proper
ties of desired compound. 
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CHAPTER 4
 

ULTRASONIC-ASSISTED EXTRACTION 
OF POLYPHENOLS FROM FOOD 
PROCESSING WASTES 

MADHULEKHA RAKSHIT and PREM P. SRIVASTAV 

ABSTRACT 

The waste from the food processing industry contains a high level of 
polyphenols. In recent years industries have increasingly aimed at a “zero 
waste economy,” which implies reusing wastes as raw material for extraction 
of existing components or fabrication of new products. Therefore, valorization 
of such waste can be an alternative of the extraction of polyphenols. On the 
other hand, classical extraction techniques have problems with high solvent 
consumption, low extraction yield, long extraction time, and large energy 
consumption. Ultrasonic-assisted extraction (UAE) is an economically viable 
and green extraction technique for polyphenol extraction from plant sources, 
which can be scaled up for industrial production. It involves a combination 
of mechanisms: fragmentation, detexturation, capillarity, erosion, and 
sonoporation. This chapter highlights the extraction of natural polyphenols 
from food processing waste by UAE. 

4.1  INTRODUCTION 

The food processing industry generates byproducts and wastes, principally, 
peels, seeds, etc. The food waste generated due to household activity accounts 
for 42%, while losses at the food manufacturing industry, food service sectors 
(such as catering and restaurants), and food distribution are 39%, 14%, 
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and 5%, respectively [26]. These wastes might pose severe environmental 
problems and thus need to be managed in a sustainable way [4]. The food 
byproducts are the source of bioactive such as polysaccharides, polyphenols, 
essential oil, pigments, dietary fibers (DFs), etc. [32]. There is great potential 
in converting these wastes into valuable functional ingredients. The major 
challenge in the extraction of bioactive compounds from food processing 
waste is that these compounds are embedded within the complex cellular 
matrix. Valorization of waste can be achieved by extraction of the bioactive 
from these byproducts using a cost-effective, highly productive, and green 
extraction method [41]. 

Fruits and vegetables are high source of polyphenols that have several 
health benefits along with immunity-boosting ability. With the onset of 
the pandemic, the consumer’s acceptance of polyphenolic rich food has 
increased worldwide. This demand can be fulfilled by eating an edible 
source of polyphenols or incorporating these polyphenols extracted from 
inedible parts of these fruits/vegetables into daily meals. Food processing 
waste is as whole, or part of food and/or drink which is discarded at any 
point in food supply chain due to being damaged, reached expiry of shelf 
life, disposing of inedible or distorted parts [35]. The extracts rich in poly-
phenol can be used to fortify or enhance the nutritional quality of daily 
meals. Some of the important polyphenols found in food byproducts are 
listed in Table 4.1. 

Several extraction techniques have been reported for the extraction of 
polyphenols from food source [2, 6, 18, 36, 67]. However, cost-effective, less 
solvent consuming, highly productive and green method attracts the focus 
of food processing industry. Ultrasonic-assisted extraction (UAE) is one of 
such green extraction method. Compared to other non-thermal extraction 
techniques such as microwave-assisted extraction (MAE), supercritical fluid 
extraction (SFE), the UAE setup is cheaper and easier to operate. It also 
holds the potential for rapid return on investment for individual applications 
[28]. Apart from the extraction process, ultrasonication is an efficient tool for 
homogenization, emulsification, activation/inactivation of enzymes, microbial 
inactivation, dewatering, degassing, low-temperature pasteurization, crystal
lization, defoaming, particle-size reduction and changing viscosity [42]. 

This chapter emphasizes the role of UAE of bioactive compounds from 
food processing wastes. This chapter also provides an overview of UAE 
mechanisms and provides a holistic approach to process parameters, influ
encing factors, and ultrasound devices used for extraction of polyphenols 
exclusively from food waste. 
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TABLE 4.1  List of Food Byproducts with Polyphenolic Compounds 

Food Byproduct Phenolic Compounds	 References 
Apple byproducts Catechins, proanthocyanidins, hydroxycinnamates, [35] 

flavonols, dihydrochalcones, anthocyanins 
Beetroot byproducts Betacyanin, betaxanthin [31] 
Carrot byproducts β-carotene [47] 
Citrus byproducts Neohesperidin, narirutin, nobiletin, hesperidin, [35] 

naringin, sinensetin, and tangeretin 
Coffee byproducts Chlorogenic acid, protocatechuic acid [1] 
Grape and wine Catechin, gallic acid, ellagic acid, syringic acid, [34] 
byproducts	 caffeic acid, epicatechin, myricetin, rutin, quercetin, 

trans-resveratrol, phenolic acids, kaempferol, 
stilbenes, flavones, flavan-3-ols, and resveratrol 

Olive byproducts	 Chlorogenic acid, vanillin, luteolin, luteolin- [22, 35, 54] 
7-glucoside, apigenin, luteolin, tyrosol, lignans, 
kaempferol, caffeic acid, hydroxytyrosol, and 
chlorophyll 

Onion byproduct Quercetin, cyanidin-3-O-glucoside [23] 
Pomegranate byproducts Punicalagin, punicalin, ellagic acid, gallic acid [24] 
Potato peel Chlorogenic acid, ferulic acid [39] 
Sugar beet molasses Gallic acid, vanillin, hydroxybenzoic acid, cyanidin- [9] 

3-O-rutinoside, delphinidin-3-O-glucuronide,  
delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside,  
catechin, syringic acid, and ferulic acid 

4.2  MECHANISM OF ULTRASONIC-ASSISTED EXTRACTION (UAE) 

Ultrasound cavitation is produced by the propagation of ultrasound waves in 
the liquid medium. As the ultrasound wave propagates in the medium, there 
is continuous compression and rarefaction due to the alternating pressure. 
This compression and rarefaction cycle creates the cavitation bubbles, which 
vary with the frequency of the sound wave pulse. These bubbles are known 
as cavitation nuclei [65] that facilitate cavitation phenomena. Cavitation 
bubbles are of two types: stable cavitation and transient cavitation. During 
stable cavitation, the bubble exists for many compression and rarefaction 
cycles, whereas, during transient cavitation, the bubble collapses in less than 
one cycle. 

The cavitation bubbles grow by diffusion and/or coalescence since vapors 
or gas dissolved in the medium enters the bubble during rarefaction phase 
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and eventually, these bubbles grow in size and implodes (upon reaching a 
critical value of high temperature of 5,000 K and pressure of 100 MPa) to 
produce shear force and turbulence in the medium. This phenomenon creates 
hotspots that can increase the reactivity in the solvent leading to higher mass 
transfer across the cellular structure. The mixing effect takes place at the 
microscopic and macroscopic levels due to microstreaming and acoustic 
streaming, respectively. 

Acoustic streaming is generated by high-frequency acoustic waves that 
are propagating through a fluid medium. It is characterized by a steady fluid 
motion. On the other hand, micro-streaming is generated by the growth and 
collapse of the cavitation bubble during compression and rarefaction cycle. 
It is characterized by dynamic circulatory motion. 

The physical mechanism of cavitation phenomena caused by the implosion 
of cavitation bubbles includes fragmentation, detexturation, sonocapillary 
effect, local shear stress, erosion, and sonoporation [7]. The cavitation 
phenomenon creates shock waves and causes inter-particle collision, 
which leads to fragmentation of particles, thus, increasing the surface area. 
Detexturization is the destruction of the cellular structure. The sonocapillary 
effect created by cavitation is the increase of solvent penetration into the 
pores of the cellular matrix. The alternation and implosion of cavitation 
bubbles create local shear stress within the solvent and near to the solute 
matrix. Shear force created within the solvent creates acoustic micro-
streaming. Erosion is the effect of destruction on the cellular matrix, which 
increases the accessibility of the solvent into the fragmented particle to 
solubilize maximum target compounds. The increase in permeability of the 
cell membrane due to the pores and perforation is called sonoporation effect 
[33]. Along with cavitation phenomena, ultrasound also enables hydration 
and swelling of plant tissues leading to enlargement of pores, which increases 
the mass transfer [61]. 

4.3  PROCESS PARAMETERS FOR UAE 

Ultrasound has been defined as the frequency exceeding 20 kHz (from 
20 kHz to 100 kHz) [65]. Ultrasonic wave propagates through an elastic 
medium by creating longitudinal displacement. The vibrating body is 
the output of ultrasound, which makes the surrounding medium vibrate, 
thus, transferring energy to adjacent particles. The cavitation phenomenon 
depends on the ultrasound properties (e.g., intensity, power, and frequency), 
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solvent characteristics (e.g., surface tension and viscosity) and system 
conditions (e.g., temperature). 

The parameters responsible for the ultrasound process are intensity, 
power, and frequency. Previous literature shows that ultrasonic power 
induces greater shear forces in materials, based on the characteristics of both 
the solute and solvent; nevertheless, in order to obtain maximum extract 
using minimum power, optimization needs to be done [54, 66]. The energy 
level of ultrasound is expressed as acoustic energy density (W/mL or W/ 
cm3), ultrasound intensity (W/cm2), or ultrasound power (W) [37]. 

Al-Dhabi et al. [1] investigated the effect of power on extraction yield 
from waste spent coffee ground and reported that the yield increased with 
increment in power from 100 to 250 W. In contrast, beyond ultrasonic 
power of 250 W, the yield decreased. A study conducted by Rabelo et al. 
[51] reported that ultrasound power higher than 240 W had no influence on 
process efficiency for the extraction of phenolic compounds from artichoke 
waste. 

The authors Kazemi et al. [24]; Lantzouraki et al. [28]; and Maran et al. 
[31] have reported for the extraction of bioactive compounds from red beet 
stalks, pomegranate arils, and pomegranate peel, respectively. The chemical 
reactivity of the solvent also determines the sonochemical reaction. If the 
solvent is water, it dissociates into H• and OH• radicals; usually, the stable 
cavitation is responsible for increasing the OH• radicals with the increase 
in frequency [61]. Belwal et al. [5] reported a decrease in the extraction 
of anthocyanin with an increase in power from 150 to 450 W due to water 
hydrolysis, isomerization, and thermal effect. 

Ultrasonic power is related to increase in energy dissipation: power of 
44, 79, 102, 125, 168 and 215 W caused dissipation of 20.65, 29.05, 32.9, 
38.15, 50.75 and 62.3 W, respectively [29]. Therefore, appropriate power 
must be optimized for maximum extraction as the dissipation of heat might 
cause degradation of the target molecule. Purohit et al. [47] studied UAE of 
β-carotene from waste carrot residue and observed a 50% increase in yield 
when power was increased from 20 W to 60 W; however, the increase in 
power from 60 W to 100 W resulted in only 14.8% increase in the β-carotene 
yield. This was attributed to the dissipation of energy in the form of heat, 
which resulted in degradation of thermolabile bioactive compounds. Pan et al. 
[40] investigated UAE of antioxidants from pomegranate peel. The authors 
noted the increase in total phenolic from 7.6% to 12.4% when the intensity 
was increased from 2.4 to 7.1 W/cm2. This study also depicted that the highest 
yield of 14.5% was achieved at an ultrasound intensity of 59.2 W/cm2. 
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The ultrasonic intensity increases with an increase in frequency. Thus, 
the cohesive force between solute and solvent is overcome to facilitate 
higher diffusion [61]. The frequency of extraction affects the size of cavita
tion bubbles [54]. The study conducted by Purohit et al. [47] for extraction 
of β-carotene from waste carrot residue showed that with an increase in 
frequency from 25 to 40 kHz, the extraction yield increased. 

Ultrasonic intensity is the energy transmitted per second per square meter 
of the emitting surface. Intensity can be correlated to the amplitude. At 
higher amplitude, the cavitation bubbles implode vigorously. However, the 
higher amplitude can also lead to the degeneration of ultrasonic transducer, 
resulting in solvent agitation instead of creating cavitation. 

Kaderides et al. [21] reported that the extraction yield improved with 
increased amplitude up to 40%; however, on further increase in amplitude 
above 40% led to a small decrease in yield. This was attributed to the degra
dation of the plant material. Simultaneously, the higher amplitude is required 
for high viscous solvents, as it raises the cavitation threshold. Cavitation 
threshold is reached by applying a minimum value of ultrasonic intensity. 

A study conducted by Foujdar et al. [11] showed that the extraction 
efficiency of phenolic compounds from pomegranate peel increased from 
36.18% to 42.24% with increased amplitude (20–30%). This trend could 
be due to improved mass transfer [11]. Similarly, the increase in kinetic 
parameters was observed with an increase in amplitude level up to 40%, as 
reported by Goula and coworkers [15]. 

In the case of ultrasonic probe, pulse mode can be used in order to 
prevent the instrument from heat generation. At the same time, it is energy-
efficient way of operation, with higher yield and better operation life of the 
instrument. A study conducted by Purohit et al. [47] showed that maximum 
β-carotene yield from waste carrot residue was achieved at 60% duty cycle. 
Similarly, Pan et al. [40] reported that the combination of 10 s cycle time 
and 50% duty cycle was the best for extracting maximum antioxidants with 
minimum energy requirement from pomegranate peel. 

4.4 FACTORS AFFECTING UAE 

4.4.1  SOLVENTS 

The factors affecting maximum extraction of cellular content involve type of 
the solvent, solute to solvent ratio, and concentration of solvent. The cavitation 
intensity is affected by the physical properties of solvent, including surface 



 

 

 

79 Ultrasonic-Assisted Extraction of Polyphenols 

tension, viscosity, and vapor pressure. The intensity of bubble collapse is 
controlled by vapor pressure; whereas, the transient threshold of cavitation 
is controlled by surface tension and viscosity of the solvent [61]. A solvent 
with low vapor pressure improves solvent migration through the matrix, 
thus increases the extraction efficiency [43]. On the other hand, a solvent 
with low vapor pressure leads to a more intense implosion of the cavitation 
bubble in contrast to high vapor pressure solvents. Nevertheless, vapor 
pressure is influenced by the temperature of the solvent system. An increase 
in temperature of the liquid medium causes decrease in both viscosity and 
surface tension, while increasing the vapor pressure [42, 54]. 

Goula et al. [15] showed that higher carotenoid yield was obtained from 
pomegranate wastes when soy oil was used as solvent for extraction. This 
was attributed to the lower viscosity of soy oil. Another study conducted by 
Paleologou et al. [39] showed that the diffusivity (De) for water/ethanol and 
water/glycerol were 0.46 and 0.33 ×10−11 m2 s−1, respectively, which proved 
that the diffusion of polyphenols within water/ethanol is comparatively 
faster. On the other hand, Philippi et al. [41] showed that the maximum 
sonochemical advantages could be obtained by the use of solvents with low 
vapor pressure (water/glycerol). The authors reported that the use of 90% 
(w/v) glycerol at 50°C and 40% (v/v) ethanol at 80°C were equally effective, 
even though there is a high difference in viscosity and De. 

The solubility of the target compound in a particular solvent affects the 
extraction yield. Also, the extraction yield is affected by plant material’s 
plasticity structure or constituent differences [54]. Solvent polarity plays an 
important role in the extraction process as a solvent of a particular polarity 
can dissolve a particular phenolic group or alter its antioxidant capacity. A 
study conducted by Singh et al. [58] showed that the highest antioxidant 
activity was detected in the solvent combination of ether, ethanol, and 
water extract, followed by a combination of ether and ethanol extract for 
extraction of pomegranate polyphenols. The extraction process is governed 
by the polarities of solvents and the synergistic interaction between target 
compounds and solvent. There is no single solvent able to extract all phenolic 
compounds from vegetable samples [33]. 

For example, the dielectric constant of ethanol (ϵ = 25.2) is lower than 
that of glycerol (ϵ = 42.5), hence a lesser proportion of ethanol could decrease 
water polarity, resulting in the solvent system that can appropriately enhance 
polyphenol solubilization. Thus, the optimal concentration of extraction 
between water/glycerol extract and water/ethanol extract will be different 
due to their polarity difference. Moreover, since both ethanol and glycerol 
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have dielectric constants lower than water [22], their aqueous mixtures 
would dissolve higher amounts of polyphenols. Nevertheless, the solubility 
of polyphenols could also be governed by hydrogen bonding and steric 
effects in solvent systems [11]. Thus, affinity of the solvents towards the 
target compound from the solid matrix is an important criterion for selection 
of solvent system for extraction. 

Belwal et al. [5] showed that 35 and 65% of ethanol concentration gave 
higher anthocyanin yield, however, further increment in concentration 
of ethanol resulted in a reduction of anthocyanin extraction yield from 
starkimson fruit peel. The maximum total phenolic content (TPC) and 
antioxidant activity (DPPH and ABTS) from lime peel waste were observed 
at 50–60% ethanol concentration [53]. Similarly, Galván D’Alessandro et 
al. [14] reported that the use of 50% ethanol produced about 3-fold higher 
anthocyanins than 100% water for extraction of anthocyanin from black 
chokeberry. 

However, Safdar et al. [56] reported that maximum polyphenols (32.48 ± 
0.36 mg GAE/g extract) were extracted with 80% methanol, whereas 100% 
ethanol yielded minimum phenolics (24.39 ± 0.28 mg GAE/g extract) from 
kinnow peel. For extraction of polyphenols from onion waste, 90% (w/v) 
aqueous glycerol was recommended to obtain the highest yield in a study 
conducted by Katsampa et al. [23]. Also, Venkataramanamma et al. [62] 
reported that ethanol concentration beyond 50% significantly decreased in 
antioxidant activity and polyphenol content from pomegranate peel. 

Rababah et al. [50] studied the UAE of polyphenols from pomegranate 
seeds and peels and concluded that the highest extract of total phenolic was 
found when methanol was used as an extractant. While, Singh et al. [58] 
studied the effect of solvents on the extraction of polyphenols from pome
granate aril and concluded that the extraction yield using different solvent(s) 
is in the order: 

water > ethanol + water > ethanol = ethanol + ether 
+ water > ethanol + ether > acetone > ether 

The authors observed that the highest (13.22%) yield was obtained in 
aqueous extract and the lowest yield of 1.18% was found in ether extracts. 
Scanning electron microscope (SEM) depicts the microscopic view of the 
plant tissues indicating diffusion of target compounds into the solvent by 
the formation of micro-fissures or microchannels. SEM images showed the 
more disintegrated and porous structure of orange processing waste powder 
after ultrasonic-enzymatic treatment by using ethanol solvent versus using 
water solvent [57]. 
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Also, Venkataramanamma et al. [62] revealed that the SEM topography 
of the surface of the dried pomegranate peel powder in water extract had a 
smooth surface, whereas, ethanol extracted particles had shrunken and dehy
drated topography. Thus, the authors concluded that water extracted particles 
might allow the movement of the solvent by absorption/imbibition, while the 
ethanol extracted particles hinder the free movement of the solvent. 

The amount of solvent used for the extraction process plays an important 
role in controlling the mass transfer of solute into the solvent. Al-Dhabi et 
al. [1] reported that with the increase in solute to solvent ratio from 1:05 to 
1:25 g/ml, the extraction yield from waste spent coffee ground was found 
to increase, while upon the further increase in solid-liquid ratio, the yield 
decreased. This was attributed to the higher concentration difference of poly-
phenols between solvent and spent coffee ground that caused an increase in 
the rate of dissolution; however, beyond 1:25 g/ml the amount of dissolved 
impurities (such as polysaccharides and protein) increased which caused 
hindrance in the dissolution of polyphenols [1]. 

The study conducted by Kumcuoglu et al. [27] showed that the lycopene 
yield increased as the solute: solvent ratio increased from 1:20 to 1:35 and a 
slight decrease was observed as solute-solvent ratio increased from 1:35 to 
1:50. Similarly, Qu et al. [49] recommended peel: water ratio of 1:30 g g−1 for 
proanthocyanidins extraction from pomegranate peel. The authors observed 
that the proanthocyanidins content increased with peel: water ratios of 1:10, 
1:20, 1:30 and the highest proanthocyanidins content of 90.9 mg g−1 was 
obtained for peel: water ratios of 1:30 g g−1. On the further increase of peel: 
water ratios up to 1:50 g g−1, there was no significant change in proantho
cyanidins contents. In the study conducted by Pradal et al. [46], the highest 
extraction yields was obtained for the ratios in between 1:30 and 1:50; and 
ethanol concentration of 50–60%. 

Moreover, Amyrgialaki et al. [3] reported that the addition of pH 
regulator (citric acid) along with ethanol and water solvent systems could 
yield a significant amount of polyphenolic phytochemicals with antioxidant 
properties from pomegranate husk. Kaderides et al. [21] reported that higher 
solute to solvent ratio causes higher concentration gradient; therefore, more 
amounts of polyphenols diffuse from solute into the medium leading to the 
higher concentration of target compound in the solvent. 

Activation energy (Ea) is required for the polyphenol extraction process, 
which depends on various factors, such as the solvent composition and the 
process temperature. Generally, Ea for phenolic compound extraction lies 
from 14.54 to 56.00 kJ/mol [23, 48]. The positive Ea denotes the endothermic 
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process; hence polyphenolic extractions are endothermic in nature. More
over, the solute should overcome Ea, which may be associated with both 
solvent and solute resistance [23]. Consequently, Wang et al. [64] reported 
that the E a greater than 40 kJ/mol depicts dissolution reaction, while, if the 
Ea is less than 20 kJ/mol, the extraction process is controlled by a diffusion 
process, and Ea ranging from 20 to 40 kJ/mol denotes that the process is 
controlled by both diffusion and solubilization reaction. 

4.4.2  TEMPERATURE 

The optimum amount of temperature is the key to maximize the extrac
tion process. Cavitation is enhanced by increasing the temperature and 
thus, facilitating diffusion [68]. However, higher temperatures may lead to 
degradation of bioactive compounds (depending on their types and proper
ties). Therefore, the appropriate temperature for extraction must be studied 
to enhance maximum mass transfer. Purohit et al. [47] studied the effect 
of temperature on extraction of β-carotene from carrot waste. The authors 
noted three stages: (i) when the temperature was increased from 20 to 30°C 
resulted in 23.08% increment in the β-carotene yield; (ii) increasing the 
temperature from 30 to 40°C, the extraction yield improved by 12.1%; (iii) 
increasing the temperature from 40 to 50°C resulted in 5.84% increase in the 
β-carotene yield. 

Mahindrakar et al. [30] revealed that the highest yield of catechin and 
gallic acid from the cumin seed kernel was obtained at 35C. The authors 
also reported that the increase in yield was not significant when the tempera
ture was further increased from 35 to 65C. This effect was due to the fact 
that an increase in temperature increases the mass transfer across cell due 
to increased solubility. Also, the low vapor pressure of the solvent leads 
to a violent implosion of cavitation bubbles. During UAE, the tempera
ture causes additional loosening and softening of cellular tissues and aids 
in better penetration of the solvent [59]. However, cavitation and surface 
tension decrease at higher temperatures of extraction because the voids are 
filled up with the solvent vapors, leading to less violent collapse [21, 37, 
60, 61]. Another explanation for lower yield at higher temperature could 
be the fact that the high temperature lowers the viscosity of the solvent, 
causing increased vapor pressure, thus, leading to the formation of a greater 
number of cavitation bubbles. These bubbles collapse because of the lesser 
pressure difference between its inner and outer side; however, this collapse 
is lesser in intensity [30]. Therefore, sonochemical effects are favorable at 
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low temperatures. The extraction temperature is also dependent on the type 
of polyphenols to be extracted. 

For example, Zhang et al. [66] observed that the total anthocyanin 
yield decreased with increasing extraction temperatures beyond 50C. 
The decrease in yield was attributed to the fact that the anthocyanins are 
heat-labile [49, 66]. Similarly, a study by Goula et al. [15] reported that at 
temperatures higher than 40°C, a higher amount of impurities got dissolved 
from pomegranate waste, and some heat labile constituents decomposed 
during the extraction of carotenoids. While Al-Dhabi et al. [1] reported 
oxidation of polyphenols from spent coffee waste on exposing the solvent 
above 45°C. Table 4.2 gives an insight into the effect of temperature in the 
extraction of polyphenols from food processing wastes, denoting the range 
of temperature causing an increase in extraction yield and the temperature 
range of decreased yield. 

TABLE 4.2 Effect of Temperature on Extraction of Different Polyphenols 

Polyphenols and its Source	 Temperature Temperature References 
for Increasing for Decreasing 
Yield Yield 

Anthocyanin from mulberry wine residue	 30 to 50°C Above 50°C [66]
 
Anthocyanin from starkrimson fruit peel 15 to 70°C – [5]
 
(Cyanidin-3-O-galactoside)
 
Carotenoid from pomegranate waste 20 to 40°C 40 to 60°C [15]
 
Polyphenols and pigments from onion waste 50 to 80°C – [23]
 
Polyphenols from chicory byproduct 20 to 60°C – [46]
 
Polyphenols from pomegranate peel extract 40 to 50°C Above 50°C [10]
 
Polyphenols from pomegranate peel extract 25 to 35°C 35 to 45°C [21]
 
Proanthocyanidins from pomegranate peel 40 to 80°C 80 to 90°C [49]
 
Waste spent coffee ground 30 to 45°C Above 45°C [1]
 

4.4.3  PARTICLE SIZE 

The solute particle size is another factor that affects the extraction yield, as 
it is related to the surface area exposed to the solvent and the length of the 
target compound migration path. The size of the sample and the surface area 
available for extraction display an inverse relationship. 

Ganesapillai et al. [13] showed that extraction yield increased from 30 to 
70% when size was reduced from 0.4 to 0.2 mm. Similar trend was observed 
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by Qu et al. [48], who reported that as the particle sizes increased: 0.2, 0.5, 
0.7, 1.4, and 3.5 mm, their equilibrium antioxidant yields decreased 11.5%, 
11.4%, 11.6%, 11.2%, and 9.4%, respectively. The authors also showed that 
the larger particles took more time to reach equilibrium, attributing to the fact 
that they provide less surface area for diffusion of solvents into the solute. 

The cavitation phenomena cause disruption of cells; however, the change 
in the chemical structure of the cells needs to be studied to understand the 
chemical effect caused by ultrasound. Fourier transform infrared spectros
copy (FTIR) study conducted by Belwal et al. [5] revealed that UAE is an 
efficient way for extraction of anthocyanins without causing any change in 
its characteristic functional group. Similar FTIR results were observed by 
Shahram et al. [57], who reported that no change in the functional group was 
observed during the extraction of β-carotene from orange processing waste 
powder by the combined treatment of ultrasound and pectinase enzyme. 
Consequently, Paini et al. [38] studied principle phenolic content grape marc 
and olive pomace using HPLC with diode array detector (DAD). The authors 
noted no degradation of phenolic compounds upon subjecting it to UAE. 
Thus, milder treatment conditions of UAE prevent it from bioactive damage. 

4.4.4  TIME 

The extraction yield is time dependent and can be divided into two stages: 

•	 Washing stage: the solvent dissolves the maximum solute from the 
particle surface. This step is characterized by high mass transfer; 
hence, it has faster rate. 

•	 Diffusion of soluble polyphenols into the solvent is through the disin
tegration of the residual cellular matrix. This step is slow and rate 
determining step. This process involves entry and washing; continues 
till the concentration reaches equilibrium. 

SEM study conducted by Khalili et al. [25] indicates that UAE promotes 
higher cell disruption at 50 min sonication time in the olive-waste cake 
samples as compared to 10 min sonication time, thus, promoting higher 
solvent penetration into the sample. Goula et al. [15] found that extraction 
yield increases from 10 to 30 min; however, yield slowly increased from 30 
to 60 min. On the other hand, few studies have reported the degradation of 
molecules over long extraction time. 

Belwal et al. [5] noted an increase in extraction yield when extraction 
time was increased from 7 to 21 min with maximum yield obtained as 0.29 
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mg/g. The authors reported a decrease in extraction yield upon the further 
increase in ultrasonic time. Therefore, the effect of time must be studied 
as more time of extraction lead to a higher cost of production. Similarly, 
Kaderides et al. [21]; Kumcuoglu et al. [27]; Pan et al. [40]; and Purohit 
et al. [47] reported extraction of β-carotene from carrot residues, lycopene 
from tomatoes, polyphenols from pomegranate peel and antioxidants from 
dry pomegranate marc, respectively. 

4.5  PROCESSING DEVICES 

The application of ultrasound can be made through three types of instruments: 
ultrasonic probe, ultrasonic bath (Figure 4.1), ultrasonic-assisted reactor and 
all have transducer (commonly piezoelectric transducer) as ultrasonic power 
generator. 

The cavitation intensity decreases both radially and axially for ultrasonic 
probe. Therefore, the diameter of the container plays an important role in 
determining the distance between walls of the container as too small may 
cause damage of container and too big may not distribute intensity evenly. 
Most of the probes are made of titanium alloy due to its characteristics of 
thermal resistance. Titanium has low mass and is highly rigid; therefore, 
lesser energy is lost, and more energy is transmitted to the solution [61]. 

The probe system is more effective due to the fact that the tip of the 
probe delivers ultrasonic intensity through a smaller surface as compared 
to the ultrasonic bath. It uses a transducer attached to the probe, which is 
submerged into the reactor containing solute-solvent mixture. The direct 
circulation of ultrasound in the extraction medium causes minimum energy 
dissipation. The probe designs vary with diverse tip dimensions, lengths, 
and tip shapes (such as exponential, uniformly cylinder, linear tapered, 
tapered, cone-shaped or stepped). The type of probe to be selected depends 
upon the end-use and the volume of the sample to be sonicated. Some of the 
parameters could affect the ultrasound probe, such as ultrasonic intensity, the 
shape of the reaction vessel, temperature, probe diameter, shape of probe, 
and characteristics of the solute [65]. 

Ultrasonic bath consists of a few basic parts: stainless steel tank, ultra
sonic transducers (operating around 40 kHz frequency), and optionally, 
temperature control. The advantages of the ultrasonic bath are: easy opera
tion, cheap, readily available, and can simultaneously handle a higher number 
of samples. However, the lesser reproducibility and less power delivery into 
the samples are its major drawbacks as compared to probes. 



 86 Novel Processing Methods for Plant-Based Health Foods 

FIGURE 4.1  (a) Ultrasonic probe; (b) ultrasonic bath; (c) ultrasonic reactor. 

Source: Reprinted with permission from Pradal et al., 2016b [46]. © Elsevier. 

The ultrasonic-assisted reactors consist of laboratory glass extractor 
fitted with an ultrasound transducer, a temperature regulator, an agitator, and 
ultrasounds generator. A double wall jacket connected to a thermostatic bath 
can be provided outside of the reactor for constant temperature maintenance 
by the circulation of water. This type of set up is easy for temperature control 
as well as can handle larger volumes of sample. The designing ultrasonic 
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extractor depends on specific parameters as per its application. The two 
main companies that manufacture large scale ultrasonic extraction devices 
are Hielscher (Germany) and REUS (France) [61]. 

Purohit et al. [47] compared ultrasonic-assisted extraction (UAE) of 
β-carotene from waste carrot residue using ultrasonic horn (or probe) and 
bath. The authors noted maximum β-carotene extraction yield under opti
mized operating parameters as 83.32% and 64.66% by using ultrasonic 
probe and bath, respectively. Thus, it can be concluded that the probe is 
more effective in the extraction of β-carotene than the bath. Table 4.3 depicts 
an example of UAE of polyphenols from food processing waste, the type of 
ultrasound device used and the processing condition studied. 

4.6  COMPARISON BETWEEN UAE AND OTHER EXTRACTION 
TECHNIQUES 

UAE has been evidently proved as a high-yielding extraction technique. 
González-Centeno et al. [14] studied the Ea from grape pomace and noted 
that E a for TPC was 12.5 and 4.6 kJ/mol for conventional extraction (CE) and 
UAE, respectively. Similarly, the authors observed Ea of antioxidant capacity 
(by ABTS method) as 37.6 and 8.5 kJ/mol and for antioxidant capacity (by 
FRAP method) as 48.3 and 11.5 kJ/mol for CE and UAE, respectively. From 
the reported data, it is evident that the acoustic assistance of UAE decreased 
the Ea of the antioxidant capacity (by both methods) and total phenolics 
for extraction kinetics. The estimated E a values suggest that the extraction 
for CE and UAE is controlled by diffusion regime for total phenolics and 
antioxidant activity within the temperature range 20 to 50°C [14, 64]. 

Several other studies have proved that UAE is highly efficient than CE 
of maceration, solvent-assisted extraction, Soxhlet, etc. For example, a 
recent study conducted by Mahindrakar et al. [30] showed that lower yield 
of sequential batch extractions and Soxhlet was obtained for total phenolic, 
total flavonoid, gallic acid, and catechin from cumin seeds than UAE. 
Similarly, Belwal et al. [5] reported lesser yield (0.266 ± 0.004 mg/g) of 
cyanidin-3-galactoside under CE than during UAE (0.343 ± 0.005 mg/g). 

Also, UAE of lycopene from tomato wastes yielded 87.25% more in 
contrast to conventional solvent extraction, as reported by Rahimi et al. [52]. 
Furthermore, He et al. [18] reported UAE yielded about 2.5-fold higher total 
anthocyanin and about 3.2-fold total phenolic from blueberry wine pomace 
than the CE method. Again, González-Centeno et al. [14] reported the 
TPC (770.9 ± 77.5 mg gallic acid equivalents (GAE)/100 g) of the winery 



  TABLE 4.3 UAE of Food Processing Waste for Extraction of Polyphenols 

Source of Polyphenols Processing Device Experimental Conditions	 Solvent Composition References 
Apple pomace Ultrasonic assisted Frequency 25 kHz Malate buffer [44] 

reactor Output power 150 W 
Artichoke solid waste Ultrasonic probe Frequency 20 kHz Ethanol, water [51] 

Ultrasonic power 0, 240, 480, and 720 W 
Black chokeberry Ultrasonic assisted Temperature 20, 45 and 70°C Ethanol, water [12] 
wastes reactor Frequency 30.8 kHz 

Power 50 and 100 W 

Output power 100 W 

Power input density 333 W/L 
Blueberry wine pomace Ultrasonic probe Ultrasonic power 400 W Water, ethanol, and [17] 

hydrochloric acid Temperature 50, 60 and 70°C 
Carrot residue	 Ultrasonic bath Frequency 25 kHz and 40 kHz Tetrahydrofuran, acetone, [47] 

hexane, ethanol, and Power 20 W, 60 W, and 100 W 
ethyl acetate 

Duty cycle 40% to 80% 
Chicory roots	 Ultrasonic assisted Power 0, 50 and 100 W Ethanol, water, methanol [46] 

reactor Duty cycle 1 min ON and 1 min OFF at power of 100 W 

Temperature 20, 40 and 60°C 
Eggplant peels	 Ultrasonic bath Power 140 W Water, glycerol, and [41] 

ethanol Frequency 37 kHz 

Acoustic energy density 35 W L−1 

Time 90 min 
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 TABLE 4.3 (Continued) 

Source of Polyphenols Processing Device Experimental Conditions Solvent Composition References 
Grape pomace Ultrasonic probe Frequency 55 kHz Water [14] 

Power density 435 W/L 

Ultrasonic intensity 22.9 W/cm2 

Duty cycles 0.5 s. 
Grape marc and olive Ultrasonic probe Frequency 19.9 kHz Ethanol, water [38] 
pomace Power 100 W 
Kinnow peel Ultrasonic bath Temperature 35, 45, and 55°C Ethanol, methanol, water [56] 

Frequency 35 kHz 
Lime peel waste Ultrasonic probe Amplitude 20 and 40% Water, ethanol [53] 
Mango peel Ultrasonic probe Amplitude 100% Ethanol, acetone, and [33] 

hexane Power 400 W 

Frequency 24 kHz 

Time 15 min 
Ultrasonic probe Frequency 20 kHz Ethanol, water [16] 

Temperature 5 and 30°C 

Ultrasound power intensities 165.87, 331.6 and 497.4 
W/cm2 

Olive mill wastewater Ultrasonic probe Power 100 W Ethyl acetate, diethyl [20] 
ether, methanol, Frequency 30 kHz 

Amplitude 100% 
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  TABLE 4.3 (Continued) 

Source of Polyphenols Processing Device Experimental Conditions Solvent Composition References 
Olive waste Ultrasonic bath Frequency 40 kHz Ethanol [25] 

Temperature 50°C 
Onion solid wastes Ultrasonic bath Frequency of 37 kHz Water, glycerol [23] 

Power of 140 W 

Acoustic energy density of 35 W L−1 

Time 60 min 
Orange processing Ultrasonic probe Frequency 20 kHz Water, pectinase [57] 
waste Power of 500 W 
Peach juice waste Ultrasonic probe Amplitudes 20, 60, 100% Ethanol, water [45] 

Times 20, 70, 120 s 
Pomegranate peel Ultrasonic probe Frequency 20 kHz Ethanol, water [10] 

Output power 500 W 

Ultrasonic intensity 42.34, 105.92, and 211.69 W/cm2 

Amplitude 20, 30 and 40% 
Pomegranate wastes Ultrasonic probe Output power 130 W Sunflower oil [15] 

Frequency 20 kHz 

Amplitude 10–100% 
Potato peel waste Ultrasonic probe Frequency 20 kHz Methanol, water [19] 

Temperature 15, 25 and 35°C 

Pulse durations of 5 s on and 5 s off 

Ultrasound intensities 9.24, 10.16, 13.28, 17.17 and 
22.79 W/cm2 
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Source of Polyphenols Processing Device Experimental Conditions Solvent Composition References 
Potato peel Ultrasonic bath Power 140 W Glycerol, water, and [39] 

ethanol Frequency 37 kHz 

Acoustic energy density 35 W L−1 

Time 90 min 
Purple corn bran Ultrasonic bath Power 100, 200, 300, 400, and 500 W HCl, ethanol, water [8] 

Times 90 min 

Temperature 40°C 
Red beet stalk waste Ultrasonic probe Temperature 40, 50 and 60°C Water [31] 

Power 60, 90, and 120 W 
Rice bran Ultrasonic bath Frequency 35 kHz Ethanol, water [59] 

Power 140 W 

Temperature 40, 50 and 60°C 
Spent coffee grounds Ultrasonic probe Frequency 20 kHz Ethanol [1] 

Output power 100–300 W 
Tomato processing Ultrasonic probe Ultrasonic intensity 30–70 W/m2 Sunflower oil [52] 
wastes Time 1.59–18.41 min 
Tomato processing Ultrasonic probe Ultrasound power 50, 65 and 90 W Hexane, acetone, ethanol [27] 
wastes Frequency 24 kHz 
Winery byproducts Ultrasonic bath Frequency 40 kHz Ethanol, water [63] 

Power 150 W 
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byproduct extract was around 3.3 times higher than the extract obtained 
through CE at 20°C. Similarly, the antioxidant activity was almost 4.0 times 
greater (722.4 ± 41.0 mg TE/100), and 2.5 times (705.9 ± 41.7 mg TE/100 g) 
for antioxidant activity by FRAP and ABTS, respectively. 

Hossain et al. [19] showed that the recoveries of individual glycoalkoids 
from potato peel waste using UAE yielded 273, 542.7, 231 and 55.3 µg/g, 
whereas for solid-liquid extraction yields were 180.3, 337.6, 160.2 and 32.4 
µg/g for α-solanine, α-chaconine, solanidine, and demissidine, respectively. 
Kumcuoglu et al. [27] showed that UAE of lycopene from tomato waste 
requires less time, lower temperature, and lower solvent than conventional 
organic solvent extraction. Similarly, Lantzouraki et al. [28] reported that 
UAE is faster and similarly efficient than classical extraction techniques. 
Again, Pingret et al. [44] compared CE and UAE and reported that TPC 
obtained by UAE was 30% higher than the content obtained by CE. 

Plazzotta et al. [45] evaluated the efficacy of MAE and UAE on antioxi
dant activity and phenolic content of dried and frozen peach waste extracts. 
The authors observed that MAE optimized treatment delivered 2 and 4 times 
greater energy density (Ev) than by UAE optimal treatment in dried and 
frozen waste extracts, respectively. Thus, proving that the UAE is a more 
efficient extraction technique as compared to MAE in terms of the amount 
of energy distributed into the system. 

