
www.ietdl.org

1
&

Published in IET Generation, Transmission & Distribution
Received on 17th October 2013
Accepted on 17th March 2014
doi: 10.1049/iet-gtd.2014.0143
724
The Institution of Engineering and Technology 2014
ISSN 1751-8687
Max–min fair Financial Transmission Rights
payment-based AC optimal power flow locational
marginal price decomposition
V. Naren Bharatwaj, Abhijit R. Abhyankar

Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

E-mail: naren.bharatwaj@gmail.com

Abstract: The decomposition of locational marginal price obtained from AC optimal power flow is disputable because of its
dependency on the choice of energy reference. The dispute arises because the difference of congestion component, on which
the Financial Transmission Rights (FTR) payments are made, is not constant and depends on the energy reference. Prior art
aimed at obtaining reference-independent decomposition. The authors look at this dispute as a fairness issue and formulate the
decomposition as a fairness problem. The fairness issue is addressed by invoking max–min fairness criteria which ensures that
the FTR payment (FP) received (made) is not at the expense of other ill-positioned FTR holders. Max–min fairness algorithm
is used to arrive at an energy reference choice that aims at maximising the FP of each FTR. This in turn ensures that revenue
received (payment made) is the maximum (minimum) possible under the set of constraints, without adversely affecting the FP
of other FTR holders. Results on PJM 5 bus and IEEE 30 bus systems indicate that a fair solution is indeed possible.
Nomenclature
α
 slack weight vector

δ
 vector of load angles except at angle reference bus

λ
 LMP vector

P
 vector of net nodal power injections

V
 vector of voltage magnitudes

λ c
 congestion component of LMP

λe
 energy component of LMP

λ l
 loss component of LMP

LF
 loss factors vector

ηftr
 number of FTRs

λi
c
 ith entry in λ c
λi
l
 ith entry in λ l
lcsi,i
c

congestion component of sink node of ith FTR

lso,i
 congestion component of source node of ith FTR

μ
 Lagrangian multiplier of line power flow constraint

FPi
 FTR payment of ith FTR holder

LFsi, i
 loss sensitivity of sink node of ith FTR

LFso, i
 loss sensitivity of source node of ith FTR

M
 number of transmission lines

n
 number of buses

Pftr
i
 MW amount of ith FTR
Ploss
 total active power loss

Tl−i
 power flow sensitivity of line l with respect to

injection at bus i
1 Introduction

The decomposition of locational marginal price (LMP) using
the AC optimal power flow (ACOPF) model has gained
widespread attention with respect to energy
reference-independent decomposition. The LMP can be
obtained using either DCOPF or ACOPF. Power markets
that use a centralised dispatch philosophy have moved from
a completely lossless model (DCOPF) to marginal loss
DCOPF models [1–4] for market settlement.
Reference-independent decomposition (constant difference
of congestion component) has already been achieved with
the marginal loss DCOPF models [1, 3, 4]. Although the
report prepared by the Federal Energy Regulatory
Commission (FERC), providing an overview of current
practices and future plans of the electricity markets in the
US [5], does not reveal the use of ACOPF in real-life
markets, there appears to be immense interest in utilising
the full ACOPF model for practical applications. This can
also be corroborated from the fact that addressing the issues
pertaining to the use of ACOPF modelling to be properly
formulated and solved has been one of the major themes in
the technical conferences conducted by FERC for the years
2012 [6] and 2013 [7].
A characteristic feature of the ACOPF model is that it does

not require any additional loss modelling effort. The equality
constraint for power at all buses accounts for power loss. The
ACOPF model can handle voltage and reactive power-related
constraints and can fully reflect actual operating conditions in
terms of system modelling. The solution obtained from
ACOPF (cost, dispatch, state variables and LMP) does not
depend on slack (angle reference) bus.
However, another characteristic feature of ACOPF is the

non-unique decomposition of LMP into its components.
The LMP may be notionally seen as comprising of three
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components: energy, loss and congestion. These components
are necessary to hedge congestion and/or loss-related costs
incurred because of the volatile nature of LMP. The
individual components as such do not have any physical
relevance and their only purpose is for congestion and loss
hedging, if at all they exist. Financial Transmission Rights
(FTR) [8] are risk-hedging instruments designed mainly
with the aim of minimising the congestion price risk for
forward contracts [9]. Ability to hedge loss price risk [10–
12], while proposed with loss hedging rights (LHR), has
not gained much acceptance with regard to practical
implementation. The proposal in [10] is to hedge both
losses and congestion (total LMP) using unbalanced FTRs,
overcoming the necessity to decompose the LMP. A
detailed analysis on FTR and LHR is given in [9] and [12]
respectively.
FTR holders are entitled to a stream of revenues or charges

accumulated from settlement because of the spatial variation
of LMP to hedge congestion costs [13]. An FTR is defined
between a source and sink, and for a MW amount that has
a certain validity period. The necessity to decompose LMP
into its components arises from the fact that in any OPF
model (DC or AC) that incorporates losses, FTRs do not
hedge against LMPs anymore, only for difference in
congestion component [14]. Also, there is no mechanism to
issue revenue adequate FTRs when considering network
losses [15]. Further, volatility of LMP is primarily because
of network congestion and not transmission losses. For
example, outage of a critical line could cause a large price
(LMP) difference between the areas that the line connects.
However, system losses will not change drastically enough
to cause a spike in the LMP.
Numerous interpretations of spot price decomposition have

