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Preface

Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the
one hand, they are very flexible, since for any time increm®htny infinitely divisible distribution

can be chosen as the increment distribution over periods of AimeOn the other hand, they have a
simple structure in comparison with general semimartingales. Thus stochastic models based on Lévy
processes often allow for analytically or numerically tractable formulas. This is a key factor for practical
applications.

This thesis is divided into two parts. The first, consisting of Chapters 1, 2, and 3, is devoted to the study

of stock price models involving exponential Lévy processes. In the second part, we study term structure

models driven by Lévy processes. This part is a continuation of the research that started with the author's
diploma thesis Raible (1996) and the article Eberlein and Raible (1999).

The content of the chapters is as follows. In Chapter 1, we study a general stock price model where the
price of a single stock follows an exponential Lévy process. Chapter 2 is devoted to the study of the
Lévy measure of infinitely divisible distributions, in particular of generalized hyperbolic distributions.
This yields information about what changes in the distribution of a generalized hyperbolic Lévy motion
can be achieved by a locally equivalent change of the underlying probability measure. Implications for
option pricing are discussed. Chapter 3 examines the numerical calculation of option prices. Based on
the observation that the pricing formulas for European options can be represented as convolutions, we
derive a method to calculate option prices by fast Fourier transforms, making use of bilateral Laplace
transformations. Chapter 4 examines the Lévy term structure model introduced in Eberlein and Raible
(1999). Several new results related to the Markov property of the short-term interest rate are presented.
Chapter 5 presents empirical results on the non-normality of the log returns distribution for zero bonds.
In Chapter 6, we show that in the Lévy term structure model the martingale measure is unique. This
is important for option pricing. Chapter 7 presents an extension of the Lévy term structure model to
multivariate driving Lévy processes and stochastic volatility structures. In theory, this allows for a more
realistic modelling of the term structure by addressing three key features: Non-normality of the re-
turns, term structure movements that can only be explained by multiple stochastic factors, and stochastic
volatility.

| want to thank my advisor Professor Dr. Eberlein for his confidence, encouragement, and support. | am
also grateful to Jan Kallsen, with whom | had many extremely fruitful discussions ever since my time as

an undergraduate student. Furthermore, | want to thank Roland Averkamp and Martin Beibel for their
advice, and Jan Kallsen, Karsten Prause and Heike Raible for helpful comments on my manuscript. |
very much enjoyed my time at the Institut fir Mathematische Stochastik.
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Chapter 1

Exponential Lévy Processes in Stock Price
Modeling

1.1 Introduction

Lévy processes have long been used in mathematical finance. In fact, the best known of all Lévy
processes—Brownian motion—was originally introduced as a stock price model (see Bachelier (1900).)
Osborne (1959) refined Bachelier's model by proposing the exportentiglB; ) of Brownian motion as

a stock price model. He justified this approach by a psychological argument based on the Weber-Fechner
law, which states that humans perceive the intensity of stimuli on a log scale rather than a linear scale.
In a more systematic manner, the same proeep$B, ), which is called exponential—or geometric—
Brownian motion, was introduced as a stock price model by Samuelson (1965).

One of the first to propose an exponential non-normal Lévy process was Mandelbrot (1963). He observed
that the logarithm of relative price changes on financial and commaodities markets exhibit a long-tailed
distribution. His conclusion was that Brownian motioneixp(B;) should be replaced by symmetric
a-stable Lévy motiowith indexa < 2. This yields a pure-jump stock-price process. Roughly speaking,
one may envisage this process as changing its values only by jumps. Normal distributionstaipée
distributions witha. = 2, so Mandelbrot's model may be seen as a complement of the Osborne (1959)
or Samuelson (1965) model. A few years later, an exponential Lévy process model with a non-stable
distribution was proposed by Press (1967). His log price process is a superposition of a Brownian motion
and an independent compound Poisson process with normally distributed jumps. Again the motivation
was to find a model that better fits the empirically observed distribution of the changes in the logarithm
of stock prices.