4.7  SUMMARY 

In this chapter, the extraction of polyphenols from food processing waste 
using UAE technology has been highlighted. Waste management is a 
global issue and can lead to greater problems if not tackled correctly. The 
management of post-harvest loss will be financially beneficial for the farmers 
as well as decrease the burden of waste disposal. Besides, food industry 
waste disposal is a challenge for waste management. Thus, valorization of 
food waste by the extraction of polyphenols is the sustainable solution of 
waste management. Polyphenols are widely known for their health benefits. 
UAE can be a promising technique for the extraction of polyphenols that 
can be adopted based on the outcome of the optimization process. Various 
factors such as amplitude, frequency, ultrasonic power, ultrasonic intensity, 
duty cycle, solvent type and quantity, extraction temperature, time, and 
size of solute determine the extraction yield. The efficiency of the UAE is 
largely dependent on the equipment design and the combination of process 
parameters. Previous literatures have majorly reported work based on simple 
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equipment such as an ultrasonic probe, bath, or reactor. However, these 
setups are not suitable for commercial-scale production. Further research 
may be carried out on designing of UAE reactors, which will be effective 
for industrial scale production. Lastly, the molecular conformation of each 
polyphenols plays an important role in determining the optimum parameters 
of extraction. Therefore, the target compound must be studied in terms of its 
structure and biological activity in order to maximize its yield. 
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ABSTRACT 

In the present era, the increase in health awareness among consumers caused 
an enhanced demand for healthy and nutritious food options. Subsequently, 
this has led to continuous and feasible inventions and research that resulted 
in the globalization of the food industry. Recently, coupled with consumers’ 
interest, the plant-derived bioactive compounds have emerged as potential 
and alternate therapeutic candidates that substitute synthetic compounds. 
However, the major caveats that hinder its effective use are issues related to 
stability and delivery. Encapsulation provides a sustainable solution for the 
entrapment of core material (active ingredients) within the compatible, food-
grade, biodegradable shell resulting in the successful delivery of the bioactive 
compound into the food matrices. The protective shell creates the barrier 
between the labile bioactive compound and the environment, thus causing the 
increased stability and bioavailability of the active ingredients. Encapsulation 
may thus also be used for the immobilization of cell or enzyme to produce 
food products during fermentation. Moreover, this technique provides 
utility in the flavor industry in stabilizing the volatile compounds, masking 
the bad smell in addition to the bitter taste and astringency of compounds 
like polyphenols, soy isoflavones in the final product. The pharmaceutical 
and food sector share the common platform for the implementation of 



 

 

102 Novel Processing Methods for Plant-Based Health Foods 

encapsulation techniques to obtain distinctive bioactive compounds to be 
used as drugs or functional foods and nutraceutical products. 

5.1  INTRODUCTION 

Currently, there is an increase in health awareness among consumers, which 
has led towards their growing interest in what ingredients make up their food 
and the benefits that they might provide towards maintaining a healthy body. 
This has led the food industry to work tirelessly to fulfill the consumer’s 
demand for healthy and nutritious food. Recently, the plant derived bioactive 
compounds have emerged as a potential therapeutic alternative to synthetic 
compounds, however, issues related to their stability and delivery have 
emerged. Encapsulation is an emerging technology that entraps active ingre
dients with food-grade, biodegradable shell materials, thus creating a barrier 
between the unstable bioactive compound and the environment resulting in 
increased stability and bioavailability of the active ingredients. 

Encapsulation is a process wherein, small-sized droplets of liquid or 
particles of solid are enclosed within a shell (inert) that further isolates as well 
as provides protection to the enclosed material from the outside environment. 
The enclosed material which comprises the core, also referred to as internal 
phase or fill is released into the food matrix when the shell or wall deteriorates 
under specific conditions. This helps in accomplishing a controlled release 
of the core materials at the desired place and time. Controlled release would 
not only enhance the effectiveness of the food additives but also ensure 
optimal dosage and broaden their application range [23]. Encapsulation 
results in the production of microparticles, microcapsules, and microspheres 
depending on their morphology and internal structure. The microcapsules 
are mainly of three types; mononuclear, polynuclear, and matrix encapsula
tion (Figure 5.1). While the shell surrounds a single core in mononuclear 
capsules, thus the name, it encloses many cores in polynuclear capsules. The 
matrix form has the homogeneous distribution of the core particles within 
the shell. 

Encapsulation helps achieve various objectives: (i) protects degradation 
of core material by decreasing their reactivity to the environment (such as 
air, moisture, light, heat, etc.); (ii) retards the evaporation rate of the core 
material to the external environment [50]; (iii) controls the release of the core 
material until the proper stimulus; (iv) masks the undesired properties (such 
as taste and flavor) of the core materials; (v) converts liquid components 
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into solid form thus improving material handling; (vi) separates incompat
ible components and also reduces volatility, flammability, and toxicity; (vii) 
stabilizes emulsions and dispersions, and finally; (viii) increases the stability 
and life of the product being encapsulated. 

FIGURE 5.1  Morphological representation of microcapsules. 

Encapsulation, often referred to as microencapsulation has been used in 
the past to simply convert liquids into solids or to mask the unpleasant taste of 
certain ingredients. However, with technological advances, the perception of 
controlled release of the encapsulated material has become more intriguing. 

This chapter addresses the principle and methods of encapsulation, its 
role and application in the protection, stabilization, and as targeted delivery 
system for enhanced nutritional health benefits. 

5.2  PRINCIPLE OF ENCAPSULATION 

Encapsulation involves the incorporation of various bioactive compounds 
such as cells, enzymes, flavors, etc., into small capsules. These capsules 
provide protection to the sensitive components or rather provide an extra 
layer between such labile compounds and the external environment. They 
help in transforming liquids or gases into easily handled solid ingredients 
and control their release into product formulations. The basic principle of 
encapsulation therefore is the enclosing or covering of sensitive compounds 
into shells that offer protection against the outside environment. These 
shells, better known as capsules are small asymmetrically or variably shaped 
particles containing even smaller core particles that are released in the outside 
environment under some external stimulus such as heat, light, pH, etc. 
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5.3  ENCAPSULANT MATERIALS 

Encapsulation mainly entails knowledge of common properties of microcap
sules, including the nature of the encapsulating materials (core and shell), 
their stability as well as their release characteristics. The final encapsulated 
product obtained, its physical characteristics and its intended usage in the 
food industry also needs to be apprehended. They most definitely should be 
food-grade if have to cater the need of the food industry. Most frequently used 
encapsulants include carbohydrates, cellulose, gums, lipids, and proteins. 
The molecular behavior of the materials involving assembly and formation 
highly influences the adequacy of them being used for encapsulation. Their 
properties that prove their functionality as encapsulating materials include 
emulsification, gelling, and viscosity. Another point to keep in mind is the 
ability of these materials to undergo transition from solid to liquid phase 
reversibly in response to external stimuli. 

Comprehending the encapsulation techniques is also essential to 
determine the encapsulant materials to be used, however, this topic will be 
discussed later in the chapter. Food industry employs encapsulation majorly 
to either mask undesirable flavor/taste or to protect labile components. The 
capsules formed are usually water-soluble and hence easily release the core 
materials when dissolved into water. 

5.3.1  CARBOHYDRATES 

Sugar such as glucose or sucrose and polysaccharides such as starch, and 
their derivatives, cellulose, and its derivative, dextrins, pectin, alginate, 
carrageenan, or chitosan are the carbohydrates that find important application 
as constituents of the encapsulating matrix. These encapsulants have the 
ability to act as carriers for bioactive compounds and often end up forming 
glassy solids wherein, the active compounds get trapped after dehydration 
[48, 51]. Food carbohydrates are known to play a crucial part in the 
stabilization of emulsion. This feat could be achieved owing to their ability 
to increase the viscosity of the continuous phase of the emulsion systems. 
Nevertheless, their performance improves in emulsion-based encapsulation 
systems when used in combination with other compounds such as proteins 
that have good emulsifying properties [2]. 

Starch and its derivatives have the ability to bind, protect, and retain 
flavor in compounds and release them at high temperature or moisture condi
tions [61]. However, among the two components, amylose-based gels have 
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better mechanical properties than the amylopectin-rich gels. The latter also 
is more prone to chemical and enzymatic degradation. Role of maltodextrins 
was discussed in formulating dehydrated encapsulation systems owing to its 
low viscosity at high solids [29]. Maltodextrins helps in providing structural 
integrity to the final encapsulated product and also reduces stickiness during 
drying due to their higher glass transition temperature. 

5.3.2  PROTEINS 

Proteins possess the characteristics of self-assembly due to their amphiphilic 
nature. They also possess good binding properties especially for the flavor 
compounds [35]. Most commonly used food proteins as encapsulant materials 
include soy proteins, milk proteins (casein and whey proteins), and gelatin. 
Whey proteins were successfully utilized as wall material for the encap
sulation of anhydrous milk fat using spray drying [49]. The same authors 
also worked to successfully improve the microencapsulation efficiency by 
replacing whey proteins by lactose [18]. Oxidation of caraway essential oil 
was prevented by encapsulation using milk protein as wall ingredient [8]. 

Gelatin is known to be a good emulsifying and stabilizing agent and also 
tends towards the formation of a fine dense network on drying. Therefore, they 
have been proven to be effective entrapping agent in contrast to maltodextrin, 
glucose, maltose, and pullulan [25]. In combination with anionic polysac
charides, gellan has also been used to encapsulate Lactococcus lactis [24]. 

Chickpea protein along with alginate was used to formulate microcap
sules using emulsion technology [58]. They provided excellent protection to 
Bifidobacterium adolescentis in synthetic gastric juice. This study therefore 
suggested that chickpea protein-alginate microcapsules could effectively 
serve as probiotic carrier and used in various food applications. 

5.3.3  LIPIDS 

Lipids though difficult to disperse in food products, can be utilized as 
solvents to solubilize hydrophobic substances such as volatile aromatic 
compounds [18]. Lipids/fats have excellent moisture barrier property 
and hence prove very useful in providing protection against moisture 
ingress. However, their physical and chemical properties dictate their 
moisture barrier, rheological, microstructural, or colloidal properties [2]. 
For example, a reduced hydrocarbon chain length or increased degree of 
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unsaturation of the fatty acid chains results in lowering of the melting 
point, thereby decreasing the moisture barrier property. Consequently, it 
becomes essential to match the physical properties of the fat to the trigger 
temperature to facilitate the release of active components embedded within. 
Various lipids that can be used for encapsulation purposes include natural 
fats and oils, mono, and di-glycerides, phospholipids, waxes, etc. Benefits 
of lipid encapsulation are [39]: 

• Retards auto-oxidation; 
• Enhances stability; 
• Masks taste of lipid-soluble substances; 
• Controls the release of lipid-soluble flavor compounds; and 
• Protects against enzyme hydrolysis [39]. 

5.3.4  GUMS 

Gums are better wall materials than the other carbohydrates (such as malto
dextrin and modified starch) [32]. This is essentially due to the fact that 
gums have good emulsion stabilization properties and also encourages film 
formation. Unlike gums, most of the food carbohydrates have to be used in 
combination with other emulsifying agents to achieve better results while 
formulating emulsion-based encapsulation systems. Cumin oleoresin was 
successfully encapsulated using gum Arabic [27]. 

Gum Arabic is most often preferred for the purpose of lipid encapsulations 
as they produce emulsions that are highly stable and that too with oils that 
have a wide range of pH [29]. However, later studies conducted on encap
sulation of various monoterpenes (limonene, linalool, citral, β-myrcene, and 
β-pinene) established the inefficiency of gum Arabic as wall material due 
to their limited barrier property against oxidation [4]. Similarly, high cost, 
limited supply, and variations in quality has put a constrain on the applica
tion of gum Arabic as a wall material for encapsulation purposes and made 
researchers look for alternative encapsulants. 

5.4  ENCAPSULATION TECHNIQUES 

Various techniques (Figure 5.2) are available for the encapsulation of food 
ingredients into coating materials. The selection of these techniques is 
overseen through various properties of the encapsulating materials, namely, 
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core, and wall and also their envisioned application [13]. However, the 
recent technological advances in the encapsulation techniques have led to 
the development of shell materials with wider functionalities. The technique 
mainly relies on the tangible or physical nature of material that has been 
subjected to encapsulation and gets released by any kind of trigger, such as 
change in pH, time, or temperature. Other forces such as osmotic pressure, 
mechanical stress and enzymic activity also have been reported to play a role 
in triggering the release of the encapsulants [13]. The different encapsulation 
technologies include spray drying and spray chilling, fluidized bed coating, 
coacervation, liposome entrapment, extrusion, and inclusion complexation. 

FIGURE 5.2  Different encapsulation techniques and their processing steps. 

5.4.1  SPRAY DRYING 

Spray drying is the most widely employed encapsulation method of food 
industry. It principally aims to convert liquid material into a solid form of 
powder. It is economical and also serves to effectively protect materials, 
particularly flavors, oils, and fragrances from degradation or oxidation [23]. 
Encapsulation using spray drying aspires to enclose a material that is essen
tially inert to its surrounding. The purpose is to provide a protection to this 
active material while ensuring that it does not react with the encapsulating 
materials. However, this technology faces a major drawback in the form of a 
limited range of choices between wall and shell materials. Another important 
factor to keep into consideration is the solubility of the shell material in water 
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as the spray drying process mainly involves aqueous feed formulations. 
Most common carrier or wall materials used for the purpose of encapsula
tion include hydrocolloids such as gelatin, maltodextrin, modified starch, 
or gum acacia. Owing to their low solubility in water, the usage of these 
hydrocolloids becomes expensive and tedious. However, their addition does 
show some beneficial effects in regards to the stability of the encapsulating 
materials [31, 39]. 

The process encompasses three basic steps: first is the formulation of an 
emulsion that has to undergo processing, followed by its homogenization. 
The last step is the atomization of liquid droplets inside the drying chamber. 
The material to be encapsulated or the core material is homogenized with 
the wall material to obtain particles or droplets of smaller size which further 
undergoes atomization while passing through a nozzle inside a spray dryer 
[19, 41]. The spray velocity, viscosity, or the pressure drop across the nozzle 
and surface tension of the liquid hugely affects the size of the atomized 
droplets [41], which further helps in the determination of the drying time. 
As the atomized droplets come in contact with hot air inside the chamber, 
evaporation of the solvent takes place followed by the solidification of the 
wall materials on the core particles leaving behind the dried or encapsulated 
particles. The obtained particles were of polynuclear or matrix type and in 
the form of powder, granulates or agglomerates. 

5.4.2  SPRAY COOLING/CHILLING 

This technique involves usage of both chilled as well as cool air to perform 
atomization of materials unlike the heated air used in spray drying [44]. 
Atomization provides a vast surface area for the droplets to experience a 
quick and intimate mixing with the cooling medium. Various forms and 
derivatives of vegetable oil are examples of a few typical coating materials 
used in spray cooling. Henceforth, evaporation of water is no longer required 
like in the case of spray drying. The outer materials include fat and stearin 
with melting points of 45–122°C and/or hard mono- and diacylglycerols with 
melting points of 45–65°C [54]. Contrarily, spray chilling involves fraction
ated or hydrogenated vegetable oil as coating material with melting point 
in the range of 32–42°C [5]. They further find applications as textural or 
functional ingredients to enhance heat stability or perfect the timely release 
of the encapsulated materials. They can also be used for flavor, vitamins, 
minerals, or enzyme encapsulation. The low temperature encapsulation 
provides a platform for conversion of a liquid material into powder form for 
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various frozen or heat-sensitive products that may be insoluble in common 
solvents. The limitation, however, is the special handling and storage condi
tions required [54]. The result may not yield a perfect encapsulate, however 
the end product often exhibits delayed release of encapsulant. 

5.4.3  FLUIDIZED BED COATING 

This technology was originally adopted by many pharmaceutical companies 
but later on caught the interest of the food sector and since then it has been 
used to encapsulate a wide variety of food ingredients. While the technology 
used by the pharmaceutical companies is quite expensive, the food industry 
works towards cutting the production costs by applying somewhat of a 
different approach. A fascinating fact about this advanced technology is that 
it is one of the few technologies that has the ability to coat particles with 
almost all kinds of wall materials. This ensures a more versatile use of this 
technology in the controlled release mechanism. The process follows the 
spraying of shell materials over the coating materials, followed by rapid 
evaporation and finally resulting in forming of a protective layer over the 
materials. 

Fluid-bed coating may be performed in various manners, namely top 
spray, bottom spray, and tangential spray. Coating materials fall downwards 
in the top spray system while moving upwards in the bottom spray systems, 
also known as ‘Wurster’s coater system.’ Tangential spray system consists 
of a rotating disc with a tangential nozzle and is raised during the process. 
Top spray fluidized bed coaters have been reported to perform better than 
the other two due to high yields of the encapsulating materials [26]. This 
technique has been reported to encapsulate a number of food materials such 
as, ascorbic acid [33] and acidulants for processed meat [59]. Few most 
common applications of this technology include coating of vegetable oil, 
waxes, fatty acids, emulsifiers, etc. It has also proved to be appropriate for 
coating of starch, gums, and maltodextrin [23, 56]. 

5.4.4  COACERVATION 

It is the phase separation of a homogeneous polymer solution into a coacer
vate and coacervation medium; coacervate being the phase rich in polymer, 
while the medium is poor in polymer. The coacervate phase then surrounds 
the core material suspended in the initially taken polymer solution. Finally, 



 

 

 
 
 

110 Novel Processing Methods for Plant-Based Health Foods 

the hydrocolloid shell thus formed can be cross-linked using some suitable 
chemical or enzymatic cross-linking agent. Coacervation process could be 
referred to as simple and complex coacervation. The former is named so as 
it considers only one type of polymer, while the latter involves two or more 
than two types of polymers. The microcapsule formation during coacervation 
involves three basic steps: (i) formation of three immiscible phases namely, 
core material, polymer-poor phase (liquid medium) and polymer-rich phase 
(coating ingredient); (ii) depositing the polymer over the core ingredient; 
and (iii) rigidization of the formed coating. 

The first step may be triggered by various mechanisms such as the addi
tion of salts, non-solvents, or incompatible polymer-to-polymer solution, or 
by changing the temperature of the solution, or by inducing polymer-polymer 
interaction [26]. The next step follows the coating of the core ingredient by 
deposition of the liquid polymer. This process oversees controlled physical 
mixing of the medium containing core and coating material [13, 23, 26, 62]. 
The final step involves stabilization of the formed microcapsules by thermal 
treatment, cross-linking or desolvation techniques [13, 26]. The process 
finally yields self-sustaining microcapsules, which are collected by filtration 
or centrifugation, washed using some suitable solvent. Finally, various tech
niques, viz. spray or fluidized bed drying is used to dry the particles. Some 
common hydrocolloid systems studied for coacervation process include 
gelatin/gum acacia system, gliadin, heparin/gelatin system, chitosan, soy-
proteins, polyvinyl alcohol, gelatin-carboxymethylcellulose (CMC), starch, 
β-lactoglobulin/gum acacia and many more [23, 26]. 

5.4.5  LIPOSOME ENTRAPMENT 

Liposomes have more versatile properties and they are less fragile and 
delicate than fat capsules. Initially developed for medical purposes (drug 
delivery), they have now found application in the delivery of enzymes and 
vitamins in the body. There use for encapsulation of food components is 
being researched widely. The important characteristics of liposomes (for 
example, stability, permeability, surface activity and affinity) could easily 
be modified by modifying the size and lipid compositions. They are present 
either in unilamellar or multilamellar configurations with a single or multiple 
lipid layer, respectively [19]. 

Generally, phospholipids are present in the outer layers of liposomes. The 
two facets of the lipids, i.e., hydrophilic and hydrophobic, are directed towards 
the aqueous phase and hydrophobic group of the other lipid molecules, 
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respectively. Lipid sheets fold easily into spherical shapes as there is no inter
action between lipids and water, thereby forming a stable capsule. Liposomes 
may enclose a number of compartments containing aqueous or lipophilic 
compounds. Either hydrophilic (aqueous) or hydrophobic (lipid-soluble) 
materials can be entrapped in liposomes at a time rather than entrapping both 
types of compounds [19, 23, 42]. 

Large unilamellar vesicles (ULVs) have been reported as most appro
priate liposomes for the food industry due to various reasons: (i) ease in 
production, (ii) high stability, (iii) high encapsulation efficiency (EE), (iv) 
controlled delivery at specific temperatures and specific locations, (v) 
releasing the contents readily in high moisture environments. However, there 
are some hitches in their use, such as the requirement of low temperatures 
for storage or high-cost considerations during freeze-drying of liposome 
suspension. 

5.4.6  EXTRUSION TECHNOLOGY 

Encapsulation of volatile and unstable flavors is preferably obtained by extru
sion. Coating materials usually involved are glucose, sucrose, maltodextrin, 
etc., which forms the glassy carbohydrate shell. The process is achieved by 
taking the coating material in a molten state maintaining a temperature of 
about 115°C and pressure less than 100 psi. It is then followed by the addi
tion of core material by using a series of dies, nozzles, syringe, atomizing 
disk, coaxial air-flow, electric field, jet cutter, etc., for shaping them into 
spheres. Encapsulated microspheres are formed which are released into a 
dehydrating liquid such as isopropanol [13, 23, 42]. 

Each one of the above techniques is suitable for lab-scale production of 
encapsulated microspheres, and each of them comes along with their own 
advantages and disadvantages. Jet-cutter, coaxial air-flow and electrostatic 
potential are capable of providing narrow size distribution. Coaxial air-flow 
generally provides oval-shape particles. Also, the productivity of coaxial air 
flow as well as electrostatic potential is low. Vibrating nozzle techniques 
gives the highest productivity in comparison to other techniques. Jet-cutter 
technology is suitable for both lab-scale and large-scale production systems. 

The principal advantage of extrusion encapsulation is the increase in 
shelf-life for flavor oils prone to oxidation: Normally, the flavor oils have 
a shelf-life of few months. In some cases of extrusion encapsulation, shelf 
life has been increased even up to 5 years. This is made possible by hydro
philic glassy matrix which provides an excellent impermeable barrier for 
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atmospheric gases. This is significant when compared with a shelf-life of 
one year for microcapsules produced by spray-drying [13, 62]. 

Some other variants of extrusion technology for encapsulation are 
centrifugal extrusion, centrifugal suspension separation and melt extru
sion. Centrifugal extrusion, also known as coextrusion is most often used 
to encapsulate flavor oils. Centrifugal suspension separation, on the other 
hand provides protection to sensitive foods and food components such as 
aspartame, vitamins, methionine, etc., from moisture [13, 23, 41, 42]. Melt 
extrusion involves use of thermo-mechanical mixers, double screw extruder 
being one of the examples. However, the final payload for melt extrusion is 
quite low (typically less than 10%), which may affect their cost-in-use [62]. 

5.4.7  INCLUSION COMPLEXATION 

It can be referred to as an association between a cavity-bearing substrate and 
a ligand (or an active ingredient). This association occurs at the molecular 
level, and it may be maintained due to various reasons such as hydrogen 
bonding, Vander Waals forces and entropy-driven hydrophobic interactions. 

The most practically feasible cavity-bearing substrates for inclusion 
complexation include: 4, 5 and 6 glucopyranose-ringed members known 
as α, β and γ-cyclodextrins, respectively. They have diameters of about 
14, 15 and 17 Å, respectively with an inner pocket of about 5–8 Å, which 
are suitable for reversibly entrapping an active molecule of right size in an 
aqueous environment. They can entrap the ligands (active ingredients) that 
can fit dimensionally inside their central cavities. The dimensions of the 
cavity depend on the type of cyclodextrin used for encapsulation. Partially 
hydrolyzed starch (maltodextrin) is used to prepare cyclodextrins with the 
help of enzymes such as cyclodextrin glycosyltransferase [23, 62]. 

The cyclodextrins are preferable for inclusion complexation because 
its internal cavity is hydrophobic while its outer surface is hydrophilic in 
nature. Thus, they can easily encapsulate lipophilic substances such as flavor 
compounds, and lipophilic vitamins. They have been used for encapsulating 
essential oils, garlic, and onion oils which form odorless complexes with 
cyclodextrins. This encapsulation helps in protecting the essential oils for 
longer times and preventing the volatilization of volatile flavor components 
[23]. Few other examples of inclusion complexation are: utilization of amylose 
to entrap lipids or proteins (ligand-binding) for example, β-lactoglobulin. 
The hydrophobic part of β-lactoglobulin tends to bind the fatty acids as well 
as aromatic compounds in a pH and temperature dependent manner [62]. 
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5.5  APPLICATIONS OF ENCAPSULATION 

Properties of encapsulation could be exploited by the food industry in 
various fields such as flavor industry, vitamins, minerals, nutraceuticals, 
bioactive compounds, beverage industry, dairy industry, or packaging sector. 
The applications of encapsulation in these sectors have been discussed in 
this section. 

5.5.1  ENCAPSULATION IN FLAVOR INDUSTRY 

Encapsulation of flavors dates way back and has been well documented 
for years. The dawn of flavor science and application-specific delivery of 
flavors might have led to the introduction of encapsulation in the food and 
beverage industry. Food products having unique flavor changing capability 
or varying sensational qualities or long-lasting flavors are the new trend and 
can be easily achieved by the encapsulation process. The protective covering 
formed by the encapsulating agents not only thwart degradative changes 
but also eases the handling of encapsulated flavors that are in the form of 
stable dry powders [40]. One of the examples involves the preservation of 
color and flavor of a tomato puree using acetone by spray drying [45], and 
this technology has become the most preferential among all encapsulation 
technologies for flavor retention. 

Chewing gum has a hydrophobic gum base that interacts with several 
flavor ingredients, binding them, and ensuring slow and reduced release of 
the flavor compounds [10]. Later research suggested the use of spray drying 
to inhibit the binding interactions between flavor and gum base [12]. Encap
sulated flavors were also utilized in ice cream preparations. A lipid encap
sulated flavor was designed to melt at temperatures typical to a consumer’s 
mouth [17]. Keeping in view the convenience of consumers, beverages in 
dry mix form for ready-to-drink products were formulated. Encapsulation 
was later employed to improve the flavor performance and ensure rapid 
dissolution upon hydration. A patent was filed to enhance the forthright 
aroma release in a dry mix hot coffee which was achieved by incorporation 
of an encapsulated flavor delivery system [9]. 

Encapsulation also aims to mask undesirable taste and aroma that may 
appear naturally, or as a processing hazard. They tend to form barriers in 
the surrounding of the cause behind offensive odor thus hiding the initial 
perception. Fish oil, though highly recommended for heart disease patients 
have an inherent, unpleasant odor, which can be masked by encapsulation. 
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Similarly, canned fish products have also utilized cyclodextrins to encapsu
late offending aroma compounds [52]. Encapsulation again may play a role 
in hiding the bitter taste associated with caffeine that sometimes becomes 
undesirable. 

Oregano essential oil and citronella aroma extract were encapsulated 
with the help of spray drying using milk proteins such as, skimmed milk 
powder (SMP) and whey protein concentrate (WPC) [3]. Similarly, complex 
coacervation was employed for the preparation of microparticles holding 
beta-pinene using milk proteins (sodium caseinate and whey protein isolate) 
and CMC. Response surface methodology was used to optimize the process 
parameters while the study revealed the possibility of encapsulation of beta
pinene using milk proteins-CMC complex [34]. Recent researchers have tried 
to produce flavored fermented and non-fermented milk using microencap
sulated canthaxanthin along with alginate and high methoxyl pectin. These 
formulated functional dairy products exhibited desirable color [1]. 

Heat treatments often result in loss of flavor especially during the baking 
process. Coacervation process was used to encapsulate flavors during baking 
process, thus providing heat stability and controlled release of the flavor 
compounds [57]. Ultrasonic encapsulation was employed to encapsulate 
cinnamaldehyde which is susceptible to evaporation during baking opera
tions thus inhibiting yeast growth. Encapsulation acted as a tool in imparting 
heat stability to cinnamaldehyde and thereby reducing its interactions with 
yeast during baking [22]. 

5.5.2  ENCAPSULATION OF VITAMINS AND MINERALS 

Vitamins and minerals are micronutrients that are essential for proper growth 
and development of our body as their deficiency results in diseases. Common 
examples include calcium, iron, zinc, vitamins A, B, C, D, etc. Encapsulation 
techniques can be utilized for efficient delivery of vitamins and minerals 
through food fortification. The major objective lies in improving the absorp
tion rates of these micronutrients in the body while maintaining their stability 
in foods and ensuring effective delivery. 

Iodine is quite unstable and therefore requires fortification in salt. 
This may be achieved by microencapsulation of iodine using a spray of 
fluidized bed drying. Among various encapsulating agents that were used, 
dextrin encapsulating potassium iodide gave the best results with respect 
to appearance, stability, and taste [15]. Iron (Ferric chloride) was also 
encapsulated in a double emulsion system consisting of water-in-oil-in-water 
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(W/O/W) emulsion. This process worked towards enriching food products 
with iron by using double emulsion encapsulation [7]. 

Vitamin C is the most common water-soluble vitamin and has several 
health benefits. Though it has high stability in the form of powder, decrease 
in stability could be observed on dissolution in water and is also affected 
by various environmental factors. It is highly oxidative and may react with 
other ingredients, resulting in undesirable effects. Various encapsulation 
techniques have been used over the years to encapsulate vitamin C. In one 
such research, Vitamin C was encapsulated in tripolyphosphate-chitosan 
complex using spray drying [14]. Vitamin C was encapsulated in a sugar-free 
rebaudioside-sweetened model beverage using W/O/W double emulsion. 
The study exhibited improved stability of the vitamin [30]. Another study 
involving co-encapsulation of vitamin C and β-Carotene in liposomes using 
ethanol injection method was performed, resulting in improved stability of 
β-Carotene which is a precursor of vitamin A [37]. 

Vitamin A has the tendency to readily degrade in the presence of environ
mental factors such as light, and high temperatures. The Food Engineering 
Group at the University of Toronto designed a stabilizing system containing 
approved food-grade antioxidants in ultra-rice that not only improved vitamin 
A concentration under extreme storage conditions but also the formulation 
cost [36]. Vitamin E retention in heated beverages also increased with the 
help of encapsulation performed on orange O/W emulsion beverages [43]. 

5.5.3  ENCAPSULATION OF BIOACTIVE COMPOUNDS 

Bioactive compounds are simple compounds that are active biologically and 
provide added nutrients on consumption. They can be classified into various 
groups, such as micronutrients, phytochemicals, prebiotics, probiotics, and 
dietary fibers (DFs). The intended use of these bioactive compounds depends 
hugely on their ‘in product’ and ‘in body’ behavior that can be controlled and 
regulated by the use of appropriate encapsulation systems. Encapsulation 
provides a protective covering to the unstable bioactive compounds during 
the preparation, processing, and preservation phases. They encourage the 
controlled release and efficient dispersion of these compounds within the 
body especially during mastication and gastrointestinal (GI) digestion thus 
augmenting their bioaccessibility and bioavailability [16]. 

Phytochemicals are non-essential nutrients which means, they are 
not required by the body for sustainable development; however, they are 
reported to have disease preventing properties [28]. Micronutrients are 
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necessary for the body’s health but in small quantities. Potassium, calcium, 
magnesium, and iron comprise some of the micronutrients. DFs include 
celluloses, hemicelluloses, lignins, β-glucans, etc. Intake of fibers increases 
satiety, improves bowel activities, and also reduces the risk of some major 
chronic diseases. 

Coacervation technique was used to encapsulate several bioactives, 
such as: jasmine essential oil [38]; ascorbic acid [11]; sucralose [47]; and 
lycopene [46] using gelatin and gum Arabic as encapsulating agents. The 
encapsulated products thus formed showed resistance to high temperatures. 
Henceforth, it was established that encapsulated forms were better protected 
than the free form. Riboflavin was also encapsulated with whey protein 
and alginate beads to evaluate the release characteristics of the bioactive 
compound in beverages [60]. Similarly, thyme polyphenols [55] and grape-
seed polyphenols [20] were also encapsulated within chitosan microbeads to 
prolong the release of the encapsulated compound. 

Electrospraying technique was also used to encapsulate polyphenols with 
gelatin as the encapsulating agent. EE obtained was very high, and the anti
oxidant activity of the bioactive compound was also fully preserved upon 
encapsulation [21]. Increased bioavailability and efficient delivery systems 
for polyphenols, especially dietary polyphenols in functional foods could be 
achieved by nanoparticle-based delivery systems [53]. However, additional 
research needs to be done to optimize the utilization of encapsulated bioac
tive compounds thus making them more stable as well as bioavailable both 
in vitro and in vivo. 

5.5.4  MISCELLANEOUS APPLICATIONS 

Encapsulation has stretched its roots in various other applications in the food 
industry as well, such as the beverage sector, dairy sector, packaging industry 
and many more. For example, lipids have both difficulty in dispersion and 
susceptibility to auto-oxidation resulting in the development of undesired 
flavors and toxic compound. Advantages of lipid encapsulation have already 
been discussed in this chapter under the section of ‘lipids’ in this chapter. 

Encapsulation of oils and oleoresins has also been reported. An example 
is the encapsulation of cardamom oleoresin [32], or cumin oleoresin [27] 
that used various wall materials, such as gum Arabic, maltodextrin, or 
modified starch. The packaging industry has also exploited the encapsula
tion process, and several researchers over the years have devised specially 



 

 

 

 

 

 

 

Encapsulation Technologies: Principles and Applications 117 

designed packages, with smart nanocomposites that can play a crucial role 
towards food preservation and safety [6]. More recently, the ‘nano’ form 
of encapsulation is being adopted that has given better results and has also 
made possible use of more than one encapsulation technology. However, this 
process has still not garnered enough attention due to the cost considerations. 

5.6  SUMMARY 

Encapsulation, for several years now, has tried to establish its foot in the 
food industry with its numerous attributes such as protection against 
environmental degradation, chemical reactions, controlled, and on-site 
delivery, masking of undesirable odor, and improving stability of labile 
compounds such as bioactives during processing and storage. The food 
industry, however, demands novel technologies that not only provide nutri
tion and preservation for the food product till it reaches the consumer but 
also cost-effectiveness to appeal to the masses. Nowadays, this objective can 
be attained using more than one technology. When encapsulation employs 
more than one technology, products with superior characteristics, such as 
nanoencapsulates or double encapsulated products, are obtained. This also 
solves the dilemma of encapsulating material selection. This initiative has 
found more application in the pharmaceutical and cosmetic sector than in 
the food sector, mainly due to low product yield, low EE, and high costs. 
However, recent technological advances have succeeded to some extent in 
improving production, organoleptic properties, food fortification, and the 
development of novel food products. 
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CHAPTER 6
 

ENCAPSULATION OF NATURAL 
POLYPHENOLS FOR FOOD 
APPLICATIONS 

MADHULEKHA RAKSHIT, SOUBHAGYA TRIPATHY, and  
PREM P. SRIVASTAV 

ABSTRACT 

The health benefits and immune-boosting the ability of polyphenols have 
attracted attention in the food (as functional and nutraceuticals food), phar
maceutical, and cosmetic industries, especially during pandemic. However, 
the application of polyphenols in food matrix is limited because of its low 
solubility, stability, and bioavailability. Further, astringent taste and strong 
odor has also been reasons for restricting the incorporation of polyphenols 
in food. To overcome these drawbacks, encapsulation can be a promising 
approach for designing appropriate delivery systems. The process of encap
sulation involves choosing the correct wall material, which should be food 
grade, biodegradable, and could form a barrier around the core material. 

6.1  INTRODUCTION 

Encapsulation is a technique of trapping a solid/liquid/gaseous particle 
(known as core/active material) in a matrix surrounded by a wall material 
or coating material [106]. The wall material can be made of sugars, gums, 
proteins, natural and modified polysaccharides, lipids, and synthetic poly
mers [66]. Depending upon the size of the encapsulated particles, there are 
microparticles (with size 100 nm–1,000 µm) and nanoparticles (with size 
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1–100 nm). The objectives of encapsulation are: (i) protection of active 
material; (ii) modification of the characteristics of active material for easy 
transport and storage; (iii) masking off-taste of some polyphenols; (iv) 
controlling the release of active material in appropriate site in gastrointes
tinal (GI) tract; (v) separation of two active material which could react with 
each other [63]. Encapsulation involves the following process: 

1. 	 Identification of Core Material: Includes understanding the 
physicochemical characteristics of the active agent such as chemical 
formula, molecular formula, density, refractive index, melting point, 
boiling point, diffusion coefficient, solubility, dissociation constant 
(pKa) value, etc. 

2.	  Determination of End Product: Each of the commercial products 
has its own properties; hence, it is important to understand the final 
product properties such as its compositional analysis, physical state, 
optical state, economic factors, and desired shelf life. 

3.	  Determination of Wall Material and Encapsulation Technique:  
Once the properties of both active agent and end products are well 
defined, the appropriate wall material and encapsulation technique 
has to be determined. The selection of wall material and encapsula
tion technique are dependent on each other, in combination, they will 
determine the physical property of the particle. 

4.	  Particle Formation:  The active material is coated with appropriate 
wall material through any encapsulation technique to obtain desired 
particle. 

5.	  Evaluation of Particle Stability:  This is an important step in deter
mining the characteristics of the end product formed and its shelf-life  
stability. Many analytical tools have been developed to assess the same  
such as dynamic light scattering systems, scanning electron micro
scope (SEM), atomic force microscope, zeta sizer, spectrophotometer,  
disc scanning calorimeter, thermo-gravimetric analyzer, small-angle  
X-ray scattering, micro CT scanner, etc. Apart from physicochemical  
characterization of the product, it is essential to determine its stability  
such as pH, temperature, ionic, light, and oxygen stability. The shelf  
life of any commercial product is of utmost importance for predicting  
the performance of the delivery system; therefore, short-term acceler
ated screening of the end product must be carried out. 

6.	  Evaluation of Release Properties:  The particle must be able to 
deliver the active agent to the appropriate site in the GI tract. Thus, 
in vitro and in vivo release study should be carried out. 
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The encapsulation methods can be broadly classified into: physical (e.g., 
spray drying, lyophilization, supercritical fluid (SF) precipitation, solvent 
evaporation), physicochemical (e.g., coacervation, liposome, ionic gelation, 
and emulsion) and chemical (e.g., molecular inclusion complexation) [106]. 

Polyphenols exhibit wide range of health benefits including anti-cancer, 
anti-diabetics, anti-osteoporosis, etc. [15, 148, 149, 162]. However, the 
bioavailability of each polyphenol reduces these effects [63]. This is the big 
challenge faced by the food industry for incorporation of polyphenol into any 
food formulation as small amount of polyphenol remain available following 
the oral administration. Also, the off-flavor of certain polyphenol limits its 
incorporation into food. Consequently, instability during storage (tempera
ture, pH, light, and oxygen), and low permeability of active agent within 
appropriate site at GI tract may limit polyphenol availability. Moreover, 
the challenge lies in ensuring the polyphenol stability throughout the food 
chain from external degradation factors. Therefore, encapsulation provides 
a viable solution to protect these polyphenols alongside incorporation into 
food, pharmaceutical, and cosmetic products [106]. 

This chapter aims to explore the recent advancements in the various 
encapsulation technologies (such as: emulsion, spray drying, freeze-drying, 
spray-chilling, coacervation, extrusion, liposomal formation, and molecular 
inclusion) to entrap various plant polyphenols. 

6.2  POLYPHENOL CHARACTERISTICS 

Polyphenols are one of the most abundant and ubiquitous groups of plant 
metabolites that are an integral part of diets, possessing a high range of 
biological activities [27, 75, 133]. These compounds range from simple 
phenolic compound to complex high molecular weight compounds. There are 
various types of polyphenols, such as: phenolic acid, flavonoids, stilbenes, 
coumarins, lignans, and tannins. Dietary polyphenols have effectively imparted 
biological activities and several health benefits against oxidative stress-related 
diseases. Therefore, numerous health benefits for dietary polyphenols have 
been reported in reducing neurological, cardiovascular diseases (CVDs), and 
cancer. It also possesses anti-allergic, antibacterial, anti-hypertensive, skin 
wound healing, anti-inflammatory, and anti-viral effects. 

There are numerous techniques for extraction that have been studied, 
ranging from conventional extraction (CE) process (such as maceration, 
solvent extraction, etc.), to improved and innovative techniques (such as: 
ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), 
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supercritical fluid extraction (SFE), etc.). However, all these techniques work 
under the same principle where initially the plant tissues swell and hydrate 
followed by mass transfer of solute from plant materials to the solvent by 
osmosis and diffusion. 

Each method has its own advantages and disadvantages; therefore, an 
appropriate extraction technique can be chosen depending upon the nature 
of the target compound. The choice of solvent is an essential factor for 
any extraction process, and depends upon the characteristics of the desired 
polyphenol to be extracted. The polarity of the target compound decides 
the appropriate solvent as polarity is the factor responsible for diffusion of 
polyphenols [43]. 

There have been various solvents used for extraction purposes: ethanol, 
methanol, acetone, diethyl ether, isopropanol, ethyl acetate, and their 
mixtures with water. Recently, the use of ionic liquids (ILs) and eutectic 
solvents has been suggested over the traditional solvent in order to avoid 
pollution and health risk. 

Due to safety concerns and immunity boosting effects, there have been 
demands on natural antioxidants over synthetic ones. Also, there has been 
increased awareness on “clean label” product; these dietary polyphenols 
have a pivot role. Moreover, the pandemic issue has led to the increased 
acceptance of these polyphenols as a part of healthy diet. However, their 
poor bioavailability through oral administration limits their application in 
food matrix. Recent studies have revealed encapsulation of polyphenols 
from various sources with different encapsulation techniques (Table 6.1). 

