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 The   purpose of this book, like the fi rst edition, is to provide an introduction to space mechanics for under-
graduate engineering students. It is not directed towards graduate students, researchers and experienced 
practitioners, who may nevertheless fi nd useful review material within the book’s contents. The intended 
readers are those who are studying the subject for the fi rst time and have completed courses in physics, 
dynamics and mathematics through differential equations and applied linear algebra. I have tried my best 
to make the text readable and understandable to that audience. In pursuit of that objective I have included 
a large number of example problems that are explained and solved in detail. Their purpose is not to over-
whelm but to elucidate. I fi nd that students like the  “ teach by example ”  method. I always assume that the 
material is being seen for the fi rst time and, wherever possible, I provide solution details so as to leave little 
to the reader’s imagination. The numerous fi gures throughout the book are also intended to aid comprehen-
sion. All of the more labor-intensive computational procedures are implemented in MATLAB ®  code. 

    CHANGES TO THE SECOND EDITION 
 Most   of the content and style of the fi rst edition has been retained. Some topics have been revised, rearranged 
or relocated. I have corrected all of the errors that I discovered or that were reported to me by students, teach-
ers, reviewers and other readers. Key terms are now listed at the end of each chapter. The answers in the 
example problems are boxed instead of underlined. The homework problems at the end of each chapter have 
been grouped by applicable section. There are many new example problems and homework problems. 

 Chapter   1, which is a review of particle dynamics, begins with a new section on vectors, which are used 
throughout the book. Therefore, I thought a brief review of basic vector concepts and operations was appro-
priate. The chapter concludes with a new section on the numerical integration of ordinary differential equa-
tions (ODEs). These Runge-Kutta and predictor-corrector methods, which I implemented in the MATLAB 
codes  rk1_4.m ,  rkf45.m  and  heun.m , facilitate the investigation and simulation of space mechanics problems 
for which analytical, closed-form solutions are not available. Many of the book’s new example problems 
illustrate applications of this kind. Throughout the text I mostly use the ODE solvers  heun.m  (fi xed time 
step) and  rkf45.m  (variable time step) because they work well and the scripts (see Appendix D) are short 
and easy to read. In every case I checked their results against two of MATLAB’s own suite of ODE solvers, 
primarily  ode23.m  and  ode45.m . These general-purpose codes are far more elegant (and lengthy) than the 
ones mentioned above. They may be listed by issuing the MATLAB  type  command. 

 I   have added two algorithms to Chapter 2 for numerically integrating the two-body equations of motion: 
an algorithm for propagating a state vector as a function of true anomaly, and an algorithm for fi nding the 
roots of a function by the bisection method. The last one is useful for determining the Lagrange points in 
the restricted three-body problem. 

 Chapter   4 now includes the material on coordinate transformations previously found in this and other 
chapters. Section 4.5 includes a more general treatment of the Euler elementary rotation sequences, with 
emphasis on the classical (3-1-3) Euler sequence and the yaw-pitch-roll (3-2-1) sequence. Algorithms were 
added to calculate the right ascension and declination from the position vector and to calculate the classical 
Euler angles and the yaw, pitch and roll angles from the direction cosine matrix. I also moved all discussion 
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of ground tracks into Chapter 4 and offer an algorithm for obtaining the ground track of a satellite from its 
orbital elements. 

 Chapter   6 concludes with a new section on nonimpulsive (fi nite burn time) orbital change maneuvers, 
including MATLAB simulations. 

 Chapter   7 now includes an algorithm to fi nd the position, velocity and acceleration of a spacecraft rela-
tive to an LVLH frame. Also new to this chapter is the derivation of the linearized equations of relative 
motion for an elliptical (not necessarily circular) reference orbit. 

 New   to Chapter 9 is a discussion of quaternions and associated algorithms for use in numerically solv-
ing Euler’s equations of rigid body motion to obtain the evolution of spacecraft attitude. Quaternions can be 
used with MATLAB’s  rotate  command to produce simple animations of spacecraft motion. 

 Appendices   C and D have changed. The MATLAB script in Appendix C was revised. Appendix D no 
longer contains the listings of MATLAB codes. Instead, the algorithms are listed along with the world 
wide web addresses from which they may be downloaded. This edition contains over twice the number of 
MATLAB M-fi les as did the fi rst.  

    ORGANIZATION 
 The   organization of the book remains the same as that of the fi rst edition. Chapter 1 is a review of vector 
kinematics in three dimensions and of Newton’s laws of motion and gravitation. It also focuses on the issue 
of relative motion, crucial to the topics of rendezvous and satellite attitude dynamics. The new material on 
ordinary differential equation solvers will be useful for students who are expected to code numerical simula-
tions in MATLAB or other programming languages. Chapter 2 presents the vector-based solution of the clas-
sical two-body problem, resulting in a host of practical formulas for the analysis of orbits and trajectories of 
elliptical, parabolic and hyperbolic shape. The restricted three-body problem is covered in order to introduce 
the notion of Lagrange points and to present the numerical solution of a lunar trajectory problem. Chapter 3 
derives Kepler’s equations, which relate position to time for the different kinds of orbits. The universal vari-
able formulation is also presented. Chapter 4 is devoted to describing orbits in three dimensions. Coordinate 
transformations and the Euler elementary rotation sequences are defi ned. Procedures for transforming back 
and forth between the state vector and the classical orbital elements are addressed. The effect of the earth’s 
oblateness on the motion of an orbit’s ascending node and eccentricity vector is examined. Chapter 5 is an 
introduction to preliminary orbit determination, including Gibbs’s and Gauss’s methods and the solution 
of Lambert’s problem. Auxiliary topics include topocentric coordinate systems, Julian day numbering and 
sidereal time. Chapter 6 presents the common means of transferring from one orbit to another by impulsive 
delta-v maneuvers, including Hohmann transfers, phasing orbits and plane changes. Chapter 7 is a brief intro-
duction to relative motion in general and to the two-impulse rendezvous problem in particular. The latter is 
analyzed using the Clohessy-Wiltshire equations, which are derived in this chapter. Chapter 8 is an introduc-
tion to interplanetary mission design using patched conics. Chapter 9 presents those elements of rigid-body 
dynamics required to characterize the attitude of a space vehicle. Euler’s equations of rotational motion are 
derived and applied in a number of example problems. Euler angles, yaw-pitch-roll angles and quaternions 
are presented as ways to describe the attitude of rigid body. Chapter 10 describes the methods of controlling, 
changing and stabilizing the attitude of spacecraft by means of thrusters, gyros and other devices. Finally, 
Chapter 11 is a brief introduction to the characteristics and design of multi-stage launch vehicles. 

 Chapters   1 through 4 form the core of a fi rst orbital mechanics course. The time devoted to Chapter 1 
depends on the background of the student. It might be surveyed briefl y and used thereafter simply as a ref-
erence. What follows Chapter 4 depends on the objectives of the course. 

 Chapters   5 through 8 carry on with the subject of orbital mechanics. Chapter 6 on orbital maneuvers 
should be included in any case. Coverage of Chapters 5, 7 and 8 is optional. However, if all of Chapter 8 on 



interplanetary missions is to form a part of the course, then the solution of Lambert’s problem (Section 5.3) 
must be studied beforehand. 

 Chapters   9 and 10 must be covered if the course objectives include an introduction to spacecraft dynam-
ics. In that case Chapters 5, 7 and 8 would probably not be covered in depth. 

 Chapter   11 is optional if the engineering curriculum requires a separate course in propulsion, including 
rocket dynamics. 

 The   important topic of spacecraft control systems is omitted. However, the material in this book and a 
course in control theory provide the basis for the study of spacecraft attitude control. 

 To   understand the material and to solve problems requires using a lot of undergraduate mathematics. 
Mathematics, of course, is the language of engineering. Students must not forget that Sir Isaac Newton had 
to invent calculus so he could solve orbital mechanics problems in more than just a heuristic way. Newton 
(1642 – 1727) was an English physicist and mathematician, whose 1687 publication  Mathematical Principles 
of Natural Philosophy  ( “ the  Principia  ” ) is one of the most infl uential scientifi c works of all time. It must be 
noted that the German mathematician Gottfried Wilhelm von Leibnitz (1646 – 1716), is credited with invent-
ing infi nitesimal calculus independently of Newton in the 1670s. 

 In   addition to honing their math skills, students are urged to take advantage of computers (which, inci-
dentally, use the binary numeral system developed by Leibnitz). There are many commercially available 
mathematics software packages for personal computers. Wherever possible they should be used to relieve 
the burden of repetitive and tedious calculations. Computer programming skills can and should be put to 
good use in the study of orbital mechanics. The elementary MATLAB programs referred to in Appendix D 
of this book illustrate how many of the procedures developed in the text can be implemented in software. 
All of the scripts were developed and tested using MATLAB version 7.7. Information about MATLAB, 
which is a registered trademark of The MathWorks, Inc., may be obtained from 

 The   MathWorks, Inc. 
 3   Apple Hill Drive 
 Natick  , MA, 01760-2089, USA 
    www.mathworks.com  

 Appendix   A presents some tables of physical data and conversion factors. Appendix B is a road map 
through the fi rst three chapters, showing how the most fundamental equations of orbital mechanics are 
related. Appendix C shows how to set up the  n -body equations of motion and program them in MATLAB. 
Appendix D contains the web locations of the M-fi les of all of the MATLAB-implemented algorithms and 
example problems presented in the text. Appendix E shows that the gravitational fi eld of a spherically sym-
metric body is the same as if the mass were concentrated at its center. 

 The   fi eld of astronautics is rich and vast. References cited throughout this text are listed at the end of 
the book. Also listed are other books on the subject that might be of interest to those seeking additional 
insights.   

    SUPPLEMENTS TO THE TEXT 
 For   purchasers of this book: 

 Copies   of the MATLAB M-fi les listed in Appendix D can be freely downloaded from the companion 
website accompanying this book. To access these fi les please visit www.elsevierdirect.com/9780123747785 
and click on the “companion site” link. 

 For   instructors using this book as text for their course: 
 Please   visit www.textbooks.elsevier.com to register for access to the solutions manual, PowerPoint ®  lec-

ture slides and other resources.     
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    1.1       INTRODUCTION 
 This   chapter serves as a self-contained reference on the kinematics and dynamics of point masses as well 
as some basic vector operations and numerical integration methods. The notation and concepts summarized 
here will be used in the following chapters. Those familiar with the vector-based dynamics of particles can 
simply page through the chapter and then refer back to it later as necessary. Those who need a bit more in 
the way of review will fi nd the chapter contains all of the material they need in order to follow the develop-
ment of orbital mechanics topics in the upcoming chapters. 

 We   begin with a review of vectors and some vector operations after which we proceed to the problem 
of describing the curvilinear motion of particles in three dimensions. The concepts of force and mass are 
considered next, along with Newton’s inverse-square law of gravitation. This is followed by a presentation 
of Newton’s second law of motion ( “ force equals mass times acceleration ” ) and the important concept of 
angular momentum. 

 As   a prelude to describing motion relative to moving frames of reference, we develop formulas for cal-
culating the time derivatives of moving vectors. These are applied to the computation of relative velocity 
and acceleration. Example problems illustrate the use of these results, as does a detailed consideration of 
how the earth’s rotation and curvature infl uence our measurements of velocity and acceleration. This brings 
in the curious concept of Coriolis force. Embedded in exercises at the end of the chapter is practice in veri-
fying several fundamental vector identities that will be employed frequently throughout the book. 

 The   chapter concludes with an introduction to numerical integration methods, which can be called upon 
to solve the equations of motion when an analytical solution is not possible.  

                                    Dynamics of point masses    1 
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    1.2       VECTORS 
 A   vector is an object that is specifi ed by both a magnitude and a direction. We represent a vector graphi-
cally by a directed line segment, that is, an arrow pointing in the direction of the vector. The end opposite 
the arrow is called the tail. The length of the arrow is proportional to the magnitude of the vector. Velocity 
is a good example of a vector. We say that a car is traveling east at eighty kilometers per hour. The direction 
is east and the magnitude, or speed, is 80 km/h. We will use boldface type to represent vector quantities and 
plain type to denote scalars. Thus, whereas  B  is a scalar,  B  is a vector. 

 Observe   that a vector is specifi ed solely by its magnitude and direction. If  A  is a vector, then all vectors 
having the same physical dimensions, the same length and pointing in the same direction as  A  are denoted 
 A , regardless of their line of action, as illustrated in  Figure 1.1   . Shifting a vector parallel to itself does not 
mathematically change the vector. However, parallel shift of a vector might produce a different physical 
effect. For example, an upward 5 kN load (force vector) applied to the tip of an airplane wing gives rise to 
quite a different stress and defl ection pattern in the wing than the same load acting at the wing’s mid-span. 

 The   magnitude of a vector  A  is denoted  A    , or, simply  A . 
 Multiplying   a vector  B  by the reciprocal of its magnitude produces a vector which points in the direction 

of  B , but it is dimensionless and has a magnitude of one. Vectors having unit dimensionless magnitude are 
called unit vector s . We put a hat  ( )^     over the letter representing a unit vector. Then we can tell simply by 
inspection that, for example,  ̂u     is a unit vector, as are  ̂B    and  ̂e    . 

 It   is convenient to denote the unit vector in the direction of the vector  A  as  ̂uA    . As pointed out above, we 
obtain this vector from  A  as follows 

  
û

A
A �

A
  (1.1)      

 Likewise  ,  ̂u CC C� /    ,  ̂u FF F� /    , etc. 
 The   sum or   resultant   of two vectors is defi ned by the parallelogram rule ( Figure 1.2   ). Let  C     be the sum 

of the two vectors  A  and  B . To form that sum using the parallelogram rule, the vectors  A  and  B  are shifted 
parallel to themselves (leaving them unaltered) until the tail of  A  touches the tail of  B . Drawing dotted lines 
through the head of each vector parallel to the other completes a parallelogram. The diagonal from the tails 
of  A  and  B  to the opposite corner is the resultant  C . By construction, vector addition is commutative, that is, 

  A B B A� � �   (1.2)      

 A     Cartesian coordinate system   in three dimensions consists of three axes, labeled  x ,  y  and  z , which inter-
sect at the origin  O . We will always use a right-handed Cartesian coordinate system, which means if you 
wrap the fi ngers of your right hand around the  z  axis, with the thumb pointing in the positive  z  direction, 

A

 FIGURE 1.1  
       All of these vectors may be denoted  A , since their magnitudes and directions are the same.    



your fi ngers will be directed from the  x  axis towards the  y  axis.  Figure 1.3    illustrates such a system. Note that 
the unit vectors along the  x ,  y  and  z -axes are, respectively,  ̂i    ,  ̂j    and  ̂k    . 

 In   terms of its Cartesian components, and in accordance with the above summation rule, a vector  A  is 
written in terms of its components  Ax   ,  Ay    and  Az    as 

  
A � � �A A Ax y z

ˆ ˆ ˆi j k   (1.3)      

 The   projection of  A  on the  xy  plane is denoted  Axy    . It follows that 

  
A i jxy x yA A� �ˆ ˆ

      

 According   to the Pythagorean theorem, the magnitude of  A  in terms of its Cartesian components is 

  
A A A Ax y z� � �2 2 2

  (1.4)      

 From   Equations 1.1 and 1.3, the unit vector in the direction of  A  is 

  
ˆ cos ˆ cos ˆ cos ˆu i j kA � � �θ θ θx y z   (1.5)     
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 FIGURE 1.2  
       Parallelogram rule of vector addition.    
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 FIGURE 1.3  
       Three-dimensional, right-handed Cartesian coordinate system.    
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  where   

  
cos cos cosθ θ θx

x
y

y
z

zA

A

A

A

A

A
� � �   (1.6)      

 The   direction angles   θ  x  ,   θ  y   and   θ  z   are illustrated in  Figure 1.4   , and are measured between the vector and the 
positive coordinate axes. Note carefully that the sum of   θ  x  ,   θ  y   and   θ  z   is not in general known a priori and 
cannot be assumed to be, say, 180 degrees.

        Example 1.1      
 Calculate   the direction angles of the vector  A i j k� � �ˆ ˆ ˆ4 8 .    

    Solution 
 First  , compute the magnitude of  A  by means of Equation 1.4: 

 A � � � � �1 4 8 92 2 2( )      

 Then   Equations 1.6 yield 

  
θ θx

x
x

A

A
� � � �� �cos cos .1 1 1

9
83 62

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ⇒

     

  

θ θy
y

y

A

A
� �

�
� �� �cos cos .1 1 4

9
116 4

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟⇒

     

  
θ θz

z
z

A

A
� � � �� �cos cos .1 1 8

9
27 27
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 Observe   that   θ  x        �        θ  y        �        θ  z        �      227.3 ° .       
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θx θy

θz

Ax
y

Az

 FIGURE 1.4  

       Direction angles in three dimensions.    



 Multiplication   and division of two vectors are undefi ned operations. There are no rules for computing 
the product  AB     and the ratio  A/B    . However, there are two well-known binary operations on vectors: the 
dot product and the cross product. The   dot product   of two vectors is a scalar defi ned as follows, 

  A B· � ABcosθ   (1.7)     

  where   θ   is the angle between the heads of the two vectors, as shown in  Figure 1.5   . Clearly,   

  A B B A� � �   (1.8)      

 If   two vectors are perpendicular to each other, then the angle between them is 90 ° . It follows from 
Equation 1.7 that their dot product is zero. Since the unit vectors  ̂i    ,  ̂j     and  ̂k    of a Cartesian coordinate sys-
tem are mutually orthogonal and of magnitude one, Equation 1.7 implies that 

  

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ
i i j j k k
i j i k j k
� � � � � �

� � � � � �

1
0   (1.9)      

 Using   these properties it is easy to show that the dot product of the vectors  A  and  B  may be found in terms 
of their Cartesian components as 

  
A B� � � �A B A B A Bx x y y z z   (1.10)      

 If   we set  B       �       A , then it follows from Equations 1.4 and 1.10 that 

  A � �A A   (1.11)      

 The   dot product operation is used to project one vector onto the line of action of another. We can imag-
ine bringing the vectors tail to tail for this operation, as illustrated in  Figure 1.6   . If we drop a perpendicular 
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θ
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A

 FIGURE 1.5  
       The angle between two vectors brought tail to tail by parallel shift.    
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 FIGURE 1.6  
       Projecting the vector  B  onto the direction of  A .    
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line from the tip of  B  onto the direction of  A , then the line segment  B A   is the orthogonal projection of  B  
onto line of action of  A .  B A   stands for the scalar projection of  B  onto  A . From trigonometry, it is obvious 
from the fi gure that 

  B BA � cosθ       

 Let    ̂uA    be the unit vector in the direction of  A   . Then 

  
B u B u� � �ˆ ˆ cos cosA A B

1�
θ θ

      

 Comparing   this expression with the preceding one leads to the conclusion that 

  
B

AA A� � � �B u B
A

ˆ   (1.12)     

  where  ̂uA    is given by Equation 1.1. Likewise, the projection of  A  onto  B  is given by   

  
A

BB � �A
B

      

 Observe   that  A B        �       B A   only if  A  and  B  have the same magnitude.

        Example 1.2      
 Let    A i k� � �ˆ ˆ ˆ6 18j     and  B i j k� � �42 69 98ˆ ˆ ˆ    . Calculate 

    (a)     The angle between  A  and  B ;  
    (b)     The projection of  B  in the direction of  A ;  
    (c)     The projection of  A  in the direction of  B .    

    Solution 
 First   we make the following individual calculations. 

  A B� � � � � �( )( ) ( )( ) ( )( )1 42 6 69 18 98 1392    (a)      

  A � � � �( ) ( ) ( )1 6 18 192 2 2   (b)      

  B � � � � �( ) ( ) ( )42 69 98 1272 2 2   (c)      

    (a)     According to Equation 1.7, the angle between  A  and  B  is    

 
θ �

��cos 1 A B
AB

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     
 Substituting   (a), (b) and (c) yields 

 
θ �

�
� ��cos .1 1392

19 127
54 77

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

     



    (b)     From Equation 1.12 we fi nd the projection of  B  onto  A :    

 
B

A AA � � �
�

B
A A B

     
 Substituting   (a) and (b) we get 

 
BA �

1392

19
= 73.26

     

    (c)     The projection of  A  onto  B  is    

 
A

B BB � � �
�

A
B A B

     
 Substituting   (a) and (c) we obtain 

 
AB � �

1392

127
10 96.

           

 The     cross product   of two vectors yields another vector, which is computed as follows, 

  A B n� � ( sin )AB ABθ ˆ   (1.13)     

  where   θ   is the angle between the heads of A and B, and  ̂nAB     is the unit vector normal to the plane defined by 
the two vectors. The direction of  ̂nAB     is determined by the right hand rule. That is, curl the fingers of the right 
hand from the first vector ( A ) towards the second vector ( B ), and the thumb shows the direction of  ̂nAB   . See 
 Figure 1.7   . If we use Equation 1.13 to compute  B       �       A , then  ̂nAB    points in the opposite direction, which means   

  B A A B� � � �( )   (1.14)      

 Therefore  , unlike the dot product, the cross product is not commutative. 
 The   cross product is obtained analytically by resolving the vectors into Cartesian components. 

  
A B i j k i j k� � � � � � �( ) ( )A A A B B Bx y z x y z

ˆ ˆ ˆ ˆ ˆ ˆ   (1.15)      

 Since   the set  ̂ ˆ ˆi jk     is a mutually perpendicular triad of unit vectors, Equation 1.13 implies that 

  

ˆ ˆ      ˆ ˆ        ˆ ˆ

ˆ ˆ ˆ       ˆ ˆ ˆ   

i i 0 j j 0 k k 0
i j k j k i

� � � � � �

� � � �     ˆ ˆ ˆk i j� �   (1.16)      

1.2 Vectors  7

θ

B
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nAB

 FIGURE 1.7  
        ̂nAB    is normal to both A and B and defi nes the direction of the cross product  A       �       B .    
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 Expanding   the right side of Equation 1.15, substituting Equation 1.16 and making use of Equation 1.14 
leads to 

  
A B i j k� � � � � � �( ) ( ) ( )A B A B A B A B A B A By z z y x z z x x y y x

ˆ ˆ ˆ   (1.17)      

 It   may be seen that the right-hand side is the determinant of the matrix 

  

ˆ ˆ ˆi j k

A A A

B B B

x y z

x y z

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥       

 Thus  , Equation 1.17 can be written 

  

A B

i j k

� �

ˆ ˆ ˆ

A A A

B B B

x y z

x y z

  (1.18)     

  where the two vertical bars stand for determinant. Obviously the rule for computing the cross product, 
though straightforward, is a bit lengthier than that for the dot product. Remember that the dot product yields 
a scalar whereas the cross product yields a vector.   

 The   cross product provides an easy way to compute the normal to a plane. Let  A  and  B  be any two vec-
tors lying in the plane, or, let any two vectors be brought tail-to-tail to defi ne a plane, as shown in  Figure 
1.7 . The vector  C       �       A       �       B  is normal to the plane of  A  and  B . Therefore,  ̂n CAB C� /    , or 

  
n

A B
A BAB �

�

�
  (1.19)     

        Example 1.3      
 Let    A i j k� � � �3 7 9ˆ ˆ ˆ     and  B i j k� � �6 5 8ˆ ˆ ˆ    . Find a unit vector that lies in the plane of  A  and  B  and is 
perpendicular to  A . 

    Solution 
 The   plane of the vectors  A  and  B  is determined by parallel shifting the vectors so that they meet tail to tail. 
Calculate the vector  D       �       A       �       B . 

 

D

i j k

i j k� �

�

� � �

ˆ ˆ ˆ

ˆ ˆ ˆ3 7 9

6 5 8

101 78 27

     

 Note   that  A  and  B  are both normal to  D . We next calculate the vector  C       �       D       �       A . 

 

C

i j k

i j k� �

�

� � �

ˆ ˆ ˆ

ˆ ˆ ˆ101 78 27

3 7 9

891 828 941

     



  C    is normal to  D  as well as to  A. A ,  B  and  C  are all perpendicular to  D . Therefore they are coplanar. Thus 
 C  is not only perpendicular to  A , it lies in the plane of  A  and  B . Therefore, the unit vector we are seeking is 
the unit vector in the direction of  C , namely, 

  

ˆ
ˆ ˆ ˆ

( )
u

C i j k
C C

� �
� �

� � �

891 828 941

891 828 9412 2 2
     

  
ˆ . ˆ . ˆ . ˆu i j kC � � �0 5794 0 5384 0 6119

           

 In   the chapters to follow we will often encounter the vector triple product,  A       �      ( B       �       C ). By resolving 
 A ,  B  and  C  into their Cartesian components, it can easily be shown (see Problem 1.1c) that the vector triple 
product can be expressed in terms of just the dot products of these vectors as follows: 

  A B C B A C C A B� � � � � �( ) ( ) ( )   (1.20)      

 Because   of the appearance of the letters on the right-hand side, this is often referred to as the   bac-cab rule  .

        Example 1.4      
 If    F       �       E       �       {  D       �      [ A       �      ( B       �       C )] } , use the  bac-cab  rule to reduce this expression to one involving only dot 
products. 

    Solution 
 First   we invoke the  bac-cab  rule to obtain 

  

F E D B A C C A B� � � � �

�

[ ( ) ( )]�

bac cab rule� ����� �����⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭⎭
⎪⎪⎪      

 Expanding   and collecting terms leads to 

  F A C E D B A B E D C� � � � � � � �( )[ ( )] ( )[ ( )]      

 We   next apply the  bac-cab  rule twice on the right-hand side. 

  

F A C D E B B E D A B D� � � � � � �

�

( ) ( ) ( ) ( )
bac cab  rule� ���� ����⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(( ) ( )E C C E D� � �

�bac cab  rule� ���� ����⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
      

 Expanding   and collecting terms yields the sought-for result. 

  
F A C E B A B E C D A C E D B A B E D C� � � � � � � � � � � �[( )( ) ( )( )] ( )( ) ( )( )

            

1.2 Vectors  9
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 Another   useful vector identity is the   interchange of the dot and cross  : 

  A B C A B C� � � � �( ) ( )   (1.21)      

 It   is so-named because interchanging the operations in the expression  A   ·   B       �       C  yields  A       �       B   ·   C . The 
parentheses in Equation 1.21 are required to show which operation must be carried out fi rst, according to 
the rules of vector algebra. (For example, ( A   ·   B )      �       C , the cross product of a scalar and a vector, is unde-
fi ned.) It is easy to verify Equation 1.21 by substituting  A i j k� � �A A Ax y z

ˆ ˆ ˆ    ,  B i j k� � �B B Bx y z
ˆ ˆ ˆ     

and  C i j k� � �C C Cx y z
ˆ ˆ ˆ     and observing that both sides of the equal sign reduce to the same expression 

(Problem 1.1b).  

    1.3       KINEMATICS 
 To   track the motion of a particle  P  through Euclidean space we need a frame of reference, consisting of a 
clock and a Cartesian coordinate system. The clock keeps track of time  t  and the  xyz  axes of the Cartesian 
coordinate system are used to locate the spatial position of the particle. In nonrelativistic mechanics, a sin-
gle  “ universal ”  clock serves for all possible Cartesian coordinate systems. So when we refer to a frame of 
reference we need think only of the mutually orthogonal axes themselves. 

 The   unit of time used throughout this book is the second (s). The unit of length is the meter (m), but 
the kilometer (km) will be the length unit of choice when large distances and velocities are involved. 
Conversion factors between kilometers, miles and nautical miles are listed in Table A.3. 

 Given   a frame of reference, the position of the particle  P  at a time  t  is defi ned by the position vector  r ( t ) 
extending from the origin  O  of the frame out to  P  itself, as illustrated in  Figure 1.8   . The components of  r ( t ) 
are just the  x ,  y  and  z  coordinates, 

  r i j k( ) ( ) ( ) ( )t x t y t z t� � �ˆ ˆ ˆ
      

 The   distance of  P  from the origin is the magnitude or length of  r , denoted  r     or just  r , 

  
r � � � �r x y z2 2 2

      

x

y

z

O

r

v

a P

s

o

path

 FIGURE 1.8  
       Position, velocity and acceleration vectors.    



 As   in Equation 1.11, the magnitude of  r  can also be computed by means of the dot product operation, 

  r � �r r       

 The   velocity  v  and acceleration  a  of the particle are the fi rst and second time derivatives of the position 
vector, 

  
v i j k i j k( )

( ) ( ) ( )
( ) ( ) ( )t

dx t

dt

dy t

dt

dy t

dt
v t v t v tx y z� � � � � �ˆ ˆ ˆ ˆ ˆ ˆ

      

  
a i j k i j( )

( ) ( ) ( )
( ) ( ) (t

dv t

dt

dv t

dt

dv t

dt
a t a t a tx y z

x y z� � � � � �ˆ ˆ ˆ ˆ ˆ ))k̂
      

 It   is convenient to represent the time derivative by means of an overhead dot. In this shorthand   overhead 
dot notation  , if ( ) is any quantity, then 

  
( )

( )
( )

( )
( )

( )� �� ���

� � �
d

dt

d

dt

d

dt
             

2

2

3

3
, etc.

      

 Thus  , for example, 

  

v r
a v r

�
� �
� � �

� � � � � �

�
� ��
� � �
� �� � �� � ��

v x v y v z

a v x a v y a v z
x y z

x x y y z z       

 The   locus of points that a particle occupies as it moves through space is called its path or trajectory. If 
the path is a straight line, then the motion is rectilinear. Otherwise, the path is curved, and the motion is 
called curvilinear. The velocity vector  v  is tangent to the path. If  ût     is the unit vector tangent to the trajec-
tory, then 

  v u� v tˆ   (1.22)     

  where the speed  v  is the magnitude of the velocity  v . The distance  ds  that  P  travels along its path in the time 
interval  dt  is obtained from the speed by   

  ds vdt�       

 In   other words, 

  v s� �       

 The   distance  s , measured along the path from some starting point, is what the odometers in our automo-
biles record. Of course,  �s   , our speed along the road, is indicated by the dial of the speedometer. 

 Note   carefully that  v r� �   , that is, the magnitude of the derivative of  r  does not equal the derivative of the 
magnitude of  r .

1.3 Kinematics  11



12  CHAPTER 1 Dynamics of point masses

        Example 1.5      
 The   position vector in meters is given as a function of time in seconds as 

  r i j k� � � � � � � �( ) ( ) ( ) (m)8 7 6 5 4 0 3 2 12 3 4 2t t t t tˆ ˆ . ˆ   (a)      

 At    t       �      10 seconds, calculate (a)  v  (the magnitude of the derivative of  r ) and (b)  �r     (the derivative of the 
magnitude of  r ). 

    Solution 
        (a)     The velocity  v  is found by differentiating the given position vector with respect to time,    

  
v

r
i j k� � � � � �

d

dt
t t t t( ) ( )16 7 15 1 2 42 3ˆ ˆ . ˆ

      
 The   magnitude of this vector is the square root of the sum of the squares of its components, 

  v t t t t� � � � �( . . )1 44 234 6 272 224 496 4 2
1

2
      

 Evaluating   this at  t       �      10       s, we get 

  
v � 1953 3. m/s

      

    (b)     Calculating the magnitude of  r  in (a) leads to    

  r t t t t t t� � � � � � �( . . . )0 09 26 2 68 6 152 149 84 538 6 4 3 2
1

2
      

 The   time derivative of this expression is: 

  

�r
dr

dt

t t t t t

t t

� �
� � � � �

� �

0 36 78 6 137 2 228 149 42

0 09 26 2

7 5 3 2

8 6

. . .

( . . 668 6 152 149 84 534 3 2
1

2. )t t t t� � � �       

 Substituting    t       �      10       s yields 

  
�r � 1935 5. m/s

            

 If    v  is given, then we can fi nd the components of the unit tangent  ût     in the Cartesian coordinate frame 
of reference by means of Equation 1.22: 

  
ˆ ˆ ˆ ˆ  u

v
i j kt

x y z
x y zv

v

v

v

v

v

v
v v v v� � � � � � �2 2 2( )   (1.23)      

 The   acceleration may be written 

  a u u� �a at t n nˆ ˆ   (1.24)     

  where  a t   and  a n   are the tangential and normal components of acceleration, given by   

  

a v s a
v

t n� � �� ��( )
2

ρ
  (1.25)      



     ρ   is the radius of curvature, which is the distance from the particle  P  to the center of curvature of the path at 
that point. The unit principal normal  ̂un     is perpendicular to  ût    and points towards the center of curvature  C , 
as shown in  Figure 1.9   . Therefore, the position of  C  relative to  P , denoted  r   C   /   P  , is 

  
r uC P n� ρ ˆ   (1.26)      

 The   orthogonal unit vectors  ̂ut    and  ̂un    form a plane called the osculating plane. The unit normal to the 
osculating plane is  ̂ub    , the binormal, and it is obtained from  ût     and  ̂un     by taking their cross product: 

  
ˆ ˆ ˆu u ub t n� �   (1.27)      

 From   Equations 1.22, 1.24 and 1.27 we have 

  
v a u u u u u u v a u� � � � � � � � �v a a va vat t t n n n t n n b bˆ ( ˆ ˆ ) ( ˆ ˆ ) ˆ ˆ

      

 That   is, an alternative to Equation 1.27 for calculating the binormal vector is 

  

û
v a
v ab �

�

�
  (1.28)      

 Note   that  ̂ut    ,  ̂un     and  ̂ub    form a right-handed triad of orthogonal unit vectors. That is, 

  
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆu u u u u u u u ub t n t n b n b t� � � � � �   (1.29)      

 The   center of curvature lies in the osculating plane. When the particle  P  moves an incremental distance 
 ds  the radial from the center of curvature to the path sweeps out a small angle  d φ  , measured in the osculat-
ing plane. The relationship between this angle and  ds  is 

  ds d� ρ φ      

  so that  � �s � ρφ    , or   

  

�φ
ρ

�
v

  (1.30)     

1.3 Kinematics  13
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ûb

Osculating plane

ρ

φ

 FIGURE 1.9  
       Orthogonal triad of unit vectors associated with the moving point  P .    
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        Example 1.6      
 Relative   to a Cartesian coordinate system, the position, velocity and acceleration of a particle  P  at a given 
instant are 

  r i j k� � �250 630 430ˆ ˆ ˆ ( )m   (a)      

  v i j k� � �90 125 170ˆ ˆ ˆ ( )m/s   (b)      

  a i j k� � �16 125 30 2ˆ ˆ ˆ ( )m/s   (c)      

 Find   the coordinates of the center of curvature at that instant. 

    Solution 
 The   coordinates of the center of curvature  C  are the components of its position vector  r   C  . Consulting  Figure 
1.9 , we observe that 

  r r uC n� � ρ ˆ   (d)     

  where  r  is the position vector of the point  P ,   ρ   is the radius of curvature and  ûn     is the unit principal nor-
mal vector. The position vector  r  is given in (a), but   ρ   and  ûn     are unknowns at this point. We must use the 
geometry of  Figure 1.9  to fi nd them.   

 We   fi rst seek the value of  ̂un    , starting with Equation 1.29 1 , 

  
ˆ ˆ ˆu u un b t� �   (e)      

 The   unit tangent vector  ût     is found at once from the velocity vector in (b) by means of Equation 1.23: 

  
û

v
t v
�

     
  where   

  v � � � �90 125 170 229 42 2 2 .   (f)      

 Thus   

  
ˆ

ˆ ˆ ˆ

.
. ˆ . ˆ . ˆu

i j k
i j kt �

� �
� � �

90 125 170

229 4
0 39233 0 5449 0 74106   (g)      

 To   fi nd the binormal  ûb     we insert the given velocity and acceleration vectors into Equation 1.28: 

  

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

u
v a
v a

i j k

v a

i j k

b �
�

�

�
�

�
� � �

�

90 125 170

16 125 30

17500 20 9250

177500 20 9250

0 88409 0 0010104 0 46731

2 2 2( ) � �

� � � �. ˆ . ˆ . ˆi j k   (h)      



 Substituting   (g) and (h) back into (e) fi nally yields the unit principal normal: 

  

ˆ

ˆ ˆ ˆ

. . .

. . .

.u

i j k

n � � � �0 88409 0 0010104 0 46731

0 39233 0 5449 0 74106

0 225389 0 8385 0 48214ˆ . ˆ . ˆi j k� �   (i)      

 The   only unknown remaining in (d) is   ρ  , for which we appeal to Equation 1.25: 

  
ρ �

v

an

2

  (j)      

 The   normal acceleration  a n   is calculated by projecting the acceleration vector  a  onto the direction of the 
unit normal  ûn   , 

  an n� � � � � � � � �a u i j k i j kˆ ( ˆ ˆ ˆ ) ( . ˆ . ˆ . ˆ )16 125 30 0 25389 0 8385 0 48214 �� 86 287. m/s   (k)      

 Putting   the values of  v  and  a n   in Equations (f) and (k) into (j) yields the radius of curvature, 

  
ρ � �

229 4

86 287
609 89

2.

.
. m   (l)      

 Upon   substituting (a), (i) and (l) into (d) we obtain the position vector of the center of curvature  C : 

  

r i j k i jC � � � � � � �( ) (250 630 430 609 89 0 25389 0 8385 0 48214ˆ ˆ ˆ . . ˆ . ˆ . k̂k
i j k

)
 (km)� � �95 159 1141 4 135 95. ˆ . ˆ . ˆ

      

 Therefore  , the coordinates of  C  are 

  
x y z� � �95 16 1141 136 0. .m m m

             

    1.4       MASS, FORCE AND NEWTON’S LAW OF GRAVITATION 
 Mass  , like length and time, is a primitive physical concept: it cannot be defi ned in terms of any other physical 
concept. Mass is simply the quantity of matter. More practically, mass is a measure of the inertia of a body. 
Inertia is an object’s resistance to changing its state of motion. The larger its inertia (the greater its mass), the 
more diffi cult it is to set a body into motion or bring it to rest. The unit of mass is the kilogram (kg). 

 Force   is the action of one physical body on another, either through direct contact or through a distance. 
Gravity is an example of force acting through a distance, as are magnetism and the force between charged 
particles. The gravitational force between two masses  m1    and  m2    having a distance  r  between their centers is 

  
F G

m m

r
g � 1 2

2
  (1.31)      

 This   is   Newton’s law of gravity  , in which  G , the   universal gravitational constant  , has the value 
 G       �      6.6742      �      10  � 11        m 3 /(kg  ·  s 2 ). Due to the inverse-square dependence on distance, the force of gravity 

1.4 Mass, force and Newton’s law of gravitation  15



16  CHAPTER 1 Dynamics of point masses

rapidly diminishes with the amount of separation between the two masses. In any case, the force of gravity 
is minuscule unless at least one of the masses is extremely big. 

 The   force of a large mass (such as the earth) on a mass many orders of magnitude smaller (such as a 
person) is called weight,  W . If the mass of the large object is  M  and that of the relatively tiny one is  m , then 
the weight of the small body is 

  
W G

Mm

r
m

GM

r
� �

2 2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     

  or   

  W mg�   (1.32)     

  where   

  
g

GM

r
�

2   (1.33)     

   g  has units of acceleration (m/s 2 ) and is called the acceleration of gravity. If planetary gravity is the only 
force acting on a body, then the body is said to be in free fall. The force of gravity draws a freely falling 
object towards the center of attraction (e.g., center of the earth) with an acceleration  g.  Under ordinary con-
ditions, we sense our own weight by feeling contact forces acting on us in opposition to the force of gravity. 
In free fall there are, by definition, no contact forces, so there can be no sense of weight. Even though the 
weight is not zero, a person in free fall experiences weightlessness, or the absence of gravity.   

 Let   us evaluate Equation 1.33 at the surface of the earth, whose radius according to Table A.1 is 
6378       km. Letting  g  0  represent the standard sea-level value of  g , we get 

  

g
GM

RE
0 2

�   (1.34)      

 In   SI units, 

  g0
29 807� . m/s   (1.35)      

 Substituting   Equation 1.34 into Equation 1.33 and letting  z  represent the distance above the earth’s surface, 
so that  r       �       R E        �       z , we obtain 

  

g g
R

R z

g

R
E

E E

�
�

�
�

0

2

2
0

21( ) ( )z/
  (1.36)      

 Commercial   airliners cruise at altitudes on the order of ten kilometers (six miles). At that height, Equation 
1.36 reveals that  g  (and hence weight) is only three-tenths of a percent less than its sea level value. Thus, 
under ordinary conditions, we ignore the variation of  g  with altitude. A plot of Equation 1.36 out to a height 
of 1000       km (the upper limit of low-earth orbit operations) is shown in  Figure 1.10   . The variation of  g  over 
that range is signifi cant. Even so, at space station altitude (300       km), weight is only about 10 percent less that 
it is on the earth’s surface. The astronauts experience weightlessness, but they clearly are not weightless.



        Example 1.7      
 Show   that in the absence of an atmosphere, the shape of a low altitude ballistic trajectory is a parabola. 
Assume the acceleration of gravity  g  is constant and neglect the earth’s curvature. 

    Solution 
    Figure 1.11    shows a projectile launched at  t       �      0 with a speed  v  0  at a fl ight path angle   γ   0  from the point with 
coordinates ( x  0 ,  y  0 ). Since the projectile is in free fall after launch, its only acceleration is that of gravity in 
the negative  y -direction: 

  

��
��
x
y g

�
� �

0

      

 Integrating   with respect to time and applying the initial conditions leads to 

  x x v� �0 0 0( cos )γ   (a)      

  
y y v t gt� � �0 0 0

21

2
( sin )γ   (b)      

 Solving   (a) for  t  and substituting the result into (b) yields 

  

y y x x
g

v
x x

o

� � � � �0 0 0
0

0
21

2
( ) tan

cos
( )γ

γ   (c)      

 This   is the equation of a second-degree curve, a parabola, as sketched in  Figure 1.11 .      
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 FIGURE 1.10  
       Variation of the acceleration of gravity with altitude.    
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        Example 1.8      
 An   airplane fl ies a parabolic trajectory like that in  Figure 1.11  so that the passengers will experience free fall 
(weightlessness). What is the required variation of the fl ight path angle   γ   with speed  v  ? Ignore the curvature 
of the earth. 

    Solution 
    Figure 1.12    reveals that for a  “ fl at ”  earth,  d γ        �       �  d φ  , i.e., 

  �
�γ φ� �       

 It   follows from Equation 1.30 that 

  ργ� � �v   (1.37)      

 The   normal acceleration  a n   is just the component of the gravitational acceleration  g  in the direction of the 
unit principal normal to the curve (from  P  towards  C ). From  Figure 1.12 , then, 

  a gn � cos γ   (a)      

x 

y

(xo, yo)

vo

P

g

γo

 FIGURE 1.11  
       Flight of a low altitude projectile in free fall (no atmosphere).    
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 FIGURE 1.12  
       Relationship between  d γ   and  d ρ   for a  “ fl at ”  earth.    



 Substituting   Equation 1.25 2  into (a) and solving for the radius of curvature yields 

  
ρ

γ
�

v

g

2

cos   (b)      

 Combining   Equations 1.37 and (b), we fi nd the time rate of change of the fl ight path angle, 

  

�γ
γ

� �
g

v

cos

             

    1.5       NEWTON’S LAW OF MOTION 
 Force   is not a primitive concept like mass because it is intimately connected with the concepts of motion 
and inertia. In fact, the only way to alter the motion of a body is to exert a force on it. The degree to which 
the motion is altered is a measure of the force.   Newton’s second law of motion   quantifi es this. If the resul-
tant or net force on a body of mass  m  is  F  net , then 

  F anet � m   (1.38)      

 In   this equation,  a  is the absolute acceleration of the center of mass. The absolute acceleration is measured 
in a frame of reference which itself has neither translational nor rotational acceleration relative to the fi xed 
stars. Such a reference is called an absolute or   inertial frame of reference  . 

 Force  , then, is related to the primitive concepts of mass, length and time by Newton’s second law. The 
unit of force, appropriately, is the newton, which is the force required to impart an acceleration of 1       m/s 2  to 
a mass of 1       kg. A mass of one kilogram therefore weighs 9.81 newtons at the earth’s surface. The kilogram 
is not a unit of force. 

 Confusion   can arise when mass is expressed in units of force, as frequently occurs in U.S. engineer-
ing practice. In common parlance either the pound or the ton (2000 pounds) is more likely to be used to 
express the mass. The pound of mass is offi cially defi ned precisely in terms of the kilogram as shown in 
Table A.3. Since one pound of mass weighs one pound of force where the standard sea-level acceleration 
of gravity ( g  0       �      9.80665       m/s 2 ) exists, we can use Newton’s second law to relate the pound of force to the 
newton: 

  1 0 4536 9 807 4 4482lb force kg m/s N( ) . . .� � �       

 The   slug is the quantity of matter accelerated at one foot per second 2  by a force of one pound. We can 
again use Newton’s second law to relate the slug to the kilogram. Noting the relationship between feet and 
meters in Table A.3, we fi nd 

  

1
1

1

4 448

0 3048
14 59 14 5

2 2

2

2
 slug

 lb

ft/s

 N

m/s
 

kg m/s

m/s
� � �

�
�

.

.
. . 99 kg
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        Example 1.9      
 On   a NASA mission the space shuttle Atlantis orbiter was reported to weigh 239,255 lb just prior to lift off. 
On orbit 18 at an altitude of about 350       km, the orbiter’s weight was reported to be 236,900 lb. (a) What was 
the mass, in kilograms, of Atlantis on the launch pad and in orbit? (b) If no mass were lost between launch 
and orbit 18, what would have been the weight of Atlantis, in pounds? 

    Solution 
        (a)     The given data illustrates the common use of weight in pounds as a measure of mass. The  “ weights ”  
given are actually the mass in pounds of mass. Therefore, prior to launch    

  
mlaunch pad lb mass

kg

lb mass
kg� � �239 255

0 4536

1
108 500, ( )

.

( )
,

      
 In   orbit, 

  
morbit lb mass

kg

lb mass
kg18 236 900

0 4536

1
107 500� � �, ( )

.

( )
,

      

 The   decrease in mass is the propellant expended by the orbital maneuvering and reaction control rockets 
on the orbiter. 

    (b)     Since the space shuttle launch pad at Kennedy Space Center is essentially at sea level, the launch-pad 
weight of Atlantis in lb (force) is numerically equal to its mass in lb (mass). With no change in mass, the 
force of gravity at 350       km would be, according to Equation 1.36,    

  

W � �
�

�239 255
1

1
350
6378

215 000

2

, ( ) ,lb force
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
llb force( )

            

 The   integral of a force  F  over a time interval is called the   impulse of the force  ,       

  

  (1.39)      

 Impulse   is a vector quantity. From Equation 1.38 it is apparent that if the mass is constant, then 

  

  (1.40)      

 That   is, the net impulse on a body yields a change  m  Δ  v  in its linear momentum, so that 

  
  (1.41)      



 If    F  net  is constant, then    net       �       F  net  Δ  t , in which case Equation 1.41 becomes 

  
Δ Δv

F
F� net

netif  is constant
m

t ( )   (1.42)      

 Let   us conclude this section by introducing the concept of angular momentum. The moment of the net 
force about  O  in  Figure 1.13    is 

  M r FOnet net� �       

 Substituting   Equation 1.38 yields 

  
M r a r

v
O m m

d

dtnet � � � �   (1.43)      

 But  , keeping in mind that the mass is constant, 

  
r

v
r v

r
r v v v� � � � � � � � �m

d

dt

d

dt
m

d

dt
m

d

dt
m m( ) ( ) ( )v

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

 Since    v       �       m  v       �       m ( v       �       v )      �       0 , it follows that Equation 1.43 can be written 

  
M

H
O

Od

dtnet �   (1.44)     

  where  H   O   is the   angular momentum   about  O ,   

  H r vO m� �   (1.45)      
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       The absolute acceleration of a particle is in the direction of the net force.    
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 Thus  , just as the net force on a particle changes its linear momentum  m  v , the moment of that force about 
a fi xed point changes the moment of its linear momentum about that point. Integrating Equation 1.44 with 
respect to time yields 

  

M H HO

t

t

O Odtnet

1

2

2 1∫ � �   (1.46)      

 The   integral on the left is the net   angular impulse  . This angular impulse – momentum equation is the rota-
tional analog of the linear impulse – momentum relation given in Equation 1.40.

        Example 1.10      
 A   particle of mass  m  is attached to point  O  by an inextensible string of length  l  ( Figure 1.14   ). Initially the 
string is slack when  m  is moving to the left with a speed  v  0  in the position shown. Calculate (a) the speed 
of  m  just after the string becomes taut and (b) the average force in the string over the small time interval  Δ  t  
required to change the direction of the particle’s motion. 

    Solution 
        (a)     Initially, the position and velocity of the particle are    

  r1 1� � � �c d vo
ˆ ˆ ˆi j v i       

 The   angular momentum about  O  is 

  

H r v

i j k

k1 1 1 0

0 0

� � �

�

�m c d

mv

mv d

o

o

ˆ ˆ ˆ

ˆ   (a)      

 Just   after the string becomes taut 

  
r i j v i j2

2 2
2� � � � � �l d d v vx y

ˆ ˆ ˆ ˆ   (b)     

x

y

d

v0

v

l

m

O

c

 FIGURE 1.14  
       Particle attached to  O  by an inextensible string.    



  and the angular momentum is   

  

H r v

i j k

k2 2 2
2 2 2 20

0

� � � � � � � � �m l d d

v v

mv d mv l d

x y

x y

ˆ ˆ ˆ

( ) ˆ   (c)      

 Initially   the force exerted on  m  by the slack string is zero. When the string becomes taut, the force exerted 
on  m  passes through  O . Therefore, the moment of the net force on  m  about  O  remains zero. According to 
Equation 1.46, 

  H H2 1�       

 Substituting   (a) and (c), yields 

  
v d l d v v dx y o� � � �2 2   (d)      

 The   string is inextensible, so the component of the velocity of  m  along the string must be zero: 

  v r2 2 0� �       

 Substituting    v  2  and  r  2  from (b) and solving for  v y  , we get 

  
v v

l

d
y x� �

2

2
1   (e)      

 Solving   (d) and (e) for  v x   and  v y   leads to 

  
v

d

l
v v

d

l

d

l
vx o y o� � � �−

2

2

2

2
1   (f)      

 Thus  , the speed,  v � �v vx y
2 2    , after the string becomes taut is 

  
v

d

l
vo�

      

    (b)     From Equation 1.40, the impulse on  m  during the time it takes the string to become taut is    

        

 The   magnitude of this impulse, which is directed along the string, is 
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 Hence  , the average force in the string during the small time interval  	t     required to change the direction 
of the velocity vector turns out to be 

               

    1.6       TIME DERIVATIVES OF MOVING VECTORS 
    Figure 1.15(a)    shows a vector  A  inscribed in a rigid body  B  that is in motion relative to an inertial frame of 
reference (a rigid, Cartesian coordinate system which is fi xed relative to the fi xed stars). The magnitude of 
 A  is fi xed. The body  B  is shown at two times, separated by the differential time interval  dt . At time  t       �       dt  the 
orientation of vector  A  differs slightly from that at time  t , but its magnitude is the same. According to one of 
the many theorems of the prolifi c eighteenth century Swiss mathematician Leonhard Euler (1707 – 1783), there 
is a unique axis of rotation about which  B , and therefore,  A  rotates during the differential time interval. If we 
shift the two vectors  A ( t ) and  A ( t       �       dt ) to the same point on the axis of rotation, so that they are tail-to-tail as 
shown in  Figure 1.15(b) , we can assess the difference  d  A  between them caused by the infi nitesimal rotation. 
Remember that shifting a vector to a parallel line does not change the vector. The rotation of the body  B  is 
measured in the plane perpendicular to the instantaneous axis of rotation. The amount of rotation is the angle 
 d θ   through which a line element normal to the rotation axis turns in the time interval  dt . In  Figure 1.15(b)  that 
line element is the component of  A  normal to the axis of rotation. We can express the difference  d  A  between 
 A ( t ) and  A ( t       �       dt ) as 

  
d d

d

A � A n

A

·

magnitude of  

sin ˆφ θ( )⎡
⎣⎢

⎤
⎦⎥

� ��� ���
  (1.47)     
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 FIGURE 1.15  
       Displacement of a rigid body.    



  where  n̂     is the unit normal to the plane defined by  A  and the axis of rotation, and it points in the direction 
of the rotation. The angle  φ  is the inclination of  A  to the rotation axis. By definition,   

  
d dtθ � ω   (1.48)     

  where   ω   is the angular velocity vector, which points along the instantaneous axis of rotation and its direc-
tion is given by the right-hand rule. That is, wrapping the right hand around the axis of rotation, with the 
fingers pointing in the direction of  d θ   results in the thumb’s defining the direction of   ω  . This is evident in 
 Figure 1.15(b) . It should be pointed out that the time derivative of   ω   is the angular acceleration, usually 
given the symbol   α  . Thus,   

  
α

ω
�

d

dt   (1.49)      

 Substituting   Equation 1.48 into Equation 1.47, we get 

  
d dt dtA A n A n� �· · · · ·sin ˆ sin ˆφ φω ω( )   (1.50)      

 By   defi nition of the cross product,   ω        �       A  is the product of the magnitude of   ω  , the magnitude of  A , the sine of 
the angle between   ω   and  A  and the unit vector normal to the plane of   ω   and  A , in the rotation direction. That is, 

  
ω ω� �A A n· · ·sin ˆφ   (1.51)      

 Substituting   Equation 1.51 into Equation 1.50 yields 

  d dtA A� �ω       

 Dividing   through by  dt , we fi nally obtain 

  

d

dt

d

dt

A
A A� � �ω if  0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   (1.52)      

 Equation   1.52 is a formula we can use to compute the   time derivative of a rotating vector of constant magnitude  .

        Example 1.11      
 Calculate   the second time derivative of a vector  A  of constant magnitude, expressing the result in terms of 
  ω   and its derivatives and  A . 

    Solution 
 Differentiating   Equation 1.52 with respect to time, we get 

  

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

2

2

A A
A A

A
� � � � � � �( )ω

ω
ω

      

 Using   Equations 1.49 and 1.52, this can be written 

  

d

dt

2

2

A
A A� � � � �α ω ω( )   (1.53)           

1.6 Time derivatives of moving vectors  25



26  CHAPTER 1 Dynamics of point masses

        Example 1.12      
 Calculate   the third derivative of a vector  A  of constant magnitude, expressing the result in terms of   ω   and 
its derivatives and  A . 

    Solution 

      

d

dt

d

dt

d

dt

d

dt
d

dt

d

dt
d

3

3

2

2

A A
A A

A A

� � � � � �

� � � � �

�

[ ( )]

( ) [ ( )]

α ω ω

α ω ω

α
ddt

d

dt

d

dt

d

dt
d

dt

� � � � � � � � �

�

A
A

A Aα
ω

ω ω ω

α

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( )

�� � � � � � � � � � �A A A A
A

α ω α ω ω
ω

ω( ) ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

×
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

d

dt

d

dt

⎤⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � � � � � � � � � � � �

�

d

dt
d

d

α
α ω α ω ω α ω ω

α

A A A A A( ) { ( ) [ ( )]}

tt
d

dt

� � � � � � � � � � � � � �

� � � � � �

A A A A A

A A

α ω α ω ω α ω ω ω

α
α ω

( ) ( ) [ ( )]

( )

( )

2 ωω α ω ω ω� � � � � �( ) [ ( )]A A
      

  

d

dt

d

dt

3

3
2

A
A A A A� � � � � � � � � � �

α
α ω ω α ω ω( ) [ ( )]

            

 Let    XYZ  be a rigid inertial frame of reference and  xyz  a rigid moving frame of reference, as shown in  Figure 
1.16   . The moving frame can be moving (translating and rotating) freely of its own accord, or it can be attached 
to a physical object, such as a car, an airplane or a spacecraft. Kinematic quantities measured relative to the 
fi xed inertial frame will be called   absolute   (e.g., absolute acceleration), and those measured relative to the 
moving system will be called   relative   (e.g., relative acceleration). The unit vectors along the inertial  XYZ  sys-
tem are  ̂I   ,  ̂J    and  K̂   , whereas those of the moving  xyz  system are  ̂i    ,  ̂j    and  ̂k   . The motion of the moving frame is 
arbitrary, and its absolute angular velocity is   Ω  . If, however, the moving frame is rigidly attached to an object, 
so that it not only translates but rotates with it, then the frame is called a body frame and the axes are referred 
to as body axes. A body frame clearly has the same angular velocity as the body to which it is bound. 

 Let    B  be any time-dependent vector. Resolved into components along the inertial frame of reference, it 
is expressed analytically as 

  B I J K� � �B B BX Y Z
ˆ ˆ ˆ

     

  where  B X  ,  B Y   and  B Z   are functions of time. Since  ̂I    ,  Ĵ     and  K̂     are fixed, the time derivative of  B  is simply 
given by   

  

d

dt

dB

dt

dB

dt

dB

dt
X Y ZB

I J K� � �ˆ ˆ ˆ
     

   dB X  / dt ,  dB Y  / dt  and  dB Z  / dt  are the components of the absolute time derivative of  B .   



  B    may also be resolved into components along the moving  xyz  frame, so that, at any instant, 

  
B i j k� � �B B Bx y z

ˆ ˆ ˆ   (1.54)      

 Using   this expression to calculate the time derivative of  B  yields 

  

d

dt

dB

dt

dB

dt

dB

dt
B

d

dt
B

d

dt
B

d

dt
x y z

x y z
B

i j k
i j k

� � � � � �ˆ ˆ ˆ
ˆ ˆ ˆ

  (1.55)      

 The   unit vectors  ̂i    ,  ̂j    and  ̂k    are not fi xed in space, but are continuously changing direction; therefore, 
their time derivatives are not zero. They obviously have a constant magnitude (unity) and, being attached to 
the  xyz  frame, they all have the angular velocity   Ω  . It follows from Equation 1.52 that 

  

d

dt

d

dt

d

dt

ˆ
ˆ  

ˆ
ˆ  

ˆ
ˆi

i
j

j
k

k� � � � � �Ω Ω Ω
      

 Substituting   these on the right-hand side of Equation 1.55 yields 

  

d

dt

dB

dt

dB

dt

dB

dt
B B B

dB

x y z
x y z

B
i j k i j k� � � � � � � � �

�

ˆ ˆ ˆ ( ˆ) ( ˆ) ( ˆ )Ω Ω Ω

xx y z
x y z

x

dt

dB

dt

dB

dt
B B B

dB

dt

ˆ ˆ ˆ ( ˆ) ( ˆ) ( ˆ )

ˆ

i j k i j k

i

� � � � � � � �

� �

Ω Ω Ω

ddB

dt

dB

dt
B B B

y z
x y z

ˆ ˆ ( ˆ ˆ ˆ )j k i j k� � � � �Ω
      

 In   view of Equation 1.54, this can be written 

  

d

dt

d

dt

B B
B� � �

⎞
⎠
⎟⎟⎟⎟

rel
Ω   (1.56)     
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       Fixed (inertial) and moving rigid frames of reference.    
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  where   

  

d

dt

dB

dt

dB

dt

dB

dt
x y zB

i j k
⎞
⎠
⎟⎟⎟⎟

rel

� � �ˆ ˆ ˆ   (1.57)      

  d    B / dt ) rel  is the time derivative of  B  relative to the moving frame. Equation 1.56 shows how the   absolute 
time derivative   is obtained from the   relative time derivative  . Clearly,  d  B / dt       �       d  B / dt ) rel  only when the mov-
ing frame is in pure translation (  Ω        �       0 )). 

 Equation   1.56 can be used recursively to compute higher order time derivatives. Thus, differentiating 
Equation 1.56 with respect to  t , we get 

  

d

dt

d

dt

d

dt

d

dt

d

dt

2

2

B B
B

B
� � � � �

⎞
⎠
⎟⎟⎟⎟

rel

Ω
Ω

      

 Using   Equation 1.56 in the last term yields 

  

d

dt

d

dt

d

dt

d

dt

d

dt

2

2

B B
B

B
B� � � � � � �

⎞
⎠
⎟⎟⎟⎟

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥

rel rel

Ω
Ω Ω ⎥⎥⎥

  (1.58)      

 Equation   1.56 also implies that 

  

d
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d
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⎞
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Ω   (1.59)     

  where   
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2

2

2

2

2

2

B
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⎞

⎠
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 Substituting   Equation 1.59 into Equation 1.58 yields 
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⎠
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⎣
⎢
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⎤

⎦
⎥
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 Collecting   terms, this becomes 

  

d

dt

d

dt

d

dt

2

2

2

2
2

B B
B B

B
� � � � � � � �

⎞

⎠
⎟⎟⎟⎟⎟

⎞
⎠
⎟⎟⎟⎟

rel rel

�Ω Ω Ω Ω( )   (1.60)      

 where    �Ω Ω� d dt/     is the absolute angular acceleration of the  xyz  frame. 
 Formulas   for higher order time derivatives are found in a similar fashion.  



    1.7       RELATIVE MOTION 
 Let    P  be a particle in arbitrary motion. The absolute position vector of  P  is  r  and the position of  P  relative 
to the moving frame is  r  rel . If  r  O  is the absolute position of the origin of the moving frame, then it is clear 
from  Figure 1.17    that 

  r r r� �O rel   (1.61)      

 Since    r  rel  is measured in the moving frame, 

  r i j krel � � �x y zˆ ˆ ˆ   (1.62)     

  where  x ,  y  and  z  are the coordinates of  P  relative to the moving reference.   
 The   absolute velocity  v  of  P  is  d r  / dt , so that from Equation 1.61 we have 

  
v v

r
� �O

reld

dt
  (1.63)     

  where  v  O       �       d  r  O / dt  is the (absolute) velocity of the origin of the  xyz  frame. From Equation 1.56, we can 
write   

  

d

dt

r
v rrel

rel rel� � �Ω   (1.64)     

  where  v  rel  is the velocity of  P  relative to the  xyz  frame:   

  

v
r

i j krel
rel

rel

� � � �
d

dt

dx

dt

dy

dt

dz

dt

⎞

⎠
⎟⎟⎟⎟

ˆ ˆ ˆ   (1.65)      
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       Absolute and relative position vectors.    
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 Substituting   Equation 1.64 into Equation 1.63 yields   the relative velocity formula   

  v v r v� � � �O rel relΩ   (1.66)      

 The   absolute acceleration  a  of  P  is  d  v / dt , so that from Equation 1.63 we have 

  
a a

r
� �O

reld

dt

2

2   (1.67)      

 where    a  O       �       d  v  O / dt  is the absolute acceleration of the origin of the  xyz  frame. We evaluate the second term 
on the right using Equation 1.60. 

  

d

dt

d

dt

d2

2

2

2
2

r r
r r

rrel rel

rel

rel rel
rel� � � � � � � �

⎞

⎠

⎟⎟⎟⎟⎟⎟
�Ω Ω Ω Ω( )

ddt

⎞

⎠
⎟⎟⎟⎟

rel

  (1.68)      

 Since    v  rel       �       d  r  rel / dt ) rel  and  a  rel       �       d  2  r  rel / dt  2 ) rel , this can be written 

  

d

dt

2

2
2

r
a r r vrel

rel rel rel rel� � � � � � � ��Ω Ω Ω Ω( )   (1.69)      

 Upon   substituting this result into Equation 1.67, we obtain   the relative acceleration formula   

  a a r r v a� � � � � � � � �O rel rel rel rel
�Ω Ω Ω Ω( ) 2   (1.70)      

 The   cross product 2  Ω        �       v  rel  is called the   Coriolis acceleration   after Gustave Gaspard de Coriolis (1792 –
 1843), the French mathematician who introduced this term (Coriolis, 1835). Because of the number of 
terms on the right, Equation 1.70 is sometimes referred to as the fi ve-term acceleration formula.

        Example 1.13      
 At   a given instant, the absolute position, velocity and acceleration of the origin  O  of a moving frame are 

  

r I J K
v I J K
a

O

O

O

� � �

� � � �

� �

100 200 300
50 30 10

ˆ ˆ ˆ
ˆ  ˆ ˆ ( )

(m)
(m/s) given

115 40 25 2ˆ  ˆ ˆ ( )I J K� � m/s

  (a)      

 The   angular velocity and acceleration of the moving frame are: 

  

Ω
Ω

� � �

� � � �

1.0 0.4 0.6  (rad/s)
1.0 0.3 0.4 (rad/s ) (2

ˆ ˆ ˆ
ˆ ˆ ˆ  

I J K
I J K� ggiven)   (b)      

 The   unit vectors of the moving frame are: 

  

ˆ     . ˆ . ˆ . ˆ
ˆ . ˆ . ˆ .
i I J K
j I J

� � �

� � � �

0 5571 0 7428 0 3714
0 06331 0 4839 0 88728
0 8280 0 4627 0 3166

ˆ
ˆ  . ˆ . ˆ . ˆ

K
k I J K

(given)
�� � �

  (c)      



 The   absolute position, velocity and acceleration of  P  are: 

  

r
v
a

� � �

� � �

�

300 100 150
70 25 20
7

ˆ ˆ ˆ  
 ˆ  ˆ ˆ

.

I J K
I J K

(m)
 (m/s) (given)

55 8 5 6 0 2ˆ . ˆ . ˆ )I J K� �  (m/s
  (d)      

 Find   (a) the velocity  v  rel  and (b) the acceleration  a  rel  of  P  relative to the moving frame. 

    Solution 
 Let   us fi rst use Equations (c) to solve for  ̂I   ,  ̂J    and  K̂    in terms of  ̂i   ,  ̂j    and  ̂k    (three equations in three 
unknowns): 

  

ˆ . ˆ . ˆ . ˆ
ˆ . ˆ  . ˆ .
I i j k
J i j

� � �

� � �

0 5571 0 06331 0 8280
0 7428 0 4839 0 4627 ˆ̂

ˆ . ˆ . ˆ . ˆ
k

K i j k� � �0 3714 0 8728 0 3166
  (e)      

    (a)     The relative position vector is    

  r r r I J K I J K Irel ( ) ( )� � � � � � � � � �O 300 100 150 100 200 300 200 30ˆ ˆ ˆ ˆ ˆ ˆ ˆ 00 150ˆ ˆ  J K� (m)     (f)  

 From   Equation 1.66, the relative velocity vector is 

  

v v v r

I J K I J K

I J K
rel rel

( ) ( )

� � � �

� � � � � � � �

O Ω

70 25 20 50 30 10ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

11 0 0 4 0 6

200 300 150

70 25 20 50 30 10

. . .

ˆ ˆ ˆ ˆ ˆ ˆ

�

� �

� � � � � � � �( ) ( )I J K I J K (( )240 270 220ˆ ˆ ˆI J K� �      

  or   

  v I J Krel  (m/s)� � � �120 275 210ˆ ˆ ˆ   (g)      

 To   obtain the components of the relative velocity along the axes of the moving frame, substitute 
Equations (e) into Equation (g). 

  

v i j k
i

rel ( .5 )� � � �

  � �

120 0 571 0 06331 0 8280
275 0 7428 0 48

ˆ . ˆ . ˆ

( . ˆ . 339 0 4627 210 0 3714 0 8728 0 3166ˆ . ˆ ) . ˆ . ˆ . ˆj k i j k� � � �( )      

  so that   

  
v i j krel .  (m/s)� � � �193 1 308 8 38 60ˆ . ˆ . ˆ   (h)      

 Alternatively  , in terms of the unit vector  ̂uv     in the direction of  v  rel  

  
v u u i jrel .  (m/s),  where � � � � �366 2 0 5272 0 8432 0 1005ˆ ˆ . ˆ . ˆ . ˆ

v v kk   (i)      
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    (b)     To fi nd the relative acceleration, we use the fi ve-term acceleration formula, Equation 1.70:    

  a a a r r vrel rel rel rel( ) ( )� � � � � � � � �O
�Ω Ω Ω Ω2       

  

� � � � �

� �

� � �

�

a a

I J K I J K

O

ˆ ˆ ˆ

. . .

ˆ ˆ ˆ

. . .1 0 0 3 0 4

200 300 150

1 0 0 4 0 6

200 3

Ω
000 150

2 1 0 0 4 0 6

120 275 210�

� �

� �

ˆ ˆ ˆ

. . .

I J K

      

  

� � � � � � �

�

�a a I J K

I J K

O ( ) (� 165 230 240 1 0 0 4 0 6

240 270 220

162ˆ ˆ ˆ

ˆ ˆ ˆ

. . . ˆ̂ ˆ ˆI J K� �564 646 )

      

  

� � � � � � �  � � � �( . ) ( ) ( )7 5 8 5 6 15 40 25 165 230 240ˆ . ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆI J K I J K I J K
    ( ) ( )� � � � � � �74 364 366 162 564 646ˆ ˆ ˆ ˆ ˆ ˆI J K I J K       

  a I J Krel
2.  (m/s )� � �99 5 381 5 21 0ˆ . ˆ . ˆ   (j)      

 The   components of the relative acceleration along the axes of the moving frame are found by substituting 
Equations (e) into Equation (j): 

  

a i j k irel . ( . ) (� � � � �99 5 0 5571 0 06331 0 8280 381 5 0 7428 0ˆ . ˆ . ˆ   . . ˆ .44839 0 4627
21 0 0 3714 0 8728 0 3166

ˆ . ˆ

. . ˆ . ˆ .
j k

i j
�

           � � �

)
( ˆ̂k)       

  
a i j krel

2 (m/s� � �346 6 160 0 100 8. . . )   (k)      

 Or  , in terms of the unit vector  ûa     in the direction of  a  rel  

  
a u u i j krel

2.  (m/s ) where � � � �394 8 0 8778 0 4052 0 2553ˆ , ˆ . ˆ . ˆ . ˆ
a a   (l)            

    Figure 1.18    shows the nonrotating inertial frame of reference  XYZ  with its origin at the center  C  of the 
earth, which we shall assume to be a sphere. That assumption will be relaxed in Chapter 5. Embedded in the 
earth and rotating with it is the orthogonal  x  
  y  
  z  
  frame, also centered at  C , with the  z  
  axis parallel to Z, the 
earth’s axis of rotation. The  x  
  axis intersects the equator at the prime meridian (zero degrees longitude), which 
passes through Greenwich in London, England. The angle between  X  and  x  
  is   θ  G  , and the rate of increase of 
  θ  G   is just the angular velocity   Ω   of the earth.  P  is a particle (e.g., an airplane, spacecraft, etc.), which is moving 
in an arbitrary fashion above the surface of the earth.  r  rel  is the position vector of  P  relative to  C  in the rotating 
 x  
  y  
  z  
  system. At a given instant,  P  is directly over point  O , which lies on the earth’s surface at longitude   Λ   and 
latitude   φ  . Point  O  coincides instantaneously with the origin of what is known as a topocentric-horizon coor-
dinate system  xyz . For our purposes  x  and  y  are measured positive eastward and northward along the local lati-
tude and meridian, respectively, through  O . The tangent plane to the earth’s surface at  O  is the local horizon. 
The  z -axis is the local vertical (straight up), and it is directed radially outward from the center of the earth. The 
unit vectors of the  xyz  frame are  ̂ ˆ ˆijk   , as indicated in Figure 1.18. Keep in mind that  O  remains directly below 
 P , so that as  P  moves, so do the  xyz  axes. Thus, the  ̂ ˆ ˆijk    triad, which comprises the unit vectors of a spherical 
coordinate system, varies in direction as  P  changes location, thereby accounting for the curvature of the earth. 



 Let   us fi nd the absolute velocity and acceleration of  P . It is convenient to fi rst obtain the velocity and 
acceleration of  P  relative to the nonrotating earth, and then use Equations 1.66 and 1.70 to calculate their 
inertial values. 

 The   relative position vector can be written 

  r krel ( )� �R zE
ˆ   (1.71)     

  where  R E   is the radius of the earth and  z  is the height of  P  above the earth (i.e., its altitude). The time deriv-
ative of  r  rel  is the velocity  v  rel  relative to the nonrotating earth,   

  
v

r
k

k
rel

rel ( )� � � �
d

dt
z R z

d

dtE�ˆ
ˆ

  (1.72)      

 To   calculate  d dtk̂/    , we must use Equation 1.52. The angular velocity   ω   of the  xyz  frame relative to the 
nonrotating earth is found in terms of the rates of change of latitude   φ   and longitude   Λ  , 

  ω � � � �� � �φ φ φˆ cos ˆ sin ˆi j kΛ Λ   (1.73)      

 Thus  , 

  

d

dt

ˆ
ˆ cos ˆ ˆk
k i j� � � �ω � �Λ φ φ   (1.74)      
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       Earth-centered inertial frame ( XYZ ); earth-centered noninertial  x  
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  z  
  frame embedded in and rotating with the earth; 
and a noninertial, topocentric-horizon frame  xyz  attached to a point  O  on the earth’s surface.    
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 Let   us also record the following for future use: 

  

d

dt

ˆ
ˆ sin ˆ ˆj
j i k� � � � �ω � �Λ φ φ   (1.75)      

  

d

dt

ˆ
ˆ sin ˆ cos ˆi
i j k� � � �ω � �Λ Λφ φ   (1.76)      

 Substituting   Equation 1.74 into Equation 1.72 yields 

  v i j krel � � �� � �x y zˆ ˆ ˆ
  (1.77)     

  where   

  
� � � �x R z y R zE E� � � �( ) ( )Λ cos            φ φ   (1.77b)      

 It   is convenient to use these results to express the rates of change of latitude and longitude in terms of 
the components of relative velocity over the earth’s surface, 

  

� � � �
φ

φ
�

�
�

�

y

R z

x

R zE E

        
cos

Λ
( )

  (1.78)      

 The   time derivatives of these two expressions are 

  

�� �� �� �� �� �
φ

φ
�

� �
�

� �( )

( )

( ) (R z y yz

R z

R z x zE

E

E

+ 2
           

cos c
Λ

oos sin

cos

φ φ

φ

�

�

� �y x

R zE

)

( )2 2   (1.79)      

 The   acceleration of  P  relative to the nonrotating earth is found by taking the time derivative of  v  rel . From 
Equation 1.77 we thereby obtain 

  

a i j k
i j k

rel

(

� � � � � �

� �

�� �� �� � � �

� �
x y z x

d

dt
y

d

dt
z

d

dt
z

ˆ ˆ ˆ
ˆ ˆ ˆ

[ cosΛ φ RR z R z z R z zE E E+ ) ( ) [ ( ) ]�� � � � � �� ��Λ Λcos sin ]ˆ ˆ ˆφ φ φ φ φ� � � � � �
  

i j k
�� � � � � � � �( ) ( ) ( ) ( ) ( )R z R z zE E

� � �Λ cos ˆ ˆ ˆφ φω ω ωi j k
      

 Substituting   Equations 1.74 through 1.76 together with 1.78 and 1.79 into this expression yields, upon 
simplifi cation, 

  

a irel
( )

� �
�

�
� �

�

�
��
� � �

��
�� �

x
x z y

R z
y

yz x

R zE E

tan tanφ φ⎡

⎣
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⎢

⎤

⎦
⎥
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⎛ 2

⎝⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

ˆ ˆj k� �
�

�
��
� �

z
x y

R zE

2 2

  (1.80)      

 Observe   that the curvature of the earth’s surface is neglected by letting  R E        �       z  become infi nitely large, in 
which case 

  
a i j krel neglecting earth’s curvature

) � � ��� �� ��x y zˆ ˆ ˆ
      

 That   is, for a  “ fl at earth, ”  the components of the relative acceleration vector are just the derivatives of the 
components of the relative velocity vector. 



 For   the absolute velocity we have, according to Equation 1.66, 

  v v r v� � � �C Ω rel rel   (1.81)      

 From    Figure 1.18  it can be seen that  ˆ cos ˆ sin ˆK j k� �φ φ    , which means the angular velocity of the earth is 

  Ω � � �Ω Ω Ωˆ cos ˆ sin ˆK j kφ φ   (1.82)      

 Substituting   this, together with Equations 1.71 and 1.77a and the fact that  v   C        �       0 , into Equation 1.81 yields 

  v i j k� � � � �[ ( )cos ]� � �x R z y zEΩ φ ˆ ˆ ˆ   (1.83)      

 From   Equation 1.70 the absolute acceleration of  P  is 

  a a r r v a� � � � � � � � �C
�Ω Ω Ω Ωrel rel rel rel( ) 2       

 Since    a 0C � ��Ω    , we fi nd, upon substituting Equations 1.71, 1.77a, 1.80 and 1.82, that 

  

a i� �
�
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� � �
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x z y
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z y

E

( tan )
( cos sin )

    

φ
φ φ2Ω
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⎥

    
tan

sin ( )cos� �
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� � ���
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yz x
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R z x

E
E
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2
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φ φ [ ]Ω Ω
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x y

R z
R z x

E
E

2 2

2Ω Ωφ φ⎪⎪
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⎫
⎬
⎪⎪

⎭⎪⎪
k�   (1.84)      

 Some   special cases of Equations 1.83 and 1.84 follow. 
  Straight   and level, unaccelerated fl ight:   � �� �� ��z z x y� � � � 0     

  v i j� � � �[ ( )cos ]� �x R z yEΩ φ ˆ ˆ   (1.85a)      

  

a i� �
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� �
��
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�xy
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E E
E
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j

Ω Ω EE z x� �)cos ]φ 2 �
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
k̂   (1.85b)      

  Flight   due north (y) at constant speed and altitude:   � �� � �� ��z z x x y� � � � � 0     

  v i j� � �Ω( )cosR z yE φˆ ˆ�   (1.86a)      

  

a i j� � � �
�

� �2 2
2

2 2Ω Ω Ω�
�

y R z
y

R z
R zE

E
Esin ( )sin cos ( )cosφ φ φ φˆ ˆ+

⎡

⎣
⎢
⎢
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⎤

⎦
⎥
⎥
⎥
k̂   (1.86b)      
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  Flight   due east (x) at constant speed and altitude:   � �� �� � ��z z x y y� � � � � 0     

  
v i� � ��x R zEΩ( )cosφ[ ]ˆ   (1.87a)      

  

a j�
�

� � � �
�

�
�x
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R z x
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E

E
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⎩⎪⎪
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R z xEΩ Ωcos ( )cosφ φ 2 �[ ]

⎧
⎨
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⎫
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⎭⎪⎪
k̂   (1.87b)      

  Flight   straight up (z):   � �� � ��x x y y� � � � 0     

  v i k� �Ω( )cosR z zE + φˆ ˆ�   (1.88a)      

  
a i j� � � � � �2 2 2 2Ω Ω Ω( cos ) sin cos ( )cos� ��z R z z R zE Eφ φ φ φˆ ( ) ˆ ˆ⎡

⎣⎢
⎤
⎦⎥ kk   (1.88b)      

  Stationary  :   � �� � �� � ��x x y y z z� � � � � � 0     

  v i� �Ω( )cosR zE φˆ   (1.89a)      

  a j k� � � �Ω Ω2 2 2( )sin cos ( )cosR z R zE Eφ φ φˆ ˆ   (1.89b)     

        Example 1.14      
 An   airplane of mass 70,000       kg is traveling due north at latitude 30 °  north, at an altitude of 10       km (32,800       ft) 
with a speed of 300       m/s (671       mph). Calculate (a) the components of the absolute velocity and acceleration 
along the axes of the topocentric-horizon reference frame, and (b) the net force on the airplane. 

    Solution 
        (a)     First, using the sidereal rotation period of the earth in Table A.1, we note that the earth’s angular velocity is    

  
Ω � � �

2 2 2π π π radians

sidereal day

 radians

23.93 hr

 radians

86 1600 s
radians/s� � �7 292 10 5.  

      
 From   Equation 1.86a, the absolute velocity is 

  
v i j� � � � � � � � ��Ω( )cos ( ) ( ) cosR z yE φˆ ˆ .� 7 292 10 6378 10 10 305 3⎡

⎣⎢
⎤
⎦⎥⎥
ˆ ˆi j� 300

     
  or   

  
v i j� �403 4 300.  (m/s)ˆ ˆ

      

 The   403.4       m/s (901       mph) component of velocity to the east ( x -direction) is due entirely to the Earth’s rotation. 
 From   Equation 1.86b, the absolute acceleration is 
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  or   

  
a i j k� � � �0 02187 0 01471 0 03956.  (m/s )2ˆ . ˆ . ˆ

      

 The   westward (negative  x ) acceleration of 0.02187       m/s 2  is the Coriolis acceleration. 
    (b)     Since the acceleration in part (a) is the absolute acceleration, we can use it in Newton’s law to calculate 
the net force on the airplane,    

  
F a i j k inet , ( . )� � � � � � � �m 70 000 0 02187 0 01471 0 03956 1531 102ˆ . ˆ . ˆ ˆ 99 2769ˆ ˆj k�  (N)

      

    Figure 1.19    shows the components of this relatively small force. The forward ( y)  and downward (negative 
 z ) forces are in the directions of the airplane’s centripetal acceleration, caused by the earth’s rotation and, 
in the case of the downward force, by the earth’s curvature as well. The westward force is in the direction 
of the Coriolis acceleration, which is due the combined effects of the earth’s rotation and the motion of the 
airplane. These net external forces must exist if the airplane is to fl y the prescribed path. 

 In   the vertical direction, the net force is that of the upward lift  L  of the wings plus the downward weight 
 W  of the aircraft, so that 

  
F L W L W

znet  (N)) ⇒� � � � � �2769 2769    
      

 Thus  , the effect of the earth’s rotation and curvature is to apparently produce an outward  centrifugal force , 
reducing the weight of the airplane a bit, in this case by about 0.4 percent. The fi ctitious centrifugal force 
also increases the apparent drag in the fl ight direction by 1029       N. That is, in the fl ight direction 

  
F T D

ynet  N) � � � 1029
     

  where  T  is the thrust and  D  is the drag. Hence   

  T D� � 1029 N( )       

 The   1531       N force to the left, produced by crabbing the airplane very slightly in that direction, is required to 
balance the fi ctitious Coriolis force which would otherwise cause the airplane to deviate to the right of its 
fl ight path.        
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 FIGURE 1.19  
       Components of the net force on the airplane.    
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    1.8       NUMERICAL INTEGRATION 
 Analysis   of the motion of a spacecraft leads to ordinary differential equations with time as the independent 
variable. It is often impractical if not impossible to solve them exactly. Therefore, the ability to solve dif-
ferential equations numerically is important. In this section we will take a look at a few common numerical 
integration schemes and investigate their accuracy and stability by applying them to some problems, which 
do have an analytical solution. 

 Particle   mechanics is based on Newton’s second law, Equation 1.38, which may be written 

  
��r

F
�

m
  (1.90)      

 This   is a second order, ordinary differential equation for the position vector  r  as a function of time. 
Depending on the complexity of the force function  F , there may or may not be a closed form, analytical 
solution of Equation 1.90. In the most trivial case, the force vector  F  and the mass  m  are constant, which 
means we can use elementary calculus to integrate Equation 1.90 twice to get 

  
r

F
C C F� � �

2
2

1 2m
t t m(  and  constant)   (1.91)     

   C  1  and  C  2  are the two vector constants of integration. Since each vector has three components, there are a 
total of six scalar constants of integration. If the position and velocity are both specified at time  t       �      0 to be 
 r  0  and  �r0    , respectively, then we have an initial value problem. Applying the initial conditions to Equation 
1.91, we find  C r1 0� �     and  C  2       �       r  0 , which means   

  
r

F
r r F� � �

2
2

0 0m
t t m� (  and  constant)

      

 On   the other hand, we may know the position  r  0  at  t       �      0 and the velocity  �rf     at a later time  t       �       t f  . These 
are boundary conditions and this is an example of a boundary value problem. Applying the boundary condi-
tions to Equation 1.91 yields  C r1 � �� f fF m t/     and  C  2       �       r  0 , which means 

  
r

F
r r F� � � �

2
2

0m
t

F

m
t t mf f�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ (  and  constant)

      

 For   the remainder of this section we will focus on the numerical solution of initial value problems only. 
 In   general the function  F  in Equation 1.90 is not constant but is instead a function of time  t , position  r  

and velocity  �r    . That is,  F F r r� ( )t, , �    . Let us resolve the vector  r  and its derivatives as well as the force F 
into their Cartesian components in three-dimensional space: 

  
r i j k r i j k r i j k F i� � � � � � � � � � �x y z x y z x y z Fx

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � � � �� �� �� �� FF Fy z
ˆ ˆj k�

      

 The   three components of Equation 1.90 are 

  
��

�
��

�
��

�
x

F t

m
y

F t

m
z

F t

m
x y z� � �
( ) ( ) ( ), , , , , ,r r r r r r

  (1.92)      



 These   are three uncoupled second order differential equations. For the purpose of numerical solution they 
must be reduced to six fi rst order differential equations. This is accomplished by introducing six auxiliary 
variables  y  1  through  y  6 , defi ned as follows: 

  

y x y y y z
y x y y y z

1 2 3

4 5 6

� � �

� � �� � �   (1.93)      

 In   terms of these auxiliary variables, the position and velocity vectors are 

  r i j k r i j k� � � � � �y y y y y y1 2 3 4 5 6
ˆ ˆ ˆ ˆ ˆ ˆ�

      

 Taking   the derivative  d/dt  of each of the six expressions in Equation 1.93 yields 
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dt
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dt
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dt
z
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dt
x

dy

dt
y

dy
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z

1 2 3

4 5 6

� � �
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�� �� ��
      

 Upon   substituting Equations 1.92 and 1.93, we arrive at the six fi rst order differential equations 
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( )
� �

  (1.94)      

 These   equations are coupled because the right side of each one contains variables that belong to other equa-
tions as well. The   system of fi rst order differential equations   1.94 can be written more compactly in vector 
notation as 

  
�y f y� ( )t,   (1.95)     

  where the column vectors  y ,  �y     and  f  are   
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  (1.96)      

 Note   that in this case  f ( t ,  y ) is shorthand for  f ( t ,  y  1,   y  2 ,  y  3 ,  y  4 ,  y  5 ,  y  6 ). Any set of one or more ordinary 
differential equations of any order can be cast in the form of Equation 1.95.
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        Example 1.15      
 Write   the nonlinear differential equation 

  ��� �� �x xx x� � �2 0   (a)      

 as   three fi rst order differential equations. 

    Solution 
 Introducing   the three auxiliary variables 

  y x y x y x1 2 3� � �� ��   (b)     

  we take the derivative of each one to get   

  

dy dt dx dt x
dy dt dx dt x

dy dt dx dt x

1

2

3

/ /
/ /

/

From (

� �

� �

� � �

�
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�� ���/

aa)�
�� �xx x� 2

      

 Substituting   (b) on the right of these expressions yields 

  

�
�

�

y y
y y

y y y y

1 2

2 3

3 1 3 2
2

�

�

� �

  (c)      

 This   is a system of three fi rst order, coupled ordinary differential equations. It is an autonomous system, 
since time  t  does not appear explicitly on the right side. The three equations can therefore be written com-
pactly as  �y f y� ( )   .       

 Before   discussing some numerical integration schemes, it will be helpful to review the concept of the 
  Taylor series  , named for the English mathematician Brook Taylor (1685 – 1731). Recall from calculus that if 
we know the value of a function  g ( t ) at time  t  and wish to approximate its value at a neighboring time  t       �       h , 
we can use the Taylor series to express  g ( t       �       h ) as an infi nite power series in  h , 

  g t h g t c h c h c h c h O hn
n n( ) ( ) ( )� � � � � � � � �

1 2
2

3
3 1	   (1.97)      

 The   coeffi cients  c m   are found by taking successively higher order derivatives of  g ( t ) according to the 
formula 

  
c

m

d g t

dt
m

m

m
�

1

!

( )
  (1.98)     

   O ( h n    � 1 ) ( “ order of  h  to the  n      �     1 ” ) means that the remaining terms of this infinite series all have  h n    � 1  as a 
factor. In other words,   

  
lim
h

n

n n
O h

h
c

→0

1

1 1
( )�

� ��
     



   O ( h n    � 1 ) is the truncation error due to retaining only terms up to  h n  . The order of a Taylor series expansion is 
the highest power of  h  retained. The more terms of the Taylor series that we keep, the more accurate will be 
the representation of the function  g ( t       �       h ) in the neighborhood of  t . Reducing  h  lowers the truncation error. 
For example, if we reduce  h  to  h /2, then  O ( h n  ) goes down by a factor of (1/2) n .

          Example 1.16      
 Expand   the function sin( t       �       h ) in a Taylor series about  t       �      1. Plot the Taylor series of order 1, 2, 3 and 4 
and compare them with sin(1      �       h ) for  � 2      �       h       �      2. 

    Solution 
 The    n th order Taylor power series expansion of sin( t       �       h ) is written 

  sin ( ) ( )t h p hn� �      

  where, according to Equations 1.97 and 1.98, the polynomial  p n   is given by   
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 Thus  , the zero through fourth order Taylor series polynomials in  h  are 
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 For    t       �      1,  p  1  through  p  4  as well as sin( t       �       h ) are plotted in  Figure 1.20   . As expected, we see that the 
higher degree Taylor polynomials for sin(1      �       h ) lie closer to sin(1      �       h ) over a wider range of  h .       

 The   numerical integration schemes that we shall examine are designed to solve fi rst order ordinary dif-
ferential equations of the form shown in Equation 1.95. To obtain a numerical solution of  �y f y� ( )t,     over 
the time interval  t  0  to  t f  , we divide or  “ mesh ”  the interval into  N  discrete times  t t t tN1 2 3, , , ,	    , where  t  1       �       t  0  
and  t N        �       t f  . The step size  h  is the difference between two adjacent times on the mesh, that is,  h       �       t i    � 1       �       t  i  . 
h  may be constant for all steps across the entire time span  t  0  to  t f  . Recent methods have adaptive step size 
control in which  h  varies from step to step to provide better accuracy and effi ciency. 
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 Let   us denote the values of  y  and  �y     at time  t i   as  y   i   and  f   i  , respectively, where  f   i        �       f ( t i  ,  y   i  ). In an initial 
value problem the values of all components of  y  at the initial time  t  0  together with Equation 1.95 provide 
the information needed to determine y at the subsequent discrete times. 

    1.8.1 Runge-Kutta Methods 

 The     Runge-Kutta (RK) methods   were originally developed by the German mathematicians Carle Runge 
(1856 – 1927) and Martin Kutta (1867 – 1944). In the explicit, single-step  RK  methods,  y   i    � 1  at  t i        �       h  is 
obtained from  y   i   at  t i   by the formula 

  y y yi i i ih t h� � �1 φ( ), ,   (1.99)      

 The   increment function   φ   is an average of the derivative  d  y / dt  over the time interval  t i   to  t i        �       h . This aver-
age is obtained by evaluating the derivative  f ( t , y ) at several points or  “ stages ”  within the time interval. The 
order of an  RK  method refl ects the accuracy to which   φ   is computed, compared to a Taylor series expan-
sion. A Runge-Kutta method of order  p  is called an  RKp  method. An  RKp  method is as accurate in comput-
ing  y   i   from Equation 1.99 as is the  p th order Taylor series 

  
y y c c c( )t h h h hi i p

p� � � � �1 2
2 	   (1.100)      

 An   attractive feature of the  RK  schemes is that only the fi rst derivative  f ( t , y ) is required, and it is avail-
able from the differential equation itself (Equation 1.95). By contrast, the  p th order Taylor series expansion 
in Equation 1.100 requires computing all derivatives of  y  through order  p . 

 The   higher the Runge-Kutta order, the more stages there are and the more accurate is   φ  . The number of 
stages equals the order of the  RK  method if the order is less than 5. If the number of stages is  s , then there 
are  s  times  
t     within the interval  t i   to  t i        �       h  at which we evaluate the derivatives  f ( t , y ). These times are 
given by specifying numerical values of the nodes  a m   in the expression 
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 FIGURE 1.20  
       Plots of zero to fourth order Taylor series expansions of sin(1      �       h ).    



 At   each of these times the value of  
y     is obtained by providing numerical values for the coupling coeffi -
cients   β  mn   in the formula 

  


 
 	y y fm i mn n
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h b m s� � �
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1

1

1 2∑ , , ,   (1.101)      

 The   vector of derivatives  
fm     is evaluated at stage  m  by substituting  
tm     and  
ym     into Equation 1.95, 

  

 
 
 	f f ym m mt m s� �( ), , , ,1 2   (1.102)      

 The   increment function   φ   is a weighted sum of the derivatives  
fm     over the  s  stages within the time 
interval  t i   to  t i        �       h , 
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 The   coeffi cients  c m   are known as the weights. Substituting Equation 1.103 into Equation 1.99 yields 
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 The   numerical values of the coeffi cients  a m  ,  b mn   and  c m   depend on which  RK  method is being used. It is 
convenient to write these coeffi cients as arrays, so that 
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  [ b ] is undefined if  s       �      1. The nodes  {  a  } , coupling coefficients [ b ] and weights  {  c  }  for a given  RK  method 
are not necessarily unique, although research favors the choice of some sets over others. Details surround-
ing the derivation of these coefficients as well as in-depth discussions of not only  RK  but also the numer-
ous other common numerical integration techniques may be found in numerical analysis textbooks, such as 
Butcher (2001).   

 For   Runge-Kutta orders 1 through 4 we list below the commonly used values of the coeffi cients 
(Equation 1.105), the resulting formula for the derivatives  
f     at each stage (Equation 1.102), and the for-
mula for  y   i    � 1       �       y   i   (Equation 1.104). These  RK  schemes all use a uniform step size  h . 

  RK1    (Euler’s method) 
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  RK2    (Heun’s method) 
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  (1.107)      

  RK3    
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 Observe   that in each of the four cases the sum of the components of  {  c  }  is 1 and the sum of each row of [ b ] 
equals the value in that row of  {  a  } . This is characteristic of the  RK  methods.

        Algorithm 1.1          Given   the vector  y  at time  t , the derivatives  f ( t , y ) and the step size  h , use one of the meth-
ods  RK1  through  RK4  to fi nd  y  at time  t       �       h . See Appendix D.2 for a MATLAB ®  software implementation 
of this algorithm in the form of the function  rk1_4.m. rk1_4.m  that executes any of the four  RK  methods 
according to whether the variable  rk  passed to the function has the value 1, 2, 3 or 4. 

    1.     Evaluate the derivatives  
 
 … 
f f f1 2, , , s     at stages 1 through  s  by means of Equation 1.102.  
    2.     Use Equation 1.104 to compute  y y c f( ) ( )t h t h m mm

s
� � �

�



1∑ .       

 Repeat   these steps to obtain  y  at subsequent times  t       �      2 h ,  t       �      3 h , etc.      



 Let   us employ the Runge-Kutta methods and Algorithm 1.1 to solve for the motion of the well-known 
viscously damped spring-mass system pictured in  Figure 1.21   . The spring has an unstretched length  l  0  and a 
spring constant  k . The viscous damper coeffi cient is  c  and the mass of the block, which slides on a friction-
less surface, is  m.  A forcing function  F ( t ) is applied to the mass. From the free body diagram in part (c) of 
the fi gure we obtain the equation of motion of this one-dimensional system in the  x -direction. 

  � � � �F F F t mxs d ( ) ��   (1.110)     

  where  F  s  and  F  d  are the forces of the spring and dashpot, respectively. Since  F  s       �       kx  and  F cxd � �    , 
Equation 1.110, after dividing through by the mass, can be rewritten as   

  
�� �x

c

m
x

k

m
x

F t

m
� � �

( )
  (1.111)      

 The   spring rate  k  and the mass  m  determine the natural circular frequency of vibration of the system,  
ωn k m� /     (radians/s). Furthermore, the damping coeffi cient  c  may be expressed as  c       �      2  ζ m ω  n  , where   ζ   
is the dimensionless damping factor (  ζ        �      0). Making these substitutions in Equation 1.111, we get the stan-
dard form 

  
�� �x x x

F t

mn n� � �2 2ζω ω
( )

  (1.112)      

 If   the forcing function is sinusoidal with amplitude  F  0  and circular frequency   ω  , then Equation 1.112 
becomes 

  
�� �x x x

F

m
tn n� � �2 2 0ζω ω ωsin   (1.113)      
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 FIGURE 1.21  
       A damped spring-mass system with a forcing function applied to the mass. (a) At rest. (b) In motion under the action of 
the applied force  F ( t ). (c) Free body diagram at any instant.    
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 This   second order ordinary differential equation has a closed form solution, which is found using proce-
dures taught in a differential equations course. If the system is underdamped, which means   ζ        �      1, then it 
can be verifi ed by substitution (see Problem 1.16) that the solution of Equation 1.113 is 
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  where  ω ω ζd n� �1 2     is the damped natural frequency. The initial conditions determine the values of the 
coeffi cients  A  and  B . If at  t       �      0,  x       �       x  0  and  � �x x� 0    , it turns out (see Problem 1.17) that   
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  (1.114b)      

 The   transient term with the exponential factor in Equation 1.114a dies out eventually, leaving only the 
steady-state solution, which persists as long as the forcing function acts.

        Example 1.17      
 Plot   Equation 1.114 from  t       �      0 to  t       �      110 seconds if  m       �      1       kg,   ω  n        �      1       rad/s,   ζ        �      0.03,  F  0       �      1       N, 
  ω        �      0.4       rad/s and the initial conditions are  x x� �� 0   . 

    Solution 
 Substituting   the given values into Equations 1.114 yields 

 x e t tt� � ��0 03 0 03399 0 9995 0 4750 0 9995 1 190. . cos . . sin . . si[ ( ) ( )] [ nn . . cos .( ) ( )]0 4 0 03399 0 4t t�   (1.115)      

 This   function is plotted over the time span 0 to 110       s in  Figure 1.22   . Observe that after about 80 sec-
onds the transient has damped out and the system vibrates at the same frequency as the forcing function 
(although slightly out of phase due to the small viscosity).       

20 40 80 100

–1

0

1

60

2

–2

110

x, m

t, s 

 FIGURE 1.22  
       Over time only the steady state solution of Equation 1.113 remains.    



        Example 1.18      
 Solve   Equation 1.113 numerically, using the Runge-Kutta method and the data of Example 1.17. Compare 
the  RK  solution with the exact one, given by Equation 1.115. 

    Solution 
 We   must fi rst reduce Equation 1.113 to two fi rst order differential equations by introducing the two auxil-
iary variables 

  y x t1 � ( )   (a)      

  y x t2 � �( )   (b)      

 Differentiating   (a) we fi nd 

  � �y x t y t1 2� �( ) ( )   (c)      

 Differentiating   (b) and using Equation 1.113 yields 

  
� ��y x t

F

m
t y t y tn n2

0 2
1 22� � � �( ) ( ) ( )sin ω ω ζω   (d)      

 The   system (c) and (d) can be written compactly in the standard vector notation as 

  �y f y� ( )t,   (e)     
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  (1.116)      

 Equations   1.116 are what we need to implement Algorithm 1.1 for this problem. 
 We   will use the two MATLAB functions listed in Appendix D.2, namely,  Example_1_18.m  and  rk1_4.m. 

Example_1_18.m  passes the data of Example 1.17 to the function  rk1_4.m , which executes Algorithm 1.1 
for  RK1 ,  RK2 ,  RK3  and  RK4  over the time interval from 0 to 110 seconds. In each case the problem is 
solved for two different values of the time step  h . The subfunction  rates  within  Example_1_18.m  calculates 
the derivatives  f ( t , y ) given in Equation 1.116  . The exact solution (Equation 1.115) along with the four  RK  
solutions is nondimensionalized and plotted at each time step in  Figure 1.23   . 

 We   see that all of the  RK  solutions agree closely with the analytical one for a suffi ciently small step size. 
The fi gure shows, as expected, that to obtain accuracy, the uniform step size  h  must be reduced as the order 
of the  RK  method is reduced. Likewise, the fi gure suggests that a step size which yields inaccurate results 
for one  RK  order may work just fi ne for the next higher order procedure.        
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    1.8.2 Heun’s Predictor-Corrector Method 

 As   we have seen, the  RK1  method (Equation 1.106) uses just  
f1    , the derivative of  y  at the beginning of 
the time interval, to approximate the value of  y  at the end of the interval. The use of Equation 1.106 for 
approximate numerical integration of nonlinear functions was introduced by Leonhard Euler in 1768 and is 
therefore known as Euler’s method.  RK2  (Equation 1.107) improves the accuracy by using the average of 
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 FIGURE 1.23  
        x / x  max  vs.  t / t  max  for the  RK1  through  RK4  solutions of Equation 1.113 using the data of Example 1.17. The exact 
solution is at the top.    



the derivatives  
f1     and  
f2     at each end of the time interval. The   predictor-corrector method   due originally to 
the German mathematician Karl Heun (1859 – 1929) employs this idea. 

 First   we use  RK1  to estimate the value of  y  at  t i    � 1 , labeling that approximation  y *  i    � 1 : 

  y y f y* ,i i i ih t� � �1 ( ) (predictor)   (1.117a)     

   y * i � 1  is then used to compute the derivative  f  at  t i        �       h , whereupon the average of the two derivatives is used 
to correct the estimate   

  
y y
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(corrector)

, , *
  (1.117b)      

 We   can iteratively improve the estimate of  y   i    � 1  by making the substitution  y *  i    � 1  ←  y   i    � 1  (where  ←  means 
 “ is replaced by ” ) and computing a new value of  y   i    � 1  from Equation 1.117b. That process is repeated until 
the difference between  y   i    � 1  and  y *  i    � 1  becomes acceptably small.

        Algorithm 1.2          Given   the vector  y  at time  t  and the derivatives  f ( t , y ), use Heun’s method to fi nd  y  at time 
 t       �       h . See Appendix D.3 for a MATLAB implementation of this algorithm ( heun.m ). 

    1.     Evaluate the vector of derivatives  f ( t , y ).  
    2.     Compute the predictor  y *( t       �       h )      �       y ( t )      �       f ( t , y ) h .  

    3.     Compute the corrector  y y f y f y( ) ( ) [ ] [ ( )]t h t h t t h t h� � � � � �{ , , }/* 2   .  

    4.     Make the substitution  y *( t       �       h )    ←     y ( t       �       h ) and use Step 3 to recompute  y ( t       �       h ).  
    5.     Repeat Step 4 until  y ( t       �       h )    �     y *( t       �       h ) to within a given tolerance.    

 Repeat   these steps to obtain  y  at subsequent times  t       �      2 h ,  t       �      3 h , etc.     

        Example 1.19      
 Employ   Heun’s method to solve Equation 1.113 using the data provided in Example 1.17. Use two different 
time steps,  h       �      1       s and  h       �      0.1       s, and compare the results. 

    Solution 
 We   use the MATLAB functions  Example_1_19.m  and  heun.m  listed in Appendix D.3. The function 
 Example_1_19.m  passes the given data to the function  heun.m , which uses the subfunction  rates  within 
 Example_1_19.m  to compute the derivatives  f ( t , y ) in Equation 1.116  .  heun.m  executes Algorithm 1.2 over 
the time interval from 0 to 110 seconds, once for  h       �      1       s and again for  h       �      0.1       s, and plots the output in 
each case, as illustrated in  Figure 1.24   . 

 The   graph shows that for  h       �      0.1       s, Heun’s method yields a curve identical to the exact solution (whereas 
the  RK1  method diverged for this time step in  Figure 1.23 ). Even for the rather large time step  h       �      1       s, the 
Heun solution, though it starts out a bit ragged, proceeds after 60 seconds (about the time the transient 
dies out) to settle down and coincide thereafter very well with the exact solution. For this problem, Heun’s 
method is a decidedly better choice than  RK1  and competes with  RK2  and  RK3 .        
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    1.8.3 Runge-Kutta with Variable Step Size 

 Using   a constant step size to integrate a differential equation can be ineffi cient. The value of  h  in those 
regions where the solution varies slowly should be larger than in regions where the variation is more rapid, 
which requires  h  to be small in order to maintain accuracy. Methods for automatically adjusting the step 
size have been developed. They involve combining two adjacent-order  RK  methods into one and using the 
difference between the higher and lower order solution to estimate the truncation error in the lower order 
solution. The step size  h  is adjusted to keep the truncation error in bounds. 

 A   common example is the embedding of  RK4  into  RK5  to produce the  RKF4(5)  method. The  F  is added 
in recognition of E. Fehlberg’s contribution to this extension of the Runge-Kutta method. The   Runge-Kutta-
Fehlberg   procedure has six stages, and the Fehlberg coeffi cients are (Fehlberg, 1969) 
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 FIGURE 1.24  
       Numerical solution of Equation 1.113 using Heun’s method with two different step sizes.    
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 Using   asterisks to indicate that  RK4  is the lower order of the two, we have from Equations 1.104 
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  where, from Equations 1.100, 1.101 and 1.102, the derivatives at the six stages are   
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 Observe   that, although the low and high order solutions have different weights ( {  c * }  and  {  c  } , respectively), 
they share the same nodes  {  a  }  and coupling coeffi cients [ b ] and, hence, the same values of the derivatives  
f    . 
This is another convenient feature of the  RKF  method. 

 The   truncation vector  e  is the difference between the higher order solution  y   i    � 1  and the lower order 
solution  y *  i    � 1  
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f f f4 5 5 5 6 6 6� � � �c c c c* *   (1.123)      

 The   number of components of  e  equals  N , the number of fi rst order differential equations in the system 
( e.g. , three in Example 1.15 and two in Example 1.18). The scalar truncation error  e  is the largest of the 
absolute values of the components of  e , 

  e e e e eN� maximum of the set ( )| | | | | | | |1 2 3, , , ,	   (1.124)      

 We   set up a tolerance  tol , which the truncation error cannot exceed. Instead of using the same  h  for 
every step of the numerical integration process, we can adjust the step size so as to keep the error  e  from 
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exceeding  tol . A simple strategy for   adaptive step size control   is to update  h  after each time step using a 
formula, which is derived in, for example, Bond and Allman (1996), 
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  where  p  is the lower of the two orders in an  RKFp(p       �       1 ) method. For  RKF4(5) ,  p       �      4. According to 
Equation 1.125, if  e              tol , then  h  new       �       h  old , whereas if  e      �      tol , then  h  new              h  old . A factor   β   is commonly 
added so that   
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  where   β   may be 0.8 or 0.9, depending on the computer program.

          Algorithm 1.3          Given   the vector  y   i   at time   t i   , the derivative functions  f ( t ,    y ), the time step  h , and the toler-
ance  tol , use the  RKF4(5)  method with adaptive step size control to fi nd  y  i � 1  at time  t  i � 1 . See Appendix D.4 
for  rkf45.m , a MATLAB implementation of this algorithm. 

    1.     Evaluate the derivatives  
f1    through  
f 6    using Equations 1.122.  
    2.     Calculate the truncation vector using Equation 1.123.  
    3.     Compute the scalar truncation error  e  using Equation 1.124.  
    4.     If  e              tol  then replace  h  by  h β  ( tol / e ) 1/5  and return to Step 1.  
    5.     Replace  t  by  t       �       h  and calculate  y i    � 1  using Equation 1.121.  
    6.     Replace  h  by  h β  ( tol / e ) 1/5 .    

 Repeat   these steps to obtain  y   i    � 2 ,  y   i    � 3 , etc.     

        Example 1.20      
 A   spacecraft  S  of mass  m  travels in a straight line away from the center  C  of the earth, as illustrated in 
 Figure 1.25   . If at a distance of 6500       km from  C  its outbound velocity is 7.8       km/s, what will be its position 
and velocity 70 minutes later? 

    Solution 
 Solving   this problem requires writing down and then integrating the equations of motion. Starting with the 
free body diagram of  S  shown in  Figure 1.25 , we fi nd that Newton’s second law (Equation 1.38) for the 
spacecraft is 

  
� �F mxg ��   (a)      

 The   variable force of gravity  F g   on the spacecraft is its mass  m  times the local acceleration of gravity, 
given by Equation 1.8. That is, 

  
F mg m

g R

x
g

E� � 0
2

2   (b)     



   R E   is the earth’s radius (6378       km) and  g  0  is the sea-level acceleration of gravity (9.807       m/s 2 ). Combining 
Equations (a) and (b) yields   

  
��x

g R

x
E� �0

2

2
0   (1.127)      

 This   differential equation for the rectilinear motion of the spacecraft has an analytical solution, which we 
shall not go into here. Instead, we will solve it numerically using Algorithm 1.3 and the given initial condi-
tions. For that we must as usual introduce the auxiliary variables  y  1       �       x  and  y x2 � �     to obtain the two dif-
ferential equations 
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y y

y
g R
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1 2
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 FIGURE 1.25  
       Spacecraft  S  in rectilinear motion relative to the earth.    
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 FIGURE 1.26  
       Position and velocity versus time. The solution points are circled.    
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 The   initial conditions in this case are 

  y y1 2
20 6500 0 7 8( )  km ( )  km/s� � .   (d)      

 The   MATLAB programs  Example_1_20.m  and  rkf45.m , both in Appendix D.4, were used to pro-
duce  Figure 1.26   , which shows the position and velocity of the spacecraft over the requested time span. 
 Example_1_20.m  passes the initial conditions and time span to  rkf4.m , which uses the subroutine  rates  
within  Example_1_20.m  to compute the derivatives  �x     and  ��x    . 

    Figure 1.26  reveals that the spacecraft takes 35 minutes to coast out to twice its original 6500       km distance 
from  C  before reversing direction and returning 35 minutes later to where it started with a speed of 7.8       km/
s. The nonuniform spacing between the solution points shows how  rkf4.m  controlled the step size so that  h  
was smaller during rapid variations of the solution but larger elsewhere.         

    PROBLEMS 

    Section 1.2 

        1.1     Given the three vectors  A i j k� � �A A Ax y z
ˆ ˆ ˆ    ,  B i j k� � �B B Bx y z

ˆ ˆ ˆ     and  C i j k� � �C C Cx y z
ˆ ˆ ˆ    , 

show analytically that 

    (a)      A     ·     A       �       A  2   
    (b)      A     ·    ( B       �       C )      �      ( A       �       B )    ·     C  (interchangeability of the  “ dot ”  and  “ cross ” )  
    (c)      A      �       ( B       �       C )      �       B ( A     ·     C )      �       C(A     ·     B)  (the  bac-cab  rule)       
   (Hint: Simply compute the expressions on each side of the      �      signs and demonstrate conclusively that 
they are the same. Do  not  substitute numbers to  “ prove ”  your point. Use Equations 1.9 and 1.16.) 

    1.2     Use just the vector identities in Exercise 1.1 to show that    

  ( ) ( ) ( )( ) ( )( )A B C D A C B D A D B C� � � � � � � � �       

    1.3     Let  A i j k� � �3 4 12ˆ ˆ ˆ    ,  B i j k� � � �2 2ˆ ˆ ˆ     and  C i j k� � �ˆ ˆ ˆ4 8    . Calculate the (scalar) projection 
 C AB   of C onto the plane of A and B. See illustration below. (Hint:  C C Cn AB

2 2 2� �    .)    
    { Ans.:  C AB        �      8.952 }           

Plane of A and B

A

B

CCn

un

CAB

   
           



    Section 1.3 

        1.4     Since  ût     and  ûn     are perpendicular and  ˆ ˆ ˆu u ut n b� �    , use the  bac-cab  rule to show that  ˆ ˆ ˆu u ub t n� �     
and  ˆ ˆ ˆu u un b t� �    , thereby verifying Equation 1.29.  

    1.5     The  x ,  y  and  z  coordinates (in meters) of a particle  P  as a function of time (in seconds) are  x       �      sin  t , 
 y       �      sin 2 t  and  z       �      sin 3 t . At  t       �      3       s, determine: 

    (a)     The velocity  v , in Cartesian coordinates.  
    (b)     The speed  v .  
    (c)     The angles   θ  x  ,   θ  y   and   θ  z   which  v  makes with the  x ,  y  and  z  axes.  
    (d)     The unit tangent vector  ût   .  
    (e)     The acceleration a in Cartesian coordinates.  
    (f)     The unit binormal vector  ûb    .  
    (g)     The unit normal vector  ûn   .  
    (h)     The angles   φ  x  ,   φ  y   and   φ  z   which a makes with the  x ,  y  and  z- axes.  
    (i)     The tangential component  a t   of the acceleration.  
    (j)     The normal component  a n   of acceleration.  
    (k)     The radius of curvature of the path of  P .  
    (l)     The Cartesian coordinates of the center of curvature of the path.       

    { Partial Ans.: (b) 3.484       m/s ; (c)   θ  x        �      106.5 °  ; (j)  a n        �      1.520       m/s 2 ; (l)  x C        �      4.724       m }   

    Section 1.4 

        1.6     An 80       kg man and 50       kg woman stand 0.5 meter from each other. What is the force of gravitational 
attraction between the couple?    
    { Ans.: 1.07   μ  N }  

    1.7     If a person’s weight is  W  on the surface of the earth, calculate the earth’s gravitational pull on that 
person at a distance equal to the moon’s orbit.     
    { Ans.: 275      �      10 6   W  }  

    1.8     If a person’s weight is  W  on the surface of the earth, calculate what it would be, in terms of  W , at the 
surface of (a) the moon; (b) Mars; (c) Jupiter.     
    { Partial Ans.: (c) 2.53 W  }   

    Section 1.5 

        1.9     A satellite of mass  m  is in a circular orbit around the earth, whose mass is  M . The orbital radius from 
the center of the earth is  r . Use Newton’s Second Law of Motion, together with Equations 1.25 and 
1.31, to calculate the speed  v  of the satellite in terms of  M ,  r  and the gravitational constant  G.     
    { Ans.:  v GM r� /     }  

    1.10     If the earth takes 365.25 days to complete its circular orbit of radius 149.6      �      10 6        km around the sun, 
use the result of Problem 1.9 to calculate the mass of the sun.    
    { Ans.: 1.988      �      10 30        kg }   
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    Section 1.6 

        1.11     F is a force vector of fi xed magnitude embedded on a rigid body in plane motion (in the  xy  plane). At a 
given instant,  ω � 3k̂ rad/s   ,  �ω � �2k̂ rad/s2   ,  ��ω � 0     and  F i� 10ˆ N   . At that instant, calculate  ���F   .    
    { Ans.:  ���F i j� �180 270 3ˆ ˆ N/s     }   

    Section 1.7 

        1.12     The absolute position, velocity and acceleration of  O  are    

  

r I J K

v I J K

a I

0

0

300 200 100

10 30 50

25 40

� � �
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  The   angular velocity and acceleration of the moving frame are 

  Ω Ω� � � � � � �0 6 0 4 1 0 0 4 0 3 1 0 2.  (rad/s) (rad/s )ˆ . ˆ . ˆ . ˆ . ˆ . ˆ  I J K I J K�
      

  The   unit vectors of the moving frame are 

  

ˆ . ˆ . ˆ . ˆ

ˆ . ˆ . ˆ .

i I J K

j I J

� � �

� � � �

0 57735 0 57735 0 57735

0 74296 0 66475 0 0078206

0 33864 0 47410 0 81274

ˆ

ˆ . ˆ . ˆ . ˆ
K

k I J K� � � �       

  The   absolute position of  P  is 

  r I J K� � �150 200 300ˆ ˆ ˆ  (m)       

  The   velocity and acceleration of  P  relative to the moving frame are 

  v i j k a i j krel rel (m/s)  (m/s )� � � � � � �20 25 70 7 5 8 5 6 0 2ˆ ˆ ˆ . ˆ . ˆ . ˆ
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  Calculate   the absolute velocity  v   P   and acceleration  a   P   of  P . 
    { Ans.:  v u u I J KP v v� � � �478 7 0 5352 0 5601 0 6324. (m/s),        ˆ  ˆ . ˆ . ˆ . ˆ    ; 
  a u u I J KP a a� � � �616 3 0 1655 0 9759 0 14242. (m/s ),       ˆ  ˆ . ˆ . ˆ . ˆ         }

    1.13     An airplane in level fl ight at an altitude  h  and a uniform speed  v  passes directly over a radar tracking 
station  A . Calculate the angular velocity  �θ     and angular acceleration of the radar antenna  ��θ    as well as 
the rate  �r     at which the airplane is moving away from the antenna. Use the equations of this chapter 
(rather than polar coordinates, which you can use to check your work). Attach the inertial frame of 
reference to the ground and assume a nonrotating earth. Attach the moving frame to the antenna, with 
the  x -axis pointing always from the antenna towards the airplane.    
    { Ans.: (a)  �θ θ� v hcos2 /     (b)  ��θ θ θ� �2 2 3 2v hcos sin /     (c)  v vrel � sinθ     }          

    1.14     At 30 degrees north latitude, a 1000       kg (2205       lb) car travels due north at a constant speed of 100       km/
hr (62       mph) on a level road at sea level. Taking into account the earth’s rotation, calculate the lateral 
(sideways) force of the road on the car, and the normal force of the road on the car.    
    { Ans.:  F  lateral       �      2.026 N, to the left (west);  N       �      9784 N }  

    1.15     At 29 degrees north latitude, what is the deviation  d  from the vertical of a plumb bob at the end of a 
30       m string, due to the earth’s rotation?    
    { Ans.: 44.1       mm to the south. }           
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    Section 1.8 

        1.16     Verify by substitution that Equation 1.114a is the solution of Equation 1.113.  

    1.17     Verify that Equation 1.114b is valid.  

    1.18     Numerically solve the fourth order differential equation    

  
���� ��y y y� � �2 0      

  for  y  at  t       �      20, if the initial conditions are  y y y y� � � �1 0,  � �� ���     at  t       �      0.   
    { Ans.:  y (20) �  9.54 }  

    1.19     Numerically solve the differential equation    

  
��� �� �y y y y te t� � � �3 4 12 2

     

  for  y  at  t       �      3 if, at  t       �      0,  y y y� � �� �� 0    .   
    { Ans.:  y (3)      �      66.6 }  

    1.20     Numerically solve the differential equation    

  ty t y y�� �� � �2 2 0      

  to obtain  y  at  t       �      4 if the initial conditions are  y       �      0 and  �y � 1     at  t       �      1.   
    { Ans.:  y (4)      �      1.29 }  

    1.21     Numerically solve the system    
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  to obtain  x ,  y  and  z  at  t       �      20. The initial conditions are  x       �      1 and  y       �       z       �      0 at  t       �      0.   
    { Ans.:  x (20)  �  0.703 ,  y (20)  �  0.666,  z (20)  �   � 0.247 }  

    1.22     Use one of the numerical methods discussed in this section to solve Equation 1.127 for the time 
required for the moon to fall to the earth if it were somehow stopped in its orbit while the earth 
remained fi xed in space. (This will require a trial and error procedure known formally as a shooting 
method. It is not necessary for this problem to code the procedure. Simply guess a time and let the 
solver compute the fi nal radius. On the basis of the deviation of that result from the earth’s radius 
(6378       km), revise your time estimate and re-run the problem to compute a new fi nal radius. Repeat 



this process in a logical fashion until your time estimate yields a fi nal radius that is accurate to at least 
three signifi cant fi gures.) Compare your answer with the analytical solution,    
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  where  t  is the time,  r  0  is the initial radius,  r  is the final radius ( r       �       r  0 ),  g  0  is the sea-level acceleration 
of earth’s gravity and  R E   is the radius of the earth.   

    1.23     Use a Runge-Kutta solver such as MATLAB’s  ode45  to solve the nonlinear Lorenz equations, due to 
the American meteorologist and mathematician E. N. Lorenz (1917 – 2008):    

  

�
�
�

x y x
y x z y
z xy z

� �
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� �

σ
ρ

β

( )
( )

      

 Start   off by using the values Lorenz used in his paper (Lorenz, 1963):   σ        �      10,   β        �      8/3, and   ρ        �      28 
and the initial conditions  x       �      0,  y       �      1 and  z       �      0 at  t       �      0. Let  t  range to a value of 20 or higher. 
Plot the phase trajectory  x       �       x ( t ),  y       �       y ( t ),  z       �       z ( t ) in 3D to see the now-famous  “ Lorenz attractor. ”  
The Lorenz equations are a simplifi ed model of the two-dimensional convective motion within a fl uid 
layer due to a temperature difference  Δ  T  between the upper and lower surfaces. The equations are 
chaotic in nature. For one thing, this means that the solutions are extremely sensitive to the initial 
conditions. A minute change yields a completely different solution in the long run. Check this out 
yourself. ( x  represents the intensity of the convective motion of the fl uid,  y  is proportional to the tem-
perature difference between rising and falling fl uid, and  z  represents the nonlinearity of the tempera-
ture profi le across the depth.   σ   is a fl uid property (the Prandtl number),   ρ   is proportional to  Δ  T ,   β   is a 
geometrical parameter and  t  is a nondimensional time.)   
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    2.1       INTRODUCTION 
 This   chapter presents the vector-based approach to the classical problem of determining the motion of two bod-
ies due solely to their own mutual gravitational attraction. We show that the path of one of the masses relative to 
the other is a conic section (circle, ellipse, parabola, or hyperbola) whose shape is determined by the eccentricity. 
Several fundamental properties of the different types of orbits are developed with the aid of the laws of conserva-
tion of angular momentum and energy. These properties include the period of elliptical orbits, the escape velocity 
associated with parabolic paths and the characteristic energy of hyperbolic trajectories. Following the presenta-
tion of the four types of orbits, the perifocal frame is introduced. This frame of reference is used to describe 
orbits in three dimensions, which is the subject of Chapter 4. In this chapter, the perifocal frame provides the 
backdrop for developing the Lagrange  f  and  g  coeffi cients. By means of the Lagrange  f  and  g  coeffi cients, the 
position and velocity on a trajectory can be found in terms of the position and velocity at an initial time. These 
functions are needed in the orbit determination algorithms of Lambert and Gauss presented in Chapter 5. 

 The   chapter concludes with a discussion of the restricted three-body problem in order to provide a basis 
for understanding the concepts of Lagrange points and the Jacobi constant. This material is optional. 

 In   studying this chapter it would be well from time to time to review the road map provided in Appendix B.  

                                                     The two-body problem    2 
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    2.2       EQUATIONS OF MOTION IN AN INERTIAL FRAME 
    Figure 2.1    shows two point masses acted upon only by the mutual force of gravity between them. The posi-
tions  R  1  and  R  2  of their centers of mass are shown relative to an inertial frame of reference  XYZ . In terms of 
the coordinates of the two points 

  

R I J K
R I J K

1 1 1 1

2 2 2 2

� � �

� � �

X Y Z

X Y Z

ˆ ˆ ˆ

ˆ ˆ ˆ   (2.1)      

 The   origin  O  of the inertial frame may move with constant velocity (relative to the fi xed stars), but the 
axes do not rotate. Each of the two bodies is acted upon by the gravitational attraction of the other.  F  12  is 
the force exerted on  m  1  by  m  2 , and  F  21  is the force exerted on  m  2  by  m  1 . 

 The   position vector  R   G   of the center of mass  G  of the system in  Figure 2.1a  is defi ned by the formula: 

  
R

R R
G

m m

m m
�

�

�
1 1 2 2

1 2
  (2.2)      

 Therefore  , the absolute velocity and the absolute acceleration of  G  are: 

  
v R

R R
G G

m m

m m
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1 2
  (2.3)      

  
a R

R R
G G

m m

m m
� �
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�
��

�� ��
1 1 2 2

1 2
  (2.4)      

 The   adjective  “ absolute ”  means that the quantities are measured relative to an inertial frame of reference. 
 Let    r  be the position vector of  m  2  relative to  m  1 . Then, 

  r R R� �2 1   (2.5)      
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 FIGURE 2.1  
       (a) Two masses located in an inertial frame. (b) Free-body diagrams.    



 Or  , using Equations 2.1, 

  r I J K� � � � � �( ) ( ) ( )X X Y Y Z Z2 1 2 1 2 1
ˆ ˆ ˆ   (2.6)      

 Furthermore  , let  ̂ur     be the unit vector pointing from  m  1  towards  m  2 , so that 

  
û

r
r r

�   (2.7)     

  where  r  is the magnitude of  r ,   

  
r X X Y Y Z Z� � � � � �( ) ( ) ( )2 1

2
2 1

2
2 1

2   (2.8)      

 The   body  m  1  is acted upon only by the force of gravitational attraction towards  m  2 . The force of gravita-
tional attraction,  F g  , which acts along the line joining the centers of mass of  m  1  and  m  2 , is given by Equation 
1.31. Therefore, the force exerted on  m  1  by  m  2  is: 

  
F u12

1 2
2

�
Gm m

r
rˆ   (2.9)     

  where  ûr     accounts for the fact that the force vector  F  12  is directed from  m  1  towards  m  2 . (Do not confuse 
the symbol  G , used in this context to represent the universal gravitational constant, with its use elsewhere in 
the book to denote the center of mass.) By Newton’s third law (the action-reaction principle), the force  F  21  
exerted on  m  2  by  m  1  is  �  F  12 , so that:   

  
F u21

1 2
2

� �
Gm m

r
rˆ   (2.10)      

 Newton  ’s second law of motion as applied to body  m  1  is  F R12 1 1� m ��    , where  ��R1    is the absolute accel-
eration of  m  1 . Combining this with Newton’s law of gravitation (Equation 2.9) yields: 

  
m

Gm m

r
r1 1

1 2
2

��R u� ˆ   (2.11)      

 Likewise  , by substituting  F R21 2 2� m ��     into Equation 2.10 we get: 

  
m

Gm m

r
r2 2

1 2
2

��R u� � ˆ   (2.12)      

 It   is apparent from forming the sum of Equations 2.11 and 2.12 that  m m1 1 2 2
�� ��R R 0� �    . According to 

Equation 2.4, that means the acceleration of the center of mass  G  of the system of two bodies  m  1  and  m  2  is 
zero. Therefore, as is true for any system that is free of external forces,  G  moves in a straight line through 
space with a constant velocity  v   G  . Its position vector relative to  XYZ  is given by: 

  
R R vG G Gt� �

0
  (2.13)     

  where  RG0
    is the position of  G  at time  t       �      0. The non-accelerating center of mass of a two-body system 

may serve as the origin of an inertial frame.

2.2 Equations of motion in an inertial frame  63
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          Example 2.1      
 Use   the two-body equations of motion to show why orbiting astronauts experience weightlessness. 

    Solution 
 We   sense weight by feeling the contact forces that develop wherever our body is supported. Consider an 
astronaut of mass  m A   strapped into a spacecraft of mass  m S  , in orbit about the earth. The distance between 
the center of the earth and the spacecraft is  r , and the mass of the earth is  M E  . Since the only external force 
is that of gravity,  FS g

)    , the equation of motion of the spacecraft is: 

  
F aS g S Sm) �   (a)     

  where  a   S   is measured in an inertial frame. According to Equation 2.10,   

  
F uS g

E S
r

GM m

r
) ��

2
ˆ   (b)     

  in which  ûr    is the unit vector pointing outwards from the earth towards the orbiting spacecraft. Thus, (a) 
and (b) imply that the absolute acceleration of the spacecraft is:   

  
a uS

E
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GM

r
��

2
ˆ   (c)      

 The   equation of motion of the astronaut is: 

  
F C aA g A A Am) � �   (d)      

 In   this expression  FA g
)     is the force of gravity on (i.e., the weight of) the astronaut,  C   A   is the net contact force 

on the astronaut from restraints (e.g., seat, seat belt), and  a   A   is the astronaut’s absolute acceleration. 
According to Equation 2.10, 
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ˆ   (e)      

 Since   the astronaut is moving with the spacecraft we have, noting (c), 
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 Substituting   (e) and (f) into (d) yields: 
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  from which it is clear that:   

  C 0A �       

 The   net contact force on the astronaut is zero. With no reaction to the force of gravity exerted on the body, 
there is no sensation of weight.       



 The     gravitational potential energy  V  of the force of attraction  F  between two point masses  m  1  and  m  2  
separated by a distance  r  is given by: 

  
V

Gm m

r
� � 1 2   (2.14)      

 A   conservative force like gravity can be obtained from its scalar potential energy function  V  by means of 
the gradient operator, 

  F � ��V   (2.15)     

  where, in Cartesian coordinates,   

  
� � � �

∂ ∂ ∂
∂ ∂ ∂x y z

ˆ ˆ ˆi j k   (2.16)      

 For   the two-body system in  Figure 2.1  we have, by combining Equations 2.8 and 2.14, 
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  (2.17)      

 The   attractive forces  F  12  and  F  21  in Equations 2.9 and 2.10 are derived from Equation 2.17 as follows 
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 In   Appendix E it is shown that the gravitational potential  V , and hence the gravitational force, outside 
of a sphere with a spherically symmetric mass distribution  M  is the same as that of a point mass  M  located 
at the center of the sphere. Therefore, the two-body problem applies not just to point masses but also to 
spherical bodies (as long, of course, as they do not come into contact!). 

 Let   us return to Equations 2.11 and 2.12, the equations of motion of the two-body system relative to the 
 XYZ  inertial frame. We can divide  m  1  out of Equation 2.11 and  m  2  out of Equation 2.12 and then substitute 
Equation 2.7 into both results to obtain 

  
��R

r
1 2 3

� Gm
r

  (2.18a)      

  
��R

r
2 1 3

� �Gm
r

  (2.18b)      
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 These   are the fi nal forms of the equations of motion of the two bodies in inertial space. With the aid of 
Equations 2.1, 2.6 and 2.8 we can express these equations in terms of the components of the position and 
acceleration vectors in the inertial  XYZ  frame: 

  
�� �� ��X Gm

X X

r
Y Gm

Y Y

r
Z Gm

Z Z

r
1 2

2 1
3 1 2

2 1
3 1 2

2 1
3

�
�

�
�

�
�

  (2.19a)      
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  (2.19b)     

  where  r X X Y Y Z Z� � � � � �( ) ( ) ( )2 1
2

2 1
2

2 1    .   

 The   position vector  R  and velocity vector  V  of a particle are referred to collectively as its   state vector  . 
The fundamental problem before us is to fi nd the state vectors of both particles of the two-body system 
at a given time given the state vectors at an initial time. The numerical solution procedure is outlined in 
Algorithm 2.1.

        Algorithm 2.1          Numerically   compute the state vectors  R  1 ,  V  1  and  R  2 ,  V  2  of the two body system as a func-
tion of time, given their initial values  R V1

0
1
0,     and  R V2

0
2
0,    . This algorithm is implemented in MATLAB ®  as 

the function  twobody3d.m , which is listed in Appendix D.5. 

    1.     Form the vector consisting of the components of the state vectors at time  t  0 ,    
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0
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⎥
⎦⎥       

    2.     Provide  y  0  and the fi nal time  t f   to Algorithm 1.1, 1.2, or 1.3, along with the vector that comprises the 
components of the state vector derivatives   :    

  
f y( )t X Y Z X Y Z X Y Z X Y Z, � � � � � � � �� �� �� �� �� ��

1 1 1 2 2 2 1 1 1 2 2 2
⎢
⎣⎢

⎥
⎦⎥      

  where the last six components, the accelerations, are given by Equation 2.19.   

    3.     The algorithm selected in Step 2 solves the system  �y f y� ( )t,     for the system state vector:    

  
y � X Y Z X Y Z X Y Z X Y Z1 1 1 2 2 2 1 1 1 2 2 2

� � � � � �⎢
⎣⎢

⎥
⎦⎥      

  at  n  discrete times  t n   from  t  0  through  t f  .   

    4.     The state vectors of  m  1  and  m  2  at the discrete times are:    
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        Example 2.2      
 A   system consists of two massive bodies  m  1  and  m  2  each having a mass of 10 26        kg. At time  t       �      0 the state 
vectors of the two particles in an inertial frame are 
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ˆ 00Ĵ  (km/s)       

 Use   Algorithm 2.1 and the  RKF4(5)  method (Algorithm 1.3) to numerically determine the motion of the 
two masses due solely to their mutual gravitational attraction from  t       �      0 to  t       �      480 seconds. 

    (a)     Plot the motion of  m  1  and  m  2  relative to the inertial frame.  
    (b)     Plot the motion of  m  2  and  G  relative to  m  1 .  
    (c)     Plot the motion of  m  1  and  m  2  relative to the center of mass  G  of the system.    

    Solution 
 The   MATLAB function  twobody3d.m  in Appendix D.5 contains within it the data for this problem. 
Embedded in the program is the subfunction  rates , which computes the accelerations given by Equation 
2.19.  twobody3d.m  uses the solution vector from  rkf45.m  to plot        Figures 2.2 and 2.3     , which summarize the 
results requested in the problem statement. 

 In   answer to part (a),  Figure 2.2  shows the motion of the two-body system relative to the inertial frame. 
 m  1  and  m  2  are soon established in a periodic helical motion around the straight-line trajectory of the center 
of mass  G  through space. This pattern continues indefi nitely. 

    Figure 2.3a  relates to part (b) of the problem. The very same motion appears rather less complex when 
viewed from  m  1 . In fact we see that  R  2 ( t )      �       R  1 ( t ), the trajectory of  m  2  relative to  m  1 , appears to be an ellip-
tical path. So does  R   G  ( t )      �       R  1 ( t ), the path of the center of mass around  m  1 . 
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 FIGURE 2.2  
       The motion of two identical bodies acted on only by their mutual gravitational attraction, as viewed from the inertial 
frame of reference.    
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 Finally  , for part (c) of the problem,  Figure 2.3b  reveals that both  m  1  and  m  2  follow apparently elliptical 
paths around the center of mass.       

 One   may wonder what the motion looks like if there are more than two bodies moving under the infl u-
ence only of their mutual gravitational attraction. The  n -body problem with  n             2 has no closed form solu-
tion, which is complex and chaotic in nature. The three-body problem is briefl y addressed in Appendix C, 
where the equations of motion of the system are presented. Appendix C lists the MATLAB program  three-
body.m  that is used to solve the equations of motion for given initial conditions.  Figure 2.4    shows the results 
for three particles of equal mass, equally spaced initially along the  X -axis of an inertial frame. The central 
mass has an initial velocity in the  XY  plane, while the other two are at rest. As time progresses, we see no 
periodic behavior as was evident in the two-body motion in  Figure 2.2 . The chaos is more obvious if the 
motion is viewed from the center of mass of the three-body system, as shown in  Figure 2.5   . The computer 
simulation reveals that the masses all eventually collide.  
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 FIGURE 2.3  
       The motion in  Figure 2.2 , (a) as viewed relative to  m  1  (or  m  2 ); (b) as viewed from the center of mass.    



2.2 Equations of motion in an inertial frame  69

m1 m2 m3

m3

m3

m3

m3

m2

m2

m2

m1

m1

m1

G

G

v0

X

Y

Inertial frame 

 FIGURE 2.4  
       The motion of three identical masses as seen from the inertial frame in which  m  1  and  m  3  are initially at rest, while  m  2  
has an initial velocity  v  0  directed upwards and to the right, as shown.    
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 FIGURE 2.5  
       The same motion as  Figure 2.4 , as viewed from the inertial frame attached to the center of mass  G .    
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    2.3       EQUATIONS OF RELATIVE MOTION 
 Let   us differentiate Equation 2.5 twice with respect to time in order to obtain the relative acceleration 
vector, 

  
�� �� ��r R R� �2 1       

 Substituting   Equations 2.18 into the right side of this expression yields: 

  
��r r� �

�G m m

r

z( )1

3   (2.20)      

 The     gravitational parameter   μ   is defi ned as: 

  μ � �G m m( )1 2   (2.21)      

 The   units of   μ   are km 3  s  � 2 . Using Equation 2.21 we can write Equation 2.20 as: 

  
��r r� �

μ

r3
  (2.22)      

 This     fundamental equation of relative two-body motion   is a nonlinear second order differential equa-
tion that governs the motion of  m  2  relative to  m  1 . It has two vector constants of integration, each having 
three scalar components. Therefore, Equation 2.22 has six constants of integration. Note that interchang-
ing the roles of  m  1  and  m  2  amounts to simply multiplying Equation 2.22 through by  � 1, which, of course, 
changes nothing. Thus, the motion of  m  2  as seen from  m  1  is precisely the same as the motion of  m  1  as seen 
from  m  2 . The motion of the moon as observed from earth appears the same as that of the earth as viewed 
from the moon. 

 The   relative position vector  r  in Equation 2.22 was originally defi ned in the inertial frame (Equation 
2.6). It is convenient, however, to measure the components of  r  in a frame of reference attached to and 
moving with  m  1 . In a co-moving reference frame, such as the  xyz  system illustrated in  Figure 2.6   ,  r  has the 
expression: 

  r i j k� � �x y zˆ ˆ ˆ
      

 The   relative velocity  �rrel     and acceleration  ��rrel     in the co-moving frame are found by simply taking the deriva-
tives of the coeffi cients of the unit vectors, which themselves are fi xed in the moving  xyz  system. Thus, 

  
� � � � �� �� �� ��r i j k r i j krel rel� � � � � �x y z x y zˆ ˆ ˆ          ˆ ˆ ˆ

      

 From   Equation 1.68 we know that the relationship between absolute acceleration  ��r     and relative accel-
eration  ��rrel    is: 

  
�� �� � �r r r r r� � � � � � � �rel rel( )Ω Ω Ω Ω2      



  where   Ω   and  �Ω     are the absolute angular velocity and angular acceleration of the moving frame of refer-
ence. Thus  �� ��r r� rel     only if  Ω Ω� �� 0   . That is to say, the relative acceleration may be used on the left of 
Equation 2.22 as long as the co-moving frame in which it is measured is not rotating.   

 In   the remainder of this chapter and those that follow, the analytical solution of the two-body equation 
of relative motion (Equation 2.22) will be presented and applied to a variety of practical problems in orbital 
mechanics. Pending an analytical solution, we can solve Equation 2.22 numerically in a manner similar to 
Algorithm 2.1. 

 To   begin, we imagine a nonrotating Cartesian coordinate system attached to  m  1 , as illustrated in  Figure 
2.6 . Resolve  ��r r� �( / )μ r3     into components in this moving frame of reference to obtain the relative accel-
eration components: 

  
�� �� ��x

r
x y

r
y z

r
z� � � � � �

μ μ μ
3 3 3   (2.23)     

  where  r x y z� � �2 2 2    . The components of the state vector ( r i j k� � �x y zˆ ˆ ˆ    ,  v i j k� � �� � �x y zˆ ˆ ˆ    ) are 
listed in the vector  y ,   

  
y � x y z x y z� � �⎢⎣ ⎥⎦       

 The   time derivative of this vector comprises the state vector rates, 

  
� � � � �� �� ��y � x y z x y z⎢⎣ ⎥⎦      

  where the last three components, the accelerations, are given by Equation 2.23.
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ĵ

k̂

 FIGURE 2.6  
       Moving reference frame  xyz  attached to the center of mass of  m  1 .    
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          Algorithm 2.2          Numerically   compute the state vector  r ,  v  of  m  1  relative to  m  2  as a function of time, given 
the initial values  r  0 ,  v  0 . This algorithm is implemented in MATLAB as the function  orbit.m , which is listed 
in Appendix D.6. 

    1.     Form the vector comprising the components of the state vector at time  t  0 ,    

  
y0 0 0 0 0 0 0� x y z x y z� � �⎢⎣ ⎥⎦       

    2.     Provide the state vector derivatives:    

  
f y( )t x y z

r
x

r
y

r
z, � � � �� � � μ μ μ

3 3 3

⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥      

  together with  y  0  and the final time  t f   to Algorithm 1.1, 1.2 or 1.3.   

    3.     The algorithm selected in Step 2 solves the system  �y f y� ( )t,     for the state vector:    

  
y � x y z x y z� � �⎢⎣ ⎥⎦      

  at  n  discrete times  t n   from  t  0  through  t f  .   

    4.     The position and velocity at the discrete times are:    

  r i j k v i j k� � � � � �x y z x y zˆ ˆ ˆ ˆ ˆ ˆ� � �           

        Example 2.3      
 Relative   to a nonrotating frame of reference with origin at the center of the earth, a 1000       kg satellite’s initial 
position vector is  r i k� �8000 6000ˆ ˆ  (km)     and its initial velocity vector is  v j� 7ˆ (km/s)   . Use Algorithm 
2.2 and the  RKF4(5)  method to solve for the path of the spacecraft over the next four hours. Determine its 
minimum and maximum distance from the earth’s surface during that time. 

    Solution 
 The   MATLAB function  orbit.m  in Appendix D.6 solves this problem. The initial value of the vector  y  is: 

  
y0 8000 0 6000 5� km km 0  km/s 5 km/s⎢⎣ ⎥⎦       

 The   program provides these initial conditions to the function  rkf45  (Appendix D.4), which integrates the 
system  �y f y� ( )t,    .  rkf45  uses the function  rates  embedded in  orbit.m  to calculate  f ( t , y ) at each time step. 
The command window output of  orbit.m  in Appendix D.6 shows that: 

  

The minimum altitude is  km, and the speed at that poi3622 nnt is  km/s.
The maximum altitude is  km, and the spe

7
9560 eed at that point is  km/s.4 39.       

 The   minimum altitude in this case is at the starting point of the orbit. The maximum altitude occurs two 
hours later on the opposite side of the earth. 

  orbit  .m  also uses some MATLAB plotting features to generate  Figure 2.7   . Observe that the orbit is 
inclined to the equatorial plane and has an apparently elliptical shape. The satellite moves eastwardly in the 
same direction as the earth’s rotation.       



 As   pointed out earlier, since the center of mass  G  has zero acceleration, we can use it as the origin of an 
inertial reference frame. Let  r  1  and  r  2  be the position vectors of  m  1  and  m  2 , respectively, relative to the cen-
ter of mass  G  in  Figure 2.1 . The equation of motion of  m  2  relative to the center of mass is: 

  
� �G

m m

r
mr

1 2
2 2 2û r��   (2.24)     

  where, as before,  r  is the magnitude of r, the position vector of  m  2  relative to  m  1 . In terms of  r  1  and  r  2 ,   

  r r r� �2 1   (2.25)      

 Since   the position vector of the center of mass relative to itself is zero, it follows from Equation 2.2 that: 

  m m1 1 2 2r r 0� �       

 Therefore  , 

   
r r1

2

1
2� �

m

m
  (2.26)      

 Substituting   2.26 into 2.25 yields: 

  
r r�

�m m

m
1 2

1
2

      

 Substituting   this back into Equation 2.24 and using the fact that  ̂u rr r� 2 2/    , we get: 

  

�
�
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m m

m m r
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3
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1 2
2

2
3 2 2 2
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r r��
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 FIGURE 2.7  
       The computed earth orbit. The beginning of the path is marked by t 0 , and  tf  marks the end of the path 4 hours later.    
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 Upon   simplifi cation this becomes: 
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  where   μ   is the gravitational parameter given by Equation 2.21. If we let:   
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  then Equation 2.27 reduces to:   

  

��r r2
2

3 2� �

μ

r      

  which is identical in form to Equation 2.22.   
 In   a similar fashion, the equation of motion of  m  1  relative to the center of mass is found to be: 

  

��r r1
1
3 1� �
�μ

r      

  in which,   
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 Since   the equations of motion of either particle relative to the center of mass have the same form as the 
equations of motion relative to either one of the bodies,  m  1  or  m  2 , it follows that the relative motion as 
viewed from these different perspectives must be similar, as illustrated in  Figure 2.3 .  

    2.4       ANGULAR MOMENTUM AND THE ORBIT FORMULAS 
 The   angular momentum of body  m  2  relative to  m  1  is the moment of  m  2 ’  s relative linear momentum  m2 �r    
(cf. Equation 1.45), 

  H r r2 1 2/ � � m �      

  where  �r v�     is the velocity of  m  2  relative to  m  1 . Let us divide this equation through by  m  2  and let 
 h       �       H  2/1 / m  2 , so that   

  h r r� � �   (2.28)     

   h  is the relative angular momentum of  m  2  per unit mass, that is, the   specific relative angular momentum  . 
The units of h are km 2 s  � 1 .   



 Taking   the time derivative of  h  yields: 

  

d

dt

h
r r r r� � � �� � ��

      

 But    � �r r� � 0   . Furthermore,  ��r r� �( / )μ r3    , according to Equation 2.22, so that: 

  
r r r r r r� � � � � � � ��� μ μ

r r3 3
0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( )

      

 Therefore  , we have the   conservation of angular momentum  , 

  

d

dt

h
r r� � �0         (or constant)�   (2.29)      

 If   the position vector  r  and the velocity vector  �r     are parallel, then it follows from Equation 2.28 that the 
angular momentum is zero and, according to Equation 2.29, it remains zero at all points of the trajectory. 
Zero angular momentum characterizes   rectilinear trajectories   whereon  m  2  moves towards or away from  m  1  
in a straight line (see Example 1.20). 

 At   any point of a curvilinear trajectory the position vector  r  and the velocity vector  �r     lie in the same 
plane, as illustrated in  Figure 2.8   . Their cross product  r r� �     is perpendicular to that plane. Since  r r h� ��    , 
the unit vector normal to the plane is: 

  
ĥ

h
�

h   (2.30)      

 By   the conservation of angular momentum (Equation 2.29), this unit vector is constant. Thus, the path of  m  2  
around  m  1  lies in a single plane. 

 Since   the orbit of  m  2  around  m  1  forms a plane, it is convenient to orient oneself above that plane and look 
down upon the path, as shown in  Figure 2.9   . Let us resolve the relative velocity vector  �r     into components  
v ur r rv� ˆ     and  v u⊥ ⊥ ⊥� v ˆ     along the outward radial from  m  1  and perpendicular to it, respectively, where  ̂ur     
and  ̂u⊥     are the radial and perpendicular (azimuthal) unit vectors. Then we can write Equation 2.28 as: 

  h r v u u u h� � � � � �r v v rvr r rˆ ˆ ˆ ˆ( )⊥ ⊥ ⊥       
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 FIGURE 2.8  
       The path of  m  2  around  m  1  lies in a plane whose normal is defi ned by  h .    
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 That   is, 

  
h rv� ⊥   (2.31)      

 Clearly  , the angular momentum depends only on the azimuth component of the relative velocity. 
 During   the differential time interval  dt  the position vector  r  sweeps out an area  dA , as shown in 

 Figure 2.10   . From the fi gure it is clear that the triangular area  dA  is given by: 

  
dA vdt r r v dt rv dt� � � � � � � �

1

2

1

2

1

2

1

2
base sin sinaltitude ( )φ φ ⊥

      

 Therefore  , using Equation 2.31 we have: 

  

dA

dt

h
�

2
  (2.32)     

   dA / dt  is called the areal velocity, and according to Equation 2.32 it is constant. Named for the German 
astronomer Johannes Kepler (1571 – 1630), this result is known as   Kepler’s second law  : equal areas are 
swept out in equal times.   
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 FIGURE 2.9  
       Components of the velocity of  m  2 , viewed above the plane of the orbit.    
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 FIGURE 2.10  
       Differential area  dA  swept out by the relative position vector  r  during time interval  dt.     



 Before   proceeding with an effort to integrate Equation 2.22, recall the  bac-cab  rule (Equation 1.20): 

  A B C B A C C A B� � � � � �( ) ( ) ( )   (2.33)      

 Recall   as well from Equation 1.11 that 

  r r� � r2   (2.34)     

  so that   

  

d

dt
r

dr

dt
( )r r� � 2

      

 But   
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dt
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dt
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dt
( )r r r

r r
r r

r
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 Thus  , we obtain the important identity: 

  r r� �� �rr   (2.35a)      

 Since    �r v�     and  r � || ||r    , this can be written alternatively as: 

  
r v r

r
� � || ||

|| ||d

dt
  (2.35b)      

 Now   let us take the cross product of both sides of Equation 2.22 [ ��r r� �( / )μ r3    ] with the specifi c angu-
lar momentum  h : 

  
��r h r h� � � �

μ

r3   (2.36)      

 Since    d/ ( )dt � �� � �r h r h r h� � � � �    , the left-hand side can be written: 

  
�� � � �r h r h r h� � � � �

d

dt
( )

      

 But   according to Equation 2.29, the angular momentum is constant ( �h � 0   ), so this reduces to: 

  
�� �r h r h� � �

d

dt
( )   (2.37)      

 The   right-hand side of Equation 2.36 can be transformed by the following sequence of substitutions: 

  

1 1
2 28

1

3 3

3

r r

r
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r r r
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 But   

  

d

dt r

r r

r

r r

r

r r r r r⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �

�
� �

�� � � �
2 2

      

 Therefore  , 

  

1
3r

d

dt r
r h

r
� � �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   (2.38)      

 Substituting   Equations 2.37 and 2.38 into Equation 2.36, we get: 

  

d

dt

d

dt r
( )�r h

r
� � μ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     

  or   

  

d

dt r
�r h

r
� � �μ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 0

      

 That   is, 

  
�r h

r
C� � �μ

r
  (2.39)     

  where the vector  C , called the Laplace vector after the French mathematician Pierre-Simon Laplace (1749 –
 1827), is a constant having the dimensions of   μ  . Equation 2.39 is the first integral of the equation of motion, 
 ��r r� �( / )μ r3    . Taking the dot product of both sides of Equation 2.39 with the vector  h  yields:   

  
( )�r h h

r h
C h� � �

�
� �μ

r       

 Since    �r h�     is perpendicular to both  �r     and  h , it follows that  ( )�r h h� � � 0    . Likewise, since  h r r� � �     is 
perpendicular to both  r  and  �r   , it is true that  r     ·     h       �      0. Therefore, we have  C     ·     h       �      0, i.e.,  C  is perpendicu-
lar to  h , which is normal to the orbital plane. That of course means that the Laplace vector must lie in the 
orbital plane. 

 Let   us rearrange Equation 2.39 and write it as: 

  

r
e

r h
r

� �
��
μ   (2.40)     

  where  e       �       C /  μ  . The dimensionless vector  e  is called the   eccentricity vector  . The line defined by the vector 
 e  is commonly called the   apse line  . In order to obtain a scalar equation, let us take the dot product of both 
sides of Equation 2.40 with the position vector  r :   

  

r r
r e

r r h�
� � �

�

r

( )�×
μ

  (2.41)      

 We   can simplify the right-hand side by employing the vector identity presented in Equation 1.21: 



  A B C A B C� � � �( ) ( )×   (2.42)     

  from which we obtain:   

  r r h r r h h h� � � � � � �( ) ( )� �× h2   (2.43)      

 Substituting   this expression into the right-hand side of Equation 2.41, and substituting  r r� � r2     on the 
left yields: 

  
r

h
� � �r e

2

μ
  (2.44)      

 Observe   that by following the steps leading from Equation 2.40 to 2.44, we have lost track of the variable 
time. This occurred at Equation 2.43, because  h  is constant. Finally, from the defi nition of the dot product 
we have: 

  r e� � re cosθ      

  in which  e  is the   eccentricity   (the magnitude of the eccentricity vector  e ) and   θ   is the   true anomaly .  θ   is the 
angle between the fixed vector  e  and the variable position vector  r , as illustrated in  Figure 2.11   . (Other sym-
bols used to represent true anomaly include  v ,  f ,  ν  and  φ .) In terms of the eccentricity and the true anomaly, 
we may therefore write Equation 2.44 as   

  
r re

h
� �cosθ

μ

2

     

  or   

  

r
h

e
�

�

2 1

1μ θcos
  (2.45)      

 This   is the   orbit equation  , and it defi nes the path of the body  m  2  around  m  1 , relative to  m  1 . Remember that 
  μ  ,  h , and  e  are constants. Observe as well that there is no signifi cance to negative values of eccentricity; that 
is,  e       �      0. Since the orbit equation describes conic sections, including ellipses, it is a mathematical state-
ment of   Kepler’s fi rst law  , namely, that the planets follow elliptical paths around the sun. Two-body orbits 
are often referred to as   Keplerian orbits  . 

 In   Section 2.3 it was pointed out that integration of the equation of relative motion, Equation 2.22, leads 
to six constants of integration. In this section it would seem that we have arrived at those constants, namely 
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 FIGURE 2.11  
       The true anomaly   θ   is the angle between the eccentricity vector  e  and the position vector  r .    
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the three components of the angular momentum  h  and the three components of the eccentricity vector  e . 
However, we showed that  h  is perpendicular to  e . This places a condition, namely  h    ·    e      �       0, on the compo-
nents of  h  and  e , so that we really have just fi ve independent constants of integration. The sixth constant of 
the motion will arise when we work time back into the picture in the next chapter. 

 The   angular velocity of the position vector r is  �θ   , the rate of change of the true anomaly. The compo-
nent of velocity normal to the position vector is found in terms of the angular velocity by the formula 

  v r⊥ � �θ   (2.46)      

 Substituting   this into Equation 2.31 ( h       �       rv  ⊥     ) yields the specifi c angular momentum in terms of the angular 
velocity, 

  h r� 2 �θ   (2.47)      

 It   is convenient to have formulas for computing the radial and azimuth components of velocity shown in 
 Figure 2.12   . From  h       �       rv    ⊥    we obtain the   azimuth component of velocity  : 

  
v

h

r⊥ �
      

 Substituting    r  from Equation 2.45 readily yields: 

  
v

h
e⊥ � �

μ
θ( )1 cos   (2.48)      
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 FIGURE 2.12  
       Position and velocity of  m  2  in polar coordinates centered at  m  1 , with the eccentricity vector being the reference for true 
anomaly (polar angle)   θ .  γ   is the fl ight path angle.    



 Since    v rr � �   , we take the derivative of Equation 2.45 to get: 
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⎢
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�

h e

e

h

r

2

2 21μ
θ

θ

sin

cos( )
     

  where we made use of the fact that  �θ � h r/ 2   , from Equation 2.47. Substituting Equation 2.45 once again 
and simplifying, finally yields the   radial component of velocity  ,   

  
v

h
er �

μ
θsin   (2.49)      

 We   see from Equation 2.45 that  m  2  comes closest to  m  1  ( r  is smallest) when   θ        �      0 (unless  e       �      0, in 
which case the distance between  m  1  and  m  2  is constant). The point of closest approach lies on the apse line 
and is called   periapsis  . The distance  r p   to periapsis, as shown in  Figure 2.12 , is obtained by setting the true 
anomaly equal to zero, 

  
r

h

ep �
�

2 1

1μ
  (2.50)      

 From   Equation 2.49 it is clear that the radial component of velocity is zero at periapsis. For 0      �        θ        �      180 ° , 
 v r   is positive, which means  m  2  is moving  away  from periapsis. On the other hand Equation 2.49 shows that 
if 180 °       �        θ        �      360 ° , then  v r   is negative, which means  m  2  is moving  towards  periapsis. 

 The   fl ight path angle   γ   is illustrated in  Figure 2.12 . It is the angle that the velocity vector  v r� �    makes 
with the normal to the position vector. The normal to the position vector points in the direction of  v    ⊥   , and it 
is called the   local horizon  . From  Figure 2.12  it is clear that: 

  
tan γ �

v

v
r

⊥

  (2.51)      

 Substituting   Equations 2.48 and 2.49 leads at once to the expression: 

  
tan

sin

cos
γ

θ
θ

�
�

e

e1
  (2.52)      

 The   fl ight path angle, like  v r  , is positive (velocity vector directed above the local horizon) when the space-
craft is moving away from periapsis and is negative (velocity vector directed below the local horizon) when 
the spacecraft is moving towards periapsis. 

 Since   cos( �   θ  )      �      cos   θ  , the trajectory described by the orbit equation is symmetric about the apse line, 
as illustrated in  Figure 2.13   , which also shows a chord, the straight line connecting any two points on the 
orbit. The latus rectum is the chord through the center of attraction perpendicular to the apse line. By sym-
metry, the center of attraction divides the latus rectum into two equal parts, each of length  p , known histori-
cally as the   semi-latus rectum  . In modern parlance,  p  is called the   parameter   of the orbit. From Equation 
2.45 it is apparent that 

  
p

h
�

2

μ   (2.53)      
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 Since   the curvilinear path of  m  2  around  m  1  lies in a plane, for the time being we will for simplicity continue 
to view the trajectory from above the plane. Unless there is reason to do otherwise, we will assume that the 
eccentricity vector points to the right and that  m  2  moves counterclockwise around  m  1 , which means that the true 
anomaly is measured positive counterclockwise, consistent with the usual polar coordinate sign convention.  

    2.5       THE ENERGY LAW 
 By   taking the cross product of Equation 2.22,  ��r � �( /r )μ 3 r     (Newton’s second law of motion), with the rela-
tive  angular  momentum per unit mass  h , we were led to the vector Equation 2.39, and from that we obtained 
the orbit formula, Equation 2.45. Now let us see what results from taking the  dot  product of Equation 2.22 
with the relative  linear  momentum per unit mass. The relative linear momentum per unit mass is just the 
relative velocity, 

  

m

m
2

2

�
�r
r�

      

 Thus  , carrying out the dot product in Equation 2.22 yields: 

  
�� �

�
r r

r r
� � �

�
μ

r3   (2.54)      

 For   the left-hand side of this equation we observe that: 

  

�� � � �r r r r v v� � � � � � �
1

2

1

2

1

2 2
2

2d

dt

d

dt

d

dt
v

d

dt

v
( ) ( ) ( )

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟⎟   (2.55)      

 For   the right-hand side of Equation 2.54 we have, recalling that  r  ·  r       �       r  2  and that  d r dt r dr dt( / )/ ( / )( / ) 1 1 2� �    , 

  
μ μ μ

μr r�
� � � �
� � �

r

rr

r

r

r

d

dt r3 3 2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   (2.56)      
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 FIGURE 2.13  
       Illustration of latus rectum, semi-latus rectum  p , and the chord between any two points on an orbit.    



 Substituting   Equations 2.55 and 2.56 into Equation 2.54 yields: 

  

d

dt

v

r

2

2
0� �

μ⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

     

  or   

  

v

r

2

2
� �

μ
ε (constant)   (2.57)     

  where   �   is a constant.  v  2 /2 is the relative kinetic energy per unit mass. ( �   μ  / r ) is the potential energy per 
unit mass of the body  m  2  in the gravitational field of  m  1 . The total mechanical energy per unit mass  ε     is the 
sum of the kinetic and potential energies per unit mass. Equation 2.57 is a statement of the   conservation of 
energy  , namely, that the specific mechanical energy is the same at all points of the trajectory. Equation 2.57 is 
also known as the   vis-viva   ( “ living force ” ) equation. It is valid for any trajectory, including rectilinear ones.   

 For   curvilinear trajectories, we can evaluate the constant   �   at periapsis (  θ        �      0), 

  

ε ε
μ

� � �p
p

p

v

r

2

2
  (2.58)     

  where  r p   and  v p   are the position and speed at periapsis. Since  v r        �      0 at periapsis, the only component of 
velocity is  v   ⊥  , which means  v p        �       v    ⊥         �       h / r p  . Thus,   

  

ε
μ

� �
1

2

2

2

h

r rp p
  (2.59)      

 Substituting   the formula for periapse radius (Equation 2.50) into Equation 2.59 yields an expression for the 
orbital specifi c energy in terms of the orbital constants  h  and  e , 

  
ε

μ
� � �

1

2
1

2

2
2

h
e( )   (2.60)      

 Clearly  , the orbital energy is not an independent orbital parameter. 
 Note   that the energy      of a satellite of mass  m  is obtained from the specifi c energy   ε   by the formula: 

  � mε  (2.61)       

    2.6       CIRCULAR ORBITS ( e       �      0) 
 Setting    e       �      0 in the orbital equation  r       �      ( h  2 /  μ  )/(1      �       e cos  θ  ), yields: 

  
r

h
�

2

μ
  (2.62)      

 That   is,  r       �      constant, which means the orbit of  m  2  around  m  1  is a circle. Since the radial velocity  �r     is zero, 
it follows that  v       �       v    ⊥    so that the angular momentum formula  h       �       rv    ⊥    becomes simply  h       �       rv  for a circular 

2.6 Circular orbits (e � 0)  83



84  CHAPTER 2 The two-body problem

orbit. Substituting this expression for  h  into Equation 2.62 and solving for  v  yields the velocity of a circular 
orbit, 

  
v

rcircular �
μ

  (2.63)      

 The   time  T  required for one orbit is known as the period. Because the speed is constant, the   period of a 
circular orbit   is easy to compute. 

  

T
r

r
� �

circumference

speed /

2π

μ      

  so that,   

  

T rcircular �
2 3

2
π

μ
  (2.64)      

 The     specifi c energy of a circular orbit   is found by setting  e       �      0 in Equation 2.60, 

  
ε

μ
� �

1

2

2

2h       

 Employing   Equation 2.62 yields 

  
ε

μ
circular � �

2r
  (2.65)      

 Obviously  , the energy of a circular orbit is negative. As the radius goes up, the energy becomes less 
negative, that is, it increases. In other words, the larger the orbit is, the greater is its energy. 

 To   launch a satellite from the surface of the earth into a circular orbit requires increasing its specifi c 
energy   �  . This energy comes from the rocket motors of the launch vehicle. Since the energy of a satellite of 
mass  m  is           �       m �  , a propulsion system that can place a large mass in a low earth orbit can place a smaller 
mass in a higher earth orbit. 

 The   space shuttle orbiters are the largest man-made satellites so far placed in orbit with a single launch 
vehicle. For example, on NASA mission STS-82 in February 1997, the orbiter Discovery rendezvoused 
with the Hubble space telescope to repair and refurbish it. The altitude of the nearly circular orbit was 
580       km (360 miles). Discovery’s orbital mass early in the mission was 106,000       kg (117 tons). That was only 
six per cent of the total mass of the shuttle prior to launch (comprising the orbiter’s dry mass, plus that of its 
payload and fuel, plus the two solid rocket boosters, plus the external fuel tank fi lled with liquid hydrogen 
and oxygen). This mass of about two million kilograms (2200 tons) was lifted off the launch pad by a total 
thrust in the vicinity of 35,000       kN (7.8 million pounds). Eighty-fi ve per cent of the thrust was furnished 
by the solid rocket boosters (SRBs), which were depleted and jettisoned about two minutes into the fl ight. 
The remaining thrust came from the three liquid rockets (space shuttle main engines, or SSMEs) on the 
orbiter. These were fueled by the external tank, which was jettisoned just after the SSMEs were shut down 
at MECO (main engine cut off), about eight and a half minutes after lift-off. 

 Manned   orbital spacecraft and a host of unmanned remote sensing, imaging and navigation satellites 
occupy nominally circular,   low earth orbits (LEOs)  . A low earth orbit (LEO) is one whose altitude lies 
between about 150       km (100 miles) and about 1000       km (600 miles). An LEO is well above the nominal 



outer limits of the drag-producing atmosphere (about 80       km or 50 miles), and well below the hazardous Van 
Allen radiation belts, the innermost of which begins at about 2400       km (1500 miles). 

 Nearly   all of our applications of the orbital equations will be to the analysis of man-made spacecraft, all 
of which have a mass that is insignifi cant compared to the sun and planets. For example, since the earth is 
nearly twenty orders of magnitude more massive than the largest conceivable artifi cial satellite, the center 
of mass of the two-body system lies at the center of the earth, and the constant   μ   in Equation 2.21 becomes: 

  
μ � � �G m m Gmearth satellite

neglect

earth

��� ��⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

      

 The   value of the earth’s gravitational parameter to be used throughout this book is found in Table A.2, 

  μearth
3 2 km /s� 398 600,   (2.66)     

        Example 2.4      
 Plot   the speed  v  and period  T  of a satellite in circular LEO as a function of altitude  z . 

    Solution 
 Equations   2.63 and 2.64 give the speed and period, respectively, of the satellite: 

  

v
r R z z

T r z
E

� �
�

�
�

� � �
μ μ π

μ

π398 600

6378

2 2

398 600
6378

3
2

3
2,

,
( )

      

 These   relations are graphed in  Figure 2.14   . 

 If   a satellite remains always above the same point on the earth’s equator, then it is in a circular,   geosta-
tionary equatorial orbit   or  GEO . For GEO, the radial from the center of the earth to the satellite must have 
the same angular velocity as the earth itself, namely, 2  π   radians per sidereal day. The   sidereal day   is the 
time it takes the earth to complete one rotation relative to inertial space (the fi xed stars). The ordinary 24-
hour day, or   synodic day  , is the time it takes the sun to apparently rotate once around the earth, from high 
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 FIGURE 2.14  
       Circular orbital speed (a) and period (b) as a function of altitude.    
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noon one day to high noon the next. The synodic and sidereal days would be identical if the earth stood still 
in space. However, while the earth makes one absolute rotation around its axis, it advances 2  π  /365.26 radi-
ans along its solar orbit. Therefore, earth’s inertial angular velocity   ω  E   is [(2  π        �      2  π / 365.26) radians]/(24 
hours); that is, 

  
ωE � � �72 9217 10 6.  rad/s   (2.67)      

 Communications   satellites and global weather satellites are placed in geostationary orbit because of the 
large portion of the earth’s surface visible from that altitude and the fact that ground stations do not have to 
track the satellite, which appears motionless in the sky.      

        Example 2.5      
 Calculate   the altitude  z  GEO  and speed  v  GEO  of a geostationary earth satellite. 

    Solution 
 From   Equation 2.63, the speed of the satellite in its circular GEO of radius  r  GEO  is: 

  

v
rGEO
GEO

�
μ

  (a)      

 On   the other hand, the speed  v  GEO  along its circular path is related to the absolute angular velocity   ω   E  of the 
earth by the kinematics formula: 

  v rEGEO GEO� ω       

 Equating   these two expressions and solving for  r  GEO  yields: 

  

r
E

GEO �
μ

ω 2
3

      

 Substituting   Equations 2.66 and 2.67, we get: 

  

rGEO
( )

 km�
�

�
�

398 600

72 9217 10
42 164

6 2
3

,

.
,   (2.68)      

 Therefore  ,   GEO altitude,   the distance of the satellite above the earth’s surface is 

  z r REGEO GEO� � � �42 164 6378,       

  
z GEO  km (  mi)� 35 786 22 241, ,

      

 Substituting   Equation 2.68 into (a) yields the   GEO speed  , 

  
v GEO  km/s� �

398 600

42 164
3 075

,

,
.   (2.69)           



        Example 2.6      
 Calculate   the maximum latitude and the percentage of the earth’s surface visible from GEO. 

    Solution 
 To   fi nd the maximum viewable latitude  φ , use  Figure 2.15   , from which it is apparent that: 

  
φ � �cos 1 R

r
E   (a)     

  where  R E        �      6378       km and, according to Equation 2.68,  r       �      42,164       km. Therefore,   

  
φ � �cos

,
1 6378

42 164       

  
φ � �  81 30. Maximum visible north or south latitude   (b)      

 The   surface area  S  visible from GEO is the shaded region illustrated in  Figure 2.16   . It can be shown that the 
area  S  is given by 

  S RE� �2 12π φ( )cos      

  where  2 2πRE     is the area of the hemisphere. Therefore, the percentage of the hemisphere visible from 
GEO is:   

  

S

RE2
100 1 81 30 100 84 9

2π
� � � � � �( ) %cos . .

     

  which of course means that  42.4 percent  of the total surface of the earth can be seen from GEO.         
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 FIGURE 2.15  
       Satellite in GEO.    
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    Figure 2.17    is a photograph taken from geosynchronous equatorial orbit by one of the National Oceanic 
and Atmospheric Administration’s (NOAA), and Geostationary Operational Environmental Satellites 
(GOES).  

N

Equator

S

RE

A

φ

 FIGURE 2.16  
       Surface area  S  visible from GEO.    

 FIGURE 2.17  
       The view from GEO.  NASA-Goddard Space Flight Center, data from NOAA GOES .    



    2.7       ELLIPTICAL ORBITS (0      <       e       <      1) 
 If   0      �       e       �      1, then the denominator of Equation 2.45 varies with the true anomaly   θ  , but it remains positive, 
never becoming zero. Therefore, the relative position vector remains bounded, having its smallest magni-
tude at periapsis  r p  , given by Equation 2.50. The maximum value of  r  is reached when the denominator 
of  r       �      ( h  2 /  μ  )/(1      �       e cos  θ )  obtains its minimum value, which occurs at   θ        �      180 ° . That point is called the 
  apoapsis    , and its radial coordinate, denoted  r a  , is: 

  
r

h

ea �
�

2 1

1μ
  (2.70)      

 The   curve defi ned by Equation 2.45 in this case is an ellipse. 
 Let   2 a  be the distance measured along the apse line from periapsis  P  to apoapsis  A , as illustrated in 

 Figure 2.18   . Then, 

  
2a r rp a� �

      

 Substituting   Equations 2.50 and 2.70 into this expression we get: 

  
a

h

e
�

�

2

2

1

1μ
  (2.71)     

   a  is the   semimajor axis   of the ellipse. Solving Equation 2.71 for  h  2 /  μ   and putting the result into Equation 
2.45 yields an alternative form of the orbit equation,   

  
r a

e

e
�

�

�

1

1

2

cosθ
  (2.72)      
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 FIGURE 2.18  
       Elliptical orbit.  m  1  is at the focus  F. F 
   is the unoccupied empty focus.    
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 In    Figure 2.18 , let  F  denote the location of the body  m  1 , which is the origin of the  r ,  θ   polar coordinate 
system. The center  C  of the ellipse is the point lying midway between the apoapsis and periapsis. The dis-
tance  CF  from the center  C  to the focus  F  is: 

  
CF a FP a rp� � � �

      

 But   from Equation 2.72, evaluated at   θ       �       0, 

  
r a ep � �( )1   (2.73)      

 Therefore  ,  CF       �       ae , as indicated in  Figure 2.18 . 
 Let    B  be the point on the orbit that lies directly above  C , on the perpendicular bisector of the major axis 

 AP . The distance  b  from  C  to  B  is the semiminor axis. If the true anomaly of point  B  is   β  , then according to 
Equation 2.72, the radial coordinate of  B  is 

  
r a

e

eB �
�

�

1

1

2

cosβ
  (2.74)      

 The   projection of  r B   onto the apse line is  ae    ; that is, 

  

ae r r a
e

eB B� � � � � �
�

�
cos cos

cos
cos( )180

1

1

2

β β
β

β
⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

      

 Solving   this expression for  e , we obtain: 

  e � �cosβ   (2.75)      

 Substituting   this result into Equation 2.74 reveals the interesting fact that: 

  r aB �       

 According   to the Pythagorean theorem, 

  b r ae a a eB
2 2 2 2 2 2� � � �( )      

  which means that the   semiminor axis   is found in terms of the semimajor axis and the eccentricity of the 
ellipse as:   

  
b a e� �1 2   (2.76)      

 Let   an  xy  Cartesian coordinate system be centered at  C , as shown in  Figure 2.19   . In terms of  r  and   θ  , we see 
from the fi gure that the  x -coordinate of a point on the orbit is: 

  

x ae r ae a
e

e
a

e

e
� � � �

�

�
�

�

�
cos

cos
cos

cos

cos
θ

θ
θ

θ1

1 1

2⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟ θθ

      



 From   this we have: 

  

x

a

e

e
�

�

�

cos

cos

θ
θ1

  (2.77)      

 For   the  y -coordinate we make use of Equation 2.76 to obtain: 

  

y r a
e

e
b

e

e
� �

�

�
�

�

�
sin

cos
sin

cos
sinθ

θ
θ

θ
θ

1

1

1

1

2 2⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

      

 Therefore  , 

  

y

b

e

e
�

�

�

1

1

2

cos
sin

θ
θ   (2.78)      

 Using   Equations 2.77 and 2.78, we fi nd: 

  

x

a

y

b e
e e

e
e

2

2

2

2 2
2 2 2

2

1

1
1

1

1

� �
�

� � �

�
�

( )
[( ) ( ) ]

( )
[

cos
cos sin

cos

θ
θ θ

θ
22 2 2 2 2

2
2 2

2

1

1
2 1

� � � �

�
�

� � �

e e

e
e e e

cos cos sin sin

cos
cos s

θ θ θ θ

θ
θ

]

( )
[ iin

cos
sin cos

cos
cos

2

2
2 2

2
2

1

1
1 2 1

1

1

θ

θ
θ θ

θ

]

( )
[ ( ) ]

( )
[

�
�

� � �

�
�

e
e e

e
e 22

2
2

2 1

1

1
1

θ θ

θ
θ

� �

�
�

�

e

e
e

cos

cos
cos

]

( )
( )
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       Cartesian coordinate description of the orbit.    
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 That   is, 

  

x

a

y

b

2

2

2

2
1� �   (2.79)      

 This   is the familiar Cartesian coordinate formula for an ellipse centered at the origin, with  x -intercepts at 
 �  a  and  y -intercepts at  �  b . If  a       �       b , Equation 2.79 describes a circle, which is really an ellipse whose 
eccentricity is zero. 