More recently, Madan and Seneta (1987) have proposed a Lévy processkiatice gammadlistributed

increments as a model for log prices. This choice was justified by a statistical study of Australian stock
market data. Likex-stable Lévy motions, variance gamma Lévy processes are pure jump processes.
However, they possess a moment generating function, which is convenient for modeling purposes. In
particular, with a suitable choice of parameters the expectation of stock prices exists in the Madan and

10ne should be careful not to confuse this with #hechastie—or Doléans-Dade-exponential. For Brownian motion, the
exponential and the stochastic exponential differ only by a deterministic factor; for Lévy processes with jumps, the difference
is more fundamental.



Seneta (1987) model. Variance Gamma distributions are limiting cases of the fangsnefalized
hyperbolic distributions.The latter were originally introduced by Barndorff-Nielsen (1977) as a model
for the grain-size distribution of wind-blown sand. We give a brief summary of its basic properties in
Appendix A.

Two subclasses of the generalized hyperbolic distributions have proved to provide an excellent fit to em-
pirically observed log return distributions: Eberlein and Keller (1995) introduced exponieyietbolic

Lévy motion as a stock price model, and Barndorff-Nielsen (1995) proposed an exponential in-

verse Gaussiahévy process. Eberlein and Prause (1998) and Prause (1999) finally study the whole
family of generalized hyperbolic Lévy processes.

In this chapter, we will be concerned with a general exponential Lévy process model for stock prices,
where the stock price proceg$;);cr, is assumed to have the form

(1.1) S = Spexp(rt) exp(Ly),

with a Lévy procesd. that satisfies some integrability condition. This class comprises all models men-
tioned above, except for the Mandelbrot (1963) model, which suffers from a lack of integrability.

The chapter is organized as follows. In Section 1.2, we formulate the general framework for our study
of exponential Lévy stock price models. The remaining sections are devoted to the study of Esscher
transforms for exponential Lévy processes and to option pricing. The class of Esscher transforms is
an important tool for option pricing. Section 1.3 introduces the concept of an Esscher transform and
examines the conditions under which an Esscher transform that turns the discounted stock price process
into a martingale exists. Section 1.4 examines option pricing by Esscher transforms. We show that the
option price calculated by using the Esscher transformed probability measure can be interpreted as the
expected payoff of a modified option under the original probability measure. In Section 1.5, we derive
an integro-differential equation satisfied by the option pricing function. In Section 1.6, we characterize
the Esscher transformed measure as the only equivalent martingale measure whose density process with
respect to the original measure has a special simple form.

1.2 Exponential Lévy Processes as Stock Price Models

The following basic assumption is made throughout the thesis.

Assumption 1.1. Let(Q, 2, (% ):cr. , P) be afiltered probability space satisfying thgual conditions
that is, (Q2,%, P) is complete, all the null sets & are contained inRly, and (2;);cr ., is a right-
continuous filtration:

As C A, C Aarec-algebras fors,t € R4, s <t, and s = ﬂ A, forallseRy.
t>s

Furthermore, we assume that
A = 0’( UtEIR+ Qlt)

This allows us to specify a change of the underlying probability meaBumea measure) by giving a
density proces$Z;);cr, . Thatis, we specify the measueby giving, for eacht € IR, the density
Zy = dQ/dP;. Here@; and P; denote the restrictions @) and P, respectively, to the-algebra®l;. If

loc

Zy > 0for all t € IRy, the measure§) and P are then calledocally equivalent@ ~ P.

2



We cite the following definition from Protter (1992), Chap. I, Sec. 4.

Definition 1.2. An adapted proces& = (X;)o<t<oo With X = 0 a.s. is aLévy processf

() X hasincrements independent of the patiat is, X; — X is independent af;,0 < s < t < o¢;
(i) X hasstationary incrementghat is, X; — X has the same distribution @;_,,0 < s <t < o0;

(i) X; is continuous in probabilitythat is,lim; s X; = X, where the limit is taken in probability.