6.3  EXTRUSION TECHNIQUE 

Extrusion is a technique of encapsulating polyphenols by dropping the 
liquid mixture into a gelling bath through a small orifice [182]. The droplet 
formed is immediately solidified into capsules due to the chemical or 
physical interactions [21, 116]. This technique is usually used for creating 
hydrogel. 

The most common extrusion is carried out using sodium alginate and 
calcium chloride. Alginate is widely available natural hydrophilic polymer, 
derived from brown bacteria and seaweed. Chemical structure comprises 
of alternative blocks of (1–4)-linked β-D-mannuronic acid (MUA) and 
α-L-guluronic acid (GUA) [92]. The multivalent ions bind with cavities 
connecting GUA blocks of alginate molecule [161] to form gel. This struc
ture is termed as “egg-box” [76, 115, 159]. Also, this technique is known 



 
 TABLE 6.1 Polyphenols Encapsulated with Different Wall Materials and Encapsulation Techniques 

Active Ingredient Source Wall Material Encapsulation Technique References 
Anthocyanin Black rice Gum Arabic, whey protein isolate Ionic gelation [120]
 

Blueberry Maltodextrin (dextrose equivalent (DE) 20) and  Spray drying [48]
 
hi-maize 

Black carrot Chitosan/gelatin Electro-spraying [16]
 
Blackberry Maltodextrins with 10 and 20 DE Freeze drying [185]
 
Pomegranate juice Gum Arabic and maltodextrin Freeze drying [83]
 
Pomegranate Gum Arabic and modified starch Spray drying [52]
 
Saffron Gum Arabic and maltodextrin (M7 and M20) Freeze drying [88]
 
Raspberry Soy protein isolates Electro-spraying [178]
 
Blueberry juice Hydroxypropyl-β-cyclodextrin (HP-β-CD) Freeze drying and spray [183]
 

and β-cyclodextrin (β-CD) drying
 

Black carrot Maltodextrin with 10 DE and 20 DE Freeze drying [113]
 
Hibiscus sabdariff Sodium alginate, pectin Ionic gelation [54]
 
Brassica oleracea L. var. capitata Gum Arabic and polydextrose Spray drying [28]
 

Betacyanin and Beetroot leaves and stems Sodium alginate, sucrose, gum Arabic, and Ionic gelation [5]
 
polyphenols guar gums, and low and high methoxyl pectins 
Bitter melon Momordica charantia L. Maltodextrin and gum Arabic Spray drying [164]
 
aqueous extract 
Curcumin – Poly (D, L-lactic-co-glycolic acid) Emulsification-solvent [121]
 

evaporation
 

– Sodium alginate and ZnO Ionic gelation [177]
 
– Zein, alginate, and gelatin Anti-solvent [186]
 
– γ-Zein hydrolysate Anti-solvent [126]
 
– Soy soluble polysaccharide and maltodextrin Spray drying [41]
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 TABLE 6.1 (Continued)  

Active Ingredient Source Wall Material Encapsulation Technique References 
– Soy lecithin and β-sitosterol Liposome [163] 
– Aloe vera mucilage Spray drying [107] 
– Polylactic acid Electro-spraying [103] 
– Lecithin Anti-solvent [51] 
– Amaranth protein isolate and pullulan Electro-spraying [30] 
– Gelatin Electro-spraying [68] 

Curcuminoids Turmeric Eudragit® L100 and Pluronic® 127 Supercritical anti-solvent [12] 
(SAS) 

Gallic acid – Polyvinyl alcohol fibers Electro-spraying [44] 
– Calcium alginate Electro-spraying [95] 

Gallic acid, – Gelatin-coated ι-carrageenan Extrusion (electric field [69] 
catechin, aided) 
chlorogenic acid, 
tannic acid 
Gentisic acid – Sunflower phosphatidylcholines and Liposome [84] 

β-sitosterol 
Gingerol Zingiber officinale Roscoe Maltodextrin and gum Arabica Spray drying [151] 
Polyphenols Bougainvillea spectabilis Sodium alginate Extrusion [122] 

Thymus serpyllum L Alginate, chitosan, and inulin Electrostatic extrusion [132] 
Olive pomace L-α-Phosphatidylcholine Supercritical assisted [172] 

liposome formation 
Beet greens Sodium alginate Extrusion [72] 
Taraxacum officinale L. leaf Sodium alginate, whey protein isolates, cocoa Ionic gelation [35] 

powder, and carob 
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Active Ingredient Source Wall Material Encapsulation Technique References 
Olive leaf Whey protein Electro-spraying [158] 
Olive leaf Maltodextrin and trehalose, alone Freeze drying [71] 
Blackberry pulp Arrowroot starch/gum Arabic Spray drying [119] 
Yacon leaf Maize starch Anti-solvent [46] 
Fermented tea leaf wastewater Maltodextrin-gum Arabic Freeze drying [112] 
Red pepper waste Whey protein Freeze drying [152] 
Elderberry (Sambucus nigra L.) Modified chitosan, sodium alginate and gum Spray drying [143] 

Arabic 
Olive leaf Sodium alginate Spray drying [70] 
Mango leaves Polyvinylpyrrolidone Anti-solvent [74] 
Sour cherry (Prunus cerasus L.) Gelatin-lactalbumin Electro-spraying [81] 
Lemon by product Maltodextrin-soybean protein Freeze drying and spray [127] 

drying 
Blackberry Polyvinylpyrrolidone Spray drying, freeze [100] 

drying, SAS 
Spent coffee powder Maltodextrin Freeze drying [22] 
Camellia sinensis L. Maltodextrin Spray drying [168] 
Camellia sinensis Soy phosphatidylcholine, cholesterol, and Spray drying [151] 

lauroyl polyoxylglycerides 
Olive pomace Maltodextrin Anti-solvent [10] 
Blackberry Gum Arabic and polydextrose Spray drying [144] 
Grape pomace Poly lactic-co-glycolic acid Anti-solvent [110] 
Olive pomace Maltodextrin Spray drying [125] 
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Active Ingredient Source Wall Material	 Encapsulation Technique References 
Pro-anthocyanidin Cinnamomum zeylanicum Gelatin with gum Arabic, pectin, cashew gum, Complex coacervation [55] 

carboxymethylcellulose, and κ-carrageenan 
Quercetin – β-Lactoglobulin Anti-solvent [39] 

–	 Polycaprolactone, polyethylene oxide, Electro-spraying [62] 
polylactic acid, and polylactic-co-glycolic acid 

–	 Amaranth protein isolate and pullulan Electro-spraying [3] 
ultrathin fibers 

Resveratrol and – Heat-denatured whey protein isolate, sodium Emulsion filled gel [64] 
α-tocopherol alginate 
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as ionic gelation because the positive multivalent ionic (such as Ba2+, Ca2+, 
Al3+) interaction with anionic polymer to trap active material [124]. 

Similarly, another example of ionic gelation is chitosan tripolyphosphate 
beads where the interaction of cationic polymer takes place with anionic 
sodium tripolyphosphate to entrap core material. Zheng et al. [193] studied 
both types of curcumin filled hydrogel (calcium alginate and chitosan 
tripolyphosphate) for their stability at pH 3 and 7. Alginate beads proved to 
be least effective at both 3 and 7 pH, whereas chitosan beads were effective 
at neutral pH. 

Extrusion technique can induce internal gelation and external gelation. In 
external gelation, the solution of active compound and polymer is dropped 
into the gelling solution where the gelling agent externally diffuses into 
the polymeric network to form gel. On the other hand, in internal gelation, 
emulsion is formed with active compound and polymer, however, gel is 
formed by acidification [99]. In internal gelation, alginate can be gelled 
by lowering the pH below the pKa value of the uronic acid residues [61], 
thus effecting the polymer charge density. The capsules formed by internal 
gelation were reported to have compact and homogeneous structure with 
delayed-release. 

Alginate beads were prepared to encapsulate insulin by internal gelation 
[155]. Internal gelation can also be used to simultaneously entrap both hydro
philic (polyphenols from dandelion) polyphenols and lipophilic (β-carotene) 
compounds because this technique provides ways for trapping oil inside the 
hydrogel [25]. Internal gelation also yields particles with lesser size due 
to the emulsion formation [36]. Alginate bead formed by external gelation 
showed improved digestibility of the loaded active compound. Similarly, the 
encapsulation efficiency (EE) of >88% was obtained for encapsulation of 
bougainvillea extract in alginate beads by external gelation [122]. 

Zazzali et al. [188] studied the effect of pH in the formation of calcium 
alginate beads. The authors reported that at pH 3.8 (pKa for sodium alginate), 
the chain interactions increase resulting into a larger particle, thus changing 
the microscopic (density, size, and interconnectivity) and macroscopic 
attributes (strength and roundness) of the particle. The other parameters that 
affect the efficiency of the process are flow rate and needle diameter, whereas 
the loading efficiency depends upon polymer hydrophilicity, porosity, cross-
linking and interaction between core material and polymer [24, 160]. The 
parameter of extrusion such as sodium alginate (molecular weight, ratio of 
mannuronate residues to guluronate residues (M/G ratio), and concentration), 
calcium chloride concentration, and active material concentration influence 
EE and stability in GI tract [128]. 
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Alginate of different molecular characteristics can also have an effect on 
EE. Alginate beads with higher molecular weight yielded better EE owing 
to the fact that higher molecular weight reduces porosity [14]. Alginate 
with lower M/G ratio and the bead with lower water content showed higher 
antioxidant activity [38]. Moreover, the freeze dried capsules released lesser 
content as compared to hydrogel [4, 47]. Higher viscosity polymer solution 
results in higher density and larger bead with higher EE [26, 45]. However, 
the shape and size of the droplet is affected by the surface tension, viscosity, 
and composition of polymer solution [106]. In addition, the storage matrix of 
hydrogels also plays an important role in determining the retention of active 
molecule in the capsule. The choice of the correct solution of storage helps 
in delayed diffusion of active compound through the polymeric gel. The 
driving force of diffusion can be eliminated by providing a same concentra
tion of active compound in the storage matrix [4]. The hardening solution 
containing stevia extract lowered the concentration gradient for diffusion, 
thus, lowering down the losses during encapsulation [14]. 

Bajpai et al. [20] showed that the retention of anthocyanin in micro
capsules formed by extrusion was lower as compared to the microcapsules 
formed by spray drying. This was attributed to the water solubility of 
anthocyanin and the porous structure of alginate hydrogel. Therefore, there 
is a need to formulate hydrogel with higher retention by reducing porosity. 
Such challenge can be solved by introducing filler material as a part of wall 
material [90]. The recent literature focuses on the use of filler material in the 
formulation of hydrogel to provide active material barrier by using natural 
polymers [14]. A study showed that composite of alginate and chitosan exhib
ited 6.3- and 2.7-times lower diffusion coefficient, respectively, as compared 
to plain alginate and alginate-inulin composite particle for encapsulation of 
thyme extract [132]. 

The nature of filler material plays an important role in enhancing the EE 
and the release of core material. Alginate combined with whey proteins and 
calcium caseinate retained the highest tea polyphenols (up to 80%). On the 
other hand, chitosan, and pectin improved the polyphenol release profile; 
however, it had no significant effect on EE. Some proteins like bovine 
serum albumin (BSA) and whey proteins provided softer and spherical 
surface to the capsules, whereas some others such as hemp and soy proteins 
provided harder and larger capsules [26]. Also, whey protein isolate as filler 
material yielded > 93% EE and cocoa powder and carob yielded > 88% 
EE [35]. Besides, the addition of cationic polymer in the alginate beads 
can improve storage stability of the hydrogels [49]. Inorganic compounds 
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such as zinc peroxide (ZnO2) increased the density of alginate beads, thus, 
prolonging the release time, and the protection of curcumin from ultraviolet 
(UV) degradation [177]. 

There are certain polyuronates that can also form an “egg-box” structure 
with calcium ion, resulting in gel formation [73], which can be used to 
encapsulate polyphenols. The ability of polyuronates in the formation of gel 
depends upon the degree of esterification. The lower degree of esterifica
tion makes stronger gel [98]. Huynh et al. [79] studied the ionic gelation of 
rutin using polygalacturonic acid, amidated low methoxyl pectin, and low 
methoxyl pectin. The viscoelastic properties of these polycarbonates were 
correlated for the formation of stable gel. Amidated low methoxyl pectin 
formed smaller and more flexible gel owing to its lowest viscoelastic moduli 
and lesser affinity to bind calcium. Thus, it proved to be least effective in 
holding core material during storage. Gorbunova et al. [72] formulated 
multilayer alginate beads by dipping the hydrogel into a solution containing 
active material (betacyanins, betaxanthins, and beet green polyphenols), 
followed by transferring into calcium chloride bath. The multilayer alginate 
beads retained a higher amount of core material under simulated gastric 
conditions than the single layered beads. 

The advantages of alginate are that they are simpler in preparation, 
non-toxic in nature and most importantly, it is cost-effective [189]. Alginate 
hydrogels formed by external gelation usually varies from 1.0 to 1.2 mm, are 
shows monomodal distribution, indicating uniform bead size [49]. Larger 
capsules provide better protection to core material but shows poor disper
sion in the food matrix, while, small capsules provide less protection to core 
material [192]. 

The major drawback of extrusion is that it yields capsules with higher 
particle diameter, thus, causing problem in incorporating it into any food 
formulation [25]. The way of reducing particle size is electrostatic extrusion, 
or by using jet cutter or atomizer. Electrostatic extrusion is a variation of 
extrusion that uses an electric field to reduce the particle size of the drop 
falling from the orifice into the gelling bath [166]. Electrostatic extrusion is 
based on the same principle as electro-spraying. 

Gómez-Mascaraque et al. [69] studied electrostatic extrusion of poly-
phenols mixed with ι-carrageenan into a gelling bath containing gelatin 
and calcium chloride. The study showed that the polyphenol with higher 
molecular weight formed cross-links with gelatin and delayed its release. 
The EE for smaller molecules (gallic acid, catechin, chlorogenic acid, etc.), 
was found to be less as they could easily diffuse out of the hydrogel. Rijo 
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et al. [145] studied extrusion encapsulation of the extract from medicinal 
plants, such as: Plectranthus grandidentatus, Plectranthus porcatus, Plec
tranthus ecklonii, Plectranthus ornatus, and Plectranthus saccatus, majorly 
containing caffeic acid and rosmarinic acid. The authors observed 98.64 and 
100.0% EE of rosmarinic acid, and caffeic acid, respectively. 

6.4  MOLECULAR INCLUSION 

Molecular inclusion is carried out by using β-cyclodextrin (β-CD) with 
internal hydrophobic part and external hydrophilic part [56]. β-CD is natu
rally occurring cyclic oligosaccharides derived from starch. This is a means 
of encapsulating less polar molecules into apolar cavity through hydrophobic 
interactions. Thus, it can help in increasing the water solubility of hydro
phobic molecules [53]. The affinity towards CD is dependent on the size 
and hydrophobicity of the core material. The ratio of the core material bond 
to β-CD determines the ability to form stable inclusion complex. Spectral 
investigation provides an insight into the chemical structure [59]. 

The process of inclusion complex formation was enhanced by coupling 
ultrasound for simultaneous extracting and encapsulating polyphenols from 
Polygonum cuspidatum [105]. The study also revealed that the encapsulated 
polyphenols had higher stability in methanolic extract. The β-CD selectively 
encapsulated resveratrol and other stilbenes because of the structural confir
mation. Several studies have reported CDs to retain flavoring compounds, 
improved their oxidative stability and provided control release [42, 140]. 
However, the loading capacity of β-CD is low as compared to its cost [176]. 
β-CD is thermo-protectant [87]. 

Nanofiber containing quercetin β-CD inclusion complex was prepared 
by electrospinning [17]. Moreover, β-CD can also be used to increase the 
solubility of hydrophobic polyphenols. For example, Mangolim et al. [104] 
encapsulated curcumin in β-CD and observed higher stability and solubility. 
Addition to this, the inclusion complex of hesperitine, hesperidin [171], 
olive leaf extract rich in oleuropein [111], myricetin, kaempferol, quercetin 
[109], and rutin [62] has been studied to improve the water solubility of 
these polyphenols. Again, this type of encapsulation is advantageous for the 
polyphenols that are susceptible to acidity. 

Gallic acid loaded poly lactic acid (LA) nanofibers were formulated by first 
forming an inclusion complex of gallic acid with HP-β-CD, then electrospin
ning into poly LA. The release of the formulated nanofibers was evaluated 



 

 

Class	 Sub-Class Number of Bilayer(s) Particle Size 
Unilamellar vesicles (ULV)	 Small ULV 1 20–100 nm 

Medium ULV 1 >100 nm 
Large ULV 1 >100 nm 
Very large ULV 1 >1 µm 

Oligolamellar vesicles – 5 0.1–1 µm 
Multilamellar vesicles (MLV) – 5–25 >0.5 µm 
Multi vesicular vesicles – Contains more than >1 µm 

one ULV 
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in: water, 10% ethanol and 95% ethanol. The nanofiber showed least release 
of the gallic acid in 95% ethanol [18]. The use of sulfobutyl ether-β-CD 
sodium in encapsulating tea polyphenols along with chitosan has also been 
investigated [96]. The authors have reported the use of sulfobutylether-β-CD 
as cross-linking agent to bind chitosan and tea polyphenol. 

6.5  LIPOSOME 

Liposome is a concentric spherical structure having two or more phospholipid 
bilayers surrounding the core material. Due to its amphiphilic nature, it can 
encapsulate both hydrophobic and hydrophilic molecules simultaneously. 
These are mainly used as a delivery medium of polyphenols because of its 
amphiphilic nature, where hydrophilic polyphenol can be entrapped inside 
the liposome and hydrophobic polyphenol can be entrapped in between the 
lipid bilayer. Liposomes improve the solubility and the release of polyphenols 
at the target location. However, sometimes the arrangement of phospholipid 
in liposome can be affected by its preparation method, conditions, and size 
of the liposome. This leads to fusion or agglomeration of liposome [129]. 
This aggregation damage the sensitive nature of liposome limits its wide 
applications. 

Liposomes are classified into small to large vesicles based on their struc
ture (Table 6.2). The size of the liposome can be used to know the half-life. 
However, the EE is mainly affected by both size and number of bilayer(s) 
present in the liposome. The unilamellar vesicle (ULV) has a single phos
pholipid bilayer, whereas the multilamellar vesicle (MLV) has a number of 
bilayers. 

TABLE 6.2 Liposome Types 



 136 Novel Processing Methods for Plant-Based Health Foods 

The common liposome preparation methods are mechanical disper
sion, solvent dispersion, and detergent removal method. The mechanical  
dispersion method includes sonication, extrusion, freeze-thawing, and  
homogenization [78, 142]. For small ULV preparation, sonication is  
most commonly used method. A bath type or probe-type sonicator is  
used to sonicate MLV. The solvent dispersion methods include solvent  
vaporization, ethanol injection and reverse-phase evaporation method.  
The reverse-phase evaporation method is an evolutionary method as it  
provides high aqueous area to lipid ratio and can entrap more core mate
rial. In the detergent removal method, non-encapsulated materials are  
removed. This method includes dialysis, gel permeation chromatography,  
and bio-beads: 

1. 	 Dialysis: In the dialysis method, a detergent having high critical 
micelle concentration is used. This detergent helps in solubilizing 
the lipid. The micelles are combined to form large ULVs after the 
removal of detergent. The most common detergents used in this 
method are bile salt and octyl glucoside [11, 50, 89]. 

2. 	 Gel Permeation Chromatography: It can be carried out by  
allowing the solution to pass through Sephadex G-50 or Sephadex  
G-100 column. The liposomes pass through the inter bead space at  
a slow rate, thereby, removing the detergent effectively from the  
liposome [7]. 

3. 	 Bio-Bead: In this method, the detergent micelle mixture is shaken 
properly in the presence of beads like bio-beads SM-2 or XAD-2. 
Here the detergent-like Triton X-100, alkyl glycoside and cholate 
with very low critical micelle concentration can be removed by 
absorbing in the beads [29]. 

Liposomes are also used to deliver a wide variety of substance to a 
specific location and used as an immunity enhancer. Now a day, cholesterol 
is replaced by plant sterol as it reduces the animal-based diseases, decrease 
the harmful cholesterol of body and most importantly it can be consumed 
by both vegetarians and non-vegetarians. Gentisic acid, generally found in 
cereal grains, was encapsulated in sunflower lecithin and β-sitosterol [84]. 
A sterol concentration of 50 mol% showed maximum entrapment efficiency 
and the low pH of the GI fluid enhanced the release of gentisic acid. Simi
larly, the β-sitosterol concentration affected the thermal, photo, and physical 
stability of curcumin loaded liposomes and improved the bioavailability of 
curcumin by increasing its release [163]. 
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6.6  ELECTRO-SPRAYING 

Electro-spraying and electro-spinning have been an effective technique 
for incorporating polyphenols. Electro-spraying is a technology where 
high-voltage is applied on a liquid while passing through a small nozzle. 
The droplets break up to nanoparticles due to the interaction of electric 
charge developed and the surface tension of the droplet. This technology 
is applied to increase the stability of the polyphenols by reducing its 
degradation, and increasing shelf life by reducing exposure to atmospheric 
oxygen [9]. The electro-spraying technology has advantages over other 
technologies [32, 118]: 

•	 Emulsion is not required to be prepared; however, this is an optional 
step; 

•	 In this process particles dry instantaneously. Therefore, further drying 
is not required; 

•	 It can be done at low temperature unlike spray drying (under Section 
6.8 in this chapter); 

•	 More sensitive and susceptible polyphenols can also be processed by 
this method; 

•	 Smaller particles are produced and they do not coagulate or agglom
erate due to their own dispersing characteristics; 

•	 This method is versatile and flexible with respect to various configurations. 

The principle of electro-spraying and electro-spinning is based on the 
principle of charged droplets, as described by Rayleigh [139] and examined 
by Zeleny [190]; and Taylor [167]. An electro-spraying machine consists 
of four important components: syringe pump, nozzle, high voltage power 
source and collector [118]. The sample is dissolved in a volatile solvent 
and loaded onto a glass syringe, equipped with a flow rate controller. High 
voltage power source is used to develop certain charge or polarity in the 
solution. The viscous solution forms small spherical droplets at the tip of the 
needle due to its surface tension. When the supplied voltage is increased, the 
surface tension of droplets is reduced and forms a cone, called Taylor’s cone. 
At or above this critical voltage, the particles that are ejected from Taylor’s 
cone carry positive charge. These charged particles are collected at the oppo
sitely charged collector and the solvent is evaporated during this process. 
The morphology and dimensions of the electro-sprayed particles depends on 
the concentration of solution, applied voltage, flow rate, tip target distance 
and needle gauge. 
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Both direct current (DC) and alternating current (AC) can be used for 
electro-spraying method. In DC electro-spraying, small micron sized particles 
(or drops) are formed. The major drawback of DC electro-spraying is that it 
requires more voltage than AC electro-spraying, i.e., the chances of accident 
are higher due to high voltage. The particles thus formed are not electrically 
neutral. This is the reason that the drops are more prone to surface absorp
tion. Moreover, due to electroporation or ionization, the encapsulated drugs 
are susceptible to destabilization [187]. In AC electro-spraying, the particles 
are larger and electroneutral. AC electro-spraying is quicker than DC electro
spraying and it can encapsulate organic solvent-soluble compounds as well 
as liposomes. Since the particles are electroneutral, negligible current passes 
through it, thus, power requirement is low [187]. 

Electro-spinning has been widely used to develop controlled release 
of bioactives [30]. Li et al. [94] encapsulated quercetin in ethyl cellulose 
nanofibers by electro-spinning. Due to the favorable interaction among 
the core and coating material, both of them exist in an amorphous physical 
state because of the formation of hydrogen bond between ethyl cellulose 
and quercetin. The authors also observed that the particles formed by Teflon 
nozzle had better ability of sustained release of quercetin than the particle 
produced from metal nozzle. 

Another study by Aceituno-Medina et al. [3] showed that the thermal 
stability of quercetin decreased when encapsulated in a mixture of amaranth 
protein isolates and pullulan via ultrathin fibers. This was due to the 
dispersion of the polyphenols. The encapsulation also efficiently preserved 
the bioactivity of the quercetin twice than that of free form. Similarly, the 
oral administration of the encapsulated form of quercetin in polycaprolactone 
(PCL) and with polyethylene oxide, polylactic acid, or polylactic-co-glycolic 
acid increased the cytotoxicity towards the MCF-7 cancer cell line [62]. 

Deldar et al. [57] encapsulated chrysin, a flavanone [131], in PCL and 
polyethylene glycol to preserve the adipose derived stem cell. Fourier-
transform infrared spectroscopy and field emission scanning electron 
microscopy confirmed that it successfully preserves the adipose derived stem 
cell. The interaction of phenolics increased when the anthocyanins of red 
raspberry were encapsulated in soy protein isolate electro spun nanofibers 
[178]. This was due to the interaction of the hydrogen bond of the phenolics 
of red raspberry and soy protein isolates. Therefore, higher bioactivity 
of anthocyanin and antibacterial activity were seen in these encapsulated 
nanofibers. Black carrot anthocyanin was also encapsulated in the electro
sprayed chitosan-gelatin to study the effect of the chitosan on the structure. 
A perfect structure was formed due to the electrostatic interaction of the 
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chitosan and gelatin. The release of the bioactive compounds was inversely 
related to the chitosan content [16]. 

Isik et al. [81] compared the uniaxial and coaxial electro-spraying method 
to encapsulate the sour cherry concentrate in gelatin or gelatin-lactalbumin. 
It was confirmed by the authors that the coaxial method is more effective 
than a uniaxial method for the encapsulation. Therefore, alginate hydrogel 
was used to encapsulate the polyphenols to protect and to increase the 
release of water-soluble phenolics like gallic acid in intestinal fluid [95]. 
Later, Chuysinuan et al. [44] encapsulated gallic acid in electro-spun poly
vinyl alcohol fiber-based hydrogels to study the thermal stability of the gallic 
acid. This nanofiber enhanced the thermal resistance of the gallic acid up to 
200°C, preserved the antioxidant activity and controlled the release of gallic 
acid. Ferulic acid was incorporated into gliadin fiber by electro-spraying 
process by Sharif et al. [153, 154]. The nanofiber successfully enhanced the 
photostability and solubility of ferulic acid. Another polyphenol, curcumin 
was encapsulated by electro-spraying, which found its application in various 
ways [135, 136]. 

In order to enhance the thermal stability and maintain the antioxidant 
potential of curcumin, Blanco-Padilla et al. [30] encapsulated it in an elec
trospun amaranth protein isolate and pullulan. The authors observed that the 
bioaccessibility was increased by 11.3 times than the free curcumin after 
encapsulation. Similarly, the solubility and bioavailability of the curcumin 
increased by 38.6 and 11 times, respectively, when encapsulated in gelatin 
nanofibers [68]. The polylactic acid-curcumin microfiber enhanced the 
release of curcumin, where the initial burst occurred at 12 h and release 
continued up to 200 h. It also proved to be a good antioxidant agent with 
biocompatibility and antibacterial agent towards Escherichia coli and 
Staphylococcus aureus [103]. 

The effect of surfactant on the electro-spun gelatin curcumin nanofibers 
was studied by Deng et al. [58]. The authors found that the addition of 
surfactants like Tween 80, anionic sodium dodecyl sulfonate decreased the 
antioxidant activity of curcumin; however, detergents such as cationic cetyl
trimethylammonium bromide did not affect the curcumin antioxidant activity 
as compared to the control. The EE of the olive leaf phenolics increased 
when the concentration of whey protein increased from 5 to 30% [158]. 
The particle size depended upon the concentration of olive leaf phenolics. 
The phenolics of broccoli showed better morphology and thermal stability 
when encapsulated in zein [134]. This nanocapsules also showed anti-tumor 
activity against galia tumor cells without affecting the normal cells. 
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6.7  COACERVATION 

The term coacervation means separation of phase due to the changes in the 
ionic strength, pH, solubility, temperature of the encapsulating media. In 
coacervation process two phases exists. The one which is colloids rich is 
called coacervated process and the other one having a smaller number of 
colloids called equilibrium phase [114]. This process is of two types: simple 
coacervation and complex coacervation. In simple coacervation, coacervates 
are formed due to the involvement of one polymer by the mechanism of 
dehydration where a coacervating agent like salt is added [19, 101]. 

However, in case of complex coacervation, the phase separation and 
formation of coacervates occurs due to the addition of two oppositely charged 
polymers [150, 184]. For food materials, generally two types of oppositely 
charged particles are used: protein and polysaccharides. In general, this 
involves three components like the core material, the wall material, and the 
solvent. The coacervation process involves [123]: 

•	 Aqueous solution is prepared of more than two polymers above the 
isoelectric point and gelling temperature; 

•	 The core material is added into the polymer solution followed by 
homogenization to get a stable emulsion; 

•	 The phase separation occurs by changing the temperature and pH; 
•	 The polymer matrix is hardened by increasing temperature or by 

adding a coacervating agent/cross-linker. 

Initiation of coacervation is done by lowering the temperature or by 
changing the pH or by adding a coacervation agent. In the beginning of the 
process, very small particles are formed, increasing the turbidity of the solu
tion. This is called micro-coacervation. This process continues to form larger 
particles by the aggregation of the small particles. Since the density of the 
larger particles is higher, therefore, they settle down in the solution, forming 
distinct two-phases. This is referred as macro-coacervation [170]. 

According Voorn-Overbeek theory (1957), the electrostatic interaction 
between the polymers is the driving force for coacervation [33]. Veis and 
Aranyi theory explained the process in a better way and stated that for low 
charge density polymers at low temperature, the process of coacervation 
increased significantly [33, 34]. The Veis and Aranyi theory modified by 
Tainaka reported that aggregate’s attractive force is responsible for phase 
separation and it is not only applicable to low charge density polymers [33, 
102]. The Tainaka theory is considered as the most effective theory but failed 
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to explain the complex coacervation process. The complex coacervation 
process was studied by Burgess and he showed the effect of ionic strength, 
pH, and polyionic concentration in the process [34]. 

The major factor that influences the coacervation process is the elec
trostatic energy reduction due to the interaction of oppositely charged ions 
[150]. Besides, pH of medium, ionic strength, temperature, concentration, 
charge density, polymer ratio and polymer molecular weight are the other 
factors that affect the coacervation process. Pressure plays an important role 
when SF is used [150, 174]. The size of the coacervates is regulated by the 
rate of stirring [94]. To induce the interaction, the charge should be high; 
however, it should not be too high to precipitate the coacervates [173]. The 
ionic strength of the solution is affected by the amount of coacervating agent 
like salt. The electrostatic force between the polymers was decreased by 
adding a small amount of salt and the dissociation of the coacervates occurs 
at a high concentration of salt [53, 146]. 

The pH of the medium affects the degree of ionization of the functional 
groups; thus, appropriate pH is required for the initiation of the complex coac
ervates [181]. Another factor that affects the coacervation process is mixing 
ratio of polymers in the solution. The ionic strength and pH are dependent on 
the mixing ratio of polymers [181]. Temperature is another factor that affects 
the coacervation process. At low temperature, the interaction of solvent-
solvent, solute-solvent, and solute-solute increases, thereby increasing the 
coacervation process [33, 157]. According to a study conducted by De Kruif 
et al. [53] the process of complex coacervation is independent of temperature 
and depends mainly on the entropy gain. Another study reported that the 
high polymer concentration prevents the free movement of coacervates by 
reducing the energy gain and affects negatively on coacervation process [33]. 

de Souza et al. [55] evaluated the effect of coating material (gelatin 
with gum Arabic, pectin, cashew gum, carboxymethylcellulose (CMC), 
and κ-carrageenan) on the cinnamon extract rich in proanthocyanin. They 
found that the coating materials successfully preserved the bioactivity of the 
cinnamon extract and masked the undesirable sensory characteristic. 

6.8  SPRAY DRYING 

Among many encapsulation technologies, spray drying is most used and 
oldest technology. The major advantage of this technique is low operational 
cost. Besides, it is a simple, fast, continuous flexible operation with better 
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encapsulation and release of the polyphenols [138]. Broadly, the different 
wall materials used are: lipid (like glycerides and stearic acid), proteins (like 
soy protein, casein, and gelatin), and carbohydrates (like gum Arabic, corn 
syrups, maltrodextrin, and starches) [147]. It is used to encapsulate many 
polyphenols like anthocyanins [82], phenolic acids, etc. 

For encapsulation, the homogenized mixture of core material and wall 
material is fed into the dryer and is atomized at the nozzle. The hot air aids in 
the evaporation of water when it comes in contact with the atomized mixture. 
The powders are then collected in the bottom [138]. The inlet and outlet 
temperatures are two important factors of spray drying and they should be 
maintained to get the desired product. At low inlet temperature, evaporation 
of water is not adequate in a short period and this gives low encapsulation 
yield (EY). Similarly, cracks are formed at the high inlet temperature [175]. 

At high outlet temperature, the protein denaturation might occur. Drying 
temperature and moisture content are the factors that are responsible for the 
morphological changes occurred during the spray drying [8]. The encapsu
lated powder dried by conventional spray drying, release the core material 
when added into the water. Therefore, hydrophobic materials like denatured 
protein and cross-linked biopolymers are added to delay the release of core 
compound in water [194]. 

Both water and oil-soluble material can be encapsulated in the spray 
drying process. It gives protection to the polyphenols from light, oxygen, 
and temperature. The shelf life of the powder is more in this case because 
of its low moisture content [138]. The cooling effect is produced due to 
rapid evaporation of water and thus, the final droplets are produced at a 
relatively low temperature than outlet drying gas temperature. Therefore, 
heat sensitive bioactive core material can also be encapsulated in spray 
drying technology [13]. 

The process of spray drying includes heating of drying gas, atomization 
of the feed mixture at the nozzle end, formation of the particles by drying 
of the atomized mixture and collection of the powdered particle [13]. In 
addition, some other factors to be considered during spray drying are: 

• Ability of the nozzle to produce smaller particle size; 
• A laminar and co-current drying gas flow; 
• Efficient collection of the encapsulated particles. 

Bernstein et al. [28] studied the effect of drying temperature (140 and 
160°C) and concentration of coating material on the characteristics of red 
cabbage using spray drying and found that there was no effect of increase in 
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temperature on the anthocyanin content of the encapsulated extract. More
over, the authors found that both gum Arabic and polydextrose (10 and 15%) 
equally retained the bioactive compound and formed a water-soluble powder. 
The thermal protection of polyphenols of olive pomace extract increased when 
encapsulated with maltodextrin (100 g/L) using spray drying. The powders 
were stable up to 70 days at 5°C. Consequently, when storage temperature 
increased to 25°C, only 21% degradation of core material occurred; however, 
66% loss occurred when exposed to UV light for 48 h [125]. 

Similarly, the process parameters for encapsulation of bitter melon 
(Momordica charantia L.) were optimized and highest yield (71.4 ± 1.4%) 
and high antioxidant activity (≥ 87.9 ± 2.6%) was obtained at 140°C inlet 
temperature and 80°C outlet temperature. These powders were stable at 
−20°C and 10°C when stored for 150 days [164]. 

Maltodextrin and gum Arabica are the most used coating material for 
encapsulation of polyphenols. Gum Arabica and modified starch capsule 
(1:1) enhanced the retention of anthocyanin from pomegranate. The 
encapsulated anthocyanin could be stored up to 3 months at 25°C [52]. 
However, Zingiber officinale Roscoe encapsulated with maltodextrin and 
gum Arabica (4:1) decreased the 6-gingerol quantity after encapsulation 
[156]. Moreover, the phenolics and anthocyanin retention of blackberry 
extract increased from 878.32 to 1300.83 mg/100 g and 2106.56 to 2429.22 
mg gallic acid equivalent/100 g, respectively, when encapsulated using gum 
Arabica and polydextrose [144]. Maltodextrin and gum Arabica have proved 
to be potential coating material for encapsulation of fruits like acerola, by 
preserving their phenolic compounds even at increased shelf-life [141]. 

Green tea has many health benefits such as higher total antioxidant, 
cancer prevention, and anti-irritant. Encapsulation with maltodextrin (40%) 
with a ratio of core to coating material of 1:2, significantly preserved the 
antioxidant activity, total phenolics content at optimum spray drying condi
tion [168]. Similarly, maltodextrin (15% w/v) also preserve the bioactivity 
of Asian pear juice, when encapsulated by spray drying at high inlet air 
temperature (170°C) [91]. 

Turkish oregano is a rich source of ursolic, rosmarinic acids and carvacrol. 
Baranauskaite et al. [23] found that maltodextrin and gum Arabica at a ratio 
of 8.74:1.26, inlet air temperature of 170°C and ratio of core to wall material 
of 3:1, preserved the Turkish oregano polyphenols significantly. In another 
study conducted by Seconlin et al. [151] showed encapsulation of green tea 
polyphenols in lipid-based soy lecithin cholesterol by spray drying. The 
effect of wall material composition and drying condition were studied to 
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form water-soluble, low density powder containing high amount of green tea 
polyphenol [151]. The stability and release of the anthocyanin rich extract 
of berries such as elderberry and blueberry were improved by encapsulating 
them with different wall materials like maltodextrin, hi-maize, modified 
starch, gum Arabic and sodium alginate by spray drying. Their release time 
ranged from 600 s to 1,140 s under simulated GI condition and storage period 
was from 230–240 days [48, 143]. 

Whey protein is another promising coating material for the encapsulation 
of bioactive compounds like curcumin. The 100% retention of curcumin 
was achieved when sprayed dried with whey protein [97]. The polyphenol 
retention of espresso spent coffee was improved by encapsulating with whey 
protein isolate in combination with maltodextrin, gum Arabica and inulin 
(1:1:1). The whey protein act as a better wall material for the maintenance 
of antioxidants [2]. Goëlo et al. [67] suggested that maltodextrin and inulin 
successfully improved the bioavailability and stability of curcumin in human 
body. 

Aloe vera mucilage is also a good wall material for the retention of the 
bioactivity of curcumin by preserving the total phenolic content (TPC) and 
delaying the release of polyphenols up to 65% at 24 h at 150°C inlet air 
temperature and atomization speed of 27,500 rpm [107]. Olive leaf extract 
(oleuropein) encapsulated with sodium alginate at a ratio 1:1.6 and inlet 
air temperature 135°C gave the highest bioaccessibility with 90% release 
of oleuropein in intestinal conditions [70]. Higher stability of antioxidant 
was seen during storage when curcumin was encapsulated with skim milk, 
showing skim milk was suitable for the encapsulation of curcumin [117]. 
The curcumin showed a good cytotoxicity activity against HepG2 cells 
and increased bioavailability when spray-dried with soy protein isolate by 
Chen et al. [41]. 

6.9  FREEZE DRYING 

Freeze-drying is a process for preservation of the thermolabile bioactive 
compounds by the process of sublimation [138]. This process can preserve 
the original properties of the materials like shape, size, texture, flavor, color, 
and bioactivity [37]. After encapsulation, freeze-drying is used to get a stable 
dry product as it preserves the bioactivity of heat sensitive core material and 
facilitates easy handling and storage of the final product. A freeze-drying 
process consists of basically three steps: freezing, primary drying and 
secondary drying [165]. 
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Freezing is the first step of freeze-drying, where the sample comes in 
contact with very low temperature where ice crystal starts to form due to the 
aggregation of the samples [165, 179]. Few parameters that affect the freezing 
process are eutectic temperature (Teu) and glass transition temperature (Tg). 
At eutectic point a crystalline mixture formed has same physical properties 
and at T g an amorphous material transforms into glass like structure. The 
Tg depends on moisture content. Therefore, Tg increases during drying as 
moisture is removed during the process [65, 108, 165]. The change in the 
structure occurs when the temperature of the process rises above the Teu and 
Tg [108]. Slow freezing leads to large ice crystal formation and small crystals 
are formed due to fast freezing [80]. 

The product is initially kept at a subfreezing temperature (below Teu and 
above Tg) for proper crystallization, this process is called annealing. This 
process leads to the growth of ice crystals and accelerates the primary drying 
[165]. In primary drying, at low temperature and pressure, sublimation of the 
ice crystal occurs from the top surface. The vapor is removed by diffusion 
phenomenon. Slow freezing reduces the primary freezing time. This is 
because the mass transfer is high in slow freezing due to the formation of 
the larger ice crystal [165]. Ice sublimation is also accelerated by the low 
pressure as pressure is the driving force for the water vapor removal [80]. The 
residual water is then removed during the secondary drying period, leading 
to the process of desorption [179]. The adsorption-desorption equilibrium 
of moisture is the most important phenomenon of the secondary drying 
process. Therefore, to get a good quality product both moisture content and 
temperature needs to be controlled [180]. 