 The   specifi c energy of an elliptical orbit is negative, and it is found by substituting the angular momen-
tum and eccentricity into Equation 2.60, 

  
ε

μ
� ��

1

2
1

2

2
2

h
e( )

      

 According   to Equation 2.71,  h  2       �        μ a (1      �       e  2 ), so that the   specifi c energy of an ellipse   is 

  
ε

μ
� �

2a
  (2.80)      

 This   shows that the specifi c energy is independent of the eccentricity and depends only on the semima-
jor axis of the ellipse. For an elliptical orbit, the conservation of energy (Equation 2.57) may therefore be 
written: 

  

v

r a

2

2 2
� � �

μ μ

  (2.81)      

 The   area of an ellipse is found in terms of its semimajor and semiminor axes by the formula  A       �        π ab  
(which reduces to the formula for the area of a circle if  a       �       b ). To fi nd the period  T  of the elliptical orbit, 
we employ Kepler’s second law,  dA / dt       �       h /2, to obtain: 

  
Δ ΔA

h
t�

2       

 For   one complete revolution,  Δ  A       �        π ab  and  Δ  t       �       T . Thus,   π ab       �      ( h /2) T , or 

  
T

ab

h
�

2π

      

 Substituting   Equations 2.71 and 2.76, we get: 

  

T
h

a e
h

h

e
e� � �

�
�

2
1

2 1

1
12 2

2

2

2

2π π
μ

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

     

  so that the formula for the   period of an elliptical orbit  , in terms of the orbital parameters  h  and  e , becomes   

  

T
h

e
�

�

2

1
2 2

3π

μ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

 

 (2.82)      



 We   can once again appeal to Equation 2.71 to substitute  h a e� �μ ( )1 2     into this equation, thereby 
obtaining an alternative expression for the period, 

  

T a�
2 3

2π

μ   (2.83)      

 This   expression, which is identical to that of a circular orbit of radius a (Equation 2.64), reveals that, like 
the energy, the period of an elliptical orbit is independent of the eccentricity (see  Figure 2.20   ). Equation 
2.83 embodies   Kepler’s third law  : the period of a planet is proportional to the three-halves power of its 
semimajor axis. 

 Finally  , observe that dividing Equation 2.50 by Equation 2.70 yields: 

  

r

r

e

e
p

a

�
�

�

1

1       

 Solving   this for  e  results in a useful formula for calculating the eccentricity of an elliptical orbit, namely, 

  

e
r r

r r
a p

a p

�
�

�
  (2.84)      

 From    Figure 2.18  it is apparent that  r r F Fa p� � 
    , the distance between the foci. As previously noted, 
 r a        �       r p        �      2 a . Thus, Equation 2.84 has the geometrical interpretation, 

  
eccentricity �

distance between the foci

length of the major aaxis       

 A     rectilinear ellipse   is characterized as having zero angular momentum and an eccentricity of 1. That 
is, the distance between the foci equals the fi nite length of the major axis, along which the relative motion 
occurs. Since only the length of the semimajor axis determines the orbital specifi c energy, Equation 2.80 
applies to rectilinear ellipses as well. 
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 FIGURE 2.20  
       Since all fi ve ellipses have the same major axis, their periods and energies are identical.    
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 What   is the average distance of  m  2  from  m  1  in the course of one complete orbit? To answer this ques-
tion, we divide the range of the true anomaly (2  π  ) into  n  equal segments  Δ   θ  , so that: 

  
n �

2π
θΔ       

 We   then use the orbit formula  r       �      ( h  2 /  μ  )/(1      �       e cos  θ  ) to evaluate  r (  θ  ) at the  n  equally spaced values of true 
anomaly, starting at periapsis: 

  θ θ θ θ θ θ θ1 2 30 2 1� � � � �,  ,  ,    , Δ Δ Δ	 n n( )       

 The   average of this set of  n  values of  r  is given by: 

  
r

n
r r ri

i

n

i
i

n

i
i

n

θ θ
θ
π

θ
π

θ θ� � �
� � �

1

2

1

21 1 1

( ) ( ) ( )∑ ∑ ∑Δ
Δ   (2.85)      

 Now   let  n  become very large, so that  Δ   θ   becomes very small. In the limit as  n     →     � , Equation 2.85 
becomes: 

  

r r dθ

π

π
θ θ�

1

2
0

2

( )∫   (2.86)      

 Substituting   Equation 2.72 into the integrand yields: 

  

r a e
d

eθ

π

π
θ

θ
� �

�

1

2
1

1
2

0

2

( )
cos∫

      

 The   integral in this expression can be found in integral tables (e.g., Beyer, 1991), from which we obtain: 

  

r a e
e

a eθ π
π

� �
�

� �
1

2
1

2

1
12

2

2( )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
  (2.87)      

 Comparing   this result with Equation 2.76, we see that the true-anomaly-averaged orbital radius equals 
the length of the semiminor axis  b  of the ellipse. Thus, the semimajor axis, which is the average of the 
maximum and minimum distances from the focus, is not the mean distance. Since, from Equation 2.72, 
 r p        �       a (1      �       e ) and  r a        �       a (1      �       e ), Equation 2.87 also implies that: 

  
r r rp aθ �   (2.88)      

 The   mean distance is the one-half power of the product of the maximum and minimum distances from the 
focus and not one-half their sum.



        Example 2.7      
 An   earth satellite is in an orbit with perigee altitude  z p        �      400       km and apogee altitude  z a        �      4000       km. Find 
each of the following quantities: 

    (a)     Eccentricity,  e ;  
    (b)     Angular momentum,  h ;  
    (c)     Perigee velocity,  v p  ;  
    (d)     Apogee velocity,  v a  ;  
    (e)     Semimajor axis,  a ;  
    (f)     Period of the orbit,  T ;  
    (g)     True-anomaly-averaged radius  rθ    ;  
    (h)     True anomaly when  r r� θ   ;  
    (i)     Satellite speed when  r r� θ   ;  
    (j)     Flight path angle   γ   when  r r� θ   ;  
    (k)     Maximum fl ight path angle   γ   max  and the true anomaly at which it occurs.    

 Recall   from Equation 2.66 that   μ        �      398,600       km 3 /s 2  and also that  R E  , the radius of the earth, is 6378       km. 

    Solution 
 The   strategy is always to seek the primary orbital parameters (eccentricity  e  and angular momentum  h ) fi rst. 
All of the other orbital parameters are obtained from these two. 

    (a)      A formula that involves the unknown eccentricity  e  as well as the given perigee and apogee data is 
Equation 2.84. We must not forget to convert the given altitudes to radii:    

  
r R zp E p� � � � �6378 400 6778 km

      

  r R za E a� � � � �6378 4000 10 378,  km       

 Then  , 

  

e
r r

r r
a p

a p

�
�

�
�

�

�

10 378 6778

10 378 6778

,

,
      

  e � 0 2098.       

    (b)      Now that we have the eccentricity, we need an expression containing it and the unknown angular 
momentum  h  and any other given data. That would be Equation 2.50, the orbit formula evaluated at 
perigee (  θ        �      0),    

  
r

h

ep �
�

2 1

1μ       

 We   use this to compute the angular momentum 

  
6778

398 600

1

1 0 2098

2

�
�

h

, .       

  
h s� 57 172 2,  km /
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    (c)      The angular momentum  h  and the perigee radius  r p   can be substituted into the angular momentum for-
mula, Equation 2.31, to fi nd the perigee velocity  v p  ,    

  

v v
h

rp
p

� � �⊥ )perigee

57 172

6778

,

      

  
vp � 8 435.  km/s

      

    (d)     Since  h  is constant, the angular momentum formula can also be employed to obtain the apogee speed  v a  ,    

  
v

h

ra
a

� �
57 172

10 378

,

,       

  
va � 5 509.  km/s

      

    (e)     The semimajor axis is the average of the perigee and apogee radii ( Figure 2.18 ),    

  
a

r rp a
�

�
�

�

2

6778 10 378

2

,

      

  a � 8578 km       

    (f)     Since the semimajor axis  a  has been found, we can use Equation 2.83 to calculate the period  T  of the 
orbit:    

  

T a� � �
2 2

398 600
8578 7907

3
2

3
2

π

μ

π

,
 s

      

  T � 2 196.  h       

 Alternatively  , we could have used Equation 2.82 for  T , since both  h  and  e  were calculated above. 

    (g)      Either Equation 2.87 or 2.88 may be used at this point to fi nd the true-anomaly-averaged radius. 
Choosing the latter, we get:    

  
r r rp aθ � � �6778 10 378,

      

  
rθ � 8387 km

      

    (h)     To fi nd the true anomaly when  r r� θ   , we have only one choice, namely, the orbit formula (Equation 2.45):    

  
r

h

eθ μ θ
�

�

2 1

1 cos       

 Substituting    h  and  e , the primary orbital parameters found above, together with  rθ    , we get: 

  
8387

57 172

398 600

1

1 0 2098

2

�
�

,

, . cosθ      



  from which,   

  cos .θ � �0 1061       

 This   means that the true-anomaly-averaged radius occurs at: 

     θ        �      96.09 °  where the satellite passes through  rθ     on its way  from  perigee. 

 and   at, 

     θ        �      263.9 °  where the satellite passes through  rθ     on its way  towards  perigee. 

    (i)      To fi nd the speed of the satellite when  r r� θ   , it is simplest to use the energy equation for the ellipse 
(Equation 2.81),    

  

v

r a

2

2 2
� � �

μ μ

θ       

  

v 2

2

398 600

8387

398 600

2 8578
� � �

�

, ,

      

  v � 6 970.  km/s       

    (j)      Equation 2.52 gives the fl ight path angle in terms of the true anomaly of the average radius  rθ    . 
Substituting the smaller of the two angles found in part (h) above yields:    

  
tan

sin

cos

. sin .

. cos .
.γ

θ
θ

�
�

�
�

� �
�

e

e1

0 2098 96 09

1 0 2098 96 09
0 2134

      

 This   means that: 

     γ        �      12.05 °   when the satellite passes through  rθ     on its way  from  perigee. 

    (k)     To fi nd where   γ   is a maximum, we must take the derivative of:    

  
γ

θ
θ

�
�

�tan
sin

cos
1

1

e

e
  (a)     

  with respect to   θ   and set the result equal to zero. Using the rules of calculus,   

  

d

d e

e

d

d

e

e

γ
θ θ

θ

θ
θ

θ
�

�
�

�

1

1
1

12
sin

cos

sin

cos⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ��

�

� �

e e

e e

( )

( )

cos

cos sin

θ

θ θ1 2 2 2

      

 For    e       �      1, the denominator is nonzero for all values of   θ  . Therefore,  dγ    / d θ        �      0 only if the numerator van-
ishes, that is, if cos  θ        �       �  e . Recall from Equation 2.75 that this true anomaly locates the end-point of the 
minor axis of the ellipse. The maximum positive fl ight path angle therefore occurs at the true anomaly, 

  θ � ��cos .1 0 2098( )       

  θ � �102 1.       
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 Substituting   this into (a), we fi nd the  maximum  value of the fl ight path angle to be: 

  
γmax tan

. sin .

. cos .
�

�

� �

�1 0 2098 102 1

1 0 2098 102 1       

  
γmax .� �12 11

      

 After   attaining this greatest magnitude, the fl ight path angle starts to decrease steadily towards its value of 
zero at apogee.              

        Example 2.8      
 At   two points on a geocentric orbit the altitude and true anomaly are  z  1       �      1545       km,   θ   1       �      126 °  and 
 z  2       �      852       km,   θ   2       �      58 ° , respectively. Find (a) the eccentricity, (b) the altitude of perigee, (c) the semimajor 
axis, and (d) the period. 

    Solution 
 The   fi rst objective is to fi nd the primary orbital parameters  e  and  h , since all other orbital data can be 
deduced from them. 

12.05°

96.01°

400 km

C F

4000 km

PA

r 8.435 km/s

5.509 km/s

6.970 km/s

6378 km

6.817 km/s

12.11°

102.1°

θ

 FIGURE 2.21  
       The orbit of Example 2.7.    



    (a)      Before proceeding, we must remember to add the earth’s radius to the given altitudes so that we are 
dealing with orbital radii. The radii of the two points are:    

  

r R z
r R z

E

E

1 1

2 2

6378 1545 7923
6378 852 7230

� � � � �

� � � � �

 km
 km

      

    The only formula we have that relates orbital position to the orbital parameters  e  and  h  is the orbit formula, 
Equation 2.45. Writing that equation down for each of the two given points on the orbit yields two equa-
tions for  e  and  h.  For point 1 we obtain:    

  
r

h

e1

2

1

1

1
�

�μ θcos       

  
7923

398 600

1

1 126

2

�
� �

h

e, cos       

  h e2 9 93 158 10 1 856 10� � � �. .   (a)      

 For   point 2, 

  
r

h

e2

2

2

1

1
�

�μ θcos       

  
7230

398 600

1

1 58

2

�
� �

h

e, cos       

  h e2 9 92 882 10 1 527 10� � � �. .   (b)      

 Equating   (a) and (b), the two expressions for  h  2 , yields a single equation for the eccentricity  e , 

  3 158 10 1 856 10 2 882 10 1 527 109 9 9 9. . . .� � � � � � �e e      

  or   

  3 384 10 276 2 109 6. .� � �e       

 Therefore  , 

  e � 0 08164. (an ellipse)   (c)      

 By   substituting the eccentricity back into (a) [or (b)] we fi nd the angular momentum, 

  h h2 9 9 23 158 10 1 856 10 0 08164 54 830� � � � � �. . .      ,⇒  km /s   (d)      

    (b)      With the eccentricity and angular momentum available, we can use the orbit equation to obtain the peri-
gee radius (Equation 2.50),    

  
r

h

ep �
�

�
�

�
2 21

1

54 830

398 600

1

1 0 08164
6974

μ
,

, .
 km   (e)      
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 From   that we fi nd the perigee altitude, 

  
z r Rp p E� � � �6974 6378

      

  
z p � 595 5.  km

      

    (c)     The semimajor axis is the average of the perigee and apogee radii. We just found the perigee radius 
above in (e). Thus, we need only to compute the apogee radius and that is accomplished by using Equation 
2.70, which is the orbit formula evaluated at apogee.    

  
r

h

ea �
�

�
�

�
2 21

1

54 830

398 600

1

1 0 08164
8213

μ
,

, .
 km

 
 (f)      

 From   (e) and (f) it follows that: 

  
a

r rp a
�

�
�

�

2

8213 6974

2       

  a � 7593 km       

    (d)     Since the semimajor axis has been determined, it is convenient to use Equation 2.83 to fi nd the period.    

  

T a� � �
2 2

398 600
7593 6585

3
2

3
2π

μ

π

,
 s 

      

  T � 1 829.  hr              

    2.8       PARABOLIC TRAJECTORIES ( e       �      1) 
 If   the eccentricity equals 1, then the orbit equation (Equation 2.45) becomes: 

  
r

h
�

�

2 1

1μ θcos
  (2.89)      

 As   the true anomaly   θ   approaches 180 ° , the denominator approaches zero, so that  r  tends towards infi nity. 
According to Equation 2.60, the energy of a trajectory for which  e       �      1 is zero, so that for a parabolic trajec-
tory the conservation of energy, Equation 2.57, is: 

  

v

r

2

2
0� �

μ

      

 In   other words, the speed anywhere on a parabolic path is: 

  
v

r
�

2μ
  (2.90)      



 If   the body  m  2  is launched on a parabolic trajectory, it will coast to infi nity, arriving there with zero velocity 
relative to  m  1 . It will not return. Parabolic paths are therefore called escape trajectories. At a given distance 
 r  from  m  1 , the   escape velocity   is given by Equation 2.90, 

  
v

resc �
2μ

  (2.91)      

 Let    v c   be the speed of a satellite in a circular orbit of radius  r . Then from Equations 2.63 and 2.91 we have: 

  v vcesc � 2   (2.92)      

 That   is, to escape from a circular orbit requires a velocity boost of 41.4%. However, remember our assump-
tion is that  m  1  and  m  2  are the only objects in the universe. A spacecraft launched from earth with velocity 
 v  esc  (relative to the earth) will not coast to infi nity (i.e., leave the solar system) because it will eventually 
succumb to the gravitational infl uence of the sun and, in fact, end up in the same orbit as earth. This will be 
discussed in more detail in Chapter 8. 

 For   the parabola, Equation 2.52 for the fl ight path angle takes the form: 

  
tan

sin

cos
γ

θ
θ

�
�1       

 Using   the trigonometric identities: 

  

sin sin cos

cos cos sin cos

θ
θ θ

θ
θ θ θ

�

� � � �

2
2 2

2 2
2

2
12 2 2

     

  we can write,   

  

tan
sin cos

cos

sin

cos
tanγ

θ θ
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 It   follows that: 

  
γ

θ
�

2
  (2.93)      

 That   is, on parabolic trajectories the fl ight path angle is always one-half the true anomaly.         
 Equation   2.53 gives the parameter  p  of an orbit. Let us substitute that expression into Equation 2.89 and 

then plot  r       �       p /(1      �      cos  θ  ) in a Cartesian coordinate system centered at the focus, as illustrated in  Figure 
2.23   . From the fi gure it is clear that: 
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  (2.94a)      
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 Therefore  , 
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 Working   to simplify the right-hand side, we get: 
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 It   follows that: 

  
x

p y

p
� �

2 2

2

  (2.95)      

 This   is the equation of a parabola in a Cartesian coordinate system whose origin serves as the focus.        
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 FIGURE 2.22  
       Parabolic trajectory around the focus  F .    
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 FIGURE 2.23  
       Parabola with focus at the origin of the Cartesian coordinate system.    



        Example 2.9      
 The   perigee of a satellite in a parabolic geocentric trajectory is 7000       km. Find the distance  d  between points 
 P  1  and  P  2  on the orbit which are 8000       km and 16,000       km, respectively, from the center of the earth. 

    Solution 
 This   would be a simple trigonometry problem if we knew the angle   Δ  θ   between the radials to  P  1  and  P  2 . 
We can fi nd that angle by fi rst determining the true anomalies of the two points. The true anomalies are 
obtained from the orbit formula, Equation 2.89, once we have determined the angular momentum  h . 

 We   calculate the angular momentum of the satellite by evaluating the orbit equation at perigee, 

  
r

h h
p �

�
�

2 21

1 0 2μ μcos( )      
  from which   

  
h rp� � � � �2 2 398 600 7000 74 700 2μ , ,  km /s   (a)      

 Substituting   the radii and the true anomalies of points  P  1  and  P  2  into Equation 2.89, we get: 

  
8000

74 700

398 600

1

1

2

1
1 1�

�
� � �

,

, cos
  cos   

θ
θ θ⇒ ⇒0.75 41.41

      

  
16 000

74 700

398 600

1

1
0 125 97 18

2

2
2 2,

,

, cos
  cos .   .�

�
� � � �

θ
θ θ⇒ ⇒

      

 The   difference between the two angles   θ   1  and   θ   2  is  Δ   θ         �      97.18 °       �      41.41 °       �      55.78 ° . 
 The   length of the chord  P P1 2    can now be found by using the law of cosines from trigonometry, 

  d
2 2 28000 16 000 2 8000 16 000� � � � �, , cosΔθ       

  
d � 13 270,  km
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    2.9       HYPERBOLIC TRAJECTORIES (e      >      1) 
 If    e             1, the orbit formula, 

  
r

h

e
�

�

2 1

1μ θcos
  (2.96)     

  describes the geometry of the hyperbola shown in  Figure 2.25   . The system consists of two symmetric 
curves. The orbiting body occupies one of them. The other one is its empty mathematical image. Clearly, 
the denominator of Equation 2.96 goes to zero when cos  θ        �       � 1/ e . We denote this value of true anomaly   

  θ∞ � ��cos 1 1( / )e   (2.97)     

  since the radial distance approaches infinity as the true anomaly approaches   θ    �  .   θ    �   is known as the   true anom-
aly of the asymptote  . Observe that   θ    �   lies between 90 °  and 180 ° . From the trig identity sin 2   θ    �        �      cos 2   θ    �        �      1 
it follows that:   

  
sinθ∞ �

�e

e

2 1
  (2.98)      

 For    �   θ    �        �        θ        �        θ    �  , the physical trajectory is the occupied hyperbola  I  shown on the left in  Figure 2.25 . 
For   θ    �        �        θ        �      (360 °       �        θ    �  ), hyperbola  II —  the vacant orbit around the empty focus  F ’  is traced out. (The 
vacant orbit is physically impossible, because it would require a repulsive gravitational force.) Periapsis 
 P  lies on the apse line on the physical hyperbola  I , whereas apoapsis  A  lies on the apse line on the vacant 
orbit. The point halfway between periapsis and apoapsis is the center  C  of the hyperbola. The asymptotes of 
the hyperbola are the straight lines towards which the curves tend as they approach infi nity. The asymptotes 
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 FIGURE 2.25  
       Hyperbolic trajectory.    



intersect at  C , making an acute angle   β   with the apse line, where   β       �       180 °       �        θ    �  . Therefore, cos  β        �       � cos  θ    �  , 
which means: 

  β � �cos 1 1( / )e   (2.99)      

 The   angle   δ   between the asymptotes is called the   turn angle  . This is the angle through which the veloc-
ity vector of the orbiting body is rotated as it rounds the attracting body at  F  and heads back towards infi n-
ity. From the fi gure we see that   δ        �      180 °       �      2  β  , so that: 

  
sin sin sin cos

.
δ β

β β
2

180 2

2
90

1
2 99

�
� �

� � � � �
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ( )

Eq. �

e      

  or   

  δ � �2 11sin ( / )e   (2.100)      

 Equation   2.50 gives the distance  r p   from the focus  F  to the periapsis, 

  
r

h

ep �
�

2 1

1μ
  (2.101)      

 Just   as for an ellipse, the radial coordinate  r a   of apoapsis is found by setting   θ        �      180 °  in Equation 2.45: 

  
r

h

ea �
�

2 1

1μ
  (2.102)      

 Observe   that  r a   is negative, since  e             1 for the hyperbola. That means the apoapsis lies to the right of the 
focus  F.  From  Figure 2.25  we see that the distance 2 a  from periapsis  P  to apoapsis  A  is: 

  
2a r r r ra p a p� � � � �| |

      

 Substituting   Equations 2.101 and 2.102 yields: 

  
2

1

1

1

1

2

a
h

e e
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⎞
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 From   this it follows that  a , the semimajor axis of the hyperbola, is given by an expression which is nearly 
identical to that for an ellipse (Equation 2.71): 

  
a

h

e
�

�

2

2

1

1μ
  (2.103)      

 Therefore  , Equation 2.96 may be written for the hyperbola: 

  
r a

e

e
�

�

�

2 1

1 cosθ
  (2.104)      
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 This   formula is analogous to Equation 2.72 for the elliptical orbit. Furthermore, from Equation 2.104 it fol-
lows that: 

  
r a ep � �  ( )1   (2.105a)      

  r a ea � � �( )1   (2.105b)      

 The   distance  b  from periapsis to an asymptote, measured perpendicular to the apse line, is the semimi-
nor axis of the hyperbola. From  Figure 2.25 , we see that the length  b  of the semiminor axis  PM     is: 
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  so that for the hyperbola,   

  b a e� �2 1   (2.106)      

 This   relation is analogous to Equation 2.76 for the semiminor axis of an ellipse. 
 The   distance  Δ  between the asymptote and a parallel line through the focus is called the   aiming radius  , 

which is illustrated in  Figure 2.25 . From that fi gure we see that: 

  
Δ � �( )r ap sin β

      

  � ae sin           β         (Equation 2.105a)       
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  or   

  Δ � �a e2 1   (2.107)      

 Comparing   this result with Equation 2.106, it is clear that the aiming radius equals the length of the semi-
minor axis of the hyperbola. 

 As   with the ellipse and the parabola, we can express the polar form of the equation of the hyperbola in 
a Cartesian coordinate system whose origin is in this case midway between the two foci, as illustrated in 
 Figure 2.26   . From the fi gure it is apparent that: 

  
x a r rp� � � � cosθ   (2.108a)      

  y r� sinθ   (2.108b)      



 Using   Equations 2.104 and 2.105a in 2.108a, we obtain: 

  
x a a e a

e

e
a

e

e
� � � � �

�

�
� �

�

�
( )1

1

1 1

2

cos
cos

cos

cosθ
θ

θ
θ       

 Substituting   Equations 2.104 and 2.106 into 2.108b yields: 
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 It   follows that: 

  

x

a

y

b

e

e

e

e

2

2

2

2

2 2

1

1

1
� �

�

�
�

�

�

cos

cos

sin

cos

θ
θ

θ
θ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

2

2 2 2 2

2

2 1 1

1
1 2

�
� � � � �

�

�
�

e e e

e

cos cos cos

cos

θ θ θ

θ

( )( )

( )
ee e

e

e

e

cos cos

cos

cos

cos

θ θ

θ

θ

θ

�

�
�

�

�

2 2

2

2

21

1

1( )

( )

( )       

 That   is, 

  

x
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2

2

2

2
1� �   (2.109)      

 This   is the familiar equation of a hyperbola which is symmetric about the  x  and  y  axes, with intercepts 
on the  x -axis. 
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 FIGURE 2.26  
       Plot of Equation 2.104 in a Cartesian coordinate system with origin  O  midway between the two foci.    
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 Equation   2.60 gives the specifi c energy of the hyperbolic trajectory. Substituting Equation 2.103 into 
that expression yields: 

  
ε

μ
�

2a
  (2.110)      

 The   specifi c energy of a hyperbolic orbit is clearly positive and independent of the eccentricity. The conser-
vation of energy for a hyperbolic trajectory is: 

  

v

r a

2

2 2
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μ μ
  (2.111)      

 Let    v   �   denote the speed at which a body on a hyperbolic path arrives at infi nity. According to Equation 2.111: 

  
v

a∞ �
μ

  (2.112)     

   v   �   is called the   hyperbolic excess speed  . In terms of  v   �   we may write Equation 2.111 as:   

  

v
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v2 2

2 2
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μ ∞

      

 Substituting   the expression for escape speed,  v resc /� 2μ     (Equation 2.91), we obtain for a hyperbolic 
trajectory 

  v v v2 2 2� �esc ∞   (2.113)      

 This   equation clearly shows that the hyperbolic excess speed  v   �   represents the excess kinetic energy over 
that which is required to simply escape from the center of attraction. The square of  v   �   is denoted  C  3 , and is 
known as the   characteristic energy  , 

  C v3
2� ∞   (2.114)     

   C  3  is a measure of the energy required for an interplanetary mission and  C  3  is also a measure of the maxi-
mum energy a launch vehicle can impart to a spacecraft of a given mass. Obviously, to match a launch 
vehicle with a mission,  C  3 ) launch vehicle              C  3 ) mission .   

 Note   that the hyperbolic excess speed can also be obtained from Equations 2.49 and 2.98, 
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h
e

h
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μ
θ

μ
sin 2 1   (2.115)      

 Finally  , for purposes of comparison,  Figure 2.27    shows a range of trajectories, from a circle through 
hyperbolas, all having a common focus and periapsis. The parabola is the demarcation between the closed, 
negative energy orbits (ellipses) and open, positive energy orbits (hyperbolas). 

 At   this point the reader may be understandably overwhelmed by the number of equations for Keplerian 
orbits (conic sections) that have been presented thus far in this chapter. As summarized in the Road Map in 
Appendix B, there is just a small set of equations from which all of the others are derived. 



 Here   is a  “ tool box ”  of the only equations necessary for solving two-dimensional curvilinear orbital 
problems that do not involve time, which is the subject of Chapter 3. 

 All   orbits: 
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       Orbits of various eccentricities, having a common focus  F  and periapsis  P.     
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 Parabolas   ( e       �      1): 
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 Notice   that we can rewrite Equations 2.103 and 2.111 as follows (where  a  is positive), 
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( )       

 That   is, if we assume that the semimajor axis of a hyperbola has a negative value, then the semimajor axis 
formula and the vis-viva equation become identical for ellipses and hyperbolas. There is no advantage at 
this point in requiring hyperbolas to have negative semimajor axes. However, doing so will be necessary for 
the universal variable formulation to presented in the next chapter.

        Example 2.10      
 At   a given point of a spacecraft’s geocentric trajectory, the radius is 14,600       km, the speed is 8.6       km/s, and 
the fl ight path angle is 50 ° . Show that the path is a hyperbola and calculate the following: 

    (a)     Angular momentum  
    (b)     Eccentricity  
    (c)     True anomaly  
    (d)     Radius of perigee  
    (e)     Semimajor axis  
    (f)      C  3   
    (g)     Turn angle  
    (h)     Aiming radius    

 This   problem is illustrated in  Figure 2.28   . 



    Solution 
 Since   both the radius and the speed are given, we can determine the type of trajectory by comparing the 
speed to the escape speed (of a parabolic trajectory) at the given radius: 

  
v

resc  km/s� �
�

�
2 2 398 600

14 600
7 389

μ ,

,
.

      

 The   escape speed is less than the spacecraft’s speed of 8.6       km/s, which means the path is a hyperbola. 

    (a)     Before embarking on a quest for the required orbital data, remember that everything depends on the pri-
mary orbital parameters, angular momentum  h  and eccentricity  e . These are among the list of fi ve unknowns 
for this problem:  h ,  e ,   θ  ,  v r   and  v   ⊥  . From the  “ tool box ”  we have fi ve equations involving these fi ve quanti-
ties and the given data:    

  
r
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e
�
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1μ θcos
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v

h
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μ
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v
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v v vr� �2 2

⊥   (d)      

  
tan γ �

v

v
r

⊥
  (e)      

 From   (e) 

  v v vr � � �⊥ ⊥tan .50 1 1918   (f)      

 Substituting   this and the given speed into (d) yields: 

  8 6 1 1918 5 5282 2 2. . .� � �( )  km/sv v v⊥ ⊥ ⊥⇒   (g)      

 The   angular momentum may now be found from (c), 

  
h � � �14 600 5 528 80 708 2, . , km /s

      

    (b)     Substituting  v⊥  into (f) we get the radial velocity component,    

  v r � � �1 1918 5 528 6 588. . .  km/s       

 Substituting    h  and  v r   into (b) yields an expression involving the eccentricity and the true anomaly, 

  
6 588

398 600

80 708
1 3339.

,

,
sin sin .� �e eθ θ⇒   (h)      

2.9 Hyperbolic trajectories (e  1)  111



112  CHAPTER 2 The two-body problem

 Similarly  , substituting  h  and  r  into (a) we fi nd: 

  
14 600

80 708

398 600

1

1
0 1193

2

,
,

, cos
cos .�

�
�

e
e

θ
θ⇒   (i)      

 By   squaring the expressions in (h) and (i) and then summing them, we obtain the eccentricity, 

  e
2 2 2

1

1 7936( )sin cos .θ θ� �

�� ��� ���

      

  e � 1 3393.       

    (c)     To fi nd the true anomaly, substitute the value of  e  into (i),    

  1 3393 0 1193 84 889 275 11. cos . . .θ θ θ� � � � �⇒   or       

 We   choose the smaller of the angles because (h) and (i) imply that both sin   θ   and cos   θ   are positive, which 
means   θ   lies in the fi rst quadrant (  θ        �      90 ° ). Alternatively, we may note that the given fl ight path angle (50 ° ) 
is positive, which means the spacecraft is fl ying away from perigee, so that the true anomaly must be less 
than 180 ° . In any case, the true anomaly is given by 

  θ � �84 889. .       

    (d)     The radius of perigee can now be found from the orbit equation (a)    
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    (e)     The semimajor axis of the hyperbola is found in Equation 2.103,    

  
a

h

e
�

�
�

�
�

2

2

2

2

1

1

80 710

398 600

1

1 339 1
20 590

μ
,

, .
,  km

      

    (f)     The hyperbolic excess velocity is found using Equation 2.113,    

  v v v∞
2 2 2 2 2 2 28 6 7 389 19 36� � � � �esc  km /s. . .       

 From   Equation 2.114 it follows that: 
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2 219 36� .  km /s
      

    (g)     The formula for turn angle is Equation 2.100, from which:    
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    (h)     According to Equation 2.107, the aiming radius is:    

  
Δ � � � � �a e2 21 20 590 1 339 1 18 340, . ,  km

             

    2.10       PERIFOCAL FRAME 
 The   perifocal frame is the  “ natural frame ”  for an orbit. It is centered at the focus of the orbit. Its  x y     plane 
is the plane of the orbit, and its  x     axis is directed from the focus through periapsis, as illustrated in  Figure 
2.29   . The unit vector along the  x     axis (the apse line) is denoted  p̂   . The  y     axis, with unit vector  q̂    , lies at 
90 °  true anomaly to the  x     axis. The  z     axis is normal to the plane of the orbit in the direction of the angu-
lar momentum vector  h . The  z     unit vector is  ŵ   , 

  
ŵ

h
�

h
  (2.116)      
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 In   the perifocal frame, the position vector  r  is written (see  Figure 2.30   ) 

  r p q� �x yˆ ˆ   (2.117)     

  where,   

  x r y r� �cos         sinθ θ   (2.118)     

  and  r , the magnitude of  r , is given by the orbit equation,  r       �      ( h  2 /  μ  )[1/(1      �       e cos  θ  )]. Thus, we may write 
Equation 2.117 as:   
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ŵ

focus
Periapsis

Semi-latus
rectum

x

yz

 FIGURE 2.29  
       Perifocal frame  ˆ ˆ ˆpqw   .    
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r

v

p̂
ŵ Periapsis
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x

θ

 FIGURE 2.30  
       Position and velocity relative to the perifocal frame.    



 The   velocity is found by taking the time derivative of  r , 

  v r p q� � �� � �x yˆ ˆ   (2.120)      

 From   Equations 2.118 we obtain: 

  

� � �
� � �
x r r
y r r

� �

� �

cos sin
sin cos

θ θ θ
θ θ θ  

 (2.121)     

   �r     is the radial component of velocity,  v r  . Therefore, according to Equation 2.49,   

  
�r

h
e�

μ
θsin   (2.122)      

 From   Equations 2.46 and 2.48 we have: 

  
r v

h
e�θ

μ
θ� � �⊥ ( )1 cos   (2.123)      

 Substituting   Equations 2.122 and 2.123 into 2.121 and simplifying the results yields 

  

�

�

x
h

y
h

e

� �

� �

μ
θ

μ
θ

sin

cos( )
 

 (2.124)      

 Hence  , Equation 2.120 becomes 

  
v p q� � � �

μ
θ θ

h
e[ sin ( cos ) ]ˆ ˆ   (2.125)      

 Formulating   the kinematics of orbital motion in the perifocal frame, as we have done here, is a prelude 
to the study of orbits in three dimensions (Chapter 4). We also need Equations 2.117 and 2.120 in the next 
section.

        Example 2.11      
 An   earth orbit has an eccentricity of 0.3, an angular momentum of 60,000       km 2 /s and a true anomaly of 120 ° . 
What are the position vector  r  and velocity vector  v  in the perifocal frame of reference? 

    Solution 
 From   Equation 2.119 we have: 

  
r p q�

�
� �

� �

h

e

2 21

1

60 000

398 600

1

1 0 3 120μ θ
θ θ

cos
(cos sin )

,
(ˆ ˆ

, . cos
coos ˆ sin ˆ120 120� � �p q)

      

  
r p q� � �5312 7 9201 9.  (km)ˆ . ˆ
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 Substituting   the given data into Equation 2.125 yields: 

  

 [ sin ( cos ) ]
,

[ (v p q p� � � � � � � � �
μ

θ θ
h

eˆ ˆ
,

sin ˆ . co
398 600

60 000
120 0 3 ss ˆ

. ˆ . ˆ

120

5 7533 1 3287

�

� � �

) ]

 (km/s)

q

v p q
           

        Example 2.12      
 An   earth satellite has the following position and velocity vectors at a given instant: 

  

r p q
v p q

� �
� � �

7000 9000
5 7

ˆ ˆ
ˆ ˆ

 (km)
 (km/s)       

 Calculate   the specifi c angular momentum  h , the true anomaly   θ  , and the eccentricity  e . 

    Solution 
 This   problem is obviously the reverse of the situation presented in the previous example. From Equation 
2.28 the angular momentum is: 

  

h r v

p q w

w� � �

�

�

ˆ ˆ ˆ

, ˆ7000 9000 0

5 7 0

94 000  (km /s)2

      

 Hence   the magnitude of the angular momentum is: 

  
h � 94 000 2,  km /s

      

 The   true anomaly is measured from the positive  x     axis. By defi nition of the dot product,  r p� �ˆ cosr θ    . 
Thus, 

  

cosθ � � �
�

�
� � �

r
p

p q
p

r
ˆ

ˆ ˆ
ˆ

,
.

7000 9000

7000 9000

7000

11 402
0 61394

2 2
     

  which means   θ        �      52.125 °  or   θ        �       � 52.125 ° . Since the  y     component of  r  is positive, the true anomaly must 
lie between 0 and 180 ° . It follows that:   

  θ � �52 125.       

 Finally  , the eccentricity may be found from the orbit formula,  r       �      ( h  2 /  μ  )/(1      �       e cos  θ  ): 

  
7000 9000

94 000

398 600

1

1 52 125
2 2

2

� �
� �

,

, cos .e       

  e � 1 538.       

 The   trajectory is a hyperbola.        



    2.11       THE LAGRANGE COEFFICIENTS 
 In   this section we will establish what may seem intuitively obvious: if the position and velocity of an orbit-
ing body are known at a given instant, then the position and velocity at any later time are found in terms of 
the initial values. Let us start with Equations 2.117 and 2.120, 

  r p q� �x yˆ ˆ   (2.126)      

  v r p q� � �� � �x yˆ ˆ   (2.127)      

 Attach   a subscript  “ zero ”  to quantities evaluated at time  t       �       t  0 . Then the expressions for  r  and  v  evaluated 
at  t       �       t  0  are: 

  r p q0 0 0� �x yˆ ˆ   (2.128)      

  v p q0 0 0� �� �x yˆ ˆ   (2.129)      

 The   angular momentum  h  is constant; so let us calculate it using the initial conditions. Substituting 
Equations 2.128 and 2.129 into Equation 2.28 yields 

  

h r v

p q w

w� � � � �0 0 0 0

0 0

0 0 0 00

0

ˆ ˆ ˆ

ˆx y

x y

x y y x
� �

� �( )   (2.130)      

 Recall   that  ŵ     is the unit vector in the direction of  h  (Equation 2.116). Therefore, the coeffi cient of  ŵ     on 
the right of Equation 2.130 must be the magnitude of the angular momentum. That is, 

  h x y y x� �0 0 0 0
� �   (2.131)      

 Now   let us solve the two vector equations (2.128) and (2.129) for the unit vectors  p̂     and  q̂     in terms of 
 r  0  and  v  0 . From (2.128) we get: 

  
ˆ ˆq r p� �

1

0
0

0

0y

x

y
  (2.132)      

 Substituting   this into Equation (2.129), combining terms and using Equation 2.130 yields: 

  

v p r p p0 0 0
0

0
0

0

0 0 0 0

0

01
� � � �

�
�� �

� � �
x y

y

x

y

y x x y

y

y

y
ˆ ˆ ˆ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟ 00

0
0

0

0
0r p r� � �

h

y

y

y
ˆ
�

      

 Solve   this for  ̂p     to obtain: 

  
p̂ r v� �

�y
h

y

h
0

0
0

0   (2.133)      

 Putting   this result back into Equation 2.132 gives: 

  
q̂ r r v r v� � � �

�
�

1

0
0

0

0

0
0

0
0

0 0

0
0

0
0y

x

y

y

h

y

h

h x y

y

x

h

� �⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
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 Upon   replacing  h  by the right-hand side of Equation 2.131 we get: 

  
q̂ r v� � �

�x
h

x

h
0

0
0

0   (2.134)      

 Equations   2.133 and 2.134 give  ̂p    and  ̂q     in terms of the initial position and velocity. Substituting those 
two expressions back into Equations 2.126 and 2.127 yields, respectively, 

  
r r v r v� � � � � �

�
x

y

h

y

h
y

x

h

x

h

x y� � �
0

0
0

0
0

0
0

0
0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

yy x

h

x y y x

h

�
0

0
0 0

0r v�
� �

      

  
v r v r v� � � � � ��

�
�
� � �

x
y

h

y

h
y

x

h

x

h

x0
0

0
0

0
0

0
0

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

yy y x

h

x y y x

h
0 0

0
0 0

0
�

�
� �� � � �

r v
      

 Therefore  , 

  r r v� �f g0 0   (2.135)      

  v r v� �� �f g0 0   (2.136)     

  where  f  and  g  are given by:   

  
f

x y y x

h
�

�� �
0 0   (2.137a)      

  
g

x y y x

h
�

� �0 0   (2.137b)     

  together with their time derivatives:   

  
�

� � � �
f

x y y x

h
�

�0 0   (2.138a)      

  
�

� �
g

x y y x

h
�

� �0 0   (2.138b)      

 The    f  and  g  functions are referred to as the   Lagrange coeffi cients   after Joseph-Louis Lagrange (1736 –
 1813), a French mathematical physicist whose numerous contributions include calculations of planetary 
motion. 

 From   Equations 2.135 and 2.136 we see that the position and velocity vectors  r  and  v  are indeed linear 
combinations of the initial position and velocity vectors. The Lagrange coeffi cients and their time deriva-
tives in these expressions are themselves functions of time and the initial conditions. 

 Before   proceeding, let us show that the conservation of angular momentum  h  imposes a condition on  f  
and  g  and their time derivatives  �f     and  �g    . Calculate  h  using Equations 2.135 and 2.136, 

  h r v r v r v� � � � � �( ) ( )f g f g0 0 0 0
� �

      

 Expanding   the right-hand side yields: 

  h r r r v v r v v� � � � � � � �( ) ( ) ( ) ( )f f f g g f g g0 0 0 0 0 0 0 0
� � � �

      



 Factoring   out the scalars  f ,  g ,  �f     and  �g    , we get: 

  h r r r v v r v v� � � � � � � �f f f g f g g g� � � �( ) ( ) ( ) ( )0 0 0 0 0 0 0 0       

 But    r  0       �       r  0       �       v  0       �       v  0       �       0 , so 

  h r v v r� � �f g f g� �( ) ( )0 0 0 0×       

 Since   

  v r r v0 0 0 0� � � �( )      

  this reduces to:   

  h r v� � �( )( )fg fg� �
0 0      

  or   

  h h� �( )f g f g� �
0      

  where  h  0       �       r  0       �       v  0 , which is the angular momentum at  t       �       t  0 . But the angular momentum is constant 
(recall Equation 2.29), which means  h       �       h  0 , so that   

  h h� �( )f g f g� �
      

 Since    h  cannot be zero (unless the body is traveling a straight line towards the center of attraction), it fol-
lows that: 

  f g f g� �� � 1 (Conservation of angular momentum)   (2.139)      

 Thus  , if any three of the functions  f ,  g ,  �f     and  �g     are known, the fourth may be found from Equation 2.139. 
 Let   us use Equations 2.137 and 2.138 to evaluate the Lagrange coeffi cients and their time derivatives in 

terms of the true anomaly. First of all, note that evaluating Equations 2.118 at time  t       �       t  0  yields: 

  

x r
y r

0 0 0

0 0 0

�

�

cos
sin

θ
θ   (2.140)      

 Likewise  , from Equations 2.124 we get: 

  

�

�

x
h

y
h

e

0 0

0 0

� �

� �

μ
θ

μ
θ

sin

cos( )
  (2.141)      

 To   evaluate the function  f , we substitute Equations 2.118 and 2.141 into Equation 2.137a, 

  

f
x y y x

h

h
r

h
e r

h

�
�

� � � �

� �
0 0

0 0
1

[ ] ( ) [ ]cos cos sin sinθ
μ

θ θ
μ

θ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

� � �
μ

θ θ θ θ θ
r

h
e

2 0 0[ ( )]cos cos cos sin sin   (2.142)      
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 If   we invoke the trig identity: 

  cos cos cos sin sin( )θ θ θ θ θ θ� � �0 0 0   (2.143)     

  and let  Δ   θ   represent the difference between the current and initial true anomalies,   

  Δθ θ θ� � 0   (2.144)     

  then Equation 2.142 reduces to:   

  
f

r

h
e� �

μ
θ θ

2
( )cos cosΔ   (2.145)      

 Finally  , from Equation 2.45, we have: 

  
e

h

r
cosθ

μ
� �

2

1   (2.146)      

 Substituting   this into Equation 2.145 leads to: 

  
f

r

h
� � �1 1

2

μ
θ( )cosΔ   (2.147)      

 We   obtain  r  from the orbit formula, Equation 2.45, in which the true anomaly   θ   appears, whereas the differ-
ence in the true anomalies occurs on the right hand side of Equation 2.147. However, we can express the orbit 
equation in terms of the difference in true anomalies as follows. From Equation 2.144 we have   θ        �        θ   0       �       Δ   θ  , 
which means we can write the orbit equation as: 

  
r

h

e
�

� �

2

0

1

1μ θ θcos( )Δ
  (2.148)      

 By   replacing   θ   0  by  �  Δ   θ   in Equation 2.143, Equation 2.148 becomes: 

  
r

h

e e
�

� �

2

0 0

1

1μ θ θ θ θcos cos sin sinΔ Δ
  (2.149)      

 To   remove   θ   0  from this expression, observe fi rst of all that Equation 2.146 implies that, at  t       �       t  0 , 

  
e

h

r
cosθ

μ0

2

0

1� �   (2.150)      

 Furthermore  , from Equation 2.49 for the radial velocity we obtain: 

  
e

hv rsinθ
μ0

0�   (2.151)      



 Substituting   Equations 2.150 and 2.151 into 2.149 yields: 

  

r
h

h

r

hv r

�

� � �

2

2

0

0

1

1 1
μ

μ
θ

μ
θ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cos sinΔ Δ

  (2.152)      

 Using   this form of the orbit equation, we can fi nd  r  in terms of the initial conditions and the change in the 
true anomaly. Thus  f  in Equation 2.147 depends only on  Δ   θ  . 

 The   Lagrange coeffi cient  g  is found by substituting Equations 2.118 and 2.140 into Equation 2.137b: 

  

g
x y y x

h

h
r r r r

rr

h

�
� �

� � �

�

0 0

0 0 0

0

1
[( )( ) ( )( )]

(

cos sin sin cos

sin

θ θ θ θ

θθ θ θ θcos cos sin0 0� )   (2.153)      

 Making   use of the trig identity 

  sin sin cos cos sin( )θ θ θ θ θ θ� � �0 0 0      

  together with Equation 2.144, we fi nd:   

  
g

rr

h
� 0 sin ( )Δθ   (2.154)      

 To   obtain  �g    , substitute Equations 2.124 and 2.140 into Equation 2.138b: 

  

�
� �

g
x y y x

h

h h
r

h
e

�
�

� � � � �

0 0

0 0
1

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤μ
θ θ

μ
θsin sin cos[ ] ( )

⎦⎦
⎥
⎥

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

( )

[ (

r

r

h
e

0 0

0
2 0 0

cos

cos cos cos sin si

θ

μ
θ θ θ θ� � � nnθ0 )]

      

 With   the aid of Equations 2.143 and 2.150, this reduces to: 

  
�g

r

h
� � �1 10

2

μ
θ( )cosΔ   (2.155)     

   �f     can be found using Equation 2.139. Thus,   

  
� �f

g
f g� �

1
1( )   (2.156)      
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 Substituting   Equations 2.147, 2.153, and 2.155 results in: 

  

�f
rr

h

r

h

r

h
� � � � �

1
1 1 1 1

0
2

0
2

sin
cos cos

Δ
Δ Δ

θ

μ
θ

μ
θ( ) ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥⎥
⎥

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

�

� � � �

1

1
1 1

0

2
0

4
2

2rr

h

h rr

h hsin
cos cos

Δ
Δ

θ

μ
θ

μ
( ) ( ΔΔθ)

1 1

0r r
�

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     

  or   

  

�f
h h r r

�
�

� � �
μ θ

θ
μ

θ
1

1
1 1

2
0

cos

sin
cos

Δ
Δ

Δ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   (2.157)      

 To   summarize, the   Lagrange coeffi cients in terms of the change in true anomaly   are 

  
f

r

h
� � �1 1

2

μ
θ( )cosΔ   (2.158a)      

  
g

rr

h
� 0 sin Δθ   (2.158b)      

  

�f
h h r r

�
�

� � �
μ θ

θ
μ

θ
1

1
1 1

2
0

cos

sin
cos

Δ
Δ

Δ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   (2.158c)      

  
�g

r

h
� � �1 10

2

μ
θ( )cosΔ   (2.158d)     

  where  r  is given by Equation 2.152.     The   implementation of these four functions in MATLAB is presented 
in Appendix D.7. 

 Observe   that using the Lagrange coeffi cients to determine the position and velocity from the initial con-
ditions does not require knowing the type of orbit we are dealing with (ellipse, parabola, hyperbola), since 
the eccentricity does not appear in Equations 2.152 and 2.158. However, the initial position and velocity 
give us that information. From  r  0  and  v  0  we obtain the angular momentum  h � �r v0 0    . The initial radius 
 r  0  is just the magnitude of the vector  r  0 . The initial radial velocity  v r   0  is the projection of  v  0  onto the direc-
tion of  r  0 , 

  
v

rr0 0
0

0

� �v
r

      

 From   Equations 2.45 and 2.49 we have: 

  
r

h

e
v

h
er0

2

0
0 0

1

1
�

�
�

μ θ
μ

θ
cos

           sin
      

 These   two equations can be solved for the eccentricity  e  and for the true anomaly of the initial point   θ   0 .



        Algorithm 2.3          Given    r  0  and  v  0 , fi nd  r  and  v  after the true anomaly changes by  Δ   θ  . See Appendix D.8 for 
an implementation of this procedure in MATLAB. 

    1.     Compute the  f  and  g  functions and their derivatives by the following steps: 
    (a)     Calculate the magnitude of  r  0  and  v  0 :       

  
r v0 0 0 0 0 0� � � �r r v v

      

    (b)     Calculate the radial component of  v  0  by projecting it onto the direction of  r  0 :    

  
v

rr0
0 0

0

�
�r v

      

    (c)     Calculate the magnitude of the constant angular momentum:    

  
h r v r v v r� � �0 0 0 0

2
0

2
⊥       

    (d)     Substitute  r  0 ,  v r   0 ,  h  and  Δ   θ   in Equation 2.152 to calculate  r.   
    (e)     Substitute  r ,  r  0 ,  h  and  Δ   θ   into Equations 2.158 to fi nd  f ,  g ,  �f     and  �g.      

    2.     Use Equations 2.135 and 2.136 to calculate  r  and  v .        

        Example 2.13      
 An   earth satellite moves in the  xy  plane of an inertial frame with origin at the earth’s center. Relative to that 
frame, the position and velocity of the satellite at time  t  0  are: 

  

r i j

v i j
0

0

8182 4 6865 9

0 47572 8 8116

� �

� �

.  (km)

 (km/s)

ˆ . ˆ

. ˆ . ˆ   (a)      

 Use   Algorithm 2.3 to compute the position and velocity vectors after the satellite has traveled through a true 
anomaly of 120 ° . 

    Solution 
 Step   1: 

    (a)      r v0 0 0 0 0 010 861 8 8244� � � � � �r r v v, . km  km/s      

    (b)      v
rr0 0
0

0

0 47572 8 8116 8182 4 6865 9

10 681
� � �

� � �
v

r i j i j( . ) ( )ˆ . ˆ . ˆ . ˆ

,
�� �5 2996.  km/s      

    (c)      h r v v r� � � � � �0 0
2

0
2 2 2 210 861 8 8244 5 2996 75 366, . . ,( )  km /s      

    (d)      r
h

h

r

hv r

�

� � �

2

2

0

0

1

1 1
μ

μ
θ

μ
θ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cos sinΔ Δ

    

     

�

�
�

�

75 366

398 600

1

1
75 366

398 600 10 681
1 1

2

2

,

, ,
, ,

cos
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟ 220

75 366 5 2996
398 600

120� �
� �

�
, .

,
sin

( )

     

     � 8378 8.  km         
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    (e)      f
r

h
� � � �

�
� � �1 1 1

398 600 8378 8

75 366
1 120 0 118

2 2

μ
θ( ) ( )− cos

, .

,
cos .Δ 002 (dimensionless)     

      
g

rr

h
� �

�
� �0 8378 8 10 681

75 366
120 1028 4sin

. ,

,
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 Step   2: 

  r r v i j i� � � � � �f g0 0 0 11802 8182 4 6865 9 1028 4 0 47572 8 81. ( . ) (ˆ . ˆ . . ˆ . 116 ĵ)       

  
r i j� �1454 9 8251 6.  (km)ˆ . ˆ

      

  ˆ . . ˆ . ˆ .
 

( )( ) ( )v r v i j� � � � � � � ��� �f g0 0
49 8666 10 8182 4 6865 9 0 12435 (( )0 47572 8 8116. ˆ . ˆi j+       

  
v i j� � �8 1323 5 6785.  (km/s)ˆ . ˆ

      
 These   results are shown in  Figure 2.31   .      

        Example 2.14      
 Find   the eccentricity of the orbit in Example 2.13 as well as the true anomaly at the initial time  t  0  and, 
hence, the location of perigee for this orbit. 

    Solution 
 In   Example 2.13 we found: 

  

r
v

h
r

0

0
2

10 861
5 2996

75 366

�

� �

�

,
.

,

 km
 km/s

 km /s

  (a)      

 Since    v r   0  is negative, we know that the spacecraft is approaching perigee, which means that: 

  180 3600� �< θ <   (b)      

 The   orbit formula and the radial velocity formula (Equations 2.45 and 2.49), evaluated at  t  0  are: 

  
r

h

e
v

h
er0

2

0
0 0

1

1
�

�
�

μ θ
μ

θ
cos

sin
      



 Substituting   the numerical values from (a) into these formulas yields: 

  
10 861

75 366

398 600

1

1
5 2996

398 600

75 366

3

0
0,

,

, cos
.

,

,
sin�

�
� �

e
e

θ
θ

      

 From   these we obtain two equations for the two unknowns e and   θ   0 : 

  e ecos . sin .θ θ0 00 3341 1 002� � �   (c)      

 Squaring   these two expressions and then summing them gives: 

  e
2 2

0
2

0 1 1157( )sin cos .θ θ� �       

 Recalling   the trig identity sin 2   θ   0       �      cos 2   θ   0       �      1, we get: 

  e � 1 0563. (hyperbola)       

 The   eccentricity may be substituted back into either of the two expressions in (c) in order to fi nd the true 
anomaly   θ   0 . Choosing (c) 1 , we fi nd: 

  
cos

.

.
.θ0

0 3341

1 0563
0 3163� �

      

 This   means either   θ   0       �      71.56 °  (moving away from perigee) or   θ   0       �      288.44 °  (moving towards perigee). 
From (a) we know the motion is towards perigee, so that: 

  
θ0 288 44� �.

      

    Figure 2.31  shows the computed location of perigee relative to the initial and fi nal position vectors.       

 In   order to use the Lagrange coeffi cients to fi nd the position and velocity as a function of time instead 
of true anomaly, we need to come up with a relation between   Δ  θ   and time. We will deal with that complex 
problem in the next chapter. Meanwhile, for times  t  that are close to the initial time  t  0 , we can obtain poly-
nomial expressions for  f  and  g  in which the variable  Δ   θ   is replaced by the time interval  Δ  t       �       t      �      t  0 . 

 To   do so, we expand the position vector  r ( t ), considered to be a function of time, in a Taylor series about 
 t       �       t  0 . As pointed out previously (Equations 1.97 and 1.98), the Taylor series is given by 

  

r r( ) ( )( )( )t
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t t t
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n n� �
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0
0 0!

∞

∑
 

 (2.159)     

  where  r  (   n   ) ( t  0 ) is the  n th time derivative of  r ( t ), evaluated at  t  0 ,   
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 (2.160)      
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 Let   us truncate this infi nite series at four terms. Then, to that degree of approximation, 
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  where  Δ  t       �       t       �       t  0 . To evaluate the four derivatives, we note first that  ( / )d dt t tr � 0
    is just the velocity  v  0  at 

 t       �       t  0 ,   
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dt t t
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   ( / )d dt t t
2 2

0
r �     is evaluated using Equation 2.22,   
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  (2.163)      
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 FIGURE 2.31  
       The initial and fi nal position and velocity vectors and the perigee location for Examples 2.13 and 2.14.    



 Thus  , 
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   ( / )d dt t t
3 3

0
r �     is evaluated by differentiating Equation 2.163,   
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 From   Equation 2.35a we have: 
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r
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 Hence  , Equation 2.165, evaluated at  t       �       t  0 , is 
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 Finally  ,  ( / )d dt t t
4 4

0
r �     is found by fi rst differentiating Equation 2.165: 
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   ��r     is found in terms of  r  and  v  by differentiating Equation 2.166 and making use of Equation 2.163. This 
leads to the expression:   
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 Substituting   Equations 2.163, 2.166, and 2.169 into Equation 2.168, combining terms and evaluating the 
result at  t       �       t  0  yields: 
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 After   substituting Equations 2.162, 2.164, 2.167, and 2.170 into Equation 2.161 and rearranging and 
collecting terms, we obtain: 
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128  CHAPTER 2 The two-body problem

 Comparing   this expression with Equation 2.135, we see that, to the fourth order in  Δ  t , 

  

f
r

t
r

t
r

v

r r
� � �

�
� � � �

�
1

2 2 24
2 3 15

0
3

2 0 0

0
5

3

0
6

0
2

0
5

0 0
2

0
7

μ μ μ μ
Δ Δ

r v r v( )⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
Δ

Δ Δ Δ

t

g t
r

t
r

t

4

0
3

3 0 0

0
5

41

6 4
� � �

�μ μ r v
  (2.172)      

 For   small values of elapsed time   Δ t  these  f  and  g  series may be used to calculate the position of an orbiting 
body from the initial conditions.

        Example 2.15      
 The   orbit of an earth satellite has an eccentricity  e       �      0.2 and a perigee radius of 7000       km. Starting at peri-
gee, plot the radial distance as a function of time using the  f  and  g  series and compare the curve with the 
exact solution. 

    Solution 
 Since   the satellite starts at perigee,  t  0       �      0 and we have, using the perifocal frame, 

  r p0 7000� ˆ  (km)   (a)      

 The   orbit equation evaluated at perigee is Equation 2.50, which in the present case becomes: 

  
7000

398 600

1

1 0 2

2

�
�

h

, .       

 Solving   for the angular momentum, we get  h       �      57,864       km 2 /s. Then, using the angular momentum formula, 
Equation 2.31, we fi nd that the speed at perigee is  v  0       �      8.2663       km/s, so that 

  v q0 8 2663� .  (km/s)ˆ   (b)      

 Clearly  ,  r  0   ·   v  0       �      0. Hence, with   μ        �      398,600       km 3 /s 2 , the two Lagrange series in Equation 2.172 become 
(setting  Δ  t       �       t ): 

  

f t t

g t t

� � �

� �
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1 5 8105 10 9 0032 10

1 9368 10

7 2 14 4

7 3
. .

.

( ) ( )

( )      

  where the units of  t  are seconds. Substituting  f  and  g  into Equation 2.135 yields:   

  r p� � � � �� � �[ . ( ) . ( ) ]( ) [ (1 5 8105 10 9 0032 10 7000 1 9368 107 2 14 4t t tˆ . 77 3 8 2663) ]( )t . q̂       

 From   this we obtain: 

  
r t t t� � � � � �� �r 49 10 11 389 1 103 10 2 5633 10 3 97186 2 6 4 12 6( ) ( ) ( ) (. . . . 110 19 8� )t   (c)      

 For   the exact solution of  r  versus time we must appeal to the methods presented in the next chapter. The 
exact solution and the series solution [Equation (c)] are plotted in  Figure 2.32   . As can be seen, the series 
solution begins to seriously diverge from the exact solution after about ten minutes.       



 If   we include terms of fi fth and higher order in the  f  and  g  series, Equations 2.172, then the approximate 
solution in the above example will agree with the exact solution for a longer time interval than that indi-
cated in  Figure 2.32 . However, there is a time interval beyond which the series solution will diverge from 
the exact one no matter how many terms we include. This time interval is called the radius of convergence. 
According to Bond and Allman (1996), for the elliptical orbit of Example 2.15, the radius of convergence 
is 1700 seconds (not quite half an hour), which is one fi fth of the period of that orbit. This further illustrates 
the fact that the series forms of the Lagrange coeffi cients are applicable only over small time intervals. For 
arbitrary time intervals the closed form of these functions, presented in Chapter 3, must be employed.  

    2.12       RESTRICTED THREE-BODY PROBLEM 
 Consider   two bodies  m  1  and  m  2  moving under the action of just their mutual gravitation, and let their orbit 
around each other be a circle of radius  r  12 . Consider a noninertial, co-moving frame of reference  xyz  whose 
origin lies at the center of mass  G  of the two-body system, with the  x -axis directed towards  m  2 , as shown in 
 Figure 2.33   . The  y -axis lies in the orbital plane, to which the  z -axis is perpendicular. In this rotating frame 
of reference,  m  1  and  m  2  appear to be at rest, the force of gravity on each one seemingly balanced by the fi c-
titious centripetal force required to hold it in its circular path around the system center of mass. 

 The   constant, inertial angular velocity   Ω   is given by: 

  Ω � Ωk̂   (2.173)     
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  where,   

  
Ω �

2π
T      

  and  T  is the period of the orbit (Equation 2.64),   

  

T r�
2

12

3
2π

μ       

 Thus  , 

  

Ω �
μ

r12
3   (2.174)      

 Recall   that if  M  is the total mass of the system, 

  M m m� �1 2   (2.175)     

  then   

  μ � GM   (2.176)     

   m  1  and  m  2  lie in the orbital plane, so their  y  and  z  coordinates are zero. To determine their locations on the 
 x -axis, we use the definition of the center of mass (Equation 2.2) to write:   

  m x m x1 1 2 2 0� �       

m1

x

r

r2
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 FIGURE 2.33  
       Primary bodies  m  1  and  m  2  in circular orbit around each other, plus a secondary mass  m .    



 Since    m  2  is at a distance  r  12  from  m  1  in the positive  x -direction, it is also true that: 

  x x r2 1 12� �       

 From   these two equations we obtain: 

  x r1 2 12� �π   (2.177a)      

  x r2 1 12� π   (2.177b)     

  where the dimensionless mass ratios   π   1  and   π   2  are given by:   
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  (2.178)      

 Since    m  1  and  m  2  have the same period in their circular orbits around  G , the larger mass (the one closest to 
 G ) has the greater orbital speed and hence the greatest centripetal force. 

 We   now introduce a third body of mass  m , which is vanishingly small compared to the primary masses 
 m  1  and  m  2  — like the mass of a spacecraft compared to that of a planet or moon of the solar system. This 
is called the restricted three-body problem, because the mass  m  is assumed to be so small that it has no 
effect on the motion of the primary bodies. We are interested in the motion of  m  due to the gravitational 
fi elds of  m  1  and  m  2 . Unlike the two-body problem, there is no general, closed form solution for this motion. 
However, we can set up the equations of motion and draw some general conclusions from them. 

 In   the co-moving coordinate system, the position vector of the secondary mass  m  relative to  m  1  is given by: 

  r i j k i j k1 1 2 12� � � � � � �( ) ( )x x y z x r y z− ˆ ˆ ˆ ˆ ˆ ˆπ   (2.179)      

 Relative   to  m  2  the position of  m  is: 

  r i j k2 1 12� � � �( )x r y zπ ˆ ˆ ˆ   (2.180)      

 Finally  , the position vector of the secondary body relative to center of mass is: 

  r i j k� � �x y zˆ ˆ ˆ   (2.181)      

 The   inertial velocity of  m  is found by taking the time derivative of Equation 2.181. However, relative to 
inertial space, the  xyz  coordinate system is rotating with the angular velocity   Ω  , so that the time derivatives 
of the unit vectors  ̂i     and  ̂j     are not zero. To account for the rotating frame, we use Equation 1.66 to obtain: 

  
�r v r v� � � �G Ω rel   (2.182)     

   v   G   is the inertial velocity of the center of mass (the origin of the  xyz  frame), and  v  rel  is the velocity of  m  as 
measured in the moving  xyz  frame, namely,   

  v i j krel � � �� � �x y zˆ ˆ ˆ   (2.183)      
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 The   absolute acceleration of  m  is found using the  “ fi ve-term ”  relative acceleration formula, Equation 1.70, 

  
�� �r a r r v a� � � � � � � � �G Ω Ω Ω Ω( ) rel rel2   (2.184)      

 Recall   from Section 2.2 that the velocity  v   G   of the center of mass is constant, so that  a  G       �      0. Furthermore,  
�Ω � 0    since the angular velocity of the circular orbit is constant. Therefore, Equation 2.184 reduces to: 

  
��r r v a� � � � � �Ω Ω Ω( ) rel rel2   (2.185)     

  where,   

  a i j krel � � ��� �� ��x y zˆ ˆ ˆ   (2.186)      

  Substituting   Equations 2.173, 2.181, 2.183, and 2.186 into Equation 2.185 yields: 
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 Collecting   terms, we fi nd: 

  
�� �� � �� � ��r i j k� � � � � � �( ) ( )x y x y x y z2 22 2Ω Ω Ω Ωˆ ˆ ˆ   (2.187)      

 Now   that we have an expression for the inertial acceleration in terms of quantities measured in the rotat-
ing frame, let us observe that Newton’s second law for the secondary body is 

  m
��r F F� �1 2   (2.188)     

   F  1  and  F  2  are the gravitational forces exerted on  m  by  m  1  and  m  2 , respectively. Recalling Equation  2.10 , 
we have:   
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  where,   

  μ μ1 1 2 2� �Gm Gm   (2.190)      

 Substituting   Equations 2.189 into 2.188 and canceling out  m  yields: 

  

��r r r� � �
μ μ1
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r r
  (2.191)      

 Finally  , we substitute Equation 2.187 on the left and Equations 2.179 and 2.180 on the right to obtain: 
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 Equating   the coeffi cients of  ̂i    ,  ̂j     and  ̂k     on each side of this equation yields the three scalar equations of 
motion for the restricted three-body problem: 
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    2.12.1       Lagrange Points 

 Although   Equations 2.192 have no closed form analytical solution, we can use them to determine the loca-
tion of the equilibrium points. These are the locations in space where the secondary mass  m  would have 
zero velocity and zero acceleration, that is, where  m  would appear permanently at rest relative to  m  1  and  m  2  
(and therefore appear to an inertial observer to move in circular orbits around  m  1  and  m  2 ). Once placed at 
an equilibrium point (also called  libration point  or  Lagrange point ), a body will presumably stay there. The 
equilibrium points are therefore defi ned by the conditions: 

  � � � �� �� ��x y z x y z� � � � � �0 0and       

 Substituting   these conditions into Equations 2.192 yields: 
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 From   Equation 2.193c we have: 
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 Since    μ1 1
3 0/r >     and  μ2 2

3 0/r > ,    it must therefore be true that  z       �      0. That is, the equilibrium points lie in 
the orbital plane. 

 From   Equations 2.178 it is clear that: 

  π π1 21� �   (2.195)      
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 Using   this, along with Equation 2.174, and assuming  y  � 0, we can write Equations 2.193a and 2.193b as: 
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  where we made use of the fact that:   

  π μ μ π μ μ1 1 2 2� �/ /   (2.197)      

 Treating   Equations 2.196 as two linear equations in  1 1
3/r     and  1 2

3/r    , we solve them simultaneously to 
fi nd that: 
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  or   

  r r r1 2 12� �   (2.198)      

 Using   this result, together with  z       �      0 and Equation 2.195 we obtain from Equations 2.179 and 2.180, 
respectively, 

  r x r y12
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 Equating   the right-hand sides of these two equations leads at once to the conclusion that: 
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 Substituting   this result into Equation 2.199 or 2.200 and solving for  y  yields: 

  
y r� �
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2 12
      

 We   have thus found two of the equilibrium points, the   Lagrange points  L  4    and  L  5 . As Equation 2.198 
shows, these points are the same distance  r  12  from the primary bodies  m  1  and  m  2  that the primary bodies are 
from each other, and in the co-moving coordinate system their coordinates are: 
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 Therefore  , the two primary bodies and these two Lagrange points lie at the vertices of equilateral tri-
angles, as illustrated in  Figure 2.36 . 



 The   remaining equilibrium points are found by setting  y       �      0 as well as  z       �      0, which satisfy both 
Equations 2.193b and 2.193c. For these values, Equations 2.179 and 2.180 become: 
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 Therefore  , 
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 Substituting   these  expressions  together with Equations 2.174, 2.195, and 2.197 into Equation 2.193a yields: 
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 Further   simplifi cation is obtained by nondimensionalizing  x , 
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 In   terms of   ξ  , Equation 2.203 becomes  f (  π   2 ,  ξ  )      �      0, where: 
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    Figure 2.34    is a contour plot showing the locus of points (  π   2 ,  ξ  ) at which  f  is zero. For a given value of 
the mass ratio   π   2  (0      �        π   2       �      1), the chart shows that there are three values of   ξ  , corresponding to each of the 
three colinear   Lagrange points  L  1 ,  L  2    and  L  3 . 

 We   cannot read these values precisely off the fi gure, but we can use them as starting points to solve for the 
roots of the function  f (  π   2 ,  ξ  ) in Equation 2.204. The bisection method is a simple, though not very effi cient, 
procedure that we can employ here as well as in other problems that require the root of a nonlinear function. 

 If    r  is a root of the function  f ( x ), then  f ( r )      �      0. To fi nd  r  by the bisection method, we fi rst select two 
values of  x  that we know lie close to and on each side of the root. Label these values  x l   and  x u  , where  x l        �       r  
and  x u               r . Since the function  f  changes sign at a root, it follows that  f ( x l  ) and  f ( x u  ) must be of opposite 
sign, which means  f ( x l  )   ·    f ( x u  )      �      0. For the sake of argument, suppose  f ( x l  )      �      0 and  f ( x u  )            0, as in  Figure 
2.35   . Bisect the interval from  x l   to  x u   by computing  x m        �      ( x l        �       x u  )/2. If  f ( x m  ) is positive, then the root  r  
lies between  x l   and  x m  , so ( x l  , x m  ) becomes our new search interval. If instead  f ( x m  ) is negative, then ( x m ,x u  ) 
becomes our search interval. In either case, we bisect the new search interval and repeat the process over 
and over again, the search interval becoming smaller and smaller, until we eventually converge to  r  within 
a desired accuracy  E . To achieve that accuracy from the starting values of  x l   and  x u   requires no more than  n  
iterations, where  n  is the smallest integer such that (Hahn, 2002): 
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 Let   us summarize the procedure as follows.
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        Algorithm 2.4          Find   a root  r  of the function  f ( x ) using the bisection method. See Appendix D.9 for a 
MATLAB implementation of this procedure in the script named  bisect.m . 

    1.     Select values  x l   and  x u  , which are known to be fairly close to  r  and such that  x l        �       r  and  x u               r .  
    2.     Choose a tolerance  E  and determine the number of iterations  n  from the above formula.  
    3.     Repeat the following steps  n  times: 

    a.     Compute  x m        �      ( x l        �       x u  )/2.  
    b.     If  f ( x l  )    ·     f ( x m  )            0 then  x l      ←  x m  ; otherwise,  x u      ←  x m  .  
    c.     Return to a.     

    4.      r       �       x m  .        
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 FIGURE 2.34  
       Contour plot of  f (  π   2 ,  ξ  )      �      0 for the colinear equilibrium points of the restricted three-body problem.   π   2       �      0.01215 for 
the earth-moon system.    
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 FIGURE 2.35  
       Determining a root by the bisection method.    



        Example 2.16      
 Locate   the fi ve Lagrange points for the earth-moon system. 

    Solution 
 From   Table A.1 we fi nd: 
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  (2.205)      

 We   know that Lagrange points  L  4  and  L  5  lie on the moon’s orbit around the earth.  L  4  is 60 °  ahead of the 
moon and  L  5  lies 60 °  behind the moon, as illustrated in  Figure 2.36   . 

 To   fi nd  L  1 ,  L  2  and  L  3  requires fi nding the roots of Equation 2.204 in which, for the case at hand, the mass 
ratio is: 
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 Using   Algorithm 2.4, we proceed as follows. 

 Step   1: 
 For   the above value of   π   2 ,  Figure 2.34  shows that  L  3  lies near   ξ        �       � 1, whereas  L  1  and  L  2  lie on the low and 
high side, respectively, of   ξ        �       � 1. We cannot read these values precisely off the graph, but we can use them 
to select the starting values for the bisection method. For  L  3 , we choose   ξ  l        �       � 1.1 and   ξ  u        �       � 0.9. 

 Step   2: 
 Choose   an error tolerance of  E       �      10  � 6 , which sets the number of iterations, 
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 That   is,  n       �      18. 

 Step   3: 
 This   is summarized in Table 2.1. 

 We   conclude that, to fi ve signifi cant fi gures,   ξ   3       �       � 1.0050. 
 The   values of   ξ   for the Lagrange points  L  1  and  L  2  are found the same way using Algorithm 2.4, starting 

with estimates obtained from  Figure 2.34 . Rather than repeating the lengthy hand computations, see instead 
Appendix D.9 for the MATLAB program  Example_2_16.m , which carries out the calculations of all three 
roots. It uses the program  bisect.m  to do the iterations, leading to   ξ   1       �      0.8369 and   ξ   2       �      1.156, as well as 
  ξ   3       �       � 1.005 computed in  Table 2.1   . 

 Multiplying   each dimensionless root by  r  12  yields the  x  coordinates of the colinear Lagrange points in 
kilometers. 
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  (2.206)      
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 The   locations of the fi ve Lagrange points for the earth-moon system are shown in  Figure 2.36 . For conve-
nience, all of their positions are shown relative to the center of the earth, instead of the center of mass. As can 
be seen from Equation 2.177a, the center of mass of the earth-moon system is only 4670       km from the center of 
the earth. That is, it lies within the earth at 73 percent of its radius. Since the Lagrange points are fi xed relative 
to the earth and moon, they follow circular orbits around the earth with the same period as the moon.       

 If   an equilibrium point is stable, then a small mass occupying that point will tend to return to that point 
if nudged out of position. The perturbation results in a small oscillation (orbit) about the equilibrium point. 
Thus, objects can be placed in small orbits (called halo orbits) around stable equilibrium points without 
requiring much in the way of station keeping. On the other hand, if a body located at an unstable equilib-
rium point is only slightly perturbed, it will oscillate in a divergent fashion, drifting eventually completely 
away from that point. It turns out that the Lagrange points  L  1 ,  L  2  and  L  3  on the apse line are unstable, 
whereas  L  4  and  L  5 , which lie 60 °  ahead of  m  1  and 60 behind  m  1  in its orbit, are stable if the ratio  m  2 / m  1  
exceeds 24.96. For the earth-moon system that ratio is 81.3. However,  L  4  and  L  5  are destabilized by the 
infl uence of the sun’s gravity, so that in actuality station keeping would be required to maintain position in 
the neighborhood of those points of the earth-moon system. 

 Table 2.1          Steps of the Bisection Method Leading to   ξ        �      1.0050 for  L  3   

    n     ξ  1      ξ  u      ξ  m    Sign of  f  (  π   12 ,  ξ  l  ) ·  f  (  π   12 ,  ξ  u  ) 

   1   � 1.1   � 0.9   � 1   � 0 

   2   � 1.1   � 1   � 1.05    0 

   3   � 1.05   � 1   � 1.025    0 

   4   � 1.025   � 1   � 1.0125    0 

   5   � 1.0125   � 1   � 1.00625    0 

   6   � 1.00625   � 1   � 1.003125   � 0 

   7   � 1.00625   � 1.003125   � 1.0046875   � 0 

   8   � 1.00625   � 1.0046875   � 1.00546875    0 

   9   � 1.00546875   � 1.0046875   � 1.005078125    0 

   10   � 1.005078125   � 1.0046875   � 1.0049882812   � 0 

   11   � 1.005078125   � 1.0049882812   � 1.004980469   � 0 

   12   � 1.004980469   � 1.0049882812   � 1.005029297    0 

   13   � 1.005029297   � 1.0049882812   � 1.005004883    0 

   14   � 1.005004883   � 1.0049882812   � 1.004992676   � 0 

   15   � 1.005004883   � 1.004992676   � 1.004998779    0 

   16   � 1.004998779   � 1.004992676   � 1.004995728    0 

   17   � 1.004995728   � 1.004992676   � 1.004994202   � 0 

   18   � 1.004995728   � 1.004994202   � 1.004994965    0 



 Solar   observation spacecraft have been placed in halo orbits around the  L  1  point of the sun-earth sys-
tem.  L  1  lies about 1.5 million kilometers from the earth (1/100 the distance to the sun) and well outside 
the earth’s magnetosphere. Three such missions were the International Sun-Earth Explorer 3 (ISSUE-3) 
launched in August 1978; the Solar and Heliospheric   Observatory (SOHO) launched in December 1995; 
and the Advanced Composition Explorer (ACE), launched in August 1997. 

 In   June 2001, the 830       kg Wilkinson Microwave Anisotropy Probe (WMAP) was launched aboard a Delta 
II rocket on a three month journey to sun-earth Lagrange point  L  2 , which lies 1.5 million kilometers from the 
earth in the opposite direction from  L  1 . WMAP’s several-year mission was to measure cosmic microwave 
background radiation. The 6200       kg James Webb Space Telescope (JWST) is scheduled for a 2013 launch 
aboard an Arianne 5 to an orbit around  L  2 . This successor to the Hubble Space Telescope, which is in low 
earth orbit, will use a 6.5-meter mirror to gather data in the infrared spectrum over a period of 5 to 10 years.  

    2.12.2       Jacobi Constant 

 Multiply   Equation 2.192a by  �x    , Equation 2.192b by  �y     and Equation 2.192c by  �z     to obtain: 
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 Sum   the left and right side of these equations to get: 
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  or, rearranging terms,   
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 Note   that 
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  where  v  is the speed of the secondary mass relative to the rotating frame. Similarly,   
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 From   Equation 2.179 we obtain: 
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 It   follows that 
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 In   a similar fashion, starting with Equation 2.180, we fi nd: 

  

d

dt r r
xx yy zz r x

1 1

2 2
3 1 12� � � � �( )� � � �π   (2.211)      

 Substituting   Equations 2.208, 2.209, 2.210 and 2.211 into Equation 2.207 yields: 
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 Alternatively  , upon rearranging terms: 

  

d

dt
v x y

r r

1

2

1

2
02 2 2 2 1

1

2

2

� � � � �Ω ( )
μ μ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     

  which means the bracketed expression is a constant:   
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   v  2 /2 is the kinetic energy per unit mass relative to the rotating frame.  �   μ   1 / r  1  and  �   μ   2 / r  2  are the gravita-
tional potential energies of the two primary masses.  �  Ω  2 ( x  2       �       y  2 )/2 may be interpreted as the potential 
energy of the centrifugal force per unit mass  Ω2 ( )x yˆ ˆi j�     induced by the rotation of the reference frame. 
The constant  C  is known as the Jacobi constant, after the German mathematician Carl Jacobi (1804 – 1851), 
who discovered it in 1836. Jacobi’s constant may be interpreted as the total energy of the secondary particle 
relative to the rotating frame.  C  is a constant of the motion of the secondary mass just like the energy and 
angular momentum are constants of the relative motion in the two-body problem.   

 Solving   Equation 2.212 for  v  2  yields: 
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 If   we restrict the motion of the secondary mass to lie in the plane of motion of the primary masses, then: 
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 For   a given value of the Jacobi constant,  Equation 2.213 shows that   v  2  is a function only of position in 
the rotating frame. Since  v  2  cannot be negative, it must be true that: 
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 Trajectories   of the secondary body in regions where this inequality is violated are not allowed. The bound-
aries between forbidden and allowed regions of motion are found by setting  v  2       �      0, that is: 
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 For   a given value of the Jacobi constant the curves of zero velocity are determined by this equation. These 
boundaries cannot be crossed by a secondary mass (spacecraft) moving within an allowed region. 

 Since   the fi rst three terms on the left of Equation 2.216 are all positive, it follows that the zero veloc-
ity curves correspond to negative values of the Jacobi constant. Large negative values of  C  mean that the 
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secondary body is far from the system center of mass ( x  2       �       y  2  is large) or that the body is close to one of 
the primary bodies ( r  1  is small or  r  2  is small). 

 Let   us consider again the earth-moon system. From Equations 2.174, 2.175, 2.176, 2.190, and 2.205 
we have: 
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 Substituting   these values into Equation 2.216, we can plot the zero velocity curves for different values of 
Jacobi’s constant. The curves bound regions in which the motion of a spacecraft is not allowed. 

 For   C      �       � 1.8       km 2 /s 2 , the allowable regions are circles surrounding the earth and the moon, as shown 
in  Figure 2.37(a)   . A spacecraft launched from the earth with this value of  C  cannot reach the moon, to say 
nothing of escaping the earth-moon system. 

 Substituting   the coordinates of the Lagrange points  L  1 ,  L  2  and  L  3  into Equation 2.216, we obtain the 
successively larger values of the Jacobi constants  C  1 ,  C  2  and  C  3  which are required to arrive at those points 
with zero velocity. These are shown along with the allowable regions in  Figure 2.37 . From part (c) of that 
fi gure we see that  C  2  represents the minimum energy for a spacecraft to escape the earth-moon system via 
a narrow corridor around the moon. Increasing  C  widens that corridor and at  C  3  escape becomes possible in 
the opposite direction from the moon. The last vestiges of the forbidden regions surround  L  4  and  L  5 . Further 
increase in Jacobi’s constant make the entire earth-moon system and beyond accessible to an earth-launched 
spacecraft. 

 For   a given value of the Jacobi constant, the relative speed at any point within an allowable region can 
be found using Equation 2.213.

        Example 2.17      
 The   earth-orbiting spacecraft in  Figure 2.38    has a relative burnout velocity  v bo   at an altitude of  d       �      200       km 
on a radial for which   φ        �       � 90 ° . Find the value of  v bo   for each of the scenarios depicted in  Figure 2.37 . 

    Solution 
 From   Equations 2.177 and 2.205 we have 
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 Therefore  , the coordinates of the burnout point are 

  x y� � ��4670 6 6578.  km        km       



 Substituting   these values along with the Jacobi constant into Equations 2.213 and 2.214 yields the relative 
burnout speed  v bo  . For the six Jacobi constants in  Figure 2.38  we obtain: 
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 These   velocities are not substantially different from the escape velocity (Equation 2.91) at 200       km altitude, 
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 FIGURE 2.37  
       Forbidden regions (shaded) within the earth-moon system for increasing values of Jacobi’s constant (km 2 /s 2 ).    
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 Observe   that a change in  v bo   on the order of only 10       m/s or less can have a signifi cant infl uence on the 
regions of earth-moon space accessible to the spacecraft.      

        Example 2.18      
 For   the spacecraft in  Figure 2.38  the initial conditions ( t       �      0) are  d       �      200       km,   φ        �       � 90 ° ,   γ        �      20 °  and 
 v bo        �      10.9148       km/s. Use Equations 2.192, the restricted three body equations of motion, to determine the tra-
jectory and locate its position at  t       �      3.16689 days. 

    Solution 
 Since    z  and  �z     are initially zero, Equation 2.192c implies that  z  remains zero. The motion is therefore con-
fi ned to the  xy  plane and is governed by Equations 2.192a and 2.192b. These have no analytical solution, so 
we must use a numerical approach. 

 In   order to get Equations 2.192a and 2.192b into the standard form for numerical solution (see Section 
1.8), we introduce the auxiliary variables 

  y x y y y x y y1 2 3 4� � � � �=   (a)      

 The   time derivatives of these variables are: 
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 FIGURE 2.38  
       Spacecraft  S  burnout position and velocity relative to the rotating earth-moon frame.    



  where, from Equations 2.179 and 2.180,   
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 Equations   (b) are of the form  �y f y� ( )t,     given by Equation 1.95. 
 To   solve this system let us use the Runge-Kutta-Fehlberg 4(5) method and Algorithm 1.3, which is imple-

mented in MATLAB as the program  rkf45.m  in Appendix D.4. The MATLAB function named  Example_
2_18.m  in Appendix D.10 contains the data for this problem, the given initial conditions and the time range. 
To perform the numerical integration,  Example_2_18.m  calls  rkf45.m , which uses the subfunction  rates , which 
is embedded within  Example_2_18.m,  to compute the derivatives in (b) above. Running  Example_2_18.m  
yields the plot of the trajectory shown in  Figure 2.39   . After coasting 3.16689 days as specifi ed in the problem 
statement, 

  
the spacecraft arrives at the far side of the moon on the eearth-moon line at an altitude of  km.256

      

 For   comparison, the 1969 Apollo 11 translunar trajectory, which differed from this one in many details 
(including the use of midcourse corrections), required 3.04861 days to arrive at the lunar orbit insertion 
point.         
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       Translunar coast trajectory computed numerically from the restricted three-body differential equations using the 
 RKF4(5)  method.    



146  CHAPTER 2 The two-body problem

    PROBLEMS 
 For   man-made earth satellites use   μ        �      398,600       km 3 /s 2 .  R E        �      6378       km (Tables A.1 and A.2). 

    Section 2.2 

        2.1     Two particles of identical mass  m  are acted on only by the gravitational force of one upon the other. If 
the distance  d  between the particles is constant, what is the angular velocity of the line joining them? 
Use Newton’s second law with the center of mass of the system as the origin of the inertial frame.    
    { Ans.:  ω � 2 3Gm d/     }  

    2.2     Three particles of identical mass  m  are acted on only by their mutual gravitational attraction. They 
are located at the vertices of an equilateral triangle with sides of length  d . Consider the motion of any 
one of the particles about the system center of mass  G  and, using  G  as the origin of the inertial frame, 
employ Newton’s second law to determine the angular velocity   ω   required for  d  to remain constant.    
    { Ans.: ω � 3 3Gm d/     }   

    Section 2.3 

        2.3     Consider the two-body problem illustrated in  Figure 2.1 . If a force  T  (such as rocket thrust) acts on  m  2  
in addition to the mutual force of gravitation  F  21 , show that: 

    (a)     Equation 2.22 becomes:       

  
��r r

T
� � �

μ

r m3
2

.
      

    (b)     If the thrust vector  T  has magnitude  T  and is aligned with the velocity vector  v , then:    

  
T

v
� T

v
.
      

    2.4     At a given instant  t  0 ,  an  earth-orbiting satellite has the inertial position and velocity vectors  
r i j k0 3207 5459 2714� � �ˆ ˆ ˆ  (km)     and  v i j k0 6 532 0 7835 6 142� � � �. (km/s)ˆ . ˆ . ˆ    . Solve Equation 
2.22 numerically to fi nd maximum altitude reached by the satellite and the time at which it occurs.    
    { Ans.: Using  MATLAB’s   ode45.m , maximum altitude      �       9680        km at 1.66 hours after  t  0 . }  

    2.5     At a given instant,  an  earth-orbiting satellite has the inertial position and velocity vectors  
r i0 6600� ˆ (km)    and  v j0 12� ˆ (km/s)    . Solve Equation 2.22 numerically to fi nd the distance of the 
spacecraft from the center of the earth and its speed 24 hours later.    
    { Ans.: Using  MATLAB’s   ode45.m , distance      �       463,300        km, speed      �       4.995        km/s. }   

    Section 2.4 

        2.6     If r, in meters, is given by  r I J K� � �3 2 94 3 2t t tˆ ˆ ˆ    , where t is time in seconds, calculate (a)  �r     (where  
r � r    ) and (b)  �r     at  t       �      2s.    
    { Ans.: (a)  �r � 101 3.  m/s    ; (b)  �r � 105 3.  m/s     }  



    2.7     Starting with Equation 2.35a, prove that  �r r� �v û     and interpret this result.  

    2.8     Show that  ˆ ˆu ur rd dt� �/ 0    , where  û rr r� /    . Use only the fact that  ûr     is a unit vector. Interpret this 
result.  

    2.9     Starting with Equation 2.38, show that  ˆ ˆ .u ur rd dt� �/ 0      

    2.10     Show that  v e e
h

� � �
μ θ1 2 2cos    for any orbit.  

    2.11     Relative to a nonrotating, earth-centered Cartesian coordinate system, the position and velocity vec-
tors of a spacecraft are  r i j k� � � �8900 1690 5210ˆ ˆ ˆ  (km)     and  v i j k� � � �6 4 5 1 5ˆ . ˆ . ˆ  (km/s)    . 
Calculate the orbit’s (a) eccentricity vector and (b) the true anomaly.    
    { Ans.: (a)  e i j k� � �0 3461 0 5142 0 4663. ˆ . ˆ . ˆ   ; (b)   θ        �      100.8 °  }  

    2.12     Show that the eccentricity is 1 for rectilinear orbits ( h       �      0).  

    2.13     Relative to a nonrotating, earth-centered Cartesian coordinate system, the velocity of a space-
craft is  v i j k� � � �8 2 9 1 3.  (km/s)ˆ ˆ . ˆ     and the unit vector in the direction of the radius is  
ˆ . ˆ . ˆ . ˆu i j kr � � � �0 4835 0 09667 0 8700    . Calculate (a) the radial component of velocity  v r  , (b) the azi-
muth component of velocity  v   ⊥  , and the fl ight path angle   γ  .    
    { Ans.: (a) 5.966       km/s; (b) 10.69       km/s; (c) 29.16 °  }   

    Section 2.5 

        2.14     If the specifi c energy   �   of the two-body problem is negative, show that  m  2  cannot move outside a 
sphere of radius  μ/|�     centered at  m  1 .  

    2.15     Relative to a nonrotating Cartesian coordinate frame with origin at the center of the earth, a 
spacecraft has the position and velocity vectors  r i j k� � �10 000 5000 15 000,  (km)ˆ ˆ , ˆ     and  
v i j k� � �5 2 5 7 5ˆ . ˆ . ˆ  (km/s)    . Later, when the speed is  v       �      7       km/s, what is the position vector?    
    { Ans.:  r i j k� � �103 600 51 810 155 400,  (km)}ˆ , ˆ , ˆ        

    Section 2.6 

        2.16     A satellite is in a circular, 350       km orbit (i.e., it is 350       km above the earth’s surface). Calculate (a) the 
speed in km/s and (b) the period.    
    { Ans.: (a) 7.697       km/s; (b) 91       min 32       s }  

    2.17     A spacecraft is in a circular orbit of the moon at an altitude of 80       km. Calculate its speed and its 
period.    
    { Ans.: 1.642       km/s; 1       hr 56       min. }   

    Section 2.7 

        2.18     Calculate the area  A  swept out during the time  t       �       T /3 since periapsis, where  T  is the period of the 
elliptical orbit.    
    { Ans.: 1.047 ab  }          
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    2.19     Determine the true anomaly   θ   of the point(s) on an elliptical orbit at which the speed equals the speed 
of a circular orbit with the same radius, i.e.,  v  ellipse       �       v  circle .    
    { Ans.:  θ       �      cos  � 1 ( �  e ), where  e  is the eccentricity of the ellipse. }          

    2.20     Calculate the fl ight path angle at the locations found in Problem 2.19.    
    { Ans.:  γ � ��tan 1 21e e( )    }  

    2.21     An unmanned satellite orbits the earth with a perigee radius of 7000       km and an apogee radius of 
70,000       km.Calculate: 

    (a)     the eccentricity of the orbit;  
    (b)     the semimajor axis of the orbit (km);  
    (c)     the period of the orbit (hours);  
    (d)     the specifi c energy of the orbit (km 2 /s 2 );  
    (e)     the true anomaly at which the altitude is 1000       km (degrees);  
    (f)      v r   and  v   ⊥   at the points found in part (e) (km/s);  
    (g)     the speed at perigee and apogee (km/s).       
    { Partial Ans.: (c) 20.88       hr; (e) 27.61 ° ; (g) 10.18       km/s, 1.018       km/s }  

    2.22     A spacecraft is in a 250       km by 300       km low earth orbit. How long (in minutes) does it take to coast 
from perigee to apogee?    
    { Ans.: 45.00       min }  

    2.23     The altitude of a satellite in an elliptical orbit around the earth is 1600       km at apogee and 600       km at 
perigee. Determine (a) the eccentricity of the orbit; (b) the orbital speeds at perigee and apogee; (c) the 
period of the orbit.    
    { Ans.: (a) 0.06686; (b)  v p        �      7.81       km/s;  v  A       �      6.83       km/s; (c)  T       �      107.2 minutes. }  



    2.24     A satellite is placed into an earth orbit at perigee at an altitude of 1270       km with a speed of 9       km/s. 
Calculate the fl ight path angle   γ   and the altitude of the satellite at a true anomaly of 100 ° .    
    { Ans.:   γ        �      31.1 ° , z      �      6774       km }  

    2.25     A satellite is launched into earth orbit at an altitude of 640       km with a speed of 9.2       km/s and a fl ight 
path angle of 10 ° . Calculate the true anomaly of the launch point and the period of the orbit.    
    { Ans.:   θ        �      29.8 ° ;  T       �      4.46       hrs }  

    2.26     A satellite has perigee and apogee altitudes of 250       km and 42,000       km. Calculate the orbit period, 
eccentricity, and the maximum speed.    
    { Ans.: 12       h 36       m, 0.759, 10.3       km/s }  

    2.27     A satellite is launched parallel to the earth’s surface with a speed of 8       km/s at an altitude of 640       km.
Calculate the apogee altitude and the period.    
    { Ans.: 2679       km, 1       h 59       m 30       s }  

    2.28     A satellite in orbit around the earth has a perigee velocity of 8       km/sec. Its period is 2 hours. Calculate 
its altitude at perigee.    
    { Ans.: 648       km }  

    2.29     A satellite in polar orbit around the earth comes within 150       km of the north pole at its point of clos-
est approach. If the satellite passes over the pole once every 90 minutes, calculate the eccentricity 
of its orbit.    
    { Ans.: 0.0187 }  

    2.30     The following position data for an earth orbiter are given:    
    Altitude      �      1700       km at a true anomaly of 130 ° .  
    Altitude      �      500       km at a true anomaly of 50 ° .  

    Calculate:  
    (a)     The eccentricity.  
    (b)     The perigee altitude (km).  
    (c)     The semimajor axis (km)  
     { Partial ans.: (c) 7547       km }     

    2.31     An earth satellite has a speed of 7       km/s and a fl ight path angle of 15 °  when its radius is 9000       km.
Calculate: (a) the true anomaly (degrees), and (b) the eccentricity of the orbit.    
    { Ans.: (a) 83.35 ° ; (b) 0.2785 }  

    2.32     If, for an earth satellite, the specifi c angular momentum is 60,000       km 2 /s and the specifi c energy is 
 � 20       km 2 /s 2 , calculate the apogee and perigee altitudes.    
    { Ans.: 6,637       km and 537.2       km }  

    2.33     A rocket launched from the surface of the earth has a speed of 8.85       km/s when powered fl ight ends at 
an altitude of 550       km.The fl ight path angle at this time is 6 ° . Determine (a) the eccentricity of the tra-
jectory; (b) the period of the orbit.    
    { Ans.: (a)  e       �      0.3742; (b)  T       �      187.4       min. }  

    2.34     If the perigee velocity is  c  times the apogee velocity, calculate the eccentricity of the orbit in terms of  c .    
    { Ans.:  e       �      ( c       �      1)/( c       �      1) }   
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    Section 2.8 

        2.35     Find the minimum additional speed required to escape from GEO.    
    { Ans.: 1.274       km/s }  

    2.36     What velocity, relative to the earth, is required to escape the solar system on a parabolic path from 
earth’s orbit?    
    { Ans.: 12.34       km/s }   

    Section 2.9 

        2.37     A hyperbolic earth departure trajectory has a perigee altitude of 300       km and a perigee speed of 
15       km/s. 

    (a)     Calculate the hyperbolic excess speed (km/s).  
    (b)     Find the radius (km) when the true anomaly is 100 ° .  { Ans.: 48,497       km }   
    (c)     Find  v r   and  v   ⊥   (km/s) when the true anomaly is 100 ° .     

    2.38     A meteoroid is fi rst observed approaching the earth when it is 402,000       km from the center of the earth 
with a true anomaly of 150 ° . If the speed of the meteoroid at that time is 2.23       km/s, calculate (a) the 
eccentricity of the trajectory; (b) the altitude at closest approach; (c) the speed at closest approach.    
    { Ans.: (a) 1.086; (b) 5088       km; (c) 8.516       km/s }          

150°

Earth

402,000 km

2.23 km/s

    2.39     Calculate the radius  r  at which the speed on a hyperbolic trajectory is 1.1 times the hyperbolic excess 
speed. Express your result in terms of the periapsis radius  r p   and the eccentricity  e .    
    { Ans.: r      �      9.524 r p     /( e       �      1) }  

    2.40     A hyperbolic trajectory has an eccentricity  e       �      3.0 and an angular momentum  h       �      105,000       km 2 /s. 
Without using the energy equation, calculate the hyperbolic excess speed.  { Ans.: 10.7       km/s }   



    2.41     A space vehicle has a velocity of 10       km/s in the direction shown when it is   10 000       km from the center of 
the earth. Calculate its true anomaly.    
    { Ans.: 51 °  }          
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    2.42     A space vehicle has a velocity of 10       km/s and a fl ight path angle of 20 °  when it is 15 000       km from the 
center of the earth. Calculate its true anomaly.    
    { Ans.: 27.5 °  }  

    2.43     For a spacecraft trajectory around the earth,  r       �      10,000       km when   θ        �      30 ° , and  r       �      30,000       km when 
  θ        �      105 ° . Calculate the eccentricity.    
    { Ans.: 1.22 }   

    Section 2.11 

        2.44     At a given instant, a spacecraft has the position and velocity vectors  r i0 7000� ˆ (km)    and  
v i j0 7 7� �ˆ ˆ (km/s)     relative to an earth-centered non-rotating frame. (a) What is the position vector 
after the true anomaly increases by 90 ° ? (b) What is the true anomaly of the initial point?    
    { Ans.: (a)  r j� 43 180,  (km)ˆ    ; (b) 99.21 °  }  

    2.45     Relative to an earth-centered, non-rotating frame the position and velocity vectors of a spacecraft are  
r i j k0 3450 1700 7750� � �ˆ ˆ ˆ  (km)     and  v i j k0 5 4 5 4 1 0� � �.  (km/s)ˆ . ˆ . ˆ    , respectively. (a) Find the 
distance and speed of the spacecraft after the true anomaly changes by 82 ° . (b) Verify that the specifi c 
angular momentum  h  and total energy   �   are conserved.    
    { Ans.: (a)  r       �      19,266       km,  v       �      2.925       km/s. }  

    2.46     Relative to an earth-centered, non-rotating frame the position and velocity vectors of a spacecraft 
are  r i k0 6320 7750� �ˆ ˆ  (km)     and  v j0 11� ˆ (km/s)   . (a) Find the position vector ten minutes later. 
(b) Calculate the change in true anomaly over the ten-minute time span.    
    { Ans.: (a)  r � � �5905 1 6442 2 7241 2. . .  (km)   ; (b) 34.6 °   



152  CHAPTER 2 The two-body problem

    Section 2.12 

        2.47     For the sun-earth system, fi nd the distance of the  L  1 ,  L  2  and  L  3  Lagrange points from the center of 
mass of the system.    
    { Ans.:  x  1       �      151.101      �      10 6        km,  x  2       �      148.108      �      10 6        km,  x  3       �       � 149.600      �      10 6        km (opposite side of the 
sun) }  

    2.48     Write a program like that for Example 2.18 to compute the trajectory of a spacecraft using the 
restricted three-body equations of motion. Use the program to design a trajectory from earth to earth-
moon Lagrange point  L  4 , starting at a 200       km altitude burnout point. The path should take the coast-
ing spacecraft to within 500       km of  L  4  with a relative speed of no more than 1       km/s.      
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    3.1       INTRODUCTION 
 In   Chapter 2 we found the relationship between position and true anomaly for the two-body problem. The 
only place time appeared explicitly was in the expression for the period of an ellipse. Obtaining position as a 
function of time is a simple matter for circular orbits. For elliptical, parabolic and hyperbolic paths we are led 
to the various forms of Kepler’s equation relating position to time. These transcendental equations must be 
solved iteratively using a procedure like Newton’s method, which is presented and illustrated in this chapter. 

 The   different forms of Kepler’s equation are combined into a single universal Kepler’s equation by intro-
ducing universal variables. Implementation of this appealing notion is accompanied by the introduction of 
an unfamiliar class of functions known as Stumpff functions. The universal variable formulation is required 
for the Lambert and Gauss orbit determination algorithms in Chapter 5. 

 The   road map of Appendix B may aid in grasping how the material presented here depends on that of 
Chapter 2.  

    3.2       TIME SINCE PERIAPSIS 
 The   orbit formula,  r       �      ( h  2 /  μ  )/(1      �       e    cos     θ  ), gives the position of body  m  2  in its orbit around  m  1  as a func-
tion of the true anomaly. For many practical reasons we need to be able to determine the position of  m  2  as a 
function of time. For elliptical orbits, we have a formula for the period  T  (Equation 2.83), but we cannot yet 
calculate the time required to fl y between any two true anomalies. The purpose of this section is to come up 
with the formulas that allow us to do that calculation. 

                                  Orbital position as a function 
of time    3 
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 The   one equation we have which relates true anomaly directly to time is Equation 2.47,  h r� 2 �θ    , which 
can be written 

  

d
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 Substituting    r       �      ( h  2 /  μ  )/(1      �       e    cos   θ  ) we fi nd, after separating variables, 
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 Integrating   both sides of this equation yields 
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  in which the constant of integration  t p   is the time at periapsis passage, where by definition   θ        �      0.  t p   is the sixth 
constant of the motion that was missing in Chapter 2. The origin of time is arbitrary. It is convenient to measure 
time from periapsis passage, so we will usually set  t p        �      0. In that case the   time versus true anomaly   integral is   
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 The   integral on the right may be found in any standard mathematical handbook, such as Beyer (1991), 
in which we fi nd: 
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    3.3       CIRCULAR ORBITS ( e       �      0) 
 If    e       �      0 the integral in Equation 3.2 is simply  dϑ

0

θ

∫    , which means 

  

t
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 Recall   that for a circle (Equation 2.62),  r       �       h  2 /  μ  . Therefore  h  3       �       r  3/2   μ   3/2 , so that 
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 Finally  , substituting the formula (Equation 2.64) for the period  T  of a circular orbit,  T r� 2
3
2π μ/    , yields 
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 The   reason that  t  is directly proportional to   θ   in a circular orbit is simply that the angular velocity 2  π  / T  is 
constant. Therefore the time   Δ t  to fl y through a true anomaly of   Δ  θ   is (  Δ  θ  /2  π  ) T . 

 Because   the circle is symmetric about any diameter, the apse line — and therefore the periapsis — can be 
chosen arbitrarily.         

    3.4       ELLIPTICAL ORBITS ( e       <      1) 
 Set    a       �      1 and  b       �       e  in Equation 3.3 to obtain 
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 Therefore  , Equation 3.2 in this case becomes 
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  or   
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  where   
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  M   e   is called the  mean anomaly . The subscript  e  reminds us this is   mean anomaly for the ellipse   and not 
for parabolas and hyperbolas, which have their own  “ mean anomaly ”  formulas. Equation 3.6 is plotted in 
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 FIGURE 3.1  
       Time since periapsis is directly proportional to true anomaly in a circular orbit.    
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 Figure 3.2   . Observe that for all values of the eccentricity  e ,  M e   is a monotonically increasing function of the 
true anomaly   θ  . 

 From   Equation 2.82, the formula for the period  T  of an elliptical orbit, we have   μ   2 (1      �       e  2 ) 3/2 / h  3       �      2  π  / T , 
so that the mean anomaly in Equation 3.7 can be written much more simply as 

  
M

T
te �

2π
  (3.8)      

 The   angular velocity of the position vector of an elliptical orbit is not constant, but since 2  π   radians 
are swept out per period  T , the ratio 2  π /T  is the average angular velocity, which is given the symbol  n  and 
called the   mean motion  , 

  
n

T
�

2π
  (3.9)      

 In   terms of the mean motion, Equation 3.5 can be written simpler still as 

  M nte �       

 The   mean anomaly is the azimuth position (in radians) of a fi ctitious body moving around the ellipse 
at the constant angular speed  n . For a circular orbit, the mean anomaly  M e   and the true anomaly   θ   are 
identical. 

 It   is convenient to simplify Equation 3.6 by introducing an auxiliary angle  E  called the   eccentric anomaly  , 
which is shown in  Figure 3.3   . This is done by circumscribing the ellipse with a concentric auxiliary circle 
having a radius equal to the semimajor axis  a  of the ellipse. Let  S  be that point on the ellipse whose true 
anomaly is   θ  . Through point  S  we pass a perpendicular to the apse line, intersecting the auxiliary circle at 
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 FIGURE 3.2  
       Mean anomaly versus true anomaly for ellipses of various eccentricities.    



point  Q  and the apse line at point  V . The angle between the apse line and the radius drawn from the center 
of the circle to  Q  on its circumference is the eccentric anomaly  E . Observe that  E  lags   θ   from periapsis  P  to 
apoapsis  A  (0      �        θ        �      180 ° ) whereas it leads   θ   from  A  to  P  (180 °       �        θ        �      360 ° ). 

 To   fi nd  E  as a function of   θ  , we fi rst observe from  Figure 3.3  that, in terms of the eccentric anomaly,  
OV a E� cos     whereas in terms of the true anomaly,  OV ae r� � cosθ    . Thus, 

  a E ae rcos cos� � θ       

 Using   Equation 2.72,  r       �       a (1      �       e  2 )/(1      �       e  cos     θ  ), we can write this as 
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 Simplifying   the right-hand side, we get 

  
cos

cos

cos
E

e

e
�

�

�

θ
θ1

  (3.10a)      

 Solving   this for cos   θ   we obtain the inverse relation 
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 Substituting   Equation 3.10a into the trigonometric identity sin 2     E       �      cos 2     E       �      1 and solving for sin  E  yields 
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3.4 Elliptical orbits (e � 1)  159

Q

F P

E

S

r

a OA

b
a

B

D

ae

θ

V

 FIGURE 3.3  
       Ellipse and the circumscribed auxiliary circle.    



160  CHAPTER 3 Orbital position as a function of time

 Equation   3.10a would be fi ne for obtaining  E  from   θ  , except that, given a value of cos  E  between  – 1 and 1, 
there are two values of  E  between 0 and 360 ° , as illustrated in  Figure 3.4   . The same comments hold for 
Equation 3.11. To resolve this quadrant ambiguity, we use the following trigonometric identity, 
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 From   Equation 3.10a 
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 Therefore  , 
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  where the last step required applying the trig identity in Equation 3.12 to the term (1      �      cos     θ  )/(1      �      cos     θ  ). 
Finally, therefore, we obtain   

  
tan tan

E e

e2

1

1 2
�

�

�

θ
  (3.13a)     
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 Observe   from  Figure 3.5    that for any value of tan ( E /2), there is only one value of  E  between 0 and 360 ° . 
There is no quadrant ambiguity. 

 Substituting   Equations 3.11 and 3.13b into Equation 3.6 yields   Kepler’s equation  , 
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 FIGURE 3.4  
       For 0      �      cos    E       �      1,  E  can lie in the fi rst or fourth quadrant. For  � 1      �      cos    E       �      0,  E  can lie in the second or third 
quadrant.    



 This   monotonically increasing relationship between mean anomaly and eccentric anomaly is plotted for 
several values of eccentricity in  Figure 3.6   . 

 Given   the true anomaly   θ  , we calculate the eccentric anomaly  E  using Equations 3.13. Substituting  E  
into Kepler’s formula, Equation 3.14, yields the mean anomaly directly. From the mean anomaly and the 
period  T  we fi nd the time (since periapsis) from Equation 3.5, 

  
t

M
Te�

2π
  (3.15)      

 On   the other hand, if we are given the time, then Equation 3.15 yields the mean anomaly  M e  . Substituting 
 M e   into Kepler’s equation, we get the following expression for the eccentric anomaly: 

  E e E Me� �sin       
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 We   cannot solve this transcendental equation directly for  E . A rough value of  E  might be read off  Figure 3.6 . 
However, an accurate solution requires an iterative,  “ trial and error ”  procedure. 

   Newton  ’s method  , or one of its variants, is one of the more common and effi cient ways of fi nding the 
root of a well-behaved function. To fi nd a root of the equation  f ( x )      �      0 in  Figure 3.7   , we estimate it to be 
 x i  , and evaluate the function  f ( x ) and its fi rst derivative  f  
 ( x ) at that point. We then extend the tangent to the 
curve at  f ( x i  ) until it intersects the x-axis at  x i    � 1 , which becomes our updated estimate of the root. The inter-
cept  x i    � 1  is found by setting the slope of the tangent line equal to the slope of the curve at  x i  , that is, 
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  from which we obtain   
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 The   process is repeated, using  x i    � 1  to estimate  x i    � 2 , and so on, until the root has been found to the desired 
level of precision. 

 To   apply Newton’s method to the solution of Kepler’s equation, we form the function 

  f E E e E Me( ) sin� � �      

  and seek the value of eccentric anomaly that makes  f ( E )      �      0. Since   

  f E e E
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  for this problem Equation 3.16 becomes   
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 FIGURE 3.7  
       Newton’s method for fi nding a root of  f ( x )      �      0.    



        Algorithm 3.1          Solve   Kepler’s equation for the eccentric anomaly  E  given the eccentricity  e  and the mean 
anomaly  M e  . See Appendix D.11 for the implementation of this algorithm in MATLAB  ® .  

    1.     Choose an initial estimate of the root  E  as follows (Prussing and Conway, 1993). If  M e        �        π  , then 
 E       �       M e        �       e /2. If  M e                π  , then  E       �       M e        �       e /2. Remember that the angles  E  and  M e   are in radians. 
(When using a hand-held calculator, be sure it is in radian mode.)  

    2.     At any given step, having obtained  E i   from the previous step, calculate    

  f E E e E M f E e Ei i i e i i( ) sin ( ) cos� � � 
 � � and  1 .       

    3.     Calculate ratio  i        �       f ( E i  )/ f   
 ( E i  ).  
    4.     If  | ratio  i   |  exceeds the chosen tolerance (e.g., 10  � 8 ), then calculate an updated value of  E :    

  E Ei i i� � �1 ratio       
 Return   to step 2. 

    5.     If  | ratio  i   |  is less than the tolerance, then accept  E i   as the solution to within the chosen accuracy.        

        Example 3.1      
 A   geocentric elliptical orbit has a perigee radius of 9600       km and an apogee radius of 21,000       km. Calculate 
the time to fl y from perigee  P  to a true anomaly of 120 ° .        

    Solution 
 Before   anything else, let us fi nd the primary orbital parameters  e  and  h . The eccentricity is readily obtained 
from the perigee and apogee radii by means of Equation 2.84, 
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 We   fi nd the angular momentum using the orbit equation, evaluated at perigee: 
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 With    h  and  e , the period of the orbit is obtained from Equation 2.82, 

  

T
h

e
�

�
�

�

2

1

2

398 600

72 472

1 0 37255
2 2

3

2 2

π

μ

π⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜
, .

,
⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

3

18 834� , s   (b)

      

 Equation   3.11a yields the eccentric anomaly from the true anomaly, 
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 Then   Kepler’s equation, Equation 3.14, is used to fi nd the mean anomaly, 

  Me � � �1 7281 0 37255 1 7281 1 3601. . sin . . rad.       

 Finally  , the time follows from Equation 3.12, 
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        Example 3.2      
 In   the previous example, fi nd the true anomaly at three hours after perigee passage. 

    Solution 
 Since   the time (10,800 seconds) is greater than one-half the period, the true anomaly must be greater than 
180 ° . 

 First  , we use Equation 3.12 to calculate the mean anomaly for  t       �      10,800       s. 
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 Kepler  ’s equation,  E       �       e  sin   ( E )      �       M  e  (with all angles in radians) is then employed to fi nd the eccentric 
anomaly. This transcendental equation will be solved using Algorithm 3.1 with an error tolerance of 10  � 6 . 
Since  M e                π  , a good starting value for the iteration is  E  0       �       M e        �       e /2      �      3.4166. Executing the algorithm 
yields the following steps: 

 Step   1: 

  E0 3 4166� .       

  f E( ) .0 0 085124� �       

  f E
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  |ratio| , so repeat. �10 6
      



 Step   2: 
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  |ratio| , so repeat. �10 6
      

 Step   3: 

  E2
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  |ratio|  so accept  as the solution.� ��10 3 47946, .E       

 Convergence   to even more than the desired accuracy occurred after just two iterations. With this value of 
the eccentric anomaly, the true anomaly is found from Equation 3.13a: 
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        Example 3.3      
 Let   a satellite be in a 500       km by 5000       km orbit with its apse line parallel to the line from the earth to the sun, 
as shown in  Figure 3.9   . Find the time that the satellite is in the earth’s shadow if: (a) the apogee is towards 
the sun; (b) the perigee is towards the sun. 

    Solution 
 We   start by using the given data to fi nd the primary orbital parameters,  e  and  h . The eccentricity is obtained 
from Equation 2.84, 
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 The   orbit equation can then be used to fi nd the angular momentum 
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 The   semimajor axis may be found from Equation 2.71, 
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  or from the fact that  a       �      ( r p        �       r a  )/2. The period of the orbit follows from Equation 2.83   
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    (a)     If the apogee is towards the sun, as in  Figure 3.9 , then the satellite is in earth’s shadow between points  a  
and  b  on its orbit. These are two of the four points of intersection of the orbit with the lines that are parallel 
to the earth-sun line and lie at a distance  R E   from the center of the earth. The true anomaly of  b  is therefore 
given by sin   θ        �       R E  / r , where  r  is the radial position of the satellite. It follows that the radius of  b  is:    
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 From   Equation 2.72 we also have 
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 Substituting   (e) into (f), collecting terms and simplifying yields an equation in   θ  , 
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 FIGURE 3.9  
       Satellite passing in and out of the earth’s shadow.    



 Substituting   (a) and (c) together with  R E        �      6378       km into (g) yields 

  0 24649 1 3442 1. cos . sinθ θ� � �   (h)      

 This   equation is of the form 

  A B Ccos sinθ θ� �   (i)      

 It   has two roots, which are given by (see Problem 3.12 at the end of the chapter): 
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 For   the case at hand, 
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 That   is, 
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 For   apogee towards the sun, the fl ight from perigee to point  b  will be in shadow. To fi nd the time of fl ight 
from perigee to point  b , we fi rst compute the eccentric anomaly of  b  using Equation 3.13b: 
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 From   this we fi nd the mean anomaly using Kepler’s equation, 

  M E e Ee � � � � �sin . . sin . .0 80521 0 24649 0 80521 0 62749 rad.   (m)      

 Finally  , Equation (3.5) yields the time at  b , 

  
t

M
Tb

e� � �
2

0 62749

2
8679 1 866 77

π π
.

. .  s.   (n)      

 The   total time in shadow, from  a  to  b , during which the satellite passes through perigee, is 

  t tb� �2 1734 28 98 sec. min.( . )   (o)      

    (b)     If the perigee is towards the sun, then the satellite is in shadow near apogee, from point  c  (  θ  c        �      143.36 ° ) 
to  d  on the orbit. Following the same procedure as above, we obtain (see Problem 3.13):    
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2 3364
2 1587
2981 8

.
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.

 rad.
 rad.
 sec.  (p)      
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 The   total time in shadow, from  c  to  d , is: 

  t T tc� � � � � �2 8679 1 2 2891 8 2716. .  sec (45.26 min.)   (q)      

 The   time is longer than that given by (n) since the satellite travels slower near apogee.       

 We   have observed that there is no closed form solution for the eccentric anomaly  E  in Kepler’s equation, 
 E       �       e    sin    E       �       M e  . However, there exist infi nite series solutions. One of these, due to Lagrange (Battin, 
1999), is a power series in the eccentricity  e , 
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n
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�1

∞

∑   (3.18)     

  where the coefficients  a n   are given by the somewhat intimidating expression   
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 Here  ,  fl oor  ( x ) means  x  rounded to the next lowest integer [e.g.,  fl oor  (0.5)      �      0,  fl oor  (  π  )      �      3]. If  e  is suffi -
ciently small, then the Lagrange series converges. That means by including enough terms in the summation, 
we can obtain  E  to any desired degree of precision. Unfortunately, if  e  exceeds 0.6627434193, the series 
diverges, which means taking more and more terms yields worse and worse results for some values of  M . 

 The   limiting value for the eccentricity was discovered by the French mathematician Pierre-Simone 
Laplace (1749 – 1827) and is called the  Laplace limit . 

 In   practice, we must truncate the Lagrange series to a fi nite number of terms  N , so that 

  

E M a ee n
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N

� �
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∑   (3.20)      

 For   example, setting  N       �      3 and calculating each  a n   by means of Equation 3.19 leads to 
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e
M

e
M Me e e e e� � � � �sin sin ( sin sin )

2 3

2
2

8
3 3   (3.21)      

 For   small values of the eccentricity  e,  this yields good agreement with the exact solution of Kepler’s equa-
tion (plotted in  Figure 3.6 ). However, as we approach the Laplace limit, the accuracy degrades unless more 
terms of the series are included.  Figure 3.10    shows that for an eccentricity of 0.65, just below the Laplace 
limit, Equation 3.21 ( N       �      3) yields a solution that oscillates around the exact solution, but is fairly close to 
it everywhere. Setting  N       �      10 in Equation 3.20 produces a curve that, at the given scale, is indistinguishable 
from the exact solution. On the other hand, for an eccentricity of 0.90, far above the Laplace limit,  Figure 3.11    
reveals that Equation 3.21 is a poor approximation to the exact solution, and using  N       �      10 makes matters 
even worse. 

 Another   infi nite series for  E  (Battin, 1999) is given by 
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  where the coefficients  J n   are Bessel functions of the first kind, defined by the infinite series   
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 FIGURE 3.10  
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  J    1  through  J  5  are plotted in  Figure 3.12   . Clearly, they are oscillatory in appearance and tend towards zero 
with increasing  x . 

 It   turns out that, unlike the Lagrange series, the Bessel function series solution converges for all values 
of the eccentricity less than 1.  Figure 3.13    shows how the truncated Bessel series solutions 
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       Comparison of the exact solution of Kepler’s equation with the truncated Bessel series solution ( N       �      3 and  N       �      10) for 
an eccentricity of 0.99.    



  for  N       �      3 and  N       �      10 compare to the exact solution of Kepler’s equation for the very large elliptical eccen-
tricity of  e       �      0.99. It can be seen that the case  N       �      3 yields a poor approximation for all but a few values 
of  M e  . Increasing the number of terms in the series to  N       �      10 obviously improves the approximation, and 
adding even more terms will make the truncated series solution indistinguishable from the exact solution at 
the given scale.   

 Observe   that we can combine Equations 3.10 and 2.72 as follows to obtain the   orbit equation for the 
ellipse in terms of the eccentric anomaly   
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 From   this it is easy to see that: 

  r a e E� �( cos )1   (3.25)      

 In   Equation 2.86 we defi ned the true-anomaly-averaged radius  rθ    of an elliptical orbit. Alternatively, the 
time-averaged radius  rt     of an elliptical orbit is defi ned as 
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 According   to Equations 3.14 and 3.15, 
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 Therefore  , 
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 Upon   using this relationship to change the variable of integration from  t  to  E  and substituting Equation 
3.25, Equation 3.26 becomes 
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  so that   
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 Time-averaged radius of an ellipticaal orbit.   (3.27)      

 Comparing   this result with Equation 2.87 reveals, as we should have expected (Why?), that  r rt  θ    . In fact, 
combining Equations 2.87 and 3.27 yields 

  
r a

r

a
t

θ � �3 2   (3.28)       

    3.5       PARABOLIC TRAJECTORIES ( e       �      1) 
 For   the parabola, Equation 3.2 becomes 

  

μ
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 Setting    a       �       b       �      1 in Equation 3.4 yields 
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 Therefore  , Equation 3.29 may be written as 
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  where   
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h
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3   (3.31)     

   M p   is dimensionless, and it may be thought of as the mean anomaly for the parabola (  parabolic mean 
anomaly  ). Equation 3.30, which plays the role of Kepler’s equation for parabolic trajectories, is also known 
as   Barker’s equation  . It is plotted in  Figure 3.14   .   

 There   is no  “ eccentric anomaly ”  for the parabola. Given the true anomaly   θ  , we fi nd the time directly 
from Equations 3.30 and 3.31. If time is the given variable, then we must solve the cubic equation 
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  which has but one real root, namely,   
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        Example 3.4      
 A   geocentric parabola has a perigee velocity of 10       km/s. How far is the satellite from the center of the earth 
six hours after perigee passage? 

    Solution 
 The   fi rst step is to fi nd the orbital parameters  e  and  h . Of course we know that  e       �      1 for a parabola. To get 
the angular momentum, we can use the given perigee speed and Equation 2.90 (the energy equation) to fi nd 
the perigee radius, 
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 It   follows from Equation 2.31 that the angular momentum is 

  
h r vp p� � � �7972 10 79 720 2, km /s

      

 We   can now calculate the parabolic mean anomaly by means of Equation 3.31, 
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 Therefore  , 3 M p        �      20.321 rad, which, when substituted into Equation 3.32, yields the true anomaly, 
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 Finally  , we substitute the true anomaly into the orbit equation to fi nd the radius, 
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    3.6       HYPERBOLIC TRAJECTORIES ( e       <      1) 
 Setting    a       �      1 and  b       �       e  in Equation 3.5 yields: 
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 Therefore  , for the hyperbola Equation 3.1 becomes 
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 Multiplying   both sides by ( e  2       �      1) 3/2 , we get 
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  (3.33)     

  where   
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2( )   (3.34)      

  M   h   is the   hyperbolic mean anomaly  . Equation 3.33 is plotted in  Figure 3.15   . Recall that   θ   cannot exceed   θ    �   
(see Equation 2.97). 

 We   can simplify Equation 3.33 by introducing an auxiliary angle analogous to the eccentric anomaly 
 E  for the ellipse. Consider a point on a hyperbola whose polar coordinates are  r  and   θ  . Referring to  Figure 3.16   , 
let  x  be the horizontal distance of the point from the center  C  of the hyperbola, and let y be its distance 
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 FIGURE 3.15  
       Plots of Equation 3.33 for several different eccentricities.    



above the apse line. The ratio  y / b  defi nes the hyperbolic sine of the dimensionless variable  F  that we will 
use as the hyperbolic eccentric anomaly. That is, we defi ne  F  to be such that 

  
sinh F

y

b
�   (3.35)      

 In   view of the equation of a hyperbola 
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  it is consistent with the definition of sinh  F  to define the hyperbolic cosine as   

  
cosh F

x

a
�   (3.36)      

   (It should be recalled that sinh    x       �      ( e x        �       e   �    x  )/2 and cosh    x       �      ( e x        �       e   �    x  )/2 and, therefore, that cosh 2   x       �      
sinh 2   x       �      1.) 

 From    Figure 3.16  we see that  y       �       r  sin   θ   . Substituting this into Equation 3.35, along with  r       �       a ( e  2       �      1)/
(1      �       e    cos     θ  ) (Equation 2.104) and  b a e� �2 1    (Equation 2.106), we get 
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  so that   
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 This   can be used to solve for  F  in terms of the true anomaly, 
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 Using   the formula  sinh ln� � � �1 2 1x x x( )   , we can, after simplifying the algebra, write Equation 3.38 as 
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 Substituting   the trigonometric identities 

  
sin

tan ( )

tan ( )
cos

tan ( )

tan ( )
θ

θ

θ
θ

θ

θ
�

�
�

�

�

2 2

1 2

1 2

1 22

2

2

/

/

/

/      

  and doing some more algebra yields   
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 Fortunately  , but not too obviously, the numerator and the denominator in the brackets have a common fac-
tor, so that this expression for the hyperbolic eccentric anomaly reduces to 
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 Substituting   Equations 3.37 and 3.39 into Equation 3.33 yields   Kepler’s equation for the hyperbola  , 

  M e F Fh � �sinh    (3.40)      

 This   equation is plotted for several different eccentricities in  Figure 3.17   . 
 If   we substitute the expression for sinh  F , Equation 3.37, into the hyperbolic trig identity 

cosh 2     F       �      sinh 2     F       �      1, we get 
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 A   few steps of algebra lead to 
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  so that   
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  (3.41a)      

 Solving   this for cos   θ  , we obtain the inverse relation, 
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 The   hyperbolic tangent is found in terms of the hyperbolic sine and cosine by the formula 

  
tanh

sinh

cosh
F

F

F
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 In   mathematical handbooks we can fi nd the hyperbolic trig identity, 
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 Substituting   Equations 3.37 and 3.41a into this formula and simplifying yields 
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 Interestingly   enough, Equation 3.42 holds for ordinary trig functions, too; that is, 
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 Therefore  , Equation 3.43 can be written 

  
tanh tan

F e
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 This   is a somewhat simpler alternative to Equation 3.39 for computing eccentric anomaly from true anom-
aly, and it is a whole lot simpler to invert: 
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 If   time is the given quantity, then Equation 3.40 — a transcendental equation — must be solved for  F  by an 
iterative procedure, as was the case for the ellipse. To apply Newton’s procedure to the solution of Kepler’s 
equation for the hyperbola, we form the function 

  f F e F F Mh( ) sinh� � �      

  and seek the value of  F  that makes  f ( F )      �      0. Since   

  f F e F
 � �( ) cosh 1       

 Equation   3.16 becomes 
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1 1
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  (3.45)      

 All   quantities in this formula are dimensionless (radians, not degrees).

        Algorithm 3.2          Solve   Kepler’s equation for the hyperbola for the hyperbolic eccentric anomaly  F  given 
the eccentricity  e  and the hyperbolic mean anomaly  M h  . See Appendix D.12 for the implementation of this 
algorithm in MATLAB. 

    1.     Choose an initial estimate of the root  F . 
    a.     For hand computations read a rough value of  F  0  (no more than two signifi cant fi gures) from 

 Figure 3.17  in order to keep the number of iterations to a minimum.  
    b.     In computer software let  F  0       �       M h  , an inelegant choice which may result in many iterations but 

will nevertheless rapidly converge on today’s high speed desktop and laptop computers.     
    2.     At any given step, having obtained  F i   from the previous step, calculate  f ( F i  )      �       e    sinh  F i        �       F i        �       M h   

and  f   
 ( F i  )      �       e  cosh  F i        �      1.  
    3.     Calculate ratio  i        �       f ( F i  )/ f   
 ( F i  ).  
    4.     If  | ratio  i   |  exceeds the chosen tolerance (e.g., 10  � 8 ), then calculate an updated value of  F :    

  F Fi i i� � �1 ratio       

  Return   to step 2. 
    5.     If  | ratio  i   |  is less than the tolerance, then accept  F i   as the solution to within the desired accuracy.        



        Example 3.5      
 A   geocentric trajectory has a perigee velocity of 15       km/s and a perigee altitude of 300       km. (a) Find the 
radius and the time when the true anomaly is 100 ° ; (b) fi nd the position and speed three hours later. 

    Solution 
 We   fi rst calculate the primary orbital parameters  e  and  h . The angular momentum is calculated from 
Equation 2.31 and the given perigee data: 

  
h r vp p� � � � �( )6378 300 15 100 170 2, km /s

      

 The   eccentricity is found by evaluating the orbit equation,  r       �      ( h  2 /  μ  )[1/(1      �       e  cos   θ  )], at perigee: 
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    (a)     Since  e             1 the trajectory is a hyperbola. Note that the true anomaly of the asymptote of the hyperbola 
is, according to Equation 2.97:    
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 Evaluating   the orbit equation at   θ        �      100 °  yields: 
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 To   fi nd the time since perigee passage at   θ        �      100 ° , we fi rst use Equation 3.44a to calculate the hyperbolic 
eccentric anomaly, 
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 Kepler  ’s equation for the hyperbola then yields the mean anomaly, 

  M e F Fh � � � � �sinh . sinh . . .2 7696 2 2927 2 2927 11 279 rad.       

 The   time since perigee passage is found by means of Equation 3.34, 
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    (b)     Three hours later the time since perigee passage is    

  
t � � � �4141 4 3 3600 14 941. ( ),  s 4.15 hr
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 The   corresponding mean anomaly, from Equation 3.34, is 
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 We   will use Algorithm 3.2 with an error tolerance of 10  � 6  to fi nd the hyperbolic eccentric anomaly  F . 
Referring to  Figure 3.17 , we see that for  M h        �      40.69 and  e       �      2.7696,  F  lies between 3 and 4. Let us arbi-
trarily choose  F  0       �      3 as our initial estimate of  F . Executing the algorithm yields the following steps: 
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 We   substitute this value of  F  into Equation 3.44b to fi nd the true anomaly, 

  
tan tanh

.

.
tanh

.
.  

θ
θ

2
�

�

�
�

�

�
� �

e

e

F1

1 2

2 7696 1

2 7696 1

3 4631

2
1 3708 1⇒ 007 78. �

      

 With   the true anomaly, the orbital equation yields the radial coordinate at the fi nal time 
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 The   velocity components are obtained from Equation 2.31, 
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  and Equation 2.49,   
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 Therefore  , the speed of the spacecraft is 

  
v v vr� � � � �2 2 2 210 494 0 61386 10 51⊥ . . . km/s

      

 Note   that the hyperbolic excess speed for this orbit is 
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 The   results of this analysis are shown in  Figure 3.18   .       
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182  CHAPTER 3 Orbital position as a function of time

 When   determining orbital position as a function of time with the aid of Kepler’s equation, it is conve-
nient to have position  r  as a function of eccentric anomaly  F . The   orbit equation in terms of hyperbolic 
eccentric anomaly   is obtained by substituting Equation 3.41b into Equation 2.104, 
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 This   reduces to 

  r a e F� �( cosh )1   (3.46)       

    3.7       UNIVERSAL VARIABLES 
 The   equations for elliptical and hyperbolic trajectories are very similar, as can be seen from  Table 3.1   . 
Observe, for example, that the hyperbolic mean anomaly is obtained from that of the ellipse as follows: 
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 FIGURE 3.18  
       Given and computed data for Example 3.5.    
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 In   fact, the formulas for the hyperbola can all be obtained from those of the ellipse by replacing the vari-
ables in the ellipse equations according to the following scheme, wherein  “  ←  ”  means  “ replace by ” : 
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 Note   in this regard that sin ( iF )      �       i  sinh  F  and cos ( iF )      �      cosh  F . Relations among the circular and hyper-
bolic trig functions are found in mathematics handbooks, such as Beyer (1991). 
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 Table 3.1          Comparison of Some of the Orbital Formulas for the Ellipse and Hyperbola  

   Equation    Ellipse ( e       <      1)  Hyperbola ( e       >      1) 

   1.  Orbit equation (2.45) 
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   2.  Conic equation in Cartesian coordinates 
(2.79), (2.109)   

x

a

y

b

2

2

2

2
1� �

      

x

a

y

b

2

2

2

2
1� �

    

   3.  Semimajor axis (2.71), (2.103) 
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   5.  Energy equation (2.81), (2.111) 
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   6.  Mean anomaly (3.7), (3.34) 
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   7.  Kepler’s equation (3.14), (3.40)   M E e Ee � � sin       M e F Fh � �sinh     

   8.  Orbit equation in terms of eccentric 
anomaly (3.25), (3.46) 
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 In   the universal variable approach,   the semimajor axis of the hyperbola is negative  , so that the energy 
equation (row 5 of  Table 3.1 ) has the same form for any type of orbit, including the parabola, for which 
 a       �       � . In this formulation, the semimajor axis of any orbit is found using (row 3) 
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 If   the position  r  and velocity  v  are known at a given point on the path, then the energy equation (row 5) is 
convenient for fi nding the semimajor axis of any orbit, 
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 Kepler  ’s equation may also be written in terms of a universal variable, or   universal anomaly   χ  , that 
is valid for all orbits. See, for example, Battin (1999), Bond  &  Allman (1993), and Prussing  &  Conway 
(1993). If  t  0  is the time when the universal variable is zero, then the value of   χ   at time  t  0       �        Δ t  is found by 
iterative solution of the   universal Kepler’s equation   
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  in which  r  0  and  v r   0  are the radius and radial velocity at  t       �       t  0 , and   α   is the reciprocal of the semimajor axis:   
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     α        �      0,   α        �      0 and   α              0 for hyperbolas, parabolas and ellipses, respectively. The units of   χ   are km 1/2  (so 
  α  χ   2  is dimensionless). The functions  C ( z ) and  S ( z ) belong to the class known as   Stumpff functions  , and 
they are defi ned by the infi nite series, 
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  C   ( z ) and  S ( z ) are related to the circular and hyperbolic trig functions as follows: 
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                 ( )z � αχ2   (3.53)      

 Clearly  ,  z       �      0,  z       �      0 and  z             0 for hyperbolas, parabolas and ellipses, respectively. It should be pointed out 
that if  C ( z ) and  S ( z ) are computed by the series expansions, Equations 3.51a and 3.51b, then the forms of 
 C ( z ) and  S ( z ), depending on the sign of  z , are selected, so to speak, automatically.  C ( z ) and  S ( z ) behave as 
shown in  Figure 3.19   . Both  C ( z ) and  S ( z ) are nonnegative functions of  z . They increase without bound as  z  
approaches  �  �  and tend towards zero for large positive values of  z . As can be seen from Equation 3.53 1 , 
for  z             0,  C ( z )      �      0 when  cos z � 1   , that is, when z      �      (2  π  ) 2 , (4  π  ) 2 , (6  π  ) 2 ,  … . 

 The   price we pay for using the universal variable formulation is having to deal with the relatively 
unknown Stumpff functions. However, Equations 3.52 and 3.53 are easy to implement in both computer 
programs and programmable calculators. See Appendix D.13 for the implementation of these expressions 
in MATLAB. 

 To   gain some insight into how Equation 3.49 represents the Kepler equations for all of the conic sections, 
let  t  0  be the time at periapse passage and let us set  t  0       �      0, as we have assumed previously. Then   Δ t      �      t , 
 v r   0       �      0 and  r  0  equals  r p  , the periapsis radius. In that case Equation 3.49 reduces to 

  
μ α χ αχ χt r S r tp p� � � �( ) ( ) ( )1 03 2  at periapse passage   (3.54)      

 Consider   fi rst the parabola. In that case   α        �      0, and  S       �       S (0)      �      1/6, so that Equation 3.54 becomes a 
cubic polynomial in   χ  : 
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       A plot of the Stumpff functions  C ( z ) and  S ( z ).    
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 Multiply   this equation through by  μ/h( )3
   to obtain 
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 Since    r p        �       h  2 /2  μ   for a parabola, we can write this as 

  

μ μ
χ

μ
χ

2

3

3
1

6

1

2h
t

h h
� �

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
  (3.55)      

 Upon   setting  χ θ μ� h tan ( )/ /2    , Equation 3.55 becomes identical to Equation 3.30, the time versus true 
anomaly relation for the parabola. 

 Kepler  ’s equation for the ellipse can be obtained by multiplying Equation 3.54 through by  μ( )1 2
3

� e h/( )    : 
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 Recall   that for the ellipse,  r p        �       h  2 /[  μ  (1      �       e )] and   α        �      1/ a       �        μ  (1      �       e  2 )/ h  2 . Using these two expressions in 
Equation 3.56, along with  S z( ) sin( )� �αχ αχ α χ⎡
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3
2 3    (from Equation 3.52 1 ), and working through the 

algebra ultimately leads to 
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 Comparing   this with Kepler’s equation for an ellipse (Equation 3.14) reveals that the relationship between 
the universal variable   χ   and the eccentric anomaly  E  is  χ � aE    . Similarly, it can be shown for hyperbolic 
orbits that  χ � �aF   . In summary, the   relations between the universal anomaly and the various eccentric 
anomalies   encountered previously are: 
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  (3.57)      

 When    t  0  is the time at a point other than periapsis, so that Equation 3.49 applies, then Equations 3.57 becomes 
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 As   before, we can use Newton’s method to solve Equation 3.49 for the universal anomaly   χ  , given the 
time interval   Δ t . To do so, we form the function 
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  and its derivative   
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  where it is to be recalled that   

  z � αχ2
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  which means of course that   
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 It   turns out that 
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 Substituting   Equations 3.61, 3.62 and 3.63 into Equation 3.60 and simplifying the result yields 
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 With   Equations 3.59 and 3.64, Newton’s algorithm (Equation 3.16) for the universal Kepler equation 
becomes 
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 According   to Chobotov (2002), a reasonable estimate for the starting value   χ   0  is 

  χ μ α0 � Δt   (3.66)     
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        Algorithm 3.3          Solve   the universal Kepler’s equation for the universal anomaly   χ   given   Δ t ,  r  0 ,  v r   0  and   α  . 
See Appendix D.14 for an implementation of this procedure in MATLAB. 

    1.     Use Equation 3.66 for an initial estimate of   χ   0 .  
    2.     At any given step, having obtained   χ  i   from the previous step, calculate    
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  where  zi i� αχ 2   .   

    3.     Calculate ratio  i        �       f (  χ  i  )/ f   
 (  χ  i  )  
    4.     If  | ratio  i    |  exceeds the chosen tolerance (e.g., 10  � 8 ), then calculate an updated value of   χ  ,    

  χ χi i i� � �1 ratio       

 Return   to step 2. 

    5.     If  | ratio  i   |  is less than the tolerance, then accept   χ  i   as the solution to within the desired accuracy.        

        Example 3.6      
 An   earth satellite has an initial true anomaly of   θ   0       �      30 ° , a radius of  r  0       �      10,000       km, and a speed of 
 v  0       �      10       km/s. Use the universal Kepler’s equation to fi nd the change in universal anomaly   χ   after one hour 
and use that information to determine the true anomaly   θ   at that time. 

    Solution 
 Using   the initial conditions, let us fi rst determine the angular momentum and the eccentricity of the trajec-
tory. From the orbit formula, Equation 2.45, we have 

  
h r e e� � � � � � � � �μ θ0 01 398 600 10 000 1 30 63135 1 0 86602( cos ) , ( cos ) ., , ee   (a)      

 This  , together with the angular momentum formula, Equation 2.31, yields 
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 Using   the radial velocity relation, Equation 2.49, we fi nd 
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e
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2� �⊥    , it follows that 
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  which simplifi es to become 39.86 e  2       �      17.563 e       �      60.14      �      0. The only positive root of this quadratic equa-
tion is   

  e � 1 4682.       

 Since    e  is greater than 1, the orbit is a hyperbola. Substituting this value of the eccentricity back into (a) and 
(b) yields the angular momentum 

  h � 95154 2, km /s      

  as well as the initial radial speed   

  vr0 3 0752� . km/s       

 The   hyperbolic eccentric anomaly  F  0  for the initial conditions may now be found from Equation 3.44a, 

  
tanh tan

.

.
tan .

F e

e
0 0

2

1

1 2

1 4682 1

1 4682 1

30

2
0 16670�

�

�
�

�

�

�θ
=

      

 Solving   for  F  0  yields 

  F0 0 23448� .  rad.   (c)      

 In   the universal variable formulation, we calculate the semimajor axis of the orbit by means of Equation 
3.47, 
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μ
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,
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  (d)      

 The   negative value is consistent with the fact that the orbit is a hyperbola. From Equation 3.50 we get 

  
α � �

�
� � � � �1 1

19 655
5 0878 10 5 1

a ,
km.

     

  which appears throughout the universal Kepler’s equation.   
 We   will use Algorithm 3.3 with an error tolerance of 10  � 6  to fi nd the universal anomaly. From Equation 

3.66, our initial estimate is 

  χ0
6398 600 5 0878 10 3600 115 6� � � � � ��, . .       

 Executing   the algorithm yields the following steps: 

  χ0 115 6� .       
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 Step   1: 

  

f

f
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  |ratio| , so repeat. �10 6
      

 Step   2: 
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 Step   3: 
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 Step   4: 
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  ratio � �10 6
      

 So   we accept 

  
χ � 128 51. km

1
2

     

  as the solution after four iterations. Substituting this value of   χ   together with the semimajor axis [Equation 
(d)] into Equation 3.58 3  yields   

  

F F
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�0
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,( )
      



 It   follows from (c) that the hyperbolic eccentric anomaly after one hour is 

  F � � �0 23448 0 91664 1 1511. . .       

 Finally  , we calculate the corresponding true anomaly using Equation 3.44b, 
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  which means that after one hour   

  θ � �100 04.             

 Recall   from Section 2.11 that the position  r  and velocity  v  on a trajectory at any time  t  can be found in 
terms of the position  r  0  and velocity  v  0  at time  t  0  by means of the Lagrange  f  and  g  coeffi cients and their 
fi rst derivatives, 

  r r v� �f g0 0   (3.67)      

  v r v� �� �f g0 0   (3.68)      

 Equations   2.158 give  f ,  g ,  �f     and  �g    explicitly in terms of the change in true anomaly   Δ  θ   over the time 
interval   Δ t       �       t       �       t  0 . The Lagrange coeffi cients can also be derived in terms of changes in the eccentric 
anomaly   Δ E  for elliptical orbits,   Δ F  for hyperbolas or   Δ  tan   (  θ  /2) for parabolas. However, if we take advan-
tage of the universal variable formulation, we can cover all of these cases with the same set of Lagrange 
coeffi cients (Bond and Allman, 1996). By means of the Stumpff functions  C ( z ) and  S ( z ), the   Lagrange f 
and g coeffi cients in terms of the universal anomaly   are: 
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 The   implementation of these four functions in MATLAB is found in Appendix D.15.

        Algorithm 3.4          Given    r  0  and  v  0 , fi nd  r  and  v  at a time   Δ t  later. See Appendix D.16 for an implementation 
of this procedure in MATLAB. 

    1.     Use the initial conditions to fi nd: 
    a.     The magnitude of  r  0  and  v  0 ,       

  
r v0 0 0 0 0 0� � � �r r v v
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                  b.     The radial component velocity of  v r   0  by projecting  v  0  onto the direction of  r  0 ,       

  
v

rr0
0 0

0

�
�r v

      

                          c.     The reciprocal   α   of the semimajor axis, using Equation 3.48,       

  
α

μ
� �

2

0

0
2

r

v

      

 The   sign of   α   determines whether the trajectory is an ellipse (  α              0), parabola (  α        �      0) or hyper-
bola (  α        �      0). 

                          2.     With  r  0 ,  v r   0 ,   α   and   Δ t , use Algorithm 3.3 to fi nd the universal anomaly   χ  .  
    3.     Substitute   α  ,  r  0 ,   Δ t  and   χ   into Equations 3.69a and b to obtain  f , and  g .  
    4.     Use Equation 3.67 to compute  r  and, from that, its magnitude  r .  
    5.     Substitute   α  ,  r  0 ,  r  and   χ   into Equations 3.69c and d to obtain  �f    and  �g   .  
    6.     Use Equation 3.68 to compute  v .        

        Example 3.7      
 An   earth satellite moves in the  xy  plane of an inertial frame with origin at the earth’s center. Relative to that 
frame, the position and velocity of the satellite at time  t  0  are 
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 Compute   the position and velocity vectors of the satellite 60 minutes later using Algorithm 3.4. 

    Solution 
 Step   1. 
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 The   trajectory is an ellipse, because   α   is positive. 

 Step   2. 
 Using   the results of Step 1, Algorithm 3.3 yields 

  χ � 253 53. km
1
2

     



  which means   

  z � � � � �αχ2 5 27 1429 10 253 53 4 5911. . .       

 Step   3. 
 Substituting   the above values of   χ   and  z  into Equations 3.69a and 3.69b we fi nd 
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 Step   4. 
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 Therefore  , the magnitude of  r  is 
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 Step   5. 
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 Step   6. 
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 The   initial and fi nal position and velocity vectors, as well as the trajectory, are accurately illustrated in 
 Figure 3.20   .        
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    PROBLEMS 

    Section 3.2 

        3.1     If  f x x� �1
2 2

1
6

3
2

tan tan    , then show that  df dx x/ ( cos )� �1 1/   2   , thereby verifying the integral in 
Equation 3.4.     

    Section 3.4 

        3.2     Find the three positive roots of the equation 10  e   
sin   x        �       x  2       �      5 x       �      4 to eight signifi cant fi gures. Use: 

    (a)     Newton’s method.  
    (b)     Bisection method.     

    3.3     Find the fi rst four non-negative roots of the equation tan ( x )      �      tanh ( x ) to eight signifi cant fi gures. Use: 

    (a)     Newton’s method.  
    (b)     Bisection method.     

    3.4     In terms of the eccentricity  e , the period  T  and the angles   α   and   β   (in radians) fi nd the time  t  required 
to fl y from point 1 to point 2 on the ellipse.  C  is the center of the ellipse.           
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 FIGURE 3.20  
       Initial and fi nal points on the geocentric trajectory of Example 3.7.    



    3.5     Calculate the time required to fl y from  P  to  B , in terms of the eccentricity  e  and the period  T. B  lies on 
the minor axis.           

 

Ans.: 
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    3.6     If the eccentricity of the elliptical orbit is 0.3, calculate, in terms of the period  T , the time required to 
fl y from  P  to  B .        
    {Ans.: 0.157 T }       

    3.7     If the eccentricity of the elliptical orbit is 0.5, calculate, in terms of the period  T , the time required to 
fl y from  P  to  B .        
    {Ans.: 0.170T}       
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    3.8     A satellite is in earth orbit for which the perigee altitude is 200       km and the apogee altitude is 600       km. 
Find the time interval during which the satellite remains above an altitude of 400       km. 
    {Ans.: 47.15 minutes}     

    3.9     An earth-orbiting satellite has a perigee radius of 7000       km and an apogee radius of 10,000       km. 
(a) What true anomaly   Δ  θ   is swept out between  t       �      0.5       hr and  t       �      1.5 hr after perigee passage? 
(b) What area is swept out by the position vector during that time interval? 
    {Ans.: (a) 128.7 ° ; (b) 1.03      �      10 8        km 2 }     

    3.10     An earth-orbiting satellite has a period of 15.743   hours and a perigee radius of 12,756       km. At time 
 t       �      10 hours after perigee passage, determine: 

    (a)     The radius.  
    (b)     The speed.  
    (c)     The radial component of the velocity.  
    {Ans.: (a) 48,290       km; (b) 2.00       km/s; (c)  – 0.7210       km/s}     

    3.11     A satellite in earth orbit has perigee and apogee radii of  r p        �      7000       km and  r a        �      14,000       km, respectively. 
Find its true anomaly 30 minutes after passing true anomaly of 60 ° . 
    {Ans.: 127 ° }     

    3.12     Show that the solution to  a  cos   θ        �       b  sin   θ        �       c , where  a ,  b  and  c  are given, is:    

  
θ φ φ� � �cos cos1 c

a

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

      
 where   tan   φ        �       b / a . 

    3.13     Verify the results of part (b) of Example 3.3.     

    Section 3.5 

        3.14     Calculate the time required for a spacecraft launched into a parabolic trajectory at a perigee altitude 
of 500       km to leave the earth’s sphere of infl uence (see Table A.2). 
    {Ans.: 7d 18       h 34       m}     

    3.15     A spacecraft on a parabolic trajectory around the earth has a perigee radius of 7500       km. 

    (a)     How long does it take to coast from   θ        �       � 90 degrees to   θ        �       � 90 degrees?  
    (b)     How far is the spacecraft from the center of the earth 24 hours after passing through perigee?  
    {Ans.: (a) 1.078       h; (b) 230,200       km}        

    Section 3.6 

        3.16     A spacecraft on a hyperbolic trajectory around the earth has a perigee radius of 7500       km and a perigee 
speed of 1.1 v  esc . 

    (a)     How long does it take to coast from   θ        �       � 90 °  to   θ        �       � 90 ° ?  
    (b)     How far is the spacecraft from the center of the earth 24 hours after passing through perigee?  
    {Ans.: (a) 1.14       h; (b) 456,000       km}     



    3.17     A trajectory has a perigee velocity of 11.5       km/s and a perigee altitude of 300       km. If at 6 AM the satel-
lite is traveling towards the earth with a speed of 10       km/s, how far will it be from the earth’s surface at 
11 AM the same day? 
    {Ans.: 88,390       km}     

    3.18     An incoming object is sighted at an altitude of 37,000       km with a speed of 8       km/s and a fl ight path 
angle of  � 65 ° . (a) Will it impact the earth or fl y by? (b) What is the time to impact or closest passage? 
    {Ans.: (b) 1       h 24       m}        

    Section 3.7 

        3.19     At a given instant the radial position of an earth-orbiting satellite is 7200       km, its radial speed is 1 km/s. 
If the semimajor axis is 10,000       km, use Algorithm 3.3 to fi nd the universal anomaly 60 minutes later. 
Check your result using Equation 3.58.  

    3.20     At a given instant a space object has the following position and velocity vectors relative to an earth-
centered inertial frame of reference:    

  r i j k0 20 000 105 000 19 000� � �, , , kmˆ ˆ ˆ ( )       

  v i j k0 3 4000 1 5000� � �0.9000 km/sˆ . ˆ . ˆ ( )       

 Find    r  and  v  two hours later. 

  Ans.: , , , km ; 0.862,800r i j k v i� � � � �26 338 128 750 29 656 3 21ˆ ˆ ˆ ( ) ˆ . 116 1 4613ˆ . ˆ ( )j k� km/s{ }         
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    4.1       INTRODUCTION 
 The   discussion of orbital mechanics up to now has been confi ned to two dimensions, that is, to the plane 
of the orbits themselves. This chapter explores the means of describing orbits in three-dimensional space, 
which, of course, is the setting for real missions and orbital maneuvers. Our focus will be on the orbits of 
earth satellites, but the applications are to any two-body trajectories, including interplanetary missions to be 
discussed in Chapter 8. 

 We   begin with a discussion of the ancient concept of the celestial sphere and the use of right ascension 
and declination to defi ne the location of stars, planets and other celestial objects on the sphere. This leads 
to the establishment of the inertial geocentric equatorial frame of reference and the concept of state vector. 
The six components of this vector give the instantaneous position and velocity of an object relative to the 
inertial frame and defi ne the characteristics of the orbit. Following that discussion is a presentation of the 
six classical orbital elements, which also uniquely defi ne the shape and orientation of an orbit and the loca-
tion of body on it. We then show how to transform the state vector into orbital elements and vice versa, tak-
ing advantage of the perifocal frame introduced in Chapter 2. 

 We   go on to summarize two of the major perturbations of earth orbits due to the earth’s nonspherical 
shape. These perturbations are exploited to place satellites in sun-synchronous and molniya orbits. 

 The   chapter concludes with a discussion of ground tracks and how to compute them.  

                                        Orbits in three dimensions    4 
CHAPTER

Chapter outline

4.1 Introduction 199
4.2 Geocentric right ascension-declination frame 200
4.3 State vector and the geocentric equatorial frame 203
4.4 Orbital elements and the state vector 208
4.5 Coordinate transformation 216
4.6 Transformation between geocentric equatorial and perifocal frames 229
4.7 Effects of the earth’s oblateness 233
4.8 Ground tracks 244
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    4.2       GEOCENTRIC RIGHT ASCENSION-DECLINATION FRAME 
 The   coordinate system used to describe earth orbits in three dimensions is defi ned in terms of earth’s equa-
torial plane, the   ecliptic plane  , and the earth’s axis of rotation. The ecliptic is the plane of the earth’s orbit 
around the sun, as illustrated in  Figure 4.1   . The earth’s axis of rotation, which passes through the north and 
south poles, is not perpendicular to the ecliptic. It is tilted away by an angle known as the   obliquity of the 
ecliptic  ,  � . For the earth   �   is approximately 23.4 degrees. Therefore, the earth’s equatorial plane and the 
ecliptic intersect along a line, which is known as the   vernal equinox line  . On the calendar,  “ vernal equinox ”  
is the fi rst day of spring in the northern hemisphere, when the noontime sun crosses the equator from south 
to north. The position of the sun at that instant defi nes the location of a point in the sky called the vernal 
equinox, for which the symbol   γ   is used. On the day of the vernal equinox, the number of hours of daylight 
and darkness are equal; hence, the word equinox. The other equinox occurs precisely one-half year later, 
when the sun crosses back over the equator from north to south, thereby defi ning the fi rst day of autumn. 
The vernal equinox lies today in the constellation Pisces, which is visible in the night sky during the fall. 
The direction of the vernal equinox line is from the earth towards   γ  , as shown in  Figure 4.1 . 

 For   many practical purposes, the vernal equinox line may be considered fi xed in space. However, it actu-
ally rotates slowly because the earth’s tilted spin axis precesses westward around the normal to the ecliptic 
at the rate of about 1.4 °  per century. This slow   precession of the vernal equinox line   is due primarily to the 
action of the sun and the moon on the nonspherical distribution of mass within the earth. Due to the centrifu-
gal force of rotation about its own axis, the earth bulges very slightly outward at its equator. This effect is 
shown highly exaggerated in  Figure 4.2   . One of the bulging sides is closer to the sun than the other, so the 
force of the sun’s gravity  f  1  on its mass is slightly larger than the force  f  2  on opposite the side, farthest from 
the sun. The forces  f  1  and  f  2 , along with the dominant force  F  on the spherical mass, comprise the total force 
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 FIGURE 4.1  
       The earth’s orbit around the sun, viewed from above the ecliptic plane, showing the change of seasons in the northern 
hemisphere.    



of the sun on the earth, holding it in its solar orbit. Taken together,  f  1  and  f  2  produce a net clockwise moment 
(a vector into the page) about the center of the earth. That moment would rotate the earth’s equator into align-
ment with the ecliptic if it were not for the fact that the earth has an angular momentum directed along its 
south-to-north polar axis due to its spin around that axis at an angular velocity   ω  E   of about 360 °  per day. The 
effect of the moment is to rotate the angular momentum vector in the direction of the moment (into the page). 
The result is that the spin axis is forced to precess in a clockwise direction around the normal to the ecliptic, 
sweeping out a cone as illustrated in the fi gure. The moon exerts a torque on the earth for the same reason, 
and the combined effect of the sun and the moon is a precession of the spin axis, and hence   γ  , with a period 
of about 26,000 years. The moon’s action also superimposes a small nutation on the precession. This causes 
the obliquity   �   to vary with a maximum amplitude of 0.0025 °  over a period of 18.6 years. 

 Four   thousand years ago, when the fi rst recorded astronomical observations were being made,   γ   was 
located in the constellation Aries, the ram. The Greek letter   γ   is a descendent of the ancient Babylonian 
symbol resembling the head of a ram. 

 To   the human eye, objects in the night sky appear as points on a   celestial sphere   surrounding the earth, 
as illustrated in  Figure 4.3   . The north and south poles of this fi xed sphere correspond to those of the earth 
rotating within it. Coordinates of latitude and longitude are used to locate points on the celestial sphere 
in much the same way as on the surface of the earth. The projection of the earth’s equatorial plane out-
ward onto the celestial sphere defi nes the celestial equator. The vernal equinox   γ  , which lies on the celestial 
equator, is the origin for measurement of longitude, which in astronomical parlance is called   right ascen-
sion  . Right ascension (RA or   α  ) is measured along the celestial equator in degrees east from the vernal 
equinox. (Astronomers measure right ascension in hours instead of degrees, where 24 hours equals 360 ° .) 
Latitude on the celestial sphere is called   declination  . Declination (Dec or   δ  ) is measured along a meridian 
in degrees, positive to the north of the equator and negative to the south.  Figure 4.4    is a sky chart showing 
how the heavenly grid appears from a given point on the earth. Notice that the sun is located at the intersec-
tion of the equatorial and ecliptic planes, so this must be the fi rst day of spring. 

 Stars   are so far away from the earth that their positions relative to each other appear stationary on the 
celestial sphere. Planets, comets, satellites, etc., move upon the fi xed backdrop of the stars. A table of the 
coordinates of celestial bodies as a function of time is called an   ephemeris  , for example, the  Astronomical 
Almanac  (U.S. Naval Observatory, 2008).  Table 4.1    is an abbreviated ephemeris for the Moon and for 
Venus. An ephemeris depends on the location of the vernal equinox at a given time or epoch, for we know 
that even the positions of the stars relative to the equinox change slowly with time. For example,  Table 4.2    
shows the celestial coordinates of the star Regulus at fi ve epochs since AD 1700. Currently, the position of 
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the vernal equinox in the year 2000 is used to defi ne the standard grid of the celestial sphere. In 2025, the 
position will be updated to that of the year 2050, and so on at twenty-fi ve year intervals. Since observations 
are made relative to the actual orientation of the earth, these measurements must be transformed into the 
standardized celestial frame of reference. As  Table 4.2  suggests, the adjustments will be small if the current 
epoch is within 25 years of the standard precession epoch.  

    4.3       STATE VECTOR AND THE GEOCENTRIC EQUATORIAL FRAME 
 At   any given time, the state vector of a satellite comprises its position  r  and orbital velocity  v . Orbital 
mechanics is concerned with specifying or predicting state vectors over intervals of time. From Chapter 2, 
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 Table 4.1          Venus and Moon Ephemeris for 0 Hours Universal Time. (Precession Epoch: 2000 AD)  

     Venus    Moon   

   Date  RA  Dec  RA  Dec 

   1 Jan 2004  21       h 05.0       m   � 18 °  36 
   1       h 44.9       m   � 8 °  47 
  

   1 Feb 2004  23       h 28.0       m   � 04 °  30 
   4       h 37.0       m   � 24 °  11 
  

   1 Mar 2004  01       h 30.0       m   � 10 °  26 
   6       h 04.0       m   � 08 °  32 
  

   1 Apr 2004  03       h 37.6       m   � 22 °  51 
   9       h 18.7       m   � 21 °  08 
  

   1 May 2004  05       h 20.3       m   � 27 °  44 
   11       h 28.8       m   � 07 °  53 
  

   1 Jun 2004  05       h 25.9       m   � 24 °  43 
   14       h 31.3       m   � 14 °  48 
  

   1 Jul 2004  04       h 34.5       m   � 17 °  48 
   17       h 09.0       m   � 26 °  08 
  

   1 Aug 2004  05       h 37.4       m   � 19 °  04 
   21       h 05.9       m   � 21 °  49 
  

   1 Sep 2004  07       h 40.9       m   � 19 °  16 
   00       h 17.0       m   � 00 °  56 
  

   1 Oct 2004  09       h 56.5       m   � 12 °  42 
   02       h 20.9       m   � 14 °  35 
  

   1 Nov 2004  12       h 15.8       m   � 00 °  01 
   05       h 26.7       m   � 27 °  18 
  

   1 Dec 2004  14       h 34.3       m   � 13 °  21 
   07       h 50.3       m   � 26 °  14 
  

   1 Jan 2005  17       h 12.9       m   � 22 °  15 
   10       h 49.4       m   � 11 °  39 
  

 Table 4.2          Variation of the Coordinates of the Star Regulus Due to Precession of the Equinox  

   Precession Epoch  RA  Dec 

   1700 AD  9       h 52.2       m (148.05 ° )   � 13 °  25 
  

   1800 AD  9       h 57.6       m (149.40 ° )   � 12 °  56 
  

   1900 AD  10       h 3.0       m (150.75 ° )   � 12 °  27 
  

   1950 AD  10       h 5.7       m (151.42 ° )   � 12 °  13 
  

   2000 AD  10       h 8.4       m (152.10 ° )   � 11 °  58 
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we know that the equation governing the state vector of a satellite traveling around the earth, is, under the 
familiar assumptions: 

  
��r � �

μ

r3
r   (4.1)     

   r  is the position vector of the satellite relative to the center of the earth. The components of  r  and, espe-
cially, those of its time derivatives  �r v�     and  ��r a�    , must be measured in a non-rotating frame attached to 
the earth. A commonly used non-rotating right-handed Cartesian coordinate system is the   geocentric equa-
torial frame   shown in  Figure 4.5   . The  X -axis points in the vernal equinox direction. The  XY  plane is the 
earth’s equatorial plane, and the  Z -axis coincides with the earth’s axis of rotation and points northward. The 
unit vectors  ̂I    ,  ̂J     and  K̂    form a right-handed triad. The non-rotating geocentric equatorial frame serves as 
an inertial frame for the two-body earth satellite problem, as embodied in Equation 4.1. It is not truly an 
inertial frame, however, since the center of the earth is always accelerating towards a third body, the sun (to 
say nothing of the moon), a fact which we ignore in the two-body formulation.   

 In   the geocentric equatorial frame the state vector is given in component form by 

  r I J K� � �X Y Zˆ ˆ ˆ   (4.2)      

  v I J K� � �v v vX Y Z
ˆ ˆ ˆ   (4.3)      

 If    r  is the magnitude of the position vector, then 

  r u� r rˆ   (4.4)      

    Figure 4.5  shows that the components of  ûr     (the direction cosines  l ,  m  and  n  of  r ) are found in terms of the 
right ascension   α   and declination   δ   as follows: 

  
ˆ ˆ ˆ ˆ cos cos ˆ cos sin ˆ sin ˆu I J K I J Kr l m n� � � � � �δ α δ α δ   (4.5)      
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 FIGURE 4.5  
       The geocentric equatorial frame.    



 From   this we see that the declination is obtained as   δ        �      sin  � 1  n . There is no quadrant ambiguity since, by 
defi nition, the declination lies between  � 90 °  and  � 90 ° , which is precisely the range of the principal values 
of the arcsine function. It follows that cos  δ   cannot be negative. Equation 4.5 also reveals that  l       �      cos  δ  cos  α  . 
Hence, we fi nd the right ascension from   α        �      cos  � 1 ( l /cos  δ  ), which yields two values of   α   between 0 and 
360 ° . To determine the correct quadrant for   α  , we check the sign of the direction cosine  m       �      cos  δ  sin  α  . 
Since cos  δ   cannot be negative, the sign of  m  is the same as the sign of sin  α  . If sin  α              0 then   α   lies in the 
range 0 to 180 ° , whereas sin  α        �      0 means that   α   lies between 180 °  and 360 ° .

        Algorithm 4.1          Given   the position vector  r I J K� � �X Y Zˆ ˆ ˆ    , calculate the right ascension   α   and declina-
tion   δ  . This procedure is implemented in MATLAB ®  as  ra_and_dec_from_r.m , which appears in Appendix 
D.17. 

    1.     Calculate the magnitude of  r :    

  r X Y Z� � �2 2 2
      

    2.     Calculate the direction cosines of  r :    

  
l

X

r
m

Y

r
n

Z

r
� � �

      

    3.     Calculate the declination:    

  δ � �sin 1 n       

    4.     Calculate the right ascension:    
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 Although   the position vector furnishes the right ascension and declination, the right ascension and dec-
lination alone do not furnish  r . For that we need the distance  r  in order to obtain the position vector from 
Equation 4.4.

        Example 4.1      
 If   the position vector of the International Space Station in the geocentric equatorial frame is 

  r I J K� � � �5368 1784 3691ˆ ˆ ˆ ( ) km       

 what   are its right ascension and declination? 
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    Solution 
 We   employ Algorithm 4.1. 
 Step   1. 

  r � � � � � �( ) ( )5368 1784 3691 67542 2 2 km       

 Step   2. 

  
l m n�

�
� � �

�
� � � �

5368

6754
0 7947

1784

6754
0 2642

3691

6754
0 5462. . .

      

 Step   3. 

  δ � � ��sin . .1 0 5464 33 12       

 Step   4. 
 Since   the direction cosine  m  is negative, 

  
α

δ
� � � � � �

�

�

� �360 360
0 7947

33 12
1 1cos

cos
cos

.

cos .

l⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ � � � � � �360 161 6 198 4. .

            

 From   Section 2.11 we know that if we are provided the state vector ( r  0 , v  0 ) at a given instant, then we 
can determine the state vector at any other time in terms of the initial vector by means of the expressions 

  

r r v

v r v

� �

� �

f g

f g
0 0

0 0
� �   (4.6)     

  where the Lagrange coefficients  f  and  g  and their time derivatives are given in Equation 3.69. Specifying 
the total of six components of  r  0  and  v  0  therefore completely determines the size, shape and orientation of 
the orbit.

          Example 4.2      
 At   time  t  0  the state vector of an earth satellite is 

  r I J K0 1600 5310 3800� � �ˆ ˆ ˆ ( ) km   (a)      

  v I J K0 7 350 0 4600 2 470� � � �.  km/sˆ . ˆ . ˆ ( )   (b)      

 Determine   the position and velocity 3200 seconds later and plot the orbit in three dimensions. 

    Solution 
 We   will use the universal variable formulation and Algorithm 3.4, which was illustrated in detail in Example 
3.7. Therefore, only the results of each step are presented here. 



 Step   1. (  α   here is not to be confused with the right ascension.) 

  α � � � �1 4613 10 4 1. km . Since this is positive, the orbit is an  ellipse.       

 Step   2. 

  χ � 294 42
1
2. .km       

 Step   3. 

  f g� � � � �0 94843 354 89 1. .and  s .       

 Step   4. 

  
r I J K� � � �1090 9 5199 4 4480 6 6949 8.  km kmˆ . ˆ . ˆ ( ) .⇒ r

      

 Step   5. 

  
� �f g� � ��0 00045324 0 884791. , . .s       

 Step   6. 

  
v I J K� � �7 2284 1 9997 0 46311.  km/sˆ . ˆ . ˆ ( )

      

 To   plot the elliptical orbit, we observe that one complete revolution means a change in the eccentric anom-
aly  E  of 2  π   radians. According to Equation 3.57 2 , the corresponding change in the universal anomaly is: 

  
χ

α
π� � � � �aE E

1 1

0 00014613
2 519 77

1
2

.
. km

      

 Letting     χ   vary from 0 to 519.77 in small increments, we employ the Lagrange coeffi cient formulation 
(Equation 3.67 plus 3.69a and 3.69b) to compute: 

  

r r v� � � �1
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  where  Δ  t  for a given value of   χ   is given by Equation 3.49. Using a computer to plot the points obtained in 
this fashion yields  Figure 4.6   , which also shows the state vectors at  t  0  and  t  0       �      3200 s.         

 The   previous example illustrates the fact that the six quantities or orbital elements comprising the state 
vector  r  and  v  completely determine the orbit. Other elements may be chosen. The classical orbital ele-
ments are introduced and related to the state vector in the next section.  
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    4.4       ORBITAL ELEMENTS AND THE STATE VECTOR 
 To   defi ne an orbit in the plane requires two parameters: eccentricity and angular momentum. Other param-
eters, such as the semimajor axis, the specifi c energy, and (for an ellipse) the period are obtained from these 
two. To locate a point on the orbit requires a third parameter, the true anomaly, which leads us to the time 
since perigee. Describing the orientation of an orbit in three dimensions requires three additional param-
eters, called the  Euler angles , which are illustrated in  Figure 4.7   . 

 First  , we locate the intersection of the orbital plane with the equatorial ( XY ) plane. That line is called the 
 node line . The point on the node line where the orbit passes above the equatorial plane from below it is called 
the  ascending node . The node line vector  N  extends outward from the origin through the ascending node. 
At the other end of the node line, where the orbit dives below the equatorial plane, is the descending node. 
The angle between the positive  X -axis and the node line is the fi rst Euler angle  Ω , the right ascension of the 
ascending node. Recall from Section 4.2 that right ascension is a positive number lying between 0 °  and 360 ° . 

 The   dihedral angle between the orbital plane and the equatorial plane is the inclination  i , measured 
according to the right-hand rule, that is, counterclockwise around the node line vector from the equator 
to the orbit. The inclination is also the angle between the positive  Z -axis and the normal to the plane of 
the orbit. The two equivalent means of measuring  i  are indicated in  Figure 4.7 . Recall from Chapter 2 that 
the angular momentum vector  h  is normal to the plane of the orbit. Therefore, the inclination  i  is the angle 
between the positive  Z -axis and  h . The inclination is a positive number between 0 °  and 180 ° . 

 It   remains to locate the perigee of the orbit. Recall that perigee lies at the intersection of the eccentric-
ity vector  e  with the orbital path. The third Euler angle   ω  , the argument of perigee, is the angle between the 
node line vector  N  and the eccentricity vector  e , measured in the plane of the orbit. The argument of perigee 
is a positive number between 0 °  and 360 ° . 
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 FIGURE 4.6  
       The orbit corresponding to the initial conditions given in Equations (a) and (b) of Example 4.2.    



 In   summary, the six   orbital elements   are: 

     h  specifi c angular momentum.  
     i  inclination.  
      Ω   right ascension (RA) of the ascending node.  
     e  eccentricity.  
      ω   argument of perigee.  
      θ   true anomaly.    

 The   angular momentum  h  and true anomaly   θ   are frequently replaced by the semimajor axis  a  and the 
mean anomaly  M , respectively. 

 Given   the position  r  and velocity  v  of a spacecraft in the geocentric equatorial frame, how do we obtain 
the orbital elements? The step-by-step procedure is outlined next in Algorithm 4.2. Note that each step 
incorporates results obtained in the previous steps. Several steps require resolving the quadrant ambiguity 
that arises in calculating the arccosine (recall Figure 3.4).

        Algorithm 4.2          Obtain   orbital elements from the state vector. A MATLAB version of this procedure appears 
in Appendix D.18. Applying this algorithm to orbits around other planets or the sun amounts to defi ning the 
frame of reference and substituting the appropriate gravitational parameter   μ  . 

    1.     Calculate the distance:    

  r X Y Z� � � � �r r 2 2 2
      

    2.     Calculate the speed:    

  
v � � � � �v v v v vX Y Z

2 2 2
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    3.     Calculate the radial velocity:    

  v r Xv Yv Zvr X Y Z� � � � �r v/ /( .) r       

 Note   that if  v r              0, the satellite is fl ying away from perigee. If  v r        �      0, it is fl ying towards perigee. 

    4.     Calculate the specifi c angular momentum:    

  

h r v

I J K

� � �

ˆ ˆ ˆ

.X Y Z

v v vX Y Z       

    5.     Calculate the magnitude of the specifi c angular momentum,    

  h � �h h       

 the   fi rst orbital element. 

    6.     Calculate the inclination:    

  
i

h

h
Z� �cos 1 ⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟   (4.7)      

 This   is the second orbital element. Recall that  i  must lie between 0 °  and 180 ° , which is precisely the 
range (principal values) of the arccosine function. Hence, there is no quadrant ambiguity to contend 
with here. If 90 °       �       i       �      180 ° , the angular momentum  h  points in a southerly direction. In that case 
the orbit is retrograde, which means that the motion of the satellite around the earth is opposite to the 
earth’s rotation. 

    7.     Calculate:    

  

N K h

I J K

� � �ˆ

ˆ ˆ ˆ

0 0 1

h h hX Y Z

  (4.8)      

 This   vector defi nes the node line. 

    8.     Calculate the magnitude of  N :    

  N � �N N.       