been reported in [16–19]. Interpretation of slack bus and
system lambda in spot price decomposition is summarised
in [16]. Importance of reference bus selection for
decomposition of spot price is highlighted in [17], where it
is stated that ‘bus with lowest marginal cost and having
available capacity is a logical choice’. A comparison of
spot price decomposition for various OPF-based pricing
models is provided in [18]. In [19], a detailed description of
each nodal price is provided by breaking it down into a
variety of parts corresponding to various concerned factors
and its application to reducing electricity price volatility is
proposed in [20].
In case of ACOPF, the difference in loss or congestion

components between any two buses is not constant because
the marginal effect of loss is not the same for different
choices of reference bus. Hence, a policy is specified in [21]
that fixes the loss component of marginal buses to zero,
which determines the loss component of non-marginal buses,
thereby making the difference of congestion component a
constant value. The work reported in [21] is a special case of
the general formulation of LMP evaluation reported in [22].
Recent work reported in [23] aims at obtaining a
market-oriented decomposition by minimising the difference
between the so-called ideal hedge and actual hedge.
In this paper, we too aim to propose a market-oriented

decomposition by looking into the problem from a fairness
perspective. The authors in [21] raise concerns about
market fairness when utilising LMP components based on
arbitrary decomposition. Arbitrary choice of energy
reference may lead to certain FTR holders receiving higher
payments compared to others, creating winners and losers.
Hence, an efficient mechanism to fairly share revenues is
proposed. For a given set of FTRs already issued and for
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which settlement is yet to take place, we exploit the
flexibility associated with LMP decomposition so that
payments to be received (made) by each FTR holder is
maximised (minimised) to an extent permitted by a fairness
criteria called ‘max–min fairness’.
The max–min algorithm is used for the benefit allocation

problem aimed at achieving fairness [24]. The dual of max–
min, min–max fairness, has already been used in resolving
fairness issue in transmission pricing [25, 26]. Since the
congestion component of LMP exhibits strong dependence
on the choice of energy reference, FTR payments (FPs)
received (made) will vary for different choices of reference.
The max–min fair algorithm tries to maximise (minimise)
payment received (made) by each FTR holder without
lowering payment of other FTR holders whose payment is
lesser, thus ensuring a fair decomposition.
This paper is organised as follows. An overview of the FTR

mechanism and motivation for the proposed work is given in
Section 2. The concept of max–min fairness and formulation
of the proposed work is described in Section 3. Results are
given in Section 4 and Section 5 concludes the paper.

2 Overview of FTR mechanism

FTRs are financial instruments awarded to bidders in the FTR
auctions that entitle the holder to a stream of revenues (or
charges) based on the hourly day-ahead congestion price
differences across the path [13]. FTR is defined between a
source–sink pair of nodes for which the LMP is calculated.
The node can be a bus or a zone. FTRs can also be bought
between a node and a zone. FTR is issued for a specific
time period (its validity) and for a MW amount. FTRs can
be categorised into two types: options and obligations. An
obligation FTR can be a benefit or a liability depending on
the direction of congestion. An option FTR is never a
liability because it becomes invalid if congestion occurs in
the reverse direction. FTRs are generally acquired in an
auction held annually and/or monthly. They can also be
traded bilaterally in a secondary market. The FP is given by
the FTR MW amount times the difference in congestion
price between sink and source nodes [13], as shown in

FPi = (lcsi,i − lcso,i)× Pftr
i (1)

Note that the difference in price corresponds to the congestion
component of LMP. An FTR provides a perfect hedge to the
congestion charge only in the case when LMP is calculated
using the lossless DCOPF approach. In this case, the LMP
differential equals the difference in congestion component
of LMP. With the incorporation of network loss in the
dispatch, FTRs do not provide hedge against LMPs
anymore, only for difference in congestion component [14].
The current practice of issuing FTRs is to hedge congestion
costs only, which has necessitated decomposition of LMP
into components.
FTRs are to be issued only up to an extent to which it can

be paid back using the congestion collection because the ISO
should be able to collect enough revenue from settling the
market in order to make FTR payments. This is ensured
using a simultaneous feasibility test (SFT) [27]. The SFT is
valid only for a linear and lossless DC model because there
is no well-defined mechanism to ensure revenue adequacy
when the dispatch considers network losses [15]. In fact, in
[28], it is shown that revenue adequacy cannot be proven
for the general non-linear AC power flow model.
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2.1 Motivation

The decomposition of LMP from ACOPF, by virtue, is
dependent on the reference bus. This is because any
marginal increase in load within the system is served by a
generator or a set of generators at different locations and the
effect of their response varies because of the non-linearity
of the system model. The analysis in [22] reveals the
limitation of any decomposition technique into its
components because of the underlying structural
interdependencies among them.
The unique decomposition claimed by authors in [19] does

not apply for an application which requires LMP to be
decomposed into energy, loss and congestion components.
This essentially depends on the bus whose nodal power
balance is eliminated to accommodate the expression for
summated power balance for which Lagrangian multiplier is
to be calculated. The so-called ‘value of real power loss’
corresponding to that Lagrangian multiplier is dependent on
the bus whose power balance equation is eliminated. In
fact, the price of 1 MWh of physical losses in the
LMP-based market is undefined and it can only be
suggested that price of MWh of physical losses equals
energy price at market reference [14].
Prior art on LMP decomposition is focused on obtaining a