To get the desirable final product, the process parameters should be 
maintained. The most important factors that affect the freeze-drying process 
are surfactant nature, solubility of the core material and the type of cryopro
tectant used [40]. Besides, the type of container used, and the thickness of 
the material also affects the freezing rate. Larger container and thinner mate
rial is desirable for proper sublimation of the water [60]. Cryoprotectants 
are the compounds that are used to protect the material from physical and 
chemical damage, caused due to the stress that occurred during freezing [1]. 
The cryoprotectant stabilizes the product by increasing the distance between 
the hydrocarbon chains. The most common cryoprotectants used are mainly 
sugars like sucrose, glucose, maltose, and mannitol [191]. 

The anthocyanins present are unstable form in saffron. Khazaei et al. [88] 
showed that the stability of anthocyanin present in saffron was increased 
when encapsulated in gum Arabic and maltodextrin (M7 and M20) and 
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there was no degradation of encapsulated anthocyanin up to 10th week of 
storage. In another study conducted by Jafari et al. [83] revealed that the total 
anthocyanin content and color remained the same during 10-week storage 
when core to wall material used was 1:5. They also studied the effect of 
different coating materials (cress seed gum, maltodextrin, and gum Arabic) 
on color parameters. The gum Arabic/maltodextrin mixture successfully 
retained the color parameters than cress-seed gum/maltodextrin mixture and 
only maltodextrin. 

Berries, especially blackberry and blueberry, has high nutritional value 
due to the presence of phenolic compounds like anthocyanins. Anthocyanins 
are sensitive to temperature, light, pH, and oxygen [130]. Wilkowska et al. 
[183] showed that the encapsulation of anthocyanin rich blueberry juice with 
HP-β-CD and β-CD followed by freeze-drying could retain 1.5 times more 
anthocyanin content and antioxidant activity as compared to spray dried 
anthocyanin loaded inclusion complex. Similarly, anthocyanin rich extract 
of blackberry by-product was encapsulated with maltodextrins of 10 and 20 
DE by freeze-drying, and it was found that the retention of anthocyanin, was 
higher in maltodextrin with 10 DE than 20 DE [185]. However, black carrot 
extract retained maximum anthocyanin and antioxidant activity when freeze 
dried with maltodextrin 20 DE [113]. 

The retention of polyphenol and flavonoids of spent coffee powder were 
62% and 73%, respectively, when freeze dried with maltodextrin. In this 
process, 73–86% of antioxidant activity was also preserved [22]. Encapsu
lation by freeze-drying preserved the TPC and total flavonoid content of 
lemon byproduct. The highest retention was obtained when encapsulated 
with maltodextrin-soybean protein than only maltodextrin and maltodextrin
carrageenan. Freeze drying also resulted in lower moisture content and 
water activity than spray drying [127]. The wastewater of Miang (fermented 
tea leaf) was able to successfully retain its phenolic compounds, such as, 
gallocatechin, epigallocatechin, catechin, epicatechin, gallocatechin gallate, 
gallic acid, and caffeine when it was freeze-dried with maltodextrin-gum 
Arabic (50:50% w/w) mixture. With the increase in weight ratio of Miang 
wastewater to maltodextrin-gum Arabic, the antioxidant activity was 
increased. This was due to the higher phenolic concentration gradient at 
increased solvent volume during the process [112]. 

Similarly, Ravichai et al. [137] confirmed that the highest retention was 
found at 10:1 ratio of Miang wastewater to maltodextrin-gum Arabic mixture. 
The freeze dried encapsulates of red pepper waste encapsulated with whey 
protein showed better physiological characteristics like moisture content, 
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flow property, color, and solubility. Moreover, after the application of encap
sulated red pepper waste in yogurt, there was 71.43% carotenoids retention 
and 123.73% increase in the polyphenol retention, thereby increasing the 
sensory and acceptability of red pepper waste bioactive encapsulate fortified 
yogurt [152]. The thermal property (Tg) of olive leaves extract encapsulated 
with maltodextrin, and trehalose increased with the increase in maltodextrin 
concentration, while, olive leaves extract had a plasticizing effect, thus, 
enhancing the functionality of the freeze-dried powder [71]. 

6.10  ANTI-SOLVENT METHOD 

Anti-solvent technique is also called de-solvation or solvent displacement 
liquid anti-solvent method. This method was first reported by Bleich and 
co-workers [31]. Non-solvent is added in the anti-solvent method to induce 
polymer precipitation. Consequently, supersaturation is caused by changing 
the solubility of the polymers, which act as a driving force for the forma
tion of microparticles. The supersaturation is followed by nucleation and 
coagulation [85]. A wide range of materials like bioactive compounds, 
proteins, polymers, and drugs are used in an anti-solvent method to prepare 
microparticles [169]. Selection of appropriate solvent and anti-solvent is 
essential as they should be miscible within a range in which they are used, 
and the polymer should be insoluble in anti-solvent [85, 86]. The imbalance 
between anti-solvent, solvent, and solute results in the formation of particles. 
Therefore, the particles formation depends on the selection of anti-solvent, 
solvent and and their mixing ratio [6]. 

The supercritical anti-solvent (SAS) process has been used to formulate 
microparticles and nanoparticles for encapsulation of the active compounds. 
The most common SAS, i.e., CO2 must be soluble in solvent and insoluble 
with active component. However, encapsulation of lipid-soluble or CO2 
soluble material is not suitable in this method. In the SAS process, the active 
material mixed with organic solvent is sprayed into CO2 chamber through 
a nozzle and diffusion of solvent takes place from solution to CO2 phase. 
The solvent is evaporated from the CO2 phase and the supersaturated solute 
precipitate as microparticles. The CO2 is finally removed by depressurization 
process. The bioavailability of polyphenols increased due to the growth of 
surface area during supercritical process [6]. This method is suitable for the 
production of encapsulated microparticles and is a better regulated system 
for controlling pressure, temperature of CO2 and flow rate, etc. [86]. 
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SAS process was used to encapsulate virgin coconut oil that showed better 
EE. The change in pressure from 12 MPa to 16 MPa positively affected the 
EE and negatively affected the surface oil content [77]. A winery byproduct, 
grape pomace, contains a high amount of antioxidants, which can be used in 
any value-added product. In SAS, a good precipitation efficiency of grape 
pomace (94.4 ± 0.6%) obtained showed higher stability in comparison 
to the crude extract [110]. Olive pomace is another byproduct containing 
polyphenols. 

Aliakbarian et al. [10] studied the effect of the ratio of maltodextrin 
content to total solid content of the extract and drying temperature on TPC 
and antioxidant properties of the powdered product. The authors found that 
SAS encapsulated phenolic compounds efficiently, thus, these encapsulated 
powders can be used as a functional component for the production of new 
food. Similarly, the stability of curcumin loaded liposome nanoparticles 
fabricated by the anti-solvent method was higher when subjected to thermal 
treatment, UV irradiation and high ionic strength [51]. 

Machado et al. [100] compared three encapsulation technique, spray 
drying, freeze-drying and SAS. For SAS, CO2 was used as anti-solvent and 
ethanol as solvent to encapsulate blackberry extract in polyvinylpyrrolidone. 
They found that SAS achieved higher anthocyanin yield and antioxidant 
capacity than spray drying and freeze-drying method as supercritical CO2 did 
not have any affinity towards the anthocyanin. The stability of antioxidants 
of mango leaves against light and oxygen increased after encapsulation 
with polyvinylpyrrolidone by SAS. The release of the mangiferin, quercetin 
3-D-galactoside and penta-O-galloyl glucose was also appropriately 
controlled by the coating material [74]. 

Quercetin loaded β-lactoglobulin nanoparticles showed a controlled 
release under simulated gastric fluid at pH 2 and in simulated intestinal fluid. 
This was attributed to the fact that quercetin-loaded β-lactoglobulin nanopar
ticles acted as a resistance to the pepsin, thereby, increasing the release in 
gastro-intestinal condition [39]. The SAS preserved the antioxidant activity 
of the polyphenol extract of Yacon leaf when encapsulated with maize starch 
and the study showed no degradation of the extract during encapsulation [46]. 

6.11  SUMMARY 

The core and wall material characteristics and the encapsulation technique 
influence encapsulation properties, such as active compound retention, anti
oxidant activity, and stability. The process parameters related to the technique 
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applied and physicochemical characterization of the encapsulated material 
must be optimized to ensure better core retention. The study of in vitro diges
tion of the encapsulated material is an important aspect for formulation of 
any encapsulated material. Each method provides unique characteristics to 
the capsules. Hence, the choice of appropriate technique is one of the factors 
to influence the property of the end product. 
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CHAPTER 7 

MICROENCAPSULATION OF NATURAL 
PIGMENTS 

R. C. RANVEER, BHAGWAN K. SAKHALE, and U. S. ANNAPURE 

ABSTRACT 

The plants parts (flowers, fruits, and leaves), animals, and microorganisms 
appear in different colors due to the presence of different pigments. These 
colors are mainly occurred owing to the presence of different coloring 
compounds such as chlorophylls, carotenoids, anthocyanins, etc. The natural 
pigments are used as a colorant in food, pharma, and textile industry. Many 
of these pigments possess antimicrobial and antioxidant properties. These 
colorants have been also accounted for many pharmacological properties as 
used for curing of cancer and cardiovascular diseases (CVDs). These pigments 
are vulnerable to degrade in the presence of high temperature, sunlight, and 
oxygen, which affect the utilization of these pigments in processed product. 
The microencapsulation is the technique where bioactive constituents are 
enclosed in the carrier material to extend its stability. The various techniques 
like freeze drying, spray drying, extrusion, emulsification, etc., may be used 
for microencapsulation of pigments. The encapsulation gives better stability 
of active components against sunlight, oxidation, and temperature. 

7.1  INTRODUCTION 

Natural pigments found everywhere in life. It appears in leaves, flowers, 
fruits, and vegetables, also in the animal skin, blood, eyes, and other tissues, 
even it found in microorganisms such as fungi and bacteria. These pigments 
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not only add to the beauty of the material but also improve the esthetic value 
of it. The pigments have important functions, such as, oxygen carrier, photo
synthesis, and protection. 

Pigments are substances which absorb illumination from the visible 
region wavelength [15]. The color is appeared to eyes, because non-absorbed 
light is reflected, and the impression of these is arrested by the eyes. The 
natural pigments are basically divided into four groups, such as: chloro
phylls, carotenoids, anthocyanins, and betalains [15, 23]. Chlorophylls are 
represented by green color, carotenoids are represented by yellow, orange, 
and red color, anthocyanins are accountable for orange, reddish, pinkish, 
purple, and bluish, and betalains are represented by the red color. 

Many researchers have reported pharmacological activities, such as: 
antioxidants, anticancer, antimicrobial, etc. [22]. The stability of these 
pigments is affected in the presence of sunlight, oxygen, and temperature. 
These pigments convert into isomers due to sunlight, oxygen, and higher 
temperature, which affect the pharmacological and nutraceutical activities. 
Microencapsulation is one of the ways to stabilize the pigments. Broadly in 
food products, encapsulation comprises coating of the tiny bioactive/food 
components as well as food ingredient with micro coating/capsules. These 
capsules have the ability to prevent oxidation, and protect from sunrays and 
high temperature. The microencapsulation process has various benefits, 
such as [18]: (i) microencapsulation can protect bioactive from degradation 
by external environment; (ii) vaporization of volatile components can be 
prevented; (iii) the physical state can be modified for easier handling; (iv) 
the product can be solely released over time at specific point; (v) the active 
material can be diluted when required in minute quantity and can achieve 
uniform dispersion; and (vi) two different materials can be separated within 
the mixture by means of encapsulation. The present chapter highlights the 
encapsulation of different plant pigments to enhance their stability. 

7.2 NATURAL PIGMENTS (Table 7.1) 

7.2.1  CHLOROPHYLLS 

Chlorophyll is responsible for the typical green color of plants. It is oil soluble 
pigments. Five different types of chlorophylls appear in plants and animal 
those are capable of photosynthesis, whereas it is found majorly in the form 
of Chlorophyll a, which consist of –CH3 and Chlorophyll b which consist of 
–CHO in plant (Figure 7.1). Chlorophyll a represented by bluish-green while 
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Chlorophyll b represented by yellowish-green color [65]. The major function 
of chlorophyll in photosynthesis. Also, various pharmaceutical studies have 
proven that it can be useful for skin conditions, odorants for the body and 
against some types of cancer. 

TABLE 7.1  Some of Important Natural Pigments and Its Sources 

Pigment 
Anthocyanin 

Source 
Purple carrot 

Image 

Red cabbage 

Grapes 

Black current 

Red radish 

Elderberry 

Betalain Beetroot 
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TABLE 7.1  (Continued) 

Pigment Source 
Swiss chard 

Image 

Amaranthus 

Cactus fruits 

Carotenoids Mango 

Pumpkin 

Palm fruit 

Cassava 

Chlorophylls Green peas 

Spinach 



 

Pigment Source Image 
Cucumber 

Celery 
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TABLE 7.1 (Continued) 

FIGURE 7.1  Structure of chlorophyll. 

Chlorophylls degradation can occur in the presence of high temperature, 
sunlight, oxygen, acids, and enzymes [49]. Mg-dechelatase appears in the 
plants and algae, and acids responsible for replacement of central magne
sium atom with hydrogen ions of chlorophylls leading to transformation into 
pheophytin, which is responsible for formation of olive-brown color [16]. 
Oxidative enzymes and chlorophyllase are also responsible for degradation 
in chlorophylls [44]. Higher temperature is responsible for the formation of 
olive-green color due to degradation of chlorophylls [40]. 



7.2.2  CAROTENOIDS 

Carotenoids are the derivatives of lycopene obtained after reactions such 
as hydrogenation and dehydrogenation, cyclization, oxidation, migration of 
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double bond, methylation, and chain shortening [20]. Carotenoids are classi
fied as primary and secondary. 

•	 Primary carotenoids include β-carotene, violaxanthin, and neoxan
thin, and those are essential for plant photosynthesis; and 

•	 Secondary carotenoids consist of α-carotene, β-cryptoxanthin, zeaxan
thin, antheraxanthin, capsanthin, capsorubin, and gives attractive 
colors to fruits and vegetables. These appear in higher amounts in flora 
and microorganisms, such as: bacteria, algae, and fungi. It possesses 
bright yellow, orange, and red color [20, 22]. 

Carotenoid possesses important functions, such as: (i) it works as acces
sory pigment in photosynthesis; (ii) it gives protection against oxidative 
degradation; (iii) antheraxanthin and zeaxanthin protect plants from damage 
occurred due to high intensity of light; (iv) it serves as antioxidant; and (v) 
these pigments possess pharmacological properties including anticancer and 
antimicrobial. 

Carotenoids degradation is caused due to oxidation and isomerization 
reaction leading to reduction in redness and yellowness [52]. Oxidation 
occurs in the presence of oxygen, the rate of oxidation increases in the 
presence of sunlight, high temperature, peroxide, metal ions and enzymes 
[8]. In food processing, trans-isomers convert into the cis-isomers by the 
isomerization reaction [34]. The isomerization reaction is also facilitated by 
high temperature, sunlight, and acidic condition of substance [52]. 

7.2.3  ANTHOCYANINS 

Anthocyanins are accountable for striking colors of fruits, vegetables, and 
flowers [21]. The anthocyanin produces infinite colors by combining with 
glucosides/acyl groups and by their reactions with other molecules and/or 
media environment [10]. The anthocyanin structure is presented in Figure 7.2. 

The anthocyanins are water-soluble colors and found in higher plants, 
whereas these are not found in lower plants. It can be found in leaves of many 
ornamental plants as a complex mixture of anthocyanins. In apple, cherry, 
fig, and peach, a single anthocyanin (i.e., Cyanidin) is present; in eggplants 
and pomegranate, two major anthocyanins are present, and in grapes several 
anthocyanins can be accumulated. 

The anthocyanins give attractive colors to the plants thus helping them 
in pollination, seed dispersion and anti-feedant. It can also be used to find 
out adulterations in pigmented food. Anthocyanins exhibit antibacterial, 
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antiviral, and antifungal properties. It possesses strong antioxidant activities. 
It lowers down the risk of coronary heart diseases and cancer [9]. 

FIGURE 7.2  Basic structure of anthocyanins. 

The stability of anthocyanins was hampered due to its structural features 
and due to hydrogen ion concentration (pH), heat, sunlight, isomers, 
enzymes, O2 and sugars [59]. Reversible anthocyanin transformation can be 
due to alteration in pH, which may be responsible for change in the color. 
Most of the pigments are susceptible to the high temperature. Anthocyanin 
degradation starts at around 100°C [27]. 

7.2.4  BETALAINS 

Betalains are the ammonium derivatives of betalamic acid [67]. It is catego
rized into betaxanthins, which possesses yellow tint, and betacyanins with 
reddish-purple tint. Structure of betacyanin shows change in acyl group and 
sugars whereas the betaxanthins illustrate bonding with amines and amino 
acids in their structures. Betalains gives red, yellow, pink, and orange shades 
to the higher plants (Figure 7.3). 

The betalains have been considered for taxonomical identification of 
plants and it was known that 11 families of order Caryophyllales showed 
the presence of betalains [61]. Even though it is alkaloids in nature, yet it 
is non-toxic to human beings so that it is considered as alternative to the 
synthetic color. It shows antimicrobial and antiviral activities. 
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FIGURE 7.3  General structure of the Betalain. 

Betalains are highly unstable to high temperature, sunlight, alkalinity, 
oxygen, and ions of metals, which confine their food applications [33]. High 
temperature is considered as a major factor responsible for degradation of 
betalains [56]. Oxidation is induced in the presence of heat resulting in 
decarboxylation, and ultimately changes in color from orange to yellow [19]. 
These pigments are stable pigment at pH from 3 to 7 [66]. In the presence of 
metal ions, the oxidation process can be accelerated [66]. 

The natural pigments are used as colorants in food, pharmaceuticals, and 
textile industries. The main constraint for utilization of the natural pigment is 
their sensitivity against heat, light, and oxygen (Table 7.2). There are various 
methods that can be employed to overcome this problem. The microencapsu
lation can be used to improve the stability of natural pigment. 

7.3  MICROENCAPSULATION 

It is a process of encapsulation of solids, liquids, or gaseous active ingredients 
in minute, enacted microcapsules which can discharge active ingredients at 
controlled rates under definite circumstances [13, 37]. 

Properties of capsules may alter to costume definite active material for 
applications including composition, release mechanism, size of the particles, 



 

Pigment Sensitivity 
High Temperature Sunlight O2 Change in pH 

Anthocyanins High to moderate Low Low Moderate 
Betalains Moderate to low Low Low High 
Carotenoids Moderate High High Low 
Chlorophylls Moderate Low Low High 
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physical structure, and price. The structural design of capsules is normally  
classified into several random and overlapping classifications (Figure 7.4) and  
matrix encapsulation is classification among them. The simplest arrangement  
includes wall material of uniform thickness consist of core material in the center. 

TABLE 7.2  Sensitivity of Natural Pigments 

FIGURE 7.4  Schematic diagrams of types of capsules. 

7.3.1  MICROENCAPSULATION TECHNIQUES 

The microencapsulation techniques are classified into physical and chemical 
methods [41, 71]. In case physical method, polymers are used so that there 
will not be any chemical reaction and structure will be fabricated. While 
in case of chemical method, chemical reaction takes place for formation of 
microcapsule. The commonly used microencapsulation techniques for the 
encapsulation of pigments are shown in Table 7.3. 

7.3.2  EMULSION POLYMERIZATION 

In this method, the monomer (for example, alkyl acrylate) is mixed in active 
material (core material) drop by drop with continuous stirring to form stable 
emulsion [71]. In the process of polymerization, precipitation of polymer 
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occurred in an aqueous medium to develop primary nuclei structure, further this 
nuclei structure develops steadily to entrap bioactive material to form capsules. 
Lipophilic materials are considered as appropriate material for this method. 

TABLE 7.3 Microencapsulation Techniques for the Pigments 

Microencapsulation Technique Name of Pigment References 
Emulsion method Anthocyanin [6] 
Freeze-drying β-carotene, saffron [14, 43] 
Microwave drying Anthocyanin [62] 
Solvent evaporation Astaxanthin [24] 
Spray drying Anthocyanin, astaxanthin-oleoresin, [3, 11, 28, 58, 

betacyanin, betalain, bixin, chlorophyll, 63, 64] 
β-carotene, curcumin 

7.3.3  INTERFACIAL POLY-CONDENSATION 

The capsules are prepared by mixing of two-phase system under controlled 
condition to develop minute droplet of dispersed phase in continuous phase 
[29]. The core/bioactive material should disperse into the droplets. In the 
microencapsulation by poly-condensation process, coalescence of droplets/ 
particle coagulation is prevented by addition of a suitable stabilizer. 

7.3.4 SUSPENSION CROSS-LINKING 

The capsules of protein and polysaccharide may be developed by the suspen
sion cross-linking method [31]. In this method, minute droplets are developed 
by dispersion of aqueous polymer which contain bioactive/core material. The 
hardening of droplets is carried out by cross-linking which directly convert 
into capsules. Cross-linking is performed using either by higher temperature 
(at >500°C) or by using cross-linking agents. 

7.3.5  SOLVENT EVAPORATION/SOLVENT EXTRACTION 

The process for capsule development by evaporation/solvent extraction is 
similar to the cross-linking method [74] except in the case of hydrophobic 
polymers. These polymers are suspended in water-immiscible organic 
solvent of volatile nature along with core/bioactive material. The resulted 
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mixture is then added drop by drop in an aqueous stabilizer solution for 
formation of micro droplets of capsules. The hardening of these capsules is 
carried out by removing solvent by evaporation or solvent extraction. 

7.3.6  COACERVATION/PHASE SEPARATION 

Coacervation is broadly applicable for the formation of capsules of gelatin, 
cellulose, and its derivatives, and synthetic polymers [48]. The coacervation 
process is classified into simple and complex coacervation method. In the case 
of simple coacervation method, only one polymer is used, while in the complex 
coacervation method, two opposite charged polymers soluble in water are used. 
In encapsulation by coacervation method is performed by dissolving polymer 
in water, which also consists of the core/bioactive components. 

Suitable coacervating agent and stabilizer may be used for formation of 
partially dissolved polymers and maintain individuality, respectively. Then 
hardening of this mixture is performed by cooling at about 5–50°C followed 
by adding cross-linking agent. 

7.3.7  SPRAY DRYING 

It is a low-cost technique and is commercially used in microencapsulation 
of food ingredients [63]. It is most frequently used for microencapsulation 
of food ingredients since it provides protection against oxidation and water 
vapors. In this method, emulsion of bioactive component in a concentrated 
wall material is prepared. This mixture is sprayed in the form of fine droplets 
inside hot chamber. The water portion gets evaporated, resulting in micro
capsules of bioactive materials. Spray drying was used for encapsulation of 
lycopene inside gelatin capsules [53]. 

7.3.8  FLUIDIZED BED COATING 

It is utilized for microencapsulation of the solid or liquid material which can 
be absorbed into porous solid material [36]. The fluidized bed coating is more 
popular in the pharmaceutical industry. Solid constitutes of bioactive materials 
are dissolved in a jet of air and further coated by spray of liquid encapsulating 
materials. Afterwards cooling of this material is carried out. In this method, 
coating is performed till capsules of required thickness are obtained. 
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7.3.9  LYOPHILIZATION 

The microencapsulation of bioactive materials sensitive to high temperature 
is performed by the lyophilization or freeze-drying. Here, the process is 
performed in two steps: (i) the emulsion of carrier material and bioactive 
material is prepared and subjected to the freezing at – 28°C; and (ii) the 
freeze-drying is carried out which works on the sublimation principle. It is a 
time-consuming method and takes around 20 h. This technique is generally 
preferred for the encapsulation of aromatic compounds [38]. The β-carotene 
encapsulation is carried out by freeze-drying using hydrolyzed starch as a 
carrier material [14]. 

7.3.10  EXTRUSION 

Extrusion is generally followed for encapsulation of flavoring components; 
comparatively low temperature is used for encapsulation. The process is 
same as that of extrusion cooking of cereal-based snacks. In this process, the 
core/bioactive material is enforced in a liquid mass of carbohydrate through 
the series of dies with higher pressure (more than 100 psi) [55]. When coating 
material comes into contact with liquid become hard and form capsulation 
matrix over core material. 

7.3.11  CENTRIFUGAL SUSPENSION SEPARATION 

In this encapsulation process, the core and wall material are mixed together 
and subjected to centrifugation. After centrifugation, the core material is 
coated and excess liquid is separated. Afterward, these capsules are dried/ 
chilled. This process is very fast and coating can be performed within a 
few minutes. It is a continuous, high-speed method and most suitable for 
encapsulation of food ingredients. 

7.3.12  CO-CRYSTALLIZATION 

The sucrose syrup is converted in supersaturated stage by concentration 
and its temperature is maintained high enough to avoid crystallization. 
Known quantity of core material is added into the concentrated syrup and 
agitated vigorously to afford nucleation for sucrose-core material mixture to 



 

Carrier Material/Wall Material Pigment References 
Chitosan, gum Arabic, whey protein, maltodextrin, and inulin Astaxanthin [11, 24] 
Glucose, maltodextrin, native starch, modified starch, gum Betacyanin [2, 12, 50] 
Arabic, maltodextrin 
Gum Arabic Bixin [5] 
Maltodextrin Betalain [28] 
Maltodextrin, octenyl succinic anhydride (OSA)-modified starch Chlorophyll [51] 
Modified starch, gelatin, sucrose, gum Arabic, soy protein and Lycopene [53, 58, 63] 
modified tapioca starch 
Native tapioca starch, maltodextrin, native, and hydrolyzed β-carotene [14, 39, 42] 
starches and furcellaran 
Polyvinylpyrrolidone, gum Arabic and lecithin Curcumin [45, 70] 
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crystallize. When the transformation temperature has reached, crystallization 
starts with elimination of a considerable amount of heat. Nonstop starring 
is performed to endorse and extend crystallization until agglomerates are 
discharged from the vessel. Then these encapsulates are dried to a desired 
moisture content. 

7.4  CARRIER/WALL MATERIALS FOR ENCAPSULATION 

Generally, polymers are used as carrier materials. The bioactive components 
are normally referred to as internal phase or core material. The microen
capsulation material is considered as external phase, the shell, coating, or 
membrane [1]. The polymers of polysaccharides (such as: cellulose and 
its derivatives,  chitin, and chitosan, starches, agar, alginate, carrageenan, 
gums, and pectin), proteins (such as: gelatin, zein, gluten, soy protein and 
whey protein) and lipids (such as: waxes and paraffin, aceto-glycerides, and 
shellac resins) are generally used as carrier materials in encapsulations [34] 
as shown in Table 7.4. 

TABLE 7.4  Carrier Materials for Microencapsulation of Natural Pigments 



7.4.1  CARBOHYDRATES BASED CARRIER MATERIALS 

Carbohydrates with higher molecular weight are generally utilized for 
encapsulation of pigments. Starches and its derivates are commonly used 
encapsulation of sensitive bioactive constituents [7]. The carbohydrates have 
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the ability to produce gels and glassy matrices for the encapsulation [32]. 
They have good water solubility, low viscous in nature and contain high 
solids. Polysaccharides are hygroscopic in nature and nearly colorless and 
tasteless [75]. Microencapsulation is carried out using maltodextrin as carrier 
material protect bioactive components from oxidation and also improve its 
stability [57]. Starch obtained from tapioca is utilized for the production of 
powders of natural pigments [73]. Tapioca starch modified with acid shown 
improvement in encapsulation properties than native starch in encapsulation 
of carotenoid pigments [47]. Carbohydrate obtained from sea buckthorn used 
for carotenoids encapsulation, showed 95% encapsulation efficiency (EE) 
[69]. Besides this, polysaccharides are very hydrophilic in nature resulting 
in low barrier properties against water and gas. Even though, polysaccharide 
encapsulation did not show good barrier properties against water, yet these 
can act as sacrificing agents to lower down moisture loss [4]. 

7.4.2  PROTEIN-BASED CARRIER MATERIALS 

Proteins are made of chains of amino acids. Protein possesses very good 
binding and functional properties, and these serve good carrier material 
for the encapsulation of colorants. Capsules prepared from the proteins are 
effortlessly rehydrated and soluble in water resulting in the release of core 
immediately. Gelatin and whey protein are usually utilized for microen
capsulation of natural pigments by spray drying. Whey protein along with 
alginate was used to encapsulate paprika to alter the release mechanism [60]. 
EE can be enhanced by the replacement of whey protein with lactose. In their 
native states, proteins generally exist as either fibrous proteins, which are 
water-insoluble and serve as the main structural materials of animal tissues, 
or globular proteins, which are soluble in water or aqueous solutions of acids, 
bases or salts and function widely in living systems. Fibrous proteins are 
fully extended and associated closely with each other in parallel structures. 

7.4.3  LIPID-BASED CARRIER MATERIALS 

Emulsion formulation can be prepared with lipids, which can develop a 
matrix surrounding to the bioactive components. Stability of encapsulated 
bioactive components is affected by the glass transition temperature of poly
mers. Lower water vapor transmission and gas transmission rate in matrix 
of lipids can increase the stability of core materials. The presence of high 
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temperature lactoglobulin chitosan can convert into hydrogels, which are 
used as carrier material for microencapsulation of functional foods [25]. 
Generally, water vapor permeability decreases when the concentration of 
hydrophobicity phase increases. Lipid based films are often supported on a 
polymer structure matrix, usually a polysaccharide, to provide mechanical 
strength. 

7.5  MICROENCAPSULATION OF NATURAL COLORANTS 

Several techniques and carrier materials are being used for the encapsulation 
of natural pigments. Microencapsulation takes care of the stability of bioac
tive components and their handlings. As per the commercial application, the 
encapsulation technique and wall materials are selected. 

7.5.1  MICROENCAPSULATION OF CAROTENOIDS 

The microencapsulation of β-carotene was carried out using native tapioca 
starch, maltodextrin, and acid modified starch as a wall material by the 
spray drying technique. The result showed that when acid modified tapioca 
starch is used for encapsulation of β-carotene, the retention was better than 
other wall materials [42]. However, when freeze-drying technique used for 
microencapsulation then maltodextrin (12 dextrose equivalent (DE)) showed 
higher stability than native starch [14]. 

The carotene derived from sea buckthorn (Hippophaë rhamnoides L.) 
was encapsulated using furcellaran and reported 97% EE [39]. Modified 
starches can be used for encapsulation of lycopene. The results reported that 
EE decreases with increase in the lycopene content. Also, it was reported 
that the lycopene stability was more at 10°C than 25°C during storage [58]. 
The gelatin–sucrose combination was used as wall material for the microen
capsulation of lycopene by spray drying [63]. The results suggested that the 
gelatin/sucrose ratio (3/7), core to wall material ratio 1/4, inlet temperature 
190°C and homogenization pressure 40 MPa were optimal conditions for the 
encapsulation of lycopene. 

Solvent evaporation technique is used for encapsulation of astaxanthin 
using chitosan as carrier material. Microencapsulated astaxanthin did not 
report any degradation and isomerization during storage of 8 weeks at 
25, 35 and 45°C temperature [24]. Higher temperature and sunlight may 
exhilarate isomerization in the carotenoids [68]. Soy protein isolate and 
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gum Arabic are used for encapsulation of paprika oleoresin which consists 
of paprika yellow and red fractions [46]. Various encapsulants (i.e., gum 
Arabic, whey protein, inulin, and maltodextrin) were used for encapsulation 
of astaxanthin and reported higher encapsulation yield (EY) (61.2–70.1%) 
when whey protein and gum Arabic were used in combination [11]. Higher 
stability was recorded in bixin microencapsulated with gum Arabic than 
maltodextrin [5]. 

7.5.2  MICROENCAPSULATION OF ANTHOCYANINS 

Anthocyanin obtained from black carrot was encapsulated using maltodex
trins having different DE (i.e., 10, 20, 23, 28 and 31) by spray drying. The 
highest yield of anthocyanin was recorded when 20 and 23 DE maltodextrin 
was used as carrier material for microencapsulation than others [17]. Contrary, 
Tonon et al. [72] reported that maltodextrin with 10 DE gave better retention 
and higher antioxidant activity than other carrier material using spray drying. 
Various encapsulants have been reported for encapsulation of anthocyanins 
for uniform-sized particles of microcapsules when maltodextrin and gum 
Arabic are used as carrier agents [64]. When the inlet temperature was 
increased from 140 to 160°C, then more loss of anthocyanins was recorded 
in the capsules. The half-life of encapsulated anthocyanin was increased by 
3 times when it is stored at 4°C instead of 25°C. 

7.5.3  MICROENCAPSULATION OF CHLOROPHYLLS 

There is not enough literature available on encapsulation of chlorophyll. 
Gum Arabic, maltodextrin, and OSA-modified starch was used as carrier 
agent for microencapsulation of chlorophylls. When OSA-modified starch 
combination was used as a carrier agent, then highest greenness value and 
total chlorophyll was recorded with highest antioxidant activity. Also, this 
combination also recorded longer half-life of microencapsulated chloro
phyll [51]. Different blends of gum Arabic and maltodextrin were used for 
encapsulation of chlorophylls by the spray drying method. An increasing 
amount of maltodextrin in wall material is associated with lower moisture 
content (0.56%), higher EE (77.19%), and chlorophyll retentions [30]. 
Chlorophyll becomes unstable when exposed to oxygen, high temperature, 
or light environments. Its stability enhanced by microencapsulation by 
polymer encapsulation. Polycaprolactone (PCL) is used as a carrier agent for 
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microencapsulation of chlorophyll, and the particles size of the composites 
was controlled through droplet microfluidics [26]. 

7.5.4  MICROENCAPSULATION OF BETALAINS 

Betacyanins and Betaxanthins are two major types of the betalains. The heat, 
sunlight, water activity (aw), enzymes, oxygen, and metals may affect the 
stability of betalains [23]. The encapsulated betalains were stored at different 
water activity levels and the highest stability was observed when the aw was 
<0.521 [50]. Low crystallized maltodextrin was used as encapsulant for 
microencapsulation of betalains obtained from beetroots by spray drying 
method [28]. The higher loss of betacyanin was occurred with higher inlet 
temperature [12]. 

7.6  SUMMARY 

The fruits, leaves, flowers, etc., consist of different pigments, such as: 
chlorophyll, carotenoids, and anthocyanins. These pigments show different 
pharmaceutical activities and health benefits. The stability of these pigments 
against temperature, light, and oxygen is very low. The microencapsulation 
can improve the stability of the pigments during storage. Various encapsu
lating materials and methods are employed for the encapsulation of natural 
pigments. However, the maltodextrin as encapsulating material and spray 
drying methods is generally applied for the encapsulation of natural pigments. 
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CHAPTER 8 

ROLE OF PHYTOCHEMICALS IN 
HUMAN HEALTH 

BHAGWAN K. SAKHALE, NAMRATA A. GIRI, and B. B. BORSE 

ABSTRACT 

In the wake of awareness of disease prevention, foods that provide potential 
health benefits have become a new opportunity as well as a challenge for the 
food industry. “Let food be thy medicine and medicine be thy food,” well 
phrased by Hippocrates, has gained more attention by the food scientists and 
the consumers in these days. Hence, the term functional food represents the 
connection between the importance of health and nutrition, which not only 
promotes health but also reduces the risk of diseases. Based on clinical trials, 
data showed that the consumption of plant-based diet having phytochemi
cals and phytonutrients helps in reduction of the risk of chronic diseases. 
Nowadays, the food industry is exploring the use of these phytochemicals 
in functional foods for the enhancement of human health. The consumers 
are more conscious about their health and demanding the specialized 
foods (not as the source of calories but) for the excellent delivery of some 
nutraceuticals and bioactive compounds. In general, phytochemicals in the 
development of new food products have a role to provide benefits beyond 
traditional caloric nutrition along with health security to the consumers. The 
major food commodities such as fruits, vegetables, and tuber crops possess 
pharmacologically active principles and important medicinal properties. 
Over the past few decades, there has been observed significant revival of 
interest among the people on various natural products as powerful antioxi
dants, bioactive compounds and natural drugs, therefore current research on 
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natural products remains the main means of discovering potential principle 
bioactive health compounds in the existing unexplored crop species. The 
nutritionally sound and nutraceuticals enriched foods are superimposing 
the existing trade to underline their demand in national and international 
markets (the online marketing has made available flurry of nutraceutical 
and functional foods). 

8.1  INTRODUCTION 

Phytochemical is the word derived from Greek ‘phyto’ means ‘plant’ and 
consists of two parts, ‘phyto’ and ‘chemical,’ which means chemicals of plant 
origin. The chemicals found in plant having potential to prevent diseases and 
used as therapeutics for human being. It may be the part of plant or secreted 
from plant which is considered as good for human health in order to prevent 
the occurrence of chronic disease. 

Non-nutritive compounds associated with defense are plant-based 
bioactive compounds or ‘phytochemicals.’ They have been used against 
chronic degenerative disorders in alternative medicine and have been used 
in traditional remedies programs because patients are more interested in 
treating any illness using natural sources rather than allopathic medications 
[79]. Now a days the application of phytochemicals expanded particularly in 
nutraceuticals and functional foods [23]. 

The change in life style and faulty food habits leads to different life 
style disease such as obesity, cancer, diabetics, etc. Consumers prefer more 
healthy diet alternative which provide health benefits along with nutrition. 
The phytochemicals naturally present in plants could be acting to fulfill nutri
tional requirements along with health benefiting components. The increasing 
variety of cases of cardiovascular diseases, cancers, polygenic disorder, and 
lots of alternative chronic diseases, are pertained to below consumption of 
the fruits and vegetables in diet that conjointly contain bioactive compounds 
called plant chemicals or phytochemicals. Numerous epidemiological 
studies have shown that phytochemical-rich diets not only protect against 
chronic diseases [84], but also help to avoid oxidative damage to cellular 
systems [49]. 

This chapter highlights the potential of phytochemicals in human health, 
various sources of phytochemicals, consumers’ acceptance, challenges 
associated, and use of phytochemicals in the development of functional 
foods. 



 

 
 

 

Phytochemical Class Major Phytochemicals 
Alkaloids and nitrogen-containing Quinolone, Pepperdine, pyrrolidine, 
compounds 
Organosulfur compounds Indoles, glucosinolates, isothiocyanates 
Phenolics Lignans, phenolic acids, tannins, flavonoids 
Terpenoids Limonoids, carotenoids, saponins 
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8.2  CLASSIFICATION OF PHYTOCHEMICALS 

Till date, different types of phytochemicals (Table 8.1) have been identi
fied and extracted by researchers. These are classified based on various 
biological activity, physical characteristics, and chemical characteristics 
[26, 67, 79, 80]. 

TABLE 8.1 Classification of Major Phytochemicals 

8.3 SOURCES OF PHYTOCHEMICALS 

8.3.1 FRUITS AND VEGETABLES 

Fruits and vegetables are the store house of vital vitamins, minerals along 
with beneficial phytochemicals. These are preferred by consumers as fresh 
or processed forms. The known phytochemicals from these commodities are 
about 200,000 [57]. The nutritional health advantages and organic process 
importance of the potent phytochemicals is advantageous in fruits and 
vegetables area unit well studied and documented and principally below 
prescription for the person tormented by chronic diseases and diabetes, 
cancers, cardiovascular diseases [9]. These phytochemicals present in 
minute quantity in fruits and vegetables, which makes their ability to prevent 
the diseases [68]. 

The phytochemicals include antioxidants, and phenolic compounds 
(such as: flavonoids, carotenoids, and tocopherols). The antioxidant capacity 
of phytochemicals helps to fight against free radicals, responsible for the 
incidence of chronic disease. The researchers studied the impact of intake 
of fruits and vegetables in patient’s diet tormented by cancers of the respira
tory organ, breast, esophagus, colon, cervix, Rima, oris, pancreas, stomach, 
bladder, and ovary [10]. 

Phytochemicals recognized in some of vegetables, their chemical compo
sition and biological activity unit of measurement stratified per their helpful 
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activity. Fruits and vegetables inclusion in the diet can decrease the danger 
of certain chronic disorders [17]. 

8.3.1.1  CAROTENOIDS 

Carotenoids having pro-vitamin A activity is after all naturally occurring 
plant pigment that’s accountable for the colors in fruits and vegetables 
[31]. Keep with study, until date 600 totally different carotenoids were 
known and among that 50 are often born-again to axerophthol. The dietary 
demand of significant amine A in adult is consummated from fertilizer 
supply [70]. The potential health edges of carotenoids unit having high 
inhibitor activity that helps to cut back the possibility of cardiovascular 
diseases (CVDs), cancers, degeneration, and conjointly cataracts, and also 
helps in boosting the immune system [47]. Among carotenoids, β-carotene 
that’s generally found associated with fruits poses the highest pro-vitamin 
A activity [75]. Studies showed that, β-carotene reduces the injury of skin 
caused because of UV [12] and conjointly reduce the danger of cancer or 
cardiopathy [92]. 