    9.     Calculate the right ascension of the ascending node:    

  Ω � �cos ( )1 N NX /       



 the   third orbital element. If ( N X     / N )            0, then   Ω   lies in either the fi rst or fourth quadrant. If 
( N X     / N )      �      0, then   Ω   lies in either the second or third quadrant. To place   Ω   in the proper quadrant, 
observe that the ascending node lies on the positive side of the vertical  XZ  plane (0      �        Ω        �      180 ° ) 
if  N Y              0. On the other hand, the ascending node lies on the negative side of the  XZ  plane 
(180 °       �        Ω        �      360 ° ) if  N Y        �      0. Therefore,  N Y              0 implies that 0      �        Ω        �      180 ° , whereas  N Y        �      0 
implies that 180 °       �        Ω        �      360 ° . In summary, 
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  (4.9)      

    10.     Calculate the eccentricity vector. Starting with Equation 2.40,    
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 so   that 
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    11.     Calculate the eccentricity,    

  e � �e e       

 the   fourth orbital element. Substituting Equation 4.10 leads to a form depending only on the scalars 
obtained thus far: 

  

e
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    12.     Calculate the argument of perigee,    

  
ω � ��cos 1 N e

N e

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

 the   fi fth orbital element. If  N   ·   e             0, then   ω   lies in either the fi rst or fourth quadrant. If  N   ·   e       �      0, 
then   ω   lies in either the second or third quadrant. To place   ω   in the proper quadrant, observe that 
perigee lies above the equatorial plane (0      �        ω        �      180 ° ) if  e  points up (in the positive  Z  d irection), 
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and perigee lies below the plane (180 °       �        ω        �      360 ° ) if  e  points down. Therefore,  e Z        �      0 implies that 
0      �        ω        �      180 ° , whereas  e Z        �      0 implies that 180 °       �        ω        �      360 ° . To summarize: 
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  (4.12)      

    13.     Calculate the true anomaly,    

  
θ � ��cos 1 e r

e r

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

 the   sixth and fi nal orbital element. If  e     ·     r             0, then   θ   lies in the fi rst or fourth quadrant. If  e   ·   r       �      0, 
then   θ   lies in the second or third quadrant. To place   θ   in the proper quadrant, note that if the satellite 
is fl ying away from perigee ( r     ·     v       �      0), then 0      �        θ        �      180 ° , whereas if the satellite is fl ying towards 
perigee ( r     ·     v       �      0), then 180 °       �        θ        �      360 ° . Therefore, using the results of step 3 above: 

  

θ �

� �

� � �

�

�

cos ( )

cos (

1

1

0

360

e r

e r

e r
v

e r
v

r

r

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �� 0)

⎧

⎨
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⎩

⎪⎪⎪⎪⎪⎪

  (4.13a)      

 Substituting   Equation 4.10 yields an alternative form of this expression, 

  

θ
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� �

� �
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⎜⎜⎜⎜
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⎣
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⎦
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⎥

μμr
vr� �1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎧

⎨
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⎩

⎪⎪⎪⎪⎪⎪⎪
( )

  (4.13b)           

 The   procedure described above for calculating the orbital elements is not unique.

        Example 4.3      
 Given   the state vector: 

  

r I J K
v I J K

� � � �

� � � �

6045 3490 2500
3 457 6 618 2 533

ˆ ˆ ˆ ( )
. ˆ . ˆ . ˆ (

 km
 km//s)       

 fi nd   the orbital elements  h ,  i ,   Ω  ,  e ,   ω   and   θ   using Algorithm 4.2. 



    Solution 
 Step   1. 

  r � � � � � � � �r r ( ) ( )  6045 3490 2500 74142 2 2 km   (a)      

 Step   2. 

  v � � � � � � �v v ( . ) . . .3 457 6 618 2 533 7 8842 2 2 km/s   (b)      

 Step   3. 

  
v

rr �
�

�
� � � � � � � �

�
v r ( . ) ( ) . ( ) .

.
3 457 6045 6 618 3490 2 533 2500

7414
0 55775 km/s

  
(c)

      

 Since    v r              0, the satellite is fl ying away from perigee. 
 Step   4. 

  

h r v

I J K

I� � � � �

�

� � �

ˆ ˆ ˆ

. . .

, ˆ ˆ6045 3490 2500

3 457 6 618 2 533

25 380 6670JJ K� 52 070 2, ˆ ( ) km /s

  

(d)

      

 Step   5. 

  
h � � � � � � � �h h ( , ) ( , ) ,25 380 6670 52 070 58 3102 2 2 2 km /s

  
(e)

      

 Step   6. 

  
i

h

h
Z� �

�
� �� �cos cos

,

,
.1 1 52 070

58 310
153 2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

  
(f)

      

 Since    i  is greater than 90 ° , this is a retrograde orbit. 
 Step   7. 

  

N K h

I J K

I J� � �

� �

� � �ˆ

ˆ ˆ ˆ

, ,

ˆ , ˆ (0 0 1

25 380 6670 52 070

6670 25 380 2km /s)

  

(g)

      

 Step   8. 

  N � � � � � � �N N ( ) ( , ) ,6670 25 380 26 2502 2 2 km /s   (h)      

 Step   9. 

  
Ω � �

�
� � �� �cos cos

,
. .1 1 6670

26 250
104 7 255 3

N

N
X ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  or 
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 From   (g) we know that  N Y        �      0; therefore,   Ω   must lie in the third quadrant, 

  Ω � �255 3.   (i)      

 Step   10. 

 

e r v� � �

� �

1

1

398 600
7 884

398 600

74

2

2

μ
μ

v
r

rvr

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,
.

,

114
6045 3490 2500 7414 0 5575

3

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢ (� � � �

�

ˆ ˆ ˆ ) ( )( . )

(

I J K

.. ˆ . ˆ . ˆ )

. ˆ . ˆ . ˆ

457 6 618 2 533

0 09160 0 1422 0 02644

I J K

e I J K

� �

� � � �

⎤
⎦⎥

  

(j)

      

 Step   11. 

  e � � � � � � � �e e ( . ) ( . ) ( . ) .0 09160 0 1422 0 02644 0 17122 2 2   (k)      

 Clearly  , the orbit is an ellipse. 
 Step   12. 

  

ω �
�

�
� � � � � �� �cos cos
( )( . ) ( , )( . ) ( )1 1 6670 0 09160 25 380 0 1422 0N e

Ne

(( . )

( , )( . )
. .

0 02644

26 250 0 1712
20 07 339 9

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� � � or       

     ω   lies in the fi rst quadrant if  e Z              0, which true in this case, as we see from (j). Therefore, 

  ω � �20 07.   (l)      

 Step   13. 

  

θ �
�

�
� � � � �� �cos cos
( . )( ) ( . ) (1 1 0 09160 6045 0 1422e r

er

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

�� �

� �

3490 0 02644 2500

0 1712 7414
28 45 33

) ( . )( )

( . )( )
.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 or 11 6. �       

 From   (c) we know that  v r              0, which means 0      �        θ        �      180 ° . Therefore, 

  θ � �28 45.       



 Having   found the orbital elements, we can go on to compute other parameters. The perigee and apogee 
radii are: 

  

r
h

e

r
h

e

p

a

�
�

�
�

�

�
�

2 2

2

1

1 0

58 310

398 600

1

1 0 1712
7284

1

1

μ

μ

cos( )

,

, .
 km

ccos( )

,

, .
,

180

58 310

398 600

1

1 0 1712
10 290

2

�
�

�
�  km

      

 From   these it follows that the semimajor axis of the ellipse is: 

  
a r rp a� � �

1

2
8788( )  km

      

 This   leads to the period: 

  

T a� �
2

2 2783 2π

μ
/ .  hr

      

 The   orbit is illustrated in  Figure 4.8   .       

 We   have seen how to obtain the orbital elements from the state vector. To arrive at the state vector, given 
the orbital elements, requires performing coordinate transformations, which are discussed in the next section.  
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 FIGURE 4.8  
       A plot of the orbit identifi ed in Example 4.3.    
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    4.5       COORDINATE TRANSFORMATION 
 The   Cartesian coordinate system was introduced in Section 1.2.  Figure 4.9    shows two such coordinate systems: 
the unprimed system with axes  xyz , and the primed system with axes  x  
  y  
  z  
 . The orthogonal unit basis vectors 
for the unprimed system are  ̂i    ,  ̂j    and  ̂k   . The fact they are unit vectors means 

  
ˆ ˆ ˆ ˆ ˆ ˆi i j j k k� � � � � � 1   (4.14)      

 Since   they are orthogonal, 

  
ˆ ˆ ˆ ˆ ˆ ˆi j i k j k� � � � � � 0   (4.15)      

 The   orthonormal basis vectors  ̂ ′i    ,  ̂ ′j     and  ˆ ′k     of the primed system share these same properties. That is, 

  
ˆ ˆ ˆ ˆ ˆ ˆ′ ′ ′ ′ ′ ′i i j j k k� � � � � � 1   (4.16)     

  and   

  
ˆ ˆ ˆ ˆ ˆ ˆ′ ′ ′ ′ ′ ′i j i k j k� � � � � � 0   (4.17)      

 We   can express the unit vectors of the primed system in terms of their components in the unprimed sys-
tem as follows: 

  

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

′
′
′

i i j k

j i j k

k i j

� � �

� � �

� � �

Q Q Q

Q Q Q

Q Q

11 12 13

21 22 23

31 32 QQ33k̂   
(4.18)      
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′

 FIGURE 4.9  
       Two sets of Cartesian reference axes,  xyz  and  x  
  y  
  z  
 .    



 The    Q ’s in these expressions are just the direction cosines of  ̂ ′i    ,  ̂ ′j     and  ̂ ′k    .  Figure 4.9  illustrates the compo-
nents of  ˆ ′k    , which are, of course, the projections of  ̂ ′k     onto the  x ,  y  and  z  axes. The unprimed unit vectors may 
be resolved into components along the primed system to obtain a set of equations similar to Equation 4.18. 

  

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ

i i j k

j i j k

k

� � �

� � �

�

′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′
′

Q Q Q

Q Q Q

Q

11 12 13

21 22 23

311 32 33
ˆ ˆ ˆ′ ′ ′ ′ ′i j k� �Q Q   

(4.19)

      

 However  ,  ̂ ˆ ˆ ˆ′ ′i i i i� � �    , so that, from Equations 4.18 1  and 4.19 1 , we fi nd  Q Q11 11� ′    . Likewise,  ̂ ˆ ˆ ˆ′ ′i j j i� � �    , 
which, according to Equations 4.18 1  and 4.19 2 , means  Q Q12 21� ′    . Proceeding in this fashion, it is clear that the 
direction cosines in Equation 4.19 may be expressed in terms of those in Equation 4.18. That is, Equation 4.19 
may be written: 

  

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

i i j k

j i j k

k i

� � �

� � �

� �

Q Q Q

Q Q Q

Q Q

11 21 31

12 22 32

13 2

′ ′ ′
′ ′ ′
′ 33 33

ˆ ˆ′ ′j k� Q   

(4.20)

      

 Substituting   Equation 4.20 into Equation 4.14 and making use of Equations 4.16 and 4.17, we get the three 
relations 

  

ˆ ˆ

ˆ ˆ

ˆ ˆ

i i

j j

k k

� � � � �

� � � � �

� �

1 1

1 1

1

11
2

21
2

31
2

12
2

22
2

32
2

1

⇒

⇒

⇒

Q Q Q

Q Q Q

Q 33
2

23
2

33
2 1� � �Q Q   

(4.21)

      

 Substituting   Equation 4.20 into Equation 4.15 and, again, making use of Equation 4.16 and 4.17, we obtain 
the three equations 

  

ˆ ˆ

ˆ ˆ

i j

i k

� � � � �

� � � �

0 0

0

11 12 21 22 31 32

11 13 21 23 31 33

⇒

⇒

Q Q Q Q Q Q

Q Q Q Q Q Q ��

� � � � �

0

0 012 13 22 23 32 33
ˆ ˆj k ⇒ Q Q Q Q Q Q   

(4.22)

      

 Let   [ Q ] represent the matrix of direction cosines of  ̂ ′i    ,  ̂ ′j     and  ̂ ′k     relative to  ̂i    ,  ̂j     and  ̂k    , as given by 
Equation 4.18. [ Q ] is referred to as the   direction cosine matrix   or  DCM . 

  

[ ]Q

i i i j

� �

� �Q Q Q

Q Q Q

Q Q Q

11 12 13

21 22 23

31 32 33

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

′ ′� � � � ˆ̂ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

′

′ ′ ′

′ ′ ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i k

j i j j j k

k i k j k k

�

� � �

� � �
⎥⎥
⎥
⎥   

(4.23)
      

 The   transpose of the matrix [ Q ], denoted [ Q ]  T  , is obtained by interchanging the rows and columns of [ Q ]. Thus, 

  

[ ]Q

i i i j
T

Q Q Q

Q Q Q

Q Q Q

� �

� �
11 21 31

12 22 32

13 23 33

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

′� � � �′′ ′

′ ′ ′

′ ′ ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

i k

j i j j j k

k i k j k k

�

� � �

� � �

⎥⎥
⎥
⎥
⎥   

(4.24)
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 Forming   the product [ Q ]  T  [ Q ], we get: 

  

[ ] [ ]Q QT

Q Q Q

Q Q Q

Q Q Q

Q Q Q

�
11 21 31

12 22 32

13 23 33

11 12 13⎡

⎣

⎢
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⎥⎥
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Q Q Q

Q Q Q Q Q Q

21 22 23

31 32 33

11
2

21
2

31
2

11 12 21

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
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Q Q Q Q Q Q Q Q
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2

2

� � �

� � � 22
2

32
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12 13 22 23 32 33

13 11 23 21 33 31 13 12 23

� � �

� � �

Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q QQ Q Q Q Q Q22 33 32 13
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⎥
⎥
⎥
⎥
⎥
⎥       

 From   this we obtain, with the aid of Equations 4.21 and 4.22, 

  [ ] [ ] [ ]Q Q 1T �   (4.25)     

  where   

  

[ ]1 �

1 0 0

0 1 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥       

   [ 1 ] stands for the identity matrix or unit matrix. 
 In   a similar fashion, we can substitute Equation 4.18 into Equations 4.16 and 4.17 and make use of 

Equations 4.14 and 4.15 to fi nally obtain: 

  [ ][ ] [ ]Q Q 1T �   (4.26)      

 Since   [ Q ] satisfi es Equations 4.25 and 4.26, it is called an   orthogonal matrix  . 
 Let    v  be a vector. It can be expressed in terms of its components along the unprimed system: 

  
v i j k� � �v v vx y z

ˆ ˆ ˆ
      

 or   along the primed system 

  
v i j k� � �′ ′ ′ ′ ′ ′v v vx y z

ˆ ˆ ˆ
      

 These   two expressions for  v  are equivalent ( v       �       v ) since a vector is independent of the coordinate system 
used to describe it. Thus, 

  
′ ′ ′ ′ ′ ′v v v v v vx y z x y z
ˆ ˆ ˆ ˆ ˆ ˆi j k i j k� � � � �   (4.27)      

 Substituting   Equation 4.20 into the right-hand side of Equation 4.27 yields 

  
′ ′ ′ ′ ′ ′ ′ ′ ′ ′v v v v Q Q Q v Q Qx y z x y
ˆ ˆ ˆ ( ˆ ˆ ˆ ) ( ˆi j k i j k i� � � � � � �11 21 31 12 222 32 13 23 33

ˆ ˆ ) ( ˆ ˆ ˆ )′ ′ ′ ′ ′j k i j k� � � �Q v Q Q Qz       



 Upon   collecting terms on the right, we get 

  

′ ′ ′ ′ ′ ′ ′v v v Q v Q v Q v Q v Q v Qx y z x y z x y
ˆ ˆ ˆ ( )ˆ (i j k i� � � � � � � �11 12 13 21 22 223 31 32 33v Q v Q v Q vz x y z)ˆ ( ) ˆ′ ′j k� � �

     

 Equating   the components of like unit vectors on each side of the equals sign yields 

  

′
′
′

v Q v Q v Q v

v Q v Q v Q v

v Q v Q v

x x y z

y x y z

z x y

� � �

� � �

� � �

11 12 13

21 22 23

31 32 QQ vz33   
(4.28)

      

 In   matrix notation, this may be written 

  { } [ ]{ }′v Q v�   (4.29)     

  where   

  

{ }            { }′
′
′

′

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪

v v� �

v

v

v

v

v
x

y

z

x

yy

zv

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪

  (4.30)      

 and   [ Q ] is given by Equation 4.23. Equation 4.28 (or Equation 4.29) shows how to transform the compo-
nents of the vector  v  in the unprimed system into its components in the primed system. The inverse trans-
formation, from primed to unprimed, is found by multiplying Equation 4.29 through by [ Q ]  T  : 

  [ ] { } [ ] [ ]{ }Q v Q Q vT T′ �       

 But  , according to Equation 4.25, [ Q ][ Q ]  T        �      [ 1 ], so that 

  [ ] { } [ ]{ }Q v 1 vT ′ �       

 Since   [ 1 ] {  v  }       �       {  v  } , we obtain 

  { } [ ] { }v Q v� T ′   (4.31)      

 Therefore  , to go from the unprimed system to the primed system we use [ Q ], and in the reverse direction —
 from primed to unprimed — we use [ Q ]  T  .

        Example 4.4      
 In    Figure 4.10   , the  x  
  axis is defi ned by the line segment  O  
  P . The  x  
  y  
  plane is defi ned by the intersecting 
line segments  O  
  P  and  O  
  Q . The  z  
  axis is normal to the plane of  O  
  P  and  O  
  Q  and obtained by rotating 
 O  
  P  towards  O  
  Q  and using the right-hand rule. 

    (a)     Find the direction cosine matrix [ Q ].  
    (b)     If  {  v  }       �       ⎣    2 4 6    ⎦   T  , fi nd  {  v  
  } .  
    (c)     If  {  v  
  }       �       ⎣    2 4 6    ⎦   T  , fi nd  {  v  } .    
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    Solution 
        (a)     Resolve the directed line segments  ′

→
O P     and  ′

→
O Q     into components along the unprimed system:    

  

′

′

→

→
O P

O Q

� � � � � � � � � � �

� � � �

( )

( )

5 3 5 1 4 2 8 4 2

6 3 3

ˆ ( )ˆ ( ) ˆ ˆ ˆ ˆ

ˆ (

i j k i j k

i �� � � � � � �1 5 2 9 2 3)ˆ ( ) ˆ ˆ ˆ ˆj k i j k       

 Taking   the cross product of  ′
→

O P     into  ′
→

O Q     yields a vector  Z  
 , which lies in the direction of the desired 
positive  z  
  axis: 

  
′ ′ ′

→ →
Z i j k� � � � �O P O Q 8 6 20ˆ ˆ ˆ

      

 Taking   the cross product of  Z  
  into  ′
→

O P     then yields a vector  Y  
  which points in the positive  y  
  direction: 

  
′ ′

→
Y Z i j k� � � � � �O P 68 176 80ˆ ˆ ˆ

      

 Normalizing   the vectors  ′
→

O P    ,  Y  
  and  Z  
  produces the  ˆ′i    ,  ˆ′j     and  ˆ ′k     unit vectors, respectively. Thus, 

  

ˆ . ˆ . ˆ . ˆ′
′

′

→

→
i i j k� � � � �

O P

O P

0 8729 0 4364 0 2182

      

  

ˆ . ˆ . ˆ . ˆ′
′
′

j
Y
Y

i j k� � � � �0 3318 0 8588 0 3904
     

  and,   

  
ˆ . ˆ . ˆ . ˆ′

′
′

k
Z
Z

i j k� � � �0 3578 0 2683 0 8944
      

O′
(3, 1, 2)

(−5, 5, 4)P

Q (−6, 3, 5)

x

y

z

O

    ̂i

ĵ

k̂′
′

′

 FIGURE 4.10  
       Defi ning a unit triad from the coordinates of three noncollinear points,  O  
 ,  P  and  Q .    



 The   components of  ˆ′i    ,  ̂ ′j     and  ˆ ′k     are the rows of the direction cosine matrix [ Q ]. Thus, 

  

[ ]

. . .

. . .

. .

Q �

�

� �

0 8729 0 4364 0 2182

0 3318 0 8588 0 3904

0 3578 0 2

  

    6683 0 8944.

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

      

    (b)                       

  

{ } [ ]{ }

. . .

. . .

.

′v Q v� �

�

� �

0 8729 0 4364 0 2182

0 3318 0 8588 0 3904

0 3

  

  5578 0 2683 0 8944

2

4

6  . .

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

   

  

1 309

1 756

7 155

.

.

.

�

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪       

    (c)                       

  

{ } [ ] { }

. . .

. . .

.

v Q v� �

� �

�T ′
0 8729 0 3318 0 3578

0 4364 0 8588 0 2683

0

  

  22182 0 3904 0 8944

2

4

6  . .
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⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

��

�

�

0 9263

0 9523

7 364

.

.

. 

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

            

 Let   us consider the special case in which the coordinate transformation involves a rotation about only 
one of the coordinate axes, as shown in  Figure 4.11   . If the rotation is about the  x  axis, then according to 
Equations 4.18 and 4.23, 

  

ˆ ˆ
ˆ (ˆ ˆ)ˆ (ˆ ˆ)ˆ (ˆ ˆ ) ˆ cos ˆ cos(

′
′ ′ ′ ′

i i
j j i i j j j j k k j

�

� � � � � � � � �φ φ90 )) ˆ cos ˆ sin( ) ˆ
ˆ ( ˆ ˆ)ˆ ( ˆ ˆ ) ˆ cos( )ˆ

k j k
k k j j k k k j

� �

� � � � � � �

φ φ
φ′ ′ ′ 90 �� � � �cos ˆ sin ˆ cos ˆφ φ φk j k      
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 FIGURE 4.11  
       Rotation about the  x -axis.    
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  or   

  

ˆ

ˆ

ˆ
cos sin

sin cos

′

′

′

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

i

j

k

�

�

1 0 0

0

0

φ φ
φ φ

⎡⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

ˆ

ˆ

ˆ

i

j

k
      

 The   transformation from the  xyz  coordinate system to the  xy  
  z  
  system having a common  x -axis is given 
by the direction cosine matrix on the right. Since this is a rotation through the angle   φ   about the x-axis, we 
denote this matrix by [ R  1 (  φ  )], in which the subscript 1 stands for axis 1 (the  x -axis). Thus, 

  

[ ( )] cos sin

sin cos

R1

1 0 0

0

0

φ φ φ
φ φ

�

�

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
  (4.32)      

 If   the rotation is about the  y -axis, as shown in  Figure 4.12   , then Equation 4.18 yields 

  

ˆ (ˆ ˆ)ˆ (ˆ ˆ ) ˆ cos ˆ cos( ) ˆ cos ˆ sin ˆ′ ′ ′i i i i i k k i k i� � � � � � � � � �φ φ φ φ90 kk
j j

k k i i k k k i k

ˆ ˆ

ˆ ( ˆ ˆ)ˆ ( ˆ ˆ ) ˆ cos( )ˆ cos ˆ sin

′
′ ′ ′

�

� � � � � � � � �90 φ φ φˆ̂ cos ˆi k� φ      

  or, more compactly,   

  

ˆ

ˆ

ˆ

cos sin

sin cos

′

′

′

⎧

⎨

⎪⎪⎪⎪⎪
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 FIGURE 4.12  
       Rotation about the  y -axis.    



 We   represent this transformation between two Cartesian coordinate systems having a common  y -axis (axis 2) 
as [ R  2 (  φ  )]. Therefore, 

  

[ ( )]

cos sin

sin cos

R2

0

0 1 0

0

φ
φ φ

φ φ
�

�⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
  (4.33)      

 Finally  , if the rotation is about the  z -axis, as shown in  Figure 4.13   , then we have from Equation 4.18 that 

  

ˆ (ˆ ˆ)ˆ (ˆ ˆ)ˆ cos ˆ cos( )ˆ cos ˆ sin ˆ′ ′ ′i i i i i j j i j i� � � � � � � � � �φ φ φ φ90 jj

j j i i j j j i j iˆ (ˆ ˆ)ˆ (ˆ ˆ)ˆ cos( )ˆ cos ˆ sin ˆ co′ ′ ′� � � � � � � � � � �90 φ φ φ ss ˆ

ˆ ˆ
φ j

k k′ �      

  or   

  

ˆ

ˆ

ˆ

cos sin

sin cos

′

′

′

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

i

j

k

� �

φ φ
φ φ

0

0

0 0 1

⎡⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
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ˆ

ˆ
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k
      

 In   this case the rotation is around axis 3, the  z -axis, so 

  

[ ( )]

cos sin

sin cosR3

0

0

0 0 1

φ
φ φ
φ φ� �

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
  (4.34)      

 The   single transformation between the  xyz  and  x  
  y  
  z  
  Cartesian coordinate frames in Figure 4.9 can be 
viewed as a sequence of three coordinate transformations, starting with  xyz : 

  xyz x y z x y z x y z→ → → ′ ′ ′
α β γ� � �

1 1 1 2 2 2       
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 FIGURE 4.13  
       Rotation about the  z -axis.    
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 Each   coordinate system is obtained from the previous one by means of an elementary rotation about one of the 
axes of the previous frame. Two successive rotations cannot be about the same axis. The fi rst rotation angle 
is   α  , the second one is   β   and the fi nal one is   γ  . In specifi c applications, the Greek letters that are traditionally 
used to represent the three rotations are not   α  ,   β  , and   γ  . For those new to the subject, however, it might initially 
be easier to remember that the fi rst, second and third rotation angles are represented by the fi rst, second and 
third letters of the Greek alphabet (  α  β  γ  ). Each one of the three transformations has the direction cosine matrix 
[ R   i  (  φ  )], where  i       �      1, 2 or 3 and   φ        �        α  ,   β   or   γ  . The sequence of three such elementary rotations relating two 
different Cartesian frames of reference is called an   Euler angle sequence  . Each of the twelve possible Euler 
angle sequences has a direction cosine matrix [ Q ], which is the product of three elementary rotation matrices. 
The six symmetric Euler sequences are those that begin and end with rotation about the same axis: 

  

[ ( )][ ( )][ ( )] [ ( )][ ( )][ ( )]
[ ( )][ ( )][
R R R R R R
R R R

1 2 1 1 3 1

2 1

γ β α γ β α
γ β 22 2 3 2

3 1 3 3 2

( )] [ ( )][ ( )][ ( )]
[ ( )][ ( )][ ( )] [ ( )][

α γ β α
γ β α γ

R R R
R R R R R (( )][ ( )]β αR3   (4.35)      

 The   asymmetric Euler sequences involve rotations about all three axes: 

  

[ ( )][ ( )][ ( )] [ ( )][ ( )][ ( )]
[ ( )][ ( )][
R R R R R R
R R R

1 2 3 1 3 2

2 3

γ β α γ β α
γ β 11 2 1 3

3 1 2 3 2

( )] [ ( )][ ( )][ ( )]
[ ( )][ ( )][ ( )] [ ( )][

α γ β α
γ β α γ

R R R
R R R R R (( )][ ( )]β αR1   (4.36)      

 One   of the symmetric sequences which has frequent application in space mechanics is the   classical 
Euler angle sequence  , 

  [ ] [ ( )][ ( )][ ( )] ( )Q R R R� � � � � � � � � �3 1 3 0 360 0 180 0 360γ β α α β γ   (4.37)     

  which is illustrated in  Figure 4.14   .     The   fi rst rotation is around the  z -axis, through the angle   α  . It rotates the  x  
and  y  axes into the  x  1  and  y  1  directions. Viewed down the  z -axis, this rotation appears as shown in the insert 
at the top of the fi gure. The direction cosine matrix associated with this rotation is [ R  3 (  α  )]. The subscript 
means that the rotation is around the current  ‘ 3 ’  direction, which was the  z  axis (and is now the  z  1  axis).   The 
  second rotation, represented by [ R  1 (  β  )], is around the  x  1  axis through the angle   β   required to rotate the  z  1  
axis into the  z  2  axis, which coincides with the target  z  
  axis. Simultaneously,  y  1  rotates into  y  2 . The insert in 
the lower right of  Figure 4.14  shows how this rotation appears when viewed from the  x  1  direction.     [ R  3 (  γ  )] 
represents the third and fi nal rotation, which rotates the  x  2  axis (formerly the  x  1  axis) and the  y  2  axis through 
the angle   γ   around the  z  
  axis so that they become aligned with the target  x  
  and  y  
  axes, respectively. This 
rotation appears from the  z  
 -direction as shown in the insert on the left of  Figure 4.14 . 

 Applying   the transformation in Equation 4.37 to the  xyz  components  {  b  }   x   of the vector  
b i j k� � �b b bx y z

ˆ ˆ ˆ     yields the components of the same vector in the  x  
  y  
  z  
  frame 

  
{ } [ ]{ } ( )b Q b b i j k′ ′ ′′ ′ ′ ′

x x x y zb b b� � � �� � ˆ
     

  That is,   

  
[ ]{ } [ ( )][ ( )][ ( )]{ }

{ }

[ ( )][ (Q b R R R b

b

R Rx x

x

� �3 1 3 3 1

1

γ β α γ β
� ��� ���

))]{ }

{ }

[ ( )]{ }

{ }

b

b

R b

b

x

x

x

x

1

2

23

� ��� ��� � ��� ���
� γ

′

      



 The   column vector  { }b x1
    contains the components of the vector  b   ( )b i j k� � �b b bx y z1 1 11 1 1

ˆ ˆ ˆ     in the 
fi rst intermediate frame  x  1  y  1  z  1 . The column vector  { }b x2

    contains the components of the vector  b  
( )b i j k� � �b b bx y z2 2 22 2 2

ˆ ˆ ˆ     in the second intermediate frame  x  2  y  2  z  2 . Finally, the column vector  { }b ′x     con-
tains the components in the target  x  
  y  
  z  
  frame. 

 Substituting   Equations 4.32, and 4.34 into Equation 4.37 yields the direction cosine matrix of the classi-
cal Euler sequence [ R  3 (  γ  )][ R  1 (  β  )][ R  3 (  α  )], 

  

[ ]

sin cos sin cos cos cos cos sin sin cos sin sin

siQ �

� � �

�

α β γ α γ α β γ α γ β γ
nn cos cos cos sin cos cos cos sin sin sin cos

sin sin

α β γ α γ α β γ α γ β γ
α β

� �

�ccos sin cosα β β

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥
  (4.38)      

 From   this we can see that, given a direction cosine matrix [ Q ], the angles of the classical Euler sequence 
may be found as follows: 

  
tan cos tanα β γ�

�
� �

Q

Q
Q

Q

Q
31

32
33

13

23

Classical Euler angle sequennce   (4.39)      
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 FIGURE 4.14  
       Classical Euler sequence of three rotations transforming  xyz  into  x  
  y  
  z  
 . The  “ eye ”  viewing down an axis sees the 
illustrated rotation about that axis.    
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 We   see that   β        �      cos  � 1  Q  33 . There is no quadrant uncertainty because the principal values of the arccosine 
function coincide with the range of the angle   β   given in Equation 4.37 (0 to 180 ° ). Finding   α   and   γ   involves 
computing the inverse tangent (arctan), whose principal values lie in the range  � 90 °  to  � 90 ° , whereas the 
range of both   α   and   γ   is 0 to 360 ° . Placing tan  � 1 ( y / x ) in the correct quadrant is accomplished by taking into 
considering the signs of  x  and  y . The MATLAB function  atan2d_0_360.m  in Appendix D.19 does just that.

        Algorithm 4.3          Given   the direction cosine matrix 

  

[ ]Q �

Q Q Q

Q Q Q

Q Q Q

11 12 13

21 22 23

31 32 33

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥      

  find the angles   α  β  γ   of the classical Euler rotation sequence. This algorithm is implemented by the 
MATLAB function  dcm_to_euler.m  in Appendix D.20.   

    1.      α α�
�

� � ��tan ( )1 31

32

0 360
Q

Q

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

     

    2.      β β� � � ��cos ( )1
33 0 180Q      

    3.      γ γ� � � ��tan ( )1 13

23

0 360
Q

Q
           

        Example 4.5      
 If   the direction cosine matrix for the transformation from  xyz  to  x  
  y  
  z  
  is: 

  

[ ]

. . .

. . .Q �

�

�

�

0 64050 0 75319 0 15038

0 76736 0 63531 0 086824

0

    

   

.. . .030154 0 17101 0 98481� �  

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥       

 fi nd   the angles   α  ,   β   and   γ   of the classical Euler sequence. 

    Solution 
 Use   Algorithm 4.3. 
 Step   1. 

  

α �
�

�
�

� �

� �tan tan
.

[ . ]
1 31

32

1 0 030154

0 17101

Q

Q

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

      

 Since   the numerator is negative and the denominator is positive,   α   must lie in the fourth quadrant. Thus, 

  
tan

.

[ . ]
tan ( . )� ��

� �
� � � � �1 10 030154

0 17101
0 17633 10

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ⇒⇒ α � �350

      



 Step   2. 

  β � � � � �� �cos cos ( . ) .1
33

1 0 98481 170 0Q       

 Step   3. 

  
γ � �

�� �tan tan
.

.
1 13

23

1 0 15038

0 086824

Q

Q

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

 The   numerator is negative and the denominator is positive, so   γ   lies in the fourth quadrant: 

  
tan

.

.
tan ( . )� ��

� � � � �1 10 15038

0 086824
0 17320 60 30

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ⇒ =γ 00�

            

 Another   commonly used set of Euler angles for rotating  xyz  into alignment with  x  
  y  
  z  
  is the asymmetric 
  yaw, pitch, and roll sequence   found in Equation 4.36: 

  [ ] [ ( ][ ( )][ ( )] ( )Q R R R� � � � � � � � � � � �1 2 3 0 360 90 90 0 360γ β α α β γ)   (4.40)      

 It   is illustrated in  Figure 4.15   . 
 The   fi rst rotation [ R  3 ( α )] is about the  z -axis through the angle  α . It carries the  y -axis into the  y  1  axis nor-

mal to the plane of  z  and  x  
  while rotating the  x -axis into  x  1 . This rotation appears as shown in the insert at 
the top right of  Figure 4.15 . The second rotation [ R  3 (  β  )], shown in the auxiliary view at the bottom right of 
the fi gure, is a pitch around  y  1  through the angle   β  . This carries the  x  1  axis into  x  2 , lined up with the target  x  
  
direction, and rotates the original  z  axis (now  z  1 ) into  z  2 . The fi nal rotation [ R  1 ( γ )] is a roll through the angle 
 y  around the  x  2  axis so as to carry  y  2  (originally  y  1 ) and  z  2  into alignment with the target  y  
  and  z  
  axes. 

 Substituting   Equations 4.32, 4.33 and 4.34 into Equation 4.40 yields the direction cosine matrix for the 
yaw, pitch and roll sequence, 

  

Q[ ] �

�

�

cos cos sin cos sin

cos sin sin sin cos sin sin sin

α β α β β
α β γ α γ α β γ ��

� �

cos cos cos sin

cos sin cos sin sin sin sin cos cos si

α γ β γ
α β γ α γ α β γ α nn cos cosγ β γ

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

  (4.41)      

 From   this it is apparent that 

  
tan sin tan      Yaw-pitch-roll sequencα β γ� � � �

Q

Q
Q

Q

Q
12

11
13

23

33

ee   (4.42)      

 For     β   we simply compute sin  � 1 ( �  Q  13 ). There is no quadrant uncertainty because the principal values of 
the arcsine function coincide with the range of the pitch angle ( � 90 °       �        β        �      90 ° ). Finding  α  and  γ  involves 
computing the inverse tangent, so we must once again be careful to place the results of these calculations in 
the range 0 to 360 ° . As pointed out previously, the MATLAB function  atan2d_0_360.m  in Appendix D.19 
takes care of that.
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        Algorithm 4.4          Given   the direction cosine matrix: 
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 Find   the angles   α  β  γ   of the yaw, pitch and roll sequence. This algorithm is implemented by the MATLAB 
function  dcm_to_ypr.m  in Appendix D.21. 

    1.      α α� � � ��tan 1 12
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 FIGURE 4.15  
       Yaw, pitch, and roll sequence transforming  xyz  into  x  
  y  
  z  
 .    



        Example 4.6      
 If   the direction cosine matrix for the transformation from  xyz  to  x  
  y  
  z  
  is the same as it was in Example 4.5: 
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 fi nd   the angles  α ,   β   and  γ  of the yaw, pitch, roll sequence. 

    Solution 
 Use   Algorithm 4.4. 
 Step   1. 
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 Since   both the numerator and the denominator are positive,  α  must lie in the fi rst quadrant. Thus, 
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 Step   2. 
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 Step   3. 

  
γ � �

�

� �tan tan
.

.
1 23

33

1 0 086824

0 98481

Q

Q

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

 The   numerator is positive and the denominator is negative, so  γ  lies in the second quadrant: 

  
tan

.

.
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�
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⎛
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    4.6        TRANSFORMATION BETWEEN GEOCENTRIC EQUATORIAL 
AND PERIFOCAL FRAMES 

 The   perifocal frame of reference for a given orbit was introduced in Section 2.10.  Figure 4.16    illustrates the 
relationship between the perifocal and geocentric equatorial frames. Since the orbit lies in the  x y     plane, the 
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components of the state vector of a body relative to its perifocal reference are, according to Equations 2.119 
and 2.125, 
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 In   matrix notation these may be written 
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 The   subscript  x     is shorthand for  “ the  x y z     coordinate system ”  and is used to indicate that the compo-
nents of these vectors are given in the perifocal frame, as opposed to, say, the geocentric equatorial frame 
(Equations 4.2 and 4.3). 

 The   transformation from the geocentric equatorial frame into the perifocal frame may be accomplished 
by the classical Euler angle sequence [ R  3 (  γ  )][ R  1 (  β  )][ R  3 (  α  )] in Equation 4.37. Refer to Figure 4.7. In this 
case the fi rst rotation angle is   Ω  , the right ascension of the ascending node. The second rotation is  i , the 
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 FIGURE 4.16  
       Perifocal ( x y z    ) and geocentric equatorial ( XYZ ) frames.    



orbital inclination angle, and the third rotation angle is   ω  , the argument of perigee.   Ω   is measured around 
the  Z -axis of the geocentric equatorial frame,  i  is measured around the node line, and   ω   is measured around 
the  z     axis of the perifocal frame. Therefore the direction cosine matrix  [ ]Q Xx     of the transformation from 
 XYZ  to  x y z     is 

  
[ ] ( ) ( ) ( )Q R R RXx i� 3 1 3ω[ ][ ][ ]Ω   (4.47)      

 From   Equation 4.38 we get 
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  (4.48)      

 Remember   that this is an orthogonal matrix, which means that the inverse transformation  [ ]Q xX    , from  x y z     
to  XYZ  is given by  [ ] ([ ] )Q QxX Xx

T�    , or 
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  (4.49)      

 If   the components of the state vector are given in the geocentric equatorial frame 
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  then the components in the perifocal frame are found by carrying out the matrix multiplications   
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 Likewise  , the transformation from perifocal to geocentric equatorial components is 

  { } [ ] { } { } [ ] { }r Q r v Q vX xX x X xX x� �   (4.51)     

        Algorithm 4.5          Given   the orbital elements  h ,  e ,  i ,   Ω  ,   ω   and   θ  , compute the state vectors  r  and  v  in the geo-
centric equatorial frame of reference. A MATLAB implementation of this procedure is listed in Appendix 
D.22. This algorithm can be applied to orbits around other planets or the sun. 

    1.     Calculate position vector  { }r x     in perifocal coordinates using Equation 4.45.  
    2.     Calculate velocity vector  { }v x     in perifocal coordinates using Equation 4.46.  
    3.     Calculate the matrix  [ ]Q xX     of the transformation from perifocal to geocentric equatorial coordinates 

using Equation 4.49.  
    4.     Transform  { }r x     and  { }v x     into the geocentric frame by means of Equation 4.51.        
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232  CHAPTER 4 Orbits in three dimensions

        Example 4.7      
 For   a given earth orbit, the elements are  h       �      80,000       km 2 /s,  e      �       1.4,  i      �       30 ° ,   Ω       �       40 ° ,   ω        �      60 °  and 
  θ        �      30 ° . Using Algorithm 4.5 fi nd the state vectors  r  and  v  in the geocentric equatorial frame. 
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 This   is the direction cosine matrix for  XYZ x y z→    . The transformation matrix for  x y z XYZ→     is the 
transpose, 
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 Step   4. 
 The   geocentric equatorial position vector is 
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  whereas the geocentric equatorial velocity vector is   
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 The   state vectors  r  and  v  are shown in  Figure 4.17   . By holding all of the orbital parameters except the 
true anomaly fi xed and allowing   θ   to take on a range of values, we generate a sequence of position vec-
tors  rx     from Equation 4.37. Each of these is projected into the geocentric equatorial frame as in (a), using 
repeatedly the same transformation matrix  [ ]Q xX    . By connecting the end points of all of the position vectors 
 rX   , we trace out the trajectory illustrated in  Figure 4.17 .       

    4.7       EFFECTS OF THE EARTH’S OBLATENESS 
 The   earth, like all of the planets with comparable or higher rotational rates, bulges out at the equator 
because of centrifugal force. The earth’s equatorial radius is 21       km (13 miles) larger than the polar radius. 
This fl attening at the poles is called   oblateness  , which is defi ned as follows: 

  
Oblateness

Equatorial radius Polar radius

Equatorial radius
�

−

      

 The   earth is an oblate spheroid, lacking the perfect symmetry of a sphere. (A basketball can be made an 
oblate spheroid by sitting on it.) This lack of symmetry means that the force of gravity on an orbiting body 
is not directed towards the center of the earth. Whereas the gravitational fi eld of a perfectly spherical planet 
depends only on the distance from its center, oblateness causes a variation also with latitude, that is, the 
angular distance from the equator (or pole). This is called a  zonal variation . The dimensionless parameter 
which quantifi es the major effects of oblateness on orbits is  J  2 , the   second zonal harmonic  J  2  is not a uni-
versal constant. Each planet has its own value, as illustrated in  Table 4.3   , which lists variations of  J  2  as well 
as oblateness. 

 The   gravitational acceleration (force per unit mass) arising from an oblate planet is given by 

  
��r u p� � �
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r
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ˆ
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 The   fi rst term is the familiar one (Equation 4.1) due to a spherical planet. The second term,  p , which is sev-
eral orders of magnitude smaller than  μ / r 2   is a disturbing acceleration due to the oblateness. This perturbing 
acceleration can be resolved into components, 

  p u u h� � �p p pr r hˆ ˆ ˆ
⊥ ⊥      

  where  ûr   ,  û⊥     and  ĥ     are the radial, transverse and normal unit vectors attached to the satellite, as illus-
trated in  Figure 4.18   .  ûr     points in the direction of the radial position vector r,  ĥ     is the unit vector normal 
to the plane of the orbit and  û⊥     is perpendicular to r, lying in the orbital plane and pointing in the direction 
of the motion.   

 Table 4.3          Oblateness and Second Zonal Harmonics  

   Planet  Oblateness   J  2  

   Mercury  0.000  60      �      10  � 6  

   Venus  0.000  4.458      �      10  � 6  

   Earth  0.003353  1.08263      �      10  � 3  

   Mars  0.00648  1.96045      �      10  � 3  

   Jupiter  0.06487  14.736      �      10  � 3  

   Saturn  0.09796  16.298      �      10  � 3  

   Uranus  0.02293  3.34343      �      10  � 3  

   Neptune  0.01708  3.411      �      10  � 3  

   (Moon)  0.0012  202.7      �      10  � 6  

ĥ

r

X

Y

Z

ûr

û⊥

 FIGURE 4.18  
       Unit vectors attached to an orbiting body.    



 The   perturbation components  pr   ,  p⊥     and  ph     are all directly proportional to  J2     and are functions of 
otherwise familiar orbital parameters as well as the planet radius  R , 
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 These   relations are derived by Prussing and Conway (1993), who also show how  pr    ,  p⊥    and  ph     induce time 
rates of change in all of the orbital parameters. For example, 
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 Clearly  , the time variation of the right ascension   Ω   depends only on the component of the perturbing force 
normal to the (instantaneous) orbital plane, whereas the rate of change of the argument of perigee is infl u-
enced by all three perturbation components. 

 Integrating     �Ω     over one complete orbit yields the average rate of change, 
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  where  T  is the period. Carrying out the mathematical details leads to an expression for the average rate of 
precession of the node line, and hence, the orbital plane,   
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 where   we have dropped the subscript  avg. R  and   μ   are the radius and gravitational parameter of the planet, 
 a  and  e  are the semimajor axis and eccentricity of the orbit, and  i  is the orbit’s inclination. Observe that if 
0  �   i   �  90 ° , then  �Ω � 0    . That is, for prograde orbits, the node line drifts westward. Therefore, since the 
right ascension of the node continuously decreases, this phenomenon is called   regression of the nodes  . If 
90 °   �   i   �  180 ° , we see that  �Ω  0    . The node line of retrograde orbits therefore advances eastward. For 
polar orbits ( i       �      90 ° ), the node line is stationary. 

 In   a similar fashion, the time rate of change of the argument of perigee is found to be 
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 This   expression shows that if 0 °       �       i       �      63.4 °  or 116.6 °       �       i     �  180 °  then  �ω     is positive, which means the 
perigee advances in the direction of the motion of the satellite (hence, the name   advance of perigee   for this 
phenomenon). If 63.4 °       �       i     �  116.6 ° , the perigee regresses, moving opposite to the direction of motion. 
 i       �      63.4 °  and  i       �      116.6 °  are the critical inclinations at which the apse line does not move. 

 Observe   that the coeffi cient of the trigonometric terms in Equations 4.52 and 4.53 are identical, so 
that 

  
� �ω �

�
Ω

( / )sin

cos 

5 2 22i

i
  (4.54)      

    Figure 4.19    is a plot of Equations 4.52 and 4.53 for several circular low earth orbits. The effect of 
oblateness on both  �Ω    and  �ω     is greatest at low inclinations, for which the orbit is near the equatorial bulge 
for longer portions of each revolution. The effect decreases with increasing semimajor axis because the 
satellite becomes further from the bulge and its gravitational infl uence. Obviously,  � �Ω � �ω 0     if  J2 0�     
(no equatorial bulge). 

 The   time-averaged rates of change for the inclination, eccentricity and semimajor axis are zero.

        Example 4.8      
 The   space shuttle is in a 280       km by 400       km orbit with an inclination of 51.43 ° . Find the rates of node regres-
sion and perigee advance. 

    Solution 
 The   perigee and apogee radii are 

  
r rp a� � � � � �6378 280 6658 6378 400 6778km km

      
 Therefore   the eccentricity and semimajor axis are 
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 FIGURE 4.19  
       Regression of the node and advance of perigee for nearly circular orbits of altitudes 300 to 1100       km.    



 From   Equation 4.52 we obtain the rate of node line regression 
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1 0 0089312 6718
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cos . .51 43 1 0465 10 6� � � � �  rad/s

     

  or   

  
�Ω � 5 181.  degrees per day to the west

      

 From   Equation 4.54, 
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51 43 2 7 9193 106 2 7. sin . .⋅
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  or   

  
�ω � 3 920.  degrees per day in the flight direction

            

 The   effect of orbit inclination on node regression and advance of perigee is taken advantage of for two 
very important types of orbits.   Sun-synchronous orbits   are those whose orbital plane makes a constant 
angle  α  with the radial from the sun to the earth, as illustrated in  Figure 4.20   . For that to occur, the orbital 
plane must rotate in inertial space with the angular velocity of the earth in its orbit around the sun, which 
is 360 °  per 365.26 days, or 0.9856 °  per day. With the orbital plane precessing eastward at this rate, the 
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ascending node will lie at a fi xed local time. In the illustration it happens to be 3 p.m. During every orbit, 
the satellite sees any given swath of the planet under nearly the same conditions of daylight or darkness 
day after day. The satellite also has a constant perspective on the sun. Sun-synchronous satellites, like the 
NOAA Polar-orbiting Environmental Satellites (NOAA/POES) and those of the Defense Meteorological 
Satellite Program (DMSP) are used for global weather coverage, while Landsat and the French SPOT series 
are intended for high-resolution earth observation.

        Example 4.9      
 A   satellite is to be launched into a sun-synchronous circular orbit with period of 100 minutes. Determine 
the required altitude and inclination of its orbit. 

    Solution 
 We   fi nd the altitude z from the period relation for a circular orbit, Equation 2.64: 

  

T R z z zE� � � � �
2
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,
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 For   a sun-synchronous orbit, the ascending node must advance at the rate 

  

�Ω � � � �2

365 26 24 3600
1 991 10 7π rad

 s
 rad/s

.
.

⋅ ⋅       

 Substituting   this and the altitude into Equation 4.47, we obtain 
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 Thus  , the inclination of the orbit is 

  
i � � � ��cos . .1 0 14658 98 43( )

      

 This   illustrates the fact that sun-synchronous orbits are very nearly polar orbits ( i       �      90 ° ).       

 If   a satellite is launched into an orbit with an inclination of 63.4 °  (prograde) or 116.6 °  (retrograde), then 
Equation 4.53 shows that the apse line will remain stationary. The Russian space program made this a key 
element in the design of the system of Molniya ( “ lightning ” ) communications satellites. All of the Russian 
launch sites are above 45 °  latitude, the northernmost, Plesetsk, being located at 62.8 ° N. As we shall see in 
Chapter 6, launching a satellite into a geostationary orbit would involve a costly plane change maneuver. 
Furthermore, recall from Example 2.6 that a geostationary satellite cannot view effectively the far northern 
latitudes into which Russian territory extends. 

 The   Molniya telecommunications satellites are launched from Plesetsk into 63 °  inclination orbits having a 
period of twelve hours. From Equation 2.83 we conclude that the major axis of these orbits is 53,000       km long. 
Perigee (typically 500       km altitude) lies in the southern hemisphere, while apogee is at an altitude of 40,000       km 
(25,000 miles) above the northern latitudes, farther out than the geostationary satellites.  Figure 4.21    illustrates 
a typical   Molniya orbit  . A Molniya  “ constellation ”  consists of eight satellites in planes separated by 45 ° . Each 
satellite is above 30 °  north latitude for over eight hours, coasting towards and away from apogee.



        Example 4.10      
 Determine   the perigee and apogee for an earth satellite whose orbit satisfi es all of the following conditions: 
it is sun-synchronous, its argument of perigee is constant, and its period is three hours. 

    Solution 
 The   period determines the semimajor axis, 
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 For   the apse line to be stationary we know from Equation 4.53 that  i       �      64.435 °  or  i       �      116.57 ° . However, 
an inclination of less than 90 °  causes a westward regression of the node, whereas a sun-synchronous orbit 
requires an eastward advance, which  i       �      116.57 °  provides. Substituting this, the semimajor axis and the  �Ω     
in radians per second for a sun-synchronous orbit (cf. Example 4.9) into Equation 4.52, we get 

  
1 991 10

3

2

398 600 0 0010826 6378

1 10 560
17

2

2 2 7 2
.

, .

,
cos

/
� � �

�

� ⋅ ⋅

⋅( )e
116 57 0 3466.     .� �⇒ e

      

 Now   we can fi nd the angular momentum from the period expression (Equation 2.82) 
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 Finally  , to obtain the perigee and apogee radii, we use the orbit formula. 
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        Example 4.11      
 Given   the following state vector of a satellite in geocentric equatorial coordinates: 

  

r I J K
v I J K

� � � �

� � �

3670 3870 4400
4 7 7 4 1

ˆ ˆ ˆ

. ˆ . ˆ ˆ
 km

 km/s       

 fi nd   the state vector after four days (96 hours) of coasting fl ight, assuming that there are no perturbations 
other than the infl uence of the earth’s oblateness on   Ω   and   ω  . 

    Solution 
 Four   days is a long enough time interval that we need to take into consideration not only the change in true 
anomaly but also the regression of the ascending node and the advance of perigee. First, we must determine 
the orbital elements at the initial time using Algorithm 4.2, which yields: 

  h � 58 930 2,  km /s       

  i � �39 687.       

  e � 0 42607. (The orbit is an ellipse.)       

  Ω0 130 32� �.       

  ω0 42 373� �.       

  θ0 52 404� �.       

 We   use Equation 2.71 to determine the semimajor axis, 

  
a

h

e
�

�
�

�
�

2

2

2

2

1

1

58 930

398 600

1

1 0 4261
10 640

μ
,

, .
,  km

     

  so that, according to Equation 2.83, the period is   
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 From   this we obtain the mean motion 
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 The   initial value  E  0  of eccentric anomaly is found from the true anomaly   θ   0  using Equation 3.13a, 
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 With    E  0 , we use Kepler’s equation to calculate the time  t  0  since perigee at the initial epoch, 

  nt E e E t0 0 0 00 00057495 0 60520 0 42607 0 60520� � � �sin      . . . sin .  ⇒      .⇒ t1 631 00�  s       

 Now   we advance the time to  t f  , that of the fi nal epoch, given as 96 hours later. That is,   Δ t       �      345,600 s, so 
that 

  
t t tf � � � � �1 631 00 345 600 346 230Δ . , ,   s

      

 The   number of periods  n p   since passing perigee in the fi rst orbit is 
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 From   this we see that the fi nal epoch occurs in the 32nd orbit, whereas  t  0  was in orbit 1. Time since passing 
perigee in the 32nd orbit, which we will denote  t  32 , is 

  t T t32 3231 682 31 7455 7� � �( )  s. .⇒       

 The   mean anomaly corresponding to that time in the 32nd orbit is 

  M nt32 32 0 00057495 7455 7 4 2866� � �. . .⋅  rad       

 Kepler  ’s equation yields the eccentric anomaly 
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 The   true anomaly follows in the usual way, 
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 At   this point, we use the newly found true anomaly to calculate the state vector of the satellite in perifocal 
coordinates. Thus, from Equation 4.43 

  r p q p q� � � � �r rcos  (km)32θ θˆ sin ˆ , ˆ . ˆ32 11 714 7108 8      
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  or, in matrix notation,   
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 Likewise  , from Equation 4.44, 
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 Before   we can project  r  and  v  into the geocentric equatorial frame, we must update the right ascension of 
the node and the argument of perigee. The regression rate of the ascending node is 

  

�Ω � �

�

� �
3

2 1

3

2

398 600 0 00102
2

2 2 7 2

μJ R

e a
i

( )

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

⋅
/

cos
, . 88263 6378

1 0 42607 10 644
39 69 3 8514 10

2

2 2 7 2

7⋅

( ) ⋅�

� � � � �

. ,
cos . .

/
 raad/s

     

  or   

  
�Ω � � ���2 2067 10 5. × s       

 Therefore  , right ascension at epoch in the 32nd orbit is 

  Ω Ω Ω32 0
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 Likewise  , the perigee advance rate is 
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  which means the argument of perigee at epoch in the 32nd orbit is   

  ω ω ω32 0
542 373 2 8116 10 345 600 52 090� � � � � � ���Δt . . , .⋅       



 Substituting   the updated values of   Ω   and   ω  , together with the inclination i, into Equation 4.47 yields the 
updated transformation matrix from geocentric equatorial to the perifocal frame, 
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 For   the inverse transformation, from perifocal to geocentric equatorial, we need the transpose of this 
matrix, 
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 Thus  , according to Equation 4.51, the fi nal state vector in the geocentric equatorial frame is 
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  or, in vector notation,   

  

r I J K

v I J K

� � �

� � � �

9672 4320 8691

3 040 3 330 0 6299

ˆ ˆ ˆ

. ˆ . ˆ . ˆ
 km

 (km

( )
//s)

      

 The   two orbits are plotted in  Figure 4.22   .        
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    4.8       GROUND TRACKS 
 The   projection of a satellite’s orbit onto the earth’s surface is called its   ground track  . At a given instant one 
can imagine a radial line drawn outward from the center of the earth to the satellite. Where this line pierces the 
earth’s spherical surface is a point on the ground track. We locate this point by giving its latitude and longitude 
relative to the earth. As the satellite moves around the earth, the trace of these points is its ground track. 

 Because   the satellite reaches a maximum and minimum latitude ( “ amplitude ” ) during each orbit while 
passing over the equator twice, on a Mercator projection the ground track of a satellite in low earth orbit 
often resembles a sine curve. If the earth did not rotate, there would be just one sinusoid-like track, traced 
repeatedly as the satellite orbits the earth. However, the earth rotates eastward beneath the satellite orbit at 
15.04 °  per hour, so the ground track advances westward at that rate.  Figure 4.23    shows about two and a half 
orbits of a satellite, with the beginning and end of this portion of the ground track labeled. The distance 
between two successive crossings of the equator is measured to be 23.2 ° , which is the amount of earth rota-
tion in one orbit of the spacecraft. Therefore, the ground track reveals that the period of the satellite is 

  
T � � �

23 2
1 54 92 6

.
. .

 degrees

15.04degrees hr
 hr  min

      

 This   is a typical low earth orbital period. 
 Given   a satellite’s position vector  r , we can use Algorithm 4.1 to fi nd its right ascension and declina-

tion relative to the geocentric equatorial  XYZ  frame, which is fi xed in space. The earth rotates at an angular 
velocity   ω  E   relative to this system. Let us attach an  x  
  y  
  z  
  Cartesian coordinate system to the earth with its 
origin located at the earth’s center, as illustrated in Figure 1.18. The  x  
  y  
  axes lie in the equatorial plane and 
the z 
  axis points north. (In Figure 1.18 the x 
  axis is directed towards the prime meridian, which passes 
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 FIGURE 4.22  
       The initial and fi nal position vectors.    



through Greenwich, England.) The  XYZ  and  x  
  y  
  z  
  differ only by the angle   θ   between the stationary  X  axis 
and the rotating x 
  axis. If the X and x 
  axes line up at time  t  0 , then at any time t thereafter the angle   θ   
will be given by   ω  E   ( t  –  t  0 ). The transformation from  XYZ  to  x  
  y  
  z  
  is represented by the elementary rotation 
matrix (recall Equation 4.34), 

  

[ ( )] ( )R3 0

0

0

0 0 1

θ
θ θ
θ θ θ ω� � � �

cos sin

sin cos

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

E t t   (4.55)      

 Thus  , if the components of the position vector  r  in the inertial  XYZ  frame are given by  {  r  }   X  , its components 
 {  r  }   x 
    in the rotating, earth-fi xed  x  
  y  
  z  
  frame are: 

  
{ } ( ) { }r R r′ [ ]x X� 3 θ   (4.56)      

 Knowing    {  r  }   x   
 , we use Algorithm 4.1 to determine the right ascension (longitude east of  x  
 ) and declina-
tion (latitude) in the earth-fi xed system. These points are usually plotted on a rectangular Mercator projec-
tion of the earth’s surface, as in  Figure 4.23 .

        Algorithm 4.6          Given   the initial orbital elements ( h ,  e ,  a ,  T, i ,   ω   0 ,   Ω   0 , and   θ   0 ) of a satellite relative to 
the geocentric equatorial frame, compute the right ascension  α  and declination   δ   relative to the rotating 
earth after a time interval   Δ t . This algorithm is implemented in MATLAB as the script  ground_track.m  in 
Appendix D.23. 
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 FIGURE 4.23  
       Ground track of a satellite.    
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    1.     Compute  �Ω     and  �ω     from Equations 4.52 and 4.53.  
    2.     Calculate the initial time  t  0  (time since perigee passage): 

    a.     Find the eccentric anomaly  E  0  from Equation 3.13b.  
    b.     Find the mean anomaly  M  0  from Equation 3.14.  
    c.     Find  t  0  from Equation 3.15.     

    3.     At time  t       �       t  0       �        Δ t , calculate   α   and   δ  . 
    a.     Calculate the true anomaly: 

     i.     Find  M  from Equation 3.8  
     ii.     Find  E  from Equation 3.14 using Algorithm 3.1.  
     iii.     Find   θ   from Equation 3.13a.     

    b.     Update   Ω   and  ω :       

            Ω Ω� � � �0 0
� �ΩΔ Δt t  ω ω ω           

         c.     Find  {  r  }   x   using Algorithm 4.5.  
    d.     Find  {  r  }  x 
   using Equations 4.55 and 4.56.  
    e.     Use Algorithm 4.1 to obtain compute   α   and   δ   from  {  r  }   x 
   .       

    4.     Repeat Step 3 for additional times ( t t t� �0 2Δ    ,  t t t� �0 3Δ    , etc.).        

        Example 4.12      
 An   earth satellite has the following orbital parameters: 

    rp � 6700 km                   Perigee 
    ra � 10 000, km                   Apogee 
    θ0 230� �                   True anomaly 
    Ω0 270� �                   Right ascension of the ascending node 
    i0 60� �                  Inclination 
    ω0 45� �                  Argument of perigee 

 Calculate   the right ascension (longitude east of  x  
 ) and declination (latitude) relative to the rotating earth 
45 minutes later. 

    Solution 
 First  , we compute the semimajor axis  a , eccentricity  e , the angular momentum  h , the semimajor axis  a , and 
the period  T . For the semimajor axis we recall that 

  
a

r rp a
�

�
�

�
�

2

6700 10 000

2
8350

,
km

      

 From   Equation 2.84 we get 

  

e
r r

r r
a p

a p

�
�

�
�

�

�
�

10 000 6700

10 000 6700
0 19760

,

,
.

      

 Equation   2.50 yields 

  
h r ep� � � � �μ ( ) ( )  km /s1 398 600 6700 1 0 19760 56 554 2, . ,⋅ ⋅

      



 Finally  , we obtain the period from Equation 2.83: 

  

T a� � �
2 2

398 600
8350 7593 53 2 3 2π

μ

π

,
. s

      

 Now   we can proceed with Algorithm 4.6. 

 Step   1. 
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 Step   2. 

    a.      E
e

e
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1
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    b.      Ω Ω� � � � � � � �� � ��
0

5270 2 3394 10 2700 269 94�ΩΔt (  s)(  s). .     

     ω ω ω� � � � � � �� � �0
645 5 8484 10 2700 45 016�Δt (  s)(  s). .−
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    c.      { }

Algorithm 4.5
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    e.      r � � � � � �2710 3 2835 4 5568 6 313 7 54.

Algorithm 4.1

ˆ . ˆ . ˆ .′ ′ ′ ⇒i j k
�

α δ ..84�              

 The   script  ground_track.m  in Appendix D.23 can be used to plot ground tracks. For the data of Example 
4.12 the ground track for 3.25 periods appears in  Figure 4.24   . The ground track for one orbit of a Molniya 
satellite is featured more elegantly in  Figure 4.25   .  
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 FIGURE 4.24  
       Ground track for 3.25 orbits of the satellite in Example 4.6.    



    PROBLEMS 

    Section 4.3 

        4.1     For each of the following geocentric equatorial position vectors (in kilometers) fi nd the right ascension 
and declination. 

    (a)      r I J K� 9000 6000 3000ˆ ˆ ˆ� �      

    (b)      r I J K� � � �3000 6000 9000ˆ ˆ ˆ      

    (c)      r I J K� � � �9000 3000 6000ˆ ˆ ˆ      

    (d)      r I J K� � �6000 9000 3000ˆ ˆ ˆ           

    { Ans.: (b)  α       �      24.4 ° ,  δ       �      53.30 °  }  

    4.2     At a given instant, a spacecraft is 1000       km above the earth, with a right ascension of 150 °  and declina-
tion of 20 °  relative to the geocentric equatorial frame. Its velocity is 10       km/s directly north, normal to 
the equatorial plane. Find its right ascension and declination 15 minutes later.    
    { Ans.:  α       �      150 ° ,  δ       �      63.37 °  }   
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 FIGURE 4.25  
       Ground track for two orbits of a Molniya satellite with a 12-hour period. Tick marks are one hour apart.    
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    Section 4.4 

        4.3     Find the orbital elements of a geocentric satellite whose inertial position and velocity vectors in a geo-
centric equatorial frame are 

      

r I J K
v I J K

� � �

� � � �

2615 15 881 3980
2 767 0 7905 4 980

ˆ , ˆ ˆ

. ˆ . ˆ . ˆ
 (km)

 (kkm/s)           

    { Ans.:  e       �      0.3760,  h       �      95,360       km 2 /s,  i       �      63.95 ° ,   Ω        �      73.71 ° ,   ω       �       15.43 ° ,   θ        �      0.06764 °  }  

    4.4     At a given instant the position r and velocity v of a satellite in the geocentric equatorial frame are  
r K� 12670 ˆ  (km)     and  v J K� � �3 874 0 7905. .  (km)ˆ ˆ    . Find the orbital elements.    

    { Ans.:  h       �      49,080       km 2 /s,  e       �      0.5319,   Ω        �      90 ° ,   ω        �      259.50 ° ,   θ        �      190.50 ° ,  i       �      90 ° . }  

    4.5     At time  t  0  the position  r  and velocity  v  of a satellite in the geocentric equatorial frame are  
r I J K� � �6472 7 7470 8 2469 8. . .  (km)ˆ ˆ ˆ      and  v I J K� � �3 9914 2 7916 3 2948. . .  (km/s)ˆ ˆ ˆ    . Find the 
orbital elements.    
    { Ans.:  h       �      58,461       km 2 /s,  e       �      0.2465,   Ω        �      110 ° ,   ω        �      75 ° ,   θ        �      130 ° ,  i       �      35 °  }  

    4.6     Given that, with respect to the geocentric equatorial frame,  r I J K� − − −6634 2 1261 8 5230 9. . .ˆ ˆ ˆ     (km), 
 v I J K= − −5 7644 7 2005 1 8106. . .ˆ ˆ ˆ     (km/s) and the eccentricity vector is  e I J= − −0 40907 0 48751. .ˆ ˆ     
 K− 0 63640. ˆ  , calculate the true anomaly   θ   of the earth-orbiting satellite.    
    { Ans.: 330 °  }  

    4.7     Given that, relative to the geocentric equatorial frame  r I J K= − − −6634 2 1261 8 5230 9. . .  (km)ˆ ˆ ˆ    , 
the eccentricity vector is  e I J K= − − −0 40907 0 48751 0 63640. . .ˆ ˆ ˆ    , and the satellite is fl ying towards 
perigee, calculate the inclination of the orbit.    
    { Ans.: 45 °  }   

    Section 4.5 

        4.8     The right-handed, primed  xyz  system is defi ned by the three points  A ,  B  and  C . The  x 
 y 
   plane is defi ned 
by the plane  ABC . The  x  
  axis runs from  A  through  B . The  z  
  axis is defi ned by the cross product of  
AB
→

   into  AC
→

   , so that the  �  y  
  axis lies on the same side of the  x  
  axis as point C. 

    (a)     Find the direction cosine matrix [Q] relating the two coordinate bases.  
    (b)     If the components of a vector  v     in the primed system are  2 1 3�⎢⎣ ⎥⎦

T
   , fi nd the components of  v     

in the unprimed system.       

    { Ans.:  �1 307 2 390 2 565. . .⎢⎣ ⎥⎦
T

       }     

x

y

z

x ′

y ′
z ′

C (3, 9, –2)

B (4, 6, 5)

A (1,2,3)

                            



    4.9     The unit vectors in a  uvw  Cartesian coordinate frame have the following components in the  xyz  frame: 

     

ˆ . ˆ . ˆ . ˆ

ˆ . ˆ . ˆ .

u i j k

v i j

� � �

� � � �

0 26726 0 53452 0 80178

0 44376 0 80684 0 338997

0 85536 0 25158 0 45284

ˆ

ˆ . ˆ . ˆ . ˆ
k

w i j k� � � �      
    If, in the  xyz  frame  V i j k� � � �50 100 75ˆ ˆ ˆ    , fi nd the components of the vector  V  in the  uvw  frame.       
    { Ans.:  V u v w� � �100 2 73 62 51 57. . .ˆ ˆ ˆ     }  

    4.10     Calculate the direction cosine matrix [Q] for the sequence of two rotations:  α       �      40 °  about the posi-
tive  X  axis, followed by   β        �      25 °  about the positive  y  
  axis. The result is that the  XYZ  axes are rotated 
into the  x  �  y  
  z  � axes. 

     { Partial ans.:  Q Q Q11 12 130 9063 0 2716 0 3237� � � �. . .             }

    4.11     For the direction cosine matrix 

     

[ ]

0.77768 0.62264

0.49240 0.57682 0.65178

0.86603

Q �

�
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0 086824.

�� �0 25000. 0.43301

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥      

    calculate, 
    (a)     the classical Euler angle sequence;  
    { Ans.:  α       �      73.90 ° ,   β        �      115.7 ° ,   γ        �      136.3 °  }  

    (b)     the yaw, pitch and roll angle sequence.        
    { Ans.:  α       �      276.4 ° ,   β        �      38.51 ° ,   γ        �      236.4 °  }  

    4.12     What yaw, pitch and roll sequence yields the same DCM as the classical Euler sequence  α       �      350 ° , 
  β        �      170 ° ,  γ       �      300 ° ?    
    { Ans.:  α       �      49.62 ° ,   β        �      8.649 ° ,   γ        �      175.0 °  }  

    4.13     What classical Euler angle sequence yields the same DCM as the yaw-pitch-roll sequence   α        �      300 ° , 
  β        �      80 ° ,   γ        �      30 ° ?    
    { Ans.:  α       �      240.4 ° ,   β        �      81.35 ° ,   γ        �      84.96 °  }   
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    Section 4.6 

        4.14     At time  t0     the position  r     and velocity  v     of a satellite in the geocentric equatorial frame are: 

     

r I J K
v I J K

� � � �

� � �

5102 8228 2105
4 348 3 478 2 846

ˆ ˆ ˆ  
ˆ . ˆ . ˆ  

(km)
. (km= //s)      

    Find  r  and  v  at time  t  0       �      50 minutes. ( t  0   �  0!)       
    { Ans.:  r I J K� � � �4198 7856 3199ˆ ˆ ˆ  (km)    ;  v I J K� � �4 952 3 482 2 495.  (km/s)ˆ . ˆ . ˆ      c}  

    4.15     For a spacecraft, the following orbital parameters are given:  e       �      1.5; perigee altitude  �  300       km; 
 i       �      35 ° ;   Ω        �      130 ° ;   ω        �      115 ° . Calculate  r  and  v  at perigee relative to (a) the perifocal reference 
frame and (b) the geocentric equatorial frame.    
    { Ans.: (a)  r � �6678 12 22ˆ , . ˆp v q (km)  (km/s)    . 

   (b)  r I J K v I J K� � �� � � �1984 5348 3471 10 36 5 763 2 961ˆ ˆ ˆ , . ˆ . ˆ . ˆ (km)  (km//s)     }  

    4.16     For the spacecraft of Problem 4.15 calculate  r     and  v    at two hours past perigee relative to (a) the 
perifocal reference frame, and; (b) the geocentric equatorial frame.    
    { Ans.: (a)  r p q v p q� � � � � �25 010 48 090 4 335 5 075,  km  (km/s)ˆ , ˆ , . ˆ . ˆ( )    ; 

   (b)  r I J K v I J K� � �48 200 2658 24 660 5 590 1 078 3 484,  E(km)ˆ ˆ , ˆ , . ˆ . ˆ . ˆ� � �   (km/s)    }  

    4.17     Calculate  r  and  v  for the satellite in Problem 4.15 at time t 0       �      50 minutes. (t 0   �  0!)    
    { Ans.:  r I J K v I J K� � � � �6862 5920 5933 3 565 3 904 1 411ˆ ˆ ˆ . ˆ . ˆ . ˆ� � (km),  (km//s)    }  

    4.18     For a spacecraft, the following orbital parameters are given:  e       �      1.2; perigee altitude  �  200       km; 
 i       �      50 ° ;   Ω        �      75 ° ;   ω        �      80 ° . Calculate  r  and  v  at perigee relative to (a) the perifocal reference frame 
and (b) the geocentric equatorial frame.    
    { Ans. (a)  r p v q= =6578 ˆ ˆ (km), 11.55  (km/s)   ; 

   (b)  r I J K v I J K� � � � �� � �3726 2181 4962 4 188 10 65 1 536ˆ ˆ ˆ . ˆ . ˆ . ˆ (km),  (kmm/s)    }  

    4.19     For the spacecraft of Problem 4.18 calculate  r  and  v  at two hours past perigee relative to (a) the peri-
focal reference frame and (b) the geocentric equatorial frame.    
    { Ans.: (a)  r p q v p q� � � �� �26 340 37 810 298, , . (km), 4.306 3  (km/s)    

   (b)  r I J K v I J K� �1207 43 600 14 840 1 243 4 4700 2 810ˆ ˆ ˆ . ˆ . ˆ . ˆ� � � �, ,  (km),   (km/s)    }  

    4.20     Given that  e       �      0.7,  h       �      75,000       km 2 /s, and   θ        �      25 ° , calculate the components of velocity in the geo-
centric equatorial frame if: 

     

[ ]Q Xx �

� �

� �

�

. . .

. . .

. .

83204 13114 0 53899

0 02741 98019 19617

0 55403 144845 0 81915.

⎡

⎣

⎢
⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥⎥           

    { Ans.:  v I J K� � �2 103 8 073 2 885.  (km/s)ˆ . ˆ . ˆ     }  

    4.21     The apse line of the elliptical orbit lies in the  XY  plane of the geocentric equatorial frame, whose 
 Z -axis lies in the plane of the orbit. At  B  (for which   θ        �      140 ° ) the perifocal velocity vector is  
{ } (km/s)v x

T
� � �3 208 0 8288 0. .⎢⎣ ⎥⎦    . Calculate the geocentric-equatorial components of the velocity 

at  B .    
    { Ans.:  { } . . .v X

T
� � � �1 604 2 778 0 8288⎢⎣ ⎥⎦ (km/s)    }          



    4.22     A satellite in earth orbit has the following orbital parameters:  a       �      7016       km,  e       �      0.05,  i       �      45 ° , 
  Ω       �       0 ° ,   ω        �      20 °  and   θ        �      10 ° . Find the position vector in the geocentric-equatorial frame.    
    { Ans.:  r I J K� � �5776 4 2358 2 2358 2.  E (km)ˆ . ˆ . ˆ     }   

    Section 4.7 

        4.23     Calculate the orbital inclination required to place an earth satellite in a 500       km by 1000       km sun-
synchronous orbit.    
    { Ans.: 98.37 °  } . 

    4.24     A satellite in a circular, sun-synchronous low earth orbit passes over the same point on the equator 
once each day, at 12 o’clock noon. Calculate the inclination, altitude and period of the orbit. 

     { This problem has more than one solution. }      

    4.25     The orbit of a satellite around an unspecifi ed planet has an inclination of 40 ° , and its perigee advances 
at the rate of 7 °  per day. At what rate does the node line regress?    
    { Ans.:  �Ω � 5 545.  deg/day    }  

    4.26     At a given time, the position and velocity of an earth satellite in the geocentric equatorial frame are  
r I J K� � � �2429 1 4555 1 4577 0.  (km)ˆ . ˆ . ˆ     and  v I J K� � � �4 7689 5 6113 3 0535.  (km/s)ˆ . ˆ . ˆ    . Find 
 r  and  v  precisely 72 hours later, taking into consideration the node line regression and the advance of 
perigee.    
    { Ans.:  r I J K v I J K� � � � � � �4596 5759 1266 3 601 3 179 5 617ˆ ˆ ˆ . ˆ . ˆ . ˆ (km),  (km//s)    }   

    Section 4.8 

        4.27     The space shuttle is in a circular orbit of 180       km altitude and inclination 30 ° . What is the spacing, in 
kilometers, between successive ground tracks at the equator, including the effect of earth’s oblateness?
 { Ans.: 2511       km }       
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    5.1       INTRODUCTION 
 In   this chapter we will consider some (by no means all) of the classical ways in which the orbit of a satellite 
can be determined from earth-bound observations. All of the methods presented here are based on the two-
body equations of motion. As such, they must be considered preliminary orbit determination techniques 
because the actual orbit is infl uenced over time by other phenomena (perturbations), such as the gravita-
tional force of the moon and sun, atmospheric drag, solar wind and the nonspherical shape and nonuniform 
mass distribution of the earth. We took a brief look at the dominant effects of the earth’s oblateness in 
Section 4.7. To accurately propagate an orbit into the future from a set of initial observations requires taking 
the various perturbations, as well as instrumentation errors themselves, into account. More detailed consid-
erations, including the means of updating the orbit based on additional observations, are beyond our scope. 
Introductory discussions may be found elsewhere. See Bate, Mueller and White (1971), Boulet (1991), 
Prussing and Conway (1993) and Wiesel (1997), to name but a few. 

 We   begin with the Gibbs method of predicting an orbit using three geocentric position vectors. This is 
followed by a presentation of Lambert’s problem, in which an orbit is determined from two position vec-
tors and the time between them. Both the Gibbs and Lambert procedures are based on the fact that two-body 
orbits lie in a plane. The Lambert problem is more complex and requires using the Lagrange  f  and  g  functions 
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introduced in Chapter 2 as well as the universal variable formulation introduced in Chapter 3. The Lambert 
algorithm is employed in Chapter 8 to analyze interplanetary missions. 

 In   preparation for explaining how satellites are tracked, the Julian day numbering scheme is introduced 
along with the notion of sidereal time. This is followed by a description of the topocentric coordinate sys-
tems and the relationships among topocentric right ascension/declension angles and azimuth/elevation 
angles. We then describe how orbits are determined from measuring the range and angular orientation of 
the line of sight together with their rates. The chapter concludes with a presentation of the Gauss method of 
angles-only orbit determination.  

    5.2       GIBBS METHOD OF ORBIT DETERMINATION FROM 
THREE POSITION VECTORS 
 Suppose   that from observations of a space object at the three successive times  t  1 ,  t 2   and  t  3  ( t  1       �       t  2       �       t  3 ) we 
have obtained the geocentric position vectors  r  1 ,  r  2  and  r  3 . The problem is to determine the velocities  v  1 ,  v  2  
and  v  3  at  t  1 ,  t  2  and  t  3  assuming that the object is in a two-body orbit. The solution using purely vector analy-
sis is due to J. W. Gibbs (1839 – 1903), an American scholar who is known primarily for his contributions to 
thermodynamics. Our explanation is based on that in Bate, Mueller and White (1971). 

 We   know that the conservation of angular momentum requires that the position vectors of an orbiting 
body must lie in the same plane. In other words, the unit vector normal to the plane of  r  2  and  r  3  must be 
perpendicular to the unit vector in the direction of  r  1 . Thus, if  ûr r

1 1 1� r /     and  Ĉ r r r r23 2 3 2 3� �( )×    , 
then the dot product of these two unit vectors must vanish, 

  
ˆ ˆu Cr1 23 0� �

      

 Furthermore  , as illustrated in  Figure 5.1   , the fact that  r  1 ,  r  2  and  r  3  lie in the same plane means we can apply 
scalar factors  c  1  and  c  3  to  r  1  and  r  3  so that  r  2  is the vector sum of  c  1  r  1  and  c  3  r  3  

  r r r2 1 1 3 3� �c c   (5.1)      

 The   coeffi cients  c  1  and  c  3  are readily obtained from  r  1 ,  r  2  and  r  3  as we shall see in Section 5.10 (Equations 
5.89 and 5.90). 

r1

r3 r2

c3r3

c1r1

 FIGURE 5.1  
       Any one of a set of three coplanar vectors (r 1 , r 2 , r 3 ) can be expressed as the vector sum of the other two.    



 To   fi nd the velocity  v  corresponding to any of the three given position vectors  r , we start with Equation 
2.40, which may be written 

  
v h

r
e� � �μ

r

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

     

  where  h  is the angular momentum and  e  is the eccentricity vector. To isolate the velocity, take the cross 
product of this equation with the angular momentum,   

  
h v h

h r
h e� � �

�
� �( ) μ

r

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟   (5.2)      

 By   means of the   bac-cab   rule (Equation 2.33), the left side becomes 

  h v h v h h h h v� � � � � �( ) ( ) ( )       

 But    h   ·   h       �       h  2 , and  v   ·   h       �      0, since  v  is perpendicular to  h . Therefore, 

  h v h v� � �( ) h2
     

  which means Equation 5.2 may be written   

  
v

h r
h e�

�
� �

μ

h r2

⎛
⎝
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⎞
⎠
⎟⎟⎟   (5.3)      

 In   Section 2.10 we introduced the perifocal coordinate system, in which the unit vector  ̂p    lies in the 
direction of the eccentricity vector  e  and  ̂w    is the unit vector normal to the orbital plane, in the direction of 
the angular momentum vector  h . Thus, we can write 

  e p� eˆ   (5.4a)      

  h w� h ˆ   (5.4b)     

  so that Equation 5.3 becomes   
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( )   (5.5)      

 Since    ̂p   ,  ̂q    and  ̂w    form a right-handed triad of unit vectors, it follows that  ̂ ˆ ˆp q w� �    ,  ̂ ˆ ˆq w p� �     and 

  
ˆ ˆ ˆw p q� �   (5.6)      

 Therefore  , Equation 5.5 reduces to 

  
v

w r
q�

�
�

μ
h r

e
ˆ

ˆ
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟   (5.7)      

 This   is an important result, because if we can somehow use the position vectors  r  1 ,  r  2  and  r  3  to calculate 
 ̂q    ,  ̂w    ,  h  and  e , then the velocities  v  1 ,  v  2  and  v  3  will each be determined by this formula. 
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 So   far the only condition we have imposed on the three position vectors is that they are coplanar 
(Equation 5.1). To bring in the fact that they describe an orbit, let us take the dot product of Equation 5.1 
with the eccentricity vector  e     to obtain the scalar equation 

  r e r e r e2 1 1 3 3� � � � �c c   (5.8)      

 According   to Equation 2.44 — the orbit equation — we have the following relations among  h ,  e  and each 
of the position vectors, 

  
r e r e r e1

2

1 2

2

2 3

2

3� � � � � � � � �
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h

r
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r
μ μ μ

  (5.9)      

 Substituting   these equations into equation 5.8 yields 

  

h
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 To   eliminate the unknown coeffi cients  c  1  and  c  2  from this expression, let us take the cross product of 
Equation 5.1 fi rst with  r  1  and then with  r  3 . This results in two equations, both having  r  3       �       r  1  on the right, 

  r r r r r r r r2 1 3 3 1 2 3 1 3 1� � � � �c c( ) ( )× ×   (5.11)      

 Now   multiply Equation 5.10 through by the vector  r  3       �       r  1  to obtain 
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 Using   Equations 5.11, this becomes 
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 Observe   that  c  1  and  c  2  have been eliminated. Rearranging terms, we get 

  

h
r r r

2

1 2 2 3 3 1 1 2 3 2 3 1 3 1 2μ
( ) ( ) ( ) ( )r r r r r r r r r r r r� � � � � � � � � � �   (5.12)      

 This   is an equation involving the given position vectors and the unknown angular momentum  h . Let us 
introduce the following notation for the vectors on each side of Equation 5.12, 

  N r r r r r r� � � � � �r r r1 2 3 2 3 1 3 1 2( ) ( ) ( )   (5.13)      

 and   

  D r r r r r r� � � � � �1 2 2 3 3 1   (5.14)      



 Then   Equation 5.12 may be written more simply as 

  
N D�

h2

μ      

  from which we obtain   

  
N

h
D�

2

μ
  (5.15)     

  where  N � N     and  D � D    . It follows from Equation 5.15 that the angular momentum  h  is determined 
from  r  1 ,  r  2  and  r  3  by the formula   

  
h

N

D
� μ   (5.16)      

 Since    r  1 ,  r  2  and  r  3  are coplanar, all of the cross products  r  1       �       r  2 ,  r  2       �       r  3  and  r  3       �       r  1  lie in the same 
direction, namely, normal to the orbital plane. Therefore, it is clear from Equation 5.14 that  D  must be 
normal to the orbital plane. In the context of the perifocal frame, we use  ŵ     to denote the orbit unit normal. 
Therefore, 

  
ŵ

D
�

D
  (5.17)      

 So   far we have found  h  and  ŵ     in terms of  r  1 ,  r  2  and  r  3 . We need likewise to fi nd an expression for  q̂     to 
use in Equation 5.7. From Equations 5.4a, 5.6, and 5.17 it follows that 

  
ˆ ˆ ˆq w p D e� � � �

1

De
( )   (5.18)      

 Substituting   Equation 5.14, we get 

  
q̂ r r e r r e r r e� � � � � �

1
1 2 2 3 3 1De

( ) ( ) ( )× × ×[ ]   (5.19)      

 We   can apply the  bac-cab  rule (Equation 1.20) to the right side by noting 

  
( ) ( ) ( ) ( )A B C C A B B A C A B C� � � � � � � � �×

      

 Using   this vector identity we obtain 
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 Once   again employing Equations 5.9, these become 
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 Summing   these three equations, collecting terms and substituting the result into Equation 5.19 yields 

  
q̂ S�
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De
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  where   

  S r r r� � � � �1 2 3 2 3 1 3 1 2( ) ( ) ( )r r r r r r−   (5.21)      

 Finally  , we substitute Equations 5.16, 5.17 and 5.20 into Equation 5.7 to obtain 

  

v
w r

q

D
r

S�
�

� �
�

�
μ μ

μ
h r

e
N

D

D
r

e
De

ˆ
ˆ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
1 ⎥⎥

⎥⎥

      

 Simplifying   this expression for the velocity yields 
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 All   of the terms on the right depend only on the given position vectors  r  1 ,  r  2  and  r  3 . 
 The   Gibbs procedure may be summarized in the following algorithm.

        Algorithm 5.1          Gibbs   method of preliminary orbit determination. A MATLAB® implementation of this 
procedure is found in Appendix D.24. 

 Given    r  1 ,  r  2  and  r  3 , the steps are as follows: 

    1.     Calculate  r  1 ,  r  2  and  r  3 .  
    2.     Calculate  C  12       �       r  1       �       r  2 ,  C  23       �       r  2       �       r  3  and  C  31       �       r  3       �       r  1 .  
    3.     Verify that  ˆ ˆu Cr1 23 0� �    .  

    4.     Calculate  N ,  D  and  S  using Equations 5.13, 5.14 and 5.21, respectively.  
    5.     Calculate  v  2  using Equation 5.22.  
    6.     Use  r  2  and  v  2  to compute the orbital elements by means of Algorithm 4.2.        



        Example 5.1      
 The   geocentric position vectors of a space object at three successive times are 

  

r J K1

2
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r I J K
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 Determine   the classical orbital elements using Gibbs ’  procedure. 

    Solution 
 We   employ Algorithm 5.1. 

 Step   1. 

  r1
2 2 2294 32 4265 1 5986 7 7356 5� � � � �( ) km. . . .       

  r2
2 2 21365 5 3637 6 6346 8 7441 7� � � � �( ) km. . . .       

  r3
2 2 22940 3 2473 7 6555 8 7598 9� � � �( ) km− . . . .       

 Step   2. 
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 Step   3. 
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 Therefore  , 
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 This   is close enough to zero for our purposes. The three vectors  r  1 ,  r  2  and  r  3  are coplanar. 
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 Step   4. 
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  or   

  D I J K� � � �( . )  (km )22 8797 3 4321 2 5856 105ˆ . ˆ . ˆ
      

 so   that 
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 Lastly  , 
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 Step   5. 
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  or   

  v I J K2 6 2174 4 0122 1 5990� � � �.  (km/s)ˆ . ˆ . ˆ
      

 Step   6. 

 Using    r  2  and  v  2 , Algorithm 4.2 yields the orbital elements: 

  

a
e

�

�
� �
� �
� �

8000 km
0.1
60
40
30
50 (for position vector

�
�i

Ω
ω
θ   r2 ))

      

 The   orbit is sketched in  Figure 5.2   .        

    5.3       LAMBERT’S PROBLEM 
 Suppose   we know the position vectors  r  1  and  r  2  of two points  P  1  and  P  2  on the path of mass  m  around mass 
 M , as illustrated in  Figure 5.3   .  r  1  and  r  2  determine the change in the true anomaly   Δ  θ  , since 

  
cosΔθ �

�r1 2

1 2

r

r r
  (5.23)     

5.3 Lambert’s problem  263

X

Y

Z
r1

r2
r3

Ascending
node

Perigee
50°

 FIGURE 5.2  
       Sketch of the orbit of Example 5.1.    
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  where   

  
r r1 1 1 2 2 2� � � �r r r r   (5.24)      

 However  , if cos   Δ  θ              0, then   Δ  θ   lies in either the fi rst or fourth quadrant, whereas if cos   Δ  θ        �      0, then   Δ  θ   
lies in the second or third quadrant. (Recall Figure 3.4.) The fi rst step in resolving this quadrant ambiguity 
is to calculate the  Z  component of  r  1       �       r  2 , 

  ( ) ( ) ( ) ( )r r K r r K h K h1 2 1 2 1 2 1 2� � � � � � �Z r r r rˆ ˆ sin ˆ sin ˆ ˆΔ Δθ θ ⋅      

  where  ĥ     is the unit normal to the orbital plane. Therefore,  ˆ ˆ cosK w⋅ � i   , where  i  is the inclination of the 
orbit, so that   

  ( )Zr r1 2 1 2× � r r isin cosΔθ   (5.25)      

 We   use the sign of the scalar ( r  1       �       r  2 )Z   to determine the correct quadrant for   Δ  θ  . 
 There   are two cases to consider: prograde trajectories (0      �       i       �      90 ° ), and retrograde trajectories 

(90 °       �       i       �      180 ° ). 
 For   prograde trajectories (like the one illustrated in  Figure 5.3 ), cos  i             0, so that if ( r  1       �       r  2 ) Z             0, then 

Equation 5.25 implies that sin     Δ  θ              0, which means 0 °       �       Δ  θ       �      180 ° . Since   Δ  θ   therefore lies in the fi rst 
or second quadrant, it follows that   Δ  θ   is given by cos  � 1 ( r  1  ·  r  2 / r  1  r  2 ). On the other hand, if ( r  1       �       r  2 ) Z       �      0, 
Equation 5.25 implies that sin     Δ  θ        �      0, which means 180 °       �        Δ  θ        �      360 ° . In this case   Δ  θ   lies in the 
third or fourth quadrant and is given by 360 °       �      cos  � 1 ( r  l  ·  r  2 / r  1  r  2 ). For retrograde trajectories, cos i       �      0. 
Thus, if ( r  1       �       r  2 ) Z             0 then sin     Δ  θ        �      0, which places  Δ   θ   in the third or fourth quadrant. Similarly, if 
( r  1       �       r  2 ) Z             0,   Δ  θ   must lie in the fi rst or second quadrant. 
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 FIGURE 5.3  
       Lambert’s problem.    



 This   logic can be expressed more concisely as follows: 
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×

⎧

⎨
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⎪

⎩
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  (5.26)      

 J  . H. Lambert (1728 – 1777) was a French-born German astronomer, physicist and mathematician, 
According to a theorem of his, the transfer time   Δ t  from  P  1  to  P  2  is independent of the orbit’s eccentricity 
and depends only on the sum  r  1       �       r  2  of the magnitudes of the position vectors, the semimajor axis  a  and 
the length  c  of the chord joining  P  1  and  P  2 . It is noteworthy that the period (of an ellipse) and the specifi c 
mechanical energy are also independent of the eccentricity (Equations 2.83, 2.80 and 2.110). 

 If   we know the time of fl ight   Δ t  from  P  1  to  P  2 , then Lambert’s problem is to fi nd the trajectory joining 
 P  1  and  P  2 . The trajectory is determined once we fi nd  v  1 , because, according to Equations 2.135 and 2.136, 
the position and velocity of any point on the path are determined by  r  1  and  v  1 . That is, in terms of the nota-
tion in  Figure 5.3 , 

  r r v2 1 1� �f g   (5.27a)      

  v r v2 1 1� �� �f g   (5.27b)      

 Solving   the fi rst of these for  v  1  yields 

  
v r r1 2 1

1
�

g
f( )−   (5.28)      

 Substitute   this result into Equation 5.27b to get 

  
v r r r r r2 1 2 1 2 1� � � �

�� � � � �
f

g

g
f

g

g

f g f g

g
( )−

      

 However  , according to Equation 2.139,  fg fg� �� � 1    . Hence, 

  
v r r2 2 1

1
�

g
g( )� −   (5.29)      

 By   means of Algorithm 4.2 we can fi nd the orbital elements from either  r  1  and  v  1  or  r  2  and  v  2 . Clearly, 
Lambert’s problem is solved once we determine the Lagrange coeffi cients  f ,  g  and  �g   . 
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 The   Lagrange  f  and  g  coeffi cients and their time derivatives are listed as functions of the change in true 
anomaly   Δ  θ   in Equations 2.158, 
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h
g

r r
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� � � �1 12
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1 2μ
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ssΔθ( )   (5.30b)      

 Equations   3.69 express these quantities in terms of the universal anomaly   χ  , 

  

f
r

C z g t S z� � � �1
12

1

3χ

μ
χ( ) ( )Δ   (5.31a)      

  

� �f
r r

zS z g
r

C z� � � �
μ

χ
χ

1 2

2

2

1 1[ ( ) ] ( )   (5.31b)      

 where    z       �        α  χ   2 . The  f  and  g  functions do not depend on the eccentricity, which would seem to make them 
an obvious choice for the solution of Lambert’s problem. 

 The   unknowns on the right of the above sets of equations are  h ,   χ   and  z , whereas   Δ  θ  ,   Δ t ,  r  1  and  r  2  are 
given. Equating the four pairs of expressions for  f ,  g ,  �f     and  �g     in Equations 5.30 and 5.31 yields four equa-
tions in the three unknowns  h ,   χ   and  z . However, because of the fact that  fg fg� �� � 1    (Equation 2.139), 
only three of these equations are independent. We must solve them for  h ,  χ  and  z  in order to evaluate the 
Lagrange coeffi cients and thereby obtain the solution to Lambert’s problem. We will follow the procedure 
presented by Bate, Mueller and White (1971) and Bond and Allman (1996). 

 While     Δ  θ   appears throughout Equations 5.30, the time interval   Δ t  does not. However,   Δ t  does appear 
in Equation 5.31a. A relationship between   Δ  θ   and   Δ t  can therefore be found by equating the two expres-
sions for  g , 

  

r r

h
t S z1 2 31

sin Δ Δθ
μ

χ� � ( )   (5.32)      

 To   eliminate the unknown angular momentum  h , equate the expressions for  f  in Equations 5.30a and 5.31a, 

  
1 1 12
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2
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� � �
μ

θ
χr

h r
C z( ) ( )− cosΔ

      

 Upon   solving this for  h  we obtain 

  

h
r r

C z
�

�μ θ

χ
1 2

2

1( )

( )

cosΔ
  (5.33)      

   (Equating the two expressions for  �g    leads to the same result.) Substituting Equation 5.33 into 5.32, simpli-
fying and rearranging terms yields 

  
μ χ χ θ

θ
Δ Δ

Δ
t S z C z

r r
� �

�

3 1 2

1
( ) ( ) sin
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⎛

⎝
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⎟⎟⎟⎟   (5.34)      



 The   term in parentheses on the right is a constant comprised solely of the given data. Let us assign it the 
symbol  A , 

  
A

r r
�

�
sin

cos
Δ

Δ
θ

θ
1 2

1
  (5.35)      

 Then   Equation 5.34 assumes the simpler form 

  μ χ χΔt S z A C z� �3 ( ) ( )   (5.36)      

 The   right side of this equation contains both of the unknown variables   χ   and  z . We cannot use the fact that 
 z       �        α  χ   2  to reduce the unknowns to one since   α   is the reciprocal of the semimajor axis of the unknown 
orbit. 

 In   order to fi nd a relationship between  z  and   χ   which does not involve orbital parameters, we equate the 
expressions for  �f     (Equations 5.30b and 5.31b) to obtain 
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 Multiplying   through by  r r1 2     and substituting for the angular momentum using Equation 5.33 yields 
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 Simplifying   and dividing out common factors leads to 

  

1
1

1 2

2
1 2

�
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Δ

Δ

θ

θ
χ

r r
C z C z r r zS z( )[ ( ) ] ( )

      

 We   recognize the reciprocal of  A  on the left, so we can rearrange this expression to read as follows, 
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 The   right-hand side depends exclusively on  z . Let us call that function  y ( z ), so that 
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  (5.37)     

  where   
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 Equation   5.37 is the relation between   χ   and  z  that we were seeking. Substituting it back into Equation 5.36 
yields 
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  (5.39)      

 We   can use this equation to solve for  z , given the time interval   Δ t . It must be done iteratively. 
 Using   Newton’s method, we form the function 
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  and its derivative   
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  in which  C  
 ( z ) and  S  
 ( z ) are the derivatives of the Stumpff functions, which are given by Equations 3.63. 
 y  
 ( z ) is obtained by differentiating  y ( z ) in Equation 5.38,   
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 If   we substitute Equations 3.63 into this expression a much simpler form is obtained, namely 

  
′y z

A
C( ) �

4
( )z   (5.42)      

 This   result can be worked out by using Equations 3.52 and 3.53 to express  C ( z ) and  S ( z ) in terms of the more 
familiar trig functions. Substituting Equation 5.42 along with Equations 3.63 into Equation 5.41 yields 
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  (5.43)      

 Evaluating    F  
 ( z ) at  z       �      0 must be done carefully (and is therefore shown as a special case), because of 
the  z  in the denominator within the curly brackets. To handle  z       �      0, we assume that  z  is very small (almost, 
but not quite zero) so that we can retain just the fi rst two terms in the series expansions of  C ( z ) and  S ( z ) 
(Equations 3.51), 
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 Then   we evaluate the term within the curly brackets as follows. 
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 In   the third step we used the familiar binomial expansion theorem, 
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  (5.44)     

  to set (1      �       z /12)  � 1  � 1      �       z /12, which is true if  z  is close to zero. Thus, when  z  is actually zero,   
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 Evaluating   the other terms in  F  
 ( z ) presents no diffi culties. 
  F   ( z ) in Equation 5.40 and  F  
 ( z ) in Equation 5.43 are used in Newton’s formula, Equation 3.16, for the 

iterative procedure, 

  
z z

F z
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 For   choice of a starting value for  z , recall that  z       �      (1/ a )  χ   2 . According to Equation 3.57,  z       �       E  2  for an 
ellipse and  z       �       �  F  2  for a hyperbola. Since we do not know what the orbit is, setting  z  0       �      0 seems a reason-
able, simple choice. Alternatively, one can plot or tabulate  F ( z ) and choose  z  0  to be a point near where  F ( z ) 
changes sign. 

 Substituting   Equation 5.37 and 5.39 into Equations 5.31 yields the Lagrange coeffi cients as functions of 
 z  alone. 

  
f

y z

C z

r
C z

y z

r
� � � �1 1

2

1 1

( )
( )

( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (5.46a)      
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 We   are now in a position to present the solution of Lambert’s problem in universal variables, following 
Bond and Allman (1996).

        Algorithm 5.2          Solve   Lambert’s problem. A MATLAB implementation appears in Appendix D.25. 
 Given    r  1 ,  r  2  and   Δ t , the steps are as follows: 

    1.     Calculate  r  1  and  r  2  using Equation 5.24.  
    2.     Choose either a prograde or a retrograde trajectory and calculate   Δ  θ   using Equation 5.26.  
    3.     Calculate  A  in Equation 5.35.  
    4.     By iteration, using Equations 5.40, 5.43 and 5.45, solve Equation 5.39 for  z . The sign of  z  tells us 

whether the orbit is a hyperbola ( z       �      0), parabola ( z       �      0) or ellipse ( z             0).  
    5.     Calculate  y  using Equation 5.38.  
    6.     Calculate the Lagrange  f ,  g  and  �g     functions using Equations 5.46.  
    7.     Calculate  v  1  and  v  2  from Equations 5.28 and 5.29.  
    8.     Use  r  1  and  v  1  (or  r  2  and  v  2 ) in Algorithm 4.2 to obtain the orbital elements.        

        Example 5.2      
 The   position of an earth satellite is fi rst determined to be  r I J K1 5000 10 000 2100� � �ˆ , ˆ ˆ  km( )   . After one 
hour the position vector is  r I J K2 km�� � �14 600 2500 7000, � � ( )   . Determine the orbital elements and fi nd 
the perigee altitude and the time since perigee passage of the fi rst sighting. 

    Solution 
 We   fi rst must execute the steps of Algorithm 5.2 in order to fi nd  v  1  and  v  2 . 
 Step   1. 
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 Step   2. 
 Assume   a prograde trajectory. 

  r r I J K1 2
664 75 65 66 158 5 10� � � � �( . )ˆ . ˆ . ˆ
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 Since   the trajectory is prograde and the  z  component of  r  1       �       r  2  is positive, it follows from Equation 5.26 that 

  Δθ � �100 29.       

 Step   3. 
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 Step   4. 
 Using   this value of  A  and   Δ t       �      3600 s, we can evaluate the functions  F ( z ) and  F  
 ( z ) given by Equations 

5.40 and 5.43, respectively. Let us fi rst plot  F ( z ) to estimate where it crosses the  z  axis. As can be seen from 
 Figure 5.4   ,  F ( z )      �      0 near  z       �      1.5. With  z  0       �      1.5 as our initial estimate, we execute Newton’s procedure, 
Equation 5.45, 
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 Thus  , to fi ve signifi cant fi gures  z       �      1.5398. The fact that  z  is positive means the orbit is an ellipse. 
 Step   5. 
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       Graph of  F ( z )    .
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 Step   6. 
 Equations   5.46 yield the Lagrange functions 
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 Step   7. 
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 Step   8. 
 Using    r  1  and  v  1  Algorithm 4.2 yields the orbital elements: 
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 This   elliptical orbit is plotted in  Figure 5.5   . The perigee of the orbit is 
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 Therefore   the perigee altitude is 11330      �      6378      �      4952       km. 
 To   fi nd the time of the fi rst sighting, we fi rst calculate the eccentric anomaly by means of Equation 3.13b, 
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 Then   using Kepler’s equation for the ellipse (Equation 3.14), the mean anomaly is found to be 

  
M E e Ee1 1 1 0 1007 0 4335 0 1007 0 05715� � � � � � � �sin . . sin . .( )  rad.

     

  so that from Equation 3.7, the time since perigee passage is   
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 The   minus sign means there are 256.1 seconds until perigee encounter after the initial sighting.      

        Example 5.3      
 A   meteoroid is sighted at an altitude of 267,000       km. 13.5 hours later, after a change in true anomaly of 5 ° , 
the altitude is observed to be 140,000       km. Calculate the perigee altitude and the time to perigee after the 
second sighting. 

    Solution 
 We   have 
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       The solution of Example 5.2 (Lambert’s problem).    
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 Since    r  1 ,  r  2  and   Δ  θ   are given, we can skip to Step 3 of Algorithm 5.2 and compute 

  A � �2 8263 105. km       

 Then  , solving for  z  as in the previous example we obtain 

  z � �0 17344.       

 Since    z  is negative, the path of the meteoroid is a hyperbola. 
 With    z  available, we evaluate the Lagrange functions, 
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  (a)      

 Step   7 requires the initial and fi nal position vectors. Therefore, for purposes of this problem let us defi ne 
a geocentric coordinate system with the  x  axis aligned with  r  1  and the  y  axis at 90 °  thereto in the direction 
of the motion (see  Figure 5.6   ). The  z  axis is therefore normal to the plane of the orbit. Then 
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 With   (a) and (b) we obtain the velocity at  P  1 , 
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 Using    r  1  and  v  1 , Algorithm 4.2 yields 
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 The   orbit is now determined except for its orientation in space, for which no information was provided. 
In the plane of the orbit, the trajectory is as shown in  Figure 5.6 . 

 The   perigee radius is 
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  which means the perigee altitude is dangerously low for a large meteoroid,   

  
zp � � �6538 2 6378 160 2 100. .  km (  miles)

      



 To   fi nd the time of fl ight from  P  2  to perigee, we note that the true anomaly of  P  2  is 

  θ θ2 1 5 210 16� � � � �.       

 The   hyperbolic eccentric anomaly  F  2  follows from Equation 3.44a, 
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 From   this we appeal to Kepler’s equation (Equation 3.40) for the mean anomaly  M h  , 

  
M e F Fh2 2 2 0 52265� � � �sinh .( )  rad.

      

 Finally  , Equation 3.34 yields the time 
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 The   minus sign means that 38,396 seconds (a scant 10.6 hours) remain until the meteoroid passes through 
perigee.        

    5.4       SIDEREAL TIME 
 To   deduce the orbit of a satellite or celestial body from observations requires, among other things, record-
ing the time of each observation. The time we use in everyday life, the time we set our clocks by, is   solar 
time  . It is reckoned by the motion of the sun across the sky. A solar day is the time required for the sun to 
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 FIGURE 5.6  
       Solution of Example 5.3 (Lambert’s problem).    
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return to the same position overhead, that is, to lie on same meridian. A solar day — from high noon to high 
noon — comprises 24 hours.   Universal time   (UT) is determined by the sun’s passage across the Greenwich 
meridian, which is 0 °  terrestrial longitude. See Figure 1.18. At noon UT the sun lies on the Greenwich 
meridian. Local standard time, or civil time, is obtained from universal time by adding one hour for each 
time zone between Greenwich and the site, measured westward. 

   Sidereal   time   is measured by the rotation of the earth relative to the fi xed stars (i.e., the celestial sphere, 
Figure 4.3). The time it takes for a distant star to return to its same position overhead, i.e, to lie on the same 
meridian, is one sidereal day (24 sidereal hours). As illustrated in Figure 4.20, the earth’s orbit around the sun 
results in the sidereal day being slightly shorter than the solar day. One sidereal day is 23 hours and 56 minutes. 
To put it another way, the earth rotates 360 °  in one sidereal day whereas it rotates 360.986 °  in a solar day. 

 Local   sidereal time   θ   of a site is the time elapsed since the local meridian of the site passed through 
the vernal equinox. The number of degrees (measured eastward) between the vernal equinox and the local 
meridian is the sidereal time multiplied by 15. To know the location of a point on the earth at any given 
instant relative to the geocentric equatorial frame requires knowing its local sidereal time. The local side-
real time of a site is found by fi rst determining the Greenwich sidereal time   θ  G   (the sidereal time of the 
Greenwich meridian), and then adding the east longitude (or subtracting the west longitude) of the site. 
Algorithms for determining sidereal time rely on the notion of   Julian day (JD)  . 

 The   Julian day number is the number of days since noon UT on January 1, 4713 BC. The origin of this time 
scale is placed in antiquity so that, except for prehistoric events, we do not have to deal with positive and nega-
tive dates. The Julian day count is uniform and continuous and does not involve leap years or different numbers 
of days in different months. The number of days between two events is found by simply subtracting the Julian 
day of one from that of the other. The Julian day begins at noon rather than at midnight so that astronomers 
observing the heavens at night would not have to deal with a change of date during their watch. 

 The   Julian day numbering system is not to be confused with the Julian calendar, which the Roman 
emperor Julius Caesar introduced in 46 BC. The Gregorian calendar, introduced in 1583, has largely sup-
planted the Julian calendar and is in common civil use today throughout much of the world. 

  J    0  is the symbol for the Julian day number at 0 hr UT (which is half way into the Julian day). At any 
other UT, the Julian day is given by 

  
JD J

UT
� �0 24

  (5.47)      

 Algorithms   and tables for obtaining  J  0  from the ordinary year (y), month (m) and day (d) exist in the litera-
ture and on the World Wide Web. One of the simplest formulas is found in Boulet (1991), 
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  where  y ,  m  and  d  are integers lying in the following ranges   
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1 31

� �
� �
� �

y
m
d

    
           

 INT  ( x ) means to retain only the integer portion of  x , without rounding (or, in other words, round towards 
zero); that is, INT( � 3.9)      �       � 3 and INT(3.9)      �      3. Appendix D.26 lists a MATLAB implementation of 
Equation 5.48.



        Example 5.4      
 What   is the Julian day number for May 12, 2004 at 14:45:30 UT? 

    Solution 
 In   this case  y       �      2004,  m       �      5 and  d       �      12. Therefore, Equation 5.48 yields the Julian day number at 0hr UT, 
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 or   

  J0 2 453137 5� , ,  days.       

 The   universal time, in hours, is 

  
UT � � � �14

45

60

30

3600
14 758. hr

      

 Therefore  , from Equation 5.47 we obtain the Julian day number at the desired UT, 

  
JD � � �2 453137 5

14 758

24
2 453138 115, , , ,  days.

.
.

           

        Example 5.5      
 Find   the elapsed time between October 4, 1957 UT 19:26:24 and the date of the previous example. 

    Solution 
 Proceeding   as in Example 5.4 we fi nd that the Julian day number of the given event (the launch of the fi rst 
man-made satellite, Sputnik I) is 

  JD1 2 436 116 3100� , , .  days       

 The   Julian day of the previous example is 

  JD2 2 453 138 1149� , , .  days       

 Hence  , the elapsed time is 

  
ΔJD � � �2 453 138 1149 2 436 116 3100 17 021805, , . , , . , ,  days  (46 yearss, 220 days)
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 The   current Julian epoch is defi ned to have been noon on January 1, 2000. This epoch is denoted J2000 
and has the exact Julian day number 2,451,545.0. Since there are 365.25 days in a Julian year, a Julian cen-
tury has 36,525 days. It follows that the time  T  0  in Julian centuries between the Julian day  J  0  and J2000 is 

  
T

J
0

0 2 451 545

36 525
�

� , ,

,
  (5.49)      

 The   Greenwich sidereal time   θ  G   0  at 0 hr UT may be found in terms of this dimensionless time (Seidelmann, 
1992, Section 2.24).   θ  G   0  in degrees is given by the series 

  θG T T T0 0 0
2 8100 4606184 36 000 77004 0 000387933 2 583 10� � � � �. , . . . ( ) 00

3   (degrees)   (5.50)      

 This   formula can yield a value outside of the range 0      �        θ  G   0       �      360 ° . If so, then the appropriate integer mul-
tiple of 360 °  must be added or subtracted to bring   θ  G   0  into that range. 

 Once     θ  G   0  has been determined, the Greenwich sidereal time   θ  G   at any other universal time is found 
using the relation 

  
θ θG G

UT
� �0 360 98564724

24
.   (5.51)     

  where  UT  is in hours. The coeffi cient of the second term on the right is the number of degrees the earth 
rotates in 24 hours (solar time).   

 Finally  , the local sidereal time   θ   of a site is obtained by adding its east longitude   Λ   to the Greenwich 
sidereal time, 

  θ θ� �G Λ   (5.52)      

 Here   again it is possible for the computed value of   θ   to exceed 360 ° . If so, it must be reduced to within that 
limit by subtracting the appropriate integer multiple of 360 ° .  Figure 5.7    illustrates the relationship among 
  θ  G   0 ,   θ  G  ,   Λ   and   θ  .
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 FIGURE 5.7  
       Schematic of the relationship among   θ  G   0 ,   θ  G  ,   Λ   and   θ      .



        Algorithm 5.3          Calculate   the local sidereal time, given the date, the local time and the east longitude of the 
site. This is implemented in MATLAB in Appendix D.27. 

    1.     Using the year, month and day, calculate  J  0  using Equation 5.48.  
    2.     Calculate  T  0  by means of Equation 5.49.  
    3.     Compute   θ  G   0  from Equation 5.50. If   θ  G   0  lies outside the range 0 °       �        θ  G   0       �      360 ° , then subtract the 

multiple of 360 °  required to place   θ  G   0  in that range.  
    4.     Calculate   θ  G   using Equation 5.51.  
    5.     Calculate the local sidereal time   θ   by means of Equation 5.52, adjusting the fi nal value so it lies 

between 0 and 360 ° .        

        Example 5.6      
 Use   Algorithm 5.3 to fi nd the local sidereal time (in degrees) of Tokyo, Japan, on March 3, 2004 at 4:30:00 
UT. The east longitude of Tokyo is 139.80 ° . (This places Tokyo nine time zones ahead of Greenwich, so the 
local time is 1:30 in the afternoon.) 

 Step   1. 
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 Recall   that the .5 means that we are halfway into the Julian day, which began at noon UT of the previous day. 

 Step   2. 
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, , , ,
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.

      

 Step   3. 
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 The   right-hand side is too large. We must reduce   θ  G   0  to an angle that does not exceed 360 ° . To that end 
observe that 

  INT 1601.1087/360( ) � 4       
 Hence  , 

  θG0 1601 1087 4 360 161 10873� � � � �. .    (a)      

 Step   4. 
 The   universal time of interest in this problem is 

  
UT � � � �4

30
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3600
4 5. hr
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 Substitute   this and (a) into Equation 5.51 to get the Greenwich sidereal time. 

  
θG � � � �161 10873 360 98564724

4 5

24
228 79354. .

.
.

      
 Step   5. 

 Add   the east longitude of Tokyo to this value to obtain the local sidereal time, 

  θ � � � �228 79354 139 80 368 59. . .       

 To   reduce this result into the range 0      �        θ        �      360 °  we must subtract 360 °  to get 

  
θ � � � �368 59 360 8 59. .  (0.573 hr)

      
 Observe   that the right ascension of a celestial body lying on Tokyo’s meridian is 8.59 ° .       

    5.5       TOPOCENTRIC COORDINATE SYSTEM 
 A   topocentric coordinate system is one that is centered at the observer’s location on the surface of the earth. 
Consider an object  B  — a satellite or celestial body — and an observer  O  on the earth’s surface, as illustrated 
in  Figure 5.8   .  r  is the position of the body  B  relative to the center of attraction  C ;  R  is the position vector of 
the observer relative to C; and   ρ   is the position of the body  B  relative to the observer.  r ,  R  and   ρ   comprise 
the fundamental vector triangle. The relationship among these three vectors is 

  r R� � ρ   (5.53)      
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 FIGURE 5.8  
       Oblate spheroidal earth (exaggerated).    



 As   we know, the earth is not a sphere, but a slightly oblate spheroid. This ellipsoidal shape is exagger-
ated in Figure 5.8. The location of the observation site  O  is determined by specifying its east longitude   Λ   
and latitude   φ  . East longitude   Λ   is measured positive eastward from the Greenwich meridian to the merid-
ian through  O . The angle between the vernal equinox direction ( XZ  plane) and the meridian of  O  is the local 
sidereal time   θ  . Likewise,   θ  G   is the Greenwich sidereal time. Once we know   θ  G  , then the local sidereal time 
is given by Equation 5.52. 

 Latitude     φ   is the angle between the equator and the normal  ̂n    to the earth’s surface at  O . Since the earth 
is not a perfect sphere, the position vector  R , directed from the center  C  of the earth to  O , does not point in 
the direction of the normal except at the equator and the poles. 

 The   oblateness, or fl attening  f , was defi ned in Section 4.7, 

  
f

R R

R
e p

e

�
�

     

  where  R e   is the equatorial radius and  R p   is the polar radius. (Review from Table 4.3 that  f       �      0.000335 for 
the earth.)  Figure 5.9    shows the ellipse of the meridian through  O . Obviously,  R e   and  R p   are, respectively, 
the semimajor and semiminor axes of the ellipse. According to Equation 2.76,   

  
R R ep e� �1 2

      

 It   is easy to show from the above two relations that flattening and eccentricity are related as follows 

  e f f f e� � � � �2 1 12 2                

 As   illustrated in Figure 5.8 and again in  Figure 5.9 , the normal to the earth’s surface at  O  intersects 
the polar axis at a point  C  
  that lies below the center  C  of the earth (if  O  is in the northern hemisphere). 
The angle   φ   between the normal and the equator is called the   geodetic latitude  , as opposed to   geocentric 
latitude   φ   
 , which is the angle between the equatorial plane and line joining  O  to the center of the earth. 
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The distance from  C  to  C  
  is  R eφ φ2 2sin    , where  R  φ   , the distance from  C  
  to  O , is a function of latitude 
(Seidelmann, 1991, Section 4.22) 

  

R
R

e

R

f f

e e
φ

φ φ
�

�
�

� �1 1 22 2 2 2sin sin( )
  (5.54)      

 Thus  , the meridional coordinates of  O  are 

  

′

′

x R

z e R f R
O

O

�

� � � �

φ

φ φ

φ

φ φ

cos

sin sin( ) ( )1 12 2

      

 If   the observation point  O  is at an elevation  H  above the ellipsoidal surface, then we must add  H  cos   φ   to 
 ′xO    and  H  sin   φ   to  ′zO     to obtain 

  
′ ′x R z RO c O s� �cos        sinφ φ   (5.55a)     

  where   

  
R R H R f R Hc s� � � � �φ φ        ( )1 2   (5.55b)      

 Observe   that whereas  R c   is the distance of  O  from point C 
  on the earth’s axis,  R s   is the distance from  O  to 
the intersection of the line  OC  
  with the equatorial plane. 

 The   geocentric equatorial coordinates of  O  are 

  X x Y x Z zO O O� � �′ ′ ′cos        sin         θ θ      

  where   θ   is the local sidereal time given in Equation 5.52. Hence, the position vector  R  shown in Figure 5.8 is   

  R I J K� � �R R Rc c scos cos cos sin sinφ θ φ θ φ� � ˆ
      

 Substituting   Equation 5.54 and Equations 5.55b yields 

  

R I J�
� �

� �
R

f f
H

R

e

e

1 2

1

2 2( )
( )

    
(

sin
cos cos sin

φ
φ θ θ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

� �

��

� �

f

f f
H

)

( )

2

2 21 2 sin
sin

φ
φ+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

K̂   (5.56)      

 In   terms of the geocentric latitude   φ   
  

  R I J� � �R R Re e ecos cos cos sin sin′ ′ ′φ θ φ θ φ� � K̂       

 By   equating these two expressions for  R  and setting  H       �      0 it is easy to show that at sea level geodetic lati-
tude is related to geocentric latitude   φ   
  as follows, 

  tan tan′φ φ� �( )1 2f        



    5.6       TOPOCENTRIC EQUATORIAL COORDINATE SYSTEM 
 The   topocentric equatorial coordinate system with origin at point  O  on the surface of the earth uses a non-
rotating set of  xyz  axes through  O  which coincide with the  XYZ  axes of the geocentric equatorial frame, as 
illustrated in  Figure 5.10   . As can be inferred from the fi gure, the relative position vector   ρ   in terms of the 
  topocentric right ascension and declination   is 

  ρ � � �ρ cos cos cos sin sinδ α ρ δ α ρ δI J� � K̂      

  since at all times,  ̂ ˆi I�    ,  ̂ ˆj J�     and  ˆ ˆk K�     for this frame of reference. We can write   ρ   as   

  ρ ρ� ρˆ
     

  where   ρ   is the   slant range   and  ρ̂     is the unit vector in the direction of the position vector   ρ  ,   

  
ˆ cos cos ˆ cos sin ˆ sin ˆρ � � �δ α δ α δI J K   (5.57)      

 Since   the origins of the geocentric and topocentric systems do not coincide, the direction cosines of the 
position vectors  r  and   ρ   will in general differ. In particular the topocentric right ascension and declination 
of an earth-orbiting body  B  will not be the same as the geocentric right ascension and declination. This is 
an example of parallax. On the other hand, if  r R>>     then the difference between the geocentric and 
topocentric position vectors, and hence the right ascension and declination, is negligible. This is true for the 
distant planets and stars.
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        Example 5.7      
 At   the instant when the Greenwich sidereal time is   θ  G        �      126.7 ° , the geocentric equatorial position vector of 
the International Space Station is 

  r I J K� � � �5368 1784 3691ˆ ˆ ˆ  (km)       

 Find   its topocentric right ascension and declination at sea level ( H       �      0), latitude   φ        �      20 °  and east longitude 
  Λ        �      60 ° . 

    Solution 
 According   to Equation 5.52, the local sidereal time at the observation site is 

  θ θ� � � � � �G Λ 126 7 60 186 7. .       

 Substituting    R e        �      6378       km,  f       �      0.003353 (Table 4.3),   θ        �      189.7 °  and   φ        �      20 °  into Equation 5.56 yields the 
geocentric position vector of the site. 

  R I J K� � � �5955 699 5 2168ˆ . ˆ ˆ  (km)       

 Having   found  R , we obtain the position vector of the space station relative to the site from Equation 5.53. 

  

ρ � �

� � � � � � � �

�

r R
I J K I J K( ) ( )5368 1784 3691 5955 699 5 2168

586

ˆ ˆ ˆ ˆ . ˆ ˆ

.. ˆ ˆ ˆ8 1084 1523I J K� �  (km)       

 Applying   Algorithm 4.1 to this vector yields 

  α δ� � � �298 4 51 01. .       

 Compare   these with the geocentric right ascension   α   0  and declination   δ   0 , which were computed in Example 4.1, 

  α δ0 0198 4 33 12� � � �. .              

    5.7       TOPOCENTRIC HORIZON COORDINATE SYSTEM 
 The   topocentric horizon system was introduced in Section 1.7 and is illustrated again in  Figure 5.11   . It is 
centered at the observation point  O  whose position vector is  R . The  xy  plane is the local horizon, which is 
the plane tangent to the ellipsoid at point  O . The  z  axis is normal to this plane directed outward towards 
the zenith. The  x  axis is directed eastward and the  y  axis points north. Because the  x  axis points east, this 
may be referred to as an  ENZ  (East-North-Zenith) frame. In the  SEZ  topocentric reference frame the  x  axis 
points towards the south and the  y  axis towards the east. The  SEZ  frame is obtained from  ENZ  by a 90 °  
clockwise rotation around the zenith. Therefore, the matrix of the transformation from  NEZ  to  SEZ  is [ R  3  
( � 90 ° )], where [ R  3  (  φ  )] is found in Equation 4.34. 



 The   position vector   ρ   of a body B relative to the topocentric horizon system in  Figure 5.11  is 

  ρ � � �ρ ρ ρcos sin cos cos sina A a A aˆ ˆ ˆi j k      

  in which   ρ   is the range;  A  is the azimuth measured positive clockwise from due north (0      �       A       �      360 ° ); 
and  a  is the elevation angle or altitude measured from the horizontal to the line of sight of the body  B  
( � 90 °       �       a       �      90). The unit vector  ρ̂     in the line of sight direction is   

  
ˆ cos sin ˆ cos cos ˆ sin ˆρ � � �a A a A ai j k   (5.58)      

 The   transformation between geocentric equatorial and topocentric horizon systems is found by fi rst 
determining the projections of the topocentric base vectors  ̂ˆ ˆijk    onto those of the geocentric equatorial 
frame. From  Figure 5.11  it is apparent that 

  
ˆ cos ˆ sin ˆk i K� �φ φ′

     

  and   

  
ˆ cos ˆ sin ˆ′i I J� �θ θ      

 where  ̂ ′i      lies in the local meridional plane and is normal to the  Z  axis. Hence 

   
ˆ cos cos ˆ cos sin ˆ sin ˆk I J K� � �φ θ φ θ φ   (5.59)      
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 The   eastward-directed unit vector  ̂i     may be found by taking the cross product of  K̂     into the unit normal  ̂k    , 

  

ˆ
ˆ ˆ

ˆ ˆ
cos sin ˆ cos cos ˆ

cos sin cos
sii

K k

K k

I J
�

�

�
�

� �

�
� �

φ θ φ θ

φ θ θ2 2 2( )
nn ˆ cos ˆθ θI J�   (5.60)      

 Finally  , crossing  ̂k     into  ̂i     yields  ̂j    , 

  

ˆ ˆ ˆ

ˆ ˆ ˆ

cos cos cos sin sin

sin cos

sin cos ˆj k i

I J K

I� � �

�

� � �φ θ φ θ φ
θ θ

φ θ
0

ssin sin ˆ cos ˆφ θ φJ K�   (5.61)      

 Let   us denote the matrix of the transformation from geocentric equatorial to topocentric horizon as 
[ Q ]  Xx  . Recall from Section 4.5 that the rows of this matrix comprise the direction cosines of  ̂i   ,  ̂j    and  ̂k   , 
respectively. It follows from Equations 5.59 through 5.61 that 

  

[ ]Q Xx �

�

� �

sin cos

sin cos sin sin cos

cos cos cos sin sin

θ θ
φ θ φ θ φ

φ θ φ θ φ

0⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (5.62a)      

 The   reverse transformation, from topocentric horizon to geocentric equatorial, is represented by the trans-
pose of this matrix, 

  

[ ]Q xX �

� �

�

sin sin cos cos cos

cos sin sin cos sin

cos sin

θ φ θ φ θ
θ φ θ φ θ

φ φ0

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (5.62b)      

 Observe   that these matrices also represent the transformation between topocentric horizon and topocentric 
equatorial frames, because the unit basis vectors of the latter coincide with those of the geocentric equato-
rial coordinate system.

        Example 5.8      
 The   east longitude and latitude of an observer near San Francisco are   Λ        �      238 °  and   ρ        �      38 ° , respectively. 
The local sidereal time, in degrees, is   θ        �      215.1 °  (14h 20m). At that time the planet Jupiter is observed by 
means of a telescope to be located at azimuth   A        �      214.3 °  and angular elevation  a       �      43 ° . What are Jupiter’s 
right ascension and declination in the topocentric equatorial system? 

    Solution 
 The   given information allows us to formulate the matrix of the transformation from topocentric horizon to 
topocentric equatorial using Equation 5.62b, 

 

[ ]Q xX �

� � � � � � �

� �

sin . sin cos . cos cos .

cos . s

215 1 38 215 1 38 215 1

215 1 iin sin . cos sin .

cos sin

.

38 215 1 38 215 1

0 38 38

0

� � � �

� �

�

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

55750 0 5037 0 6447

0 8182 0 3540 0 4531

0 0 7880 0 6157

. .

. . .

. .

�

� �

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦⎦

⎥
⎥
⎥
⎥
     



 From   Equation 5.58 we have 

  

ˆ cos sin ˆ cos cos ˆ sin ˆ

cos sin . ˆ cos co
ρ � � �

� � � � �

a A a A ai j k
i43 214 3 43 ss . ˆ sin ˆ

. ˆ . ˆ . ˆ
214 3 43

0 4121 0 6042 0 6820
� � �

� � � �

j k
i j k       

 Therefore  , in matrix notation the topocentric horizon components of   ρ   are 

  

{ }ˆ

.

.

.

ρ x �

�

�

0 4121

0 6042

0 6820

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪       

 We   obtain the topocentric equatorial components  { }ρ̂ X     by the matrix operation 

  

{ } [ ] { }ˆ ˆ

. . .

. . .ρ ρX xX x� �

�

� �Q

0 5750 0 5037 0 6447

0 8182 0 3540 0 4531

0 0.. .

.

.

.7880 0 6157
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0 6042

0 6820

⎡

⎣

⎢
⎢
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⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
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⎩
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⎫

⎬

⎪�

�
⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

�

�

�

0 9810

0 1857

0 05621

.

.

.      

  so that the topocentric equatorial line of sight unit vector is   

  
ˆ . ˆ . ˆ . ˆρ � � � �0 9810 0 1857 0 05621I J K   (b)      

 Using   this vector in Algorithm 4.1 yields the topocentric equatorial right ascension and declination, 

  
α � � � � �190 7 3 222. .δ

      

 Jupiter   is suffi ciently far away that we can ignore the radius of the earth in Equation 5.53. That is, to our 
level of precision, there is no distinction between the topocentric equatorial and geocentric equatorial systems: 

  r � ρ       

 Therefore   the topocentric right ascension and declination computed above are the same as the geocentric 
equatorial values.      

        Example 5.9      
 At   a given time, the geocentric equatorial position vector of the International Space Station is 

  r I J K� � � �2032 4 4591 2 4544 8. . .� � �  (km)       

 Determine   the azimuth and elevation angle relative to a sea-level ( H       �      0) observer whose latitude is 
  φ        �       � 40 °  and local sidereal time is   θ        �      110 ° . 
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    Solution 
 Using   Equation 5.56 we fi nd the position vector of the observer to be 

  R I J K� � � �1673 4598 4078ˆ ˆ ˆ  (km)       

 For   the position vector of the space station relative to the observer we have (Equation 5.53) 

  

ρ � �

� � � � � � � �

� �

r R
I J K I J K( ) ( )2032 4591 4545 1673 4598 4078

359

ˆ ˆ ˆ ˆ ˆ ˆ

.. ˆ . ˆ . ˆ0 6 342 466 9I J K� �  (km)      

  or, in matrix notation,   

  

{ }  (km)ρ X �

�

�

�

359 0

6 342

466 9

.

.

.

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪       

 To   transform these geocentric equatorial components into the topocentric horizon system we need the 
direction cosine matrix [ Q ]  Xx  , which is given by Equation 5.62a, 

  

[ ]Q Xx �

�

�

sin cos

sin cos sin sin cos

cos cos cos sin sin

θ θ
φ θ φ θ φ

φ θ φ θ φ

0

−

⎡⎡
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⎢
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⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

=
� � �
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sin cos sin

110 110 0

40 110 40( ) ( )) ( )

( ) ( ) (

sin cos

cos cos cos sin sin

110 40

40 110 40 110 40

� � �
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⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥       

 Thus  , 

  

{ } [ ] { }ρ ρx Xx X� �

� �

�

�

Q

0 9397 0 3420 0

0 2198 0 6040 0 7660

0 2620 0

. .

. . .

. .77198 0 6428

359 0

6 342

466 9�

�

�

�.

.

.

.
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⎢
⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
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⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

� �

339 5

282 6

389 6

.

.

.

 (km)

     

  or, reverting to vector notation,   

  ρ � � �339 5 282 6 389 6.  (km)ˆ . ˆ . ˆi j k       

 The   magnitude of this vector is   ρ        �      589.0       km. Hence, the unit vector in the direction of   ρ   is 

  
ˆ ˆ . ˆ . ˆρ
ρ

� � � �
ρ

0 5765 0 4787 0 6615. i j k
      

 Comparing   this with Equation 5.58, we see that sin    a       �      0.6615, so that the angular elevation is 

  a � � ��sin . .1 0 6615 41 41       



 Furthermore   

  

sin
.

cos
.

cos
.

cos
.

A
a

A
a

� �

�
�

� �

0 5765
0 7687

0 4787
0 6397

      

 It   follows that 

  A � � � � ��cos . . .1 0 6397 129 8 230 2( )  (second quadrant) or  (third  quadrant)       

 A   must lie in the second quadrant because sin  A             0. Thus, the azimuth is 

  A � �129 8.              

    5.8       ORBIT DETERMINATION FROM ANGLE AND RANGE MEASUREMENTS 
 We   know that an orbit around the earth is determined once the state vectors  r  and  v  in the inertial geocentric 
equatorial frame are provided at a given instant of time (epoch). Satellites are of course observed from the 
earth’s surface and not from its center. Let us briefl y consider how the state vector is determined from mea-
surements by an earth-based tracking station. 

 The   fundamental vector triangle formed by the topocentric position vector   ρ   of a satellite relative to a 
tracking station, the position vector  R  of the station relative to the center of attraction  C  and the geocentric 
position vector  r  was illustrated in Figure 5.8 and is shown again schematically in  Figure 5.12   . The relation-
ship among these three vectors is given by Equation 5.53, which can be written 

  r R� � ρρ̂   (5.63)      
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 where   the range   ρ   is the distance of the body  B  from the tracking site and  ρ̂     is the unit vector containing 
the directional information about  B . By differentiating Equation 5.63 with respect to time we obtain the 
velocity  v  and acceleration  a , 

  v r R� � � �� � � �ρ ρˆ ˆρ ρ   (5.64)      

  a r R� � � � ��� �� �� � � ��ρ ρ ρˆ ˆ ˆρ ρ ρ2   (5.65)      

 The   vectors in these equations must all be expressed in the common basis ( ̂ ˆ ˆIJK   ) of the inertial (nonrotating) 
geocentric equatorial frame. 

 Since    R  is a vector fi xed in the earth, whose constant angular velocity is  Ω � ωEK̂     (see Equation 2.67), 
it follows from Equations 1.52 and 1.53 that 

  �R R� �Ω   (5.66)      

  
��R R� � �Ω Ω( )   (5.67)      

 If    L X  ,  L Y   and  L Z   are the topocentric equatorial direction cosines, then the direction cosine vector  ̂ρ    is 

  
ˆ ˆ ˆ ˆρ � � �L L LX Y ZI J K   (5.68)     

  and its first and second derivatives are   

  
ˆ ˆ ˆ ˆ� � � �ρ � � �L L LX Y ZI J K   (5.69)     

  and   

  
ˆ ˆ ˆ ˆ�� �� �� ��ρ � � �L L LX Y ZI J K   (5.70)      

 Comparing   Equations 5.57 and 5.68 reveals that the topocentric equatorial direction cosines in terms of the 
topocentric right ascension   α   and declension   δ   are 

  

L

L

L

X

Y

Z

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪

�

cos cos

sin cos

sin

α δ
α δ

δ⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

  (5.71)      

 Differentiating   this equation twice yields 
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  (5.72)     

  and   
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  (5.73)      



 Equations   5.71 through 5.73 show how the direction cosines and their rates are obtained from the right 
ascension and declination and their rates. 

 In   the topocentric horizon system, the relative position vector is written 

  
ˆ ˆ ˆ ˆρ � � �l l lx y zi j k   (5.74)     

  where, according to Equation 5.58, the direction cosines  l x  ,  l y   and  l z   are found in terms of the azimuth  A  and 
elevation  a  as   
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  (5.75)      

  L   X  ,  L Y   and  L Z   are obtained from  l x  ,  l y   and  l z   by the coordinate transformation 
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  (5.76)     

  where [ Q ]  xX   is given by Equation 5.62b. Thus,   
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  (5.77)      

 Substituting   Equation 5.71 we see that topocentric right ascension/declination and azimuth/elevation are 
related by 
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 Expanding   the right-hand side and solving for sin  δ  , sin  α   and cos  α   we get 

  sin cos cos cos sin sinδ φ φ� �A a a   (5.78a)      

  
sin

(cos sin cos cos sin )sin cos sin cos

cos
α

φ φ θ θ
δ

�
� �a A a A a   (5.78b)      

  
cos

(cos sin cos cos sin )cos sin sin cos

cos
α

φ φ θ θ
δ

�
� �a A a A a   (5.78c)      

 We   can simplify Equations 5.78b and c by introducing the hour angle  h , 

  h � �θ α   (5.79)     
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   h  is the angular distance between the object and the local meridian. If  h  is positive, the object is west of the 
meridian; if  h  is negative, the object is east of the meridian.   
 Using   well-known trig identities we have 

  sin( ) sin cos cos sinθ α θ α θ α� � �   (5.80a)      

  cos( ) cos cos sin sinθ α θ α θ α� � �   (5.80b)      

 Substituting   Equations 5.78b and c on the right of 5.80a and simplifying yields 

  
sin( )

sin cos

cos
h

A a
� �

δ
  (5.81)      

 Likewise  , Equation 5.80b leads to 

  
cos( )

cos sin sin cos cos

cos
h

a A a
�

�φ φ
δ

  (5.82)      

 We   calculate  h  from this equation, resolving quadrant ambiguity by checking the sign of sin( h ). That is, 

  
h
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cos sin sin cos cos

cos
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  if sin( h ) is positive. Otherwise, we must subtract  h  from 360 ° . Since both the elevation angle  a  and the 
declination   δ   lie between  � 90 °  and  � 90 ° , neither cos    a  nor cos     δ   can be negative. It follows from Equation 
5.81 that the sign of sin ( h ) depends only on that of sin    A .   

 To   summarize, given the topocentric azimuth  A  and altitude  a  of the target together with the sidereal 
time   θ   and latitude   φ   of the tracking station, we compute the topocentric declension   δ   and right ascension   α   
as follows, 

  δ φ φ� ��sin (cos cos cos sin sin )1 A a a   (5.83a)      
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  (5.83b)      

  α θ� � h   (5.83c)      

 If    A  and  a  are provided as a functions of time, then   α   and   δ   are found as functions of time by means of 
Equations 5.83. The rates  �α    ,  ��α    ,  �δ     and  ��δ     are determined by differentiating   α  ( t ) and   δ  ( t ) and substituting the 
results into Equations 5.68 through 5.73 to calculate the direction cosine vector  ρ̂    and its rates  �̂ρ     and  �̂�ρ    . 

 It   is a relatively simple matter to fi nd  �α    and  �δ     in terms of  �A     and  �a   . Differentiating Equation 5.78a with 
respect to time yields 
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[ cos sin cos (sin cos cos cos sin )]A A a a a A a   (5.84)      



 Differentiating   Equation 5.81, we get 
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 Substituting   Equation 5.82 and simplifying leads to 
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 But    � � � �h E� � � �θ α ω α    , so that, fi nally, 
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        Algorithm 5.4          Given   the range   ρ  , azimuth  A , angular elevation  a  together with the rates  �ρ    ,  �A    and  �a    relative 
to an earth-based tracking station (for which the altitude  H , latitude   φ   and local sidereal time are known), 
calculate the state vectors  r  and  v  in the geocentric equatorial frame. A MATLAB script of this procedure 
appears in Appendix D.28. 

    1.     Using the altitude  H , latitude   φ   and local sidereal time   θ   of the site, calculate its geocentric position 
vector  R  from Equation 5.56.    
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   where  f  is the earth’s fl attening factor.   

    2.     Calculate the topocentric declination   δ   using Equation 5.83a.  
    3.     Calculate the topocentric right ascension   α   from Equations 5.83b and 5.83c.  
    4.     Calculate the direction cosine unit vector  ρ̂     from Equations 5.68 and 5.71,    

  
ˆ cos (cos ˆ sin ˆ ) sin ˆρ � � �δ α α δI J K       

    5.     Calculate the geocentric position vector  r  from Equation 5.63,    

  r R� � ρρ̂       

    6.     Calculate the inertial velocity  �R    of the site from Equation 5.66.  
    7.     Calculate the declination rate  �δ     using Equation 5.84.  
    8.     Calculate the right ascension rate  �α    by means of Equation 5.85.  
    9.     Calculate the direction cosine rate vector  ̂�ρ     from Equations 5.69 and 5.72,    

  
ˆ ( sin cos cos sin )ˆ ( cos cos sin sin )ˆ� � � � � �ρ � � � � � �α α δ δ α δ α α δ δ α δI J δδ δcos K̂       

    10.     Calculate the geocentric velocity vector  v  from Equation 5.64.    

  v R� � �� � �ρ ρˆ ˆρ ρ           
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        Example 5.10      
 At     θ        �      300 °  local sidereal time a sea-level ( H       �      0) tracking station at latitude   φ        �      60 °  detects a space 
object and obtains the following data: 

  

Slant range:  km
Azimuth:
Elevation:
Range rat

ρ �
� �
� �

2551
90
30

A
a

ee:

Azimuth rate:  rad/s  deg/s

Elev

�
�
ρ �

� � �

0

1 973 10 0 11303A . ( . )

aation rate:  rad/s  deg/s�a � � �9 864 10 0 056514.  ( . )       

 What   are the orbital elements of the object? 

    Solution 
 We   must fi rst employ Algorithm 5.4 to obtain the state vectors  r  and  v  in order to compute the orbital ele-
ments by means of Algorithm 4.2. 

 Step   1. 

 The   equatorial radius of the earth is  R e        �      6378       km and the fl attening factor is  f       �      0.003353. It follows from 
Equation 5.56 that the position vector of the observer is 

  R I J K� � �1598 2769 5500ˆ ˆ ˆ ( )km       

 Step   2. 
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 Step   3. 

 Since   the given azimuth lies between 0 °  and 180 ° , Equation 5.83b yields 
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 Therefore  , the right ascension is 

  α θ� � � � � � � �h 300 286 1 13 90. .       

 Step   4. 
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 Step   5. 
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 Step   6. 

 Recalling   from Equation 2.67 that the angular velocity   ω  E   of the earth is 72.92      �      10  � 6  rad/s, 
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 Step   7. 
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 Step   8. 
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 Step   9. 
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 Step   10. 

  

v R
I J I J

� � �

� � � � � �

� � �ρ ρˆ ˆ

( . ˆ . ˆ ) ( . ˆ . ˆ .
ρ ρ

0 2019 0 1166 0 0 8750 0 2165 0 44330

2551 0 5104 10 1 834 10 0 1144 103 3 3

ˆ )

( . ˆ . ˆ . ˆ )

K
I J K  � � � � � �� � �

      

  v I J K� � �1 504 4 562 0 2920.  km/sˆ . ˆ . ˆ ( )       

 Using   the position and velocity vectors from Steps 5 and 10, the reader can verify that Algorithm 4.2 
yields the following orbital elements of the tracked object 

  

a
i

e

�
� �
� �
�
� �
� �

5170
113 4
109 8
0 6195
309 8
165 3

 km
.
.

.
.
.

Ω
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θ

      

 This   is a highly elliptical orbit with a semimajor axis less than the earth’s radius, so the object will impact 
the earth (at a true anomaly of 216 ° ).       

 For   objects orbiting the sun (planets, asteroids, comets and man-made interplanetary probes), the funda-
mental vector triangle is as illustrated in  Figure 5.13   . The tracking station is on the earth but, of course, the 
sun rather than the earth is the center of attraction. The procedure for fi nding the heliocentric state vector 
 r  and  v  is similar to that outlined above. Because of the vast distances involved, the observer can usually 
be imagined to reside at the center of the earth. Dealing with  R  is different in this case. The daily position 
of the sun relative to the earth ( �  R  in  Figure 5.13 ) may be found in ephemerides, such as Astronomical 
Almanac (U.S. Naval Observatory, 2008). A discussion of interplanetary trajectories appears in Chapter 8 
of this text.  

r

R

C

B

Sun

Earth

ρ

γ

 FIGURE 5.13  
       An object B orbiting the sun and tracked from earth.    



    5.9       ANGLES ONLY PRELIMINARY ORBIT DETERMINATION 
 To   determine an orbit requires specifying six independent quantities. These can be the six classical orbital 
elements or the total of six components of the state vector,  r  and  v , at a given instant. To determine an orbit 
solely from observations therefore requires six independent measurements. In the previous section we 
assumed the tracking station was able to measure simultaneously the six quantities range and range rate; 
azimuth and azimuth rate; plus elevation and elevation rate. This data leads directly to the state vector and, 
hence, to a complete determination of the orbit. In the absence of range and range rate measuring capability, 
as with a telescope, we must rely on measurements of just the two angles, azimuth and elevation, to deter-
mine the orbit. A minimum of three observations of azimuth and elevation is therefore required to accumulate 
the six quantities we need to predict the orbit. We shall henceforth assume that the angular measurements are 
converted to topocentric right ascension   α   and declination   δ  , as described in the previous section. 

 We   shall consider the classical method of angles-only orbit determination due to Carl Friedrich Gauss 
(1777–1855), a German mathematician who many consider was one of the greatest mathematicians ever. This 
method requires gathering angular information over closely spaced intervals of time and yields a preliminary 
orbit determination based on those initial observations.  

    5.10       GAUSS METHOD OF PRELIMINARY ORBIT DETERMINATION 
 Suppose   we have three observations of an orbiting body at times  t  1 ,  t  2  and  t  3 , as shown in  Figure 5.14   . At 
each time the geocentric position vector  r  is related to the observer’s position vector  R , the slant range   ρ   
and the topocentric direction cosine vector  ̂ρ    by Equation 5.63, 

  r R1 1 1 1� � ρ ρ̂   (5.86a)      

  r R2 2 2 2� � ρ ρ̂   (5.86b)      

  r R3 3 3 3� � ρ ρ̂   (5.86c)      
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 FIGURE 5.14  
       Center of attraction  C , observer  O  and tracked body  B .    
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 The   positions  R  1 ,  R  2  and  R  3  of the observer  O  are known from the location of the tracking station and 
the time of the observations.   ρ   1 ,   ρ   2  and   ρ   3  are obtained by measuring the right ascension   α   and declination   δ   
of the body at each of the three times (recall Equation 5.57). Equations 5.86 are three vector equations, and 
therefore nine scalar equations, in twelve unknowns: the three components of each of the three vectors  r  1 , 
 r  2  and  r  3 , plus the three slant ranges   ρ   1 ,   ρ   2  and   ρ   3 . 

 An   additional three equations are obtained by recalling from Chapter 2 that the conservation of angu-
lar momentum requires the vectors  r  1 ,  r  2  and  r  3  to lie in the same plane. As in our discussion of the Gibbs 
method in Section 5.2, that means  r  2  is a linear combination  r  1  and  r  3 . 

  r r r2 1 1 3 3� �c c   (5.87)      

 Adding   this equation to those in (5.86) introduces two new unknowns,  c  1  and  c  3 . At this point we therefore 
have 12 scalar equations in 14 unknowns. 

 Another   consequence of the two-body equation of motion (Equation 2.22) is that the state vectors  r  
and  v  of the orbiting body can be expressed in terms of the state vectors at any given time by means of the 
Lagrange coeffi cients, Equations 2.135 and 2.136. For the case at hand, that means we can express the posi-
tion vectors  r  1  and  r  3  in terms of the position  r  2  and velocity  v  2  at the intermediate time  t  2  as follows, 

  r r v1 1 2 1 2� �f g   (5.88a)      

  r r v3 3 2 3 2� �f g   (5.88b)     

  where  f  1  and  g  1  are the Lagrange coefficients evaluated at  t  1  while  f  3  and  g  3  are those same functions evalu-
ated at time  t  3 . If the time intervals between the three observations are sufficiently small then Equations 
2.172 reveal that  f  and  g  depend approximately only on the distance from the center of attraction at the 
initial time. For the case at hand that means the coefficients in Equations 5.88 depend only on  r  2 . Hence, 
Equations 5.88 add six scalar equations to our previous list of 12 while adding to the list of 14 unknowns 
only four: the three components of  v  2  and the radius  r  2 . We have arrived at 18 equations in 18 unknowns, so 
the problem is well posed and we can proceed with the solution. The ultimate objective is to determine the 
state vector  r  2 ,  v  2  at the intermediate time  t  2 .   

 Let   us start out by solving for  c  1  and  c  3  in Equation 5.87. First, take the cross product of each term in 
that equation with  r  3 , 

  r r r r r r2 3 1 1 3 3 3 3� � � � �c c( ) ( )       

 Since    r  3       �       r  3       �      0, this reduces to 

  r r r r2 3 1 1 3� � �c ( )       

 Taking   the dot product of this result with  r  1       �       r  3  and solving for  c  1  yields 

  

c1
2 3 1 3

1 3
2

�
�

�

( ) ( )r r r r

r r

× ×
  (5.89)      

 In   a similar fashion, by forming the dot product of Equation 5.87 with  r  1 , we are led to 

  

c3
2 1 3 1

1 3
2

�
� � �

�

( ) ( )r r r r

r r
  (5.90)      



 Let   us next use Equations 5.88 to eliminate  r  1  and  r  3  from the expressions for  c  1  and  c  3 . First of all, 

  r r r v r v r v v r1 3 1 2 1 2 3 2 3 2 1 3 2 2 3 1 2 2� � � � � � � � �( ) ( ) ( ) ( )f g f g f g f g       

 But    r  2       �       v  2       �       h , where  h  is the constant angular momentum of the orbit (Equation 2.28). It follows that 

  r r h1 3 1 3 3 1� � �( )f g f g   (5.91)     

  and, of course,   

  r r h3 1 1 3 3 1� � � �( )f g f g   (5.92)      

 Therefore  , 

  
r r1 3

2
1 3 3 1

2 2� � �( )f g f g h   (5.93)      

 Similarly   

  r r r r v h2 3 2 3 2 3 2 3� � � � �( )f g g   (5.94)     

  and   

  r r r r v h2 1 2 1 2 1 2 1� � � � �( )f g g   (5.95)      

 Substituting   Equations 5.91, 5.93 and 5.94 into Equation 5.89 yields 

  

c
g f g f g

f g f g h

g f g f g h

f g f g
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1 3 3 1
2 2

3 1 3 3 1
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�
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( )

( )

( 11
2 2) h      

  or   

  
c

g

f g f g1
3

1 3 3 1

�
�

  (5.96)      

 Likewise  , substituting Equations 5.92, 5.93 and 5.95 into Equation 5.90 leads to 

  
c

g

f g f g3
1

1 3 3 1

� �
�

  (5.97)      

 The   coeffi cients in Equation 5.87 are now expressed solely in terms of the Lagrange functions, and so 
far no approximations have been made. However, we will have to make some approximations in order to 
proceed. 

 We   must approximate  c  1  and  c  2  under the assumption that the times between observations of the orbiting 
body are small. To that end, let us introduce the notation 

  

τ
τ

1 1 2

3 3 2

� �

� �

t t
t t   (5.98)     
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    τ   1  and   τ   3  are the time intervals between the successive measurements of  ρ̂1   ,  ̂ρ2    and  ̂ρ3   . If the time intervals 
  τ   1  and   τ   3  are small enough, we can retain just the first two terms of the series expressions for the Lagrange 
coefficients  f  and  g  in Equations 2.172, thereby obtaining the approximations   
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  and   

  

g
r

1 1
2

3 1
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6
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 We   want to exclude all terms in  f  and  g  beyond the fi rst two so that only the unknown  r  2  appears in 
Equations 5.99 and 5.100. One can see from Equations 2.172 that the higher order terms include the 
unknown  v  2  as well. 

 Using   Equations 5.99 and 5.100 we can calculate the denominator in Equations 5.96 and 5.97, 
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 Expanding   the right side and collecting terms yields 
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 Retaining   terms of at most third order in the time intervals   τ   1  and   τ   3 , and setting 

  τ τ τ� �3 1   (5.101)      

 reduces   this expression to 

  

f g f g
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3
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τ   (5.102)      

 From   Equation 5.98 observe that   τ   is just the time interval between the fi rst and last observations. 
Substituting Equations 5.100b and 5.102 into Equation 5.96, we get 
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  (5.103)      



 We   can use the binomial theorem to simplify (linearize) the last term on the right. Setting  a       �      1,  
b r� � 1

6
μ

2

2
3 τ     and  n       �       � 1 in Equation 5.44, and neglecting terms of higher order than 2 in   τ  , yields 
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 Hence   Equation 5.103 becomes 
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  where only second order terms in the time have been retained. In precisely the same way it can be shown that   
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 Finally  , we have managed to obtain approximate formulas for the coeffi cients in Equation 5.87 in terms 
of just the time intervals between observations and the as yet unknown distance  r  2  from the center of attrac-
tion at the central time  t  2 . 

 The   next stage of the solution is to seek formulas for the slant ranges   ρ   1 ,   ρ   2  and   ρ   3  in terms of  c  1  and  c  2 . 
To that end, substitute Equations 5.86 into Equation 5.87 to get 

  R R R2 2 2 1 1 1 1 3 3 3 3� � � � �ρ ρ ρˆ ( ˆ ) ( ˆ )ρ ρ ρc c      

  which we rearrange into the form   

  c c c c1 1 1 2 2 3 3 3 1 1 2 3 3ρ ρ ρˆ ˆ ˆρ ρ ρ� � � � � �R R R   (5.106)      

 Let   us isolate the slant ranges   ρ   1 ,   ρ   2  and   ρ   3  in turn by taking the dot product of this equation with appropri-
ate vectors. To isolate   ρ   1  take the dot product of each term in this equation with  ̂ ˆρ ρ2 3�     , which gives 

  

c c
c

1 1 1 2 3 2 2 2 3 3 3 3 2 3

1 1

ρ ρ ρˆ (ˆ ˆ ) ˆ (ˆ ˆ ) ˆ (ˆ ˆ )ρ ρ ρ ρ ρ ρ ρ ρ ρ� � � � � � �

� �

×
R �� � � � � � � �(ˆ ˆ ) (ˆ ˆ ) (ˆ ˆ )ρ ρ ρ ρ ρ ρ2 3 2 2 3 3 3 2 3R Rc

      

 Since    ˆ (ˆ ˆ ) ˆ (ˆ ˆ )ρ ρ ρ ρ ρ ρ2 2 3 3 2 3 0� � � � � �    , this reduces to 

  c c c1 1 1 2 3 1 1 2 3 3 2 3ρ ˆ (ˆ ˆ ) ( ) (ˆ ˆ )ρ ρ ρ ρ ρ� � � � � � � �R R R   (5.107)      

 Let    D  0  represent the scalar triple product of  ̂ρ1   ,  ρ̂2    and  ρ̂3   , 

  D0 1 2 3� � �ˆ (ˆ ˆ )ρ ρ ρ   (5.108)      

 We   will assume that  D  0  is not zero, which means that  ̂ρ1   ,  ̂ρ2    and  ̂ρ3    do not lie in the same plane. Then we 
can solve Equation 5.107 for   ρ   1  to get 
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  (5.109a)     
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  where the  D  
 s stand for the scalar triple products   

  D D D11 1 2 3 21 2 2 3 31 3 2 3� � � � � � � �R R R· (ˆ ˆ ) (ˆ ˆ ) (ˆ ˆ )ρ ρ ρ ρ ρ ρ   (5.109b)      

 In   a similar fashion, by taking the dot product of Equation 5.106 with  ˆ ˆρ ρ1 3�     and then  ˆ ˆρ ρ1 2�     we obtain 
  ρ   2  and   ρ   3 , 
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D
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  where   

  D D D12 1 1 3 22 2 1 3 32 3 1 3� � � � � � � �R R R· (ˆ ˆ ) (ˆ ˆ ) (ˆ ˆ )ρ ρ ρ ρ ρ ρ   (5.110b)     

  and   
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  where   

  D D D13 1 1 2 23 2 1 2 33 3 1 2� � � � � � � � �R R R( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆρ ρ ρ ρ ρ ρ   (5.111b)      

 To   obtain these results we used the fact that  ˆ (ˆ ˆ )ρ ρ ρ2 1 3 0� � � �D     and  ˆ (ˆ ˆ )ρ ρ ρ3 1 2 0� � � D     (Equation 2.42). 
 Substituting   Equations 5.104 and 5.105 into Equation 5.110a yields the slant range   ρ   2 , 
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 On   the other hand, making the same substitutions into Equations 5.109a and 5.111a leads to the following 
expressions for the slant ranges   ρ   1  and   ρ   3 , 
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 Equation   5.112a is a relation between the slant range   ρ   2  and the geocentric radius  r  2 . Another expression 
relating these two variables is obtained from Equation 5.86b, 

  r r R R2 2 2 2 2 2 2 2� � � � �( ρ ρˆ ) ( ˆ )ρ ρ      

  or   

  r E R2
2

2
2

2 2
22� � �ρ ρ   (5.115a)     

  where   

  E � �R2 2ρ̂   (5.115b)      

 Substituting   Equation 5.112a into 5.115a gives 
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 Expanding   and rearranging terms leads to an eighth degree polynomial, 

  x ax bx c8 6 3 0� � � �   (5.116)     

  where  x       �       r  2  and the coefficients are   

  a A AE R b B A E c B� � � � � � � � �( ) ( )2
2

2 2 22 2μ μ   (5.117)      

 We   solve Equation 5.116 for  r  2  and substitute the result into Equations 5.112 through 5.114 to obtain the 
slant ranges   ρ   1 ,   ρ   2  and   ρ   3 . Then Equations 5.86 yield the position vectors  r  1 ,  r  2  and  r  3 . Recall that fi nding  r  2  
was one of our objectives. 

 To   attain the other objective, the velocity  v  2 , we fi rst solve Equation 5.88a for  r  2  
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 Substitute   this result into Equation 5.88b to get 
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 Solving   this for  v  2  yields 

  
v r r2 �

�
� �

1

1 3 3 1
3 1 1 3f g f g

f f( )   (5.118)     

  in which the approximate Lagrange functions appearing in Equations 5.99 and 5.100 are used.   
 The   approximate values we have found for  r  2  and  v  2  are used as the starting point for iteratively improv-

ing the accuracy of the computed  r  2  and  v  2  until convergence is achieved. The entire step by step procedure 
is summarized in Algorithms 5.5 and 5.6 presented below. See also Appendix D.29.
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        Algorithm 5.5          Gauss   method of preliminary orbit determination. Given the direction cosine vectors 
 ̂ρ1   ,  ρ̂2     and  ρ̂3     and the observer’s position vectors  R  1 ,  R  2  and  R  3  at the times  t  1 ,  t  2  and  t  3 , compute the orbital 
elements. 

     1.     Calculate the time intervals   τ   1 ,   τ   3  and   τ   using Equations 5.98 and 5.101.  
     2.     Calculate the cross products  p1 2 3� �ˆ ˆρ ρ    ,  p2 1 3� �ˆ ˆρ ρ     and  p3 1 2� �ˆ ˆρ ρ    .  
     3.     Calculate  D0 1 1� �ρ̂ p     (Equation 5.108).  
     4.     From Equations 5.109b, 5.110b and 5.111b compute the six scalar quantities    
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     5.     Calculate  A  and  B  using Equations 5.112b and 5.112c.  
     6.     Calculate  E , using Equation 5.115b, and  R2

2
2 2� �R R    .  

     7.     Calculate  a ,  b  and  c  from Equation 5.117.  
     8.     Find the roots of Equation 5.116 and select the most reasonable one as  r  2 . Newton’s method can be 

used, in which case Equation 3.16 becomes    
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i i

i i i

i i i
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1

8 6 3

7 5 28 6 3
  (5.119)      

 One   must fi rst print or graph the function  F       �       x  8       �       ax  6       �       bx  3       �       c  for  x             0 and choose as an initial 
estimate a value of  x  near the point where  F  changes sign. If there is more than one physically rea-
sonable root, then each one must be used and the resulting orbit checked against knowledge that may 
already be available about the general nature of the orbit. Alternatively, the analysis can be repeated 
using additional sets of observations. 

     9.     Calculate   ρ   1 ,   ρ   2  and   ρ   3  using Equations 5.113, 5.112a and 5.114.  
    10.     Use Equations 5.86 to calculate  r  1 ,  r  2  and  r  3 .  
    11.     Calculate the Lagrange coeffi cients  f  1 ,  g  1 ,  f  3  and  g  3  from Equations 5.99 and 5.100.  
    12.     Calculate  v2     using Equation 5.118.  
    13.          (a)     Use  r  2  and  v  2  from Steps 10 and 12 to obtain the orbital elements from Algorithm 4.2.  

    (b)     Alternatively, proceed to Algorithm 5.6 to improve the preliminary estimate of the orbit.           

        Algorithm 5.6          Iterative   improvement of the orbit determined by Algorithm 5.5. 
 Use   the values of  r  2  and  v  2  obtained from Algorithm 5.5 to compute the  “ exact ”  values of the  f  and  g  
functions from their universal formulation, as follows: 

     1.     Calculate the magnitude of  r  2   ( )r2 2 2� �r r    and  v  2  ( )v2 2 2� �v v    .  

     2.     Calculate   α  , the reciprocal of the semimajor axis:  α � �2/ /2 2
2r v μ   .  

     3.     Calculate the radial component of  v  2 ,  v rr 2 2 2 2� �v r /    .  



     4.     Use Algorithm 3.3 to solve the universal Kepler’s equation (Equation 3.49) for the universal vari-
ables   χ   1  and   χ   3  at times  t  1  and  t  3 , respectively:    
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     5.     Use   χ   1  and   χ   3  to calculate  f  1 ,  g  1 ,  f  3  and  g3    from Equations 3.69:    
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     6.     Use these values of  f  1 ,  g  1 ,  f  3  and  g  3  to calculate  c  1  and  c  3  from Equations 5.96 and 5.97.  
     7.     Use  c  1  and  c  3  to calculate updated values of   ρ   1 ,   ρ   2  and   ρ   3  from Equations 5.109 through 5.111.  
     8.     Calculate updated  r  1 ,  r  2  and  r  3  from Equations 5.86.  
     9.     Calculate updated  v  2  using Equation 5.118 and the  f  and  g  values computed in Step 5.  
    10.     Go back to Step 1 and repeat until, to the desired degree of precision, there is no further change in 

  ρ   1 ,   ρ   2  and   ρ   3 .  
    11.     Use  r  2  and  v  2  to compute the orbital elements by means of Algorithm 4.2.        

        Example 5.11      
 A   tracking station is located at   φ        �      40 °  north latitude at an altitude of  H       �      1       km. Three observations of 
an earth satellite yield the values for the topocentric right ascension and declination listed in the following 
table, which also shows the local sidereal time   θ   of the observation site. 

 Use   the Gauss Algorithm 5.5 to estimate the state vector at the second observation time. Recall that 
  μ        �      398,600       km 3 / s  2 . 
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 Table 5.1          Data for Example 5.11  

   Observation  Time (seconds)  Right ascension,   α   
(degrees) 

 Declension,   δ   
(degrees) 

 Local sidereal time,   θ   
(degrees) 

   1  0  43.537   � 8.7833  44.506 

   2  118.10  54.420   � 12.074  45.000 

   3  237.58  64.318   � 15.105  45.499 
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    Solution 
 Recalling   that the equatorial radius of the earth is  R e        �      6378       km and the fl attening factor is  f       �      0.003353, 
we substitute   φ        �      40 ° ,  H       �      1       km and the given values of  θ     into Equation 5.56 to obtain the inertial posi-
tion vector of the tracking station at each of the three observation times. 
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 Using   Equation 5.57 we compute the direction cosine vectors at each of the three observation times from 
the right ascension and declination data 
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 (b)      

 We   can now proceed with Algorithm 5.5. 

 Step   1. 
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� � � �

� � �

� � �

. .

. . .

.

s

s

.
3

11 237 58( ) � . s       

 Step   2. 

  

p I J

p

1 2 3

2 1 3

0 025258 0 060753 0 16229

0 0

� � � � � �

� � � �

ˆ ˆ . ˆ . ˆ .

ˆ ˆ .

ρ ρ

ρ ρ 444538 0 12281 0 33853

0 020950 0 062973 1 2

ˆ . ˆ . ˆ

ˆ ˆ . ˆ .

I J K

p I

� �

� � � � �ρ ρ 77 0 18246ˆ .J �       

 Step   3. 

  D0 1 1� � � �ρ̂ p 0.0015198       

 Step   4. 

  

D D D

D
11 1 1 12 1 2 13 1 3

21

� � � � � � � � �

�

R p R p R p782.15 km 1646.5 km 887.10 km

RR p R p R p

R
2 1 22 2 2 23 2 3

31 3

� � � � � � � �

� �

784.72 km 1651.5 km 889.60 kmD D

D pp R p R p1 32 3 2 33 3 3� � � � � � �787.31 km 1656.6 km 892.13 kmD D       



 Step   5: 

  

A �
�

� � �
�1 119 47

237 58

118 10

2370.0015198
1646.5 1651.5 1656.6

.

.

( . )

..
.

( . .

58
6 6858

1

6
119 47 237 52

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

� �

�
�

�

km

0.0015198
1646.5B 88

119 47

237 58
237 58 118 10

118 10

237
2 2 2)

.

.
. ( . )

( . )

.
� � �

�
1656.6 ⎡

⎣
⎤
⎦ 558

7 6667 109

{ }
� �. km-s2

      

 Step   6. 

  

E

R

� �

� � � �

R

R R

2 2

2
2

2 2
7

3867 5

4 058 10

ˆ .

.

ρ km

km2
      

 Step   7. 

  

a � � � � � � � �( . ) ( . )( . ) . .− −⎡
⎣

⎤
⎦6 6858 2 6 6858 3875 8 4 058 10 4 0528 102 7 7 kkm

,

2

b � � � � � � � �2 389 600 7 6667 10 6 6858 3875 8 2 3597 109 19( )( . )( . . ) . kkm

, km

5

8c � � � � �( ) ( . ) .398 600 7 6667 10 9 3387 102 9 2 30×       

 Step   8. 

  F x x x x( ) . . .� � � � � � � �8 7 6 19 3 304 0528 10 2 3597 10 9 3387 10 0       

 The   graph of  F ( x ) in  Figure 5.15    shows that it changes sign near  x       �      9000       km. Let us use that as the start-
ing value in Newton’s method for fi nding the roots of  F ( x ). For the case at hand, Equation 5.119 is 

  

x x
x x x

x
i i

i i i

i
� � �

� � � � � �

�
1

8 7 6 19 3 30

7

4 0528 10 2 3622 10 9 3186 10

8 2

. . .

.. .4317 10 7 0866 108 5 19 2� � �x xi i       
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 FIGURE 5.15  
       Graph of the polynomial  F ( x ) in Step 8.    
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 Stepping   through Newton’s iterative procedure yields 

  

x
x
x
x

0

1

2

3

9000
9000 276 93 9276 9
9276 9 34 526 9242 4
9

�

� � �

� � �

�

( . ) .
. . .

−

2242 4 0 63428 9241 8
9241 8 0 00021048 9241 84

. . .

. . .
� �

� � �x       

 Thus  , after four steps we converge to 

  r2 9241 8� . km      

 The   other roots are either negative or complex and are therefore physically unacceptable. 

 Step   9. 

  

ρ1
1

0 0015198

6 787 31
118 10

119 47
784 72

237 58

119 47

�
�

�
�

.

.
.

.
.

.

.

×

⎡

⎣
( )⎢⎢

⎢
⎤

⎦
⎥
⎥

( )9241 8 398 600 787 31 237 58 118 10
118 10

11
3 2 2

. , . . .
.

� � � �
�

[ ]
99 47

6 9241 8 398 600 237 58 119 473 2 2
.

. , . .� � �
�

( )
782.15

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬⎬
⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

� � �
� �

�

3639 1

6 6858
398 600 7 6667 10

9241 8
2

9

3

.

.
, .

.

 km

ρ 33864 8

1

0 00151983

6 887 10
119 47

118 10
889 60

237 58

.

.

.
.

.
.

.

 km

ρ �
�

�

�
�

��
� � �

118 10
9241 8 398 600 887 10 237 58 119 47

13 2 2

.
. , . . .

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ( )

119 47

118 10

6 9241 8 398 600 237 58 118 10
892

3 2 2

.

.

. , . .

�

� � � �
�

( )⎡
⎣⎢

⎤
⎦⎥

..

.

13

4172 8

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

�  km
      

 Step   10. 

  

r I J K I J1 ( . ) (� � � � �3489 8 3430 2 4078 5 3639 1 0 71643 0 68074ˆ . ˆ . ˆ . . ˆ . ˆ ��

� � �

� �

0 15270

6096 9 5907 5 3522 9

3460 1 3

. ˆ

. ˆ . ˆ . ˆ

. ˆ

K
I J K

r I

)

 (km)

(2 4460 1 4078 5 3864 8 0 56897 0 79531 0 20917

5

. ˆ . ˆ . . ˆ . ˆ . ˆJ K I J K� � � �

�

) ( )

6659 1 6533 8 3270 1

3429 9 3490 1 4078

. ˆ . ˆ . ˆ

. ˆ . ˆ .

I J K

r I J

� �

� � �

 (km)

(3 55 4172 8 0 41841 0 87007 0 26059

5175 8 7120

ˆ . . ˆ . ˆ . ˆ

. ˆ .

K I J K
I

) ( )� � �

� � 88 2991 1ˆ . ˆJ K�  (km)       



 Step   11. 

  

f

f

1 3
2

3

1
1

2

398 600

9241 8
118 10 0 99648

1
1

2

398 600

9241

�

�

� � �

�

,

.
. .

,

.

( )

88
119 47 0 99640

118 10
1

6

398 600

9241 8
118 10

3
2

1 3
3

( )

( )

. .

.
,

.
.

�

� � � �g � ��

� �

117 97

119 47
1

6

398 600

9241 8
119 47 119 333 3

3

.

.
,

.
. ) .g � (

      

 Step   12. 

  

v
I J K I

2
. ( . ) (

�
� � � � �0 99640 6096 9 5907 5 3522 9 0 99648 5175 8 7ˆ . ˆ . ˆ . . ˆ 1120 8 2991 1

0 99648 119 33 0 99640 117 97

3 8800

. ˆ . ˆ

. . . .

. ˆ

J K�

� � �

� �

)

( )

II J K� �5 1156 2 2397. ˆ . ˆ  (km/s)       

 In   summary, the state vector at time  t  2  is, approximately, 

  

r I J K
v I J

2

2

.  (km)� � �

� � � �

5659 1 6533 8 3270 1

3 8800 5 1156 2

ˆ . ˆ . ˆ

. ˆ . ˆ .22397K̂ (km/s)
           

        Example 5.12      
 Starting   with the state vector determined in Example 5.11, use Algorithm 5.6 to improve the vector to fi ve 
signifi cant fi gures. 

 Step   1. 

  
r2 2

2 2 25659 1 6533 8 3270 1 9241 8� � � � �r . . . .  km
      

  
v2 2

2 2 23 8800 5 1156 2 2397 6 7999� � � � � � �v ( ) ( ) km/s. . . .  
      

 Step   2. 

  
α

μ
� � � � � � � �2 2

9241 8

6 7999

398 600
1 0040 10

2

2
2 2

4 1

r

v

.

.

,
.  km

      

 Step   3. 

  
v

rr2
2 2

2

3 8800 5659 1 5 1156 6533 8 2 2397 3270
�

�
�

� � � � � � �v r ( ) ( ). . . . . .11

9241 8
0 44829

.
.�  km/s

      

5.10 Gauss method of preliminary orbit determination  309



310  CHAPTER 5 Preliminary orbit determination

 Step   4. 
 The   universal Kepler’s equation at times  t  1  and  t  3 , respectively, becomes 

  

398 600
9241 8 0 44829

398 600
1 0040 10

1 1

1 1
2 4

1
2,

. .

,
.τ χ χ�

�
�

  � �

�C( )

( .. . . .

,

0040 10 9241 8 1 0040 10 9241 8

398 600

4
1
3 4

1
2

1

3

� � � �

�

� �) ( )χ χ χ

τ

S

99241 8 0 44829

398 600
1 0040 10

1 1 0040 10

3
2 4

3
2. .

,
.

.

�
�

  � � �

�

�

χ χC( )

( 44
3

3 4
3

2
39241 8 1 0040 10 9241 8� � ��. . .) ( )χ χ χS

     

  or   

  

631 35 6 5622 1 0040 10 0 072085 1 0040 101 1
2 4

1
2

1
3. . . . .τ χ χ χ� � � ��C S( ) ( ��

�

�

� � �

4
1
2

1

3 3
2 4

3
2

9241 8

631 35 6 5622 1 0040 10 0 0720

χ χ

τ χ χ

)

( )

.

. . . .C 885 1 0040 10 9241 81
3 4

3
2

3χ χ χS( ). .� ��

      

 Applying   Algorithm 3.3 to each of these equations yields 

  

χ

χ
1

3

8 0908

8 1375

� �

�

.

.

 km

 km       

 Step   5. 

  

f
r

C C1
1
2

2
1
2

2
41 1

8 0908

9241 8
1 0040 10 8 0908� � � �

�
� � ��χ

αχ( )
( )

( [
.

.
. . ]] )

( )

2

0 49973

1 1 1
3

1
2
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1
118 1

.

.

.

� ������ ������
�

� � � � �g Sτ
μ

χ αχ
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398 600
8 0908 1 0040 10 8 09083 4 2

0 16661

,
. . .

.

( ) ( [ ] )� � � ��S
� ������ �������

� �117 96.  s

     

  and   

  

f
r

C C3
3

2

2
3

2
2

4 2

0

1 1
8 1375

9241 8
1 0040 10 8 1375� � � � � � ��χ

αχ( ) ( )
.

.
. .

.449972

3 3 3
3

3
2

0 99642

1
118 1

1
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� ������ ������
�

� � � � �

.

.
,

g Sτ
μ

χ αχ( )
6600

8 1375 1 0040 10 8 1375 1193 4 2

0 16661

. . .

.

� � � ��S( )
� ������ ������

..33

      



 It   turns out that the procedure converges more rapidly if the Lagrange coeffi cients are set equal to the 
average of those computed for the current step and those computed for the previous step. Thus, we set 

  

f

g

1

1

0 99648 0 99646

2
0 99647

117 97 117 96
117 96

�
�

�

�
� � �

� �

. .
.

. .
.
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2
 s
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3

3
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2
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2
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�
�

�

�
�

�

. .
.