reference-independent solution, which results in the
difference in congestion component of LMP being a
constant value, irrespective of the choice of energy
reference. In [22], a general formulation of LMP
decomposition is presented that gives better insight into the
various decomposition techniques that exist. The authors
opine that although there can be no unique decomposition,
the ‘policy’ adopted for decomposition of LMP at marginal
nodes (nodes with generation not at their limits) determines
the decomposition at all other non-marginal nodes. The
reference-independent decomposition proposed in [21] is, in
fact, a solution when loss component of marginal nodes is
zero (the so-called ‘policy’). In [23], instead of obtaining a
reference-independent decomposition, the authors propose a
market-oriented optimal solution that hedges the congestion
cost to the maximum extent possible. The problem is
tackled by reducing the difference between, what the
authors define as, ideal hedge (difference in LMP) and
actual hedge (difference in congestion components).
In the work proposed in this paper, we look at the

decomposition of LMP from a fairness point of view. Since
there exists an inter-relationship between congestion
components of all buses, already reported in [23], when
FTR payment for a FTR holder is calculated choosing any
arbitrary reference, it can impact the payments of other FTR
holders in either a positive or negative way. Hence, the
nature of the problem is such that choosing a reference with
the aim of maximising payment of a FTR holder need not
result in maximum payment for other FTR holders
simultaneously.
Therefore, we propose to invoke the issue of fairness in

decomposing the LMP into its respective components while
making FTR payments. The proposed technique is also a
market-oriented decomposition from the point of view of a
fair decomposition. This is achieved using the max–min
fairness criteria, generally used for benefit allocation.
Further insights into the max–min fairness problem and
how LMP decomposition is obtained by applying max–min
fairness criteria is dealt with in the next section.
This paper does not intend to propose a hedging

mechanism to guard against the total LMP (congestion +
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losses). The issue of revenue adequacy comes to the fore
when considering any proposal to hedge both congestion
and losses, whether in an AC or DC model. Also, there is
no certainty as to what hedging mechanism will be
employed if ACOPF were to be implemented for LMP
evaluation. Currently, hedging is available only against
congestion price risk and there is no tool to hedge loss
price risk. Therefore, it is plausible to assume that the
current scheme of hedging ‘only congestion’ will continue
until such a time when a practically acceptable and
implementable scheme of hedging the LMP (congestion and
losses) is proposed. Hence, the proposed methodology is
implementable when FTRs are balanced, but LMP is
evaluated using ACOPF, which is a hybrid of hedging
congestion component of LMP, which is the current
practice, and the use of ACOPF for LMP calculation.
Considering the fact that only congestion hedging
instrument is available to market participants, the
methodology proposed in this paper attempts to make fair
payments to FTR holders, thereby choosing a fair reference
for LMP decomposition.

3 LMP decomposition as a fairness problem

The decomposition of LMP into its components can be seen
as a fairness problem as there can be infinitely many solutions
for the choice of energy reference when a distributed slack
bus formulation is employed. For a choice of reference, the
FTR payments are fixed because there can be only one set
of congestion components. However, this may not be
entirely fair because FTR holders may receive varying
payments, that is, some could receive higher payments at
the expense of others. This issue arises because of the
non-unique nature of ACOPF LMP decomposition and the
underlying structural interdependencies.
Posing LMP decomposition as a fairness problem involves

exploring the multiplicity of the solution space for the choice
of energy reference. The use of a distributed slack formulation
provides flexibility in choosing a reference or a set of
references for which the FTR payments meet max–min
fairness criteria.
3.1 Max–min fairness

The concept of fairness in cost/benefit sharing can be posed as
an optimisation problem. In [25], a comprehensive
assessment of fairness as an optimisation problem is
discussed. The problem of transmission fixed cost allocation
is addressed using min–max fairness criteria. The authors in
[25] state the use of max–min fairness for benefit allocation
and min–max fairness for cost allocation which is logical
because any market player would like to reduce his/her cost
and maximise benefit.
It is worthwhile to note that the notion of fairness is a

subjective term and its interpretation may vary depending on
application. However, we have used a globally accepted
fairness criterion used extensively in communication
networks for bandwidth sharing [24, 29]. A solution is said
to be max–min fair if it is not possible to increase the benefit
of an entity without simultaneously decreasing the benefit of
another entity whose benefit is already equal or lower.
The concept of max–min fairness is better understood using

the benefit sharing example depicted in Fig. 1. For the sake of
simplicity, the inter-relationship of benefits among players is
not depicted in the figure. In the process of maximising the
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 10, pp. 1724–1732
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Fig. 1 Max–min fair benefit sharing

a Maximising benefit of player 1
b Maximising benefit of players 2 and 3
c Max-min fair benefit allocation
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benefit of player 1, the max–min fairness criteria allows for the
decrease of benefits of players 2 and 3 only up to the extent
such that they are not lower than the benefit received by
player 1. In Fig. 1a, the benefit of players 2 and 3 is
decreased to increase the benefit of player 1. Hence, the
max–min optimality is not yet reached in Fig. 1a.
When the benefit of player 2 is to be maximised, depicted

in Fig. 1b, solution space is such that it is not possible to
increase the benefit of player 2 without decreasing the
benefit of player 1 and the same holds true when
maximising benefit of player 3. Since the max–min
constraints are such that it does not allow decreasing the
benefit of a player whose benefit is already lower, max–min
optimality is reached in Fig. 1c.