The highest inhibitor activity in carotenoids family is carotenoid. It repre
sents the red watermelon, tomato, pink grapefruit, and alternative red fruits. 
The carotenoid is effective to forestall the prevalence of liver, brain, colon, 
breast, cervix, and prostate carcinogens, therefore eliminating or delaying 
bound sorts of carcinogens [15, 19]. The coronary disorder is additionally 
reduced by consumption of fruits and vegetables enriched in carotenoids 
[46]. Xanthophyll and carotenoid are also carotenoids notably found in 
inexperienced and yellow leaf like vegetables having potential health edges 
to chop back the age connected downside [72]. 

8.3.1.2 FLAVONOIDS 

Anthocyanins, flavanones, catechins, isoflavones, and flavones are a unit 
resin compounds composed of flavonoids. Naturally, these flavonoids are a 
unit gift in fruits and vegetables like bananas, citrus fruits, broccoli, cabbage, 
peppers, etc. Quercetin might be a plant flavonol within the main found in 
onion, apple, broccoli, etc. [2, 34]. Whereas kaempferol, that’s additionally 
a kind of flavanol found in radish, horseradish, etc. [33]. Flavonoids in a 
regular diet will facilitate to chop back the rationale behind varied diseases 
like urinary tract infections (UTI), vessel disorders, cancers, and alternative 
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chronic diseases [20, 42], and this health benefit is because of higher inhibitor 
property [41, 59]. 

Anthocyanins are red cherry, strawberry, and blueberry pigments. In 
biological systems, the potent inhibitor property of anthocyanins is princi
pally because of the scavenging activity of free radicals. The free radical 
scavenging (FRS) activity of anthocyanin has significance in the prevention 
of many diseases [3, 88]. It is well accepted that the free radicals are respon
sible for obscurant elementary cell parts, for instance, polymer, and thus the 
cell layer; nonetheless, concentrates on whether or not cancer preventing 
agent supplementation might limit aerobic pressure instigated observe are 
till now dubious [64]. In addition, anthocyanins are concerned within the 
treatment of capillary fragility [22]. 

In berries, particularly cranberries, blueberries, blackberries, and dark 
raspberries, pro-anthocyanidins are found. It is been demonstrated that they 
need an undertaking to finish in decreasing the peril of UTI that make when 
microorganisms are brought into the urinary plot and stick with body tissues. 
Pro-anthocyanidins and a few different flavonoids are fit official to cell 
dividers, along these lines forestalling bacterial attachment. Some studies 
also reported that cranberry found effective in reduction of cavity so as to 
reinforce dental hygiene, the gathering of certain substances that cause cavity 
are derived from the berries [86, 87]. 

The importance of quercetin is anticarcinogenic nature and prevents the 
formation of bad cholesterol [21]. It helps to scale back the allergic symp
toms by associating with carcinogens [74]. The inclusion of quercetin in diet 
indicated the lowering bad cholesterol [18, 48] and protect from CVD [50]. 

8.3.1.3 GLUCOSINOLATES 

This is the assembly of organosulfur aggravates that can be changed over 
into indoles and isothiocyanates. The majority of glucosinolates intake 
is accounted for by vegetables, for example, broccoli, kale, cabbage, 
cauliflower, and brussels sprout. Indoles, found in broccoli, cabbage, and 
other cruciferous vegetables, are known to be anti-carcinogenic as well as 
a potential compound for detoxification [14]. It can increase the ability of 
carcinogen metabolism [52]. Indole-3-carbinol can, moreover, activate cyto
chrome P450 enzymes that have been shown to metabolize estrogen [13] and 
suppose to prevent the breast and uterine cancers. Isothiocyanates, in addi
tion, are widely distributed in watercress, broccoli, and radish, for example, 
are cruciferous vegetables. Numerous investigations have indicated that 
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isothiocyanates are equipped for setting off stage II detoxification catalysts 
and smother stage I malignant growth advancing proteins, activities that may 
add to the hindrance of tumorigenesis [91]. 

Isothiocyanates have moreover been seemed to have a guarded effect 
against tumors in various tissues including the mammary organ, liver, 
bladder, throat, pancreas, and colon, notwithstanding diminishing the danger 
of cellular breakdown in the lungs [32, 91]. 

It was reported that the regular consumption of foods enriched in poly-
phenols may reduce the chance of CVD, cancer but may disturb urinary 
bladder dysfunctions and Alzheimer’s disease [24]. The health benefits of 
phytochemicals are well explained by food scientists when to consume on a 
regular basis in diet [81]. The remaining phenolic compounds, i.e., because of 
their antibacterial, antiviral, antioxidant, and anticancer effects, flavonoids, 
isoflavonoids, anthocyanin are also important in the diet [45]. Nowadays, 
polyphenols are gaining a lot of importance due to its anti-stressing property 
[65]. Polyphenols are also having antiviral, antifungal properties, especially 
flavonoids [37]. 

Fruits and vegetables are the commodities with high phenolic compounds, 
naturally coloring pigments with high antioxidant activity, which prevents 
the chronic diseases [63]. Phenolics also have antiviral, antimicrobial, and 
antifungal properties. An antioxidant property of fruits and vegetables are 
mainly classified as vitamins, phenolics, and carotenoids [78]. 

8.3.2 SPICES, CONDIMENTS, AND PLANTATION CROPS 

India is ‘a Land of Spices’ and through scientifically recorded phytochemicals 
and therapeutic properties, the origin, utility, taste, color, and functionality of 
Indian spices (major, minor, and herbs) is recognized around the world [5]. 
Spices and condiments are classified as “vegetable products or mixtures free 
of foreign matter, used in foods to flavor, season, and impart aroma” [36]. 
The word “applies equally to the product in the whole form or in the ground 
form.” Total of 109 spices have been mentioned and enlisted [56]. 

The addition of spices into food or beverages, enhance the taste and its 
nutritional value and also helps to fight against diseases [7]. Now a days, 
demand for spices has been increased globally due to immune-boosting 
ability of spices which is specially required during pandemic situations. 
Whole spices or its extract are used in medicine, food, beverages, and 
other industries too [58]. The application of spices and its extract not only 
enhance the taste but also color and functional value of food. The compound 



 

 

 

 

Role of Phytochemicals in Human Health 193 

responsible for characteristic color, flavor, and nutraceutical value is essen
tial oil or oleoresins. These are extracted from different spices, herbs, and 
condiments. These are having high cost and demand in the market. These 
can be used to make herbal tea and for other medical applications and food 
flavoring [56]. 

8.3.3 TROPICAL TUBER CROPS 

Many tropical tuber crops like cassava, sweet potato, taro, yam species, 
elephant foot yam, costus, coleus, typhonium species, canna species, tacca 
species, giant taro and aroids are grown in many tropical regions of the world. 
In addition to the food value the edible tuber crops possess several health 
benefits and medicinal properties. The tuber crops are not only storehouse 
of carbohydrates, but also rich sources of various antioxidant compounds 
like carotenoids, polyphenols, phenolic acids, flavonoids, and triterpenoids. 
Apart from the edible tuber crop species, which are important for their food 
value, a large number of tuber crops possess physiological and pharmacologi
cally active principles and are important for their medicinal value are listed 
in Table 8.2, these crops are well studied extensively for their therapeutic 
potency. The important medicinal tuber crop species comprise of Acorus 
calamus, Safed musli, Asparagus, Alocasia, Alpinia, Amorphophallus (wild 
species), Coleus forskohlii, canna, ceropegia, costus, and Ipomea [66]. 

8.4 ROLE OF SPECIFIC PHYTOCHEMICALS 

8.4.1 PHENOLICS 

This is the largest category of phytochemicals consists of flavonoids, 
phenolic acid, and tannins. Phenolics exhibit many useful effects with their 
inhibitor properties as most. Phenolics exhibit many useful effects with their 
inhibitor properties as most vital attributable to their role in suppressing free 
radical-mediated malady processes [69]. 

The components of phenolics which protect from oxidative stress are 
known as phenolic acids. Chlorogenic acid is among the phenolics present 
at large extent naturally in fruits and vegetables. Its importance is recorded 
for weight loss and inhibition of fatty acid biosynthesis [8]. It is also richly 
present in coffee. Ferulic acid, a phenolic compound found in rice bran oil is 
advantageous in lowering obesity linked to a high fat diet [73]. 



 

 TABLE 8.2 Tropical Tuber Crops: Potential Sources of Antioxidants 

Tuber Crop Parts Used Phytochemical Present Biological Activities References 
Cassava Starch Phenolic compounds Antioxidant and free radical [4] 

scavenging activity 
Rind Proanthocyanidin and phenolics content Antioxidant activity [71] 
Stem Phenolic compounds Antioxidant activity [90] 

Taro Tubers Phenolics compounds and peptides Anticancerous activity [53] 
(antimetastatic activity) 

Tubers, stem, and leaves Octadecadienoic acid and hexadecanoic Anticancer activity [85] 
acid 

Elephant foot yam Tubers Flavonoids Antioxidant activity [38] 
Sweet potato Leaves Carotenoid Anticancer activity [27] 

Leaves Phenolic and flavonoids content Antioxidant activity [35] 
Tubers Anthocyanins and phenolics content Radical scavenging activity [11] 
Purple sweet potato tubers Anthocyanins Radical scavenging effects [39] 
Storage roots Phenolic compounds Antioxidant activity [77] 

Giant swamp Taro Tubers Mucilage content Antioxidant activity [60] 
West Indian arrowroot Whole plants (tubers, Phenols and flavonoids Anticancer activity [55] 

leaves, and flowers) 
Curcuma zedoaria, Curcuma Rhizomes Phenolic compounds Antioxidant activity and free [25] 
angustifolia, Curcuma caesia radical quenching ability 
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Tannins are small molecular weight phenols and commercially utilized 
in aroma therapy products and dietary supplements. It can be of two forms, 
such as condensed tannins and hydrolysable tannins. Because of ecological 
pressure, tainting, and openness to extreme bright light, they are fabricated 
in plants and furthermore diminish the damage caused. The largest group 
under phenols is flavonoids which are classified as anthocyanins and 
anthoxanthins. The presence of anthocyanins that have high antioxidant 
activity and function as anti-inflammatory and anti-obese properties is due 
to the purple, blue, and red color of vegetables and fruits. White molecule 
is nothing but anthoxanthins which is further categorized into flavonols, 
flavanone, flavones, and isoflavones [82]. 

8.4.2  TERPENOIDS 

Phytochemical responsible for growth, metabolism, and development of 
plant known as terpenoids [69]. The commercial utilization of terpenoids is in 
preparation of functional foods, flavoring agents in ice creams, non-alcoholic 
beverages, chewing gum, candy, bakery products, etc., and biocolorant in 
pharmaceuticals, cosmetics, etc. The main class of terpenoids is carotenoids 
which are responsible for yellow and orange color in different fruits and 
vegetables. It not only gives color but also acts as an antioxidant [44]. Carot
enoids are further classified as carotene and xanthophyll. Carotene is reported 
to help protect against cancers of the uterus, prostate, breast, colorectal, and 
lungs. Xanthophylls, on the other hand, also act as antioxidants. Zeaxanthin, 
cryptoxanthin, and astaxanthin are significant types of xanthophyll used in 
different preparations as functional food ingredients [69]. 

8.4.3  GLUCOSINOLATES 

Sulphur containing phytochemicals mostly found in cruciferous vegetables 
such as cabbage, broccoli, and also in mustard seed as well as rape seed 
which have anticarcinogenic properties are known as glucosinolates [62]. 

8.4.4  POLYACETYLENES 

Polyacetylenes are natural chemically reactive metabolites derived from 
various flora. In the Apiaceae (fennel, celery, and carrot), Araliaceae 
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(hedraspp and ginseng) and Asteraceae (sunflower, lettuce, chicory, and 
artichoke) gatherings, their event is most noteworthy. The natural pesticides 
having three compounds viz. falcarinol, falcarindiol, and falcarindiol-3
acetate are released as a natural defense against pest attack in carrots and 
have a strong functional profile as a functional ingredient that has recently 
received considerable scientific attention [1]. 

8.4.5  PHYTOSTEROLS AND PHYTOSTANOLS 

Plant sterols are called phytosterols. Phytosterols are fundamentally derived 
from vegetable oils, cereals, and organic products, while phytosterols are 
bountiful in maize, wheat, rye, and rice and are available in acceptable 
sums. The function of cholesterol in the human body and phytosterol in 
plant are the same. The different forms of phytosterols are free alcohol, fatty 
acid esters, steryl glycosides, acylatedsteryl glycosides and phytosteryl
hydroxycinnamic-acid esters. Both phytosterols and phytostanols majorly 
found in maize oil, rapeseed oil, sunflower oil, soybean oil, nuts, beans, and 
grains [30]. These are essential for reducing cholesterol, cancer prevention, 
immunomodulation, and skin protection [16]. 

8.4.6  NON-DIGESTIBLE CARBOHYDRATES (NDC) 

The complex carbohydrates which resist to digestion are known as non-
digestible carbohydrates (NDC). Non-digestible oligosaccharides, resistant 
starch, non-starch polysaccharides are graded. These are important in the 
human diet, which improves the gastrointestinal (GI) health by preventing 
constipation, diverticular disease, irritable bowel syndrome, and colon cancer 
[53]. Complex, heterogeneous dietary substances derived mainly from plants 
are NDC. These are important components of the diet and GI disorders can 
often result from insufficient intake. 

The closely resembling carbs that fall into two gatherings as indicated 
by their solvency are dietary filaments, for example, water-dissolvable 
strands. The potential health benefits of resistant starch, which either 
undergo slow digestion or doesn’t undergo digestion, passes to GI tract, 
and fermented in the colon and converted to short-chain fatty acids, 
which help to lowers cholesterol level and acts as substrate for probiotic 
microflora. 



 

 

Role of Phytochemicals in Human Health 197 

8.5 FUNCTIONAL FOODS BASED ON PHYTOCHEMICALS 

Exposure to individual phytochemicals is less convincing, and epidemiolog
ical studies, natural, and exploratory assessments, and preliminary clinical 
trials [29, 51] revealed that plant-based foods reduce the risk of degenera
tive infections, especially fatal neoplasms; [40, 43, 89]. This is because a 
plant-based diet prevents almost half of all cancers [75, 89]. In addition, 
nutritional proposals to combat all forms of life-threatening neoplasms and 
other persistent diseases have continually emphasized the need to use a range 
of plant-based food sources to validate wellness. 

The single compound methodology has offered route to the idea that 
general assurance against illness is given by a scope of phytochemicals 
contained in food sources and flavors, for example, cinnamon, ginger, pepper, 
tulsi – Ocimum sanctum [83] even some antagonistic reports accessible in 
specific species and physiological conditions (like in pregnancy, liver injury 
and so on) for well-being and alert [76]. 

Plant-based foods and drinks (coarse grains/millet, legumes, fenugreek, 
quinoa, soybeans, fruits, berries, all main/minor spices including herbs, grapes, 
and wine, citrus fruits, tomatoes, flax seeds, oats, cruciferous vegetables, tea, 
coffee, cocoa, herbal teas and their compounds and phytochemicals, etc.), 
are proposed or are created as functional foods, each with series of logical 
insights into positive effects of dietary supplements and phytochemicals on 
well-being. The majority of phytochemicals tend to deteriorate in handling 
and capacity. 

Therefore, the creation of food has to be combined with an ideal handling 
and capacity of food, which can significantly affect the welfare-promoting 
capacity of food. As mentioned earlier, manufacturing is important to modify 
some compounds and their bioavailability by improving an appearance of 
bioactive mixtures from the food structure, an underlying cycle stage of the 
human stomach [28, 61]. 

Thereafter, the ultimate aim of the handling conditions should be to 
prevent the calculable problems of the phytochemical while improving its 
bioavailability. 

8.6  CURRENT TRENDS AND CHALLENGES 

Over the past few decades, the number of known physically active 
phytochemicals has increased significantly. The phytochemicals and their 
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beneficial effects on human health have been revealed by many researchers. 
A clear correlation is observed between antioxidant intake and lower risk of 
various lifestyle diseases like heart cancer, diabetes, hypertension, and other 
medical conditions [21, 78]. 

In the 1990s, foods with specific functions and nutritional value emerged 
as a major trend for the food industry internationally. Nutritionists and 
scientists have often documented the nutritional significance and health 
benefits of food and are legally supported by public policy and legislative 
mandates for diets and dietary supplements. The developments have received 
considerable attention from agriculture, biotechnology, and life science-
based industries for developing the raw materials for nutrition and food 
manufacturers to design new products. The new foods are clearly prepared 
for the 21st century of the sunrise industry. They promise value-added and 
new marketing opportunities in food industries. 

They offer advances in public health as the marketing messages of 
health claims enable consumers to choose healthier foods. Making the 
newly designed and repositioned food products available to consumers is 
seen as a challenge and an opportunity for added value to the industry. 
Healthcare professionals are gradually realizing the role of phytochemicals 
in improving health. As antithrombotic, anti-inflammatory, and 
carcinogenic agents, phytochemicals such as phenolic compounds are of 
considerable importance. In both cases, companies in the food industry 
tend to focus on normal businesses due to the expected adverse effects of 
phytochemicals fortifications and can be used as substances added to food 
or as drug additives. Particular attention to regulatory issues and careful 
consideration of conveying meaningful messages to consumers about the 
benefits of products are necessary for marketing and positioning of health 
claims products in the functional food sector. An elaboration of the product 
positioning is proposed, taking into account that consumer’s receptivity 
is often dependent on perception of taste, acceptance, quality, and well
being rather than the stated specifications for product strength and clinical 
benefit. 

The regulations govern the language and scientific benefits that can be 
expressed in product labels, literature of marketing and advertisement of the 
products. However, consumers are often more satisfied with the subtleties, 
associations, and promises of fitness than with scientific claims and digital 
literature. In order to target genetic weapons in plants, food regulators must 
agree that increasing levels will provide health benefits to all segments of 
the population or, conversely, will not pose a threat to certain groups of the 
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population. This will be a difficult challenge. Growing traditional plants 
can lead to major changes in the composition of food plants that have not 
been well documented, but there is no evidence of adverse health effects. 
Moreover, an additional data is needed to understand the harmonic effects 
of phytochemicals found in foods and how they can protect humans from 
chronic disease. 

8.7  SUMMARY 

Developed countries like Japan, the USA, Russia, Australia, and European 
countries are the main exporters of the Indian food products, extracts, 
phytochemicals, and spices (suggested by Spice Council, India). Such 
types of developed nations have their own stringent regulations and laws 
for foods as we now have unified food law, food standards and safety 
measures for Indian foods through FSSAI. The major objectives of such 
stringent laws are to safeguard the health of the people. The developed 
nations like USA and Russia only permits the import of raw commodities 
such as foods, spices, plant products (tea, coffee, cocoa, etc.), only if they 
comply with their mandates regarding food safety rules and converts these 
commodities into high value extracts and phytochemicals for a very high 
export value [6]. 

Globally major spices produced include chili/paprika (capsaicin), 
turmeric (curcumin), ginger (gingerol and shogol), black pepper (piperine), 
cardamom (sineol and alpha terpenyl acetate), garlic (allicin) and coriander 
(decanol), cumin (cumin aldehyde), celery (epigenin), fennel (anethole), 
fenugreek (galactomannan), azoan (thymol), dead seed (dilapiol), tamarind, 
cloves (eugenol), nutmeg, Mentha arvensis (menthol), basil (ascamine), 
rosemary (rosamarinol), thyme, marjoram, etc. The commercial platform 
for these commodities is not organized and the specialty segment share is 
nearly 15%. The players like MTR, Badshah, Catch, Everest, Ramdev, etc., 
dominate organized Indian spice market. 

To promote the export of food, spices, and phytochemicals and to better 
manage the industry, food business operators have high-quality food, 
beverage, phytochemicals, and spices manufactured, sold, stored, and 
distributed. There are standards that must be maintained in the market. For 
countries around the world, this COVID-19 challenge includes food safety 
and hygiene (HACCP). 
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CHAPTER 9
 

NUTRACEUTICALS WITH HEALTH
PROMOTING ACTIVITIES 

SANGEETA SAIKIA, NIKHIL K. MAHNOT, and KULDEEP GUPTA 

ABSTRACT 

For consumers, nutraceuticals are delivered as any dietary supplement with 
naturally derived bioactive components with health benefits. Nutraceuti
cals in disease management is a new alternative to modern medicine and 
has gained preference in the present society. The bioactive components 
exhibit many health-promoting properties, such as antioxidant, anticancer, 
anti-inflammatory, antibacterial, antidiabetic, antihypertensive, etc. The 
nutraceuticals are generally categorized based on their sources and chemical 
properties and their mode of action. The bioactive compounds like phenolics 
and flavonoids are commonly derived from plant-based sources, although 
other components like unsaturated fatty acids (MUFA and PUFA), biopeptides 
are from animals. In recent times, researchers have explored the possibility 
of extraction and application of novel bioactives obtained from medicinal 
plants and marine sources, which are not conventional food sources for all. 
This will promote the development of newer nutraceuticals with enhanced 
therapeutic properties to cater to the needs of the ever-changing consumers. 

9.1  INTRODUCTION 

The current society is well informed regarding the correlation of a balanced 
diet and health. There is an increased awareness to maintain a healthy 
life. Consequently, the demand for healthy and nutritious food as well as 
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products with added health-promoting properties has gone up. This has 
fueled an increase in research to determine the health-promoting properties 
of bioactive compounds derived from plant-based food sources as well as 
the production of newer products with enhanced health benefits. Generally, 
such products grouped under functional foods and nutraceuticals. Functional 
foods are those food products which impart health-promoting effects apart 
from fulfilling basic nutritional needs. On the other hand, nutraceuticals are 
isolated or purified bioactive rich components obtained from natural sources 
and aimed for prevention and management of chronic diseases and are 
delivered in high concentrations as form of tablets or pills. 

The term ‘nutraceutical’ was coined by Dr. Stephen L. DeFelice. It refers 
to the combining of the field of both ‘nutrition’ and ‘pharmaceutics.’ Nutra
ceuticals are derived from both herbal and other natural sources. At present, 
nutraceuticals are the new additions in management of chronic degenerative 
diseases. They consist of biologically active components, termed as bioactive 
compounds, which has many health-promoting properties like antioxidant, 
anticancer, anti-inflammatory, antimicrobial, anticancer, etc. 

The present chapter gives an overview on the bioactive compounds, their 
role in health management and as viable source of nutraceuticals. 

9.2  BIOACTIVE COMPOUNDS 

Secondary plant metabolites are the prime sources of bioactive compounds. 
They are widely regarded to boost human health and have proven to be 
beneficial in the management and avoidance of varied chronic disorders 
[43, 65]. They are classified into polyphenols, vitamins, minerals, natural 
pigments, dietary fiber, phytosterols, bioactive lipids, bioactive peptides (BP), 
etc. Bioactive constituents are abundantly present in varied food sources, 
including fresh vegetables and raw fruits, nuts, and seeds, marine algae, meat, 
dairy, marine fish, medicinal plants, etc. 

9.2.1  POLYPHENOLS 

The polyphenols comprise of one or more hydroxyl-substituted benzene 
ring, i.e., having a polyphenolic structure. Till date > 8,000 polyphenolic 
structures have been identified and studied [65]. Polyphenols can be broadly 
classified into flavonoid and non-flavonoid groups. The flavonoid group is 
further divided into sub-classes of flavones, flavonol, flavanone, isoflavones, 
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dihydroflavanols, flavan-3-ols, anthocyanidins, and proanthocyanidins [22]. 
The non-flavonoid group consists of tannins, phenolic acids, xanthones, 
acetophenones, chalcone, stilbenes, lignans, secoiridoids, and phenylacetic 
acid. 

Further, the phenolic acids are sub-classed into hydoxycinnamic acid and 
hydroxybenzoic acid derivatives. Hydroxybenzoic acids are derivatives of 
benzoic acids having a C6–C1 type general, while hydroxycinnamic acids 
are cinnamic acid derivatives having C6–C3 type structures. 

The common examples of hydroxybenzoic acid derivatives are gallic, 
gentisic, salicylic, ellagic and vanillic acids. Whereas ferulic, caffeic, 
chlorogenic, sinapic, coumaric acids, etc., belong to hydroxycinnamic acid 
derivatives. 

Flavonoids are phenolics having a diphenylpropane skeleton (C6–C3–C6) 
structure, consisting of two aromatic rings linked through a heterocyclic closed 
pyrene ring (containing oxygen) [31]. Fruits, vegetables, and medicinal plants 
are major sources of polyphenols. 

9.2.2  NATURAL PIGMENTS 

Pigments are present in almost all living organisms, but the plants are the 
leading source of pigments. Pigments are found naturally in leaves, flowers, 
fruits, stems, etc. Some pigments are also present in bacteria and fungi. 
The pigments find their applications in medicines, foods, textile, cosmetics 
sector, etc. Based on color, pigments are broadly classified into chlorophyll, 
carotenoids, anthocyanins, and betalains. Chlorophyll is the most abundant 
pigment and is responsible for photosynthesis in plants. 

Carotenoids are fat-soluble color pigments ranging from yellow to red 
through orange. Chemically, carotenoids consist of 40-carbon isoprene units 
covalently linked with multiple conjugated double bonds [49]. Broadly, 
they have been divided into carotenes and xanthophylls. Carotenes are 
constituted of only carbon and hydrogen atoms whereas, xanthophylls also 
contains oxygen. The carotenes are further grouped into phytoene, phyto
fluene, lycopene, and β-carotene. Similarly, xanthophylls are sub-grouped as 
β-cryptoxanthin, zeaxanthin, lutein, astaxanthin, and fucoxanthin [5]. Some 
of these carotenoid pigments are precursors for vitamin A synthesis and are 
needed to maintain visual health in human. 

Carotenoid pigments play a predominant role as an antioxidant molecule 
in a lipid rich medium. Lycopene is one such carotene, it is associated with 
reducing blood pressure and has a protective effect on the cardiovascular 
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system. A diet rich in lycopene has been associated with lowering the risk of 
damage to the heart muscle fibers, breast, and uterine cancer [59]. Lycopene is 
found in high amounts in guavas, tomatoes, grapefruit, watermelon, papaya, 
sweet red peppers, persimmons, etc. Considerable amounts of carotenoids 
are present in pumpkin, carrot, grapefruit, orange, and apricots. 

Anthocyanins are water-soluble pigments belonging to the flavonoid 
class. The glycosylated forms of anthocyanins are blue, red, or purple in 
color depending upon surrounding pH. In acidic pH, anthocyanins appear 
red while in basic pH it appears blue in color. The sugar free counterpart 
of anthocyanins is known as anthocyanidins and classified into cyanidin, 
delphinidin, pelargonidin, peonidin, petunidin, and malvidin. They belong to 
the flavonol subgroup of the phenolic group [38]. Light and temperature are 
the known factors affecting the stability of the anthocyanin pigments. 

In the plant kingdom, glycosylated form of cyanidin (cyanidin-3
glucoside) is the major anthocyanin pigment and is abundant in different 
flowers as well as fruits (such as: berries, currants, grapes). Leafy vegetables 
like black carrot, red cabbage, brinjal, black, and red rice varieties, black corn, 
sweet potato, etc., are also high in anthocyanin. Anthocyanins are generally 
used as a source of natural colorant in foods and textile industries, but they 
also confer many health benefits. They exhibit antioxidant, antidiabetic, 
anticancer, anti-inflammatory, antimicrobial properties, etc. 

Betalains are also types of pigments and are predominant in the vacuoles 
of plants belonging to the families under the order Caryophyllales [37]. 
The betacyanin (red-violet colored) and betaxanthin (yellow colored) are 
good examples. Betalains are formed due to condensation of betalamic acid 
[4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridene-2,6-dicarboxylic acid] with 
amino compounds (cyclo-DOPA and/or its glucosyl derivatives) to beta
cyanins. If betalamic acid condenses with an amino group, betaxanthin is 
obtained. Researchers have reported that betalains under in vitro and in vivo 
conditions exhibited anti-inflammatory, radical scavenging, antidiabetic, and 
anticancer properties [4, 30, 37]. Beetroot, cactus pear, amaranth, red-purple 
pitaya contain large amounts of betalains, which can be extracted for use as 
nutraceuticals. 

9.2.3  VITAMINS AND MINERALS 

Vitamins are organic compounds indispensable for the growth and main
tenance of optimal health in humans. Therefore, a diet enriched with 
vitamins is vital. Vitamins are classified as fat-soluble (vitamin A, D, E, 
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and K) and water-soluble (ascorbic acid and vitamin B complex). The fruits 
and vegetables, marine fishes, seaweeds, mushrooms, eggs, meat, dairy 
products, legumes as well as fortified cereals are good sources of different 
vitamins in diet. Depending on the type of vitamins, the functional role in the 
body differs. Vitamin A is vital for visual health and vitamin D aids in bone 
health maintenance. Similarly, vitamin E has antioxidant properties and has 
a beneficial effect on the nervous and cardiovascular system [18, 56]. 

Ascorbic acid is well known for its excellent antioxidant activity and 
helps in prevention of oxidative cell damage. The B-complex vitamins group 
is essential for the normal growth and development of the body, correct fat 
and carbohydrate metabolism, proper functioning of the nerves, and red 
blood cell formation. Importantly, the vitamin B complex acts as cofactors 
in various intricate biochemical reactions occurring in the body during 
metabolism [44]. 

Minerals are also vital for normal functioning of many metabolic reac
tions. An adequate mineral balance is required for the maintenance of teeth 
and bone health as well as smooth functioning of nervous and vascular 
systems [17]. Minerals essential for body function are divided into macro 
[magnesium (Mg), potassium (K), calcium (Ca), chlorine (Cl), phosphorus 
(P), sodium (Na), sulfur (S)] and micro minerals [manganese (Mn), chro
mium (Cr), selenium (Se), cobalt (Co), copper (Cu), iodine (I), iron (Fe), 
molybdenum (Mo), and zinc (Zn)]. 

In many biological reactions, minerals (Zn, Cu, K, Mn, Fe, Ca, etc.), 
act as a co-factor for the enzymes catalyzed reactions. Mg, P, and Mn play 
a role in energy production in the body while, Cu, Zn, Fe, and Se are also 
required for a healthy immune response. Additionally, Cu, Se, and Zn are 
noted for their antioxidant properties, thereby protecting the cells from going 
under oxidative stress [17, 25]. Nuts, meat, fish, dairy products, fruits, and 
vegetables are well-known sources of minerals. Lately, marine sources such 
as seaweed are also listed as major sources of minerals for a healthy diet. 

9.2.4  DIETARY  FIBERS (DFS) 

Byproducts from vegetable and fruit wastes like peel, pomace, seed, and 
seed coats are naturally rich in dietary fibers (DFs) with health-promoting 
properties. American Association of Cereal Chemists [1] has defined DF as 
edible part of plants and analogous carbohydrates that are resistant to diges
tion and absorption in the human small intestine, undergoes complete or 
partial fermentation in the human large intestine. DFs are broadly classified 
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as soluble (SDF) and insoluble dietary fibers (IDF) owing to their respective 
solubility in water. The SDF include gums, mucilage, pectin, and hemicellu
loses. While IDF consists of mainly cellulose, other types of hemicelluloses 
and lignin [65]. 

DF acts as a bulking agent, which helps in the maintenance of a healthy 
bowel movement. IDF help to increase fecal bulk and plays a role in 
decreasing intestinal transit. Additionally, DF is also associated with other 
health benefits such as lowering of glucose and cholesterol level in blood, 
maintenance of healthy body weight, prevention of cardiovascular diseases 
(CVDs), and diabetes. SDF cause an increase in viscosity and help to reduce 
plasma cholesterol and glycemic levels [2, 55, 63]. The DFs derived from 
vegetable and fruit wastes contain polyphenols embedded in the fiber matrix 
[20]. Such type of DF imparts antioxidant effect in addition to the benefits 
associated with consumption of fiber [65]. Another important role of DF is to 
increase the fecal mass as well as maintenance of colon health and also aids 
in preventing colon cancer. This is due to the generation of short-chain fatty 
acids, as inherent microflora of the large intestine ferments the DFs. 

9.2.5  PHYTOSTEROL 

Sterols or steroid alcohols are lipids that belong to a subgroup of steroids. 
They are found naturally in plants, fungi, and in animals. Sterols of plant 
origin are termed as phytosterol and are derived from squalene, a member 
of triterpene family. β-Sitosterol, stigmasterol, campesterol, brassicasterol 
are major phytosterols with functional properties [14]. Dietary intake 
of phytosterol helps in the maintenance of optimal health as they have 
anti-carcinogenic, antioxidant, anti-inflammatory properties and helps in 
reduction of LDL (bad cholesterol) level [32, 81, 82]. Nuts, edible seed and 
oils, whole grains, legumes, vegetables, and fruits are the major sources of 
phytosterols. 

9.2.6  BIOACTIVE LIPIDS 

Some lipids in addition to being a source of energy for bodily functions 
also have health-promoting effects and are termed as bioactive lipids or 
bio-lipids. A bioactive lipid usually imparts its bioactivity either through 
changing the fatty acid composition of different tissues or by preventing 
cell signaling pathways [87]. Both polyunsaturated fatty acids (PUFA) and 
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monounsaturated fatty acids (MUFA) are considered as bioactive lipids 
with an array of health-promoting properties. PUFA is classified into ω-3- 
and ω-6-fatty acid. Intake of diet rich in PUFAs (such as α-linoleic acid 
(C18 O2), eicosapentaenoic acid (EPA, C20 O2), docosahexaenoic acid H30 H30
(DHA, C22 O2) may impart beneficial role in metabolic function and also H32
has preventive role in cancer, diabetes, inflammatory bowel disorders, CVDs, 
neurodegenerative conditions, etc. [21]. DHA is an important molecule 
required for proper brain development in growing years. EPA intake is 
shown to slow down cognitive decline and dementia associated with aging 
[87]. Marine fish, seaweeds, oils derived from sunflower seed, flax seed, 
corn, soybean, and safflower are rich in PUFA. Marine fish oils are major 
sources of EPA and DHA. 

The ω-7-fatty acid (Palmitoleic acid, C16:1n–7) and ω-9-fatty acid 
(Oleic acid, C18:1n–9) are MUFAs, which are also beneficial for human 
health. Palmitoleic acid helps in reduction of hyperglycemia, hypertriglyc
eridemia conditions and helps in improving insulin sensitivity. Similarly, 
oleic acid regulates many biological processes and decreases the chance of 
occurrence of coronary heart diseases and other metabolic disorders [87]. 
Animal fat, marine fish, and oils derived from macadamia nuts, peanuts, 
canola, sunflower, sesame, poppy seeds, avocado, etc., are the main sources 
of MUFAs. 

9.2.7  BIOACTIVE PEPTIDES (BPS) 

The BPs exhibit functional properties that have a beneficial role in metabolic 
functions and health [11]. They can be used for treatment of many ailments 
of the digestive, endocrine, cardiovascular, immune, and nervous system 
[41, 68]. These functional peptides can be derived both from animal and 
plant sources. Among the animal sources, blood, a by-product of animal 
slaughterhouses is a promising source of BPs. From the hydrolyzed animal 
blood proteins, a number of peptides are obtained that showcase bioactivity 
like inhibiting angiotensin-converting enzyme (ACE), glucose regulation by 
inhibiting dipeptidyl peptidase-IV (DPP-IV), and antioxidant potential [6, 
68]. BPs are also derived from cheese and bovine milk, meat, egg, and fish 
through chemical and enzymatic hydrolysis [51] Similarly, some sequences 
of peptides present in rice, wheat, and soy proteins are also used for BP 
production. Mushrooms [92] and seaweeds [39] derived BP exhibits antihy
pertensive, antioxidant, and antimicrobial properties. 
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9.3  FUNCTIONAL ROLE OF BIOACTIVE COMPOUNDS 

Bioactive compounds derived from food sources as well as medicinal plants 
have numerous functions in the prevention and maintenance of different 
metabolic disorders. Therefore, these compounds play an active role in the 
improvement of human health; hence, quality of life. Some of the major func
tional role of bioactive compounds has been discussed briefly in this section. 

9.3.1  ANTIOXIDANT ACTIVITY 

The metabolic processes in the human body led to the production of free radi
cals, and these free radicals play a major role in human metabolic processes 
and diseases. Free radicals are molecular species that contain an unpaired elec
tron which are highly unstable, reactive in nature and behave as an oxidant. 
Hydroxyl, superoxide anion, peroxide, singlet oxygen, nitric oxide (NO), etc., 
are some free radical groups that are capable of mutilating biomolecules such 
as DNA, proteins, carbohydrates, and lipids in the cell which in turn could 
cause a cascade of unwanted biochemical reactions [42]. However, an optimal 
quantity of free radicals is required for normal body functions. 

An imbalance in the free radical generation can trigger a health crisis 
due to an increase in oxidative stress. A prolonged oxidative stress could 
lead to the onset of many degenerative conditions like diabetes, CVDs, 
neurodegenerative disorders, cancer, etc. Bioactive compounds have anti
oxidant properties that can neutralize or control the oxidative stress in the 
body. An antioxidant acts as a barrier that protects the important biological 
sites inside the cell by scavenging or quenching the free radicals. The 
human body has an innate defense mechanism to overcome the free radical 
inflicted oxidative stress during metabolism. Enzymes like superoxide 
dismutase, glutathione peroxidase, and micronutrients help to remove free 
radical-induced damages [66]. 

A diet rich in bioactive compounds will therefore aid the innate 
antioxidant system to overcome any kind of oxidative stress. Vitamin C, 
tocopherols, carotenoids, and polyphenols exhibit antioxidant properties in 
addition to other health-promoting properties [27]. Bioactive compounds 
present in fruits such as strawberry can inhibit LDL-cholesterol oxidation 
[76]. Honey also shows antioxidant properties that can be ascribed to the 
presence of polyphenols, carotenoids, and ascorbic acid in them [23, 46]. 
Curcumin in Curcuma longa and resveratrol in grapes also exhibit antioxi
dant properties in addition to other functional properties. 
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9.3.2  HYPOGLYCEMIC ACTIVITY 

Type-2 diabetes has emerged as one of the most prevalent metabolic 
disorders in the present society. Change in lifestyle, diet, stress, and other 
metabolic anomalies often lead to an increased blood glucose level. Plant 
bioactive compounds like polyphenols and DF have hypoglycemic activity 
and can bring down the blood glucose levels in diabetic conditions. Poly-
phenols such as phenolic acids (cinnamic, ferulic, catechin, chlorogenic, 
rosmarinic, and caffeic acids), tannins, flavonoids (myricetin, apigenin, 
quercetin, luteolin, and vitexin), stilbenoids (resveratrol, pterostilbene, and 
polydatin) derived from fruits, vegetables, tea, coffee, etc., have significant 
hypoglycemic activity [10, 50]. Depending on the type of polyphenols, they 
help in lowering of glucose in a number of ways such as by protection of the 
pancreatic islet β-cells, promotion of the β-cells proliferation and reduction 
in their apoptosis. They also help in stimulation of pancreatic activities and 
reduction of oxidative stress. 

Additionally, polyphenols can inhibit the enzymes responsible for carbo
hydrate metabolism as well as reduce the generation of advanced glycation 
end products, thus regulating glucose absorption [78]. Similarly, isoflavones 
present in soyabean can reduce glucose intolerance and insulin resistance in 
blood as well as inhibit glucose uptake in the small intestine [12, 78]. 

DF is another plant-derived bioactive that has hypoglycemic property. 
They can reduce the glucose absorption by binding to the glucose molecules 
or alleviate insulin resistance in blood [45]. Shtriker et al. [73] reported that 
fiber derived from fenugreek and citrus fruits help in reduction of blood 
glucose level by inhibiting the function of α-amylase enzyme. Additionally, 
Novel BPs derived from hydrolysis of meat, soy, egg, and other plant proteins 
also exhibit hypoglycemic effects [62] by inhibiting the activities of enzymes 
of concern like α-amylase, α-glucosidase, and DPP-IV [89]. Restricting the 
DPP-IV enzyme helps to stimulate insulin secretion and further inhibition of 
glucagon release, thus controlling the increase in blood glucose level [34]. 

9.3.3  ANTI-INFLAMMATORY ACTIVITY 

Inflammation is a protective response against harmful stimuli (chemical or 
biological) to a cell. On injury, a varied cascade of reaction starts comprising 
of overexpression of cell adhesion molecules and interleukin-1, synthesis 
of proinflammatory cytokines, activation of transcription factor NF-κB, 
overexpression of phospholipases A2 along with release of reactive oxygen 
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species (ROS). Bioactive components from various foods and medicinal 
plants are shown to inhibit these reactions thereby subliming inflammation. 