. .
.  s 

      

 Step   6. 

  

c

c

1

3

119 33

0 99647 119 33 0 99641 117 96
0 50467�

� �
�

�

.

. . . .
.

( )( ) ( )(  s)

��
�

� �
�

117 96

0 99647 119 33 0 99641 117 96
0 49890

.

. . . .
.

( )( ) ( )( )       

 Step   7. 

  

ρ1
1

0 0015198
782 15

1

0 50467
784 72

0 49890
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�
� � �

.
.

.
.

.

.
.

⎛
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⎜⎜⎜
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�
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1
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.

.
. . .
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. . .

.

.

.

� �

�
�

�
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ρ ..
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⎜⎜⎜
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 Step   8. 

  

r I J K I J1 3489 8 3430 2 4078 5 3650 6 0 71643 0 68074� � � � �( . ) (ˆ . ˆ . ˆ . . ˆ . ˆ ��

� � �

� �

0 15270

6105 2 5915 3 3521 1

3460 1 32

. ˆ

. ˆ . ˆ . ˆ

. ˆ

K

I J K

r I

)

 (km)

( 4460 1 4078 5 3877 2 0 568 97 0 79531 0 209 17. ˆ . ˆ . . , ˆ . ˆ . , ˆJ K I J K� � � �) ( )

�� � �

� � �

5666 6 6543 7 3267 5

3429 9 3490 1 4073

. ˆ . ˆ . ˆ

. ˆ . ˆ
I J K

r I J

 km

(

( )

88 5 4186 2 0 418 41 0 87007 0 260 59

5181 4 7

. ˆ . . , ˆ . ˆ . , ˆ

. ˆ

K I J K

I

) ( )� � �

� � 1132 4 2987 6. ˆ . ˆJ K�  (km)       

 Step   9. 

  

v

I

2 0.99647 . 0.99641( . )
  [ 0.99641( .

�
� �

�

� �

1

119 33 117 96
6105 2 5

⋅
ˆ 9915 3 3521 1 5181 4 7132 4 2987 6

3

. ˆ . ˆ . ˆ . ˆ . ˆJ K I J K� � � �

� �

) 0.99647( )]

.. ˆ . ˆ . ˆ8856 5 1214 2 2434I J K� �  (km/s)       
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 This   completes the fi rst iteration. 
 The   updated position  r  2  and velocity  v  2  are used to repeat the procedure beginning at Step 1. The results 

of the fi rst and subsequent iterations are shown in  Table 5.2   . Convergence to fi ve signifi cant fi gures in the 
slant ranges   ρ   1 ,   ρ   2  and   ρ   3  occurs in four steps, at which point the state vector is 

  

r I J K

v I J
2

2

.  (km)� � �

� � � �

5662 1 6538 0 3269 0

3 8856 5 1214 2

ˆ . ˆ . ˆ

. ˆ . ˆ .22433K̂ (km/s)       

 Using    r  2  and  v  2  in Algorithm 4.2 we fi nd that the orbital elements are 

  

a h

e

i

� �

�

� �

� �

� �

�

10 000 62 818

0 1000

30

270

90

4

, ,

.

 km    (  km /s)2

Ω
ω
θ 55 01. �             

    PROBLEMS 

    Section 5.2 

        5.1     The geocentric equatorial position vectors of a satellite at three separate times are    

  

r I J K

r I J K
1

2

5887 3520 1204

5572 3457 2376

� � �

� � �

ˆ ˆ ˆ  
ˆ ˆ ˆ  

 (km)

 (km)

rr I J K3 5088 3289 3480� � �ˆ ˆ ˆ   (km)
      

 Use   Gibbs ’  method to fi nd  v  2 .  { Partial ans.:  v  2       �      7.59       km/s }  
    5.2     Calculate the orbital elements and perigee altitude of the space object in the previous problem.    
     { Partial ans.:  z p        �      567       km. }   

 Table 5.2          Key Results at Each Step of the Iterative Procedure  

   Step    χ   1     χ   3    f  1    g  1    f  3    g  3     ρ   1     ρ   2     ρ   3  

   1   � 8.0908  8.1375  0.99647   � 117.97  0.99641  119.33  3650.6  3877.2  4186.2 

   2   � 8.0818  8.1282  0.99647   � 117.96  0.99642  119.33  3643.8  3869.9  4178.3 

   3   � 8.0871  8.1337  0.99647   � 117.96  0.99642  119.33  3644.0  3870.1  4178.6 

   4   � 8.0869  8.1336  0.99647   � 117.96  0.99642  119.33  3644.0  3870.1  4178.6 



    Section 5.3 

        5.3     At a given instant the altitude of an earth satellite is 600       km. Fifteen minutes later the altitude is 300       km 
and the true anomaly has increased by 60 ° . Find the perigee altitude.    

     { Ans.:  z p        �      298       km. }  

    5.4     At a given instant, the geocentric equatorial position vector of an earth satellite is 

      r I J K1 3600 3600 5100� � � �ˆ ˆ ˆ   (km).      

     Thirty minutes later the position is  

      r I J K2 5500 6240 520� � � �ˆ ˆ ˆ   (km).           

  Calculate    v  1  and  v  2 .  { Partial ans.:  v  1       �      7.711       km/s,  v  2       �      6.670       km/s }  

    5.5     Compute the orbital elements and perigee altitude for the previous problem.    
     { Partial ans.:  z p        �      648       km }  

    5.6     At a given instant, the geocentric equatorial position vector of an earth satellite is 

      r I J K1 5644 2830 4170� � �ˆ ˆ ˆ   (km).     

    Twenty minutes later the position is  

      r I J K2 2240 7320 4980� � � �ˆ ˆ ˆ   (km).           

  Calculate    v  1  and  v  2 .  { Partial ans.:  v  1       �      10.84       km/s,  v  2       �      9.970       km/s. }  

    5.7     Compute the orbital elements and perigee altitude for the previous problem.    
     { Partial ans.:  z p        �      224       km. }   

    Section 5.4 

        5.8     Calculate the Julian day (JD) number for the following epochs: 

    (a)     5:30 UT on August 14, 1914.  
    (b)     14:00 UT on April 18, 1946.  
    (c)     0:00 UT on September 1, 2010.  
    (d)     12:00 UT on October 16, 2007.  
    (e)     Noon today, your local time.       
    { Ans.: (a) 2,420,358.729, (b) 2,431,929.083, (c) 2,455,440.500, (d) 2,454,390.000 }  

    5.9     Calculate the number of days from 12:00 UT on your date of birth to 12:00 UT on today’s date.  
    5.10     Calculate the local sidereal time (in degrees) at: 

    (a)     Stockholm, Sweden (east longitude 18 ° 03 
 ) at 12:00 UT on January 1, 2008.  
    (b)     Melbourne, Australia (east longitude 144 ° 58 
 ) at 10:00 UT on December 21, 2007.  
    (c)     Los Angeles, California (west longitude 118 ° 15 
 ) at 20:00 UT on July 4, 2005.  
    (d)     Rio de Janeiro, Brazil (west longitude 43 ° 06 
 ) at 3:00 UT on February 15, 2006.  
    (e)     Vladivostok, Russia (east longitude 131 ° 56 
 ) at 8:00 UT on March 21, 2006.  
    (f)     At noon today, your local time and place.       

    { Ans.: (a) 298.6 ° , (b) 24.6 ° , (c) 104.7 ° , (d) 146.9 ° , (e) 70.6 ° . }   
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    Section 5.8 

        5.11     Relative to a tracking station whose local sidereal time is 117 °  and latitude is  � 51 ° , the azimuth and 
elevation angle of a satellite are 28 °  and 68 ° , respectively. Calculate the topocentric right ascension 
and declination of the satellite.    

     { Ans.:  α       �      145.3 ° ,   δ        �      68.24 °  }  

    5.12     A sea-level tracking station at whose local sidereal time is 40 °  and latitude is 35 °  makes the following 
observations of a space object:   

   Azimuth:  36.0 °  
   Azimuth rate:  0.590 °  
   Elevation:  36.6 °  
   Elevation rate:   � 0.263 °  
   Range:  988       km 
   Range rate:  4.86       km/s 

  What   is the state vector of the object?  { Partial ans.:  r       �      7003.3       km,  v       �      10.922       km/s }  

    5.13     Calculate the orbital elements of the satellite in the previous problem.    
     { Partial ans.:  e       �      1.1,  i       �      40 °  }  

    5.14     A tracking station at latitude  � 20 °  and elevation 500       m makes the following observations of a satel-
lite at the given times.   

   Time  Local sidereal time  Azimuth  Elevation angle  Range 
   (min)  (degrees)  (degrees)  (degrees)  (km) 

   0  60.0  165.932  8.81952  1212.48 

   2  60.5014  145.970  44.2734  410.596 

   4  61.0027  2.40973  20.7594  726.464 

  Use   the Gibbs method to calculate the state vector of the satellite at the central observation time. 
 { Partial ans.:  r  2       �      6684       km,  v  2       �      7.7239       km/s }  

    5.15     Calculate the orbital elements of the satellite in the previous problem.    
     { Partial ans.:  e       �      0.001,  i       �      95 °  }   

    Section 5.10 

        5.16     A sea-level tracking station at latitude  � 29 °  makes the following observations of a satellite at the given 
times.   

   Time  Local sidereal time  Topocentric Right ascension  Topocentric Declination 
   (min)  (degrees)  (degrees)  (degrees) 

   0.0  0  0  51.5110 

   1.0  0.250684  65.9279  27.9911 

   2.0  0.501369  79.8500  14.6609 



  Use   the Gauss method without iterative improvement to estimate the state vector of the satellite at the 
middle observation time.  { Partial ans.:  r       �      6700.9       km  v       �      8.0757       km/s }  

    5.17     Refi ne the estimate in the previous problem using iterative improvement.    
     { Partial ans.:  r       �      6701.5       km  v       �      8.0881       km/s }  

    5.18     Calculate the orbital elements from the state vector obtained in the previous problem.    
     { Partial ans.:  e       �      0.10,  i       �      30 °  }  

    5.19     A sea-level tracking station at latitude  � 29 °  makes the following observations of a satellite at the 
given times.   

   Time  Local sidereal time  Topocentric Right ascension  Topocentric 
Declination 

   (min)  (degrees)  (degrees)  (degrees) 

   0.0  90  15.0394  20.7487 

   1.0  90.2507  25.7539  30.1410 

   2.0  90.5014  48.6055  43.8910 

  Use   the Gauss method without iterative improvement to estimate the state vector of the satellite. 
 { Partial ans.:  r       �      6999.1       km,  v       �      7.5541       km/s }  

    5.20     Refi ne the estimate in the previous problem using iterative improvement.    
     { Partial ans.:  r       �      7000.0       km  v       �      7.5638       km/s }  

    5.21     Calculate the orbital elements from the state vector obtained in the previous problem.    
     { Partial ans.: e      �      0.0048,  i       �      31 °  }  

    5.22     The position vector  R  of a tracking station and the direction cosine vector  ̂ρ     of a satellite relative to 
the tracking station at three times are as follows:    

  

t1

1

0�

� � � �

� �

 min

 1825.96 3583.66 4933.54  (km)

0.3016
1R I J Kˆ ˆ ˆ

ρ̂ 887 0.200673 0.932049ˆ ˆ ˆI J K� �       

  

t2

2

1

1816 30 3575 63 4933 54

�

� � � �

� �

 min

 . (km)

0.7930
2R I J Kˆ . ˆ . ˆ  

ρ̂ 990 0.571640ˆ . ˆ ˆI J K� �0 210324       

  

t3

3

2

1857 25 3567 54 4933 54

�

� � � �

� �

 min

 . (km)

0.8730
3R I J Kˆ . ˆ . ˆ  

ρ̂ 885 0.325539ˆ . ˆ ˆI J K� �0 362969
      

  Use   the Gauss method without iterative improvement to estimate the state vector of the satellite at the 
central observation time.  { Partial ans.:  r       �      6742.3       km  v       �      7.6799       km/s }  

    5.23     Refi ne the estimate in the previous problem using iterative improvement.    
     { Partial ans.:  r       �      6743.0       km,  v       �      7.6922       km/s }  
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    5.24     Calculate the orbital elements from the state vector obtained in the previous problem.    
     { Partial ans.:  e       �      0.001,  i       �      52 °  }  

    5.25     A tracking station at latitude 60 ° N and 500   m elevation obtains the following data:   

   Time  Local sidereal time  Topocentric Right ascension  Topocentric Declination 
   (min)  (degrees)  (degrees)  (degrees) 

   0.0  150  157.783  20.2403 

   5.0  151.253  159.221  27.2993 

   10.0  152.507  160.526  29.8982 

  Use   the Gauss method without iterative improvement to estimate the state vector of the satellite. 
 { Partial ans.:  r       �      25132       km,  v       �      6.0588       km/s }  

    5.26     Refi ne the estimate in the previous problem using iterative improvement.    
     { Partial ans.:  r       �      25169       km,  v       �      6.0671       km/s }  

    5.27     Calculate the orbital elements from the state vector obtained in the previous problem.    
     { Partial ans.:  e       �      1.09,  i       �      63 °  }  

    5.28     The position vector  R  of a tracking station and the direction cosine vector  ̂ρ    of a satellite relative to 
the tracking station at three times are as follows:    
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0
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�
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� �
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�
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.  (km)R I J Kˆ . ˆ . ˆ  
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t3

3

3
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�

� � �

�

 min

.  (km)R I J Kˆ . ˆ . ˆ  
ˆ . ,ρ 447 0 777 163 0 340 152ˆ . , ˆ . , ˆI J K� �

      

  Use   the Gauss method without iterative improvement to estimate the state vector of the satellite. 
  { Partial ans.:  r       �      9729.6       km,  v       �      6.0234       km/s }  

    5.29     Refi ne the estimate in the previous problem using iterative improvement.    
     { Partial ans.:  r       �      9759.8       km,  v       �      6.0713       km/s }  

    5.30     Calculate the orbital elements from the state vector obtained in the previous problem.    
     { Partial ans.:  e       �      0.1,  i       �      30 °  }    



     List of Key Terms 

        geocentric latitude  
    geodetic latitude  
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    6.1       INTRODUCTION 
 Orbital   maneuvers transfer a spacecraft from one orbit to another. Orbital changes can be dramatic, such as 
the transfer from a low-earth parking orbit to an interplanetary trajectory. They can also be quite small, as 
in the fi nal stages of the rendezvous of one spacecraft with another. Changing orbits requires the fi ring of 
onboard rocket engines. We will be concerned primarily with impulsive maneuvers in which the rockets fi re 
in relatively short bursts to produce the required velocity change (delta-v). 

 We   start with the classical, energy-effi cient Hohmann transfer maneuver, and generalize it to the 
bi-elliptic Hohmann transfer to see if even more effi ciency can be obtained. The phasing maneuver, a form 
of Hohmann transfer, is considered next. This is followed by a study of non-Hohmann transfer maneu-
vers with and without rotation of the apse line. We then analyze chase maneuvers, which requires solving 
Lambert’s problem as explained in Chapter 5. The energy-demanding chase maneuvers may be impractical 
for low earth orbits, but they are necessary for interplanetary missions, as we shall see in Chapter 8. After 
having focused on impulsive transfers between coplanar orbits, we fi nally turn our attention to plane change 
maneuvers and their delta-v requirements, which can be very large. 

 The   chapter concludes with a brief consideration of some orbital transfers in which the propulsion sys-
tem delivers the impulse during a fi nite (perhaps very long) time interval instead of instantaneously. This 
makes it diffi cult to obtain closed-form solutions, so we illustrate the use of the numerical integration tech-
niques presented in Chapter 1 as an alternative.  

                                                                        Orbital maneuvers    6 
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    6.2       IMPULSIVE MANEUVERS 
 Impulsive   maneuvers are those in which brief fi rings of on-board rocket motors change the magnitude and 
direction of the velocity vector instantaneously. During an impulsive maneuver, the position of the space-
craft is considered to be fi xed; only the velocity changes. The impulsive maneuver is an idealization by 
means of which we can avoid having to solve the equations of motion (Equation 2.22) with the rocket thrust 
included. The idealization is satisfactory for those cases in which the position of the spacecraft changes 
only slightly during the time that the maneuvering rockets fi re. This is true for high-thrust rockets with burn 
times short compared with the coasting time of the vehicle. 

 Each   impulsive maneuver results in a change   Δ   v  in the velocity of the spacecraft.   Δ   v  can represent 
a change in the magnitude ( “ pumping maneuver ” ) or the direction ( “ cranking maneuver ” ) of the velocity 
vector, or both. The magnitude   Δ  v of the velocity increment is related to   Δ m , the mass of propellant con-
sumed, by the ideal rocket equation (see Equation 11.30). 

    

Δm

m
e

v

I gsp o= 1 �
�

Δ

  (6.1)     

  where  m  is the mass of the spacecraft before the burn,  g o   is the sea-level standard acceleration of gravity, 
and  I sp   is the specific impulse of the propellants. Specific impulse is defined as follows:   

  
Isp �

thrust

sea-level weight rate of fuel consumption       

 Specifi c   impulse has units of seconds, and it is a measure of the performance of a rocket propulsion system. 
 I sp   for some common propellant combinations are shown in  Table 6.1   .  Figure 6.1    is a graph of Equation 6.1 
for a range of specifi c impulses. Note that for   Δ v ’s on the order of 1 km/s or higher, the required propellant 
exceeds 25% of the spacecraft mass prior to the burn. 

 There   are no refueling stations in space, so a mission’s delta-v schedule must be carefully planned to 
minimize the propellant mass carried aloft in favor of payload.  

 Table 6.1          Some Typical Specifi c Impulses  

    Propellant    I sp   (seconds) 

   Cold gas  50 

   Monopropellant hydrazine  230 

   Solid propellant  290 

   Nitric acid/monomethylhydrazine  310 

   Liquid oxygen/liquid hydrogen  455 

   Ion propulsion    3000 



    6.3       HOHMANN TRANSFER 
 The   Hohmann transfer (Hohmann, 1925) is the most energy effi cient two-impulse maneuver for transfer-
ring between two coplanar circular orbits sharing a common focus. The Hohmann transfer is an elliptical 
orbit tangent to both circles on its apse line, as illustrated in  Figure 6.2   . The periapsis and apoapsis of the 
transfer ellipse are the radii of the inner and outer circles, respectively. Obviously, only one-half of the 
ellipse is fl own during the maneuver, which can occur in either direction, from the inner to the outer circle, 
or vice-versa. 

 It   may be helpful in sorting out orbit transfer strategies to use the fact that the energy of an orbit depends 
only on its semimajor axis  a . Recall that for an ellipse (Equation 2.80), the specifi c energy is negative, 

  
ε

μ
� �

2a       

 Increasing   the energy requires reducing its magnitude, in order to make   �   less negative. Therefore, the 
larger the semimajor axis is, the more energy the orbit has. In  Figure 6.2 , the energies increase as we move 
from the inner to the outer circle. 

 Starting   at  A  on inner circle, a velocity increment   Δ v A   in the direction of fl ight is required to boost the 
vehicle onto the higher-energy elliptical trajectory. After coasting from  A  to  B , another forward velocity 
increment   Δ v B   places the vehicle on the still higher-energy, outer circular orbit. Without the latter delta-v 
burn, the spacecraft would, of course, remain on the Hohmann transfer ellipse and return to  A . The total 
energy expenditure is refl ected in the total delta-v requirement,   Δ v  total       �        Δ v A        �        Δ v B  . 

 The   same total delta-v is required if the transfer begins at  B  on the outer circular orbit. Since moving to 
the lower-energy inner circle requires lowering the energy of the spacecraft, the   Δ v ’s must be accomplished 
by retrofi res. That is, the thrust of the maneuvering rocket is directed opposite to the fl ight direction in order 
to act as a brake on the motion. Since   Δ v  represents the same propellant expenditure regardless of the direc-
tion the thruster is aimed, when summing up   Δ v ’s, we are concerned only with their magnitudes. 

 Recall   that the eccentricity of an elliptical orbit is found from its radius to perisapsis  r p   and its radius to 
apoapsis  r a   by means of Equation 2.84, 

  

e
r r

r r
a p

a p

�
�

�
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 FIGURE 6.1  
       Propellant mass fraction versus   Δ v  for typical specifi c impulses.    
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 The   radius to periapsis is given by Equation 2.50, 

  
r

h

ep �
�

2 1

1μ       

 Combining   these last two expressions yields 
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 Solving   for  h , we get the   angular momentum of an elliptical orbit  , 

  

h
r r

r r
a p

a p

�
�

2μ   (6.2)      

 This   is a useful formula for analyzing Hohmann transfers, because knowing  h  we can fi nd the apsidal veloc-
ities from Equation 2.31. Note that for circular orbits ( r a        �       r p  ) Equation 6.2 yields 

  h r� μ ( )Circular orbit       

 Alternatively  , one may prefer to compute the velocities by means of the energy equation (Equation 2.81) 
in the form 

  
v

r a
� �2

1 1

2
μ   (6.3)      

 This   of course yields Equation 2.63 for circular orbits.
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 FIGURE 6.2  
       Hohmann transfer.    



        Example 6.1      
 A   2000       kg spacecraft is in a 480       km by 800       km earth orbit (orbit 1 in  Figure 6.3   ). Find 

    (a)     The   Δ v  required at perigee  A  to place the spacecraft in a 480       km by 16,000       km transfer ellipse 
(orbit 2).  

    (b)     The   Δ v  (apogee kick) required at  B  of the transfer orbit to establish a circular orbit of 16,000       km 
altitude (orbit 3).  

    (c)     The total required propellant if the specifi c impulse is 300       s.    
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 FIGURE 6.3  
       Hohmann transfer between two earth orbits.    

    Solution 
 Since   we know the perigee and apogee of all three of the orbits, let us fi rst use Equation 6.2 to calculate 
their angular momenta. 
 Orbit   1:  r rp a� � � � � �6378 480 6858 6378 800 7178 km  km     

  
∴ h1

22 398 600
7178 6858

7178 6858
52 876 5� �

�

�
�, , .  km/s   (a)      

 Orbit   2:  r rp a� � � � � �6378 480 6858 6378 16 000 22 378 km  km, ,     

  
∴ h2

22 398 600
22 378 6858

22 378 6858
64 689 5� �

�

�
�,

,

,
, .  km/s   (b)      

 Orbit   3:  r ra p� � 22 378,  km     

  ∴ h3
2398 600 22 378 94 445 1� � �, , .,  km/s   (c)      
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    (a)     The speed on orbit 1 at point  A  is    

  
v

h

rA
A

)  km/s1
1 52 876

6858
7 71019� � �

,
.

      

 The   speed on orbit 2 at point  A  is 

  
v

h

rA
A

)  km/s2
2 64 689 5

6858
9 43271� � �

, .
.

      

 Therefore  , the delta-v required at point  A  is 

  
Δv v vA A A� � �) ) km/s2 1 1 7225.

      

    (b)     The speed on orbit 2 at point  B  is    

  
v

h

rB
B

)  km/s2
2 64 689 5

22 378
2 89076� � �

, .

,
.

      

 The   speed on orbit 3 at point  B  is 

  
v

h

rB
B

)  km/s3
3 94 445 1

22 378
4 22044� � �

, .

,
.

      

 Hence  , the apogee kick required at point  B  is 

  
Δv v vB B B� � �) ) km/s3 2 1 3297.

      

    (c)     The total delta-v requirement for this Hohmann transfer is    

  
Δ Δ Δv v vA Btotal km/s� � � � �1 7225 1 3297 3 0522. . .

      

 According   to Equation 6.1 (converting velocity to m/s), 

  

Δm

m
e� � �

�
�1 0 64563

3052 2

300 9 807

.

. .
      

 Therefore  , the mass of propellant expended is 

  
Δm � � �0 64563 2000 1291 3. .  kg

            

 In   the previous example the initial orbit of the Hohmann transfer sequence was an ellipse, rather than 
a circle. Since no real orbit is perfectly circular, we must generalize the notion of a Hohmann transfer to 
include two-impulsive transfers between elliptical orbits that are coaxial, i.e., share the same apse line, as 
shown in  Figure 6.4   . The transfer ellipse must be tangent to both the initial and target ellipses 1 and 2. As 
can be seen, there are two such transfer orbits, 3 and 3 ' . It is not immediately obvious which of the two 
requires the lowest energy expenditure. 



 To   fi nd out which is the best transfer orbit in general, we must calculate the individual total delta-v 
requirement for orbits 3 and 3 ' . This requires fi nding the velocities at  A ,  A  ' ,  B  and  B  '  for each pair of orbits 
having those points in common. We employ Equation 6.2 to evaluate the angular momentum of each of the 
four orbits in  Figure 6.4 . 
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 From   these we obtain the velocities, 
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 These   lead to the delta-vs 
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Δ Δ
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  and, finally, to the total delta-v requirement for the two possible transfer trajectories,   

  Δ Δ Δ Δ Δ Δv v v v v vA B A Btotal total) )3 3� � � �
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 FIGURE 6.4  
       Hohmann transfers between coaxial elliptical orbits. In this illustration,  r rA o
 �/ 3   ,  r rB o/ � 8    and  r rB o/ � 4   .    
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 If     Δ v  total ) 3 
  /  Δ v  total ) 3             1, then orbit 3 is the most effi cient. On the other hand, if   Δ v  total ) 3 
  /  Δ v  total ) 3       �      1 
then orbit 3 
  is more effi cient than orbit 3. 

 Three   contour plots of   Δ v  total ) 3 
  /  Δ v  total ) 3  are shown in  Figure 6.5   , for three different shapes of the inner 
orbit 1 of  Figure 6.4 .  Figure 6.5(a)  is for  r A        �      3, which is the situation represented in  Figure 6.4 , in which 
point  A  is the periapsis of the initial ellipse. In  Figure 6.5(b)   r A    
  / r A        �      1, which means the starting ellipse is a 
circle. Finally, in  Figure 6.5(c)  r A    
   /r A        �      1/3, which corresponds to an initial orbit of the same shape as orbit 
1 in  Figure 6.4 , but with point A being the apoapsis instead of periapsis. 

    Figure 6.5(a) , for which  r rA A′     , implies that if point  A  is the periapsis of orbit 1, then transfer orbit 3 
is the most effi cient.  Figure 6.5(c) , for which  r rA A′ �    , shows that if point  A  
  is the periapsis of orbit 1, then 
transfer orbit 3 
  is the most effi cient. Together, these results lead us to conclude that it is most effi cient for 
the transfer orbit to begin at the periapsis on the inner orbit 1, where its kinetic energy is greatest, regardless 
of shape of the outer target orbit. If the starting orbit is a circle, then  Figure 6.5(b)  shows that transfer orbit 
3 
  is most effi cient if  r rB B′     . That is, from an inner circular orbit, the transfer ellipse should terminate at 
apoapsis of the outer target ellipse, where the speed is slowest. 

 If   the Hohmann transfer is in the reverse direction, that is, to a lower-energy inner orbit, the above anal-
ysis still applies, since the same total delta-v is required whether the Hohmann transfer runs forwards or 
backwards. Thus, from an outer circle or ellipse to an inner ellipse, the most energy-effi cient transfer ellipse 
terminates at periapsis of the inner target orbit. If the inner orbit is a circle, the transfer ellipse should start 
at apoapsis of the outer ellipse. 

 We   close this section with an illustration of the careful planning required for one spacecraft to rendez-
vous with another at the end of a Hohmann transfer.

        Example 6.2      
 A   spacecraft returning from a lunar mission approaches earth on a hyperbolic trajectory. At its closest 
approach  A  it is at an altitude of 5000       km, traveling at 10 km/s. At  A  retrorockets are fi red to lower the 
spacecraft into a 500       km altitude circular orbit, where it is to rendezvous with a space station. Find the loca-
tion of the space station at retrofi re so that rendezvous will occur at B. 

    Solution 
 The   time of fl ight from  A  to  B  is one-half the period  T  2  of the elliptical transfer orbit 2. While the spacecraft 
coasts from  A  to  B , the space station coasts through the angle   φ  CB   from  C  to  B . Hence, this mission has to be 
carefully planned and executed, going all the way back to lunar departure, so that the two vehicles meet at  B . 
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 FIGURE 6.5  
       Contour plots of  	 	



v vtotal total/ ))3 3    for different relative sizes of the ellipses in  Figure 6.4 . Note that  r rB A 
    and  r rB A
     .    



 According   to Equation 2.83, to fi nd the period  T  2  we need only determine the semimajor axis of orbit 2. 
The apogee and perigee of orbit 2 are 

  

r
r
A

B

� � �
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5000 6378 11 378
500 6378 6878

,  km
 km

      

 Therefore  , the semimajor axis is 

  
a r rA B� � �

1

2
9128( )  km

      

 From   this we obtain 

  

T a2
2 2

398 600
9128 8679 1� � �

π

μ

π3/2 3/2  s
,

.   (a)      

 The   period of circular orbit 3 is 

  

T rB3
2 2

398 600
6878 5676 8� � �

π

μ

π3/2 3/2  s
,

.   (b)      

 The   time of fl ight from  C  to  B  on orbit 3 must equal the time of fl ight from  A  to  B  on orbit 2. 

  
t TCB � � �

1

2

1

2
8679 1 4339 52 ⋅ . .  s
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       Relative position of spacecraft and space station at beginning of the transfer ellipse.    
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 Since   orbit 3 is a circle, its angular velocity, unlike an ellipse, is constant. Therefore, we can write 

  

φ
φCB

CB degrees
t TCB

� � �
360 4339 5

5676 8
360 275 2

3

°
⇒ ⋅    

.

.
.  

      

   (The reader should verify that the total delta-v required to lower the spacecraft from the hyperbola into 
the parking orbit is 5.749       km/s. According to Equation 6.1, that means over 85% of the spacecraft mass 
must be expended as propellant.)               

    6.4       BI-ELLIPTIC HOHMANN TRANSFER 
 A   Hohmann transfer from circular orbit 1 to circular orbit 4 in  Figure 6.7    is the dotted ellipse lying inside the 
outer circle, outside the inner circle, and tangent to both. The bi-elliptic Hohmann transfer uses two coaxial 
semi-ellipses, 2 and 3, which extend beyond the outer target orbit. Each of the two ellipses is tangent to one 
of the circular orbits, and they are tangent to each other at  B , which is the apoapsis of both. The idea is to 
place  B  suffi ciently far from the focus so that the   Δ v B   will be very small. In fact, as  r B   approaches infi nity, 
  Δ v B   approaches zero. For the bi-elliptic scheme to be more energy effi cient than the Hohmann transfer, it 
must be true that 

  
Δ Δv vtotal bi elliptical total Hohmann) )− �

      

 Let    v o   be the speed in the circular inner orbit 1, 
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 FIGURE 6.7  
       Bi-elliptic transfer from inner orbit 1 to outer orbit 4.    



 Then   calculating the total delta-v requirements of the Hohmann and bi-elliptic transfers leads to the follow-
ing two expressions, respectively, 
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  (6.4a)     

  where the nondimensional terms are   
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 Plotting   the difference between  ΔvH     and  ΔvBE    as a function of   α   and   β   reveals the regions in which the 
difference is positive, negative and zero. These are shown in  Figure 6.8   . 

 From   the fi gure we see that if the radius of the outer circular target orbit ( r C  ) is less than 11.94 times that 
of the inner one ( r A  ), then the standard Hohmann maneuver is the more energy effi cient. If the ratio exceeds 
15.58, then the bi-elliptic strategy is better in that regard. Between those two ratios, large values of the 
apoapsis radius  r B   favor the bi-elliptic transfer, while smaller values favor the Hohmann transfer. 

 Small   gains in energy effi ciency may be more than offset by the much longer fl ight times around the 
bi-elliptic trajectories as compared with the time of fl ight on the single semi-ellipse of the Hohmann transfer.

        Example 6.3      
 Find   the total delta-v requirement for a bi-elliptic Hohmann transfer from a geocentric circular orbit of 
7000       km radius to one of 105,000       km radius. Let the apogee of the fi rst ellipse be 210,000       km. Compare the 
delta-v schedule and total fl ight time with that for an ordinary single Hohmann transfer ellipse. See  Figure 6.9   . 
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    Solution 
 Since   

  r r r rA B C D� � � �7000 210 000 105 000 km  km  km, ,      

  we have  r B  /r A        �      30 and  r C  /r A        �      15, so that from  Figure 6.8  it is apparent right away that the bi-elliptic 
transfer will be the more energy effi cient.   

 To   do the delta-v analysis requires analyzing each of the fi ve orbits. 

 Orbit   1: 

 Since   this is a circular orbit, we have, simply, 
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 Orbit   2: 

 For   this transfer ellipse, Equation 6.2 yields 
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 FIGURE 6.9  
       Bi-elliptic transfer.    



 Orbit   3: 

 For   the second transfer ellipse, we have 

  
h3

22 398 600
105 000 210 000

105 000 210 000
236 230� �

�

�
�,

, ,

, ,
,  km /s

      

 From   this we obtain 
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 Orbit   4: 

 The   target orbit, like orbit 1, is a circle, which means 
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.   (f)      

 For   the bi-elliptic maneuver, the total delta-v is, therefore, 
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 or  , 

  
Δvtotal bi elliptical)  km/s− � 4 0285.   (g)      

 The   semimajor axes of transfer orbits 2 and 3 are 
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 With   this information and the period formula, Equation 2.83, the time of fl ight for the two semi-ellipses 
of the bi-elliptic transfer is found to be 
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   Orbit 5 (Hohmann transfer ellipse): 
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 Hence  , 
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 It   follows that 
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 or   

  
Δvtotal Hohmann) km/s� 4 0463.   (k)      

 This   is only slightly (0.44%) larger than that of the bi-elliptic transfer. 
 Since   the semimajor axis of the Hohmann semiellipse is 
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 the   time of fl ight from  A  to  D  is 
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 The   time of fl ight of the bi-elliptic maneuver is over seven times longer than that of the Hohmann transfer.        

    6.5       PHASING MANEUVERS 
 A   phasing maneuver is a two-impulse Hohmann transfer from and back to the same orbit, as illustrated in 
 Figure 6.10   . The Hohmann transfer ellipse is the phasing orbit with a period selected to return the space-
craft to the main orbit within a specifi ed time. Phasing maneuvers are used to change the position of a 
spacecraft in its orbit. If two spacecraft, destined to rendezvous, are at different locations in the same orbit, 
then one of them may perform a phasing maneuver in order to catch the other one. Communications and 
weather satellites in geostationary earth orbit use phasing maneuvers to move to new locations above the 



equator. In that case, the rendezvous is with an empty point in space rather than with a physical target. In 
 Figure 6.10 , phasing orbit 1 might be used to return to  P  in less than one period of the main orbit. This 
would be appropriate if the target is ahead of the chasing vehicle. Note that a retrofi re is required to enter 
orbit 1 at  P . That is, it is necessary to slow the spacecraft down in order to speed it up, relative to the main 
orbit. If the chaser is ahead of the target, then phasing orbit 2 with its longer period might be appropriate. A 
forward fi re of the thruster boosts the spacecraft’s speed in order to slow it down. 

 Once   the period  T  of the phasing orbit is established, then Equation 2.83 should be used to determine 
the semimajor axis of the phasing ellipse, 
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  (6.5)      

 With   the semimajor axis established, the radius of point  A  opposite to  P  is obtained from the fact that 
2 a       �       r P        �       r A  . Equation 6.2 may then be used to obtain the angular momentum.

        Example 6.4      
 Spacecraft   at  A  and  B  are in the same orbit (1). At the instant shown in  Figure 6.11    the chaser vehicle at  A  
executes a phasing maneuver so as to catch the target spacecraft back at  A  after just one revolution of the 
chaser’s phasing orbit (2). What is the required total delta-v? 

    Solution 
 We   must fi nd the angular momenta of orbits 1 and 2 so that we can use Equation 2.31 to fi nd the velocities 
on orbits 1 and 2 at point  A.  (We can alternatively use energy, Equation 2.81, to fi nd the speeds at  A .) These 
velocities furnish the delta-v required to leave orbit 1 for orbit 2 at the beginning of the phasing maneuver 
and to return to orbit 1 at the end. 

  Angular   momentum of orbit 1  

 From    Figure 6.11  we observe that perigee and apogee radii of orbit 1 are, respectively, 

  r rA C� �6800 13 600 km  km        ,       
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 It   follows from Equation 6.2 that the orbit’s angular momentum is 
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  Angular   momentum of orbit 2  

 The   phasing orbit must have a period  T  2  equal to the time it takes the target vehicle at  B  to coast around to 
point  A  on orbit 1. That fl ight time equals the period of orbit 1 minus the fl ight time  t AB   from  A  to  B . That is, 

  T T tAB2 1� �   (a)      

 The   period of orbit 1 is found by computing its semimajor axis, 
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  and substituting that result into Equation 2.83,   
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 The   fl ight time from the perigee  A  of orbit 1 to point  B  is obtained from Kepler’s equation (Equations 3.8 and 
3.14), 
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 Since   the eccentricity of orbit 1 is 
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  and the true anomaly of  B  is 90 ° , it follows from Equation 3.13b that the eccentric anomaly of  B  is   
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 Substituting   (b), (d) and (e) into (c) yields 
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 It   follows from (a) that 

  T2 10 252 1495 7 8756 3� � �, . .  s       



 This  , together with the period formula, Equation 2.83, yields the semimajor axis of orbit 2, 
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 Since   2 a  2       �       r A        �       r D  , we fi nd that the apogee of orbit 2 is 

  r a rD A� � � � �2 2 9182 1 6800 11 5642 ⋅ . ,  km       

 Finally  , Equation 6.2 yields the angular momentum of orbit 2, 
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  Velocities   at A  

 Since    A  is the perigee of orbit 1, there is no radial velocity component there. The speed, directed entirely 
in the transverse direction, is found from the angular momentum formula, 
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 Likewise  , the speed at the perigee of orbit 2 is 
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 At   the beginning of the phasing maneuver, the velocity change required to drop into the phasing orbit 2 is 

  Δv v vA A A� � � � � �) )  km/s2 1 8 5921 8 8406 0 24851. . .       

6.5 Phasing maneuvers  335

13,600 km 6800 km

A

B

2

1

(phasing orbit)

C

Earth

D

 FIGURE 6.11  
       Phasing maneuver.    



336  CHAPTER 6 Orbital maneuvers

 At   the end of the phasing maneuver, the velocity change required to return to orbit 1 is 

  Δv v vA A A� � � � �) )  km/s1 2 8 8406 8 5921 0 24851. . .       

 The   total delta-v required for the chaser to catch up with the target is 

  
Δvtotal  km/s� � � �0 24851 0 24851 0 4970. . .

            

 The   delta-v requirement for a phasing maneuver can be lowered by reducing the difference between 
the period of the main orbit and that of the phasing orbit. In the previous example, we could make   Δ vtotal  
smaller by requiring the chaser to catch the target after  n  revolutions of the phasing orbit instead of just one. 
In that case, we would replace Equation (a) of Example 6.4 by  T  2       �       T  1       �       t AB  / n .

        Example 6.5      
 It   is desired to shift the longitude of a GEO satellite 12 °  westward in three revolutions of its phasing orbit. 
Calculate the delta-v requirement. 

    Solution 
 This   problem is illustrated in  Figure 6.12   . It may be recalled from Equations 2.67, 2.68 and 2.69 that the 
angular velocity of the earth, the radius to GEO and the speed in GEO are, respectively 
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 Let     Δ  Λ   be the change in longitude in radians. Then the period  T  2  of the phasing orbit can be obtained 
from the following formula, 

  ω πE T( )3 3 22 � � � ΔΛ   (b)     

  which states that after three circuits of the phasing orbit, the original position of the satellite will be   Δ  Λ   
radians east of  P . In other words, the satellite will end up   Δ  Λ   radians west of its original position in GEO, 
as desired. From (b) we obtain,   
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 Note   that the period of GEO is 
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 The   satellite in its slower phasing orbit appears to drift westward at the rate 
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 Having   the period, we can use Equation 6.5 to obtain the semimajor axis of orbit 2, 
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 From   this we fi nd the radius to the apogee  C  of the phasing orbit, 

  2 2 42 476 42 164 42 7882a r r rP C C� � � � � , , ,⇒ ⋅  km       

 The   angular momentum of the orbit is given by Equation 6.2 
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 At    P  the speed in orbit 2 is 

  
vP )  km/s2
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 Therefore  , at the beginning of the phasing orbit, 

  Δv v vP� � � � �)  km/sGEO2 3 0859 3 0747 0 01126. . .       

 At   the end of the phasing maneuver, 

  Δv v vP� � � � � �GEO )  km/s2 3 0747 3 08597 0 01126. . .       

 Therefore  , 

  
Δvtotal  0.02252 km/s� � � �0 01126 0 01126. .
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    6.6       NON-HOHMANN TRANSFERS WITH A COMMON APSE LINE 
    Figure 6.13    illustrates a transfer between two coaxial, coplanar elliptical orbits in which the transfer trajectory 
shares the apse line but is not necessarily tangent to either the initial or target orbit. The problem is to determine 
whether there exists such a trajectory joining points  A  and  B , and, if so, to fi nd the total delta-v requirement. 

  r    A  and  r  B  are given, as are the true anomalies   θ   A  and   θ   B . Because of the common apse line assumption, 
  θ   A  and   θ   B  are the true anomalies of points  A  and  B  on the transfer orbit as well. Applying the orbit equation 
to  A  and  B  on the transfer orbit yields 
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 Solving   these two equations for  e  and  h , we get 
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 With   these, the transfer orbit is determined and the velocity may be found at any true anomaly. Note that for 
a Hohmann transfer, in which   θ   A       �      0 and   θ   B       �        π  , Equations 6.6 become 
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 FIGURE 6.13  
       Non-Hohmann transfer between two coaxial elliptical orbits.    



 When   a delta-v calculation is done for an impulsive maneuver at a point which is not on the apse line, 
care must be taken to include the change in direction as well as the magnitude of the velocity vector.  Figure 
6.14    shows a point where an impulsive maneuver changes the velocity vector from v 1  on orbit 1 to v 2  on 
coplanar orbit 2. The difference in length of the two vectors shows the change in the speed, and the differ-
ence in the fl ight path angles  γ  2  and  γ  1  indicates the change in the direction. It is important to observe that 
the   Δ v  we seek is the magnitude of the change in the velocity vector, not the change in its magnitude (speed). 
That is, from Equation 1.11, 

  
Δ Δv � � � �v v v v v( ) ( )2 1 2 1⋅         

 Expanding   under the radical we get 

  
Δv � � �v v v v v v1 1 2 2 1 22⋅ ⋅ ⋅

      

 Again  , according to Equation 1.11,  v v1 1 1
2⋅ � v     and  v v2 2 2

2⋅ = v    . Furthermore, since  γ  2       �       γ  1  is the 
angle between v 1  and v 2 , Equation 1.7 implies that 

  v v1 2 1 2⋅ � v v cosΔγ       

 where    Δ  γ       �        γ   2       �        γ   1 . Therefore, the formula for  Δ  v  without plane change is   

  
Δ Δv v v v v� � �1

2
2

2
1 22 cos γ   (impulsive maneuver, coplanar orbitss)   (6.8)      
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 This   is just the familiar law of cosines from trigonometry. Only if   Δ  γ        �      0, which means that v 1  and v 2  are 
parallel (as in a Hohmann transfer), is it true that  Δv v v� �2 1    . If  v v v2 1� �    , then Equation 6.8 yields 

  Δ Δv v� �2 1( )  (Pure rotation of the velocity vector in thcos γ ee orbital plane)   (6.9)      

 Therefore  , fuel expenditure is required to change the direction of the velocity even if its magnitude remains 
the same. 

 The   direction of   Δ  v shows the required alignment of the thruster that produces the impulse. The orientation 
of   Δ  v relative to the local horizon is found by replacing  v r   and  v   ⊥   in Equation 2.51 by   Δ v r   and   Δ v   ⊥  , so that 

  
tanφ �

Δ
Δ

v

v
r

⊥
  (6.10)     

  where   φ   is the angle from the local horizon to the   Δ  v vector.   
 Finally  , recall the formula for specifi c mechanical energy of an orbit, Equation 2.57, 
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 An   impulsive maneuver results in a change of orbit and, therefore, a change in the specifi c energy   �  . If 
the expenditure of propellant   Δ m  is negligible compared to the initial mass  m  1  of the vehicle, then 
  Δ  �        �        �  2       �       �  1  . For the situation illustrated in  Figure 6.14 , 
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 From    Figure 6.14  and Equation 1.7 it is apparent that  v  1  ·   Δ   v       �       v  1   Δ   v  cos   Δ    γ  . so that 
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 For   consistency with our assumption that   Δ m       �      �  m  1 , it must be true (recall  Figure 6.1 ) that   Δ v       �      �  v  1 . It 
follows that 

  Δ Δ Δε γ≈ v v1 cos   (6.11)      

 This   shows that, for a given   Δ v , the change in specifi c energy is larger the faster the spacecraft is moving 
(unless, of course, the change in fl ight path angle is 90 ° ). The larger the   Δ  �   associated with a given   Δ v , the 
more effi cient the maneuver. As we know, a spacecraft has its greatest speed at periapsis.



        Example 6.6      
 A   geocentric satellite in orbit 1 of  Figure 6.15    executes a delta-v maneuver at  A  which places it on orbit 2, for 
re-entry at  D . Calculate   Δ v  at  A  and its direction relative to the local horizon. 

    Solution 
 As   usual, the strategy is to fi rst obtain the eccentricity and angular momentum for each of the orbits 
involved. From the fi gure we see that 

  r = 20,000 km r = 10,000 km  r = 6378 kmB C D       

 Orbit   1: 

 The   eccentricity is 
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 The   angular momentum is obtained from Equation 6.2, noting that point  C  is perigee: 
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 With   the angular momentum and the eccentricity, we can use the orbit equation to fi nd the radial coordi-
nate of point  A , 
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 Equations   2.31 and 2.49 yield the transverse and radial components of velocity at  A  on orbit 1, 
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 From   these we fi nd the speed at  A  
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 Orbit   2: 

 The   radius and true anomaly of points  A  and  D  on orbit 2 are known. From Equations 6.6 we fi nd 

  
e

r r

r r
D A

D D A A
2

6378 18 744

6378 0 18 744 15
� �

�

�
� �

�

�cos cos

,

cos , cosθ θ  00
0 5469

°
� .

      

  

h r r
r rA D

D A

D D A A
2 398 600 18 744 6378

0
�

�

�
�μ

θ θ
θ θ

cos cos

cos cos
, ,

cos
⋅ ⋅

��

� �

�

cos

cos , cos

,

150

6378 0 18 744 150

62 711 2

°

 km /s       

 Now   we can calculate the radial and perpendicular components of velocity on orbit 2 at point  A . 

  

v
h

r

v
h

e

A

A

A

r

⊥ )  km/s

)  km/s

2
2

2
2

2

3 3456

150 1 7381

� �

� � �

.

sin .
μ

      

 Hence  , the speed and fl ight path angle at  A  on orbit 2 are 
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 The   change in the fl ight path angle as a result of the impulsive maneuver is 

  Δγ γ γ= − = ° − ° = °2 1 27 453 13 187 14 266. . .       

 With   this we can use Equation 6.8 to fi nally obtain   Δ v A  , 
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 Note   that   Δ v A   is the magnitude of the change in velocity vector   Δ  v  A   at  A . That is not the same as the 
change in the magnitude of the velocity (i.e., the change in speed), which is 

  v vA A) )  km/s2 1 3 9946 3 7702 0 2244� � � �. . .       

 To   fi nd the orientation of   Δ  v  A  , we use Equation 6.10, 
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  so that   

  
φ � �123 3.

      

 This   angle is illustrated in  Figure 6.16   . Prior to fi ring, the spacecraft would have to be rotated so that the 
centerline of the rocket motor coincides with the line of action of   Δ  v A , with the nozzle aimed in the oppo-
site direction.        

    6.7       APSE LINE ROTATION 
    Figure 6.17    shows two intersecting orbits which have a common focus, but their apse lines are not collinear. 
A Hohmann transfer between them is clearly impossible. The opportunity for transfer from one orbit to the 
other by a single impulsive maneuver occurs where they intersect, at points  I  and  J  in this case. As can be 
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seen from the fi gure, the rotation   η   of the apse line is the difference between the true anomalies of the point 
of intersection, measured from periapsis of each orbit. That is, 

  η θ θ� �1 2   (6.12)      

 We   will consider two cases of apse line rotation. 
 The   fi rst case is that in which the apse line rotation   η   is given as well as the orbital parameters  e  and  h  

of both orbits. The problem is then to fi nd the true anomalies of  I  and  J  relative to both orbits. The radius of 
the point of intersection  I  is given by either of the following 
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 Since    r rI I) )1 2�    , we can equate these two expressions and rearrange terms to get 
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 Setting     θ   2       �        θ   1       �        η   and using the trig identity  cos cos cos sin sin( )θ η θ η θ η1 1 1� � �     leads to an equation 
for   θ   1 , 

  a b ccos sinθ θ1 1� �   (6.13a)     
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 Equation   (6.13a) has two roots (see Problem 3.12), corresponding to the two points of intersection  I  and  J  
of the two orbits: 
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 FIGURE 6.17  
       Two intersecting orbits whose apse lines do not coincide.    



  where   

  
φ � �tan 1 b

a
  (6.14b)      

 Having   found   θ   1  we obtain   θ   2  from Equation 6.12.   Δ v  for the impulsive maneuver may then be computed 
as illustrated in the following example.

        Example 6.7      
 An   earth satellite is in a 8000       km by 16,000       km radius orbit (orbit 1 of  Figure 6.18   ). Calculate the delta-v 
and the true anomaly   θ   1  required to obtain a 7000       km by 21,000       km radius orbit (orbit 2) whose apse line is 
rotated 25° counterclockwise. Indicate the orientation  φ     of   Δ   v  to the local horizon. 

    Solution 
 First   obtain the eccentricity and angular momentum of each orbit. The eccentricities of the two orbits are 
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 The   orbit equation yields the angular momenta 
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 Using   these orbital parameters and the fact that   η        �      25 ° , we calculate the terms in Equations 6.13b, 
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 Then   Equations 6.14 yield 
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 Thus  , the true anomaly of point  I , the point of interest, is 

  θ1 153 04� �.   (c)      

   (For point  J,  θ   1  �  325.74 ° .) 
 With   the true anomaly available, we can evaluate the radial coordinate of the maneuver point, 
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 The   velocity components and fl ight path angle for orbit 1 at point  I  are 

  

v
h

r

v
h

er

⊥

°

1

1

1

1
1

65 205

15 175
4 2968

153 04
398 60

� � �

� �

,

,
.

sin .
,

 km/s

μ 00

65 205
0 33333 153 04 0 92393

121
1 1

1

,
. sin . .

tan .

⋅ ⋅ °

⊥

�

� ��

 km/s

γ
v

v

r
1135°

      

 The   speed of the satellite in orbit 1 is, therefore, 
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 Likewise  , for orbit 2, 
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 Equation   6.8 is used to fi nd   Δ v , 
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 The   angle   φ   which the vector   Δ v  makes with the local horizon is given by Equation 6.10, 
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 The   second case of apse line rotation is that in which the impulsive maneuver takes place at a given true 
anomaly   θ   1  on orbit 1. The problem is to determine the angle of rotation   η   and the eccentricity  e2     of the 
new orbit. 

 The   impulsive maneuver creates a change in the radial and transverse velocity components at point  I  of 
orbit 1. From the angular momentum formula,  h       �       rv   ⊥  , we obtain the angular momentum of orbit 2, 
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 Substituting   Equation 6.15 into this expression and solving for sin   θ   2  leads to 
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 From   the orbit equation, we have at point  I  
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 Equating   these two expressions for  r , substituting Equation 6.15, and solving for cos   θ   2 , yields 
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 Finally  , by substituting Equations 6.16 and 6.17 into the trigonometric identity tan   θ   2       �      sin   θ   2 /cos   θ   2  we 
obtain a formula for   θ   2  which does not involve the eccentricity  e  2 , 
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 Equation   6.18a can be simplifi ed a bit by replacing   μ e  1  sin   θ   1  with  h vr1 1
    and  h  1  with  rv⊥ 1

   , so that 
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 Equations   6.18 show how the apse line rotation,   η        �        θ   1       �        θ   2 , is completely determined by the compo-
nents of   Δ   v  imparted at the true anomaly   θ   1 . Notice that if  Δv vr r� �

1
   , then   θ   2       �      0, which means that the 

maneuver point is on the apse line of the new orbit. 
 After   solving Equation 6.18 (a or b), we substitute   θ   2  into either Equation 6.16 or 6.17 to calculate the 

eccentricity  e  2  of orbit 2. Therefore, with  h  2  from Equation 6.15, the rotated orbit 2 is completely specifi ed. 
 If   the impulsive maneuver takes place at the periapsis of orbit 1, so that   θ   1       �       v r        �      0, and if it is also true 

that   Δ v   ⊥        �      0, then Equation 6.18b yields 
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 Thus  , if the velocity vector is given an outward radial component at periapsis, then   η        �      0, which means the 
apse line of the resulting orbit is rotated clockwise relative to the original one. That makes sense, since hav-
ing acquired  v r              0 means the spacecraft is now fl ying away from its new periapsis. Likewise, applying an 
inward radial velocity component at periapsis rotates the apse line counterclockwise.

        Example 6.8      
 An   earth satellite in orbit 1 of  Figure 6.19    undergoes the indicated delta-v maneuver at its perigee. 
Determine the rotation   η   of its apse line as well as the new perigee and apogee. 



    Solution 
 First   obtain the eccentricity and angular momentum of orbit 1. From the fi gure the apogee and perigee of 
orbit 1 are 
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 As   usual, we use the orbit equation to fi nd the angular momentum, 
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 At   the maneuver point  P  1 , the angular momentum formula and the fact that  P  1  is perigee of orbit 1 (  θ        �      0) 
imply that 
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 From    Figure 6.19  it is clear that 
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 The   angular momentum of orbit 2 is given by Equation 6.15. 
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 To   compute the true anomaly   θ   2 , we use Equation 6.18b together with (a), (b) and (c): 
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 It   follows that   θ   2       �      22.047 ° , so that Equation 6.12 yields the apse line rotation angle: 
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 This   means that the rotation of the apse line is clockwise, as indicated in  Figure 6.19 . 
 From   Equation 6.17 we obtain the eccentricity of orbit 2, 
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 With   this and the angular momentum  h  2  we fi nd using the orbit equation that the perigee and apogee radii 
of orbit 2 are 
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    6.8       CHASE MANEUVERS 
 Whereas   Hohmann transfers and phasing maneuvers are leisurely, energy-effi cient procedures that require 
some preconditions (e.g., coaxial elliptical, orbits) in order to work, a chase or intercept trajectory is one 



which answers the question,  “ How do I get from point  A  to point  B  in space in a given amount of time? ”  
The nature of the orbit lies in the answer to the question rather than being prescribed at the outset. Intercept 
trajectories near a planet are likely to require delta-v’s beyond the capabilities of today’s technology, so they 
are largely of theoretical rather than practical interest. We might refer to them as  “ star wars maneuvers. ”  
Chase trajectories can be found as solutions to Lambert’s problem (Section 5.3).

        Example 6.9      
 Spacecraft    B  and  C  are both in the geocentric elliptical orbit (1) shown in  Figure 6.20   , from which it can 
be seen that the true anomalies are   θ  B        �      45 °  and   θ  C        �      150 ° . At the instant shown, spacecraft  B  executes 
a delta-v maneuver, embarking upon a trajectory (2) which will intercept and rendezvous with vehicle  C  
in precisely one hour. Find the orbital parameters ( e  and  h ) of the intercept trajectory and the total delta-v 
required for the chase maneuver. 

    Solution 
 First  , we must determine the parameters  e  and  h  of orbit 1 in the usual way. The eccentricity is found using 
the orbit’s perigee and apogee, shown in  Figure 6.20 , 
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 From   Equation 6.2, 
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 Using   Equation 2.82 yields the period, 
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 In   perifocal coordinates (Equation 2.119) the position vector of  B  is 
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  or   

  r p qB � �6250 6 6250 6. .  (km)ˆ ˆ   (a)      

 Likewise  , according to Equation 2.125, the velocity at  B  on orbit 1 is 
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  so that   

  v p qB ) .  (km/s)1 4 1922 6 5637� � �ˆ . ˆ   (b)      

 Now   we need to move spacecraft  C  along orbit 1 to the position  C  ’  that it will occupy one hour later, 
when it will presumably be met by spacecraft  B . To do that, we must fi rst calculate the time since perigee 
passage at  C . Since we know the true anomaly, the eccentric anomaly follows from Equation 3.13b, 
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 Substituting   this value into Kepler’s equation (Equations 3.8 and 3.14) yields the time since perigee passage, 
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 One   hour later (  Δ t       �      3600       s), the spacecraft will be in intercept position at  C  
 , 

  
t t tC C′ � � � � �Δ 5178 3600 8778 s

      

 The   corresponding mean anomaly is 
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 With   this value of the mean anomaly, Kepler’s equation becomes 

  
E e EC C′ ′� �1 3 5331sin .

      

 Applying   Algorithm 3.1 to the solution of this equation we get 

  
EC ′ � 3 4223.  rad

      

 Substituting   this result into Equation 3.13a yields the true anomaly at  C  
 , 
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 We   are now able to calculate the perifocal position and velocity vectors at  C  
  on orbit 1. 
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 The   intercept trajectory connecting points  B  and  C  
  is found by solving Lambert’s problem. Substituting 
 r   B   and  r   C    
   along with   Δ t       �      3600       s into Algorithm 5.2 yields 

  v p qB ) .  (km/s)2 8 1349 4 0506� � �ˆ . ˆ   (d)      

  
v p q′C ) .  (km/s)2 3 4745 4 7943� � ��ˆ . ˆ   (e)      

 These   velocities are most easily obtained by running the following MATLAB® script, which executes 
Algorithm 5.2 by means of the function M-fi le  lambert.m  (Appendix D.25). 

  clear    
  global   mu  
  deg                          =  pi/180;  
  mu                          =  398600;  
  e                          =  0.4;  
  h                          =  67232;  
  thetal                  =  45*deg;  
  theta2                  =  190.57*deg;  
  delta  _t                =  3600;  
  rB                                =  h^2/mu/(1  +  e*cos(thetal)). . .  
                                                                    *[cos(thetal),sin(thetal),0],  
  rc  _prime   =  h^2/mu/(1  +  e*cos(theta2)). . .  
                                                                    *[cos(theta2),sin(theta2),0];  
  string                       =       'pro';  
    [vB2 vC_prime_2]  =  lambert(rB, rC_prime, delta_t, string)  
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 From   (b) and (d) we fi nd 

  Δv v v p qB B B� � � � �) ) .  (km/s)2 1 3 9326 2 5132ˆ . ˆ
     

  whereas (c) and (e) yield   

  
Δv v v p q′ ′ ′C C C� � � � �) ) .  (km/s)1 2 4 5620 1 3376ˆ . ˆ

      

 The   anticipated, extremely large delta-v requirement for this chase maneuver is the sum of the magnitudes 
of these two vectors, 

  
Δ Δ Δv B C� � � � �v v ′ 4 6755 4 7540 9 430. . .  km/s

      

 We   know that orbit 2 is an ellipse, because the magnitude of  v   B  ) 2  (9.088       km/s) is less than the escape 
speed  2 9 496μ / .rB �  km/s( )     at  B . To pin it down a bit more, we can use  r   B   and  v   B  ) 2  to obtain the orbital 
elements from Algorithm 4.2, which yields 
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 These   may be found quickly by running the following MATLAB script, in which the M-function  coe_from_
sv.m  implements Algorithm 4.2 (see Appendix D.18): 

  clear    
  global   mu  
  mu                  =  398600;  
  rB                  =  [6250.6                      6250.6               0];  
  vB2     =  [ – 8.1349                      4.0506               0];  
  orbital  _elements  =  coe_from_sv(rB, vB2);  

 The   details of the intercept trajectory and the delta-v maneuvers are shown in  Figure 6.21   . A far less dra-
matic though more leisurely (and realistic) way for  B  to catch up with  C  would be to use a phasing maneuver.        
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 FIGURE 6.21  
       Details of the large elliptical orbit, a portion of which serves as the intercept trajectory.    



    6.9       PLANE CHANGE MANEUVERS 
 Orbits   having a common focus  F  need not, and generally do not, lie in a common plane.  Figure 6.22    shows 
two such orbits and their line of intersection  BD. A  and  P  denote the apoapses and periapses. Since the 
common focus lies in every orbital plane, it must lie on the line of intersection of any two orbits. For a 
spacecraft in orbit 1 to change its plane to that of orbit 2 by means of a single delta-v maneuver (cranking 
maneuver), it must do so when it is on the line of intersection of the orbital planes. Those two opportunities 
occur only at points  B  and  D  in  Figure 6.22(a) . 

 A   view down the line of intersection, from  B  towards  D , is shown in  Figure 6.22(b) . Here we can see 
in true view the dihedral angle   δ   between the two planes. The transverse component of velocity  v   ⊥   at  B  is 
evident in this perspective, whereas the radial component  v   r  , lying as it does on the line of intersection, is 
normal to the view plane (thus appearing as a dot). It is apparent that changing the plane of orbit 1 requires 
simply rotating  v   ⊥   around the intersection line, through the dihedral angle. If  v   ⊥   and  v r   remain unchanged 
in the process, then we have a rigid body rotation of the orbit. That is, except for its new orientation in 
space, the orbit remains unchanged. If the magnitudes of  v   r   and  v   ⊥   change in the process, then the rotated 
orbit acquires a new size and shape. 

 To   fi nd the delta-v associated with a plane change, let  v  1  be the velocity before and  v  2  the velocity after 
the impulsive maneuver. Then 

  

v u u

v u u
1

2

1 1 1

2 2 2
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� �

v v

v v
r r

r r

ˆ ˆ

ˆ ˆ
⊥ ⊥

⊥ ⊥      

  where  ûr     is the radial unit vector directed along the line of intersection of the two orbital planes.  ûr     does 
not change during the maneuver. As we know, the transverse unit vector  û⊥     is perpendicular to  ûr     and lies 
in the orbital plane. Therefore, it rotates through the dihedral angle   δ   from its initial orientation  û⊥1

    to its 
final orientation  û⊥2

   .   
 The   change   Δ   v  in the velocity vector is 

  
Δv v v u u u� � � � � �2 1 2 1 2 2 1 1

( )v v v vr r rˆ ˆ ˆ⊥ ⊥ ⊥ ⊥       
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 The   magnitude   Δ v  is found by taking the dot product of   Δ   v  with itself, 
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 Carrying   out the dot products while noting that  ˆ ˆ ˆ ˆ ˆ ˆu u u u u ur r� � � � � �⊥ ⊥ ⊥ ⊥1 1 2 2
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 But    ˆ ˆ cosu u⊥ ⊥1 2
� � δ    , so that we fi nally obtain a general formula for   Δ v  with plane change  , 

  
Δv v v v v v vr r� � � � �

2 1 1 2 1 2

2 2 2 2( ) ⊥ ⊥ ⊥ ⊥ cosδ   (6.19)      

 From   the defi nition of the fl ight path angle (cf. Figure 2.12), 
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 Substituting   these relations into Equation 6.19, expanding and collecting terms, and using the trigonometric 
identities 
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  leads to another version of the same equation,   

  
Δ Δv v v v v� � � � �1

2
2

2
1 2 2 12 1[ ( )]cos cos cos cosγ γ γ δ   (6.20)     

  where   Δ  γ        �        γ   2       �        γ   1 . If there is no plane change (  δ        �      0), then cos   δ        �      1 and Equation 6.20 reduces to   

  
Δ Δv v v v v� � �1

2
2

2
1 22 cos γ No plane change

     

  which is the cosine law we have been using to compute   Δ v  in coplanar maneuvers. Therefore, not surpris-
ingly, Equation 6.19 contains Equation 6.8 as a special case.   

 To   keep   Δ v  at a minimum, it is clear from Equation 6.19 that the radial velocity should remain 
unchanged during a plane change maneuver. For the same reason, it is apparent that the maneuver should 
occur where  v   ⊥   is smallest, which is at apoapsis.  Figure 6.23    illustrates a plane change maneuver at the 
apoapsis of both orbits. In this case  v vr r1 2

0� �    , so that  v v⊥1 1�     and  v v⊥2 2�    , thereby reducing 
Equation 6.19 to 

  
Δv v v v v� � �1

2
2

2
1 22 cosδ Rotation about the common apse line   (6.21)      



 Equation   6.21 is for a speed change accompanied by a plane change, as illustrated in  Figure 6.24a   . 
Using the trigonometric identity 

  
cos sinδ
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  we can rewrite Equation 6.21 as follows,   

  
Δv v v v vI ( ) Rotation about the common apse lin� � �2 1

2
1 2

24
2

sin
δ

ee   (6.22)      

 If   there is no change in the speed, so that  v  2       �       v  1 , then Equation 6.22 yields 

  
Δ δv v� 2

2
sin

δ
Pure rotation of the velocity vector   (6.23)      

 The   subscript   δ   reminds us that this is the delta-v for a pure rotation of the velocity vector through the angle   δ  . 
 Another   plane-change strategy, illustrated in  Figure 6.24b , is to rotate the velocity vector and then 

change its magnitude. In that case, the delta-v is 

  
Δv v v vII | |� � �2

21 2 1sin
δ
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 Yet   another possibility is to change the speed fi rst, and then rotate the velocity vector ( Figure 6.24c ). 
Then 

  
Δv v v vIII | |� � �2 1 22

2
sin

δ

      

 Since   the sum of the lengths of any two sides of a triangle must be greater than the length of the third side, 
it is evident from  Figure 6.24  that both   Δ v  II  and   Δ v  III  are greater than   Δ v  I . It follows that plane change 
accompanied by speed change is the most effi cient of the above three maneuvers. 

 Equation   6.23, the delta-v formula for pure rotation of the velocity vector, is plotted in  Figure 6.25   , which 
shows why signifi cant plane changes are so costly in terms of propellant expenditure. For example, a plane 
change of just 24 °  requires a delta-v equal to that needed for an escape trajectory (41.4% velocity boost). 
A 60 °  plane change requires a delta-v equal to the speed of the spacecraft itself, which in earth orbit opera-
tions is about 7.5       km/s. For such a maneuver in LEO, the most effi cient chemical propulsion system would 
require that well over 80% of the spacecraft mass consist of propellant. The space shuttle is capable of a 
plane change in orbit of only about 3 ° , a maneuver which would exhaust its entire fuel capacity. Orbit plane 
adjustments are therefore made during the powered ascent phase when the energy is available to do so. 

 For   some missions, however, plane changes must occur in orbit. A common example is the maneuver-
ing of GEO satellites into position. These must orbit the earth in the equatorial plane, but it is impossible 
to throw a satellite directly into an equatorial orbit from a launch site which is not on the equator. That is 
not diffi cult to understand when we realize that the plane of the orbit must contain the center of the earth 
(the focus) as well as the point at which the satellite is inserted into orbit, as illustrated in  Figure 6.26   . So if 
the insertion point is anywhere but on the equator, the plane of the orbit will be tilted away from the earth’s 
equator. As we know from Chapter 4, the angle between the equatorial plane and the plane of the orbiting 
satellite is called the inclination  i . 

 Launching   a satellite due east takes full advantage of the earth’s rotational velocity, which is 0.46       km/s 
(about 1000 miles per hour) at the equator and diminishes towards the poles according to the formula 

  
v vrotational equatorial� cosφ

     

  where   φ   is the latitude.  Figure 6.26 , shows a spacecraft launched due east into low earth orbit at a latitude of 
28.6 °  north, which is the latitude of Kennedy Space Flight Center (KSC). As can be seen from the figure, the 
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 FIGURE 6.25  
         Δ v  required to rotate the velocity vector through an angle   δ      .



inclination of the orbit will be 28.6 ° . One-fourth of the way around the earth the satellite will cross the equator. 
Halfway around the earth it reaches its southernmost latitude,   φ        �      28.6 °  south. It then heads north, crossing 
over the equator at the three-quarters point and returning after one complete revolution to   φ        �      28.6 °  north.   

 Launch   azimuth  A  is the fl ight direction at insertion, measured clockwise from north on the local merid-
ian. Thus,  A       �      90 °  is due east. If the launch direction is not directly eastward, then the orbit will have 
an inclination greater than the launch latitude, as illustrated in  Figure 6.27    for   φ        �      28.6 ° N. Northeasterly 
(0      �       A       �      90 ° ) or southeasterly (90 °       �       A       �      180 ° ) launches take only partial advantage of the earth’s rota-
tional speed and both produce an inclination  i  greater than the launch latitude but less than 90 ° . Since these 
orbits have an eastward velocity component, they are called prograde orbits. Launches to the west produce 
retrograde orbits with inclinations between 90 °  and 180 ° . Launches directly north or directly south result in 
polar orbits. 

 Spherical   trigonometry is required to obtain the relationship between orbital   inclination  i , launch plat-
form   latitude   φ  , and launch   azimuth  A . It turns out that 

  cos cos sini A� φ   (6.24)      
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 From   this we verify, for example, that  i       �        φ   when  A       �      90 ° , as pointed out above. A plot of this relation 
is presented in  Figure 6.28   , while  Figure 6.29    illustrates the orientation of orbits for a range of launch azi-
muths at   φ        �      28 ° .

        Example 6.10      
 Determine   the required launch azimuth for the sun-synchronous satellite of Example 4.9 if it is launched 
from Vandenburgh AFB on the California coast (latitude      �      34.5 ° N). 
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 FIGURE 6.28  
       Orbit inclination  i  versus launch azimuth  A  for several latitudes   φ  .    
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 FIGURE 6.29  
       Variation of orbit inclinations with launch azimuth at   φ        �      28 ° . Note the retrograde orbits for  A             180 ° .    



    Solution 
 In   Example 4.9 the inclination of the sun-synchronous orbit was determined to be 98.43 ° . Equation 6.24 is 
used to calculate the launch azimuth, 
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 From   this,  A       �      190.2 ° , a launch to the south or  A       �      349.8 ° , a launch to the north.       
    Figure 6.30    shows the effect that the choice of launch azimuth has on the orbit. It does not change the fact 

that the orbit is retrograde; it simply determines whether the ascending node will be in the same hemisphere 
as the launch site or on the opposite side of the earth. Actually, a launch to the north from Vandenburgh is 
not an option because of the safety hazard to the populated land lying below the ascent trajectory. Launches 
to the south, over open water, are not a hazard. Working this problem for Kennedy Space Center (latitude 
28.6 ° N) yields nearly the same values of  A . Since safety considerations on the Florida east coast limit 
launch azimuths to between 35 °  and 120 ° , polar and sun-synchronous satellites cannot be launched from 
the eastern test range.

        Example 6.11      
 Find   the delta-v required to transfer a satellite from a circular, 300       km altitude low earth orbit of 28 °  incli-
nation to a geostationary equatorial orbit. Circularize and change the inclination at altitude. Compare that 
delta-v requirement with the one in which the plane change is done in the low earth orbit. 

    Solution 
    Figure 6.31    shows the 28 °  inclined low-earth parking orbit (1), the coplanar Hohmann transfer ellipse (2), 
and the coplanar GEO orbit (3). From the fi gure we see that 

  r rB C� �6678 42 164 km  km,       
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 Orbit   1: 

 For   this circular orbit the speed at  B  is 
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 Orbit   2: 

 We   fi rst obtain the angular momentum by means of Equation 6.2, 
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 The   velocities at perigee and apogee of orbit 2 are, from the angular momentum formula, 
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 At   this point we can calculate   Δ v B  , 
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 FIGURE 6.31  
       Transfer from LEO to GEO in an orbit of 28 °  inclination.    



 Orbit   3: 

 For   this GEO orbit, which is circular, the speed at  C  is 

  

v
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.

      

 The   spacecraft in orbit 2 arrives at  C  with a velocity of 1.6078       km/s inclined at 28 °  to orbit 3. Therefore, 
both its orbital speed and inclination must be changed at  C . The most effi cient strategy is to combine the 
plane change with the speed change (Equation 6.21), so that 

  

Δ Δv v v v v iC C C C C� � �
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2
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 Therefore  , the total delta-v requirement is 

  Δ Δ Δv v vB Ctotal  km/s (plane change at � � � � �2 4258 1 8191 4 2449. . . CC)       

    Suppose    we make the plane change at LEO instead of at GEO. In that case, Equation 6.21 provides the 
initial delta-v, 
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 The   spacecraft travels to  C  in the equatorial plane, so that when it arrives, the delta-v requirement at  C  is 
simply 

  Δv v vC C C� � � � �) )  km/s3 2 3 0747 1 6078 1 4668. . .       
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 FIGURE 6.32  
       Plane change maneuver required after the Hohmann transfer.    
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 Therefore  , the total delta-v is 

  Δ Δ Δv v vB Ctotal  km/s (plane change at � � � � �4 9242 1 4668 6 3910. . . BB)       

 This   is a 50% increase over the total delta-v with plane change at GEO. Clearly, it is best to do plane change 
maneuvers at the largest possible distance (apoapsis) from the primary attractor, where the velocities are 
smallest.      

        Example 6.12      
 Suppose   in the previous example that part of the plane change,   Δ i , takes place at  B , the perigee of the 
Hohmann transfer ellipse, and the remainder, 28 °       �        Δ i  occurs at the apogee  C . What is the value of   Δ i  
which results in the minimum   Δ v  total ? 

    Solution 
 We   found in Example 6.11 that if   Δ i       �      0, then   Δ v  total       �      4.2449       km/s, whereas   Δ i       �      28 °  made 
  Δ v  total       �      6.3910       km/s. Here we are to determine if there is a value of   Δ i  between 0 and 28 °  that yields a 
  Δ v  total  which is smaller than either of those two. 

 In   this case a plane change occurs at both  B  and  C . Recall that the most effi cient strategy is to combine 
the plane change with the speed change, so that the delta-v’s at those points are (Equation 6.21) 
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  and   
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 Thus  , 

  Δ Δ Δ Δ Δv v v i iB Ctotal (� � � � � � � �162 74 156 86 12 039 9 8871 28. . cos . . cos ))   (a)      

 To   determine if there is a   Δ i  which minimizes   Δ v  total , we take its derivative with respect to   Δ i  and set it equal 
to zero: 
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 This   is a transcendental equation which must be solved iteratively. The solution, as the reader may verify, is 

  Δi � �2 1751.   (b)      



 That   is, an inclination change of 2.1751 °  should occur in low earth orbit, while the rest of the plane change, 
25.825 ° , is done at GEO. Substituting (b) into (a) yields 

  
Δvtotal  km/s� 4 2207.

      

 This   is only very slightly smaller (less than 1%) than the lowest   Δ v  total  computed in Example 6.11.      

        Example 6.13      
 A   spacecraft is in a 500       km by 10,000       km altitude geocentric orbit which intersects the equatorial plane at 
a true anomaly of 120 °  (see  Figure 6.33   ). If the inclination to the equatorial plane is 15 ° , what is the mini-
mum velocity increment required to make this an equatorial orbit? 

    Solution 
 The   orbital parameters are 
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 FIGURE 6.33  
       An orbit which intersects the equatorial plane along line  BC . The equatorial plane makes an angle of 15 °  with the plane 
of the page.    
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 The   radial coordinate and velocity components at points  B  and  C , on the line of intersection with the 
equatorial plane, are 
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  and   
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 These   are all shown in  Figure 6.33 . 
 All   we wish to do here is rotate the plane of the orbit rigidly around the node line  BC . The impulsive 

maneuver must occur at either  B  or  C . Equation 6.19 applies, and since the radial and transverse velocity 
components remain fi xed, it reduces to 

  
Δv v v� � �⊥ ⊥2 1 2

2
( )cos sinδ

δ

     

  where   δ        �      15 ° . For the minimum   Δ v , the maneuver must be done where  v   ⊥   is smallest, which is at  B , the 
point farthest from the center of attraction  F . Thus,   

  
Δv � � �

�
�2 5 1043

15

2
1 3325. sin .  km/s

           

        Example 6.14      
 Orbit   1 has angular momentum  h  and eccentricity  e . The direction of motion is shown. Calculate the   Δ v  
required to rotate the orbit 90 °  about its latus rectum  BC  without changing  h  and  e . The required direction 
of motion in orbit 2 is shown in Figure 6.34. 

 By   symmetry, the required maneuver may occur at either  B  or  C , and it involves a rigid body rotation of 
the ellipse, so that  v r   and v⊥ remain unaltered. Because of the directions of motion shown, the true anoma-
lies of B on the two orbits are 

  θ θB B) )1 290 90� � � � � �       



 The   radial coordinate of  B  is 
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 For   the velocity components at  B , we have 
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 Substituting   these into Equation 6.19 yields 
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  so that   
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 If   the motion on ellipse 2 were opposite to that shown in  Figure 6.34   , then the radial velocity components 
at  B  (and  C ) would be in the same rather than in the opposite direction on both ellipses, so that instead of 
(a) we would fi nd a smaller velocity increment, 
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       Identical ellipses intersecting at 90 °  along their common latus rectum,  BC.     
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    6.10       NONIMPULSIVE ORBITAL MANEUVERS 
 Up   to this point we have assumed that delta-v maneuvers take place in zero time, altering the velocity vec-
tor but leaving the position vector unchanged. In nonimpulsive maneuvers the thrust acts over a signifi cant 
time interval and must be included in the equations of motion. According to Problem 2.3, adding an exter-
nal force  F  to the spacecraft yields the following equation of relative motion 

  
��r

r F
� � �μ

r m3   (6.25)     

  where  m  is the mass of the spacecraft. This of course reduces to Equation 2.22 when  F       �       0 . If the external 
force is a thrust  T  in the direction of the velocity vector  v , then  F       �       T ( v / v ) and Equation 6.25 becomes   
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   (Drag forces act opposite to the velocity vector, and so does thrust during a retrofi re maneuver.) The 
Cartesian component form of Equation 6.26 is 
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  where   

  r x y z v x y z� � � � � �2 2 2 2 2 2� � �   (6.27b)      

 While   the rocket motor is fi ring, the spacecraft mass decreases, because propellant combustion products 
are being discharged into space through the nozzle. According to elementary rocket dynamics (cf. Section 
11.3), the mass decreases at a rate given by the formula 

  

dm

dt

T

I gsp o

� �   (6.28)     

  where  T  and  I sp   are the thrust and the specific impulse of the propulsion system.  g o   is the sea-level accelera-
tion of gravity.   

 If   the thrust is not zero, then Equations 6.27 may not have a straightforward analytical solution. 
In any case, they can be solved numerically using methods such as those discussed in Section 1.8. For 
that purpose, Equations 6.27 and 6.28 must be rewritten as a system of linear differential equations in the 
form 

  �y f y� ( )t,   (6.29)      



 For   the case at hand, the vector  y  consists of the six components of the state vector (position and veloc-
ity vectors) plus the mass. Therefore, with the aid of Equations 6.27 and 6.28, we have 
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  (6.30)      

 The   numerical solution of Equations 6.30 is illustrated in the following examples.

        Example 6.15      
 Suppose   the spacecraft in Example 6.1 (see  Figure 6.3 ) has a restartable onboard propulsion system with 
a thrust of 10       kN and specifi c impulse of 300       s. Assuming that the thrust vector remains aligned with the 
velocity vector, solve Example 6.1 without using impulsive (zero time) delta-v burns. Compare the propel-
lant expenditures for the two solutions. 

    Solution 
 Refer   to  Figure 6.3  as an aid to visualizing the solution procedure described below. Let us assume that the plane 
of  Figure 6.3  is the  xy  plane of an earth-centered inertial frame with the  z -axis directed out of the page. The apse 
line of orbit 1 is the  x -axis, which is directed to the right, and  y  points upwards towards the top of the page. 

   Transfer   from perigee of orbit 1 to apogee of orbit 2   

 According   to Example 6.1, the state vector just before the fi rst delta-v maneuver is 
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(a)

      

 Using   this together with an assumed burn time  t  burn , we numerically integrate Equations 6.29 from  t       �      0 to 
t      �       t  burn . This yields  r ,  v  and the mass  m  at the start of the coasting trajectory (orbit 2). We can fi nd the true 
anomaly   θ   at the start of orbit 2 by substituting these values of  r  and  v  into Algorithm 4.2. The spacecraft 
must coast through a true anomaly of   Δ  θ        �      180 °       �        θ   in order to reach apogee. Substituting  r ,  v  and   Δ  θ   
into Algorithm 2.3 yields the state vector ( r   a   and  v   a  ) at apogee. 
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 The   apogee radius  r a   is the magnitude of  r   a  . If  r a   does not equal the target value of 22,378       km, then we 
assume a new burn time and repeat the above steps to calculate a new  r a  . This trial and error process is 
repeated until  r a   is acceptably close to 22,378       km. 

 The   calculations are done in the MATLAB M-function  integrate_thrust.m , which is listed in Appendix 
D.30.  rkf45.m  (see Appendix D.4) was chosen as the numerical integrator. The initial conditions  y  0  in 
Equation (a) above are passed to  rkf45 , which solves the system of Equations 6.29 at discrete times between 
0 and  t  burn .  rkf45.m  employs the subfunction  rates,  embedded in  integrate_thrust.m , to calculate the vector 
of derivatives  f  in Equation 6.30. Output is to the command window, and a revised burn time was entered 
into the code in the MATLAB editor after each calculation of  r a  . 

 The   following output of  integrate_thrust.m  shows that a burn time of 261.1127 seconds (4.352 minutes), 
with a propellant expenditure of 887.5       kg, is required to produce a coasting trajectory with an apogee of 
22,378       km. Due to the fi nite burn time, the apse line in this case is rotated 8.336 °  counterclockwise from that 
in Example 6.1 (line  BCA  in  Figure 6.3 ). Notice that the speed boost   Δ v  imparted by the burn is 9.38984      �    
  7.71020      �      1.6796       km/s, compared to the impulsive   Δ v A        �      1.7725       km/s in Example 6.1. 

    --------------------------------------------------------  

  Before   ignition:  
           Mass  =  2000         kg  
           State vector:  

                  r  =  [                 6858,                         0,                         0]         (km)  
                         Radius  =  6858  

                         v  =  [                        0,                         7.7102,                               0]         (km/s)  
                                Speed  =  7.7102  

  Thrust                                =                              10          kN  
  Burn   time                              =                261.112700  s  
  Mass   after burn   =   1.112495E     +     03          kg  

  End  -of-burn-state vector:  
           r  =  [          6551.56,                 2185.85,                 0] (km)  

                  Radius  =  6906.58  
           v  =  [          —2.42229,          9.07202,                 0] (km/s)  

                  Speed  =  9.38984  

  Post  -burn trajectory:  
           Eccentricity   =  0.530257  
           Semimajor axis   =  14623.7         km  
           Apogee state vector:  

                  r  =  [—2.2141572950E     +     04,  —3.2445306214E     +     03,           0.0000000000E     +     00] (km)  
                         Radius  =  22378  

                  v  =  [ 4.1938999506E-01,  —2.8620331423E     +     00,  —0.0000000000E     +     00] (km/s)  
                         Speed  =  2.8926  

    --------------------------------------------------------  

   Transfer   from apogee of orbit 2 to the circular target orbit 3.   

 The   spacecraft mass and state vector at apogee, given by the above output (under  “ post-burn trajectory ” ), are 
entered as new initial conditions in  integrate_thrust.m , and the manual trial and error process described above is 



carried out. It is not possible to transfer from the 22,378       km apogee of orbit 2 to a circular orbit of radius 
22,378       km using a single fi nite-time burn. Therefore, the objective in this case is to make the semimajor 
axis of the fi nal orbit equal to 22,378       km. This was achieved with a burn time of 118.88       s and a propellant 
expenditure of 404.05       kg, and it yields a nearly circular orbit having an eccentricity of 0.00867 and an apse 
line rotated 80.85 °  clockwise from the  x -axis. 

 The   computed spacecraft mass at the end of the second delta-v maneuver is 708.44       kg. Therefore, the 
total propellant expenditure is 2000      �      708.44      �      1291.6       kg. This is essentially the same as the propellant 
requirement (1291.3       kg) calculated in Example 6.1, in which the two delta-v maneuvers were impulsive.       

 Let   us take the dot product of both sides of Equation 6.26 with the velocity  v , to obtain 
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 In   Section 2.5, we showed that 
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 Substituting   these together with v · v      �       v  2  into Equation 6.31 yields the energy equation, 
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 This   equation may be applied to the approximate solution of a constant tangential thrust orbit transfer prob-
lem. If the spacecraft is in a circular orbit, then applying a very low constant thrust  T  in the forward direc-
tion will cause its total energy   �        �       v  2 /2      �        μ  / r  to slowly increase over time according to Equation 6.32. This 
will raise the height after each revolution, resulting in a slow outward spiral (or inward spiral if the thrust is 
directed aft). If we assume that the speed at any radius of the closely-spaced spiral trajectory is essentially 
that of a circular orbit of that radius (Wiesel, 1997), then we can replace  v  by  μ/r     to obtain an approxi-
mate version of Equation 6.32, 
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 Simplifying   and separating variables leads to 
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 The   spacecraft mass is a function of time 

  m m m te� �0 �   (6.34)     
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  where  m  0  is the mass at the start of the orbit transfer ( t       �      0) and  �me    is the constant rate at which propellant 
is expended. Thus,   
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 Integrating   both sides of this equation and setting  r       �       r  0  when  t       �      0 results in 
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 Finally  , since  �m dm dte � � /    , Equation 6.28 implies that we can replace  �me     with  T /( I sp g  0 ), so that 
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 We   may solve this equation for either  r  or  t  to get 
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 Although   this scalar analysis yields the radius in terms of the elapsed time, it does not provide us the state 
vector components  r  and  v .

        Example 6.16      
 A   1000       kg spacecraft is in a 6678       km (300       km altitude) circular equatorial earth orbit. Its ion propulsion sys-
tem, which has a specifi c impulse of 10,000 s, exerts a constant tangential thrust of 2500      �      10  � 6        kN. 

    (a)     How long will it take the spacecraft to reach GEO (42,164       km)?  
    (b)     How much fuel will be expended?    

    Solution 

        (a)     Using Equation 6.39, and remembering to express the acceleration of gravity in km/s 2 , the fl ight 
time is    
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    (b)     The propellant mass  m p   used is    

  

m m t
T

I g
t

m

p e
sp o

p

� � �
�

�

�

� 2500 10

10 000 0 009807
1 817 000

46 32

6

, .
, ,

.

⋅
⋅

  kg
            

 Previously  , in Example 6.10, we found that the total delta-v for a Hohmann transfer from 6678       km to 
GEO radius, with no plane change, is 3.893       km/s. Assuming a typical chemical rocket specifi c impulse of 
300 seconds, Equation 6.1 reveals that the propellant requirement would be 734       kg if the initial mass is 
1000       kg. This is almost 16 times that required for the hypothetical ion-propelled spacecraft of Example 
6.16. Because of their effi ciency (high specifi c impulse), ion engines — typically using xenon as the 
p ropellant — will play an increasing role in deep space missions and satellite station keeping. However, 
these extremely low thrust devices cannot replace chemical rockets in high acceleration applications, such 
as launch vehicles.

        Example 6.17      
 What   will be the orbit after the ion engine in Example 6.16 shuts down upon reaching GEO radius? 

    Solution 
 This   requires a numerical solution using the MATLAB M-function  integrate_thrust.m , listed in Appendix 
D.30. According to the data of Example 6.16, the initial state vector in geocentric equatorial coordinates 
can be written 

  

r I v J J0 0
0

6678 7 72584� � �ˆ ˆ ˆ (km) .  (km /s)
μ
r

      

 Using   these as the initial conditions, we start by assuming that the elapsed time is 21.03 days, as cal-
culated in Example 6.16.  integrate_thrust.m  computes the fi nal radius for that burn time and outputs the 
results to the command window. Depending on whether the radius is smaller or greater than 42,164       km, we 
re-enter a slightly larger or slightly smaller time in the MATLAB editor and run the program again. Several 
of these manual trial and error steps yields the following MATLAB output. 

    --------------------------------------------------------  
  Before   ignition:  

           Mass      =      1000         kg  
           State vector:  

                  r      =      [   6678,          0,   0] (km)  
                         Radius      =      6678  

                  v      =      [       0,   7.72584,   0] (km/s)  
                         Speed      =      7.72584  

  Thrust         =       0.0025          kN  
  Burn   time       =       21.037600  days  
  Mass   after burn       =       9.536645E     +     02          kg  
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  End  -of-burn-state vector:  
           r      =      [   —19028,  —37625.9,   0] (km)  

                  Radius      =      42163.6  
           v      =      [  2.71001,  —1.45129,   0] (km/s)  

                  Speed      =      3.07415  

  Post  -burn trajectory:  
           Eccentricity      =      0.0234559  
           Semimajor axis      =      42149          km  
           Apogee state vector:  

                  r      =      [ 3.7727275971E     +     04,  —2.0917194986E     +     04,  0.0000000000E     +     00] (km)  
                         Radius      =      43137.9  

                  v      =      [ 1.4565649916E     +     00,  —2.6271318618E     +     00,  0.0000000000E     +     00] (km/s)  
                  Speed      =      3.0039  

    --------------------------------------------------------  

 From   the printout it is evident that to reach GEO radius requires the following time and propellant 
expenditure: 

    (a)      t       �      21.0376 days  

    (b)      m p        �      46.34       kg    

 These   are very nearly the same as the values found in the previous example. However, this numerical solu-
tion in addition furnishes the end-of-burn state vector, which shows that the post-burn orbit is slightly ellip-
tical, having an eccentricity of 0.02346 and a semimajor axis that is only 15       km less than GEO radius.        

    PROBLEMS 

    Section 6.2 

        6.1     The Shuttle orbiter has a mass of 125,000       kg. The two orbital maneuvering engines produce a com-
bined (nonthrottleable) thrust of 53.4       kN. The orbiter is in a 300       km circular orbit. A delta-v maneuver 
transfers the spacecraft to a coplanar 250       km by 300       km elliptical orbit. Neglecting propellant loss and 
using elementary physics (linear impulse equals change in linear momentum, distance equals speed 
times time), estimate 

    (a)     the time required for the   Δ v  burn, and  
    (b)     the distance traveled by the orbiter during the burn.  
    (c)     Calculate the ratio of your answer for (b) to the circumference of the initial circular orbit.       
    { Ans.: (a)   Δ t       �      34 sec; (b) 263       km; (c) 0.0063 }  

    6.2     A satellite traveling 8.2       km/s at a perigee altitude of 480       km fi res a retrorocket. What delta-v is neces-
sary to reach a minimum altitude of 160       km during the next orbit?    
    { Ans.:  � 668 m/s }  

    6.3     A spacecraft is in a 500       km altitude circular earth orbit. Neglecting the atmosphere, fi nd the delta-v 
required at  A  in order to impact the earth at (a) point  B ; (b) point  C .    
    { Ans.: (a) 192 m/s ; (b) 7.61       km/s }          
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    6.4     A satellite is in a circular orbit at an altitude of 320       km above the earth’s surface. If an onboard rocket 
provides a delta-v of 500 m/s in the direction of the satellite’s motion, calculate the altitude of the new 
orbit’s apogee.    
    { Ans.: 2390       km }  

    6.5     A spacecraft  S  is in a geocentric hyperbolic trajectory with a perigee radius of 7000       km and a perigee 
speed of 1.3 v  esc . At perigee, the spacecraft releases a projectile  B  with a speed of 7.1       km/s parallel to 
the spacecraft’s velocity. How far  d  from the earth’s surface is  S  at the instant  B  impacts the earth? 
Neglect the atmosphere.    
    { Ans.:  d       �      8978       km }          

    6.6     A spacecraft is in a 200       km circular earth orbit. At  t       �      0, it fi res a projectile in the direction opposite 
to the spacecraft’s motion. Thirty minutes after leaving the spacecraft, the projectile impacts the earth. 
What delta-v was imparted to the projectile? Neglect the atmosphere.    
    { Ans.:   Δ v       �      77.2 m/s }  
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    6.7     A spacecraft is in a circular orbit of radius  r  and speed  v  around an unspecifi ed planet. A rocket on 
the spacecraft is fi red, instantaneously increasing the speed in the direction of motion by the amount 
  Δ v       �        α v , where   α              0. Calculate the eccentricity of the new orbit.    
    { Ans.:  e       �        α  (  α        �      2) }   

    Section 6.3 

        6.8     A spacecraft is in a 300       km circular earth orbit. Calculate 

    (a)     the total delta-v required for a Hohmann transfer to a 3000       km coplanar circular earth orbit and  
    (b)     the transfer orbit time.       
    { Ans.: (a) 1.198       km/s; (b) 59       m 39 s }          
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    6.9     A space vehicle in a circular orbit at an altitude of 500       km above the earth executes a Hohmann trans-
fer to a 1000       km circular orbit. Calculate the total delta-v requirement.    
    { Ans.: 0.2624       km/s }          

    6.10     Assuming the orbits of earth and Mars are circular and coplanar, calculate 

    (a)     the time required for a Hohmann transfer from earth orbit to Mars orbit and  
    (b)     the initial position of Mars (  α  ) in its orbit relative to earth for interception to occur.       



 Radius   of earth orbit      �      1.496      �      10 8        km. Radius of Mars orbit      �      2.279      �      10 8        km. 
     μ   Sun       �      1.327      �      10 11        km 3 /s 2 . 
    { Ans.: (a) 259 days; (b)   α        �      44.3 °  }          
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    6.11     Calculate the total delta-v required for a Hohmann transfer from the smaller circular orbit to the larger 
one.    
    { Ans.: 0.394 v  1 , where  v  1  is the speed in orbit 1. }          

    6.12     With a   Δ v A   of 1.500       km/s, a spacecraft in the circular 6700       km geocentric orbit 1 initiates a Hohmann 
transfer to the larger circular orbit 3. Calculate   Δ v B   at apogee of the Hohmann transfer ellipse 2.    
    { Ans.:   Δ v B        �      1.877       km/s }          
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    6.13     Two geocentric elliptical orbits have common apse lines and their perigees are on the same side of the 
earth. The fi rst orbit has a perigee radius of  r p        �      7000       km and  e       �      0.3, whereas for the second orbit 
 r p        �      32,000       km and  e       �      0.5. 

    (a)     Find the minimum total delta-v and the time of fl ight for a transfer from the perigee of the inner 
orbit to the apogee of the outer orbit.  

    (b)     Do part (a) for a transfer from the apogee of the inner orbit to the perigee of the outer orbit.       
    { Ans.: (a)   Δ v  total       �      2.388       km/s, TOF      �      16.2 hours; (b)   Δ v  total       �      3.611       km/s, TOF      �      4.66 hours }       
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    6.14     The Space Shuttle was launched on a fi fteen-day mission. There were four orbits after injection, all of 
them at 39 °  inclination. 

    Orbit 1: 302 by 296       km.  
    Orbit 2 (day 11): 291 by 259       km.  



    Orbit 3 (day 12): 259       km circular.  
    Orbit 4 (day 13): 255 by 194       km.       
 Calculate   the total delta-v, which should be as small as possible, assuming Hohmann transfers. 
    { Ans.:   Δ v  total       �      43.5 m/s }  

    6.15     Calculate the total delta-v required for a Hohmann transfer from a circular orbit of radius  r  to a circu-
lar orbit of radius 12r.    
    { Ans.:  0 5342. μ/r     }           

Problems  379

BA

1

12r

r

3

4

2

                        

AB

3

1

2

12r

r

                        

    Section 6.4 

        6.16     A spacecraft in circular orbit 1 of radius  r  leaves for infi nity on parabolic trajectory 2 and returns from 
infi nity on a parabolic trajectory 3 to a circular orbit 4 of radius 12 r . Find the total delta-v required for 
this non-Hohmann orbit change maneuver.    
    { Ans.:  0 5338. μ/r     }          
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    6.17     A spacecraft is in a 300       km circular earth orbit. Calculate 

    (a)     the total delta-v required for the bi-elliptic transfer to a 3000       km altitude coplanar circular orbit 
shown, and  

    (b)     the total transfer time.       
    { Ans.: (a) 2.039       km/s; (b) 2.86 hr }          

3

                        

    6.18     Verify Equations 6.4.     

    Section 6.5 

        6.19     The space station and spacecraft  A  and  B  are all in the same circular earth orbit of 350       km altitude. 
Spacecraft  A  is 600       km behind the space station and Spacecraft  B  is 600       km ahead of the space station. 
At the same instant, both spacecraft apply a   Δ v   ⊥   so as to arrive at the space station in one revolution 
of their phasing orbits. 

    (a)     Calculate the times required for each spacecraft to reach the space station.  
    (b)     Calculate the total delta-v requirement for each spacecraft.       
    { Ans.: (a) Spacecraft  A : 90.2 min; Spacecraft  B : 92.8 min; (b)   Δ v A        �      73.9       m/s;   Δ v B        �      71.5       m/s }         

                        



    6.20     Satellites  A  and  B  are in the same circular orbit of radius  r . B is 180 °  ahead of  A . Calculate the semi-
major axis of a phasing orbit in which  A  will rendezvous with  B  after just one revolution in the phas-
ing orbit.    
    { Ans.:  a       �      0.63 r  }         
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    6.21     Two spacecraft are in the same elliptical earth orbit with perigee radius 8000       km and apogee radius 
13,000       km. Spacecraft 1 is at perigee and spacecraft 2 is 30 °  ahead. Calculate the total delta-v required 
for spacecraft 1 to intercept and rendezvous with spacecraft 2 when spacecraft 2 has traveled 60 ° .    
    { Ans.:   Δ v  total       �      6.24       km/s }         

    6.22     At the instant shown, spacecraft  S  1  is at point  A  of circular orbit 1 and spacecraft  S  2  is at point  B  of 
circular orbit 2. At that instant,  S  1  executes a Hohmann transfer so as to arrive at point  C  of orbit 2. 
Upon arriving at  C ,  S  1  immediately executes a phasing maneuver in order to rendezvous with  S  2  after 
one revolution of its phasing orbit. What is the total delta-v requirement?    
    { Ans.: 2.159       km/s }         
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    6.23     Spacecraft  B  and  C,  which are in the same elliptical earth orbit 1, are located at the true anomalies 
shown. At this instant, spacecraft  B  executes a phasing maneuver so as to rendezvous with spacecraft 
 C  after one revolution of its phasing orbit 2. Calculate the total delta-v required. Note that the apse 
line of orbit 2 is at 45 °  to that of orbit 1.    
    { Ans.: 3.405       km/s }          
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    Section 6.6 

        6.24                      (a)     With a single delta-v maneuver, the earth orbit of a satellite is to be changed from a circle of 
radius 15,000       km to a collinear ellipse with perigee altitude of 500       km and apogee radius of 
22,000       km. Calculate the magnitude of the required delta-v and the change in the fl ight path angle 
  Δ  γ  .  

    (b)     What is the minimum total delta-v if the orbit change is accomplished instead by a Hohmann 
transfer?       

     { Ans.: (a)  Δv � 2 77.  km/s    ,   Δ  γ        �      31.51 ° ; (b)   Δ v  Hohmann       �      1.362       km/s }         
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    6.25     An earth satellite has a perigee altitude of 1270       km and a perigee speed of 9       km/s. It is required 
to change its orbital eccentricity to 0.4, without rotating the apse line, by a delta-v maneuver at 
  θ        �      100 ° . Calculate the magnitude of the required   Δ   v  and the change in fl ight path angle   Δ  γ  .    
    { Ans.:  Δv � 0 915.  km/s    ;   Δ  γ        �       � 8.18 °  }  

    6.26     The velocities at points  A  and  B  on orbits 1, 2 and 3, respectively, are (relative to the perifocal frame)    
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 Calculate   the total  Δ  v  for a transfer from orbit 1 to orbit 3 by means of orbit 2. 
    { Ans.: 3.310       km/s }         
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    6.27     Trajectories 1 and 2 are ellipses with eccentricity 0.4 and the same angular momentum  h . Their speed 
at  B  is  v . Calculate, in terms of  v , the  Δ  v  required at  B  to transfer from orbit 1 to orbit 2.    
    { Ans.:  Δ  v       �      0.7428 v  }          
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    Section 6.7 

        6.28     A satellite is in a circular earth orbit of altitude 400       km. Determine the new perigee and apogee alti-
tudes if the satellite’s onboard rocket 

    (a)     Provides a delta-v in the tangential direction of 240       m/s.  
    (b)     Provides a delta-v in the radial (outward) direction of 240       m/s.       
    { Ans.: (a)  z A        �      1320       km,  z P        �      400       km; (b)  z A        �      619       km,  z P        �      194       km }  



    6.29     At point  A  on its earth orbit, the radius, speed and fl ight path angle of a satellite are  r A        �      12,756       km, 
 v A        �      6.5992       km/s and   γ   A       �      20 ° . At point  B , at which the true anomaly is 150 ° , an impulsive maneu-
ver causes   Δ v   ⊥        �       � 0.75820       km/s and   Δ v r        �      0. 

    (a)     What is the time of fl ight from  A  to  B ?  
    (b)     What is the rotation of the apse line as a result of this maneuver?       
    { Ans.: (a) 2.045 hr; (b) 43.39 °  counterclockwise }  

    6.30     A satellite is in elliptical orbit 1. Calculate the true anomaly   θ   (relative to the apse line of orbit 1) of 
an impulsive maneuver that rotates the apse line an angle   η   counterclockwise but leaves the eccentric-
ity and the angular momentum unchanged.    
    { Ans.:   θ        �        η  /2 }         
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    6.31     A satellite in orbit 1 undergoes a delta-v maneuver at perigee  P  1  such that the new orbit 2 has the 
same eccentricity  e , but its apse line is rotated 90 °  clockwise from the original one. Calculate the spe-
cifi c angular momentum of orbit 2 in terms of that of orbit 1 and the eccentricity  e .    
    { Ans.:  h h e2 1 1� �/ }            
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    6.32     Calculate the delta-v required at  A  in orbit 1 for a single impulsive maneuver to rotate the apse line 
180 °  counterclockwise (to become orbit 2), but keep the eccentricity  e  and the angular momentum  h  
the same.    
    { Ans.:   Δ v       �      2  μ e / h  }          
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    Section 6.8 

        6.33     Spacecraft  A  and  B  are in concentric, coplanar circular orbits 1 and 2, respectively. At the instant 
shown, spacecraft  A  executes an impulsive delta-v maneuver to embark on orbit 3 in order to intercept 
and rendezvous with spacecraft  B  in a time equal to the period of orbit 1. Calculate the total delta-v 
required.    
    { Ans.: 3.795       km/s }         
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    6.34     Spacecraft  A  is in orbit 1, a 10,000       km radius equatorial earth orbit. Spacecraft  B  is in elliptical polar 
orbit 2, having eccentricity 0.5 and perigee radius 16,000       km. At the instant shown, both spacecraft 
are in the equatorial plane and  B  is at its perigee. At that instant, spacecraft  A  executes an impulsive 
delta-v maneuver to intercept spacecraft  B  one hour later at point  C . Calculate the delta-v required for 
 A  to switch to the intercept trajectory 3.    
    { Ans.: 8.117       km/s }         
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    6.35     Spacecraft  B  and  C  are in the same elliptical orbit 1, characterized by a perigee radius of 7000       km and 
an apogee radius of 10,000       km. The spacecraft are in the positions shown when  B  executes an impul-
sive transfer to orbit 2 in order to catch and rendezvous with  C  when  C  arrives at apogee  A . Find the 
total delta-v requirement.    
    { Ans.: 5.066       km/s }         
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    6.36     At time  t       �      0, manned spacecraft  a  and unmanned spacecraft  b  are at the positions shown in circular 
earth orbits 1 and 2, respectively. For assigned values of  θ0

( )a     and  θ0
( )b    , design a series of impulsive 

maneuvers by means of which spacecraft  a  transfers from orbit 1 to orbit 2 so as to rendezvous with 
spacecraft  b  (i.e., occupy the same position in space). The total time and total delta-v required for the 
transfer should be as small as possible. Consider earth’s gravity only.            

20,000 km 

210,000 km 

a

b

2

1

0θ (b)

0θ (a)

                        

    Section 6.9 

        6.37     What must the launch azimuth be if the satellite in Example 4.10 is launched from (a) Kennedy Space 
Center (latitude      �      28.5 ° N); (b) Vandenburgh AFB (latitude      �      34.5 ° N) (c) Kourou, French Guiana 
(latitude 5.5 ° N).    
    { Ans.: (a) 329.4 °  or 210.6 ° ; (b) 327.1 °  or 212.9 ° ; (c) 333.3 °  or 206.7 °  }  

    6.38     The state vector of a spacecraft in the geocentric equatorial frame is  r I� rˆ     and  v J� vˆ    . At that 
instant an impulsive maneuver produces the velocity change  Δv I K� �0 5 0 5. v vˆ . ˆ    . What is the incli-
nation of the new orbit?    
    { Ans.: 26.57 °  }  

    6.39     An earth satellite has the following orbital elements:  a       �      15,000       km,  e       �      0.5,   Ω        �      45 ° ,   ω        �      30 ° , 
 i       �      10 ° . What minimum delta-v is required to reduce the inclination to zero?    
    { Ans.: 0.588       km/s }  

    6.40     With a single impulsive maneuver, an earth satellite changes from a 400       km circular orbit inclined at 
60 °  to an elliptical orbit of eccentricity  e       �      0.5 with an inclination of 40 ° . Calculate the minimum 
required delta-v.    
    { Ans.: 3.41       km/s }  

    6.41     An earth satellite is in an elliptical orbit of eccentricity 0.3 and angular momentum 60,000       km 2 /s. Find 
the delta-v required for a 90 °  change in inclination at apogee (no change in speed).    
    { Ans.: 6.58       km/s }  



    6.42     A spacecraft is in a circular, equatorial orbit 1 of radius  r o   about a planet. At point  B  it impulsively 
transfers to polar orbit 2, whose eccentricity is 0.25 and whose perigee is directly over the North Pole. 
Calculate the minimum delta-v required at  B  for this maneuver.    
    { Ans.:  1 436. μ/ro     }         
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    6.43     A spacecraft is in a circular, equatorial orbit 1 of radius  r  0  and speed  v  0  about an unknown planet 
(  μ    �  398,600       km 3 /s 2 ). At point  C  it impulsively transfers to orbit 2, for which the ascending node 
is point  C , the eccentricity is 0.1, the inclination is 30 °  and the argument of periapsis is 60 ° . Calculate, 
in terms of  v  0 , the single delta-v required at  C  for this maneuver.    
    { Ans.:   Δ v       �      0.5313 v  0  }         

    6.44     A spacecraft is in a 300       km circular parking orbit. It is desired to increase the altitude to 600       km and 
change the inclination by 20 ° . Find the total delta-v required if 

    (a)     The plane change is made after insertion into the 600       km orbit (so that there are a total of three 
delta-v burns).  
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    (b)     If the plane change and insertion into the 600       km orbit are accomplished simultaneously (so that 
the total number of delta-v burns is two).  

    (c)     The plane change is made upon departing the lower orbit (so that the total number of delta-v 
burns is two).       

    { Ans.: (a) 2.793       km/s; (b) 2.696       km/s; (c) 2.783       km/s }   

    Section 6.10 

        6.45     Calculate the total propellant expenditure for Problem 6.3 using fi nite-time delta-v maneuvers. The 
initial spacecraft mass is 4000       kg. The propulsion system has a thrust of 30       kN and a specifi c impulse 
of 280       s.  

    6.46     Calculate the total propellant expenditure for problem Problem 6.14 using fi nite-time delta-v maneu-
vers. The initial spacecraft mass is 4000       kg. The propulsion system has a thrust of 30       kN and a spe-
cifi c impulse of 280       s.  

    6.47     At a given instant  t  0 , a 1000       kg earth-orbiting satellite has the inertial position and velocity vectors  
r i j k0 436 6083 2529� � �ˆ ˆ ˆ ( ) km     and  v i j k0 7 340 0 5125 2 497� � � �. . .  km/sˆ ˆ ˆ ( )   . 89 minutes later 
a rocket motor with  I sp        �      300       s and 10       kN thrust aligned with the velocity vector ignites and burns for 
120       seconds. Use numerical integration to fi nd the maximum altitude reached by the satellite and the 
time it occurs.     

    List of Key Terms 

         Δ  v  with plane change  
     Δ  v  without plane change  
    chemical rockets  
    cranking maneuver  
    ion population  
    launch azimuth  
    launch latitude  
orbit     inclination  
    phasing orbit  
    pumping maneuver  
    specifi c impulse  
    spiral trajectory          
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    7.1       INTRODUCTION 
 Up   to now we have mostly referenced the motion of orbiting objects to a nonrotating coordinate system 
fi xed to the center of attraction (e.g., the center of the earth). This platform served as an inertial frame of 
reference, in which Newton’s second law can be written 

  F anet absolute� m       

 An   exception to this rule was the discussion of the restricted three-body problem at the end of Chapter 2, 
in which we made use of the relative motion equations developed in Chapter 1. In a rendezvous maneuver, 
two orbiting vehicles observe one another from each of their own free-falling, rotating, clearly noninertial 
frames of reference. To base impulsive maneuvers on observations made from a moving platform requires 
transforming relative velocity and acceleration measurements into an inertial frame. Otherwise, the true 
thrusting forces cannot be sorted out from the fi ctitious  “ inertia forces ”  that appear in Newton’s law when it 
is written incorrectly as 

  F anet rel� m       

 The   purpose of this chapter is to use relative motion analysis to gain some familiarity with the problem 
of maneuvering one spacecraft relative to another, especially when they are in close proximity.  
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    7.2       RELATIVE MOTION IN ORBIT 
 A   rendezvous maneuver usually involves a target vehicle  A , which is passive and nonmaneuvering, and a 
chase vehicle  B  which is active and performs the maneuvers required to bring itself alongside the target. An 
obvious example is the space shuttle, the chaser, rendezvousing with the international space station, the target. 
The position vector of the target  A  in the geocentric equatorial frame is  r   A  . This radial is sometimes called the 
 “  r -bar ” . The moving frame of reference has its origin at the target, as illustrated in  Figure 7.1   . The  x  axis is 
directed along the outward radial  r   A   to the target. Therefore, the unit vector  ̂i     along the moving  x  axis is 

  
î

r
� A

Ar
  (7.1)      

 The    z  axis is normal to the orbital plane of the target spacecraft and therefore lies in the direction of  A ’s 
angular momentum vector. It follows that the unit vector along the  z  axis of the moving frame is given by 

  
k̂

h
� A

Ah
  (7.2)      

 The    y  axis is perpendicular to both  ̂i     and  k̂     and points in the direction of the target satellite’s local horizon. 
Therefore, both the  x  and  y  axes lie in the target’s orbital plane, with the  y  unit vector completing a right-
triad; that is, 

  
ˆ ˆ ˆj k i� �   (7.3)      

 We   may refer to the co-moving  xyz  frame defi ned here as a local vertical/local horizontal (LVLH) frame. 
 The   position, velocity and acceleration of  B  relative to  A , measured in the co-moving frame, are given by 

  r i j krel � � �x y zˆ ˆ ˆ   (7.4a)      

  v i j krel � � �� � �x y zˆ ˆ ˆ   (7.4b)      

  a i j krel � � ��� �� ��x y zˆ ˆ ˆ   (7.4c)      
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 FIGURE 7.1  
       Co-moving LVLH reference frame attached to  A , from which the body  B  is observed.    



 The   angular velocity  Ω  of the  xyz  axes attached to the target is just the angular velocity of the target’s 
position vector. It is obtained with the aid of Equations 2.31 and 2.46 from the fact that 

  
h r v k kA A A A A A Ar v r r� � � � �( )

⊥
( )ˆ ˆ2 2Ω Ω

     

  from which we obtain the   angular velocity of the co-moving frame     

  

Ω� �
�h r vA

A

A A

Ar r2 2
  (7.5)      

 To   fi nd the angular acceleration  �Ω     of the  xyz  frame, we take the time derivative of  Ω     in Equation 7.5 
and use the fact that the angular momentum h  A   of the passive target is constant. 
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 Recall   from Equation 2.35a that  �r rA A A A� v r⋅ /    , so the   angular acceleration of the co-moving frame   may 
be written 

  

�Ω Ω� � � �2 2
4 2

v r
h

v rA A

A
A

A A

Ar r

⋅ ⋅
  (7.6)      

 After   fi rst calculating 

  r r rrel � �B A   (7.7)      

 we   use Equations 7.5 and 7.6 to determine the angular velocity and angular acceleration of the co-moving 
frame, both of which are required in the relative velocity and acceleration formulas (Equations 1.69 and 1.70), 

  v v v rrel � � � �B A Ω rel   (7.8)      

  a a a r r vrel rel rel rel( )� � � � � � � � �B A
�Ω Ω Ω Ω2   (7.9)      

 The   vectors in Equations 7.7 through 7.9 are all referred to the inertial  XYZ  frame in  Figure 7.1 . In order 
to fi nd their components in the accelerating  xyz  frame at any instant, we must fi rst form the orthogonal trans-
formation matrix  Q[ ]

Xx
   , as discussed in Section 4.5. The rows of this matrix comprise the direction cosines 

of each of the  xyz  axes with respect to the XYZ axes. That is, from Equations 7.1, 7.2 and 7.3 we fi nd        
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(7.10)

     

  where the  l s,  m s and  n s are the direction cosines. Then   
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   The components (Equations 7.4) of the relative position, velocity and acceleration in the LVLH frame 
arecomputed from their components in the inertial XYZ frame as follows: 

  
r Q r Q arel rel rel rel rel rel{ } [ ] { } { } [ ] { } { } [ ] {x Xx X x x X x Xx

� � �v Q v a
Χ }}X   (7.12)      

 where, according to  Equations 7.7 through 7.9,
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(7.13c)                

   The components of Ω are obtained from Equation 7.5, and �Ω Ω� a , where, according to Equation 7.6,   
a A A A� � �2 2v rr / .

        Algorithm 7.1          Given   the state vectors (r  A  , v  A  ) of target spacecraft  A  and (r  B  , v  B  ) of chaser spacecraft  B , 
fi nd the position  { r rel  }   x  , velocity  { v rel  }   x   and acceleration  { a rel  }   x   of  B  relative to  A  along the LVLH axes 
attached to  A.  See Appendix D.31 for an implementation of this procedure in MATLAB ® . 

    1.     Calculate the angular momentum of  A: h r vA A A� � .           

    2.     Calculate the unit vectors  ̂i    ,  ̂j     and  k̂     of the co-moving frame.    

  

ˆ ˆ ˆ ˆ ˆi
r

k
h

j k i� � � �A

A

A

Ar h       

    3.     Calculate the orthogonal transformation matrix  Q[ ]Xx
    using Equation 7.11.  

    4.     Calculate  Ω  and  �Ω     from Equations 7.5 and 7.6.  
    5.     Calculate the absolute accelerations of  A  and  B  using Equation 2.22.    



  

a r a rA
A

A B
B

B
r r
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μ μ

3 3
      

    6.     Calculate r rel  using Equation 7.7.  
    7.     Calculate v rel  using Equations 7.8.  
    8.     Calculate a rel  using Equation 7.9.  
    9.     Calculate  { r rel  } ,  { v rel  }   x   and  { a rel  }   x   using Equations 7.12.        

        Example 7.1      
 Spacecraft    A  is in an elliptical earth orbit having the following parameters: 

  h e i� � � � � �52 059 0 025724 60 40 30 40,  .    km /s2 ° ° ° °Ω ω θ   (a)      

 Spacecraft    B  is likewise in an orbit with these parameters: 

  h e i� � � � � �52 362 0 0072696 50 40 120 40,  km /s2 . ° ° ° °Ω ω θ   (b)      

 Calculate   the position r rel )  x  , velocity v rel )  x   and acceleration a rel )  x   of spacecraft  B  relative to spacecraft  A , 
measured along the  xyz  axes of the co-moving coordinate system of spacecraft  A , as defi ned in  Figure 7.1 . 

    Solution 
 From   the orbital elements in (a) and (b) we can use Algorithm 4.5 to fi nd the position and velocity of both 
spacecraft relative to the geocentric equatorial reference frame. Omitting those familiar calculations here, 
the reader can verify that, for spacecraft  A , 

  r I J KA Ar� � � � �266 77 3865 8 5426 2 6667 8.  (km) (  km)ˆ . ˆ . ˆ .   (c)      

  v I J KA � � � �6 4836 3 6198 2 4156.  (km/s)ˆ . ˆ . ˆ   (d)     

  and for spacecraft  B ,   
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 FIGURE 7.2  
       Spacecraft  A  and  B  in slightly different orbits.    
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  r I J KB Br� � � � �5890 7 2979 8 1792 2 6840 4.  (km) (  km)ˆ . ˆ . ˆ .   (e)      

  v I J KB � � �0 93583 5 2403 5 5009.  km/sˆ . ˆ . ˆ   (f)      

 Having   found the state vectors, which are illustrated in Figure 7.2, we can proceed with Algorithm 7.1. 

 Step   1: 
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 Step   3: 
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 Step   4: 
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 Step   5: 
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 Step   6: 
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 See   Appendix D.31 for the MATLAB solution to this problem.       
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 The   motion of one spacecraft relative to another in orbit may be hard to visualize at fi rst.  Figure 7.3    is 
offered as an assist. Orbit 1 is circular and orbit 2 is an ellipse with eccentricity 0.125. Both orbits were 
chosen to have the same semimajor axis length ,  so that they both have the same period. A co-moving frame 
is shown attached to the observers  A  in circular orbit 1. At epoch I the spacecraft  B  in elliptical orbit 2 is 
directly below the observers. In other words,  A  must draw an arrow in the negative local  x  direction to deter-
mine the position vector of  B  in the lower orbit. The fi gure shows eight different epochs (I, II, III,...,VIII), 
equally spaced around the circular orbit, at which observers  A  construct the position vector pointing from 
them to  B  in the elliptical orbit. Of course,  A ’s frame is rotating, because its  x -axis must always be directed 
away from the earth. Observers  A  cannot sense this rotation and record the set of observations in their (to 
them) fi xed  xy  coordinate system, as shown at the bottom of the fi gure. Coasting at a uniform speed along 
his circular orbit, observers  A  see the other vehicle orbiting them clockwise in a sort of bean-shaped path. 
The distance between the two spacecraft in this case never becomes so great that the earth intervenes. 
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 FIGURE 7.3  
       The spacecraft  B  in elliptical orbit 2 appears to orbit the observers  A  who are in circular orbit 1.    



 If   observers  A  declared theirs to be an inertial frame of reference, they would be faced with the task 
of explaining the physical origin of the force holding  B  in its bean-shaped orbit. Of course, there is no 
such force. The apparent path is due to the actual, combined motion of both spacecraft in their free fall 
around the earth. When  B  is below  A  (having a negative  x -coordinate), conservation of angular momentum 
demands that  B  move faster than  A , thereby speeding up in  A ’s positive  y -direction until the orbits cross 
( x       �      0). When  B ’s  x  coordinate becomes positive, i.e.,  B  is above  A , the laws of momentum dictate that  B  
slow down, which it does, progressing in  A ’s negative  y -direction until the next crossing of the orbits.  B  then 
falls below and begins to pick up speed. The process repeats over and over. From inertial space, the process 
is the motion of two satellites on intersecting orbits, appearing not at all like the orbiting motion seen by the 
moving observers  A .

        Example 7.2      
 Plot   the motion of spacecraft  B  relative to spacecraft  A  in Example 7.1. 

    Solution 
 In   Example 7.1 we found  r  rel )  x   at a single time. To plot the path of  B  relative to  A  we must fi nd  r  rel )  x   at 
a large number of times, so that when we  “ connect the dots ”  in three-dimensional space a smooth curve 
results. Let us outline an algorithm and implement it in MATLAB. 

    1.     Given the orbital elements of spacecraft  A  and  B , calculate their state vectors  ( , )r vA A0 0
    and  ( , )r vB B0 0

    
at the initial time   t   0  using Algorithm 4.5 (as we did in Example 7.1).  

    2.     Calculate the period  T A   of  A ’s orbit from Equation 2.82. (For the data of Example 7.1,  T A        �      5585       s).  
    3.     Let the fi nal time  t f   for the plot be  t  0       �       mT A   , where  m  is an arbitrary integer.  
    4.     Let  n  be the number of points to be plotted, so that the time step is  Δt t t nf� �( )/0    .  
    5.     At time  t       �       t  0 : 

    a.     Calculate the state vectors ( r   A  ,  v   A  ) and ( r   B  ,  v   B  ) using Algorithm 3.4.  
    b.     Calculate  r  rel )  x   using Algorithm 7.1.  
    c.     Plot the point ( x  rel ,  y  rel ,  z  rel ).     

    6.     Let  t   ←   t       �       Δ  t  and repeat Step 5 until  t       �       t f   .    
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       Trajectory of spacecraft  B  relative to spacecraft  A  for the data in Example 7.1. The total time is 60 periods of  A ’s orbit 
(93.1 hours).    
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 This   algorithm is implemented in the MATLAB script  Example_7_02.m  listed in Appendix D.32. The 
resulting plot of the relative motion for a time interval of 60 periods of spacecraft  A  is shown in  Figure 7.4   . 
The arrow drawn from  A  to  B  is the initial position vector  r  rel )  x   found in Example 7.1. As can be seen, the 
trajectory of  B  is a looping, counterclockwise motion around a circular path about 14,000       km in diameter. 
The closest approach of  B  to  A  is 105.5       km at an elapsed time of 25.75 hours.        

    7.3       LINEARIZATION OF THE EQUATIONS OF RELATIVE MOTION IN ORBIT 
    Figure 7.5   , like  Figure 7.1 , shows two spacecraft in earth orbit. Let the inertial position vector of the tar-
get vehicle  A  be denoted  R , and that of the chase vehicle  B  be denoted  r . The position vector of the chase 
vehicle relative to the target is   δ   r , so that 

  r R r� � δ   (7.14)      

 The   symbol   δ   is used to represent the fact that the relative position vector has a magnitude which is very 
small compared to the magnitude of  R  (and  r ); that is, 

  

δr

R
�� 1   (7.15)     

  where  δ δr � r     and  R � R    . This is true if the two vehicles are in close proximity to each other, as is 
the case in a rendezvous maneuver or close formation fl ight. Our purpose in this section is to seek the equa-
tions of motion of the chase vehicle relative to the target when they are close together. Since the relative 
motion is seen from the target vehicle, its orbit is also called the reference orbit.   

 The   equation of motion of the chase vehicle  B  relative to the inertial geocentric equatorial frame is 

  
��r

r
� �μ

r3   (7.16)     
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 FIGURE 7.5  
       Position of chaser  B  relative to the target  A .    



  where  r � r    . Substituting Equation 7.14 into Equation 7.16 and writing  δ δ��r r� ( / )d dt2 2     yields the 
equation of motion of the chaser relative to the target,   

  
δ μ

δ
δ�� ��r R

R r
R r� � �

�
� �

r
r

3
( )where   (7.17)      

 We   will simplify this equation by making use of the fact that  δr     is very small, as expressed in Equation 7.15. 
 First  , note that 

  r
2 2� � � � � � � � � � � �r r R r R r R R R r r r( ) ( )δ δ δ δ δ       

 Since    R   ·   R       �       R  2  and   δ  r    ·    δ  r        �        δ r  2 , we can factor out  R  2  on the right to obtain 
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 By   virtue of Equation 7.15, we can neglect the last term in the brackets, so that 

  
r R
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⎠
⎟⎟⎟⎟   (7.18)      

 In   fact, we will neglect all powers of   δ r / R  greater than unity, wherever they appear. Since  r r� ��3 2( ) 3/2    , it 
follows from Equation 7.18 that 
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(7.19)      

 Using   the binomial theorem (Equation 5.44) and neglecting terms of higher order than 1 in   δ r / R , we obtain 
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 Therefore  , to our level of approximation, Equation 7.19 becomes 
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  which can be written   

  

1 1 3
3 3 5r R R

� � �R rδ   (7.20)      
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 Substituting   Equation 7.20 into Equation 7.17 (the equation of motion), we get 
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 That   is, to our degree of approximation, 
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 But   the equation of motion of the reference orbit is 

  
��R

R
� �μ

R3   (7.22)      

 Substituting   this into Equation 7.21 fi nally yields 
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 This   is the linearized version of Equation 7.17, the equation which governs the motion of the chaser with 
respect to the target. The expression is linear because the unknown   δ   r  appears only in the numerator and 
only to the fi rst power throughout. We achieved this by dropping a lot of terms that are insignifi cant when 
Equation 7.15 is valid. Equation 7.23 is nonlinear in  R , which is not an unknown because it is determined 
independently by solving Equation 7.22. 

 In   the co-moving frame of  Figure 7.5 , the  x  axis lies along the radial  R , so that 

  R i� Rˆ   (7.24)      

 In   terms of its components in the co-moving frame, the relative position vector   δ   r  in  Figure 7.5  is (cf. 
Equation 7.4a) 

  δ δ δ δr i j k� � �x y zˆ ˆ ˆ   (7.25)      

 Substituting   Equations 7.24 and 7.25 into Equation 7.23 yields 
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 After   expanding the dot product on the right and collecting terms, we fi nd that the linearized equation of 
relative motion takes a rather simple form when the components of  R  and   δ   r  are given in the co-moving 
frame, 

  
δ

μ
δ δ δ��r i j k� � � � �

R
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3
2( )ˆ ˆ ˆ   (7.26)      

 Recall   that  δ��r     is the acceleration of the chaser  B  relative to the target  A  as measured in the inertial 
frame. That is, 
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    δ��r     is not to be confused with  δarel   , the relative acceleration measured in the co-moving frame. These two 
quantities are related by Equation 7.9 

  δ δ δ δ δa r r r vrel rel( )� � � � � � � ��� �Ω Ω Ω Ω2   (7.27)      

 Since   we arrived at an expression for  δ��r     in Equation 7.26, let us proceed to evaluate each of the three 
terms on the right of Equation 7.27 that involve   Ω   and  �Ω    . First, recall that the angular momentum of  A  
( h R R� � �    ) is normal to  A ’s orbital plane, and so is the  z  axis of the co-moving frame. Therefore,  h k� h ˆ    . 
It follows that Equations 7.5 and 7.6 may be written 
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  where  V R� �    .   
 From   Equations 7.25, 7.28 and 7.29 we fi nd 
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  and   
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 According   to Equation 7.4b,  δ δ δ δv i j krel � � �� � �x y zˆ ˆ ˆ    , where  δ δ�x d dt x� ( / )    , etc. It follows that 
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 Substituting   Equation 7.26 along with Equations 7.30 through 7.32 into Equation 7.27 yields 
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 Referring   to Equation 7.4c, we set  δ δ δ δa i j krel � � ��� �� ��x y zˆ ˆ ˆ     [where  δ δ��x d dt x� ( / )2 2    , etc.] and collect 
the terms on the right to obtain 
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 Finally  , by equating the coeffi cients of the three unit vectors  ̂i   ,  ̂j    and  k̂   , this vector equation yields the 
three scalar equations, 
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 This   set of linear second order differential equations must be solved in order to obtain the relative posi-
tion coordinates   δ x ,   δ y  and   δ z  as a function of time. Equations 7.34a and 7.34b are coupled since   δ x  and 
  δ y  appear in each one.   δ z  appears by itself in Equation 7.34c and nowhere else, which means the rela-
tive motion in the  z  direction is independent of that in the other two directions. If the reference orbit is an 
ellipse, then  R  and  V  vary with time (although the angular momentum  h  is constant). In that case, the coef-
fi cients in Equations 7.34 are time-dependent, so there is not an easy analytical solution. However, we can 
solve Equations 7.34 numerically using the methods of Section 1.8. 

 To   that end, we recast Equations 7.34 as a set of fi rst order differential equations in the standard form 

  �y f y� ( )t,   (7.35)     
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 (7.36)      

 These   can be solved by Algorithm 1.1 (Runge-Kutta), Algorithm 1.2 (Heun) or Algorithm 1.3 (Runge-
Kutta-Fehlberg). In any case, the state vector of the target orbit must be updated at each time step to provide 
the current values of  R  and  V . This is done with the aid of Algorithm 3.4. (Alternatively, Equation 7.22, the 
equations of motion of the target, can be integrated along with Equations 7.36 in order to provide  R  and  V  
as a function of time.)

        Example 7.3      
 At   time  t       �      0, the orbital parameters of target vehicle  A  in an equatorial earth orbit are 

  
r e ip � � � � � � �6678 0 1 0km . Ω ω θ   (a)     

  where  r p   is the perigee radius. At that same instant, the state vector of the chaser vehicle  B  relative to  A  is   

  δ δr i v j0 01 2� � �ˆ ) ˆ (km)  (km/s)rel n   (b)      

 where    n  is the mean motion of  A . Plot the path of  B  relative to  A  in the co-moving frame for fi ve periods of 
the reference orbit. 

    Solution 

        1.     Use Algorithm 4.5 to obtain the initial state vector ( R  0 , V  0 ) of the target vehicle from the orbital 
parameters given in (a).  

    2.     Starting with the initial conditions given in (b), use Algorithm 1.3 to integrate Equations 7.36 over 
the specifi ed time interval. Use Algorithm 3.4 to obtain the reference orbit state vector ( R , V ) at each 
time step in order to evaluate the coeffi cients in Equation 7.36.  

    3.     Graph the trajectory   δ y ( t ) versus   δ  x  ( t ).    

 This   procedure is implemented in the MATLAB function  Example_7_03.m  listed in Appendix D.33. The 
output of the program is shown in  Figure 7.6 . Observe that since  δ δz z0 0 0� ��    , no movement develops in 
the  z- direction. The motion of the chaser therefore lies in the plane of the target vehicle’s orbit. The fi gure 
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shows that  B  rapidly moves away from  A  along the  y  direction and that the amplitude of its looping motion 
about the  x  axis continuously increases. The accuracy of this solution degrades over time because, eventu-
ally, the criterion in Equation 7.15 is no longer satisfi ed.         

 It   is interesting to note that if we change the eccentricity of  A  to zero, so that the reference orbit is a circle, 
then  Figure 7.7    results. That is, for the same initial conditions,  B  orbits the target vehicle instead of drifting 
away from it.        
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 FIGURE 7.6  
       Trajectory of  B  relative to  A  in the co-moving frame during fi ve revolutions of the reference orbit. Eccentricity of the 
reference orbit      �      0.1. The small “o” marks the beginning of the simulation.    
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 FIGURE 7.7  
       Trajectory of  B  relative to  A  in the co-moving frame during fi ve revolutions of the reference orbit. Eccentricity of 
reference orbit      �      0. The small “o” marks the beginning of the simulation.    



    7.4       CLOHESSY-WILTSHIRE EQUATIONS 
 If   the orbit of the target vehicle  A  in  Figure 7.5  is a circle, then our LVLH frame is called a Clohessy-
Wiltshire (CW) frame. In such a frame Equations 7.34 simplify considerably. For a circular target orbit, 
 V  ·  R       �      0 and  h R� μ    . Substituting these into Equations 7.34 yields 

  

δ
μ

δ
μ

δ

δ
μ

δ

δ
μ

δ

�� �

�� �

��

x
R

x
R

y

y
R

x

z
R

z

� � �

� �

� �

3 2 0

2 0

0

3 3

3

3
  

(7.37)      

 It   is furthermore true for circular orbits that the angular velocity (mean motion) is 

  
n

V

R

R

R R
� � �

μ μ
3

      

 Therefore  , Equations 7.37 may be written 

  δ δ δ�� �x n x n y� � �3 2 02   (7.38a)      

  δ δ�� �y n x� �2 0   (7.38b)      

  δ δ��z n z� �2 0   (7.38c)      

 These   are known as the   Clohessy-Wiltshire equations   (CW equations).   Unlike Equations 7.34, where the 
target orbit is an ellipse, the coeffi cients in Equations 7.38 are constant. Therefore, a straightforward ana-
lytical solution exists. 

 We   start with the fi rst two equations, which are coupled and defi ne the motion of the chaser in the  xy  
plane of the reference orbit. First, observe that Equation 7.38b can be written  ( / )( )d dt y n xδ δ� � �2 0   , 
which means that  δ δ�y n x C� �2 1   , where  C  1  is a constant. Therefore, 

  δ δ�y C n x� �1 2   (7.39)      

 Substituting   this expression into Equation 7.38a yields 

  δ δ��x n x nC� �2
12   (7.40)      

 This   familiar differential equation has the following solution, which can be easily verifi ed by substitution: 

  
δx

n
C C nt C nt� � �

2
1 2 3sin cos   (7.41)      
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 Differentiating   this expression gives the  x -component of the relative velocity, 

  δ �x C n nt C n nt� �2 3cos sin   (7.42)      

 Substituting   Equation 7.41 into Equation 7.39 yields the  y -component of the relative velocity. 

  δ �y C C n nt C n nt� � � �3 2 21 2 3sin cos   (7.43)      

 Integrating   this equation with respect to time yields 

  δy C t C nt C nt C� � � � �3 2 21 2 3 4cos sin   (7.44)      

 The   constants  C  1  through  C  4  are found by applying the initial conditions, namely, 

  At t x x y y x x y y� � � � �0 0 0 0 0δ δ δ δ δ δ δ δ� � � �       

 Evaluating   Equations 7.41 through 7.44, respectively, at  t       �      0, we get 

  

2

3 2

2

1 3 0

2 0

1 3 0

2 4 0

n
C C x

C n x

C C n y

C C y

� �

� � �

� �

δ

δ

δ

δ

= �

�

      

 Solving   for  C  1  through  C  4  yields 

  
C n x y C

n
x C x

n
y C

n
x y1 0 0 2 0 3 0 0 4 0 02

1
3

2 2
� � � � � � � � �δ δ δ δ δ δ δ� � � �   (7.45)      

 Finally   we turn our attention to Equation 7.38c, which governs the relative motion normal to the plane 
of the circular reference orbit. Equation 7.38c has the same form as Equation 7.40 with  C  1       �      0. Therefore, 
its solution is 

  δz C nt C nt� �5 6sin cos   (7.46)      

 It   follows that the velocity normal to the reference orbit is 

  δ �z C n nt C n nt� �5 6cos sin   (7.47)      

 The   initial conditions are   δ z       �        δ z  0  and  δ δ� �z z� 0     at  t       �      0, which means 

  
C

z

n
C z5

0
6 0� �

δ
δ

�
  (7.48)      



 Substituting   Equations 7.45 and 7.48 into Equations 7.41, 7.44 and 7.46 yields the trajectory of the 
chaser in the CW frame, 

  
δ δ δ
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⎟⎟⎟⎟   (7.49a)      

  
δ δ δ δ δ δ δy y

n
x n x y t x

n
y nt� � � � � � �0 0 0 0 0 0

2
3 2 2 3
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⎠
⎟⎟⎟⎟sin

22
0n

x ntδ � cos   (7.49b)      

  
δ δ δz

n
z nt z nt� �

1
0 0� sin cos   (7.49c)      

 Observe   that all three components of   δ   r  oscillate with a frequency equal to the frequency of revolution 
(mean motion  n ) of the CW frame. Only   δ y  has a secular term, which grows linearly with time. Therefore, 
unless  2 00 0n x yδ δ� ��    , the chaser will drift away from the target and the distance   δ r  will increase with-
out bound. The accuracy of Equations 7.49 will consequently degrade as the criterion (Equation 7.15) on 
which this solution is based eventually ceases to be valid.  Figure 7.8    shows the motion of a particle relative 
to a Clohessy-Wiltshire frame of orbital radius 6678       km. The particle started at the origin with a velocity of 
0.01 km/s in the negative  y  direction. This delta-v dropped the particle into a lower energy, slightly ellipti-
cal orbit. The subsequent actual relative motion of the particle in the Clohessy-Wiltshire frame is graphed 
in  Figure 7.8  as is the motion given by Equations 7.49, the linearized Clohessy-Wiltshire solution. Clearly 
the two solutions diverge markedly after one orbit of the reference frame, when the distance of the particle 
from the origin exceeds 150       km. 

 Now   that we have fi nished solving the Clohessy-Wiltshire equations, let us simplify our notation a bit 
and denote the  x ,  y  and  z  components of relative velocity in the moving frame as   δ u ,   δ v  and   δ w , respectively. 
That is, let 

  δ δ δ δ δ δu x v y w z� � �� � �   (7.50a)      

 The   initial conditions on the relative velocity components are then written 

  δ δ δ δ δ δu x v y w z0 0 0 0 0 0� � �� � �   (7.50b)      
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 Using   this notation in Equations 7.49 and rearranging terms we get 
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(7.51a)

      

 Differentiating   each of these with respect to time and using Equation 7.50a yields 
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(7.51b)
      

 Let   us introduce matrix notation to defi ne the relative position and velocity vectors 
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  and their initial values (at  t       �      0)   
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 Observe   that we have dropped the subscript  rel  introduced in Equations 7.17 because it is superfl uous in 
rendezvous analysis, where all kinematic quantities are relative to the Clohessy-Wiltshire frame. In matrix 
notation Equations 7.51 appear more compactly as 

  { ( )} [ ( )]{ } [ ( )]{ }rr rvδ δ δr r vt t t� �Φ Φ0 0   (7.52a)      

  
{ ( )} ( ) { } [ ( )]{ }vr vvδ δ δv r vt t t� �Φ Φ[ ] 0 0   (7.52b)     

  where, from Equations 7.51, the   Clohessy-Wiltshire matrices   are   
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 The   subscripts on   Φ   remind us which of the vectors   δ   r  and   δ   v  is related by that matrix to which of initial 
conditions   δ   r  0  and   δ   v  0 . For example, [  Φ   rv ] relates   δ   r  to   δ   v  0 . The partition lines remind us that motion in 
the  xy  plane is independent of that in the  z  direction normal to the target’s orbit. In problems where there is 
no motion in the  z  direction (  δ z  0       �        δ w  0       �      0), we need only use the upper 2 by 2 corners of the Clohessy-
Wiltshire matrices. Finally, note also that 

  
[ ( )] [ ( )] and [ ( )] [ ( )]vr rr vv rvΦ Φ Φ Φt

d

dt
t t

d

dt
t� �

       

    7.5       TWO-IMPULSE RENDEZVOUS MANEUVERS 
    Figure 7.9    illustrates the   two-impulse rendezvous   problem. At time  t       �      0  �   (the instant preceding  t       �      0), the 
position   δ   r  0  and velocity  δv0

�     of the chase vehicle  B  relative to the target  A  are known. At  t       �      0 an impul-
sive maneuver instantaneously changes the relative velocity to  δv0

�     at  t       �      0  �   (the instant after  t       �      0). The 
components of  δv0

�    are shown in  Figure 7.6 . We must determine the values of  δu0
�    ,  δv0

�     and  δw0
�   , at the 

beginning of the rendezvous trajectory, so that  B  will arrive at the target in a specifi ed time  t f  . The delta-v 
required to place  B  on the rendezvous trajectory is 

  Δv v v i j k0 0 0 0 0 0 0 0 0� � � � � � � �� � � � � � � �δ δ δ δ δ δ δ δ( ) ( ) ( )u u v v w wˆ ˆ ˆ   (7.54)      

 At   time  t f  ,  B  arrives at  A , at the origin of the CW frame, which means   δ   r   f        �        δ   r ( t f  )      �       0 . Evaluating 
Equation 7.52a at  t f  , we fi nd 

  
{ } [ ( )]{ } [ ( )]{ }rr rv0 r v� � �Φ t tf fδ δ0 0Φ   (7.55)      

 Solving   this for  { }δv0
�     yields 

  
{ } [ ( )] [ ( )]{ } (rv rrδ δ δ δ δ δv r v i j0

1
0 0 0 0 0

� � � � � �� � � � �Φ Φt t u v wf f
ˆ ˆ k̂k)   (7.56)     
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  where  [ ( )]rvΦ t f
�1     is the matrix inverse of  [ ( )]rvΦ t f    . Thus, we now have the velocity  δv0

�     at the begin-
ning of the rendezvous path. We substitute Equation 7.56 into Equation 7.52b to obtain the velocity  δv f

�    at  
t t f= −   , when  B  arrives at the target  A :   
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 Collecting   terms, we get 

  
{ } ([ ( )] [ ( )][ ( )] [ ( )]){ } (vr vv rv rrδ δ δv r vf f f f f ft t t t� � �� �Φ Φ Φ Φ1

0 �� � �� � �δ δ δu v wf f f
ˆ ˆ ˆi j k)   (7.57)      

 Obviously  , an impulsive delta-v maneuver is required at  t       �       t f   to bring vehicle  B  to rest relative to  A  
( )δv 0f

� �    : 

  
Δv v v 0 v vf f f f f� � � � �� � � �δ δ δ δ−   (7.58)      

 Note   that in Equations 7.54 and 7.58 we are using the difference between relative velocities to calculate 
delta-v, which is the difference in absolute velocities. To show that this is valid, use Equation 1.66, to write 
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 FIGURE 7.9  
       Rendezvous with a target  A  in the neighborhood of the chase vehicle  B .    



 Since   the target is passive, the impulsive maneuver has no effect on its state of motion, which means  
V V� ��     and   Ω    �        �        Ω    �  . Furthermore, by defi nition of an impulsive maneuver, there is no change in the 
position, that is,  r rrel rel

� ��    . It follows from Equation 7.59 that 

  v v v v v v� � � �� � � �rel rel relor Δ Δ      

        Example 7.4      
 A   space station and spacecraft are in orbits with the following parameters:

     Space station  Spacecraft 

   Perigee      �      apogee (altitude)  300       km  320.06       km      �      513.86       km 
   Period (computed using above data)  1.5086 hr  1.5484 hr 
   True anomaly,   θ    60 °   349.65 °  
   Inclination,  i   40 °   40.130 °  
   RAAN,   Ω    20 °   19.819 °  
   Argument of perigee,   ω    0 °  (arbitrary)  70.662 °  

 Compute   the total delta-v required for an 8-hour, two-impulse rendezvous trajectory. 

    Solution 
 We   use the given data in Algorithm 4.5 to obtain the state vectors of the two spacecraft in the geocentric 
equatorial frame. 

 Space   station: 

  

R I J K
V I

� � �

� � �

1622 39 5305 10 3717 55

7 29936 0 492329

.  (km)ˆ . ˆ . ˆ

. ˆ . ĴJ K� 2 48304. ˆ  ( )km/s       

 Spacecraft  : 

  

r I J K
v I

� � �
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1612 75 5310 19 3750 33

7 35170 0 463828

.  (km)ˆ . ˆ .

. ˆ . ˆ

ˆ

JJ K� 2 46906. ˆ ( ) km/s       

 The   space station reference frame unit vectors (at this instant) are, by defi nition: 

  

ˆ . ˆ . ˆ . ˆ

ˆ . ˆ .

i
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 Therefore  , the transformation matrix from the geocentric equatorial frame into space station frame is (at 
this instant) 
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 The   position vector of the spacecraft relative to space station (in the geocentric equatorial frame) is 

  δr r R I J K� � � � � �9 64015 5 08235 32 8822. kmˆ . ˆ . ˆ  ( )       

 The   relative velocity is given by the formula (Equation 1.66) 

  
δ δv v V r� � � �Ωspace station      

  where  Ωspace station � nk̂     and  n , the mean motion of the space station, is   
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  so that   

  δv I J K� � � �0 024854 0 01159370 0 00853575.  (km/s)ˆ . ˆ . ˆv       

 In   space station coordinates, the relative position vector   δ   r  0  at the beginning of the rendezvous maneuver is 
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 Likewise  , the relative velocity  δv0
�     just before launch into the rendezvous trajectory is 
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 The   Clohessy-Wiltshire matrices, for  t       �       t f        �      8 hr      �      28,800 s and  n       �      0.00115691 rad/s [from (a)], are 
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 From   Equation 7.56 and (b) we fi nd  δv0
�    : 
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 From   Equation 7.52b, evaluated at  t       �       t f  , we have 
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 The   delta-v at the beginning of the rendezvous maneuver is found as 
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 The   delta-v at the conclusion of the maneuver is 
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 The   total delta-v requirement is 
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 From   Equation 7.52a, we have, for 0      �       t       �       t f   , 
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 Substituting    n  from (a), we obtain the relative position vector as a function of time. It is plotted in  Figure 7.10   .      
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 FIGURE 7.10  
       Rendezvous trajectory of the chase vehicle relative to the target.    



        Example 7.5      
 A   target and a chase vehicle are in the same 300       km circular earth orbit. The chaser is 2       km behind the target 
when the chaser initiates a two-impulse rendezvous maneuver so as to rendezvous with the target in 1.49 
hours. Find the total delta-v requirement. 

    Solution 
 For   the circular reference orbit 
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 For   this mean motion and the rendezvous trajectory time  t       �      1.49 hr      �      5364       s, the Clohessy-Wiltshire matrices are 
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 The   initial and fi nal positions of the chaser in the CW frame are 
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 Since    δ  z  0       �        δ w  0       �      0, there is no motion in the  z  direction [  δ z ( t )      �      0], so we need employ only the upper left 
2 by 2 corners of the Clohessy-Wiltshire matrices and treat this as a two dimensional problem in the plane of 
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 Therefore  , the second CW equation,  { } [ ]{ } [ ]{ }vr 0 vvδ δ δv r vf
� �� �Φ Φ 0    , yields 
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  or   
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 Since   the chaser is in the same circular orbit as the target, its relative velocity is initially zero, that is  
δv 00

� �    . (See also Equation 7.68 at the end of the next section.) Thus, 

  

Δv v v i j0 ( . )� � � � � � � �

� � �

� � � �

�

δ δ0 0
6 49 4824 10 1 2225 10

9 4824 10

ˆ . ˆ

.

0
66 41 2225 10ˆ . ˆi j� � �  (km/s)      
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 At   the end of the rendezvous maneuver,  δv f
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 Therefore  , 

  
Δv f � 0 1226. m/s   (h)      

 The   total delta-v required is 
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 The   coplanar rendezvous trajectory relative to the CW frame is sketched in  Figure 7.11   .        
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 FIGURE 7.11  
       Motion of the chaser relative to the target.    



    7.6       RELATIVE MOTION IN CLOSE-PROXIMITY CIRCULAR ORBITS 
    Figure 7.12    shows two spacecraft in coplanar circular orbits. Let us calculate the velocity   δ   v  of the chase 
vehicle  B  relative to the target  A  when they are in close proximity.  “ Close proximity ”  means that 
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R
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 To   solve this problem, we must use the relative velocity equation, 

  v v r vB A� � � �Ω δ δ   (7.60)      

 where     Ω   is the angular velocity of the CW frame attached to  A , 
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  n    is the mean motion of the target vehicle, 

  n
v

R
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  where, by virtue of the circular orbit,   
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 Solving   Equation 7.60 for the relative velocity   δ  v yields 

  δ δv v v k r� � � �B A n( )ˆ   (7.63)      
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 The   chase orbit is circular. Therefore, for the fi rst term on the right-hand side of Equation 7.63 we have 
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 Since  , as is apparent from  Figure 7.9 ,  r R r= + δ    , we can write this expression for  v  B  as follows: 

  v k R rB r� � ��μ δˆ 3/2 ( )   (7.65)      

 Now   

  

r r R
R

� �� � �
�3/2 3/4

See Equation 7.18

( )2 2
2

1
2R rδ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

� ��� ����⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

�

�
�

� �
�

3/4

3/4

R
R

3 2
2

1
2/ R rδ

  (7.66)      

 Using   the binomial theorem (Equation 5.44), and retaining terms at most linear in  δr   , we get 
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 Substituting   this into Equation 7.66, leads to 
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 Upon   substituting this result into Equation 7.65, we get 
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 Retaining   terms at most linear in   δ   r , we can write this as 
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 Using   Equations 7.61 and 7.62, together with the facts that  δ δ δr i j� �x yˆ ˆ     and  R i/R � ˆ   , this reduces to 
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  so that   

  
v i jB An y v n x� � � �δ δˆ ˆ1

2( )   (7.67)      



 This   is the absolute velocity of the chaser resolved into components in the target’s Clohessy-Wiltshire 
frame. 

 Substituting   Equation 7.67 into 7.63 and using the fact that  v jA Av� ˆ     yields 
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  so that   

  
δ δv j� � 3

2
n x̂   (7.68)      

 This   is the velocity of the chaser as measured in the moving reference frame of the neighboring target. Keep 
in mind that circular orbits were assumed at the outset. 

 In   the Clohessy-Wiltshire frame, neighboring coplanar circular orbits appear to be straight lines parallel 
to the  y  axis, which is the orbit of the origin.  Figure 7.13    illustrates this point, showing also the linear veloc-
ity variation according to Equation 7.68.  

    PROBLEMS 

    Section 7.2 

        7.1     Two manned spacecraft,  A  and  B ( see fi gure), are in circular polar ( i       �      90 ° ) orbits around the earth. 
 A ’s orbital altitude is 300       km;  B ’s is 250       km. At the instant shown ( A  over the equator,  B  over the north 
pole), calculate (a) the position (b) velocity and (c) the acceleration of  B  relative to  A. A ’s  y -axis points 
always in the fl ight direction, and its  x  axis is directed radially outward at all times.    
    { Ans.: (a)  r i jrel )  kmxyz � � �6678 6628ˆ ˆ    ; (b)  v irel )  km/sxyz � �0 08693.    ; 
            (c)  a jrel )  km/sxyz � � � �1 140 10 6 2.     }          
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 FIGURE 7.13  
       Circular orbits, with relative velocity directions, in the vicinity of the Clohessy-Wiltshire frame.    



422  CHAPTER 7 Relative motion and rendezvous

    7.2     Spacecraft  A  and  B  are in coplanar, circular geocentric orbits. The orbital radii are shown in the fi gure. 
When  B  is directly below  A , as shown, calculate  B ’s speed  vB)rel

    relative to  A .    
    { Ans.:  vB )rel

1.370 km/s�     }           

    Section 7.3 

        7.3     Use the order of magnitude analysis in this chapter as a guide to answer the following questions. 
    (a)     If  r       �       R       �        δ   r , express  r     (where  r � �r r    ) to the fi rst order in   δ   r  (i.e., to the fi rst order in the 

components of  δ δ δ δr i j k� � �x y zˆ ˆ ˆ    ). In other words, fi nd  O (  δ   r ), such that  r R O� � ( )δr    , 
where  O (  δ   r ) is linear in   δ   r .  

    (b)     For the special case  R i j k� � �3 4 5ˆ ˆ ˆ     and   δ   r       �      0.01 i       �      0.01 j       �      0.03 k , calculate  r R�     and 
compare that result with  O (  δ   r ).  

    (c)     Repeat part (b) using  δr i j k� � �ˆ ˆ ˆ3     and compare the results.       
    { Ans.: (a)  O R( ) / )δ δr R r� � ( /2 3 2    ; (b)  O r R( )δr � �( ) 0 998.    ; (c)  O r R( )δr � �( ) 0 903.     }          
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    7.4     Write the expression  r a e e� � �( )/1 12 cosθ     as a linear function of  e , valid for small values of  e  
( e       �      � 1).     

    Section 7.4 

        7.5     Given  ��x x� �9 10   , with the initial conditions  x       �      5 and  �x � �3     at  t       �      0, fi nd  x  and  �x     at  t       �      1.2.    
    { Ans.:  x x( ) ( )1 2 1 934 1 2 7 853. . , . .� � ��     }  

    7.6     Given that    

  

�� �
�� �

x x y
y x

� � �
� �

10 2 0
3 0      

  with initial conditions  x (0)      �      1,  y (0)      �      2,  �x( )0 3� �     and  �y( )0 4�    , find  x  and  y  at  t       �      5.   
    { Ans.:  x (5)      �       � 6.460,  y (5)      �      97.31 }  

    7.7     A space station is in a 90-minute period earth orbit. At  t       �      0, a satellite has the following position and 
velocity components relative to a Clohessy-Wiltshire frame attached to the space station:  δr i� ˆ (km)   ,  
δv j� 10ˆ (m/s)    . How far is the satellite from the space station 15 minutes later?    
    { Ans.: 11.2       km }  

    7.8     Spacecraft  A  and  B  are in the same circular earth orbit with a period of 2 hours.  B  is 6       km ahead of  A . 
At  t       �      0,  B  applies an in-track delta-v (retrofi re) of 3       m/s. Using a Clohessy-Wiltshire frame attached to 
 A , determine the distance between  A  and  B  at  t       �      30 minutes and the velocity of  B  relative to  A .    
    { Ans.:   δ r       �      10.9       km,   δ v       �      10.8       m/s }  

    7.9     The Clohessy-Wiltshire coordinates and velocities of a spacecraft upon entering a rendezvous 
trajectory with the target vehicle are shown. The spacecraft orbits are co-planar. Calculate the distance 
 d  of the spacecraft from the target when  t       �        π / 2 n , where  n  is the mean motion of the target’s circular 
orbit.    
    { Ans.: 0.900  δ r  }          
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424  CHAPTER 7 Relative motion and rendezvous

    7.10     At time  t       �      0 a particle is at the origin of a CW frame with a relative velocity  δv j0 � v̂    . What will be 
the relative speed of the particle after one-half orbital period of the C-W frame?    
    { Ans.: 7 v  }  

    7.11     The chaser and the target are in close-proximity, coplanar circular orbits. At  t       �      0, the position of the 
chaser relative to the target is  δr i j0 � �r aˆ ˆ    , where  a  is given and  r  is unknown. The relative velocity 
at  t       �      0  �   is  δv j0 0

� � v ˆ     ( v  0  is unknown), and the chaser ends up at  δ r if a� � ˆ     when  t       �        π  / n , where 
 n  is the mean motion of the target. Use the Clohessy-Wiltshire equations to fi nd the required value of 
the orbital spacing  r .    
    { Ans.: 1.424 a  }           

    Section 7.5 

        7.12     A space station is in a circular earth orbit of radius 6600       km.An approaching spacecraft executes a delta-
v burn when its position vector relative to the space station is  δr i j k0 � � �ˆ ˆ ˆ  (km)   . Just before the 
burn the relative velocity of the spacecraft was  δv k0 5� � ˆ  (m/s)   . Calculate the total delta-v required for 
the space shuttle to rendezvous with the station in one third period of the space station orbit.    
    { Ans.: 6.21       m/s }  
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    7.13     A space station is in circular orbit 2 of radius  R . A spacecraft is in coplanar circular orbit 1 of radius 
 R       �        δ r . At  t       �      0 the spacecraft executes an impulsive maneuver to rendezvous with the space station 
at time  t f        �      one-half the period  T  0  of the space station. If  δu0 0� �    , fi nd 

    (a)     the initial position of the spacecraft relative to the space station, and  
    (b)     the relative velocity of the spacecraft when it arrives at the target. Sketch the rendezvous trajec-

tory relative to the target.       

    { Ans.: (a)  δ δ πδr i j0 3 4� �r rˆ / ˆ( )    , (b)  δ πδv jf r T� � / 2 0( )     }          

    7.14     If  δu0 0� �    , calculate the total delta-v required for rendezvous if  δ δr j0 0� y ˆ    ,  δv 00
� �     and  t f        �      the 

period of the circular target orbit. Sketch the rendezvous trajectory relative to the target.    
    { Ans.:   Δ v  tot       �      2  δ y o  /(3 T ) }  

    7.15     A GEO satellite strikes some orbiting debris and is found 2 hours afterwards to have drifted to the 
position  δr i j� � �10 10ˆ ˆ (km)     relative to its original location. At that time the only slightly dam-
aged satellite initiates a two-impulse maneuver to return to its original location in 6 hours. Find the 
total delta-v for this maneuver.    
    { Ans.: 3.5       m/s }  

    7.16     A space station is in a 245       km circular earth orbit inclined at 30 ° .The right ascension of its node line 
is 40 ° . Meanwhile, a space shuttle has been launched into a 280       km by 250       km orbit inclined at 30.1 ° , 
with a nodal right ascension of 40 °  and argument of perigee equal to 60 ° .When the shuttle’s true 
anomaly is 40 ° , the space station is 99 °  beyond its node line. At that instant, the space shuttle exe-
cutes a delta-v burn to rendezvous with the space station in (precisely)  t f   hours, where  t f   is selected by 
you or assigned by the instructor. Calculate the total delta-v required and sketch the projection of the 
rendezvous trajectory on the  xy  plane of the space station coordinates.  

    7.17     The target  A  is in a circular earth orbit with mean motion  n . The chaser  B  is directly above  A  in 
a slightly larger circular orbit having the same plane as  A ’s. What relative initial velocity  δv0

�     is 
required so that  B  arrives at the target  A  at time  t f        �      one-half the target’s period?    
    { Ans.:  δ δ δv i j0 0 00 589 1 75� � � �. .n x n x     }           
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    Section 7.6 

        7.18     The space station is in a circular earth orbit of radius 6600       km.The space shuttle is also in a circular 
orbit in the same plane as the space station. At the instant that the position of the shuttle relative to the 
space station, in Clohessy-Wiltshire coordinates, is  δr i� 5ˆ (km)    . What is the relative velocity   δ   v  of 
the space shuttle?    
    { Ans.: 8.83       m/s }          

    7.19     The Space Shuttle and the International Space Station are in coplanar circular orbits. The space sta-
tion has an orbital radius  R  and a mean motion  n . The shuttle’s radius is  R       �       d  ( d       �       �  R ). If a two-
impulse rendezvous maneuver with  t f        �       π /(4 n ) is initiated with zero relative velocity in the  x -direction 
 ( )δu0 0� �    , calculate the total delta-v.    
    { Ans.: 4.406 nd  }          
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    7.20     The chaser and the target are in close-proximity, coplanar circular orbits. At  t       �      0, the position of the 
chaser relative to the target is  δ r i0 � a ˆ   . Use the Clohessy-Wiltshire equations to fi nd the total delta-
v required for the chaser to end up in circular orbit 2 at  δ r if a� � ˆ     when  t       �        π  / n , where  n  is the 
mean motion of the target.    
    { Ans.:  na  }           

    List of Key Terms 

        angular acceleration of co-moving frame  
    angular velocity of co-moving frame  
    Clohessy-Wiltshire equations  
    Clohessy-Wiltshire matrices  
  LVLH frame  
  r-bar  
  relative acceleration in the inertial frame  
  relative acceleration in the co-moving frame  
    two-impulse rendezvous          
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    8.1       INTRODUCTION 
 In   this chapter we consider some basic aspects of planning interplanetary missions. We begin by consider-
ing Hohmann transfers, which are the easiest to analyze and the most energy-effi cient. The orbits of the 
planets involved must lie in the same plane and the planets must be positioned just right for a Hohmann 
transfer to be used. The time between such opportunities is derived. The method of patched conics is 
employed to divide the mission up into three parts: the hyperbolic departure trajectory relative to the home 
planet; the cruise ellipse relative to the sun; and the hyperbolic arrival trajectory, relative to the target plane. 

 The   use of patched conics is justifi ed by calculating the radius of a planet’s sphere of infl uence and show-
ing how small it is on the scale of the solar system. Matching the velocity of the spacecraft at the home planet’s 
sphere of infl uence to that required to initiate the outbound cruise phase and then specifying the periapsis radius 
of the departure hyperbola determines the delta-v requirement at departure. The sensitivity of the target radius to 
the burnout conditions is discussed. Matching the velocities at the target planet’s sphere of infl uence and specify-
ing the periapsis of the arrival hyperbola yields the delta-v at the target for a planetary rendezvous or the direction 
of the outbound hyperbola for a planetary fl yby. Flyby maneuvers are discussed, including the effect of leading 
and trailing side fl ybys, and some noteworthy examples of the use of gravity assist maneuvers are presented. 
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 The   chapter concludes with an analysis of the situation in which the planets ’  orbits are not coplanar and 
the transfer ellipse is tangent to neither orbit. This is akin to the chase maneuver in Chapter 6 and requires 
the solution of Lambert’s problem using Algorithm 5.2.  

    8.2       INTERPLANETARY HOHMANN TRANSFERS 
 As   can be seen from Table A.1, the orbits of most of the planets in the solar system lie very close to the 
earth’s orbital plane (the ecliptic plane). The innermost planet, Mercury, and the outermost dwarf planet, 
Pluto, differ most in inclination (7 °  and 17 ° , respectively). The orbital planes of the other planets lie within 
3.5 °  of the ecliptic. It is also evident from Table A.1 that most of the planetary orbits have small eccentrici-
ties, the exceptions once again being Mercury and Pluto. To simplify the beginning of our study of inter-
planetary trajectories, we will assume that all of the planets ’  orbits are circular and coplanar. Later on, in 
Section 8.10, we will relax this assumption. 

 The   most energy effi cient way for a spacecraft to transfer from one planet’s orbit to another is to use 
a Hohmann transfer ellipse (Section 6.2). Consider  Figure 8.1   , which shows a Hohmann transfer from an 
inner planet 1 to an outer planet 2. The departure point  D  is at periapsis (perihelion) of the transfer ellipse 
and the arrival point is at apoapsis (aphelion). The circular orbital speed of planet 1 relative to the sun is 
given by Equation 2.63, 
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 FIGURE 8.1  
       Hohmann transfer from inner planet 1 to outer planet 2.    



 The   specifi c angular momentum  h  of the transfer ellipse relative to the sun is found from Equation 6.2, 
so that the speed of the space vehicle on the transfer ellipse at the departure point  D  is 

  V
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v( ) � �

�1

2

1 1 2

2μsun ( )
  (8.2)

      

 This   is greater than the speed of the planet. Therefore, the required delta-v at  D  is 
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 Likewise  , the delta-v at the arrival point  A  is 
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  (8.4)      

 This   velocity increment, like that at point  D , is positive since planet 2 is traveling faster than the spacecraft 
at point  A . 

 For   a mission from an outer planet to an inner planet, as illustrated in  Figure 8.2   , the delta-v’s computed 
using Equations 8.3 and 8.4 will both be negative instead of positive. That is because the departure point 
and arrival point are now at aphelion and perihelion, respectively, of the transfer ellipse. The speed of the 
spacecraft must be reduced for it to drop into the lower-energy transfer ellipse at the departure point  D , and 
it must be reduced again at point  A  in order to arrive in the lower-energy circular orbit of planet 2.  
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 FIGURE 8.2  
       Hohmann transfer from outer planet 1 to inner planet 2.            
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    8.3       RENDEZVOUS OPPORTUNITIES 
 The   purpose of an interplanetary mission is for the spacecraft not only to intercept a planet’s orbit but also to 
rendezvous with the planet when it gets there. For rendezvous to occur at the end of a Hohmann transfer, the 
location of planet 2 in its orbit at the time of the spacecraft’s departure from planet 1 must be such that planet 2 
arrives at the apse line of the transfer ellipse at the same time the spacecraft does. Phasing maneuvers (Section 
6.5) are clearly not practical, especially for manned missions, due to the large periods of the heliocentric orbits. 

 Consider   planet 1 and planet 2 in circular orbits around the sun, as shown in  Figure 8.3   . Since the orbits 
are circular, we can choose a common horizontal apse line from which to measure the true anomaly   θ  . The 
true anomalies of planets 1 and 2, respectively, are 

  
θ θ1 1 10

� � n t   (8.5)      

  
θ θ2 2 20

� � n t   (8.6)     

  where  n  1  and  n  2  are the mean motions (angular velocities) of the planets and  θ10
    and  θ2 0

    are their true anom-
alies at time  t       �      0. The phase angle between the position vectors of the two planets is defined as   

  φ θ θ� �2 1   (8.7)      

     φ   is the angular position of planet 2 relative to planet 1. Substituting Equations 8.5 and 8.6 into 8.7 we get 

  φ φ� �0 2 1( )n n t−   (8.8)      

     φ   0  is the phase angle at time zero.  n  2       �       n  1  is the orbital angular velocity of planet 2 relative to planet 1. If the 
orbit of planet 1 lies inside that of planet 2, as in  Figure 8.3(a) , then  n  1              n  2 . Therefore, the relative angular 
velocity  n  2       �       n  1  is negative, which means planet 2 moves clockwise relative to planet 1. On the other hand, if 
planet 1 is outside of planet 2 then  n  2       �       n  1  is positive, so that the relative motion is counterclockwise. 
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 FIGURE 8.3  
       Planets in circular orbits around the sun. (a) Planet 2 outside the orbit of planet 1. (b) Planet 2 inside the orbit of 
planet 1.    

        



 The   phase angle obviously varies linearly with time according to Equation 8.8. If the phase angle is   φ   0  
at  t       �      0, how long will it take to become   φ   0  again? The answer: when the position vector of planet 2 rotates 
through 2  π   radians relative to planet 1. The time required for the phase angle to return to its initial value is 
called the   synodic period,   which is denoted  T  syn . For the case shown in  Figure 8.3(a)  in which the relative 
motion is clockwise,  T  syn  is the time required for   φ   to change from   φ   0  to   φ   0       �      2  π  . From Equation 8.8 we have 

  
φ π φ0 0 2 12� � � ( ) synn n T−

     

  so that   
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 For   the situation illustrated in  Figure 8.3(b)  ( n  2              n  1 ),  T  syn  is the time required for   φ   to go from   φ   0  to 
  φ   0       �      2  π  , in which case Equation 8.8 yields 
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 Both   cases are covered by writing 
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  (8.9)      

 Recalling   Equation 3.9, we can write  n  1       �      2  π  / T  1  and  n  2       �      2   π   / T  2 . Thus, in terms of the orbital periods of 
the two planets, 
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  (8.10)      

 Observe   that  T  syn  is the orbital period of planet 2 relative to planet 1.

        Example 8.1      
 Calculate   the synodic period of Mars relative to the earth. 

    Solution 
 In   Table A.1 we fi nd the orbital periods of earth and Mars: 

  

T

T
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 Hence  , 
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. .

. .
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 These   are earth days (1 day      �      24 hours). Therefore, it takes 2.13 years for a given confi guration of Mars 
relative to the earth to occur again.       
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    Figure 8.4    depicts a mission from planet 1 to planet 2. Following a heliocentric Hohmann transfer, 
the spacecraft intercepts and rendezvous with planet 2. Later it returns to planet 1 by means of another 
Hohmann transfer. The major axis of the heliocentric transfer ellipse is the sum of the radii of the two 
planets ’  orbits,  R  1       �       R  2 . The time  t  12  required for the transfer is one-half the period of the ellipse. Hence, 
according to Equation 2.83, 
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 During   the time it takes the spacecraft to fl y from orbit 1 to orbit 2, through an angle of   π   radians, planet 
2 must move around its circular orbit and end up at a point directly opposite of planet 1’s position when 
the spacecraft departed. Since planet 2’s angular velocity is  n  2 , the angular distance traveled by the planet 
during the spacecraft’s trip is  n  2  t  12 . Hence, as can be seen from  Figure 8.4(a) , the initial phase angle   φ   0  
between the two planets is 

  φ π0 2 12� � n t   (8.12)      

 When   the spacecraft arrives at planet 2, the phase angle will be   φ  f  , which is found using Equations 8.8 
and 8.12. 

  
φ φ πf n n t n t n n t� � � � �0 2 1 12 2 12 2 1 12( ) ( ) ( )− −

      

  
φ πf n t� � 1 12

  (8.13)
      

 For   the situation illustrated in  Figure 8.4 , planet 2 ends up being behind planet 1 by an amount equal to the 
magnitude of   φ  f  . 
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 FIGURE 8.4  
       Round-trip mission, with layover, to planet 2. (a) Departure and rendezvous with planet 2. (b) Return and rendezvous 
with planet 1.    

        



 At   the start of the return trip, illustrated in  Figure 8.4(b) , planet 2 must be  ′φ0    radians ahead of planet 1. 
Since the spacecraft fl ies the same Hohmann transfer trajectory back to planet 1, the time of fl ight is  t  12 , the 
same as the outbound leg. Therefore, the distance traveled by planet 1 during the return trip is the same as 
the outbound leg, which means 

  
φ φ0
 � � f   (8.14)      

 In   any case, the phase angle at the beginning of the return trip must be the negative of the phase angle at 
arrival from planet 1. The time required for the phase angle to reach its proper value is called the   wait time  , 
 t  wait . Setting time equal to zero at the instant we arrive at planet 2, Equation 8.8 becomes 

  
φ φ� � �f n n t( )2 1       

     φ   becomes  �   φ  f   after the time  t  wait . That is 

  
� � �φ φf f n n t( ) wait2 1−

      

 or   

  
t

n n
f

wait �
�

�

2

2 1

φ
  (8.15)      

 where     φ   f  is given by Equation 8.13. Equation 8.15 may yield a negative result, which means the desired 
phase relation occurred in the past. Therefore, we must add or subtract an integral multiple of 2  π   to the 
numerator in order to get a positive value for  t  wait . Specifi cally, if  N       �      0,1,2, … , then 

  
t

N

n n
n n

f
wait ( )�

� �
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2 2

2 1
1 2

φ π
   (8.16)      
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n n
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f
wait ( )�

� �

�
�

2 2

2 1
1 2

φ π
   (8.17)      

 where    N  is chosen to make  t  wait  positive.  t  wait  would probably be the smallest positive number thus obtained.

        Example 8.2      
 Calculate   the minimum wait time for initiating a return trip from Mars to earth. 

    Solution 
 From   Tables A.1 and A.2 we have 

  

R

R

earth

Mars

sun
3 2

 km

 km

km /s

� �

� �

� �

149 6 10

227 9 10

132 71 10

6

6

9

.

.

.μ       
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 According   to Equation 8.11, the time of fl ight from earth to Mars is 

  

t
R R
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 or   

  t12 258 82� .  days       

 From   Equation 3.9 and the orbital periods of earth and Mars (see Example 8.1 above) we obtain the mean 
motions of the earth and Mars. 

  

n

n

earth

Mars

 rad/day

 r

� �

�

2

365 26
0 017202

2

687 99
0 0091327

π

π
.

.

.
.= aad/day

      

 The   phase angle between earth and Mars when the spacecraft reaches Mars is given by Equation 8.13. 

  
φ π πf n t� � � � � � �earth  (rad)12 0 017202 258 82 1 3107. . .

      

 Since    n  earth              n  Mars , we choose Equation 8.16 to fi nd the wait time. 

  
t

N

n n

Nf
wait

Mars earth

( )
�

� �
�

� �

�

2 2 2 1 3107 2

0 0091327 0 0172

φ π π
−

− .

. . 002
778 65 324 85� �. .N  (days)

      

  N         �      0 yields a negative value, which we cannot accept. Setting  N       �      1, we get 

  
twait  days� 453 8.

      

 This   is the minimum wait time. Obviously, we could set  N       �      2,3, …  to obtain longer wait times.       

 In   order for a spacecraft to depart on a mission to Mars by means of a Hohmann (minimum energy) 
transfer, the phase angle between earth and Mars must be that given by Equation 8.12. Using the results of 
Example 8.2, we fi nd it to be 

  φ π πo n t� � � � � � � �Mars  rad 44.5712 0 0091327 258 82 0 7778. . .       

 This   opportunity occurs once every synodic period, which we found to be 2.13 years in Example 8.1. In 
Example 8.2 we found that the time to fl y to Mars is 258.8 days, followed by a wait time of 453.8 days, fol-
lowed by a return trip time of 258.8 days. Hence, the minimum total time for a manned Mars mission is 

  ttotal  days 2.66 years� � � � �258 8 453 8 258 8 971 4. . . .       

 Remember   that this result is for Hohmann transfer trajectories for the spacecraft and circular coplanar orbits 
for earth and Mars.  