3.2 Distributed slack LMP formulation

The LMP is a by-product of the solution of an optimisation
problem whose objective is cost minimisation (or social
welfare maximisation if loads are elastic). The expressions
for the calculation of LMP using a distributed slack
approach are provided in [30], and may be expressed as the
sum of three components as follows

l = le + ll + lc (2)

where

le =
∑n
i=1

ai × li (3)

ll
i = −le × ∂Ploss

∂Pi
(4)

lc
i = −

∑M
l=1

ml × Tl−i (5)

In (3), the distributed slack node is a fictitious node at which
the energy component is calculated. The loss component is
FPi = lsi,i − −
∑n
j=1

ajlj × LFsi,i

( )
− l

[
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the product of the loss factor (LF) and the negated value of
energy component at the fictitious node. The loss factors
are calculated using the first-order sensitivities obtained
from the inverse of the Jacobian matrix, as given in

LF = ∂Ploss

∂P
= ∂Ploss

∂d

∂Ploss

∂V

[ ]
×

∂d

∂P
∂V

∂P

⎡
⎢⎣

⎤
⎥⎦ (6)

Although all three components can be expressed in terms of
the slack distribution variable (αi), only the energy and loss
components are explicitly written in terms of αi. The
congestion component is expressed as the difference of the
total LMP and the sum of energy and loss components, as
given in (7). For a given solution of ACOPF, for which λ is
already available, the components can be computed using
the state variables by assuming a suitable value of α. This
also includes the case when the energy reference is same as
the angle reference bus.

lc = l− le − ll (7)

From (1), (3), (4) and (7), FPi can be expressed using (8). It is
amply clear that the choice of α affects the values of all three
components. A certain choice of α may benefit an FTR or set
of FTRs at the expense of another/other FTR/s. Hence, there
is a need and scope for developing a rationale to establish α.
In the proposed methodology, instead of pre-specifying it, α
is made a decision variable.
3.3 Max–min algorithm

Since congestion component difference exhibits dependency
on energy reference, by making α a decision variable, the
proposed algorithm arrives at that choice of α for which
FTR payments satisfy max–min fairness constraints. The
formulation of the max–min fair FTR payment problem for
one instance, a subsidiary problem (SP), is as follows:
so,i + −
∑n
j=1

ajlj × LFso,i

( )]
× Pftr

i (8)
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Fig. 2 Flowchart of max–min fair LMP decomposition
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Problem SP(i)

maximise FPi(a) (9)

such that

FPi(a) ≤ FPk(a) ∀ k = i and FPi(�a) , FPk(�a) (10)

FPk(a) ≥ FPk(�a) ∀ k = i and FPi(�a) . FPk(�a) (11)

FPi(a) ≥ FPi(�a) (12)∑
aj = 1, j = 1, 2, . . . , n (13)

0 ≤ aj ≤ 1, ∀ j = 1, 2, . . . , n (14)∑
FPm(a) ≤ MS, m = 1, 2, . . . , hftr (15)

FPm(a) ≥ 0 ∀ lsi,m − lso,m . 0, m = 1, 2, . . . , hftr

(16)

FPm(a) ≤ 0 ∀ lsi,m − lso,m , 0, m = 1, 2, . . . , hftr

(17)

where FPi(α) is as given in (8). Here, i indicates the FTR
holder whose payment is currently being maximised and k
is the index of remaining ηftr − 1 FTR holders. It may be
noted here that (2)–(5) will always hold true. In fact, it is
this inter-relationship among components and the total
LMP, which is bound by the inter-relationship, that plays a
key role in ensuring max–min fair solution.
To begin with, any random reference is chosen for LMP

decomposition such that it results in feasible FTR payments
[feasibility in terms of satisfaction of all constraints (13)–
(17), and are denoted using �a]. This forms the initialisation
of max–min algorithm with any feasible solution. These
payments are sorted in ascending order and this begins the
iterative process where a series of optimisation problems
begin to be solved. One such optimisation problem is SP(i),
represented using (9)–(17). SP(i) is a non-linear problem
with linear and non-linear constraints.
In the process of maximising FTR payment of ith holder

(FPi(α)), using (9), a set of constraints invoking the max–
min fairness criteria is enforced using (10)–(12). They
ensure that it is not at the cost of some other FTR payment
which is already lower. Note that among (10)–(12), the
constraint that applies to FPk(α) depends on its FTR
payment in the previous SP, in this case the initial feasible
solution.
For FTR holders whose payments (FPk(�a)) were greater

than the FTR holder whose payment is currently being
maximised (ith FTR holder’s payment FPi(�a)), equation
(10) ensures that their new payment FPk(α) cannot be
reduced below FPi(α). Equation (11) ensures that for FTR
payments (FPk (�a)) lesser than FPi(�a), their new FP must be
greater than or equal to the FP from the previous SP, in this
case the initial feasible solution. For the FTR payment that
is being maximised (FPi(α)), one constraint requires that it
should not be less than the payment it received from the
previous SP (FPi(�a)), enforced using (12).
In addition to max–min fairness constraints, (13) ensures