Bioactive components of foods and medicinal plant extracts have 
shown potent application as anti-inflammatory agents. For example, Albizi 
myriophylla-derived ethanolic extracts showed anti-inflammatory property 
under both in vitro and in vivo conditions. The major active compounds 
present in the extracts are flavonones and phytosterols, and they have a 
significant effect in reduction of skin swelling when tested in rat ear edema 
model. The proposed mechanism for its action was through inhibiting 
production NO [9]. 

Aerial parts methanolic extracts of Ajuga laxmannii herb may reduce 
inflammation in rats by inhibition of phagocytosis through reduced oxidative 
stress. The major bioactive components isolated from the methanolic extracts 
were rutin, iridoids, and phytosterols [80]. S-allylcysteine from black garlic, 
polyphenols from Uncaria tomentosa, Myrciaria dubia, Harpagophytum 
procumbens, Ribes nigrum, and citrus fruits extracts have shown significant 
anti-inflammatory nature in in vitro and in vivo studies [70]. More recently, 
a shift towards marine microalgae and cyanobacteria is seen as important 
sources of bioactive components which inhibit the inflammatory reaction 
cascade [79]. 

9.3.4  LIPID LOWERING ACTIVITY 

For a proper absorption of lipid droplets in the body, emulsification of the lipid 
takes place in the stomach and duodenum due to emulsifying activity of bile 
salts and phospholipids. The gastric and pancreatic lipases act on these emulsi
fied lipid droplets and lipolysis takes place. The rate of lipolysis is depended 
on the lipid emulsion stability. Therefore, to manage the lipid absorption rate 
in the body, the rate of lipid digestion needs to be controlled. DF can interfere 
with the lipolysis depending on the type, concentration, pH, and ionic strength. 
They act either by stabilizing or destabilizing the lipid emulsion. In both the 
cases, the lipid molecules become unavailable to the lipolytic enzymes and 
thus the rate of lipolysis can be controlled. Therefore, a diet rich in DF can help 
in prevention and management of atherosclerosis, obesity, and other associated 
ailments with increased lipid levels in the body [77]. 

Polyphenols derived from fruits, vegetables, and medicinal plants also 
have lipid-lowering properties. The lowering of lipids by polyphenols takes 
place either inhibiting the lipase enzymes or interfering with the emulsion 
droplets formation. Research has reported that polyphenols in black tea can 
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inhibit the emulsion droplets in the stomach and reduce the surface area 
hence, making them unavailable for the lipolysis [29]. Black tea polyphenols 
also can inhibit the activity of pancreatic lipase [57]. Polyphenols such as 
curcumin, cyanidin-3-glucoside, catechin, chlorogenic acid can suppress 
the Niemann-Pick C1-Like 1 (NPC1L1) mRNA expression while, luteolin, 
and epigallocatechin gallate (EGCG) inhibit NPC1L1 by binding directly 
[33]. NPC1L1 is a protein found on the epithelial cells of the gastrointestinal 
(GI) tract and hepatocytes of the liver. Hence, inhibition of NPC1L1 by 
polyphenols results in lowering of the blood cholesterol due to decreased 
absorption from the intestine [33]. 

9.3.5 ANTIHYPERTENSIVE ACTIVITY 

A holistic approach consisting of simultaneous use of drug, a balanced diet 
with the richness of bioactive compounds, nutraceuticals, and an active 
lifestyle may be the key for effective treatment/management of hypertension. 
Many bioactive compounds have antihypertensive properties. For example, 
ascorbic acid, tocopherols, BPs, polyphenols, bioactive lipids, phytosterols 
as well as minerals-like Ca, K, and P have antihypertensive property [7]. 
BPs derived from milk, bovine blood, fish, seaweeds, and plants exhibit an 
inhibitory effect on ACE [7, 13]. The main role of ACE is to convert angiotensin 
I to angiotensin II (an active vasoconstrictor). ACE controls blood pressure 
by modulating the volume of fluids in the body, and is a central component 
of the renin-angiotensin system. This enzyme is a metalloprotein with Zn 
at its catalytic site [3]. Most polyphenols can chelate the Zn at the catalytic 
site of ACE thus, inhibiting the enzyme’s catalytic activity [3, 85]. Garlic’s 
bioactive compounds like allicin and captotril can inhibit the ACE activity 
[71]. Similarly, polyphenols isolated from Clerodendrum colebrookianum 
also showed ACE inhibitory effects [88]. 

9.3.6 ANTI-NEURODEGENERATIVE ROLE 

Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, etc., are some 
of the common ages related neurodegenerative disorders. It is a progressive 
dysfunction and degradation of neurons that leads to neuronal cell damage 
[91]. Epidemiological studies have identified that certain components in 
the diet can have a therapeutic role in neurodegenerative conditions [26]. 
However, development of nutrient based therapeutics for neurodegeneration 
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is often challenged by the blood-brain barrier which hampers the efficacy of 
any therapy. To overcome this barrier, a proper carrier or vehicle is required 
for targeted delivery of the bioactive compounds. Use of nano-carriers is one 
such way for a successful delivery to the targeted site of action. Degenera
tion of neurons is triggered often due to oxidative stress, neuroinflammation, 
mitochondrial dysfunction, abnormal protein misfolding, apoptosis, and 
nerve cells death due to toxicity [52]. 

Natural products with bioactivity derive from Korean ginseng (Panax 
ginseng), ashwagandha (Withania somnifera), honey, propolis, cat’s claw herb 
(Uncaria rhyncophylla), seaweeds, turmeric (Curcuma longa) rhizomes, fish 
oil, germinated brown rice are considered to have neuroprotective role [52]. 
The bioactive compounds present in them have antioxidant, anti-apoptotic, and 
anti-inflammatory properties, which may prevent or control the undesirable 
changes in the neuronal structures and cells that leads to neurodegeneration. 

9.3.7  ANTIMICROBIAL ACTIVITY 

Microorganisms causing infectious diseases are the main cause for creating 
a huge burden on the healthcare system as well as responsible for increased 
mortality. Due to increased resistance against commonly available antibiotics, 
concern to find alternatives of available antibiotics is gaining attention day 
by day. From ancient time plants are well known to possess medicinal value. 
Traditionally medicinal plants have been utilized to treat different diseases 
and even in avoiding food spoilage. The antimicrobial activity of compounds 
isolated from plants is thought to be an alternative of chemically synthesized 
antibiotics [28]. These bioactive compounds proved a platform to overcome 
the concern of developing antibiotics resistance [64]. According to their 
chemical structures, they are classified into alkaloids, sulfur-containing 
compounds, terpenoids, and polyphenols. 

Bioactive constituents are divided into different groups like polyphenols, 
alkaloids, sulfur-containing compounds, terpenoids, etc., based on their 
chemical structure. Piperine, an alkaloid isolated from different piper species 
have shown growth inhibition of S. aureus and many other microorganisms 
alone or in combination with antibiotics [36]. 

Berberine (soquinoline alkaloid) can target RNA polymerase and gyrase of 
bacteria, fungi, protozoa, and viruses thus can inhibit their growth [17]. Other 
alkaloids such as Ungeremine (such as dictamnine kokusagine, Reserpine, 
and masculine) have also been found as potent antimicrobial agents against 
Staphylococcus spp., E. coli, Streptococcus spp. and Micrococcus spp. [35]. 
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Organo-sulfur compounds such as allicin from garlic (Allium sativum) is 
a well-known antimicrobial agent against a wide range of pathogenic micro
organisms, i.e., S. epidermidis, P. aeruginosa, Streptococcus agalactiae, etc. 
[61]. Allicin can act upon alcohol dehydrogenase and RNA polymerase of 
the microorganisms to kill the microbes. Ajoene an organo-sulfur compound 
found in garlic extract has also been found to contain broad-spectrum anti
microbial activity and also have antiviral activity. 

Polyphenolic bioactive compound like resveratrol is also known for its 
antimicrobial activity against Campylobacter jejuni, Arcobacter, and M. 
smegmatis [40]. Baicalein has been screened and found potential to restrict 
the multiplication and growth of varied Gram-positive and Gram-negative 
microorganisms like Bacillus cereus, E. coli, S. aureus, Candida albicans, 
and Pseudomonas aeruginosa. Kaempferol is a bioactive molecule against 
different antibiotic resistant microorganisms like fluconazole-resistant C. 
albicans and methicillin resistant S. aureus (MRSA) [60, 72]. Curcumin has 
a promising bactericidal effect against MRSA and uropathogenic E. coli by 
damaging the cell wall of these microorganisms [83]. 

EGCG has been found to exhibit potent antimicrobial activity against 
different pathogenic microorganisms. Apart from above mentioned bioac
tive compounds, other components like tannins, ascorbic acid, gallic acid, 
and coumarins are also known for their antimicrobial activity. Wu et al. [87] 
showed that quercetin and apigenin can target D-alanine: D-alanine ligase 
enzyme in E. coli and Helicobacter pylori to show their antimicrobial activity. 

9.3.8  ANTI-CANCEROUS ACTIVITY 

The development of plant-based compounds has been targeted to search some 
bioactive components against cancer. Several molecules from plants have been 
used in the cancerous cell lines in vitro and have shown the good efficacy, and 
after animal experiments, some have been sent to the clinical trials also. 

Artemisinin a plant active compound from Artemisia annua has been 
found to show liver, breast, and pancreatic anticancer activity [19]. Cabazi
taxel, a derivative of natural taxoid have been found to eliminate the prostate 
cancer in randomized open-label trial [15]. Sinani et al. [74] showed in his 
study that solamargine, a component of Solanum nigrum plant extract has 
the potential to eradicate human melanoma cancer by activating lysosomal 
mitochondrial death pathway [67]. 

Another active component of plant, kaempferol when form a complex 
with zinc (II) have been evaluated for their anticancer activity and it has 
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been found that it has a great potential in proliferation of lung, breast, and 
liver cancer cells [84]. Withaferin A, withanolide D, gingerol, colchicine, 
skimmianine, boswellic acid, and silymarin are some compounds which 
have also been tested for their anticancer activity. The source plants of these 
bioactive components have been considered in traditional medicine, but 
their scientific validation and active component analysis is quite recent, and 
further approaches are utilized to find out the novel drugs against the cancer. 

Curcuma longa contains an active component, i.e., curcumin which has 
the ability to eliminate colon adenocarcinoma by activating STAT3 and 
NF-κB (transcription factors in immunity) signaling pathways [86]. Some 
other compounds which have been found to contain anticancer activity 
include betulinic acid, asiatic acid, gallic acid, lycopene, plumbagin, allicin, 
apigenin, calcaelin, and ursolic acid, etc. These components have shown 
prominent activity against breast, colon, lung, liver, spleen, and skin cancer. 

9.4  BIOAVAILABILITY AND DELIVERY OF NUTRACEUTICALS 

Bioavailability in general refers to the ingested nutraceuticals fraction that 
become accessible to absorption in the GI tract, is metabolized and later 
distributed to organs and tissues. Distinctively, the bioavailability of nutra
ceuticals is governed by three steps: bioaccessibility, absorption, followed 
by transformation [47]. The first step being ‘bioaccessibility’ is defined 
as the fraction of nutraceutical that is available for absorption through the 
epithelial membrane of the intestine. This includes liberation of the active 
nutraceutical molecule from its matrix (food or delivery matrix); solubility 
in corresponding biological fluid (stomach, pancreatic, intestinal, and bile) 
where it is available for interacting with other components or systems. 

Bioaccessibility is dependent upon the physical (solubility, size, charge, 
load degree, etc.), and chemical nature of the nutraceutical along with prevailing 
digestive environment (pH, enzymes, bile salts, FFAs, etc.). ‘Absorption’ 
of a biocomponent/nutraceutical takes place at the GI tract epithelial cells 
marking the second step for bioavailability. Absorption is governed by active 
or passive transport based upon the nature of the nutraceutical. 

Lastly, the “transformation” of biocomponents during digestion and 
their metabolism in the liver also affects the bioavailability. Transforma
tions such as curcumin degrades in alkaline conditions, cis-trans conversion 
of carotenoids into inactive forms or oxidations of fatty acids like PUFAs 
by prooxidants, etc., leads to lowering of bioavailability [16]. Thereby, in 
general, a lower bioactivity of nutraceuticals is observed in in vivo models as 
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compared to in vitro models. Considering the above-mentioned points, the 
limited bioavailability of the most nutraceuticals does not materialize into 
distinct health benefits on intake. Consequently, to improve bioavailability, 
researchers are on the pursuit to design delivery matrixes and systems for 
nutraceuticals. 

Delivery matrices for nutraceuticals are designed with objectives, such 
as [24]: (i) protection against external factors; (ii) easier incorporation into 
food products; (iii) masking of off-flavors; (iv) controlled release; and (v) 
maximal retention of functional property in general or till the components 
reaches its targeted site. Encapsulation of nutraceuticals (such as carotenoids, 
vitamins, PUFAs, polyphenols, phytosterols, minerals, etc.), has been studied 
to show such benefits. Common biomaterials for encapsulation are polysac
charides, proteins, lipids, low molecular weight surfactants. Nano-delivery 
systems increase the surface-to-volume ratio, thus assists in better solubility 
and felicitate the movement of the nutraceutical through biological barriers/ 
membranes by bypassing transformation steps, thereby increasing bioavail
ability. Novel nano-delivery systems (such as solid lipid nanoparticles 
(SLNs), liposomes nano-emulsions, nanostructured lipid carriers (NLCs), 
self-generating nano-emulsifying drug delivery systems (SNEDDS)) have 
shown promising applications for increased bioavailability of various nutra
ceuticals [8, 53]. 

Researchers have shown the dependence of size on bioavailability. 
Smaller size of nano-emulsion of vitamin E corresponded to augmented 
bioavailability [59] and similar results were also observed for β-carotene 
using SLNs [48]. SNEDDS approach has been most effective to provide 
higher levels of bioactive component loading, better transport, dissolution, 
and easier intestinal permeation whilst enhancing bioavailability. SNEDDS 
formulations have helped to overcome the limited bioavailability for various 
flavonoids, carotenoids, polyphenols, alkaloids, and vitamins leading to 
better final results as compared to native compounds [53]. 

Incorporation of enhancer molecules along with particular nutraceutical 
has been suggested to increase the absorption of nutraceuticals by increasing 
membrane permeation. Enhancers (such as: piperine, bile salts, genistein, 
unsaturated fatty acids, lactose esters, chitosan derivatives) have shown to 
increase the absorption of curcumin, vitamin D3, EGCG, ovalbumin, and 
salvianolic acid, respectively [24]. More recently, use of the Maillard reaction-
based protein-polysaccharide conjugates have been potential encapsulant or 
delivery systems. This is because of their unique characteristics, such as: 
excellent emulsification capacity, high solubility, and antioxidant property, 
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stability towards a wide range of temperature, pH, and ionic strengths along 
with better protection of lipophilic bioactive nutraceuticals [54]. 

Overall, specifically designed delivery systems can substantially increase 
the efficacy of nutraceuticals for an intended health benefit. The systems can 
better regulate the bioaccessibility, absorption alongside transformation of 
the nutraceuticals inside the GI tract. However, further developments related 
to the selection of other food-grade carrier materials, delivery system, 
controlled release, and toxicological studies for risk assessments needs to be 
investigated. 

9.5  SUMMARY 

Bioactive compounds derived from food and other natural sources has ample 
scope to be used as nutraceuticals as therapeutics for chronic metabolic disor
ders viz. diabetes, cancer, hypertension, neurodegenerative diseases, CVDs, 
etc. Bioactive compounds such as polyphenols, vitamins, minerals, natural 
pigments, dietary fibers, phytosterols, bioactive lipids, bioactive peptides 
(BP), etc. have been identified and determined for many therapeutic proper
ties. The bioaccessibility, absorption and transformation are the three impor
tant steps to be considered for bioavailability of nutraceuticals. The specially 
designed delivery system for nutraceuticals has shown a substantial potential 
to increase the bioavailability and bioaccessibility of varied bioactives. This 
will help in increasing the efficacy of the intended health benefits of the nutra
ceuticals. Therefore, nutraceuticals from novel bioactive compounds have 
immense potential in improving the quality of life by playing an important 
role in disease management along with conventional medicines. 
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CHAPTER 10 

FUNCTIONAL AND NUTRACEUTICAL 
FOODS: HEALTH AND SAFETY 
ASPECTS 

MONIKA THAKUR, VATSALA SHARMA, and ASHMITA SINGH 

ABSTRACT 

The philosophy “Let food be thy medicine and medicine be thy food” by 
Hippocrates is re-establishing the interest of the scientific community. 
Primarily, the consumer’s interest is more on health-promoting food with 
bioactive components having certain disease preventive properties. The 
phytonutrients play a significant role to withstand various physiological disor
ders, and therefore, such foods are the necessity in the present-day scenario. 
Functional foods have been classified at the convergence of drugs and food, 
and the selection of these bioactive components has been made as per their 
protective functions, physical, and chemical attributes of the particle. Even 
though, in that place, evidence is lying that these bioactive components play 
a focal role in the avoidance of several diseases and promotion of health, but 
the considerations for lack of side effects have to be of an immense impor
tance and has many challenges as well. Safety concerns have recently been 
lifted, specially focusing on arbitrary incorporation of bioactive constituents 
to the foods. The safety issues linked to herbs are complicated and the matter 
of herb-drug interaction is generating consciousness among consumers and 
researchers. Food and Drug Administration (FDA) also has issued a Public 
Health Advisory for various traditional herbs. To date, there are critiques that 
are focused upon the purpose of functional and nutraceutical components 
in preventing various health issues; however, no focus has been made on 
the safety concerns related to such foods. The present review discusses the 
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health and safety aspects of functional foods and nutraceuticals so that the 
researchers shall be able to develop an enhanced and robust system to report 
and examine carefully the health issues linked to consumption and utiliza
tion of enriched foods. 

10.1  INTRODUCTION 

Hippocrates golden words, “Let food be thy medicine and medicine be thy 
food” becomes mandate in the modern world. Food Researchers, producers, 
and most importantly the food consumers discern that the food consumption 
is not only limited to perform specific body functions but, it also contributes 
in the treatment and overall well-being. In the present scenario, food becomes 
a highly recognized sector; people become very well aware about the food, its 
bioactive components, and various pharmacological roles other than just being 
a source of micro and macronutrients [2]. With the advancement in the domain 
of Food Sciences and Technology, naturally driven health-promoting products 
received substantial attention for their therapeutic potential and nutritive prop
erties by both the experts as well as the public. The concept of functional food 
and nutraceutical are expressed by Dr. Stephen Defelice as “Any substance 
that may be considered as food or part of a food and dispenses medical and 
health benefits inclusive of the avoidance and treatment of disease.” 

The term nutraceuticals is basically an amalgam of two words: Nutrient 
and Pharmaceuticals. As stated by the Association of American Feed Control 
Officials (AAFCO), ‘Nutrient’ represents the food constituent in the way at 
which it facilitates and supports the life of living being while ‘nutraceutical’ 
represents the non-toxic or considerably safe component in the food that is 
proved to possess bioactivity and foster health benefits like avoidance and 
management of diseases [40]. Functional foods are basically similar to the 
normal daily routine conventional foods, and are an integral part of our food 
platter with the nutrients and the bioactive components that can improve 
biological functions and make them healthier, fitter, and safer [42]. On the 
other hand, Nutraceuticals are one of the products of food but they are utilized 
as medicine like a tablet/capsule/powdered form, solutions that are not exactly 
utilized as a food though consumed as a natural supplement for individuals to 
treat various chronic diseases and to promote various physiological benefits. 
They have also been referred as “natural health products” in Canada [46]. 

Functional foods and nutraceuticals help in providing the means to take 
the edge off increasing pressure on Medical Health Care System by taking 
preventive measures. This leads to the increased inquisitiveness towards their 
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continuous use, which is supported by ongoing research attempts to validate 
the properties and possible administrations of nutraceutical components in 
food, in combination with communal interest and consumer demand [1, 4, 19, 
34, 37, 39, 45]. 

Consequently, in today’s course of events, the usage of functional foods 
is included in the wish list of every single individual. Indigenously also, the 
natural and traditional products have been consumed since time immemorial, 
however the scientific authentication is yet unexplained and inexperienced. 
Few toxicity studies have also been reported. A lot of in vitro work has been 
done but in vivo studies on efficacy, bioavailability, and safety are still in the 
pipeline. This sector is facing substantial challenges in relation to the safety 
matters, toxic evaluation, and the regulatory issues globally. 

This chapter explores potential and broader overview of functional foods, 
nutraceuticals, their categories, health, and safety aspects, safety assess
ments, toxicological studies, and regulatory assessments. 

10.2 CATEGORIES OF FUNCTIONAL FOODS 

10.2.1 ON THE BASIS OF THEIR ORIGIN 

1.	 Basic or Natural Functional Foods: Food products containing natural 
biological active non-nutritive components, e.g., tomato–lycopene, 
turmeric–curcumin. 

2.	 Formulated Foods: These include the food products especially 
formulated to have the higher amounts (means they naturally don’t 
have enough amount of that biologically active compounds). They are 
foods with enhanced functional components, e.g., ɷ-3 enriched eggs. 

10.2.2  ON THE BASIS OF SOURCES (Figure 10.1) 

10.2.2.1 PLANT-BASED PHYTOCHEMICALS 

Phytochemicals are plant-derived bioactive components. They are a non
essential part of the plant which helps to promote various pharmacological 
functions like protection against chronic degenerative disorders like cardio
vascular diseases (CVDs), cancer, etc. [36]. Major classes of phytochemicals 
are terpenoids, phenolic metabolites, alkaloids, including phytoestrogens, 
antioxidants, vitamins, tocopherols, steroids, gamma-linolenic acids (GLA). 
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Major sources are green-colored foods, such as brassica vegetables, soy 
plants, grains, etc. [9]. 

FIGURE 10.1  Categories of functional foods. 

10.2.2.2  ANIMAL-BASED ZOOCHEMICALS 

Zoochemicals are animal-based bioactive components. Animal-derived func
tional foods include ɷ-3 and ɷ-6 fatty acids, conjugated linoleic acid, small 
peptides, whey proteins, and casein and glucosamine. The ɷ-3 fatty acids 
include alpha-linolenic acid, docosahexaenoic acid (DHA), and eicosapen
taenoic acid (EPA). 

10.2.2.3  ALGAL-BASED BIOACTIVE COMPONENTS 

Bioactive components derived from microalgae reported with many func
tional properties like antioxidant, anti-aging, anti-cancerous properties, and 
many more [41, 44]. Various food industries use exo-polysaccharides (EPS) 
as thickeners and gelling agents produced by several microalgae [17]. They 
are excellent sources of lipids, specifically of omega-3 fatty acids (DHA 
and EPA), which can help to facilitate the lactating women and adults [32]. 
Some examples include Spirulina, containing all the essential AAs, whereas 
Chlorella in detoxification and relieves premenstrual syndrome. 

10.2.2.4 MUSHROOM-BASED BIOACTIVE COMPONENTS 

Mushrooms have a plethora of bioactive components, like polysaccharides, 
dietary fibers (DFs), oligosaccharides, triterpenoids, peptides, proteins, 
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alcohols, and phenols. These components help in various pharmacological 
functions like immunomodulatory, anti-tumor, anti-cancerous, anti-hyper
cholesterolemic properties, anti-viral action, and also as aphrodisiacs [28, 
29, 42, 45, 46]. 

10.2.2.5 MICROORGANISM-BASED BIOACTIVE COMPONENTS 

Microorganisms are source of several bioactive components. Many strains 
are reported with many biofunctional effects and have many industrial uses. 
These strains are utilized in the development of many nutraceutical food 
products and as dairy starters like lactic acid bacteria (LAB) [22]. The probi
otics and prebiotics together as symbiotics are positioned or focused dietary 
supplements, which help in enhancing the health [30, 43]. 

Food composed of various non-nutritive components with many pharma
cological functions is enlisted in Table 10.1 with their bioactive components 
and respective health benefits. 

10.3  HEALTH AND SAFETY ASPECTS OF FUNCTIONAL FOODS 
AND NUTRACEUTICALS 

The demand of consumers for nutraceuticals is growing rapidly in the market, 
yet it seems to lie in a gray zone between pharmaceuticals and food. They 
confront many challenges related to the safety and health claims, the reason 
being the lack of regulatory shared systems and lack of in vivo research with 
reference to the suggested health claims that avoid the procurement and 
use of it on the labels of the food items. It is judicious to possess specific 
defined laws for the use and formulations of nutraceuticals that have all the 
safety parameters with well-proven clinical data. However, it is appropriate 
to consider the clinical outlook of nutraceuticals as the “Pharmafoods” or 
any type of connection between food and drugs assumed together with 
nutraceuticals. 

In the world with nutritional imbalance, these can play a vital role but for 
that we require the following objectives [37]: 

•	 It is vital to get better nutritional products towards sustainable health, 
for which we are required to make sure that the assertions made are 
trustworthy and honest and all are based on the scientific evidence 
and have verified documentation. 



 
 TABLE 10.1 The Bioactive Components with Their Origin and Health Benefits 

 

  
 

 
 

Origin Bioactive Compound Health Benefits	 References 

Plant-based Components 

Cocoa powder Cardiac glycoside, tannin Potential benefits in renal and hepatic toxicity [14] 

Flax seeds α-linolenic acid (ALA) Cancer preventive effects, reduce risk of coronary 
heart disease 

[46] 

Red pepper, ginger Capsaicin Anti-carcinogenic [36, 45, 46] 

Soybean, flax, maize Diadzein Reduce menopause symptoms, improve bone health [40] 

Sweet clover plant Warfarin Antimicrobial activities, Sweet-smelling anticoagulant [36] 

Animal-based Components 

Mackerel and Salmon ɷ-3 and ɷ-6 fatty acids Precursors of potent lipid mediators, regulation of 
inflammation, proinflammatory, and immunoactive 
functions 

[49] 

Sea cucumbers Holothuroidea Triterpene glycosides (saponins), 
polysaccharides, sterols, phenolics, 
peptides, cerebrosides, and lectins 

Anti-microbial and anti-cancerous [3] 

Algal-based Components 

Chorella vulgaris and Arthrospira Phycobiliproteins Coloring agent with excellent antioxidant properties [32, 41, 44] 
platensis (Microalgae) and as additives in food and beverages 

Dunaliell salina (Microalgae)	 β-Carotene Coloring additive in food [32, 44] 

Red algae	 Ascorbic acid, polyphenols Antioxidant activity [41, 44] 

Spirulina sp. (Microalgae)	 DHA, EPA, ALA, Steridonic As a human food supplement, natural dyes, fluorescent [17, 33, 44] 
acid, vitamins, essential AAs, and agents, cosmetics, antioxidant, anti-inflammatory, 
phycocyanin neuroprotective, or hepatoprotective agent 
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 TABLE 10.1 (Continued) 

Origin Bioactive Compound Health Benefits	 References 

Mushroom-based Components 

Coprinus comatus Ornithine and γ-amino butyric acid 	 Regulating neuronal excitability throughout the [38, 42] 
(GABA)	 central nervous system in mammals, inhibitory 

neurotransmitter, anti-anxiety, anticonvulsive effect, 
and antidiabetic effects 

Cordyceps sinensis and C. Polysaccharide and cordycepin Potent anticancer components [28, 42] 
militaris (3’-deoxyadenosine) 

Ganoderma lucidum Triterpenoids and polysaccharides	 Anti-tumor effects, enhance the immune system, reduce [28, 42] 
blood pressure, and help to reduce blood sugar levels 

Ganoderma lucidum Ganoderan-bioactive glucan	 Heteroglucans and proteoglycans with immune [28, 38] 
stimulating activity and anticancer activity 

Schizophyllum commune EPS-Schizophyllan	 Use in skin care products as viscosifier and as [28, 42] 
anti-aging, de-pigmenting, and healing agent 

Volvariella volvacea Standard and nonstandard AA	 Anti-hypertensive and anti-diabetic properties [28, 42] 

Microorganism-based Components 

Bifidobacterium bifidum BGN4 Probiotic strain Immune-modulating properties [1, 27] 

Propionibacteria sp. Vitamin B12 Anti-fungal and anti-bacterial [1, 22, 23] 

Slovenian cheese Lactobacillus plantarum isolates High antimicrobial and immunomodulatory [1, 4, 30] 
(PCS20, PCS22, PCS25 and PCS26) capabilities 
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•	 Their presence in the foods must also depict the level of their fortifica
tion otherwise toxicity may be reached upon ingestion of an exclusive 
component rather than micro-doses of multiple components that may 
otherwise have interaction. 

•	 The food-based approach is always considered easy than the compo
nent-based approach. 

In the upcoming years, it is anticipated that the nutraceutical market 
will grow because of the industrial and consumer’s interest. The usage of 
plant wastes and byproducts from agricultural produce targeted the interest 
in the growth and optimization of bioactive components which shows the 
possibility for the development of new recipe formulations [8]. 

10.4  SAFETY ASSESSMENT OF FUNCTIONAL FOODS AND 
NUTRACEUTICALS 

The active components that are possibly utilized on an individual basis 
or as an additive in food beverage with health-benefiting role and decent 
safety profile demonstrating safe consumption for individuals can be 
recognized as functional ingredients. Therefore, the records of advanced 
and revolutionary technologies are available to attain information and are 
rapidly scaling up in this age of technology-oriented care for health-related 
issues. Therefore, with these innovative technologies, it is appropriate 
to re-visit the analysis of functional components in the context of these 
emerging technologies [3]. 

At present, the safety concerns are receiving more importance from 
industries related to food, health professionals, biomedical communities, 
policy makers, governments, and lastly by the customers [6, 24, 46]. Func
tional foods are looked forward to having significant background in the latest 
nutrition science, to foster health and to mitigate the probability of deadliest 
diseases. The food product consumed should be developed and validated 
post investigation of benefits with its long-term risk [3]. 

Food and Agriculture Organization (FAO) highlighted the importance of 
Placebo-controlled clinical trials for the food safety aspects and thus for the 
formulation of such foods with four different phases as: safety, efficiency, 
effectiveness, and surveillance. 

Preference of the trial procedure to evaluate safety should be hinged on 
a variety of novel food and on the account of whether the similar functional 
properties are present or not [10]. For computation of safety efficacy of 
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functional food, health experts (dietitian/nutritionist/food science special
ists) should be able to answer on following assertions [20]: 

•	 Administration of modulated human clinical mediating trials; 
•	 Amount of ingredient present in one serving; 
•	 Efficacy of single dose of functional ingredient on consumption; 
•	 Frequency of consumption of functional food; 
•	 Functional ingredients present in functional foods; 
•	 Interaction of functional ingredient with drugs; 
•	 Measure of health benefits from functional ingredient; 
•	 Peer-reviewed research studies on functional ingredients; 
•	 Provision of safety information by manufacturer or background of the 

published research; 
•	 Publication of the studies in peer-reviewed journals; 
•	 Scientific evidence of efficacy of functional food ingredient; 
•	 Standard serving size. 

The assessment of safety in functional foods has been based upon 4-step 
approach: hazard identification, hazard characterization, exposure assess
ment, and risk characterization. 

10.4.1  HAZARD IDENTIFICATION 

Gathering pre-existing information about the food and ingredients with a 
precise biological identification of naturally occurring substance is the initial 
step in food safety assessment. Description of geographical distribution and 
details of origin of foods/ingredients with their analysis of variability in 
composition should be defined [5]. 

Identification of constituents (such as: protein, AAs, fatty acids, ash, and 
content of moisture) and chemical hazards (such as: toxicants, presence of anti-
nutrients, mycotoxins, heavy metals, etc.), is necessary. The outcome of the 
food consumption should be considered to ascertain that no unpropitious effects 
by the means of malnutrition [11]. In case of scanty data, testing for toxicity 
should be carried out for safety hazards identification and characterization [3]. 

10.4.2  HAZARD CHARACTERIZATION 

This step elucidates harmful health effects which may result after ingestion 
of hazards. On the availability of significant data, the characterization of 
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food hazard should manifest information and also the possibility of harmful 
effects. This can be implemented as a stand-alone process or as a risk. 

10.4.3  ASSESSMENT OF COMPONENTS 

Analysis of a hazard for a specific pathogen play role as a building block 
in the assessment of risk of the functional food for a variety of objectives. 
Characterization of hazard developed for the assessment of water possibly also 
work for the assessment of food matrix. Generally, hazard characterization 
of the same pathogen might work in every scenario for the safety assessment 
[15]. This step for analyzing of water and food follows a six-step approach 
(Figure 10.2). 

FIGURE 10.2  Process for hazard characterization of pathogens. 

10.4.4  EXPOSURE ASSESSMENT 

This step takes account of two strands: the amount of the constituent present 
and consumption amount for an individual population. Information on 
the quantity of food/food constituent’s consumption is procured from the 
national dietary or nutritional surveys like National Health and Nutrition 
Examination Survey (NHANES) which are formulated for the assessment of 
the diet, nutrition intake, and status of nutrition of the broad society including 
individuals of stage life of over 1.5 years. The intake of food is also quanti
fied by three methods namely; food records (or food diaries), 24-hour recall, 
and Food frequency questionnaire (FFQ) [13]. 
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10.4.5  RISK CHARACTERIZATION 

This is in the combination of the preceding steps to acquire a risk estimation 
(harmful health effects which will occur in a given population, with related 
lack of certainty) [15]. These adverse effects have been obtained from 
toxicological studies and study various terms, such as acceptable daily intake 
(ADI), provisional maximum tolerable daily intake (PMTDI), provisional 
tolerable weekly intake (PTWI) and provisional tolerable monthly intake 
(PTMI) [3, 35]. The risk characterization manifests the process that the 
ingestion of whole food or ingredient is safe for consumers or not. This is 
worked on various hypothesis for the evidence of safety for the use of bioactive 
component utilized in the production of nutraceutical and synchronize by the 
following postulations [16, 26]: 

•	 Bioactive components are physiologically active compounds having 
a varied range of results in the body, from physiologic effect to 
therapeutic potency to toxicity. Comprehending the system for 
pharmacology and toxicology prospects is significant to anticipate the 
outcomes of exposure at different levels of dosage. 

•	 Bioactive components are diverse. The distinctive safety issues are 
linked with each and every component. 

•	 The drug-food interactions must be worked upon for safety’s sake. 

The characterization of components and pre-existing data serve as the back
ground for the testing of toxicological studies, and they can predict the potency 
of perilous health effects at the distinct levels of dosage as mentioned below [26]: 

•	 Conventional/extracted/synthetic single component ingredients; 
•	 Extracts with the specific ingredients; and 
•	 New product development with recent technologies [26]. 

10.5  TOXICOLOGICAL STUDIES 

Naturally food-derived components are usually considered as safe as per their 
long history of human usage. Despite the fact that there is insufficient data on 
the toxicological studies on the biological products as a consequence of their 
natural structure. Therefore, it is not correct to assume that these compounds 
are biologically safe and are exempted from any health risk. Nowadays, studies 
manifest those common bioactive compounds do have advantageous effects 
nutritionally, but they can also deploy harmful effects at pharmacological 
doses. There are new methodologies formulated for the assessment of toxicity 



 

 

240 Novel Processing Methods for Plant-Based Health Foods 

in foods, such as – predictive toxicology and toxicomics, which reduces the 
inconsistency in decision-making in regard to natural products [18]. 

Toxicity in nutraceuticals or food ingredients through the process of 
production will definitely modify the standard and safety. The risk on health 
due to the consumption of these products significantly lies on the existence of 
infrequent high amounts of chemicals which tend to result in severe toxicity 
or even fatality many times. This is an urgent issue for children, pregnant 
women, or elderly adults if contaminated nutraceuticals are consumed above 
the tolerable limit as compared to adults. Some of the toxic chemicals have 
been investigated with different types of toxic contaminants in functional 
foods and nutraceuticals [18]. 

10.6  RISK ASSESSMENT OF TOXIC CONTAMINANTS 

Provisional tolerable intake (PTI) values are based upon the maximum 
quantity of toxic non-metals and metals present in medicinal plant materials. 
The permissible limits of toxic metals in all the herbal presentations vary 
from product to product [47, 48]. With the recommendations of JMPR, the 
limits have been determined, and they also have the supplements of ADI and 
analytical methodology to determine the various residues. Different world 
organizations such as WHO, FAO, and EU decide the maximum residual 
levels (MRL) for animal feed and human food [18]. 

10.7  REGULATORY BODIES FOR THE ASSESSMENT OF 
FUNCTIONAL FOODS AND NUTRACEUTICALS 

The regulatory bodies have a very significant role in the safety analysis and 
toxicological studies of functional and nutraceutical part of the food. All 
countries have their own regulatory framework for the formulations and 
safety evaluation of functional foods. Table 10.2 indicates the regulatory 
bodies in different countries [46]. 

10.8  REGULATION OF CLAIMS FOR NUTRACEUTICALS 

The claims for the nutraceuticals and functional foods have not been vali
dated with their technical requirements but still three very important claims 
have been streamlined as follows [25]: 



 

   

 

 

 

 

Country Regulation 
Australia and New 	 Australia New Zealand Therapeutic Products Agency (ANZTPA) 
Zealand 
Canada	 Bureau of Nutritional Sciences of the Food Directorate of 

Health Canada 
China	 State Food and Drug Administration (SFDA) 
European Union	 European Food Safety Authority (EFSA) 
India	 Food Safety and Standards Authority of India (FSSAI) 
Japan	 Food for Specialized Health Use (FoSHU) 
Russia	 Biologically Active Food Supplements (BAFS) 
South Korea	 Health/Functional Food (HFF) 
Taiwan	 Health Food Control Act (HFCA) 
United States	 Dietary Supplement Health and Education Act of 1994 (DSHEA) 
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1.	 Nutrient-Content Claims: To promulgate the content of nutrients on 
the product. 

2.	 Nutrient-Comparative Claims: Estimate the content of various 
nutrients with the corresponding foods. 

3.	 Disease-Risk Reduction Claim: Established by Codex Alimentarius 
which are commonly not permitted in Asia. 

TABLE 10.2 Regulatory Bodies for Functional Foods and Nutraceuticals 

10.9  SUMMARY 

The industry of nutraceutical is flourishing at a faster pace. Even though, there 
is evidence that these bioactive components play a focal and determining 
role in the prevention of the disease and health enhancement, but the safety 
considerations should be of utmost importance. Safety concerns have latterly 
been lifted, specially focusing on random addition of bioactive components 
to the foods. Moreover, toxicity in nutraceuticals or food constituents with 
the process of production has an effect on the safety concerns and quality 
parameters. Therefore, the chapter aims to review the health and safety 
certitudes of functional foods and nutraceutical constituents, in regard to 
make the researchers proficiently develop a potent system for catalog and 
scrutinize the reports of health problems correlated with functional and 
nutraceuticals foods. 
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CHAPTER 11
 

EDIBLE MUSHROOM PHENOLICS: 
HEALTH AND FUTURE PERSPECTIVES 

SANUSI S. NASSARAWA, AHMAD GAMBO, MUNIR A. DANDAGO, 
and BALARABE B. ISMAIL 

ABSTRACT 

As secondary metabolites, phenolic compounds are found in many mush
room (MSR) species. These compounds have sparked a lot of interest as 
common bioactive compounds in the functional foods and pharmaceutical 
industries for health promotion and disease control because of their possible 
health benefits to humans, such as antioxidants and other biological 
activities. In this chapter, a MSR will be introduced; particular focus on 
classification and distribution of MSR phenols, biological activities of 
MSR (antioxidant, antitumor, anti-inflammatory, antihyperglycemic, anti
tyrosinase, and antimicrobial activity), MSR phenol as a nutraceutical, 
pharmaceutical, and cosmeceutical agents, and future perspectives of MSR 
phenol will be availed. 

11.1  INTRODUCTION 

MSR is a mega-organism with a typical plant organ that can look either higher 
or downstairs, prominent adequate to be envisioned [18]. MSR is estimated 
to be 0.14 million worldwide. More than 2,000 species are protected, with 
about 700 species exhibiting various biological activities [80]. Since the old 
era, MSR species are consumed as food and medicinal drug. Apart from taste 
buds and fragrance, MSR has significant nutritional value. 
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MSR is rich in proteins, vitamins, carbohydrates, minerals, and minor fat 
content. Moreover, MSR has contained a few essential amino acids (EAA) 
and fibers [62]. MSR also contains secondary metabolites [48] and phenolic 
compounds, all of which have antiviral, antioxidant, antibacterial, and anti
tumor properties [39]. 

Among various secondary metabolites reported from MSR, polyphenols 
are widely explored and effective against multiple health benefits [35]. The 
presence of phenolic compounds as well as flavonoid compounds were 
reported from mushroom extracts [10]. 