    8.4       SPHERE OF INFLUENCE 
 The    sun, of course, is the dominant celestial body in the solar system. It is over one thousand times more 
massive than the largest planet, Jupiter, and has a mass of over 300 000 earths. The sun’s gravitational pull 
holds all of the planets in its grasp according to Newton’s law of gravity, Equation 1.31. However, near a 
given planet the infl uence of its own gravity exceeds that of the sun. For example, at its surface the earth’s 
gravitational force is over 1600 times greater than the sun’s. The inverse-square nature of the law of gravity 
means that the force of gravity  F g   drops off rapidly with distance  r  from the center of attraction. If  Fg 0

    is 
the gravitational force at the surface of a planet with radius  r  0 , then  Figure 8.5    shows how rapidly the force 
diminishes with distance. At ten body radii, the force is 1% of its value at the surface. Eventually, the force 
of the sun’s gravitational fi eld overwhelms that of the planet. 

 In   order to estimate the radius of a planet’s gravitational sphere of infl uence, consider the three-body 
system comprising a planet  p  of mass  m p  , the sun  s  of mass  m s   and a space vehicle  v  of mass  m v   illus-
trated in  Figure 8.6   . The position vectors of the planet and spacecraft relative to an inertial frame centered 
at the sun are  R  and  R   v  , respectively. The position vector of the space vehicle relative to the planet is  r . 
(Throughout this chapter we will use upper case letters to represent position, velocity and acceleration mea-
sured relative to the sun and lower case letters when they are measured relative to a planet.) The grav-
itational force exerted on the vehicle by the planet is denoted  Fp

v( )   , and that exerted by the sun is  Fs
v( )   . 

Likewise, the forces on the planet are  Fs
p( )    and  Fv

p( )   , whereas on the sun we have  Fv
s( )    and  Fp

s( )   . According to 
Newton’s law of gravitation (Equation 2.10), these forces are 

  
Fp

v v pGm m

r
( ) � �

3
r   (8.18a)      

  

F Rs
v v s

V
v

Gm m

R
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3   (8.18b)      

  
F Rs

p p sGm m
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 Observe   that 

  R R rv � �   (8.19)      

 From    Figure 8.6  and the law of cosines we see that the magnitude of  R   v   is 
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 We   expect that within the planet’s sphere of infl uence,  r / R  � 1. In that case, the terms involving  r / R  in 
Equation 8.20 can be neglected, so that, approximately 

  R Rv �   (8.21)      

 The   equation of motion of the spacecraft relative to the sun-centered inertial frame is 

  
mv v s

v
p
v��R F F� �( ) ( )

      

 Solving   for  ��Rv     and substituting the gravitational forces given by Equations 8.18a and 8.18b, we get 
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 Let   us write this as 

  
��R A Pv s p� �   (8.23)      

 where   
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 FIGURE 8.6  
       Relative position and gravitational force vectors among the three bodies.            



  A     s   is the primary gravitational acceleration of the vehicle due to the sun, whereas  P   p   is the secondary or 
perturbing acceleration due to the planet. The magnitudes of  A   s   and  P   p   are 

  
A
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R
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r
s

s
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p
� �

2 2   (8.25)     

  where we made use of the approximation given by Equation 8.21. The ratio of the perturbing acceleration 
to the primary acceleration is, therefore,   
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 The   equation of motion of the planet relative to the inertial frame is 

  
mp v

p
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p��R F F� �( ) ( )

      

 Solving   for  ��R   , noting that  F Fv
p

p
v( ) ( )� �    , and using Equations 8.18b and 8.18c yields 
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 Subtracting   Equation 8.27 from 8.22 and collecting terms, we fi nd 
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 Recalling   Equation 8.19, we can write this as 
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 This   is the equation of motion of the vehicle relative to the planet. By using Equation 8.21 and the fact that 
 m v    �   m p  , we can write this in approximate form as 

  
��r a p� �p s   (8.29)     

  where   
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p
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   (8.30)      

 In   this case  a   p   is the primary gravitational acceleration of the vehicle due to the planet, and  p   s   is the pertur-
bation caused by the sun. The magnitudes of these vectors are 
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 The   ratio of the perturbing acceleration to the primary acceleration is 
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 For   motion relative to the planet, the ratio  p s  / a p   is a measure of the deviation of the vehicle’s orbit from 
the Keplerian orbit arising from the planet acting by itself ( p s  / a p        �      0). Likewise,  P p  / A s   is a measure of the 
planet’s infl uence on the orbit of the vehicle relative to the sun. If 
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  then the perturbing effect of the sun on the vehicle’s orbit around the planet is less than the perturbing effect 
of the planet on the vehicle’s orbit around the sun. We say that the vehicle is therefore within the planet’s 
sphere of influence. Substituting Equations 8.26 and 8.32 into 8.33 yields   
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  which means   
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 Let    r  SOI  be the radius of the sphere of infl uence. Within the planet’s sphere of infl uence, defi ned by 
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  the motion of the spacecraft is determined by its equations of motion relative to the planet (Equation 
8.28). Outside of the sphere of influence, the path of the spacecraft is computed relative to the sun 
(Equation 8.22).   

 The   sphere of infl uence radius presented in Equation 8.34 is not an exact quantity. It is simply a reason-
able estimate of the distance beyond which the sun’s gravitational attraction dominates that of a planet. The 
spheres of infl uence of all of the planets and the earth’s moon are listed in Table A.2.



        Example 8.3      
 Calculate   the radius of the earth’s sphere of infl uence. 
 In   Table A.1 we fi nd 
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 Substituting   this data into Equation 8.34 yields 
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 Since   the radius of the earth is 6378       km, 

  rSOI  earth radii� 145       

 Relative   to the earth, its sphere of infl uence is very large. However, relative to the sun it is tiny, as illustrated 
in  Figure 8.7   .       

    8.5       METHOD OF PATCHED CONICS 
    “ Conics ”  refers to the fact that two-body, or Keplerian orbits, are conic sections with the focus at the attract-
ing body. To study an interplanetary trajectory we assume that when the spacecraft is outside the sphere of 
infl uence of a planet it follows an unperturbed Keplerian orbit around the sun. Because interplanetary dis-
tances are so vast, for heliocentric orbits we may neglect the size of the spheres of infl uence and consider 
them, like the planets they surround, to be just points in space coinciding with the planetary centers. Within 
each planetary sphere of infl uence, the spacecraft travels an unperturbed Keplerian path about the planet. 
While the sphere of infl uence appears as a mere speck on the scale of the solar system, from the point of 
view of the planet it is very large indeed and may be considered to lie at infi nity. 

 To   analyze a mission from planet 1 to planet 2 using the method of patched conics, we fi rst determine 
the heliocentric trajectory — such as the Hohmann transfer ellipse discussed in Section 8.2 — that will inter-
sect the desired positions of the two planets in their orbits. This trajectory takes the spacecraft from the 
sphere of infl uence of planet 1 to that of planet 2. At the spheres of infl uence, the heliocentric velocities 
of the transfer orbit are computed relative to the planet to establish the velocities  “ at infi nity ”  which are 
then used to determine planetocentric departure trajectory at planet 1 and arrival trajectory at planet 2. 
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In this way we  “ patch ”  together the three conics, one centered at the sun and the other two centered at the 
planets in question. 

 Whereas   the method of patched conics is remarkably accurate for interplanetary trajectories, such is 
not the case for lunar rendezvous and return trajectories. The orbit of the moon is determined primarily by 
the earth, whose sphere of infl uence extends well beyond the moon’s 384,400       km orbital radius. To apply 
patched conics to lunar trajectories we ignore the sun and consider the motion of a spacecraft as infl uenced 
by just the earth and moon, as in the restricted three-body problem discussed in Section 2.12. The size of 
the moon’s sphere of infl uence is found using Equation 8.34, with the earth playing the role of the sun: 
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  where  R  is the radius of the moon’s orbit. Thus, using Table A.1,   
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  as recorded in Table A.2. The moon’s sphere of influence extends out to over one-sixth of the distance to 
the earth. We can hardly consider it to be a mere speck relative to the earth. Another complication is the 
fact that the earth and the moon are somewhat comparable in mass, so that their center of mass lies almost 
three quarters of an earth radius from the center of the earth. The motion of the moon cannot be accurately 
described as rotating around the center of the earth.   

 Complications   such as these place the analysis of cislunar trajectories beyond the scope of this chapter. 
(In Example 2.18 we did a lunar trajectory calculation not by using patched conics but by integrating the 
equations of motion of a spacecraft within the context of the restricted three-body problem.) Extensions 
of the patched conic technique to lunar trajectories may be found in references such as Bate, Mueller and 
White (1971), Kaplan (1976) and Battin (1999).  

    8.6       PLANETARY DEPARTURE 
 In   order to escape the gravitational pull of a planet, the spacecraft must travel a hyperbolic trajectory rela-
tive to the planet, arriving at its sphere of infl uence with a relative velocity  v   �   (hyperbolic excess velocity) 
greater than zero. On a parabolic trajectory, according to Equation 2.91, the spacecraft will arrive at the 
sphere of infl uence ( r       �       � ) with a relative speed of zero. In that case the spacecraft remains in the same 
orbit as the planet and does not embark upon a heliocentric elliptical path. 

    Figure 8.8    shows a spacecraft departing on a Hohmann trajectory from a planet 1 towards a target planet 
2 which is farther away from the sun (as in  Figure 8.1 ). At the sphere of infl uence crossing, the heliocentric 
velocity  VD

v( )     of the spacecraft is parallel to the asymptote of the departure hyperbola as well as to the plan-
et’s heliocentric velocity vector  V  1 .  VD

v( )     and  V  1  must be parallel and in the same direction for a Hohmann 
transfer such that  Δ  V D   in Equation 8.3 is positive. Clearly,  Δ  V D   is the hyperbolic excess speed of the depar-
ture hyperbola, 
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 It   would be well at this point for the reader to review Section 2.9 on hyperbolic trajectories and compare 
 Figures 8.8  and 2.25. Recall that point  C  is the center of the hyperbola. 

 A   space vehicle is ordinarily launched into an interplanetary trajectory from a circular parking orbit. The 
radius of this parking orbit equals the periapsis radius  r p   of the departure hyperbola. According to Equation 
2.50, the periapsis radius is given by 
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1μ
  (8.36)     

  where  h  is the angular momentum of the departure hyperbola (relative to the planet),  e  is the eccentricity 
of the hyperbola and   μ   1  is the planet’s gravitational parameter. The hyperbolic excess speed is found in 
Equation 2.115, from which we obtain   
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v
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2 1
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  (8.37)      

 Substituting   this expression for the angular momentum into Equation 8.36 and solving for the eccentricity 
yields 

  
e

r vp
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  (8.38)      
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 We   place this result back into Equation 8.37 to obtain the following expression for the angular momentum. 
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  (8.39)      

 The   hyperbolic excess speed  v   �   is specifi ed by the mission requirements (Equation 8.35). Equations 8.38 
and 8.39 show that choosing a departure periapsis  r p   yields the orbital parameters  e  and  h  of the departure 
hyperbola. From the angular momentum we get the periapsis speed, 
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  which can also be found from an energy approach using Equation 2.113. With Equation 8.40 and the speed 
of the circular parking orbit (Equation 2.63),   
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  we can calculate the delta-v required to put the vehicle onto the hyperbolic departure trajectory,   
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 The   location of periapsis, where the delta-v maneuver must occur, is found using Equations 2.99 and 8.38, 
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     β   gives the orientation of the apse line of the hyperbola to the planet’s heliocentric velocity vector. 
 It   should be pointed out that the only requirement on the orientation of the plane of the departure hyper-

bola is that it contain the center of mass of the planet as well as the relative velocity vector  v   �  . Therefore, as 
shown in  Figure 8.9   , the hyperbola can be rotated about a line  A-A  which passes through the planet’s center 
of mass and is parallel to  v   �   (or  V  1 , which of course is parallel to  v   �   for Hohmann transfers). Rotating the 
hyperbola in this way sweeps out a surface of revolution on which all possible departure hyperbolas lie. The 
periapsis of the hyperbola traces out a circle which, for the specifi ed periapsis radius  r p  , is the locus of all 
possible points of injection into a departure trajectory towards the target planet. This circle is the base of a 
cone with vertex at the center of the planet. From Figure 2.25 we can determine that its radius is  r p   sin   β  , 
where   β   is given just above in Equation 8.43. 

 The   plane of the parking orbit, or direct ascent trajectory, must contain the line  A-A  and the launch site 
at the time of launch. The possible inclinations of a prograde orbit range from a minimum of  i  min , where 
 i  min  is the latitude of the launch site, to  i  max , which cannot exceed 90 ° . Launch site safety considerations 
may place additional limits on that range. For example, orbits originating from the Kennedy Space Center 



in Florida, USA, (latitude 28.5 ° ) are limited to inclinations between 28.5 °  and 52.5 ° . For the scenario illus-
trated in  Figure 8.10    the location of the launch site limits access to just the departure trajectories having 
periapses lying between  a  and  b . The fi gure shows that there are two times per day — when the planet rotates 
the launch site through positions 1 and 1 
  — that a spacecraft can be launched into a parking orbit. These 
times are closer together (the launch window is smaller) the lower the inclination of the parking orbit. 

 Once   a spacecraft is established in its parking orbit, then an opportunity for launch into the departure 
trajectory occurs each orbital circuit. 
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 If   the mission is to send a spacecraft from an outer planet to an inner planet, as in  Figure 8.2 , then the 
spacecraft’s heliocentric speed  VD

v( )    at departure must be less than that of the planet. That means the space-
craft must emerge from the back side of the sphere of infl uence with its relative velocity vector  v   �   directed 
opposite to  V  1 , as shown in  Figure 8.11   .        Figures 8.9 and 8.10  apply to this situation as well.

        Example 8.4      
 A   spacecraft is launched on a mission to Mars starting from a 300       km circular parking orbit. Calculate (a) 
the delta-v required; (b) the location of perigee of the departure hyperbola; (c) the amount of propellant 
required as a percentage of the spacecraft mass before the delta-v burn, assuming a specifi c impulse of 300 
seconds. 

    Solution 
 From   Tables A.1 and A.2 we obtain the gravitational parameters for the sun and the earth, 
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 FIGURE 8.11  
       Departure of a spacecraft on a trajectory from an outer planet to an inner planet.            



 and   the orbital radii of the earth and Mars, 
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    (a)     According to Equation 8.35, the hyperbolic excess speed is    
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  from which   

  v∞ � 2 943. km/s       

 The   speed of the spacecraft in its 300       km circular parking orbit is given by Equation 8.41, 
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 Finally  , we use Equation 8.42 to calculate the delta-v required to step up to the departure hyperbola. 
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    (b)     Perigee of the departure hyperbola, relative to the earth’s orbital velocity vector, is found using Equation 8.43,    
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    Figure 8.12    shows that the perigee can be located on either the sunlit or dark side of the earth. It is likely that the 
parking orbit would be a prograde orbit (west to east), which would place the burnout point on the dark side. 

    (c)     From Equation 6.1 we have    
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 Substituting     Δ v       �      3.590       km/s,  I sp        �      300       s and  g  o       �      9.81      �      10  � 3  km/s 2 , this yields 

  

Δm

m
� 0 705.

      

 That   is, prior to the delta-v maneuver, over 70% of the spacecraft mass must be propellant.         
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    8.7       SENSITIVITY ANALYSIS 
 The   initial maneuvers required to place a spacecraft on an interplanetary trajectory occur well within the 
sphere of infl uence of the departure planet. Since the sphere of infl uence is just a point on the scale of 
the solar system, one may ask what effects small errors in position and velocity at the maneuver point 
have on the trajectory. Assuming the mission is from an inner to an outer planet, let us consider the effect 
which small changes in the burnout velocity  v p   and radius  r p   have on the target radius  R  2  of the heliocentric 
Hohmann transfer ellipse (see        Figures 8.1 and 8.8 ). 

  R    2  is the radius of aphelion, so we use Equation 2.70 to obtain 
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 Substituting    h R VD
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( )     and  e       �      ( R  2       �       R  1 )/( R  2       �       R  1 ), and solving for  R  2  yields 
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   (This expression holds as well for a mission from an outer to inner planet.) The change   δ R  2  in  R  2  due to a small 
variation  δVD

v( )    of  VD
v( )    is 
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 Dividing   this equation by Equation 8.44 leads to 
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 The   departure speed  VD
v( )    of the space vehicle is the sum of the planet’s speed  V  1  and excess speed  v   �  . 

  V V vD
v( ) � �1 ∞       

 We   can solve Equation 8.40 for  v   �  , 
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 The   change in  VD
v( )    due to variations   δ r p   and   δ v p   of the burnout position (periapsis)  r p   and speed  v p   is given by 
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 From   Equation 8.46 we obtain 
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 Therefore  , 
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 Once   again making use of Equation 8.40, this can be written as follows 
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 Substituting   this into Equation 8.45 fi nally yields the desired result, an expression for the variation of  R 2   
due to variations in  r p   and  v p  . 
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 Consider   a mission from earth to Mars, starting from a 300       km parking orbit. We have 
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 In   addition, from Equations 8.1 and 8.2, 

  

V V
R

V
R

D
v

1
1

11

6

1 327 10

149 6 10
29 78

2

� � �
�

�
�

�

earth
sun

( )
sun

km/s
μ

μ

.

.
.

22

1 1 2

11
6

6 6
2 1 327 10

227 9 10

149 6 10 149 6 10 227 9R R R( ) (�
� � �

�

� � �
.

.

. . . ��
�

10
32 73

6 )
km/s.

      

 Therefore  , 
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 Substituting   these values into Equation 8.49 yields 
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 This   expression shows that a 0.01% variation (1.1       m/s) in the burnout speed   ν  p   changes the target radius  R  2  
by 0.067% or 153,000       km! Likewise, an error of 0.01% (0.67       km) in burnout radius  r p   produces an error of 
over 70,000       km. Thus small errors which are likely to occur in the launch phase of the mission must be cor-
rected by midcourse maneuvers during the coasting fl ight along the elliptical transfer trajectory.  



    8.8       PLANETARY RENDEZVOUS 
 A   spacecraft arrives at the sphere of infl uence of the target planet with a hyperbolic excess velocity  v   �   relative 
to the planet. In the case illustrated in  Figure 8.1 , a mission from an inner planet 1 to an outer planet 2 (e.g., 
earth to Mars), the spacecraft’s heliocentric approach velocity  VA

v( )     is smaller in magnitude than that of the 
planet,  V  2 . Therefore, it crosses the forward portion of the sphere of infl uence, as shown in  Figure 8.13   . For a 
Hohmann transfer,  VA

v( )     and  V  2  are parallel, so the magnitude of the hyperbolic excess velocity is, simply 

  v V VA
v

∞ � �2
( )   (8.50)      

 If   the mission is as illustrated in  Figure 8.2 , from an outer planet to an inner one (e.g., earth to Venus), then  
VA

v( )    is greater than  V  2 , and the spacecraft must cross the rear portion of the sphere of infl uence, as shown in 
 Figure 8.14   . In that case 

  v V VA
v

∞ � �( )
2   (8.51)      

 What   happens after crossing the sphere of infl uence depends on the nature of the mission. If the goal 
is to impact the planet (or its atmosphere), the aiming radius   Δ   of the approach hyperbola must be such 
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       Spacecraft approach trajectory for a Hohmann transfer to an outer planet from an inner one.  P  is the periapsis of the 
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that hyperbola’s periapsis radius  r p   equals essentially the radius of the planet. If the intent is to go into 
orbit around the planet, then   Δ   must be chosen so that the delta-v burn at periapsis will occur at the cor-
rect altitude above the planet. If there is no impact with the planet and no drop into a capture orbit around 
the planet, then the spacecraft will simply continue past periapsis on a fl yby trajectory, exiting the sphere 
of infl uence with the same relative speed  v   �   it entered, but with the velocity vector rotated through the turn 
angle   δ  , given by Equation 2.100, 
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 With   the hyperbolic excess speed  v   �   and the periapsis radius  r p   specifi ed, the eccentricity of the 
approach hyperbola is found from Equation 8.38, 
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 FIGURE 8.14  
       Spacecraft approach trajectory for a Hohmann transfer to an inner planet from an outer one.  P  is the periapsis of the 
approach hyperbola.    

        



 where     μ   2  is the gravitational parameter of planet 2. Hence, the turn angle is 
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 We   can combine Equations 2.103 and 2.107 to obtain the following expression for the aiming radius, 

  

Δ �
�

h

e

2

2

1

1μ2
  (8.55)      

 The   angular momentum of the approach hyperbola relative to the planet is found using Equation 8.39, 
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 Substituting   Equations 8.53 and 8.56 into 8.55 yields the aiming radius in terms of the periapsis radius and 
the hyperbolic excess speed, 
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 Just   as we observed when discussing departure trajectories, the approach hyperbola does not lie in a 
unique plane. We can rotate the hyperbolas illustrated in        Figures 8.11 and 8.12  about a line  A-A  parallel to  v   �   
and passing through the target planet’s center of mass, as shown in  Figure 8.15   . The approach hyperbolas in 
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that fi gure terminate at the circle of periapses.  Figure 8.16    is a plane through the solid of revolution revealing 
the shape of hyperbolas having a common   v    �   but varying   Δ  . 

 Let   us suppose that the purpose of the mission is to enter an elliptical orbit of eccentricity  e  around the 
planet. This will require a  Δ v maneuver at periapsis  P  (       Figures 8.13 and 8.14 ), which is also periapsis of 
the ellipse. The speed in the hyperbolic trajectory at periapsis is given by Equation 8.40 
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 The   velocity at periapsis of the capture orbit is found by setting  h       �       r p v p   in Equation 2.50 and solving for   ν  p  . 
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 Hence  , the required delta-v is 
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 For   a given  v   �  ,   Δ v  clearly depends upon the choice of periapsis radius  r p   and capture orbit eccentricity  e . 
Requiring the maneuver point to remain the periapsis of the capture orbit means that   Δ v  is maximum for a 
circular capture orbit and decreases with increasing eccentricity until   Δ v       �      0, which, of course, means no 
capture (fl yby). 

 In    order to determine optimal capture radius, let us write Equation 8.60 in nondimensional form as 
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 The   fi rst and second derivatives of   Δ v / v   �   with respect to   ξ   are 
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 Setting   the fi rst derivative equal to zero and solving for   ξ   yields 
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 Substituting   this value of   ξ   into Equation 8.64, we get 
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 This   expression is positive for elliptical orbits (0      �       e       �      1), which means that when   ξ   is given by Equation 
8.65   Δ v  is a minimum. Therefore, from Equation 8.62, the optimal periapsis radius as far as fuel expendi-
ture is concerned is 
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 We   can combine Equations 2.50 and 2.70 to get 
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 where    r a   is the apoapsis radius. Thus, Equation 8.67 implies 
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 That   is, the apoapsis of this capture ellipse is independent of the eccentricity and equals the radius of the 
optimal circular orbit. 

 Substituting   Equation 8.65 back into Equation 8.61 yields the minimum   Δ v . 
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 Finally  , placing the optimal  r p   into Equation 8.57 leads to an expression for the aiming radius required for 
minimum   Δ v , 
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  (8.71)      

 Clearly  , the optimal   Δ v  (and periapsis height) are reduced for highly eccentric elliptical capture orbits 
( e     →    1). However, it should be pointed out that the use of optimal   Δ v  may have to be sacrifi ced in favor of 
a variety of other mission requirements. 

 If   a planet has an atmosphere and the periapsis lies within it, then a spacecraft might be designed to 
employ aerobraking, where atmospheric drag is used to reduce the speed instead of dependence solely on 
rocket engines. The reduced propellent requirement would allow for increased payload or a smaller vehicle. 
See, for example, Hale (1994), Tewari (2007), and Wiesel (1997) for introductory discussions of this subject.

        Example 8.5      
 After   a Hohmann transfer from earth to Mars, calculate 

    (a)     the minimum delta-v required to place a spacecraft in an orbit with a period of seven hours.  
    (b)     the periapsis ( “ periareion ” ) radius.  
    (c)     the aiming radius.  
    (d)     the angle between periapsis and Mars ’  velocity vector.    

    Solution 
 The   following data are required from Tables A.1 and A.2: 
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    (a)     The hyperbolic excess speed is found using Equation 8.4,    
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  v∞ � 2 648.  km/s       

 We   can use Equation 2.83 to express the semimajor axis  a  of the capture orbit in terms of its period  T , 
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 Substituting    T       �      7 · 3600       s yields 
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 From   Equation 2.73 we obtain 

  
a
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e
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 Upon   substituting the optimal periapsis radius, Equation 8.67, this becomes 
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 Thus  , using Equation 8.70, we fi nd 
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    (b)     From Equation 8.67 we obtain the periapsis radius    
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    (c)     The aiming radius is given by Equation 8.71    
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    (d)     Using Equation 8.43, we get the angle to periapsis    
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 Mars  , the approach hyperbola, and the capture orbit are shown to scale in  Figure 8.17   . The approach 
could also be made from the dark side of the planet instead of the sunlit side. The approach hyperbola and 
capture ellipse would be the mirror image of that shown, as is the case in  Figure 8.12 .        
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    8.9       PLANETARY FLYBY 
 A   spacecraft which enters a planet’s sphere of infl uence and does not impact the planet or go into orbit 
around it will continue in its hyperbolic trajectory through periapsis  P  and exit the sphere of infl uence. 
 Figure 8.18    shows a hyperbolic fl yby trajectory along with the asymptotes and apse line of the hyperbola. It 
is a leading-side fl yby because the periapsis is on the side of the planet facing into the direction of motion. 
Likewise,  Figure 8.19    illustrates a trailing-side fl yby. At the inbound crossing point, the heliocentric veloc-
ity  V1

( )v     of the spacecraft equals the planet’s heliocentric velocity  V  plus the hyperbolic excess velocity  v∞1
    

of the spacecraft (relative to the planet), 

  
V V v1 1

( )v � � ∞   (8.72)      

 Similarly  , at the outbound crossing we have 

  
V V v2 2

( )v � � ∞   (8.73)      

 The   change   Δ   V  (   v   )  in the spacecraft’s heliocentric velocity is 

  
ΔV V V V v V v( ) ( ) ( ) ( ) ( )v v v� � � � � �2 1 2 1∞ ∞      

  which means   

  
Δ ΔV v v v( )v � � �∞ ∞ ∞2 1

  (8.74)      
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 FIGURE 8.17  
       An optimal approach to a Mars capture orbit with a seven hour period.  r  Mars       �      3396       km.            



 The   excess velocities  v∞1
    and  v∞2

    lie along the asymptotes of the hyperbola and are therefore inclined 
at the same angle   β   to the apse line (see Figure 2.25), with  v∞1

    pointing towards and  v∞2
    pointing away 

from the center  C . They both have the same magnitude  v   �  , with  v∞2
    having rotated relative to  v∞1

    by the 
turn angle   δ  . Hence,   Δ   v   �   — and therefore   Δ   V  (   v   )  — is a vector which lies along the apse line and always 
points away from periapsis, as illustrated in        Figures 8.18 and 8.19 . From those fi gures it can be seen that, 
in a leading-side fl yby, the component of   Δ   V  (   v   )  in the direction of the planet’s velocity is negative, whereas 
for the trailing-side fl yby it is positive. This means that a leading-side fl yby results in a decrease in the 
spacecraft’s heliocentric speed. On the other hand, a trailing-side fl yby increases that speed. 

 In   order to analyze a fl yby problem, we proceed as follows. First, let  ̂uV     be the unit vector in the direc-
tion of the planet’s heliocentric velocity  V  and let  ̂uS     be the unit vector pointing from the planet to the sun. 
At the inbound crossing of the sphere of infl uence, the heliocentric velocity  V1

( )v     of the spacecraft is 

  
V u u1 1 1

( ) ( ) ( )v v
V V

v
S SV V� �⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ˆ ˆ   (8.75)     

  where the scalar components of  V1
( )v     are   

  
V V V Vv

V
v v

S
v

1 1 1 1 1 1
( ) ( ) ( ) ( )⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥� �cos sinα α   (8.76)      
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     α   1  is the angle between  V1
( )v     and  V . All angles are measured positive counterclockwise. Referring to Figure 

2.12, we see that the magnitude of   α   1  is the fl ight path angle  γ  of the spacecraft’s heliocentric trajectory 
when it encounters the planet’s sphere of infl uence (a mere speck) at the planet’s distance  R  from the sun. 
Furthermore, 

  
V V V Vv

V
v

S r1 11 1

( ) ( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥⊥� � �        (8.77)      

    V⊥1
    and  Vr1

    are furnished by Equations 2.48 and 2.49 
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h
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1
1 1

1
1 11� � �

μ
θ

μ
θsun sun( )cos          sin   (8.78)     

  in which  e  1 ,  h  1  and   θ   1  are the eccentricity, angular momentum and true anomaly of the heliocentric approach 
trajectory.   

 The   velocity of the planet relative to the sun is 

  V u� V Vˆ   (8.79)     
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 FIGURE 8.19  
       Trailing-side planetary fl yby.            



  where  V � μsun /R    . At the inbound crossing of the planet’s sphere of influence, the hyperbolic excess 
velocity of the spacecraft is obtained from Equation 8.72   

  
v V V∞1 1� �( )v

      

 Using   this we fi nd 

  
v u u∞ ∞ ∞1 1 1

� �( ) ( )v vV V S Sˆ ˆ   (8.80)     

  where the scalar components of  v∞1
    are   

  
( ) cos ( ) sin( ) ( )v V V v VV

v
S

v
∞ ∞1 11 1 1 1� � �α α            (8.81)      

  v     �   is the magnitude of  v∞1
   , 

  
v V V V Vv v

∞ ∞ ∞
⎡
⎣⎢

⎤
⎦⎥� � � � �v v

1 1 1

2 2
1 12( ) ( ) cosα   (8.82)      

 At   this point  v  �    is known, so that upon specifying the periapsis radius  r p   we can compute the angular 
momentum and eccentricity of the fl yby hyperbola (relative to the planet), using Equations 8.38 and 8.39. 

  

h r v
r

e
r v

p
p

p
� � � �∞

∞2
2

2
1

μ
μ

          (8.83)     

  where   μ   is the gravitational parameter of the planet.   
 The   angle between  v∞1

    and the planet’s heliocentric velocity is   φ   1 . It is found using the components of  
v∞1

    in Equation 8.81, 

  

φ
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α
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1 1
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v

∞

∞
  (8.84)      

 At   the outbound crossing the angle between  v∞2
    and  V  is   φ   2 , where 

  φ φ δ2 1� �   (8.85)      

 For   the leading-side fl yby in  Figure 8.18 , the turn angle is   δ   positive (counterclockwise) whereas in  Figure 
8.19  it is negative. Since the magnitude of  v∞2

    is  v   �  , we can express  v∞2
    in components as 

  
v u u∞ ∞ ∞2 2 2� �v vV Scos sinφ φˆ ˆ   (8.86)      

 Therefore  , the heliocentric velocity of the spacecraft at the outbound crossing is 

  
V V v u u2 2 22

( ) ( ) ( )v v
V V

v
S SV V� � � �∞

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ˆ ˆ   (8.87)     
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  where the components of  V2
( )v     are   

  
V V v V vv

V
v

S2 2 2 2
( ) ( )⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∞ ∞� � �cos         sinφ φ   (8.88)      

 From   this we obtain the radial and transverse heliocentric velocity components, 

  
V V V Vv

V r
v

S⊥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥2 22 2� � �( ) ( )            (8.89)      

 Finally  , we obtain the three elements  e  2 ,  h  2  and   θ   2  of the new heliocentric departure trajectory by means 
of Equation 2.31, 

  
h RV2 2

� ⊥   (8.90)      

 Equation   2.45, 

  
R

h

e
�

�
2

2

2 2

1

1μ θsun cos
  (8.91)     

  and Equation 2.49,   

  
V

h
er 2

2
2 2�

μ
θsun sin   (8.92)      

 Notice   that the fl yby is considered to be an impulsive maneuver during which the heliocentric radius of 
the spacecraft, which is confi ned within the planet’s sphere of infl uence, remains fi xed at  R . The heliocen-
tric velocity analysis is similar to that described in Section 6.7.

        Example 8.6      
 A   spacecraft departs earth with a velocity perpendicular to the sun line on a fl yby mission to Venus. 
Encounter occurs at a true anomaly in the approach trajectory of  – 30°. Periapsis ( “ pericytherion ” ) altitude 
is to be 300       km. 

    (a)     For an approach from the dark side of the planet, show that the post-fl yby orbit is as illustrated in 
 Figure 8.20   .  

    (b)     For an approach from the sunlit side of the planet, show that the post-fl yby orbit is as illustrated in 
 Figure 8.21   .    

    Solution 
 The   following data is found in Tables A.1 and A.2. 
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    Pre-fl yby ellipse (orbit 1) 
 Evaluating   the orbit formula, Equation 2.45, at aphelion of orbit 1 yields 

  
R

h

eearth
sun
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1
2

1

1

1μ       
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 FIGURE 8.20  
       Spacecraft orbits before and after a fl yby of Venus, approaching from the dark side.            
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 Thus  , 

  h R e1
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11� �μsun earth ( )   (a)      

 At   intercept 
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1 1

1
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 Substituting   Equation (a) and  θ1 30� � °    and solving the resulting expression for  e  1  leads to 

  

e
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 With   this result, Equation (a) yields 

  h1
11 6 91 327 10 149 6 10 1 0 1702 4 059 10� � � � � � �. . . . /( )  km s2

      

 Now   we can use Equations 2.31 and 2.49 to calculate the radial and transverse components of the space-
craft’s heliocentric velocity at the inbound crossing of Venus’s sphere of infl uence. 
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 The   fl ight path angle, from Equation 2.51, is 
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 The   negative sign is consistent with the fact that the spacecraft is fl ying towards perihelion of the pre-fl yby 
elliptical trajectory (orbit 1). 

 The   speed of the space vehicle at the inbound crossing is 

  
V V Vv

r1
2 2 2 2

1 1
2 782 37 51 37 62( ) ( )  km/s� � � � � �⊥ . . .   (b)      

  Flyby   hyperbola  
 From   Equations 8.75 and 8.77 we obtain 

  V u u1 37 51 2 782( ) . (km/s)v
V S� �ˆ . ˆ        



 The   velocity of Venus in its presumed circular orbit around the sun is 
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 Hence  , 

  
v V V u u u u u∞1 1 37 51 2 782 35 02 2 490 2 782� � � � � � �( ) ( . )v

V S V V Sˆ . ˆ . ˆ . ˆ . ˆ   (km/s)   (d)      

 It   follows that 
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1 1
3 733.  km/s

      

 The   periapsis radius is 

  
r rp � � �Venus  km300 6352

      

 Equations   8.38 and 8.39 are used to compute the angular momentum and eccentricity of the planetocentric 
hyperbola. 
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 The   turn angle and true anomaly of the asymptote are 
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 From   Equations 2.50, 2.103 and 2.107, the aiming radius is 
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1
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 Finally  , from Equation (d) we obtain the angle between  v∞1
    and  V , 

  
φ1

1 2 782

2 490
48 17� ��tan

.

.
. °   (f)      

 There   are two fl yby approaches, as shown in  Figure 8.22   . In the dark side approach, the turn angle is coun-
terclockwise ( � 103.6°) whereas for the sunlit side approach it is clockwise ( – 103.6°).  
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    Dark side approach 
 According   to Equation 8.85, the angle between  v   �   and  V  Venus  at the outbound crossing is 

  φ φ δ2 1 48 17 103 6 151 8� � � � �. . .° ° °       

 Hence  , by Equation 8.86, 

  
v u u u u∞ ° °

2
3 733 151 8 151 8 3 289 1 766� � � � �. (cos . sin . ) . .  (kˆ ˆ ˆ ˆV S V S mm/s)

      

 Using   this and Equation (c) above, we compute the spacecraft’s heliocentric velocity at the outbound 
crossing. 

  
V V v u u2 2

31 73 1 766( ) .  (km/s)v
V S� � � �∞ ˆ . ˆ

      

 It   follows from Equation 8.89 that 

  
V Vr⊥2 2
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 The   speed of the spacecraft at the outbound crossing is 

  
V V Vv
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2 2 2 2

2 2
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 This   is 5.83       km/s less than the inbound speed. 
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 FIGURE 8.22  
       Initiation of a sunlit side approach and dark side approach at the inbound crossing.            



  Post  -fl yby ellipse (orbit 2) for the dark side approach  
 For   the heliocentric post fl yby trajectory, labeled orbit 2 in  Figure 8.20 , the angular momentum is found 

using Equation 8.90 
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 From   Equation 8.91, 
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  and from Equation 8.92   
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 Thus  , 
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  which means   

  θ2 14 32 194 32� . .° °or   (l)      

 But     θ   2  must lie in the third quadrant since, according to Equations (i) and (j), both the sine and cosine are 
negative. Hence, 

  θ2 194 32� . °   (m)      

 With   this value of   θ   2 , we can use either Equation (i) or (j) to calculate the eccentricity, 

  e2 0 1847� .   (n)      

 Perihelion   of the departure orbit lies 194.32° clockwise from the encounter point (so that aphelion is 14.32° 
therefrom), as illustrated in  Figure 8.20 . The perihelion radius is given by Equation 2.50, 
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  which is well within the orbit of Venus.   

  Sunlit   side approach  
 In   this case the angle between  v   �   and  V  Venus  at the outbound crossing is 

  φ φ δ2 1 48 17 103 6 55 44� � � � � �. . .° ° °       
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 Therefore  , 

  
v u u u∞ ° °[ ]

2
3 733 55 44 55 44 2 118 3 074� � � � � �. cos( . ) ( )ˆ sin . ˆ . ˆ . ˆV S V uuS  (km/s)

      

 The   spacecraft’s heliocentric velocity at the outbound crossing is 

  
V V v u u2 2

37 14 3 074( )
Venus . .  (km/s)v

V S� � � �∞ ˆ ˆ
     

  which means   

  
V Vr⊥2 2

37 14 3 074� �. . km/s  km/s
      

 The   speed of the spacecraft at the outbound crossing is 

  
V V Vv

r2
2 2 2 2

2 2
3 074 37 14 37 27( )  km/s� � � � �⊥ . . .

      

 This   speed is just 0.348       km/s less than inbound crossing speed. The relatively small speed change is due 
to the fact that the apse line of this hyperbola is nearly perpendicular to Venus ’  orbital track, as shown in 
 Figure 8.23   . Nevertheless, the periapses of both hyperbolas are on the leading side of the planet. 

  Post  -fl yby ellipse (orbit 2) for the sunlit side approach  
 To   determine the heliocentric post-fl yby trajectory, labeled orbit 2 in  Figure 8.21 , we repeat steps (h) 

through (n) above. 

  
h R V2

6 9 2
2

108 2 10 37 14 4 019 10� � � � � �Venus ( )  (km /s)⊥ . . .
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 FIGURE 8.23  
       Hyperbolic fl yby trajectories for (i) the dark side approach and (ii) the sunlit side approach.            
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     θ   2  must lie in the fi rst quadrant since both the sine and cosine are positive. Hence, 

  θ2 36 76� . °   (q)      

 With   this value of   θ   2 , we can use either Equation (o) or (p) to calculate the eccentricity, 

  e2 0 1556� .       

 Perihelion   of the departure orbit lies 36.76° clockwise from the encounter point as illustrated in  Figure 8.21 . 
The perihelion radius is 
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  which is just within the orbit of Venus. Aphelion lies between the orbits of earth and Venus.          

 Gravity   assist maneuvers are used to add momentum to a spacecraft over and above that available from 
a spacecraft’s on-board propulsion system. A sequence of fl ybys of planets can impart the delta-v needed to 
reach regions of the solar system that would be inaccessible using only existing propulsion technology. The 
technique can also reduce the fl ight time. Interplanetary missions using gravity assist fl ybys must be care-
fully designed in order to take advantage of the relative positions of planets. 

 The   260       kg spacecraft Pioneer 11, launched in April 1973, used a December 1974 fl yby of Jupiter to 
gain the momentum required to carry it to the fi rst ever fl yby encounter with Saturn on 1 September 1979. 

 Following   its September 1977 launch, Voyager 1 likewise used a fl yby of Jupiter (March 1979) to reach 
Saturn in November 1980. In August 1977 Voyager 2 was launched on its  “ grand tour ”  of the outer plan-
ets and beyond. This involved gravity assist fl ybys of Jupiter (July 1979), Saturn (August 1981), Uranus 
(January 1986) and Neptune (August 1989), after which the spacecraft departed the solar system at an angle 
of 30 °  to the ecliptic. 

 With   a mass nine times that of Pioneer 11, the dual-spin Galileo spacecraft departed on 18 October 1989 
for an extensive international exploration of Jupiter and its satellites lasting until September 2003. Galileo 
used gravity assist fl ybys of Venus (February 1990), earth (December 1990) and earth again (December 
1992) before arriving at Jupiter in December 1995. 

 The   international Cassini mission to Saturn also made extensive use of gravity assist fl yby maneuvers. 
The Cassini spacecraft was launched on 15 October 1997 from Cape Canaveral, Florida, and arrived at 
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Saturn nearly seven years later, on 1 July 2004. The mission involved four fl ybys, as illustrated in  Figure 
8.24   . A little over eight months after launch, on 26 April 1998, Cassini fl ew by Venus at a periapsis altitude 
of 284       km and received a speed boost of about 7       km/s. This placed the spacecraft in an orbit which sent it 
just outside the orbit of Mars (but well away from the planet) and returned it to Venus on 24 June 1999 for 
a second fl yby, this time at an altitude of 600       km. The result was a trajectory that vectored Cassini toward 
the earth for an 18 August 1999 fl yby at an altitude of 1171       km. The 5.5       km/s speed boost at earth sent the 
spacecraft toward Jupiter for its next fl yby maneuver. This occurred on 30 December 2000 at a distance of 
9.7 million km from Jupiter, boosting Cassini’s speed by about 2       km/s and adjusting its trajectory so as to 
rendezvous with Saturn about three and a half years later.  

    8.10       PLANETARY EPHEMERIS 
 The   state vector  R ,  V  of a planet is defi ned relative to the heliocentric ecliptic frame of reference illustrated 
in  Figure 8.25   . This is very similar to the geocentric equatorial frame of Figure 4.7. The sun replaces the 
earth as the center of attraction, and the plane of the ecliptic replaces the earth’s equatorial plane. The ver-
nal equinox continues to defi ne the inertial  X  axis. 

 In   order to design realistic interplanetary missions we must be able to determine the state vector of a 
planet at any given time.  Table 8.1    provides the orbital elements of the planets and their rates of change per 
century with respect to the J2000 epoch (1 January 2000, 12       h UT). The table, covering the years 1800 to 
2050, is suffi ciently accurate for our needs. From the orbital elements we can infer the state vector using 
Algorithm 4.5. 

Jupiter gravity
assist flyby
30 Dec 2000

Arrival at Saturn
1 Jul 2004

Earth gravity
assist flyby

18 Aug 1999

Earth at launch
15 Oct 1997

First
Venus gravity

assist flyby
26 Apr 1998

Second
Venus gravity

assist flyby
24 Jun 1999

Mars orbit

Sun

γ

 FIGURE 8.24  
       Cassini seven-year mission to Saturn.            



 In   order to interpret the  Table 8.1 , observe the following: 
 1   astronomical unit (1 AU) is  1 49597871 108. × km   , the average distance between the earth and the sun. 
 1   arcsecond (1 � ) is 1/3600 of a degree. 
  a    is the semimajor axis. 
  e    is the eccentricity. 
  i    is the inclination to the ecliptic plane. 
     Ω   is the right ascension of the ascending node (relative to the J2000 vernal equinox). 
     ϖ  , the longitude of perihelion, is defi ned as   ϖ        �       ω       �       Ω , where   ω   is the argument of perihelion. 
  L   , the mean longitude, is defi ned as  L       �        ϖ         �       M , where  M  is the mean anomaly. 
    � � �a e, , ,Ω     etc., are the rates of change of the above orbital elements per Julian century. 1 century (Cy) 
equals 36,525 days.

        Algorithm 8.1          Determine   the state vector of a planet at a given date and time. All angular calculations 
must be adjusted so that they lie in the range 0 to 360 ° . Recall that the gravitational parameter of the sun is 
  μ        �      1.327      �      10 11  km 3 /s 2 . This procedure is implemented in MATLAB ®  as the function  planet_elements_
and_sv.m  in Appendix D.35. 

    1.     Use Equations 5.47 and 5.48 to calculate the Julian day number  JD .  
    2.     Calculate  T  0 , the number of Julian centuries between J2000 and the date in question    

  
T

JD
0

2 451 545

36 525
�

� , ,

,
  (8.93a)      

    3.     If  Q  is any one of the six planetary orbital elements listed in  Table 8.1 , then calculate its value at  JD  
by means of the formula    

  Q Q QT� �0 0
�   (8.93b)     
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  where Q 0  is the value listed for J2000 and  �Q     is the tabulated rate. All angular quantities must be 
adjusted to lie in the range 0 to 360 ° .   

    4.     Use the semimajor axis  a  and the eccentricity  e  to calculate the angular momentum  h  at  JD  from 
Equation 2.71    

  h a e� �μ ( )1 2
      

    5.     Obtain the argument of perihelion   ω   and mean anomaly  M  at  JD  from the results of step 3 by means 
of the defi nitions    

  

ω ϖ
ϖ

� �
� �

Ω
M L       

    6.     Substitute the eccentricity  e  and the mean anomaly  M  at  JD  into Kepler’s equation (Equation 3.14) 
and calculate the eccentric anomaly  E .  

    7.     Calculate the true anomaly   θ   using Equation 3.13.  
    8.     Use  h ,  e ,   Ω  ,  i ,   ω   and   θ   to obtain the heliocentric position vector  R  and velocity  V  by means of 

Algorithm 4.5, with the heliocentric ecliptic frame replacing the geocentric equatorial frame.        

 Table 8.1          Planetary Orbital Elements and their Centennial Rates 
From Standish et al. (1992). Used with permission.  

      a , AU 
 �a,    AU/Cy 

  e  
 �e,    1/Cy 

  i , deg 
 �i,     � /Cy 

   Ω  , deg 
Ω    
.
,  � /Cy 

   ϖ  , deg 

 �ϖ   ,  � /Cy 
  L , deg 
 �L   ,  � /Cy 

   Mercury  0.38709893  0.20563069  7.00487  48.33167  77.4545  252.25084 

     0.00000066  0.00002527   – 23.51   – 446.30  573.57  538101628.29 

   Venus  0.72333199  0.00677323  3.39471  76.68069  131.53298  181.97973 

     0.00000092   – 0.00004938   – 2.86   – 996.89   – 108.80  210 664,136.06 

   Earth  1.00000011  0.01671022  0.00005   – 11.26064  102.94719  100.46435 

      – 0.00000005   – 0.00003804   – 46.94   – 18 228.25  1198.28  129,597,740.63 

   Mars  1.52366231  0.09341233  1.85061  49.57854  336.04084  355.45332 

      – 0.00007221  0.00011902   – 25.47   – 1020.19  1560.78  68,905,103.78 

   Jupiter  5.20336301  0.04839266  1.30530  100.55615  14.75385  34.40438 

     0.00060737   – 0.00012880   – 4.15  1217.17  839.93  10,925,078.35 

   Saturn  9.53707032  0.05415060  2.48446  113.71504  92.43194  49.94432 

      – 0.00301530   – 0.00036762  6.11   – 1591.05   – 1948.89  4,401,052.95 

   Uranus  19.19126393  0.04716771  0.76986  74.22988  170.96424  313.23218 

     0.00152025   – 0.00019150   – 2.09   – 1681.4  1312.56  1,542,547.79 

   Neptune  30.06896348  0.00858587  1.76917  131.72169  44.97135  304.88003 

      – 0.00125196  0.00002514   – 3.64   – 151.25   – 844.43  786 449.21 

   (Pluto)  39.48168677  0.24880766  17.14175  110.30347  224.06676  238.92881 

      – 0.00076912  0.00006465  11.07   – 37.33   – 132.25  522,747.90 

        



        Example 8.7      
 Find   the distance between the earth and Mars at 12h UT on 27 August 2003. Use Algorithm 8.1. 

 Step   1: 

 According   to Equation 5.48, the Julian day number  J  0  for midnight (0h UT) of this date is 

  

J0 367 2003
7 2003

8 9
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4
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⎜⎜⎜
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⎪⎪⎪
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735 101 3507

, , .

, 2244 27 1 721 013 5
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� �

�

, , .

, , .       

 At    UT       �      12, the Julian day number is 

  
JD � � �2 452 878 5

12

24
2 452 879 0, , . , , .

      

 Step   2: 

 The   number of Julian centuries between J2000 and this date is 

  
T

JD
0

2 451 545

36 525

2 452 879 2 451 545

36 525
0 036523�

�
�

�
�

, ,

,

, , , ,

,
.  Cyy

      

 Step   3: 

    Table 8.1  and Equation 8.93b yield the orbital elements of earth and Mars at 12h UT on 27 August 2003.

      a , km   e    i , deg    Ω  , deg    ϖ  , deg   L , deg 

   Earth  1.4960      �      10 8   0.016709  0.00042622  348.55  102.96  335.27 

   Mars  2.2794      �      10 8   0.093417  1.8504  49.568  336.06  334.51 

 Step   4: 

  

h

h

earth

Mars

 km /s

 km /s

� �

� �

4 4451 10

5 4760 10

9 2

9 2

.

.       

 Step   5: 

  

ω ϖ

ω ϖ
earth earth

Mars

( )  ( )

(

� � � � � � � �

� �

Ω 102 96 348 55 245 59 114 1. . . .

ΩΩ)Mars � � � �336 06 49 568 286 49. . .       

  

M L

M L
earth earth

Mars Mars

( )

( )

� � � � � �

� � �

ϖ

ϖ

335 27 102 96 232 31

334

. . .

.. . . .51 336 06 1 55 358 45� � � � � ( )       
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 Step   6: 

  

E E E

E
earth earth earth

Mar

( / )� � � � �0 016709 232 31 180 231 56. sin . .π ⇒

ss Mars Mars( / )� � � � �0 093417 358 45 180 358 30. sin . .E Eπ ⇒       
 Step   7: 

  

θearth
12tan�

�

�

�
� �� 1 0 016709

1 0 016709

231 56

2

.

.
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.⎛
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.
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�
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⎛
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⎞

⎠
⎟⎟⎟⎟ ⇒ θMars

  (d)      

 Step   8: 

 From   Algorithm 4.5, 

  

R I J K

V

earth

earth

( . )  (km)� � � �

�

135 59 66 803 0 00028691 10

12

6ˆ . ˆ . ˆ

.6680 26 61 0 00021273

185 95 89 916

ˆ . ˆ . ˆ

. ˆ . ˆ

I J K

R I J

� �

� �

 (km/s)

(Mars �� �

� � �

6 4566 10

11 474 23 884 0 21826

6. ˆ

. ˆ . ˆ . ˆ

K

V I J K

)  (km)

 (km/Mars ss)       

 The   distance  d  between the two planets is therefore, 

  

d � �

� � � � � � � �

R RMars earth

185 95 135 59 89 916 66 803 6 45
2 2

. . . . .( ) ( )[ ] 666 0 00028691 10
2 6� �.( )

     

103°
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26°Earth
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Mars ascending node

Mars descending node

Sun γ

 FIGURE 8.26  
       Earth and Mars on 27 August 2003. Angles shown are heliocentric latitude, measured in the plane of the ecliptic 
counterclockwise from the vernal equinox of J2000.    

        



  or   

  d � � 55.79 10  km6
      

 The   positions of earth and Mars are illustrated in  Figure 8.26   . It is a rare event for Mars to be in opposi-
tion (lined up with earth on the same side of the sun) when Mars is at or near perihelion. The two planets 
had not been this close in recorded history.       

    8.11       NON-HOHMANN INTERPLANETARY TRAJECTORIES 
 To   implement a systematic patched conic procedure for three-dimensional trajectories, we will use vector 
notation and the procedures described in Sections 4.4 and 4.6 (Algorithms 4.2 and 4.5), together with the 
solution of Lambert’s problem presented in Section 5.3 (Algorithm 5.2). The mission is to send a spacecraft 
from planet 1 to planet 2 in a specifi ed time  t  12 . As previously in this chapter, we break the mission down 
into three parts: the departure phase, the cruise phase and the arrival phase. We start with the cruise phase. 

 The   frame of reference that we use is the heliocentric ecliptic frame shown in  Figure 8.27   . The fi rst step 
is to obtain the state vector of planet 1 at departure (time  t ) and the state vector of planet 2 at arrival (time 
 t       �       t  12 ). That is accomplished by means of Algorithm 8.1. 
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n̂

itr

itr

tr

tr

θ
ω

α

Ω

γ

Δθ

 FIGURE 8.27  
       Heliocentric orbital elements of a three-dimensional transfer trajectory from planet 1 to planet 2.            



476  CHAPTER 8 Interplanetary trajectories

 The   next step is to determine the spacecraft’s transfer trajectory from planet 1 to planet 2. We fi rst 
observe that, according to the patched conic procedure, the heliocentric position vector of the spacecraft at 
time  t  is that of planet 1 ( R  1 ) and at time  t       �       t  12  its position vector is that of planet 2 ( R  2 ). With  R  1 ,  R  2  and 
the time of fl ight  t  12  we can use Algorithm 5.2 (Lambert’s problem) to obtain the spacecraft’s departure and 
arrival velocities  V  D  

(   v   )  and  V   A   
(   v   )  relative to the sun. Either of the state vectors  R  1,  V  D  

(   v   )  or  R  2,  V   A   
(   v   )  can be used to 

obtain the transfer trajectory’s six orbital elements by means of Algorithm 4.2. 
 The   spacecraft’s hyperbolic excess velocity upon exiting the sphere of infl uence of planet 1 is 

  
v V V∞ )Departure

� �D
v( )

1   (8.94a)     

  and its excess speed is   

  
v D

v
∞ )Departure

� �V V( )
1   (8.94b)      

 Likewise  , at the sphere of infl uence crossing at planet 2, 

  
v V V∞ )Arrival

� �A
v( )

2   (8.95a)      

  
v A

v
∞ )Arrival

� �V V( )
2   (8.95b)     

        Algorithm 8.2          Given   the departure and arrival dates (and, therefore, the time of fl ight), determine the tra-
jectory for a mission from planet 1 to planet 2. This procedure is implemented as the MATLAB function 
 interplanetary.m  in Appendix D.36. 

    1.     Use Algorithm 8.1 to determine the state vector  R  1 , V  1  of planet 1 at departure and the state vector 
 R  2 , V  2  of planet 2 at arrival.  

    2.     Use  R  1 ,  R  2  and the time of fl ight in Algorithm 5.2 to fi nd the spacecraft velocity  V   D   (   v   )  at depar-
ture from planet 1’s sphere of infl uence and its velocity  V   A   (   v   )  upon arrival at planet 2’s sphere of 
infl uence.  

    3.     Calculate the hyperbolic excess velocities at departure and arrival using Equations 8.94 and 8.95.        

        Example 8.8      
 A   spacecraft departed earth’s sphere of infl uence on 7 November 1996 (0 hr UT) on a prograde coasting 
fl ight to Mars, arriving at Mars ’  sphere of infl uence on 12 September 1997 (0 hr UT). Use Algorithm 8.2 to 
determine the trajectory and then compute the hyperbolic excess velocities at departure and arrival. 

    Solution 

 Step   1: 

 Algorithm   8.1 yields the state vectors for earth and Mars. 

  

R I J Kearth earth.  (km) (� � � � � �1 0500 10 1 0466 10 988 33 1 488 8ˆ . ˆ . ˆ .R 22 10

21 516 20 987 0 00013228

8�

� � � �

 km)

 (km/s) (earth eV I J K. ˆ . ˆ . ˆ V aarth  km/s)= 30 06.  
      

  

R I J KMars Mars. km� � � � � � �2 0833 10 2 1840 10 4 0629 10 27 8 6ˆ . ˆ . ˆ  (( ) =R .. )

. ˆ . ˆ . ˆ
194 10

25 047 0 22029 0 62062

8×  km

 (km/s) (Mars MaV I J K� � � V rrs km/s)� 25 05.  
      



 Step   2: 

 The   position vector  R  1  of the spacecraft at crossing the earth’s sphere of infl uence is just that of the earth, 

  R R I J K1
8 81 0500 10 1 0466 10 988 33� � � � � �earth . (km)ˆ . ˆ . ˆ        

 Upon   arrival at Mars ’  sphere of infl uence the spacecraft’s position vector is 

  R R I J K2
7 8 62 0833 10 2 1840 10 4 0629 10� � � � � � � �Mars .  (km)ˆ . ˆ . ˆ

      

 According   to Equations 5.47 and 5.48 

  

JD

JD

Departure

Arrival

,

,

�

�

2 450 394 5

2 450 703 5

, .

    , .       

 Hence  , the time of fl ight is 

  t12 2 450 703 5 2 450 394 5 309� � �, , . , , .  days       

 Entering    R  1 ,  R  2  and  t  12  into Algorithm 5.2 yields 

  

V I J KD
v

D
vV( ) . . .  (km/s)  km/s� � � � �24 427 21 781 0 94803 32 741ˆ ˆ ˆ .( )⎡⎡

⎣⎢
⎤
⎦⎥

V I J KA
v

A
vV( ) . . .  (km/s)� � � �22 158 0 19668 0 45785 22 1ˆ ˆ ˆ .( ) 664 km/s⎡

⎣⎢
⎤
⎦⎥       

 Using   the state vector  R  1 , V  D  
(   v   )  we employ Algorithm 4.2 to fi nd the orbital elements of the transfer 

trajectory. 

  

h

e

i

� �

�

�

�

�

�

4 8456 10

0 20579

44 895

1 6621

19 969

3

6 2
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.

.

.

.

.

 km /s

Ω °
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°ω

θ 440 04

1 8474 108

.

.

°

a � �  km       

 Step   3: 

 At   departure the hyperbolic excess velocity is 

  
v V V I J K∞ )Departure

( )
earth .  (km/s� � � � � �D

v 2 913 0 7958 0 9480ˆ . ˆ . ˆ ))
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 Therefore  , the hyperbolic excess speed is 

  
v∞ ∞) )Departure Departure

 km/s� �v 3 1651.   (a)      

 Likewise  , at arrival 

  
v V V I J K∞ )Arrival

( )
Mars .  (km/� � � � � �A

v 2 8804 0 0239 76 0 16277ˆ . ˆ . ˆ ss)
     

  so that   

  
v∞ ∞) )Arrival

Arrival  km/s� �v 2 8851.   (b)            

 For   the previous example,  Figure 8.28    shows the orbits of earth, Mars and the spacecraft from directly 
above the ecliptic plane. Dotted lines indicate the portions of an orbit which are below the plane.   λ   is the 
heliocentric longitude measured counterclockwise from the vernal equinox of J2000. Also shown are the 
position of Mars at departure and the position of earth at arrival. 

 The   transfer orbit resembles that of the Mars Global Surveyor, which departed earth on 7 November 
1996 and arrived at Mars 309 days later, on 12 September 1997.
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 FIGURE 8.28  
       The transfer trajectory, together with the orbits of earth and Mars, as viewed from directly above the plane of the 
ecliptic.    

        



        Example 8.9      
 In   Example 8.8, calculate the delta-v required to launch the spacecraft onto its cruise trajectory from a 
180       km circular parking orbit. Sketch the departure trajectory. 

    Solution 
 Recall   that 

  

rearth

earth

 km

 km /s

�

�

6378

398 600 3 2μ ,       

 The   radius to periapsis of the departure hyperbola is the radius of the earth plus the altitude of the parking 
orbit, 

  
rp � � �6378 180 6558 km

      

 Substituting   this and Equation (a) from Example 8.8 into Equation 8.40 we get the speed of the spacecraft 
at periapsis of the departure hyperbola, 

  

v v
rp

p

� �

� �
�

�

∞ )⎡
⎣⎢

⎤
⎦⎥Departure

earth
2

2

2

3 1651
2 398 600

6558
11

μ

.
,

.447 km/s
      

 The   speed of the spacecraft in its circular parking orbit is 

  

v
rc

p

� � �
μearth  km/s

398 600

6558
7 796

,
.

      

 Hence  , the delta-v requirement is 

  
Δv v vp c� � � 3 674.  km/s

      

 The   eccentricity of the hyperbola is given by Equation 8.38, 

  

e
r vp

� �

� �
�

�

1

1
6558 3 1651

398 600
1 165

2

2

∞

μearth

.

,
.

      

 If   we assume that the spacecraft is launched from a parking orbit of 28 °  inclination, then the departure 
appears as shown in the three-dimensional sketch in  Figure 8.29   .      
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        Example 8.10      
 In   Example 8.8, calculate the delta-v required to place the spacecraft in an elliptical capture orbit around 
Mars with a periapsis altitude of 300       km and a period of 48 hours. Sketch the approach hyperbola. 

    Solution 
 From   Tables A.1 and A.2 we know that 

  

rMars

Mars
3

km

km /s

�

�

3380

42 830 2μ ,
      

 The   radius to periapsis of the arrival hyperbola is the radius of Mars plus the periapsis of the elliptical capture 
orbit, 

  
rp � � �3380 300 3680 km

      

 According   to Equation 8.40 and Equation (b) of Example 8.8, the speed of the spacecraft at periapsis of the 
arrival hyperbola is 

  

v v
rp

p

) [ ) ] kmhyp Arrival
Mars� � � �

�
�∞

2 22
2 8851

2 42 830

3680
5 621

μ
.

,
. //s

      

 To   fi nd the speed  vp )el    at periapsis of the capture ellipse, we use the required period (48 hours) to determine 
the ellipse’s semimajor axis by means of Equation 2.83, 

  
a

T
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π π2
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 FIGURE 8.29  
       The departure hyperbola, assumed to be at 28 °  inclination to earth’s equator.            



 From   Equation 2.63 we obtain the eccentricity of the capture ellipse 

  
e

r

a
p

ell
ell

� � � � �1 1
3680

31 880
0 8846

,
.

      

 Then   Equation 8.59 yields 

  

v
r

ep
p

) ( ) ( ) km/sell
Mars

ell� � � � �
μ

1
42 830

3680
1 0 8846 4 683

,
. .  

      

 Hence  , the delta-v requirement is 

  
Δv v vp p� � �) ) km/shyp ell 0 9382.  

      

 The   eccentricity of the approach hyperbola is given by Equation 8.38, 

  
e

r vp
� � � �

�
�1 1

3680 2 8851

42 830
1 715

2 2
∞

μMars

.

,
.

      

 Assuming   that the capture ellipse is a polar orbit of Mars, then the approach hyperbola is as illustrated 
in  Figure 8.30   . Note that Mars ’  equatorial plane is inclined 25 °  to the plane of its orbit around the sun. 
Furthermore, the vernal equinox of Mars lies at an angle of 85 °  from that of the earth.        
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    PROBLEMS 

    Section 8.2 

        8.1     Find the total delta-v required for a Hohmann transfer from earth orbit to Saturn’s orbit.    
    { Ans.: 15.74       km/s }  

    8.2     Find the total delta-v required for a Hohmann transfer from Mars ’  orbit to Jupiter’s orbit.    
    { Ans.: 10.15       km/s }   

    Section 8.3 

        8.3     Calculate the synodic period of Venus relative to the earth.    
    { Ans.: 1.599       y }  

    8.4     Calculate the synodic period of Jupiter relative to Mars.    
    { Ans.: 2.236       y }   

    Section 8.4 

        8.5     Calculate the radius of the spheres of infl uence of Mercury, Venus, Mars and Jupiter.    
    { Ans.: See Table A.2 }  

    8.6     Calculate the radius of the spheres of infl uence of Saturn, Uranus and Neptune.    
    { Ans.: See Table A.2 }   

    Section 8.6 

        8.7     On a date when the earth was 147.4      �      10 6        km from the sun, a spacecraft parked in a 200       km altitude 
circular earth orbit was launched directly into an elliptical orbit around the sun with perihelion of 
120      �      10 6        km and aphelion equal to the earth’s distance from the sun on the launch date. Calculate the 
delta-v required and  v   �   of the departure hyperbola.    
    { Ans.:  v   �        �      1.814       km/s,   Δ v       �      3.373       km/s. }  

    8.8     Calculate the propellant mass required to launch a 2000       kg spacecraft from a 180       km circular earth orbit 
on a Hohmann transfer trajectory to the orbit of Saturn. Calculate the time required for the mission and 
compare it to that of Cassini. Assume the propulsion system has a specifi c impulse of 300       s.    
    { Ans.: 6.03       y; 21,810       kg }   

    Section 8.7 

        8.9     An earth orbit has a perigee radius of 7000       km and a perigee velocity of 9       km/s. Calculate the change in 
apogee radius due to a change of 

    (a)     1       km in the perigee radius.  
    (b)     1       m/s in the perigee speed.       
    { Ans.: (a) 7.33       km (b) 7.57       km }  



    8.10     An earth orbit has a perigee radius of 7000       km and a perigee velocity of 9       km/s. Calculate the change 
in apogee speed due to a change of 

    (a)     1       km in the perigee radius.  
    (b)     1       m/s in the perigee speed.       
    { Ans.: (a)  � 1.81       m/s (b)  � 0.406       m/s }   

    Section 8.8 

        8.11     Estimate the total delta-v requirement for a Hohmann transfer from earth to Mercury, assuming a 
150       km circular parking orbit at earth and a 150       km circular capture orbit at Mercury. Furthermore, 
assume that the planets have coplanar circular orbits with radii equal to the semimajor axes listed in 
Table A.1.    
    { Ans.: 13.08       km/s }   

    Section 8.9 

        8.12     Suppose a spacecraft approaches Jupiter on a Hohmann transfer ellipse from earth. If the spacecraft 
fl ies by Jupiter at an altitude of 200,000       km on the sunlit side of the planet, determine the orbital 
elements of the post-fl yby trajectory and the delta-v imparted to the spacecraft by Jupiter’s gravity. 
Assume that all of the orbits lie in the same (ecliptic) plane.    
    { Ans.:   Δ V       �      10.6       km/s,  a       �      4.79      �      10 6        km,  e       �      0.8453 }   

    Section 8.10 

        8.13     Use  Table 8.1  to verify that the orbital elements for earth and Mars presented in Example 8.7.  
    8.14     Use  Table 8.1  to determine the day of the year 2005 when the earth was farthest from the sun.    

    { Ans.: 4 July. }   

    Section 8.11 

        8.15     On 1 December 2005 a spacecraft left a 180       km altitude circular orbit around the earth on a mission 
to Venus. It arrived at Venus 121 days later on 1 April 2006, entering a 300       km by 9000       km capture 
ellipse around the planet. Calculate the total delta-v requirement for this mission.    
    { Ans.: 6.75       km/s }  

    8.16     On 15 August 2005 a spacecraft in a 190       km, 52 °  inclination circular parking orbit around the earth 
departed on a mission to Mars, arriving at the red planet on 15 March 2006, whereupon retro rockets 
place it into a highly elliptic orbit with a periapsis of 300       km and a period of 35 hours. Determine the 
total delta-v required for this mission.    
    { Ans.: 4.86       km/s }   

    List of Key Terms 

        aerobraking  
    gravity assist maneuver  
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    hyperbolic excess velocity  
    Keplerian orbits  
    leading side fl yby  
    longitude of perihelion  
    mean longitude  
    perturbing acceleration  
    synodic period  
    trailing side fl yby  
    wait time        
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    9.1       INTRODUCTION 
 Just   as Chapter 1 provides a foundation for the development of the equations of orbital mechanics, this 
chapter serves as a basis for developing the equations of satellite attitude dynamics. Chapter 1 deals with 
particles, whereas here we are concerned with rigid bodies. Those familiar with rigid body dynamics can 
move on to the next chapter, perhaps returning from time to time to review concepts. 

 The   kinematics of rigid bodies is presented fi rst. The subject depends on a theorem of the French math-
ematician Michel Chasles (1793 – 1880). Chasles ’  theorem states that the motion of a rigid body can be 
described by the displacement of any point of the body (the base point) plus a rotation about a unique 
axis through that point. The magnitude of the rotation does not depend on the base point. Thus, at any 
instant a rigid body in a general state of motion has an angular velocity vector whose direction is that of the 
instantaneous axis of rotation. Describing the rotational component of the motion of a rigid body in three 
dimensions requires taking advantage of the vector nature of angular velocity and knowing how to take 
the time derivative of moving vectors, which is explained in Chapter 1. Several examples illustrate how 
this is done. 

 We   then move on to study the interaction between the motion of a rigid body and the forces acting on 
it. Describing the translational component of the motion requires simply concentrating all of the mass at a 
point, the center of mass, and applying the methods of particle mechanics to determine its motion. Indeed, 

                                                         Rigid-body dynamics    9 
CHAPTER

Chapter outline

9.1 Introduction 485
9.2 Kinematics 486
9.3 Equations of translational motion 495
9.4 Equations of rotational motion 497
9.5 Moments of inertia 501
9.6 Euler’s equations 524
9.7 Kinetic energy 530
9.8 The spinning top 533
9.9 Euler angles 538
9.10 Yaw, pitch and roll angles 549
9.11 Quaternions 552



486  CHAPTER 9 Rigid-body dynamics

our study of the two-body problem up to this point has focused on the motion of their centers of mass with-
out regard to the rotational aspect. Analyzing the rotational dynamics requires computing the body’s angu-
lar momentum, and that in turn requires accounting for how the mass is distributed throughout the body. 
The mass distribution is described by the six components of the moment of inertia tensor. 

 Writing   the equations of rotational motion relative to coordinate axes embedded in the rigid body and 
aligned with the principle axes of inertia yields the nonlinear Euler equations of motion, which are applied 
to a study of the dynamics of a spinning top (or one-axis gyro). 

 The   expression for the kinetic energy of a rigid body is derived because it will be needed in the follow-
ing chapter. 

 The   chapter next describes two sets of three angles commonly employed to specify the orientation of a 
body in three-dimensional space. One of these comprises the Euler angles, which are the same as the right 
ascension of the node (  Ω  ), argument of periapsis (  ω  ) and inclination ( i ) introduced in Chapter 4 to orient 
orbits in space. The other set comprises the yaw, pitch and roll angles, which are suitable for describing the 
orientation of an airplane. Both the Euler angles and yaw-pitch-roll angles will be employed in Chapter 10. 

 The   chapter concludes with a brief discussion of quaternions and an example of how they are used to 
describe the evolution of the attitude of a rigid body.  

    9.2       KINEMATICS 
    Figure 9.1    shows a moving rigid body and its instantaneous axis of rotation, which defi nes the direction of 
the absolute angular velocity vector   ω  . The  XYZ  axes are a fi xed, inertial frame of reference. The position 
vectors  R   A   and  R   B   of two points on the rigid body are measured in the inertial frame. The vector  R   B/A   drawn 
from point  A  to point  B  is the position vector of  B  relative to  A . Since the body is rigid,  R   B/A   has a constant 
magnitude even though its direction is continuously changing. Clearly, 

  R R RB A B A� � /       

X

Y

Z

ARB

RA

B

RB/A

ω

 FIGURE 9.1  
       Rigid body and its instantaneous axis of rotation.    



 Differentiating   this equation through with respect to time, we get 

  
� �R R

R
B A

B Ad

dt
� � /   (9.1)      

    �RA     and  �RB    are the absolute velocities  v   A   and  v   B   of points  A  and  B . Because the magnitude of  R   B/A   does not 
change, its time derivative is given by Equation 1.52, 

  

d

dt
B A

B A
R

R/
/� �ω

      

 Thus  , from Equation 9.1 we obtain the   relation between velocities of points on a rigid body   

  v v RB A B A� � �ω /   (9.2)      

 Taking   the time derivative of Equation 9.1 yields 

  

�� ��R R
R

B A
B Ad

dt
� �

2

2
/   (9.3)      

    ��RA    and  ��RB    are the absolute accelerations  a   A   and  a   B   of the two points of the rigid body, while from Equation 
1.53 we have 

  

d

dt
B A

B A B A

2

2

R
R R/

/ /� � � � �α ω ω( )
      

 in   which   α   is the angular acceleration,   α        �       d   ω  / dt . Therefore, Equation 9.3 yields the   relation between 
accelerations of points on a rigid body   

  a a R RB A B A B A� � � � � �α ω ω/ /( )   (9.4)      

 Equations   9.2 and 9.4 are the relative velocity and acceleration formulas. Note that all quantities in these 
expressions are measured in the same inertial frame of reference. 

 When   the rigid body under consideration is connected to and moving relative to another rigid body, 
computation of its inertial angular velocity   ω   and angular acceleration   α   must be done with care. The key 
is to remember that angular velocity is a vector. It may be found as the vector sum of a sequence of angular 
velocities, each measured relative to another, starting with one measured relative to an absolute frame, as 
illustrated in  Figure 9.2   . In that case, the absolute angular velocity   ω   of body 4 is 

  ω ω ω ω ω� � � �1 2 1 3 2 4 3/ / /   (9.5)      

 Each   of these angular velocities is resolved into components along the axes of the moving frame of refer-
ence  xyz  shown in  Figure 9.2 , so that the vector sum may be written 

  
ω � � �ω ω ωx y z

ˆ ˆ ˆi j k   (9.6)      
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 The   moving frame is chosen for convenience of the analysis, and its own inertial angular velocity is 
denoted   Ω  , as discussed in Section 1.6. According to Equation 1.56, the absolute angular acceleration 
  α        �       d   ω  / dt  is obtained from Equation 9.6 by means of the following calculation, 

  
α

ω
Ω ω� � �

d

dt

⎞
⎠
⎟⎟⎟

rel
  (9.7)     

  where   

  

d

dt x y z
ω⎞

⎠
⎟⎟⎟

rel
� � �� � �ω ω ωˆ ˆ ˆi j k   (9.8)     

  and  �ω ωx xd dt� /    , etc.   
 Being   able to express the absolute angular velocity vector in an appropriately chosen moving reference 

frame, as in Equation 9.6, is crucial to the analysis of rigid body motion. Once we have the components of 
  ω  , we simply differentiate them with respect to time to arrive at Equation 9.8. Observe that the absolute 
angular acceleration   α   and  d   ω  / dt ) rel , the angular acceleration relative to the moving frame, are the same 
if and only if   Ω        �        ω  . That occurs if the moving reference is a body-fi xed frame, that is, a set of  xyz  axes 
imbedded in the rigid body itself.

        Example 9.1      
 An   airplane fl ies at constant speed  v  while simultaneously undergoing a constant yaw rate   ω  yaw   about a ver-
tical axis and describing a circular loop in the vertical plane with a radius   ρ  . The constant propeller spin rate 
is   ω   spin  relative to the airframe. Find the velocity and acceleration of the tip  P  of the propeller relative to the 
hub  H , when  P  is directly above  H . The propeller radius is  l .        
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 FIGURE 9.2  
       Angular velocity is the vector sum of the relative angular velocities starting with   ω   1 , measured relative to the inertial 
frame.    



    Solution 
 The    xyz  axes are rigidly attached to the airplane. The  x  axis is aligned with the propeller’s spin axis. The 
 y  axis is vertical, and the  z  axis is in the spanwise direction, so that  xyz  forms a right-handed triad. Although 
the  xyz  frame is not inertial, we can imagine it to instantaneously coincide with an inertial frame. 

 The   absolute angular velocity of the airplane has two components, the yaw rate and the counterclockwise 
pitch angular velocity  v /  ρ   of its rotation in the circular loop, 

  
ωairplane yaw pitch yaw� � � �ω ω ω

ρ
ˆ ˆ ˆ ˆj k j k

v

      

 The   angular velocity of the body-fi xed moving frame is that of the airplane,   Ω        �        ω   airplane , so that 

  
Ω � �ω

ρyaw
ˆ ˆj k

v
  (a)      

 The   absolute angular velocity of the propeller is that of the airplane plus the angular velocity of the propel-
ler relative to the airplane, 

  
ω ω Ωprop airplane spin spin� � � �ω ωˆ ˆi i

     

  which means   

  
ωprop spin yaw� � �ω ω

ρ
ˆ ˆ ˆi j k

v
  (b)      

 From   Equation 9.2, the velocity of point  P  on the propeller relative to  H  on the hub,  v   P   /   H  , is given by 

  
v v v rP H P H P H/ prop /� � � �ω

     

  where  r   P   /   H   is the position vector of  P  relative to  H  at this instant,   

  r jP H l/ � ˆ   (c)      
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 FIGURE 9.3  
       Airplane with attached  xyz  body frame.    
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 Thus  , using (b) and (c), 

  
v i j k jP H spin yaw

v
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ρ
ˆ ˆ ˆ ( ˆ)

⎛
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  from which   

  

v i kP H spin
v
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ρ

ωˆ ˆ

      

 The   absolute angular acceleration of the propeller is found by substituting (a) and (b) into Equation 9.7, 
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 Since     ω   spin ,   ω   yaw ,  v  and   ρ   are all constant, this reduces to 
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ρ
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 Carrying   out the cross product yields 

  
αprop spin yaw spin� �

v

ρ
ω ω ωˆ ˆj k   (d)      

 From   Equation 9.4, the acceleration of  P  relative to  H ,  a   P   /   H  , is given by 

  
a a a r rP H P H P H P H/ prop / prop prop /� � � � � � �α ω ω( )

      

 Substituting   (b), (c) and (d) into this expression yields 
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 From   this we fi nd 
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  so that fi nally,   
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        Example 9.2      
 The   satellite is rotating about the  z -axis at a constant rate  N . The  xyz  axes are attached to the spacecraft, 
and the  z  axis has a fi xed orientation in inertial space. The solar panels rotate at a constant rate  �θ     clockwise 
around the positive y-axis, as shown in Figure 9.4. Relative to point  O , which lies at the center of the space-
craft and on the centerline of the panels, calculate for point  A  on the panel        

    (a)     Its absolute velocity and  
    (b)     Its absolute acceleration.    

    Solution 
        (a)     Since the moving  xyz  frame is attached to the body of the spacecraft, its angular velocity is    

  Ω � Nk̂   (a)      

 The   absolute angular velocity of the panel is the absolute angular velocity of the spacecraft plus the angular 
velocity of the panel relative to the spacecraft, 

  
ωpanel � � ��θˆ ˆj kN   (b)      

 The   position vector of  A  relative to  O  is 

  
r i j kA O

w
d

w
/ sin� � � �

2 2
θ θˆ ˆ cos ˆ   (c)      

 According   to Equation 9.2, the velocity of  A  relative to  O  is 
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  from which   
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 FIGURE 9.4  
       Rotating solar panel on a rotating satellite.    
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    (b)     The absolute angular acceleration of the panel is found by substituting (a) and (b) into Equation 9.7,    

  

α
ω

Ω ωpanel
panel

rel
panel

( )

� � �

�
�

�

d

dt

d

dt

dN

dt

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦

�θ ˆ ˆj k⎥⎥
⎥ � � � �( ) ( )N Nˆ ˆ ˆk j k�θ

      

 Since    N  and  �θ    are constants, this reduces to 

  
αpanel N� �θ î   (d)      

 To   fi nd the acceleration of  A  relative to  O , we substitute (b), (c) and (d) into Equation 9.4, 

  

a a a r r

i j k

A O A O A O A O

N

w

/ panel / panel panel /( )� � � � � � �

�

�

α ω ω
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θ θ
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w
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2 2
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�
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�
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ˆ ˆ ˆ
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i j k

oos

cos sin

θ θ θ

θ θ θ

ˆ ˆ

ˆ ˆ ˆ
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i j k

� � �
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N d N

w
Nd N

w w

� �

�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ 0

2 2 22
�θ θsin

     

  which leads to   

  
a i j kA O

w
N N Nd w

w
/ ( )sin� � � � �

2 2
2 2 2� � �θ θ θ θ θ θˆ ( cos )ˆ cos ˆ

           

        Example 9.3      
 The   gyro rotor shown has a constant spin rate   ω   spin  around axis  b       �       a  in the direction shown. The  XYZ  axes 
are fi xed. The  xyz  axes are attached to the gimbal ring, whose angle   θ   with the vertical is increasing at the 
constant rate  �θ    in the direction shown. The assembly is forced to precess at the constant rate  N  around the 
vertical, as shown. For the rotor in the position shown, calculate 

    (a)     The absolute angular velocity and  
    (b)     The absolute angular acceleration.    

 Express   the results in both the fi xed  XYZ  frame and the moving  xyz  frame.        



    Solution 
        (a)     We will need the instantaneous relationship between the unit vectors of the inertial  XYZ  axes and the co-
moving  xyz  frame, which by inspecting  Figure 9.6    can be seen to be    

  

ˆ cos ˆ sin ˆ

ˆ ˆ

ˆ sin ˆ cos ˆ

I j k
J i

K j k

� � �

�

� �

θ θ

θ θ
  (a)     

  so that the matrix of the transformation from  xyz  to  XYZ  is (see Section 4.5)   

  

[ ]

cos sin

sin cos

Q xX �

�0

1 0 0

0

θ θ

θ θ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (b)      

 The   absolute angular velocity of the gimbal ring is that of the base plus the angular velocity of the gimbal 
relative to the base, 

  
ωgimbal � � � � � � � �N N N Nˆ ˆ (sin ˆ cos ˆ ) ˆ ˆ sin ˆ cos ˆK i j k i i j� � �θ θ θ θ θ θ θkk   (c)     

  where we made use of (a) 3 . Since the moving  xyz  frame is attached to the gimbal,   Ω        �        ω   gimbal , so that,   

  Ω � � ��θ θ θˆ sin ˆ cos ˆi j kN N   (d)      
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 The   absolute angular velocity of the rotor is its spin relative to the gimbal, plus the angular velocity of the 
gimbal, 

  
ω ωrotor gimbal spin� � ω k̂   (e)      

 From   (c) it follows that, 

  
ωrotor spin� � � ��θ θ θ ωˆ sin ˆ ( cos ) ˆi j kN N   (f)      

 Because    ̂i    and  ̂k    move with the gimbal, this expression is valid for any time, not just the instant shown in 
 Figure 9.5 . Alternatively, applying the vector transformation 

  
ω ωrotor rotor{ } { }XYZ xX xyz

� [ ]Q   (g)     

  we obtain the angular velocity of the rotor in the inertial frame, but only at the instant shown in the fi gure, 
i.e., when the  x  axis aligns with the  Y  axis   
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  or   

  
ωrotor spin spinsin� � � �ω θ θ ω θˆ ˆ ( cos ) ˆI J K� N   (h)      
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 FIGURE 9.6  
       Orientation of the fi xed  XZ  axes relative to the rotating  xz  axes.    



    (b)     The angular acceleration of the rotor is obtained by substituting (d) and (f) into Equation 9.7, recalling 

that  N ,  �θ   , and   ω   spin  are independent of time:    
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 Upon   collecting terms, we get 

  
αrotor spin spinsin ( cos ) sin� � � �N N Nω θ θ θ ω θ θˆ ˆ ˆi j k� �

  (i)      

 This   expression, like (f), is valid at any time. 
 The   components of   α   rotor  along the  XYZ  axes are found in the same way as for   ω   rotor , 

  
{ } [ ] { }α αrotor rotorXYZ xX xyz� Q

     

  which means   
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  or   

  
αrotor spin spin spin( cos ) sin sin� � � �� �θ ω θ ω θ θω θN Nˆ ˆ ˆI J K   (j)      

 Note   carefully that (j) is not simply the time derivative of (h). Equations (h) and (j) are valid only at the 
instant that the  xyz  and  XYZ  axes have the alignments shown in  Figure 9.5 .        

    9.3       EQUATIONS OF TRANSLATIONAL MOTION 
    Figure 9.7    again shows an arbitrary, continuous, three-dimensional body of mass  m .  “ Continuous ”  means 
that as we zoom in on a point it remains surrounded by a continuous distribution of matter having the infi ni-
tesimal mass  dm  in the limit. The point never ends up in a void. In particular, we ignore the actual atomic 
and molecular microstructure in favor of this continuum hypothesis, as it is called. Molecular microstruc-
ture does not bear upon the overall dynamics of a fi nite body. We will use  G  to denote the center of mass. 
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Position vectors of points relative to the origin of the inertial frame will be designated by capital letters. 
Thus, the position of the center of mass is  R   G  , defi ned as 

  

m dmG

m

R R� ∫   (9.9)      

  R    is the position of a mass element  dm  within the continuum. Each element of mass is acted upon by a net 
external force  d  F  net  and a net internal force  d  f  net . The external force comes from direct contact with other 
objects and from action at a distance, such as gravitational attraction. The internal forces are those exerted 
from within the body by neighboring particles. These are the forces that hold the body together. For each 
mass element, Newton’s second law, Equation 1.38, is written 

  d d dmF f Rnet net� � ��   (9.10)      

 Writing   this equation for the infi nite number of mass elements of which the body is composed, and then 
summing them all together leads to the integral, 

  

d d dm
m

F f Rnet net∫ ∫ ∫� � ��

      

 Because   the internal forces occur in action-reaction pairs,  df 0net∫ �    . (External forces on the body are 
those without an internal reactant; the reactant lies outside the body and, hence, outside our purview.) Thus, 

  

F Rnet � ��dm
m
∫   (9.11)     

  where  F  net  is the resultant external force on the body,  F Fnet net� d∫    . From Equation 9.9   

  

�� ��R Rdm m
m

G∫ �

     

  where  ��R aG G�    , the absolute acceleration of the center of mass. Therefore, Equation 9.11, the   equation of 
translational motion of a rigid body  , can be written   

  F Rnet � m G
��   (9.12)      

X

Y

Z

G

dm

R
RG

dFnet

dfnet

 FIGURE 9.7  
       Forces on the mass element  dm  of a continuous medium.    



 We   are therefore reminded that the motion of the center of mass of a body is determined solely by the resul-
tant of the external forces acting on it. So far our study of orbiting bodies has focused exclusively on the 
motion of their centers of mass. In this chapter we will turn our attention to rotational motion around the 
center of mass. To simplify things, we will ultimately assume that the body is not only continuous, but that 
it is also rigid. That means all points of the body remain a fi xed distance from each other and there is no 
fl exing, bending or twisting deformation.  

    9.4       EQUATIONS OF ROTATIONAL MOTION 
 Our   development of the rotational dynamics equations does not require at the outset that the body under 
consideration be rigid. It may be a solid, fl uid or gas. 

 Point    P  in the  Figure 9.8    is arbitrary; it need not be fi xed in space nor attached to a point on the body. 
Then the moment about  P  of the forces on mass element  dm  (cf.  Figure 9.7 ) is 

  d d dPM r F r f� � �net net�      

  where  r  is the position vector of the mass element  dm  relative to the point  P . Writing the right hand side 
as  r       �      ( d  F  net       �       d  f  net ), substituting Equation 9.10, and integrating over all of the mass elements of the body 
yields   

  

M r RP

m

dm
net

� � ��∫   (9.13)     

  where  ��R    is the absolute acceleration of  dm  relative to the inertial frame and   

  
M r F r fP d d

net net net� � � �∫ ∫       
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 But    r f 0� �d net∫     because the internal forces occur in action-reaction pairs. Thus, 

  
M r FP d

net net� �∫      

  which means the net moment includes only the moment of all of the external forces on the body.   
 From   the product rule of calculus we know that  d dt( )r R r R r R� � � � �� �� � �/    , so that the integrand in 

Equation 9.13 may be written 

  
r R r R r R� � � � ��� � � �d

dt
( )   (9.14)      

 Furthermore  ,  Figure 9.8  shows that  r       �       R       �       R   P  , where  R   P   is the absolute position vector of  P . It follows 
that 

  
� � � � � � �r R R R R R R� � � � � � �( )P P   (9.15)      

 Substituting   Equation 9.15 into Equation 9.14, then moving that result into Equation 9.13 yields 

  

M r R R RP

m

P

m

d

dt
dm dm

net
� � � �� � �∫ ∫   (9.16)      

 Now  ,  r R� � dm     is the moment of the absolute linear momentum of mass element  dm  about  P . The 
moment of momentum, or angular momentum, of the entire body is the integral of this cross product over 
all of its mass elements. That is, the absolute angular momentum of the body relative to point  P  is 

  

H r RP

m

dm� � �∫   (9.17)      

 Observing   from  Figure 9.8  that  r       �       r   G   /   P        �        ρ  , we can write Equation 9.17 as 

  

H r R r R RP G P

m

G P

m m

dm dm dm� � � � � � �( )/ /ρ ρ� � �∫ ∫ ∫   (9.18)      

 The   last term is the absolute angular momentum relative to the center of mass  G , 

  
H RG dm� �ρ∫  �   (9.19)      

 Furthermore  , by the defi nition of center of mass, Equation 9.9, 

  

� �R Rdm m
m

G∫ �   (9.20)      

 Equations   9.19 and 9.20 allow us to write Equation 9.18 as 

  H H r vP G G P Gm� � �/   (9.21)      



 This   useful relationship shows how to obtain the absolute angular momentum about any point  P  once  H   G   is 
known. 

 For   calculating the angular momentum about the center of mass, Equation 9.19 can be cast in a much 
more useful form by making the substitution (cf.  Figure 9.8 )  R       �       R   G        �        ρ  , so that 

  

H R RG G

m m

G

m

dm dm dm� � � � � � �ρ ρ ρ ρ ρ( )� � � �∫ ∫ ∫
      

 In   the two integrals on the right, the variable is   ρ  .  �RG     is fi xed and can therefore be factored out of the fi rst 
integral to obtain 

  

H RG

m

G

m

dm dm� � � �ρ ρ ρ∫ ∫
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
� �

      

 By   defi nition of the center of mass,  ρdm
m

� 0∫     (the position vector of the center of mass relative to itself 
is zero), which means 

  

HG

m

dm� �ρ ρ�∫   (9.22)      

 Since     ρ   and  �ρ     are the position and velocity relative to the center of mass  G ,  ρ ρ� � dm
m∫     is the total 

moment about the center of mass of the linear momentum relative to the center of mass,  HG rel
   . In other 

words, 

  
H HG G�

rel
  (9.23)      

 This   is a rather surprising fact, hidden in Equation 9.19 and true in general for no other point of the body. 
 Another   useful angular momentum formula, similar to Equation 9.21, may be found by substituting 

 R       �       R   P        �       r  into Equation 9.17, 

  

H r R r r R r rP P

m m

P

m

dm dm dm� � � � � � �( )� � � �∫ ∫ ∫
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
  (9.24)      

 The   term on the far right is the net moment of relative linear momentum about  P , 

  

H r rP

m

dm
rel

� � �∫   (9.25)      

 Also  ,  r rdm m G Pm
� /∫    , where  r   G   /   P   is the position of the center of mass relative to  P . Thus, Equation 9.24 

can be written 

  
H H r vP P G P Pm� � �

rel /   (9.26)      

 Finally  , substituting this into Equation 9.21, solving for  HP rel
   , and noting that  v   G        �       v   P        �       v   G   /   P   yields 

  
H H r vP G G P G Pm

rel / /� � �   (9.27)      
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 This   expression is useful when the absolute velocity  v   G   of the center of mass, which is required in Equation 
9.21, is not available. 

 So   far we have written down some formulas for calculating the angular momentum about an arbitrary 
point in space and about the center of mass of the body itself. Let us now return to the problem of relating 
angular momentum to the applied torque. Substituting Equations 9.17 and 9.20 into 9.16, we obtain 

  
M H R RP P P Gm

net
� � �� � �

      

 Thus  , for an arbitrary point  P , 

  
M H v vP P P Gm

net
� � ��   (9.28)     

  where  v   P   and  v   G   are the absolute velocities of points  P  and  G , respectively. This expression is applicable to 
two important special cases.   

 If   the point  P  is at rest in inertial space ( v   P        �       0 ), then Equation 9.28 reduces to 

  
M HP Pnet

� �   (9.29)      

 This   equation holds as well if  v   P   and  v   G   are parallel, e.g., if  P  is the point of contact of a wheel rolling while 
slipping in the plane. Note that the validity of Equation 9.29 depends neither on the body’s being rigid nor 
on its being in pure rotation about  P . 

 If   point  P  is chosen to be the center of mass, then,  v   P        �       v   G  , and Equation 9.28 becomes the equation of 
rotational motion of a continuous medium 

  
M HG Gnet

� �   (9.30)      

 This   equation is valid for any state of motion. 
 If   Equation 9.30 is integrated over a time interval, then we obtain the angular impulse-momentum 

principle, 

  

M H HG

t

t

G Gdt
net

1

2

2 1∫ � �   (9.31)      

 A   similar expression follows from Equation 9.29.  Mdt∫     is the   angular impulse  . If the net angular 
impulse is zero, then   Δ   H       �       0 , which is a statement of the conservation of angular momentum. Keep in 
mind that the angular impulse – momentum principle is not valid for just any reference point. 

 Additional   versions of Equations 9.29 and 9.30 can be obtained which may prove useful in special cir-
cumstances. For example, substituting the expression for  H   P   (Equation 9.21) into Equation 9.28 yields 
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dt
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  or, finally,   

  
M H r aP G G P Gm

net /� � ��   (9.32)      

 This   expression is useful when it is convenient to compute the net moment about a point other than the cen-
ter of mass. Alternatively, by simply differentiating Equation 9.27 we get 

  
� �

� ��� ���
H H v v r a

0

P G G P G P G P G Pm m
rel / / / /� � � � �

�

      

 Solving   for  �HG    , invoking Equation 9.30, and using the fact that  a   P   /   G        �       �  a   G   /   P   leads to 

  
M H r aG P G P P Gm

net rel / /� � ��   (9.33)      

 Finally  , if the body is rigid, the magnitude of the position vector   ρ   of any point relative to the center of 
mass does not change with time. Therefore, Equation 1.52 requires that  �ρ ω ρ� �    , leading us to conclude 
from Equation 9.22 that the   angular momentum of a rigid body   is 

  

HG

m

dm� � �ρ ω ρ( ) ( )∫ Rigid body   (9.34)      

 Again  , the absolute angular momentum about the center of mass depends only on the absolute angular 
velocity and not on the absolute translational velocity of any point of the body. 

 No   such simplifi cation of Equation 9.17 exists for an arbitrary reference point  P . However, if the point 
 P  is fi xed in inertial space and the rigid body is rotating about  P , then the position vector  r  from  P  to any 
point of the body is constant. It follows from Equation 1.52 that  �r r� �ω    . According to  Figure 9.8 , 

  
R R r� �p       

 Differentiating   with respect to time gives 

  
� � �R R r 0 r r� � � � � � �p ω ω

      

 Substituting   this into Equation 9.17 yields the formula for angular momentum in this special case, 

  

H r rP

m

dm P� � �( ) ( )ω∫ Rigid body rotating about fixed point   (9.35)      

 Although   Equations 9.34 and 9.35 are mathematically identical, one must keep in mind the notation of 
 Figure 9.8 . Equation 9.35 applies only if the rigid body is in pure rotation about a stationary point in inertial 
space, whereas Equation 9.34 applies unconditionally to any situation.  

    9.5       MOMENTS OF INERTIA 
 To   use Equation 9.29 or 9.30 to solve problems, the vectors within them have to be resolved into compo-
nents. To fi nd the components of angular momentum, we must appeal to its defi nition. We will focus on the 
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formula for angular momentum of a rigid body about its center of mass, Equation 9.34, because the expres-
sion for fi xed-point rotation (Equation 9.35) is mathematically the same. The integrand of Equation 9.34 
can be rewritten using the  bac-cab  vector identity presented in Equation 1.20, 

  ρ ω ρ ω ρ ω ρ� � � � �( ) ( )ρ2   (9.36)      

 Let   the origin of a co-moving  xyz  coordinate system be attached to the center of mass  G , as shown in 
 Figure 9.9   . The unit vectors of this frame are  ̂i   ,  ̂j    and  k̂   . The vectors   ρ   and   ω   can be resolved into compo-
nents in the  xyz  directions to get  ρ � � �x y zˆ ˆ ˆi j k     and  ω � � �ω ω ωx y z

ˆ ˆ ˆi j k   . Substituting these vector 
expressions into the right side of Equation 9.36 yields 

  
ρ ω ρ� � � � � � � � � � � �( ) (ω ω ω ω ω ωx y z x yx y z x y z x yˆ ˆ ˆ )( ) ( ˆ ˆ ˆ )(i j k i j k2 2 2

zz z)
      

 Expanding   the right side and collecting terms having the unit vectors  ̂i    ,  ̂j    and  ̂k    in common, we get 

  

ρ ω ρ� � � � � �

  � � � � �

( ) [( ) ]y z xy xz

yx x z yz
x y z

x y z

2 2

2 2

ω ω ω

ω ω ω

ˆ

[ ( ) ]ˆ
i

j

   � � � � �[ ( ) ]ˆzx zy x yx y zω ω ω2 2 k  

 (9.37)      

 We   put this result into the integrand of Equation 9.34 to obtain 

  
H i j kG x y zH H H� � �ˆ ˆ ˆ   (9.38)     

  where   
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  (9.39a)     
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 FIGURE 9.9  
       Co-moving  xyz  frame used to compute the moments of inertia.    



  or, in matrix notation,   

  
H I{ } [ ]{ }� ω   (9.39b)      

 The   nine components of the matrix [ I ] of mass moments of inertia about the center of mass are 

  

I y z dm I xydm I xzdm

I yxdm I x z dm I

x xy xz

yx y y

� � � � � �

� � � �

( )

( )

2 2

2 2

∫ ∫ ∫
∫ ∫ zz

zx zy z

yzdm

I zxdm I zydm I x y dm

� �

� � � � � �

∫
∫ ∫ ∫ ( )2 2

  (9.40)      

 Since    I yx        �       I xy  ,  I zx        �       I xz   and  I zy        �       I yz  , it follows that [ I ] is a symmetric matrix ([ I ]  T        �      [ I ]). Therefore, [ I ] has six 
independent components instead of nine. Observe that, whereas the products of inertia  I xy  ,  I xz   and  I xz   can be pos-
itive, negative or zero, the moments of inertia  I x  ,  I y   and  I z   are always positive (never zero or negative) for bodies 
of fi nite dimensions. For this reason, [ I ] is a symmetric positive-defi nite matrix. Keep in mind that Equations 
9.38 and 9.39 are valid as well for axes attached to a fi xed point  P  about which the body is rotating. 

 The   moments of inertia refl ect how the mass of a rigid body is distributed. They manifest a body’s rota-
tional inertia, that is, its resistance to being set into rotary motion or stopped once rotation is underway. It is 
not an object’s mass alone but how that mass is distributed which determines how the body will respond to 
applied torques. 

 If   the  xy  plane is a plane of symmetry, then for any  x  and  y  within the body there are identical mass ele-
ments located at  �  z  and  –  z . That means the products of inertia with  z  in the integrand vanish. Similar state-
ments are true if  xz  or  yz  are symmetry planes. In summary, we conclude: 

 If   the  xy  plane is a plane of symmetry of the body, then  I xz        �       I yz        �      0. 

 If   the  xy  plane is a plane of symmetry of the body, then  I xz        �       I yz        �      0. 

 If   the  yz  plane is a plane of symmetry of the body, then  I xy        �       I xz        �      0. 

 It   follows that if the body has two planes of symmetry relative to the  xyz  frame of reference, then all three 
products of inertia vanish, and [I] becomes a diagonal matrix, 

  

I[ ]
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

A

B

C

0 0

0 0

0 0
  (9.41)      

  A   ,  B  and  C  are the principal moments of inertia (all positive), and the  xyz  axes are the body’s principal axes 
of inertia. In this case, relative to either the center of mass or a fi xed point of rotation, we have 

  
H A H B H Cx x y y z z� � �ω ω ω          (9.42)      

 In   general, the angular velocity   ω   and the angular momentum  H  are not parallel. However, if (for example)  
ω � ω î   , then according to Equations 9.42,  H       �       A   ω  . In other words, if the angular velocity is aligned with 
a principal direction, so is the angular momentum. In that case the two vectors   ω   and  H  are indeed parallel. 

 Each   of the three principal moments of inertia can be expressed as follows: 

  
A mk B mk C mkx y z� � �2 2 2                 (9.43)     
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504  CHAPTER 9 Rigid-body dynamics

  where  m  is the mass of the body and  k x  ,  k y   and  k z   are the three   radii of gyration  . One may imagine the mass 
of a body to be concentrated around a principal axis at a distance equal to the radius of gyration.   

 The   moments of inertia for several common shapes are listed in  Figure 9.10   . By symmetry, their prod-
ucts of inertia vanish for the coordinate axes used. Formulas for other solid geometries can be found in 
engineering handbooks and in dynamics textbooks. 

 For   a mass concentrated at a point, the moments of inertia in Equation 9.40 are just the mass times the 
integrand evaluated at the point. That is, the matrix [ I  (   m   ) ] containing the components of the   moments of 
inertia of a point mass  m  is given by 

  

I( )

( )

( )

(

m

m y z mxy mxz

mxy m x z myz

mxz myz m x y

⎡
⎣⎢

⎤
⎦⎥ �

� � �

� � �

� � �

2 2

2 2

2 2 ))

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (9.44)     

        Example 9.4      
 The   following table lists mass and coordinates of seven point masses. Find the center of mass of the system 
and the moments of inertia about the origin.

   Point, i  Mass  m i   (kg)   x i   (m)   y i   (m)   z i   (m) 

   1  3   – 0.5  0.2  0.3 

   2  7  0.2  0.75   – 0.4 

   3  5  1   – 0.8  0.9 

   4  6  1.2   – 1.3  1.25 

   5  2   – 1.3  1.4   – 0.8 

   6  4   – 0.3  1.35  0.75 

   7  1  1.5   – 1.7  0.85 

l/2 l/2
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+

 FIGURE 9.10  
       Moments of inertia for three common homogeneous solids of mass  m . (a) Solid circular cylinder; (b) Circular 
cylindrical shell; (c) Rectangular parallelepiped.    



    Solution 
 The   total mass of this system is 

  

m mi
i

� �
�1

7

28∑  kg

      

 For   concentrated masses the integral in Equation 9.9 is replaced by the mass times its position vec-
tor. Therefore, in this case the three components of the position vector of the center of mass are  
x m m xG i ii

�
�

( / )1
1

7∑    ,  y m m yG i ii
�

�
( / )1

1

7∑     and  z m m zG i ii
�

�
( / )1

1

7∑    , so that 

  
x y zG G G� � �0 35 0 01964 0 4411. . . m         m         m

      

 The   total moment of inertia is the sum over all of the particles of Equation 9.44 evaluated at each point. Thus, 
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  or   

  

I[ ]
⎡

⎣

⎢
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⎢
⎢

⎤

�

�

�
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        Example 9.5      
 Calculate   the moments of inertia of a slender, homogeneous straight rod of length  l  and mass  m . One end of 
the rod is at the origin and the other has coordinates ( a,b,c ). 

    Solution 
 A   slender rod is one whose cross sectional dimensions are negligible compared with its length. The mass is con-
centrated along its centerline. Since the rod is homogeneous, the mass per unit length   ρ   is uniform and given by 

  
ρ �

m

l
  (a)      

 The   length of the rod is 

  l a b c� � �2 2 2
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 Starting   with  I x  , we have from Equations 9.40, 

  

I y z dsx

l

� �( )2 2

0

ρ∫
     

  in which we replaced the element of mass  m  by   ρ ds , where  ds  is the element of length along the rod. The 
distance  s  is measured from end  A  of the rod, so that the  x ,  y  and  z  coordinates of any point along it are 
found in terms of  s  by the following relations,   

  
x

s

l
a y

s

l
b z

s

l
c� � �             

      

 Thus  , 
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 Substituting   (a) yields 

  
I m b cx � �

1

3
2 2( )

      

 In   precisely the same way we fi nd 

  
I m a c I m a by z=

1

3

1

3
2 2 2 2( ) ( )� � �

      

 For    I xy   we have 

  

I xy ds
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l
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b ds
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l
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 FIGURE 9.11  
       Uniform slender bar of mass  m  and length  l  .   



 Once   again using (a), 

  
I mabxy � �

1

3       

 Likewise  , 

  
I mac I mbcxz yz� � � �

1

3

1

3            

        Example 9.6      
 The   gyro rotor in Example 9.3 has a mass  m  of 5       kg, radius  r  of 0.08       m, and thickness  t  of 0.025       m. If  N       �      2.1       rad/s, 
  θ⋅        �      4       rad/s,  ω       �      10.5       rad/s, and   θ        �      60 ° , calculate 

    (a)     The angular momentum of the rotor about its center of mass  G  in the body-fi xed  xyz  frame.  
    (b)     The angle between the rotor’s angular velocity vector and its angular momentum vector.    

    Solution 
 Example   9.3 (f) gives the components of the absolute angular velocity of the rotor in the moving  xyz  frame. 

  

ω θ

ω θ

ω ω θ

x

y

z

N

N

� �

� � � �

� �

� 4

2 1 60 1 819

 rad/s

 rad/s

spin

sin . sin .

cos

°

�� � �10 5 2 1 60 11 55. . cos .⋅ °  rad/s

  (a)      

 Therefore  , 

  ω � � �4 1 819 11 55ˆ . ˆ . ˆi j k (rad/s)   (b)      
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 FIGURE 9.12  
       Rotor of the gyroscope in Figure 9.5.    
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 All   three coordinate planes of the body-fi xed  xyz  frame contain the center of mass  G  and all are planes of 
symmetry of the circular cylindrical rotor. Therefore,  I xy        �       I zx        �       I yz        �      0. 

 From    Figure 9.10a  we see that the nonzero diagonal entries in the moment of inertia tensor are 

  

A B mt mr

C

� � � � � � � � � � �

�

1

12

1

4

1

12
5 0 025

1

4
5 0 08 0 008260

1

2 2 2 2. . .  kg m2

22

1

2
5 0 08 0 01602 2mr � � � � �. . kg m2

 

 (c)      

 We   can use Equation 9.42 to calculate the angular momentum, because the origin of the  xyz  frame is the 
rotor’s center of mass (which in this case also happens to be a fi xed point of rotation, which is another rea-
son we can use Equation 9.42). Substituting (a) and (c) into Equation 9.42 yields 

  

H A

H B
x x

y y

� � � � �

� � � �

ω
ω

0 008260 4 0 03304

0 008260 1 819 0 0

2. .

. . .

 kg m /s

1150

0 0160 11 55 0 1848

2

2

 kg m /s

 kg m /s

�

� � � � �H Cz zω . . .

  (d)     

  so that   

  
H i j k� � � �0 03304 0 0150 0 1848 2. (kg m /s)ˆ . ˆ . ˆ    (e)      

 The   angle   φ   between  H  and   ω   is found by taking the dot product of the two vectors, 

  
φ

ω
�

�
�

�

� �cos cos
.

. .
1 1 2 294

0 1883 12 36

H ω
H

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ �� 9 717. °   (f)      

 As   this problem illustrates, the angular momentum and the angular velocity are in general not collinear.       

 Consider   a coordinate system  x  
  y  
  z  
  with the same origin as  xyz , but different orientation. Let [ Q ] be the 
orthogonal matrix ( [ ]Q Q� �1 [ ]T    ) that transforms the components of a vector from the  xyz  system to the 
 x  
  y  
  z  
  frame. Recall from Section 4.5 that the rows of [ Q ] are the direction cosines of the  x  
  y  
  z  
  axes rela-
tive to  xyz . If  {  H  
  }  comprises the components of the angular momentum vector along the  x  
  y  
  z  
  axes, then 
 {  H  
  }  is obtained from its components  {  H  }  in the  xyz  frame by the relation 

  
H Q H
 �{ } [ ]{ }       

 From   Equation 9.39 we can write this as 

  
H Q I
 �{ } [ ][ ]{ }ω   (9.45)     

  where [ I ] is the moment of inertia matrix, Equation 9.39, in  xyz  coordinates. Like the angular momentum 
vector, the components  {   ω   }  of the angular velocity vector in the  xyz  system are related to those in the 
primed system ( {   ω  �   } ) by the expression   

  
ω ω
 �{ } [ ]{ }Q

      



 The   inverse relation is simply 

  
ω ω ω{ } [ ] { } [ ] { }� 
 � 


�
Q Q

1 T
  (9.46)      

 Substituting   this into Equation 9.45, we get 

  
H Q I Q
 � 
{ } [ ][ ][ ] { }T ω   (9.47)      

 But   the components of angular momentum and angular velocity in the  x  
  y  
  z  
  frame are related by an equa-
tion of the same form as Equation 9.39, so that 

  
H I
 � 
 
{ } [ ]{ }ω   (9.48)     

  where [ I  
 ] comprises the components of the inertia matrix in the primed system. Comparing the right-hand 
sides of Equations 9.47 and 9.48, we conclude that   

  
I Q I Q
 �[ ] [ ][ ][ ]T   (9.49a)      

 That   is, 
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  (9.49b)      

 This   shows how to transform the components of the inertia matrix from the  xyz  coordinate system to any 
other orthogonal system with a common origin. Thus, for example, 

  

I Q Q Q

I I I

I I I

I I I

x

x xy xz

yx y yz

zx zy z


 � 11 12 13⎢⎣ ⎥⎦

⎡⎢⎣ ⎥⎦Row 1� ��� ���

⎣⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎢⎣ ⎥⎦

Q

Q

Q

I

T

y

11

12

13

Row 1�



 
 �z

x xy xz

yx y yz

zx zy z

Q Q Q

I I I

I I I

I I I

21 22 23⎢⎣ ⎥⎦

⎢⎣ ⎥⎦Row 2� ��� ���

zz

Q

Q

Q

T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎢⎣ ⎥⎦

31

32

33

Row 3�
  (9.50)      

 etc  . 
 Any   object represented by a square matrix whose components transform according to Equation 9.49 is 

called a second order tensor. We may therefore refer to [ I ] as the   inertia tensor  .
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        Example 9.7      
 Find   the mass moment of inertia of the system of point masses in Example 9.4 about an axis from the origin 
through the point with coordinates (2       m,  – 3       m, 4       m). 

    Solution 
 From   Example 9.4 the moment of inertia tensor for the system of point masses is 

  

I[ ]
⎡

⎣

⎢
⎢
⎢
⎢

⎤

�

�

�

50 56 20 42 14 94

20 42 39 73 14 90
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 (kg m )� 2

      

 The   vector  V  connecting the origin with (2       m,  – 3       m, 4       m) is 

  V i j k� � �2 3 4ˆ ˆ ˆ
      

 The   unit vector in the direction of  V  is 

  

ˆ . ˆ . ˆ . ˆu
V
V

i j kV � � � �0 3714 0 5571 0 7428

      

 We   may consider  ̂uV    as the unit vector along the  x  
  axis of a rotated Cartesian coordinate system. Then, 
from Equation 9.50,               
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        Example 9.8      
 For   the satellite of Example 9.2, which is reproduced in  Figure 9.13   , the data are as follows:  N       �      0.1       rad/s 
and  �θ � 0 01.  rad/s   , in the directions shown.   θ        �      40 ° .  d  0       �      1.5       m. The length, width and thickness of the 
panel are  l       �      6       m,   ω        �      2       m and  t       �      0.025       m. The uniformly distributed mass of the panel is 50       kg. Find the 
angular momentum of the panel relative to the center of mass  O  of the satellite. 



    Solution 
 We   can treat the panel as a thin parallelepiped. The panel’s  xyz  axes have their origin at the center of mass 
 G  of the panel and are parallel to its three edge directions. According to  Figure 9.10(c),  the moments of 
inertia relative to the  xyz  coordinate system are 

  

I m l t

I m w

G
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y

� � � � � � � �

� �

1

12
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12
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2 2 2 2 2
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( ) ( )  kg m

(

. .
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I m w lGz

2 2 2 2

2 2

1

12
50 2 0 025 16 67
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12
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12
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) ( )  kg m

( )

� � � � � �

� � � � �

. .

(( )  kg m2 6 166 7

0

2 2 2� � �

� � �

.

I I IG G Gxy xz yz

  (a)

      

 In   matrix notation, 

  

IG[ ]
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

� �

150 0 0 0

0 16 67 0

0 0 166 7

.

.

.

 (kg m )2   (b)      

 The   unit vectors of the satellite’s  x  
  y  
  z  
  system are related to those of panel’s  xyz  frame by inspection, 

  

ˆ sin ˆ cos ˆ . ˆ . ˆ

ˆ ˆ

ˆ cos ˆ sin

i i k i k
j j
k i


 � � � � � �


 � �


 � �

θ θ

θ

0 6428 0 7660

θθ ˆ . ˆ . ˆk i k� �0 7660 0 6428

  (c)      

 The   matrix [ Q ] of the transformation from  xyz  to  x  
  y  
  z  
  comprises the direction cosines of  ̂i
   ,  ̂j
    and  ̂k
   : 

  

Q[ ]
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

�

�

0 6428 0 0 7660

0 1 0

0 7660 0 0 6428

. .

. .
  (d)      
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       Satellite and solar panel.    
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 In   Example 9.2 we found that the absolute angular velocity of the panel, in the satellite’s  x  
  y  
  z  
  frame of 
reference, is 

  ω � � 
 � 
 � � 
 � 
�θˆ ˆ . ˆ . ˆj k j kN 0 01 0 1  (rad/s)       

 That   is, 

  

ω
 � �{ }
⎧
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⎭
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0

0 01

0 1

.

.

 (rad/s)   (e)      

 To   fi nd the absolute angular momentum  ′{ }HG     in the satellite system requires using Equation 9.39, 

  
′{ } ′⎡⎣ ⎤⎦ { }H IG G� 
ω   (f)      

 Before   doing so, we must transform the components of the moments of inertia tensor in (b) from the 
unprimed system to the primed system, by means of Equation 9.49, 
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  so that   
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 Then   (f) yields 
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  or, in vector notation,   

  H i j kG � 
 � 
 � 
 �0 8205 0 1667 15 69. (kg m /s)2ˆ . ˆ . ˆ    (h)      

 This   is the absolute angular momentum of the panel about its own center of mass  G , and it is used in 
Equation 9.27 to calculate the angular momentum  HOrel

    relative to the satellite’s center of mass  O , 

  
H H r vO G G O G Om

rel
� � �/ /   (i)      

    rG O/     is the position vector from  O  to  G , 

  
r j j jG O Od

l
/ (m)� � 
 � � 
 �

2
1 5

6

2
4 5

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ′ˆ . ˆ . ˆ    (j)      



 The   velocity of  G  relative to  O ,  v  G/O , is found from Equation 9.2, 

  
v r k r k j iG O G O G ON/ satellite / / (m/s)� � � 
 � � 
 � 
 � � 
ω ˆ . ˆ . ˆ . ˆ0 1 4 5 0 45   (k)      

 Substituting   (h), (j) and (k) into (i) fi nally yields 

  

H i j k j iOrel
( . ) ( )� 
 � 
 � 
 � 
 � � 
0 8205 0 1667 15 69 4 5 50 0 45ˆ . ˆ . ˆ . ˆ . ˆ⎡

⎣⎢⎢
⎤
⎦⎥

⋅� 
 � 
 �0 8205 0 1667 116 9 2. ˆ . ˆ . ˆi j k (kg m /s)   (l)      

 Note   that we were unable to use Equation 9.21 to fi nd the absolute angular momentum  H   O   because that requires 
knowing the absolute velocity  v   G      , which in turn depends on the absolute velocity of  O , which was not provided.       

 How   can we fi nd that direction cosine matrix [ Q ] such that Equation 9.49 will yield a moment of inertia matrix 
[ I  
 ] that is diagonal, i.e., of the form given by Equation 9.41? In other words, how do we fi nd the principal direc-
tions (  eigenvectors  ) and the corresponding principal values (  eigenvalues  ) of the moment of inertia tensor? 

 Let   the angular velocity vector   ω   be parallel to the principal direction defi ned by the vector  e , so that 
  ω        �        β   e , where   β   is a scalar. Since   ω   points in a principal direction of the inertia tensor, so must  H , which 
means  H  is also parallel to  e . Therefore,  H       �        α   e , where   α   is a scalar. From Equation 9.39 it follows that 

  α βe I e{ } [ ] { }� (      

  or   

  I e e[ ]{ } { }� λ      

  where   λ        �        α  /  β   (a scalar). That is,   
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 This   can be written 

  

I I I

I I I

I I I

e

e

e

x xy xz

xy y yz

xz yz z

x

y

z

�

�

�

λ

λ

λ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

0

0

0
  (9.51)      

 The   trivial solution of Equation 9.51 is  e       �       0 , which is of no interest. The only way that Equation 9.51 
will not yield the trivial solution is if the coeffi cient matrix on the left is singular. That will occur if its 
determinant vanishes, that is, if 

  

I I I

I I I

I I I

x xy xz

xy y yz

xz yz z
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0   (9.52)      
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 Expanding   the determinant, we find 
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  where   
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I
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  (9.54)      

  I    1 ,  I  2  and  I  3  are invariants; that is, they have the same value in every Cartesian coordinate system. 
 Equations   9.52 and 9.53 yields the characteristic equation of the tensor [ I ] 

  λ λ λ3
1

2
2 3 0� � � �I I I   (9.55)      

 The   three roots   λ  p   ( p       �      1,   2,   3) of this cubic equation are real, since [ I ] is symmetric; furthermore they 
are all positive, since [ I ] is a positive-defi nite matrix. We substitute each root, or eigenvalue,   λ  p   back into 
Equation 9.51 to obtain 
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,    , ,p � 1 2 3   (9.56)      

 Solving   this system yields the three eigenvectors  e  (   p   )  corresponding to each of the three eigenvalues   λ  p  . The 
three eigenvectors are orthogonal, also due to the symmetry of the matrix [ I ]. Each eigenvalue is a principal 
moment of inertia, and its corresponding eigenvector is a principal direction.

        Example 9.9      
 Find   the principal moments of inertia and the principal axes of inertia of the inertia tensor 

  

I[ ]
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    Solution 
 We   seek the nontrivial solutions of the system [ I ] {  e  }       �        λ   {  e  } , that is, 
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  (a)      

 From   Equation 9.54, 

  

I

I

1

2

100 300 500 900

100 20

20 300

100 100

100 500

300 50

50

� � � �

�

�
�

�

�
�

�

�
=

5500
217 100

100 20 100

20 300 50

100 50 500

11 350 0003

�

�

� �

� �

� �

�

,

, ,I

  (b)      

 Thus  , the characteristic equation is 

  λ λ λ3 2900 217 100 11 350 000 0� � � �, , ,   (c)      

 The   three roots are the principal moments of inertia, which are found to be 

  
λ λ λ1 2 3532 052 295 840 72 1083� � � �.         .          .  kg m2( )   (d)      

 Each   of these is substituted, in turn, back into (a) to fi nd its corresponding principal direction. 
 Substituting    λ  1       �      532.052       kg  ·  m 2  into (a) we obtain 
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  (e)      

 Since   the determinant of the coeffi cient matrix is zero, at most two of the three equations in (e) are independent. 
Thus, at most two of the three components of the vector  e  (1)  can be found in terms of the third. We can therefore 
arbitrarily set  ex

( )1 1�     and solve for  ey
( )1     and  ez

( )1     using any two of the independent equations in (e). With  ex
( )1 1�    , 

the fi rst two of Equations (e) become 
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. .

e e

e e
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  (f)      
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 Solving   these two equations for  ey
( )1     and  ez

( )1     yields, together with the assumption that  ex
( )1 1�    , 

  
e e ex y z

( ) ( ) ( )1 1 11 00000 0 882793 4 49708� � � �.     .      .   (g)      

 The   unit vector in the direction of  e  (1)  

  

ˆ . ˆ . ˆ . ˆ

. .
i

e

e

i j k
1

2

1 00000 0 882793 4 49708

1 00000 0 8827
� �

� �

�

(1)

(1)
993 4 497082 2� �( ).

     

  or   

  
ˆ . ˆ . ˆ . ˆ .i i j k1 10 213186 0 188199 0 958714 532 052� � � � �(  kg m )2λ   (h)      

 Substituting    λ  2       �      295.840       kg  ·  m 2  into (a) and proceeding as above we fi nd 

  
ˆ . ˆ . ˆ . ˆ .i i j k2 20 176732 0 972512 0 151609 295 840� � � �− ( kg m )2λ   (i)      

 The   two unit vectors  ̂i1     and  ̂i2     defi ne two of the three principal directions of the inertia tensor. Observe 
that  ̂ ˆi i1 2 0� �    , as must be the case for symmetric matrices. 

 To   obtain the third principal direction  ̂i3   , we can substitute  λ  3       �      72.1083       kg      ·      m 2  into (a) and proceed as 
above. However, since the inertia tensor is symmetric, we know that the three principal directions are mutually 
orthogonal. That means  ̂ ˆ ˆi i i3 1 2� �    . Substituting Equations (h) and (i) into the cross product, we fi nd that 

  
ˆ . ˆ . ˆ . ˆ .i i j k3 30 960894 0 137114 0 240587 72 1083� � � � � �( kg m )2λ   (j)      

 We   can check our work by substituting   λ   3  and  î3    into (a) and verify that it is indeed satisfi ed: 
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  (k)      

 The   components of the vectors  ̂i1    ,  ̂i2     and  ̂i3    defi ne the three rows of the orthogonal transformation [ Q ] 
from the  xyz  system into the  x  
  y  
  z  
  system aligned along the three principal directions: 
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 Indeed  , if we apply the transformation in Equation 9.49, [ I  
 ]      �      [ Q ][ I ][ Q ]  T  , we fi nd 
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 An   alternative to the above hand calculations in Example 9.9 is to type the following lines into the 
MATLAB ®  Command Window: 

  I        =      [ 100 �20 �100  
                    �20 300  �50  
                   �100 �50  500];  

    [eigenVectors, eigenValues]      =      eig(I)  

 Hitting   the Enter (or Return) key yields the following output to the Command Window: 

  eigenVectors    =   

                   0.9609 0.1767 �0.2132  
                   0.1371 �0.9725 �0.1882  
                   0.2406 �0.1516 0.9587  

  eigenValues    =   

                   72.1083 0 0  
                                 0 295.8398 0  
                                 0 0 532.0519  

 Two   of the eigenvectors delivered by MATLAB are opposite in direction to those calculated in Example 
9.9. This illustrates the fact that we can determine an eigenvector only to within an arbitrary scalar fac-
tor. That is, suppose  e  is an eigenvector of the tensor [ I ] so that [ I ] {  e  }       �       λ  {  e  } . Multiplying this equation 
through by an arbitrary scalar  a  yields [ I ] {  e  }  a       �       λ  {  e  }  a , or [ I ] {  a  e  }       �       λ  {  a  e  } , which means that  {  a  e  }  is an 
eigenvector corresponding to the same eigenvalue  λ   .  

              9.5.1       Parallel axis theorem 

 Suppose   the rigid body in  Figure 9.14    is in pure rotation about point  P . Then, according to Equation 9.39, 

  
{ } [ ]{ }

rel
H IP P� ω   (9.57)     

  where [ I   p  ] is the moment of inertia about  P , given by Equations 9.40 with   

  x x y y z zG P G P G P� � � � � �/ / /ξ η ζ                        
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 On   the other hand, we have from Equation 9.27 that 

  
H H r vP G G P G Pm

rel
� � �/ /   (9.58)      

 The   vector  r   G/P        �       m  v   G/P   is the angular momentum about  P  of the concentrated mass  m  located at  G . Using 
matrix notation, it is computed as follows, 

  
{ } { }

rel
r v H IG P G P P

m
P
m

m/ /� �≡ { } ⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ω   (9.59)     

  where  [ ]( )IP
m    , the moment of inertia of  m  about  P , is obtained from Equation 9.44, with  x       �       x G/P  ,  y       �       y G/P   

and  z       �       z G/P  . That is,   

  

[ ]

( )

(( )

/ / / / / /

/ / /IP
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G P G P G P G P G P G P

G P G P G P

m y z mx y mx z

mx y m x�

� � �

�

2 2
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z my z
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( )
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⎢
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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  (9.60)     

  Of course, Equation 9.39 requires   

  { } [ ]{ }H IG G� ω       

 Substituting   this together with Equations 9.57 and 9.59 into Equation 9.58 yields 

  [ ]{ } [ ]{ } [ ]{ } ([ ] [ ]){ }I I I I IP G P
m

G P
mω ω ω ω� � � �

( ) ( )
      

 From   this we may infer the   parallel axis theorem  , 

  [ ]I I IP G P
m� �[ ] [ ]( )   (9.61)      

G

P

x

y

z

yP

O
xP

zP

dm

xG/P
yG/P

zG/P

ζξ
η

 FIGURE 9.14  
       The moments of inertia are to be computed at  P , given their values at  G.     



 The   moment of inertia about  P  is the moment of inertia about parallel axes through the center of mass plus 
the moment of inertia of the center of mass about  P . That is, 

  

I I m y z I I m x z I I m xP G G P G P P G G P G P P G G Px x y y z z
� � � � � � � �( ) ( ) (/ / / / /

2 2 2 2 22 2�

� � � � � �

y

I I mx y I I mx z I I m

G P

P G G P G P P G G P G P P Gxy xy xz xz yz yz

/

/ / / /

)

yy zG P G P/

  (9.62)     

        Example 9.10      
 Find   the moments of inertia of the rod in Example 9.5 ( Figure 9.15   ) about its center of mass  G . 

    Solution 
 From   Example 9.5, 
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 Using   Equation 9.62 1 , and noting the coordinates of the center of mass in  Figure 9.15 , 
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 Equation   9.62 4  yields 

  
I I m x y mab m

a b
mabG A G Gxy xy

� � � � � � � � � �( )( )0 0
1

3 2 2

1

12
−
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 FIGURE 9.15  
       Uniform slender rod.    
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 The   remaining four moments of inertia are found in a similar fashion, so that 

  

[ ]

( )
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m b c mab mac
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  (9.63)           

        Example 9.11      
 Calculate   the principal moments of inertia about the center of mass and the corresponding principal direc-
tions for the bent rod in  Figure 9.16   . Its mass is uniformly distributed at 2       kg/m. 

    Solution 
 The   mass of each of the rod segments is 

  m m m m1 2 3 42 0 4 0 8 2 0 5 1 2 0 3 0 6 2 0 2 0 4� � � � � � � � � � � �. . . . . . .kg kg kg kg   (a)      

 The   total mass of the system is 

  

m mi
i

� �
�1

4

2 8∑ . kg   (b)      

 The   coordinates of each segment’s center of mass are 

  

x y z

x y z
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x

y

z

4
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0.5 m 

0.3 m 

0.2 m 

O

 FIGURE 9.16  
       Bent rod for which the principal moments of inertia are to be determined.    



 If   the slender rod of  Figure 9.15  is aligned with, say, the  x  axis, then  a       �       l  and  b       �       c       �      0, so that accord-
ing to Equation 9.63, 

  

[ ]IG ml
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1
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⎥       

 That   is, the moment of inertia of a slender rod about axes normal to the rod at its center of mass is  1
12

2ml    , 
where  m  and  l  are the mass and length of the rod, respectively. Since the mass of a slender bar is assumed 
to be concentrated along the axis of the bar (its cross sectional dimensions are infi nitesimal), the moment 
of inertia about the centerline is zero. By symmetry, the products of inertia about axes through the center of 
mass are all zero. Using this information and the parallel axis theorem, we fi nd the moments and products 
of inertia of each rod segment about the origin  O  of the  xyz  system as follows. 
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 Rod   2: 
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 Rod   3: 
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 Rod   4: 
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 The   total moments of inertia for all four of the rods about  O  are 
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  (d)      

 The   coordinates of the center of mass of the system of four rods are, from (a), (b) and (c), 
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 We   use the parallel axis theorems to shift the moments of inertia in (d) to the center of mass  G  of the 
system. 
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 Therefore   the inertia tensor, relative to the center of mass, is 
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 To   fi nd the three principal moments of inertia, we may proceed as in Example 9.9, or simply enter the fol-
lowing lines in the MATLAB command window 

  I        =      [ 0.1522        �0.03975        0.012  
            �0.03975        0.07177        0.04057  
            0.012        0.04057        0.1569 ];  

    [eigenVectors, eigenValues]      =      eig(IG)  

 to   obtain 

  eigenVectors    =   

            0.3469        �0.8482        �0.4003  
            0.8742        0.1378        0.4656  
            �0.3397        �0.5115        0.7893  

  eigenValues    =   

            0.0402        0        0  
                   0        0.1658        0  
                   0        0        0.1747  

 Hence  , the three principal moments of inertia and their principal directions are 
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    9.6       EULER’S EQUATIONS 
 For   either the center of mass  G  or a fi xed point  P  about which the body is in pure rotation, we know from 
Equations 9.29 and 9.30 that 

  M Hnet � �   (9.64)      

 Using   a co-moving coordinate system, with angular velocity   Ω   and its origin located at the point ( G  or  P ), 
the angular momentum has the analytical expression 

  
H i j k� � �H H Hx y z

ˆ ˆ ˆ   (9.65)      

 We   shall henceforth assume, for simplicity, that 

  (a) The moving  axes are the principal axes of inertia,xyz   and   (9.66a)      

  (b) The moments of inertia relative to  are constant inxyz   time.   (9.66b)      

 Equations   9.42 and 9.66a imply that 

  
H i j k� � �A B Cx y zω ω ωˆ ˆ ˆ   (9.67)      

 where    A ,  B  and  C  are the principal moments of inertia. 
 According   to Equation 1.56, the time derivative of  H  is  � �H H H� � �)rel Ω    , so that Equation 9.64 can 

be written 

  M H Hnet rel)� � �� Ω   (9.68)      

 Keep   in mind that, whereas   Ω   (the angular velocity of the moving  xyz  coordinate system) and   ω   (the angu-
lar velocity of the rigid body itself) are both absolute kinematic quantities, Equation 9.68 contains their 
components as projected onto the axes of the noninertial  xyz  frame, 
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 The   absolute angular acceleration   α   is obtained using Equation 1.56 
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 that   is, 

  
α � � � � � � � � �( ) ( ) ( )� � �ω ω ω ω ω ω ω ω ωx y z z y y z x x z z x y y xΩ Ω Ω Ω Ω Ωˆ ˆ ˆi j k   (9.69)      



 Clearly  , it is generally true that 

  
α ω α ω α ωx x y y z z� � �� � �        

      

 From   Equations 1.66 and 9.67 
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 Since    A ,  B  and  C  are constant, this becomes 

  
� � � �H i j k)rel � � �A B Cx y zω ω ωˆ ˆ ˆ   (9.70)      

 Substituting   Equations 9.67 and 9.70 into Equation 9.68 yields 
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 Expanding   the cross product and collecting terms leads to 
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 If   the co-moving frame is a rigidly attached body frame, then its angular velocity is the same as that of 
the body, i.e.,   Ω        �        ω  . In that case, Equations 9.68 reduce to the classical   Euler equations   of motion, 

  M H Hnet rel)� � �� ω   (9.72a)     

  the three components of which are obtained from Equation 9.71,   

  

M A C B

M B A C

M C B A

x x y z

y y z x

z z x

net

net

net

( )

( )

( )

� � �

�

� � �

�
�
�

ω ω ω
ω ω ω
ω ω

= +
ωωy

  (9.72b)      

 Equations   9.71 are sometimes referred to as the   modifi ed Euler equations  . 
 For   a body-fi xed frame,   Ω        �        ω  . It follows from Equation 9.69 that 

  
� � �ω α ω α ω αx x y y z z� � �                 (9.73)      
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 That   is, in a body-fi xed frame, the relative angular acceleration equals the absolute angular acceleration. 
Rather than calculating the time derivatives  �ωx    , �ωyand  �ωz     for use in Equation 9.72, we may in this case fi rst 
compute   α   in the absolute  XYZ  frame 

  
α

ω
� � � �

d

dt

d

dt

d

dt

d

dt
X Y Zω ω ωˆ ˆ ˆI J K

      

 and   then project these components onto the  xyz  body frame, so that 

  

�
�

�

ω
ω

ω

ω
ω
ω

x

y

z

Xx

X

Y

Z

d dt

d dt

d dt

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪
� [ ]

/

/

/

Q
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

  (9.74)      

 where   [ Q ] X   x   is the time-dependent orthogonal transformation from the inertial  XYZ  frame to the noninertial 
 xyz  frame.

        Example 9.12      
 Calculate   the net moment on the solar panel of Examples 9.2 and 9.8. 

    Solution 
 Since   the co-moving frame is rigidly attached to the panel, Euler’s equation (Equation 9.72a), applies to this 
problem, 

  
M H HG G Gnet

)rel� � �� ω   (a)     

  where   

  
H i j kG x y zA B C� � �ω ω ωˆ ˆ ˆ   (b)     
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 FIGURE 9.17  
       Free-body diagram of the solar panel in Examples 9.2 and 9.8.    



  and   

  
� � � �H i j kG x y zA B C)rel � � �ω ω ωˆ ˆ ˆ   (c)      

 In   Example 9.2, the angular velocity of the panel in the satellite’s  x  
  y  
  z  
  frame was found to be 

  ω � � ��θˆ ˆ′ ′j kN   (d)      

 In   Example 9.8 we showed that the transformation from the panel’s  xyz  frame to that of the satellite is 
represented by the matrix 

  

[ ]Q �

�

�

sin cos

cos sin

θ θ

θ θ

0

0 1 0

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (e)      

 We   use the transpose of [ Q ] to transform the components of   ω   into the panel frame of reference, 

  

{ } [ ] { }ω ωxyz
T

x y z� �

�

� �Q ′ ′ ′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

sin cos

cos sin

θ θ

θ θ

0

0 1 0

0

0
�� �θ

θ
θ

θN

N

N

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪

�

cos

sin ⎪⎪⎪⎪      

  or   

  
ω θ ω θ ω θx y zN N� � �cos               sin�   (f)      

 In   Example 9.2,  N  and  �θ    were said to be constant. Therefore, the time derivatives of (f) are 

  

� �

�
�

� �

ω
θ

θ θ

ω
θ

ω
θ

θ θ

x

y

z

d N

dt
N

d

dt
d N

dt
N

� � �

� �

� �

( )

( )

cos
sin

sin
cos

0   (g)      

 In   Example 9.8 the moments of inertia in the panel frame of reference were listed as 

  

A m l t B m w t C m w l

I I IG xy G xz G yz

� � � � � �

� � �

1

12

1

12

1

12
0

2 2 2 2 2 2( ) ( ) ( )

( )

 
  (h)      
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 Substituting   (b), (c), (f), (g) and (h) into (a) yields, 

  

M i jG m l N m w t

m

t

w l

net
( ) sin ) ( )

( )

(� � � � �

� �

1
12

2 1
12

2 2

1
12

2

2

2

0− +�θ θ ˆ ˆ

(( )

( )( ) (

N

N N

m l t N m w

�

�

θ θ

θ θ θ

θ

cos ˆ

ˆ ˆ ˆ

cos  sin

cos

k

i j k

�

� �1
12

2 2 1
12

2 tt m w l N2 1
12

2 2) ( )( )�θ θ+ sin
      

 Upon   expanding the cross product and collecting terms, this reduces to 

  
M i j kG mt N m t w N mw Nnet sin ( ) sin� � � � �1

6
2 1

24
2 2 2 1

6
22� �θ θ θ θ θˆ ˆ cos ˆ

      

 Using   the numerical data of Example 9.8 ( m       �      50       kg,  N       �      0.1 rad/s,   θ        �      40 ° ,  �θ � 0.01 rad/s    ,  l       �      6       m, 
 w       �      2       m and  t       �      0.025       m), we fi nd 

  
M i j kGnet  (N m)� � � � � ��3 348 10 0 08205 0 025546. . .ˆ ˆ ˆ

           

        Example 9.13      
 Calculate   the net moment on the gyro rotor of Examples 9.3 and 9.6. 

    Solution 
    Figure 9.18    is a free-body diagram of the rotor. Since in this case the co-moving frame is not rigidly 
attached to the rotor, we must use Equation 9.68 to fi nd the net moment about G, 

  
M H HG G Gnet

)rel� � �� Ω   (a)     

  where   

  
H i j kG x y zA B C� � �ω ω ωˆ ˆ ˆ   (b)     

  and   

  
� � � �H i j kG x y zA B C)rel � � �ω ω ωˆ ˆ ˆ   (c)      

 From   Equation (f) of Example 9.3 we know that the components of the angular velocity of the rotor in 
the moving reference frame are 

  

ω θ
ω θ
ω ω θ

x

y

z

N

N

�

�

� �

�

sin

cosspin

  (d)      



 Since  , as specifi ed in Example 9.3,  �θ    ,  N  and   ω  spin   are all constant, it follows that 

  

�
�

� �

� �

ω
θ

ω
θ

θ θ

ω
ω θ

θ
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y

z

d

dt
d N

dt
N

d N

dt
N

� �

� �

�
�

� �

0

( )

( )spin

sin
cos

cos
ssinθ

  (e)      

 The   angular velocity   Ω   of the co-moving  xyz  frame is that of the gimbal ring, which equals the angular 
velocity of the rotor minus its spin. Therefore, 

  

Ω
Ω

Ω

x

y

z

N

N

�

�

�

�θ
θ

θ

sin

cos

  (f)      

 In   Example 9.6 we found that 

  

A B mt mr

C mr

� � �

�

1
12

2 1
4

2

1
2

2
  (g)      
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 FIGURE 9.18  
       Free-body diagram of the gyro rotor of Examples 9.6 and 9.3.    
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 Substituting   (b) through (g) into (a), we get 

  

M i jG mt mr mt mr N mr
net

( ) (� � � �1
12

2 1
4

2 1
12

2 1
4

2 1
2

20( ) + +( ) −ˆ cos ˆ�θ θ NN

N N

mt mr mt

�

�

�

θ θ

θ θ θ

θ
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ˆ ˆ ˆ

sin cos
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k
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�

� �1
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2 1
4

2 1
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2( ) 11
4

2 1
2

2mr N mr Nspin( ) sin cosθ ω θ( )�
      

 Expanding   the cross product, collecting terms, and simplifying leads to 

  

MG spin
t
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N mr N

net
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23ω θ
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� NN mr�θ θsin ˆ2k

  (h)      

 In   Example 9.3 the following numerical data were provided:  m       �      5       kg,  r       �      0.08       m,  t       �      0.025       m, 
 N       �      2.1       rad/s,   θ        �      60 ° ,  �θ � 4 rad/s     and  ω   spin        �      105       rad/s. For this set of numbers, (h) becomes 

  
M i j kGnet

. . .  (N m)� � � �0 3203 0 6698 0 1164ˆ ˆ ˆ
             

    9.7       KINETIC ENERGY 
 The   kinetic energy  T  of a rigid body is the integral of the kinetic energy  1

2
2v dm     of its individual mass 

elements, 

  

T v dm dm
m m

� � �
1

2

1

2
2∫ ∫ v v   (9.75)     

  where  v  is the absolute velocity  �R     of the element of mass  dm . From  Figure 9.8  we infer that  � � �R R� �G ρ
   . Furthermore, Equation 1.52 requires that  �ρ ω ρ� �    . Thus,  v       �       v   G        �        ω        �        ρ  , which means   

  
v v v v v� � � � � � � � � � � � �[ ] ( ) ( ) ( )G G G Gvω ρ ω ρ ω ρ ω ρ ω ρ×[ ] ×2 2

      

 We   can apply the vector identity introduced in Equation 1.21, 

  
A B C B C A� � � �( ) ( )=   (9.76)     



  to the last term to get   

  v v v� � � � � � �vG G
2 2 ( ) [ ( )]ω ρ ω ρ ω ρ× ×       

 Therefore  , Equation 9.75 becomes 

  

T v dm dm dmG

m

G

m m

� � � � � � � �
1

2

1

2
2∫ ∫ ∫

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
v ω ρ ω ρ ω ρ( )

      

 Since     ρ   is measured from the center of mass,  ρdm
m

� 0∫    . Recall that, according to Equation 9.34, 

  

ρ ω ρ� �( )×∫ dm
m

GH

      

 It   follows that the kinetic energy may be written 

  
T mvG G� � �

1

2

1

2
2 ω H   (9.77)      

 The   second term is the   rotational kinetic energy  T R  , 

  TR G� �
1

2
ω H   (9.78)      

 If   the body is rotating about a point  P  which is at rest in inertial space, we have from Equation 9.2 and 
 Figure 9.8  that 

  v v r 0 r rG P G P G P G P� � � � � � � �ω ω ω/ / /       

 It   follows that 

  vG G G G P G P
2 � � � �v v r r( ) ( )/ /ω ω× ×       

 Making   use once again of the vector identity in Equation 9.76, we fi nd 

  vG G P G P G P G
2 � � � � � � �ω ω ω[ ( )] ( )/ / /r r r v       

 Substituting   this into Equation 9.77 yields 

  
T mG G P G� � � �

1

2
ω [ ]/H r v

      

 Equation   9.21 shows that this can be written 

  T P� �
1

2
ω H   (9.79)      
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 In   this case, of course, all of the kinetic energy is rotational. 
 In   terms of the components of   ω   and  H , whether it is  H   P   or  H   G  , the rotational kinetic energy expression 

becomes, with the aid of Equation 9.39, 
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ω
      

 Expanding  , we obtain 

  
T I I I I I IR x x y y z z xy x y xz x z yz y z� � � � � �1

2
2 1

2
2 1

2
2ω ω ω ω ω ω ω ω ω   (9.80)      

 Obviously  , if the  xyz  axes are principal axes of inertia, then Equation 9.80 simplifi es considerably, 

  
T A B CR x y z� � �1

2
2 1

2
2 1

2
2ω ω ω   (9.81)     

        Example 9.14      
 A   satellite in circular geocentric orbit of 300       km altitude has a mass of 1500       kg, and the moments of inertia 
relative to a body frame with origin at the center of mass  G  are 

  

[ ] (kI �

�

� �

�

2000 1000 2500

1500 3000 1500

2500 1500 4000

⎡

⎣

⎢
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⎤
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⎥

gg m )2⋅

      

 If   at a given instant the components of angular velocity in this frame of reference are 

  ω � � �1 0 9 1 5ˆ . ˆ . ˆ  i j k (rad/s)       

 calculate   the total kinetic energy of the satellite. 

    Solution 
 The   speed of the satellite in its circular orbit is 

  
v

r
� �

�
�

μ 398 600

6378 300
7 7258

,
.  km/s

      

 The   angular momentum of the satellite is 
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 Therefore  , the total kinetic energy is 

  

T mvG G� � � � � �
1

2

1

2

1

2
1500 7725 8

1

2
1 0 9 1 5

6650

5950

985

2 2ω ⋅ ⋅ ⋅ ⎢⎣ ⎥⎦H . . .

00

44 766 10 13 3906

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

� � �.

      

  
T � 44 766.  MJ

      

 Obviously  , the kinetic energy is dominated by that due to the orbital motion.        

    9.8       THE SPINNING TOP 
 Let   us analyze the motion of the simple axisymmetric top in  Figure 9.19   . It is constrained to rotate about 
point  O . 

 The   moving coordinate system is chosen to have its origin at  O . The  z  axis is aligned with the spin axis 
of the top (the axis of rotational symmetry). The  x  axis is the node line, which passes through  O  and is per-
pendicular to the plane defi ned by the inertial  Z  axis and the spin axis of the top. The  y  axis is then perpen-
dicular to  x  and  z , such that  ̂ ˆ ˆj k i� �    . By symmetry, the moment of inertia matrix of the top relative to the 
 xyz  frame is diagonal, with  I x        �       I y        �       A  and  I Z        �       C . From Equations 9.68 and 9.70, we have 

  

M i j k

i j k

0 net
� � � �A A C

A A C

x y z x y z

x y z

� � �ω ω ω

ω ω ω

ˆ ˆ ˆ

ˆ ˆ ˆ

Ω Ω Ω   (9.82)      
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 FIGURE 9.19  
       Simple top rotating about the fi xed point  O     .
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 The   angular velocity   ω   of the top is the vector sum of the spin rate   ω  s   and the rates of precession   ω  p   and 
nutation   ω  n  , where 

  
ω φ ω θp n� �� �       (9.83)      

 Thus  , 

  
ω � � �ω ω ωn p s

ˆ ˆ ˆi K k
      

 From   the geometry we see that 

  
ˆ sin ˆ cos ˆK j k� �θ θ   (9.84)      

 Therefore  , relative to the co-moving system, 

  
ω � � � �ω ω θ ω ω θn p s p

ˆ sin ˆ cos ˆi j k( )   (9.85)      

 It follows from this   equation that 

  
ω ω ω ω θ ω ω ωx n y p z s p� � � �sin   (9.86)      

 Computing   the time rates of these three expressions yields the components of angular acceleration rela-
tive to the  xyz  frame, 

  
� � � � � � �ω ω ω ω θ ω ω θ ω ω ω θ ω ω θx n y p p n z s p p n� � � � � � sin cos  cos sin   (9.87)      

 The   angular velocity   Ω   of the  xyz  system is  Ω � �ω ωp n
ˆ ˆK i    , so that, using Equation 9.84, 

  
Ω � � �ω ω θ ω θn p p

ˆ sin ˆ cos ˆi j k   (9.88)      

 From   this we obtain 

  
Ω Ω Ωx n p z p� � �ω ω θ ω θy sin  cos   (9.89)      

 The   moment about  O  in  Figure 9.19  is that of the weight vector acting through the center of mass  G : 

  
M k K k j k0 net

( ) ( ) ( )� � � � � � �d mg mgdˆ ˆ ˆ sin ˆ cos ˆθ θ
     

  or   

  
M i0 net

sin� mgd θ ˆ   (9.90)      



 Substituting   Equations 9.86, 9.87, 9.89 and 9.90 into Equation 9.82, we get 

  

mgd A A Cn p p n s p p nsin ( sin cos ) ( cos sθ ω ω θ ω ω θ ω ω θ ω ωˆ ˆ ˆi i j� � � � �� � � �+ iin )θ

ω ω θ ω θ

ω ω θ ω ω θ

ˆ

  

ˆ ˆ ˆ

sin cos

sin  ( cos )

k

i j k

�

�

n p p

n p s pA A C

  (9.91)      

 Let   us consider the special case in which   θ   is constant, i.e., there is no nutation, so that  ω ωn n� �� 0    . 
Then Equation 9.91 reduces to 

  

mgd A Cp s p p psin sin ( cos )θ ω θ ω ω θ ω θ ω θˆ ˆ ˆ  

ˆ ˆ ˆ

sin cosi j k

i j k

� � � �� � � 0

00 A Cp s pω θ ω ω θsin  cos( )�

  (9.92)      

 Expanding   the determinant yields 

  
mgd A C C C Ap s p p s psin sin ( cos ) [ sin ( )θ ω θ ω ω θ ω ω θ ωˆ ˆ ˆ  i j k� � � � � �� � � 2ccos sin ]θ θ î

      

 Equating   the coeffi cients of  ̂i    ,  ̂j    and  ̂k     on each side of the equation and assuming that 0      �        θ   �  180 °  leads to 

  
mgd C C Ap s p� � �ω ω ω θ( ) 2 cos   (9.93a)      

  
A p�ω � 0   (9.93b)      

  
C s p( )� �ω ω θ� �cos 0   (9.93c)      

 Equation   9.93b implies  �ωp � 0   , and from Equation 9.93c it follows that  �ωs � 0   . Therefore, the rates of 
spin and precession are both constant. From Equation 9.93a we fi nd 

  
( )A C C mgdp s p� � � �cosθω ω ω2 0   (9.94)      

 If   the spin rate is zero, Equation 9.94 yields 

  

ω
θ

θωp s

mgd

C A
C A)

cos
    cos� � �

�
� 0 0

( )
if ( )   (9.95)      

 In   this case, the top rotates about  O  at this rate, without spinning. If  A              C  (prolate), its symmetry axis must 
make an angle between 90 °  and 180 °  to the vertical; otherwise   ω  p   is imaginary. On the other hand, if  A       �       C  
(oblate), the angle lies between 0 °  and 90 ° . Thus, in steady rotation without spin, the top’s axis sweeps out 
a cone that lies either below the horizontal plane ( A              C ) or above the plane ( A       �       C ). 
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 In   the special case ( A       �       C )cos   θ        �      0, Equation 9.94 yields a steady precession rate that is inversely pro-
portional to the spin rate, 

  
ω

ω
θp

s

mgd

C
A C� � �if  ( )cos 0   (9.96)      

 If    A       �       C , this precession apparently occurs irrespective of tilt angle   θ  . If  A � C , this rate of precession 
occurs at   θ        �      90 ° , i.e., the spin axis is perpendicular to the precession axis. 

 In   general, Equation 9.94 is a quadratic equation in   ω  p  , so we can use the quadratic formula to fi nd 

  

ω
θ

ω ω
θ

p s s
C

A C

mgd A C

C
�

�
� �

�

2

42
2( )

( )

cos

cos⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

  (9.97)      

 Thus  , for a given spin rate and tilt angle   θ   (  θ    � 90 ° ), there are two rates of precession  �φ    . 
 Observe   that if ( A      �      C )cos   θ               0, then   ω  p   is imaginary when   ω  p  

2        �      4 mgd  ( A       �       C )cos   θ  / C  2 . Therefore, 
the minimum spin rate required for steady precession at a constant inclination   θ   is 

  
ω θ θs C

mgd A C A C)  cos cosmin � � � 
2

0( ) if  ( )   (9.98)      

 If   ( A      �      C )cos   θ        �      0, the radical in Equation 9.97 is real for all   ω   s . In this case, as   ω   s     →    0,   ω  p   approaches 
the value given above in Equation 9.95.

        Example 9.15      
 Calculate   the precession rate   ω  p   for the top of  Figure 9.19  if  m       �      0.5       kg,  A  ( �  I x        �       I y  )      �      12      �      10  � 4        kg    ·    m 2 , 
 C  ( �  I z  )      �      4.5      �      10  � 4        kg m 2  and  d       �      0.05       m. 

    Solution 
 For   an inclination of, say, 60 ° , ( A       �       C )cos   θ              0, so that Equation 9.98 requires   ω   s ) min       �      407.01 rpm. Let 
us choose the spin rate to be   ω  s        �      1000 rpm      �      104.7 rad/sec. Then, from Equation 9.97, the precession rate 
as a function of the inclination   θ   is given by either one of the following formulas 

  
ω

θ
θ

ω
θ

θp p�
� �

�
� �

31.42
1 .

cos
and 31.42

1 1 0.3312cos

cos

1 0 3312cos
         (a)      

 These   are plotted in  Figures 9.20   . 

    Figure 9.21    shows an axisymmetric rotor mounted so that its spin axis ( z ) remains perpendicular to the pre-
cession axis ( y ). In that case Equation 9.85 with   θ        �      90 °  yields       

  ω � �ω ωp s
ˆ ˆj k  (9.99)      

 Likewise  , from Equation 9.88, the angular velocity of the co-moving  xyz  system is  Ω � ωp ĵ   . If we assume 
that the spin rate and precession rate are constant ( d ω  p  / dt       �       d ω  s  / dt       �      0), then Equation 9.68, written for the 
center of mass  G , becomes 

  
M H j j kG p p sA C

net
( ) ( )� � � � �Ω ω ω ωˆ ˆ ˆ   (9.100)     



  where  A  and  C  are the moments of inertia of the rotor about the  x  and  z  axes, respectively. Setting  
C s sω k̂ H�    , the spin angular momentum, and  ωp pĵ � ω    , we obtain the   gyroscopic moment     

  
M H H kG p s s sC

net
 ( )� � �ω ω ˆ   (9.101)      

 Since   the center of mass  G  is the reference point, there is no restriction on the motion for which Equation 
9.101 is valid. Observe that the net gyroscopic momen  t    MG net

    exerted on the rotor by its supports is per-
pendicular to the plane of the spin and precession vectors. If a spinning rotor is forced to precess, the gyro-
scopic moment  MG net

    develops. Or, if a moment is applied normal to the spin axis of a rotor, it will precess 
so as to cause the spin axis to turn towards the moment axis.

        Example 9.16      
 A   uniform cylinder of radius  r , length  L  and mass  m  spins at a constant angular velocity   ω  s  . It rests on sim-
ple supports (which cannot exert couples), mounted on a platform that rotates at an angular velocity of   ω  p  . 
Find the reactions at  A  and  B . Neglect the weight (i.e., calculate the reactions due just to gyroscopic effects). 
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 FIGURE 9.20  
       (a) High-energy precession rate (unlikely to be observed); (b) Low energy precession rate (the one most always seen).    
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       A spinning rotor on a rotating platform.    
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    Solution 
 The   net vertical force on the cylinder is zero, so the reactions at each end must be equal and opposite in 
direction, as shown on the free-body diagram insert in  Figure 9.22   . Noting that the moment of inertia of a 
uniform cylinder about its axis of rotational symmetry is  1

2
2mr    , Equation 9.101 yields 

  
RL mr mrp s p s

ˆ ˆ ˆ ˆi j k i� � �( )ω ω ω ω1
2

2 1
2

2( )
     

  so that   

  
R

mr

L
p s

�

2

2

ω ω

             

    9.9       EULER ANGLES 
 Three   angles are required to specify the orientation of a rigid body relative to an inertial frame. The choice 
is not unique, but there are two sets in common use: the Euler angles and the yaw, pitch and roll angles. We 
will discuss each of them in turn. The reader is urged to review Section 4.5 on orthogonal coordinate trans-
formations and, in particular, the discussion of Euler angle sequences. 

 The   three Euler angles   φ  ,   θ   and   ψ   shown in  Figure 9.23    give the orientation of a body-fi xed  xyz  frame 
of reference relative to the  XYZ  inertial frame of reference. The  xyz  frame is obtained from the  XYZ  frame 
by a sequence of rotations through each of the Euler angles in turn. The fi rst rotation is around the  Z  ( �  z  1 ) 
axis through the precession angle   φ  . This takes  X  into  x  1  and  Y  into  y  1 . The second rotation is around the  x  2  
( �  x  1 ) axis through the nutation angle   θ  . This carries  y  1  and  z  1  into  y  2  and  z  2 , respectively. The third and fi nal 
rotation is around the  z  ( �  z  2 ) axis through the spin angle   ψ  , which takes  x  2  into  x  and  y  2  into  y . 

 The   direction cosine matrix [ Q ]  Xx   of the transformation from the inertial frame to the body-fi xed frame 
is given by the classical Euler angle sequence, Equation 4.37: 

  [ ] [ ( )][ ( )][ ( )]Q R R RXx � 3 1 3ψ θ φ   (9.102)      
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 FIGURE 9.22  
       Illustration of the gyroscopic effect.    



 From   Equations (4.32) and (4.34) we have 
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⎥
⎥
⎥
  (9.103)      

 According   to Equation 4.38, the direction cosine matrix is 

  

[ ]Q Xx �

� � �

�

sin cos sin cos cos cos cos sin sin cos sin sinφ θ ψ φ ψ φ θ ψ φ ψ θ ψ
ssin cos cos cos sin cos cos cos sin sin sin cos

sin sin

φ θ γ φ ψ φ θ ψ φ ψ θ ψ
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⎥
⎥
⎥
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  (9.104)      

 Since   this is an orthogonal matrix, the inverse transformation from  xyz  to  XYZ  is  

  [ ] ([ ] )Q QxX Xx
T� ,       

  

[ ]Q xX �

� � � �sin cos sin cos cos sin cos cos cos sin sin sinφ θ ψ φ ψ φ θ γ φ ψ φ θ
ccos cos sin sin cos cos cos cos sin sin cos sin

sin si

φ θ ψ φ ψ φ θ ψ φ ψ φ θ
θ

� � �

nn sin cos cosψ θ ψ θ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (9.105)      

 Algorithm   4.3 is used to fi nd the three Euler angles   θ  ,  φ  ,  ψ   from a given direction cosine matrix [ Q ]  Xx  .
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        Example 9.17      
 The   direction cosine matrix of an orthogonal transformation from  XYZ  to  xyz  is 

  

[ ]Q �

� �

� �

�

0 32175 0 89930 0 29620

0 57791 0 061275 0 81380

0 7500

. . .

. . .

. 00 0 43301 0 5000� �. .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
      

 Use   Algorithm 4.3 to fi nd the Euler angles   φ  ,   θ   and   ψ   for this transformation. 

    Solution 
 Step   1 (precession angle): 

  

φ �
�

�
�� �tan tan

.

.
1 31

32

1 0 75000

0 43301

Q

Q

⎛

⎝
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⎛
⎝
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⎞
⎠
⎟⎟⎟⎟ (( )0 360� � �φ

      

 Since   the numerator is negative and the denominator is positive, the angle   φ   lies in the fourth quadrant. 

  
φ � � � ��tan .1 1 7320 300( )

      

 Step   2 (nutation angle): 

  θ θ� � � � � �� �cos cos .1
33

1 0 5000 0 180Q ( ) ( )       

  θ � �120       

 Step   3 (spin angle): 

  
ψ ψ� �

�

�
� � �� �tan tan

.

.
1 13

23

1 0 29620

0 81380
0 360

Q

Q  
( )

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

      

 Since   both the numerator and denominator are negative, the angle   ψ   lies in the third quadrant. 

  
ψ � � ��tan .1 0 36397 200( )

            

 The   time rates of change of the Euler angles   φ  ,   θ   and   ψ   are, respectively, the precession rate   ω  p  , the 
nutation rate   ω  n   and the spin   ω  s  . That is, 

  
ω φ ω θ ω ψp n s� � �� � �   (9.106)      

 The   absolute angular velocity   ω   of a rigid body can be resolved into components   ω  x  ,   ω  y   and   ω  z   along the 
body-fi xed  xyz  axes, so that 

  
ω � � �ω ω ωx y z

ˆ ˆ ˆi j k   (9.107)      



    Figure 9.23  shows that precession is measured around the inertial  Z  axis (unit vector  K̂   ); nutation is measured 
around the intermediate  x  1  axis (node line) with unit vector  ̂i1   ; and spin is measured around the body-fi xed  z  
axis (unit vector  ̂k    ). Therefore, the absolute angular velocity can alternatively be written in terms of the non-
orthogonal Euler angle rates as 

  
ω � � �ω ω ωp n s

ˆ ˆK i k1   (9.108)      

 In   order to fi nd the relationship between the body rates   ω  x  ,   ω  y  ,   ω  z   and the Euler angle rates   ω  p ,  ω  n  ,   ω  s  , we 
must express  K̂    and  ̂i1    in terms of the unit vectors  ̂ˆ ˆijk    of the body-fi xed frame. To accomplish that, we pro-
ceed as follows. 

 The   fi rst rotation [R 3 (  φ  )] in Equation (9.102) rotates the unit vectors  ̂ ˆ ˆIJK     of the inertial frame into the 
unit vectors  ̂ ˆ ˆi j k1 1 1    of the intermediate  x  1  y  1  z  1  axes in  Figure 9.23 . Hence  ̂ ˆ ˆi j k1 1 1    are rotated into  ̂ ˆ ˆIJK    by the 
inverse transformation 
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  (9.109)      

 The   second rotation [ R  1 (  θ  )] rotates  ̂ ˆ ˆi j k1 1 1     into the unit vectors  ̂ ˆ ˆi j k2 2 2     of the second intermediate frame 
 x  2  y  2  z  2  in  Figure 9.23 . The inverse transformation rotates  ̂ ˆ ˆi j k2 2 2    back into  ̂ ˆ ˆi j k1 1 1   : 
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  (9.110)      

 Finally  , the third rotation [ R  3 (  ψ  )] rotates  ̂ ˆ ˆi j k2 2 2     into  ̂ ˆ ˆijk   , the target unit vectors of the body-fi xed  xyz  
frame.  ̂ ˆ ˆi j k2 2 2    are obtained from  ̂ ˆ ˆijk    by the reverse rotation, 
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  (9.111)      

 From   Equations 9.109, 9.110 and 9.111 we observe that 

  
ˆ ˆ sin ˆ cos ˆ sin sin ˆ cos ˆK k j k i� � � � �

9.109 9.110 9.111

(
� � �

1 2 2θ θ θ ψ ψ jj k) � cos ˆθ      

  or   

  
ˆ sin sin ˆ sin cos ˆ cos ˆK i j k� � �θ ψ θ ψ θ   (9.112)      
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 Similarly  , Equations 9.110 and 9.111 imply that 

  
ˆ ˆ cos ˆ sin ˆi i i j1 2� � �ψ ψ   (9.113)      

 Substituting   Equations 9.112 and 9.113 into 9.108 yields 

  
ω � � � � �ω θ ψ θ ψ θ ω ψ ψ ωp n s(sin sin sin cos cos ) (cos sin )ˆ ˆ ˆ ˆ ˆi j k i j k−

     

  or   

  
ω � � � � �( sin sin cos ) ( sin cos sin ) ( cos )ω θ ψ ω ψ ω θ ψ ω ψ ω ω θp n p n s p

ˆ ˆ ˆi j + kk   (9.114)      

 Comparing   Equations 9.107 and 9.114, we obtain the   angular velocities in terms of the Euler angle rates  , 

  

ω ω θ ψ ω ψ

ω ω θ ψ ω ψ

ω ω ω θ

x p n

y p n

z s p

� �

� �

� �

sin sin cos

sin cos sin

cos

  (9.115)      

   (Notice that the angle   φ   does not appear.) We can solve these three equations to obtain the   Euler angle 
rates in terms of the angular velocities   ω  x  ,   ω  y   and   ω  z  : 

  

ω φ
θ
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ω ψ
θ

p x y

n x y
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tan
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(ωω ψ ω ψ ωx y zsin cos� �)

  (9.116)      

 Observe   that if   ω  x  ,   ω  y   and   ω  z   are given functions of time, found by solving Euler’s equations of motion 
(Equations 9.72), then Equations 9.116 are three coupled differential equations which may be solved to 
obtain the three time-dependent Euler angles 

  φ φ θ θ ψ ψ� � �(t) ( ) ( )t t       

 With   this solution, the orientation of the  xyz  frame, and hence the body to which it is attached, is known for 
any given time  t . Note, however, that Equations 9.116  “ blow up ”  when   θ        �      0, i.e., when the  xy  plane is par-
allel to the  XY  plane.

        Example 9.18      
 At   a given instant, the unit vectors of a body frame are 

  

ˆ . ˆ . ˆ . ˆ

ˆ . ˆ . ˆ .

i I J K

j I J

� � �

� � � �

0 40825 0 40825 0 81649

0 10102 0 90914 0 440405

0 90726 0 082479 0 41240

ˆ

ˆ . ˆ . ˆ . ˆ
K

k I J K� � �

  (a)     



  and the angular velocity is   

  ω � � � �3 1 2 5 1 7.  (rad/s)ˆ . ˆ . ˆI J K   (b)      

 Calculate     ω  p  ,   ω  n   and   ω  s   (the precession, nutation and spin rates) at this instant. 

    Solution 
 We   will ultimately use Equation 9.116 to fi nd   ω  p  ,   ω  n   and   ω  s  . To do so we must fi rst obtain the Euler angles 
  φ  ,   θ   and   ψ   as well as the components of the angular velocity in the body frame. 

 The   three rows of the direction cosine matrix [ Q ]  Xx   comprise the components of the unit vectors  ̂i    ,  ̂j     and 
 ̂k    , respectively, 
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  (c)      

 Therefore  , the components of the angular velocity in the body frame are 
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  or   

  
ω ω ωx y z� � � � � �0 89817 2 6466 3 3074. . . rad/s  rad/s  rad/s   (d)      

 To   obtain the Euler angles   φ  ,   θ   and   ψ   from the direction cosine matrix in (c), we use Algorithm 4.3, as 
illustrated in Example 9.17. That algorithm is implemented as the MATLAB function  dcm_to_Euler.m  in 
Appendix D.20. Typing the following lines in the MATLAB Command Window 

          >      >  Q      =      [ .40825 �.40825  .81649  
                   �.10102 �.90914 �.40405  
                   .90726 .082479 �.41240];  
          >      >  [phi theta psi]      =      dcm_to_euler(Q)  

 produces   the following output: 

  phi    =   
                  95.1945  

  theta    =   
                  114.3557  

  psi    =   
                  116.3291  

 Substituting     θ        �      114.36 °  and   ψ        �      116.33 °  together with the angular velocities (d) into Equations 9.116 
yields 

  

ωp � � � � �
1

114 36
0 89817 116 33 2 6466 116 33 0

sin
[ sin ( ) cos ]

.
. . . .

°
⋅ ° ⋅ ° ..

. . . .

40492

0 89817 116 33 2 6466 116 33 2

 rad/s

cos ( ) sinωn � � � � �⋅ ° ⋅ ° ..

tan .
. . .

7704
1

114 36
0 89817 116 33 2 6466

 rad/s

[ sin ( )ωs � � � � �
°

⋅ ° ⋅ ccos ] ( )  rad/s116 33 3 3074 3 1404. . .° � � � �
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        Example 9.19      
 The   mass moments of inertia of a body about the principal body frame axes with origin at the center of mass 
 G  are 

  A B C� � � � � �1000 2000 3000kg m kg m kg m2 2 2   (a)      

 The   Euler angles in radians are given as functions of time in seconds as follows: 

  

φ
θ
ψ

�
� �
�

�2
0 02 0 3 0 25
0 6

0 05te
t

t

t.

. . sin .
.

  (b)      

 At    t       �      10 s, fi nd 

    (a)     The net moment about  G   
    (b)     The components   α  X  ,   α  Y   and   α  Z   of the absolute angular acceleration in the inertial frame.    

    Solution 
        (a)     We must use Euler’s equations (Equations 9.72) to calculate the net moment, which means we must fi rst 
obtain   ω  x  ,   ω  y  ,   ω  z  ,  �ωx    ,  �ωy     and  �ωz    . Since we are given the Euler angles as functions of time, we can compute 
their time derivatives and then use Equation 9.115 to fi nd the body frame angular velocity components and 
their derivatives.    

 Starting   with (b) 1 , we get 

  

ω
φ

ω
ω

p
t t t

p
p

d

dt

d

dt
te e te

d

dt

d

dt

� � � �

� �

� � �( )

(

2 2 0 1

2

0 05 0 05 0 05. . ..

� ee e e tet t t t� � � �� � � �0 05 0 05 0 05 0 050 1 0 2 0 005. . . .. . .)
      

 Proceeding   to the remaining two Euler angles leads to 

  

ω
θ

ω
ω

n

n
n

d

dt

d

dt
t t

d

dt

d

dt

� � � �

� �

( )

(

0 02 0 3 0 25 0 075 0 25

0

. . sin . . cos .

� .. cos . . sin .075 0 25 0 01875 0 25t t) � �
      

  

ω
ψ

ω
ω

s

s
s

d

dt

d

dt
t

d

dt

� � �

� �

( )0 6 0 6

0

. .

�
       

 Evaluating   all of these quantities, including those in (b), at  t       �      10 s yields 

  

φ ω ω

θ ω

� �

� �

335 03 0 60653 0 09098

11 433 0

. . .

.

° = −

° −

p p

n

 rad/s  rad/s2�

.. .

. .

060086 0 011221

343 77 0 6

 rad/s  rad/s

 rad/s

2�
�
ω

ψ ω ω
n

s s

= −
=� � 00

  (c)      



 Equation   9.115 relates the Euler angle rates to the angular velocity components, 

  

ω ω θ ψ ω ψ
ω ω θ ψ ω ψ
ω ω ω θ

x p n

y p n

z s p

� �

� �

� �

sin sin cos

sin cos sin

cos

  (d)      

 Taking   the time derivative of each of these equations in turn leads to the following three equations, 

  

� � �ω ω ω θ ψ ω ω θ ψ ω ω ψ ω θ ψ ω ψx p n p s n s p n� � � � �cos sin sin cos sin sin sin cos

�� � �ω ω ω θ ψ ω ω θ ψ ω ω ψ ω θ ψ ωy p n p s n s p n� � � � �cos cos sin sin cos sin cos sin ψψ

ω ω ω θ ω θ ω� � �z p n p s� � � �sin cos

  (e)      

 Substituting   the data in (c) into (d) and (e) yields 

  

ω ω ω

ω

x y z

x

� � � �

�

0 091286 0 098649 1 1945

0 06

. . .

.

 rad/s  rad/s  rad/s

� 33435 2 2346 10 0 081955  rad/s  rad/s  rad/s2 2 2� �ω ωy z� � � ��. .
  (f)      

 With   (a) and (f) we have everything we need for Euler’s equations, 

  

M A C B

M B A C

M C B A

x x y z

y y z x

z z x

net

net

net

( )

( )

( )

� � �

� � �

� � �

�
�
�

ω ω ω
ω ω ω
ω ω ωωy      

  from which we fi nd   

  

M

M

M

x

y

z

net

net

net

 N m

 N m

 N m

� �

� �

� � �

181 27

218 12

254 86

.

.

.
      

    (b)     Since the co-moving  xyz  frame is a body frame, rigidly attached to the solid, we know from Equation 
9.73 that    

  

α
α
α

ω
ω

ω

X

Y

Z

xX

x

y

z

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪
� [ ]Q

�
�

�

⎪⎪⎪

⎭
⎪⎪⎪⎪

  (g)      

 In   other words, the absolute angular acceleration and the relative angular acceleration of the body are the 
same. All we have to do is project the components of relative acceleration in (f) onto the axes of the inertial 
frame. The required orthogonal transformation matrix is given in Equation 9.105, 

  

[ ]Q xX �

� � � �sin cos sin cos cos sin cos cos cos sin sin sinφ θ ψ φ ψ φ θ γ φ ψ φ θ
ccos cos sin sin cos cos cos cos sin sin cos sin

sin si

φ θ ψ φ ψ φ θ ψ φ ψ φ θ
θ

� � �

nn sin cos cosψ θ ψ θ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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 Upon   substituting the numerical values of the Euler angles from (c), this becomes 

  

[ ]Q xX �

�

� �

�

0 75484 0 65055 0 083668

0 65356 0 73523 0 17970

0 055

. . .

. . .

. 3386 0 19033 0 98016. .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
      

 Substituting   this and the relative angular velocity rates from (f) into (g) yields 

  

α
α
α

X

Y

Z

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

�

�

0 75484 0 65055 0 083668

0 653

. . .

. 556 0 73523 0 17970

0 055386 0 19033 0 98016

0 063

. .

. . .

.

�

�

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

4435

2 2345 10

0 08195

0 054755

0 05.

.

.

.�

�

� ��

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

226716

0 083833

2

� .

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

(rad/s )

           

        Example 9.20      
    Figure 9.24    shows a rotating platform on which is mounted a rectangular parallelepiped shaft (with dimen-
sions  b ,  h  and  l ) spinning about the inclined axis  DE . If the mass of the shaft is  m , and the angular velocities 
  ω  p   and   ω  s   are constant, calculate the bearing forces at  D  and  E  as a function of   φ   and   ψ  . Neglect gravity, 
since we are interested only in the gyroscopic forces. (The small extensions shown at each end of the paral-
lelepiped are just for clarity; the distance between the bearings at  D  and  E  is l.) 

    Solution 

 The   inertial  XYZ  frame is centered at  O  on the platform, and it is right-handed ( ̂ ˆ ˆI J K� �    ). The origin 
of the right-handed co-moving body frame  xyz  is at the shaft’s center of mass  G , and it is aligned with the 
symmetry axes of the parallelepiped. The three Euler angles   φ  ,   θ   and   ψ   are shown in  Figure 9.24 . Since   θ   is 
constant, the nutation rate is zero (  ω  n        �      0). Thus, Equations 9.115 reduce to 

  
ω ω θ ψ ω ω θ ψ ω ω θ ωx p y p z p s� � � �sin sin sin cos cos   (a)      

D
X

Y

Z

y

z

x

O

E

(Measured in XY plane) 

(Measured in Zz plane) 

Shaft

Platform

˙
p

˙ sx ′

x ′

(Measured in x ′x plane,
perpendicular to shaft) 

xyz axes attached
to the shaft

l/2
G

l/2

b h

φ

ψ

θ

φ ω

ψ ω=

=

 FIGURE 9.24  
       Spinning block mounted on rotating platform.    