summation of all participation factors to unity and
non-negativity of αi is enforced using (14). To ensure
financial consistency, the sum of all FTR payments to be
made is restricted to the merchandising surplus (MS) using
(15). To maintain consistency in flow of revenue, another
set of constraints are imposed in each optimisation problem
1728
& The Institution of Engineering and Technology 2014
that ensures the direction of payments. Since the payment
for holding an FTR is dependent on the difference in
congestion component, the direction of payments must be
taken care of in the constraint set. This ensures that FTR
holders paying congestion charge to the ISO will receive
payments for holding the FTR and vice versa. Hence, in
addition to the max–min constraints, (16) and (17) are
added to ensure this consistency. This constraint set can be
restricted to only those FTRs which have bilateral contracts.
After obtaining solution of one SP, which constitutes one

inner iteration, the FTR payments are updated using the
new value of α obtained (which then become FP(�a) for the
next SP). These payments are sorted in ascending order
once again and the next SP is solved. The FTR holder
whose payment is to be maximised depends on the counter
and the ranking of FTR payments after every sort operation.
The order in which they are maximised is from the lowest
to the highest. In all, ηftr SPs are solved and this constitutes
one outer iteration. Conditions for enforcing max–min
fairness constraints of current SP depend on solution of
previous SP.
Fig. 2 gives an overview of the flowchart for arriving at a

max–min fair solution. Optimality is said to be reached
when there is no movement between the solutions of two
successive outer iterations. The reader is referred to the
appendix for proof of convergence of the proposed algorithm.
4 Results

The results for the proposed method are obtained on the PJM
5 bus and IEEE 30 bus systems. To minimise the effect of
reactive power, a power factor of 0.95 is assumed and
voltage limits at all buses are between 0.94 and 1.06 pu.
ACOPF LMPs are obtained using Matpower [31]. It is
assumed that the results of the FTR auction are already
available and they are all FTR obligations. Necessary
discussion regarding results from each system is given in
subsequent subsections. For both systems, results are given
for four different cases, whose description is given in
Table 1. A comprehensive analysis of the results obtained
for the IEEE 30 bus system is performed in order to bring
out the effectiveness of the proposed method.
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 10, pp. 1724–1732
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Table 1 Description of various cases

Pre-defined α

Case A B C D

Reference α1 = 1 αi = (1/n) ai =
Pdi∑
Pdi

max–min fairness

www.ietdl.org
4.1 PJM 5 bus system

The data for PJM 5 bus system are obtained from [2]. The
generators are assumed to have reactive power limits from
+150 and −150 MVar. The FTRs for this snapshot and the
payments for four different cases are given in Table 2, and
the LMP and its components are given in Table 3. The
slack distribution at the max–min fair solution is [0 0 0 1 0]T.
From Table 2, it is quite evident that the FTR payments

vary widely for different reference choices. In case D, the
max–min solution, FTRs # 3 and 5 benefit as the payment
to FTR #3 has increased to $416.47 and the payment by
FTR #5 to ISO has decreased to $301.40, ensuring
minimum payment, compared to the remaining three cases
(A–C). It could be said that FTRs # 1, 2 and 4 were
actually receiving higher payments at the expense of FTRs
# 3 and 5. The max–min fair solution is unique for a set of
FTRs, and this was observed for the three different starting
points (either A, B or C). A more detailed analysis
regarding various aspects of max–min solution is given for
the IEEE 30 bus system.
Table 4 Additional cases with their objectives and constraints

Case Objective function Constraints

E minimise FPi (13), (14)
F maximise FPi (13), (14)

G maximise
∑hftr
i=1

FPi (13)–(17)
4.2 IEEE 30 bus system

The branch data for the IEEE 30 bus system are obtained from
[32]. All bus shunts, taps and line susceptance are disabled.
The generator limits and cost curves are obtained from [33].
The power flow limits on lines are as given in [34]. ACOPF
is run on a system load as given in Table 6. The set of
FTRs, given in Table 5, for which payments are to be
made, are obtained after an auction, are simultaneously
Table 3 LMP decomposition comparison for PJM 5 bus system

LM

Bus LMP, $/MW A B

λe λ l λc λe λ l

1 15.79 15.79 0.00 0.00 22.39 −0.21
2 24.04 15.79 0.32 7.93 22.39 0.24
3 27.11 15.79 0.34 10.98 22.39 0.27
4 35.00 15.79 0.14 19.07 22.39 −0.01
5 10.00 15.79 −0.06 −5.73 22.39 −0.29

Table 2 FTR payments for PJM 5 bus system

FTR

No. Source Sink MW

1 5 3 340 568
2 5 4 210 520
3 3 4 50 40
4 1 4 70 133
5 3 2 100 −30
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feasible when using the DC approximation and load certain
lines up to their limits. The following observations are
worth noting.

4.2.1 Minimum and maximum FTR payments: In
addition to the four cases studied earlier for the PJM 5 bus
system, Table 4 summarises three additional cases against
which the results of the proposed method are compared.
Cases E and F obtain the minimum and maximum possible
payments for each FTR holder. The respective objective
functions are solved in isolation for each FTR. The
constraints column indicates that no max–min-related
constraints are used in obtaining the respective solution and
neither any direction of payment constraints nor any
constraint relating FTR payment with merchandising
surplus is used. Case G involves calculating FTR payments
when the sum of payments of all FTR holders is
maximised. Note that for this objective, constraints (13)–
(17) are enforced.
The last four columns of Table 5 provide a comparison of

the max–min solution, the corresponding minimum and
maximum values of FTR payment and the payments when
summated maximisation of FTR payments is chosen as the
objective (cases D–G). The minimum and maximum span
the range of possible payments within the solution space.
Any choice of reference must result in a payment that lies
between their corresponding minimum and maximum
values. Whether the FTR holder receives a positive
payment or it has to pay the ISO entirely depends on the
resulting decomposition. For most of the FTRs, the
P components, $/MW