This chapter discusses recent developments in mushroom phenolic 
compounds, such as new sources, structural features, biological activities, 
and possible mechanisms of action, trends in their use as a nutraceutical, 
medicinal, and cosmeceutical agents, and prospective industrial applications. 

11.2  CATEGORIES OF MSR PHENOLS 

In phenolic compounds, one or more hydroxyl groups are bound to at least 
one aromatic ring (C6). Simple molecules to complex polymers can be found 
in their composition [47]. Various phenolic acids have been discovered in 
extracts from various MSR species (Figure 11.1). 

FIGURE 11.1  Classification of MSR polyphenols. 
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Non-flavonoid acids (e.g., gallic, p-coumaric, and caffeic acids) are classi
fied into two categories: C1–C6 and C3–C6 backbone derivatives of cinnamic 
acid and benzoic acid. According to many studies, phenolic acids are the largest 
polyphenols responsible for many MSR species’ biological activities [50, 53]. 

Flavonoids are phenolic compounds with two C6 units (A and B ring) 
and a general structural backbone of C6–C3–C6. Flavonoids are divided 
into many subgroups, including flavones, flavonols, and anthocyanins. The 
existence of flavonoid compounds in several MSR species extracts has been 
demonstrated in many studies [10]. 

Tannins are phenolic compounds found in plants that can precipitate 
proteins from aqueous solutions. Tannins may form complexes with various 
other substances, including polysaccharides, alkaloids, and nucleic acids. 
Tannins have been found in Pleurotus tuber-regium (fries) [3], Agaricus 
silvaticus, Hydnum rufescens, and Meripilus giganteus [30]. 

Another class of MSR polyphenols is tocopherols. These compounds are 
classified into four groups (α, β, γ, and δ) based on the number and position 
of methyl groups. Some research on the content of tocopherol in MSRs has 
been published [31]. Other phenolic compounds have been obtained from 
some MSR species are: 

•	  Benzophenone derivatives, daldinals A-C from Daldinia childiae  
[61, 81]; 

•	  Grifolin derivatives from Albatrellus ovinus [43, 55]; 
•	  Grifolin derivatives from Boletus pseudocalopus [68]; 
•	  Hispidin from Phellinus linteus [59]. 

11.3  BIOLOGICAL ACTIVITIES OF MSR PHENOLIC COMPOUNDS 

11.3.1  ANTIOXIDANT PROPERTIES 

Oxidative stress is the primary cause of excessive reactive oxygen species 
(ROS) formation in cellular organisms. Too much (ROS) production can 
trigger oxidative mutilation to biological macromolecules; including 
proteins, lipids, and nucleic acids, leading to tissue injury or death [78]. ROS 
such as peroxide, hydroxyl radicals, and superoxide radicals can damage 
DNA and cause enzyme and protein structure disruption. These molecules 
are also involved in the pathogenesis of several chronic diseases, including 
cancer, diabetes, cataracts, aging, neurological disorders, cardiovascular 
disease, and rheumatoid arthritis [36]. 
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Free radical scavenging (FRS) and reducing capacities were high in some 
MSR extracts, as well as excellent DNA protection against H2O2-induced 
damage [5]. Ahmad et al. [2] demonstrated that the observed effects are 
primarily related to phenolic content’s antioxidant properties owing to redox 
reactions, which enable them to function as reducing agents or hydrogen 
molecule donors. Also, Bahadori et al. [10] illustrated that phenolic water 
extracts in MSR species (Melanoleuca cognata and Melanoleuca stridula) 
have the strongest in vitro antiradical activity followed by methanolic 
extracts; however, the lowest was found in ethyl acetate extracts. 

Antioxidant properties of ethyl acetate extracts and methanolic extracts 
of various MSR species were investigated in another study (Meripilus gigan
teus, Agaricus silvaticus, and Hydnum rufescens flowed from high flavonoid 
content and polyphenol content). These effects promote the consumption 
of these extracts for improving human wellness, equally in food industries 
and pharmaceuticals [30]. Antioxidant activity was found in Polyporus 
fomentarius, Polyporus volvatus, Polyporus badius, Cantharellus cibarius, 
Polyporus stevenii, Lactarius deliciosus, Trametes Versicolor MSRs from 
Turkey and the highest in vitro scavenging activity was observed in P. 
voluatus [57]. Similarly, researchers studied the antioxidant activities of 
some commonly consumed MSR species in China and illustrated that all 
MSR species showed antioxidant activity; and the highest in vitro antioxidant 
activities were found in Boletus aereus (porcino nero), Hellinus igniarius 
(mulberry yellow), Umbilicaria esculenta (stone ear), and Griflola frondosa 
(maitake) [35]. 

11.3.2  ANTITUMOR ACTIVITY 

The importance of MSR species as anti-cancer agents has been recognized 
in recent years, and its use as a biological agent in cancer treatment has been 
suggested [22]. They exert antitumor activity by inhibiting the increase in 
cancer cells and tumor growth, as seen both in vitro and in vivo investigations 
[54]. Several research showed the potential anticancer activity of phenolic 
compounds from MSR species such as Albatrellus confluence against human 
ovarian cancer [86] and human gastric cancer cell [85], Auricularia poly
tricha species against the colon, breast, and kidney cancer [7], Clitocybe 
alexandri against Nonsmall cell lung cancer [77], Coprinopsis atramentaria 
against human colon cancer [38], Ganoderma lucidum against human lung 
cancer [20], and Inonotus obliquus against leukemia [52]. 
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On the other hand, flavonoid compounds such as rutin, myricetin, 
naringenin, quercetin, hesperetin, and morin make up most of the polyphenolic 
content of Ganoderma lucidum ethanol extract. Antiproliferative activity and 
the occurrence of these compounds in MSR extracts are highly correlated [64]. 

11.3.3  ANTI-INFLAMMATORY ACTIVITY 

Inflammation is the immune system’s biological reaction to harm caused 
by chemical, physical, and pathogenic influences. Acute inflammation is a 
short-term inflammatory response that usually resolves on its own [6]. In 
some cases, however, uncontrolled acute inflammation can lead to chronic 
stage [21]. Due to its ability to reduce the synthesis of inflammatory media
tors, MSR has demonstrated anti-inflammatory properties [24]. 

Moro and coworkers stated that different compounds in mushrooms had 
been pointed out as potential anti-inflammatory agents, including phenolic 
compounds [49]. They also discovered that pyrogallol inhibits the synthesis 
of nitric oxide (NO), interleukin-6 (IL-6) mRNAs, and inducible nitric oxide 
synthase (iNOS), IL-1β in RAW 364.7 macrophages in response to lipopoly
saccharide (LPS) stimulation [32, 49]. 

Using LPS-activated RAW 264.7 macrophages, the anti-inflammatory 
effects of phenolics from edible MSR species were also investigated in vitro. 
The effects of extracts on the expression of inflammation marker, including 
IL-6 and IL-1, and the synthesis of NO were investigated. MSR species, 
Lactarius deliciosus, Cantharellus cibarius, and Agaricus bisporus had the 
most prominent anti-inflammatory effects of the studied model [58]. In addi
tion, grifolins were found that LPS stimulated NO output in RAW 264.7 cells 
was significantly inhibited, with IC50 values varying from 22.9–29 μ M [61]. 

Pleurotus ostreatus (PO), Macrolepiota procera (MP), Boletus impolitus 
(BI), and Agaricus bisporus (AB) phenolic extracts displayed the most 
impregnable anti-inflammatory budding, showing the most eminent inhibi
tion of NO development [74]. These species also had the highest concentra
tion of cinnamic acid, which had the greatest anti-inflammatory activity. 

11.3.4  ANTIHYPERGLYCAEMIC ACTIVITY 

Diabetes mellitus metabolic changes are associated with lipid metabolism, 
carbohydrate, and protein [66]. The most powerful method for reducing the 
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risk of diabetes type 2 is to inhibit the polysaccharide hydrolysis enzymes 
pancreatic amylase and intestinal glucosidase [40]. 

Many MSR species have been claimed to be active against this disease 
and can regulate it and its problems such as hypertension, cardiovascular, 
and renal failure diseases [29]. As such, antioxidants in MSRs, such as 
polyphenols and flavonoids, have shown important anti-diabetic properties 
by suppressing the activity of some enzymes, including α-glucosidase and 
α-amylase [44]. 

Some edible MSR species collected in Thailand, such as Russula emetica, 
Phlebopus portentous, and Rugiboletus extremiorientalis showed anti-hyper
glycemic activity. R. extremiorientalis had higher inhibitory activities against 
α-glucosidase than other mushroom species, which may be attributed to its 
high polyphenol and flavonoid content. R. extremiorientalis water extracts 
and methanolic extracts had higher α-glucosidase repressing activities (54.4 ± 
1.2% and 55.5 ± 3.9 reserves) than its ethanol and acid extracts [37]. 

In another study, Stojkovic, and coworkers investigated the in vitro anti-
diabetic properties for six edible and medicinal MSR classes, such as Cordy
ceps militaris, Inonotus obliquus, Morchella conica, Agaricus blazei, Coprinus 
comatus, and Phellinus linteus are only a few of the species. They discovered 
that all methanolic extracts of selected MSRs inhibited α-glucosidase enzyme 
activity, while all methanolic extracts except M. conica and C. militaris inhib
ited α-amylase activity. According to the findings, Inonotus obliquus was the 
most promising potential anti-diabetic species [71]. 

Tremella fuciformis, Agrocybe aegerita, Auricularia auriculajudae, 
Hericium Erinaceus, Grifola frondosa, Ganoderma lucidum, Lentinus edodes, 
and Russula sanguinea were among the eight MSR species studied for their 
anti-diabetic properties. For some fungi, such as G. lucidum, because of their 
high content of phenolic and flavonoid content, as well as high inhibition of 
α-glycosidase and aldose reductase, G. lucidum has anti-diabetic properties. 
Furthermore, this research discovered a connection between antioxidant activity 
and anti-diabetic results [83]. In diabetic rats, oral syringic acid administration 
reduced plasma glucose levels as well as liver and kidney glycoproteins, as 
evidenced by increased plasma insulin and C-peptide levels [51]. 

11.3.5  ANTI-OSTEOPOROTIC ACTIVITY 

Bone loss and skeletal tissue microarchitectural degradation characterize 
osteoporosis, follow-on in bone fragility and an amplified risk of fracture. 
Fast bone turnover causes osteoporotic bone loss, in which bone resorption 
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outpaces bone deposition [75]. In menopausal women, a lack of estrogen 
(E2) induces an imbalance in bone turnover. The number of osteoporosis 
patients has risen in recent years because of an aging population, and bone 
health has become a serious concern. Fitness and dietary habits have a 
significant stimulus on bone health. Consequently, improved nutrition is 
likely to be part of the solution to this serious issue. Bioavailable estrogens, 
such as selective estrogen receptor (ER) modulators, can help to correct the 
difference in bone turnover [46]. 

Nutritional compounds extracted from MSR species, including phenolic 
compounds and vanillic acids, show promise in preventing postmenopausal 
osteoporosis. Nevertheless, more research is required to fully comprehend 
the molecular mechanisms that underpin the anti-osteoporotic behavior of 
syringic and vanillic acids [73]. 

Furthermore, dietary syringic acid from the mycelium of the shiitake 
MSR Lentinula edodes can protect ovariectomized (OVX) mice from bone 
loss and microarchitectural deterioration without affecting the uterus [72]. 
Syringic acid can affect both bone resorption and bone growth, making it 
beneficial for osteoporosis disease prevention. Syringic and vanillic acids 
prevent nuclear factor-kB (NFkB), an oxidative stress-responsive factor, 
from binding to DNA in human colorectal cells, resulting in anti-osteoporotic 
activity [1]. 

11.3.6  ANTI-TYROSINASE ACTIVITY 

Tyrosinase is a di-nuclear copper active site polyphenol oxidase that is 
involved in the first stage of melanin formation in humans, animals, and 
plants. An overactive form of the tyrosinase enzyme is also involved in the 
enzymatic browning of fresh produce, causes hyperpigmentation (melanin 
increase) of human skin. As a result, tyrosinase inhibitors have piqued 
interest as skin whitening and anti-browning agents in the food and beverage 
industries [17]. 

Gallic acid, hydroxycinnamic acid, catechin, sinapic acid, protocatechuic 
acid, rutin, vanillic acid, syringic acid, ferulic acid, and apigenin are large 
phenolic acids that have significant anti-tyrosinase activity and can be found 
in many wild MSR species. The antioxidant activity of these compounds may 
be one of the most effective ways to inhibit tyrosinase [37]. Furthermore, 
flavonoid compounds contained in mushroom extracts have the ability to act 
as natural inhibitors of tyrosinase [19]. 
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Furthermore, the Lentinus lepideus methanol extract inhibited tyrosinase 
more effectively than the hot water extract. The phenolic and flavonoid 
content of both mushroom species had an average relationship with their 
tyrosinase inhibitory activity [87]. In contrast, the amount of hydroxyl groups 
in phenolic compounds can affect inhibition of tyrosinase, which forms 
hydrogen bonds with the low enzyme’s active site, resulting in a decrease in 
enzyme activity [4]. 

11.4 NUTRACEUTICAL, PHARMACEUTICAL, AND 
COSMECEUTICAL AGENTS OF MUSHROOM PHENOL 

11.4.1  MUSHROOM PHENOL AS PHARMACEUTICAL AND 
NUTRACEUTICAL AGENTS 

Many ancient traditional medicine systems have recorded the use of mush
room species in folk medicine, including traditional Chinese medicine, 
Indian medicine (Ayurveda), Korean medicine (Hanyak), and traditional 
Japanese medicine) (Kampo) [60]. For a long time, ancient civilizations 
such as Egypt, early Greek, Roman, and Mexican cultures used MSRs as 
delicacies and even medicine [16, 28]. 

Recently, using MSR bioactive compounds in functional foods to promote 
its health effects and control of many chronic diseases is on the rise [76]. In 
this context, fortifying grains such as brown rice, canjica corn, and wheat 
by some mushroom species with high phenolic components can improve 
antioxidant, anti-diabetic, anti-obesity, and other biological activities for 
these products, which present a potential for functional foods [70]. 

Furthermore, several mushroom species have been used in muffins to 
upsurge the phenolic content and improve the dietary value and quality 
characteristics of these foods, according to numerous reports [56]. 
Furthermore, adding the MSR powder to extruded snacks increases the snack 
samples’ essential volume, water solubility index, total phenolic content 
(TPC), and antioxidant activity [45]. 

11.4.2  MUSHROOM PHENOLS AS COSMECEUTICAL AGENTS 

The growing number of commercial cosmeceutical formulations that claim 
to help with fine lines, wrinkles, aging, skin texture, photoprotection, and 
pigmentation indicate that mushroom cosmeceutical ingredients are making 
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their way into the cosmetic industry [84]. The findings showed strong markers 
of extract suitability for skincare formulations, as well as the absence of 
toxicity in keratinocytes and fibroblasts, suggesting that they could provide 
some protection. 

Natural polyphenols have also been shown to have anti-oxidant efficacy, 
making them promising candidates for use in anti-aging lotions and creams 
[69]. Several previous studies have discovered anti-collagenase activity in 
mushroom phenolic acids include ellagic acid [9] and p-coumaric acid [65]. 

11.5 CHALLENGES AND FUTURE PERSPECTIVES OF MUSHROOM 
PHENOLS 

11.5.1  USING MUSHROOM PHENOLICS IN INDUSTRIAL 
APPLICATIONS 

Processing method and storage influence the stability, solubility, bioactivity, 
and bioavailability of phenolic compounds, limiting their uses in food and 
medicines [15]. Food processing, storage conditions (including oxidation, 
light, and high temperature), and gastrointestinal (GI) tract conditions all 
have an impact on the effects of phenolic compounds. These conditions can 
hinder their incorporation into foods or medicines. In addition, the unpleasant 
taste of phenolic compounds is another challenge for adding them in food 
products [12]. 

The use of micro/nano-sized particles/fibers to encapsulate phenolic 
compounds improved their stability, protected them from the atmosphere, 
and regulated their release under explicit conditions. Two of the most prom
ising methods for encapsulating and shielding these critical compounds from 
degradation are electrospinning and electrospraying [26, 39]. 

11.5.2  NOVEL DRUG DELIVERY SYSTEM FOR MUSHROOM 
PHENOLICS 

Nano-formulations and other novel drug delivery systems may increase the 
efficacy of therapeutic compounds while lowering their toxicity, doses, and 
side effects. Nanomaterial structures of sizes between 1 and 100 nm in at least 
one dimension can be used to increase the efficiency of drug delivery and 
the solubility of drugs with poor water solubility as well as decreasing side 
effects of medicines due to their ability to cross cell barriers and to present 
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an increased reaction zone [39, 67]. For this purpose, mushroom bioactive 
compounds are used as nanoparticle materials added in food industries as 
active functional food ingredients [79]. 

11.5.3  USE OF MSR PHENOLICS FOR ACTIVE PACKAGING 

Using active packaging technology to extend the shelf life of foods is an 
innovative concept. Antioxidant, antimicrobial, and carbon dioxide (CO2) 
emitting/producing agents contained in packaging materials were used 
to establish this technology [27]. Active packaging can work by slowly 
releasing active agents into the environment or absorbing food-degrading 
compounds [82, 88]. Chitosan is considered a perfect component for edible 
films due to its peculiar characteristics [23]. Phenolic compounds are widely 
used as active film or coating additives in food packaging to extend the shelf 
life of food [16]. Gallic acid grafted chitosan film may be used as a new 
active packaging material for MSR and other food postharvest storage. 

11.5.4  EXTRACTION OF MSR PHENOLIC COMPOUNDS 

Phytochemicals were extracted from natural resources using a variety of 
non-traditional extraction methods [13, 14]. The extraction of MSR polyphe
nols by green extraction methods has been increased to avoid the problems 
associated with using conventional extraction methods (CEM). Microwave 
hydrodiffusion and gravity, autohydrolysis, and supercritical CO2 extraction 
were used to extract polyphenols from the Pleurotus eryngii [63]. 

11.6  SUMMARY 

MSRs contain secondary metabolites, including polysaccharides [48] 
and phenolic compounds, which have antioxidant, antibacterial, antiviral, 
antitumor, and anti-inflammatory properties; they are even good for cardio
vascular health. Due to these properties, using MSR bioactive compounds 
in functional foods for promoting its health effects and control of many 
chronic diseases has been increased. Several studies have found that MSR 
fruiting bodies and extracts comprise high levels of phenolic acids that are 
more effective. Cinnamic, p-hydroxybenzoic, P-coumaric, protocatechuic, 
and caffeic acids are only a few of the phenolic acids commonly contained 
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MSR extracts [50]. The efficiency of phenolic compounds is contingent on 
retaining their stability, bioavailability, and bioactivity during processing, 
storage, and consumption. So, the most promising future perspectives of 
phenolic compounds are active packaging by grafted chitosan and novel 
drug delivery systems by nano-formulations or encapsulation to enhance its 
biological activities and stability. 
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CHAPTER 12
 

NUTRITIONAL CONSTITUENTS AND 
IN VITRO ANTIOXIDANT ACTIVITIES 
OF SELECTED WILD EDIBLE FRUITS 

SANGITA MUCHAHARY, ASHOK DAIMARY, DEBRAJ PRADHAN, 
SANTOSH MANDAL, FUNGJA BASUMATARY, and ANUCK ISLARY 

ABSTRACT 

This chapter investigates the phytochemical and antioxidant activities of fruit 
extracts from locally available edible wild fruits, such as Ficus carica (figs), 
Melastoma malabathricum (tinku), Ziziphus mauritiana (plum). Flavonoid 
and total phenolic content (TPC) were investigated by using Folin-Ciocalteu 
and aluminum chloride method, respectively. Moisture content, ash content, 
and protein content in the selected fruits were determined for the study on 
nutritional composition. The assessment of the antioxidant activities were 
measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing 
antioxidant power (FRAP) method. Results revealed that the nutritional 
compositions in studied wild fruits (fig, tinku, and plum) were in significant 
amounts. Total phenolic compound both in methanol and aqueous extract 
of tinku was recorded highest 13212.40 ± 0.06 µg gallic acid equivalent 
(GAE)/g and 12818.13 ± 0.08 µg GAE/g, respectively. Flavonoid content 
both in methanol and aqueous extract of plum was found highest 2.04 ± 
0.12 mM quercetin equivalent (QE)/100 g and 10.18 ± 0.22 mM QE/100 g, 
respectively. In DPPH assay, fig both in aqueous and methanol extracts were 
recorded highest activity 56.49 ± 2.01% and 60.40 ± 0.18%, respectively 
whereas tinku showed the highest activity of 4350.20 ± 0.18 mM Fe2+/g in 
FRAP method. Results revealed that edible wild fruits may be beneficial for 
human health as the fruits exhibited potent source of healthy compounds. 
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12.1 INTRODUCTION 

12.1.1 BACKGROUND AND BIOLOGY OF FICUS CARICA  
(FIG FRUIT), MELASTOMA MALABATHRICUM (TINKU) AND 
ZIZIPHUS MAURITIANA (PLUM) 

Fruits are rich in many essential nutrients, phytochemicals, and many other 
bioactive compounds that exhibit antioxidant activities, antimicrobial 
properties, and various other health benefits. In some places, many wild 
fruits are still not known properly which are abundant in numerous bioactive 
molecules such as polyphenols, alkaloids, vitamins, β-carotene, and many 
others which have an important role in antioxidant and antimicrobial activity. 
Generally, wild fruits contain higher nutritive values than cultivated fruits. 
There are some wild fruits in the rural area, which have been investigated 
for various nutrients but still proper study or report on its nutrition and 
phytochemicals are not available. Therefore, such plants/fruits should 
be investigated for a better understanding of their properties, safety, and 
efficiency, which will help in various fields like medical, food processing, 
cosmetic industries, and so on. 

Some edible wild fruits (Adumbra (Ficus carica), Bwigri (Ziziphus 
mauritiana), and Tinku (Melastoma malabathricum)) in the district of 
Kokrajhar (Assam) are very rich in nutrients and many other phyto
chemicals. Adumbra is also known as fig or common fig, which is said 
to be one of the traditional fruits in Asia [14]. As an agricultural product, 
it has global economic importance. Fig belongs to the genus Ficus and 
according to Stover et al. [32], Ficus ranges from 600–1,900 species, 
where fig plant only with the bunch of fruits in the stem is considered as 
edible variety. 

Tinku from Melastoma is also a wild fruit that is rarely known worldwide 
as a vegetable. Among 22 species in Southeast Asia and Malaysia, tinku is 
one of them that is believed as folk medicine by some population in India, 
China, and Indonesia [15]. 

Plum belongs to the genus Ziziphus is also locally known as bwigri in 
Kokrajhar, Assam, which has a sweet and sour taste when it is ripened. It 
contains about 40 different species and since ancient times, it has been widely 
used as a traditional medicinal purpose [26]. It is consumed as in many 
ways, raw, ripe, raw chutney, jam, jelly, traditional loaf, etc., as reported by 
Muchuweti et al. [21]. 
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12.1.2  PRODUCTION 

According to FAOSTAT [9], worldwide fig production in the year 2018 was 
reported at 1.14 million tons, whereas India is contributing very less produc
tion of fig. Production of tinku in India is still unknown because, mostly 
tinku plants are grown wild and in India, there is no proper record of its 
cultivation. 

In India, the production of plum is quite minor, because it is mostly 
considered as an underutilized crop, due to which cultivation is scanty. As 
per FAOSTAT [9], the production of plum in combination with sloes was 
0.25 million tons in 2018. The majority of the plum is grown wild and very 
little quantity is cultivated by some states in India like Uttar Pradesh, Madhya 
Pradesh, Rajasthan, Punjab, Bihar, and Tamil Nadu [12]. 

12.1.3  NUTRITIONAL CONTENTS AND PHYTOCHEMICALS 

According to Shamin-Shazwan et al. [29], figs are rich in protein, sugar, 
fiber, minerals, polyphenols, antioxidants, and amino acids. Tinku was 
reported for its richness in anthocyanin content along with other beneficial 
secondary metabolites [2]. They are also rich in some minerals like iron, 
calcium, manganese, and copper as reported by Nayak and Basak [22]. Plum 
is a good source of nutrition, alkaloids, terpenoids, flavonoids, pectin, and 
saponin [12]. A good amount of sugar content of plum is also playing a major 
role in imparting its sweet flavor along with its sour taste due to the presence 
of ascorbic acid as reported by Pareek [25]. The majority of the wild fruits 
are very nutritive and rich in phytochemicals due to their wild habitat and 
grown wild in the fertile area. 

12.1.4  ANTIOXIDANTS 

As fruit contains high phytochemicals, it turns to dark purple while getting 
ripe [2]. According to Joffry et al. [15]; and Omar et al. [24], almost every 
part of the plant shows medicinal activities like antimicrobial activity, 
antioxidant activity, anti-inflammatory, antinociceptive, etc., and reported 
for its ability to treat stomach pain, toothache, dysentery, diarrhea, scar 
prevention, etc. Researchers have studied the etiologies and shown that 
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many phytonutrients in fruits exhibits potential medicinal effect to treat 
cardiovascular disease, cancerous cells, diabetes, and some diseases caused 
by oxygen radicals. Every fruit and vegetable has different phytochemistry 
and different compositions and content that impart its specialty towards 
pharmaceutical use. Variations in nutrition and phytochemical compositions 
may have different tendencies and medicinal properties against various 
prevalent diseases and health problems caused by oxidative damages and 
many others. 

Free radical is an ion, atom, or molecule having an unpaired valence 
electron with hanging covalent bonds [8], which makes it very reactive and 
unstable. Although they have many beneficial functions in the origin of life, 
evolution, gene transcription, signal transduction, etc., mostly free radicals 
damage some cells in the human body, as they have a highly reactive and 
oxidative nature causing cell disruption, DNA damage [8, 19] and lipid 
oxidation. In the case of food processing and preservation, lipid oxidation 
is undesirable leading spoilage of food causing microbial populations and 
giving foul odor in the food. Besides promoting aging, it causes many 
diseases such as rheumatoid arthritis, cancer [27, 35], and atherosclerosis 
[7]. This oxidative stress is due to the imbalance situation with increased 
oxidants or decreased antioxidants in the medium. 

12.1.5  MEDICINAL DEMAND OF WILD FRUITS 

Wild fruits mostly grow in a place where there is a lack of human interaction 
or without any disturbances in their surroundings. They mainly need good 
climatic conditions for survival that may not be suitable for a human being. 
Because of habitat in rich climatic conditions, those wild fruits are highly 
nutritious, i.e., good supplementary food and medicinal food. Wild fruits are 
very important for the rural population existing in the area as a great source 
of income. They produce byproducts from wild fruits as highly nutritional 
foods [30]. Figs are reported for its various health beneficial properties like 
antidiabetic, antimicrobial, antioxidant, antispasmodic, etc., which is also 
studied for its ability to treat cardiovascular disorders, gastrointestinal (GI) 
disorders, inflammation [31], etc. 

Besides the fruit part, other parts of plum are well reported for its 
medicinal uses, such as to enhance digestion, blood purification [17], as 
antidiabetic, anticancer, etc., and seeds are also reported for its sedative 
property [26], preventive property against insomnia, anxiety [20], and many 
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others. According to Schippmann et al. [28], the upsurge in the market and 
demand for wild fruits is increasing as their nutritional importance are getting 
noticed, due to which, many cultivars got some requests for the cultivation 
of the wild fruits. 

This chapter focuses on the nutritional contents, antioxidant activities 
and some polyphenols of three edible wild fruits viz., fig, tinku, and plum. 
Present investigation will help to spread awareness of its importance among 
the society and to the researchers for further study on its medicinal value and 
food processing. 

12.2 EXPERIMENTAL SETUP 

12.2.1  MATERIALS AND METHODS 

Mature fruits of fig (Ficus carica), plum (Ziziphus maritiana), and tinku 
(Melastoma malabathricum) were gathered in the month of January from 
the local market near Central Institute of Technology (CIT), Kokrajhar, 
India (26.5136°N, 90.2245°E). Analytical grade chemicals such as bovine 
serum albumin (BSA), quercetin, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) 
and gallic acid were procured from Sigma Aldrich, USA. Each chemical and 
reagent was of analytical grade. 

12.2.2  SAMPLE PREPARATION 

Collected wild fruits of Ficus carica (fig fruit), Melastoma malabathricum 
(tinku) and Ziziphus mauritiana (plum) (Figure 12.1) were washed 
thoroughly and then rinsed with distilled water. Washed fruits were sliced 
(̴ 5 mm thick) separately to separate the seed and unwanted parts like 
dust, stem, and any infected area. The fruits were smashed to paste and 
then kept at 4°C until required for the experiment. For aqueous extract, 
the ground wild fruits were diluted using double distilled water at 2:30 
just before the experiment, and similarly, for methanol extract, the ground 
fruits were diluted using methanol at 2:30 just before use. The mixture was 
agitated frequently up to 5 min for better separation of supernatant. Then, 
the supernatant was collected in a beaker after filtration with Whatman 
No. 1 filter paper and directly subjected to experiments or stored at 4°C for 
further analysis. 
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12.2.3 NUTRITIONAL ANALYSIS 

Moisture content and ash content was determined according to the protocol 
by Garcia et al. [10]. The moisture content was expressed in percentage at 
wet basis as follows: 

where; Ai is initial sample weight; and Af is the sample weight after drying. 
Ash content was also expressed in percentage at wet basis by following 

equation: 

Ashcontent (%) = 
Af ×100 (2)
Ai 

where; Ai is the initial sample weight; and Af is the sample weight after ashing. 

FIGURE 12.1  Wild fruits: (a) figs; (b) tinku; and (c) plum. 
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Determination of protein content was assessed by the following method 
as described by Lowry [18]. At beginning, reagent A, B, and C were prepared. 
Regent A is the mixture of 7 mM NaK tartrate, 0.8 M sodium carbonate and 
0.5 N sodium hydroxide solution. Reagent B was prepared by addition of 70 
mM NaK tartrate and 40 mM CuSO4. Then, reagent C was Folin-Ciocalteau 
reagent (1:15) in distilled water. 

The standard BSA linear equation obtained from the calibration with 
different concentrations of BSA ranged from 1 to 10 µg/ml was prepared. 
Aliquot of 0.9 ml reagent A was added in each 1 ml of standard solutions, 
sample, and blank separately in test tubes. All the test tubes containing the 
mixture were then incubated in a dark chamber for 10 min. Similarly, again 
3 ml of reagent B was poured in each mixture and allowed to rest for 10 min. 
Rapidly, reagent C was mixed and then after 10 min incubation. Each test 
tube containing the mixture was measured for its absorbance and recorded 
at 660 nm, using a UV-Vis spectrophotometer (Lambda 35, Perkin Elmer, 
USA). The content of protein was expressed in percentage. 

12.2.4  PHYTOCHEMICAL ANALYSIS 

Flavonoid content and total phenolic content (TPC) were investigated in both 
methanol and aqueous extract of fruit samples. Determination of flavonoid 
content was done by following Susanti [34]. Aliquoted 1 ml of extract or five 
concentrations of quercetin solution (20 to 100 mg/l) and then 4 ml distilled 
water or methanol was added. NaNO2 (5%) of 0.3 ml was poured into the 
mixture, and then 0.3 ml of AlCl3 (10%) was added after five minutes. After 
five minutes, 2 ml aliquots of NaOH (1N) was mixed and then diluted with 
distilled water/methanol up to 10 ml total volume. After mixing the solution 
thoroughly, the absorbance was observed against blank solution prepared 
without sample and standard at 570 nm by using a spectrophotometer. The 
flavonoid content in each fruit sample was expressed in milligrams of quer
cetin equivalent per 100 g sample (mg QE/100 g). 

In the determination of TPC, aliquoted 1 ml extract or five concentrations 
of gallic acid standard solution (20 to 100 mg/l) was prepared and a blank 
solution using distilled water without sample and standard was also prepared. 
Folin-Ciocalteau reagent of 1 ml was mixed to the aliquots and then shaken 
vigorously. Solution mixtures were kept for rest for a while and then 10 ml 
of sodium carbonate (7%) was added. The whole mixture was brought up 
to 25 ml with de-ionized water and incubated for 1.5 h at 35°C. Absorbance 
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for each solution mixture was noted at 784 nm. Whole experiments were 
conducted in triplicate to minimize the error in the result. 

12.2.5  ASSESSMENT OF ANTIOXIDANT ACTIVITY BY DPPH 
METHOD 

Antioxidant activities were assessed by following Hemalatha et al. [13]; and 
Sumazian et al. [33] with slight modification. Proceeding the protocol where 
2 mg of DPPH reagent was dissolved in 40 ml of methanol/distilled water 
and then absorbance was noted carefully. Three sample extracts of fig, plum, 
and tinku at 1 mg/ml were made ready separately, and 0.1 ml of each mixture 
along with 4 ml of DPPH reagent solution was allowed to complete reaction 
in separate test tubes at 35°C. After the interaction for half-hour duration, 
each mixture was recorded for its absorbance at 517 nm. The inhibition (%) 
for each sample was estimated by using the equation given below: 

( A − A ) 
% Inhibition =  

C S 
×100 (3)A C  

where; AC is the absorbance of DPPH control; and AS is the absorbance of a 
mixture of sample and DPPH. 

12.2.6  ASSESSMENT OF ANTIOXIDANT ACTIVITY BY FRAP 
METHOD 

Antioxidant activity was assessed by following the protocol used by Goulas 
and Manganaris [11]; and Elfalleh et al. [5]. A solution of sodium acetate 
buffer of 300 mM (pH 3.6), a mixture of 3.1 g C2H9NaO5 and 15 ml of glacial 
CH3COOH was made ready and the solution was poured with distilled water 
up to 1 L. FRAP reagent comprising 2.5 ml of 2,4,6-tripyridyl-s-triazine 
(TPTZ) of 10 mM in hydrochloric acid (40 mM), 2.5 ml of FeCl3.6H2O 
(20 mM) and 20 ml of acetate buffer was prepared. After that, fruit sample 
(0.3 ml) and FRAP reagent (2 ml) were allowed to rest for five minutes at 
35°C. Then, the solution was observed for its absorbance at 593 nm by a 
spectrophotometer. For the preparation of the calibration curve, five concen
trations of the ferrous standard (Fe2+) (0.1 to 1.5 mM/g) were used, and all 
the absorbance was measured as for sample, and the antioxidant activity was 
expressed in mM Fe2+/g. 
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12.3 DISCUSSION AND RESULTS 

12.3.1 NUTRITIONAL CONTENT 

Table 12.1 shows some of the nutritional compositions in the three studied 
sample extracts; fig (Ficus carica), tinku (Melastoma malabathricum), and 
plum (Ziziphus mauritiana). Major ash (%) and moisture (%) content were 
found in fig at 3.20 ± 0.00 and 82.33 ± 3.15, respectively whereas, higher 
protein content (%) was seen in tinku at 5.20 ± 0.02. In determination of protein 
content, the standard calibration curve of BSA was prepared as concentration 
of protein against absorbance. Linear plot of the data is given by “y = (0.0015x 
+ 0.1668)” equation with 0.99 correlation coefficient (R2) (Figure 12.2). In 
preparation of standard calibration curve, as a higher R2 (more than 0.85) value 
is very important to obtain the higher precision of results. 

TABLE 12.1  Nutritional Content in Figs, Tinku, and Plum 

Wild Fruits Ash Content (%) Moisture Content (%) Protein Content (%) 
Fig 3.20 ± 0.00 82.33 ± 3.15 4.01 ± 1.15 
Tinku 3.00 ± 1.00 61 ± 1.82 5.20 ± 0.02 
Plum 3.00 ± 1.00 77 ± 2.080 1.18 ± 0.13 

Note: Data shown in mean ± standard deviation (at n = 3). 

FIGURE 12.2  BSA standard calibration curve at 660 nm. 
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Higher content of ash indicates the presence of a good amount of minerals 
in the fruit, while the presence of higher moisture in the fruit indicates the 
juiciness of the fresh produce that is indirectly relatable with the perish
ability of the fruit. Results in this study are quite similar with some previous 
research reports where moisture content and protein content of tinku was 
found to be 56.60 ± 0.71% and 5.48 ± 0.58%, respectively as reported by 
Nayak and Basak [22]. Ash content and moisture content in fig were found 
to be at 4.65% and 4.67% [31]. According to Pareek [25], plum contain 
0.3–0.59 g/100 g ash content, 0.8 g/100 g protein content, and 81–83% mois
ture content. As nutrient bulk foods are highly in demand for maintaining a 
healthy diet to avoid various diseases and disorders, therefore, fig, plum, and 
tinku are encouragingly nutritious wild fruits and good sources of nutrients 
that need to be explored in vast. 

12.3.2  PHYTOCHEMICALS 

12.3.2.1 FLAVONOIDS CONTENT 

Table 12.2 shows the flavonoid content in aqueous (aq) and methanol (meth) 
extract of fig, tinku, and plum. In aqueous and methanol extract of fruits, 
flavonoid content in plum was seen higher, i.e., 2.04 ± 0.12 and 10.18 ± 0.22 
expressed in millimolar of quercetin equivalent (mM QE) per 100 g sample, 
respectively. Quercetin calibration curve obtained at five concentrations (20 
to 100 mg/L) was “y = (1.2969x + 0.4999)” with R2 = 0.99 (Figure 12.3). 

TABLE 12.2 Flavonoid Content in Fig, Tinku, and Plum 

Wild Fruits Flavonoid Content (aq) Flavonoid Content (meth) 
(mM QE/100 g) (mM QE/100 g) 

Fig 1.16 ± 1.01 1.75 ± 0.34 
Tinku 0.05 ± 0.08 10.18 ± 0.22 
Plum 2.04 ± 0.12 3.18 ± 0.05 

Note: aq: aqueous; meth: methanol; QE: quercetin equivalent. 
Data shown in mean ± standard deviation (at n = 3). 

In comparison with phytochemical contents reported by other 
researchers, results obtained in this study were quite different, which may 
be because of climatic conditions and soil quality of the plant grown. 

http:0.3�0.59
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Flavonoid content was found to be 2.75 mg CE/g and 8.36 to 21.97 
mg CE/100 g in plum as revealed by Soni et al. [31]; and Koley et al. 
[16], respectively. Similarly, Dureja, and Dhiman [4] also reported that 
flavonoid content of plum was 2528.00 ± 6.55 mg QE/100 g. Flavonoid 
contents in methanol extracts were seen at a little higher content than in 
the aqueous extract, which might be due to the polarity of the extraction 
solvent. Flavonoids have a class of sub-flavonoids which are soluble in 
both organic solvents (viz. methanol, ethanol, acetone, etc.), and water, but 
there are some flavonoids with aglycone class are only soluble in methanol, 
ethanol, etc. [33]. Therefore, the solubility of constituents in fruit samples 
was more in methanol than the water. 

FIGURE 12.3  Quercetin standard calibration curve at 570 nm. 

12.3.3  TOTAL PHENOLIC CONTENT (TPC) 

Total phenolic content (TPC) in the studied wild fruits viz. fig, tinku, and 
plum were seen in a good amount. Phenolic compounds were reported for 
their strong potential antioxidant activities [33] that exhibit various health 
benefits. In this study, the total phenolic compound was found to be 13212.40 
± 0.06 and 12818.13 ± 0.08 µg GAE/g in methanol and aqueous extract of 
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tinku, respectively. Secondly, plum contains 10801.70 ± 0.00 µg GAE/g of 
phenolic content in methanol extract. The calibration curve of gallic acid 
standard in the five concentrations (20 to 100 mg/L) with equation “ y = 
(0.0014 x + 0.1699)” with R2 = 0.98 (Figure 12.4). 

FIGURE 12.4  Standard calibration curve of gallic acid at 784 nm. 

This study revealed a superior content of TPC in fig, tinku, and plum in 
comparison with the results reported by Soni et al. [31], the total phenolic 
compound was recorded 10.90 µg GAE/mg in methanol extract of fig 
(Table 12.3). Tinku contains 19.20 mg GAE/g reported by Nayak and Basak 
[23] and plum contains 14.20 ± 0.00 mg GAE/g for aqueous extract and 5.30 
± 1.10 mg GAE/g for methanol extract by Chalise et al. [3]. 