 Since     ω  p  ,   ω  s   and   θ   are constant, it follows (recalling Equations 9.106) that 

  
� � �ω ω ω θ ψ ω ω ω θ ψ ωx p s y p s z� � � �sin cos sin sin 0   (b)      

 The   principal moments of inertia of the parallelepiped are [see  Figure 9.10(c) ] 

  

A I m h l

B I m b l

C I m b h

x

y

z

� � �

� � �

� � �

1

12
1

12
1

12

2 2

2 2

2 2

( )

( )

( )

  (c)      

    Figure 9.25    is a free-body diagram of the shaft. Let us assume that the bearings at  D  and  E  are such as 
to exert just the six body frame components of force shown. Thus,  D  is a thrust bearing to which the axial 
torque  T D   is applied from, say, a motor of some kind. At  E  there is a simple journal bearing. 

 From   Newton’s laws of motion we have  F  net       �       m  a   G  . But  G  is fi xed in inertial space, so  a   G        �       0 . Thus, 

  
( ) ( )D D D E Ex y z x y

ˆ ˆ ˆ ˆ ˆi j k i j� � � � � 0
      

 It   follows that 

  
E D E D Dx x y y z� � � � � 0   (d)      

 Summing   moments about  G  we get 

  

M k i j k i j kG x y x y D
l

E E
l

D D T

D

net
� � � � � � � �

�

2 2
ˆ ( ˆ ˆ) ˆ ( ˆ ˆ) ˆ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

yy y x x D

y

l
E

l
D

l
E

l
T

D l

2 2 2 2
� � � � �

� �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

ˆ ˆ ˆ

ˆ

i j k

i DD l Tx D
ˆ ˆj k�
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 FIGURE 9.25  
       Free-body diagram of the block in  Figure 9.24 .    
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  where we made use of Equation (d) 2 . Thus,   

  
M D l M D l M Tx y y x z Dnet net net

� � � �   (e)      

 We   substitute (a), (b), (c), and (e) into Euler’s equations (Equations 9.72): 

  

M A C B

M B A C

M C B A

x x y z

y y x z

z z x

net

net

net

� � �

� � �

� � �

�

�

�

ω ω ω

ω ω ω

ω ω

( )

( )

( ) ωωy

  (f)      

 After   making the substitutions and simplifying, the fi rst Euler equation, Equation (f) 1 , becomes 

  
D

m

l
l h hx p s p� � �

1

12
22 2 2[ ]( ) cos sin cosω θ ω ω θ ψ

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

  (g)      

 Likewise  , from Equation (f) 2  we obtain 

  
D

m

l
l b by p s p�

1

12
22 2 2[( ) cos ] sin sin− −

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

ω θ ω ω θ ψ   (h)      

 Finally  , Equation (f) 3  yields 

  
T m b hD p� �

1

24
22 2 2 2( ) sin sinω θ ψ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   (i)      

 This   completes the solution, since  E y        �       �  D y   and  E z        �       �  D z  . Note that the resultant transverse bearing load 
 V  at  D  (and  E ) is 

  
V D Dx y� �2 2   (j)      

 As   a numerical example, let 

  l h b m� � � � �1 0 1 0 025 30 10m m m kg. . θ °      

  and   

  
ω ωp s� � � �100 10 47 2000 209 4rpm rads/s rpm rad/s. .

      

 For   these numbers, the variation of  V  and  T D   with   ψ   is as shown in  Figure 9.26   .        
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 FIGURE 9.26  
       (a) Transverse bearing load. (b) Axial torque at  D .    



    9.10       YAW, PITCH AND ROLL ANGLES 
 The   problem of the Euler angle relations, Equations 9.116, becoming singular when the nutation angle   θ   is 
zero can be alleviated by using the yaw, pitch and roll angles discussed in Section 4.5. As in the classical 
Euler sequence, yaw-pitch-roll sequence rotates the inertial  XYZ  axes into the body fi xed  xyz  axes triad by 
means of a series of three elementary rotations illustrated in  Figure 9.27   . Like the classical Euler sequence, 
the fi rst rotation is around the  Z  ( �  z  1 ) axis through the yaw angle   φ  . This takes  X  into  x  1  and  Y  into  y  1 . The 
second rotation is around the  y  2  ( �  y  1 ) axis through the pitch angle   θ  . This carries  x  1  and  z  1  into  x  2  and  z  2 , 
respectively. The third and fi nal rotation is around the  x  ( �  x  2 ) axis through the pitch angle   ψ  , which takes 
 y  2  into  y  and  z  2  into  z . 

 Equation   4.40 gives the matrix [ Q ]  Xx   of the transformation from the inertial frame into the body-fi xed 
frame, 

  [ ]Q R R RXx � [ ( )][ ( )][ ( )]1 2 3ψ θ φ   (9.117)      

 From   Equations 4.32, 4.33 and 4.34, the elementary rotation matrices are 

 

[ ( )] cos sin

sin cos

[ ( )]

cos si

R R1 2

1 0 0

0

0

0

ψ ψ ψ
ψ ψ

θ
θ

�

�

�

�⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

nn

sin cos

[ ( )]

cos sin

sin cos

θ

θ θ
φ

φ φ
φ φ0 1 0

0

0

0

0 0 1
3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

R � �

⎣⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (9.118)      
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 FIGURE 9.27  
       Yaw, pitch and roll sequence. See also Figure 4.15.    
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 According   to Equation 4.41, the multiplication on the right of Equation 9.117 yields the following direction 
cosine matrix for the yaw-pitch-roll sequence, 

  

[ ]

cos cos sin cos sin

cos sin sin sin cos sin sin siQ Xx �

�

�

φ θ φ θ θ
φ θ ψ φ ψ φ θ nn cos cos cos sin

cos sin cos sin sin sin sin cos cos

ψ φ ψ θ ψ
φ θ ψ φ ψ φ θ ψ φ

�

� � ssin cos cosψ θ ψ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (9.119)      

 The   inverse matrix [ Q ]  xX  , which transforms  xyz  into  XYZ , is just the transpose 

  

Q[ ]xX
�

� �cos cos cos sin sin sin cos cos sin cos sin sin

si

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
nn cos sin sin sin cos cos sin sin cos cos sin

sin cos

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ

� �

� ssin cos cosψ θ ψ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (9.120)      

 Algorithm   4.4 ( dcm_to_ypr.m  in Appendix D.21) is used to determine the yaw, pitch and roll angles for 
a given direction cosine matrix. The following brief MATLAB session reveals that the yaw, pitch and roll 
angles for the direction cosine matrix in Example 9.17 are   φ        �      109.69 ° ,   θ        �      17.230 °  and   ψ        �      238.43 ° . 

          >      >  Q      =      [ �0.32175          0.89930          �0.29620  
                   0.57791          �0.061275          �0.81380  
                   �0.75000          �0.43301          �0.5000];  
          >      >  [yaw pitch roll]      =      dcm_to_ypr(Q)  
  yaw    =   

                  109.6861  
  pitch    =   

                  17.2295  
  roll    =   

                  238.4334  

    Figure 9.27  shows that yaw   φ   is measured around the inertial  Z  axis (unit vector  K̂   ), pitch   θ   is measured 
around the intermediate  y  1  axis (unit vector  ̂j1   ) and roll   ψ   is measured around the body-fi xed  x  axis (unit 
vector  ̂i   ). The angular velocity   ω  , expressed in terms of the rates of yaw, pitch and roll, is 

  
ω � � �ω ω ωyaw pitch roll

ˆ ˆ ˆK j i2   (9.121)     

  in which   

  
ω φ ω θ ω ψyaw pitch roll� � �� � �   (9.122)      

 The   fi rst rotation [ R  3 (  φ  )] in Equation 9.117 rotates the unit vectors  ̂ ˆ ˆIJK     of the inertial frame into the 
unit vectors  ̂ ˆ ˆi j k1 1 1     of the intermediate  x  1  y  1  z  1  axes in  Figure 9.27 . Thus,  ̂ ˆ ˆi j k1 1 1     are rotated into  ̂ ˆ ˆIJK     by the 
inverse transformation 

  

ˆ

ˆ

ˆ

cos sin

sin cos

I

J

K

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

⎡

⎣

⎢
�

�φ φ
φ φ

0

0

0 0 1

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

ˆ

ˆ

ˆ

i

j

k

1

1

1

  (9.123)      



 The   second rotation [ R  2 (  θ  )] rotates  ̂ ˆ ˆi j k1 1 1     into the unit vectors  ̂ ˆ ˆi j k2 2 2     of the second intermediate frame 
 x  2  y  2  z  2  in  Figure 9.27 . The inverse transformation rotates  ̂ ˆ ˆi j k2 2 2    back into  ̂ ˆ ˆi j k1 1 1   : 

  

ˆ

ˆ

ˆ

cos sin

sin cos

i

j

k

1

1

1

0

0 1 0

0

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

�

�

θ θ

θ θ

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

ˆ

ˆ

ˆ

i

j

k

2

2

2

  (9.124)      

 Lastly  , the third rotation [ R  1 (  ψ  )] rotates  ̂ ˆ ˆi j k2 2 2     into  ̂ ˆ ˆijk   , the unit vectors of the body fi xed  xyz  frame.  
ˆ ˆ ˆi j k2 2 2     are obtained from  ̂ ˆ ˆijk    by the reverse transformation, 

  

ˆ

ˆ

ˆ
cos sin

sin cos

i

j

k

2

2

2

1 0 0

0

0

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

� �ψ ψ
ψ ψ

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

ˆ

ˆ

ˆ

i

j

k

  (9.125)      

 From   Equations 9.123 through 9.125 we see that 

  
ˆ ˆ sin ˆ cos ˆ sin ˆ cos (sin

. . .

K k i k i� � � � � � �

9 123

1

9 124

2 2

9 125� � �
θ θ θ θ ψψ ψˆ cos ˆ )j k�      

  or   

  
ˆ sin ˆ cos sin ˆ cos cos ˆK i j k� � � �θ θ ψ θ ψ   (9.126)      

 From   Equation 9.125, 

  
ˆ cos ˆ sin ˆj j k2 � �ψ ψ   (9.127)      

 Substituting   Equations 9.126 and 9.127 into 9.121 yields 

  
ω � � � � � �ω θ θ ψ θ ψ ω ψ ψyaw pitch( sin ˆ cos sin ˆ cos cos ˆ ) (cos ˆ sin ˆi j k j k)) ˆ� ωroll i      

  or   

 
ω � � � � � �( sin )yaw roll yaw pitch yawω θ ω ω θ ψ ω ψ ωˆ ( cos sin cos )ˆ ( cosi j θθ ψ ω ψcos sin ) ˆ� pitch k   (9.128)      

 Comparing   Equations 9.107 and 9.128 we see that the body   angular velocities are related to the yaw, pitch 
and roll rates   as follows: 

  

ω ω ω θ

ω ω θ ψ ω ψ
x

y

� �

� �

roll yaw pitch

yaw pitch roll pitch r

sin

cos sin cos ooll

yaw pitch roll pitch rollω ω θ ψ ω ψz � �cos cos sin

  (9.129)     
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  wherein the subscript on each symbol helps us remember the rotation it describes. The inverse of these 
equations   yields the yaw, pitch and roll rates in terms of angular velocities     

  

ω
θ

ω ψ ω ψ

ω ω ψ ω

yaw
pitch

roll roll

pitch roll

� �

� �

1

cos
( sin cos )

cos

y z

y z ssin

tan sin tan cos

ψ

ω ω ω θ ψ ω θ ψ
roll

roll pitch roll pitch roll� � �x y z

  (9.130)      

 Notice   that this system becomes singular (cos  θ   pitch       �      0) when the pitch angle is  � 90 ° .  

    9.11       QUATERNIONS 
 In   Chapter 4 we showed that the transformation from any Cartesian coordinate frame to another having the 
same origin can be accomplished by a sequence of three transformations, each being an elementary rota-
tion about one of the three coordinate axes. We have focused on the commonly used classical Euler angle 
sequence ([ R  3 (  γ  )][ R  1 (  β  )][ R  3 ( α )]) and the yaw-pitch-roll sequence ([ R  1 (  γ  )][ R  2 (  β  )][ R  3 (  α  )]).

Another of Euler’s theorems, which we used in Section 1.6, states that any two Cartesian coordinate 
frames are related by a unique rotation about a single line through their common origin. This line is called 
the   Euler axis   and the angle is referred to as the   principal angle  . 

 Let    û     be the unit vector along the Euler axis. A vector  v  can be resolved into orthogonal components  v   ⊥   
normal to  ̂u     and  v     parallel to  ̂u    , so that we may write 

  
v v v� � ⊥   (9.131)      

 The   component of  v  along  ̂u    is given by  v u� ˆ    . That is, 

  
v v u u � �( )ˆ ˆ   (9.132)      

 From   Equations 9.131 and 9.132 we have 

  v v v u u⊥ � � �( )ˆ ˆ   (9.133)      

 Let    v  
  be the vector obtained by rotating  v  through an angle   θ   around  ̂u   , as illustrated in  Figure 9.28   . 
 This   rotation leaves the magnitude of  v   ⊥   and its component along  ̂u    unchanged. That is 

  
v v⊥ ⊥
 �   (9.134)      

  
v v u u
 � �( )ˆ ˆ   (9.135)      



    v⊥
 ,    having been rotated about  ̂u   , has the component  v⊥
 cosθ     along v⊥ and the component  v⊥
 sinθ     
along the vector normal to the plane of  ̂u     and  v . Let  ŵ     be the unit vector normal to that plane. Then 

  

ˆ ˆw u
v

v
� � ⊥

⊥
  (9.136)      

 Thus  , as can be seen from  Figure 9.28 , 

  

v v
v

v
v

u v

v⊥ ⊥
⊥

⊥
⊥

⊥

⊥


 
 
� �
�

cos sinθ θ
      

 According   to Equation 9.134, this reduces to 

  v v u v⊥ ⊥ ⊥
 � � �cos sinθ θ   (9.137)      

 Observe   that 

  
ˆ ˆ ˆu v u v v u v� � � � � �⊥

⎡
⎣⎢

⎤
⎦⎥      

  since  v     is parallel to  û    . This, together with Equation 9.133, means we can write Equation 9.137 as   

  v v v u u u v⊥
 � � � � �cos [ ( ) ] sin ( )θ θˆ ˆ ˆ   (9.138)      

 Since    v v v
 � �
 
⊥     , we fi nd, upon substituting Equation 9.135 and 9.138 and collecting terms, that 

  v v u v u u v
 � � � � � �cos ( cos )( ) sinθ θ θ1 ˆ ˆ ( ˆ )   (9.139)      

 This   is a useful formula for determining the result of rotating a vector about a line. 

9.11 Quaternions  553

v

v′

v⊥

ŵ
û
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θ

 FIGURE 9.28  
       Rotation of a vector  v  through an angle   θ   about an axis with unit vector  ̂u       .
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 We   can obtain the body fi xed  xyz  Cartesian frame from the inertial  XYZ  frame by a single rotation 
through the principal angle   θ   about the Euler axis  ̂u    . The unit vectors  ̂ ˆ ˆIJK     are thereby rotated into  ̂ ˆ ˆijk   . The 
two sets of unit vectors are related by Equation 9.139. Thus, 

  

ˆ cos ˆ ( cos )( ˆ ˆ) ˆ sin ˆ ˆ

ˆ cos ˆ ( cos )( ˆ

i I u I u u I

j J u

� � � � � �

� � �

θ θ θ

θ θ

1

1 �� � �

� � � � � �

ˆ ) ˆ sin ˆ ˆ

ˆ cos ˆ ( cos )( ˆ ˆ ) ˆ sin ˆ ˆ
J u u J

k K u K u u K

θ

θ θ θ1

  (9.140)      

 Let   us express the unit vector  ̂u    in terms of its direction cosines  l ,  m  and  n  along the original  XYZ  axes, 

  ˆ
ˆ ˆ ˆu I J K� � �l m n   (9.141)      

 Substituting   this into Equation 9.140, carrying out the vector operations and collecting terms yields 

  

ˆ [ ( cos ) cos ]ˆ ( cos ) sin ˆ ( cos ) sii I J� � � � � � � �l lm n m2 1 1 1θ θ θ θ θ+ [ ] ln nn ˆ

ˆ [ ( cos ) sin ]ˆ ( cos ) cos ˆ (

θ

θ θ θ θ

[ ]

+ ⎡
⎣⎢

⎤
⎦⎥

K

j I J� � � � � �lm n m1 12 mn 11

1 1

� �

� � � � �

cos ) sin ˆ

ˆ [ ( cos ) sin ]ˆ ( cos ) sin

θ θ

θ θ θ θ

l

m mn l

[ ]

+

K

k Iln [[ ] ⎡
⎣⎢

⎤
⎦⎥

ˆ ( cos ) cos ˆJ K� � �n2 1 θ θ

  (9.142)      

 Recall   that the rows of the matrix [ Q ]  Xx   of the transformation from  XYZ  to  xyz  comprise the direction 
cosines of  ̂i   ,  ̂j    and  ̂k   , respectively. That is, 

  

Q[ ]Xx

l lm n m

lm�

� � � � � �

�

2 1 1 1

1

( cos ) cos ( cos ) sin ( cos ) sin

(

θ θ θ θ θ θln

ccos ) sin ( cos ) cos ( cos ) sin

( cos ) sin

θ θ θ θ θ θ

θ

� � � � �

� �

n m l

m

2 1 1

1

mn

ln θθ θ θ θ θmn l( cos ) sin ( cos ) cos1 1� � � �n2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (9.143)      

 The   direction cosine matrix is thus expressed in terms of the Euler axis direction cosines and the principal 
angle. 

 Quaternions   (also known as Euler symmetric parameters) were introduced in 1843 by the Irish math-
ematician Sir William R. Hamilton (1805 – 1865). They provide an alternative to the use of direction cosine 
matrices for describing the orientation of a body frame in three-dimensional space. Quaternions can be used 
to avoid encountering the singularities we observed for the classical Euler angle sequence when the nuta-
tion angle   θ   becomes zero (Equations 9.116) or for the yaw-pitch-roll sequence when the pitch angle   θ   
approaches 90 °  (Equations 9.126). 

 As   the name implies, a quaternion  { }
�
q     comprises four numbers 

  

{ }
�
q

q
� �

q

q

q

q

q

1

2

3

4

4

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎭⎪⎪

  (9.144)      

  q    is called the vector part  (q i j k� � �q q q1 2 3
ˆ ˆ  ̂   and  q  4  is the scalar part. (It is equally common to see the 

scalar part listed fi rst, so that  { } ,
�
q q� q

T
4⎢⎣ ⎥⎦     or  { } ,

�
q q� q

T
0⎢⎣ ⎥⎦    .) 



 The   norm  
�
q     of the quaternion  �q{ }    is defi ned as 

  
�
q q q� � � � � � �q q q q q4

2
1
2

2
2

3
2

4
2

  (9.145)      

 We   will restrict our attention to   unit quaternions  , which are such that  
�
q � 1    . In that case 

  
q u� �sin cos

θ θ
2 24ˆ q   (9.146)     

   ̂u     is the unit vector along the Euler axis around which the inertial reference frame is rotated into the body-
fixed frame.   θ   is the Euler principal rotation angle. Recalling Equation 9.141, we observe that   

  
q l q m q n q1 2 3 42 2 2 2

� � � �sin sin sin cos
θ θ θ θ

  (9.147)      

 Employing   these and the trigonometric identities 

  
cos cos sin sin sin cosθ

θ θ
θ

θ θ
� � �2 2

2 2
2

2 2       

 one   can show that the direction cosine matrix [ Q ]  Xx   of the body frame in Equation 9.143 is obtained from 
the quaternion  { }

�
q     by means of the following algorithm (Kuipers, 1999).

                 Algorithm 9.1 Obtain   [ Q ]  Xx   from the unit quaternion  { }
�
q    . This procedure is implemented in the MATLAB 

function  dcm_from_q.m  in Appendix D.37. 

    1.     Write the quaternion as    

  

{ }
�
q �

q

q

q

q

1

2

3

4

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪      

  where  q q q
T

1 2 3⎢⎣ ⎥⎦     is the vector part and  q  4  is the scalar part and  �q � 1   .   

    2.     Compute the direction cosine matrix of the transformation from  XYZ  to  xyz  as follows:    

  

[ ]

( ) ( )

( )Q Xx

q q q q q q q q q q q q

q q q q�

� � � � �

� �

1
2

2
2

3
2

4
2

1 2 3 4 1 3 2 4

1 2 3 4

2 2

2 qq q q q q q q q

q q q q q q q q q q

1
2

2
2

3
2

4
2

2 3 1 4

1 3 2 4 2 3 1 4 1
2

2

2 2

� � � �

� � � �

( )

( ) ( ) 22
2

3
2

4
2� �q q

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (9.148)           
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 One   can verify by carrying out the matrix multiplication and using Equation 9.145 that [ Q ]  Xx   in 
Equation 9.148 has the required orthogonality property, 

  
[ ] [ ] [ ] [ ]Q Q Q Q 1Xx Xx

T
Xx

T
Xx� � [ ]       

 To   fi nd the unit quaternion ( q  1  
2       �       q  2  

2       �       q  3  
2       �       q  4  

2       �      1) for a given direction cosine matrix, we observe 
from Equation 9.148 that 

  

q Q Q Q

q
Q Q

q
q

Q Q

q
q

Q Q

q

4 11 22 33

1
23 32

4
2

31 13

4
3

12 21

4

1

2
1

4 4 4

� � � �

�
�

�
�

�
�

  (9.149)      

 This   procedure obviously fails if  q  4       �      0. The following algorithm (Bar-Itzhack, 2000) avoids having to 
deal with this situation.

                 Algorithm 9.2 Obtain   the (unit) quaternion from the direction cosine matrix [ Q ]  Xx  . This procedure is 
implemented as the MATLAB function  q_from_dcm.m  in Appendix D.38. 

    1.     Form the symmetric matrix    

  

[ ]K �

� � � � �

� � � �1

3

11 22 33 21 12 31 13 23 32

21 12 11 22 33

Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q332 23 31 13

31 13 32 23 11 22 33 12 21

23 32 31

� �

� � � � � �

� �

Q Q Q

Q Q Q Q Q Q Q Q Q

Q Q Q QQ Q Q Q Q Q13 12 21 11 22 33� � �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

  (9.150)      

    2.     Solve the eigenvalue problem [ K ] {  x  }       �       λ  {  x  }  for the largest eigenvalue  λ  max . The corresponding 
eigenvector is the quaternion,  { } { }

�
q � x    .         

 The     time derivative of a quaternion   is given by (Sidi, 1997) 

  

d

dt
{ } { }
� �
q q�

1

2
Ω[ ]   (9.151a)     

  where   

  

Ω[ ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

�

�

�

�

� � �

0

0

0

0

ω ω ω

ω ω ω

ω ω ω

ω ω ω

z y x

z x y

y x z

x y z

  (9.151b)      

     ω  x  ,   ω  y   and   ω  z   are the body frame components of the angular velocity.



        Example 9.21      
        (a)     Write down the quaternion for a rotation about the  x  axis through an angle   θ  . (b) Obtain the correspond-
ing direction cosine matrix.    

    Solution 
        (a)     According to Equation 9.146,    

  q i� �sin cos( )( / ) /θ θ2 24
ˆ q   (a)     

  so that   

  

{ }

sin ( )

cos( )

q̂ =

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

θ

θ

/

/

2

0

0

2

  (b)      

    (b)     Substituting  
�
q1 2� sin( )θ/    ,  

� �
q q2 3 0� �     and  

�
q4 2� cos /( )θ     into Equation 9.148 yields    

  

[ ]

sin ( ) cos ( )

sin ( ) cos ( ) sin( )cosQ �

�

� �

2 2

2 2

2 2 0 0

0 2 2 2 2

θ θ

θ θ θ

/ /

/ / / (( )

in( )cos( ) sin ( ) cos ( )

θ

θ θ θ θ

/

/ / / /

2

0 2 2 2 2 22 2� � �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥⎥
⎥

  (c)      

 From   trigonometry we recall that 

  
sin cos sin cos sin cos sin cos2 2 2 2

2 2
1 2

2 2 2 2

θ θ θ θ
θ

θ θ
θ� � � � �

      

 Therefore  , (c) becomes 

  

[ ] cos sin

sin cos

Q �

�

1 0 0

0

0

θ θ
θ θ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (d)      

 We   recognize this as the direction cosine matrix [ R  1 (  θ  )] for a rotation   θ   around the  x  axis.      

        Example 9.22      
 For   the yaw-pitch-roll sequence   φ  yaw        �      50 ° ,   θ  pitch        �      90 °  and   ψ  roll        �      120 ° , calculate 

    (a)     The quaternion  
    (b)     The rotation angle and axis of rotation.    
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    Solution 
        (a)     Substituting the given angles into Equation 9.119 yields the direction cosine matrix    

  

[ ] . .

. .

Q Xx �

�

�

0 0 1

0 93969 0 34202 0

0 34202 0 93969 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (a)      

 Substituting   the components of [ Q ]  Xx   into Equation 9.150, we get 

  

[ ]

. . . .

. . . .
K �

� �

�

0 11401 0 31323 0 21933 0 31323

0 31323 0 11401 0 31323 0 444734

0 21933 0 31323 0 11401 0 31323

0 31323 0 44734 0 3132

� � �

�

. . . .

. . . 33 0 11401.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

  (b)      

 The   eigenvalues of this matrix are   λ   1       �      1 and   λ   2       �        λ   3       �        λ   4       �       � 1/3. Hence,   λ   1  is the largest eigenvalue. 
The quaternion  { }

�
q     is the vector  {  x  }  such that [ K ] {  x  }       �      1  �   {  x  } . Therefore, as one can verify, 

  

{ }

.

.

.

.

�
q �

�

0 40558

0 57923

0 40558

0 57923

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪       
    (b)     From Equation 9.146 we fi nd that the principal angle is    

  θ � � � �� �2 2 0 57923 54 6041
4

1cos ( ) cos ( . ) .q      
  and the Euler axis is   

  
ˆ

. ˆ . ˆ . ˆ

sin( . )
. ˆu

I J K
I�

� �

�
� �

0 40558 0 57923 0 40558

54 604 2
0 49754 0

/
.. ˆ . ˆ71056 0 49754J K�

           

        Example 9.23      
 Use   quaternions to numerically solve the problem of the spinning top shown in  Figure 9.19  and having the 
properties listed in Example 9.15. The top is released with an angular velocity of 1000 revolutions per min-
ute (rpm) around its axis of symmetry (the body  z  axis), which makes an angle of 60 °  with the vertical (the 
inertial  Z  axis). 

    Solution 
 We   will use Equations 9.72b (Euler’s equations) to compute the angular velocity derivatives: 

  

d

dt

M

A

C B

A
d

dt

M

B

A C

B

d

dt

M

C

B A

x x
y z

y y
z x

z z

ω
ω ω

ω
ω ω

ω

� �
�

� �
�

� �
�

net

net

net

CC x yω ω

  (a)      



 These   require that the moment to be expressed in components along the body-fi xed axes instead of the co-
moving frame shown in  Figure 9.19 . From  Figure 9.19 , the moment of the weight vector about  O  is 

  
M k K k K0net

� � � � � �d mg mgdˆ ( ˆ ) ( ˆ ˆ )   (b)     

  where   

  
ˆ ˆ ˆ ˆk I J K� � �Q Q Q31 32 33   (c)      

 The    Q s are components of the direction cosine matrix [ Q ]  Xx   in Equation 9.148. Carrying out the cross prod-
uct in (b) yields, in matrix form, the components of the moment in the inertial frame, 

  

{ }M0

32

31

0
X

mgdQ

mgdQ�

�⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

  (d)      

 To   arrive at the components of  {  M  0  }   x   in the body frame, we carry out the transformation 

  { } [ ] { }M Q M0 0x Xx X�   (e)      

 The   MATLAB implementation of the following procedure is listed in Appendix D.39. 

 Step   1: 

 Specify   the initial orientation of the  xyz  axes of the body frame, thereby defi ning the initial value of the 
direction cosine matrix [ Q ]  Xx  . 

  

ˆ ˆ

ˆ cos ˆ sin ˆ

ˆ sin ˆ cos ˆ

i J
j I K
k I K

�

� � � � �

� � � �

60 60

60 60       

  

[ ]Q Xx � �

0 1 0

1 2 0 3 2

3 2 0 1 2

/ /

/ /

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
      

 Step   2: 

 Compute   the initial unit quaternion  { }
�
q0     using Algorithm 9.2. 

  

{ }

.

.

.

.

�
q0

0 35355

0 35355

0 61237

0 61237

�

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪       
 Step   3: 

 Specify   the initial value of the angular velocity  { }ω0 0 0 0� ω ω ωx y z

T⎢
⎣⎢

⎥
⎦⎥     in body frame components 

(1000       rpm      �      104.72       rad/s): 

  

{ }

.

( )ω0

0

0

104 72

�

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

 rad/s   (f)      
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 Step   4: 
 Supply    {   ω   0  }  and  { }

�
q0     as initial conditions to the Runge-Kutta-Fehlberg 4(5) numerical integration proce-

dure (Algorithm 1.3) to fi nd the angular velocity  {   ω   }  and quaternion  { }q     as functions of time. At each step of 
the numerical integration process: 

        (i)     Use the current value of  { }
�
q     to compute [ Q ]  Xx   from Equation 9.148.  

       (ii)     Use the current values of [ Q ]  Xx   and  {   ω   }  to compute  d  {   ω   } / dt  from (a), (d) and (e).  
    (iii)     Use the current values of  { }

�
q     and  {   ω   }  to compute  d dt{ }

�
q /     from Equations 9.151.    

 Step   5: 

 At   each solution time: 
    (i)     Use Equation 9.148 (Algorithm 9.1) to compute the DCM [ Q ]  Xx  .  
    (ii)     Use Algorithm 4.3 to compute the Euler angles   φ   (precession),   θ   (nutation) and   ψ   (spin) from the 

DCM [ Q ]  Xx  .    

 Step 6  : 

 Plot   the results. 

    Figure 9.29    shows the precession (  φ  ), nutation (  θ  ) and spin (  ψ  ) angles as a function of time. Although   φ   
and   ψ   steadily increase with time, Algorithm 4.3 limits their range to between 0 °  and 360 ° , which explains 
their sawtooth-like appearance. In this simulation, the top is spinning about its stationary symmetry axis 
( z  axis) when it is released. Precession begins as the spin axis falls through 15 °  before reversing and return-
ing to its original orientation. This nutation repeats with a frequency of slightly less than 6 cycles per second. 
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 FIGURE 9.29  
       Precession, nutation and spin angles of a prolate top ( A       �       B       �      0.0012       kg  ·  m 2 ,  C       �      0.00045       kg  ·  m 2 ).    



 In   Example 9.15 we assumed that the nutation was zero so that the inclination angle   θ   remained fi xed at 
its initial value of 60 ° .  Figure 9.20b  shows this requires the top to precess at a rate of 51.9       rpm. Running the 
above numerical simulation with this precession component included in the initial angular velocity vector 
[Equation (f)] virtually eliminates the nutation evident in  Figure 9.29 .        

    PROBLEMS 

    Section 9.2 

        9.1     Rigid, bent shaft 1 ( ABC ) rotates at a constant angular velocity of  2K̂     rad/s around the positive  Z  axis 
of the inertial frame. Bent shaft 2 ( CDE ) rotates around  BC  with a constant angular velocity of  3 ĵ    rad/s, 
relative to  BC . Spinner 3 at  E  rotates around  DE  with a constant angular velocity of  4 î     rad/s relative 
to  DE . Calculate the magnitude of the absolute angular acceleration   α   3  of the spinner at the instant 
shown.    
    { Ans.:  α3

2 2180 64 144� � �sin cos  θ θ  (rad/s )    }                      
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    9.2     All of the spin rates shown are constant. Calculate the magnitude of the absolute angular acceleration 
  α   3  of the spinner at the instant shown (i.e., at the instant when the unit vector  ̂i     is parallel to the  X  axis 
and the unit vector  ̂j     is parallel to the  Y  axis).    
    { Ans.:  α3 � 63 2 rad/s     }          
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    9.3     The body-fi xed  xyz  frame is attached to the cylinder as shown. The cylinder rotates around the iner-
tial  Z  axis, which is collinear with the  z  axis, with a constant absolute angular velocity  �θk̂    . Rod  AB  is 
attached to the cylinder and aligned with the y-axis. Rod  BC  is perpendicular to  AB  and rotates around 
 AB  with the constant angular velocity  �φ ĵ     relative to the cylinder. Rod  CD  is perpendicular to  BC  and 
rotates around  BC  with the constant angular velocity  �νm̂     relative to  BC , where  ̂m    is the unit vector in 
the direction of  BC . The plate  abcd  rotates around  CD  with a constant angular velocity  �ψn̂    relative to 
 CD , where the unit vector  n̂     points in the direction of  CD . Thus, the absolute angular velocity of the 
plate is  ωplate � � � �� � � �θ φ ν ψˆ ˆ ˆ ˆk j m n   . Show that 

    (a)  
    
ωplate ( sin cos sin ) ( ) (� � � � � � �� � � � � � �ν φ ψ φ ν φ ψ ν θ ν φ ψˆ cos ˆ cos sii j nn sin ˆφ ν)k

     

    (b)  

    

α
ω

plate
plate [ ( cos cos cos ) sin sin c� � � � �

d

dt
� � � � � � �ν φ φ ψ φ ν ψφ φ ν ψθ oos ]

                             [ (

ν φθ

ν θ φ ψ

�

� �

� �

� � �

ˆ

sin sin

i

νν ψθ φ ν
ψν ν

) ]

                             [

�

�

� �
� �

cos sin ˆ

cos

j
ssin cos sin sin ˆφ ψφ φ ν φν φ� �� � � � ]k      
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    (c)  
    
a i jC l l l l� � � � � �( )sin cos co� � � � � �φ θ φ φθ φ θ φ2 2 2 22

5

4
ˆ ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

ˆ ssφk̂
               

    9.4     The mass center  G  of a rigid body has a velocity  v i j� �t3 4ˆ ˆ     meters per second and an angular 
velocity  ω � 2 2t k̂     radians per second, where  t  is time in seconds. The  ̂i   ,  ̂j   ,  ̂k    unit vectors are attached 
to and rotate with the rigid body. Calculate the magnitude of the acceleration  a   G   of the center of mass 
at  t       �      2 seconds.    
    { Ans.:  a i jG � � �20 64 2ˆ ˆ (m/s )    }          
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    9.5     Relative to a body-fi xed  xyz  frame  [ ] (kg m )IG � �

10 0 0

0 20 0

0 0 30

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

   and  ω � � �2 4 32t tˆ ˆ ˆ  i j k (rad/s)    , 

where  t  is the time in seconds. Calculate the magnitude of the net moment about the center of mass  G  
at  t       �      3       s. 
  { Ans.: 3374       N · m }   

    9.6     The inertial angular velocity of a rigid body is  ω � � �ω ω ωx y z
ˆ ˆ ˆi j k    , where  ̂i    ,  ̂j   ,  ̂k    are the unit vec-

tors of a co-moving frame whose inertial angular velocity is  ω � �ω ωx y
ˆ ˆi j    . Calculate the compo-

nents of angular acceleration of the rigid body in the moving frame, assuming that   ω  x  ,   ω  y   and   ω  z   are all 
constant.    
    { Ans.:  α � �ω ω ω ωy z x z

ˆ ˆi j    }   

    Section 9.5 

        9.7     Find the moments of inertia about the center of mass of the system of six point masses listed in the 
table.    
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x

y

l/2

l/2

G

z

θ

   
           

    { Ans.: 

 

[ ]IG � �

�

783 5 351 7 40 27

351 7 783 5 80 27

40 27 80 27 783 5

. . .

. . .

. . .

⎡

⎣

⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥
 (kg-m )2

   

 }  

    9.8     Find the mass moment of inertia of the confi guration of Problem 9.7 about an axis through the origin 
and the point with coordinates (1       m, 2       m, 2       m).    
    { Ans.: 898.7       kg-m 2  }  

    9.9     A uniform slender rod of mass  m  and length  l  lies in the  xy  plane inclined to the  x  axis by the angle 
  θ  . Use the results of Example 9.10 to fi nd the mass moments of inertia about the  xyz  axes passing 
through the center of mass  G .    

    { Ans.: 

 

[ ]IG ml�

�

�1
12

2

2 1
2

1
2

2

2 0

2 0

0 0 1

sin sin

sin cos

θ θ

θ θ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

    }          

                              

   Point, i  Mass  m i   (kg)   x i   (m)   y i   (m)   z i   (m) 

   1  10   1   1   1 

   2  10   � 1   � 1   � 1 

   3   8   4   � 4   4 

   4   8   � 2   2   � 2 

   5  12   3   � 3   � 3 

   6  12   � 3   3   3 

    9.10     The uniform rectangular box has a mass of 1000       kg. The dimensions of its edges are shown. 

    (a)     Find the mass moments of inertia about the  xyz  axes.       

    { Ans.:

  

[ ]IO �

� �

� �

� �

1666 7 1500 750

1500 3333 3 500

750 500 4333 3

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥
 (kg-m )2

    

}

  



    (b)     Find the principal moments of inertia and the principal directions about the  xyz  axes through  O .    

    { Partial ans.:  Ι1
2

1568.9 kg-m , . . .� � � �ˆ ˆ ˆ ˆv i j k0 8366 0 4960 0 2326     }  
    (c)     Find the moment of inertia about the line through  O  and the point with coordinates (3       m, 2       m, 1       m).    
    { Ans.: 583.3       kg · m 2  }          
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    9.11     A taxing airplane turns about its vertical axis with an angular velocity   Ω   while its propeller spins at 
an angular velocity  ω θ� �   . Determine the components of the angular momentum of the propeller 
about the body-fi xed  xyz  axes centered at  P . Treat the propeller as a uniform slender rod of mass m 
and length  l .    
    { Ans.: H i j kP m l m l ml md� � � �1

12
2 1

24
2 1

12
2 2 22ω θ θˆ sin ˆ cos ˆΩ Ω( )     }          

    9.12     Relative to an  xyz  frame of reference the components of angular momentum  H  are given by    
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  where   ω  x  ,   ω  y   and   ω  z   are the components of the angular velocity   ω  . Find the components of   ω   such 
that  {  H  }       �      1000  {   ω   } , where the magnitude of   ω   is 20 radians/second.   
    { Ans.:  ω � �17 15 10 29. .i j (rad/s)    }  

    9.13     Relative to a body-fi xed  xyz  frame  [ ] (kg m )IG � �

10 0 0
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0 0 30

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
 

   

 and 

 

ω � � �2 4 32t tˆ ˆ ˆ  i j k (rad/s),

    
where  t  is the time in seconds. Calculate the magnitude of the net moment about the center of mass  G  
at  t       �      3       s.    
    { Ans.: 3374       N-m }  

    9.14     In Example 9.11, the system is at rest when a 100       N force is applied to point  A  as shown. Calculate 
the inertial components of angular acceleration at that instant.    
    { Ans.:  α  X        �      143.9       rad/s 2 ,   α  Y        �      553.1       rad/s 2 ,   α  Z        �      7.61       rad/s 2  }          
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    9.15     The body-fi xed  xyz  axes pass through the center of mass  G  of the airplane and are the principal axes 
of inertia. The moments of inertia about these axes are  A ,  B  and  C , respectively. The airplane is in a 
level turn of radius  R  with a speed  v . 

    (a)     Calculate the bank angle   θ  .  
    (b)     Use Euler’s equations to calculate the rolling moment  M y   that must be applied by the aero-

dynamic surfaces.       
    { Ans.: (a)   θ        �      tan  � 1  v  2 / Rg ; (b)  M y        �       v  2  sin 2  θ  ( C       �       A )/2 R  2  }          



    9.16     The airplane in Problem 9.15 is spinning with an angular velocity   ω  Z   about the vertical  Z  axis. The 
nose is pitched down at the angle   α  . What external moments must accompany this maneuver?    
    { Ans.:  M M M C By z x Z� � � �0 2 22, sinω α( )/     }          
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    9.17     Two identical slender rods of mass  m  and length  l  are rigidly joined together at an angle   θ   at point  C , 
their 2/3 point. Determine the bearing reactions at  A  and  B  if the shaft rotates at a constant angular 
velocity   ω  . Neglect gravity and assume that the only bearing forces are normal to rod  AB .    
    { Ans.:  F FA Bm l m l� � �ω θ θ ω θ θ2 21 2 18 1 9sin cos ,   sin cos( )/ ( )/+     }          

    9.18     The fl ywheel ( A       �       B       �      5       kg-m 2 ,  C       �      10       kg-m 2 ) spins at a constant angular velocity of  ωs � 100k̂ (rad/s).     
It is supported by a massless gimbal that is mounted on the platform as shown. The gimbal is initially 
stationary relative to the platform, which rotates with a constant angular velocity of  ωp � 0 5.  (rad/s).ĵ     
What will be the gimbal’s angular acceleration when the torquer applies a torque of  600 î  (N-m)     to the 
fl ywheel?    
    { Ans.:  70 2î  rad/s     }          
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    9.19     A uniform slender rod of length  L  and mass  m  is attached by a smooth pin at  O  to a vertical shaft that 
rotates at constant angular velocity   ω  . Use Euler’s equations and the body frame shown to calculate   ω   
at the instant shown.    
    { Ans.:  ω θ� 3 2g L/( )cos     }          
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    9.20     A uniform, thin circular disk of mass 10       kg spins at a constant angular velocity of 630       rad/s about axis 
 OG , which is normal to the disk, and pivots about the frictionless ball joint at  O . Neglecting the mass 
of the shaft  OG , determine the rate of precession if  OG  remains horizontal as shown. Gravity acts 



down, as shown.  G  is the center of mass, and the  y -axis remains fi xed in space. The moments of iner-
tia about  G  are  IGz

� �0 02812 2.  kg m    , and  I IG Gx y
� � �0 01406 2.  kg m    .    

    { Ans.: 1.38       rad/s }          
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    Section 9.7 

        9.21     Consider a rigid body experiencing rotational motion associated with angular velocity   ω  . The inertia 
tensor (relative to body-fi xed axes though the center of mass  G ) is    
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  and  ω � � �10 20 30ˆ ˆ ˆ  i j k (rad/sec)    . Calculate   
    (a)     the angular momentum  H   G  , and  
    (b)     the rotational kinetic energy (about  G ).    
    { Partial ans.: (b)  T R        �      23,000       J }   

    Section 9.8 

        9.22     At the end of its take-off run, an airplane with retractable landing gear leaves the runway with a speed 
of 130       km/hr. The gear rotate into the wing with an angular velocity of 0.8       rad/s with the wheels still 
spinning. Calculate the gyroscopic bending moment in the wheel bearing  B . The wheels have a diam-
eter of 0.6       m, a mass of 25       kg and a radius of gyration of 0.2       m.    
    { Ans.: 96.3       N-m }          
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    9.23     The gyro rotor, including shaft  AB , has a mass of 4       kg and a radius of gyration 7       cm around  AB . The 
rotor spins at 10 000 revolutions per minute while also being forced to rotate around the gimbal axis 
 CC  at 2 radians per second. What are the transverse forces exerted on the shaft at  A  and  B ? Neglect 
gravity.    
    { Ans.: 1.03       kN }          
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    9.24     A jet aircraft is making a level, 2.5       km radius turn to the left at a speed of 650       km/hr. The rotor of the 
turbojet engine has a mass of 200       kg, a radius of gyration of 0.25       m and rotates at 15 000 revolutions 
per minute clockwise as viewed from the front of the airplane. Calculate the gyroscopic moment that 
the engine exerts on the airframe and specify whether it tends to pitch the nose up or down.    
    { Ans.: 1.418       kN-m; pitch down }          



    9.25     A cylindrical rotor of mass 10       kg, radius 0.05       m and length 0.60       m is simply supported at each end 
in a cradle that rotates at a constant 20       rad/s counterclockwise as viewed from above. Relative to the 
cradle, the rotor spins at 200       rad/s counterclockwise as viewed from the right (from  B  towards  A ). 
Assuming there is no gravity, calculate the bearing reactions  R A   and  R B  . Use the co-moving  xyz  frame 
shown, which is attached to the cradle but not to the rotor.    
    { Ans.:  R A        �       �  R B        �      83.3       N }     
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    Section 9.9 

        9.26     The Euler angles of a rigid body are   φ        �      50 ° ,   θ        �      25 °  and   ψ        �      70 ° . Calculate the angle (a positive 
number) between the body-fi xed  x  axis and the inertial  X  axis.    
    { Ans.: 115.6 °  }   
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    10.1       INTRODUCTION 
 In   this chapter we apply the equations of rigid body motion presented in Chapter 9 to the study of the atti-
tude dynamics of satellites. We begin with spin-stabilized spacecraft. Spinning a satellite around its axis is a 
very simple way to keep the vehicle pointed in a desired direction. We investigate the stability of a spinning 
satellite to show that only oblate spinners are stable over long times. Overcoming this restriction on the 
shape of spin-stabilized spacecraft led to the development of dual-spin vehicles, which consist of two inter-
connected segments rotating at different rates about a common axis. We consider the stability of that type 
of confi guration as well. The nutation damper and its effect on the stability of spin-stabilized spacecraft is 
covered next. 

 The   rest of the chapter is devoted to some of the common means of changing the attitude or motion of a 
spacecraft by applying external or internal forces or torques. The coning maneuver changes the attitude of 
a spinning spacecraft by using thrusters to apply impulsive torque, which alters the angular momentum and 
hence the orientation of the spacecraft. The much-used yo-yo despin maneuver reduces or eliminates the 
spin rate by releasing small masses attached to cords initially wrapped around the cylindrical vehicle. 

 An   alternative to spin stabilization is three-axis stabilization by gyroscopic attitude control. In this case, 
the vehicle does not continuously rotate. Instead, the desired attitude is maintained by the spin of small 
wheels within the spacecraft. These are called reaction wheels or momentum wheels. If allowed to pivot 
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relative to the vehicle, they are known as control moment gyros. The attitude of the vehicle can be changed 
by varying the speed or orientation of these internal gyros. Small thrusters may also be used to supplement 
the gyroscopic attitude control and to hold the spacecraft orientation fi xed when it is necessary to despin or 
reorient gyros that have become saturated (reached their maximum spin rate or defl ection) over time. 

 The   chapter concludes with a discussion of how the earth’s gravitational fi eld by itself can stabilize the 
attitude of large satellites such as the space shuttle or space station in low earth orbits.  

    10.2       TORQUE-FREE MOTION 
 Gravity   is the only force acting on a satellite coasting in orbit (if we neglect secondary drag forces and the 
gravitational infl uence of bodies other than the planet being orbited). Unless the satellite is unusually large, 
the gravitational force is concentrated at the center of mass  G . Since the net moment about the center of 
mass is zero, the satellite is  “ torque-free, ”  and according to Equation 9.30, 

  
�H 0G �   (10.1)      

 The   angular momentum  H  G  about the center of mass does not depend on time. It is a vector fi xed in inertial 
space. We will use  H  G  to defi ne the  Z  axis of an inertial frame, as shown in  Figure 10.1   . The  xyz  axes in the 
fi gure comprise the principal body frame, centered at  G . The angle between the  z  axis and  H  G  is (by defi ni-
tion of the Euler angles) the nutation angle   θ  . Let us determine the conditions for which   θ   is constant. From 
the dot product operation we know that 

  

cosθ � �
H

H
kG

G

ˆ

      

 Differentiating   this expression with respect to time, keeping in mind Equation 10.1, we get 

  

d

dt

d

dt
G

G

cosθ
� �

H

H
k̂

      

x

y

zHG

G

ĵ

k̂

î

Inertial
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Î Ĵ

K̂

Body frame

θ

ω

 FIGURE 10.1  
       Rotationally symmetric satellite in torque-free motion.    



 But    d dtˆ ˆk k/ � �ω    , according to Equation 1.52, so 

  

d

dt
G

G

cos ( )θ
�

� �H k

H

ω ˆ
  (10.2)      

 Now   

  

ω� � � �ˆ

ˆ ˆ ˆ

ˆ ˆk

i j k

i jω ω ω ω ωx y z y x

0 0 1
      

 Furthermore  , we know from Equation 9.67 that the angular momentum is related to the angular velocity in 
the principal body frame by the expression 

  
H i j kG x y zA B C� � �ω ω ωˆ ˆ ˆ

      

 Thus  , 

  
H k i j k i jG x y z y x x yA B C A B� � � � � � � � �( ) ( ) ( ) ( )ω ˆ ˆ ˆ ˆ ˆ ˆω ω ω ω ω ω ω

     

  so that Equation 10.2 can be written   

  

�θ ω
ω ω

θ
� � �

�
n

x y

G

A B( )

H sin
  (10.3)      

 From   this we see that the nutation rate vanishes only if  A       �       B . If  A   �   B , the nutation angle   θ   will not in 
general be constant. 

 Relative   to the body frame, Equation 10.1 is written (cf. Equation 1.56) 

  
�H H 0G G)rel � � �ω       

   Euler  ’s equations for torque-free motion   are the three components of this vector equation, and they are 
given by Equations 9.72b: 

  

A C B

B A C

C B A

x z y

y x z

z y x

�
�
�

ω ω ω
ω ω ω
ω ω ω

� � �

� � �

� � �

( )

( )

( )

0

0

0

  (10.4)      

 In   the interest of simplicity, let us consider the special case illustrated in  Figure 10.1 , namely that in which 
the  z  axis is an axis of rotational symmetry, so that  A       �       B . Then Equations 10.4 yield   Euler’s equations 
for torque-free motion with rotational symmetry  : 

  

A C A

A A C

C

x y z

y z x

z

�
�

�

ω ω ω
ω ω ω

ω

� � �

� � �

�

( )

( )

0

0

0

  (10.5)      
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 From   Equation 10.5 3  we see that the body frame  z  component of the angular velocity is constant: 

  
ω ωz o�     (constant)   (10.6)      

 The   assumption of rotational symmetry therefore reduces the three differential equations 10.4 to just two. 
Substituting Equation 10.6 into Equations 10.5 1  and 10.5 2  and introducing the notation 

  
λ �

�A C

A oω   (10.7)     

  they can be written   

  

�
�
ω λω
ω λω

x y

y x

� �

� �

0

0   (10.8)      

 Notice   that the sign of   λ   depends on the relative values of the principal moments of inertia  A  and  B.  
 To   reduce Equations 10.8 in   ω  x   and   ω  y   to just one equation in   ω  x  , we fi rst differentiate Equation 10.8 1  

with respect to time to get 

  
�� �ω λωx y� � 0   (10.9)      

 We   then solve Equation 10.8 2  for  �ωy     and substitute that result into Equation 10.9, which leads to 

  ��ω λ ωx x� �2 0   (10.10)      

 The   solution of this well-known differential equation is 

  
ω ω λx xy t� sin   (10.11)     

  where the constant amplitude   ω  xy   (  ω  xy      �    0) has yet to be determined. (Without loss of generality, we have 
set the phase angle, the other constant of integration, equal to zero.) Substituting Equation 10.11 back into 
Equation 10.81 yields the solution for   ω  y  ,   

  
ω

λ
ω

λ
ω λy

x
xy

d

dt

d

dt
t� �

1 1
( )sin

     

  or   

  
ω ω λy xy t� cos   (10.12)      

 Equations   10.6, 10.11 and 10.12 give the components of the absolute angular velocity   ω   along the three 
principal body axes, 

  
ω� � �ω λ ω λ ωxy xy ot tsin ˆ cos ˆ ˆi j k

     

  or   

  ω ω� �⊥ ωok̂   (10.13)     



  where   

  
ω⊥ � �ω λ λxy t t( )sin cosˆ ˆi j   (10.14)      

     ω    ⊥   ( “ omega-perp ” ) is the component of   ω   normal to the  z  axis. It sweeps out a circle of radius   ω  xy   in 
the  xy  plane at an angular velocity   λ  . Thus,   ω   sweeps out a cone, as illustrated in  Figure 10.2   . If   ω   0  is posi-
tive, then the body has an inertial counterclockwise rotation around the positive  z  axis if  A              C  (  λ              0). 
However, an observer fi xed in the body would see the world rotating in the opposite direction, clockwise 
around positive  z , as the fi gure shows. Interestingly, the situation is reversed if  A       �       C . 

 From   Equations 9.115, the three Euler orientation angles (and their rates) are related to the body angular 
velocity components   ω  x  ,   ω  y   and   ω  z   by 

  

ω φ
θ

ω ψ ω ψ

ω θ ω ψ ω ψ

ω ψ
θ

p x y

n x y

s

� � �

� � �

� � �

�

�

�

1

1

sin
sin cos

cos sin

tan

( )

(ωω ψ ω ψ ωx y zsin cos� �)
      

 Substituting   Equations 10.6, 10.11 and 10.12 into these three equations yields 

  

ω
ω

θ
λ ψ

ω ω λ ψ

ω ω
ω

θ
λ ψ

p
xy

n xy

s o
xy

t

t

t

� �

� �

� � �

sin
cos

sin

tan
cos

( )

( )

( )

  (10.15)      
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 FIGURE 10.2  
       Components of the angular velocity   ω   in the body frame .   
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 Since    A       �       B , we know from Equation 10.3 that   ω  n        �      0. It follows from Equation 10.15 2  that 

  ψ λ� t   (10.16)      

   (Actually,   λ t       �        ψ        �       n π  ,  n       �      0,1,2,  … . We can set  n       �      0 without loss of generality.) Substituting Equation 
10.16 into Equations 10.15 1  and 10.15 3  yields 

  
ω

ω

θp
xy

�
sin

  (10.17)     

  and   

  
ω ω

ω

θs o
xy

� �
tan

  (10.18)      

 We   have thus obtained the Euler angle rates   ω  p   and   ω  s   in terms of the components of the angular velocity   ω   
in the body frame. 

 Differentiating   Equation 10.16 with respect to time shows that 

  λ ψ ω� �� s   (10.19)      

 That   is, the rate   λ   at which   ω   rotates around the body  z  axis equals the spin rate. Substituting the spin rate 
for   λ   in Equation 10.7 shows that   ω  s   is related to   ω  o   alone, 

  
ω ωs o

A C

A
�

�   (10.20)      

 Observe   that   ω  s   and   ω   0  are opposite in sign if  A       �       C . 
 Eliminating     ω  s   from Equations 10.18 and 10.20 yields the relationship between the magnitudes of the 

orthogonal components of the angular velocity in Equation 10.13, 

  
ω ω θxy o

C

A
� tan   (10.21)      

 A   similar relationship exists between   ω  p   and   ω  s  , which generally are not orthogonal. Substitute Equation 
10.21 into Equation 10.17 to obtain 

  
ω ω θo p

A

C
� cos   (10.22)      

 Placing   this result in Equation 10.20 leaves an expression involving only   ω  p   and   ω  s  , from which we get a 
useful formula relating the precession of a torque-free body to its spin, 

  
ω

ω
θp

sC

A C
�

� cos
  (10.23)      

 Observe   that if  A              C  (i.e., the body is   prolate  , like a soup can or an American football), then   ω  p   has the 
same sign as   ω  s  , which means the precession is prograde. For an   oblate   body (like a tuna fi sh can or a fris-
bee),  A       �       C  and the precession is retrograde. 



 The   components of angular momentum along the body frame axes are obtained from the body frame 
components of   ω  , 

  
H i j kG x y zA A C� � �ω ω ωˆ ˆ ˆ

     

  or   

  H H kG oC� �⊥ ω ˆ   (10.24)     

  where   

  
H i j⊥ ⊥� � �A t t Axy s sω ω ω( )sin cosˆ ˆ ω   (10.25)      

 Since    ωok̂     and  C oω k̂     are colinear, as are   ω    ⊥   and  A   ω    ⊥  , it follows that  k̂    ,   ω   and  H   G   all lie in the same plane. 
 H   G   and   ω   both rotate around the  z  axis at the same rate   ω  s  . These details are illustrated in  Figure 10.3   . See 
how the precession and spin angular velocities,   ω    p   and   ω    s  , add up vectorially to give   ω  . Note also that from 
the point of view of inertial space, where  H   G   is fi xed,   ω   and  ̂k    rotate around  H   G   with angular velocity   ω  p  . 

 Let     γ   be the angle between   ω   and the spin axis  z , as shown in        Figures 10.2 and 10.3 .   γ   is sometimes 
referred to as the   wobble angle  . From the fi gures it is clear that tan   γ        �        ω  xy  /  ω   0  and tan   θ        �       A ω  xy  / C ω   0 . It 
follows that 

  
tan tanθ γ�

A

C
  (10.26)      

 From   this we conclude that if  A              C , then   γ        �        θ  , whereas  C              A  means   γ                θ  . That is, the angular veloc-
ity vector   ω   lies between the  z  axis and the angular momentum vector  H   G   when  A              C  (prolate body). 
On the other hand, when  C              A  (oblate body),  H   G   lies between the  z  axis and   ω  . These two situations are 
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illustrated in  Figure 10.4 , which also shows the   body cone   and   space cone  . The space cone is swept out in 
inertial space by the angular velocity vector as it rotates with angular velocity   ω  p   around  H   G  , whereas the 
body cone is the trace of   ω   in the body frame as it rotates with angular velocity   ω  s   about the  z  axis. From 
inertial space, the motion may be visualized as the body cone rolling on the space cone, with the line of 
contact being the angular velocity vector. From the body frame it appears as though the space cone rolls on 
the body cone.  Figure 10.4    graphically confi rms our deduction from Equation 10.23, namely, that preces-
sion and spin are in the same direction for prolate bodies and opposite in direction for oblate shapes. 

 Finally  , we know from Equations 10.24 and 10.25 that the magnitude  HG     of the angular momentum is 

  
HG xy oA C� �2 2 2 2ω ω

      

 Using   Equations 10.17 and 10.22, we can write this as 

  
HG p p pA C

A

C
A� � � �2 2 2

2
2 2 2 2( ) ( )ω θ ω θ ω θ θsin cos sin cos

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

     

  so that we obtain a surprisingly simple formula for the magnitude of the angular momentum in torque-free 
motion,   

  
HG pA� ω   (10.27)     

        Example 10.1      
 A   cylindrical shell is rotating in torque-free motion about its longitudinal axis. If the axis is wobbling 
slightly, determine the ratios of  l / r  for which the precession will be prograde or retrograde.                     
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θ
θ
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γ

ω

sωω

ω
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ωω

ω

 FIGURE 10.4  
       Space and body cones for a rotationally symmetric body in torque-free motion. (a) Prolate body. (b) Oblate body.    



    Solution 
 Figure   9.9(b) shows the moments of inertia of a thin-walled circular cylinder, 

  
C mr A r mlm� � �2 2 21

2

1

12
         

      

 According   to Equation 10.23 and  Figure 10.4 , direct (prograde) precession exists if  A              C , that is, if 

  

1

2

1

12
2 2 2mr ml mr� 

     

  or   

  

1

12

1

2
2 2ml mr>

      

 Thus  , 

  

l r
l r

>
< ⇒

2 45
2 45
.
.

⇒ Direct precession.
Retrograde precession.

           

        Example 10.2      
 In   the previous example, let  r       �      1       m,  l       �      3       m,  m       �      100       kg, and let the nutation angle   θ   be 20 ° . How long 
does it take the cylinder to precess through 180 °  if the spin rate is 2  π   radians per minute? 

    Solution 
 Since    l             2.45 r , it follows from Example 10.1 that the precession is direct. Furthermore, 

  

C mr

A mr ml

� � � � �

� � � � � � � �

2 2

2 2 2 2

100 1 100
1

2

1

12

1

2
100 1

1

12
100 3 1

 kg m2

225 2 kg m�
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 Thus  , Equation 10.23 yields 

  
ω

ω
θ

π
p

sC

A C
�

�
�

� �
�

cos cos
.

100

125 100

2

20
26 75 rad/min.

      

 At   this rate, the time for the spin axis to precess through an angle of 180 °  is 

  

t
p

� �
π
ω

0 1175 7 05. . min  ( s)

           

        Example 10.3      
 What   is the torque-free motion of a satellite for which  A       �       B       �       C  ? 

    Solution 
 If    A       �       B       �       C , the satellite is spherically symmetric. Any orthogonal triad at  G  is a principal body frame, so 
 H   G   and   ω   are colinear, 

  HG C� ω       

 Substituting   this and  M 0Gnet
�     into Euler’s equations, Equation 10.72a, yields 

  
C

d

dt
C

ω
ω ω� � �( ) 0

      

 That   is,   ω   is constant. The angular velocity vector of a spherically symmetric satellite is fi xed in magnitude 
and direction.      

        Example 10.4      
 The   inertial components of the angular momentum of a torque-free rigid body are 

  H I J KG � � � �320 375 450 2ˆ ˆ ˆ  (kg m /s)   (a)      

 The   Euler angles are 

  φ θ ψ� � � � � �20 50 75            (b)      

 If   the inertia tensor in the body-fi xed principal frame is 

  

[ ] (kg m )IG � �

1000 0 0

0 2000 0

0 0 3000

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
   (c)      

 calculate   the inertial components of the (absolute) angular acceleration. 



    Solution 
 Substituting   the Euler angles from (b) into Equation 9.117, we obtain the matrix of the transformation from 
the inertial frame to the body-fi xed frame, 

  

[ ]Q Xx � � �

�

0 03086 0 6720 0 7399

0 9646 0 1740 0 1983

0 2620 0 7198

. . .

. . .

. . 00 6428.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
  (d)      

 We   use this to obtain the components of  H   G   in the body frame, 

  

{ } [ ] { }H Q HG x Xx G X� � � �

0 03086 0 6720 0 7399

0 9646 0 1740 0 1983

0

. . .

. . .

.22620 0 7198 0 6428

320

375

450�

�

. .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

� � �

90 86

154 2

643 0

2

.

.

.

(kg m /s)   (e)      

 In   the body frame  {  H   G   }   x        �      [ I   G  ] {   ω   }   x  , where  {   ω   }   x   are the components of angular velocity in the body 
frame. Thus, 

  

90 86

154 2

643 0

1000 0 0

0 2000 0

0 0 3000

.

.

.

� �

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎡

⎣⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
{ }ω x

     

  or, solving for  {   ω   }   x  ,   

  

{ }ω x � �

�
1000 0 0

0 2000 0

0 0 3000

90 86

154 2

643 0

1⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪
.

.

.

⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭

� �

0 09086

0 07709

0 2144

.

.

.
⎪⎪⎪⎪⎪

 (rad/s)   (f)      

 Euler  ’s equations of motion (Equation 9.72a) may be written for the case at hand as 

  [ ]{ } { } ([ ]{ } ) { }G GI I 0α ω ωx x x� � �   (g)     

  where  {   α   }   x   is the absolute acceleration in body frame components. Substituting (c) and (f) into this expres-
sion, we get   

  

1000 0 0

0 2000 0

0 0 3000

0 09086

0 07709

0 2144

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨{ }α x � �

.

.

.

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

1000 0 0

0 2000 0

0 0 3000

0 0908. 66

0 07709

0 2144

� .

.

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

0

0

0
      

  

1000 0 0

0 2000 0

0 0 3000

16 52

38 95

7 005

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪⎪⎪
{ }α x �

�

�

�

.

.

.

⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

�

0

0

0      
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  so that, fi nally,   

  

{ }α x � �

�

�

�

�
1000 0 0

0 2000 0

0 0 3000

16 52

38 95

7 005

1⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

.

.

.

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪
�

0 01652

0 01948

0 002335

.

.

.

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

(rad/s )2   (h)      

 These   are the components of the angular acceleration in the body frame. To transform them into the inertial 
frame we use 

  

{ } [ ] { } ([ ] ) { }α α αX xX x Xx
T

x� �

�

�

�

Q Q

0 03086 0 9646 0 2620

0 6720 0 1

. . .

. . 7740 0 7198

0 7399 0 1983 0 6428

0 01652

0 01948

0 0

� .

. . .

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 002335

0 01766

0 006033

0 01759

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⎧

⎨

⎪⎪⎪⎪�

� .

.

.⎩⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

 (rad/s )2

      

 That   is, 

  
α � � � �0 01766 0 006033 0 01759 2. . .  I J K� � � (rad/s )

             

    10.3       STABILITY OF TORQUE-FREE MOTION 
 Let   a rigid body be in torque-free motion with its angular velocity vector directed along the principal body 
 z  axis, so that  ω� ωok̂    , where   ω  o   is constant. The nutation angle is zero and there is no precession. Let us 
perturb the motion slightly, as illustrated in  Figure 10.6   , so that 

  
ω δω ω δω ω ω δωx x y y z o z� � �            +   (10.28)      
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 FIGURE 10.6  
       Principal body axes of a rigid body rotating primarily about the body  z  axis.    



 As   in Chapter 7,  “   δ   ”  means a very small quantity. In this case,   δ  ω  x        �      �      ω  o   and   δ  ω  y        �      �      ω  o  . Thus, the angular 
velocity vector has become slightly inclined to the  z  axis. For torque-free motion,  M M MG G Gx y z

� � � 0   , 
so that Euler’s equations (Equations 9.72b) become 
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0

0

0

  (10.29)      

 Observe   that we have not assumed  A       �       B , as we did in the previous section. Substituting Equations 10.28 
into Equations 10.29 and keeping in mind our assumption that  �ωo � 0   , we get 
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  (10.30)      

 Neglecting   all products of the   δ  ω   
  s  (because they are arbitrarily small), Equations 10.30 become 

  

A C B
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δω ω δω
δω ω δω

δω

�
�

�
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0

  (10.31)      

 Equation   10.31 3  implies that   δ  ω  z   does not vary with time. 
 Differentiating   Equation 10.31 1  with respect to time, we get 

  
A C Bx o yδω ω δω�� �� � �( ) 0   (10.32)      

 Solving   Equation 10.31 2  for  δω� y     yields  δω ω δω� y o xA C B� � �[( )/ ]    , and substituting this into Equation 
10.32 gives 

  
δω ω δω��x o x

A C C B

AB
�

� �
�

( )( ) 2 0   (10.33)      

 Likewise  , by differentiating Equation 10.31 2  and then substituting  δω� x     from Equation 10.31 1  yields 

  
δω ω δω��y o y

A C C B

AB
�

� �
�

( )( ) 2 0   (10.34)      

 If   we defi ne 

  
k

A C B C

AB o�
� �( )( )

ω 2   (10.35)     
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  then both Equations 10.33 and 10.34 may be written in the form   

  δω δω��� �k 0   (10.36)      

 If    k             0, then  δω � � �c e c ei kt i kt
1 2    , which means   δ  ω  x   and   δ  ω  y   vary sinusoidally with small ampli-

tude. The motion is therefore bounded and neutrally stable. That means the amplitude does not die out 
with time, but it does not exceed the small amplitude of the perturbation. Observe from Equation 10.35 that 
 k             0 if either  C              A  and  B              C  or  C       �       A  and  C       �       B . This means that the spin axis ( z  axis) is either the 
major axis of inertia or the minor axis of inertia. That is, if the spin axis is either the major or minor axis of 
inertia, the motion is stable. The stability is neutral for a rigid body, because there is no damping. 

 On   the other hand, if  k       �      0, then  δω � � �c e c ekt kt
1 2    , which means that the initially small perturba-

tions   δ  ω  x   and   δ  ω  y   increase without bound. The motion is unstable. From Equation 10.35 we see that  k       �      0 if 
either  A              C              B  or  A       �       C       �       B . This means that the spin axis is the intermediate axis of inertia. If the spin 
axis is the intermediate axis of inertia, the motion is unstable. 

 If   the angular velocity of a satellite lies in the direction of its major axis of inertia, the satellite is called 
a   major axis spinner   or oblate spinner. A   minor axis spinner   or prolate spinner has its minor axis of inertia 
aligned with the angular velocity.  “ Intermediate axis spinners ”  are unstable, causing a continual 180 °  reori-
entation of the spin axis, if the satellite is a rigid body. However, the fl exibility inherent in any real satellite 
leads to an additional instability, as we shall now see. 

 Consider   again the rotationally symmetric satellite in torque-free motion discussed in Section 10.2. 
From Equations 10.24 and 10.25, we know that the angular momentum  H   G   is given by 

  
H kG zA C� �ω⊥ ω ˆ   (10.37)      

 Hence  , 

  
H A CG z xy

2 2 2 2 2� � �ω ω ω ω⊥ ⊥( )   (10.38)      

 Differentiating   this equation with respect to time yields 

  

dH

dt
A

d

dt
CG

z z

2

2
2

22� �
ω

ω ω⊥ �   (10.39)      

 But  , according to Equation 10.1,  H   G   is constant, so that  dH dtG

2
0/ �     and Equation 10.39 can be written 

  

d

dt

C

A
z z

ω
ω ω⊥

2 2

2
2� � �   (10.40)      

 The   rotary kinetic energy of a rotationally symmetric body ( A       �       B ) is found using Equation 9.81, 

  
T A A C A CR x y z x y z� � � � � �
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 From   Equation 10.13 we know that  ω ω ωx y
2 2 2� � ⊥    , which means 

  T A CR z� �
1

2

1

2
2 2ω ω⊥

  (10.41)      



 The   time derivative of  T R   is, therefore, 
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 Solving   this for  �ωz    , we get 
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 Substituting   this expression for  �ωz    into Equation 10.40 and solving for  d dtω⊥
2 /     yields 

  

d

dt

C

A

T

C A
Rω⊥

2

2�
�

�
  (10.42)      

 Real   bodies are not completely rigid, and their fl exibility, however slight, gives rise to small dissipative 
effects which cause the kinetic energy to decrease over time. That is, 

  
�TR < 0 For spacecraft with dissipation   (10.43)      

 Substituting   this inequality into Equation 10.42 leads us to conclude that 
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  (10.44)      

 If    d dtω⊥
2 /     is negative, the spin is asymptotically stable. Should a nonzero value of   ω     ⊥  develop for some 

reason, it will drift back to zero over time so that once again the angular velocity lies completely in the spin 
direction. On the other hand, if  d dtω⊥

2 /     is positive, the spin is unstable.   ω    ⊥   does not damp out, and the 
angular velocity vector drifts away from the spin axis as   ω    ⊥   increases without bound. We pointed out above 
that spin about a minor axis of inertia is stable with respect to small disturbances. Now we see that only 
major axis spin is stable in the long run if dissipative mechanisms exist. 

 For   some additional insight into this phenomenon, solve Equation 10.38 for  ω⊥
2    , 

  
ω

ω
⊥

2
2 2 2

2
�

�H C

A
G z

     

  and substitute this result into the expression for kinetic energy, Equation 10.41, to obtain   
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ω   (10.45)      

10.3 Stability of torque-free motion  587



588  CHAPTER 10 Satellite attitude dynamics

 According   to Equation 10.24, 

  
ω

θ
z

G G
H

C

H

C
z� �

cos

      

 Substituting   this into Equation 10.45 yields the kinetic energy as a function of just the inclination angle   θ  , 
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 The   extreme values of  T R   occur at   θ        �      0 or   θ        �        π  , 

  
T

H

CR
G�

1

2

2

(major axis spinner)
     

  and   θ        �        π  /2,   
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H
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2
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 Clearly  , the kinetic energy of a torque-free satellite is smallest when the spin is around the major axis of 
inertia. We may think of a satellite with dissipation ( dT R  / dt       �      0) as seeking the state of minimum kinetic 
energy, which occurs when it spins about its major axis.

        Example 10.5      
 A   rigid spacecraft is modeled by the solid cylinder  B  which has a mass of 300       kg and the slender rod  R  
which passes through the cylinder and has a mass of 30       kg. Which of the principal axes  x ,  y ,  z  can be an axis 
about which stable torque-free rotation can occur?                    
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y

z

G

1.0m 

1.0m 

0.5m 

0.5m 

 FIGURE 10.7  
       Built-up satellite structure.    



    Solution 
 For   the cylindrical shell  A , we have 

  r l mB B B� � �0 5 1 0 300. .m m kg       

 The   principal moments of inertia about the center of mass are found in Figure 9.9(b), 
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 The   properties of the transverse rod are 

  l mR R� �1 0 30. m kg       

 Figure   9.9(a), with  r       �      0, yields the moments of inertia, 
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 The   moments of inertia of the assembly is the sum of the moments of inertia of the cylinder and the rod, 
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 Since    I z   is the intermediate mass moment of inertia, rotation about the  z  axis is unstable. With energy dissi-
pation, rotation is stable in the long term only about the major axis, which in this case is the  x  axis.        

    10.4       DUAL-SPIN SPACECRAFT 
 If   a satellite is to be spin stabilized, it must be an oblate spinner. The diameter of the spacecraft is restricted 
by the cross section of the launch vehicle’s upper stage, and its length is limited by stability requirements. 
Therefore, oblate spinners cannot take full advantage of the payload volume available in a given launch 
vehicle, which after all are slender, prolate shapes for aerodynamic reasons. The dual-spin design permits 
spin stabilization of a prolate shape. 

 The   axisymmetric, dual-spin confi guration, or gyrostat, consists of an axisymmetric rotor and a smaller 
axisymmetric platform joined together along a common longitudinal spin axis at a bearing, as shown in 
 Figure 10.8   . The platform and rotor have their own components of angular velocity,   ω    p   and   ω    r   respectively, 
along the spin axis direction  k̂    . The platform spins at a much slower rate than the rotor. The assembly acts 
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like a rigid body as far as transverse rotations are concerned; that is, the rotor and the platform have   ω    '⊥   in 
common. An electric motor integrated into the axle bearing connecting the two components acts to over-
come frictional torque that would otherwise eventually cause the relative angular velocity between the rotor 
and platform to go to zero. If that should happen, the satellite would become a single spin unit, probably an 
unstable prolate spinner, since the rotor of a dual-spin spacecraft is likely to be prolate. 

 The   fi rst dual-spin satellite was OSO-I (Orbiting Solar Observatory), which NASA launched in 1962. It 
was a major-axis spinner. The fi rst prolate dual-spin spacecraft was the two-story tall TACSAT I (Tactical 
Communications Satellite). It was launched into geosynchronous orbit by the U. S. Air Force in 1969. 
Typical of many of today’s communications satellites, TACSAT’s platform rotated at one revolution per 
day to keep its antennas pointing towards the earth. The rotor spun at about one revolution per second. 
Of course, the axis of the spacecraft was normal to the plane of its orbit. The fi rst dual-spin interplan-
etary spacecraft was Galileo, which we discussed briefl y in Section 8.9. Galileo’s platform was completely 
despun to provide a fi xed orientation for cameras and other instruments. The rotor spun at three revolutions 
per minute. 

 The   equations of motion of a dual-spin spacecraft will be developed later on in Section 10.8. Let us 
determine the stability of the motion by following the same   energy sink analysis   procedure employed in 
the previous section for a single-spin stabilized spacecraft. The angular momentum of the dual-spin con-
fi guration about the spacecraft’s center of mass  G  is the sum of the angular momenta of the rotor ( r ) and the 
platform ( p ) about  G , 

  H H HG G
p

G
r� �( ) ( )   (10.47)      

 The   angular momentum of the platform about the spacecraft center of mass is 

  
H kG

p
p p pC A( ) � �ω ˆ ω⊥   (10.48)     
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 FIGURE 10.8  
       Axisymmetric, dual-spin satellite.    



  where  C p   is the moment of inertia of the platform about the spacecraft spin axis, and  A p   is its transverse 
moment of inertia about  G  (not  G p  ). Likewise, for the rotor,   

  H kG
r

r r rC A( ) � �ω � ω⊥   (10.49)     

  where  C r   and  A r   are its longitudinal and transverse moments of inertia about axes through  G . Substituting 
Equations 10.48 and 10.49 into 10.47 yields   

  
H kG r r p pC C A� � �( )ω ω � ⊥ ⊥ω   (10.50)     

  where  A   ⊥   is the total transverse moment of inertia,   

  
A A Ap r⊥ � �

      

 From   this it follows that 

  
H C C AG r r p p

2 2 2 2� � �( )ω ω ω⊥ ⊥       

 For   torque-free motion,  �H 0G �    , so that  dH dtG
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 Solving   this for  d ω    '⊥   
2 / dt  yields 
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 The   total rotational kinetic energy of the dual-spin spacecraft is the sum of that of the rotor and the 
platform, 
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 Differentiating   this expression with respect to time and solving for  d ω    '⊥   
2 / dt  yields 
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    �T     is the sum of the power  P  (   r   )  dissipated in the rotor and the power  P  (   p   )  dissipated in the platform, 

  �T P Pr p� �( ) ( )   (10.54)      

10.4 Dual-spin spacecraft  591



592  CHAPTER 10 Satellite attitude dynamics

 Substituting   Equation 10.54 into 10.53 we fi nd 
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 Equating   the two expressions for  d ω    '⊥   
2 / dt  in Equations 10.52 and 10.55 yields 
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 Solve   this for  �T     to obtain 
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 Following   Likens (1967), we identify the terms containing  �ωr     and  �ωp     as the power dissipation in the rotor 
and platform, respectively. That is, comparing Equations 10.54 and 10.56, 
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 Solving   these two expressions for  �ωr     and  �ωp    , respectively, yields 
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 Substituting   these angular velocity rates into Equation 10.55 leads to 
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 As   pointed out above, for geosynchronous dual-spin communication satellites, 
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  whereas for interplanetary dual-spin spacecraft,   ω  p        �      0. Therefore, there is an important class of spin sta-
bilized spacecraft for which   ω  p  /  ω  r      �    0. For a despun platform wherein   ω  p   is zero (or nearly so), Equation 
10.59 yields   
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 If   the rotor is oblate ( C r               A   ⊥  ), then, since  P  (   r   )  and  P  (   p   )  are both negative, it follows from Equation 10.60 
that  d ω    ⊥   

2 / dt       �      0. That is, the oblate dual-spin confi guration with a despun platform is unconditionally sta-
ble. In practice, however, the rotor is likely to be prolate ( C r        �       A   ⊥  ), so that 
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 In   that case,  d ω    ⊥   
2 / dt       �      0 only if the dissipation in the platform is signifi cantly greater than that of the rotor. 

Specifi cally, for a prolate design it must be true that 
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 The   platform dissipation rate  P  (   p   )  can be augmented by adding nutation dampers, which are discussed in the 
next section. 

 For   the despun prolate dual-spin confi guration, Equations 10.58 imply 
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 Clearly  , the signs of  �ωr     and  �ωp    are opposite. If   ω  r              0, then dissipation causes the spin rate of the rotor to 
decrease and that of the platform to increase. Were it not for the action of the motor on the shaft connecting 
the two components of the spacecraft, eventually   ω  p        �        ω  r  . That is, the relative motion between the plat-
form and rotor would cease and the dual-spinner would become an unstable single spin spacecraft. Setting 
  ω  p        �        ω  r   in Equation 10.59 yields 
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 which   is the same as Equation 10.42, the energy sink conclusion for a single spinner.  

    10.5       NUTATION DAMPER 
 Nutation   dampers are passive means of dissipating energy. A common type consists essentially of a tube 
fi lled with viscous fl uid and containing a mass attached to springs, as illustrated in  Figure 10.9   . Dampers 
may contain just fl uid, only partially fi lling the tube so it can slosh around. In either case, the purpose is to 
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dissipate energy through fl uid friction. The wobbling of the spacecraft due to nonalignment of the angu-
lar velocity with the principal spin axis induces accelerations throughout the satellite, giving rise to the 
sloshing of fl uids, stretching and fl exing of nonrigid components, etc., all of which dissipate energy to one 
degree or another. Nutation dampers are added to deliberately increase energy dissipation, which is desir-
able for stabilizing oblate single spinners and dual-spin spacecraft. 

 Let   us focus on the motion of the mass within the nutation damper of  Figure 10.9  in order to gain some 
insight into how relative motion and deformation are induced by the satellite’s precession. Note that point 
 P  is the center of mass of the rigid satellite body itself. The center of mass  G  of the satellite-damper mass 
combination lies between  P  and  m , as shown in  Figure 10.9 . We suppose that the tube is lined up with the 
 z  axis of the body-fi xed  xyz  frame, as shown. The mass  m  in the tube is therefore constrained by the tube 
walls to move only in the  z  direction. When the springs are undeformed, the mass lies in the  xy  plane. In 
general, the position vector of  m  in the body frame is 

  r i k� �R zm
ˆ ˆ   (10.61)     

  where  z m   is the  z  coordinate of  m  and  R  is the distance of the damper from the centerline of the spacecraft. 
The velocity and acceleration of  m  relative to the satellite are, therefore,   

  v krel � �zm
ˆ   (10.62)      

  a krel � ��zm
ˆ   (10.63)      

 The   absolute angular velocity   ω   of the satellite (and, therefore, of the body-fi xed frame) is 

  
ω� � �ω ω ωx y z

ˆ ˆ ˆi j k   (10.64)      

 Recall   Equation 9.73, which states that when   ω   is given in a body frame, we fi nd the absolute angular accel-
eration by taking the time derivative of   ω  , holding the unit vectors fi xed. Thus, 
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 FIGURE 10.9  
       (a) Precessing oblate spacecraft with a nutation damper aligned with the  z  axis. (b) Free-body diagram of the moving 
mass in the nutation damper.    



 The   absolute acceleration of  m  is found using Equation 1.70, which for the case at hand becomes 

  a a r r v a� � � � � � � � �P ω ω ω ω( ) 2 rel rel   (10.66)     

  in which  a   p   is the absolute acceleration of the reference point  P . Substituting Equations 10.61 through 10.65 
into Equation 10.66, carrying out the vector operations, combining terms, and simplifying leads to the fol-
lowing expressions for the three components of the inertial acceleration of  m ,   

  

a a R z z z
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x P x y z m y m x z m y

y P y z x y m
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z z

a a z R R z

� �
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2
2 2

�

� ��( )

  (10.67)      

    Figure 10.9(b)  shows the free-body diagram of the damper mass  m . In the  x  and  y  directions the forces 
on  m  are the components of the force of gravity ( W x   and  W y  ) and the components  N x   and  N y   of the force 
of contact with the smooth walls of the damper tube. The directions assumed for these components are, of 
course, arbitrary. In the  z  direction, we have the z component  W z   of the weight, plus the force of the springs 
and the viscous drag of the fl uid. The spring force ( �  kz m  ) is directly proportional and opposite in direction 
to the displacement  z m  . k  is the net spring constant. The viscous drag  ( )�czm�     is directly proportional and 
opposite in direction to the velocity  �zm     of  m  relative to the tube.  c  is the damping constant. Thus, the three 
components of the net force on the damper mass  m  are 
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x x

y y

z m m
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net
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� �

�

� �

=

= �

  (10.68)      

 Substituting   Equations 10.67 and 10.68 into Newton’s second law,  F  net       �       m  a , yields 
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y

� � � � � �

�
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  (10.69)      

 The   last terms in parentheses in each of these expressions vanish if the acceleration of gravity is the same at 
 m  as at the reference point  P  of the spacecraft. This will be true unless the satellite is of enormous size. 

 If   the damper mass  m  is vanishingly small compared to the mass  M  of the rigid spacecraft body, then 
it will have little effect on the rotary motion. If the rotational state is that of an axisymmetric satellite in 
torque free motion, then we know from Equations 10.13, 10.14 and 10.19 that 

  

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω
x xy s y xy s z o

x xy s s y xy s

t t

t

� � �
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  in which case Equations 10.69 become   

  

N mR t m z t m z t

N
x o xy s s o xy m s xy m s� � � � �( cos ) ( ) sin cosω ω ω ω ω ω ω ω ω2 2 2 2 �

yy xy s s s o xy m s xy m smR t t m z t m z t

m

� � � � �ω ω ω ω ω ω ω ω ω2 2cos sin ( ) cos sin�

��� �z cz k m z mR tm m xy m s o xy s� � � � � �( ) ( ) sinω ω ω ω ω2

  (10.70)      

 Equation   10.70 3  is that of a single degree of freedom, damped oscillator with a sinusoidal forcing function, 
which was discussed in Section 1.8. The precession produces a force of amplitude  m (  ω  o        �        ω  s  )  ω  xy  R   and fre-
quency   ω  s   which causes the damper mass  m  to oscillate back and forth in the tube, such that (see the steady-
state part of Equation 1.115a) 

  

z
mR

k m c
c t k mm
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 Observe   that the contact forces  N x   and  N y   depend exclusively on the amplitude and frequency of the preces-
sion. If the angular velocity lines up with the spin axis, so that   ω  xy        �      0 (precession vanishes), then 

  

N m R
N

z

x o

y

m

�

�

�

ω 2

0

0

No precession

      

 If   precession is eliminated, so there is pure spin around the principal axis, the time-varying motions 
and forces vanish throughout the spacecraft, which thereafter rotates as a rigid body with no energy 
dissipation. 

 Now  , the whole purpose of a nutation damper is to interact with the rotational motion of the spacecraft 
so as to damp out any tendencies to precess. Therefore, its mass should not be ignored in the equations 
of motion of the spacecraft. We will derive the equations of motion of the rigid spacecraft with nutation 
damper to show how rigid body mechanics is brought to bear upon the problem and, simply, to discover 
precisely what we are up against in even this extremely simplifi ed system. We will continue to use  P  as the 
origin of our body frame. Since a moving mass has been added to the rigid spacecraft and since we are not 
using the center of mass of the system as our reference point, we cannot use Euler’s equations. Applicable 
to the case at hand is Equation 9.33, according to which the equation of rotational motion of the system of 
satellite plus damper is 

  
�H r a MP G P P G GM m

rel net/ /� � � �( )   (10.71)      

 The   angular momentum of the satellite body plus that of the damper mass, relative to point  P  on the 
spacecraft, is 

  
H i j kP x y zA B C

rel
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 � � �ω ω ωˆ ˆ ˆ  
� ����� �����

�� �r rm�
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  (10.72)     



  where the position vector  r  is given by Equation 10.61. According to Equation 1.59,   
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 After   substituting this into Equation 10.72 and collecting terms we obtain 

 
H i jP m x m zA mz mRz B mR mz mRz C mm y mrel
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 To   calculate  �HPrel
   , we again use Equation 1.56, 
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 Substituting   Equation 10.73 and carrying out the operations on the right leads eventually to 
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  (10.74)      

 To   calculate the second term on the left of Equation 10.71, we keep in mind that  P  is the center of mass 
of the body of the satellite and fi rst determine the position vector of the center of mass  G  of the vehicle plus 
damper relative to  P , 

  ( ) ( )M m M mG P+ r 0 r/ � �   (10.75)     

  where  r , the position of the damper mass  m  relative to  P , is given by Equation 10.61. Thus,   
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  in which   
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 Thus  , 
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(10.78)      
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 The   acceleration of  P  relative to  G  is found with the aid of Equation 1.60, 
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  where   
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  and   
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 Substituting   Equations 10.61, 10.64, 10.65, 10.80 and 10.81 into Equation 10.79 yields 
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  (10.82)      

 We   move this expression into Equation 10.78 to get 
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 Placing   this result and Equation 10.74 in Equation 10.71, and using the fact that  M 0Gnet
�    , yields a vector 

equation whose three components are 
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  (10.83)      

 These   are three equations in the four unknowns   ω  x  ,   ω  y  ,   ω  z   and  z m  . The fourth equation is that of the motion 
of the damper mass  m  in the  z  direction, 

  
W kz cz maz m m z� � ��   (10.84)     



  where  a z   is given by Equation 10.67 3 , in which  a a a a a aPz Pz Gz Gz P Gz Gz� � � � �/    , so that   

  
a a a z R R zz P Gz Gz m x y y x z m� � � � � �/ ( )ω ω ω ω ω2 2+ � ��   (10.85)      

 Substituting   the  z  component of Equation 10.82 into this expression and that result into Equation 10.84 
leads (with  W maz Gz

�    ) to 

  
( ) [ ( ) ( )] ( ) [ ]1 1 12 2� � � � � � � �μ μ ω ω μ ω ω ωmz cz k m z mRm m x y m y x z�� � � −   (10.86)      

 Compare   Equation 10.69 3  with this expression, which is the fourth equation of motion we need. 
 Equations   10.83 and 10.86 are a rather complicated set of nonlinear, second-order differential equations 

that must be solved (numerically) to obtain a precise description of the motion of the semirigid spacecraft. 
The procedures of Section 1.8 may be employed. To study the stability of Equations 10.83 and 10.86, we 
can linearize them in much the same way as we did in Section 10.3. (Note that Equations 10.83 reduce to 
10.29 when  m       �      0.) With that as our objective, we assume that the spacecraft is in pure spin with angular 
velocity   ω   0  about the  z  axis and that the damper mass is at rest ( z m        �      0). This motion is slightly perturbed, 
in such a way that 

  
ω δω ω δω ω ω δω δx x y y z o z m mz z� � � � �   (10.87)      

 It   will be convenient for this analysis to introduce operator notation for the time derivative,  D       �       d / dt . Thus, 
given a function of time  f ( t ), for any integer  n ,  D n f       �       d n f / dt n  , and  D  0  f ( t )      �       f ( t ). Then the various time deriva-
tives throughout the equations will, in accordance with Equation 10.87, be replaced as follows: 

  
� � � � ��ω δω ω δω ω δω δ δx x y y z z m m m mD D D z D z z D z� � � � � 2   (10.88)      

 Substituting   Equations 10.87 and 10.88 into Equations 10.83 and 10.86 and retaining only those terms 
which are at most linear in the small perturbations leads to 

  

AD C B

A C mR B mR D
x o y

o x y

δω ω δω

μ ω δω μ δω

� � �

� � � � � � �

( )

[ ( ) ] [ ( ) ] (

0

1 1 12 2− μμ ω δ

μ δω
μ ω δω μ δ

) ( )

[ ( ) ]

( ) ( )

mR D z

C mR D

mR mRD

o m

z

o x

2 2

2

0

1 0

1 1

� �

� � �

� � � ωω μ δy mmD cD k z� � � � �[( ) ]1 02

  (10.89)     

    δ  ω  z   appears only in the third equation, which states that   δ  ω  z        �      constant. The first, second and fourth equa-
tions may be combined in matrix notation,   
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 This   is a set of three linear differential equations in the perturbations   δ  ω  x  ,   δ  ω  y   and   δ z m  . We won’t try to solve 
them, since all we are really interested in is the stability of the satellite-damper system. It can be shown that 
the determinant   Δ   of the 3 by 3 matrix in Equation 10.90 is 

  Δ � � � � �a D a D a D a D a4
4

3
3

2
2

1 0   (10.91)     

  in which the coefficients of the characteristic equation   Δ        �      0 are   
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 According   to the   Routh-Hurwitz stability criteria   (see any text on control systems, e.g., Palm, 1983), 
the motion represented by Equations 10.90 is asymptotically stable if and only if the signs of all of the fol-
lowing quantities, defi ned in terms of the coeffi cients of the characteristic equation, are the same 

  
r a r a r a

a a

a
r a

a a

a a a a
r a1 4 2 3 3 2

4 1

3
4 1

3 0

3 2 4 1
5 0� � � � � �

�
�   (10.93)     

        Example 10.6      
 A   satellite is spinning about the  z  of its principal body frame at 2  π   radians per second. The principal 
moments of inertia about its center of mass are 

  A B C� � � � � �300 400 500kg m kg m kg m2 2 2   (a)      

 For   the nutation damper, the following properties are given 

  R m k c� � � � �1 0 01 10 10 000 150m kg N/m N-s/mμ . ,   (b)      

 Use   the Routh-Hurwitz stability criteria to assess the stability of the satellite as a major-axis spinner, a 
minor-axis spinner, and an intermediate-axis spinner. 

    Solution 
 The   data in (a) are for a major axis spinner. Substituting into Equations 10.92 and 10.93, we fi nd 
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  (c)      



 Since   every  r  is positive, spin about the major axis is asymptotically stable. As we know from Section 10.3, 
without the damper the motion is neutrally stable. 

 For   spin about the minor axis, 

  A B C� � � � � �500 400 300kg m kg m kg m2 2 2   (d)      

 For   these moment of inertia values, we obtain 
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  (e)      

 Since   the  r s are not all of the same sign, spin about the minor axis is not asymptotically stable. Recall that 
for the rigid satellite, such a motion was neutrally stable. 

 Finally  , for spin about the intermediate axis, 

  A B C� � � � � �300 500 400kg m kg m kg m2 2 2   (f)      

 We   know this motion is unstable, even without the nutation damper, but doing the Routh-Hurwitz stability 
check anyway, we get 
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.       

 The   motion, as we expected, is not stable.        

    10.6       CONING MANEUVER 
 Like   the use of nutation dampers, the coning maneuver is an example of the attitude control of spinning 
spacecraft. In this case, the angular momentum is changed by the use of on board thrusters (small rockets) 
to apply pure torques. 

 Consider   a spacecraft in pure spin with angular velocity   ω   0  about its body-fi xed  z  axis, which is an axis 
of rotational symmetry. The angular momentum is  H kG C

0 0� ω ˆ    . Suppose we wish to maintain the mag-
nitude of the angular momentum but change its direction by rotating the spin axis through an angle   θ  , as 
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illustrated in  Figure 10.10   . Recall from Section 9.4 that to change the angular momentum of the spacecraft 
requires applying an external moment, 

  

Δ
Δ

H MG G

t

dt�

0
∫

      

 Thrusters   may be used to provide the external impulsive torque required to produce an angular momentum 
increment  ΔHG1

    normal to the spin axis. Since the spacecraft is spinning, this induces coning (preces-
sion) of the spacecraft about an axis at an angle of   θ  /2 to the direction of  HG0

   . Since the external couple is 
normal to the  z  axis, the maneuver produces no change in the  z  component of the angular velocity, which 
remains   ω   0 . However, after the impulsive moment, the angular velocity comprises a spin component   ω  s   and 
a precession component   ω  p  . Whereas before the impulsive moment   ω  s        �        ω   0 , afterwards, during coning, the 
spin component is given by Equation 10.20, 

  
ω ωs
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 The   precession rate is given by Equation 10.22, 
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  (10.94)      

 Notice   that before the impulsive maneuver, the magnitude of the angular momentum is  C ω   0 . Afterwards, 
it has increased to 
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 FIGURE 10.10  
       Impulsive coning maneuver.    



 Observe   that a defl ection angle   θ   of 180 °  is impossible since it would require an infi nite torque impulse. 
 After   precessing 180 ° , an angular momentum increment  ΔHG2

    normal to the spin axis and in the same 
direction relative to the spacecraft as the initial torque impulse, with  Δ ΔH HG G2 1

�    , stabilizes the 
spin vector in the desired direction. Since the spin rate   ω  s   is not in general the same as the precession rate 
  ω  p  , the second angular impulse must be delivered by another pair of thrusters which have rotated into the 
position to apply the torque impulse in the proper direction. With only one pair of thrusters, both the spin 
axis and the spacecraft must rotate though 180 °  in the same time interval, which means   ω  p        �        ω  s  , that is 
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�ω

ω
θ0
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2cos( )/       

 This   requires the defl ection angle to be 
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�2 1cos
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⎠
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  and limits the values of the moments of inertia  A  and  C  to those that do not cause the magnitude of the 
cosine to exceed unity.   

 The   time required for an angular reorientation   θ   using a single coning maneuver is found by simply 
dividing the precession angle,   π   radians, by the precession rate   ω  p  , 

  

t
A

Cp
1

0 2
� �

π
ω

π
ω

θ
cos   (10.95)      

 Propellant   expenditure is refl ected in the magnitude of the individual angular momentum increments, in 
obvious analogy to delta-v calculations for orbital maneuvers. The total delta-H required for the single con-
ing maneuver is therefore given by 

  
Δ Δ ΔH G G Gtotal � � �H H H

1 2 0
2

2
tan

θ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   (10.96)      

    Figure 10.11    illustrates the fact that   Δ H  total  can theoretically be reduced by using a sequence of small 
coning maneuvers (small   θ  s  ) rather than one big   θ  . The large number of small   Δ H s approximates a circular 
arc of radius  HG0

   , subtended by the angle   θ  . Therefore, approximately, 

  
ΔH G Gtotal � �2

20 0
H H

θ
θ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   (10.97)      

 This   expression becomes more precise as the number of intermediate maneuvers increases.  Figure 10.12    
reveals the extent to which the multiple coning maneuver strategy reduces energy requirements. The differ-
ence is quite signifi cant for large reorientation angles. 

 One   of the prices to be paid for the reduced energy of the multiple coning maneuver is time. (The other 
is the complexity mentioned above, to say nothing of the risk involved in repeating the maneuver over and 
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over again.) From Equation 10.95, the time required for  n  small-angle coning maneuvers through a total 
angle of   θ   is 

  
t n

A

C nn � π
ω

θ

0 2
cos   (10.98)      

 The   ratio of this to the time  t  1  required for a single coning maneuver is 

  

t

t
n nn

1

2

2

�
cos

cos

θ

θ   (10.99)      

 The   time is directly proportional to the number of intermediate coning maneuvers, as illustrated in 
 Figure 10.13   .  
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 FIGURE 10.12  
       Ratio of delta-H for a sequence of small coning maneuvers to that for a single coning maneuver, as a function of the 
angle of swing of the spin axis.    
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       A sequence of small coning maneuvers.    



    10.7       ATTITUDE CONTROL THRUSTERS 
 As   mentioned above, thrusters are small jets mounted in pairs on a spacecraft to control its rotational motion 
about the center of mass. These thruster pairs may be mounted in principal planes (planes normal to the 
principal axes) passing through the center of mass.  Figure 10.14    illustrates a pair of thrusters for producing a 
torque about the positive  y  axis. These would be accompanied by another pair of reaction motors pointing in 
the opposite directions to exert torque in the negative  y  direction. If the position vectors of the thrusters rela-
tive to the center of mass are  r  and  �  r , and if  T  is their thrust, then the impulsive moment they exert during a 
brief time interval   Δ t  is 

  M r T r T r T� � � � � � � �Δ Δ Δt t t( ) ( ) 2   (10.100)      

 If   the angular velocity was initially zero, then after the fi ring, according to Equation 9.31, the angular 
momentum becomes 

  H r T� �2 Δt   (10.101)      
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 For    H  in the principal  x  direction, as in the fi gure, the corresponding angular velocity acquired by the vehi-
cle is, from Equation 9.67, 

  
ωy B

�
H

  (10.102)     

        Example 10.7      
 A   spacecraft of mass  m  and with the dimensions shown in  Figure 10.15    is spinning without precession at 
the rate   ω   0  about the  z  axis of the principal body frame. At the instant shown in part (a) of the fi gure, the 
spacecraft initiates a coning maneuver to swing its spin axis through 90 ° , so that at the end of the maneuver 
the vehicle is oriented as illustrated in  Figure 10.15b . Calculate the total delta-H required, and compare it 
with that required for the same reorientation without coning. Motion is to be controlled exclusively by the 
pairs of attitude thrusters shown, all of which have identical thrust  T . 

    Solution 
 According   to Figure 9.9c, the moments of inertia about the principal body axes are 
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 The   initial angular momentum  HG1
    points in the spin direction, along the positive  z  axis of the body frame, 
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 FIGURE 10.15  
       (a) Initial orientation of spinning spacecraft. (b) Final confi guration, with spin axis rotated 90 ° .    



 We   can presume that in the initial orientation, the body frame happens to coincide instantaneously with 
inertial frame  XYZ . The coning motion is initiated by briefl y fi ring the pair of thrusters RCS-1 and RCS-2, 
aligned with the body  z  axis and lying in the  yz  plane. The impulsive torque will cause a change  ΔHG1

    in 
angular momentum directed normal to the plane of the thrusters, in the positive body  x  direction. The resul-
tant angular momentum vector must lie at 45 °  to the  x  and  z  axes, bisecting the angle between the initial and 
fi nal angular momenta. Thus, 

  
ΔH HG G mw

1 1
45

1

6
2

0� � �tan ω
      

 After   the coning is underway, the body axes of course move away from the  XYZ  frame. Since the space-
craft is oblate ( C              A ), the precession of the spin axis will be opposite to the spin direction, as indicated in 
 Figure 10.15 . When the spin axis, after 180 °  of precession, lines up with the  X  axis, the thrusters must fi re 
again for the same duration as before so as to produce the angular momentum change  ΔHG2

   , equal in mag-
nitude but perpendicular to  ΔHG1

   , so that 

  
H H H HG G G G1 1 2 2

� � �Δ Δ
     

  where   
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2

0� �ˆ ˆω
      

 For   this to work, the plane of thrusters RCS-1 and RCS-2 — the  yz  plane — must be parallel to the  XY  plane when 
they fi re, as illustrated in  Figure 10.15b . Since the thrusters can fi re fore or aft, it does not matter which of them 
ends up on top or bottom. The vehicle must therefore spin through an integral number  n  of half rotations while it 
precesses to the desired orientation. That is, the total spin angle   ψ   between the initial and fi nal confi gurations is 

  ψ π ω� �n ts   (a)     

  where   ω  s   is the spin rate and  t  is the time for the proper fi nal confi guration to be achieved. In the meantime, 
the precession angle must be   φ   must be   π   or 3  π   or 5  π  , or, in general,   

  
φ π ω� � �( )2 1m tp   (b)     

  where  m  is an integer and  t  is, of course, the same as that in (a). Eliminating  t  from both (a) and (b) yields   

  

n m s

p

π π
ω
ω

� �( )2 1

      

 Substituting   Equation 10.23, with   θ        �        π  /2, gives 

  
n m� �( )1 2

4

9

1

2
  (c)      

 Obviously  , this equation cannot be valid if both  m  and  n  are integers. However, by tabulating  n  as a function 
of  m  we fi nd that when  m       �      18, n      �       � 10.999. The minus sign simply reminds us that spin and precession 
are in opposite directions. Thus, the eighteenth time that the spin axis lines up with the  X  axis the thrusters 
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may be fi red to almost perfectly align the angular momentum vector with the body  z  axis. The slight mis-
alignment due to the fact that  n     is not precisely 11 would probably occur in reality anyway. Passive or 
active nutation damping can drive this deviation to zero. 

 Since    H HG G1 2
�    , we conclude that 

  
ΔH mw mwtotal � �2
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0ω ω
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 An   obvious alternative to the coning maneuver is to use thrusters RCS-3 and 4 to despin the craft com-
pletely, thrusters RCS-5 and 6 to initiate roll around the  y  axis and stop it after 90 ° , and then RCS-3 and 4 
to respin the spacecraft to   ω   0  around the  z  axis. The combined delta-H for the fi rst and last steps equals that 
of (d). Additional fuel expenditure is required to start and stop the roll around the  y  axis. Hence, the coning 
maneuver is more fuel effi cient.        

    10.8       YO-YO DESPIN MECHANISM 
 A   simple, inexpensive way to despin an axisymmetric spacecraft is to deploy small masses attached to 
cords wound around the girth of the spacecraft near the transverse plane through the center of mass. As 
the masses unwrap in the direction of the spacecraft’s angular velocity, they exert centrifugal force through 
the cords on the periphery of the vehicle, creating a moment opposite to the spin direction, thereby slow-
ing down the rotational motion. The cord forces are internal to the system of spaceraft plus weights, so 
as the strings unwind, the total angular momentum must remain constant. Since the total moment of iner-
tia increases as the yo-yo masses spiral further away, the angular velocity must drop. Not only angular 
momentum but also rotational kinetic energy is conserved during this process. Yo-yo despin devices were 
introduced early in unmanned space fl ight (e.g., 1959 Transit 1-A) and continued to be used thereafter (e.g., 
1996 Mars Pathfi nder, 1998 Mars Climate Orbiter, 1999 Mars Polar Lander, 2003 Mars Exploration Rover). 

 The   problem is to determine the length of cord required to reduce the spacecraft’s angular velocity a spec-
ifi ed amount. Because it is easier than solving the equations of motion, we will apply the principles of con-
servation of energy and angular momentum to the system comprising the spacecraft and yo-yo masses. To 
maintain the position of the center of mass, two identical yo-yo masses are wound around the spacecraft in 
a symmetrical fashion, as illustrated in  Figure 10.16   . Both masses are released simultaneously by explosive 
bolts and unwrap in the manner shown (for only one of the weights) in the fi gure. In so doing, the point of 
tangency  T  moves around the circumference towards the split hinge device where the cord is attached to the 
spacecraft. When  T  and  T ’   reach the hinges  H  and  H ’  , the cords automatically separate from the spacecraft. 

 Let   each yo-yo weight have mass  m /2. By symmetry, we need to track only one of the masses, to which 
we can ascribe the total mass  m . Let the  xyz  system be a body frame rigidly attached to the spacecraft, as 
shown in  Figure 10.16 . As usual, the  z  axis lies in the spin direction, pointing out of the page. The  x  axis is 
directed from the center of mass of the system through the initial position of the yo-yo mass. The spacecraft 
and the yo-yo masses, prior to release, are rotating as a single rigid body with angular velocity  ω0 0� ω k̂   . 
The moment of inertia of the satellite, excluding the yo-yo mass, is  C , so that the angular momentum of the 
satellite by itself is  C ω   0 . The concentrated yo-yo masses are fastened a distance  R  from the spin axis, so their 
total moment of inertia is  mR  2 . Therefore, the initial angular momentum of the satellite plus yo-yo system is 

  H C mRG0 0
2

0� �ω ω       



 It   will be convenient to write this as 

  
H KmRG0

2
0� ω   (10.103)     

  where the nondimensional factor K is defined as   

  
K

C

mR
� �1

2   (10.104)     

   K R     is the initial radius of gyration of the system.   
 The   initial rotational kinetic energy of the system, before the masses are released, is 
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2
� � �ω ω ω   (10.105)      

 At   any state between the release of the weights and the release of the cords at the hinges, the velocity of 
the yo-yo mass must be found in order to compute the new angular momentum and kinetic energy. Observe 
that when the string has unwrapped an angle   φ  , the free length of string (between the point of tangency  T  
and the yo-yo mass  P ) is  R φ  . From the geometry shown in  Figure 10.16 , the position vector of the mass 
relative to the body frame is seen to be 
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r r
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  (10.106)      

 Since    r  is measured in the moving reference, the absolute velocity  v  of the yo-yo mass is found using 
Equation 1.56 

  
v

r
r� � �

d

dt

⎞
⎠
⎟⎟⎟⎟

rel

ω   (10.107)     
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  where   Ω   is the angular velocity of the  xyz  axes, which, of course, is the angular velocity   ω   of the spacecraft 
at that instant,   

  Ω ω�   (10.108)      

 To   calculate d r / dt ) rel , we hold  ̂i     and  ̂j     constant in Equation 10.106, obtaining 
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 Thus  , 
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  or   

  v i j� � � � � �[ ( ) ] [ ( ) ]R R R Rφ ω φ φ ω φ ω φ φ ω φ φ� � � �cos sin cos sin   (10.109)      

 From   this we fi nd the speed of the yo-yo weights, 

  v R� � � � �v v ω ω φ φ2 2 2( )�   (10.110)      

 The   angular momentum of the spacecraft plus the weights at an intermediate stage of the despin process is 
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 Carrying   out the cross product, combining terms and simplifying, leads to 

  H C mRG � � � �ω ω ω φ φ2 2[ ( ) ]�
     

  which, using Equation 10.104, can be written   

  H mR KG � � �2 2[ ( ) ]ω ω φ φ�   (10.111)      

 The   kinetic energy of the spacecraft plus the yo-yo mass is 

  
T C mv� �
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2
2 2ω

      



 Substituting   the speed from Equation 10.110 and making use again of Equation 10.104, we fi nd 

  
T mR K� � �

1

2
2 2 2 2[ ( ) ]ω ω φ φ�   (10.112)      

 By   the conservation of angular momentum,  H HG G�
0
   , we obtain from Equations 10.103 and 10.111, 

  mR K KmR2 2 2
0[ ( ) ]ω ω φ φ ω� � ��

     

  which we can write as   

  K( ) ( ) Conservation of angular momentumω ω ω φ φ0
2� � � �   (10.113)      

 Equations   10.105 and 10.112 and the conservation of kinetic energy,  T       �       T  0 , combine to yield 

  

1

2

1

2
2 2 2 2 2

0
2mR K KmR[ ( ) ]ω ω φ φ ω� � ��

     

  or   

  K( ) ( ) Conservation of energyω ω ω φ φ0
2 2 2 2� � � �   (10.114)      

 Since    ω  0  
2       �       ω  2       �      ( ω  0       �       ω )( ω  0       �       ω ), this can be written 

  K( )( ) ( )ω ω ω ω ω φ φ0 0
2 2� � � � �       

 Replacing   the factor  K (  ω   0       �        ω  ) on the left using Equation 10.113 yields 

  ( ) ( ) ( )ω φ φ ω ω ω φ φ� � � �� �2
0

2 2
      

 After   canceling terms, we fi nd  ω ω ω φ0 � � � �    , or, simply 

  
�φ ω� 0 Conservation of energy  momentumand   (10.115)      

 In   other words, the cord unwinds at a constant rate (relative to the spacecraft), equal to the vehicle’s initial 
angular velocity. Thus at any time  t  after the release of the weights, 

  φ ω� 0t   (10.116)      

 By   substituting Equation 10.115 into Equation 10.113, 

  K( ) ( )ω ω ω ω φ0 0
2� � �      
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  we find that   

  

φ
ω ω
ω ω

�
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�
K 0

0

Partial despin   (10.117)      

 Recall   that the unwrapped length  l  of the cord is  R φ  , which means 

  

l R K�
�

�

ω ω
ω ω

0

0

Partial despin   (10.118)      

 We   use Equation 10.118 to fi nd the length of cord required to despin the spacecraft from   ω   0  to   ω  . To 
remove all of the spin (  ω        �      0), 

  φ � �K l R K     ⇒ Complete despin   (10.119)      

 Surprisingly  , the length of cord required to reduce the angular velocity to zero is independent of the initial 
angular velocity. 

 We   can solve Equation 10.117 for   ω   in terms of   φ  , 
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 By   means of Equation 10.116, this becomes an expression for the angular velocity as a function of time, 

  

ω
ω

ω�
�

�
2

1
0

2 2 0
K

K t

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
  (10.121)      

 Alternatively  , since   φ        �       l / R , Equation 10.120 yields the angular velocity as a function of cord length, 
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 Differentiating     ω   with respect to time in Equation 10.121 gives us an expression for the angular accel-
eration of the spacecraft, 
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  (10.123)     

  whereas integrating   ω   with respect to time yields the angle rotated by the spacecraft since release of the 
yo-yo mass,   
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 For   complete despin, this expression, together with Equation 10.119, yields 
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 From   the free-body diagram of the spacecraft shown in  Figure 10.17   , it is clear that the torque exerted 
by the yo-yo weights is 

  
M RNGz � �2   (10.126)     

  where  N  is the tension in the cord. From Euler’s equations of motion, Equations 9.72b,   

  
M CG z

� α   (10.127)      

 Combining   Equations 10.123, 10.126 and 10.127 leads to a formula for the tension in the yo-yo cables, 
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    10.8.1   Radial Release 

 Finally  , we note that instead of releasing the yo-yo masses when the cables are tangent at the split hinges ( H  
and  H  
 ), they can be forced to pivot about the hinge and released when the string is directed radially outward, as 
illustrated in  Figure 10.18   . The above analysis must be then extended to include the pivoting of the cord around 
the hinges. It turns out that in this case, the length of the cord as a function of the fi nal angular velocity is 
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  so that for   ω        �      0,   

  l R K� �( )1 Complete despin, radial release   (10.130)     

        Example 10.8      
 A   satellite is to be completely despun using a two-mass yo-yo device with tangential release. Assume the 
spin axis of moment of inertia of the satellite is  C       �      200       kg  ·  m 2  and the initial spin rate is   ω   0       �      5 rad/s. The 
total yo-yo mass is 4       kg, and the radius of the spacecraft is 1 meter. Find 

    (a)     the required cord length  l ;  
    (b)     the time  t  to despin;  
    (c)     the maximum tension in the yo-yo cables;  
    (d)     the speed of the masses at release;  
    (e)     the angle rotated by the satellite during the despin;  
    (f)     the cord length required for radial release.    

    Solution 
        (a)     From Equation 10.104,    
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 From   Equation 10.119 it follows that the cord length required for complete despin is 

  
l R K� � � �1 51 7 1414. m   (b)      

    (b)     The time for complete despin is obtained from Equations 10.116 and 10.119,    
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 FIGURE 10.18  
       Radial versus tangential release of yo-yo masses.    



    (c)     A graph of Equation 10.128 is shown in  Figure 10.19   , from which we see that    

  
The maximum tension is N455

     

  which occurs at 0.825       s.   
    (d)     From Equation 10.110, the speed of the yo-yo masses is    

  v R� � �ω ω φ φ2 2 2( )�       
 According   to Equation 10.115,  �φ ω� 0    and at the time of release (  ω        �      0) Equation 10.117 states that  

φ � K .     Thus, 
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    (e)     The angle through which the satellite rotates before coming to rotational rest is given by Equation 10.125,    
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1 51

2
1 4 076 233 5

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ . .   rad ( degreees)

      

    (f)     Allowing the cord to detach radially reduces the cord length required for complete despin from 7.141       m 
to (Equation 10.130)    

  
l R K� � � � � �( ) ( ) .1 1 51 1 6 141 m

              

    10.9       GYROSCOPIC ATTITUDE CONTROL 
 Momentum   exchange systems ( “ gyros ” ) are used to control the attitude of a spacecraft without throwing con-
sumable mass overboard, as occurs with the use of thruster jets. A momentum exchange system is illustrated 
schematically in  Figure 10.20   .  n  fl ywheels, labeled 1, 2, 3, etc., are attached to the body of the spacecraft at 
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various locations. The mass of fl ywheel  i  is  m i  . The mass of the body of the spacecraft is  m  0 . The total mass 
of the entire system — the  “ vehicle ”  — is  m , 

  

m m mi
i

n

� �
�

0
1

∑
      

 The   vehicle’s center of mass is  G , through which pass the three axes  xyz  of the vehicle’s body-fi xed 
frame. The center of mass  G i   of each fl ywheel is connected rigidly to the spacecraft, but the wheel, driven 
by electric motors, rotates more or less independently, depending on the type of gyro. The body of the 
spacecraft has an angular velocity   ω  . The angular velocity of the  i th fl ywheel is   ω     (i)   , and differs from that of 
the body of the spacecraft unless the gyro is  “ caged. ”  A caged gyro has no spin relative to the spacecraft, in 
which case   ω    (i)        �        ω  . 

 According   to Equation 9.39b, the angular momentum of the body itself relative to  G  is 

  { }H IG
body

G
body( ) ( )[ ]{ }� ω   (10.131)     

  where  [ ]( )IG
body     is the moment of inertia tensor of the body about  G  and   ω   is the angular velocity of the body.   

 Equation   9.27 gives the angular momentum of fl ywheel  i  relative to  G  as 

  
H HG

i
G
i

i i ii
m( ) ( )� � �ρ ρ�   (10.132)      

    HG
i

i

( )     is the angular momentum vector of the fl ywheel  i  about its own center of mass. Its components in the 
body frame are found from the expression 

  H IG
i

G
i i

i i

( ) ( ) ( ){ }{ } ⎡
⎣⎢

⎤
⎦⎥

� ω   (10.133)     
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 FIGURE 10.20  
       Several attitude control fl ywheels, each with their own angular velocity, attached to the body of a spacecraft.    



  where  IG
i

i

( )⎡
⎣⎢

⎤
⎦⎥
    is the moment of inertia tensor of the flywheel about its own center of mass  G i  , relative to axes 

that are parallel to the body-fixed  xyz  axes. Since a momentum wheel might be one that pivots on gimbals 
relative to the body frame, the inertia tensor  IG

i

i

( )⎡
⎣⎢

⎤
⎦⎥
    may be time dependent. The vector  ρ ρi i im� �     in Equation 

10.132 is the angular momentum of the concentrated mass  m i   of the flywheel about the  system  center of 
mass  G . According to Equation 9.59 the components of  ρ ρi i im� �     in the body frame are given by   

  
{ } { }( )ρ ρ ωi i i m

im
G

� �� I⎡
⎣⎢

⎤
⎦⎥   (10.134)     

  where  Im
i

G

( )⎡
⎣⎢

⎤
⎦⎥
   , the moment of inertia tensor of the point mass  m i   about  G , is given by Equation (9.44). Using 

Equations (10.133) and (10.134), Equation (10.132) can be written as   

  
{ } { } { }( ) ( ) ( ) ( )H I IG

i
G
i i

m
i

i G
� �⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ω ω   (10.135)      

 The   total angular momentum of the system in  Figure 10.20  about  G  is that of the body plus all of the  n  
fl ywheels. 

  

H H HG G
body

G
i

i

n

� �
�

( ) ( )

1
∑

      

 Substituting   Equations 10.131 and 10.135, we obtain 

  

{ } [ ]{ } { } { }( ) ( ) ( ) ( )H I I IG G
body

G
i i

m
i

i
i G

� � �
�

ω ω ω⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( )

1

nn

∑
     

  or   

  

{ } { }( ) ( ) (H I I IG G
body

m
i

i

n

GG i
� � �

�

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟∑

1

ω ii i

i

n
) ( ){ }⎡

⎣⎢
⎤
⎦⎥∑ ω

�1
  (10.136)      

 Let   

  

[ ] [ ]( ) ( ) ( )I I IG
v

G
body

m
i

i

n

G
� �

�

⎡
⎣⎢

⎤
⎦⎥∑

1
  (10.137)      

    [ ]( )IG
v     is the time-independent total moment of inertia of the vehicle  v , that is, that of the body plus the con-

centrated masses of all of the fl ywheels. Thus, 

  

{ } [ ]{ } { }( ) ( ) ( )H I IG G
v

G
i i

i

n

i
� �

�

ω ω⎡
⎣⎢

⎤
⎦⎥∑

1
  (10.138)      

 If    ωrel
i( )     is the angular velocity of the  i th fl ywheel relative to the spacecraft, then its inertial angular velocity 

  ω   (   i   )  is given by Equation 9.5, 

  ω ω ω( )
rel
( )i i� �   (10.139)     
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  where   ω   is the inertial angular velocity of the spacecraft body. Substituting Equation 10.139 into 10.138 
yields   

  

{ } [ ]{ } { }( ) ( )
rel
( )H I IG G

v
G
i i

i

n

i
� � �

�

ω ω ω⎡
⎣⎢

⎤
⎦⎥∑

1      

  or   

  

{ } [ ] { }( ) ( ) ( )H I I IG G
v

G
i

i

n

G
i

i i
� � �

�

⎡
⎣⎢

⎤
⎦⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡
⎣⎢

⎤
⎦∑

1

ω ⎥⎥∑ { }rel
( )ω i

i

n

�1

  (10.140)      

 An   alternative form of this expression may be obtained by substituting Equation 10.137: 
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I Im
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i

n

G
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G i

( ) ( )
rel{ } {

1

ω ω(( )}i

i

n

�1
∑   

(10.141)      

 But  , according to the parallel axis theorem (Equation 9.61), 

  
[ ]( ) ( ) ( )I I IG

i
G
i

m
i

i G
� �⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥      

  where  [ ]( )IG
i     is the moment of inertia of the  i th fl ywheel around the center of mass of the body of the space-

craft. Hence, we can write Equation 10.141 as   

  

{ } [ ] [ ] { } {( ) ( ) ( )H I I IG G
body

G
i

i

n

G
i

i
� � �

�1
∑

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟

⎡
⎣⎢

⎤
⎦⎥

ω ωωrel
( )}i

i

n

�1
∑   (10.142)      

 The   equation of motion of the system is given by Equations 9.30 and 1.56, 

  

M
H

HG
G

G
d

dtnet external
rel

) ⎞

⎠
⎟⎟⎟⎟� � �ω   (10.143)      

 If    M 0G net external
) �    , then  H   G        �      constant.

        Example 10.9      
 A   disk is attached to a plate at their common center of mass. Between the two is a motor mounted on the 
plate which drives the disk into rotation relative to the plate. The system rotates freely in the  xy  plane in 
gravity-free space. The moments of inertia of the plate and the disk about the  z  axis through  G  are  I p   and  I w  , 
respectively. Determine the change in the relative angular velocity   ω   rel  of the disk required to cause a given 
change in the inertial angular velocity   ω   of the plate.                     



    Solution 
 The   plate plays the role of the body of a spacecraft and the disk is a momentum wheel. At any given time, 
the angular momentum of the system about  G  is given by Equation 10.142, 

  
H I I IG p w w� � �( ) relω ω

      

 At   a later time (denoted by primes), after the torquing motor is activated, the angular momentum is 

  
H I I IG p w w
 
� � 
 �( ) relω ω

      

 Since   the torque is internal to the system, we have conservation of angular momentum,  H HG G
 �    , which 
means 

  
( ) ( )rel relI I I I I Ip w w p w w� 
 � � � �
ω ω ω ω

      

 Rearranging   terms we get 

  
I I Iw p w( ) ( )( )rel relω ω ω ω
 � � � � 
 �

      

 Letting     Δ  ω        �        ω   
       �        ω  , this can be written 

  

Δ Δω ωrel � � �1
I

I
p

w

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

      

 The   change   Δ  ω   rel  in the relative rotational velocity of the disk is due to the torque applied to the disk at  G  
by the motor mounted on the plate. An equal torque in the opposite direction is applied to the plate, produc-
ing the angular velocity change   Δ  ω   opposite in direction to   Δ  ω   rel . 

 Notice   that if  I p                   I w  , which is true in an actual spacecraft, then the change in angular velocity of the 
momentum wheel must be very much larger than the required change in angular velocity of the body of the 
spacecraft.      
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        Example 10.10      
 Use   Equation 10.142 to obtain the equations of motion of a torque-free, axisymmetric dual-spin satellite, 
such as the one shown in  Figure 10.22   . 

    Solution 
 In   this case we have only one  “ reaction wheel, ”  namely, the platform  p . The  “ body ”  is the rotor  r.  In 
Equation 10.142 we make the following substitutions ( ←  means  “ is replaced by ” ): 
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  so that Equation 10.142 becomes   
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 Since    M 0G net
)
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�    , Equation 10.143 yields 
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  (b)      
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 FIGURE 10.22  
       Dual-spin spacecraft.    



 The   components of the matrices and vectors in (b) relative to the principal  xyz  body frame axes attached to 
the rotor are 
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  and   
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  (d)      

  A   r  ,  C r  ,  A p   and  C p   are the rotor and platform principal moments of inertia about the vehicle center of mass 
 G , whereas  Ap     is the moment of inertia of the platform about its own center of mass. We also used the 
fact that  C Cp p�    , which of course is due to the fact that  G  and  G p   both lie on the  z  axis. This notation is 
nearly identical to that employed in our consideration of the stability of dual-spin satellites in Section 10.4 
(wherein  ω ωr z

r� ( )     and  ω⊥ � �ω ωx
r

y
r( ) ( )ˆ ˆi j    ). Substituting (c) and (d) into each of the four terms in (b), 

we get 
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  (e)      
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 With   these four expressions, (b) becomes 
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  (i)      

 Combining   the four vectors on the left-hand side, and then extracting the three components of the vector 
equation fi nally yields the three equations of motion of the dual-spin satellite in the body frame, 
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  (j)     

  where  A  and  C  are the combined transverse and axial moments of inertia of the dual-spin vehicle about its 
center of mass,   

  
A A A C C Cr p r p� � � �   (k)      

 The   three equations (j) involve four unknowns,  ωx
r( )    ,  ωy

r( )    ,  ωz
r( )     and   ω  p  . A fourth equation is required to 

account for the means of providing the relative velocity   ω  p   between the platform and the rotor. Friction in 
the axle bearing between the platform and the rotor would eventually cause   ω  p   to go to zero, as pointed out 
in Section 10.4. We may assume that the electric motor in the bearing acts to keep   ω  p   constant at a speci-
fi ed value, so that  �ωp � 0   . Then Equation (j) 3  implies that  ωz

r( ) constant�     as well. Thus,   ω  p   and  ωz
r( )     are 

removed from our list of unknowns, leaving  ωx
r( )    and  ωy

r( )    to be governed by the fi rst two equations in (j). 
Note that we actually employed (j) 3  in the solution of Example 10.9 above.      

        Example 10.11      
 A   spacecraft has three identical momentum wheels with their spin axes aligned with the vehicle’s principal 
body axes. The spin axes of momentum wheels 1, 2 and 3 are aligned with the  x ,  y  and  z  axes, respectively. 
The inertia tensors of the rotationally symmetric momentum wheels about their centers of mass are, therefore, 
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 The   spacecraft moment of inertia tensor about the vehicle center of mass is 
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  (b)      

 Calculate   the spin accelerations of the momentum wheels in the presence of external torque. 



    Solution 
 For    n       �      3, Equation 10.140 becomes 
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 The   absolute angular velocity   ω   of the spacecraft and the angular velocities  ωrel
( )1    ,  ωrel

( )2    ,  ωrel
( )3     of the three 

fl ywheels relative to the spacecraft are 
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  (d)      

 Substituting   (a), (b) and (d) into (c) yields 
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  (e)      

 Substituting   this expression for  {  H   G   }  into Equation 10.143, we get 
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  (f)      

 Expanding   and collecting terms yields the time rates of change of the fl ywheel spins (relative to the space-
craft) in terms of the spacecraft’s absolute angular velocity components, 
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  (g)           
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        Example 10.12      
 The   communications satellite is in a circular earth orbit of period  T . The body  z  axis always points towards 
the earth, so the angular velocity about the body y axis is 2  π  / T . The angular velocities about the body  x  and 
 z  axes are zero. The attitude control system consists of three momentum wheels 1, 2 and 3 aligned with the 
principal  x ,  y  and  z  axes of the satellite. Variable torque is applied to each wheel by its own electric motor. 
At time  t       �      0 the angular velocities of the three wheels relative to the spacecraft are all zero. A small, con-
stant environmental torque  M  0  acts on the spacecraft. Determine the axial torques  C   (1) ,  C   (2)  and  C   (3)  that 
the three motors must exert on their wheels so that the angular velocity   ω   of the satellite will remain con-
stant. The moment of inertia of each reaction wheel about its spin axis is  I .                     

 The   absolute angular velocity of the  xyz  frame is given by 

  ω� ω0 ĵ   (a)     

  where   ω   0       �      2  π  / T , a constant. At any instant, the absolute angular velocities of the three reaction wheels are, 
accordingly,   
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  (b)      

 From   (a) it is clear that  ω ω ω ω ωx z x y z� � � � �� � � 0   . Therefore, Equations (g) of Example 10.11 
become, for the case at hand, 
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 FIGURE 10.23  
       Three-axis stabilized satellite.    



  which reduce to the following set of three fi rst-order differential equations,   
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  (c)      

 Equation   (c) 2  implies that   ω   (2)       �       M Gy t / I       �      constant, and since   ω   (2)       �      0 at  t       �      0, this means that for time 
thereafter, 
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 Differentiating   (c) 3  with respect to  t  and solving for  �ω( )1     yields  � ��ω ω ω( ) ( ) /1 3� o   . Substituting this result 
into (c) 1  we get 
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 The   well-known solution of this differential equation is 
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  where  a  and  b  are constants of integration. According to the problem statement,   ω   (3)       �      0 when  t       �      0. This 
initial condition requires  a       �       �  M Gx   /  ω   0  I , so that   
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 From   this we obtain  �ω ω ω ω( )3
0 0 0� �b t M I tG xcos sin( )    , which, when substituted into (c) 3  yields 
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 Since     ω   (1)       �      0 at  t       �      0, this implies   b MGz� ω0I   . In summary, therefore, the angular velocities of wheels 1, 
2 and 3 relative to the satellite are 
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 The   angular momenta of the reaction wheels are 
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 According   to (b), the components of the fl ywheels ’  angular velocities are 
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 Furthermore  ,  I I I Ix y z
(1) (2) (3)� � �    , so that (h) becomes 
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  (i)      

 Substituting   (g) into these expressions yields the angular momenta of the wheels as a function of time, 
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  (j)      

 The   torque on the reaction wheels is found by applying Euler’s equation to each one. Thus, for wheel 1 
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 Since   the axis of wheel 1 is in the  x  direction, the torque is the  x  component of this moment (the  z  compo-
nent being a gyroscopic bending moment), 
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 For   wheel 2, 
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 Thus  , 
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 Finally  , for wheel 3 
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 For   this wheel, the torque direction is the  z  axis, so 

  
C M t M tG Gx z

( )3
0 0� �sin cosω ω

           

 The   external torques on the spacecraft of the previous example may be due to thruster misalignment or 
they may arise from environmental effects such as gravity gradients, solar radiation pressure or interaction 
with the earth’s magnetic fi eld. The example assumed that these torques were constant, which is the sim-
plest means of introducing their effects, but they actually vary with time. In any case, their magnitudes are 
extremely small, typically less than 10  � 3 N  ·  m for ordinary-sized, unmanned spacecraft. Equation (g 2 ) of the 
example reveals that a small torque normal to the satellite’s orbital plane will cause the angular velocity of 
momentum wheel 2 to slowly but constantly increase. Over a long enough period of time, the angular veloc-
ity of the gyro might approach its design limits, whereupon it is said to be saturated. At that point, attitude 
jets on the satellite would have to be fi red to produce a torque around the  y  axis while the wheel is  “ caged, ”  
i.e., its angular velocity reduced to zero or to its nonzero bias value. Finally, note that if all of the external 
torques were zero, none of the momentum wheels in the example would be required. The constant angular 
velocity  ω� ( / )2π T ĵ     of the vehicle, once initiated, would continue unabated. 

 So   far we have dealt with momentum wheels, which are characterized by the fact that their axes are rigidly 
aligned with the principal axes of the spacecraft, as shown in  Figure 10.24   . The speed of the electrically-driven 
wheels is varied to produce the required rotation rates of the vehicle in response to external torques. Depending 
on the spacecraft, the nominal speed of a momentum wheel may be from zero to several thousand rpm. 

 Momentum   wheels that are free to pivot on one or more gimbals are called   control moment gyros  . 
 Figure 10.25    illustrates a double-gimbaled control moment gyro. These gyros spin at several thousand rpm. 
The motor-driven speed of the fl ywheel is constant, and moments are exerted on the vehicle when torquers 
(electric motors) tilt the wheel about a gimbal axis. The torque direction is normal to the gimbal axis. 

 Set    n       �      1 in Equation 10.140 and replace  i  with  w  (representing  “ wheel ” ) to obtain 
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 The   relative angular velocity of the rotor is 

  
ω ω ω ωrel

( )w
p n s� � �   (10.145)     

  where   ω    p  ,   ω    n   and   ω    s   are the precession, nutation and spin rates of the gyro relative to the vehicle. Substituting 
Equation 10.145 into 10.144 yields   
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 FIGURE 10.24  
       Momentum wheel aligned with a principal body axis.    
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 FIGURE 10.25  
       Two-gimbal control moment gyro.    



 The   spin rate of the gyro is three or more orders of magnitude greater than any of the other rates. That 
is, under conditions in which a control moment gyro is designed to operate, 

  
ω ω ω ω ω ωs s p s n    

      

 Therefore  , 
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 Since   the spin axis of a gyro is an axis of symmetry, about which the moment of inertia is  C  (   w   ) , this can be written 
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  where   
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  and  ̂ns     is the unit vector along the spin axis, as illustrated in  Figure 10.26   . Relative to the body frame axes 
of the spacecraft, the components of  n̂s    appear as follows,   
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 Thus  , Equation 10.148 becomes 
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 It   follows that 
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 Expanding   the right hand side, collecting terms and setting the result equal to the net external moment, we fi nd 
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 Additional   gyros are accounted for by adding the spin inertia, spin rate and inclination angles for each 
one into Equations 1.37.

        Example 10.13      
 A   satellite is in torque-free motion ( M 0Gnet

�    ). A nongimbaled gyro (momentum wheel) is aligned with 
the vehicle’s  x  axis and is spinning at the rate  ωs0

   . The spacecraft angular velocity is  ω ω� x î    . If the spin 
of the gyro is increased at the rate  �ωs   , fi nd the angular acceleration of the spacecraft. 

    Solution 
 Using    Figure 10.26  as a guide, we set   φ        �      0 and   φ        �      90 °  to align the spin axis with the  x  axis. Since there 
is no gimbaling,  � �θ φ� � 0   . Equations 10.152 then yield 
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 Clearly  , the angular velocities around the  y  and  z  axes remain zero, whereas 
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A
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 Thus  , a change in the vehicle’s roll rate around the  x  axis can be initiated by accelerating the momentum 
wheel in the opposite direction. See Example 10.9.      



        Example 10.14      
 A   satellite is in torque-free motion. A control moment gyro, spinning at the constant rate   ω  s  , is gimbaled 
about the spacecraft  y  and  z  axes, with   φ        �      0 and   φ        �      90 °  (cf.  Figure 10.26 ). The spacecraft angular velocity

is  ω� ωz k̂   . If the spin axis of the gyro, initially along the  x  direction, is rotated around the  y  axis at the rate  
�θ   , what is the resulting angular acceleration of the spacecraft? 

    Solution 
 Substituting    ω ω ω φx y s� � � �� 0     and   θ        �      90 °  into Equations 10.152 gives 
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 Thus  , the components of vehicle angular acceleration are 
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 We   see that pitching the gyro at the rate  �θ     around the vehicle  y  axis alters only   ω  z  , leaving   ω  x   unchanged. 
However, to keep   ω  y        �      0 clearly requires  �φ ω� � z   . In other words, for the control moment gyro to control 
the angular velocity about only one vehicle axis, it must therefore be able to precess around that axis (the  z  
axis in this case). That is why the control moment gyro must have two gimbals.        

    10.10       GRAVITY GRADIENT STABILIZATION 
 Consider   a satellite in circular orbit, as shown in  Figure 10.27   . Let  r  be the position vector of a mass ele-
ment  dm  relative to the center of attraction,  r  0  the position vector of the center of mass  G , and   ρ   the position 
of  dm  relative to  G . The force of gravity on  dm  is 
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  where  M  is the mass of the central body, and   μ        �       GM . The net moment of the gravitational force around  G  is   
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 Since    r       �       R       �        ρ  , and 
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  we have   
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 Thus  , 
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 Substituting   this back into Equation 10.154 yields 
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ĵ � � �

⎞⎞

⎠

⎟⎟⎟⎟⎟⎟
k̂

   
  

  or   

  

M R
y

r
dm R

z

r
dm

M R
z

r
dm R

x

r
dm

G z

m

y

m

G x

m

z

m

x

y

net

net

= − ∫ ∫

∫ ∫

μ μ

μ μ

3 3

3 3

�

� � �

MM R
x

r
dm R

y

r
dmG y

m

x

m
znet

� � �μ μ
3 3∫ ∫

  (10.156)      

 Now  , since  ρ �� R    , it follows from Equation 7.20 that 
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 FIGURE 10.27  
       Rigid satellite in a circular orbit.  xyz  is the principal body frame.    



  or   
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 Therefore  , 
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 But   the center of mass lies at the origin of the  xyz  axes, which are principal moment of inertia directions. 
That means 

  

x dm xy dm xz dm
m m m

� � �∫ ∫ ∫ 0

     

  so that   
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 In   a similar fashion, we can show that 
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  and   
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 Substituting   these last three expressions into Equations 10.156 leads to 
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 From   Section 9.5 we recall that the moments of inertia are defi ned as 
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  from which we may write   
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 It   follows that Equations 10.160 reduce to 
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 These   are the components, in the spacecraft body frame, of the gravitational torque produced by the 
variation of the earth’s gravitational fi eld over the volume of the spacecraft. To get an idea of these torque 
magnitudes, note fi rst of all that  R x  / R ,  R y  / R  and  R z  / R  are the direction cosines of the position vector of 
the center of mass, so that their magnitudes do not exceed 1. For a satellite in a low earth orbit of radius 
6700       km, 3  μ  / R  3  � 4      �      10  � 6        s  � 2 , which is therefore the maximum order of magnitude of the coeffi cients 
of the inertia terms in Equation 10.162. The moments of inertia of the space shuttle are on the order of 
10 6        kg  ·  m 2 , so the gravitational torques on that large vehicle are on the order of 1       N  ·  m. 

 Substituting   Equations 10.162 into Euler’s equations of motion (Equations 9.72b), we get 
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 FIGURE 10.28  
       Orbital reference frame  x  
  y  
  z  
  attached to the center of mass of the satellite.    



 Now   consider the local vertical/local horizontal orbital reference frame shown in  Figure 10.28   . It is actu-
ally the Clohessy-Wiltshire frame of Chapter 7, with the axes relabeled. The  z 
   axis points radially outward 
from the center of the earth, the  x  
  axis is in the direction of the local horizon, and the  y 
   axis completes 
the right-handed triad by pointing in the direction of the orbit normal. This frame rotates around the  y 
   axis 
with an angular velocity equal to the mean motion  n  of the circular orbit. Suppose we align the satellite’s 
principal body frame axes  xyz  with  x  
  y  
  z  
 , respectively. When the body  x  axis is aligned with the  x  
  direc-
tion, it is called is the roll axis. The body  y  axis, when aligned with the  y  
  direction, is the pitch axis. The 
body  z  axis, pointing outward from the earth in the  z  
  direction, is the yaw axis. These directions are illus-
trated in  Figure 10.29   . With the spacecraft aligned in this way, the body frame components of the inertial 
angular velocity   ω   are   ω  x        �        ω  z        �      0 and   ω  y        �       n . The components of the position vector  R  are  R x        �       R y        �      0 
and  R z        �       R . Substituting this data into Equations 10.163 yields 

  
� � �ω ω ωx y z� � � 0

      

 That   is, the spacecraft will orbit the planet with its principal axes remaining aligned with the orbital frame. 
If this motion is stable under the infl uence of gravity alone, without the use of thrusters, gyros or other 
devices, then the spacecraft is gravity-gradient stabilized. We need to assess the stability of this motion so 
we can determine how to orient a spacecraft to take advantage of this type of passive attitude stabilization. 

 Let   the body frame  xyz  be slightly misaligned with the orbital reference frame, so that the yaw, pitch 
and roll angles between the  xyz  axes and the  x  
  y  
  z  
  axes, respectively, are very small, as suggested in  Figure 
10.29 . The absolute angular velocity   ω   of the spacecraft is the angular velocity   ω   rel  relative to the orbital 
reference frame plus the inertial angular velocity   Ω   of the  x  
  y  
  z  
  frame, 

  ω ω Ω� �rel       

 The   components of   ω   rel  in the body frame are found using the yaw, pitch and roll relations, Equations 
9.129. In so doing, it must be kept in mind that all angles and rates are assumed to be so small that their 
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squares and products may be neglected. Recalling that sin   α        �        α   and cos   α        �      1 when   α       �      �  1, we therefore 
obtain 
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The   orbital frame’s angular velocity is the mean motion  n  of the circular orbit, so that 

  Ω � 
nĵ       

 To   obtain the orbital frame’s angular velocity components along the body frame, we must use the transfor-
mation rule 

  { } [ ] { }Ω Ωx x x x� 
 
Q   (10.167)     

  where [ Q ]  x    
    x   is given by Equation 9.119. (Keep in mind that  x  
  y  
  z  
  are playing the role of  XYZ  in Figure 
9.26.) Using the small angle approximations in Equation 9.119 leads to   
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 With   this, Equation 10.167 becomes 
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 Now   we can calculate the components of the satellite’s inertial angular velocity along the body frame 
axes, 
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 Differentiating   these with respect to time, remembering that  n  is constant for a circular orbit, gives the com-
ponents of inertial angular acceleration in the body frame, 
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 The   position vector of the satellite’s center of mass lies along the  z  
  axis of the orbital frame, 

  R k� 
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 To   obtain the components of  R  in the body frame we once again use the transformation matrix [ Q ]  x    
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  (10.170)      

 Substituting   Equations 10.168, 10.169 and 10.170, together with  n R� μ/ 3    , into Equations 10.163, and 
setting 
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  yields   
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 Expanding   terms and retaining terms at most linear in all angular quantities and their rates yields 

  
I I I n I I I nyaw yaw pitch roll yaw pitch roll yaw roll( ) ( )�� �φ φ ψ� � � � �2 �� 0   (10.172)      
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I I I npitch pitch roll yaw pitch( )��θ θ� � �3 02

  (10.174)      

 These   are the differential equations governing the infl uence of gravity gradient torques on the small angles 
and rates of misalignment of the body frame with the orbital frame. 

 Equation   10.174, governing the pitching motion around the  y  
  axis, is not coupled to the other two equa-
tions. We make the classical assumption that the solution is of the form 

  
θpitch

ptPe�   (10.175)     
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  where  P  and  p  are constants.  P  is the amplitude of the small disturbance that initiates the pitching motion. 
Substituting Equation 10.175 into Equation 10.174 yields [ I  pitch   p  2       �      3( I  roll       �       I  yaw ) n  2 ] Pe pt        �      0 for all  t , 
which implies that the bracketed term must vanish, and that means  p  must have either of the two values   
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 Thus  , 
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  yields the stable, small-amplitude, steady-state harmonic oscillator solution only if  p  1  and  p  2  are imaginary, 
that is, if   
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 The   stable pitch oscillation frequency is 
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   (If  I  yaw              I  roll , then  p  1  and  p  2  are both real, one positive, the other negative. The positive root causes 
  θ   pitch     →     � , which is the undesirable, unstable case.) 

 Let   us now turn our attention to Equations 10.172 and 10.173, which govern yaw and roll motion under 
gravity gradient torque. Again, we assume the solution is exponential in form, 
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 Substituting   these into Equations 10.172 and 10.173 yields 
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 In   the interest of simplifi cation, we can factor  I  yaw  out of the fi rst equation and  I  roll  out of the second one to get 
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 Let   
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 It   is easy to show from Equations 10.161, 10.171 and 10.180 that 
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  which means   
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 Using   the defi nitions in Equation 10.180, we can write Equations 10.179 more compactly as 
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  or, using matrix notation,   
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 In   order to avoid the trivial solution ( Y       �       R     �    0), the determinant of the coeffi cient matrix must be zero. 
Expanding the determinant and collecting terms yields the characteristic equation for  q , 

  q bn q cn4 2 2 4 0� � �   (10.182)     

  where   

  b k k k c k kR Y R Y R� � � �3 1 4   (10.183)      

 This   quartic equation has four roots which, when substituted back into Equation 10.178, yield 
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 In   order for these solutions to remain fi nite in time, the roots  q  1 ,  …  , q  4  must be negative (solution decays to 
zero) or imaginary (steady oscillation at initial small amplitude). 

 To   reduce Equation 10.182 to a quadratic equation, let us introduce a new variable   λ   and write, 

  q n� � λ   (10.184)      

 Then   Equation 10.182 becomes 

  λ λ2 0� � �b c   (10.185)     

10.10 Gravity gradient stabilization  639



640  CHAPTER 10 Satellite attitude dynamics

  the familiar solution of which is   
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 To   guarantee that  q  in Equation 10.184 does not take a positive value, we must require that   λ   be real and 
negative (so  q  will be imaginary). For   λ   to be real requires that  b c 2    , or 

  
3 1 4k k k k kR Y R Y R� �    (10.187)      

 For     λ   to be negative requires  b  2              b  2             � 4c, which will be true if  c             0; that is, 

  k kY R  0   (10.188)      

 Equations   10.187 and 10.188 are the conditions required for yaw and roll stability under gravity gradi-
ent torques, to which we must add Equation 10.176 for pitch stability. Observe that we can solve Equations 
10.180 to obtain 
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 By   means of these relationships, the pitch stability criterion,  I  roll / I  yaw             1, becomes 
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 In   view of the fact that  kR � 1   , this means 

  k kY R�   (10.189)      

    Figure 10.30    shows those regions  I  and  II  on the  k Y        �       k R   plane in which all three stability criteria 
(Equations 10.187, 10.188 and 10.189) are simultaneously satisfi ed, along with the requirement that the 
three moments of inertia  I  pitch ,  I  roll  and  I  yaw  are positive. 

kR

kY

1

1
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–1 0

Stable regions:

I : Iroll > Iyaw > Ipitch

II : Ipitch > Iroll > Iyaw

 FIGURE 10.30  
       Regions in which the values of  k Y   and  k R   yield neutral stability in yaw, pitch and roll of a gravity gradient satellite.    



 In   the small sliver of region  I ,  k Y        �      0 and  k R        �      0; therefore, according to Equations 10.180,  I  yaw              I  pitch  
and  I  roll              I  pitch , which together with Equation 10.176, yield  I  roll              I  yaw              I  pitch . Remember that the gravity 
gradient spacecraft is slowly  “ spinning ”  about the minor pitch axis (normal to the orbit plane) at an angular 
velocity equal to the mean motion of the orbit. So this criterion makes the spacecraft a  “ minor axis spin-
ner, ”  the roll axis (fl ight direction) being the major axis of inertia. With energy dissipation, we know this 
orientation is not stable in the long run. On the other hand, in region  II ,  k Y   and  k R   are both positive, so that 
Equations 10.180 imply  I  pitch              I  yaw  and  I  pitch              I  roll . Thus, along with the pitch criterion ( I  roll              I  yaw ), we 
have  I  pitch              I  roll              I  yaw . In this, the preferred, confi guration, the gravity gradient spacecraft is a  “ major axis 
spinner ”  about the pitch axis, and the minor yaw axis is the minor axis of inertia. It turns out that all of the 
known gravity-gradient stabilized moons of the solar system, like the earth’s, whose  “ captured ”  rate of rota-
tion equals the orbital period, are major axis spinners. 

 In   Equation 10.177 we presented the frequency of the gravity gradient pitch oscillation. For complete-
ness we should also point out that the coupled yaw and roll motions have two oscillation frequencies, which 
are obtained from Equations 10.184 and 10.186, 
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 Recall   that  b  and  c  are found in Equation 10.183. 
 We   have assumed throughout this discussion that the orbit of the gravity gradient satellite is circular. 

Kaplan (1976) shows that the effect of a small eccentricity turns up only in the pitching motion. In particu-
lar, the natural oscillation expressed by Equation 10.176 is augmented by a forced oscillation term, 
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  (10.191)     

  where  e  is the (small) eccentricity of the orbit. From this we see that there is a pitch resonance. When 
( I  roll       �       I  yaw )/ I  pitch  approaches 1/3, the amplitude of the last term grows without bound.

          Example 10.15      
 The   uniform, monolithic 10,000       kg slab, having the dimensions shown in  Figure 10.31   , is in a circular LEO. 
Determine the orientation of the satellite in its orbit for gravity gradient stabilization, and compute the peri-
ods of the pitch and yaw/roll oscillations in terms of the orbital period  T . 

 According   to Figure 9.9c, the principal moments of inertia around the xyz axes through the center of 
mass are 
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    Solution 
 Let   us fi rst determine whether we can stabilize this object as a minor axis spinner. In that case, 
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 Since    I  roll              I  yaw , the satellite would be stable in pitch. To check yaw/roll stability, we fi rst compute 
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 We   see that  k Y k R              0, which is one of the two requirements. The other one is found in Equation 10.187, but 
in this case 
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  so that condition is not met. Hence, the object cannot be gravity gradient stabilized as a minor axis spinner.   
 As   a major axis spinner, we must have 
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 Then    I  roll              I  yaw , so the pitch stability condition is satisfi ed. Furthermore, since 
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  we have   
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 FIGURE 10.31  
       Parallelepiped satellite.    



  which means the two criteria for stability in the yaw and roll modes are met. The satellite should therefore 
be orbited as shown in  Figure 10.32   , with its minor axis aligned with the radial from the earth’s center, the 
plane  abcd  lying in the orbital plane, and the body  x  axis aligned with the local horizon.   

 According   to Equation 10.177, the frequency of the pitch oscillation is 
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  where  n  is the mean motion. Hence, the period of this oscillation, in terms of that of the orbit, is   
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 For   the yaw/roll frequencies, we use Equation 10.190, 
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 Likewise  , 
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 From   these we obtain 

  
T T T Tyaw/roll yaw/roll1 2
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 Finally  , observe that 
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 so   that we are far from the pitch resonance condition that exists if the orbit has a small eccentricity.        

    PROBLEMS 

    Section 10.2 

        10.1     The axisymmetric satellite has axial and transverse mass moments of inertia about axes through the 
mass center  G  of  C       �      1200       kg-m 2  and  A       �      2600       kg-m 2 , respectively. If it is spinning at   ω   s       �      6       rad/s 
when it is launched, determine its angular momentum. Precession occurs about the inertial  Z  axis.    
    { Ans.:  HG = 13 450 2,  kg m /sec�     }                     

z

ωs

Z6°

G

                        

    10.2     A spacecraft is symmetrical about its body-fi xed  z -axis. Its principal mass moments of inertia are 
 A       �       B       �      300       kg-m 2  and  C       �      500       kg-m 2 . The  z  axis sweeps out a cone with a total vertex angle of 
10 °  as it precesses around the angular momentum vector. If the spin velocity is 6 rad/s, compute the 
period of precession.    
    { Ans.: 0.417       s }                      



    10.3     A thin ring tossed into the air with a spin velocity of   ω   s  has a very small nutation angle   θ   (in radians). 
What is the precession rate   ω  p  ?    
    { Ans.:   ω  p        �      2  ω  s   (1      �        θ   2 /2), retrograde }                     
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    10.4     For an axisymmetric rigid satellite,    
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  It   is spinning about the body  z -axis in torque-free motion, precessing around the angular momentum 
vector  H  at the rate of 2 rad/sec. Calculate the magnitude of  H . 
    { Ans.: 2000       kg  ·  m 2 /s }  

    10.5     At a given instant the box-shaped 500       kg satellite (in torque-free motion) has an absolute angular 
velocity  ω � � �0 01 0 03 0 02. ˆ . ˆ . ˆi j k     (rad/s). Its moments of inertia about the principal body axes 
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 xyz  are  A       �      385.4       kg  ·  m 2 ,  B       �      416.7       kg  ·  m 2  and  C       �      52.08       kg  ·  m 2 , respectively. Calculate the mag-
nitude of its absolute angular acceleration.    
    { Ans. 6.167      �      10  � 4  rad/s 2  }                     
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    10.6     An 8       kg thin ring in torque-free motion is spinning with an angular velocity of 30 rad/s and a constant 
nutation angle of 15 ° . Calculate the rotational kinetic energy if  A       �       B       �      0.36       kg-m 2 ,  C       �      0.72       kg-m 2 .    
    { Ans.: 370.5       J }                     

    10.7     The rectangular block has an angular velocity  ω � � �1 5 0 8 0 60 0 0. ω ω ωˆ . ˆ . ˆi j k   , where   ω   0  has units of 
rad/s.    
    (a)     Determine the angular velocity   ω   of the block if it spins around the body  z  axis with the same 

rotational kinetic energy.  
    (b)     Determine the angular velocity   ω   of the block if it spins around the body  z  axis with the same 

angular momentum.    
    { Ans.: (a)   ω        �      1.31  ω   0  (b)   ω        �      1.04  ω   0  }                      



    10.8     The solid right-circular cylinder of mass 500       kg is set into torque-free motion with its symmetry axis 
initially aligned with the fi xed spatial line  a-a . Due to an injection error, the vehicle’s angular velocity 
vector   ω   is misaligned 5 °  (the wobble angle) from the symmetry axis. Calculate the maximum angle 
  φ   between fi xed line  a-a  and the axis of the cylinder.    
    { Ans.: 30.96 °  }                       
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    Section 10.3 

        10.9     For a rigid axisymmetric satellite, the mass moment of inertia about its long axis is 1000       kg  ·  m 2 , and 
the moment of inertia about transverse axes through the center of mass is 5000       kg  ·  m 2 . It is spinning 
about the minor principal body axis in torque-free motion at 6 rad/s with the angular velocity lined up 
with the angular momentum vector  H . Over time, the energy degrades due to internal effects and the 
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satellite is eventually spinning about a major principal body axis with the angular velocity lined up 
with the angular momentum vector  H . Calculate the change in rotational kinetic energy between the 
two states.    
    { Ans.:  � 14.4       kJ }  

    10.10     Let the object in Example 9.11 be a highly dissipative torque-free satellite, whose angular velocity 
at the instant shown is  ω � 10 î rad/s   . Calculate the decrease in kinetic energy after it becomes, as 
eventually it must, a major axis spinner.    
    { Ans.:  – 0.487       J }                      
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    10.11     The dissipative torque-free cylindrical satellite has the initial spin state shown.  A       �       B       �      320       kg  ·  m 2  
and  C       �      560       kg  ·  m 2 . Calculate the magnitude of the angular velocity when it reaches its stable spin 
state.    
    { Ans.:  � 1.419       rad/s }                       



    Section 10.4 

        10.12     For a nonprecessing, dual-spin satellite,  C r        �      1000       kg  ·  m 2  and  C p        �      500       kg  ·  m 2 . The angular veloc-
ity of the rotor is  3k̂    rad/s and the angular velocity of the platform relative to the rotor is  1k̂     rad/s. If 
the relative angular velocity of the platform is reduced to  0 5. k̂     rad/s, what is the new angular veloc-
ity of the rotor?    
    { Ans.: 3.17       rad/s }                       
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    Section 10.6 

        10.13     For a rigid axisymmetric satellite, the mass moment of inertia about its long axis is 1000       kg  ·  m 2 , and 
the moment of inertia about transverse axes through the center of mass is 5000       kg  ·  m 2 . It is initially 
spinning about the minor principal body axis in torque-free motion at   ω   s       �      0.1       rad/s, with the angular 
velocity lined up with the angular momentum vector  H  0 . A pair of thrusters exert an external impul-
sive torque on the satellite, causing an instantaneous change   Δ   H  of angular momentum in the direc-
tion normal to  H  0 , so that the new angular momentum is  H  1 , at an angle of 20 °  to  H  0 , as shown in the 
fi gure. How long does it take the satellite to precess ( “ cone ” ) through an angle of 180 °  around  H  1 ?    
    { Ans.: 147.6       s }                       
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    Section 10.7 

        10.14     A satellite is spinning at 0.01       rev/s. The moment of inertia of the satellite about the spin axis is 
2000       kg-m 2 . Paired thrusters are located at a distance of 1.5       m from the spin axis. They deliver their 
thrust in pulses, each thruster producing an impulse of 15       N-s per pulse. At what rate will the satel-
lite be spinning after 30 pulses?    
    { Ans.: 0.0637       rev/s }  

    10.15     A satellite has moments of inertia  A       �      2000       kg  ·  m 2 ,  B       �      4000       kg  ·  m 2 , and  C       �      6000       kg  ·  m 2  about 
its principal body axes  xyz . Its angular velocity is  ω � � �0 1 0 3 0 5. ˆ . ˆ . ˆi j k     (rad/s). If thrusters cause 
the angular momentum vector to undergo the change  ΔH i j kG � � � �50 100 300 2ˆ ˆ ˆ  (kg m /s)   , what 
is the magnitude of the new angular velocity?    
    { Ans.: 1.045       rad/s }  

    10.16     The body-fi xed  xyz  axes are principal axes of inertia passing through the center of mass of the 300       kg 
cylindrical satellite, which is spinning at 1 revolution per second about the  z  axis. What impulsive 
torque about the  y  axis must the thrusters impart to cause the satellite to precess at 5 revolutions per 
second?    
    { Ans.: 6740       N-m-s }                       
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    Section 10.8 

        10.17     A satellite is to be despun by means of a tangential-release yo-yo mechanism consisting of two 
masses, 3       kg each, wound around the mid plane of the satellite. The satellite is spinning around its 
axis of symmetry with an angular velocity   ω  s        �      5       rad/sec. The radius of the cylindrical satellite is 
1.5       m and the moment of inertia about the spin axis is  C       �      300       kg  ·  m 2 .    
    (a)     Find the cord length and the deployment time to reduce the spin rate to 1 rad/s.  
    (b)     Find the cord length and time to reduce the spin rate to zero.    
    { Ans.: (a)  l       �      5.902       m, t      �      0.787       s; (b)  l       �      7.228       m,  t       �      0.964       s. }  

    10.18     A cylindrical satellite of radius 1       m is initially spinning about the axis of symmetry at the rate of 
two revolutions per second with a nutation angle of 15 ° . The principal moments of inertia are, 



 A       �       B       �      30       kg  ·  m 2  C       �      60       kg  ·  m 2 . An energy dissipation device is built into the satellite, so that it 
eventually ends up in pure spin around the  z  axis.    
    (a)     Calculate the fi nal spin rate about the  z  axis.  
    (b)     Calculate the loss of kinetic energy.  
    (c)     A tangential release yo-yo despin device is also included in the satellite. If the two yo-yo masses 

are each 7       kg, what cord length is required to completely despin the satellite? Is it wrapped in 
the proper direction in the fi gure?    

    { Ans.: (a) 2.071       rad/s; (b) 8.62       J; (c) 2.3       m }                       
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    Section 10.9 

        10.19     A communications satellite is in a GEO (geostationary equatorial orbit) with a period of 24 hours. 
The spin rate   ω   s  about its axis of symmetry is 1 revolution per minute, and the moment of inertia 
about the spin axis is 550       kg  ·  m 2 . The moment of inertia about transverse axes through the mass cen-
ter  G  is 225       kg  ·  m 2 . If the spin axis is initially pointed towards the earth, calculate the magnitude and 
direction of the applied torque  M   G   required to keep the spin axis pointed always towards the earth.    
    { Ans.: 0.00420       N  ·  m, about the negative  x -axis }                      
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    10.20     The moments of inertia of a satellite about its principal body axes  xyz  are  A       �      1000       kg  ·  m 2 , 
 B       �      600       kg  ·  m 2 , and  C       �      500       kg  ·  m 2 , respectively. The moments of inertia of a momentum wheel at 
the center of mass of the satellite and aligned with the  x  axis are  I x        �      20       kg and  I y        �       I z        �      6       kg  ·  m 2 . 
The absolute angular velocity of the satellite with the momentum wheel locked is  ω0 0 1 0 05� �. ˆ . ˆi j
   (rad/s). Calculate the angular velocity   ω  f   of the momentum wheel (relative to the satellite) required to 
reduce the  x -component of the absolute angular velocity of the satellite to 0.003       rad/s.    
    { Ans.: 4.95       rad/s }                      

x

y

z

G

                        

x

y

s

Earth

R

ω

                        

    10.21     A solid circular cylindrical satellite of radius 1       m, length 4       m and mass 250       kg is in a circular earth 
orbit with period 90 minutes. The cylinder is spinning at 0.001 radians per second (no precession) 
around its axis, which is aligned with the  y  axis of the Clohessy-Wiltshire frame. Calculate the mag-
nitude of the external torque required to maintain this attitude.    
    { Ans.:  �0 00014544.  (N-m)î     }                       



    Section 10.10 

        10.22     A satellite has principal moments of inertia  A       �      300       kg  ·  m 2 ,  B       �      400       kg  · m 2 ,  C       �      500       kg  ·  m 2 . Determine 
the permissible orientations in a circular orbit for gravity gradient stabilization. Specify which axes may 
be aligned in the pitch, roll and yaw directions. (Recall that, relative to a Clohessy-Wiltshire frame at the 
center of mass of the satellite, yaw is about the  x -axis (outward radial from earth’s center); roll is about 
the  y -axis (velocity vector); pitch is about the  z -axis (normal to orbital plane).     
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    11.1       INTRODUCTION 
 In   previous chapters we have made frequent reference to delta-v maneuvers of spacecraft. These require a 
propulsion system of some sort whose job it is to throw vehicle mass (in the form of propellants) overboard. 
Newton’s balance of momentum principle dictates that when mass is ejected from a system in one direction, 
the mass left behind must acquire a velocity in the opposite direction. The familiar and oft-quoted example 
is the rapid release of air from an infl ated toy balloon. Another is that of a diver leaping off a small boat at 
rest in the water, causing the boat to acquire a motion of its own. The unfortunate astronaut who becomes 
separated from his ship in the vacuum of space cannot with any amount of fl ailing of arms and legs  “ swim ”  
back to safety. If he has tools or other expendable objects of equipment, accurately throwing them in the 
direction opposite to his spacecraft may do the trick. Spewing compressed gas from a tank attached to his 
back through to a nozzle pointed away from the spacecraft would be a better solution. 

 The   purpose of a rocket motor is to use the chemical energy of solid or liquid propellants to steadily and 
rapidly produce a large quantity of hot, high-pressure gas, which is then expanded and accelerated through 
a nozzle. This large mass of combustion products fl owing out of the nozzle at supersonic speed possesses 
a lot of momentum and, leaving the vehicle behind, causes the vehicle itself to acquire a momentum in the 
opposite direction. This is represented as the action of the force we know as thrust. The design and analysis 
of rocket propulsion systems is well beyond our scope. 

 This   chapter contains a necessarily brief introduction to some of the fundamentals of rocket vehicle 
dynamics. The equations of motion of a launch vehicle in a gravity turn trajectory are presented fi rst. This is 
followed by a simple development of the thrust equation, which brings in the concept of specifi c impulse. The 
thrust equation and the equations of motion are then combined to produce the rocket equation, which relates 
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delta-v to propellant expenditure and specifi c impulse. The sounding rocket provides an important but rela-
tively simple application of the concepts introduced to this point. After a computer simulation of a gravity-
turn trajectory, the chapter concludes with an elementary consideration of multistage launch vehicles. 

 Those   seeking a more detailed introduction to the subject of rockets and rocket performance will fi nd 
the texts by Wiesel (1997) and Hale (1994), as well as references cited therein, useful.  

    11.2       EQUATIONS OF MOTION 
    Figure 11.1    illustrates the trajectory of a satellite launch vehicle and the forces acting on it during the pow-
ered ascent. Rockets at the base of the booster produce the thrust  T , which acts along the vehicle’s axis in 
the direction of the velocity vector  v . The aerodynamic drag force  D  is directed opposite to the velocity, as 
shown. Its magnitude is given by 

  D qACD�   (11.1)     

  where  q       �      1/2  ρ v  2  is the   dynamic pressure  , in which   ρ   is the density of the atmosphere and  v  is the speed, 
i.e., the magnitude of  v .  A  is the   frontal area   of the vehicle and  C D   is the   drag coefficient . C D   depends on 
the speed and the external geometry of the rocket. The force of gravity on the booster is  m  g , where  m  is its 
mass and  g  is the local gravitational acceleration, pointing towards the center of the earth. As discussed in 
Section 1.3, at any point of the trajectory, the velocity  v  defines the direction of the unit tangent  ̂ut    to the 
path. The unit normal  ̂un    is perpendicular to  v  and points towards the center of curvature  C . The distance of 
point  C  from the path is   ρ   (not to be confused with density).   ρ   is the radius of curvature.   

 In    Figure 11.1  the vehicle and its fl ight path are shown relative to the earth. In the interest of simplicity 
we will ignore the earth’s spin and write the equations of motion relative to a nonrotating earth. The small 
acceleration terms required to account for the earth’s rotation can be added for a more refi ned analysis. Let 
us resolve Newton’s second law,  F  net       �       m  a , into components along the path directions  ̂ut     and  ̂un   . Recall 
from Section 1.3 that the acceleration along the path is
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 FIGURE 11.1  
       Launch vehicle boost trajectory.   γ   is the fl ight path angle.    



   and the normal acceleration is  a n        �       v  2 /  ρ   (where   ρ   is the radius of curvature). It was shown in Example 1.8 
(Equation 1.37) that for flight over a flat surface,  v /  ρ        �       �  d γ /dt , in which case the normal acceleration can 
be expressed in terms of the flight path angle as

     
a v

d

dtn � �
γ

      

 To   account for the curvature of the earth, as was done in Section 1.7, one can use polar coordinates with 
origin at the earth’s center to show that a term must be added to this expression, so that it becomes

   
a v

d

dt
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R hn
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2

cos   (11.3)     

  where  R E   is the radius of the earth and  h  (instead of  z  as in previous chapters) is the altitude of the rocket. 
Thus, in the direction of  ̂ut     Newton’s second law requires

     T D mg mat� � �sin γ   (11.4)     

  whereas in the  ̂un    direction

     mg mancos γ �   (11.5)      

 After   substituting Equations 11.2 and 11.3, these latter two expressions may be written
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 To   these we must add the equations for downrange distance  x  and altitude  h ,
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�cos  sinγ γ   (11.8)      

 Recall   that the variation of  g  with altitude is given by Equation 1.36. Numerical methods must be used 
to solve Equations 11.6, 11.7 and 11.8. To do so, one must account for the variation of the thrust, booster 
mass, atmospheric density, the drag coeffi cient, and the acceleration of gravity. Of course, the vehicle mass 
continuously decreases as propellants are consumed to produce the thrust, which we shall discuss in the fol-
lowing section. 

 The   free body diagram in  Figure 11.1  does not include a lifting force, which, if the vehicle were an 
airplane, would act normal to the velocity vector. Launch vehicles are designed to be strong in lengthwise 
compression, like a column. To save weight they are, unlike an airplane, made relatively weak in bending, 
shear and torsion, which are the kinds of loads induced by lifting surfaces. Transverse lifting loads are held 
closely to zero during powered ascent through the atmosphere by maintaining zero angle of attack, that is, 
by keeping the axis of the booster aligned with its velocity vector (the relative wind). Pitching maneuvers 
are done early in the launch, soon after the rocket clears the launch tower, when its speed is still low. At the 
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high speeds acquired within a minute or so after launch, the slightest angle of attack can produce destruc-
tive transverse loads in the vehicle. The space shuttle orbiter has wings so it can act as a glider after reentry 
into the atmosphere. However, the launch confi guration of the orbiter is such that its wings are at the zero-
lift angle of attack throughout the ascent. 

 Satellite   launch vehicles take off vertically and, at injection into orbit, must be fl ying parallel to the 
earth’s surface. During the initial phase of the ascent, the rocket builds up speed on a nearly vertical trajec-
tory taking it above the dense lower layers of the atmosphere. While it transitions the thinner upper atmo-
sphere, the trajectory bends over, trading vertical speed for horizontal speed so the rocket can achieve orbital 
perigee velocity at burnout. The gradual transition from vertical to horizontal fl ight, illustrated in  Figure 11.1  
is caused by the force of gravity, and it is called a   gravity turn trajectory  . 

 At   lift off the rocket is vertical, and the fl ight path angle   γ   is 90 ° . After clearing the tower and gain-
ing speed, vernier thrusters or gimbaling of the main engines produce a small, programmed pitchover, 
establishing an initial fl ight path angle   γ  o  , slightly less than 90 ° . Thereafter,   γ   will continue to decrease 
at a rate dictated by Equation 11.7. (For example, if   γ        �      85 ° ,  v       �      110       m/s (250       mph), and  h       �      2       km, then 
 d γ  / dt       �       � 0.44       deg/s.) As the speed  v  of the vehicle increases, the coeffi cient of cos  γ   in Equation 11.7 
decreases, which means the rate of change of the fl ight path angle becomes increasingly smaller, tending 
towards zero as the booster approaches orbital speed,  v g R hcircular orbit � �( )    . Ideally, the vehicle is fl ying 
horizontally (  γ        �      0) at that point. 

 The   gravity turn trajectory is just one example of a practical trajectory, tailored for satellite boosters. On 
the other hand, sounding rockets fl y straight up from launch through burnout. Rocket-powered guided mis-
siles must execute high-speed pitch and yaw maneuvers as they careen towards moving targets, and require 
a rugged structure to withstand the accompanying side loads.  

    11.3       THE THRUST EQUATION 
 To   discuss rocket performance requires an expression for the thrust  T  in Equation 11.6. It can be obtained by 
a simple one-dimensional momentum analysis.  Figure 11.2(a)    shows a system consisting of a rocket and its 
propellants. The exterior of the rocket is surrounded by the static pressure  p a   of the atmosphere everywhere 
except at the rocket nozzle exit where the pressure is  p e . p e   acts over the nozzle exit area  A e  . The value of  p e   
depends on the design of the nozzle. For simplicity, we assume no other forces act on the system. At time 
 t  the mass of the system is  m  and the absolute velocity in its axial direction is  v . The propellants combine 
chemically in the rocket’s combustion chamber, and during the small time interval   Δ t  a small mass   Δ m  of 
combustion products is forced out of the nozzle, to the left. Because of this expulsion, the velocity of the 
rocket changes by the small amount   Δ v , to the right. The absolute velocity of   Δ m  is  v e  , assumed to be to the 
left. According to Newton’s second law of motion, 

  ( ) (momentum of the system at momentum of the system at t� �Δ tt net external impulset) �      

  or

     [( )( ) ( )] ( )m m v v m v mv p p A te e a e� � � � � � �Δ Δ Δ Δˆ ˆ ˆ ˆi i i i   (11.9)      

 Let    �me    (a positive quantity) be the rate at which exhaust mass fl ows across the nozzle exit plane. The 
mass  m  of the rocket decreases at the rate  dm / dt , and conservation of mass requires the decrease of mass to 
equal the mass fl ow rate out of the nozzle. Thus,

   

dm

dt
me� � �   (11.10)      



 Assuming    �me    is constant, the vehicle mass as a function of time (from  t       �      0) may therefore be written

   m t m m to e( ) � � �   (11.11)     

  where  m o   is the initial mass of the vehicle. Since   Δ m  is the mass which flows out in the time interval   Δ t , 
we have

     Δ Δm m te� �   (11.12)      

 Let   us substitute this expression into Equation 11.9 to obtain

   [( )( ) ( )] ( )m m t v v m t v mv p p A te e e e a e� � � � � � �� �Δ Δ Δ Δˆ ˆ ˆ ˆi i i i       

 Collecting   terms, we get

   m v m t v v m t v p p A te e e e a eΔ Δ Δ Δ Δˆ ( )ˆ ˆ ( ) ˆi i i i� � � � �� �       

 Dividing   through by   Δ t , taking the limit as   Δ t     →    0, and canceling the common unit vector lead to the 
equation

   
m

dv

dt
m c p p Ae a e a e� � �� ( )   (11.13)     

  where  c a   is the speed of the exhaust relative to the rocket,

     c v va e� �   (11.14)      

 Rearranging   terms, Equation 11.13 may be written

   
�m c p p A m

dv

dte a e a e� � �( )   (11.15)      

 The   left-hand side of this equation is the unbalanced force responsible for the acceleration  dv / dt  of the sys-
tem in  Figure 11.2 . This unbalanced force is the thrust  T ,

   T m c p p Ae a e a e� � �� ( )   (11.16)     
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  where  �m ce a    is the jet thrust and ( p e        �       p a  ) A e   is the pressure thrust. We can write Equation 11.16 as
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 The   term in brackets is called the   effective exhaust velocity  c ,
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 In   terms of the effective exhaust velocity, the thrust may be expressed simply as

   T m ce� �   (11.19)      

 The     specifi c impulse   I  sp   is defi ned as the thrust per sea-level weight rate (per second) of propellant con-
sumption. That is,
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  (11.20)     

  where  g  0  is the standard sea level acceleration of gravity. The unit of specific impulse is force  ÷  (force/sec-
ond) or seconds. Together, Equations 11.19 and 11.20 imply that

     
c I gsp o�   (11.21)      

 Obviously  , one can infer the jet velocity directly from the specifi c impulse. Specifi c impulse is an 
important performance parameter for a given rocket engine and propellant combination. However, large 
specifi c impulse equates to large thrust only if the mass fl ow rate is large, which is true of chemical rocket 
engines. The specifi c impulse of chemical rockets typically lies in the range 200 – 300       s for solid fuels and 
250 – 450       s for liquid fuels. Ion propulsion systems have very high specifi c impulse (  10 4        s), but their very 
low mass fl ow rates produce much smaller thrust than chemical rockets.  

    11.4       ROCKET PERFORMANCE 
 From   Equations 11.10 and 11.20 we have 
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  or
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 If   the thrust and specifi c impulse are constant, then the integral of this expression over the burn time   Δ t  is
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  from which we obtain
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  where  m o   and  m f   are the mass of the vehicle at the beginning and end of the burn, respectively. The   mass 
ratio   is defined as the ratio of the initial mass to final mass,
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 Clearly  , the mass ratio is always greater than unity. In terms of the mass ratio, Equation 11.23 may be written
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  T   / mg o   is the   thrust-to-weight ratio  . The thrust-to-weight ratio for a launch vehicle at lift off is typically in 
the range 1.3 to 2. 