C D

λ l λe λ l λc λe λ l λc

−6.39 28.72 −0.48 −12.45 35.00 −0.31 −18.90
1.42 28.72 0.09 −4.77 35.00 0.39 −11.34
4.45 28.72 0.13 −1.74 35.00 0.44 −8.33

12.62 28.72 −0.22 6.51 35.00 0.00 0.00
−12.09 28.72 −0.59 −18.13 35.00 −0.45 −24.55

FTR payment, $

A B C D

0.34 5624.68 5571.91 5515.75
7.19 5189.87 5173.44 5155.96
4.46 408.52 412.37 416.47
4.75 1330.73 1326.92 1322.87
4.42 −303.40 −302.43 −301.40
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Table 5 FTR data and payments in various cases for IEEE 30 bus system

FTR LMP, $/MW FTR payment, $

No. Source Sink MW λso λsi A B C D E F G

1 2 25 16.29 11.00 20.26 135.14 127.48 126.59 128.37 112.21 136.29 136.29
2 2 27 6.73 11.00 22.00 67.85 64.87 64.52 65.22 58.92 68.30 68.30
3 8 29 22.29 11.50 23.34 241.04 229.90 228.59 231.19 207.68 242.72 242.72
4 23 12 10.08 16.00 16.01 1.72 2.49 2.58 2.40 1.60 4.03 1.60
5 1 5 60.00 11.50 13.27 63.57 42.88 40.47 45.28 1.65 66.68 66.68
6 2 23 46.15 11.00 16.00 194.56 176.94 174.89 178.99 141.83 197.21 197.21
7 3 10 90.00 13.71 25.72 1055.74 1043.52 1042.10 1044.94 1019.18 1057.58 1057.58
8 14 13 40.00 16.00 16.00 16.83 25.03 25.99 24.08 15.60 41.36 15.60
9 14 20 19.07 16.00 31.20 279.01 273.71 273.09 274.33 263.14 279.81 279.81
10 18 12 4.46 17.00 16.01 −1.32 0.17 0.35 0.00 −1.55 3.16 −1.55
11 1 3 95.00 11.50 13.71 144.97 113.33 109.64 117.01 50.29 149.72 149.72
12 2 14 29.52 11.00 16.00 116.63 101.55 99.79 103.30 71.49 118.90 118.90
13 13 18 4.46 16.00 17.00 1.39 −0.11 −0.28 0.07 −3.08 1.61 1.61
14 13 21 3.11 16.00 30.39 44.07 43.76 43.72 43.79 43.15 44.11 44.11
15 22 12 34.00 16.00 16.01 4.62 6.66 6.90 6.42 4.32 10.72 4.32
16 22 16 6.00 16.00 20.16 24.56 24.37 24.35 24.39 23.99 24.59 24.59
17 22 19 10.00 16.00 32.04 152.20 148.21 147.75 148.68 140.27 152.80 152.80
18 14 12 1.18 16.00 16.01 0.51 0.76 0.79 0.73 0.48 1.24 0.48
19 23 7 30.00 16.00 14.44 −48.87 −49.87 −49.98 −49.75 −51.86 −48.72 −48.72
20 23 10 20.00 16.00 25.72 191.47 190.05 189.89 190.22 187.23 191.68 191.68
21 18 23 4.49 17.00 16.00 −2.10 −0.93 −0.80 −1.07 −2.27 1.39 −2.27
22 27 8 5.00 22.00 11.50 −51.15 −50.50 −50.42 −50.58 −51.25 −49.19 −51.25
23 27 10 15.00 22.00 25.72 55.51 55.38 55.36 55.39 55.12 55.53 55.53
24 12 18 6.74 16.01 17.00 2.00 −0.26 −0.53 0.00 −4.78 2.34 2.34
25 11 1 25.85 11.50 11.50 23.42 34.82 36.15 33.50 21.70 57.55 21.70
26 12 1 11.06 16.01 11.50 −42.62 −39.07 −38.65 −39.48 −43.15 −31.98 −43.15
27 3 12 11.50 13.71 16.01 26.76 26.89 26.91 26.88 26.74 27.16 26.74
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payments are either entirely positive or entirely negative. For
a few FTR holders though, four FTRs in particular, the
payments can either be positive or negative. For example,
Table 6 LMP decomposition for different starting points