TABLE 12.3 Total Phenolic Content of Fig, Tinku, and Plum 

Wild Fruits Total Phenolic Content (aq) Total Phenolic Content (meth) 
(μg GAE/g) (μg GAE/g) 

Fig 2100.00 ± 1.12 2163.30 ± 0.02 
Tinku 12818.13 ± 0.08 13212.40 ± 0.06 
Plum 10660.50 ± 0.56 10801.70 ± 0.00 

Note: aq: aqueous; meth: methanol; GAE: gallic acid equivalent. 
Data shown in mean ± standard deviation (at n = 3). 
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12.3.4  ANTIOXIDANT ACTIVITIES 

12.3.4.1 ANTIOXIDANT DETERMINATION BY DPPH METHOD 

In the DPPH method, free radicals are inhibited by transferring one hydrogen 
atom to the free radicals present in the wild fruits. DPPH inhibitions (%) 
recorded in the methanol extract and aqueous extract of 0.05 g/ml fig were 
recorded highest, i.e., 60.40 ± 0.18% and 56.49 ± 2.01%, respectively. 
Phytochemicals present in the fruits showed various inhibitions against 
DPPH as given in Table 12.4. Reason of inhibition might be the presence of 
the secondary metabolites, polyphenols, and other phytochemicals that act 
as natural antioxidants that inhibit the oxidation reaction takes place inside 
the medium and as described in 1.4. However, those antioxidants inhibit the 
oxidation by donation of a hydrogen atom to the free radicals in the complex 
and lead to neutralization of the oxidation reaction. 

TABLE 12.4 DPPH Inhibition Activity of Fig, Tinku, and Plum 

Sample Name Inhibition % (aq) Inhibition % (meth) 
Fig 11.50 ± 1.15 12.15 ± 1.87 
Tinku 56.49 ± 2.01 60.40 ± 0.18 
Plum 10.137 ± 0.07 58.52 ± 0.03 

Note: aq: aqueous; meth: methanol. 
Data shown in mean ± standard deviation (at n = 3). 

Therefore, during the experiment a DPPH solution was allowed to reduce 
by different sample extracts (viz. fig, tinku, and plum) and then lesser absor
bance of the mixture was recorded. More the antioxidant capacity of the 
sample, lighter will be the color of the DPPH and sample mixture showing 
lesser absorbance value than the DPPH control solution at 517 nm. That 
defines spectrophotometric absorbance of the DPPH and sample mixture 
will be always lesser than the DPPH control solution if the sample has any 
antioxidant activity. 

Results obtained in current investigation were in accordance with the 
DPPH free radical inhibition (%) was reported to be 21.20 ± 0.91% in fig 
(50 μg/ml) by Ali et al. [1] and according to results of Chalise et al. [3], 
plum was reported to be 45% at 50 µg/ml methanol extract. An investigation 
of full phytochemical profiling exhibiting antioxidant activities in the wild 
fruits are encouraged. 
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12.3.4.2  ANTIOXIDANT ACTIVITY DETERMINATION BY FRAP 
METHOD 

In assessing antioxidant activities by FRAP method, a linear ferrous standard 
(Fe2+) calibration curve at 593 nm was drawn and standard equation such as: 
“y = (1.0632x – 0.0533)” with R2 = 0.95 (Figure 12.5 and Table 12.5). 

FIGURE 12.5  Ferrous standard (Fe2+) calibration curve at 593 nm. 

TABLE 12.5  FRAP  Activity of Fig, Tinku, and Plum 

Sample Name Antioxidant Activity (Methanolic Extract) (mM Fe2+/g) 
Fig 142.51 ± 1.33 
Tinku 4350.20 ± 0.18 
Plum 957.00 ± 0.02 

Note: Data shown in mean ± standard deviation (at n = 3). 

In comparison with Ferrous standard (Fe2+) calibration curve, the antioxi
dant activity of tinku was 4350.20 ± 0.18 mM Fe2+/g. Tinku showed higher 
ferric reducing capacity than the antioxidant activity shown by fig and plum, 
which is in accordance with the result reported by the Nayak and Basak [23] 
showed high antioxidant activity by tinku, i.e., 5878.35 ± 0.05 µM Ascorbic 
acid equivalent antioxidant capacity (AEAC)/g. 



 
 
 
 
 
 

 279 Nutritional Constituents and In Vitro Antioxidant Activities 

According to Ercisli et al. [6], the antioxidant activity of plum was 
1.87 mM Fe2+/g. In the experiment, the antioxidants present in the samples 
reduce the ferrous ion (free radical compound) by donating a hydrogen ion. 
Reducing mixtures formed blue colored solutions. Variations in the results 
obtained may be due to the environmental factor and extraction parameters 
used during analysis. 

In this study, phytochemicals in the form of polyphenols and many others 
might have major role in the reduction of the ferrous and oxidizing agents in 
the system and therefore, phytochemicals present in the wild fruits (fig, tinku, 
and plum) were inhibiting the antiradical or oxidizing agents. This indicates the 
extract of the wild fruit possesses antioxidant activity that has a potent ability 
to prevent numerous health problems such as cell damage, inflammation, and 
many other oxidative damages caused by free radicals in the human body. 

A comparative evaluation of antioxidant activities and inhibitions 
for wild fruits from the comparison chart (Figure 12.6) was done. By the 
observation of antioxidant activities (FRAP method) and inhibition (%) of 
DPPH shown by fig, tinku, and plum were in the increasing order as fig < 
plum < tinku. Similarly, in the case of phytochemical contents, total phenolic 
and flavonoid contents of the wild fruits also increased as fig < plum < tinku. 
This indicates antioxidant activities were directly dependent on the phenolic 
compounds present in the fruits. 

Antioxidants present in the three studied fruits; fig, tinku, and plum might 
be in the form of phenolic compounds and other secondary metabolites or 
active compounds. On the other side, in the determination of phytochemical 
contents, the extraction medium used plays a great role. Different phyto
chemical compounds exhibit various properties, whereas an extracting 
solvent used must be the medium where a compound dissolves partially or 
fully. Also, the extraction efficiency can be achieved by a certain limit of 
extracting parameters; temperature, agitation, force, extracting solvent used. 
In this study, as methanol has more polar behavior than the distilled water, 
phytochemicals obtained from the methanol extracts were comparatively 
higher than the aqueous extract. 

In this study, tinku revealed the content of a good amount of nutrition and 
phytochemicals with higher antioxidant activity, which defines that it might 
contribute various medicinal properties. As per the literature, there are no 
such products processed from tinku fruit. There is a great scope to study and 
rise its demand toward food processing sector. Further study (in vivo/in vitro) 
on specific compounds present in the studied fruits for their antioxidant role 
is needful. 
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FIGURE 12.6  Comparative chart of antioxidant activities and phytochemicals of wild fruits  
viz. fig, tinku, and plum; (a) Antioxidant activities by DPPH and FRAP; and (b) phytochemicals  
content (flavanoid and total phenolic content). 

12.4  SUMMARY 

Wild fruits are a rich source of nutrients, beneficial phytochemicals, and 
some antioxidants which can inhibit the oxidation reaction and can remove 
the free radical compounds existed in the system. In the current study, the 
TPC, flavonoid content, and other nutritional compositions in wild fruits 
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of Assam; fig, tinku, and plum were found in a good amount. Among three 
studied wild fruits, tinku was recorded for the highest antioxidant and free 
radical inhibition activity that was estimated by DPPH inhibition assay 
and FRAP method. Therefore, these wild fruits may be a potent source to 
exhibit various health-beneficial properties in human beings and animals. 
Therefore, the intake of these fruits may prevent free radical-mediated 
diseases. Underutilized wild fruits with very low cultivation rates need to 
be focused more to highlight their importance in their potential activities 
towards various diseases in human beings. This study might help to study 
pharmaceutical products in the future. The study of bioactive compounds 
and mechanisms responsible for antioxidants is needed. The present study 
will help in spreading awareness that is necessary among the population as 
an important source of the well-being of the indigenous population in the 
region. 
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CHAPTER 13 

DELIVERY OF PROBIOTICS IN THE 
FOOD INDUSTRIES 

B. RENUKA and B. B. BORSE 

ABSTRACT 

Probiotics are a source of promising health benefits to the host. The change in 
dietary habits, today’s modern lifestyle and urbanization has compelled the 
consumers who are conscious about health to search for a systematic treat
ment alternative to various illness caused due to the lifestyle-related diseases. 
Hence, the significance of consumption of probiotics to enhance the quality 
of life is clearly demonstrated by the number of probiotic-enriched products. 
Any microorganism to be considered as probiotic should resist the harsh gut 
environment and should be stable as well to be used in food application. This 
is important in the food industries to emphasis on the varied application of 
probiotics in the preparation of food products to produce a new generation 
of ‘probiotic health’ foods. 

13.1  INTRODUCTION 

Probiotic is the term derived from a Latin word, meaning “for life.” In the 
history of humankind, the use of probiotic go back to 2000 BC, as it was 
ascertained with the concept of preserving milk for longer periods and using 
fermented milk products in our diet [76]. Recent scientific papers have 
elucidated that much earlier than 2000 BC, many fermented beverages were 
produced using bacteria and yeasts, though their existence was not aware 
[88, 133]. Till date, the fermented dairy products of the Middle East, such 
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as ‘Laban Rayad’ and ‘Laban Khed’ are widespread and they were used in 
early as 3500 BC [1]. 

Over the period of time, wine, and beer, the fermented beverages were 
produced using diverse cultures, fruits, and grains [46] by leaving them in 
covered containers for an extended time period. Though the process was not 
understood, it was termed as ‘fermentation.’ Temperature and the exposure 
to air are the key factors for fermentation was learnt later [5]. In 1856, with 
the help of Pasteur, a man got a sour milk kind substance as a substitute for 
alcohol when he was fermenting sugar beetroot. Pasteur distilled the sour 
milk and sediment of the sour milk was analyzed chemically as lactic acid 
(LA) and the same was observed as a smaller substance than yeast under 
microscope. He also noticed a large number of yeasts in the substance where 
the alcoholic fermentation had occurred. According to Pasteur, two types of 
fermentation occurs through yeast and bacteria called ‘alcoholic fermenta
tion’ and ‘lactic acid (LA) fermentation,’ respectively [78]. 

In 1857, Pasteur was the first to discover bacteria producing LA and after 
21 years, these bacteria were isolated by Lister in 1878 from rancid milk. 
The isolation of lactic acid bacteria (LAB) from intestinal tract was carried 
out at the same institute from 1880 to 1888 [90]. Bifidobacterium spp. was 
found as the dominant microorganism in the breast-fed infant’s gut, which 
was discovered by Henry Tissier in 1889. He is the first scientist to focus 
on friendly bacterium, i.e., Bifidobacterium spp. used to treat acute gastro
enteritis and/or intestinal diseases [61, 141]. However, in many scientific 
papers the probiotics benefits on the host health was given by Elie Metch
nikoff hence, he is been regarded as the ‘father of probiotics.’ To understand 
the general and intestinal health of the host with probiotics in a better way, 
it was defined. 

In 1965, “Lilly and Stillwell” described probiotics as “Growth promoting 
factors produced by microorganisms” [70]. In 1974, Parker proposed it as 
that “Organisms with beneficial effects for host by influencing the intes
tinal microflora.” Fuller [42] defined it as “A feed supplement with live 
microorganisms that affects the host beneficially by improving the intestinal 
microbial balance.” In 1992, “Havenaar and Huis Int Veld” (Probiotics was 
assumed) assumed probiotics as “Live microorganisms either mixed or a 
single culture improves the properties of microflora which are indigenous and 
hence the host is affected beneficially” [51]. In 1998, the “International Life 
Sciences Institute” believed it as “A viable microbial food supplement which 
beneficially influences the health of the host.” Whereas, Diplock et al. [32]; 
and Naidu et al. [86] said that “Foods based on probiotic are functional when 



 

 

 

 

 

 

Lactobacillus 	 Lb. acidophilus, Lb. plantarum, Lb. rhamnosus, Lb. casei, Lb. paracasei, 
spp.	 Lb. fermentum, Lb. reuteri, Lb. johnsonii, Lb. brevis, Lb. lactis, Lb. 

gasseri, Lb. crispatus, Lb. helveticus, Lb. sporogenes, Lb. gallinarum, 
Lb. amylovorus, Lb. salivarius, Lb. delbrueckii subsp. Bulgaricus 

Bifidobacterium B. Breve, B. infantis, B. longum, B. bifidum, B. thermophilum, B. 
spp. adolescentis, B. animalis, B. lactis, B. essensis, B. laterosporus 
Others Bacillus cereus, Bacillus coagulans, Enterococcus faecium, 

Enterococcus faecalis, Escherichia coli Nissle, P. freudenreichii, 
P. freudenreichii subsp. shermanii, P. Jensenii, Kluyveromyces 
lactis, Leu. lactis subsp. cremoris, L. lactis, Clostridium butyricum, 
Pediococcus acidilactic, S. thermophilus, S. cremoris, S. diacetylactis, 
S. intermedius, S. salivarius subsp. thermophilus, Saccharomyces 
cerevisiae, S. boulardii, Leu. mesenteroides, Sporolactobacillus inulinus. 
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they affect the physiology of host beneficially through modulating systemic 
and mucosal immunity and reducing the risk of diseases.” The FAO/WHO 
defined it as “Live microorganisms which when administered in adequate 
amounts confer health benefits on the host” [33]. The microorganism to be 
considered as probiotic has to fulfill the following criteria. 

•	 Should resist in the gut environment – “< pH and > bile salt condi
tions” and adherence to the epithelial cells of the intestine. 

•	 Ability to produce antimicrobial substances and to incur the immuno
modulatory responses. 

Having the above criteria, the strains of Bifidobacterium, Streptococcus, 
Lactobacillus, and other microorganisms are considered as probiotic micro
organisms (Table 13.1). 

TABLE 13.1 Microorganisms as Probiotics 

The probiotics mechanism of action is the result of in vitro experiment 
and results were further validated by clinical research as in vivo studies to 
explore its health benefits. Probiotics are suggested to be associated with a 
wide range of therapeutic effects such as mitigation of lactose intolerance 
[69], immunomodulation [40], alleviation of bacterial, viral, and antibiotic 
associated or radiotherapy induced diarrheas [48, 100, 138], anti-mutagenic 
[21], anti-carcinogenic [72], lowering blood cholesterol [96], inflammatory 
bowel disease (IBD), anti-pathogenicity, anti-diabetic, anti-obesity, treating 
rheumatoid arthritis, preventing or reducing the effects of atopic dermatitis as 
well as urinary tract infections (UTI) [114]. A little attention has received for 
their beneficial health effects as the exact probiotic mechanisms of action are 
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not well known because of their diverse, heterogeneous, and strain-specific 
characteristics. 

This chapter explores probiotics mechanism of action, probiotic dairy 
and non-dairy products, specifications, safety criteria, and probiotics market. 

13.2 MECHANISM OF ACTION 

Probiotics are considered to be safe microorganisms because of the admin
istration of adequate doses at appropriate periods affects beneficially on the 
host. Figure 13.1 depicts the mechanism of action, which includes: 

• Epithelial barrier enhancement; 
• Attachment to intestinal mucosa and inhibition of pathogen; 
• Production of antimicrobial substances and immunomodulation. 

FIGURE 13.1  Probiotic mechanism of action. 

13.2.1  EPITHELIAL BARRIER ENHANCEMENT 

The contact between the luminal content and the enteric flora is the epithelium 
of the intestine. The integrity of epithelium is maintained by the intestinal 
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barrier, which is a most important defense mechanism. The complex of 
“epithelial junction adhesion, mucous layer, antimicrobial peptides, and 
secretory IgA” are the defenses of the intestinal barrier [94]. If the function 
of this barrier is disrupted, antigens of the bacteria reach submucosa and 
hence inflammatory responses are formed, which results in IBD, the disorder 
of the intestine [58, 59, 125]. Many research findings have shown that the 
probiotics used to be very significant in enhancing the epithelial barrier func
tion after damage [43, 67, 97, 99, 136, 157]. From the studies, it resulted that 
the probiotics form a barrier in the gastrointestinal (GI) epithelium lining, 
which reduces the entry of commensal organisms. 

13.2.2  ATTACHMENT TO INTESTINAL MUCOSA AND 
INHIBITION OF PATHOGEN 

The primary characteristics of probiotic are colonization [12, 63], antagonistic 
action towards pathogens [56] and immunomodulation [103, 127] by adhering 
to intestinal mucosa. Hence adhesion is considered as important criteria for 
selecting any microorganism as probiotics, leads to its positive effects on 
the host [27]. LAB produces surface determinants which interact with the 
epithelial cells of the intestinal mucosa. These cells produce and secrete small 
peptides which are active against bacteria, fungi, and viruses called defensin 
and mucin, a glycoprotein respectively which stabilizes gut barrier function 
by preventing pathogen binding. The adhering property of the pathogenic 
bacteria to the surfaces of the epithelial mucosa of the intestine is considered 
to be the first step of infection [12, 37]. Once the pathogens interact with the 
secretory proteins of probiotic LAB, the pathogens interaction and competitive 
exclusion occurs [148]. Many researchers have studied the attachment 
of probiotics to intestinal epithelium, and its inhibition to the adhesion of 
pathogens was investigated using Caco-2 cell line (from a human colon 
carcinoma) [15]. Several research studies have reported that the colonization 
of pathogens such as E. coli, Salmonella, Listeria monocytogenes, H. pylori 
and Rotavirus on intestinal epithelium was inhibited by Lactobacilli and 
Bifidobacteria [24, 26, 83, 87, 142, 143]. 

13.2.3  PRODUCTION OF ANTIMICROBIAL SUBSTANCES 

Another probiotics mechanism of action is the synthesis of antimicrobial 
compounds (bacteriocins, mycocins) and organic acids (LA and other acids), 
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which is a low molecular weight compound that inhibits the activity of 
gram-negative bacteria [4, 29, 75, 113]. The organic acids in the ionized 
form enter the bacterial cell, leads to lowering the intracellular pH followed 
by death of the pathogenic microorganisms [98, 116]. Antibacterial peptides 
produced by probiotic LAB such as lactacin B, plantaricin, and nisin from 
Lb. acidophilus, Lb. plantarum and L. lactis, respectively, acts against food-
borne pathogens [91]. Mechanisms involved include the inhibition of cell 
wall synthesis or destructive pore formation of target cells [50]. 

13.2.4  IMMUNOMODULATION 

The modulation of the immune system occurs when probiotics act together 
with the epithelial and dendritic cells, macrophages, and lymphocytes by 
producing immunoglobulin A (IgA), enhancing the quantity of natural killer 
cells, or improving macrophages phagocytic activity [52, 71, 102, 128]. The 
results of many in vitro and in vivo experiments have shown to reduce not 
only the intestinal disorders but also other diseases such as diabetes, obesity, 
food allergy, etc., due to its immunomodulating effects [101, 137, 149]. 

13.3  PROBIOTIC DAIRY PRODUCTS 

Dairy products are considered as natural healthy products, benefiting the 
consumer by preventing certain diseases when consumed daily. Some of the 
factors like viability of probiotics [105, 130], the physicochemical properties 
[3, 11], the therapeutic effects of probiotics [100, 122] and the regulatory 
and labeling matters of the final products [33, 121] need to be addressed 
when the probiotics are used in dairy products. Few dairy products based on 
probiotic fermentation are discussed below. 

13.3.1  YOGURT 

Yogurt is considered as a novel probiotics source for very long time and till 
date it remained as an accepted product of probiotic. Yogurt, a fermented 
milk product traditionally known as “Dahi” in the Indian subcontinent, is 
obtained from the milk by the action of Lb. delbrueckii subsp. bulgaricus and 
S. salivarius subsp. thermophilus. LA is produced when lactose is fermented 
by probiotic LAB, which contributes to the typical taste and texture of yogurt 
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[156]. The origin of yogurt dates back to the 6000 BC and is originated in 
the Central Asia. The first industrial production of yogurt started in 1919 at 
Danone, a company in Barcelona, Spain. Yogurt is a nutritious drink, rich in 
milk proteins, carbohydrates, minerals (calcium and phosphorous) [38] and 
vitamins (A, B1, B2, B3, B12, and folate), hence digested easily in the body. 
Based on the combination of starter culture used and the milk obtained and 
also the duration of the fermentation process, the nutritional composition 
of yogurt varies. Yogurt strain and the culture viability are depending on 
the specific health benefits [81]. Several studies have recommended that the 
probiotics used in the preparation of yogurt helps in maintaining a healthy 
gut along with preventing some of the GI disorders like constipation, colon 
cancer, diarrheal diseases, lactose intolerance, IBD, infection by Helico
bacter pylori and allergies [2]. Some of the commercially available probiotic 
yogurts are Danone Activia with Bifidobacterium lactis CNCM I-2494, 
Activia Strawberry with B. regularis and B. lactis DN 173010, and Probiotic 
La yogurt, and Siggis yogurt for kids. 

13.3.2  CURD (DAHI) 

Curd is traditionally prepared from milk by the fermentation of bacteria [19]. 
The species involved in the fermentation include single or mixed cultures 
in a combination of acid and flavor producing bacteria such as L. lactis, L. 
cremoris, Lb. delbrueckii subsp. bulgaricus, S. thermophilus, S. diacetylactis, S. 
cremoris, L. diacetylactis, along with Leuconostoc species. The therapeutic and 
health promoting properties such as improving gut health, immune response, 
mineral absorption, lipid profile, managing hypertension and reduce the risk 
of hypertension are nurtured by probiotic curd. Some of the commercially 
available probiotic curds are Nestlé Actiplus with Lb. acidophilus, Mother 
Dairy Advanced Dahi, Amul probiotic Dahi and Nilgiris Dahi. 

13.3.3  MISHTI DOI 

Mishti Doi (Payodhi or Lal Dahi) is a popular fermented sweet Doi (yogurt) 
in the eastern parts of India. Boiled milk with slightly thick consistency 
added with brown sugar or date molasses is used to prepare Mishti Doi. 
Starter culture added as in the case of Dahi and allowed to set and packaged 
in earthen pots [74, 139]. A little success was found with the commercializa
tion of Mishti Doi, though the earlier prevention of food adulteration (PFA) 
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standards are not obtained for the product [47, 108] but the FSSAI approval 
is mandatory now. The probiotic starters with a combination S. salivarius 
ssp. thermophilus, Lb. acidophilus and Lb. delbrueckii ssp. bulgaricus and 
the other combination with Lb. acidophilus, L. lactis ssp. lactis and S. cerevi
siae was used in the preparation of Mishti Doi. It also holds great promise for 
those suffering from IBD, anti-inflammatory, and pro-regenerative roles in 
cases of IBD that cause prolonged inflammation of the digestive tract. Some 
of the commercially available Mishti Doi is with different fruits (cherry, 
mango, and bananas), flavors (butterscotch, cardamom, and vanilla), grains, 
and nuts (almond and pistachio). 

13.3.4  SHRIKHAND 

It is a sweetish-sour fermented milk dessert with semi-solid consistency, 
made out of strained yogurt or dahi. Though Shrikhand is considered 
as an Indian staple dessert, it forms the part of meal on festival season in 
Maharashtra and Gujarat [62, 66]. During the summer season, it is very 
refreshing with distinguishing odor, taste, more palatable, high nutrition, 
and promising therapeutic properties. Shrikhand is prepared traditionally 
from chakka, a solid mass obtained from cultured milk (curd) by separating 
the whey using muslin cloth. The sugar powder was blended to chakka 
to smooth and homogenous consistency of Shrikhand. Since olden days 
Shrikhand is found to have therapeutic properties such as anti-carcigenic 
and anti-cholesterolemic [17]. The Shrikhand is found to be stable for 
more than 30 days, which is long when compared with other cultured milk 
products. The shelf life of symbiotic (prebiotic fructooligosaccharides and 
probiotics) Shrikhand is much longer (60 days) [129]. Shrikhand is available 
with different flavors, such as amrakhand (mango), badam (almond), pista 
(pistachio), butterscotch, elaichi (cardamom), Kesar (saffron), rajbhog, and 
strawberry. 

13.3.5  BUTTERMILK (LASSI) 

In India, lassi is the local name of buttermilk, prepared by churning the 
curd. At the time of butter manufacturing, cream is churned and the aqueous 
phase obtained after the extraction of butter from churned curd or yogurt is 
called buttermilk [28, 82]. The globule of milk-fat membrane forms proteins 
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and polar lipids composition in lassi, hence it is considered as an important 
foodstuff. Pasteurized milk cultured with microorganisms producing flavor 
is used in the preparation of lassi [6]. Some of the commonly associated 
LAB with lassi is L. lactis ssp. lactis, L. lactis ssp. cremoris, L. lactis ssp. 
lactis biovar. diacetyl lactis, Lb. delbrucki, Lb. acidophilus, Lb. helveticus, 
S. thermophilus and Leu. mesenteroides ssp. Cremoris [41]. In India, lassi 
is also appreciated in various flavored forms as a thirst-quenching beverage 
for its palatability apart from its rich therapeutic properties and is now 
commercially available in many places. 

13.3.6  KEFIR 

Kefir is a popular fermented beverage traditionally prepared using kefir 
grains. In Central Asia, kefir is consumed from the time of the Middle 
Ages. Now, in many regions of the world it is considered as an important 
consumer commodity. The geographic regions affect the proportion of dense 
populations of LAB, yeast, and acetobacter in kefir and it is composed of 
a complex of proteins and polysaccharides [30]. The studies on animals 
were conducted for kefir by in vitro, which confirmed its positive effects 
on lactose intolerance [55], immunomodulation, antimicrobial activity, and 
harmonization of intestinal microflora [147]. Kefir has essential vitamins, 
minerals, amino acids, and enzymes. The Commercially available Kefir are 
Babushka, Liberte, and Lifeway. 

13.3.7  CHEESE 

Cheese is a fermented product of dairy, manufactured in varieties of flavors 
and textures (soft and hard cheese) using cultured milk. There are 2,000 
varieties of cheeses present worldwide, in which Cheddar, Cream, Feta, Blue, 
and goat are the most important ones. In acid coagulated cheeses probiotics 
have been incorporated, as they show similarity to fermented milks [115, 
150]. However, research was carried out on the preparation of different 
cheeses like Cheddar [79, 95], Edam [146], brined cheeses [64, 118, 152], 
semi-hard [13] cheese by using probiotics. The most important strains of 
Streptococci and Lactobacilli present in Domiati cheese are Lb. casei, Lb. 
plantarum, Lb. brevis, Lb. fermenti, S. faecalis and L. lactis. Commercially 
available probiotic rich cheeses include aged, traditional Cheddar, Gouda, 
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and alpine cheeses like Gruyere and other cheeses available with different 
brands are Vintage Cheddar, Mozzarella, Amul, Queso Asadero, Colby, 
Nancy Cottage cheese, etc. 

13.3.8  SOUR CREAM 

Sour cream is soured by LAB, especially S. lactis and/or any yogurt starter 
culture can be used to ferment cream as they are known to produce LA. Fayed 
et al. [35] developed a sour cream with low-calorie probiotic-containing S. 
thermophilus, Lb. acidophilus and Bifidobacterium spp. Cultured cream 
will be savory or sweet with high fat content (10–40%), significantly fewer 
calories than mayonnaise. The sour cream has a mild, tangy flavor and thick, 
smooth texture. In baking products such as cookies, cakes, breads, and pies, 
sour cream is considered to be appropriate. 

13.3.9  ACIDOPHILUS MILK 

Acidophilus milk is the milk either fermented or unfermented with Lb. 
acidophilus and Bacillus acidophilus possessing desirable sensory properties 
[25]. However, Myers stated that acidophilus milk is having an unpleasant 
taste and LA was not important in transforming the intestinal flora. Hence, he 
explained that, by incorporating Lb. acidophilus directly to the unfermented 
milk, retention of the taste and physical properties of milk is possible with 
the viable Lb. acidophilus for 7 days at 2 to 5°C [85]. Acidophilus milk is 
rich in free amino acids compared to normal milk. 

13.3.10  ICE CREAM 

Ice cream is a potential Haulier for probiotics, as it holds better viability 
of probiotics at the time of production as well as storage period when 
compared with fermented milks. Preparation methods like oxygen-resistant 
strain selection and its application, molecular oxygen elimination, heat treat
ment application, microencapsulation techniques utilization and product 
formulation by fortifying the milk with prebiotics and other nutrients could 
improve the viable probiotic cells in the final formulation. B. lactis (Bb12) 
and Lb. casei (Lc01) exhibited the maximum resistance to simulated gastric 
conditions in comparison to other bacterial strains, making them appropriate 
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strains for use in ice cream [57]. Commercially available ice creams are 
Culture Republick, Probiotic Wellness and Foxy’s ice cream and much other 
variety of brands and flavors to choose world-over. 

13.4  NON-DAIRY PRODUCTS 

Dairy products are exhibiting promising features of probiotics by main
taining the bacterial viability in the finished foods [120]. However, the 
consumption of these products is not possible for those who are sensitive 
to milk proteins, lactose intolerance and high cholesterol levels. Therefore, 
an alternative product free of milk/dairy is used to deliver probiotics which 
includes fruits and vegetable products (Table 13.2), cereals products, dessert 
products, and meat products [44, 49, 76, 107]. Probiotic non-dairy foods 
developed throughout the world have been reviewed by Rivera-Espinoza 
and Gallardo-Navarro [111]. 

TABLE 13.2  List of Fruit and Vegetable-Based Non-Dairy Products 

Fruit and Vegetable Juices/Beverages References 
Vegetable-based drinks [68] 
Beetroot [153] 
Tomato [154] 
Cabbage [155] 
Carrot [89] 
Onion [112] 
Ginger [23] 
Fermented banana pulp [145] 
Fermented banana and Banana puree [144] 
Pineapple, orange [131] 
Grape, passion fruit [117] 
Noni [151] 
Non fermented fruit juice beverages [110] 
Black currant [73] 
Plum [132] 
Cashew apple [104] 

Fruit and vegetable-based products are gaining importance as they contain 
nutrients unlike in dairy products and also probiotics growth is enhanced 
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due to the presence of sugars in it [31]. Some of the fruits and vegetables 
exploited for this purpose are apple, banana, blueberry, black currant, 
cashew apple, orange, pineapple, raspberry, pomegranate, and cantaloupe 
melon juice [7, 93, 126, 153] and carrot, beetroot, and mixed vegetable 
juice [92]. The juices do not stay for a longer period in the stomach and 
hence the probiotics used in the juices withstand the harsh condition of the 
stomach. The stability in terms of viable counts of probiotic Lb. casei, Lb. 
plantarum, Lb. acidophilus in cashew apple juice, melon juice, pineapple 
juice, blackcurrant juices was observed to be more than 8.00 log CFU/ml 
after the storage period of 6 weeks, which indicates that the product is as 
competent as dairy products [39, 73, 104]. 

Cereals are considered as one of the main foods consumed in our daily diet, 
and are carriers of probiotics. They contain protein, vitamins, carbohydrates, 
minerals, and fiber along with non-digestible carbohydrates (NDC) and/or 
dietary fiber through which Lactobacilli and Bifidobacteria gets stimulated 
in the colon [22]. The minerals bioavailability is increased when the 
microbial enzymes act on cereals or by the organic acids production during 
fermentation [60, 140] of phosphorous, iron, and zinc [123]. In Asia and 
African countries, cereals fermentation by LAB is considered as the ancient 
practice which resulted in the manufacture of beverages, gruels, and porridge. 
Cereal grains used for this purpose are wheat, millet, maize, oats, sorghum, 
barley, and rye. Lb. plantarum, Lb. acidophilus and Lb. rhamnosus GG are 
used in the preparation of barley and malt, Sorghum flour-based yogurt and 
pan bread slices, respectively [109, 124, 135]. Some of the products based 
on cereal include puddings [54], rice-based yogurt [19], oat-based drink and 
milk [8, 14], oat, barley, and malt-based products [119], “Yosa,” an oat-bran 
pudding [16] and “Mahewu,” a maize-based fermented beverage [80]. 

Dessert foods have an enormous potential for market because probiotic 
strains such as Lb. paracasei subsp. paracasei LBC 82 along with inulin, 
a prebiotic are incorporated in chocolate mousse preparation [9, 106]. The 
retention of significant viability of Lb. paracasei, B. lactis, Lb. rhamnosus 
and S. boulardii was found in soy dessert throughout the storage period [53]. 
Fermented acerola (Malpighia emarginata) ice cream and coconut flan have 
exhibited probiotic property as they contain B. longum and B. lactis [34] and 
B. lactis and Lb. paracasei [65] as good carrier with high viable cell counts. 

Meat in the form of sausages, as an alternate probiotic-based dairy foods 
is being used. It is reported that the alginate encapsulated with Lb. reuteri 
and B. longum is used to prepare sausages based on meat [84]. In the prepara
tion of meat-based probiotic products, the use of probiotic cultures has been 
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reviewed by Rivera Espinoza and Gallardo-Navarro [111]. The food industry 
is looking for an improvement in the meat products quality through main
taining significant viable probiotic cell counts to extend its shelf life [134]. 
An excellent survivability of probiotics was found in the dry-cured sausage 
with orange fiber, a Spanish non-fermented food, hence it is regarded as an 
exceptional medium for these bacteria. Some of the probiotics LAB suitable 
to use in the fermentation of meat are Lb. acidophilus, Lb. gallinarum, Lb. 
gasseri, Lb. amylovorus, Lb. crispatus, and Lb. johnsonii, which enhance the 
safety of product [10]. 

13.5  PRODUCT SPECIFICATIONS 

Product specifications are blueprints that describe exactly what the product 
will be, what it should look like and what function it will perform. Once the 
product enriched with probiotic is developed, the product should be specified 
with its outline information on packaging. The information about the safety 
of the product containing the probiotic microorganisms should be provided to 
the concerned authority by the manufacturer before marketing. The probiotic 
microorganisms used in the product should be documented as follows: 

•	 Antimicrobial and antibiotic resistant genes of the strain should be 
reported; 

•	 Antimicrobial property of the strain should be evaluated through in 
vivo and in vitro; 

•	 Documentation must be in the form of published peer-reviewed articles; 
•	 Information related to the extrachromosomal DNA and lack of viru

lence factor must be provided; 
•	 The accession number should be submitted for the obtained sequence 

data of the microorganisms; 
•	 The deposition of the identified microorganism must be in a recog

nized international culture collection center after obtaining its acces
sion and strain number; 

•	 The names of the identified microorganism must be in accordance 
with the international code for nomenclature of microorganisms; 

•	 The phenotypic and genotypic characteristic of the strains should be 
carried out. 

Once the information regarding the probiotic microorganisms is docu
mented, it can be used in the manufacture of dairy and non-dairy foods. The 
product must furnish the following specifications. 
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•	 Viable probiotics cells in the product should be expressed as log CFU 
per gram; 

•	 Number of times the product to be used per day and the serving size; 
•	 The necessary conditions such as time, temperature, exposure to air 

and relative humidity required for storage; 
•	 Stability of the product after opening the packaging. 

It is the accountability of the producer/manufacturer to provide informa
tion on the safety assessments carried out on the products to the consumers 
and/or clinicians. 

13.6  SAFETY CRITERIA 

As the markets for probiotic are rapidly growing worldwide, the evaluation 
of probiotic bacteria for its safety and efficacy are gaining importance for the 
management of national and international regulations and guidelines. There 
is high significance for the deliberation of safety of probiotic bacteria, as they 
are souk through food and feed supplements. The different safety policies for 
probiotics-based products have been maintained in different nations. It is 
believed that for the general population, all the species of probiotics to be 
safe (as stated by the European Food Safety Authority) and thus, probiotics 
have grabbed a significant place in healthcare [20, 36]. Most probiotics used 
in products for decades are derived either from fermented foods or from 
the microbes colonizing a healthy human. The generally regarded as safe 
(GRAS) status of the LAB is encouraging the consumption of the processed 
foods containing these bacteria in the past have not resulted in any harmful 
effects [45]. Ecology of breast-fed infant’s intestinal tract has Bifidobacteria 
as predominant bacteria; as a result, the infant is healthy. There is no ques
tion on the use of Bifidobacteria in any formulations, as it is safe and till now 
there is no research report on its harmful effect on the host. 

To measure the strain of probiotic to be safe, following approaches could 
be studied: 

1.	 The Fundamental Characteristics of the strain: In vitro charac
terization on the extreme bile salts deconjugation. 

2.	 The Pharmacokinetics of the Strain: The difference in the surviv
ability of probiotics ingested at various stages of the GI tract varies 
with the strains, which is determined by in vivo fecal samples and 
biopsies of the intestinal mucosa. Outcome of the ingested strains 
could be predicted by a number of in vitro models. 
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3.	 The Strain-Host Interactions: The adverse interactions of micro
biological agents in food can lead to host illness which is hard to 
envisage than infection caused from the chemical means. The 
quantitative risk assessment is necessary to understand through the 
food containing pathogens which reveals that there is no existence of 
zero risk. However, it is very difficult to understand the concept of 
minimal infective dose since the involvement of a greater amount of 
microbial and host factors and the differences of the individuals at 
high potential. 

13.7  TESTING METHODS 

The guidelines deal with the use of probiotic microorganism, the prerequisite 
to evaluate the probiotic strain for its safety efficacy, its health claims, and 
the products labeling with probiotics. According to FAO recommendation, 
in vitro and in vivo studies are necessary to document the safety of these 
strains which includes the assessment of metabolic activities, determining 
the profiles of antibiotic resistance, antimicrobial drug resistance patterns, 
toxin production and hemolytic activity, administration of dose and method 
(oral or otherwise), absences of allergenic material, determination of genetic 
and pathological side effects in humans during clinical trials. The guidelines 
also deal with post-market surveillance of epidemiology, the consuming 
population’s physiological status, special consideration to the vulnerable 
populations, new-born infants and to those who are critically ill. The history 
on the isolation of probiotic microorganisms and its taxonomic classifica
tion should be recorded. During the manufacturing of products, if probiotics 
are cross-contaminated with other microbes or substances between batches, 
such batches must be eliminated. 

13.8  PROBIOTICS MARKET 

Before 2022, the probiotics market is anticipated to acquire $57.4 billion with 
the registered compound annual growth rate (CAGR) of 7.7% throughout 
2016–2022 which is the estimated period. Nowadays, probiotic products 
are employed to diagnose many diseases as they are known to support the 
immune system of the human. The positive effects of probiotics are on host 
health including the gut microbiome apart from providing basic nutrition, 
therefore consumption of functional foods is rising which leads to the 
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demand for probiotics. By increasing the preference of consumers for natural 
products, the major market growth factor can be enhanced. Capsules, gel, 
and powders are the forms of probiotic ingredients placed on the market. 

The probiotic market in India is driving the market growth tremendously 
due to the therapeutic properties of probiotics and consumers awareness 
on preventive healthcare. As per the Research study by TechSci on “India 
Probiotic Market Forecast and Opportunities,” in 2019, the revenue projected 
during 2014–2019 was 19.80% which is an average growth on the probiotic 
market. The Indian Probiotic market is dominated by Northern India, followed 
by Southern and Central regions in terms of sales revenue. In India, Amul, 
Danone, Epigamia, Mother Dairy, Milky Mist, Nestle India, and Yakult are 
the foremost producers of probiotic beverages and functional foods. As the 
need for women and pediatric nutrition are rising, there is a dominancy on 
the probiotic drugs segment and dietary supplements by various firms such as 
Tablets India, Dr. Reddy’s laboratories and USV India, Sun Pharma, Mankind, 
Lupin, Cipla, Himalaya Drugs, Curatio, Corona Remedies, Glenmark, 
Torrent, Fourrts India, Pharmed, Unichem, etc. In India, “Prolife (Amul), 
Yakult Yogurt, Yakult Acidophilus Plus, Healthvit, ViBact, inLife, Organic 
Low Fat Kefir, b-Active, NesVita, Neo, Bio-K Plus, Doctor’s Best, Probiotic 
Tea, Coffee, Vista Nutritions, etc., are the major probiotic products. 

Global scenario of probiotics products growth has been quite amazing. 
Knowledge in probiotic continues to expand during the last decades due to 
their protective role in the gut to keep our gut healthy and fit. In 2018, the 
size of the market is exceeded to USD 2 billion and is estimated to grow at 
over 8.15% CAGR between 2020 and 2025. The highly competitive market 
with key players includes Nestle SA, Danone SA, PepsiCo Inc., and Yakult 
Honsha Co. Ltd. Several companies like Sanofi, Abbott, Euro Lifecare, Blis 
technology, Sunwave Pharma, Aceto, etc., and also manufacture products 
of international probiotic giants like CHR Hansen, DSM, DuPont Nutrition, 
Lesaffre, TOA (Tennessee orthopedic alliance) pharmaceuticals, UAS Labs, 
Morinaga, etc., are involved in research using Japanese technology and rigid 
process engineering and controls. Probiotics are manufactured in the form of 
capsules, sachets, tablets, dry syrup lozenges and the latest development is 
probiotic drops. 

13.9  SUMMARY 

The promising physiological and therapeutic effects of probiotics is growing 
and intense research efforts are underway in developing value added food 
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products with the incorporation of Lactobacillus and Bifidobacterium 
species. The benefits of probiotics have helped food industries in recognizing 
the probiotics role on human health and exploiting different formulations. 
In vulnerable populations, the comprehensive post-marketing surveillance 
of therapeutic properties of probiotic-based dairy and non-dairy products 
by in vivo method is necessary to monitor the incidence of any unintended 
consequences. 
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