 Substituting   Equation 11.22 into Equation 11.6, we get
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/
sin γ

      

 Integrating   with respect to time, from  t o   to  t f  , yields

   

Δ Δ Δv I g
m

m
v vsp o

o

f
D G� � �ln   (11.26)     

  where the drag loss   Δ v D   and the gravity loss   Δ v g   are given by the integrals

     

Δ Δv
D

mt

t

dt v g
t

t

dtD

o

f

G

o

f

� �∫ ∫ sin γ   (11.27)      

 Since   the drag  D , acceleration of gravity  g , and fl ight path angle   γ   are unknown functions of time, these 
integrals cannot be computed. (Equations 11.6 through 11.8, together with 11.3, must be solved numeri-
cally to obtain  v ( t ) and   γ  ( t ); but then   Δ v  would follow from those results.) Equation 11.26 can be used for 
rough estimates where previous data and experience provide a basis for choosing conservative values of 
  Δ v D   and   Δ v G  . Obviously, if drag can be neglected, then   Δ v D        �      0. This would be a good approximation for 
the last stage of a satellite booster, for which it can also be said that   Δ v G        �      0, since   γ   � 0 °  when the satellite 
is injected into orbit. 

   Sounding   rockets   are launched vertically and fl y straight up to their maximum altitude before fall-
ing back to earth, usually by parachute. Their purpose is to measure remote portions of the earth’s atmo-
sphere. ( “ Sound ”  in this context means to measure or investigate.) If for a sounding rocket   γ        �      90 ° , then 
  Δ v G      �     g o  ( t f        �       t  0 ), since  g  is within 90% of  g o   out to 300       km altitude.
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        Example 11.1    
   A   sounding rocket of initial mass  m o   and mass  m f   after all propellant is consumed is launched vertically 
(  γ        �      90 ° ). The propellant mass fl ow rate  �me    is constant.

     (a)     Neglecting drag and the variation of gravity with altitude, calculate the maximum height  h  attained 
by the rocket.  

    (b)     For what fl ow rate is the greatest altitude reached?    

    Solution 
 The   vehicle mass as a function of time, up to burnout, is

   m m m to e� � �   (a)      

 At   burnout,  m       �       m f  , so the burnout time  t bo   is

   
t

m m

mbo
o f

e

�
�

�
  (b)      

 The   drag loss is assumed zero, and the gravity loss is

   

Δv g dt g tG o

t

o

bo

� � �sin( )90
0
∫

      

 Recalling   that  I   sp g o        �       c  and using (a), it follows from Equation 11.26 that, up to burnout, the velocity as a 
function of time is
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  (c)      

 Since    dh / dt       �       v , the altitude as a function of time is
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 The   height at burnout  h bo   is found by substituting (b) into this expression,
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 Likewise  , the burnout velocity is obtained by substituting (b) into (c),
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 After   burnout, the rocket coasts upward with the constant downward acceleration of gravity,
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 Substituting   (b), (e) and (f) into these expressions yields, for  t              t bo  ,
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 The   maximum height  h  max  is reached when  v       �      0,
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 Substituting    t  max  into (g) leads to our result,

   

h
c

g
n
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o

e
max ln
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� �
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12
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�
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  where  n  is the mass ratio ( n             1). Since  n ln n  is greater than  n       �      1, it follows that the second term in this 
expression is positive. Hence,  h  max  can be increased by increasing the mass flow rate  �me   . In fact,

     
the greatest height is achieved when �me → ∞

      

 In   that extreme, all of the propellant is expended at once, like a mortar shell.      

        Example 11.2    
   The   data for a single stage rocket are as follows:

     Launch mass:                       m o        �      68,000       kg  
    Mass ratio:                       n       �      15  
    Specifi c impulse:                       I sp        �      390       s  
    Thrust:                       T       �      933.91       kN    

 It   is launched into a vertical trajectory, like a sounding rocket. Neglecting drag and assuming that the gravi-
tational acceleration is constant at its sea-level value  g o        �      9.81       m/s 2 , calculate

     (a)     The time until burnout.  
    (b)     The burnout altitude.  
    (c)     The burnout velocity.  
    (d)     The maximum altitude reached.    
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    Solution 
        (a)     From Example 11.1(b) the burnout time  t bo   is   
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�
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�
  (a)      

 The   burnout mass  m f   is obtained from Equation 11.24,

   
m
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 The   propellant mass fl ow rate  �me    is given by Equation 11.20,
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I ge
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 Substituting   (b), (c) and  m o        �      68,000       kg into (a) yields the burnout time,

   
tbo �
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, .

.
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    (b)     The burnout altitude is given by Example 11.1(e)   
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 The   exhaust velocity  c  is found in Equation 11.21,

   
c I gsp o� � � �390 9 81 3825 9. . m/s   (e)      

 Substituting   (b), (c) and (e), along with  m o        �      68,000       kg and  g o        �      9.81       m/s 2  into (d), we get
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    (c)     From Example 11.1(f) we fi nd   
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    (d)     To fi nd  h  max , where the speed of the rocket falls to zero, we use Example 11.1(i),   
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 Notice   that the rocket coasts to a height more than seven times the burnout altitude.       

 We   can employ the integration schemes introduced in Section 1.8 to solve Equations 11.6 through 11.8 
numerically. This permits a more accurate accounting of the effects of gravity and drag. It also yields the 
trajectory.

        Example 11.3    
   The   rocket in Example 11.2 has a diameter of 5       m. It is to be launched on a gravity turn trajectory. Pitchover 
begins at an altitude of 130       m with an initial fl ight path angle   γ  o   of 89.85 ° . What are the altitude  h  and speed  v  of 
the rocket at burnout ( t bo        �      260       s)? What are the velocity losses due to drag and gravity (cf. Equations 11.27)? 

    Solution 
 The   MATLAB ®  program  Example_11_03.m  in Appendix D.40 fi nds the speed  v , the fl ight path angle   γ  , the 
altitude  h  and the downrange distance  x  as a function of time. It does so by using the ordinary differential 
equation solver  rkf_45.m  (Appendix D.4) to numerically integrate Equations 11.6 through 11.8, namely
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 The   variable mass  m  is given in terms of the initial mass  m o        �      68,000       kg and the constant mass fl ow rate  �me     
by Equation 11.11,

   m m m to e� � �   (e)      

 The   thrust  T       �      933.913       kN is assumed constant, and  �me     is obtained from  T  and the specifi c impulse 
 I sp        �      390 by means of Equation 11.20,
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I ge
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�   (f)      
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 The   drag force  D  in (a) is given by Equation 11.1,

   
D v ACD�

1

2
2ρ   (g)      

 The   drag coeffi cient is assumed to have the constant value  C D        �      0.5. The frontal area  A       �        π d   2 /4 is found 
from the rocket diameter  d       �      5       m. The atmospheric density profi le is assumed exponential,

   ρ ρ� �
o

h he o/   (h)     

  where   ρ  o        �      1.225       kg/m 3  is the sea level atmospheric density and  h o        �      7.5       km is the   scale height   of the 
atmosphere. (The scale height is the altitude at which the density of the atmosphere is about 37% of its sea 
level value.)   

 Finally  , the acceleration of gravity varies with altitude  h  according to Equation 1.36,
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 The   drag loss and gravity loss are found by numerically integrating Equations 11.27. 
 Between   lift off and pitchover, the fl ight path angle   γ   is held at 90 ° . Pitchover begins at the altitude 

 h p        �      130       m with the fl ight path angle set at   γ  o        �      89.85 ° . 
 For   the input data described above, the output of  Example_11_03.m  is as follows. The solution is very 

sensitive to the values of  h p   and   γ  o  . 

  Initial   fl ight path angle                                                  =                                                   89.85          deg  
  Pitchover   altitude                                                   =                                                   130          m  
  Burn   time                                                   =                                                   260          s  
  Final   speed                                                   =                                                   8.62116          km/s  
  Final   fl ight path angle                                                   =                                                   8.80161          deg  
  Altitude                                                     =                                                   133.211          km  
  Downrange   distance                                                   =                                                   462.318          km  
  Drag   loss                                                   =                                                   0.298199          km/s  
  Gravity   loss                                                   =                                                   1.44096          km/s  

 Thus  , at burnout

   

Altitude km
Speed km/s

�
�

133 2
8 621

.
.

      

 The   speed losses are

   

Due to drag: km/s
Due to gravity: 1.441 km/s

0 2982.

      

    Figure 11.3    shows the gravity-turn trajectory.        



    11.5       RESTRICTED STAGING IN FIELD-FREE SPACE 
 In   fi eld-free space, we neglect drag and gravitational attraction. In that case, Equation 11.26 becomes 

  

Δv I g
m

msp o
o

f

� ln   (11.28)      

 This   is at best a poor approximation for high-thrust rockets, but it will suffi ce to shed some light on the 
rocket staging problem. Observe that we can solve this equation for the mass ratio to obtain
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  (11.29)      

 The   amount of propellant expended to produce the velocity increment   Δ v  is  m o        �       m f  . If we let 
  Δ m       �       m o        �       m f  , then Equation 11.29 can be written as

   

Δ
Δ
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m
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o

v

I gsp o� �
�

1   (11.30)      

 This   relation is used to compute the propellant required to produce a given delta-v. 
 The   gross mass  m o   of a launch vehicle consists of the empty mass  m E  , the propellant mass  m p   and the 

payload mass  m PL  ,

   
m m m mo E p PL� � �   (11.31)      

 The   empty mass comprises the mass of the structure, the engines, fuel tanks, control systems, etc.  m E   is also 
called the structural mass, although it embodies much more than just structure. Dividing Equation 11.31 
through by  m o  , we obtain

   
π π πE p PL� � � 1  (11.32)     
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       Gravity-turn trajectory for the data given in Examples 11.2 and 11.3.    
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  where   π  E        �       m E  / m o  ,   π  p        �       m p  / m o   and   π  PL        �       m PL  / m o   are the structural fraction, propellant fraction and payload 
fraction, respectively. It is convenient to define the   payload ratio    

   

λ �
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  (11.33)     

  and the   structural ratio    
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 The   mass ratio  n  was introduced in Equation 11.24. Assuming all of the propellant is consumed, that 
may now be written

   
n

m m m
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  (11.35)      

     λ  ,   �   and  n  are not independent. From Equation 11.34 we have
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  whereas Equation 11.33 gives
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 Substituting   Equations 11.36 and 11.37 into Equation 11.35 leads to

   
n �

�

�

1 λ
ε λ

  (11.38)      

 Thus  , given any two of the ratios   λ  ,   �   and  n , we obtain the third from Equation 11.38. Using this rela-
tion in Equation 11.28 and setting   Δ v  equal to the burnout speed  v bo  , when the propellants have been used 
up, yields

   
v I g n I gbo sp o sp o� �

�

�
ln ln

1 λ
ε λ

  (11.39)      

 This   equation is plotted in  Figure 11.4    for a range of structural ratios. Clearly, for a given empty mass, the 
greatest possible   Δ v  occurs when the payload is zero. However, what we want to do is maximize the amount 
of payload while keeping the structural weight to a minimum. Of course, the mass of load-bearing structure, 
rocket motors, pumps, piping, etc., cannot be made arbitrarily small. Current materials technology places a 
lower limit on   �   of about 0.1. For this value of the structural ratio and   λ        �      0.05, Equation 11.39 yields

   
v I g Ibo sp o sp� �1 94 0 019. . ( ) km/s

      

 The   specifi c impulse of a typical chemical rocket is about 300       s, which in this case would provide 
  Δ v       �      5.7       km/s. However, the circular orbital velocity at the earth’s surface is 7.905       km/s. Therefore, this 



booster by itself could not orbit the payload. The minimum specifi c impulse required for a single stage to 
orbit would be 416       s. Only today’s most advanced liquid hydrogen/liquid oxygen engines, e.g., the space 
shuttle main engines, have this kind of performance. Practicality and economics would likely dictate going 
the route of a multistage booster. 

    Figure 11.5    shows a series or tandem two-stage rocket confi guration, with one stage sitting on top of the 
other. Each stage has its own engines and propellant tanks. The dividing line between the stages is where 
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they separate during fl ight. The fi rst stage drops off fi rst, the second stage next, etc. The payload of an  N  
stage rocket is actually stage  N       �      1. Indeed, satellites commonly carry their own propulsion systems into 
orbit. The payload of a given stage is everything above it. Therefore, as illustrated in  Figure 11.5 , the initial 
mass  m o   1  of stage 1 is that of the entire vehicle. After stage 1 expels all of its fuel, the mass  m f   1  that remains 
is stage 1’s empty mass  m E   1  plus the mass of stage 2 and the payload. After separation of stage 1, the pro-
cess continues likewise for stage 2, with  m o   2  being its initial mass. 

 Titan   II, the launch vehicle for the Gemini program, had the two-stage, tandem confi guration. So did 
the Saturn 1B, used to launch earth orbital fl ights early in the Apollo program, as well as to send crews to 
Skylab and an Apollo spacecraft to dock with a Russian Soyuz in 1975. 

    Figure 11.6    illustrates the concept of parallel staging. Two or more solid or liquid rockets are attached 
( “ strapped on ” ) to a core vehicle carrying the payload. Whereas in the tandem arrangement, the motors in a 
given stage cannot ignite until separation of the previous stage, all of the rockets ignite at once in the paral-
lel-staged vehicle. The strap-on boosters fall away after they burn out early in the ascent. The space shuttle 
is the most obvious example of parallel staging. Its two solid rocket boosters are mounted on the external 
tank, which fuels the three  “ main ”  engines built into the orbiter. The solid rocket boosters and the external 
tank are cast off after they are depleted. In more common use is the combination of parallel and tandem 
staging, in which boosters are strapped to the fi rst stage of a multistage stack. Examples include the Titan 
III and IV, Delta, Ariane, Soyuz, Proton, Zenith and H-1. 

 The   venerable Atlas, used in many variants, including the early D model which launched the orbital 
fl ights of the Mercury program, had three main liquid-fuel engines at its base. They all fi red simultane-
ously at launch, but several minutes into the fl ight, the outer two  “ boosters ”  dropped away, leaving the 
central sustainer engine to burn the rest of the way to orbit. Since the booster engines shared the s ustainer’s 

 FIGURE 11.6  
       Parallel staging.    



propellant tanks, the Atlas exhibited partial staging, and is sometimes referred to as a one and a half 
stage rocket. 

 We   will for simplicity focus on tandem staging, although parallel-staged systems are handled in a simi-
lar way (Wiesel, 1997). Restricted staging involves the simple but unrealistic assumption of   similar stages  . 
That is, each stage has the same specifi c impulse  I sp  , the same structural ratio   ε  , and the same payload ratio 
  λ  . From Equation 11.38 it follows that the mass ratios  n  are identical, too. Let us investigate the effect of 
restricted staging on the fi nal burnout speed  v bo   for a given payload mass  m PL   and overall payload fraction

   
πPL
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o

m

m
�   (11.40)     

  where  m o   is the total mass of the tandem-stacked vehicle.   
 For   a single stage vehicle, the payload ratio is
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  so that, from Equation 11.38, the mass ratio is
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 According   to Equation 11.39, the burnout speed is
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 Let    m o   be the total mass of the two-stage rocket of  Figure 11.5 , that is,

   m mo o� 1   (11.44)      

 The   payload of stage 1 is the entire mass  m o   2  of stage 2. Thus, for stage 1 the payload ratio is
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 The   payload ratio of stage 2 is
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 By   virtue of the two stages being similar,   λ   1       �        λ   2 , or
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 Solving   this equation for  m o   2  yields

   
m m mo o PL2 �

      

 But    m o        �       m PL  /  π  PL  , so the gross mass of the second stage is

   

m mo
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PL2
1

�
π

  (11.47)      

 Putting   this back into Equation 11.45 (or 11.46), we obtain the common two-stage payload ratio 
  λ        �        λ   1       �        λ   2 ,
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 This   together with Equation 11.38 and the assumption that   �   1       �        �   2       �        �   leads to the common mass ratio for 
each stage,
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 If   stage 2 ignites immediately after burnout of stage 1, the fi nal velocity of the two-stage vehicle is the sum 
of the burnout velocities of the individual stages,

   v v vbo bo bo� �1 2      

  or
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  so that, with Equation 11.49, we get
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 The   empty mass of each stage can be found in terms of the payload mass using the common structural 
ratio   �  ,

   

m

m m

m

m m
E

o o

E

o PL

1

1 2

2

2�
�

�
�ε ε          

      

 Substituting   Equations 11.40 and 11.44 together with 11.47 yields

   

m m m mE
PL

PL
PL E

PL

PL
PL1

1 2

2

1 21 1
1
2

�
�

�
�( ) ( )π ε

π
π ε

π

/ /

  (11.51)      



 Likewise  , we can fi nd the propellant mass for each stage from the expressions

   
m m m m m m m mp o E o p o E PL1 1 1 2 2 2 2� � � � � �( ) ( )   (11.52)      

 Substituting   Equations 11.40 and 11.44, together with 11.47 and 11.51, we get

   

m m m mp
PL

PL
PL p

PL

PL
PL1

1 2

2

1 2

1 2

1 1 1 1
�

� �
�

� �( )( ) ( )( )π ε
π

π ε

π
  (11.53)     

        Example 11.4    
   The   following data are given

   

m

I
g

PL

sp

o

�

�

�
�
�

10 000
0 05
0 15
350
0 00981

, kg

s
km/s

PL

2

π
ε

.

.

.

  (a)      

 Calculate   the payload velocity  v bo   at burnout, the empty mass of the launch vehicle and the propellant mass 
for (a) a single stage and (b) a restricted, two-stage vehicle. 

    Solution 
        (a)     From Equation 11.43 we fi nd   

   
vbo � �

� �
�350 0 00981

1

0 05 1 0 15 0 15
5 657. ln

. ( . ) .
. km/s

      

 Equation   11.40 yields the gross mass

   
mo � �

10 000

0 05
200 000

,
, kg

.      

  from which we obtain the empty mass using Equation 11.34,

     
m m mE o PL� � � � �ε( ) . ( )0 15 200 000 10 000 28 500, , , kg

      

 The   mass of propellant is

   
m m m mp o E PL� � � � � � �200 000 28 500 10 000 161 500, , , kg,

     

 
    (b)     For a restricted two-stage vehicle, the burnout speed is given by Equation 11.50,   

   
vbo2 stage /�

� �
� �

�350 0 00981
1

0 05 1 0 15 0 15
7 41 2

2

. ln
. ( . ) .

.
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 007 km/s 
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 The   empty mass of each stage is found using Equations 11.51,

   

m

m

E

E

1

1 2

2

1 2

1 0 05 0 15

0 05
10 000 23 292

1 0 05 0

�
� �

� �

�
� �

( . ) .

.

( . ) .

/

/

, , kg

115

0 05
10 000 5

1 2. /
, 208 kg� �

      

 For   the propellant masses, we turn to Equations 11.53

   

m

m

p

p

1

1 2

2

1

1 0 05 1 0 15

0 05
10 000 1

1 0 05

�
� � �

� �

�
�

( . ) ( . )

.

( .

/

/

, 31,990 kg

22

1 2

1 0 15

0 05
10 000 2

) ( . )

.

� �
� �

/
, 9,513 kg

      

 The   total empty mass,  m E        �       m E   1       �       m E   2 , and the total propellant mass,  m p        �       m p   1       �       m p   2  are the same as for the 
single stage rocket. The mass of the second stage, including the payload, is 22.4% of the total vehicle mass.       

 Observe   in the previous example that, although the total vehicle mass was unchanged, the burnout 
velocity increased 31% for the two-stage arrangement. The reason is that the second stage is lighter and 
can therefore be accelerated to a higher speed. Let us determine the velocity gain associated with adding 
another stage, as illustrated in  Figure 11.7   . 

Payload

Stage 2 

Stage 1 

Stage 3 

mE1

mp1

mf3

mo3
mf2

mo2

mf1

mo1

mp2

mE2

mPL

mp3

mE3

 FIGURE 11.7  
       Tandem three-stage launch vehicle.    



 The   payload ratios of the three stages are

   
λ λ λ1

2

1 2
2

3

2 3
3

3

� � �
� � �

m

m m

m

m m

m

m m
o

o o

o

o o

PL

o PL       

 Since   the stages are similar, these payload ratios are all the same. Setting  λ  1       �       λ  2  and recalling that 
 m o   1       �       m o  , we fi nd

   m m mo o o2
2

3 0� �       

 Similarly  ,  λ  1       �       λ  3  yields

   m m m mo o o PL2 3 0� �       

 These   two equations imply that

   

m
m

m
m

o
PL

PL
o

PL

PL
2 2 3 3 1 3

� �
π π/ /   (11.54)      

 Substituting   these results back into any one of the above expressions for  λ  1,   λ  2  or  λ  3  yields the common 
payload ratio for the restricted three-stage rocket,

   

λ
π

π
3 stage

/

/� �
�

PL

PL

1 3

1 31       

 With   this result and Equation 11.38, we fi nd the common mass ratio,

   

n
PL

3 stage /� �
� �

1

11 3π ε ε( )
  (11.55)      

 Since   the payload burnout velocity is  v v v vbo bo bo bo� � �1 2 3   , we have

   

v I g n I gbo sp o sp o
PL

3 stage 3 stage /� �� �
� �

3
1

11 3ln ln
( )π ε ε

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

3

  (11.56)      

 Because   of the common structural ratio across each stage,

   

m

m m

m

m m

m

m m
E

o o

E

o o

E

o PL

1

1 2

2

2 3

3

3�
�

�
� �ε ε ε  

−       

 Substituting   Equations 11.40 and 11.54 and solving the resultant expressions for the empty stage masses 
yields

   

m m m m mE
PL

PL
PL E

PL

PL
PL E

PL
1

1 3

2

1 3

2 3 3

11 1 1
�

�
�

�
�

�( )
 

( ) (π ε
π

π ε

π

π/ /

/

/33

1 3

)ε

πPL
PLm

/   (11.57)      
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 The   stage propellant masses are

   
m m m m m m m m m m m mp o E o p o E o p o E PL1 1 1 2 2 2 2 3 3 3 3� � � � � � � � �( ) ( ) ( )

      

 Substituting   Equations 11.40, 11.54 and 11.57 leads to

   

m m

m m

m

p
PL

PL
PL

p
PL

PL
PL

p

1

1 3

2

1 3

2 3

3

1 1

1 1

�
� �

�
� �

�

( )( )

( )( )

(

π ε
π

π ε

π

/

/

/

11 11 3

1 3

� �π ε

π
PL

PL
PLm

/

/

)( )

  (11.58)     

        Example 11.5    
   Repeat   Example 11.4 for the restricted three-stage launch vehicle. 

    Solution 
 Equation   11.56 gives the burnout velocity for three stages,

   

vbo � � �
� �

�350 0 00981
1

0 05 1 0 15 0 15
7 928

1 3

3

. ln
. ( . ) .

.
/

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

kkm/s 

      

 Substituting    m PL        �      10,000       kg,   π   PL       �      0.05 and   �        �      0.15 into Equations 11.57 and 11.58 yields

   

m m m
m m m

E E E

p p

1 2 3

1 2

18 948 6980 2572
107 370 39 556

� � �

� �

, kg kg kg
, kg , kg pp3 14 573� , kg

      

 Again  , the total empty mass and total propellant mass are the same as for the single and two-stage vehicles. 
Notice that the velocity increase over the two-stage rocket is just 7%, which is much less than the advantage 
the two-stage had over the single stage vehicle.       

 Looking   back over the velocity formulas for one, two and three stage vehicles (Equations 11.43, 11.50 
and 11.56), we can induce that for a  N -stage rocket,

   

v I g I g Nbo sp o
PL

N

N

sp o
P

N�
�

� �
�

stage /
ln

( )
ln

1

1

1
1π ε ε π

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
LL

N1 1/ ( )� �ε ε

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
  (11.59)      

 What   happens as we let  N  become very large? First of all, it can be shown using Taylor series expansion 
that, for large  N ,

   
π πPL

N
PLN

1 1
1/ � � ln   (11.60)      



 Substituting   this into Equation 11.59, we fi nd that

   

v I g N

N
bo sp o

PL
N� � �stage

� ln
( ) ln

1

1
1

1 ε π

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥       

 Since   the term (1/ N )(1      �        �  )ln  π  PL   is arbitrarily small, we can use the fact that

   1 1 1 2 3/( )� � � � � �x x x x      
  to write

     

1

1
1

1
1

1
1

� �

� �

N
N

PL

PL

( ) ln
( ) ln

ε π
ε π�

     

  which means

     
v I g N

Nbo sp o PLN stage�
� �� ln ( ) ln1

1
1 ε π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥       

 Finally  , since ln(1      �       x )      �       �  x       �       x  2 /2      �       x  3 /3      �      x 4 /4      �       … , we can write this as

   
v I g N

Nbo sp o PLN stage�
� ��

1
1( ) lnε π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥       

 Therefore  , as  N , the number of stages, tends towards infi nity, the burnout velocity approaches

   
v I gbo sp o

PL
∞ � �( ) ln1

1
ε

π
  (11.61)      

 Thus  , no matter how many similar stages we use, for a given specifi c impulse, payload fraction and struc-
tural ratio, we cannot exceed this burnout speed. For example, using  I sp        �      350       s,   π  PL        �      0.05 and   �        �      0.15 
from the previous two examples yields v  bo    �        �      8.743       km/s, which is only 10% greater than  v bo   of a three-
stage vehicle. The trend of  v bo   towards this limiting value is illustrated by  Figure 11.8   . 
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 Our   simplifi ed analysis does not take into account the added weight and complexity accompanying 
additional stages. Practical reality has limited the number of stages of actual launch vehicles to rarely more 
than three.  

    11.6       OPTIMAL STAGING 
 Let   us now abandon the restrictive assumption that all stages of a tandem-stacked vehicle are similar. 
Instead, we will specify the specifi c impulse  Isp i

    and structural ratio   �  i   of each stage, and then seek the 
minimum-mass  N -stage vehicle that will carry a given payload  m PL   to a specifi ed burnout velocity  v bo  . To 
optimize the mass requires using the Lagrange multiplier method, which we shall briefl y review. 

    11.6.1       Lagrange multiplier 

 Consider   a bivariate function  f  on the  xy  plane. Then  z       �       f ( x , y ) is a surface lying above or below the plane, 
or both.  f ( x , y ) is stationary at a given point if it takes on local maximum or a local minimum, i.e., an extre-
mum, at that point. For  f  to be stationary means  df       �      0; that is, 

  

∂
∂

∂
∂

f

x
dx

f

y
dy� � 0   (11.62)     

  where  dx  and  dy  are independent and not necessarily zero. It follows that for an extremum to exist,

     

∂
∂

∂
∂

f

x

f

y
� � 0   (11.63)      

 Now   let  g ( x,y )      �      0 be a curve in the  xy  plane. Let us fi nd the points on the curve  g       �      0 at which  f  is sta-
tionary. That is, rather than searching the entire  xy  plane for extreme values of  f , we confi ne our attention to 
the curve  g       �      0, which is therefore a constraint. Since  g       �      0, it follows that  dg       �      0, or

   

∂
∂

∂
∂

g

x
dx

g

y
dy� � 0   (11.64)      

 If   Equations 11.62 and 11.64 are both valid at a given point, then

   

dy

dx

f x

f y

g x

g y
� � � �

∂ ∂
∂ ∂

∂ ∂
∂ ∂

/

/

/

/       

 That   is,

   

∂ ∂
∂ ∂

f x

g x

f y

g y

/

/

/

/
� � �

∂ ∂
∂ ∂

η
      

 From   this we obtain

   

∂
∂

∂
∂

∂
∂

∂
∂

f

x

g

x

f

y

g

y
� � � �η η0 0 

      



 But   these, together with the constraint  g ( x , y )      �      0, are the very conditions required for the function

   h x y f x y g x y( , , ) ( , ) ( , )η η� �   (11.65)     

  to have an extremum, namely,

     

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

h
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h
g

� � �

� � �

� �

η

η

η

0

0

0

  (11.66)     

    η   is the Lagrange multiplier. The procedure generalizes to functions of any number of variables.   
 One   can determine mathematically whether the extremum is a maximum or a minimum by checking the 

sign of the second differential  d  2  h  of the function  h  in Equation 11.65,

   

d h
h

x
dx

h

x y
dxdy

h

y
dy2

2

2
2

2 2

2
22� � �

∂

∂

∂
∂ ∂

∂

∂
  (11.67)      

 If    d  2  h       �      0 at the extremum for all  dx  and  dy  satisfying the constraint condition, Equation 11.64, then the 
extremum is a local maximum. Likewise, if  d  2  h             0, then the extremum is a local minimum.

        Example 11.6    
          (a)     Find the extrema of the function  z       �       �  x  2       �       y  2 .  
    (b)     Find the extrema of the same function under the constraint  y       �      2 x       �      3.    

    Solution 
        (a)     To fi nd the extrema we must use Equations 11.63. Since   � z /  � x       �       � 2 x  and   � z /  � y       �       � 2 y , it follows that 
  � z /  � x       �        � z /  � y       �      0 at  x       �       y       �      0, at which point  z       �      0. Since  z  is negative everywhere else (see  Figure 11.9   ), 
it is clear that   

   
the extreme value, , is the maximum valuez � 0

     

     (b)     The constraint may be written  g       �       y       �      2 x       �      3. Clearly,  g       �      0. Multiply the constraint by the Lagrange 
multiplier   η   and add the result (zero!) to the function  � ( x  2       �       y  2 ) to obtain   

   h x y y x� � � � � �( ) ( )2 2 2 3η       

 This   is a function of the three variables  x ,  y  and   η  . For it to be stationary, the partial derivatives with respect 
to all three of these variables must vanish. First we have

   

∂
∂

η
h

x
x� � �2 2
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 Setting   this equal to zero yields

   x � �η   (a)      

 Next  ,

   

∂
∂

η
h

y
y� � �2

      

 For   this to be zero means

   
y �

η
2

  (b)      

 Finally  

   

∂
∂η

h
y x� � �2 3

      

 Setting   this equal to zero gives us back the constraint condition,

   y x� � �2 3 0   (c)      

 Substituting   (a) and (b) into (c) yields   η        �      1.2, from which (a) and (b) imply,

   x y� � �1 2 0 6. .   (d)      

 These   are the coordinates of the point on the line  y       �      2 x       �      3 at which  z       �       �  x  2       �       y  2  is stationary. Using (d), 
we fi nd that

   z � �1 8.      

  at this point.   
    Figure 11.9  is an illustration of this problem, and it shows that the computed extremum (a maximum, in 

the sense that small negative numbers exceed large negative numbers) is where the surface  z       �       �  x  2       �       y  2  is 
closest to the line  y       �      2 x       �      3, as measured in the  z -direction. Note that in this case, Equation 11.67 yields 
 d   2  h       �       � 2 dx   2       �      2 dy   2 , which is negative, confi rming our conclusion that the extremum is a maximum.       

 Now   let us return to the optimal staging problem. It is convenient to introduce the   step mass  m i   of the  i th 
stage. The step mass is the empty mass plus the propellant mass of the stage, exclusive of all the other stages,

   
m m mi Ei pi� �   (11.68)      

 The   empty mass of stage  i  can be expressed in terms of its step mass and its structural ratio   �  i   as follows,

   
m m m mEi i E pi i ii

� � �ε ε( )   (11.69)      

 The   total mass of the rocket excluding the payload is  M , which is the sum of all of the step masses,

   

M mi
i

N

�
�1
∑   (11.70)      



 Thus  , recalling that  m o   is the total mass of the vehicle, we have

   m M mo PL� �   (11.71)      

 Our   goal is to minimize  m o  . 
 For   simplicity, we will deal fi rst with a two-stage rocket, and then generalize our results to  N  stages. For 

a two-stage vehicle,  m o        �       m  1       �       m  2       �       m PL  , so we can write,

   

m

m

m m m

m m

m m

m
o

PL

PL

PL

PL

PL

�
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�

�1 2

2

2   (11.72)      

 The   mass ratio of stage 1 is

   
n

m

m m m

m m m

m m m
o

E PL

PL

PL
1

1

1 2

1 2

1 1 2

�
� �

�
� �

� �ε
  (11.73)     

  where Equation 11.69 was used. Likewise, the mass ratio of stage 2 is

     
n

m

m m

m m

m m
o

PL

PL

PL
2

2

2 2

2

2 2

�
�

�
�

�ε ε
  (11.74)      
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 We   can solve Equations 11.73 and 11.74 to obtain the step masses from the mass ratios,
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  (11.75)      

 Now  ,
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 These   manipulations do not alter the ratio on the left. Carrying out the multiplications proceeds as follows,
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 Finally  , with the aid of Equation 11.73, this algebraic trickery reduces to
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 Likewise  ,
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  so that Equation 11.72 may be written in terms of the stage mass ratios instead of the step masses,
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 Taking   the natural logarithm of both sides of this equation, we get
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 Expanding   the logarithms on the right side leads to

   
ln ln( ) ln ln( ) ln( ) ln ln(

m

m
n n n no

PL

� � � � � � � � � �1 1 1 11 1 1 1 2 2 2 2ε ε ε ε[ ] ))[ ]   (11.79)      

 Observe   that for  m PL   fi xed, ln( m  o / m PL  ) is a monotonically increasing function of  m  o ,
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 Therefore  , ln( m o  / m PL  ) is stationary when  m o   is. 
 From   Equations 11.21 and 11.39, the burnout velocity of the two-stage rocket is

   v v v c n c nbo bo bo� � � �1 2 1 1 2 2ln ln   (11.80)     

  which means that, given  v bo  , our constraint equation is

     v c n c nbo � � �1 1 2 2 0ln ln   (11.81)      

 Introducing   the Lagrange multiplier   η  , we combine Equations 11.79 and 11.81 to obtain
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ln( ) ln ln( ) ln( ) ln ln( )
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 Finding   the values of  n  1  and  n  2  for which  h  is stationary will extremize ln( m o  / m PL  ) (and, hence,  m o  ) for the 
prescribed burnout velocity  v bo . h  is stationary when   � h/ � n  1       �        � h /  � n  2       �        � h/ �  η        �      0. Thus,
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 These   three equations yield, respectively,
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 Substituting    n  1  and  n  2  into the expression for  v bo  , we get
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  (11.84)      

11.6 Optimal staging  683



684  CHAPTER 11 Rocket vehicle dynamics

 This   equation must be solved iteratively for   η  , after which   η   is substituted into Equations 11.83 1,2  to obtain 
the stage mass ratios  n  1  and  n  2 . These mass ratios are used in Equations 11.75 together with the assumed 
structural ratios, exhaust velocities, and payload mass to obtain the step masses of each stage. 

 We   can now generalize the optimization procedure to an  N -stage vehicle, for which Equation 11.82 
becomes
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  (11.85)      

 At   the outset, we know the required burnout velocity  v bo  , the payload mass  m PL  , and for every stage we have 
the structural ratio   �  i   and the exhaust velocity  c i   (i.e., the specifi c impulse). The fi rst step is to solve for the 
Lagrange parameter   η   using Equation 11.84, which, for  N  stages is written
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 Expanding   the logarithm, this can be written
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 After   solving this equation iteratively for   η  , we use that result to calculate the optimum mass ratio for each 
stage (cf. Equation 11.83),
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 Of   course, each  n i   must be greater than 1. 
 Referring   to Equations 11.75, we next obtain the step masses of each stage, beginning with stage  N  and 

working our way down the stack to stage 1,

   

m
n

n
m

m
n

n
m m

m
n

N
N

N N
PL

N
N

N N
N PL

N
N

�
�

�

�
�

�
�

�
�

�

�
�

� �

�
�

1

1

1

1

1

1

1
1

1 1

2
2

ε

ε
( )

nn
m m m

m
n

n
m m m

N N
N N PL

PL

� �
� � �

�
�

�
� �

2 2
1

1
1

1 1
2 3

1

1

ε

ε

( )

( )

�

…

  (11.88)      



 Having   found each step mass, each empty stage mass is

   m mEi i i� ε   (11.89)     

  and each stage propellant mass is

     
m m mpi i Ei� �   (11.90)      

 For   the function  h  in Equation 11.85, it is easily shown that
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 It   follows that the second differential of  h  is
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  where it can be shown, again using Equation 11.85, that
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 For    h  to be minimum at the mass ratios  n i   given by Equation 11.87, it must be true that  d  2  h             0. 
Equations 11.91 and 11.92 indicate that this will be the case if

   η ε εc n n i Ni i i i i( ) ,  , ,� � �  �1 2 1 0 12 …   (11.93)     

        Example 11.7    
   Find   the optimal mass for a three-stage launch vehicle that is required to lift a 5000       kg payload to a speed of 
10       km/s. For each stage, we are given that
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    Solution 
 Substituting   this data into Equation 11.86, we get

   3 924 3 924 1 3 434 3 434 1 2 943 2 943 1 10 3. ln( . ) . ln( . ) . ln( . ) .η η η� � � � � � 00 7 5089 10ln .η � �       

 As   can be checked by substitution, the iterative solution of this equation is

   η � 0 4668.       
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 Substituting     η   into Equations 11.87 yields the optimum mass ratios,

   n n n1 2 34 541 2 507 1 361� �. . .=       

 For   the step masses, we appeal to Equations 11.88 to obtain

   m m m1 2 3165 700 18 070 2477� � �, kg , kg kg       

 The   total mass of the vehicle is

   
m m m m mo PL� � � � �1 2 3 191 200, kg

      

 Using   Equations 11.89 and 11.90, the empty masses and propellant masses are found to be
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 The   payload ratios for each stage are
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 The   overall payload fraction is
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 Finally  , let us check Equation 11.93,
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 A   positive number in every instance means we have indeed found a local minimum of the function in 
Equation 11.85.         

    PROBLEMS 

    Section 11.4 

        11.1     A two stage, solid-propellant sounding rocket has the following properties.    
 First   stage:       m m m If e sp0 249 5 170 1 10 61 235� � � �. . .kg kg kg/s s�     
 Second   stage:  m m m If e sp0 113 4 58 97 4 053 235� � � �. . .kg kg kg/s s�     



 Delay   time between burnout of fi rst stage and ignition of second stage: 3 seconds. 
  As   a preliminary estimate, neglect drag and the variation of earth’s gravity with altitude to calculate 
the maximum height reached by the second stage after burnout. 
    { Ans.: 322       km } 

     11.2     A two-stage launch vehicle has the following properties:    
  First   stage: two solid propellant rockets. Each one has a total mass of 525,000       kg, 450,000       kg of which 
is propellant.  I sp        �      290       s. 
  Second   stage: two liquid rockets with  I sp        �      450       s. Dry mass      �      30,000       kg, propellant mass      �      600,000       kg. 
  Calculate   the payload mass to a 300       km orbit if launched due east from KSC. Let the total gravity and 
drag loss be 2       km/s. 
    { Ans.: 114,000       kg }   

    Section 11.5 

        11.3     Suppose a spacecraft in permanent orbit around the earth is to be used for delivering payloads from 
low earth orbit (LEO) to geostationary equatorial orbit (GEO). Before each fl ight from LEO, the 
spacecraft is refueled with propellant, which it uses up in its round trip to GEO. The outbound leg 
requires four times as much propellant as the inbound return leg. The delta-v for transfer from LEO 
to GEO is 4.22       km/s. The specifi c impulse of the propulsion system is 430       s. If the payload mass is 
3500       kg, calculate the empty mass of the vehicle.    
    { Ans.: 2733       kg } 

     11.4     Consider a rocket comprising three similar stages (i.e., each stage has the same specifi c impulse, 
structural ratio and payload ratio). The common specifi c impulse is 310       s. The total mass of the 
vehicle is 150,000       kg, the total structural mass (empty mass) is 20,000       kg and the payload mass is 
10,000       kg. Calculate
     (a)     The mass ratio  n  and the total   Δ v  for the three-stage rocket.       
    { Ans.  n       �      2.04,   Δ v       �      6.50       km/s } 
     (b)      m p   1,   m p   2,  and  m p   3 .  
    (c)      m m mE E E1 2 3

,   and    .  
    (d)      m o   1,   m o   2,  and  m o   3 .     

    Section 11.6 

        11.5     Find the extrema of the function  z       �      ( x       �       y ) 2  subject to  y  and  z  lying on the circle ( x       �      1) 2       �       y  2       �      1.    
    { Ans.:  z       �      0.1716 at ( x ,    y )      �      (0.2929,      �      0.7071),  z       �      5.828 at ( x ,    y )      �      (1.707, 0.7071) and  z       �      0 at 
( x ,  y )      �      (0,0) and ( x ,  y )      �      (1,      �      1). } 

     11.6     A small two-stage vehicle is to propel a 10       kg payload to a speed of 6.2       km/s. The properties of the 
stages are:    
 First   stage:  I sp        �      300       s and   �        �      0.2. 
 Second   stage,  I sp        �      235       s and   �        �      0.3. 
 Estimate   the optimum mass of the vehicle. 
    { Ans.: 1125       kg }   
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    List of Key Terms 

        drag coeffi cient  
    dynamic pressure  
    effective exhaust velocity  
    frontal area  
    gravity turn trajectory  
    mass ratio  
    payload ratio  
    scale height  
    similar stages  
    sounding rockets  
    specifi c impulse  
    step mass  
    structural ratio  
    thrust-to-weight ratio       
   



 The   following tables contain information that is commonly available and may be found in the literature and 
on the world wide web. See, for example, the  Astronomical Almanac  (U.S. Naval Observatory, 2008) and 
 National Space Science Data Center  (NASA Goddard Space Flight Center, 2003).

 Table A.1        Astronomical Data for the Sun, the Planets and the Moon  

   Object 
 Radius 
(km) 

 Mass 
(kg) 

 Sidereal 
Rotation 
Period 

 Inclination 
of Equator 

to Orbit 
Plane 

 Semimajor 
Axis of Orbit 

(km) 
 Orbit 

Eccentricity 

 Inclination 
of Orbit to 
the Ecliptic 

Plane 

 Orbit 
Sidereal 
Period 

   Sun  696,000  1.989      �      10 30   25.38d  7.25 °    —    —    —    —  

   Mercury  2440  330.2      �      10 21   58.65d  0.01 °   57.91      �      10 6   0.2056  7.00 °   87.97d 

   Venus  6052  4.869      �      10 24   243d  *    177.4 °   108.2      �      10 6   0.0067  3.39 °   224.7d 

   Earth  6378  5.974      �      10 24   23.9345h  23.45 °   149.6      �      10 6   0.0167  0.00 °   365.256d 

   (Moon)  1737  73.48      �      10 21   27.32d  6.68 °   384.4      �      10 3   0.0549  5.145 °   27.322d 

   Mars  3396  641.9      �      10 21   24.62h  25.19 °   227.9      �      10 6   0.0935  1.850 °   1.881y 

   Jupiter  71,490  1.899      �      10 27   9.925h  3.13 °   778.6      �      10 6   0.0489  1.304 °   11.86y 

   Saturn  60,270  568.5      �      10 24   10.66h  26.73 °   1.433      �      10 9   0.0565  2.485 °   29.46y 

   Uranus  25,560  86.83      �      10 24   17.24h  *    97.77 °   2.872      �      10 9   0.0457  0.772 °   84.01y 

   Neptune  24,760  102.4      �      10 24   16.11h  28.32 °   4.495      �      10 9   0.0113  1.769 °   164.8y 

   (Pluto)  1195  12.5      �      10 21   6.387d  *    122.5 °   5.870      �      10 9   0.2444  17.16 °   247.7y 

   *   Retrograde  

 Physical data A 
   APPENDIX
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690  APPENDIX A Physical data

 Table A.2        Gravitational Parameter (  μ  ) and Sphere of Infl uence (SOI) Radius for the Sun, 
the Planets and the Moon  

   Celestial body    μ   (km 3 /s 2 )  SOI radius (km) 

   Sun  132,712,000,000   –  

   Mercury  22,030  112,000 

   Venus  324,900  616,000 

   Earth  398,600  925,000 

   Earth’s moon  4903  66,100 

   Mars  42,828  577,000 

   Jupiter  126,686,000  48,200,000 

   Saturn  37,931,000  54,800,000 

   Uranus  5,794,000  51,800,000 

   Neptune  6,835,100  86,600,000 

   Pluto  830  3,080,000 

 Table A.3        Some Conversion Factors  

   1 ft      �      0.3048       m 

   1 mile (mi)      �      1.609       km 

   1 nautical mile (n mi)      �      1.151 mi      �      1.852       km 

   1 mi/h      �      0.0004469       km/s 

   1 lb (mass)      �      0.4536       kg 

   1 lb (force)      �      4.448 N 

   1 psi      �      6895       kPa 



    Figure B.1    is a road map through Chapters 1, 2 and 3. Those who from time to time feel they have lost their 
bearings may fi nd it useful to refer to this fl ow chart, which shows how the various concepts and results are 
interrelated. The pivotal infl uence of Sir Isaac Newton is obvious. All of the equations of classical orbital 
mechanics (the two-body problem) are derived from those listed here.   

 A road map B 
      APPENDIX
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 FIGURE B.1  
       Logic fl ow for the major outcomes of Chapters 1, 2 and 3.    
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 Without   loss of generality we shall derive the equations of motion of the three-body system illustrated in 
 Figure C.1   . The equations of motion for  n  bodies can easily be generalized from those of a three-body system. 

 Each   mass of a three-body system experiences the force of gravitational attraction from the other mem-
bers of the system. As shown in  Figure C.1 , the forces exerted on body 1 by bodies 2 and 3 are  F  12  and  F  13 , 
respectively. Likewise, body 2 experiences the forces  F  21  and  F  23  whereas the forces  F  31  and  F  32  act on 
body 3. These gravitational forces can be inferred from Equation 2.9: 
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 FIGURE C.1  
       Three-body problem.    
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694  APPENDIX C Numerical integration of the  n -body equations of motion

 Relative   to an inertial frame of reference the accelerations of the bodies are 

  a Ri i i� ��� 1 2 3, ,      

  where  R   i   is the absolute position vector of body  i . The equation of motion of body 1 is   

  F F a12 13 1 1� � m       

 Substituting   Equations C.1a and C.1b yields 
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 For   bodies 2 and 3 we fi nd in a similar fashion that 
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 The   velocities are related to the accelerations by 
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a� � 1 2 3, ,   (C.3)     

  and the position vectors are likewise related to the velocities,   

  

d
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ii

i
R

v� � 1 2 3, ,   (C.4)      

 Equations   C.2 though C.4 constitute a system of ordinary differential equations (ODEs) in the variable time. 
 Given   the initial positions  Ri 0

    and initial velocities  vi 0
   , we must integrate Equations C.3 to fi nd  v   i   as a 

function of time and substitute those results into Equations C.4 to obtain  R   i   as a function of time. The inte-
grations must be done numerically. 

 To   do this using MATLAB  ®  , we fi rst resolve all of the vectors into their three components along the 
 XYZ  axes of the inertial frame and write them as column vectors, 
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 According   to Equations C.2, 
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  where   

  
R R R12 2 1 13 3 1 23 3 2� � � � � �R R R R R R   (C.8)      

 Next  , we form the 18-component column vector 

  
y R R R v v v� 1 2 3 1 2 3⎢⎣ ⎥⎦

T
  (C.9)      

 The   fi rst derivatives of the components of this vector comprise the column vector 

  
�y f v v v a a a� � 1 2 3 1 2 3⎢⎣ ⎥⎦

T
  (C.10)      

 According   to Equations C.7, the accelerations are functions of  R  1 ,  R  2 , and  R  3 . Hence, Equation C.10 is of 
the form 

  �y f y� ( , )t   (C.11)     

  given in Equation 1.95, although in this case time  t  does not appear explicitly. Equation C.11 can be 
employed in procedures such as Algorithms 1.1, 1.2 or 1.3 to obtain a numerical solution for  R  1 ( t ),  R  2 ( t ) 
and  R  3 ( t ). We shall choose MATLAB’s  ode45  Runge-Kutta solver.   
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 For   simplicity, we will solve the three-body problem in the plane. That is, we will restrict ourselves to 
only the  XY  components of the vectors  R ,  v  and  a . The reader can use these scripts as a starting point for 
investigating more complex  n -body problems. 

 The   MATLAB function  threebody.m  contains the subfunction  rates , which computes the accelerations 
given above in Equation C.7. That information together with the initial conditions are passed to  ode45 , 
which integrates the system given by Equation C.11. Subfunction  plotit  plots the solutions. The results of 
this program were used to create Figures 2.4 and 2.5. 

 Function   fi le  threebody.m  
    % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
  function   threebody  
    % ~~~~~~~~~~~~~~~~  
  % {     
  This   program presents the graphical solution of the motion of three bodies in 
the plane for data provided in the input defi nitions below.  

  MATLAB  ’s ode45 Runge-Kutta solver is used. 
    G    - gravitational constant (km^3/kg/s^2)  
    t0, tf    - initial and fi nal times (s)  
    m1, m2, m3    - masses of the three bodies (kg)  
    m    - total mass (kg)  
    X1,Y1; X2,Y2; X3,Y3    - coordinates of the three masses (km)  
    VX1,VY1; VX2,VY2; VX3,VY3    - velocity components of the three masses (km/s)  
    XG, YG    - coordinates of the center of mass (km)  
    y0    - column vector of the initial conditions  
    t    -  column vector of times at which the solution 

was computed  
    y    -  matrix, the columns of which contain the 

position and velocity components evaluated at 
the times t(:):  

      y(:,1) , y(:, 2)  =  X1(:), Y1(:)  
      y(:,3) , y(:, 4)  =  X2(:), Y2(:)  
      y(:,5) , y(:, 6)  =  X3(:), Y3(:)  

      y(:,7) , y(:, 8)  =  VX1(:), VY1(:)  
      y(:,9) , y(:,10)  =  VX2(:), VY2(:)  
      y(:,11), y(:,12)  =  VX3(:), VY3(:)  

  User   M-functions required:       none  
  User   subfunctions required:       rates, plotit  
  % }     
    % --------------------------------------------------------------------  

  clear   all  
  close   all  
  clc    

  G    =  6.67259e-20;  



    %...Input data:  
  m1    =  1.e29; m2  =  1.e29; m3  =  1.e29;  

  t0    =  0; tf  =  67000;  

  X1    =  0;               Y1  =  0;  
  X2    =  300000;  Y2  =  0;  
  X3    =  2*X2;  Y3  =  0;  

  VX1    =  0;               VY1  =  0;  
  VX2    =  250;               VY2  =  250;  
  VX3    =  0;               VY3  =  0;  
    %...End input data  

  m    =  m1  +  m2  +  m3;  
  y0    =  [X1 Y1        X2 Y2        X3 Y3        VX1 VY1        VX2 VY2        VX3 VY3] ’ ;  

    %...Pass the initial conditions and time interval to ode45, which  
    %        calculates the position and velocity of each particle at discrete  
    %        times t, returning the solution in the column vector y. ode45 uses  
    %        the subfunction  ‘ rates ’  below to evaluate the accelerations at each  
    %        integration time step.  
    [t,y]  =  ode45(@rates, [t0 tf], y0);  

  X1    =  y(:,1); Y1  =  y(:,2);  
  X2    =  y(:,3); Y2  =  y(:,4);  
  X3    =  y(:,5); Y3  =  y(:,6);  

    %...Locate the center of mass at each time step:  
  XG    =  []; YG  =  [];  
  for   i  =  1:length(t)  

                  XG  =  [XG; (m1*X1(i)  +  m2*X2(i)  +  m3*X3(i))/m];  
                  YG  =  [YG; (m1*Y1(i)  +  m2*Y2(i)  +  m3*Y3(i))/m];  

  end    

    %...Coordinates of each particle relative to the center of mass:  
  X1G    =  X1 - XG; Y1G  =  Y1 - YG;  
  X2G    =  X2 - XG; Y2G  =  Y2 - YG;  
  X3G    =  X3 - XG; Y3G  =  Y3 - YG;  

  plotit    

  return    

    % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
           function dydt  =  rates(t,y)  

    % ~~~~~~~~~~~~~~~~~~~~~~~~~~  
  % {     
           This function evaluates the acceleration of each member of a planar 3-body 
system at time t from their positions and velocities at that time. 
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    t    - time (s)  
    y    -  column vector containing the position and velocity 

components of the three masses at time t  
    R12    - cube of the distance between m1 and m2 (km^3)  
    R13    - cube of the distance between m1 and m3 (km^3)  
    R23    - cube of the distance between m2 and m3 (km^3)  
    AX1,AY1; AX2,AY2; AX3,AY3    - acceleration components of each mass (km/s^2)  
    dydt    -  column vector containing the velocity and 

acceleration components of the three masses at time t  
  % }     
    % ------------------------------------------------------------------------------  

  X1    =  y( 1);  
  Y1    =  y( 2);  

  X2    =  y( 3);  
  Y2    =  y( 4);  

  X3    =  y( 5);  
  Y3    =  y( 6);  

  VX1    =  y( 7);  
  VY1    =  y( 8);  

  VX2    =  y( 9);  
  VY2    =  y(10);  

  VX3    =  y(11);  
  VY3    =  y(12);  

    %...Equations C.8:  
  R12    =  norm([X2 - X1, Y2 - Y1])^3;  
  R13    =  norm([X3 - X1, Y3 - Y1])^3;  
  R23    =  norm([X3 - X2, Y3 - Y2])^3;  

    %...Equations C.9:  
  AX1    =  G*m2*(X2 - X1)/R12  +  G*m3*(X3 - X1)/R13;  
  AY1    =  G*m2*(Y2 - Y1)/R12  +  G*m3*(Y3 - Y1)/R13;  
  AX2    =  G*m1*(X1 - X2)/R12  +  G*m3*(X3 - X2)/R23;  
  AY2    =  G*m1*(Y1 - Y2)/R12  +  G*m3*(Y3 - Y2)/R23;  
  AX3    =  G*m1*(X1 - X3)/R13  +  G*m2*(X2 - X3)/R23;  
  AY3    =  G*m1*(Y1 - Y3)/R13  +  G*m2*(Y2 - Y3)/R23;  

  dydt    =  [VX1 VY1 VX2 VY2 VX3 VY3 AX1 AY1 AX2 AY2 AX3 AY3] ’ ;  
  end   %rates  
    % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

    % ~~~~~~~~~~~~~  
  function   plotit  
    % -------------  



    %...Plot the motions relative to the inertial frame (Figure 2.4):  
  fi gure  (1)  
  title  ( ‘ Figure 2.4: Motion relative to the inertial frame ’ , ...  
      ‘ Fontweight ’ ,  ‘ bold ’ ,  ‘ FontSize ’ , 12)  

  hold   on  
  plot  (XG, YG,  ‘ --k ’ ,  ‘ LineWidth ’ , 0.25)  
  plot  (X1, Y1,    ‘ r ’ ,  ‘ LineWidth ’ , 0.5)  
  plot  (X2, Y2,    ‘ g ’ ,  ‘ LineWidth ’ , 0.75)  
  plot  (X3, Y3,    ‘ b ’ ,  ‘ LineWidth ’ , 1.00)  
  xlabel  ( ‘ X(km) ’ ); ylabel( ‘ Y(km) ’ )  
  grid   on  
  axis  ( ‘ equal ’ )  

    %...Plot the motions relative to the center of mass (Figure 2.5):  
  fi gure  (2)  
  title  ( ‘ Figure 2.5: Motion relative to the center of mass ’ , ... 
       ‘ Fontweight ’ ,  ‘ bold ’ ,  ‘ FontSize ’ , 12)  

  hold   on  
  plot  (X1G, Y1G,    ‘ r ’ ,  ‘ LineWidth ’ , 0.5)  
  plot  (X2G, Y2G,  ‘ --g ’ ,  ‘ LineWidth ’ , 0.75)  
  plot  (X3G, Y3G,    ‘ b ’ ,  ‘ LineWidth ’ , 1.00)  
  xlabel  ( ‘ X(km) ’ ); ylabel( ‘ Y(km) ’ )  
  grid   on  
  axis  ( ‘ equal ’ )  
  end   %plotit  
    % ~~~~~~~~~~~~~  

  end   %threebody         
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 Appendix   D can be found at  http://www.elsevierdirect.com/companions/9780123747785  

 Appendix   Outline     

 D.1    Introduction    
 D.2    Algorithm   1.1: numerical integration of a system of fi rst order differential equations by choice 

of Runge-Kutta methods RK1, RK2, RK3 or RK4  
 D.3    Algorithm   1.2: numerical integration of a system of fi rst order differential equations by Heun’s 

predictor-corrector method  
 D.4    Algorithm   1.3: numerical integration of a system of fi rst order differential equations by the 

Runge-Kutta-Fehlberg 4(5) method with adaptive step size control  
 D.5    Algorithm   2.1: numerical solution for the motion of two bodies relative to an inertial frame.  
 D.6    Algorithm   2.2: numerical solution for the motion of  m  2  of relative to  m  1   
 D.7    Calculation   of the Lagrange coeffi cients  f  and  g  and their time derivatives in terms of change 

in true anomaly  
 D.8    Algorithm   2.3: calculation of the state vector given the initial state vector and the change in 

true anomaly  
 D.9    Algorithm   2.4: fi nd the root of a function using the bisection method  
 D.10    MATLAB   solution of Example 2.18  
 D.11    Algorithm   3.1: solution of Kepler’s equation by Newton’s method  
 D.12    Algorithm   3.2: solution of Kepler’s equation for the hyperbola using Newton’s method  
 D.13    Calculation   of the Stumpff functions  S ( z ) and  C ( z )  
 D.14    Algorithm   3.3: solution of the universal Kepler’s equation using Newton’s method  
 D.15    Calculation   of the Lagrange coeffi cients  f  and  g  and their time derivatives in terms of change 

in universal anomaly  
 D.16    Algorithm   3.4: calculation of the state vector given the initial state vector and the time lapse   Δ t   
 D.17    Algorithm   4.1: obtain right ascension and declination from the position vector  
 D.18    Algorithm   4.2: calculation of the orbital elements from the state vector  
 D.19    Calculation   of  tan�1( / )y x     to lie in the range 0 to 360 °   
 D.20    Algorithm   4.3: obtain the classical Euler angle sequence from a DCM  
 D.21    Algorithm   4.4: obtain the yaw, pitch and roll angles from a DCM  
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 D.22    Algorithm   4.5: calculation of the state vector from the orbital elements  
 D.23    Algorithm   4.6: calculate the ground track of a satellite from its orbital elements  
 D.24    Algorithm   5.1: Gibbs method of preliminary orbit determination  
 D.25    Algorithm   5.2: solution of Lambert’s problem  
 D.26    Calculation   of Julian day number at 0 hr UT  
 D.27    Algorithm   5.3: calculation of local sidereal time  
 D.28    Algorithm   5.4: calculation of the state vector from measurements of range, angular position and 

their rates  
 D.29    Algorithms   5.5 and 5.6: Gauss method of preliminary orbit determination with iterative 

improvement  
 D.30    Calculate   the state vector at the end of a fi nite-time, constant thrust delta-v maneuver  
 D.31    Algorithm   7.1: Find the position, velocity and acceleration of  B  relative to  A ’s co-moving frame  
 D.32    Plot   the position of one spacecraft relative to another  
 D.33    Solve   the linearized equations of relative motion of a chaser relative to a target whose orbit is 

an ellipse  
 D.34    Convert   the numerical designation of a month or a planet into its name  
 D.35    Algorithm   8.1: calculation of the state vector of a planet at a given epoch  
 D.36    Algorithm   8.2: calculation of the spacecraft trajectory from planet 1 to planet 2  
 D.37    Algorithm   9.1: Calculate the direction cosine matrix from the quaternion  
 D.38    Algorithm   9.2: Calculate the quaternion form the direction cosine matrix  
 D.39    Solution   of the spinning top problem (Example 9.21)  
 D.40    Calculation   of a gravity-turn trajectory       



    Figure E.1    shows a point mass  m  with Cartesian coordinates ( x , y , z ) as well as a system of  N  point masses 
 m  1 ,  m  2 ,  m  3 , …  m N  , The  i th one of these particles has mass  m i  , and coordinates ( x i  , y i  , z i  ). The total mass of the 
 N  particles is  M , 
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 The   position vector drawn from  m i   to  m  is  r   i   and the unit vector in the direction of  r   i   is 
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 FIGURE E.1  
       A system of point masses and a neighboring test mass  m     .
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 The   gravitational force exerted on  m  by  m i   is opposite in direction to  r   i  , and is given by 
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 The   potential energy of this force is 
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 The   total gravitational potential energy of the system due to the gravitational attraction of all of the  N  par-
ticles is 

  

V Vi
i

N

�
�1
∑   (E.3)      

 Therefore  , the total force of gravity  F  on the mass  m  is 
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 Consider   the solid sphere of mass  M  and radius  R  0  illustrated in  Figure E.2   . Instead of a discrete system 
as above, we have a continuum with mass density   ρ  . Each  “ particle ”  is a differential element  dM       �        ρ dv  of 
the total mass  M . Equation E.1 becomes 

  

M dv
v
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 FIGURE E.2  
       Sphere with a spherically symmetric mass distribution.    



  where  dv  is the volume element and  v  is the total volume of the sphere. In this case, Equation E.2 becomes   
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  where  r  is the distance from the differential mass  dM  to the finite point mass  m . Equation E.3 is replaced by   
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r
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∫∫∫   (E.6)      

 Let   the mass of the sphere have a spherically symmetric distribution, which means that the mass density 
  ρ   depends only on  r 
  , the distance from the center  C  of the sphere. An element of mass  dM  has spherical 
coordinates ( r  
  , θ  ,  φ  ), where the angle   θ   is measured in the  xy  plane of a cartesian coordinate system with 
origin at  C , as shown in  Figure E.2 . In spherical coordinates the volume element is 

  dv r d dr d� 
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 Therefore   Equation E.5 becomes 
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  so that the mass of the sphere is given by   
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 Substituting   Equation E.7 into Equation E.6 yields 
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 The   distance  r  is found by using the law of cosines, 
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  where  R  is the distance from the center of the sphere to the mass  m . Differentiating this equation with 
respect to   φ  , holding  r  
  constant, yields   
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  so that   
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 It   follows that 
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 Substituting   this result along with Equation E.8 into Equation E.9 yields 

  
V
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 We   conclude that the gravitational potential energy, and hence (from Equation E.4) the gravitational 
force, of a sphere with a spherically symmetric mass distribution  M  is the same as that of a point mass  M  
located at the center of the sphere.   
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 A  
 Absolute acceleration  

 angular   ,  402 – 8   ,  436 – 40   ,  484 – 6   
 nutation dampers   ,  595   
 point masses   ,  29 – 37   
 rigid-body kinematics   ,  486 – 95   
 two-body motion   ,  68    

 Absolute angular momentum   ,  497 – 501   
 Absolute angular velocity  

 gyroscopic attitude control   ,  623   
 nutation dampers   ,  594   
 rigid-body dynamics   ,  486 – 91   
 torque-free motion   ,  576 – 77    

 Absolute position vectors   ,  29 – 37   
 Absolute velocity  

 close-proximity circular orbits   ,  421   
 rigid-body kinematics   ,  485 – 92   
 two-body motion   ,  68   
 two-impulse maneuvers   ,  425   
 vectors   ,  29 – 37    

 Acceleration 
   see also   absolute …    ;  angular …    ;  relative  
 Coriolis   ,  30   
 fi ve-term   ,  30   ,  31   
 gravitational   ,  18 – 19   ,  233   
 gyroscopic attitude control   ,  521 – 5   
 oblateness   ,  233 – 34   
 point masses   ,  10 – 14   ,  15 – 17   ,  25 – 37   
 preliminary orbit determination   ,  297   
 relative motion and rendezvous   ,  391 – 94   
 restricted three-body motion   ,  136   
 rocket vehicle dynamics   ,  656   
 three-body systems   ,  696    

 Adaptive step size   ,  41   ,  52   ,  see Appendix D page 701   
 Advance of perigee   ,  236 – 37   ,  240   
 Aiming radius  

 hyperbolic trajectories   ,  104 – 5   ,  108   ,  451   
 planetary rendezvous   ,  451 – 52   ,  454    

 Altitude  
 equation   ,  657   
 gravity-gradient stabilization   ,  635   
 perigee   ,  100   ,  312 – 13   ,  383 – 84   
 preliminary orbit determination   ,  305   ,  312 – 13   ,  361 – 65   

 rocket performance   ,  661   ,  662 – 5   
 Sun-synchronous three dimensional orbits   ,  237   
 two-body motion   ,  68 – 70    

 Amplitude   ,  586   
 Angles 

   see also   fl ight path …   
 auxiliary   ,  174 – 75   
 azimuth   ,  297   ,  314 – 15   ,  see Appendix D page 701   
 dihedral   ,  208   ,  355   
 elevation   ,  287 – 9   ,  293   ,  297   ,  see Appendix D page 

701   
 Euler’s   ,  208 – 12   ,  538 – 48   ,  560   
 to periapse   ,  451 – 2   
 phase   ,  432 – 6   
 preliminary orbit determination   ,  297   
 of rotation   ,  347   
 spin   ,  607   
 tilt   ,  536   
 turn   ,  105   ,  112   ,  452   ,  461   ,  465   
 wobble   ,  579    

 Angular acceleration  
 absolute   ,  490 – 3   ,  495 – 7   ,  524   ,  526   ,  544   
 gyroscopic attitude control   ,  630 – 1   
 point masses   ,  19 – 20   ,  25   
 relative   ,  393   ,  487 – 88   ,  490   
 rendezvous   ,  393   
 rigid-body kinematics   ,  486 – 95   
 satellite attitude dynamics   ,  582 – 4   ,  594   ,  612   
 torque-free motion   ,  582 – 4   
 yo-yo despin   ,  612    

 Angular momentum  
 chase maneuvers   ,  350 – 53   
 conservation of   ,  75   
 double-gimbaled control moment gyros   ,  627 – 28   
 Hohmann transfers   ,  321   
 hyperbolic trajectories   ,  111 – 12   ,  141   
 Lagrange coeffi cients   ,  117 – 29   
 moments of inertia   ,  501 – 4   ,  507 – 8   ,  513 – 8   
 orbit formulas   ,  74 – 82   
 plane change maneuvers   ,  362 – 3   
 planetary departure   ,  442 – 3   
 planetary fl yby   ,  460   
 point masses   ,  21 – 22   
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 Angular momentum  (Continued)
 preliminary orbit determination   ,  297 – 9   ,  322 – 25   , 

 334 – 41   
 rigid-body dynamics   ,  498 – 508   ,  524   ,  533   ,  534   
 satellite attitude dynamics  

 coning maneuvers   ,  601 – 8   
 dual-spin spacecraft   ,  590 – 91   
 gyroscopic control   ,  615   ,  616 – 24   ,  627 – 31   
 nutation dampers   ,  596   
 thrusters   ,  605 – 9   
 torque-free motion   ,  584 – 86   ,  590   ,  596   ,  601   
 yo-yo despin   ,  608 – 9   ,  610    

 spinning tops   ,  537   
 three dimensional orbits   ,  199   ,  399   
 torque-free motion   ,  584 – 86   ,  590   ,  596   ,  601   
 two-body motion   ,  68 – 70   ,  74 – 5   ,  78 – 89    

 Angular position   ,  432   ,  see Appendix D page 701   
 Angular velocity  

 close-proximity circular orbits   ,  419   
 Euler angles   ,  541 – 44   
 Euler’s equations   ,  524 – 28   
 moments of inertia   ,  503 – 4   
 pitch   ,  558 – 60   
 point masses   ,  25 – 27   ,  32   ,  36 – 38   
 relative motion and rendezvous   ,  393   ,  396   
 rigid-body dynamics   ,  485 – 86   ,  534 – 38   ,  543 – 46   
 roll   ,  566 – 67   
 satellite attitude dynamics  

 dual-spin spacecraft   ,  590 – 92   
 gravity-gradient stabilization   ,  635 – 36   
 gyroscopic control   ,  615 – 16   ,  621   ,  623 – 25   
 thrusters   ,  605   
 torque-free motion   ,  574 – 84   ,  591   ,  649   
 yo-yo despin   ,  608 – 13    

 spinning tops   ,  533   
 two-body motion   ,  70   
 yaw   ,  549 – 50    

 Angular-impulse   ,  22 – 23   ,  500 – 1   
 Apoapse   ,  89   ,  355 – 57   ,  455   
 Apogee  

 kick   ,  323 – 4   
 radius   ,  100   ,  148   ,  240   
 towards the sun   ,  165 –6 6   
 velocity   ,  95    

 Applied torque   ,  500 – 3   
 Approach trajectories   ,  451   ,  452   ,  460   ,  462 

   see also   two-body motion   
 Apse lines   ,  260   ,  344 – 56   
 Arcseconds   ,  471   
 Areal velocity   ,  76   

 Argument of perigee  
 oblateness   ,  233 – 35   ,  239 – 42   
 orbital elements   ,  208   ,  239   ,  243    

 Arrival phase   ,  475 – 78   
 Astronomical units   ,  471   ,  472   
 Attitude dynamics     see   satellite …    
 Auxiliary angles   ,  174 – 78   
 Axial bearing loads   ,  548   
 Axial torques   ,  624 – 27   
 Axis of rotation   ,  200   
 Axisymmetric dual-spin   ,  589 – 90   ,  620   
 Axisymmetric tops   ,  533 – 38   
 Azimuth  

 angles   ,  297   ,  314 – 15   
 averaged radius   ,  96   
 plane change maneuvers   ,  359 – 60     

 B  
 bac-cab rule   ,  9   
 Bearing forces   ,  546 – 48   
 Bent rods   ,  520 – 23   
 Bessel functions   ,  169 – 70   
 Bi-elliptic Hohmann transfers   ,  328 – 32   
 Bias values   ,  627   
 Bisection method   ,  135 – 6   ,  137   ,  138   ,  see Appendix D page 

701   
 Bivariate functions   ,  678   
 Body cones   ,  580   
 Body frames   ,  26   
 Boundary value problem   ,  38   
 Burnout  

 Jacobi constant   ,  139 – 40   
 rocket vehicle dynamics   ,  662 – 5   ,  668 – 87   
 sensitivity analysis   ,  448 – 50     

 C  
 Capture orbits   ,  451 – 52   ,  454   ,  455 – 58   
 Capture radius   ,  454   
 Cartesian coordinates  

 elliptical orbits   ,  89   
 equation of a parabola   ,  101   
 hyperbolic trajectories   ,  105   
 rotation   ,  223 – 26   
 three dimensional orbits   ,  204 – 5    

 Cassini gravity assist maneuvers   ,  469   
 Celestial bodies   ,  201 – 3   
 Center of curvature   ,  13 – 15   
 Center of mass  

 inertial frames   ,  62 – 65   
 moving reference frames   ,  70 – 74   
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 rigid-body dynamics  
 Euler angles   ,  538 – 40   
 Euler’s equations   ,  524 – 30   
 moments of inertia   ,  504 – 5   ,  507 – 8   ,  510 – 12   ,  517 – 23   
 parallel axis theorem   ,  517 – 23   
 rotational motion   ,  500 – 1   
 translational motion   ,  495 – 97    

 two-body motion   ,  62 – 9   ,  70 – 4    
 Characteristic energy   ,  108   
 Chase maneuvers   ,  350 – 54   ,  400 – 21   
 Chasles ’  theorem   ,  485 – 86   
 Circular orbits  

 close-proximity relative motion   ,  419 – 21   
 Hohmann transfers   ,  325   ,  328   
 parking   ,  443   ,  479 – 80   
 position as a function of time   ,  156 – 57   
 rigid-body kinetic energy   ,  532 – 33   
 two-body motion   ,  70 – 71    

 Classical orbital elements   ,  199 – 200   ,  207   ,  261 – 63   , 
 297 – 304   

 Classical Euler angle sequence   ,  224   ,  see Appendix D 
page 701   

 Clohessy – Wiltshire (CW) frames  
 equations   ,  407 – 11   ,  417 – 18   ,  338   ,  340   
 gravity-gradient stabilization   ,  635 – 36   
 matrices   ,  410   ,  415   ,  417    

 Close-proximity circular orbits   ,  419 – 27   
 Co-moving reference frames   ,  392 – 9   ,  402 – 6   
 Coaxial elliptic orbits   ,  325   ,  338 – 50   
 Common apse lines   ,  338 – 43   
 Common focus   ,  343   
 Conics   ,  441 – 42   ,  475 – 81   
 Coning maneuvers   ,  603 – 4   ,  607   
 Conservation of …   

 angular momentum   ,  75 – 6   
 energy   ,  83   ,  608 – 11   
 momentum   ,  75 – 6   ,  608 – 9    

 Constant amplitude   ,  576   
 Continuous three dimensional bodies   ,  495 – 97   
 Control moment gyros   ,  627 – 31   
 Coordinate systems   ,  280 – 89 

   see also   Cartesian …    ;  topocentric …   
 polar   ,  90    

 Coordinate transformations  
 geocentric equatorial   ,  216 – 29   ,  242 – 4   ,  283 – 9   
 perifocal frames   ,  229 – 33   
 rotation   ,  200 – 3   
 three dimensional orbits   ,  199 – 200   ,  242 – 4   
 topocentric   ,  280 – 82    

 Coplanar orbits   ,  319   ,  339 – 40   ,  355   

 Cord lengths   ,  613 – 15   
 Cord unwind rates   ,  611 – 12   
 Coriolis acceleration   ,  30   
 Cosine vectors   ,  304   ,  306   
 Coupling coeffi cients   ,  43   ,  see Appendix D page 701   
 Cross product   ,  7 – 8   ,  see Appendix D page 701   
 Cruise phase   ,  429   ,  475 – 76   
 Curvature of the earth   ,  657 – 58   
 Curvilinear motion   ,  1 – 7   ,  11   
 CW     see   Clohessy – Wiltshire frames    

 D  
 Damped natural frequency   ,  46   ,  see Appendix D page 

701   
 damping coeffi cient   ,  45   
 Damping factor   ,  45   ,  see Appendix D page 701   
 Dark side approaches   ,  462 – 63   ,  466   
 Declination  

 preliminary orbit determination   ,  297   ,  298   ,  305 – 6   
 state vectors   ,  204 – 8   
 three dimensional orbits   ,  199 – 203    

 Delta-H requirements   ,  603 – 4   ,  606 – 8   
 Delta-v requirements  

 bi-elliptic Hohmann transfers   ,  328 – 32   
 chase maneuvers   ,  350 – 54   
 Hohmann transfers   ,  321 – 28   ,  430 – 32   
 impulsive orbital maneuvers   ,  368 – 74   ,  411 – 19   
 interplanetary trajectories   ,  429 – 30   ,  479   ,  481 – 83   
 non-Hohmann transfers   ,  339 – 43   ,  430 – 32   
 phasing maneuvers   ,  332 – 37   
 plane change maneuvers   ,  355 – 58   
 planetary rendezvous   ,  451   ,  479 – 83   
 rocket vehicle dynamics   ,  655 – 56   
 two-impulse maneuvers   ,  425 – 27    

 Departure trajectories   ,  444 – 48   ,  479   ,  481 – 84   
 Despin mechanisms   ,  608 – 13   
 Diagonal moment of inertia matrices   ,  507 – 10   
 Dihedral angles   ,  208   ,  355   
 Direct ascent trajectories   ,  444   
 Direction angles   ,  4   
 Direction cosine matrix   ,  217   ,  219 – 26   ,  see Appendix D 

page 701   
 Direction cosine vectors   ,  290 – 92   ,  304   
 Distances between planets   ,  473 – 5   
 Dot product   ,  5   ,  see Appendix D page 701   
 Double-gimbaled control moment gyros   ,  627 – 30   
 Downrange equations   ,  657   
 Drag force   ,  656   ,  666   
 Dual-spin satellites   ,  621 – 2   ,  649   
 Dual-spin spacecraft   ,  589 – 93    
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 E  
 Earth  

 centered inertial frames   ,  33 – 7   
 earth orbits   ,  84 – 85   ,  199   ,  319 – 21   
 earth satellites   ,  199   ,  246 – 53   
 earth-moon systems   ,  136 – 39   
 earth’s curvature   ,  656 – 57   
 earth’s gravitational parameter   ,  85   
 earth’s oblateness   ,  233 – 43   
 earth’s shadow   ,  165 – 7   
 earth’s sphere of infl uence   ,  437 – 41   
 low earth orbits   ,  84   ,  319   ,  574    

 East longitude   ,  276 – 80   ,  281 – 86   
 East-North-Zenith (ENZ) frame   ,  284   
 Easterly launches   ,  359 – 60   
 Eccentric anomaly  

 hyperbolic trajectories   ,  174 – 82   
 Kepler’s equation   ,  155 – 57   ,  168   ,  see Appendix D page 

701   
 MATLAB algorithms   ,  163   ,  178   ,  see Appendix D page 

701   
 oblateness   ,  241   
 orbit equation   ,  171   
 position as a function of time   ,  158 – 62   ,  171   ,  174 – 82   , 

 183    
 Eccentricity  

 chase maneuvers   ,  350 – 54   
 elliptical orbits   ,  89 – 100   
 hyperbolic trajectories   ,  150   
 interplanetary trajectories   ,  442 – 43   ,  465   ,  467   
 limiting values   ,  168 – 69   
 non-Hohmann transfers   ,  341 – 5   
 orbit formulas   ,  78 – 79   
 orbital elements   ,  208 – 9   ,  210 – 11   ,  213   
 plane change maneuvers   ,  366 – 67   
 planetary departure   ,  443 – 44   
 planetary ephemeris   ,  471   ,  472   
 planetary fl yby   ,  460   
 planetary rendezvous   ,  452   
 position as a function of time   ,  161   ,  168 – 9   ,  174 – 5   
 preliminary orbit determination   ,  297    

 Ecliptic plane   ,  200   
 Effective exhaust velocity   ,  660   
 Eigenvalues   ,  513 – 17   
 Eigenvectors   ,  513 – 17   
 Elementary rotation matrix   ,  245   
 Elevation angles   ,  287 – 93   ,  297   ,  314 – 16   ,  see Appendix D 

page 701   
 Elliptical orbits  

 Hohmann transfers   ,  321 – 8   

 non-Hohmann trajectories   ,  475 – 76   
 position as a function of time   ,  157 – 72   ,  182 – 4   
 two-body motion   ,  68 – 78    

 Empty masses   ,  667   ,  686   
 Energy  

 circular orbits   ,  84   
 conservation of   ,  83   ,  608 – 11   
 dissipation   ,  589 – 96   
 elliptical orbits   ,  89   
 Hohmann transfers   ,  321   
 hyperbolic trajectories   ,  108   
 kinetic   ,  530 – 53   ,  586 – 91   ,  608 – 11   
 law   ,  82 – 83   
 non-Hohmann transfers   ,  340 – 41   
 orbital elements   ,  208 – 9   
 plane change maneuvers   ,  358   
 position as a function of time   ,  183   
 potential   ,  65 – 66   ,  704   
 sinks   ,  590 – 93   
 three dimensional orbits   ,  208 – 9    

 ENZ     see   East-North-Zenith   
 Ephemeris   ,  201 – 3   ,  470 – 75   
 Epochs   ,  398   ,  see Appendix D page 701   
 Equations of motion  

 double-gimbaled control moment gyros   ,  627   
 dual-spin spacecraft   ,  589   
 inertial frames   ,  62 – 66   
 integration   ,  693 – 6   
 interplanetary trajectories   ,  430 – 31   
 linearization of relative motion   ,  400 – 2   
 numerical integration   ,  693 – 6   
 relative   ,  70 – 4   ,  400 – 6   
 rocket vehicle dynamics   ,  656 – 58   
 rotational   ,  497 – 501   ,  596 – 602   
 satellite attitude dynamics   ,  574 – 82   
 translational   ,  495 – 97    

 Equations of parabolas   ,  101   
 Equatorial frames 

   see also   geocentric …   
 plane change maneuvers   ,  358 – 62   ,  363 – 64   
 state vectors   ,  208 – 12   
 three dimensional orbits   ,  199   
 topocentric coordinates   ,  280 – 83   ,  285 – 88    

 Equilibrium points   ,  133 – 8   
 Escape velocity   ,  101   ,  143   
 Euler angle sequence   ,  224   ,  see Appendix D page 701   
 Euler axis   ,  552 – 5   
 Euler, Leonhard   ,  24   
 Euler rotations   ,  552 – 69   
 Euler’s angles   ,  208 – 9   ,  538 – 48   ,  582   
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 Euler’s equation  
 rigid-body dynamics   ,  524 – 30   
 satellite attitude dynamics   ,  582   ,  585 – 87   ,  613   ,  626    

 Euler principal angle   ,  555   
 Euler’s method   ,  43   ,  48   
 Excess speed   ,  108 – 9   
 Excess velocity   ,  442 – 48   ,  451 – 58   ,  476 – 78   
 Exhaust   ,  660 – 64   
 Extremum   ,  679 – 81    

 F  
 Field-free space restricted staging   ,  667 – 78   
 Five-term acceleration   ,  30   ,  31   
 Flattening     see   oblateness   
 Flight path angles  

 elliptical orbits   ,  95   
 hyperbolic fl yby   ,  464   
 Newton’s law of gravitation   ,  17 – 18   
 non-Hohmann transfers   ,  339 – 40   
 parabolic trajectories   ,  101   
 rocket vehicle dynamics   ,  656 – 8    

 Flight time   ,  329 – 32   
 Floor   ,  168   
 Flow rates   ,  663   
 Fluids   ,  593 – 4   
 Flyby   ,  458 – 70   
 Flywheels   ,  615 – 31   
 Forces 

   see also   gravitational …   
 bearing   ,  546 – 8   
 drag   ,  656   ,  666   
 gyroscopic   ,  546 – 8   
 lifting   ,  657   
 net   ,  21 – 3   
 nutation dampers   ,  595   
 point masses   ,  15 – 9   
 sphere of infl uence   ,  437 – 41   
 units of   ,  15 – 9    

 Free-fall   ,  16 – 8    

 G  
 Gauss’s method of preliminary orbit determination   , 

 297 – 312   ,  see Appendix D page 701   
 GEO     see   geostationary equatorial orbits   
 Geocentric …   

 latitude   ,  281 – 2   
 orbits   ,  163 – 4   ,  532 – 3   
 position vectors   ,  256 – 63   
 right ascension-declination   ,  200 – 3   
 satellites   ,  341 – 3    

 Geocentric equatorial frames  
 coordinate transformations   ,  229 – 33   ,  285 – 6   
 MATLAB algorithms   ,  293   ,  see Appendix D page 

701   
 orbital elements   ,  208 – 15   
 perifocal frame   ,  229 – 33   ,  285 – 6   
 state vectors   ,  208 – 15   ,  233   
 topocentric transformations   ,  280 – 2   
 transformations   ,  229 – 33   ,  285 – 6    

 Geodetic latitude   ,  281 – 2   
 Geostationary equatorial orbits (GEO)   ,  85 – 8  

 phasing maneuvers   ,  336 – 7   
 plane change maneuvers   ,  361 – 4   ,  372 – 3    

 Geosynchronous dual-spin communication satellites   ,  
494   

 Gibb’s method   ,  256 – 63   ,  see Appendix D page 701   
 Gimbals   ,  492 – 4   ,  627 – 8   
 Gradient operator   ,  65   
 Gravitation  

 acceleration   ,  15 – 9   ,  233   
 attraction   ,  61 – 145   
 geocentric right ascension-declination   ,  201   
 point masses   ,  15 – 9   
 potential energy   ,  704   ,  706   
 restricted three-body motion   ,  131 – 2   
 satellite attitude dynamics   ,  631 – 2   
 sphere of infl uence   ,  437 – 41    

 Gravity assist maneuvers   ,  469   
 Gravity gradient stabilization   ,  631 – 44   
 Gravity turn trajectories   ,  665 – 7   
 Greenwich sidereal time   ,  276   ,  278   ,  280   
 Ground track   ,  244 – 9   ,  see Appendix D page 701   
 Guided missiles   ,  658   
 Gyros  

 gyroscope equation   ,  537   
 gyroscopic attitude control   ,  615 – 31   
 gyroscopic forces   ,  546 – 8   
 gyroscopic moment   ,  537   
 motors   ,  528 – 30   
 rotors   ,  492 – 3   ,  528 – 30   
 satellite attitude dynamics   ,  574     

 H  
 Heliocentric trajectories   ,  441  

 approach velocity   ,  451   
 post-fl yby   ,  458 – 70   
 speed   ,  446   ,  459   
 velocity   ,  442   ,  458 – 68    

 Heun’s method   ,  44   ,  49 – 50   ,  see Appendix D page 701   
 High-energy precession rates   ,  537 – 8   
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 Hohmann transfers  
 bi-elliptic transfers   ,  328 – 32   
 common apse line   ,  338   
 interplanetary trajectories   ,  430 – 1   ,  475 – 81   
 non-Hohmann trajectories   ,  475 – 81   
 orbital maneuvers   ,  321 – 37   ,  338   
 phasing maneuvers   ,  332 – 7   
 plane change maneuvers   ,  355 – 67   
 planetary rendezvous   ,  451 – 2   ,  456    

 Horizon coordinate system   ,  284 – 9   
 Hyperbolas   ,  178   ,  see Appendix D page 701   
 Hyperbolic trajectories  

 approach   ,  451 – 6   ,  481   
 departure   ,  442 – 8   
 excess velocity   ,  442 – 8   ,  451 – 69   ,  476 – 8   
 fl yby   ,  458 – 70   
 position as a function of time   ,  174 – 82   
 rotations   ,  452 – 3   
 two-body motion   ,  104 – 13     

 I  
 Identity matrices   ,  218   
 Impulse  

 angular   ,  20 – 2   ,  500 – 1   
 coning maneuvers   ,  601 – 5   
 rendezvous maneuvers   ,  321 – 37   ,  411 – 8   
 rocket vehicle dynamics   ,  660   ,  665 – 7   ,  671 – 3   ,  678 – 85    

 Impulsive orbital maneuvers   ,  320 – 37   
 Inclination  

 double-gimbaled control moment gyros   ,  627   
 plane change maneuvers   ,  355 – 60   
 planetary ephemeris   ,  470 – 1   
 Sun-synchronous orbits   ,  237   
 three dimensional orbits   ,  208 – 9   ,  210    

 Inertia 
   see also   moments of inertia  
 angular velocity   ,  129   ,  487 – 8   ,  617 – 8   ,  635 – 6   
 equations of two-body motion   ,  62 – 9   
 gravity-gradient stabilization   ,  633 – 5   ,  640 – 4   
 matrices   ,  508   ,  509   ,  513 – 9   ,  533   
 rigid-body dynamics   ,  501 – 23   ,  547   
 tensors   ,  508 – 16   ,  516   ,  523   
 torque-free motion stability   ,  586   
 velocity   ,  131   ,  293   ,  487 – 91   ,  635 – 7    

 Initial value problem   ,  38   ,  42   
 Interchange of the dot and cross   ,  10   
 Insertion points   ,  358 – 9   
 Integration, equations of motion   ,  693 – 9   
 Intercept trajectories   ,  350 – 4   
 Intermediate-axis spinners   ,  600 – 1   

 Interplanetary dual-spin spacecraft   ,  593   
 Interplanetary trajectories   ,  429 – 84  

 ephemeris   ,  470 – 5   
 fl yby   ,  458 – 70   
 Hohmann transfers   ,  430 – 1   
 method of patched conics   ,  441 – 2   
 non-Hohmann   ,  475 – 81   
 patched conics   ,  441 – 2   
 planetary departure   ,  442 – 8   
 planetary ephemeris   ,  470 – 5   
 planetary fl yby   ,  458 – 70   
 planetary rendezvous   ,  451 – 8   
 rendezvous   ,  432 – 6   ,  451 – 8   
 sensitivity analysis   ,  448 – 50   
 sphere of infl uence   ,  437 – 41   
 three dimensional orbits   ,  199    

 Iterations   ,  135   ,  136 – 7   ,  164 – 5   ,  178   ,  190   ,  312   ,  see 
Appendix D page 701    

 J  
 Jacobi constant   ,  139 – 45   
 Julian centuries   ,  471 – 3   
 Julian days (JD)   ,  276 – 9  

 numbers   ,  276 – 9   ,  471 – 3   ,  see Appendix D page 701    
 Jupiter’s right ascension   ,  286 – 7    

 K  
 Kepler, Johannes   ,  76   
 Kepler’s equation  

 Bessel functions   ,  169 – 70   
 eccentric anomaly   ,  158 – 65   ,  175   ,  see Appendix D page 

701   
 hyperbola eccentric anomaly   ,  175 – 6   ,  178 – 82   ,  see 

Appendix D page 701   
 hyperbolic trajectories   ,  176 – 82   
 MATLAB algorithms   ,  178 – 82   ,  188   ,  see Appendix D 

page 701   
 Newton’s method   ,  see Appendix D page 701   
 position as a function of time   ,  76 – 9   ,  92 – 4   ,  160 – 76   , 

 178 – 9   ,  182 – 9   
 universal variables   ,  182 – 94    

 Kepler’s second law   ,  76   
 Kilograms   ,  19 – 24   
 Kinematics   ,  9 – 15   ,  486 – 95   
 Kinetic energy   ,  530 – 3   ,  586 – 8   ,  591   ,  608 – 11    

 L  
 Lagrange coeffi cients  

 MATLAB algorithms   ,  see Appendix D page 701   
 position as a function of time   ,  191 – 4   
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 preliminary orbit determination   ,  265 – 9   ,  298 – 300   ,  311   
 two-body motion   ,  117 – 29    

 Lagrange multiplier method   ,  678 – 86   
 Lagrange points   ,  133 – 9   
 Lambert’s problem  

 chase maneuvers   ,  350 – 4   
 MATLAB algorithms   ,  270   ,  see Appendix D page 701   
 patched conics   ,  475 – 81   
 preliminary orbit determination   ,  263 – 75   ,  616 – 22   ,  see 

Appendix D page 701    
 Laplace limit   ,  168 – 9   
 Latitude   ,  87 – 8   ,  281 – 2   ,  286 – 7   ,  358 – 61   
 Latus rectum   ,  81 – 2   ,  366 – 7   
 Launch azimuth   ,  359 – 61   
 Launch vehicle boost trajectories   ,  656 – 8   
 Leading-side fl yby   ,  458 – 9   ,  461 – 2   
 LEO     see   low-earth orbits   
 Libration points   ,  133 – 9   
 Lifting forces   ,  657   
 Limiting values   ,  168   
 Linear momentum   ,  498 – 9   
 Linearized equations of relative motion   ,  403   
 Local horizon   ,  81   
 Local sidereal time   ,  276   ,  278 – 80   ,  see Appendix D page 

701   
 Longitude of perihelion   ,  471   
 Low earth orbits (LEO)   ,  84 – 4   ,  361 – 5   
 Low-energy precession rates   ,  536 – 7   
 Lunar trajectories   ,  442   
 LVLH frame   ,  392   ,  394   ,  see Appendix D page 701    

 M  
 Major-axis spinners   ,  586 – 8   ,  641   
 Mars missions   ,  436   
 Mass  

 gravitational potential energy   ,  704 – 6   
 moments of inertia   ,  503   
 nutation dampers   ,  593 – 601   
 point masses   ,  15 – 9   
 ratios   ,  671 – 3   ,  682   ,  684 – 5   ,  686   
 rocket vehicle dynamics   ,  658 – 65    

 MATLAB algorithms   ,  see Appendix D page 701  
 acceleration   ,  696   
 angular position   ,  293   ,  see Appendix D page 701   
 chase maneuvers   ,  353 – 4   
 classical orbital elements   ,  261 – 3   ,  see Appendix D page 

701   
 eccentric anomaly   ,  163 – 5   ,  167 – 9   ,  see Appendix D page 

701   
 epochs   ,  398   ,  see Appendix D page 701   

 Gauss’s method of preliminary orbit determination   , 
 304 – 12   ,  see Appendix D page 701   

 geocentric equatorial position   ,  293   ,  see Appendix D 
page 701   

 Gibbs method of preliminary orbit determination   , 
 260 – 3   ,  see Appendix D page 701   

 hyperbola eccentric anomaly   ,  178   ,  see Appendix D 
page 701   

 Julian day number   ,  471   ,  see Appendix D page 701   
 Kepler’s equation   ,  178 – 82   ,  188   ,  see Appendix D page 

701   
 Lagrange coeffi cients   ,  see Appendix D page 701   
 Lambert’s problem   ,  270   ,  see Appendix D page 701   
 local sidereal time   ,  279   ,  see Appendix D page 701   
 month identity conversions   ,  see Appendix D page 701   
 Newton’s method   ,  163   ,  178   ,  188   ,  see Appendix D page 

701   
 non-Hohmann trajectories   ,  476   
 numerical designation conversions   ,  see Appendix D 

page 701   
 orbital elements from the state vector   ,  209 – 12   ,  see 

Appendix D page 701   
 planet identity conversions   ,  see Appendix D page 701   
 planet state vector calculation   ,  471   ,  see Appendix D 

page 701   
 planetary ephemeris   ,  471 – 2   ,  see Appendix D page 701   
 position as a function of time   ,  163   ,  178   ,  188   ,  191   ,  see 

Appendix D page 701   
 preliminary orbit determination   ,  260   ,  270   ,  279   ,  293   , 

 see Appendix D page 701   
 range   ,  293   ,  see Appendix D page 701   
 sidereal time   ,  279   ,  see Appendix D page 701   
 spacecraft trajectories   ,  476   ,  see Appendix D page 701   
 sphere of infl uence   ,  476   ,  see Appendix D page 701   
 state vectors   ,  66   ,  231   ,  293   ,  394   ,  see Appendix D page 

701   
 Stumpff functions   ,  185   ,  see Appendix D page 701   
 three-body systems   ,  694 – 9   
 time lapse   ,  see Appendix D page 701   
 transformation matrices   ,  232   
 universal anomaly   ,  188   ,  see Appendix D page 701   
 universal Kepler’s equation   ,  188   ,  see Appendix D page 

701   
 Universal Time   ,  476   ,  see Appendix D page 701    

 Matrices 
   see also   transformation …   
 Clohessy – Wiltshire frames   ,  409 – 10   ,  418   ,  421   
 diagonal   ,  403 – 5   
 direction cosines   ,  217 – 22   ,  224 – 9   ,  231   ,  232   ,  286 – 8   
 identity matrices   ,  218   
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 Matrices (Continued) 
 inertia   ,  508   ,  509   ,  513 – 9   ,  533   
 moments of inertia   ,  508 – 17   ,  533   
 orthogonal   ,  218   ,  231   ,  508   ,  539   
 rotation   ,  549 – 52   
 unit   ,  218    

 Mean …   
 anomaly   ,  157 – 61   ,  167 – 9   ,  174   ,  209   
 distance   ,  94   
 longitude   ,  471   
 motion   ,  158   ,  241   ,  405   ,  407   ,  414   ,  417    

 Mercator projections   ,  244 – 5   
 Method of patched conics   ,  441 – 2   ,  475 – 6   
 Minor-axis spinners   ,  586 – 8   ,  641 – 2   
 Missiles   ,  658   
 Molniya orbit   ,  238 – 9   
 Moments   ,  410 – 14   ,  435 – 40   ,  454 – 6   
 Moments of inertia  

 gravity-gradient stabilization   ,  633 – 4   
 matrices   ,  508 – 17   ,  533   
 parallel axis theorem   ,  517 – 23   
 principal   ,  503   ,  515 – 7   ,  520 – 3   ,  524   ,  547   
 rigid-body dynamics   ,  501 – 23   ,  547   
 torque-free motion stability   ,  589    

 Momentum 
   see also   angular …   
 absolute angular   ,  498 – 501   
 conservation of   ,  611 – 12   
 exchange systems   ,  615 – 31   
 linear   ,  498 – 9   
 rigid-body rotational motion   ,  501   
 rocket vehicle dynamics   ,  658 – 60   
 yo-yo despin   ,  608 – 15   

 Month identity conversions   ,  see Appendix D page 701    
 Moon ephemeris   ,  203   
 Moving reference frames   ,  70 – 3   ,  421   ,  488   ,  528   
 Moving vectors   ,  24 – 8   
 Multi-stage vehicles   ,  672   ,  676   ,  677   
 Mutual gravitational attraction   ,  61 – 113 

   see also   two-body motion    

 N  
 Natural frequency   ,  46   
  n  body equations of motion   ,  693 – 9   
 Net forces   ,  19   ,  22 – 3   ,  36 – 7   
 Net moments   ,  498 – 501   ,  528 – 30   
 Newton’s law of gravitation   ,  15 – 9   ,  437 – 40   
 Newton’s laws of motion   ,  19 – 24   ,  547   
 Newton’s method  

 Kepler’s equation   ,  see Appendix D page 701   

 MATLAB algorithms   ,  163   ,  178   ,  188   ,  see Appendix D 
page 701   

 preliminary orbit determination   ,  268   ,  269   ,  271   
 roots   ,  162 – 3   
 universal Kepler’s equation   ,  184 – 5   ,  188 – 9   ,  see 

Appendix D page 701    
 Newton’s second law of motion   ,  19 – 24   ,  547   
 Node regression   ,  236 – 8   
 Nodes   ,  42   ,  43   
 Noncoplanar orbits   ,  355 – 67   
 Non-Hohmann transfers   ,  338 – 43   ,  475 – 81   
 Non-rotating inertial frames   ,  32   
 Normal acceleration   ,  15   ,  18   ,  257  
 Numerical designation conversions   ,  see Appendix D page 

701    
 Numerical integration, equations of motion   ,  693 – 9   
 Nutation  

 dampers   ,  593 – 601   
 double-gimbaled control moment gyros   ,  627 – 8   
 rigid-body dynamics   ,  534 – 7   
 spinning tops   ,  538   
 torque-free motion   ,  574 – 5     

 O  
 Oblateness  

 preliminary orbit determination   ,  281   
 satellite attitude dynamics   ,  579 – 80   ,  593 – 4   
 spinner stability   ,  589   
 three dimensional orbits   ,  233 – 44    

 Obliquity of the ecliptic   ,  200   
 One-dimensional momentum analysis   ,  658 – 60   
 Optimal staging   ,  678 – 86   
 Orbit formulas   ,  74 – 82   ,  188   
 Orbit rotation   ,  366 – 7   
 Orbital elements  

 geocentric equatorial frame   ,  203 – 8   
 interplanetary trajectories   ,  471   ,  472   ,  476   
 non-Hohmann trajectories   ,  477   
 oblateness   ,  241 – 4   
 planet state vectors   ,  471   ,  see Appendix D page 701   
 planetary fl yby   ,  462 – 3   
 preliminary orbit determination   ,  260 – 3   ,  270 – 3   ,  293 – 6   
 state vectors   ,  208 – 15   ,  231   ,  see Appendix D page 701   
 three dimensional orbits   ,  208 – 15    

 Orbital maneuvers   ,  319 – 90  
 apse line rotation   ,  343 – 50   
 bi-elliptic Hohmann transfers   ,  328 – 32   
 chase maneuvers   ,  350 – 4   
 common apse line   ,  338 – 43   
 Hohmann transfers   ,  321 – 8   ,  338   
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 impulsive   ,  320 – 74   
 non-Hohmann transfers   ,  338 – 43   
 phasing maneuvers   ,  332 – 7   
 plane change   ,  355 – 67   
 two-impulse rendezvous   ,  411 – 8    

 Orbital parameters   ,  95   ,  96   ,  163   ,  173   ,  233   ,  235   ,  344   ,  346   , 
 351   ,  365   ,  443   

 Orbiting Solar Observatory (OSO-1)   ,  590   
 Ordinary differential equation   ,  38   ,  41   ,  46   
 Orientation  

 delta-v maneuver   ,  341 – 3   ,  348 – 50   
 gravity-gradient stabilization   ,  641 – 4   
 rigid-body dynamics   ,  538    

 Orthogonal transformation matrices   ,  393   ,  516 – 20   ,  526   , 
 540 – 3   

 Orthogonal unit vectors   ,  13 – 5   
 Orthonormal basis vectors   ,  216   
 Osculating plane   ,  13   
 Overall payload fractions   ,  671   ,  686    

 P  
 Parabolic trajectories   ,  100 – 3   ,  172 – 3   
 Parallel axis theorem   ,  517 – 23   
 Parallelogram rule   ,  2 – 3   
 Parallel staging   ,  670   
 Parallelepipeds   ,  546 – 8   ,  642 – 3   
 Parameter of the orbit   ,  81   
 Parking orbits   ,  443 – 8   ,  479 – 80   
 Particles   ,  1   ,  15   
 Passive altitude stabilization   ,  635   
 Passive energy dissipation   ,  593 – 600   
 Patched conics   ,  441 – 2   ,  475 – 81   
 Payloads  

 masses   ,  667   ,  671 – 2   
 ratios   ,  668 – 9   ,  671   ,  675 – 8   
 velocity   ,  673 – 4    

 Periapse  
 angle to   ,  456 – 8   
 orbit formulas   ,  81   
 plane change maneuvers   ,  355 – 67   
 radius   ,  443 – 4   ,  452 – 6   
 speed   ,  444   
 time since   ,  155 – 7   
 two-body motion   ,  82   ,  88 – 90    

 Perifocal frame   ,  113 – 6   ,  229 – 33   ,  259 – 60   
 Perigee  

 advance   ,  236 – 8   ,  242   
 altitude   ,  95 – 8   ,  100   ,  270 – 3   ,  274 – 5   
 argument of   ,  208 – 9   ,  211 – 12   ,  231   ,  235 – 8   ,  239 – 43   
 location   ,  125 – 6   ,  446 – 8   

 orbit equation   ,  100 – 3   
 passage   ,  164 – 5   ,  179   ,  270 – 3   
 radius   ,  96   ,  99 – 100   ,  274 – 5   
 time since   ,  179   ,  208 – 9   ,  270 – 3   ,  352   
 time to   ,  273 – 5   
 towards the sun   ,  167 – 72   
 velocity   ,  96 – 7    

 Perihelion radius   ,  467   ,  469   
 Period of orbit  

 circular orbits   ,  84   ,  85   
 elliptical orbits   ,  92 – 3   ,  100   
 orbital elements   ,  214 – 5   
 rendezvous opportunities   ,  433   ,  436   
 restricted three-body motion   ,  130    

 Perturbations  
 gravitation   ,  200 – 1   
 oblateness   ,  235   
 sphere of infl uence   ,  439 – 40   
 torque-free motion stability   ,  586    

 Phase angles   ,  432 – 6   
 Phasing maneuvers   ,  332 – 7   ,  432   
 Physical data   ,  689 – 90   
 Pitch   ,  449 – 52   ,  635 – 44   
 Pitchover   ,  658   
 Pivots   ,  613   ,  627 – 8   
 Plane change maneuvers   ,  355 – 67   
 Planetary …  

   see also   interplanetary trajectories  
 departure   ,  442 – 8   
 ephemeris   ,  470 – 1   
 fl yby   ,  458 – 70   
 rendezvous   ,  451 – 8    

 Planets  
 geocentric right ascension-declination   ,  200 – 3   
 identity conversions   ,  see Appendix D page 701   
 state vectors   ,  see Appendix D page 701    

 Planning Hohmann transfers   ,  326   
 Point masses   ,  1 – 54  

 absolute vectors   ,  29 – 37   
 force   ,  15 – 9   
 gravitational potential energy   ,  704 – 6   ,  see Appendix D 

page 701   
 kinematics   ,  10 – 5   
 mass   ,  15 – 9   
 moments of inertia   ,  503 – 4   
 moving vector time derivatives   ,  24 – 8   
 Newton’s law of gravitation   ,  15 – 9   
 Newton’s law of motion   ,  19 – 24   
 relative motion   ,  29 – 37   
 relative vectors   ,  29 – 37    
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 Polar coordinates   ,  82   
 Position errors   ,  448 – 50   
 Position as a function of time   ,  155 – 94  

 circular orbits   ,  156 – 7   
 elliptical orbits   ,  157 – 72   ,  183 – 4   
 hyperbolic trajectories   ,  174 – 82   
 MATLAB algorithms   ,  163   ,  178   ,  188   ,  191   ,  see 

Appendix D page 701   
 parabolic trajectories   ,  172 – 3   
 universal variables   ,  182 – 94    

 Position vectors  
 absolute   ,  29 – 37   
 equatorial frames   ,  229 – 30   
 geocentric   ,  229   ,  256 – 63   
 Gibb’s method   ,  256 – 63   
 gravitational potential energy   ,  704   
 gravity-gradient stabilization   ,  631 – 2   ,  638   
 inertial frames   ,  62 – 6   
 Lagrange coeffi cients   ,  117 – 29   ,  191 – 4   
 MATLAB algorithms   ,  209 – 12   ,  231   ,  593   ,  see Appendix 

D page 701   
 nutation dampers   ,  594   
 orbit formulas   ,  78 – 81   
 perifocal frame   ,  114 – 6   
 point masses   ,  2 – 7   ,  29 – 37   
 preliminary orbit determination   ,  256 – 63   ,  265   ,  270   , 

 274   ,  280   ,  281   ,  283   ,  285   ,  287 – 8   
 restricted three-body motion   ,  131 – 2   
 rigid-body dynamics   ,  486 – 95   ,  497 – 501   
 satellite attitude dynamics   ,  594   ,  597   ,  605   ,  609   ,  631   
 three dimensional geocentric orbits   ,  204 – 6   
 two-body motion   ,  62 – 6   ,  70 – 3   ,  114 – 9   
 two-impulse maneuvers   ,  414   ,  416   
 yo-yo despin   ,  609    

 Post-fl yby orbits   ,  458 – 70   
 Potential energy   ,  65   ,  704 – 6   
 Pound   ,  19   
 Powered ascent phase   ,  358   
 Pre-fl yby ellipse   ,  463 – 4   
 Precession  

 double-gimbaled control moment gyros   ,  627   
 nutation dampers   ,  596   
 rigid-body dynamics   ,  536 – 8   
 satellite attitude dynamics   ,  578 – 80   ,  584   ,  596   ,  602 – 3   
 spinning tops   ,  534 – 8   
 thrusters   ,  607   
 torque-free motion   ,  578 – 81    

 Predictor-corrector method   ,  48 – 9   ,  see Appendix D page 
701   

 Preliminary orbit determination   ,  255 – 312  

 angle measurements   ,  289 – 97   
 Gauss’s method   ,  297 – 312   ,  see Appendix D page 701   
 Gibbs method   ,  256 – 63   ,  see Appendix D page 701   
 Lagrange coeffi cients   ,  265 – 9   ,  298 – 300   ,  311   ,  see 

Appendix D page 701   
 Lambert’s problem   ,  263 – 75   ,  616 – 21   ,  see Appendix D 

page 701   
 MATLAB algorithms   ,  260   ,  270   ,  279   ,  293   ,  see 

Appendix D page 701   
 range measurements   ,  289 – 96   
 sidereal time   ,  275 – 80   
 topocentric coordinate systems   ,  280 – 9    

 Primed systems   ,  216   ,  218   ,  219   ,  508 – 9   
 Principal directions   ,  513 – 7   ,  520 – 3   
 Principal moments of inertia   ,  503   ,  514 – 7   ,  520 – 4   ,  547   
 Prograde …   

 coasting fl ights   ,  476 – 8   
 precession   ,  578 – 81   
 trajectories   ,  264 – 5    

 Prolate bodies   ,  579 – 80   ,  494   
 Propellant  

 fi eld-free space restricted staging   ,  667 – 78   
 Lagrange multiplier method   ,  678 – 86   
 mass   ,  320 – 1   ,  373   ,  446 – 7   
 rocket vehicle dynamics   ,  658 – 60   ,  662 – 71   ,  673 – 6   
 thrust equation   ,  658 – 60    

 Propellers   ,  488 – 90   
 Propulsion   ,  84   ,  320   ,  358   ,  369   ,  372   ,  469   ,  655   ,  660   ,  670    

 Q  
 Quaternion   ,  552 – 61    

 R  
 r-bars   ,  392   
 Radar observations   ,  57   ,  see Appendix D page 701   
 Radial distances   ,  85 – 8   
 Radial release   ,  613 – 15   
 Radius  

 aiming   ,  106   ,  113   ,  451   ,  453   ,  456   ,  457   ,  465   
 apoapse   ,  355   
 azimuth   ,  75   ,  76   
 capture   ,  454   
 earth’s sphere of infl uence   ,  441   ,  476 – 77   
 gravitational potential energy   ,  704 – 6   
 periapse   ,  360 – 2   ,  369   ,  370   ,  372 – 3   
 perigee   ,  96   ,  99   ,  208 – 12   
 perihelion   ,  430   ,  431   
 true-anomaly-averaged   ,  94   ,  95 – 7    

 Radius of curvature   ,  13   ,  14   ,  15   ,  19   ,  656   
 Range measurements   ,  289 – 97   ,  see Appendix D page 701   
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 Rates of precession   ,  534 – 8   ,  540 – 1   ,  543   
 Rates of spin   ,  534 – 8   ,  540 – 1   ,  543   
 Rectilinear motion   ,  53   ,  see Appendix D page 701   
 Rectilinear orbit   ,  147   
 Regulus   ,  201   
 Relative acceleration  

 angular   ,  526   
 point masses   ,  26   ,  30 – 1   
 relative motion and rendezvous   ,  392 – 5   
 rigid-body kinematics   ,  486 – 95   
 two-body motion   ,  70    

 Relative angular …   
 acceleration   ,  526   
 momentum   ,  74 – 6   
 velocity   ,  432 – 33    

 Relative linear momentum   ,  499   
 Relative motion   ,  391 – 427  

 Clohessy – Wiltshire equations   ,  407 – 11   ,  417 – 8   
 close-proximity circular orbits   ,  419 – 21   
 co-moving reference frames   ,  393 – 5   ,  398   ,  402 – 3   
 linearization of equations of relative motion   ,  400 – 5   
 point masses   ,  29 – 37   
 restricted three-body motion   ,  68   ,  141   
 two-impulse maneuvers   ,  411 – 8    

 Relative position  
 point masses   ,  29   ,  31   ,  33   
 preliminary orbit determination   ,  283   
 sphere of infl uence   ,  438   
 two-body motion   ,  70    

 Relative vectors   ,  29 – 37   ,  56   
 Relative velocity  

 Clohessy – Wiltshire equations   ,  408 – 9   
 close-proximity circular orbits   ,  419 – 21   
 point masses   ,  30   ,  31   ,  34   
 relative motion and rendezvous   ,  392 – 5   
 rigid-body kinematics   ,  486 – 95   
 two-body motion   ,  70   
 two-impulse maneuvers   ,  411   ,  414   ,  418    

 Rendezvous   ,  391 – 427  
 Clohessy – Wiltshire equations   ,  407 – 11   ,  417 – 8   
 close-proximity circular orbits   ,  419 – 21   
 co-moving reference frames   ,  393 – 5   ,  398   ,  402 – 3   
 equations of relative motion   ,  400 – 5   
 Hohmann transfers   ,  321 – 2   
 interplanetary trajectories   ,  432 – 6   ,  453 – 8   
 relative motion equations   ,  400 – 5   
 two-impulse maneuvers   ,  411 – 8    

 Restricted staging   ,  667 – 78   
 Restricted three-body motion   ,  129 – 45   
 Retrofi re   ,  321   ,  326   ,  333   

 Retrograde orbits   ,  235   ,  359 – 60   
 Right ascension  

 oblateness   ,  233 – 44   
 planetary ephemeris   ,  471   
 preliminary orbit determination   ,  283 – 4   ,  286 – 7   ,  291 – 4   
 state vectors   ,  204 – 7   
 three dimensional orbits   ,  200 – 3    

 Rigid-body dynamics   ,  485 – 571  
 Chasles ’  theorem   ,  485   
 equations of rotational motion   ,  497 – 501   
 equations of translational motion   ,  495 – 7   
 Euler angles   ,  538 – 48   
 Euler’s equations   ,  524 – 30   
 inertia   ,  501 – 23   
 kinematics   ,  486 – 95   
 kinetic energy   ,  530 – 33   
 moments of inertia   ,  501 – 23   
 moving vector time derivatives   ,  24 – 28   
 parallel axis theorem   ,  517 – 23   
 pitch   ,  549 – 52   
 plane change maneuvers   ,  366 – 7   
 roll   ,  549 – 52   
 rotation of the ellipse   ,  366 – 7   
 rotational motion   ,  497 – 501   
 satellite attitude dynamics   ,  584 – 9   
 spinning tops   ,  533 – 8   
 translational motion   ,  495 – 7   
 yaw   ,  549 – 52    

 Rocket equation   ,  655 – 6   
 Rocket vehicle dynamics   ,  655 – 87  

 equations of motion   ,  656 – 8   
 fi eld-free space restricted staging   ,  667 – 78   
 impulsive orbital maneuvers   ,  320 – 1   
 Lagrange multiplier method   ,  678 – 86   
 motors   ,  320 – 1   
 optimal staging   ,  678 – 86   
 restricted staging   ,  667 – 78   
 rocket performance   ,  660 – 7   
 staging   ,  667 – 86   
 thrust equation   ,  658 – 60    

 Rods   ,  505 – 6   ,  519 – 22   
 Roll   ,  549 – 52   ,  635 – 44   
 Roots   ,  514   ,  515   
 Rotating platforms   ,  537   ,  546   
 Rotation  

 axis of   ,  200   
 Cartesian coordinate systems   ,  216 – 9   
 coordinate transformations   ,  216 – 9   
 geocentric equatorial frames   ,  229 – 31   
 matrices   ,  549 – 52   
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 Rotation (Continued) 
 perifocal frames   ,  229 – 31   
 three dimensional orbits   ,  199   ,  216 – 9   
 true anomaly   ,  347 – 8    

 Rotational …   
 equations of motion   ,  497 – 501   ,  588 – 91   
 kinetic energy   ,  530 – 3   ,  586 – 8   ,  609 – 11   
 motion equations   ,  497 – 501   ,  588 – 91    

 Rotationally symmetric satellites   ,  574   
 Round-trip missions   ,  433 – 5   
 Routh – Hurwitz stability criteria   ,  600 – 1   
 Runge-Kutta method   ,  42 – 8   ,  see Appendix D page 701   
 Runge-Kutta-Fehlberg method   ,  50 – 1   ,  see Appendix D 

page 701    

 S  
 Satellite attitude dynamics   ,  573 – 644  

 axisymmetric dual-spin satellites   ,  589 – 93   ,  630 – 1   
 coning maneuvers   ,  601 – 5   
 control thrusters   ,  605 – 8   
 despin mechanisms   ,  608 – 15   
 dual-spin spacecraft   ,  589 – 93   
 gravity-gradient stabilization   ,  631 – 44   
 gyroscopic attitude control   ,  615 – 31   
 gyrostats   ,  589 – 93   
 nutation dampers   ,  593 – 601   ,  608   
 passive energy dissipaters   ,  593 – 601   
 rigid-body dynamics   ,  485   
 thrusters   ,  605 – 8   
 torque-free motion   ,  574 – 84   ,  584 – 9   ,  619 – 20   ,  630 – 1   
 yo-yo despin   ,  608 – 15    

 Satellites  
 dual-spin   ,  589 – 93   ,  630 – 1   
 earth   ,  199   ,  239 – 43   
 geocentric   ,  341 – 3   
 orientation   ,  641 – 3    

 Saturation   ,  627   
 Second order differential equations   ,  404 – 6   
 Second zonal harmonics   ,  234   
 Semi-latus rectum   ,  81   
 Semimajor axis  

 elliptical orbits   ,  89   ,  92   
 equation   ,  183 – 4   
 hyperbolic trajectories   ,  105   
 phasing maneuvers   ,  333   
 planetary ephemeris   ,  471   ,  472   
 three dimensional orbits   ,  208 – 9   ,  235 – 6    

 Semiminor axis equation   ,  183   
 Sensitivity analysis   ,  448 – 50   
 Series two-stage rockets   ,  669 – 74   ,  681   ,  683   

 SEZ     see   South-East-Zenith   
 Shafts on rotating platforms   ,  546 – 7   
 Sidereal time   ,  275 – 80   ,  293   ,  see Appendix D page 701   
 Single stage rockets   ,  663 – 5   
 Single-spin stabilized spacecraft   ,  590 – 3   
 Slant ranges   ,  297 – 8   ,  301 – 3   
 Slug   ,  19   
 Sounding rockets   ,  656   ,  658   ,  661 – 5   
 South-East-Zenith (SEZ) frame   ,  284   
 Space cones   ,  580   
 Spacecraft trajectories   ,  475   ,  see Appendix D page 701   
 Specifi c energy  

 circular orbits   ,  84   
 elliptical orbits   ,  92   
 Hohmann transfers   ,  321   
 hyperbolic trajectories   ,  108   
 non-Hohmann transfers   ,  340   
 three dimensional orbits   ,  208    

 Specifi c impulse  
 impulsive orbital maneuvers   ,  320 – 1   
 rocket vehicle dynamics   ,  658   ,  660   ,  663   ,  665   ,  668   , 

 671 – 7    
 Speed  

 circular orbits   ,  84 – 5   
 elliptical orbits   ,  97   
 excess   ,  108   
 hyperbolic trajectories   ,  178   ,  179   
 parabolic trajectories   ,  100   ,  101   
 planetary departure   ,  442   
 yo-yo despin   ,  610   ,  614 – 5    

 Sphere of infl uence   ,  437 – 41   ,  442   ,  see Appendix D page 
701   

 Spheres   ,  703 – 6   
 Spherically symmetric distribution   ,  703 – 6   
 Spin  

 accelerations   ,  622 – 7   
 angles   ,  607   
 rates   ,  488   ,  491   ,  534 – 6   
 stabilized spacecraft   ,  573    

 Spinning rotors   ,  537   
 Spinning tops   ,  533 – 8   
 Stability  

 dual-spin spacecraft   ,  589 – 93   
 gravity-gradient stabilization   ,  635   
 nutation dampers   ,  593 – 4   
 spinning satellites   ,  573   
 torque-free motion   ,  584 – 9    

 Stable pitch oscillation frequency   ,  638   
 Stage   ,  42   
 Staging   ,  667 – 86   
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 Stars   ,  201   
 State vectors  

 geocentric equatorial frame   ,  203 – 8   ,  229 – 30   
 MATLAB algorithms   ,  205 – 6   ,  231   ,  293   ,  see Appendix 

D page 701   
 non-Hohmann trajectories   ,  475 – 6   
 orbital elements   ,  208 – 15   ,  see Appendix D page 701   
 planetary ephemeris   ,  470 – 1   
 preliminary orbit determination   ,  289   ,  293 – 4   ,  297 – 8   
 three dimensional orbits   ,  208 – 15   
 two-impulse maneuvers   ,  413    

 Step mass   ,  680   ,  682   ,  684 – 6   
 Strap-on boosters   ,  670   
 Structural ratios   ,  667 – 8   ,  671   ,  672   ,  675   ,  677   
 Stumpff functions   ,  184 – 5   ,  191   ,  268   ,  see Appendix D page 

701   
 Sun-synchronous orbits   ,  237 – 40   
 Sunlit side approaches   ,  448   ,  462 – 3   ,  465 – 6   ,  467 – 8   
 Synodic period   ,  433   ,  436    

 T  
 Tandem two-stage rockets   ,  669 – 74   
 Tangential acceleration   ,  12   
 Tangential release   ,  614   
 Target vehicles   ,  400 – 21   
 Taylor series   ,  40 – 2   
 Tension   ,  613 – 15   
 Three dimensional curvilinear motion   ,  10 – 15   
 Three dimensional orbits   ,  199 – 249  

 celestial sphere   ,  201 – 4   
 coordinate transformations   ,  216 – 29   
 declination   ,  200 – 3   
 earth’s oblateness   ,  233 – 44   
 geocentric equatorial frame   ,  203 – 8   ,  229 – 33   
 geocentric right ascension-declination   ,  200 – 3   
 oblateness   ,  233 – 44   
 orbital elements   ,  208 – 15   
 patched conics   ,  441 – 2   
 perifocal frame transformations   ,  229 – 33   
 right ascension   ,  200 – 3   
 state vectors   ,  203 – 15    

 Three-body systems   ,  68   ,  437 – 41   ,  693 – 9   
 Three-stage launch vehicles   ,  674   ,  676   ,  685   
 Thrust equation   ,  658 – 60   
 Thrust-to-weight ratio   ,  661   
 Thrusters   ,  605 – 8   
 Tilt angles   ,  536   
 Time 

   see also   position as a function of time  
 dependent vectors   ,  26   

 derivatives  
 Lagrange coeffi cients   ,  118 – 9   ,  123   ,  see Appendix D 

page 701   
 moving vectors   ,  24 – 8   
 relative motion   ,  29 – 37    

 Hohmann transfers   ,  326 – 7   
 lapse   ,  see Appendix D page 701   
 manned Mars missions   ,  436   
 to perigee   ,  273   ,  275   
 satellite attitude dynamics   ,  603 – 5   ,  611 – 12   
 since periapse   ,  185   
 since perigee   ,  179   ,  208   ,  241   ,  270 – 3   ,  352    

 Titan II   ,  670   
 Topocentric coordinates   ,  280 – 9   ,  291 – 3   
 Torque  

 axial   ,  624 – 7   
 free motion   ,  574 – 89   
 rigid-body dynamics   ,  500 – 1   
 satellite attitude dynamics   ,  513 – 14   ,  521 – 5   ,  533    

 Trailing-side fl yby   ,  458   ,  459   ,  460   
 Trajectory   ,  11   ,  see Appendix D page 701   
 Transfer ellipses   ,  321 – 4   ,  430 – 1   ,  434   
 Transfer times   ,  265   
 Transformation matrices  

 MATLAB algorithms   ,  226   
 moments of inertia   ,  508 – 15   
 orthogonal   ,  393   ,  508 – 15   ,  538 – 9   
 pitch   ,  549 – 52   
 relative motion and rendezvous   ,  393   
 rigid-body dynamics   ,  508 – 15   ,  538 – 9   
 roll   ,  549 – 52   
 satellite attitude dynamics   ,  637   
 three dimensional orbits   ,  216 – 29   
 topocentric horizon system   ,  284 – 7   
 torque-free motion   ,  583 – 4   
 two-impulse maneuvers   ,  414 – 6   
 yaw   ,  549 – 52    

 Translational motion equations   ,  495 – 7   
 Transverse bearing loads   ,  548   
 True anomalies  

 averaged orbital radius   ,  94   ,  95 – 97   
 elliptical orbits   ,  161   
 hyperbolic fl yby   ,  464 – 5   
 hyperbolic trajectories   ,  104   ,  112   ,  179   ,  188 – 91   
 Lagrange coeffi cients   ,  119 – 25   
 non-Hohmann transfers   ,  338 – 43   
 parabolic trajectories   ,  100 – 1   ,  184   
 plane change maneuvers   ,  369   
 position as a function of time   ,  155 – 9   ,  163 – 5   ,  171 – 4   
 preliminary orbit determination   ,  263 – 75   
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 True anomalies (Continued) 
 rendezvous opportunities   ,  432   
 three dimensional orbits   ,  208 – 9   ,  212   ,  233   ,  240 – 1   
 time since periapse   ,  185   
 universal variables   ,  186 – 8    

 Turn angles   ,  105   ,  112   ,  452   ,  453   ,  459   ,  461   ,  465   
 Truncation error   ,  41   ,  see Appendix D page 701   
 Two-body motion  

 angular momentum   ,  74 – 82   
 energy law   ,  82 – 3   
 equations of motion   ,  62 – 74   
 equations of relative motion   ,  70 – 74   
 hyperbolic trajectories   ,  104 – 13   
 inertial frame equations of motion   ,  62 – 9   
 Lagrange coeffi cients   ,  117 – 29   
 mutual gravitational attraction   ,  61 – 113   ,  129   
 orbit formulas   ,  74 – 82   
 parabolic trajectories   ,  100 – 3   
 perifocal frame   ,  113 – 6   
 restricted three-body motion   ,  129 – 45   
 three dimensional orbits   ,  204    

 Two-impulse maneuvers   ,  332 – 7   ,  411 – 8   
 Two-stage rockets   ,  669 – 74   ,  681   ,  683    

 U  
 unit binormal vector   ,  13   ,  14   ,  55   
 Unit matrices   ,  218   
 Unit normal vector   ,  13   ,  15   
 Unit tangent vector   ,  12   ,  14   
 Unit triads   ,  220   
 Unit vectors   ,  2   ,  see Appendix D page 701  

 gravitational potential energy   ,  704   
 Lagrange coeffi cients   ,  117   
 moments of inertia   ,  502   
 point masses   ,  5 – 7   ,  32   
 three dimensional orbits   ,  216 – 29    

 Units of force   ,  19   
 Universal anomaly   ,  184 – 94   
 Universal gravitational constant   ,  15   ,  63   ,  see Appendix D 

page 701   
 Universal Kepler’s equation   ,  188 – 9   ,  310   
 Universal Time (UT)   ,  276 – 9   
 Universal variables   ,  182 – 94   
 Unprimed systems   ,  216 – 9   ,  512   
 UT     see   Universal time    

 V  
 Vectors   ,  33 – 105 

   see also   position …    ;  state …    ;  two-body motion   ;  unit …    ; 
 velocity …   

 absolute   ,  29 – 37   

 direction cosine   ,  292 – 3   ,  297   
 eigenvectors   ,  513 – 14   
 geocentric equatorial frame   ,  231   
 moving   ,  24 – 8   
 Lagrange coeffi cients   ,  117 – 29   ,  191   
 MATLAB algorithms   ,  209 – 13   ,  231   ,  see Appendix D 

page 701   
 orthogonal unit   ,  13   
 orthonormal basis   ,  216   
 perifocal frame   ,  113 – 4   
 point masses   ,  2 – 10   ,  24 – 8   ,  29 – 37   
 preliminary orbit determination   ,  256 – 63   ,  265   ,  270   ,  274   
 relative   ,  29 – 37   ,  56   
 restricted three-body motion   ,  131   
 rotations   ,  357 – 8   
 satellite attitude dynamics   ,  574   ,  575   ,  608 – 9   
 time dependent   ,  26   
 time derivatives   ,  24 – 28   
 two-impulse maneuvers   ,  413   
 weight   ,  559    

 Velocity 
   see also   delta-v …   
 errors   ,  448 – 50   
 escape   ,  101   ,  143   
 excess   ,  442 – 8   ,  451 – 8   ,  476 – 8   
 geocentric orbits   ,  200 – 3   
 Hohmann transfers   ,  321   
 non-Hohmann transfers   ,  338 – 40   
 plane change maneuvers   ,  355 – 9   
 relative motion and rendezvous   ,  391 – 5   
 rocket vehicle dynamics   ,  667 – 78    

 Vector triple product   ,  9   
 Venus ephemeris   ,  201 – 2   
 Venus fl yby   ,  462 – 4   
 Vernal equinox   ,  200 – 4   
 Visible surface areas   ,  86 – 7    

 W  
 Wait time   ,  435 – 6   
 Weight   ,  15 – 19   ,  20   ,  43   ,  64   
 Weight vectors   ,  534   
 Wobble angles   ,  579    

 Y  
 Yaw   ,  549 – 52   ,  635 – 44   
 Yo-yo despin   ,  608 – 15   
 Yaw-pitch-roll sequence   ,  549 – 50   ,  557 – 8   ,  see Appendix D 

page 701    

 Z  
 Zonal variation   ,  233 – 44             
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Appendix D MATLAB algorithms 

 

Appendix Outline 

 

D.1 Introduction 

D.2 Algorithm 1.1: numerical integration of a system of first order differential equations by choice 

of Runge-Kutta methods RK1, RK2, RK3 or RK4 

D.3 Algorithm 1.2: numerical integration of a system of first order differential equations by 

Heun’s predictor-corrector method. 

D.4 Algorithm 1.3: numerical integration of a system of first order differential equations by the 

Runge-Kutta-Fehlberg 4(5) method with adaptive step size control. 

D.5 Algorithm 2.1: numerical solution for the motion of two bodies relative to an inertial frame. 

D.6 Algorithm 2.2: numerical solution for the motion m2  of relative to m1 . 

D.7 Calculation of the Lagrange coefficients f and g and their time derivatives in terms of change 

in true anomaly. 

D.8 Algorithm 2.3: calculation of the state vector given the initial state vector and the change in 

true anomaly. 

D.9 Algorithm 2.4: find the root of a function using the bisection method. 

D.10 MATLAB solution of Example 2.18 

D.11 Algorithm 3.1: solution of Kepler’s equation by Newton’s method 

D.12 Algorithm 3.2: solution of Kepler’s equation for the hyperbola using Newton’s method 

D.13 Calculation of the Stumpff functions S(z) and C(z) 

D.14 Algorithm 3.3: solution of the universal Kepler’s equation using Newton’s method 

D.15 Calculation of the Lagrange coefficients f and g and their time derivatives in terms of change 

in universal anomaly 

D.16 Algorithm 3.4: calculation of the state vector given the initial state vector and the time lapse 

Δt 

D.17 Algorithm 4.1: obtain right ascension and declination from the position vector 
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D.18 Algorithm 4.2: calculation of the orbital elements from the state vector 

D.19 Calculation of   tan −1 y x( ) to lie in the range 0 to 360°. 

D.20 Algorithm 4.3: obtain the classical Euler angle sequence from a DCM. 

D.21 Algorithm 4.4: obtain the yaw, pitch and roll angles from a DCM. 

D.22 Algorithm 4.5: calculation of the state vector from the orbital elements 

D.23 Algorithm 4.6: calculate the ground track of a satellite from its orbital elements. 

D.24 Algorithm 5.1: Gibbs method of preliminary orbit determination 

D.25 Algorithm 5.2: solution of Lambert’s problem 

D.26 Calculation of Julian day number at 0 hr UT 

D.27 Algorithm 5.3: calculation of local sidereal time 

D.28 Algorithm 5.4: calculation of the state vector from measurements of range, angular position 

and their rates 

D.29 Algorithms 5.5 and 5.6: Gauss method of preliminary orbit determination with iterative 

improvement 

D.30 Calculate the state vector at the end of a finite-time, constant thrust delta-v maneuver. 

D.31 Algorithm 7.1: Find the position, velocity and acceleration of B relative to A’s co-moving 

frame.  

D.32 Plot the position of one spacecraft relative to another. 

D.33 Solve the linearized equations of relative motion of a chaser relative to a target whose orbit is 

an ellipse. 

D.34 Convert the numerical designation of a month or a planet into its name 

D.35  Algorithm 8.1: calculation of the state vector of a planet at a given epoch 

D.36  Algorithm 8.2: calculation of the spacecraft trajectory from planet 1 to planet 2 

D.37 Algorithm 9.1: Calculate the direction cosine matrix from the quaternion 

D.38 Algorithm 9.2: Calculate the quaternion form the direction cosine matrix. 

D.39 Solution of the spinning top problem (Example 9.21) 

D.40 Calculation of a gravity-turn trajectory. 
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D.1 Introduction 

 

This appendix lists MATLAB scripts which implement all of the numbered algorithms presented 

throughout the text. The programs use only the most basic features of MATLAB and are liberally 

commented so as to make reading the code as easy as possible. To “drive” the various algorithms, one 

can use MATLAB to create graphical user interfaces (GUIs). However, in the interest of simplicity and 

keeping our focus on the algorithms rather than elegant programming techniques, GUIs were not 

developed. Furthermore, the scripts do not use files to import and export data. Data is defined in 

declaration statements within the scripts. All output is to the screen, that is, to the MATLAB 

command window. It is hoped that interested students will embellish these simple scripts or use 

them as a springboard towards generating their own programs. 

 

Each algorithm is illustrated by a MATLAB coding of a related example problem in the text. The 

actual output of each of these examples is also listed. 

 

It would be helpful to have MATLAB documentation at hand. There are a number of practical 

references on the subject, including Hahn (2002), Kermit and Davis (2002) and Magrab (2000). 

MATLAB documentation may also be found at The MathWorks web site (www.mathworks.com). 

Should it be necessary to do so, it is a fairly simple matter to translate these programs into other 

software languages. 

 

These programs are presented solely as an alternative to carrying out otherwise lengthy hand 

computations and are intended for academic use only. They are all based exclusively on the 

introductory material presented in this text and therefore do not include the effects of perturbations 

of any kind. 

 

D.2 Algorithm 1.1: numerical integration by Runge-Kutta methods RK1, RK2, RK3 or RK4. 
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Function file rkf1_4.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function [tout, yout] = rk1_4(ode_function, tspan, y0, h, rk) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{  
  This function uses a selected Runge-Kutta procedure to integrate 
  a system of first-order differential equations dy/dt = f(t,y). 
  
  y             - column vector of solutions 
  f             - column vector of the derivatives dy/dt 
  t             - time 
  rk            - = 1 for RK1; = 2 for RK2; = 3 for RK3; = 4 for RK4 
  n_stages      - the number of points within a time interval that 
                  the derivatives are to be computed 
  a             - coefficients for locating the solution points within 
                  each time interval 
  b             - coefficients for computing the derivatives at each 
                  interior point 
  c             - coefficients for the computing solution at the end of 
                  the time step 
  ode_function  - handle for user M-function in which the derivatives f 
                  are computed 
  tspan         - the vector [t0 tf] giving the time interval for the 
                  solution 
  t0            - initial time 
  tf            - final time 
  y0            - column vector of initial values of the vector y 
  tout          - column vector of times at which y was evaluated 
  yout          - a matrix, each row of which contains the components of y 
                  evaluated at the correponding time in tout 
  h             - time step 
  ti            - time at the beginning of a time step 
  yi            - values of y at the beginning of a time step 
  t_inner       - time within a given time step 
  y_inner       - values of y within a given time step 
   
  User M-function required: ode_function 
%} 
% ------------------------------------------------------------------------ 
  
%...Determine which of the four Runge-Kutta methods is to be used: 
switch rk 
    case 1 
        n_stages = 1; 
        a = 0; 
        b = 0; 
        c = 1; 
    case 2 
        n_stages = 2; 
        a = [0 1]; 
        b = [0 1]'; 
        c = [1/2 1/2]; 
    case 3 
        n_stages = 3; 
        a = [0 1/2 1]; 
        b = [ 0  0  
             1/2 0 
             -1  2]; 
        c = [1/6 2/3 1/6]; 
    case 4 
        n_stages = 4; 
        a = [0 1/2 1/2 1]; 
        b = [ 0   0   0 
             1/2  0   0 
              0  1/2  0 
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              0   0   1]; 
        c = [1/6 1/3 1/3 1/6]; 
    otherwise 
         error('The parameter  rk  must have the value 1, 2, 3 or 4.')           
end 
  
t0   = tspan(1); 
tf   = tspan(2); 
t    = t0; 
y    = y0; 
tout = t; 
yout = y'; 
  
while t < tf 
    ti = t; 
    yi = y; 
    %...Evaluate the time derivative(s) at the 'n_stages' points within the 
    %   current interval: 
    for i = 1:n_stages 
        t_inner = ti + a(i)*h; 
        y_inner = yi; 
        for j = 1:i-1 
            y_inner = y_inner + h*b(i,j)*f(:,j); 
        end 
        f(:,i)  = feval(ode_function, t_inner, y_inner); 
    end 
  
    h    = min(h, tf-t); 
    t    = t + h; 
    y    = yi + h*f*c';                
    tout = [tout;t];  % adds t to the bottom of the column vector tout 
    yout = [yout;y']; % adds y' to the bottom of the matrix yout 
end 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Function file Example_1_18.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_1_18 
% ~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses the RK1 through RK4 methods with two  
  different time steps each to solve for and plot the response 
  of a damped single degree of freedom spring-mass system to 
  a sinusoidal forcing function, represented by 
  
  x'' + 2*z*wn*x' + wn^2*x = (Fo/m)*sin(w*t) 
  
  The numerical integration is done by the external 
  function 'rk1_4', which uses the subfunction 'rates' 
  herein to compute the derivatives. 
  
  This function also plots the exact solution for comparison. 
  
  x           - displacement (m) 
  '           - shorthand for d/dt 
  t           - time (s) 
  wn          - natural circular frequency (radians/s) 
  z           - damping factor 
  wd          - damped natural frequency 
  Fo          - amplitude of the sinusoidal forcing function (N) 
  m           - mass (kg) 
  w           - forcing frequency (radians/s) 
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  t0          - initial time (s) 
  tf          - final time (s) 
  h           - uniform time step (s) 
  tspan       - a row vector containing t0 and tf 
  x0          - value of x at t0 (m) 
  x_dot0      - value of dx/dt at t0 (m/s) 
  f0          - column vector containing x0 and x_dot0 
  rk          - = 1 for RK1; = 2 for RK2; = 3 for RK3; = 4 for RK4 
  t           - solution times for the exact solution 
  t1, ...,t4  - solution times for RK1,...,RK4 for smaller  
  t11,...,t41 - solution times for RK1,...,RK4 for larger h 
  f1, ...,f4  - solution vectors for RK1,...,RK4 for smaller h 
  f11,...,f41 - solution vectors for RK1,...,RK4 for larger h 
  
  User M-functions required:  rk1_4 
  User subfunctions required: rates 
%} 
% ------------------------------------------------------------------------ 
  
clear all; close all; clc 
  
%...Input data: 
m      = 1; 
z      = 0.03; 
wn     = 1; 
Fo     = 1; 
w      = 0.4*wn; 
  
x0     = 0; 
x_dot0 = 0; 
f0     = [x0; x_dot0]; 
  
t0     = 0; 
tf     = 110; 
tspan  = [t0 tf]; 
%...End input data 
  
%...Solve using RK1 through RK4, using the same and a larger 
%   time step for each method: 
rk = 1; 
h  = .01; [t1,  f1]  = rk1_4(@rates, tspan, f0, h, rk); 
h  = 0.1; [t11, f11] = rk1_4(@rates, tspan, f0, h, rk); 
  
rk = 2; 
h  = 0.1; [t2,  f2]  = rk1_4(@rates, tspan, f0, h, rk); 
h  = 0.5; [t21, f21] = rk1_4(@rates, tspan, f0, h, rk); 
  
rk = 3; 
h  = 0.5; [t3,  f3]  = rk1_4(@rates, tspan, f0, h, rk); 
h  = 1.0; [t31, f31] = rk1_4(@rates, tspan, f0, h, rk); 
  
rk = 4; 
h  = 1.0; [t4,  f4]  = rk1_4(@rates, tspan, f0, h, rk); 
h  = 2.0; [t41, f41] = rk1_4(@rates, tspan, f0, h, rk); 
  
output 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dfdt = rates(t,f) 
% ------------------------ 
%{ 
  This function calculates first and second time derivatives 
  of x as governed by the equation 
  
  x'' + 2*z*wn*x' + wn^2*x = (Fo/m)*sin(w*t) 
  
  Dx   - velocity (x') 
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  D2x  - acceleration (x'') 
  f    - column vector containing x  and Dx  at time t 
  dfdt - column vector containing Dx and D2x at time t 
  
  User M-functions required: none 
%} 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
  
x    = f(1); 
Dx   = f(2); 
D2x  = Fo/m*sin(w*t) - 2*z*wn*Dx - wn^2*x; 
dfdt = [Dx; D2x]; 
end %rates 
  
% ~~~~~~~~~~~~~ 
function output 
% ------------- 
%...Exact solution: 
wd  = wn*sqrt(1 - z^2); 
den = (wn^2 - w^2)^2 + (2*w*wn*z)^2; 
C1  = (wn^2 - w^2)/den*Fo/m; 
C2  = -2*w*wn*z/den*Fo/m; 
A   = x0*wn/wd + x_dot0/wd +(w^2 + (2*z^2 - 1)*wn^2)/den*w/wd*Fo/m; 
B   = x0 + 2*w*wn*z/den*Fo/m; 
  
t   = linspace(t0, tf, 5000); 
x   = (A*sin(wd*t) + B*cos(wd*t)).*exp(-wn*z*t) ... 
      + C1*sin(w*t) + C2*cos(w*t); 
    
%...Plot solutions 
%   Exact: 
subplot(5,1,1) 
plot(t/max(t),     x/max(x),               'k',  'LineWidth',1) 
grid off 
axis tight 
title('Exact') 
  
%   RK1: 
subplot(5,1,2) 
plot(t1/max(t1),   f1(:,1)/max(f1(:,1)),   '-r', 'LineWidth',1) 
hold on 
plot(t11/max(t11), f11(:,1)/max(f11(:,1)), '-k') 
grid off 
axis tight 
title('RK1') 
legend('h = 0.01', 'h = 0.1') 
  
%   RK2: 
subplot(5,1,3) 
plot(t2/max(t2),   f2(:,1)/max(f2(:,1)),   '-r', 'LineWidth',1) 
hold on 
plot(t21/max(t21), f21(:,1)/max(f21(:,1)), '-k') 
grid off 
axis tight 
title('RK2') 
legend('h = 0.1', 'h = 0.5') 
  
%   RK3: 
subplot(5,1,4) 
plot(t3/max(t3),   f3(:,1)/max(f3(:,1)),   '-r', 'LineWidth',1) 
hold on 
plot(t31/max(t31), f31(:,1)/max(f31(:,1)), '-k') 
grid off 
axis tight 
title('RK3') 
legend('h = 0.5', 'h = 1.0') 
  
%   RK4: 
subplot(5,1,5) 
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plot(t4/max(t4),   f4(:,1)/max(f4(:,1)),   '-r', 'LineWidth',1) 
hold on 
grid off 
plot(t41/max(t41), f41(:,1)/max(f41(:,1)), '-k') 
axis tight 
title('RK4') 
legend('h = 1.0', 'h = 2.0') 
end %output 
  
end %Example_1_18 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.3 Algorithm 1.2: numerical integration by Heun’s predictor-corrector method 

Function file heun.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function [tout, yout] = heun(ode_function, tspan, y0, h) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{  
  This function uses the predictor-corrector method to integrate a system 
  of first-order differential equations dy/dt = f(t,y). 
  
  y             - column vector of solutions 
  f             - column vector of the derivatives dy/dt 
  ode_function  - handle for the user M-function in which the derivatives 
                  f are computed 
  t             - time 
  t0            - initial time 
  tf            - final time 
  tspan         - the vector [t0 tf] giving the time interval for the 
                  solution 
  h             - time step 
  y0            - column vector of initial values of the vector y 
  tout          - column vector of the times at which y was evaluated 
  yout          - a matrix, each row of which contains the components of y 
                  evaluated at the correponding time in tout 
  feval         - a built-in MATLAB function which executes 'ode_function' 
                  at the arguments t and y 
  tol           - Maximum allowable relative error for determining 
                  convergence of the corrector 
  itermax       - maximum allowable number of iterations for corrector 
                  convergence 
  iter          - iteration number in the corrector convergence loop 
  t1            - time at the beginning of a time step 
  y1            - value of y at the beginning of a time step 
  f1            - derivative of y at the beginning of a time step 
  f2            - derivative of y at the end of a time step 
  favg          - average of f1 and f2 
  y2p           - predicted value of y at the end of a time step 
  y2            - corrected value of y at the end of a time step 
  err           - maximum relative error (for all components) between y2p 
                  and y2 for given iteration 
  eps           - unit roundoff error (the smallest number for which 
                  1 + eps > 1). Used to avoid a zero denominator. 
  
  User M-function required: ode_function 
%} 
% ------------------------------------------------------------------------ 
  
tol      = 1.e-6; 
itermax  = 100; 
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t0       = tspan(1); 
tf       = tspan(2); 
t        = t0; 
y        = y0; 
tout     = t; 
yout     = y'; 
  
while t < tf 
    h    = min(h, tf-t); 
    t1   = t; 
    y1   = y; 
    f1   = feval(ode_function, t1, y1); 
    y2   = y1 + f1*h; 
    t2   = t1 + h; 
    err  = tol + 1; 
    iter = 0; 
    while err > tol && iter <= itermax 
        y2p  = y2; 
        f2   = feval(ode_function, t2, y2p);  
        favg = (f1 + f2)/2; 
        y2   = y1 + favg*h; 
        err  = max(abs((y2 - y2p)./(y2 + eps))); 
        iter = iter + 1; 
    end 
     
    if iter > itermax 
        fprintf('\n Maximum no. of iterations (%g)',itermax) 
        fprintf('\n exceeded at time = %g',t) 
        fprintf('\n in function ''heun.''\n\n') 
        return 
    end 
     
    t    = t + h; 
    y    = y2; 
    tout = [tout;t];  % adds t to the bottom of the column vector tout 
    yout = [yout;y']; % adds y' to the bottom of the matrix yout 
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Function file Example_1_19.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_1_19 
% ~~~~~~~~~~~~~~~~~~~ 
%{ 
  This program uses Heun's method with two different time steps to solve 
  for and plot the response of a damped single degree of freedom 
  spring-mass system to a sinusoidal forcing function, represented by 
  
  x'' + 2*z*wn*x' + wn^2*x = (Fo/m)*sin(w*t) 
  
  The numerical integration is done in the external function 'heun', 
  which uses the subfunction 'rates' herein to compute the derivatives. 
  
  x     - displacement (m) 
  '     - shorthand for d/dt 
  t     - time (s) 
  wn    - natural circular frequency (radians/s) 
  z     - damping factor 
  Fo    - amplitude of the sinusoidal forcing function (N) 
  m     - mass (kg) 
  w     - forcing frequency (radians/s) 
  t0    - initial time (s) 
  tf    - final time (s) 
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  h     - uniform time step (s) 
  tspan - row vector containing t0 and tf 
  x0    - value of x at t0 (m) 
  Dx0   - value of dx/dt at t0 (m/s) 
  f0    - column vector containing x0 and Dx0 
  t     - column vector of times at which the solution was computed 
  f     - a matrix whose columns are: 
          column 1: solution for x at the times in t 
          column 2: solution for x' at the times in t 
  
  User M-functions required:  heun 
  User subfunctions required: rates 
%} 
% ---------------------------------------------------------------------- 
  
clear all; close all; clc 
  
%...System properties: 
m       = 1; 
z       = 0.03; 
wn      = 1; 
Fo      = 1; 
w       = 0.4*wn; 
  
%...Time range: 
t0      = 0; 
tf      = 110; 
tspan   = [t0 tf]; 
  
%...Initial conditions: 
x0  = 0; 
Dx0 = 0; 
f0  = [x0; Dx0]; 
  
%...Calculate and plot the solution for h = 1.0: 
h        = 1.0; 
[t1, f1] = heun(@rates, tspan, f0, h); 
  
%...Calculate and plot the solution for h = 0.1: 
h        = 0.1; 
[t2, f2] = heun(@rates, tspan, f0, h); 
  
output 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dfdt = rates(t,f) 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
% 
% This function calculates first and second time derivatives of x 
% for the forced vibration of a damped single degree of freedom 
% system represented by the 2nd order differential equation 
% 
% x'' + 2*z*wn*x' + wn^2*x = (Fo/m)*sin(w*t) 
% 
% Dx   - velocity 
% D2x  - acceleration 
% f    - column vector containing x and Dx at time t 
% dfdt - column vector containing Dx and D2x at time t 
% 
% User M-functions required: none 
% ------------------------- 
x    = f(1); 
Dx   = f(2); 
D2x  = Fo/m*sin(w*t) - 2*z*wn*Dx - wn^2*x; 
dfdt = [Dx; D2x]; 
end %rates 
  



Appendix D Page 11 of 101 10/27/09 9:07 AM  

% ~~~~~~~~~~~~~ 
function output 
% ~~~~~~~~~~~~~ 
plot(t1, f1(:,1), '-r', 'LineWidth',0.5) 
xlabel('time, s') 
ylabel('x, m') 
grid 
axis([0 110 -2 2]) 
hold on 
plot(t2, f2(:,1), '-k', 'LineWidth',1) 
legend('h = 1.0','h = 0.1')        
end %output 
  
end %Example_1_19 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.4 Algorithm 1.3: Numerical integration by the Runge-Kutta-Fehlberg method 

Function file rkf45.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function [tout, yout] = rkf45(ode_function, tspan, y0, tolerance) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{  
  This function uses the Runge-Kutta-Fehlberg 4(5) algorithm to 
  integrate a system of first-order differential equations 
  dy/dt = f(t,y). 
  
  y             - column vector of solutions 
  f             - column vector of the derivatives dy/dt 
  t             - time 
  a             - Fehlberg coefficients for locating the six solution 
                  points (nodes) within each time interval. 
  b             - Fehlberg coupling coefficients for computing the 
                  derivatives at each interior point 
  c4            - Fehlberg coefficients for the fourth-order solution 
  c5            - Fehlberg coefficients for the fifth-order solution 
  tol           - allowable truncation error 
  ode_function  - handle for user M-function in which the derivatives f 
                  are computed 
  tspan         - the vector [t0 tf] giving the time interval for the 
                  solution 
  t0            - initial time 
  tf            - final time 
  y0            - column vector of initial values of the vector y 
  tout          - column vector of times at which y was evaluated 
  yout          - a matrix, each row of which contains the components of y 
                  evaluated at the correponding time in tout 
  h             - time step 
  hmin          - minimum allowable time step 
  ti            - time at the beginning of a time step 
  yi            - values of y at the beginning of a time step 
  t_inner       - time within a given time step 
  y_inner       - values of y witin a given time step 
  te            - trucation error for each y at a given time step 
  te_allowed    - allowable truncation error 
  te_max        - maximum absolute value of the components of te 
  ymax          - maximum absolute value of the components of y 
  tol           - relative tolerance 
  delta         - fractional change in step size 
  eps           - unit roundoff error (the smallest number for which 
                  1 + eps > 1) 
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  eps(x)        - the smallest number such that x + eps(x) = x 
  
  User M-function required: ode_function 
%} 
% --------------------------------------------------------------- 
  
a = [0 1/4 3/8 12/13 1 1/2]; 
  
b = [    0          0          0          0         0 
        1/4         0          0          0         0 
        3/32       9/32        0          0         0 
     1932/2197 -7200/2197  7296/2197      0         0 
      439/216      -8      3680/513   -845/4104     0 
       -8/27        2     -3544/2565  1859/4104  -11/40]; 
  
c4 = [25/216  0  1408/2565    2197/4104   -1/5    0  ]; 
c5 = [16/135  0  6656/12825  28561/56430  -9/50  2/55];  
  
if nargin < 4 
    tol  = 1.e-8; 
else 
    tol = tolerance; 
end 
  
t0   = tspan(1); 
tf   = tspan(2); 
t    = t0; 
y    = y0; 
tout = t; 
yout = y'; 
h    = (tf - t0)/100; % Assumed initial time step. 
  
while t < tf 
    hmin = 16*eps(t); 
    ti   = t; 
    yi   = y; 
    %...Evaluate the time derivative(s) at six points within the current 
    %   interval: 
    for i = 1:6 
        t_inner = ti + a(i)*h; 
        y_inner = yi; 
        for j = 1:i-1 
            y_inner = y_inner + h*b(i,j)*f(:,j); 
        end 
        f(:,i) = feval(ode_function, t_inner, y_inner); 
    end 
  
    %...Compute the maximum truncation error: 
    te     = h*f*(c4' - c5'); % Difference between 4th and 
                              % 5th order solutions 
    te_max = max(abs(te));     
    
    %...Compute the allowable truncation error: 
    ymax       = max(abs(y)); 
    te_allowed = tol*max(ymax,1.0); 
     
    %...Compute the fractional change in step size: 
    delta = (te_allowed/(te_max + eps))^(1/5); 
      
    %...If the truncation error is in bounds, then update the solution: 
    if te_max <= te_allowed 
        h     = min(h, tf-t); 
        t     = t + h; 
        y     = yi + h*f*c5';       
        tout  = [tout;t]; 
        yout  = [yout;y']; 
    end 
     
    %...Update the time step: 
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    h  = min(delta*h, 4*h); 
    if h < hmin 
        fprintf(['\n\n Warning: Step size fell below its minimum\n'... 
                 ' allowable value (%g) at time %g.\n\n'], hmin, t) 
        return 
    end   
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Function file Example_1_20.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_1_20 
% ~~~~~~~~~~~~~~~~~~~ 
%{ 
  This program uses RKF4(5) with adaptive step size control 
  to solve the differential equation 
   
  x'' + mu/x^2 = 0 
  
  The numerical integration is done by the function 'rkf45' which uses 
  the subfunction 'rates' herein to compute the derivatives. 
  
  x     - displacement (km) 
  '     - shorthand for d/dt 
  t     - time (s) 
  mu    - = go*RE^2 (km^3/s^2), where go is the sea level gravitational 
          acceleration and RE is the radius of the earth. 
  x0    - initial value of x 
  v0    = initial value of the velocity (x') 
  y0    - column vector containing x0 and v0 
  t0    - initial time 
  tf    - final time 
  tspan - a row vector with components t0 and tf 
  t     - column vector of the times at which the solution is found 
  f     - a matrix whose columns are: 
          column 1: solution for x at the times in t 
          column 2: solution for x' at the times in t 
   
  User M-function required:  rkf45 
  User subfunction required: rates 
%} 
% --------------------------------------------------------------------- 
  
clear all; close all; clc 
  
mu      = 398600; 
minutes = 60;  %Conversion from minutes to seconds 
  
x0 = 6500; 
v0 = 7.8; 
y0 = [x0; v0]; 
t0 = 0; 
tf = 70*minutes; 
  
[t,f] = rkf45(@rates, [t0 tf], y0); 
plotit 
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dfdt = rates(t,f) 
% ------------------------ 
%{ 
  This function calculates first and second time derivatives of x 
  governed by the equation of two-body rectilinear motion 
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  x'' + mu/x^2 = 0 
  
  Dx   - velocity x' 
  D2x  - acceleration x'' 
  f    - column vector containing x and Dx at time t 
  dfdt - column vector containing Dx and D2x at time t 
  
  User M-functions required: none 
%} 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
x    = f(1); 
Dx   = f(2); 
D2x  = -mu/x^2; 
dfdt = [Dx; D2x]; 
end %rates 
  
% ~~~~~~~~~~~~~ 
function plotit 
% ~~~~~~~~~~~~~ 
  
%...Position vs time: 
subplot(2,1,1) 
plot(t/minutes,f(:,1), '-ok') 
xlabel('time, minutes') 
ylabel('position, km') 
grid on 
axis([-inf inf 5000 15000]) 
  
%...Velocity versus time: 
subplot(2,1,2) 
plot(t/minutes,f(:,2), '-ok') 
xlabel('time, minutes') 
ylabel('velocity, km/s') 
grid on 
axis([-inf inf -10 10]) 
end %plotit 
  
end %Example_1_20 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.5 Algorithm 2.1: numerical solution of the two-body problem relative to an inertial frame 

Function file twobody3d.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function twobody3d 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function solves the inertial two-body problem in three dimensions 
  numerically using the RKF4(5) method. 
   
  G             - universal gravitational constant (km^3/kg/s^2) 
  m1,m2         - the masses of the two bodies (kg) 
  m             - the total mass (kg) 
  t0            - initial time (s) 
  tf            - final time (s) 
  R1_0,V1_0     - 3 by 1 column vectors containing the components of tbe 
                  initial position (km) and velocity (km/s) of m1 
  R2_0,V2_0     - 3 by 1 column vectors containing the components of the 
                  initial position (km) and velocity (km/s) of m2 
  y0            - 12 by 1 column vector containing the initial values 
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                  of the state vectors of the two bodies:  
                  [R1_0; R2_0; V1_0; V2_0] 
  t             - column vector of the times at which the solution is found 
  X1,Y1,Z1      - column vectors containing the X,Y and Z coordinates (km) 
                  of m1 at the times in t 
  X2,Y2,Z2      - column vectors containing the X,Y and Z coordinates (km) 
                  of m2 at the times in t 
  VX1, VY1, VZ1 - column vectors containing the X,Y and Z components 
                  of the velocity (km/s) of m1 at the times in t 
  VX2, VY2, VZ2 - column vectors containing the X,Y and Z components 
                  of the velocity (km/s) of m2 at the times in t 
  y             - a matrix whose 12 columns are, respectively, 
                  X1,Y1,Z1; X2,Y2,Z2; VX1,VY1,VZ1; VX2,VY2,VZ2 
  XG,YG,ZG      - column vectors containing the X,Y and Z coordinates (km) 
                  the center of mass at the times in t 
   
  User M-function required:   rkf45 
  User subfunctions required: rates, output 
%} 
% ---------------------------------------------------------------------- 
clc; clear all; close all 
G = 6.67259e-20;  
  
%...Input data: 
m1   = 1.e26; 
m2   = 1.e26; 
t0   = 0; 
tf   = 480; 
  
R1_0 = [   0;    0;   0]; 
R2_0 = [3000;    0;   0]; 
  
V1_0 = [  10;   20;  30]; 
V2_0 = [   0;   40;   0]; 
%...End input data 
  
y0 = [R1_0; R2_0; V1_0; V2_0]; 
  
%...Integrate the equations of motion: 
[t,y] = rkf45(@rates, [t0 tf], y0); 
  
%...Output the results: 
output 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dydt = rates(t,y) 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the accelerations in Equations 2.19 
  
  t      - time 
  y      - column vector containing the position and velocity vectors 
           of the system at time t 
  R1, R2 - position vectors of m1 & m2 
  V1, V2 - velocity vectors of m1 & m2 
  r      - magnitude of the relative position vector  
  A1, A2 - acceleration vectors of m1 & m2 
  dydt   - column vector containing the velocity and acceleration 
           vectors of the system at time t 
%} 
% ------------------------ 
R1   = [y(1); y(2); y(3)]; 
R2   = [y(4); y(5); y(6)]; 
  
V1   = [y(7); y(8); y(9)]; 
V2   = [y(10); y(11); y(12)]; 
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r    = norm(R2 - R1); 
  
A1   = G*m2*(R2 - R1)/r^3; 
A2   = G*m1*(R1 - R2)/r^3; 
  
dydt = [V1; V2; A1; A2]; 
  
end %rates 
% ~~~~~~~~~~~~~~~~~~ 
  
% ~~~~~~~~~~~~~ 
function output 
% ~~~~~~~~~~~~~ 
%{ 
  This function calculates the trajectory of the center of mass and 
  plots 
  (a) the motion of m1, m2 and G relative to the inertial frame 
  (b) the motion of m2 and G relative to m1 
  (c) the motion of m1 and m2 relative to G 
  
  User sub function required: common_axis_settings 
%} 
% ------------- 
  
%...Extract the particle trajectories: 
X1 = y(:,1); Y1 = y(:,2); Z1 = y(:,3); 
X2 = y(:,4); Y2 = y(:,5); Z2 = y(:,6); 
  
%...Locate the center of mass at each time step: 
XG = []; YG = []; ZG = []; 
for i = 1:length(t) 
    XG = [XG; (m1*X1(i) + m2*X2(i))/(m1 + m2)]; 
    YG = [YG; (m1*Y1(i) + m2*Y2(i))/(m1 + m2)]; 
    ZG = [ZG; (m1*Z1(i) + m2*Z2(i))/(m1 + m2)]; 
end 
  
%...Plot the trajectories: 
figure (1) 
title('Figure 2.3: Motion relative to the inertial frame') 
hold on 
plot3(X1, Y1, Z1, '-r') 
plot3(X2, Y2, Z2, '-g') 
plot3(XG, YG, ZG, '-b') 
common_axis_settings 
  
figure (2) 
title('Figure 2.4a: Motion of m2 and G relative to m1') 
hold on 
plot3(X2 - X1, Y2 - Y1, Z2 - Z1, '-g') 
plot3(XG - X1, YG - Y1, ZG - Z1, '-b') 
common_axis_settings 
  
figure (3) 
title('Figure 2.4b: Motion of m1 and m2 relative to G') 
hold on 
plot3(X1 - XG, Y1 - YG, Z1 - ZG, '-r') 
plot3(X2 - XG, Y2 - YG, Z2 - ZG, '-g') 
common_axis_settings 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function common_axis_settings 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function establishes axis properties common to the several plots 
%} 
% --------------------------- 
text(0, 0, 0, 'o')  
axis('equal') 
view([2,4,1.2]) 
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grid on 
axis equal 
xlabel('X (km)') 
ylabel('Y (km)') 
zlabel('Z (km)') 
end %common_axis_settings 
  
end %output 
  
end %twobody3d 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.6 Algorithm 2.2: numerical solution of the two body relative motion problem 

Function file orbit.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function orbit 
% ~~~~~~~~~~~~ 
%{ 
  This function computes the orbit of a spacecraft by using rkf45 to  
  numerically integrate Equation 2.22. 
  
  It also plots the orbit and computes the times at which the maximum 
  and minimum radii occur and the speeds at those times. 
  
  hours     - converts hours to seconds 
  G         - universal gravitational constant (km^3/kg/s^2) 
  m1        - planet mass (kg) 
  m2        - spacecraft mass (kg) 
  mu        - gravitational parameter (km^3/s^2) 
  R         - planet radius (km) 
  r0        - initial position vector (km) 
  v0        - initial velocity vector (km/s) 
  t0,tf     - initial and final times (s) 
  y0        - column vector containing r0 and v0 
  t         - column vector of the times at which the solution is found 
  y         - a matrix whose columns are: 
                 columns 1, 2 and 3: 
                    The solution for the x, y and z components of the  
                    position vector r at the times in t 
                 columns 4, 5 and 6: 
                    The solution for the x, y and z components of the  
                    velocity vector v at the times in t 
  r         - magnitude of the position vector at the times in t 
  imax      - component of r with the largest value 
  rmax      - largest value of r 
  imin      - component of r with the smallest value 
  rmin      - smallest value of r 
  v_at_rmax - speed where r = rmax 
  v_at_rmin - speed where r = rmin 
   
  User M-function required:   rkf45 
  User subfunctions required: rates, output 
%} 
% ------------------------------------------------------------------- 
  
clc; close all; clear all 
  
hours = 3600; 
G     = 6.6742e-20; 
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%...Input data: 
%   Earth: 
m1 = 5.974e24; 
R  = 6378; 
m2 = 1000; 
  
r0 = [8000 0 6000]; 
v0 = [0 7 0]; 
  
t0 = 0; 
tf = 4*hours; 
%...End input data 
  
  
%...Numerical integration: 
mu    = G*(m1 + m2); 
y0    = [r0 v0]'; 
[t,y] = rkf45(@rates, [t0 tf], y0); 
  
%...Output the results: 
output 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dydt = rates(t,f) 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the acceleration vector using Equation 2.22 
   
  t          - time 
  f          - column vector containing the position vector and the 
               velocity vector at time t 
  x, y, z    - components of the position vector r 
  r          - the magnitude of the the position vector 
  vx, vy, vz - components of the velocity vector v 
  ax, ay, az - components of the acceleration vector a 
  dydt       - column vector containing the velocity and acceleration 
               components 
%} 
% ------------------------ 
x    = f(1); 
y    = f(2); 
z    = f(3); 
vx   = f(4); 
vy   = f(5); 
vz   = f(6); 
  
r    = norm([x y z]); 
  
ax   = -mu*x/r^3; 
ay   = -mu*y/r^3; 
az   = -mu*z/r^3; 
     
dydt = [vx vy vz ax ay az]';     
end %rates 
  
  
% ~~~~~~~~~~~~~ 
function output 
% ~~~~~~~~~~~~~ 
%{ 
  This function computes the maximum and minimum radii, the times they 
  occur and and the speed at those times. It prints those results to 
  the command window and plots the orbit. 
  
  r         - magnitude of the position vector at the times in t 
  imax      - the component of r with the largest value 
  rmax      - the largest value of r 
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  imin      - the component of r with the smallest value 
  rmin      - the smallest value of r 
  v_at_rmax - the speed where r = rmax 
  v_at_rmin - the speed where r = rmin 
  
  User subfunction required: light_gray 
%} 
% ------------- 
for i = 1:length(t) 
    r(i) = norm([y(i,1) y(i,2) y(i,3)]); 
end 
  
[rmax imax] = max(r); 
[rmin imin] = min(r); 
  
v_at_rmax   = norm([y(imax,4) y(imax,5) y(imax,6)]); 
v_at_rmin   = norm([y(imin,4) y(imin,5) y(imin,6)]); 
  
%...Output to the command window: 
fprintf('\n\n--------------------------------------------------------\n') 
fprintf('\n Earth Orbit\n') 
fprintf(' %s\n', datestr(now)) 
fprintf('\n The initial position is [%g, %g, %g] (km).',... 
                                                     r0(1), r0(2), r0(3)) 
fprintf('\n   Magnitude = %g km\n', norm(r0)) 
fprintf('\n The initial velocity is [%g, %g, %g] (km/s).',... 
                                                     v0(1), v0(2), v0(3)) 
fprintf('\n   Magnitude = %g km/s\n', norm(v0)) 
fprintf('\n Initial time = %g h.\n Final time   = %g h.\n',0,tf/hours)  
fprintf('\n The minimum altitude is %g km at time = %g h.',... 
            rmin-R, t(imin)/hours) 
fprintf('\n The speed at that point is %g km/s.\n', v_at_rmin) 
fprintf('\n The maximum altitude is %g km at time = %g h.',... 
            rmax-R, t(imax)/hours) 
fprintf('\n The speed at that point is %g km/s\n', v_at_rmax) 
fprintf('\n--------------------------------------------------------\n\n') 
  
%...Plot the results: 
%   Draw the planet 
[xx, yy, zz] = sphere(100); 
surf(R*xx, R*yy, R*zz) 
colormap(light_gray) 
caxis([-R/100 R/100]) 
shading interp 
  
%   Draw and label the X, Y and Z axes 
line([0 2*R],   [0 0],   [0 0]); text(2*R,   0,   0, 'X') 
line(  [0 0], [0 2*R],   [0 0]); text(  0, 2*R,   0, 'Y') 
line(  [0 0],   [0 0], [0 2*R]); text(  0,   0, 2*R, 'Z') 
  
%   Plot the orbit, draw a radial to the starting point 
%   and label the starting point (o) and the final point (f) 
hold on 
plot3(  y(:,1),    y(:,2),    y(:,3),'k') 
line([0 r0(1)], [0 r0(2)], [0 r0(3)]) 
text(   y(1,1),    y(1,2),    y(1,3), 'o') 
text( y(end,1),  y(end,2),  y(end,3), 'f') 
  
%   Select a view direction (a vector directed outward from the origin)  
view([1,1,.4]) 
  
%   Specify some properties of the graph 
grid on 
axis equal 
xlabel('km') 
ylabel('km') 
zlabel('km') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~ 
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function map = light_gray 
% ~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function creates a color map for displaying the planet as light 
  gray with a black equator. 
   
  r - fraction of red 
  g - fraction of green 
  b - fraction of blue 
  
%} 
% ----------------------- 
r = 0.8; g = r; b = r; 
map = [r g b 
       0 0 0 
       r g b]; 
end %light_gray 
  
end %output 
  
end %orbit 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.7 Calculation of the Lagrange f and g functions and their time derivatives in terms of change in 

true anomaly 

Function file f_and_g_ta.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [f, g] = f_and_g_ta(r0, v0, dt, mu) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the Lagrange f and g coefficients from the 
  change in true anomaly since time t0 
  
  mu  - gravitational parameter (km^3/s^2) 
  dt  - change in true anomaly (degrees) 
  r0  - position vector at time t0 (km) 
  v0  - velocity vector at time t0 (km/s) 
  h   - angular momentum (km^2/s) 
  vr0 - radial component of v0 (km/s) 
  r   - radial position after the change in true anomaly 
  f   - the Lagrange f coefficient (dimensionless) 
  g   - the Lagrange g coefficient (s) 
  
  User M-functions required:  None 
%} 
% -------------------------------------------- 
  
h   = norm(cross(r0,v0)); 
vr0 = dot(v0,r0)/norm(r0); 
r0  = norm(r0); 
s   = sind(dt); 
c   = cosd(dt); 
  
%...Equation 2.152: 
r   = h^2/mu/(1 + (h^2/mu/r0 - 1)*c - h*vr0*s/mu); 
  
%...Equations 2.158a & b: 
f   = 1 - mu*r*(1 - c)/h^2; 
g   = r*r0*s/h; 
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end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

Function file fDot_and_gDot.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [fdot, gdot] = fDot_and_gDot_ta(r0, v0, dt, mu) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the time derivatives of the Lagrange 
  f and g coefficients from the change in true anomaly since time t0. 
  
  mu   - gravitational parameter (km^3/s^2) 
  dt   - change in true anomaly (degrees) 
  r0   - position vector at time t0 (km) 
  v0   - velocity vector at time t0 (km/s) 
  h    - angular momentum (km^2/s) 
  vr0  - radial component of v0 (km/s) 
  fdot - time derivative of the Lagrange f coefficient (1/s) 
  gdot - time derivative of the Lagrange g coefficient (dimensionless) 
  
  User M-functions required:  None 
%} 
% -------------------------------------------------------- 
  
h   = norm(cross(r0,v0)); 
vr0 = dot(v0,r0)/norm(r0); 
r0  = norm(r0); 
c   = cosd(dt); 
s   = sind(dt); 
  
%...Equations 2.158c & d: 
fdot = mu/h*(vr0/h*(1 - c) - s/r0); 
gdot = 1 - mu*r0/h^2*(1 - c); 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.8 Algorithm 2.3: Calculate the state vector (r, v) from the initial state vector (r0, v0) and the change 

in true anomaly. 