Bus Load, MW λ, $/MW

Bus 1 as reference

α

LMP components,
$/MW

λe λ l λc

1 0 11.50 0.72 17.00 −0.55 −4.95
2 0 11.00 0 17.00 −0.51 −5.50
3 80.75 13.71 0 17.00 0.42 −3.72
4 0 14.21 0 17.00 0.52 −3.31
5 42.5 13.27 0 17.00 0.46 −4.20 0.
6 0 15.01 0 17.00 0.62 −2.62
7 25.5 14.44 0 17.00 0.71 −3.28
8 12.75 11.50 0 17.00 0.41 −5.92
9 0 11.50 0 17.00 0.75 −6.25
10 95.2 25.72 0 17.00 0.82 7.89
11 0 11.50 0 17.00 0.74 −6.25
12 25.5 16.01 0 17.00 0.39 −1.38
13 10.2 16.00 0 17.00 0.39 −1.40
14 25.5 16.00 0 17.00 0.99 −2.00
15 25.5 15.52 0 17.00 0.93 −2.42
16 4.25 20.16 0 17.00 0.66 2.50
17 0 24.03 0 17.00 0.78 6.25
18 17 17.00 0 17.00 1.38 −1.38
19 8.5 32.04 0.10 17.00 1.74 13.30 0.
20 29.75 31.20 0.09 17.00 1.81 12.39 0.
21 17 30.39 0.09 17.00 0.68 12.70 0.
22 0 16.00 0 17.00 0.57 −1.57
23 42.5 16.00 0 17.00 0.61 −1.62
24 4.25 17.12 0 17.00 0.73 −0.61
25 4.25 20.26 0 17.00 0.87 2.38
26 0 20.26 0 17.00 0.87 2.38
27 13.6 22.00 0 17.00 0.80 4.20
28 0 24.52 0 17.00 0.87 6.64
29 17 23.34 0 17.00 1.88 4.45
30 0 22.74 0 17.00 1.40 4.34
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the minimum and maximum FTR payments for FTR #1 lie
between $112.21 and $136.29, signifying that any choice of
reference will only result in positive payments for this FTR
Bus 5 as reference Bus 15 as reference

α

LMP components,
$/MW

α

LMP components,
$/MW

λe λ l λc λe λ l λc

0 17.70 −1.25 −4.95 0 18.02 −1.57 −4.95
0 17.70 −1.21 −5.50 0 18.02 −1.52 −5.50
0 17.70 −0.28 −3.72 0 18.02 −0.59 −3.72
0 17.70 −0.18 −3.31 0 18.02 −0.49 −3.31
75 17.70 −0.24 −4.20 0 18.02 −0.55 −4.20
0 17.70 −0.08 −2.62 0 18.02 −0.39 −2.62
0 17.70 0.01 −3.28 0 18.02 −0.30 −3.28
0 17.70 −0.29 −5.92 0 18.02 −0.60 −5.92
0 17.70 0.05 −6.25 0 18.02 −0.27 −6.25
0 17.70 0.12 7.89 0 18.02 −0.19 7.89
0 17.70 0.04 −6.25 0 18.02 −0.27 −6.25
0 17.70 −0.31 −1.38 0 18.02 −0.62 −1.38
0 17.70 −0.31 −1.40 0 18.02 −0.62 −1.40
0 17.70 0.29 −2.00 0 18.02 −0.02 −2.00
0 17.70 0.23 −2.42 0.84 18.02 −0.08 −2.42
0 17.70 −0.04 2.50 0 18.02 −0.35 2.50
0 17.70 0.08 6.25 0 18.02 −0.23 6.25
0 17.70 0.68 −1.38 0 18.02 0.37 −1.38
09 17.70 1.04 13.30 0.06 18.02 0.73 13.30
08 17.70 1.11 12.39 0.05 18.02 0.80 12.39
08 17.70 −0.02 12.70 0.05 18.02 −0.33 12.70
0 17.70 −0.13 −1.57 0 18.02 −0.45 −1.57
0 17.70 −0.08 −1.62 0 18.02 −0.40 −1.62
0 17.70 0.03 −0.61 0 18.02 −0.28 −0.61
0 17.70 0.18 2.38 0 18.02 −0.14 2.38
0 17.70 0.18 2.38 0 18.02 −0.14 2.38
0 17.70 0.10 4.20 0 18.02 −0.21 4.20
0 17.70 0.17 6.64 0 18.02 −0.14 6.64
0 17.70 1.18 4.45 0 18.02 0.87 4.45
0 17.70 0.70 4.34 0 18.02 0.39 4.34
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holder. Similarly, for FTR #19, any reference choice will
result in payments lying between $− 51.86 and $− 48.72,
which is entirely negative. However, for FTR #24, the
minimum is $− 4.78 and maximum is $2.34.
It is interesting to note that maximising sum of FTR

payments (case G) does not lead to the maximum payments
to all FTR holders. In fact, for FTRs # 4, 8, 10, 15, 18, 21,
22 and 25–27, the payments are at their minimum. FTR
payments for individual maximisation objective and
maximising sum of payments objective will lead to
the same solution if and only if the references at which the
individual maximisation occurs are same for all FTRs. The
difference in max–min solution (case D) and summated
maximisation (case G) can be attributed to the difference in
references at which individual maximisation occurs as they
are different for different FTR holders. In such situations,
there will always be a set of winners and losers when using
summated maximisation as an objective to make FTR
payments.
For example, of all the 27 FTRs under consideration, 10 of

them receive their minimum payment in case G. This is,
however, avoided when invoking the max–min fairness
criteria because these 10 FTRs receive payments higher
than their respective minimum values and the remaining 17
FTRs receive a payment that is less than their maximum
value. This characteristic feature is observed in case D,
which is the max–min solution.
4.2.2 Variation in FTR payments with reference: In
Table 5, FTR payments for cases A–D along with the
LMPs at the source and sink locations are provided. For
different choices of reference, it may be observed that the
payments vary widely for all FTR holders.
The inter-relationship between congestion components of

buses has an effect on the eventual LMP decomposition,
which in-turn affects the payments received (made) by FTR
holders. For FTR #13 between buses 13 and 18, the
payment made under case A is positive, which implies that
the FTR holder receives a payment and this is consistent
with the LMP difference. However, when the reference is
evenly distributed between buses or made proportional to
load (cases B and C), the FTR holder ends up paying the
ISO. A similar observation can be made for FTR #24. A
contrasting set of payments result for FTR #10, wherein,
payment is negative for case A and positive for cases B and
C. This wide variation is due to the multiplicity of the
solution space in LMP decomposition. Therefore any
arbitrary choice of reference can change the direction of
payment for an FTR holder. The results obtained in case D
are, however, unique and satisfy the max–min fairness
constraints, also taking into account the direction of
payment when arriving at max–min fair solution.
Of the three cases of pre-fixed reference under

consideration (cases A–C), FTRs # 4, 8, 15, 18, 25 and 27
receive their minimum payments when choosing bus 1 as
reference (case A) for decomposition. Their maximum
payments occur when reference is made proportional to
load (case C). These FTR holders may argue that they were
better off with the decomposition in case C rather than case
A. This situation is, however, avoided when choosing a
max–min fair reference because the payment received by an
FTR holder is not at the expense of some other FTR holder
whose payment is already lesser, which can be deemed
more acceptable. Hence, the reference at which solution is
max–min can be termed as a trade-off reference at which all
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 10, pp. 1724–1732
doi: 10.1049/iet-gtd.2014.0143
FTR holders are ensured of the maximum payment possible
without adversely affecting payment of other FTR holders.

4.2.3 Importance of direction of payments
constraint: The importance of the direction of payment
constraints can be seen when considering FTRs # 10, 13
and 24. The LMP difference between sink and source nodes
for FTR #10 is negative and for FTRs # 13 and 24, it is
positive. However, the max–min fair FTR payments ensure
that FTRs # 10 and 24 neither receive nor pay and for FTR
#13, the max–min fair solution reveals a credit of $0.07.
This is due to the fact that any attempt to increase payment
of FTR #10 will imply that it receives a payment for
holding the FTR, which is against the direction of payment
constraint and the LMP difference. Similarly, any attempt to
increase the payment of FTR #13 beyond $0.07 would have
to be at the expense of FTRs # 10 and 24 and some other
FTRs whose payment is lesser than the payment of FTR
#13, which is against the max–min principle.

4.2.4 Uniqueness of solution: The max–min solution is
a characteristic feature of given set of FTRs and the snapshot.
In other words, for a given set of FTRs and snapshot, the
max–min solution is unique, that is, indifferent to starting
point. In order to ascertain that the max–min fair solution is
indeed unique, the max–min algorithm was initialised using
different starting points. These starting points are nothing
but the resulting payments after LMP decomposition using
a particular choice of reference. In Table 6, a comparison of
the three components of LMP at max–min fair reference for
three different starting points is given. The max–min fair α
after convergence is also provided. The results reveal that
the congestion component for all the three starting points is
the same. However, the energy and loss components are
different. This can be attributed to the fact that there can
exist more than one reference choice for the same set of
congestion components. Hence, the resulting FTR payment
at max–min fair references for all three starting points
remains the same.

5 Conclusion

The decomposition of LMP obtained from ACOPF is seen as
a fairness problem and a set of constraints using the widely
accepted max–min fairness criteria is enforced so as to
obtain a fair LMP decomposition. Through the results, it
has been shown that a max–min fair set of payments is
indeed possible and that the solution is indifferent to the
starting point, in other words ‘unique’. A comparison of the
proposed method with the minimum and maximum FTR
payments possible is done so as to highlight the advantage
of using the max–min fair reference. Constraints on
direction of payment ensure consistency in payments when
involving bilateral contracts.
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8 Appendix

Proof of convergence of max–min algorithm
Proof: Let FP1(�a) represent lowest of FTR payments after
arranging them in ascending order before solving SP(1) of
any particular iteration. Similarly, let FP2(�a) be next lowest
and so on until FPhftr (�a) being the highest.
Suppose, in the first inner iteration, SP(1) shows movement in
FP1(�a). Constraint of type (12) ensures that this movement
has to be in the upward direction. While passing through
remaining instances, that is, while maximising FTR
payment of the other holders, in the outer iteration,
constraints of type (10) and (11) ensure that

FP1(a) . FP1(�a) (18)

However, if there is no movement while solving SP(1), (12)
ensures that it is at least as much as FP1(�a) using

FP1(a) . FP1(�a) (19)

In other words, the lowest payment will remain at same value
or can only increase. It will never decrease. Now, if SP(1)
does not show movement in FP1(�a), then depending on
whether SP(2) shows movement in FP2(�a), at least the
following will be ensured

FP2(a) ≥ FP2(�a) (20)

While doing so, because of the constraints of type (11)
(FP1(�a) is less than FP2(�a), i = 2 and k = 1), (19) will be
obtained automatically. In general, if in a particular outer
iteration, if solving first instance to second last instance do
not show any movement, then while solving last instance, it
is ensured that

FPt(a) ≥ FPt(�a), t = 1, 2, . . . , hftr − 1 (21)

In effect, the FTR payment currently being maximised cannot
be reduced below its value from the earlier iteration. Thus,
FTR payments will either remain stationary, or move in
only one direction, that is, upward. Max–min fair solution
is obtained when t = ηftr −1. The combination of arranging
the payments in ascending order after every iteration,
constraint modelling using (10)–(12), solving inner iteration
at most ηftr times and movement in only one direction will
ensure convergence.
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