Function file rv_from_r0v0_ta.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [r,v] = rv_from_r0v0_ta(r0, v0, dt, mu) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function computes the state vector (r,v) from the  
  initial state vector (r0,v0) and the change in true anomaly. 
  
  mu - gravitational parameter (km^3/s^2) 
  r0 - initial position vector (km) 
  v0 - initial velocity vector (km/s) 
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  dt - change in true anomaly (degrees) 
  r  - final position vector (km) 
  v  - final velocity vector (km/s) 
  
  User M-functions required: f_and_g_ta, fDot_and_gDot_ta 
%} 
% -------------------------------------------------------------------- 
  
%global mu 
  
%...Compute the f and g functions and their derivatives: 
[f, g]       =       f_and_g_ta(r0, v0, dt, mu); 
[fdot, gdot] = fDot_and_gDot_ta(r0, v0, dt, mu); 
  
%...Compute the final position and velocity vectors: 
r =    f*r0 +    g*v0; 
v = fdot*r0 + gdot*v0; 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file Example_2_13.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_2_13 
% ~~~~~~~~~~~~ 
%{ 
  This program computes the state vector [R,V] from the initial 
  state vector [R0,V0] and the change in true anomaly, using the 
  data in Example 2.13 
  
  mu - gravitational parameter (km^3/s^2) 
  R0 - the initial position vector (km) 
  V0 - the initial velocity vector (km/s) 
  r0 - magnitude of R0 
  v0 - magnitude of V0 
  R  - final position vector (km) 
  V  - final velocity vector (km/s) 
  r  - magnitude of R 
  v  - magnitude of V 
  dt - change in true anomaly (degrees) 
  
 User M-functions required: rv_from_r0v0_ta 
  
%} 
% -------------------------------------------------- 
  
clear all; clc 
mu = 398600; 
  
%...Input data: 
R0 = [8182.4 -6865.9 0]; 
V0 = [0.47572 8.8116 0]; 
dt = 120; 
%...End input data 
  
%...Algorithm 2.3: 
[R,V] = rv_from_r0v0_ta(R0, V0, dt, mu); 
  
r  = norm(R); 
v  = norm(V); 
r0 = norm(R0); 
v0 = norm(V0); 
  
fprintf('-----------------------------------------------------------') 
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fprintf('\n Example 2.9 \n') 
fprintf('\n Initial state vector:\n') 
fprintf('\n   r = [%g, %g, %g] (km)', R0(1), R0(2), R0(3)) 
fprintf('\n     magnitude = %g\n', norm(R0)) 
  
fprintf('\n   v = [%g, %g, %g] (km/s)', V0(1), V0(2), V0(3)) 
fprintf('\n     magnitude = %g', norm(V0)) 
  
fprintf('\n\n State vector after %g degree change in true anomaly:\n', dt) 
fprintf('\n   r = [%g, %g, %g] (km)', R(1), R(2), R(3)) 
fprintf('\n     magnitude = %g\n', norm(R)) 
fprintf('\n   v = [%g, %g, %g] (km/s)', V(1), V(2), V(3)) 
fprintf('\n     magnitude = %g', norm(V)) 
fprintf('\n-----------------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_2_13.m 

----------------------------------------------------------- 
 Example 2.9  
 
 Initial state vector: 
 
   r = [8182.4, -6865.9, 0] (km) 
     magnitude = 10681.4 
 
   v = [0.47572, 8.8116, 0] (km/s) 
     magnitude = 8.82443 
 
 State vector after 120 degree change in true anomaly: 
 
   r = [1454.99, 8251.47, 0] (km) 
     magnitude = 8378.77 
 
   v = [-8.13238, 5.67854, -0] (km/s) 
     magnitude = 9.91874 
----------------------------------------------------------- 
 

D.9 Algorithm 2.4: Find the root of a function using the bisection method 

Function file bisect.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function root = bisect(fun, xl, xu) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function evaluates a root of a function using 
  the bisection method 
  
  tol  - error to within which the root is computed 
  n    - number of iterations 
  xl   - low end of the interval containing the root 
  xu   - upper end of the interval containing the root 
  i    - loop index  
  xm   - mid-point of the interval from xl to xu 
  fun  - name of the function whose root is being found 
  fxl  - value of fun at xl 
  fxm  - value of fun at xm 
  root - the computed root 
  
  User M-functions required: none 
%} 
% ---------------------------------------------- 
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tol = 1.e-6; 
n   = ceil(log(abs(xu - xl)/tol)/log(2)); 
  
for i = 1:n 
    xm  = (xl + xu)/2; 
    fxl = feval(fun, xl); 
    fxm = feval(fun, xm); 
    if fxl*fxm > 0 
        xl = xm; 
    else 
        xu = xm; 
    end 
end 
  
root = xm; 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Function file Example 2_16.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_2_16 
% ~~~~~~~~~~~~~~~~~~~ 
%{ 
  This program uses the bisection method to find the three roots of 
  Equation 2.204 for the earth-moon system. 
  
  m1  - mass of the earth (kg) 
  m2  - mass of the moon (kg) 
  r12 - distance from the earth to the moon (km) 
  p   - ratio of moon mass to total mass 
  xl  - vector containing the low-side estimates of the three roots 
  xu  - vector containing the high-side estimates of the three roots 
  x   - vector containing the three computed roots 
  
  User M-function required: bisect 
  User subfunction requred: fun 
%} 
% ---------------------------------------------- 
  
clear all; clc 
  
%...Input data: 
m1  = 5.974e24; 
m2  = 7.348e22; 
r12 = 3.844e5; 
  
xl  = [-1.1  0.5  1.0]; 
xu  = [-0.9  1.0  1.5]; 
%...End input data 
  
p   = m2/(m1 + m2); 
  
for i = 1:3 
    x(i) = bisect(@fun, xl(i), xu(i)); 
end 
  
%...Output the results 
output 
  
return 
  
% ~~~~~~~~~~~~~~~~~ 
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function f = fun(z) 
% -----------------  
%{ 
  This subroutine evaluates the function in Equation 2.204 
  
  z - the dimensionless x-coordinate 
  p - defined above 
  f - the value of the function 
  
%} 
% ~~~~~~~~~~~~~~~~~ 
f = (1 - p)*(z + p)/abs(z + p)^3 + p*(z + p - 1)/abs(z + p - 1)^3 - z; 
end %fun 
  
% ~~~~~~~~~~~~~ 
function output 
% ~~~~~~~~~~~~~ 
%{ 
  This function prints out the x-coordinates of L1, L2 and L3 
  relative to the center of mass. 
%} 
%...Output to the command window: 
fprintf('\n\n---------------------------------------------\n') 
fprintf('\n For\n') 
fprintf('\n   m1 = %g kg', m1) 
fprintf('\n   m2 = %g kg', m2) 
fprintf('\n  r12 = %g km\n', r12) 
fprintf('\n the 3 colinear Lagrange points (the roots of\n') 
fprintf(' Equation 2.204) are:\n') 
fprintf('\n L3: x = %10g km    (f(x3) = %g)',x(1)*r12, fun(x(1))) 
fprintf('\n L1: x = %10g km    (f(x1) = %g)',x(2)*r12, fun(x(2))) 
fprintf('\n L2: x = %10g km    (f(x2) = %g)',x(3)*r12, fun(x(3))) 
fprintf('\n\n---------------------------------------------\n') 
  
end %output 
  
end %Example_2_16 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_2_16.m 

--------------------------------------------- 
 
 For 
 
   m1 = 5.974e+24 kg 
   m2 = 7.348e+22 kg 
  r12 = 384400 km 
 
 the 3 colinear Lagrange points (the roots of 
 Equation 2.204) are: 
 
 L3: x =    -386346 km    (f(x3) = -1.55107e-06) 
 L1: x =     321710 km    (f(x1) = 5.12967e-06) 
 L2: x =     444244 km    (f(x2) = -4.92782e-06) 
 
--------------------------------------------- 
 

D.10 MATLAB solution of Example 2.18 

Function file Example_2_18.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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function Example_2_18 
% ~~~~~~~~~~~~~~~~~~~ 
%{ 
  This program uses the Runge-Kutta-Fehlberg 4(5) method to solve the 
  earth-moon restricted three-body problem (Equations 2.192a and 2.192b) 
  for the trajectory of a spacecraft having the initial conditions 
  specified in Example 2.18. 
  
  The numerical integration is done in the external function 'rkf45', 
  which uses the subfunction 'rates' herein to compute the derivatives. 
  
  days      - converts days to seconds 
  G         - universal graviational constant (km^3/kg/s^2) 
  rmoon     - radius of the moon (km) 
  rearth    - radius of the earth (km) 
  r12       - distance from center of earth to center of moon (km) 
  m1,m2     - masses of the earth and of the moon, respectively (kg) 
  M         - total mass of the restricted 3-body system (kg) 
  mu        - gravitational parameter of earth-moon system (km^3/s^2) 
  mu1,mu2   - gravitational parameters of the earth and of the moon, 
              respectively (km^3/s^2) 
  pi_1,pi_2 - ratios of the earth mass and the moon mass, respectively, 
              to the total earth-moon mass 
  W         - angular velocity of moon around the earth (rad/s) 
  x1,x2     - x-coordinates of the earth and of the moon, respectively, 
              relative to the earth-moon barycenter (km) 
  d0        - initial altitude of spacecraft (km) 
  phi       - polar azimuth coordinate (degrees) of the spacecraft 
              measured positive counterclockwise from the earth-moon line 
  v0        - initial speed of spacecraft relative to rotating earth-moon 
              system (km/s) 
  gamma     - initial flight path angle (degrees) 
  r0        - intial radial distance of spacecraft from the earth (km) 
  x,y       - x and y coordinates of spacecraft in rotating earth-moon 
              system (km) 
  vx,vy     - x and y components of spacecraft velocity relative to 
              rotating earth-moon system (km/s) 
  f0        - column vector containing the initial valus of x, y, vx and vy 
  t0,tf     - initial time and final times (s) 
  t         - column vector of times at which the solution was computed 
  f         - a matrix whose columns are: 
              column 1: solution for x  at the times in t 
              column 2: solution for y  at the times in t 
              column 3: solution for vx at the times in t 
              column 4: solution for vy at the times in t 
  xf,yf     - x and y coordinates of spacecraft in rotating earth-moon 
              system at tf 
  vxf, vyf  - x and y components of spacecraft velocity relative to 
              rotating earth-moon system at tf 
  df        - distance from surface of the moon at tf 
  vf        - relative speed at tf 
   
  
  User M-functions required:  rkf45 
  User subfunctions required: rates, circle 
%} 
% --------------------------------------------- 
  
clear all; close all; clc 
  
days   =  24*3600; 
G      =  6.6742e-20; 
rmoon  =  1737; 
rearth =  6378; 
r12    =  384400; 
m1     =  5974e21; 
m2     =  7348e19; 
  
M      =  m1 + m2;; 
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pi_1   =  m1/M; 
pi_2   =  m2/M; 
  
mu1    =  398600; 
mu2    =  4903.02; 
mu     =  mu1 + mu2; 
  
W      =  sqrt(mu/r12^3); 
x1     = -pi_2*r12; 
x2     =  pi_1*r12; 
  
%...Input data: 
d0     =  200; 
phi    =  -90; 
v0     =  10.9148; 
gamma  =  20; 
t0     =  0; 
tf     =  3.16689*days; 
  
r0     =  rearth + d0; 
x      =  r0*cosd(phi) + x1; 
y      =  r0*sind(phi); 
  
vx     =  v0*(sind(gamma)*cosd(phi) - cosd(gamma)*sind(phi)); 
vy     =  v0*(sind(gamma)*sind(phi) + cosd(gamma)*cosd(phi)); 
f0     =  [x; y; vx; vy]; 
  
%...Compute the trajectory: 
[t,f]  = rkf45(@rates, [t0 tf], f0); 
x      = f(:,1); 
y      = f(:,2); 
vx     = f(:,3); 
vy     = f(:,4); 
  
xf     = x(end); 
yf     = y(end); 
  
vxf    = vx(end); 
vyf    = vy(end); 
  
df     = norm([xf - x2, yf - 0]) - rmoon; 
vf     = norm([vxf, vyf]); 
  
%...Output the results: 
output 
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dfdt = rates(t,f) 
% ~~~~~~~~~~~~~~~~~~~~~~~~    
%{ 
  This subfunction calculates the components of the relative acceleration 
  for the restricted 3-body problem, using Equations 2.192a and 2.192b 
  
  ax,ay - x and y components of relative acceleration (km/s^2) 
  r1    - spacecraft distance from the earth (km) 
  r2    - spacecraft  distance from the moon (km) 
  f     - column vector containing x,  y,  vx and vy at time t 
  dfdt  - column vector containing vx, vy, ax and ay at time t 
  
  All other variables are defined above. 
  
  User M-functions required: none 
%} 
% ------------------------     
x      = f(1); 
y      = f(2); 
vx     = f(3); 
vy     = f(4); 
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r1     = norm([x + pi_2*r12, y]); 
r2     = norm([x - pi_1*r12, y]); 
  
ax     =  2*W*vy + W^2*x - mu1*(x - x1)/r1^3 - mu2*(x - x2)/r2^3; 
ay     = -2*W*vx + W^2*y - (mu1/r1^3 + mu2/r2^3)*y; 
  
dfdt   = [vx; vy; ax; ay]; 
end %rates 
  
% ~~~~~~~~~~~~~ 
function output 
% ~~~~~~~~~~~~~ 
%{ 
  This subfunction echos the input data and prints the results to the 
  command window. It also plots the trajectory. 
  
  User M-functions required: none 
  User subfunction required: circle 
%} 
% ------------- 
  
fprintf('------------------------------------------------------------') 
fprintf('\n Example 2.18: Lunar trajectory using the restricted') 
fprintf('\n three body equations.\n') 
fprintf('\n Initial Earth altitude (km)         = %g', d0) 
fprintf('\n Initial angle between radial') 
fprintf('\n   and earth-moon line (degrees)     = %g', phi) 
fprintf('\n Initial flight path angle (degrees) = %g', gamma) 
fprintf('\n Flight time (days)                  = %g', tf/days) 
fprintf('\n Final distance from the moon (km)   = %g', df) 
fprintf('\n Final relative speed (km/s)         = %g', vf) 
fprintf('\n------------------------------------------------------------\n') 
  
%...Plot the trajectory and place filled circles representing the earth 
%   and moon on the the plot: 
plot(x, y) 
%   Set plot display parameters 
xmin = -20.e3;  xmax =  4.e5; 
ymin = -20.e3;  ymax =  1.e5; 
axis([xmin xmax ymin ymax]) 
axis equal 
xlabel('x, km'); ylabel('y, km') 
grid on 
hold on 
  
%...Plot the earth (blue) and moon (green) to scale 
earth  = circle(x1, 0, rearth); 
moon   = circle(x2, 0, rmoon); 
fill(earth(:,1), earth(:,2),'b') 
fill( moon(:,1),  moon(:,2),'g') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function xy = circle(xc, yc, radius) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This subfunction calculates the coordinates of points spaced 
  0.1 degree apart around the circumference of a circle 
  
  x,y    - x and y coordinates of a point on the circumference 
  xc,yc  - x and y coordinates of the center of the circle 
  radius - radius of the circle 
  xy     - an array containing the x coordinates in column 1 and the  
           y coordinates in column 2 
  
  User M-functions required: none 
%} 
% ---------------------------------- 
x      = xc + radius*cosd(0:0.1:360); 
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y      = yc + radius*sind(0:0.1:360); 
xy     = [x', y']; 
  
end %circle 
  
end %output 
  
end %Example_2_18 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_2_18.m 

------------------------------------------------------------ 
 Example 2.18: Lunar trajectory using the restricted 
 three body equations. 
 
 Initial Earth altitude (km)         = 200 
 Initial angle between radial 
   and earth-moon line (degrees)     = -90 
 Initial flight path angle (degrees) = 20 
 Flight time (days)                  = 3.16689 
 Final distance from the moon (km)   = 255.812 
 Final relative speed (km/s)         = 2.41494 
------------------------------------------------------------ 
 

 

D.11 Algorithm 3.1: solution of Kepler’s equation by Newton’s method 

Function file  kepler_E.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function E = kepler_E(e, M) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses Newton's method to solve Kepler's  
  equation  E - e*sin(E) = M  for the eccentric anomaly, 
  given the eccentricity and the mean anomaly. 
  
  E  - eccentric anomaly (radians) 
  e  - eccentricity, passed from the calling program 
  M  - mean anomaly (radians), passed from the calling program 
  pi - 3.1415926... 
  
  User m-functions required: none 
%} 
% ---------------------------------------------- 
  
%...Set an error tolerance: 
error = 1.e-8; 
  
%...Select a starting value for E: 
if M < pi 
    E = M + e/2; 
else 
    E = M - e/2; 
end 
  
%...Iterate on Equation 3.17 until E is determined to within 
%...the error tolerance: 
ratio = 1; 
while abs(ratio) > error 
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    ratio = (E - e*sin(E) - M)/(1 - e*cos(E)); 
    E = E - ratio; 
end 
  
end %kepler_E 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file  Example_3_02.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_3_02 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 3.1 and the data of Example 3.2 to solve 
  Kepler's equation. 
  
  e   - eccentricity 
  M   - mean anomaly (rad) 
  E   - eccentric anomaly (rad) 
  
  User M-function required: kepler_E 
%} 
% ---------------------------------------------- 
  
clear all; clc 
  
%...Data declaration for Example 3.2: 
e = 0.37255; 
M = 3.6029; 
%... 
  
%...Pass the input data to the function kepler_E, which returns E: 
E = kepler_E(e, M); 
  
%...Echo the input data and output to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 3.2\n') 
fprintf('\n Eccentricity                = %g',e) 
fprintf('\n Mean anomaly (radians)      = %g\n',M) 
fprintf('\n Eccentric anomaly (radians) = %g',E) 
fprintf('\n-----------------------------------------------------\n') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 

Output from Example_3_02.m 

 
----------------------------------------------------- 
 Example 3.2 
 
 Eccentricity                = 0.37255 
 Mean anomaly (radians)      = 3.6029 
 
 Eccentric anomaly (radians) = 3.47942 
----------------------------------------------------- 
 
 
 

D.12 Algorithm 3.2: Solution of Kepler’s equation for the hyperbola using Newton’s method 
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Function file  kepler_H.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function F = kepler_H(e, M) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses Newton's method to solve Kepler's equation  
  for the hyperbola  e*sinh(F) - F = M  for the hyperbolic 
  eccentric anomaly, given the eccentricity and the hyperbolic 
  mean anomaly. 
  
  F - hyperbolic eccentric anomaly (radians) 
  e - eccentricity, passed from the calling program 
  M - hyperbolic mean anomaly (radians), passed from the 
      calling program 
  
  User M-functions required: none 
%} 
% ---------------------------------------------- 
  
%...Set an error tolerance: 
error = 1.e-8; 
  
%...Starting value for F: 
F = M; 
  
%...Iterate on Equation 3.45 until F is determined to within 
%...the error tolerance: 
ratio = 1; 
while abs(ratio) > error 
    ratio = (e*sinh(F) - F - M)/(e*cosh(F) - 1); 
    F = F - ratio; 
end 
  
end %kepler_H 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  

Script file  Example_3_05.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_3_05 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 3.2 and the data of 
  Example 3.5 to solve Kepler's equation for the hyperbola. 
  
  e - eccentricity 
  M - hyperbolic mean anomaly (dimensionless) 
  F - hyperbolic eccentric anomaly (dimensionless) 
  
  User M-function required: kepler_H 
%} 
% ---------------------------------------------- 
clear 
  
%...Data declaration for Example 3.5: 
e = 2.7696; 
M = 40.69; 
%... 
  
%...Pass the input data to the function kepler_H, which returns F: 
F = kepler_H(e, M); 
  
%...Echo the input data and output to the command window: 
fprintf('-----------------------------------------------------') 
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fprintf('\n Example 3.5\n') 
fprintf('\n Eccentricity                 = %g',e) 
fprintf('\n Hyperbolic mean anomaly      = %g\n',M) 
fprintf('\n Hyperbolic eccentric anomaly = %g',F) 
fprintf('\n-----------------------------------------------------\n') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_3_05.m 

----------------------------------------------------- 
 Example 3.5 
 
 Eccentricity                 = 2.7696 
 Hyperbolic mean anomaly      = 40.69 
 
 Hyperbolic eccentric anomaly = 3.46309 
----------------------------------------------------- 
 

D.13 Calculation of the Stumpff functions S(z) and C(z) 

 

The following scripts implement Equations 3.52 and 3.53 for use in other programs. 

 

Function file  stumpS.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function s = stumpS(z) 
% ~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function evaluates the Stumpff function S(z) according 
  to Equation 3.52. 
  
  z - input argument 
  s - value of S(z) 
  
  User M-functions required: none 
%} 
% ----------------------------------------------  
  
if z > 0 
    s = (sqrt(z) - sin(sqrt(z)))/(sqrt(z))^3; 
elseif z < 0 
    s = (sinh(sqrt(-z)) - sqrt(-z))/(sqrt(-z))^3; 
else 
    s = 1/6; 
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 

Function file  stumpC.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function c = stumpC(z) 
% ~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
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  This function evaluates the Stumpff function C(z) according 
  to Equation 3.53. 
  
  z - input argument 
  c - value of C(z) 
  
  User M-functions required: none 
%} 
% ---------------------------------------------- 
  
if z > 0 
    c = (1 - cos(sqrt(z)))/z; 
elseif z < 0 
    c = (cosh(sqrt(-z)) - 1)/(-z); 
else 
    c = 1/2; 
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 
 

D.14 Algorithm 3.3: Solution of the universal Kepler’s equation using Newton’s method 

Function file  kepler_U.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function x = kepler_U(dt, ro, vro, a) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses Newton's method to solve the universal 
  Kepler equation for the universal anomaly. 
  
  mu   - gravitational parameter (km^3/s^2) 
  x    - the universal anomaly (km^0.5) 
  dt   - time since x = 0 (s) 
  ro   - radial position (km) when x = 0 
  vro  - radial velocity (km/s) when x = 0 
  a    - reciprocal of the semimajor axis (1/km) 
  z    - auxiliary variable (z = a*x^2) 
  C    - value of Stumpff function C(z) 
  S    - value of Stumpff function S(z) 
  n    - number of iterations for convergence 
  nMax - maximum allowable number of iterations 
  
  User M-functions required: stumpC, stumpS 
%} 
% ---------------------------------------------- 
global mu 
  
%...Set an error tolerance and a limit on the number of iterations: 
error = 1.e-8; 
nMax  = 1000; 
  
%...Starting value for x: 
x = sqrt(mu)*abs(a)*dt; 
  
%...Iterate on Equation 3.65 until until convergence occurs within 
%...the error tolerance: 
n     = 0; 
ratio = 1; 
while abs(ratio) > error && n <= nMax 
    n     = n + 1; 
    C     = stumpC(a*x^2); 
    S     = stumpS(a*x^2); 
    F     = ro*vro/sqrt(mu)*x^2*C + (1 - a*ro)*x^3*S + ro*x - sqrt(mu)*dt; 



Appendix D Page 34 of 101 10/27/09 9:07 AM  

    dFdx  = ro*vro/sqrt(mu)*x*(1 - a*x^2*S) + (1 - a*ro)*x^2*C + ro; 
    ratio = F/dFdx; 
    x     = x - ratio; 
end 
  
%...Deliver a value for x, but report that nMax was reached: 
if n > nMax 
    fprintf('\n **No. iterations of Kepler''s equation = %g', n) 
    fprintf('\n   F/dFdx                              = %g\n', F/dFdx) 
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file  Example_3_06.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_3_06 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 3.3 and the data of Example 3.6 
  to solve the universal Kepler's equation. 
  
  mu  - gravitational parameter (km^3/s^2) 
  x   - the universal anomaly (km^0.5) 
  dt  - time since x = 0 (s) 
  ro  - radial position when x = 0 (km) 
  vro - radial velocity when x = 0 (km/s) 
  a   - semimajor axis (km) 
  
  User M-function required: kepler_U 
%} 
% ---------------------------------------------- 
  
clear all; clc 
global mu 
mu = 398600; 
  
%...Data declaration for Example 3.6: 
ro  = 10000; 
vro = 3.0752; 
dt  = 3600; 
a   = -19655; 
%... 
  
%...Pass the input data to the function kepler_U, which returns x 
%...(Universal Kepler's requires the reciprocal of semimajor axis): 
x   = kepler_U(dt, ro, vro, 1/a); 
  
%...Echo the input data and output the results to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 3.6\n') 
fprintf('\n Initial radial coordinate (km) = %g',ro) 
fprintf('\n Initial radial velocity (km/s) = %g',vro) 
fprintf('\n Elapsed time (seconds)         = %g',dt) 
fprintf('\n Semimajor axis (km)            = %g\n',a) 
fprintf('\n Universal anomaly (km^0.5)     = %g',x) 
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_3_06.m 

----------------------------------------------------- 
 Example 3.6 
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 Initial radial coordinate (km) = 10000 
 Initial radial velocity (km/s) = 3.0752 
 Elapsed time (seconds)         = 3600 
 Semimajor axis (km)            = -19655 
 
 Universal anomaly (km^0.5)     = 128.511 
----------------------------------------------------- 
 
 

D.15 Calculation of the Lagrange coefficients f and g and their time derivatives in terms of 

elapsed time 

The following scripts implement Equations 3.69 for use in other programs. 

Function file  f_and_g.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [f, g] = f_and_g(x, t, ro, a) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the Lagrange f and g coefficients. 
  
  mu - the gravitational parameter (km^3/s^2) 
  a  - reciprocal of the semimajor axis (1/km) 
  ro - the radial position at time to (km) 
  t  - the time elapsed since ro (s) 
  x  - the universal anomaly after time t (km^0.5) 
  f  - the Lagrange f coefficient (dimensionless) 
  g  - the Lagrange g coefficient (s) 
  
  User M-functions required:  stumpC, stumpS 
%} 
% ---------------------------------------------- 
  
global mu 
  
z = a*x^2; 
  
%...Equation 3.69a: 
f = 1 - x^2/ro*stumpC(z); 
  
%...Equation 3.69b: 
g = t - 1/sqrt(mu)*x^3*stumpS(z); 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 
 

Function file  fDot_and_gDot.m  

 

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [fdot, gdot] = fDot_and_gDot(x, r, ro, a) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the time derivatives of the 
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  Lagrange f and g coefficients. 
  
  mu    - the gravitational parameter (km^3/s^2) 
  a     - reciprocal of the semimajor axis (1/km) 
  ro    - the radial position at time to (km) 
  t     - the time elapsed since initial state vector (s) 
  r     - the radial position after time t (km) 
  x     - the universal anomaly after time t (km^0.5) 
  fdot  - time derivative of the Lagrange f coefficient (1/s) 
  gdot  - time derivative of the Lagrange g coefficient (dimensionless) 
  
  User M-functions required:  stumpC, stumpS 
%} 
% -------------------------------------------------- 
  
global mu 
  
z = a*x^2; 
  
%...Equation 3.69c: 
fdot = sqrt(mu)/r/ro*(z*stumpS(z) - 1)*x; 
  
%...Equation 3.69d: 
gdot = 1 - x^2/r*stumpC(z); 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 

D.16 Algorithm 3.4: Calculation of  the state vector (r,v) given the initial state vector (r0,v0) and the 

time lapse Δt 

Function file  rv_from_r0v0.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [R,V] = rv_from_r0v0(R0, V0, t) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function computes the state vector (R,V) from the  
  initial state vector (R0,V0) and the elapsed time. 
  
  mu - gravitational parameter (km^3/s^2) 
  R0 - initial position vector (km) 
  V0 - initial velocity vector (km/s) 
  t  - elapsed time (s) 
  R  - final position vector (km) 
  V  - final velocity vector (km/s) 
  
% User M-functions required: kepler_U, f_and_g, fDot_and_gDot 
%} 
% ---------------------------------------------- 
  
global mu 
  
%...Magnitudes of R0 and V0: 
r0 = norm(R0); 
v0 = norm(V0); 
  
%...Initial radial velocity: 
vr0 = dot(R0, V0)/r0; 
  
%...Reciprocal of the semimajor axis (from the energy equation): 
alpha = 2/r0 - v0^2/mu; 
  
%...Compute the universal anomaly: 
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x = kepler_U(t, r0, vr0, alpha); 
  
%...Compute the f and g functions: 
[f, g] = f_and_g(x, t, r0, alpha); 
  
%...Compute the final position vector: 
R = f*R0 + g*V0; 
  
%...Compute the magnitude of R: 
r = norm(R); 
  
%...Compute the derivatives of f and g: 
[fdot, gdot] = fDot_and_gDot(x, r, r0, alpha); 
  
%...Compute the final velocity: 
V            = fdot*R0 + gdot*V0; 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 

Script file  Example_3_07.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_3_07 
% ~~~~~~~~~~~~ 
% 
% This program computes the state vector (R,V) from the initial 
% state vector (R0,V0) and the elapsed time using the data in  
% Example 3.7. 
% 
% mu - gravitational parameter (km^3/s^2) 
% R0 - the initial position vector (km) 
% V0 - the initial velocity vector (km/s) 
% R  - the final position vector (km) 
% V  - the final velocity vector (km/s) 
% t  - elapsed time (s) 
% 
% User m-functions required: rv_from_r0v0 
% ---------------------------------------------- 
  
clear all; clc 
global mu 
mu = 398600; 
  
%...Data declaration for Example 3.7: 
R0 = [  7000 -12124 0]; 
V0 = [2.6679 4.6210 0]; 
t  = 3600; 
%... 
  
%...Algorithm 3.4: 
[R V] = rv_from_r0v0(R0, V0, t); 
  
%...Echo the input data and output the results to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 3.7\n') 
fprintf('\n Initial position vector (km):') 
fprintf('\n   r0 = (%g, %g, %g)\n', R0(1), R0(2), R0(3)) 
fprintf('\n Initial velocity vector (km/s):') 
fprintf('\n   v0 = (%g, %g, %g)', V0(1), V0(2), V0(3)) 
fprintf('\n\n Elapsed time = %g s\n',t) 
fprintf('\n Final position vector (km):') 
fprintf('\n   r = (%g, %g, %g)\n', R(1), R(2), R(3)) 
fprintf('\n Final velocity vector (km/s):') 
fprintf('\n   v = (%g, %g, %g)', V(1), V(2), V(3)) 
fprintf('\n-----------------------------------------------------\n') 
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% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_3_07 

----------------------------------------------------- 
 Example 3.7 
 
 Initial position vector (km): 
   r0 = (7000, -12124, 0) 
 
 Initial velocity vector (km/s): 
   v0 = (2.6679, 4.621, 0) 
 
 Elapsed time = 3600 s 
 
 Final position vector (km): 
   r = (-3297.77, 7413.4, 0) 
 
 Final velocity vector (km/s): 
   v = (-8.2976, -0.964045, -0) 
----------------------------------------------------- 
 

D.17 Algorithm 4.1: Obtain the right ascension and declination from the position vector 

Function file ra_and_dec_from_r.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function [ra dec] = ra_and_dec_from_r(r) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{   
  This function calculates the right ascension and the 
  declination from the geocentric equatorial position vector 
  
  r       - position vector 
  l, m, n - direction cosines of r 
  ra      - right ascension (degrees) 
  dec     - declination (degrees) 
%} 
% ---------------------------------------------- 
l = r(1)/norm(r); 
m = r(2)/norm(r); 
n = r(3)/norm(r); 
  
dec = asind(n); 
  
if m > 0 
    ra = acosd(l/cosd(dec)); 
else 
    ra = 360 - acosd(l/cosd(dec)); 
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file Example_4_01.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example 4.1 
% ~~~~~~~~~~~ 
%{ 
  This program calculates the right ascension and declination 
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  from the geocentric equatorial position vector using the data 
  in Example 4.1. 
  
  r   - position vector r (km) 
  ra  - right ascension (deg) 
  dec - declination (deg) 
  
  User M-functions required: ra_and_dec_from_r 
  
%} 
% ----------------------------------------------- 
  
clear all; clc 
  
r        = [-5368 -1784 3691]; 
[ra dec] = ra_and_dec_from_r(r); 
  
fprintf('\n -----------------------------------------------------\n') 
fprintf('\n Example 4.1\n') 
fprintf('\n r               = [%g  %g  %g] (km)', r(1), r(2), r(3)) 
fprintf('\n right ascension = %g deg', ra) 
fprintf('\n declination     = %g deg', dec)  
fprintf('\n\n -----------------------------------------------------\n') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_4_01.m 

----------------------------------------------------- 
 
 Example 4.1 
 
 r               = [-5368  -1784  3691] (km) 
 right ascension = 198.384 deg 
 declination     = 33.1245 deg 
 
 ----------------------------------------------------- 
 

D.18 Algorithm 4.2: Calculation of the orbital elements from the state vector 

Function file  coe_from_sv.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function coe = coe_from_sv(R,V,mu) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
% This function computes the classical orbital elements (coe) 
% from the state vector (R,V) using Algorithm 4.1. 
% 
  mu   - gravitational parameter (km^3/s^2) 
  R    - position vector in the geocentric equatorial frame (km) 
  V    - velocity vector in the geocentric equatorial frame (km) 
  r, v - the magnitudes of R and V 
  vr   - radial velocity component (km/s) 
  H    - the angular momentum vector (km^2/s) 
  h    - the magnitude of H (km^2/s) 
  incl - inclination of the orbit (rad) 
  N    - the node line vector (km^2/s) 
  n    - the magnitude of N 
  cp   - cross product of N and R 
  RA   - right ascension of the ascending node (rad) 
  E    - eccentricity vector 
  e    - eccentricity (magnitude of E) 
  eps  - a small number below which the eccentricity is considered 
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         to be zero 
  w    - argument of perigee (rad) 
  TA   - true anomaly (rad) 
  a    - semimajor axis (km) 
  pi   - 3.1415926... 
  coe  - vector of orbital elements [h e RA incl w TA a] 
  
  User M-functions required: None 
%} 
% --------------------------------------------- 
  
eps = 1.e-10; 
  
r    = norm(R); 
v    = norm(V); 
  
vr   = dot(R,V)/r; 
  
H    = cross(R,V); 
h    = norm(H); 
  
%...Equation 4.7: 
incl = acos(H(3)/h); 
  
%...Equation 4.8: 
N    = cross([0 0 1],H); 
n    = norm(N); 
  
%...Equation 4.9: 
if n ~= 0 
    RA = acos(N(1)/n); 
    if N(2) < 0 
        RA = 2*pi - RA; 
    end 
else 
    RA = 0; 
end 
  
%...Equation 4.10: 
E = 1/mu*((v^2 - mu/r)*R - r*vr*V); 
e = norm(E); 
  
%...Equation 4.12 (incorporating the case e = 0): 
if n ~= 0 
    if e > eps 
        w = acos(dot(N,E)/n/e); 
        if E(3) < 0 
            w = 2*pi - w; 
        end 
    else 
        w = 0; 
    end  
else 
    w = 0; 
end 
  
%...Equation 4.13a (incorporating the case e = 0):  
if e > eps 
    TA = acos(dot(E,R)/e/r); 
    if vr < 0 
        TA = 2*pi - TA; 
    end  
else 
    cp = cross(N,R); 
    if cp(3) >= 0 
        TA = acos(dot(N,R)/n/r); 
    else 
        TA = 2*pi - acos(dot(N,R)/n/r); 
    end 
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end 
  
%...Equation 4.62 (a < 0 for a hyperbola): 
a = h^2/mu/(1 - e^2); 
  
coe = [h e RA incl w TA a]; 
  
  end  %coe_from_sv 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file  Example_4_03.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_4_03 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 4.2 to obtain the orbital 
  elements from the state vector provided in Example 4.3. 
  
  pi   - 3.1415926... 
  deg  - factor for converting between degrees and radians 
  mu   - gravitational parameter (km^3/s^2) 
  r    - position vector (km) in the geocentric equatorial frame 
  v    - velocity vector (km/s) in the geocentric equatorial frame 
  coe  - orbital elements [h e RA incl w TA a] 
         where h    = angular momentum (km^2/s) 
               e    = eccentricity 
               RA   = right ascension of the ascending node (rad) 
               incl = orbit inclination (rad) 
               w    = argument of perigee (rad) 
               TA   = true anomaly (rad) 
               a    = semimajor axis (km) 
  T    - Period of an elliptic orbit (s) 
  
  User M-function required: coe_from_sv 
%} 
% ---------------------------------------------- 
clear all; clc 
deg = pi/180; 
mu  = 398600; 
  
%...Data declaration for Example 4.3: 
r = [ -6045  -3490   2500]; 
v = [-3.457  6.618  2.533]; 
%... 
  
%...Algorithm 4.2: 
coe = coe_from_sv(r,v,mu); 
  
%...Echo the input data and output results to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 4.3\n') 
fprintf('\n Gravitational parameter (km^3/s^2) = %g\n', mu) 
fprintf('\n State vector:\n') 
fprintf('\n r (km)                              = [%g  %g  %g]', ... 
                                                  r(1), r(2), r(3)) 
fprintf('\n v (km/s)                            = [%g  %g  %g]', ... 
                                                  v(1), v(2), v(3)) 
disp(' ') 
fprintf('\n Angular momentum (km^2/s)           = %g', coe(1)) 
fprintf('\n Eccentricity                        = %g', coe(2)) 
fprintf('\n Right ascension (deg)               = %g', coe(3)/deg) 
fprintf('\n Inclination (deg)                   = %g', coe(4)/deg) 
fprintf('\n Argument of perigee (deg)           = %g', coe(5)/deg) 
fprintf('\n True anomaly (deg)                  = %g', coe(6)/deg) 
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fprintf('\n Semimajor axis (km):                = %g', coe(7)) 
  
%...if the orbit is an ellipse, output its period (Equation 2.73): 
if coe(2)<1 
    T = 2*pi/sqrt(mu)*coe(7)^1.5; 
    fprintf('\n Period:') 
    fprintf('\n   Seconds                           = %g', T)  
    fprintf('\n   Minutes                           = %g', T/60) 
    fprintf('\n   Hours                             = %g', T/3600) 
    fprintf('\n   Days                              = %g', T/24/3600) 
end 
fprintf('\n-----------------------------------------------------\n') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_4_03 

 

----------------------------------------------------- 
 Example 4.3 
 
 Gravitational parameter (km^3/s^2) = 398600 
 
 State vector: 
 
 r (km)                              = [-6045  -3490  2500] 
 v (km/s)                            = [-3.457  6.618  2.533]  
 
 Angular momentum (km^2/s)           = 58311.7 
 Eccentricity                        = 0.171212 
 Right ascension (deg)               = 255.279 
 Inclination (deg)                   = 153.249 
 Argument of perigee (deg)           = 20.0683 
 True anomaly (deg)                  = 28.4456 
 Semimajor axis (km):                = 8788.1 
 Period: 
   Seconds                           = 8198.86 
   Minutes                           = 136.648 
   Hours                             = 2.27746 
   Days                              = 0.0948942 
----------------------------------------------------- 
 
 

D.19 Calculation of tan–1 (y/x) to lie in the range 0 to 360° 

Function file atan2d_360.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function t = atan2d_0_360(y,x) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the arc tangent of y/x in degrees 
  and places the result in the range [0, 360]. 
  
  t - angle in degrees 
  
%} 
% ---------------------------------------------- 
  
if x == 0 
    if y == 0 
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        t = 0; 
    elseif y > 0 
        t = 90; 
    else 
        t = 270; 
    end     
elseif x > 0 
    if y >= 0 
        t = atand(y/x); 
    else 
        t = atand(y/x) + 360; 
    end     
elseif x < 0    
    if y == 0 
        t = 180; 
    else 
        t = atand(y/x) + 180; 
    end        
end 
  
end 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

 

D.20 Algorithm 4.3: Obtain the classical Euler angle sequence from a direction cosine matrix 

Function file dcm_to_euler.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function [alpha beta gamma] = dcm_to_euler(Q) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function finds the angles of the classical Euler sequence 
  R3(gamma)*R1(beta)*R3(alpha) from the direction cosine matrix 
  
  Q     - direction cosine matrix 
  alpha - first angle of the sequence (deg) 
  beta  - second angle of the sequence (deg) 
  gamma - third angle of the sequence (deg) 
  
  User M-function required: atan2d_0_360 
%} 
% ----------------------------------------------- 
  
alpha = atan2d_0_360(Q(3,1), -Q(3,2)); 
beta  = acosd(Q(3,3)); 
gamma = atan2d_0_360(Q(1,3), Q(2,3)); 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

D.21 Algorithm 4.4: Obtain the yaw, pitch and roll angles from a direction cosine matrix 

Function file dcm_to_ypr.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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function [yaw pitch roll] = dcm_to_ypr(Q) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function finds the angles of the yaw-pitch-roll sequence 
  R1(gamma)*R2(beta)*R3(alpha) from the direction cosine matrix 
  
  Q     - direction cosine matrix 
  yaw   - yaw angle (deg) 
  pitch - pitch angle (deg) 
  roll  - roll angle (deg) 
  
  User M-function required: atan2d_0_360 
%} 
% --------------------------------------- 
  
yaw   = atan2d_0_360(Q(1,2), Q(1,1)); 
pitch = asind(-Q(1,3)); 
roll  = atan2d_0_360(Q(2,3), Q(3,3));       
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.22 Algorithm 4.5: Calculation of the state vector from the orbital elements 

Function file  sv_from_coe.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [r, v] = sv_from_coe(coe,mu) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function computes the state vector (r,v) from the 
  classical orbital elements (coe). 
  
  mu   - gravitational parameter (km^3;s^2) 
  coe  - orbital elements [h e RA incl w TA] 
         where 
             h    = angular momentum (km^2/s) 
             e    = eccentricity 
             RA   = right ascension of the ascending node (rad) 
             incl = inclination of the orbit (rad) 
             w    = argument of perigee (rad) 
             TA   = true anomaly (rad) 
  R3_w - Rotation matrix about the z-axis through the angle w 
  R1_i - Rotation matrix about the x-axis through the angle i 
  R3_W - Rotation matrix about the z-axis through the angle RA 
  Q_pX - Matrix of the transformation from perifocal to geocentric  
         equatorial frame 
  rp   - position vector in the perifocal frame (km) 
  vp   - velocity vector in the perifocal frame (km/s) 
  r    - position vector in the geocentric equatorial frame (km) 
  v    - velocity vector in the geocentric equatorial frame (km/s) 
  
  User M-functions required: none 
%} 
% ---------------------------------------------- 
  
h    = coe(1); 
e    = coe(2); 
RA   = coe(3); 
incl = coe(4); 
w    = coe(5); 
TA   = coe(6); 
  
%...Equations 4.45 and 4.46 (rp and vp are column vectors): 



Appendix D Page 45 of 101 10/27/09 9:07 AM  

rp = (h^2/mu) * (1/(1 + e*cos(TA))) * (cos(TA)*[1;0;0] + sin(TA)*[0;1;0]); 
vp = (mu/h) * (-sin(TA)*[1;0;0] + (e + cos(TA))*[0;1;0]); 
  
%...Equation 4.34: 
R3_W = [ cos(RA)  sin(RA)  0 
        -sin(RA)  cos(RA)  0 
            0        0     1]; 
  
%...Equation 4.32: 
R1_i = [1       0          0 
        0   cos(incl)  sin(incl) 
        0  -sin(incl)  cos(incl)]; 
  
%...Equation 4.34: 
R3_w = [ cos(w)  sin(w)  0  
        -sin(w)  cos(w)  0 
           0       0     1]; 
  
%...Equation 4.49: 
Q_pX = (R3_w*R1_i*R3_W)'; 
  
%...Equations 4.51 (r and v are column vectors): 
r = Q_pX*rp; 
v = Q_pX*vp; 
  
%...Convert r and v into row vectors: 
r = r'; 
v = v'; 
  
end 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 

Script file  Example_4_07.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_4_07 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 4.5 to obtain the state vector from 
  the orbital elements provided in Example 4.7. 
  
  pi  - 3.1415926... 
  deg - factor for converting between degrees and radians 
  mu  - gravitational parameter (km^3/s^2) 
  coe - orbital elements [h e RA incl w TA a] 
        where h    = angular momentum (km^2/s) 
              e    = eccentricity 
              RA   = right ascension of the ascending node (rad) 
              incl = orbit inclination (rad) 
              w    = argument of perigee (rad) 
              TA   = true anomaly (rad) 
              a    = semimajor axis (km) 
  r   - position vector (km) in geocentric equatorial frame 
  v   - velocity vector (km) in geocentric equatorial frame 
  
  User M-function required: sv_from_coe 
%} 
% ---------------------------------------------- 
clear all; clc 
deg = pi/180; 
mu  = 398600; 
  
%...Data declaration for Example 4.5 (angles in degrees): 
h    = 80000; 



Appendix D Page 46 of 101 10/27/09 9:07 AM  

e    = 1.4; 
RA   = 40; 
incl = 30; 
w    = 60; 
TA   = 30; 
%... 
  
coe = [h, e, RA*deg, incl*deg, w*deg, TA*deg]; 
  
%...Algorithm 4.5 (requires angular elements be in radians): 
[r, v] = sv_from_coe(coe, mu); 
  
%...Echo the input data and output the results to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 4.7\n') 
fprintf('\n Gravitational parameter (km^3/s^2)  = %g\n', mu) 
fprintf('\n Angular momentum (km^2/s)           = %g', h) 
fprintf('\n Eccentricity                        = %g', e) 
fprintf('\n Right ascension (deg)               = %g', RA) 
fprintf('\n Argument of perigee (deg)           = %g', w) 
fprintf('\n True anomaly (deg)                  = %g', TA) 
fprintf('\n\n State vector:') 
fprintf('\n   r (km)   = [%g  %g  %g]', r(1), r(2), r(3)) 
fprintf('\n   v (km/s) = [%g  %g  %g]', v(1), v(2), v(3)) 
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_4_05 

 

----------------------------------------------------- 
 Example 4.7 
 
 Gravitational parameter (km^3/s^2)  = 398600 
 
 Angular momentum (km^2/s)           = 80000 
 Eccentricity                        = 1.4 
 Right ascension (deg)               = 40 
 Argument of perigee (deg)           = 60 
 True anomaly (deg)                  = 30 
 
 State vector: 
   r (km)   = [-4039.9  4814.56  3628.62] 
   v (km/s) = [-10.386  -4.77192  1.74388] 
----------------------------------------------------- 
 

D.23 Algorithm 4.6  Calculate the ground track of a satellite from its orbital elements 

Function file ground_track.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function ground_track  
% ~~~~~~~~~~~~ 
%{ 
  This program plots the ground track of an earth satellite 
  for which the orbital elements are specified 
   
  mu        - gravitational parameter (km^3/s^2) 
  deg       - factor that converts degrees to radians 
  J2        - second zonal harmonic 
  Re        - earth's radius (km) 
  we        - earth's angular velocity (rad/s) 
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  rP        - perigee of orbit (km) 
  rA        - apogee of orbit (km) 
  TA, TAo   - true anomaly, initial true anomaly of satellite (rad) 
  RA, RAo   - right ascension, initial right ascension of the node (rad) 
  incl      - orbit inclination (rad) 
  wp, wpo   - argument of perigee, initial argument of perigee (rad) 
  n_periods - number of periods for which ground track is to be plotted 
  a         - semimajor axis of orbit (km) 
  T         - period of orbit (s) 
  e         - eccentricity of orbit 
  h         - angular momentum of orbit (km^2/s) 
  E, Eo     - eccentric anomaly, initial eccentric anomaly (rad) 
  M, Mo     - mean anomaly, initial mean anomaly (rad) 
  to, tf    - initial and final times for the ground track (s) 
  fac       - common factor in Equations 4.53 and 4.53 
  RAdot     - rate of regression of the node (rad/s) 
  wpdot     - rate of advance of perigee (rad/s) 
  times     - times at which ground track is plotted (s) 
  ra        - vector of right ascensions of the spacecraft (deg) 
  dec       - vector of declinations of the spacecraft (deg) 
  TA        - true anomaly (rad) 
  r         - perifocal position vector of satellite (km) 
  R         - geocentric equatorial position vector (km) 
  R1        - DCM for rotation about z through RA 
  R2        - DCM for rotation about x through incl 
  R3        - DCM for rotation about z through wp 
  QxX       - DCM for rotation from perifocal to geocentric equatorial 
  Q         - DCM for rotation from geocentric equatorial 
              into earth-fixed frame 
  r_rel     - position vector in earth-fixed frame (km) 
  alpha     - satellite right ascension (deg) 
  delta     - satellite declination (deg) 
  n_curves  - number of curves comprising the ground track plot 
  RA        - cell array containing the right ascensions for each of 
              the curves comprising the ground track plot 
  Dec       - cell array containing the declinations for each of 
              the curves comprising the ground track plot 
  
  User M-functions required: sv_from_coe, kepler_E, ra_and_dec_from_r 
%}  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
clear all; close all; clc 
global ra dec n_curves RA Dec 
  
%...Constants 
deg       = pi/180; 
mu        = 398600; 
J2        = 0.00108263; 
Re        = 6378; 
we        = (2*pi + 2*pi/365.26)/(24*3600); 
  
%...Data declaration for Example 4.12: 
rP        = 6700; 
rA        = 10000; 
TAo       = 230*deg; 
Wo        = 270*deg; 
incl      = 60*deg; 
wpo       = 45*deg; 
n_periods = 3.25; 
%...End data declaration 
  
%...Compute the initial time (since perigee) and 
%   the rates of node regression and perigee advance 
a         = (rA + rP)/2; 
T         = 2*pi/sqrt(mu)*a^(3/2); 
e         = (rA - rP)/(rA + rP); 
h         = sqrt(mu*a*(1 - e^2)); 
Eo        = 2*atan(tan(TAo/2)*sqrt((1-e)/(1+e))); 
Mo        = Eo - e*sin(Eo); 
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to        = Mo*(T/2/pi); 
tf        = to + n_periods*T; 
fac       = -3/2*sqrt(mu)*J2*Re^2/(1-e^2)^2/a^(7/2); 
Wdot      = fac*cos(incl); 
wpdot     = fac*(5/2*sin(incl)^2 - 2); 
  
find_ra_and_dec 
form_separate_curves 
plot_ground_track 
print_orbital_data 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~ 
function find_ra_and_dec 
% ~~~~~~~~~~~~~~~~~~~~~~ 
% Propagates the orbit over the specified time interval, transforming 
% the position vector into the earth-fixed frame and, from that, 
% computing the right ascension and declination histories 
% ---------------------- 
% 
times = linspace(to,tf,1000); 
ra    = []; 
dec   = []; 
theta = 0; 
for i = 1:length(times) 
    t             = times(i); 
    M             = 2*pi/T*t; 
    E             = kepler_E(e, M); 
    TA            = 2*atan(tan(E/2)*sqrt((1+e)/(1-e)));     
    r             = h^2/mu/(1 + e*cos(TA))*[cos(TA) sin(TA) 0]'; 
     
    W             = Wo  + Wdot*t; 
    wp            = wpo + wpdot*t; 
     
    R1            = [ cos(W)  sin(W)  0 
                     -sin(W)  cos(W)  0 
                         0       0    1]; 
          
    R2            = [1      0          0 
                     0   cos(incl)  sin(incl) 
                     0  -sin(incl)  cos(incl)]; 
       
    R3            = [ cos(wp)  sin(wp)  0 
                     -sin(wp)  cos(wp)  0 
                         0        0     1]; 
            
    QxX           = (R3*R2*R1)'; 
    R             = QxX*r; 
     
    theta         = we*(t - to);    
    Q             = [ cos(theta)  sin(theta)  0 
                     -sin(theta)  cos(theta)  0 
                          0          0        1];     
    r_rel         = Q*R; 
     
    [alpha delta] = ra_and_dec_from_r(r_rel); 
     
    ra            = [ra;  alpha]; 
    dec           = [dec; delta];     
end 
  
end %find_ra_and_dec 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function form_separate_curves 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~     
% Breaks the ground track up into separate curves which start 
% and terminate at right ascensions in the range [0,360 deg].  
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% --------------------------- 
tol = 100; 
curve_no = 1; 
n_curves = 1; 
k        = 0; 
ra_prev  = ra(1); 
for i = 1:length(ra) 
    if abs(ra(i) - ra_prev) > tol 
        curve_no = curve_no + 1; 
        n_curves = n_curves + 1; 
        k = 0; 
    end 
    k                = k + 1; 
    RA{curve_no}(k)  = ra(i); 
    Dec{curve_no}(k) = dec(i); 
    ra_prev          = ra(i); 
end 
end %form_separate_curves 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function plot_ground_track 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
hold on 
xlabel('East longitude (degrees)') 
ylabel('Latitude (degrees)') 
axis equal 
grid on 
for i = 1:n_curves 
    plot(RA{i}, Dec{i}) 
end 
  
axis ([0 360 -90 90]) 
text(  ra(1),    dec(1), 'o Start') 
text(ra(end), dec(end), 'o Finish') 
line([min(ra) max(ra)],[0 0], 'Color','k') %the equator 
end %plot_ground_track 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function print_orbital_data 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
coe       = [h e Wo incl wpo TAo];  
[ro, vo]  = sv_from_coe(coe, mu); 
fprintf('\n ----------------------------------------------------\n') 
fprintf('\n Angular momentum     = %g km^2/s' , h) 
fprintf('\n Eccentricity         = %g'        , e) 
fprintf('\n Semimajor axis       = %g km'     , a) 
fprintf('\n Perigee radius       = %g km'     , rP) 
fprintf('\n Apogee radius        = %g km'     , rA) 
fprintf('\n Period               = %g hours'  , T/3600) 
fprintf('\n Inclination          = %g deg'    , incl/deg) 
fprintf('\n Initial true anomaly = %g deg'    , TAo/deg) 
fprintf('\n Time since perigee   = %g hours'  , to/3600) 
fprintf('\n Initial RA           = %g deg'    , Wo/deg) 
fprintf('\n RA_dot               = %g deg/period' , Wdot/deg*T) 
fprintf('\n Initial wp           = %g deg'    , wpo/deg) 
fprintf('\n wp_dot               = %g deg/period' , wpdot/deg*T) 
fprintf('\n') 
fprintf('\n r0 = [%12g, %12g, %12g] (km)', ro(1), ro(2), ro(3)) 
fprintf('\n magnitude = %g km\n', norm(ro)) 
fprintf('\n v0 = [%12g, %12g, %12g] (km)', vo(1), vo(2), vo(3)) 
fprintf('\n magnitude = %g km\n', norm(vo)) 
fprintf('\n ----------------------------------------------------\n') 
  
end %print_orbital_data 
  
end %ground_track 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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D.24 Algorithm 5.1: Gibbs method of preliminary orbit determination 

Function file  gibbs.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [V2, ierr] = gibbs(R1, R2, R3) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses the Gibbs method of orbit determination to 
  to compute the velocity corresponding to the second of three 
  supplied position vectors. 
  
  mu            - gravitational parameter (km^3/s^2  
  R1, R2, R3    - three coplanar geocentric position vectors (km) 
  r1, r2, r3    - the magnitudes of R1, R2 and R3 (km) 
  c12, c23, c31 - three independent cross products among 
                  R1, R2 and R3 
  N, D, S       - vectors formed from R1, R2 and R3 during 
                  the Gibbs' procedure 
  tol           - tolerance for determining if R1, R2 and R3 
                  are coplanar 
  ierr          - = 0 if R1, R2, R3 are found to be coplanar 
                  = 1 otherwise 
  V2            - the velocity corresponding to R2 (km/s) 
  
  User M-functions required: none 
%} 
% --------------------------------------- 
  
global mu 
tol  = 1e-4; 
ierr = 0; 
  
%...Magnitudes of R1, R2 and R3: 
r1 = norm(R1); 
r2 = norm(R2); 
r3 = norm(R3); 
  
%...Cross products among R1, R2 and R3: 
c12 = cross(R1,R2); 
c23 = cross(R2,R3); 
c31 = cross(R3,R1); 
  
%...Check that R1, R2 and R3 are coplanar; if not set error flag: 
if abs(dot(R1,c23)/r1/norm(c23)) > tol 
    ierr = 1; 
end 
  
%...Equation 5.13: 
N = r1*c23 + r2*c31 + r3*c12; 
  
%...Equation 5.14: 
D = c12 + c23 + c31; 
  
%...Equation 5.21: 
S = R1*(r2 - r3) + R2*(r3 - r1) + R3*(r1 - r2); 
  
%...Equation 5.22: 
V2 = sqrt(mu/norm(N)/norm(D))*(cross(D,R2)/r2 + S); 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  end %gibbs 

 
 
 



Appendix D Page 51 of 101 10/27/09 9:07 AM  

Script file  Example_5_01.m  

 

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_5_01 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 5.1 (Gibbs method) and Algorithm 4.2 
  to obtain the orbital elements from the data provided in Example 5.1. 
  
  deg        - factor for converting between degrees and radians 
  pi         - 3.1415926... 
  mu         - gravitational parameter (km^3/s^2) 
  r1, r2, r3 - three coplanar geocentric position vectors (km) 
  ierr       - 0 if r1, r2, r3 are found to be coplanar 
               1 otherwise 
  v2         - the velocity corresponding to r2 (km/s) 
  coe        - orbital elements [h e RA incl w TA a] 
               where h    = angular momentum (km^2/s) 
                     e    = eccentricity 
                     RA   = right ascension of the ascending node (rad) 
                     incl = orbit inclination (rad) 
                     w    = argument of perigee (rad) 
                     TA   = true anomaly (rad) 
                     a    = semimajor axis (km) 
  T          - period of elliptic orbit (s) 
  
  User M-functions required: gibbs, coe_from_sv 
%} 
% ---------------------------------------------- 
  
clear all; clc 
deg = pi/180; 
global mu 
  
%...Data declaration for Example 5.1: 
mu = 398600; 
r1 = [-294.32 4265.1 5986.7]; 
r2 = [-1365.5 3637.6 6346.8]; 
r3 = [-2940.3 2473.7 6555.8]; 
%... 
  
%...Echo the input data to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 5.1: Gibbs Method\n') 
fprintf('\n\n Input data:\n') 
fprintf('\n  Gravitational parameter (km^3/s^2)  = %g\n', mu) 
fprintf('\n  r1 (km) = [%g  %g  %g]', r1(1), r1(2), r1(3)) 
fprintf('\n  r2 (km) = [%g  %g  %g]', r2(1), r2(2), r2(3)) 
fprintf('\n  r3 (km) = [%g  %g  %g]', r3(1), r3(2), r3(3)) 
fprintf('\n\n'); 
  
%...Algorithm 5.1: 
[v2, ierr] = gibbs(r1, r2, r3); 
  
%...If the vectors r1, r2, r3, are not coplanar, abort: 
if ierr == 1 
    fprintf('\n  These vectors are not coplanar.\n\n') 
    return 
end 
  
%...Algorithm 4.2: 
coe  = coe_from_sv(r2,v2,mu); 
  
h    = coe(1); 
e    = coe(2); 
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RA   = coe(3); 
incl = coe(4); 
w    = coe(5); 
TA   = coe(6); 
a    = coe(7); 
  
%...Output the results to the command window: 
fprintf(' Solution:') 
fprintf('\n'); 
fprintf('\n  v2 (km/s) = [%g  %g  %g]', v2(1), v2(2), v2(3)) 
fprintf('\n\n  Orbital elements:'); 
fprintf('\n    Angular momentum (km^2/s)  = %g', h)  
fprintf('\n    Eccentricity               = %g', e) 
fprintf('\n    Inclination (deg)          = %g', incl/deg) 
fprintf('\n    RA of ascending node (deg) = %g', RA/deg) 
fprintf('\n    Argument of perigee (deg)  = %g', w/deg) 
fprintf('\n    True anomaly (deg)         = %g', TA/deg)  
fprintf('\n    Semimajor axis (km)        = %g', a) 
%...If the orbit is an ellipse, output the period: 
if e < 1 
    T = 2*pi/sqrt(mu)*coe(7)^1.5; 
    fprintf('\n    Period (s)                 = %g', T) 
end  
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 
 
 

Output from Example_5_01 

 

 
----------------------------------------------------- 
 Example 5.1: Gibbs Method 
 
 
 Input data: 
 
  Gravitational parameter (km^3/s^2)  = 398600 
 
  r1 (km) = [-294.32  4265.1  5986.7] 
  r2 (km) = [-1365.4  3637.6  6346.8] 
  r3 (km) = [-2940.3  2473.7  6555.8] 
 
 Solution: 
 
  v2 (km/s) = [-6.2176  -4.01237  1.59915] 
 
  Orbital elements: 
    Angular momentum (km^2/s)  = 56193 
    Eccentricity               = 0.100159 
    Inclination (deg)          = 60.001 
    RA of ascending node (deg) = 40.0023 
    Argument of perigee (deg)  = 30.1093 
    True anomaly (deg)         = 49.8894 
    Semimajor axis (km)        = 8002.14 
    Period (s)                 = 7123.94 
----------------------------------------------------- 

 

 

D.25 Algorithm 5.2: Solution of Lambert’s problem 
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Function file  lambert.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  function [V1, V2] = lambert(R1, R2, t, string) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function solves Lambert's problem. 
  
  mu         - gravitational parameter (km^3/s^2) 
  R1, R2     - initial and final position vectors (km) 
  r1, r2     - magnitudes of R1 and R2 
  t          - the time of flight from R1 to R2 (a constant) (s) 
  V1, V2     - initial and final velocity vectors (km/s) 
  c12        - cross product of R1 into R2 
  theta      - angle between R1 and R2 
  string     - 'pro'   if the orbit is prograde 
               'retro' if the orbit is retrograde 
  A          - a constant given by Equation 5.35 
  z          - alpha*x^2, where alpha is the reciprocal of the 
               semimajor axis and x is the universal anomaly 
  y(z)       - a function of z given by Equation 5.38 
  F(z,t)     - a function of the variable z and constant t, 
             - given by Equation 5.40 
  dFdz(z)    - the derivative of F(z,t), given by Equation 5.43 
  ratio      - F/dFdz 
  tol        - tolerance on precision of convergence 
  nmax       - maximum number of iterations of Newton's procedure 
  f, g       - Lagrange coefficients 
  gdot       - time derivative of g 
  C(z), S(z) - Stumpff functions 
  dum        - a dummy variable 
  
  User M-functions required: stumpC and stumpS 
%} 
% ---------------------------------------------- 
  
global mu 
  
%...Magnitudes of R1 and R2: 
r1 = norm(R1); 
r2 = norm(R2); 
  
c12   = cross(R1, R2); 
theta = acos(dot(R1,R2)/r1/r2); 
  
%...Determine whether the orbit is prograde or retrograde: 
if nargin < 4 || (~strcmp(string,'retro') & (~strcmp(string,'pro'))) 
    string = 'pro'; 
    fprintf('\n ** Prograde trajectory assumed.\n') 
end 
  
if strcmp(string,'pro') 
    if c12(3) <= 0 
        theta = 2*pi - theta; 
    end 
elseif strcmp(string,'retro') 
    if c12(3) >= 0 
        theta = 2*pi - theta; 
    end 
end 
  
%...Equation 5.35: 
A = sin(theta)*sqrt(r1*r2/(1 - cos(theta))); 
  
%...Determine approximately where F(z,t) changes sign, and 
%...use that value of z as the starting value for Equation 5.45: 
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z = -100; 
while F(z,t) < 0 
    z = z + 0.1; 
end 
  
%...Set an error tolerance and a limit on the number of iterations: 
tol   = 1.e-8; 
nmax  = 5000; 
  
%...Iterate on Equation 5.45 until z is determined to within the 
%...error tolerance: 
ratio = 1; 
n     = 0; 
while (abs(ratio) > tol) & (n <= nmax) 
    n     = n + 1; 
    ratio = F(z,t)/dFdz(z); 
    z     = z - ratio; 
end 
  
%...Report if the maximum number of iterations is exceeded: 
if n >= nmax 
    fprintf('\n\n **Number of iterations exceeds %g \n\n ',nmax) 
end 
  
%...Equation 5.46a: 
f    = 1 - y(z)/r1; 
  
%...Equation 5.46b: 
g    = A*sqrt(y(z)/mu); 
  
%...Equation 5.46d: 
gdot = 1 - y(z)/r2; 
  
%...Equation 5.28: 
V1   = 1/g*(R2 - f*R1); 
  
%...Equation 5.29: 
V2   = 1/g*(gdot*R2 - R1); 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Subfunctions used in the main body: 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
%...Equation 5.38: 
function dum = y(z) 
    dum = r1 + r2 + A*(z*S(z) - 1)/sqrt(C(z)); 
end 
  
%...Equation 5.40: 
function dum = F(z,t) 
    dum = (y(z)/C(z))^1.5*S(z) + A*sqrt(y(z)) - sqrt(mu)*t; 
end 
  
%...Equation 5.43: 
function dum = dFdz(z) 
    if z == 0 
        dum = sqrt(2)/40*y(0)^1.5 + A/8*(sqrt(y(0)) + A*sqrt(1/2/y(0))); 
    else 
        dum = (y(z)/C(z))^1.5*(1/2/z*(C(z) - 3*S(z)/2/C(z)) ... 
               + 3*S(z)^2/4/C(z)) + A/8*(3*S(z)/C(z)*sqrt(y(z)) ... 
               + A*sqrt(C(z)/y(z))); 
    end 
end 
  
%...Stumpff functions: 
function dum = C(z) 
    dum = stumpC(z); 
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end 
  
function dum = S(z) 
    dum = stumpS(z); 
end 
  
end %lambert 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file  Example_5_02.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_5_02 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 5.2 to solve Lambert's problem for the 
  data provided in Example 5.2. 
  
  deg    - factor for converting between degrees and radians 
  pi     - 3.1415926... 
  mu     - gravitational parameter (km^3/s^2) 
  r1, r2 - initial and final position vectors (km) 
  dt     - time between r1 and r2 (s) 
  string - = 'pro' if the orbit is prograde 
           = 'retro if the orbit is retrograde 
  v1, v2 - initial and final velocity vectors (km/s) 
  coe    - orbital elements [h e RA incl w TA a] 
           where h    = angular momentum (km^2/s) 
                 e    = eccentricity 
                 RA   = right ascension of the ascending node (rad) 
                 incl = orbit inclination (rad) 
                 w    = argument of perigee (rad) 
                 TA   = true anomaly (rad) 
                 a    = semimajor axis (km) 
  TA1    - Initial true anomaly (rad) 
  TA2    - Final true anomaly (rad) 
  T      - period of an elliptic orbit (s) 
  
  User M-functions required: lambert, coe_from_sv 
%} 
% --------------------------------------------- 
  
clear all; clc 
global mu 
deg = pi/180; 
  
%...Data declaration for Example 5.2: 
mu     = 398600; 
r1     = [  5000  10000  2100]; 
r2     = [-14600   2500  7000]; 
dt     = 3600; 
string = 'pro'; 
%... 
  
%...Algorithm 5.2: 
[v1, v2] = lambert(r1, r2, dt, string); 
  
%...Algorithm 4.1 (using r1 and v1): 
coe      = coe_from_sv(r1, v1, mu); 
%...Save the initial true anomaly: 
TA1      = coe(6); 
  
%...Algorithm 4.1 (using r2 and v2): 
coe      = coe_from_sv(r2, v2, mu); 
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%...Save the final true anomaly: 
TA2      = coe(6); 
  
%...Echo the input data and output the results to the command window: 
fprintf('-----------------------------------------------------')         
fprintf('\n Example 5.2: Lambert''s Problem\n') 
fprintf('\n\n Input data:\n'); 
fprintf('\n   Gravitational parameter (km^3/s^2) = %g\n', mu); 
fprintf('\n   r1 (km)                       = [%g  %g  %g]', ... 
                                            r1(1), r1(2), r1(3)) 
fprintf('\n   r2 (km)                       = [%g  %g  %g]', ... 
                                            r2(1), r2(2), r2(3)) 
fprintf('\n   Elapsed time (s)              = %g', dt); 
fprintf('\n\n Solution:\n') 
  
fprintf('\n   v1 (km/s)                     = [%g  %g  %g]', ... 
                                            v1(1), v1(2), v1(3)) 
fprintf('\n   v2 (km/s)                     = [%g  %g  %g]', ... 
                                            v2(1), v2(2), v2(3)) 
                                                                                        
fprintf('\n\n Orbital elements:') 
fprintf('\n   Angular momentum (km^2/s)     = %g', coe(1)) 
fprintf('\n   Eccentricity                  = %g', coe(2)) 
fprintf('\n   Inclination (deg)             = %g', coe(4)/deg) 
fprintf('\n   RA of ascending node (deg)    = %g', coe(3)/deg) 
fprintf('\n   Argument of perigee (deg)     = %g', coe(5)/deg) 
fprintf('\n   True anomaly initial (deg)    = %g', TA1/deg) 
fprintf('\n   True anomaly final   (deg)    = %g', TA2/deg) 
fprintf('\n   Semimajor axis (km)           = %g', coe(7)) 
fprintf('\n   Periapse radius (km)          = %g', coe(1)^2/mu/(1 + 
coe(2))) 
%...If the orbit is an ellipse, output its period: 
if coe(2)<1 
    T = 2*pi/sqrt(mu)*coe(7)^1.5;  
    fprintf('\n   Period:') 
    fprintf('\n     Seconds                     = %g', T)  
    fprintf('\n     Minutes                     = %g', T/60) 
    fprintf('\n     Hours                       = %g', T/3600) 
    fprintf('\n     Days                        = %g', T/24/3600) 
end 
fprintf('\n-----------------------------------------------------\n')         
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_5_02 

 

----------------------------------------------------- 
 Example 5.2: Lambert's Problem 
 
 
 Input data: 
 
   Gravitational parameter (km^3/s^2) = 398600 
 
   r1 (km)                       = [5000  10000  2100] 
   r2 (km)                       = [-14600  2500  7000] 
   Elapsed time (s)              = 3600 
 
 Solution: 
 
   v1 (km/s)                     = [-5.99249  1.92536  3.24564] 
   v2 (km/s)                     = [-3.31246  -4.19662  -0.385288] 
 
 Orbital elements: 
   Angular momentum (km^2/s)     = 80466.8 
   Eccentricity                  = 0.433488 
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   Inclination (deg)             = 30.191 
   RA of ascending node (deg)    = 44.6002 
   Argument of perigee (deg)     = 30.7062 
   True anomaly initial (deg)    = 350.83 
   True anomaly final   (deg)    = 91.1223 
   Semimajor axis (km)           = 20002.9 
   Periapse radius (km)          = 11331.9 
   Period: 
     Seconds                     = 28154.7 
     Minutes                     = 469.245 
     Hours                       = 7.82075 
     Days                        = 0.325865 
----------------------------------------------------- 
 

 

D.26 Calculation of Julian day number at 0 hr UT 

The following script implements Equation 5.48 for use in other programs. 

Function file  J0.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function j0 = J0(year, month, day) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function computes the Julian day number at 0 UT for any year 
  between 1900 and 2100 using Equation 5.48. 
  
  j0    - Julian day at 0 hr UT (Universal Time) 
  year  - range: 1901 - 2099 
  month - range: 1 - 12 
  day   - range: 1 - 31 
  
  User m-functions required: none 
%} 
% ---------------------------------- 
  
j0 = 367*year - fix(7*(year + fix((month + 9)/12))/4) ... 
    + fix(275*month/9) + day + 1721013.5; 
         
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
end %J0 
 
 

Script file  Example_5_04.m  

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_5_04 
% ~~~~~~~~~~~~ 
%{ 
  This program computes J0 and the Julian day number using the data 
  in Example 5.4. 
  
  year   - range: 1901 - 2099 
  month  - range: 1 - 12 
  day    - range: 1 - 31 
  hour   - range: 0 - 23 (Universal Time) 
  minute - rage: 0 - 60 
  second - range: 0 - 60 
  ut     - universal time (hr) 
  j0     - Julian day number at 0 hr UT 
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  jd     - Julian day number at specified UT 
  
  User M-function required: J0 
%} 
% ---------------------------------------------- 
  
clear all; clc 
  
%...Data declaration for Example 5.4: 
year   = 2004; 
month  = 5; 
day    = 12; 
  
hour   = 14; 
minute = 45; 
second = 30; 
%... 
  
ut = hour + minute/60 + second/3600; 
  
%...Equation 5.46: 
j0 = J0(year, month, day); 
  
%...Equation 5.47: 
jd = j0 + ut/24; 
  
%...Echo the input data and output the results to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 5.4: Julian day calculation\n') 
fprintf('\n Input data:\n'); 
fprintf('\n   Year            = %g',   year) 
fprintf('\n   Month           = %g',   month) 
fprintf('\n   Day             = %g',   day) 
fprintf('\n   Hour            = %g',   hour) 
fprintf('\n   Minute          = %g',   minute) 
fprintf('\n   Second          = %g\n', second) 
  
fprintf('\n Julian day number = %11.3f', jd); 
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

Output from Example_5_04 

 

----------------------------------------------------- 
 Example 5.4: Julian day calculation 
 
 Input data: 
 
   Year            = 2004 
   Month           = 5 
   Day             = 12 
   Hour            = 14 
   Minute          = 45 
   Second          = 30 
 
 Julian day number = 2453138.115 
---------------------------------------------------- 
 

 

D.27 Algorithm 5.3: calculation of local sidereal time 
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Function file  LST.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function lst = LST(y, m, d, ut, EL) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the local sidereal time. 
  
  lst - local sidereal time (degrees) 
  y   - year 
  m   - month 
  d   - day 
  ut  - Universal Time (hours) 
  EL  - east longitude (degrees) 
  j0  - Julian day number at 0 hr UT 
  j   - number of centuries since J2000 
  g0  - Greenwich sidereal time (degrees) at 0 hr UT 
  gst - Greenwich sidereal time (degrees) at the specified UT 
  
  User M-function required:  J0 
  User subfunction required: zeroTo360 
%} 
% ---------------------------------------------- 
  
%...Equation 5.48; 
j0 = J0(y, m, d); 
  
%...Equation 5.49: 
j = (j0 - 2451545)/36525; 
  
%...Equation 5.50: 
g0 = 100.4606184 + 36000.77004*j + 0.000387933*j^2 - 2.583e-8*j^3; 
  
%...Reduce g0 so it lies in the range 0 - 360 degrees 
g0 = zeroTo360(g0); 
  
%...Equation 5.51: 
gst = g0 + 360.98564724*ut/24; 
  
%...Equation 5.52: 
lst = gst + EL; 
  
%...Reduce lst to the range 0 - 360 degrees: 
lst = lst - 360*fix(lst/360); 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function y = zeroTo360(x) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This subfunction reduces an angle to the range 0 - 360 degrees. 
  
  x - The angle (degrees) to be reduced 
  y - The reduced value 
%} 
% ------------------------- 
if (x >= 360) 
    x = x - fix(x/360)*360; 
elseif (x < 0) 
    x = x - (fix(x/360) - 1)*360; 
end 
y = x; 
end %zeroTo360 
  
end %LST 
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% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

Script file  Example_5_06.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_5_06 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 5.3 to obtain the local sidereal 
  time from the data provided in Example 5.6. 
  
  lst   - local sidereal time (degrees) 
  EL    - east longitude of the site (west longitude is negative): 
             degrees (0 - 360) 
             minutes (0 - 60) 
             seconds (0 - 60) 
  WL    - west longitude 
  year  - range: 1901 - 2099 
  month - range: 1 - 12 
  day   - range: 1 - 31 
  ut    - universal time 
             hour (0 - 23) 
             minute (0 - 60) 
             second (0 - 60) 
  
  User m-function required: LST 
%} 
% ---------------------------------------------- 
  
clear all; clc 
  
%...Data declaration for Example 5.6: 
%   East longitude: 
degrees = 139; 
minutes = 47; 
seconds = 0; 
  
%   Date: 
year    = 2004; 
month   = 3; 
day     = 3; 
  
%   Universal time: 
hour    = 4; 
minute  = 30; 
second  = 0; 
%... 
  
%...Convert negative (west) longitude to east longitude:   
if degrees < 0 
    degrees = degrees + 360; 
end 
  
%...Express the longitudes as decimal numbers:    
EL = degrees + minutes/60 + seconds/3600; 
WL = 360 - EL; 
  
%...Express universal time as a decimal number: 
ut = hour + minute/60 + second/3600; 
  
%...Algorithm 5.3: 
lst = LST(year, month, day, ut, EL); 
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%...Echo the input data and output the results to the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 5.6: Local sidereal time calculation\n') 
fprintf('\n Input data:\n'); 
fprintf('\n   Year                      = %g', year) 
fprintf('\n   Month                     = %g', month) 
fprintf('\n   Day                       = %g', day) 
fprintf('\n   UT (hr)                   = %g', ut) 
fprintf('\n   West Longitude (deg)      = %g', WL) 
fprintf('\n   East Longitude (deg)      = %g', EL) 
fprintf('\n\n'); 
  
fprintf(' Solution:') 
  
fprintf('\n'); 
fprintf('\n  Local Sidereal Time (deg) = %g', lst) 
fprintf('\n  Local Sidereal Time (hr)  = %g', lst/15) 
  
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_5_06 

 

----------------------------------------------------- 
 Example 5.6: Local sidereal time calculation 
 
 Input data: 
 
   Year                      = 2004 
   Month                     = 3 
   Day                       = 3 
   UT (hr)                   = 4.5 
   West Longitude (deg)      = 220.217 
   East Longitude (deg)      = 139.783 
 
 Solution: 
 
  Local Sidereal Time (deg) = 8.57688 
  Local Sidereal Time (hr)  = 0.571792 
----------------------------------------------------- 
 

 

D.28 Algorithm 5.4: Calculation of the state vector from measurements of range, angular position 

and their rates 

Function file  rv_from_observe.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [r,v] = rv_from_observe(rho, rhodot, A, Adot, a, ... 
                                   adot, theta, phi, H) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the geocentric equatorial position and 
  velocity vectors of an object from radar observations of range, 
  azimuth, elevation angle and their rates. 
  
  deg    - conversion factor between degrees and radians 
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  pi     - 3.1415926... 
  
  Re     - equatorial radius of the earth (km) 
  f      - earth's flattening factor 
  wE     - angular velocity of the earth (rad/s) 
  omega  - earth's angular velocity vector (rad/s) in the 
           geocentric equatorial frame 
  
  theta  - local sidereal time (degrees) of tracking site 
  phi    - geodetic latitude (degrees) of site 
  H      - elevation of site (km) 
  R      - geocentric equatorial position vector (km) of tracking site 
  Rdot   - inertial velocity (km/s) of site 
  
  rho    - slant range of object (km) 
  rhodot - range rate (km/s) 
  A      - azimuth (degrees) of object relative to observation site  
  Adot   - time rate of change of azimuth (degrees/s) 
  a      - elevation angle (degrees) of object relative to observation site 
  adot   - time rate of change of elevation angle (degrees/s) 
  dec    - topocentric equatorial declination of object (rad) 
  decdot - declination rate (rad/s) 
  h      - hour angle of object (rad) 
  RA     - topocentric equatorial right ascension of object (rad) 
  RAdot  - right ascension rate (rad/s) 
  
  Rho    - unit vector from site to object 
  Rhodot - time rate of change of Rho (1/s) 
  r      - geocentric equatorial position vector of object (km) 
  v      - geocentric equatorial velocity vector of object (km) 
  
  User M-functions required: none 
%} 
% -------------------------------------------------------------------- 
  
global f Re wE 
deg   = pi/180; 
omega = [0 0 wE]; 
  
%...Convert angular quantities from degrees to radians: 
A     = A    *deg; 
Adot  = Adot *deg; 
a     = a    *deg; 
adot  = adot *deg; 
theta = theta*deg; 
phi   = phi  *deg; 
  
%...Equation 5.56: 
R     = [(Re/sqrt(1-(2*f - f*f)*sin(phi)^2) + H)*cos(phi)*cos(theta), ... 
         (Re/sqrt(1-(2*f - f*f)*sin(phi)^2) + H)*cos(phi)*sin(theta), ... 
         (Re*(1 - f)^2/sqrt(1-(2*f - f*f)*sin(phi)^2) + H)*sin(phi)]; 
  
%...Equation 5.66: 
Rdot  = cross(omega, R); 
  
%...Equation 5.83a: 
dec   = asin(cos(phi)*cos(A)*cos(a) + sin(phi)*sin(a)); 
  
%...Equation 5.83b: 
h = acos((cos(phi)*sin(a) - sin(phi)*cos(A)*cos(a))/cos(dec)); 
if (A > 0) & (A < pi) 
    h = 2*pi - h; 
end 
  
%...Equation 5.83c: 
RA = theta - h; 
  
%...Equations 5.57: 
Rho = [cos(RA)*cos(dec)  sin(RA)*cos(dec)  sin(dec)]; 
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%...Equation 5.63: 
r   = R + rho*Rho; 
  
%...Equation 5.84: 
decdot = (-Adot*cos(phi)*sin(A)*cos(a) + adot*(sin(phi)*cos(a) ... 
          - cos(phi)*cos(A)*sin(a)))/cos(dec); 
  
%...Equation 5.85:  
RAdot  = wE ... 
         + (Adot*cos(A)*cos(a) - adot*sin(A)*sin(a) ... 
         + decdot*sin(A)*cos(a)*tan(dec)) ... 
          /(cos(phi)*sin(a) - sin(phi)*cos(A)*cos(a)); 
  
%...Equations 5.69 and 5.72: 
Rhodot = [-RAdot*sin(RA)*cos(dec) - decdot*cos(RA)*sin(dec),... 
           RAdot*cos(RA)*cos(dec) - decdot*sin(RA)*sin(dec),... 
           decdot*cos(dec)]; 
  
%...Equation 5.64: 
v = Rdot + rhodot*Rho + rho*Rhodot; 
  
end %rv_from_observe 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

Script file  Example_5_10.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_5_10 
% ~~~~~~~~~~~~ 
% 
% This program uses Algorithms 5.4 and 4.2 to obtain the orbital 
% elements from the observational data provided in Example 5.10. 
% 
% deg    - conversion factor between degrees and radians 
% pi     - 3.1415926... 
% mu     - gravitational parameter (km^3/s^2) 
  
% Re     - equatorial radius of the earth (km) 
% f      - earth's flattening factor 
% wE     - angular velocity of the earth (rad/s) 
% omega  - earth's angular velocity vector (rad/s) in the 
%          geocentric equatorial frame 
  
% rho    - slant range of object (km) 
% rhodot - range rate (km/s) 
% A      - azimuth (deg) of object relative to observation site  
% Adot   - time rate of change of azimuth (deg/s) 
% a      - elevation angle (deg) of object relative to observation site 
% adot   - time rate of change of elevation angle (degrees/s) 
  
% theta  - local sidereal time (deg) of tracking site 
% phi    - geodetic latitude (deg) of site 
% H      - elevation of site (km) 
  
% r      - geocentric equatorial position vector of object (km) 
% v      - geocentric equatorial velocity vector of object (km) 
  
% coe    - orbital elements [h e RA incl w TA a] 
%          where 
%              h    = angular momentum (km^2/s) 
%              e    = eccentricity 
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%              RA   = right ascension of the ascending node (rad) 
%              incl = inclination of the orbit (rad) 
%              w    = argument of perigee (rad) 
%              TA   = true anomaly (rad) 
%              a    = semimajor axis (km) 
% rp    - perigee radius (km) 
% T     - period of elliptical orbit (s) 
% 
% User M-functions required: rv_from_observe, coe_from_sv 
% -------------------------------------------------------------------- 
  
clear all; clc 
global  f Re wE 
  
deg    = pi/180; 
f      = 1/298.256421867; 
Re     = 6378.13655; 
wE     = 7.292115e-5; 
mu     = 398600.4418; 
  
%...Data declaration for Example 5.10: 
rho    = 2551; 
rhodot = 0; 
A      = 90; 
Adot   = 0.1130; 
a      = 30; 
adot   = 0.05651; 
theta  = 300; 
phi    = 60; 
H      = 0; 
%... 
  
%...Algorithm 5.4: 
[r,v] = rv_from_observe(rho, rhodot, A, Adot, a, adot, theta, phi, H); 
  
%...Algorithm 4.2: 
coe  = coe_from_sv(r,v,mu); 
  
h    = coe(1); 
e    = coe(2); 
RA   = coe(3); 
incl = coe(4); 
w    = coe(5); 
TA   = coe(6); 
a    = coe(7); 
  
%...Equation 2.40 
rp   = h^2/mu/(1 + e); 
  
%...Echo the input data and output the solution to 
%   the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 5.10') 
fprintf('\n\n Input data:\n'); 
fprintf('\n Slant range (km)              = %g', rho); 
fprintf('\n Slant range rate (km/s)       = %g', rhodot); 
fprintf('\n Azimuth (deg)                 = %g', A); 
fprintf('\n Azimuth rate (deg/s)          = %g', Adot); 
fprintf('\n Elevation (deg)               = %g', a); 
fprintf('\n Elevation rate (deg/s)        = %g', adot); 
fprintf('\n Local sidereal time (deg)     = %g', theta); 
fprintf('\n Latitude (deg)                = %g', phi); 
fprintf('\n Altitude above sea level (km) = %g', H); 
fprintf('\n\n');  
  
fprintf(' Solution:') 
  
fprintf('\n\n State vector:\n'); 
fprintf('\n r (km)                        = [%g, %g, %g]', ... 
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                                       r(1), r(2), r(3)); 
fprintf('\n v (km/s)                      = [%g, %g, %g]', ... 
                                       v(1), v(2), v(3)); 
  
fprintf('\n\n Orbital elements:\n') 
fprintf('\n   Angular momentum (km^2/s)   = %g', h) 
fprintf('\n   Eccentricity                = %g', e) 
fprintf('\n   Inclination (deg)           = %g', incl/deg) 
fprintf('\n   RA of ascending node (deg)  = %g', RA/deg) 
fprintf('\n   Argument of perigee (deg)   = %g', w/deg)  
fprintf('\n   True anomaly (deg)          = %g\n', TA/deg) 
fprintf('\n   Semimajor axis (km)         = %g', a) 
fprintf('\n   Perigee radius (km)         = %g', rp)  
%...If the orbit is an ellipse, output its period: 
if e < 1 
    T = 2*pi/sqrt(mu)*a^1.5;  
    fprintf('\n   Period:') 
    fprintf('\n     Seconds                   = %g', T)  
    fprintf('\n     Minutes                   = %g', T/60) 
    fprintf('\n     Hours                     = %g', T/3600) 
    fprintf('\n     Days                      = %g', T/24/3600) 
end 
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
  
 

Output from Example_5_10 

 

 
----------------------------------------------------- 
 Example 5.10 
 
 Input data: 
 
 Slant range (km)              = 2551 
 Slant range rate (km/s)       = 0 
 Azimuth (deg)                 = 90 
 Azimuth rate (deg/s)          = 0.113 
 Elevation (deg)               = 5168.62 
 Elevation rate (deg/s)        = 0.05651 
 Local sidereal time (deg)     = 300 
 Latitude (deg)                = 60 
 Altitude above sea level (km) = 0 
 
 Solution: 
 
 State vector: 
 
 r (km)                        = [3830.68, -2216.47, 6605.09] 
 v (km/s)                      = [1.50357, -4.56099, -0.291536] 
 
 Orbital elements: 
 
   Angular momentum (km^2/s)   = 35621.4 
   Eccentricity                = 0.619758 
   Inclination (deg)           = 113.386 
   RA of ascending node (deg)  = 109.75 
   Argument of perigee (deg)   = 309.81 
   True anomaly (deg)          = 165.352 
 
   Semimajor axis (km)         = 5168.62 
   Perigee radius (km)         = 1965.32 
   Period: 
     Seconds                   = 3698.05 
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     Minutes                   = 61.6342 
     Hours                     = 1.02724 
     Days                      = 0.0428015 
----------------------------------------------------- 
 

 

D.29 Algorithms 5.5 and 5.6: Gauss method of preliminary orbit determination with iterative 

improvement 

Function file  gauss.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 function [r, v, r_old, v_old] = ... 
          gauss(Rho1, Rho2, Rho3, R1, R2, R3, t1, t2, t3) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses the Gauss method with iterative improvement 
  (Algorithms 5.5 and 5.6) to calculate the state vector of an 
  orbiting body from angles-only observations at three 
  closely-spaced times. 
  
  mu               - the gravitational parameter (km^3/s^2) 
  t1, t2, t3       - the times of the observations (s) 
  tau, tau1, tau3  - time intervals between observations (s) 
  R1, R2, R3       - the observation site position vectors 
                     at t1, t2, t3 (km) 
  Rho1, Rho2, Rho3 - the direction cosine vectors of the 
                     satellite at t1, t2, t3 
  p1, p2, p3       - cross products among the three direction 
                     cosine vectors 
  Do               - scalar triple product of Rho1, Rho2 and Rho3 
  D                - Matrix of the nine scalar triple products 
                     of R1, R2 and R3 with p1, p2 and p3 
  E                - dot product of R2 and Rho2 
  A, B             - constants in the expression relating slant range 
                     to geocentric radius 
  a,b,c            - coefficients of the 8th order polynomial 
                     in the estimated geocentric radius x 
  x                - positive root of the 8th order polynomial 
  rho1, rho2, rho3 - the slant ranges at t1, t2, t3 
  r1, r2, r3       - the position vectors at t1, t2, t3 (km) 
  r_old, v_old     - the estimated state vector at the end of 
                     Algorithm 5.5 (km, km/s) 
  rho1_old, 
  rho2_old, and 
  rho3_old         - the values of the slant ranges at t1, t2, t3 
                     at the beginning of iterative improvement 
                     (Algorithm 5.6) (km) 
  diff1, diff2,  
  and diff3        - the magnitudes of the differences between the 
                     old and new slant ranges at the end of 
                     each iteration 
  tol              - the error tolerance determining 
                    convergence 
  n                - number of passes through the  
                    iterative improvement loop 
  nmax             - limit on the number of iterations 
  ro, vo           - magnitude of the position and 
                     velocity vectors (km, km/s) 
  vro              - radial velocity component (km) 
  a                - reciprocal of the semimajor axis (1/km) 
  v2               - computed velocity at time t2 (km/s) 
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  r, v             - the state vector at the end of Algorithm 5.6 
                     (km, km/s) 
  
  User m-functions required:  kepler_U, f_and_g 
  User subfunctions required: posroot 
%} 
% ------------------------------------------------------- 
  
global mu 
  
%...Equations 5.98: 
tau1 = t1 - t2; 
tau3 = t3 - t2; 
  
%...Equation 5.101: 
tau  = tau3 - tau1; 
  
%...Independent cross products among the direction cosine vectors: 
p1 = cross(Rho2,Rho3); 
p2 = cross(Rho1,Rho3); 
p3 = cross(Rho1,Rho2); 
  
%...Equation 5.108: 
Do = dot(Rho1,p1); 
  
%...Equations 5.109b, 5.110b and 5.111b: 
D  = [[dot(R1,p1) dot(R1,p2) dot(R1,p3)] 
      [dot(R2,p1) dot(R2,p2) dot(R2,p3)] 
      [dot(R3,p1) dot(R3,p2) dot(R3,p3)]]; 
  
%...Equation 5.115b: 
E = dot(R2,Rho2); 
  
%...Equations 5.112b and 5.112c: 
A = 1/Do*(-D(1,2)*tau3/tau + D(2,2) + D(3,2)*tau1/tau); 
B = 1/6/Do*(D(1,2)*(tau3^2 - tau^2)*tau3/tau ... 
            + D(3,2)*(tau^2 - tau1^2)*tau1/tau); 
  
%...Equations 5.117: 
a = -(A^2 + 2*A*E + norm(R2)^2); 
b = -2*mu*B*(A + E); 
c = -(mu*B)^2; 
  
%...Calculate the roots of Equation 5.116 using MATLAB's 
%   polynomial 'roots' solver: 
Roots = roots([1 0 a 0 0 b 0 0 c]); 
  
%...Find the positive real root: 
x = posroot(Roots); 
  
%...Equations 5.99a and 5.99b: 
f1 =    1 - 1/2*mu*tau1^2/x^3; 
f3 =    1 - 1/2*mu*tau3^2/x^3; 
  
%...Equations 5.100a and 5.100b: 
g1 = tau1 - 1/6*mu*(tau1/x)^3; 
g3 = tau3 - 1/6*mu*(tau3/x)^3; 
  
%...Equation 5.112a: 
rho2 = A + mu*B/x^3; 
  
%...Equation 5.113: 
rho1 = 1/Do*((6*(D(3,1)*tau1/tau3 + D(2,1)*tau/tau3)*x^3 ... 
               + mu*D(3,1)*(tau^2 - tau1^2)*tau1/tau3) ... 
               /(6*x^3 + mu*(tau^2 - tau3^2)) - D(1,1)); 
  
%...Equation 5.114: 
rho3 = 1/Do*((6*(D(1,3)*tau3/tau1 - D(2,3)*tau/tau1)*x^3 ... 
               + mu*D(1,3)*(tau^2 - tau3^2)*tau3/tau1) ... 
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               /(6*x^3 + mu*(tau^2 - tau1^2)) - D(3,3));  
  
%...Equations 5.86: 
r1 = R1 + rho1*Rho1; 
r2 = R2 + rho2*Rho2; 
r3 = R3 + rho3*Rho3; 
  
%...Equation 5.118: 
v2 = (-f3*r1 + f1*r3)/(f1*g3 - f3*g1); 
  
%...Save the initial estimates of r2 and v2: 
r_old = r2; 
v_old = v2; 
  
%...End of Algorithm 5.5 
  
  
%...Use Algorithm 5.6 to improve the accuracy of the initial estimates. 
  
%...Initialize the iterative improvement loop and set error tolerance: 
rho1_old = rho1;  rho2_old = rho2;  rho3_old = rho3; 
diff1    = 1;     diff2    = 1;     diff3    = 1; 
n    = 0; 
nmax = 1000; 
tol  = 1.e-8; 
  
%...Iterative improvement loop: 
while ((diff1 > tol) & (diff2 > tol) & (diff3 > tol)) & (n < nmax) 
    n = n+1; 
  
%...Compute quantities required by universal kepler's equation: 
    ro  = norm(r2); 
    vo  = norm(v2); 
    vro = dot(v2,r2)/ro; 
    a   = 2/ro - vo^2/mu; 
  
%...Solve universal Kepler's equation at times tau1 and tau3 for 
%   universal anomalies x1 and x3: 
    x1 = kepler_U(tau1, ro, vro, a); 
    x3 = kepler_U(tau3, ro, vro, a); 
  
%...Calculate the Lagrange f and g coefficients at times tau1 
%   and tau3: 
    [ff1, gg1] = f_and_g(x1, tau1, ro, a); 
    [ff3, gg3] = f_and_g(x3, tau3, ro, a); 
  
%...Update the f and g functions at times tau1 and tau3 by  
%   averaging old and new: 
    f1    = (f1 + ff1)/2; 
    f3    = (f3 + ff3)/2; 
    g1    = (g1 + gg1)/2; 
    g3    = (g3 + gg3)/2; 
  
%...Equations 5.96 and 5.97: 
    c1    =  g3/(f1*g3 - f3*g1); 
    c3    = -g1/(f1*g3 - f3*g1); 
  
%...Equations 5.109a, 5.110a and 5.111a: 
    rho1  = 1/Do*(      -D(1,1) + 1/c1*D(2,1) - c3/c1*D(3,1)); 
    rho2  = 1/Do*(   -c1*D(1,2) +      D(2,2) -    c3*D(3,2)); 
    rho3  = 1/Do*(-c1/c3*D(1,3) + 1/c3*D(2,3) -       D(3,3)); 
  
%...Equations 5.86: 
    r1    = R1 + rho1*Rho1; 
    r2    = R2 + rho2*Rho2; 
    r3    = R3 + rho3*Rho3; 
  
%...Equation 5.118: 
    v2    = (-f3*r1 + f1*r3)/(f1*g3 - f3*g1); 
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%...Calculate differences upon which to base convergence: 
    diff1 = abs(rho1 - rho1_old); 
    diff2 = abs(rho2 - rho2_old); 
    diff3 = abs(rho3 - rho3_old); 
  
%...Update the slant ranges: 
    rho1_old = rho1;  rho2_old = rho2;  rho3_old = rho3; 
end 
%...End iterative improvement loop 
  
fprintf('\n( **Number of Gauss improvement iterations = %g)\n\n',n) 
  
if n >= nmax 
    fprintf('\n\n **Number of iterations exceeds %g \n\n ',nmax); 
end 
  
%...Return the state vector for the central observation: 
r = r2; 
v = v2; 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function x = posroot(Roots) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{  
  This subfunction extracts the positive real roots from 
  those obtained in the call to MATLAB's 'roots' function. 
  If there is more than one positive root, the user is 
  prompted to select the one to use. 
  
  x         - the determined or selected positive root 
  Roots     - the vector of roots of a polynomial  
  posroots  - vector of positive roots 
  
  User M-functions required: none 
%} 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
%...Construct the vector of positive real roots: 
posroots  = Roots(find(Roots>0 & ~imag(Roots)));  
npositive = length(posroots); 
  
%...Exit if no positive roots exist: 
if npositive == 0 
    fprintf('\n\n ** There are no positive roots.  \n\n') 
    return 
end 
  
%...If there is more than one positive root, output the 
%   roots to the command window and prompt the user to 
%   select which one to use: 
if npositive == 1 
    x = posroots; 
else 
    fprintf('\n\n ** There are two or more positive roots.\n') 
    for i = 1:npositive 
        fprintf('\n root #%g = %g',i,posroots(i)) 
    end 
    fprintf('\n\n Make a choice:\n') 
    nchoice = 0; 
    while nchoice < 1 | nchoice > npositive 
        nchoice = input(' Use root #? '); 
    end 
    x = posroots(nchoice); 
    fprintf('\n We will use %g .\n', x) 
end 
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end %posroot 
  
end %gauss 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 

Script file  Example_5_11.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_5_11 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithms 5.5 and 5.6 (Gauss's method) to compute 
  the state vector from the data provided in Example 5.11. 
  
  deg          - factor for converting between degrees and radians 
  pi           - 3.1415926... 
  mu           - gravitational parameter (km^3/s^2) 
  Re           - earth's radius (km) 
  f            - earth's flattening factor 
  H            - elevation of observation site (km) 
  phi          - latitude of site (deg) 
  t            - vector of observation times t1, t2, t3 (s) 
  ra           - vector of topocentric equatorial right ascensions 
                 at t1, t2, t3 (deg) 
  dec          - vector of topocentric equatorial right declinations 
                 at t1, t2, t3 (deg) 
  theta        - vector of local sidereal times for t1, t2, t3 (deg) 
  R            - matrix of site position vectors at t1, t2, t3 (km) 
  rho          - matrix of direction cosine vectors at t1, t2, t3 
  fac1, fac2   - common factors 
  r_old, v_old - the state vector without iterative improvement (km, km/s) 
  r, v         - the state vector with iterative improvement (km, km/s) 
  coe          - vector of orbital elements for r, v:  
                 [h, e, RA, incl, w, TA, a] 
                 where h    = angular momentum (km^2/s) 
                       e    = eccentricity 
                       incl = inclination (rad) 
                       w    = argument of perigee (rad) 
                       TA   = true anomaly (rad) 
                       a    = semimajor axis (km) 
  coe_old     - vector of orbital elements for r_old, v_old        
  
  User M-functions required: gauss, coe_from_sv 
%} 
% --------------------------------------------- 
  
clear all; clc 
  
global mu 
  
deg = pi/180; 
mu  = 398600; 
Re  = 6378; 
f   = 1/298.26; 
  
%...Data declaration for Example 5.11: 
H     = 1; 
phi   = 40*deg; 
t     = [       0   118.104   237.577]; 
ra    = [ 43.5365   54.4196   64.3178]*deg; 
dec   = [-8.78334  -12.0739  -15.1054]*deg; 
theta = [ 44.5065    45.000   45.4992]*deg; 
%... 
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%...Equations 5.64, 5.76 and 5.79: 
fac1 = Re/sqrt(1-(2*f - f*f)*sin(phi)^2); 
fac2 = (Re*(1-f)^2/sqrt(1-(2*f - f*f)*sin(phi)^2) + H)*sin(phi); 
for i = 1:3 
    R(i,1) = (fac1 + H)*cos(phi)*cos(theta(i)); 
    R(i,2) = (fac1 + H)*cos(phi)*sin(theta(i)); 
    R(i,3) = fac2; 
    rho(i,1) = cos(dec(i))*cos(ra(i)); 
    rho(i,2) = cos(dec(i))*sin(ra(i)); 
    rho(i,3) = sin(dec(i)); 
end 
  
%...Algorithms 5.5 and 5.6: 
[r, v, r_old, v_old] = gauss(rho(1,:), rho(2,:), rho(3,:), ... 
                               R(1,:),    R(2,:),  R(3,:), ... 
                               t(1),      t(2),    t(3)); 
  
%...Algorithm 4.2 for the initial estimate of the state vector 
%   and for the iteratively improved one: 
coe_old = coe_from_sv(r_old,v_old,mu); 
coe     = coe_from_sv(r,v,mu); 
  
%...Echo the input data and output the solution to 
%   the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 5.11: Orbit determination by the Gauss method\n') 
fprintf('\n Radius of earth (km)               = %g', Re) 
fprintf('\n Flattening factor                  = %g', f) 
fprintf('\n Gravitational parameter (km^3/s^2) = %g', mu) 
fprintf('\n\n Input data:\n'); 
fprintf('\n Latitude (deg)                = %g', phi/deg); 
fprintf('\n Altitude above sea level (km) = %g', H); 
fprintf('\n\n Observations:') 
fprintf('\n               Right') 
fprintf('                                     Local') 
fprintf('\n   Time (s)   Ascension (deg)   Declination (deg)')  
fprintf('   Sidereal time (deg)') 
for i = 1:3 
    fprintf('\n %9.4g %11.4f %19.4f %20.4f', ... 
                 t(i), ra(i)/deg, dec(i)/deg, theta(i)/deg) 
end 
  
fprintf('\n\n Solution:\n') 
  
fprintf('\n Without iterative improvement...\n') 
fprintf('\n'); 
fprintf('\n r (km)                          = [%g, %g, %g]', ... 
                                   r_old(1), r_old(2), r_old(3)) 
fprintf('\n v (km/s)                        = [%g, %g, %g]', ... 
                                   v_old(1), v_old(2), v_old(3)) 
fprintf('\n'); 
  
fprintf('\n   Angular momentum (km^2/s)     = %g', coe_old(1)) 
fprintf('\n   Eccentricity                  = %g', coe_old(2)) 
fprintf('\n   RA of ascending node (deg)    = %g', coe_old(3)/deg) 
fprintf('\n   Inclination (deg)             = %g', coe_old(4)/deg) 
fprintf('\n   Argument of perigee (deg)     = %g', coe_old(5)/deg) 
fprintf('\n   True anomaly (deg)            = %g', coe_old(6)/deg) 
fprintf('\n   Semimajor axis (km)           = %g', coe_old(7)) 
fprintf('\n   Periapse radius (km)          = %g', coe_old(1)^2 ... 
                                             /mu/(1 + coe_old(2))) 
%...If the orbit is an ellipse, output the period: 
if coe_old(2)<1 
    T = 2*pi/sqrt(mu)*coe_old(7)^1.5;  
    fprintf('\n   Period:') 
    fprintf('\n     Seconds                     = %g', T)  
    fprintf('\n     Minutes                     = %g', T/60) 
    fprintf('\n     Hours                       = %g', T/3600) 
    fprintf('\n     Days                        = %g', T/24/3600) 
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end 
  
fprintf('\n\n With iterative improvement...\n') 
fprintf('\n'); 
fprintf('\n r (km)                          = [%g, %g, %g]', ... 
                                               r(1), r(2), r(3)) 
fprintf('\n v (km/s)                        = [%g, %g, %g]', ... 
                                               v(1), v(2), v(3)) 
fprintf('\n'); 
fprintf('\n   Angular momentum (km^2/s)     = %g', coe(1)) 
fprintf('\n   Eccentricity                  = %g', coe(2)) 
fprintf('\n   RA of ascending node (deg)    = %g', coe(3)/deg) 
fprintf('\n   Inclination (deg)             = %g', coe(4)/deg) 
fprintf('\n   Argument of perigee (deg)     = %g', coe(5)/deg) 
fprintf('\n   True anomaly (deg)            = %g', coe(6)/deg) 
fprintf('\n   Semimajor axis (km)           = %g', coe(7)) 
fprintf('\n   Periapse radius (km)          = %g', coe(1)^2 ... 
                                             /mu/(1 + coe(2))) 
%...If the orbit is an ellipse, output the period: 
if coe(2)<1 
    T = 2*pi/sqrt(mu)*coe(7)^1.5;  
    fprintf('\n   Period:') 
    fprintf('\n     Seconds                     = %g', T)  
    fprintf('\n     Minutes                     = %g', T/60) 
    fprintf('\n     Hours                       = %g', T/3600) 
    fprintf('\n     Days                        = %g', T/24/3600) 
end 
fprintf('\n-----------------------------------------------------\n') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  

Output from Example_5_11 

 

( **Number of Gauss improvement iterations = 14) 
 
----------------------------------------------------- 
 Example 5.11: Orbit determination by the Gauss method 
 
 Radius of earth (km)               = 6378 
 Flattening factor                  = 0.00335278 
 Gravitational parameter (km^3/s^2) = 398600 
 
 Input data: 
 
 Latitude (deg)                = 40 
 Altitude above sea level (km) = 1 
 
 Observations: 
               Right                                     Local 
   Time (s)   Ascension (deg)   Declination (deg)   Sidereal time (deg) 
         0     43.5365             -8.7833              44.5065 
     118.1     54.4196            -12.0739              45.0000 
     237.6     64.3178            -15.1054              45.4992 
 
 Solution: 
 
 Without iterative improvement... 
 
 
 r (km)                          = [5659.03, 6533.74, 3270.15] 
 v (km/s)                        = [-3.8797, 5.11565, -2.2397] 
 
   Angular momentum (km^2/s)     = 62705.3 
   Eccentricity                  = 0.097562 
   RA of ascending node (deg)    = 270.023 
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   Inclination (deg)             = 30.0105 
   Argument of perigee (deg)     = 88.654 
   True anomaly (deg)            = 46.3163 
   Semimajor axis (km)           = 9959.2 
   Periapse radius (km)          = 8987.56 
   Period: 
     Seconds                     = 9891.17 
     Minutes                     = 164.853 
     Hours                       = 2.74755 
     Days                        = 0.114481 
 
 With iterative improvement... 
 
 
 r (km)                          = [5662.04, 6537.95, 3269.05] 
 v (km/s)                        = [-3.88542, 5.12141, -2.2434] 
 
   Angular momentum (km^2/s)     = 62816.7 
   Eccentricity                  = 0.0999909 
   RA of ascending node (deg)    = 269.999 
   Inclination (deg)             = 30.001 
   Argument of perigee (deg)     = 89.9723 
   True anomaly (deg)            = 45.0284 
   Semimajor axis (km)           = 9999.48 
   Periapse radius (km)          = 8999.62 
   Period: 
     Seconds                     = 9951.24 
     Minutes                     = 165.854 
     Hours                       = 2.76423 
     Days                        = 0.115176 
-----------------------------------------------------  
 
 

 

D.30 Calculate the state vector after a finite-time, constant thrust delta-v maneuver 

Function file integrate_thrust.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function integrate_thrust 
% ~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses rkf45 to numerically integrate Equation 6.26 during 
  the delta-v burn and then find the apogee of the post-burn orbit. 
  
  The input data are for the first part of Example 6.15. 
  
  mu        - gravitational parameter (km^3/s^2) 
  RE        - earth radius (km) 
  g0        - sea-level acceleration of gravity (m/s^2) 
  T         - rated thrust of rocket engine (kN) 
  Isp       - specific impulse of rocket engine (s)  
  m0        - initial spacecraft mass (kg) 
  r0        - initial position vector (km) 
  v0        - initial velocity vector (km/s) 
  t0        - initial time (s) 
  t_burn    - rocket motor burn time (s) 
  y0        - column vector containing r0, v0 and m0 
  t         - column vector of the times at which the solution is found (s) 
  y         - a matrix whose elements are: 
                 columns 1, 2 and 3: 
                    The solution for the x, y and z components of the  
                    position vector r at the times t 



Appendix D Page 74 of 101 10/27/09 9:07 AM  

                 columns 4, 5 and 6: 
                    The solution for the x, y and z components of the  
                    velocity vector v at the times t 
                 column 7: 
                    The spacecraft mass m at the times t 
  r1        - position vector after the burn (km) 
  v1        - velocity vector after the burn (km/s) 
  m1        - mass after the burn (kg) 
  coe       - orbital elements of the post-burn trajectory 
              (h e RA incl w TA a) 
  ra        - position vector vector at apogee (km) 
  va        - velocity vector at apogee (km) 
  rmax      - apogee radius (km)  
   
  User M-functions required:  rkf45, coe_from_sv, rv_from_r0v0_ta  
  User subfunctions required: rates, output                            
%} 
% --------------------------------------------- 
  
%...Preliminaries: 
clear all; close all; clc 
global mu 
deg     = pi/180;     
mu      = 398600; 
RE      = 6378; 
g0      = 9.807; 
  
%...Input data: 
r0      = [RE+480    0   0]; 
v0      = [  0   7.7102 0]; 
t0      = 0; 
t_burn  = 261.1127; 
  
m0      = 2000; 
T       = 10; 
Isp     = 300; 
%...end Input data 
  
%...Integrate the equations of motion over the burn time:    
y0    = [r0 v0 m0]'; 
[t,y] = rkf45(@rates, [t0 t_burn], y0, 1.e-16); 
  
%...Compute the state vector and mass after the burn: 
r1  = [y(end,1) y(end,2) y(end,3)]; 
v1  = [y(end,4) y(end,5) y(end,6)]; 
m1  = y(end,7); 
coe = coe_from_sv(r1,v1,mu); 
e   = coe(2);  %eccentricity 
TA  = coe(6);  %true anomaly (radians) 
a   = coe(7);  %semimajor axis 
  
%...Find the state vector at apogee of the post-burn trajectory: 
if TA <= pi 
    dtheta = pi - TA; 
else 
    dtheta = 3*pi - TA; 
end     
[ra,va] = rv_from_r0v0_ta(r1, v1, dtheta/deg, mu); 
rmax    = norm(ra); 
  
output 
  
%...Subfunctions: 
  
%~~~~~~~~~~~~~~~~~~~~~~~~~ 
function dfdt = rates(t,f) 
%~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the acceleration vector using Equation 6.26. 
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  t          - time (s) 
  f          - column vector containing the position vector, velocity 
               vector and the mass at time t 
  x, y, z    - components of the position vector (km) 
  vx, vy, vz - components of the velocity vector (km/s) 
  m          - mass (kg) 
  r          - magnitude of the the position vector (km) 
  v          - magnitude of the velocity vector (km/s) 
  ax, ay, az - components of the acceleration vector (km/s^2) 
  mdot       - rate of change of mass (kg/s) 
  dfdt       - column vector containing the velocity and acceleration 
               components and the mass rate 
%} 
% ------------------------ 
x  = f(1);  y = f(2);  z = f(3); 
vx = f(4); vy = f(5); vz = f(6); 
m  = f(7); 
  
r    = norm([x y z]); 
v    = norm([vx vy vz]); 
ax   = -mu*x/r^3 + T/m*vx/v; 
ay   = -mu*y/r^3 + T/m*vy/v; 
az   = -mu*z/r^3 + T/m*vz/v; 
mdot = -T*1000/g0/Isp; 
     
dfdt = [vx vy vz ax ay az mdot]'; 
  
end %rates 
  
%~~~~~~~~~~~~~~ 
function output 
%~~~~~~~~~~~~~~         
fprintf('\n\n--------------------------------------------------------\n') 
fprintf('\nBefore ignition:') 
fprintf('\n  Mass = %g kg', m0) 
fprintf('\n  State vector:') 
fprintf('\n    r = [%10g, %10g, %10g] (km)', r0(1), r0(2), r0(3)) 
fprintf('\n      Radius = %g', norm(r0)) 
fprintf('\n    v = [%10g, %10g, %10g] (km/s)', v0(1), v0(2), v0(3)) 
fprintf('\n      Speed = %g\n', norm(v0)) 
fprintf('\nThrust          = %12g kN', T) 
fprintf('\nBurn time       = %12.6f s', t_burn) 
fprintf('\nMass after burn = %12.6E kg\n', m1) 
fprintf('\nEnd-of-burn-state vector:') 
fprintf('\n    r = [%10g, %10g, %10g] (km)', r1(1), r1(2), r1(3)) 
fprintf('\n      Radius = %g', norm(r1)) 
fprintf('\n    v = [%10g, %10g, %10g] (km/s)', v1(1), v1(2), v1(3)) 
fprintf('\n      Speed = %g\n', norm(v1)) 
fprintf('\nPost-burn trajectory:') 
fprintf('\n  Eccentricity   = %g', e) 
fprintf('\n  Semimajor axis = %g km', a) 
fprintf('\n  Apogee state vector:') 
fprintf('\n    r = [%17.10E, %17.10E, %17.10E] (km)', ra(1), ra(2), ra(3)) 
fprintf('\n      Radius = %g', norm(ra)) 
fprintf('\n    v = [%17.10E, %17.10E, %17.10E] (km/s)', va(1), va(2), 
va(3)) 
fprintf('\n      Speed = %g', norm(va)) 
fprintf('\n\n--------------------------------------------------------\n\n') 
  
end %output 
  
end %integrate_thrust 
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D.31 Algorithm 7.1: Find the position, velocity and acceleration of B relative to A’s LVLH frame. 

Function file rva_relative.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function [r_rel_x, v_rel_x, a_rel_x] = rva_relative(rA,vA,rB,vB) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function uses the state vectors of spacecraft A and B 
  to find the position, velocity and acceleration of B relative 
  to A in the LVLH frame attached to A (see Figure 7.1). 
  
  rA,vA     - state vector of A (km, km/s) 
  rB,vB     - state vector of B (km, km/s) 
  mu        - gravitational parameter (km^3/s^2) 
  hA        - angular momentum vector of A (km^2/s) 
  i, j, k   - unit vectors along the x, y and z axes of A's  
              LVLH frame 
  QXx       - DCM of the LVLH frame relative to the geocentric 
              equatorial frame (GEF) 
  Omega     - angular velocity of the LVLH frame (rad/s) 
  Omega_dot - angular acceleration of the LVLH frame (rad/s^2) 
  aA, aB    - absolute accelerations of A and B (km/s^2) 
  r_rel     - position of B relative to A in GEF (km) 
  v_rel     - velocity of B relative to A in GEF (km/s) 
  a_rel     - acceleration of B relative to A in GEF (km/s^2) 
  r_rel_x   - position of B relative to A in the LVLH frame  
  v_rel_x   - velocity of B relative to A in the LVLH frame 
  a_rel_x   - acceleration of B relative to A in the LVLH frame 
  
  User M-functions required: None  
%}                            
% ----------------------------------------------------------- 
  
global mu 
  
%...Calculate the vector hA: 
hA = cross(rA, vA); 
  
%...Calculate the unit vectors i, j and k: 
i = rA/norm(rA); 
k = hA/norm(hA); 
j = cross(k,i); 
  
%...Calculate the transformation matrix Qxx: 
QXx = [i; j; k]; 
  
%...Calculate Omega and Omega_dot: 
Omega     = hA/norm(rA)^2;                 % Equation 7.5 
Omega_dot = -2*dot(rA,vA)/norm(rA)^2*Omega;% Equation 7.6 
  
%...Calculate the accelerations aA and aB: 
aA = -mu*rA/norm(rA)^3; 
aB = -mu*rB/norm(rB)^3; 
  
%...Calculate r_rel: 
r_rel = rB - rA; 
  
%...Calculate v_rel: 
v_rel = vB - vA - cross(Omega,r_rel); 
  
%...Calculate a_rel: 
a_rel = aB - aA - cross(Omega_dot,r_rel)... 
       - cross(Omega,cross(Omega,r_rel))... 
       - 2*cross(Omega,v_rel); 
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%...Calculate r_rel_x, v_rel_x and a_rel_x:  
r_rel_x = QXx*r_rel'; 
v_rel_x = QXx*v_rel'; 
a_rel_x = QXx*a_rel'; 
  
end %rva_relative 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file Example_7_01.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_7_01 
% ~~~~~~~~~~~~~ 
%{ 
  This program uses the data of Example 7.1 to calculate the position, 
  velocity and acceleration of an orbiting chaser B relative to an 
  orbiting target A. 
  
  mu               - gravitational parameter (km^3/s^2) 
  deg              - conversion factor from degrees to radians 
  
                   Spacecraft A & B: 
  h_A, h_B         -   angular momentum (km^2/s) 
  e_A, E_B         -   eccentricity 
  i_A, i_B         -   inclination (radians) 
  RAAN_A, RAAN_B   -   right ascension of the ascending node (radians) 
  omega_A, omega_B -   argument of perigee (radians) 
  theta_A, theta_A -   true anomaly (radians) 
  
  rA, vA           - inertial position (km) and velocity (km/s) of A 
  rB, vB           - inertial position (km) and velocity (km/s) of B 
  r                - position (km) of B relative to A in A's 
                     co-moving frame 
  v                - velocity (km/s) of B relative to A in A's 
                     co-moving frame 
  a                - acceleration (km/s^2) of B relative to A in A's 
                     co-moving frame 
  
  User M-function required:   sv_from_coe, rva_relative 
  User subfunctions required: none 
%} 
% ----------------------------------------------------------- 
  
clear all; clc 
global mu 
mu  = 398600; 
deg = pi/180; 
  
%...Input data: 
  
%   Spacecraft A: 
h_A     = 52059; 
e_A     = 0.025724; 
i_A     = 60*deg; 
RAAN_A  = 40*deg; 
omega_A = 30*deg; 
theta_A = 40*deg; 
  
%   Spacecraft B: 
h_B     = 52362; 
e_B     = 0.0072696; 
i_B     = 50*deg; 
RAAN_B  = 40*deg; 
omega_B = 120*deg; 
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theta_B = 40*deg; 
  
%...End input data 
  
%...Compute the initial state vectors of A and B using Algorithm 4.5: 
[rA,vA] = sv_from_coe([h_A e_A RAAN_A i_A omega_A theta_A],mu); 
[rB,vB] = sv_from_coe([h_B e_B RAAN_B i_B omega_B theta_B],mu); 
  
%...Compute relative position, velocity and acceleration using 
%   Algorithm 7.1: 
[r,v,a] = rva_relative(rA,vA,rB,vB); 
  
%...Output 
fprintf('\n\n--------------------------------------------------------\n\n') 
fprintf('\nOrbital parameters of spacecraft A:') 
fprintf('\n   angular momentum    = %g (km^2/s)', h_A) 
fprintf('\n   eccentricity        = %g'         , e_A) 
fprintf('\n   inclination         = %g (deg)'   , i_A/deg) 
fprintf('\n   RAAN                = %g (deg)'   , RAAN_A/deg) 
fprintf('\n   argument of perigee = %g (deg)'   , omega_A/deg) 
fprintf('\n   true anomaly        = %g (deg)\n' , theta_A/deg) 
  
fprintf('\nState vector of spacecraft A:') 
fprintf('\n   r = [%g, %g, %g]', rA(1), rA(2), rA(3)) 
fprintf('\n       (magnitude = %g)', norm(rA)) 
fprintf('\n   v = [%g, %g, %g]', vA(1), vA(2), vA(3)) 
fprintf('\n       (magnitude = %g)\n', norm(vA)) 
  
fprintf('\nOrbital parameters of spacecraft B:') 
fprintf('\n   angular momentum    = %g (km^2/s)', h_B) 
fprintf('\n   eccentricity        = %g'         , e_B) 
fprintf('\n   inclination         = %g (deg)'   , i_B/deg) 
fprintf('\n   RAAN                = %g (deg)'   , RAAN_B/deg) 
fprintf('\n   argument of perigee = %g (deg)'   , omega_B/deg) 
fprintf('\n   true anomaly        = %g (deg)\n' , theta_B/deg) 
  
fprintf('\nState vector of spacecraft B:') 
fprintf('\n   r = [%g, %g, %g]', rB(1), rB(2), rB(3)) 
fprintf('\n       (magnitude = %g)', norm(rB)) 
fprintf('\n   v = [%g, %g, %g]', vB(1), vB(2), vB(3)) 
fprintf('\n       (magnitude = %g)\n', norm(vB)) 
  
fprintf('\nIn the co-moving frame attached to A:') 
fprintf('\n   Position of B relative to A = [%g, %g, %g]', ... 
                           r(1), r(2), r(3)) 
fprintf('\n      (magnitude = %g)\n', norm(r)) 
fprintf('\n   Velocity of B relative to A = [%g, %g, %g]', ... 
                           v(1), v(2), v(3)) 
fprintf('\n      (magnitude = %g)\n', norm(v)) 
fprintf('\n   Acceleration of B relative to A = [%g, %g, %g]', ... 
                           a(1), a(2), a(3)) 
fprintf('\n      (magnitude = %g)\n', norm(a)) 
fprintf('\n\n--------------------------------------------------------\n\n') 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

Output from Example_7_01.m 

 

-------------------------------------------------------- 

 
Orbital parameters of spacecraft A: 
   angular momentum    = 52059 (km^2/s) 
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   eccentricity        = 0.025724 
   inclination         = 60 (deg) 
   RAAN                = 40 (deg) 
   argument of perigee = 30 (deg) 
   true anomaly        = 40 (deg) 
 
State vector of spacecraft A: 
   r = [-266.768, 3865.76, 5426.2] 
       (magnitude = 6667.75) 
   v = [-6.48356, -3.61975, 2.41562] 
       (magnitude = 7.8086) 
 
Orbital parameters of spacecraft B: 
   angular momentum    = 52362 (km^2/s) 
   eccentricity        = 0.0072696 
   inclination         = 50 (deg) 
   RAAN                = 40 (deg) 
   argument of perigee = 120 (deg) 
   true anomaly        = 40 (deg) 
 
State vector of spacecraft B: 
   r = [-5890.71, -2979.76, 1792.21] 
       (magnitude = 6840.43) 
   v = [0.935828, -5.2403, -5.50095] 
       (magnitude = 7.65487) 
 
In the co-moving frame attached to A: 
   Position of B relative to A = [-6701.15, 6828.27, -406.261] 
      (magnitude = 9575.79) 
 
   Velocity of B relative to A = [0.316667, 0.111993, 1.24696] 
      (magnitude = 1.29141) 
 
   Acceleration of B relative to A = [-0.000222229, -0.000180743, 
0.000505932] 
      (magnitude = 0.000581396) 
 
-------------------------------------------------------- 
 

 

D.32 Plot the position of one spacecraft relative to another 

Script file Example_7_02.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_7_02 
% ~~~~~~~~~~~~ 
%{  
  This program produces a 3D plot of the motion of spacecraft B 
  relative to A in Example 7.1. See Figure 7.4. 
  
  User M-functions required: rv_from_r0v0 (Algorithm 3.4)  
                             sv_from_coe  (Algorithm 4.5) 
                             rva_relative (Algorithm 7.1) 
%}                               
% --------------------------------------------- 
  
clear all; close all; clc 
  
global mu 
  
%...Gravitational parameter and earth radius: 
mu  = 398600; 
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RE  = 6378; 
  
%...Conversion factor from degrees to radians: 
deg = pi/180; 
  
%...Input data: 
%   Initial orbital parameters (angular momentum, eccentricity, 
%   inclination, RAAN, argument of perigee and true anomaly). 
%   Spacecraft A: 
h_A     = 52059; 
e_A     = 0.025724; 
i_A     = 60*deg; 
RAAN_A  = 40*deg; 
omega_A = 30*deg; 
theta_A = 40*deg; 
  
%   Spacecraft B: 
h_B     = 52362; 
e_B     = 0.0072696; 
i_B     = 50*deg; 
RAAN_B  = 40*deg; 
omega_B = 120*deg; 
theta_B = 40*deg; 
  
vdir = [1 1 1]; 
  
%...End input data 
  
%...Compute the initial state vectors of A and B using Algorithm 4.5: 
[rA0,vA0] = sv_from_coe([h_A e_A RAAN_A i_A omega_A theta_A],mu); 
[rB0,vB0] = sv_from_coe([h_B e_B RAAN_B i_B omega_B theta_B],mu); 
  
h0 = cross(rA0,vA0); 
  
%...Period of A: 
TA = 2*pi/mu^2*(h_A/sqrt(1 - e_A^2))^3; 
  
%...Number of time steps per period of A's orbit: 
n = 100; 
  
%...Time step as a fraction of A's period: 
dt = TA/n; 
  
%...Number of periods of A's orbit for which the trajectory 
%   will be plotted: 
n_Periods = 60; 
  
%...Initialize the time: 
t = - dt; 
  
%...Generate the trajectory of B relative to A: 
for count = 1:n_Periods*n 
  
%...Update the time: 
    t = t + dt; 
     
%...Update the state vector of both orbits using Algorithm 3.4: 
    [rA,vA] = rv_from_r0v0(rA0, vA0, t); 
    [rB,vB] = rv_from_r0v0(rB0, vB0, t); 
     
%...Compute r_rel using Algorithm 7.1: 
    [r_rel, v_rel, a_rel] = rva_relative(rA,vA,rB,vB); 
  
%...Store the components of the relative position vector 
%   at this time step in the vectors x, y and z, respectively: 
    x(count) = r_rel(1); 
    y(count) = r_rel(2); 
    z(count) = r_rel(3); 
    r(count) = norm(r_rel); 
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    T(count) = t; 
end 
  
%...Plot the trajectory of B relative to A: 
figure(1) 
plot3(x, y, z) 
hold on 
axis equal 
axis on 
grid on 
box off 
view(vdir) 
%   Draw the co-moving x, y and z axes: 
line([0 4000],    [0 0],    [0 0]); text(4000,    0,    0, 'x') 
line(   [0 0], [0 7000],    [0 0]); text(   0, 7000,    0, 'y') 
line(   [0 0],    [0 0], [0 4000]); text(   0,    0, 4000, 'z') 
  
%   Label the origin of the moving frame attached to A: 
text (0, 0, 0, 'A') 
  
%   Label the start of B's relative trajectory: 
text(x(1), y(1), z(1), 'B') 
  
%   Draw the initial position vector of B: 
line([0 x(1)], [0 y(1)], [0 z(1)]) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

D.33 Solution of the linearized equations of relative motion with an elliptical reference orbit. 

Function file Example_7_03.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_7_03 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function plots the motion of chaser B relative to target A 
  for the data in Example 7.3. See Figures 7.6 and 7.7. 
  
  mu       - gravitational parameter (km^3/s^2) 
  RE       - radius of the earth (km) 
  
           Target orbit at time t = 0: 
  rp       - perigee radius (km) 
  e        - eccentricity 
  i        - inclination (rad) 
  RA       - right ascension of the ascending node (rad) 
  omega    - argument of perigee (rad) 
  theta    - true anomaly (rad) 
  ra       - apogee radius (km) 
  h        - angular momentum (km^2/s) 
  a        - semimajor axis (km) 
  T        - period (s) 
  n        - mean motion (rad/s) 
  
  dr0, dv0 - initial relative position (km) and relative velocity (km/s) 
             of B in the co-moving frame 
  t0, tf   - initial and final times (s) for the numerical integration 
  R0, V0   - initial position (km) and velocity (km/s) of A in the  
             geocentric equatorial frame 
  y0       - column vector containing r0, v0 
%} 
% User M-functions required:  sv_from_coe, rkf45 
% User subfunctions required: rates 
% --------------------------------------------- 
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clear all; close all; clc 
  
global mu 
  
mu  = 398600; 
RE  = 6378; 
  
%...Input data: 
%   Prescribed initial orbital parameters of target A: 
rp    = RE + 300; 
e     = 0.1; 
i     = 0; 
RA    = 0; 
omega = 0; 
theta = 0; 
  
%   Additional computed parameters: 
ra = rp*(1 + e)/(1 - e); 
h  = sqrt(2*mu*rp*ra/(ra + rp)); 
a  = (rp + ra)/2; 
T  = 2*pi/sqrt(mu)*a^1.5; 
n  = 2*pi/T; 
  
%   Prescribed initial state vector of chaser B in the co-moving frame:  
dr0 = [-1  0  0]; 
dv0 = [ 0 -2*n*dr0(1) 0]; 
t0  = 0; 
tf  = 5*T; 
%...End input data 
  
%...Calculate the target's initial state vector using Algorithm 4.5: 
[R0,V0] = sv_from_coe([h e RA i omega theta],mu); 
  
%...Initial state vector of B's orbit relative to A 
y0 = [dr0 dv0]'; 
  
%...Integrate Equations 7.34 using Algorithm 1.3: 
[t,y] = rkf45(@rates, [t0 tf], y0); 
  
plotit 
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
function dydt = rates(t,f) 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function computes the components of f(t,y) in Equation 7.36. 
   
  t             - time 
  f             - column vector containing the relative position and 
                  velocity vectors of B at time t 
  R, V          - updated state vector of A at time t 
  X, Y, Z       - components of R 
  VX, VY, VZ    - components of V 
  R_            - magnitude of R 
  RdotV         - dot product of R and V 
  h             - magnitude of the specific angular momentum of A 
  
  dx , dy , dz  - components of the relative position vector of B 
  dvx, dvy, dvz - components of the relative velocity vector of B 
  dax, day, daz - components of the relative acceleration vector of B 
  dydt          - column vector containing the relative velocity  
                  and acceleration components of B at time t 
  
  User M-function required: rv_from_r0v0 
%} 
% ------------------------ 
%...Update the state vector of the target orbit using Algorithm 3.4: 



Appendix D Page 83 of 101 10/27/09 9:07 AM  

[R,V] = rv_from_r0v0(R0, V0, t); 
  
X  = R(1); Y  = R(2); Z  = R(3); 
VX = V(1); VY = V(2); VZ = V(3); 
  
R_    = norm([X Y Z]); 
RdotV = dot([X Y Z], [VX VY VZ]); 
h     = norm(cross([X Y Z], [VX VY VZ])); 
  
dx    = f(1); dy  = f(2); dz  = f(3); 
dvx   = f(4); dvy = f(5); dvz = f(6); 
  
dax   =  (2*mu/R_^3 + h^2/R_^4)*dx - 2*RdotV/R_^4*h*dy + 2*h/R_^2*dvy; 
day   =   -(mu/R_^3 - h^2/R_^4)*dy + 2*RdotV/R_^4*h*dx - 2*h/R_^2*dvx; 
daz   = -mu/R_^3*dz; 
     
dydt  = [dvx dvy dvz dax day daz]';     
end %rates 
  
% ~~~~~~~~~~~~~ 
function plotit 
% ~~~~~~~~~~~~~ 
%...Plot the trajectory of B relative to A: 
% ------------- 
hold on 
plot(y(:,2), y(:,1)) 
axis on 
axis equal 
axis ([0 40 -5 5]) 
xlabel('y (km)') 
ylabel('x (km)') 
grid on 
box on 
%...Label the start of B's trajectory relative to A: 
text(y(1,2), y(1,1), 'o') 
end %plotit     
  
end %Example_7_03 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.34 Convert the numerical designation of a month or a planet into its name 

The following simple script can be used in programs that input of the numerical values for a month 

and/or a planet.  

Function file  month_planet_names.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [month, planet] = month_planet_names(month_id, planet_id) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function returns the name of the month and the planet 
  corresponding, respectively, to the numbers "month_id" and 
  "planet_id". 
  
  months    - a vector containing the names of the 12 months 
  planets   - a vector containing the names of the 9 planets 
  month_id  - the month number (1 - 12) 
  planet_id - the planet number (1 - 9) 
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  User M-functions required: none 
%} 
% ------------------------------------------------------------------ 
  
months  = ['January  ' 
           'February ' 
           'March    ' 
           'April    ' 
           'May      ' 
           'June     ' 
           'July     ' 
           'August   ' 
           'September' 
           'October  ' 
           'November ' 
           'December ']; 
  
planets = ['Mercury' 
           'Venus  ' 
           'Earth  ' 
           'Mars   ' 
           'Jupiter' 
           'Saturn ' 
           'Uranus ' 
           'Neptune' 
           'Pluto  ']; 
  
month   = months (month_id,  1:9); 
planet  = planets(planet_id, 1:7); 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
end %month_planet_names 
 

 

 

D.35 Algorithm 8.1: Calculation of the state vector of a planet at a given epoch 

Function file:  planet_elements_and_sv.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [coe, r, v, jd] = planet_elements_and_sv ... 
                (planet_id, year, month, day, hour, minute, second) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the orbital elements and the state   
  vector of a planet from the date (year, month, day) 
  and universal time (hour, minute, second). 
  
  mu        - gravitational parameter of the sun (km^3/s^2) 
  deg       - conversion factor between degrees and radians 
  pi        - 3.1415926... 
  
  coe       - vector of heliocentric orbital elements 
              [h  e  RA  incl  w  TA  a  w_hat  L  M  E], 
              where 
               h     = angular momentum                    (km^2/s) 
               e     = eccentricity 
               RA    = right ascension                     (deg) 
               incl  = inclination                         (deg) 
               w     = argument of perihelion              (deg) 
               TA    = true anomaly                        (deg) 
               a     = semimajor axis                      (km) 
               w_hat = longitude of perihelion ( = RA + w) (deg) 
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               L     = mean longitude ( = w_hat + M)       (deg) 
               M     = mean anomaly                        (deg) 
               E     = eccentric anomaly                   (deg) 
  
  planet_id - planet identifier: 
               1 = Mercury 
               2 = Venus 
               3 = Earth 
               4 = Mars 
               5 = Jupiter 
               7 = Uranus 
               8 = Neptune 
               9 = Pluto 
  
  year      - range: 1901 - 2099 
  month     - range: 1 - 12 
  day       - range: 1 - 31 
  hour      - range: 0 - 23 
  minute    - range: 0 - 60 
  second    - range: 0 - 60 
                     
  j0        - Julian day number of the date at 0 hr UT 
  ut        - universal time in fractions of a day 
  jd        - julian day number of the date and time 
  
  J2000_coe - row vector of J2000 orbital elements from Table 9.1 
  rates     - row vector of Julian centennial rates from Table 9.1 
  t0        - Julian centuries between J2000 and jd 
  elements  - orbital elements at jd 
  
  r         - heliocentric position vector 
  v         - heliocentric velocity vector 
  
  User M-functions required:  J0, kepler_E, sv_from_coe 
  User subfunctions required: planetary_elements, zero_to_360 
%} 
% -------------------------------------------------------------------- 
  
global mu 
deg    = pi/180; 
  
%...Equation 5.48: 
j0     = J0(year, month, day); 
  
ut     = (hour + minute/60 + second/3600)/24; 
  
%...Equation 5.47 
jd     = j0 + ut; 
  
%...Obtain the data for the selected planet from Table 8.1: 
[J2000_coe, rates] = planetary_elements(planet_id); 
  
%...Equation 8.93a: 
t0     = (jd - 2451545)/36525; 
  
%...Equation 8.93b: 
elements = J2000_coe + rates*t0; 
  
a      = elements(1); 
e      = elements(2); 
  
%...Equation 2.71: 
h      = sqrt(mu*a*(1 - e^2)); 
  
%...Reduce the angular elements to within the range 0 - 360 degrees: 
incl   = elements(3); 
RA     = zero_to_360(elements(4)); 
w_hat  = zero_to_360(elements(5)); 
L      = zero_to_360(elements(6)); 



Appendix D Page 86 of 101 10/27/09 9:07 AM  

w      = zero_to_360(w_hat - RA); 
M      = zero_to_360((L - w_hat)); 
  
%...Algorithm 3.1 (for which M must be in radians) 
E      = kepler_E(e, M*deg); 
  
%...Equation 3.13 (converting the result to degrees): 
TA     = zero_to_360... 
         (2*atan(sqrt((1 + e)/(1 - e))*tan(E/2))/deg); 
   
coe    = [h  e  RA  incl  w  TA  a  w_hat  L  M  E/deg]; 
  
%...Algorithm 4.5 (for which all angles must be in radians):  
[r, v] = sv_from_coe([h e RA*deg incl*deg w*deg TA*deg],mu);  
  
return 
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function [J2000_coe, rates] = planetary_elements(planet_id) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function extracts a planet's J2000 orbital elements and 
  centennial rates from Table 8.1. 
  
  planet_id      - 1 through 9, for Mercury through Pluto 
  
  J2000_elements - 9 by 6 matrix of J2000 orbital elements for the nine 
                   planets Mercury through Pluto. The columns of each  
                   row are: 
                     a     = semimajor axis (AU) 
                     e     = eccentricity 
                     i     = inclination (degrees) 
                     RA    = right ascension of the ascending 
                             node (degrees) 
                     w_hat = longitude of perihelion (degrees) 
                     L     = mean longitude (degrees) 
  
  cent_rates     - 9 by 6 matrix of the rates of change of the  
                   J2000_elements per Julian century (Cy). Using "dot" 
                   for time derivative, the columns of each row are: 
                     a_dot     (AU/Cy) 
                     e_dot     (1/Cy) 
                     i_dot     (arcseconds/Cy) 
                     RA_dot    (arcseconds/Cy) 
                     w_hat_dot (arcseconds/Cy) 
                     Ldot      (arcseconds/Cy) 
  
  J2000_coe      - row vector of J2000_elements corresponding 
                   to "planet_id", with au converted to km 
  rates          - row vector of cent_rates corresponding to 
                   "planet_id", with au converted to km and 
                   arcseconds converted to degrees               
  
  au             - astronomical unit (km) 
%} 
% -------------------------------------------------------------------- 
  
J2000_elements = ... 
[ 0.38709893  0.20563069   7.00487   48.33167   77.45645  252.25084 
  0.72333199  0.00677323   3.39471   76.68069  131.53298  181.97973 
  1.00000011  0.01671022   0.00005  -11.26064  102.94719  100.46435 
  1.52366231  0.09341233   1.85061   49.57854  336.04084  355.45332 
  5.20336301  0.04839266   1.30530  100.55615   14.75385   34.40438 
  9.53707032  0.05415060   2.48446  113.71504   92.43194   49.94432 
 19.19126393  0.04716771   0.76986   74.22988  170.96424  313.23218 
 30.06896348  0.00858587   1.76917  131.72169   44.97135  304.88003 
 39.48168677  0.24880766  17.14175  110.30347  224.06676  238.92881]; 
  
cent_rates = ... 
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[ 0.00000066   0.00002527  -23.51    -446.30    573.57  538101628.29 
  0.00000092  -0.00004938   -2.86    -996.89   -108.80  210664136.06 
 -0.00000005  -0.00003804  -46.94  -18228.25   1198.28  129597740.63 
 -0.00007221   0.00011902  -25.47   -1020.19   1560.78   68905103.78 
  0.00060737  -0.00012880   -4.15    1217.17    839.93   10925078.35 
 -0.00301530  -0.00036762    6.11   -1591.05  -1948.89    4401052.95 
  0.00152025  -0.00019150   -2.09   -1681.4    1312.56    1542547.79 
 -0.00125196   0.00002514   -3.64    -151.25   -844.43     786449.21 
 -0.00076912   0.00006465   11.07     -37.33   -132.25     522747.90]; 
  
J2000_coe      = J2000_elements(planet_id,:); 
rates          = cent_rates(planet_id,:); 
  
%...Convert from AU to km: 
au             = 149597871;  
J2000_coe(1)   = J2000_coe(1)*au; 
rates(1)       = rates(1)*au; 
  
%...Convert from arcseconds to fractions of a degree:  
rates(3:6)     = rates(3:6)/3600; 
  
end %planetary_elements 
  
  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function y = zero_to_360(x) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function reduces an angle to lie in the range 0 - 360 degrees. 
  
  x - the original angle in degrees 
  y - the angle reduced to the range 0 - 360 degrees 
  
%} 
% --------------------------- 
  
if x >= 360 
    x = x - fix(x/360)*360; 
elseif x < 0 
    x = x - (fix(x/360) - 1)*360; 
end 
  
y = x; 
  
end %zero_to_360 
  
end %planet_elements_and_sv 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  
 

Script file  Example_8_07.m  

 

 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_8_07 
% ~~~~~~~~~~~~ 
% 
% This program uses Algorithm 8.1 to compute the orbital elements 
% and state vector of the earth at the date and time specified 
% in Example 8.10. To obtain the same results for Mars, set 
% planet_id = 4. 
% 
% mu        - gravitational parameter of the sun (km^3/s^2) 
% deg       - conversion factor between degrees and radians 
% pi        - 3.1415926... 
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% 
% coe       - vector of heliocentric orbital elements 
%             [h  e  RA  incl  w  TA  a  w_hat  L  M  E], 
%             where 
%              h     = angular momentum                    (km^2/s) 
%              e     = eccentricity 
%              RA    = right ascension                     (deg) 
%              incl  = inclination                         (deg) 
%              w     = argument of perihelion              (deg) 
%              TA    = true anomaly                        (deg) 
%              a     = semimajor axis                      (km) 
%              w_hat = longitude of perihelion ( = RA + w) (deg) 
%              L     = mean longitude ( = w_hat + M)       (deg) 
%              M     = mean anomaly                        (deg) 
%              E     = eccentric anomaly                   (deg) 
% 
% r         - heliocentric position vector (km) 
% v         - heliocentric velocity vector (km/s)  
% 
% planet_id - planet identifier: 
%              1 = Mercury 
%              2 = Venus 
%              3 = Earth 
%              4 = Mars 
%              5 = Jupiter 
%              6 = Saturn 
%              7 = Uranus 
%              8 = Neptune 
%              9 = Pluto 
% 
% year      - range: 1901 - 2099 
% month     - range: 1 - 12 
% day       - range: 1 - 31 
% hour      - range: 0 - 23 
% minute    - range: 0 - 60 
% second    - range: 0 - 60  
% 
% User M-functions required: planet_elements_and_sv, 
%                            month_planet_names 
% -------------------------------------------------------------------- 
 
global mu 
mu  = 1.327124e11; 
deg = pi/180; 
 
%...Input data 
planet_id = 3; 
year      = 2003; 
month     = 8; 
day       = 27; 
hour      = 12; 
minute    = 0; 
second    = 0; 
%... 
 
%...Algorithm 8.1: 
[coe, r, v, jd] = planet_elements_and_sv ... 
              (planet_id, year, month, day, hour, minute, second); 
 
%...Convert the planet_id and month numbers into names for output: 
[month_name, planet_name] = month_planet_names(month, planet_id); 
 
%...Echo the input data and output the solution to 
%   the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 8.7') 
fprintf('\n\n Input data:\n'); 
fprintf('\n   Planet: %s', planet_name) 
fprintf('\n   Year  : %g', year) 



Appendix D Page 89 of 101 10/27/09 9:07 AM  

fprintf('\n   Month : %s', month_name) 
fprintf('\n   Day   : %g', day) 
fprintf('\n   Hour  : %g', hour) 
fprintf('\n   Minute: %g', minute) 
fprintf('\n   Second: %g', second) 
fprintf('\n\n   Julian day: %11.3f', jd) 
 
fprintf('\n\n'); 
fprintf(' Orbital elements:') 
fprintf('\n'); 
 
fprintf('\n  Angular momentum (km^2/s)                   = %g', coe(1)); 
fprintf('\n  Eccentricity                                = %g', coe(2)); 
fprintf('\n  Right ascension of the ascending node (deg) = %g', coe(3)); 
fprintf('\n  Inclination to the ecliptic (deg)           = %g', coe(4)); 
fprintf('\n  Argument of perihelion (deg)                = %g', coe(5)); 
fprintf('\n  True anomaly (deg)                          = %g', coe(6)); 
fprintf('\n  Semimajor axis (km)                         = %g', coe(7)); 
 
fprintf('\n'); 
 
fprintf('\n  Longitude of perihelion (deg)               = %g', coe(8)); 
fprintf('\n  Mean longitude (deg)                        = %g', coe(9)); 
fprintf('\n  Mean anomaly (deg)                          = %g', coe(10)); 
fprintf('\n  Eccentric anomaly (deg)                     = %g', coe(11)); 
 
fprintf('\n\n'); 
fprintf(' State vector:') 
fprintf('\n'); 
 
fprintf('\n  Position vector (km) = [%g  %g  %g]', r(1), r(2), r(3)) 
fprintf('\n  Magnitude            = %g\n', norm(r)) 
fprintf('\n  Velocity (km/s)      = [%g  %g  %g]', v(1), v(2), v(3)) 
fprintf('\n  Magnitude            = %g', norm(v)) 
 
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
 

Output from Example_8_07 

 

 
----------------------------------------------------- 
 Example 8.7 
 
 Input data: 
 
   Planet: Earth   
   Year  : 2003 
   Month : August    
   Day   : 27 
   Hour  : 12 
   Minute: 0 
   Second: 0 
 
   Julian day: 2452879.000 
 
 Orbital elements: 
 
  Angular momentum (km^2/s)                   = 4.4551e+09 
  Eccentricity                                = 0.0167088 
  Right ascension of the ascending node (deg) = 348.554 
  Inclination to the ecliptic (deg)           = -0.000426218 
  Argument of perihelion (deg)                = 114.405 
  True anomaly (deg)                          = 230.812 
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  Semimajor axis (km)                         = 1.49598e+08 
 
  Longitude of perihelion (deg)               = 102.959 
  Mean longitude (deg)                        = 335.267 
  Mean anomaly (deg)                          = 232.308 
  Eccentric anomaly (deg)                     = 231.558 
 
 State vector: 
 
  Position vector (km) = [1.35589e+08  -6.68029e+07  286.909] 
  Magnitude            = 1.51152e+08 
 
  Velocity (km/s)      = [12.6804  26.61  -0.000212731] 
  Magnitude            = 29.4769 
----------------------------------------------------- 
 

 

D.36Algorithm 8.2: Calculation of the spacecraft trajectory from planet 1 to planet 2 

Function file  interplanetary.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  function ... 
  [planet1, planet2, trajectory] = interplanetary(depart, arrive) 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function determines the spacecraft trajectory from the sphere 
  of influence of planet 1 to that of planet 2 using Algorithm 8.2 
   
  mu         - gravitational parameter of the sun (km^3/s^2) 
  dum        - a dummy vector not required in this procedure 
  
  planet_id  - planet identifier: 
                1 = Mercury 
                2 = Venus 
                3 = Earth 
                4 = Mars 
                5 = Jupiter 
                6 = Saturn 
                7 = Uranus 
                8 = Neptune 
                9 = Pluto 
  
  year       - range: 1901 - 2099 
  month      - range: 1 - 12 
  day        - range: 1 - 31 
  hour       - range: 0 - 23 
  minute     - range: 0 - 60 
  second     - range: 0 - 60  
  
  jd1, jd2   - Julian day numbers at departure and arrival 
  tof        - time of flight from planet 1 to planet 2 (s) 
  
  Rp1, Vp1   - state vector of planet 1 at departure (km, km/s) 
  Rp2, Vp2   - state vector of planet 2 at arrival (km, km/s) 
  R1, V1     - heliocentric state vector of spacecraft at 
               departure (km, km/s) 
  R2, V2     - heliocentric state vector of spacecraft at 
               arrival (km, km/s) 
  
  depart     - [planet_id, year, month, day, hour, minute, second] 
               at departure 
  arrive     - [planet_id, year, month, day, hour, minute, second] 
               at arrival 
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  planet1    - [Rp1, Vp1, jd1] 
  planet2    - [Rp2, Vp2, jd2] 
  trajectory - [V1, V2] 
  
  User M-functions required: planet_elements_and_sv, lambert 
%} 
% -------------------------------------------------------------------- 
  
global mu 
  
planet_id = depart(1); 
year      = depart(2); 
month     = depart(3); 
day       = depart(4); 
hour      = depart(5); 
minute    = depart(6); 
second    = depart(7); 
  
%...Use Algorithm 8.1 to obtain planet 1's state vector (don't 
%...need its orbital elements ["dum"]): 
[dum, Rp1, Vp1, jd1] = planet_elements_and_sv ... 
              (planet_id, year, month, day, hour, minute, second); 
  
planet_id = arrive(1); 
year      = arrive(2); 
month     = arrive(3); 
day       = arrive(4); 
hour      = arrive(5); 
minute    = arrive(6); 
second    = arrive(7); 
  
%...Likewise use Algorithm 8.1 to obtain planet 2's state vector: 
[dum, Rp2, Vp2, jd2] = planet_elements_and_sv ... 
              (planet_id, year, month, day, hour, minute, second); 
  
tof = (jd2 - jd1)*24*3600; 
  
%...Patched conic assumption: 
R1 = Rp1; 
R2 = Rp2; 
  
%...Use Algorithm 5.2 to find the spacecraft's velocity at 
%   departure and arrival, assuming a prograde trajectory: 
[V1, V2] = lambert(R1, R2, tof, 'pro'); 
  
planet1    = [Rp1, Vp1, jd1]; 
planet2    = [Rp2, Vp2, jd2]; 
trajectory = [V1, V2]; 
  
end %interplanetary 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Script file  Example_8_08.m  

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Example_8_08 
% ~~~~~~~~~~~~ 
%{ 
  This program uses Algorithm 8.2 to solve Example 8.8. 
  
  mu           - gravitational parameter of the sun (km^3/s^2) 
  deg          - conversion factor between degrees and radians 
  pi           - 3.1415926... 
  
  planet_id    - planet identifier: 
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                  1 = Mercury 
                  2 = Venus 
                  3 = Earth 
                  4 = Mars 
                  5 = Jupiter 
                  6 = Saturn 
                  7 = Uranus 
                  8 = Neptune 
                  9 = Pluto 
  
  year         - range: 1901 - 2099 
  month        - range: 1 - 12 
  day          - range: 1 - 31 
  hour         - range: 0 - 23 
  minute       - range: 0 - 60 
  second       - range: 0 - 60  
  
  depart       - [planet_id, year, month, day, hour, minute, second] 
                 at departure 
  arrive       - [planet_id, year, month, day, hour, minute, second] 
                 at arrival 
  
  planet1      - [Rp1, Vp1, jd1] 
  planet2      - [Rp2, Vp2, jd2] 
  trajectory   - [V1, V2] 
  
  coe          - orbital elements [h e RA incl w TA] 
                 where 
                   h    = angular momentum (km^2/s) 
                   e    = eccentricity 
                   RA   = right ascension of the ascending 
                          node (rad) 
                   incl = inclination of the orbit (rad) 
                   w    = argument of perigee (rad) 
                   TA   = true anomaly (rad) 
                   a    = semimajor axis (km) 
  
  jd1, jd2     - Julian day numbers at departure and arrival 
  tof          - time of flight from planet 1 to planet 2 (days) 
  
  Rp1, Vp1     - state vector of planet 1 at departure (km, km/s) 
  Rp2, Vp2     - state vector of planet 2 at arrival (km, km/s) 
  R1, V1       - heliocentric state vector of spacecraft at 
                 departure (km, km/s) 
  R2, V2       - heliocentric state vector of spacecraft at 
                 arrival (km, km/s) 
  
  vinf1, vinf2 - hyperbolic excess velocities at departure 
                 and arrival (km/s) 
  
  User M-functions required: interplanetary, coe_from_sv, 
                             month_planet_names 
%} 
% --------------------------------------------- 
  
clear all; clc 
global mu 
mu  = 1.327124e11; 
deg = pi/180; 
  
%...Data declaration for Example 8.8: 
  
%...Departure 
planet_id = 3; 
year      = 1996; 
month     = 11; 
day       = 7; 
hour      = 0; 
minute    = 0; 
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second    = 0; 
depart = [planet_id  year  month  day  hour  minute  second]; 
  
%...Arrival 
planet_id = 4; 
year      = 1997; 
month     = 9; 
day       = 12; 
hour      = 0; 
minute    = 0; 
second    = 0; 
arrive = [planet_id  year  month  day  hour  minute  second]; 
  
%... 
  
%...Algorithm 8.2: 
[planet1, planet2, trajectory] = interplanetary(depart, arrive); 
  
R1  = planet1(1,1:3); 
Vp1 = planet1(1,4:6); 
jd1 = planet1(1,7); 
  
R2  = planet2(1,1:3); 
Vp2 = planet2(1,4:6); 
jd2 = planet2(1,7); 
  
V1  = trajectory(1,1:3); 
V2  = trajectory(1,4:6); 
  
tof = jd2 - jd1; 
  
%...Use Algorithm 4.2 to find the orbital elements of the 
%   spacecraft trajectory based on [Rp1, V1]... 
coe  = coe_from_sv(R1, V1, mu); 
%   ... and [R2, V2] 
coe2 = coe_from_sv(R2, V2, mu); 
  
%...Equations 8.94 and 8.95: 
vinf1 = V1 - Vp1; 
vinf2 = V2 - Vp2; 
  
%...Echo the input data and output the solution to 
%   the command window: 
fprintf('-----------------------------------------------------') 
fprintf('\n Example 8.8') 
fprintf('\n\n Departure:\n'); 
fprintf('\n   Planet: %s', planet_name(depart(1))) 
fprintf('\n   Year  : %g', depart(2)) 
fprintf('\n   Month : %s', month_name(depart(3))) 
fprintf('\n   Day   : %g', depart(4)) 
fprintf('\n   Hour  : %g', depart(5)) 
fprintf('\n   Minute: %g', depart(6)) 
fprintf('\n   Second: %g', depart(7)) 
fprintf('\n\n   Julian day: %11.3f\n', jd1) 
fprintf('\n   Planet position vector (km)    = [%g  %g  %g]', ... 
                                               R1(1),R1(2), R1(3)) 
  
fprintf('\n   Magnitude                      = %g\n', norm(R1)) 
  
fprintf('\n   Planet velocity (km/s)         = [%g  %g  %g]', ... 
                                 Vp1(1), Vp1(2), Vp1(3)) 
  
fprintf('\n   Magnitude                      = %g\n', norm(Vp1)) 
  
fprintf('\n   Spacecraft velocity (km/s)     = [%g  %g  %g]', ... 
                                               V1(1), V1(2), V1(3)) 
  
fprintf('\n   Magnitude                      = %g\n', norm(V1)) 
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fprintf('\n   v-infinity at departure (km/s) = [%g  %g  %g]', ... 
                                       vinf1(1), vinf1(2), vinf1(3)) 
  
fprintf('\n   Magnitude                      = %g\n', norm(vinf1)) 
  
fprintf('\n\n Time of flight = %g days\n', tof) 
  
fprintf('\n\n Arrival:\n'); 
fprintf('\n   Planet: %s', planet_name(arrive(1))) 
fprintf('\n   Year  : %g', arrive(2)) 
fprintf('\n   Month : %s', month_name(arrive(3))) 
fprintf('\n   Day   : %g', arrive(4)) 
fprintf('\n   Hour  : %g', arrive(5)) 
fprintf('\n   Minute: %g', arrive(6)) 
fprintf('\n   Second: %g', arrive(7)) 
fprintf('\n\n   Julian day: %11.3f\n', jd2) 
fprintf('\n   Planet position vector (km)   = [%g  %g  %g]', ... 
                                              R2(1), R2(2), R2(3)) 
  
fprintf('\n   Magnitude                     = %g\n', norm(R1)) 
  
fprintf('\n   Planet velocity (km/s)        = [%g  %g  %g]', ... 
                                  Vp2(1), Vp2(2), Vp2(3)) 
  
fprintf('\n   Magnitude                     = %g\n', norm(Vp2)) 
  
fprintf('\n   Spacecraft Velocity (km/s)    = [%g  %g  %g]', ... 
                                              V2(1), V2(2), V2(3)) 
  
fprintf('\n   Magnitude                     = %g\n', norm(V2)) 
  
fprintf('\n   v-infinity at arrival (km/s)  = [%g  %g  %g]', ... 
                                     vinf2(1), vinf2(2), vinf2(3)) 
  
fprintf('\n   Magnitude                     = %g', norm(vinf2)) 
  
fprintf('\n\n\n Orbital elements of flight trajectory:\n') 
  
fprintf('\n  Angular momentum (km^2/s)                   = %g',... 
                                                           coe(1)) 
fprintf('\n  Eccentricity                                = %g',... 
                                                           coe(2)) 
fprintf('\n  Right ascension of the ascending node (deg) = %g',... 
                                                       coe(3)/deg) 
fprintf('\n  Inclination to the ecliptic (deg)           = %g',... 
                                                       coe(4)/deg) 
fprintf('\n  Argument of perihelion (deg)                = %g',... 
                                                       coe(5)/deg) 
fprintf('\n  True anomaly at departure (deg)             = %g',... 
                                                       coe(6)/deg) 
fprintf('\n  True anomaly at arrival (deg)               = %g\n', ... 
                                                      coe2(6)/deg) 
fprintf('\n  Semimajor axis (km)                         = %g',... 
                                                           coe(7)) 
% If the orbit is an ellipse, output the period: 
if coe(2) < 1 
    fprintf('\n  Period (days)                               = %g', ... 
                                      2*pi/sqrt(mu)*coe(7)^1.5/24/3600) 
end 
fprintf('\n-----------------------------------------------------\n') 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Output from Example_8_08 

 

----------------------------------------------------- 
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 Example 8.8 
 
 Departure: 
 
   Planet: Earth   
   Year  : 1996 
   Month : November  
   Day   : 7 
   Hour  : 0 
   Minute: 0 
   Second: 0 
 
   Julian day: 2450394.500 
 
   Planet position vector (km)    = [1.04994e+08  1.04655e+08  988.331] 
   Magnitude                      = 1.48244e+08 
 
   Planet velocity (km/s)         = [-21.515  20.9865  0.000132284] 
   Magnitude                      = 30.0554 
 
   Spacecraft velocity (km/s)     = [-24.4282  21.7819  0.948049] 
   Magnitude                      = 32.7427 
 
   v-infinity at departure (km/s) = [-2.91321  0.79542  0.947917] 
   Magnitude                      = 3.16513 
 
 
 Time of flight = 309 days 
 
 
 Arrival: 
 
   Planet: Mars    
   Year  : 1997 
   Month : September 
   Day   : 12 
   Hour  : 0 
   Minute: 0 
   Second: 0 
 
   Julian day: 2450703.500 
 
   Planet position vector (km)   = [-2.08329e+07  -2.18404e+08  -4.06287e+06] 
   Magnitude                     = 1.48244e+08 
 
   Planet velocity (km/s)        = [25.0386  -0.220288  -0.620623] 
   Magnitude                     = 25.0472 
 
   Spacecraft Velocity (km/s)    = [22.1581  -0.19666  -0.457847] 
   Magnitude                     = 22.1637 
 
   v-infinity at arrival (km/s)  = [-2.88049  0.023628  0.162776] 
   Magnitude                     = 2.88518 
 
 
 Orbital elements of flight trajectory: 
 
  Angular momentum (km^2/s)                   = 4.84554e+09 
  Eccentricity                                = 0.205785 
  Right ascension of the ascending node (deg) = 44.8942 
  Inclination to the ecliptic (deg)           = 1.6621 
  Argument of perihelion (deg)                = 19.9738 
  True anomaly at departure (deg)             = 340.039 
  True anomaly at arrival (deg)               = 199.695 
 
  Semimajor axis (km)                         = 1.84742e+08 
  Period (days)                               = 501.254 
----------------------------------------------------- 
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D.37 Algorithm 9.1: Calculate the direction cosine matrix from the quaternion 

Function file dcm_from_q.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Q = dcm_from_q(q) 
% ~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the direction cosine matrix 
  from the quaternion. 
  
  q - quaternion (where q(4) is the scalar part) 
  Q - direction cosine matrix 
%} 
% ---------------------------------------------- 
  
q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4); 
  
Q = [q1^2-q2^2-q3^2+q4^2,      2*(q1*q2+q3*q4),       2*(q1*q3-q2*q4); 
         2*(q1*q2-q3*q4), -q1^2+q2^2-q3^2+q4^2,       2*(q2*q3+q1*q4); 
         2*(q1*q3+q2*q4),      2*(q2*q3-q1*q4),  -q1^2-q2^2+q3^2+q4^2 ]; 
end %dcm_from_q 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.38 Algorithm 9.2: Calculate the quaternion from the direction cosine matrix 

Function file q_from_dcm.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function q = q_from_dcm(Q) 
% ~~~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This function calculates the quaternion from the direction 
  cosine matrix. 
  
  Q - direction cosine matrix 
  q - quaternion (where q(4) is the scalar part) 
  
%} 
% ---------------------------------------------- 
  
K3 = ... 
[Q(1,1)-Q(2,2)-Q(3,3), Q(2,1)+Q(1,2), Q(3,1)+Q(1,3), Q(2,3)-Q(3,2); 
 Q(2,1)+Q(1,2), Q(2,2)-Q(1,1)-Q(3,3), Q(3,2)+Q(2,3), Q(3,1)-Q(1,3); 
 Q(3,1)+Q(1,3), Q(3,2)+Q(2,3), Q(3,3)-Q(1,1)-Q(2,2), Q(1,2)-Q(2,1); 
 Q(2,3)-Q(3,2), Q(3,1)-Q(1,3), Q(1,2)-Q(2,1), Q(1,1)+Q(2,2)+Q(3,3)]/3; 
  
[eigvec, eigval] = eig(K3); 
  
[x,i] = max(diag(eigval)); 
  
q = eigvec(:,i); 
end %q_from_dcm  
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Solution of the spinning top problem 

Function file Example_9_23.m 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_9_23 
% ~~~~~~~~~~~~~~~~~~~ 
%{ 
  This program numerically integrates Euler's equations of motion 
  for the spinning top (Example 9.23, Equations (a)). The  
  quaternion is used to obtain the time history of the top's 
  orientation. See Figure 9.26. 
  
  User M-functions required: rkf45, q_from_dcm, dcm_from_q, dcm_to_euler 
  User subfunction required: rates 
%} 
%---------------------------------------------- 
  
clear all; close all; clc 
  
%...Data from Example 9.15: 
g     = 9.807;        % Acceleration of gravity (m/s^2) 
m     = 0.5;          % Mass in kg 
d     = 0.05;         % Distance of center of mass from pivot point (m)   
A     = 12.e-4;       % Moment of inertia about body x (kg-m^2) 
B     = 12.e-4;       % Moment of inertia about body y (kg-m^2) 
C     = 4.5e-4;       % Moment of inertia about body z (kg-m^2) 
wspin = 1000*2*pi/60; % Spin rate (rad/s) 
theta = 60;           % Initial nutation angle (deg) 
  
z = [sind(theta) 0 cosd(theta)]; % Initial z-axis direction: 
p = [0 1 0];                     % Initial x-axis direction 
                                 %   (or a line defining x-z plane) 
  
y   = cross(z,p);     % y-axis direction (normal to x-z plane) 
x   = cross(y,z);     % x-axis direction (normal to y-z plane) 
i   = x/norm(x);      % Unit vector along x axis 
j   = y/norm(y);      % Unit vector along y axis 
k   = z/norm(z);      % Unit vector along z axis 
QXx = [i; j; k];      % Initial direction cosine matrix 
q0  = q_from_dcm(QXx);% Initial quaternion 
w0  = [0 0 wspin]';   % Initial body-frame angular velocities (rad/s) 
t0  = 0;              % Initial time (s) 
tf  = 2;              % Final time (s) 
f0  = [q0; w0];       % Initial conditions vector 
                      %   (quaternion & angular velocities): 
  
[t,f] = rkf45(@rates, [t0,tf], f0); % RKF4(5) numerical ODE solver. 
                                    % Time derivatives computed in 
                                    %   function 'rates' below. 
                                     
q  = f(:,1:4); % Solution for quaternion at 'nsteps' times from t0 to tf  
wx = f(:,5);   % Solution for angular velociites   
wy = f(:,6);   %   at 'nsteps' times 
wz = f(:,7);   %   from t0 to tf 
  
for m = 1:length(t) 
    QXx                      = dcm_from_q(q(m,:));% DCM from quaternion 
    [prec(m) nut(m) spin(m)] = dcm_to_euler(QXx); % Euler angles from DCM 
end 
  
plotit 
  
%~~~~~~~~~~~~~~~~~~~~~~~~~ 
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function dfdt = rates(t,f) 
%~~~~~~~~~~~~~~~~~~~~~~~~~ 
q  = f(1:4);          % components of quaternion 
wx = f(5);            % angular velocity along x 
wy = f(6);            % angular velocity along y 
wz = f(7);            % angular velocity along z 
  
q  = q/norm(q);       % normalize the quaternion 
  
Q = dcm_from_q(q);    % DCM from quaternion 
  
%...Body frame components of the moment of the weight vector 
%   about the pivot point: 
M = Q*[-m*g*d*Q(3,2) 
        m*g*d*Q(3,1) 
                  0]; 
%...Skew-symmetric matrix of angular velocities: 
Omega = [  0   wz  -wy   wx 
         -wz    0   wx   wy 
          wy  -wx    0   wz 
         -wx  -wy  -wz    0];                               
q_dot  = Omega*q/2;                % time derivative of quaternion 
  
%...Euler's equations:   
wx_dot = M(1)/A - (C - B)*wy*wz/A; % time derivative of wx 
wy_dot = M(2)/B - (A - C)*wz*wx/B; % time derivative of wy 
wz_dot = M(3)/C - (B - A)*wx*wy/C; % time derivative of wz 
  
%...Return the rates in a column vector: 
dfdt = [q_dot; wx_dot; wy_dot; wz_dot]; 
end %rates 
  
%~~~~~~~~~~~~~~ 
function plotit 
%~~~~~~~~~~~~~~ 
  
figure(1) % Euler angles 
  
subplot(311) 
plot(t, prec ) 
xlabel('time (s)') 
ylabel('Precession angle (deg)') 
axis([-inf, inf, -inf, inf]) 
grid 
  
subplot(312) 
plot(t, nut) 
xlabel('time (s)') 
ylabel('Nutation angle (deg)') 
axis([-inf, inf, -inf, inf]) 
grid 
  
subplot(313) 
plot(t, spin) 
xlabel('time (s)') 
ylabel('Spin angle (deg)') 
axis([-inf, inf, -inf, inf]) 
grid 
  
end %plotit 
  
end %Example_9_23 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

 

D.32 Calculation of a gravity-turn trajectory 
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Function file Example_11_03.m 

 

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
function Example_11_03 
% ~~~~~~~~~~~~~~~~~~~~~~ 
%{ 
  This program numerically integrates Equations 11.6 through 
  11.8 for a gravity turn trajectory. 
  
  User M-functions required: rkf45 
  User subfunction requred:  rates 
%} 
% ---------------------------------------------- 
clear all;close all;clc 
  
deg    = pi/180;        % ...Convert degrees to radians 
g0     = 9.81;          % ...Sea-level acceleration of gravity (m/s) 
Re     = 6378e3;        % ...Radius of the earth (m) 
hscale = 7.5e3;         % ...Density scale height (m) 
rho0   = 1.225;         % ...Sea level density of atmosphere (kg/m^3) 
  
diam   = 196.85/12 ... 
         *0.3048;       % ...Vehicle diameter (m) 
  
A      = pi/4*(diam)^2; % ...Frontal area (m^2) 
CD     = 0.5;           % ...Drag coefficient (assumed constant) 
m0     = 149912*.4536;  % ...Lift-off mass (kg) 
n      = 15;            % ...Mass ratio 
T2W    = 1.4;           % ...Thrust to weight ratio 
Isp    = 390;           % ...Specific impulse (s) 
  
mfinal = m0/n;          % ...Burnout mass (kg) 
Thrust = T2W*m0*g0;     % ...Rocket thrust (N) 
m_dot  = Thrust/Isp/g0; % ...Propellant mass flow rate (kg/s) 
mprop  = m0 - mfinal;   % ...Propellant mass (kg) 
tburn  = mprop/m_dot;   % ...Burn time (s) 
hturn  = 130;           % ...Height at which pitchover begins (m) 
t0     = 0;             % ...Initial time for the numerical integration 
tf     = tburn;         % ...Final time for the numerical integration 
tspan  = [t0,tf];       % ...Range of integration 
  
% ...Initial conditions: 
v0     = 0;             % ...Initial velocity (m/s) 
gamma0 = 89.85*deg;     % ...Initial flight path angle (rad) 
x0     = 0;             % ...Initial downrange distance (km) 
h0     = 0;             % ...Initial altitude (km) 
vD0    = 0;             % ...Initial value of velocity loss due 
                        %    to drag (m/s) 
vG0    = 0;             % ...Initial value of velocity loss due 
                        %    to gravity (m/s) 
  
%...Initial conditions vector: 
f0 = [v0; gamma0; x0; h0; vD0; vG0]; 
  
%...Call to Runge-Kutta numerical integrator 'rkf45' 
%   rkf45 solves the system of equations df/dt = f(t): 
  
[t,f] = rkf45(@rates, tspan, f0); 
    
%...t     is the vector of times at which the solution is evaluated 
%...f     is the solution vector f(t) 
%...rates is the embedded function containing the df/dt's 
  
% ...Solution f(t) returned on the time interval [t0 tf]:  
v      =  f(:,1)*1.e-3;  % ...Velocity (km/s) 
gamma  =  f(:,2)/deg;    % ...Flight path angle (degrees) 
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x      =  f(:,3)*1.e-3;  % ...Downrange distance (km) 
h      =  f(:,4)*1.e-3;  % ...Altitude (km) 
vD     = -f(:,5)*1.e-3;  % ...Velocity loss due to drag (km/s) 
vG     = -f(:,6)*1.e-3;  % ...Velocity loss due to gravity (km/s) 
  
for i = 1:length(t) 
    Rho  = rho0 * exp(-h(i)*1000/hscale); %...Air density 
    q(i) = 1/2*Rho*v(i)^2;                %...Dynamic pressure 
end 
  
output 
  
return 
  
%~~~~~~~~~~~~~~~~~~~~~~~~~     
function dydt = rates(t,y) 
%~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Calculates the time rates df/dt of the variables f(t)  
% in the equations of motion of a gravity turn trajectory. 
%------------------------- 
  
%...Initialize dfdt as a column vector: 
dfdt = zeros(6,1); 
  
v     = y(1); % ...Velocity 
gamma = y(2); % ...Flight path angle 
x     = y(3); % ...Downrange distance 
h     = y(4); % ...Altitude 
vD    = y(5); % ...Velocity loss due to drag 
vG    = y(6); % ...Velocity loss due to gravity 
  
%...When time t exceeds the burn time, set the thrust 
%   and the mass flow rate equal to zero: 
if t < tburn 
    m = m0 - m_dot*t;     % ...Current vehicle mass 
    T = Thrust;           % ...Current thrust 
else 
    m = m0 - m_dot*tburn; % ...Current vehicle mass 
    T = 0;                % ...Current thrust 
end 
     
g     = g0/(1 + h/Re)^2;        % ...Gravitational variation 
                                %    with altitude h 
rho   = rho0 * exp(-h/hscale);  % ...Exponential density variation 
                                %    with altitude 
D     = 1/2 * rho*v^2 * A * CD; % ...Drag [Equation 11.1] 
  
%...Define the first derivatives of v, gamma, x, h, vD and vG 
%   ("dot" means time derivative): 
%v_dot = T/m - D/m - g*sin(gamma); % ...Equation 11.6 
  
%...Start the gravity turn when h = hturn: 
if h <= hturn 
    gamma_dot = 0; 
    v_dot     = T/m - D/m - g; 
    x_dot     = 0; 
    h_dot     = v; 
    vG_dot    = -g; 
else 
    v_dot = T/m - D/m - g*sin(gamma); 
    gamma_dot = -1/v*(g - v^2/(Re + h))*cos(gamma);% ...Equation 11.7 
    x_dot    = Re/(Re + h)*v*cos(gamma);           % ...Equation 11.8(1) 
    h_dot    = v*sin(gamma);                       % ...Equation 11.8(2) 
    vG_dot   = -g*sin(gamma);                      % ...Gravity loss rate 
end  
  
vD_dot   = -D/m;                                   % ...Drag loss rate 
  
%...Load the first derivatives of f(t) into the vector dfdt: 
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dydt(1)  = v_dot; 
dydt(2)  = gamma_dot; 
dydt(3)  = x_dot; 
dydt(4)  = h_dot; 
dydt(5)  = vD_dot; 
dydt(6)  = vG_dot; 
end 
  
%~~~~~~~~~~~~~~ 
function output 
%~~~~~~~~~~~~~~ 
fprintf('\n\n -----------------------------------\n') 
fprintf('\n Initial flight path angle = %10g deg ',gamma0/deg) 
fprintf('\n Pitchover altitude        = %10g m   ',hturn) 
fprintf('\n Burn time                 = %10g s   ',tburn) 
fprintf('\n Final speed               = %10g km/s',v(end)) 
fprintf('\n Final flight path angle   = %10g deg ',gamma(end)) 
fprintf('\n Altitude                  = %10g km  ',h(end)) 
fprintf('\n Downrange distance        = %10g km  ',x(end)) 
fprintf('\n Drag loss                 = %10g km/s',vD(end)) 
fprintf('\n Gravity loss              = %10g km/s',vG(end)) 
fprintf('\n\n -----------------------------------\n') 
  
figure(1) 
plot(x, h) 
axis equal 
xlabel('Downrange Distance (km)') 
ylabel('Altitude (km)') 
axis([-inf, inf, 0, inf]) 
grid 
  
figure(2) 
subplot(2,1,1) 
plot(h, v) 
xlabel('Altitude (km)') 
ylabel('Speed (km/s)') 
axis([-inf, inf, -inf, inf]) 
grid 
  
subplot(2,1,2) 
plot(t, gamma) 
xlabel('Time (s)') 
ylabel('Flight path angle (deg)') 
axis([-inf, inf, -inf, inf]) 
grid 
  
figure(3) 
plot(h, q) 
xlabel('Altitude (km)') 
ylabel('Dynamic pressure (N/m^2)') 
axis([-inf, inf, -inf, inf]) 
grid 
  
end %output 
  
end %Example_11_03 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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