Keller (1997) notes on page 21 that condition (iii) follows from (i) and (ii), and so may be omitted here.
Processes satisfying (i) and (ii) are calf@dcesses with stationary independent increments (P(ISge
Jacod and Shiryaev (1987), Definition 11.4.1.)

The distribution of a Lévy processes is uniquely determined by any of its one-dimensional marginal
distributions P%¢, say, byPX1. From the property of independent and stationary incrementfs itfis

clear thatP™ is infinitely divisible. Hence its characteristic function has the special structure given by
the Lévy-Khintchine formula

E [exp(iuL;)] = exp (iub - guz + / <ei“x -1- 2ux> F(dm))

Definition 1.3. TheLévy-Khintchine triplet(b, ¢, F') of an infinitely divisible distribution consists of the
constant® € IR andc > 0 and the measuré'(dx), which appear in the Lévy-Khintchine representation
of the characteristic function

We consider stock price models of the form
(1.2) St = S exp(rt) exp(Ly),

with a constant deterministic interest ratand a Lévy process.

Remark 1: In the stock price model (1.2), we could as well omit the interestiragace the procesE
with L, := rt + L, is again a Lévy process. This would lead to a simpler fSkm= S exp(L;) of the
stock price process. However, in the following we often work wliftountedstock prices, that is, stock
prices divided by the factarxp(rt). These have a simpler form with representation (1.2).

Remark 2: Stochastic processes in mathematical finance are often defined by stochastic differential
equations (SDE). For example, the equation corresponding to the classical Samuelson (1965) model has
the form

(13) dSt = St(udt + O'th),

with constant coefficients € IR ando > 0. W is a standard Brownian motion. (“Standard” means
E[W;] = 0 and E[W] = 1 here.) The solution of (1.3) is

2
S; = Spexp (ut — %t + O'Wt).

Comparing this formula with (1.2), we see that the Samuelson model is a special case of (1.2). The Lévy
processL in this case is given by, = (u — 0?/2 — r)t + oW;. Apart from the constant facter, this

3



differs from the driving proces®’ of the stochastic differential equation (1.3) only by a deterministic
drift term.

One may ask whether the process defined in equation (1.2) could equivalently be introduced by a stochas-
tic differential equation (SDE) analogous to (1.3). This is indeed the case. However, unlike the situation
in (1.3), the driving Lévy process of the stochastic differential equation differs considerably from the
processL in (1.2). More precisely, for each Lévy procebsghe ordinary exponentiad; = Sy exp(L;)

satisfies a stochastic differential equation of the form

(1.4) dS; = S,_dLy,

whereL is a Lévy process whose jumps are strictly larger thdn On the other hand, it is a Lévy
process with jumps strictly larger thasl, then the solutiord of (1.4), i. e. the stochastic exponential of
the procesi, is indeed of the form

St = Soexp(Ly)

with a Lévy procesd.. This connection is shown in Goll and Kallsen (2000), Lemma 5.8.

This relation between the ordinary exponential and the stochastic exponential of Lévy processes does not
seem to be aware to some authors. For example, in a recent publication Chan (1999) compares the direct
approach via (1.1) and his own approach via an SDE (1.4) as if they were completely different.

Note that, in particular, the restriction that the jumpioare bounded below does not mean that the
jumps of L are bounded. For technical reasons, we impose the following conditions.

Assumption 1.4. The random variabld.; is non-degenerate and possesses a moment generating func-
tion mgf : u — Elexp(uLy)] on some open intervah, b) withbd — a > 1.

Assumption 1.5. There exists a real numbére (a,b — 1) such that

(1.5) mgf(0) = mgf(1+6).

Assumption 1.5 will be used below to prove the existence of a suitable Esscher transform.

Remark: One may wonder if 1.5 follows from 1.4 if the interv@l, b) is the maximal open interval on
which the moment generating function exists. In fact, this is true if the moment generating function tends
to infinity asu | a and asu T b. However, in general assumption 1.4 is not sufficient for assumption 1.5.
This can be seen from the following example.

Example 1.6. Consider normal inverse Gaussian (NIG) distributidnghe moment generating function

of NIG is given by
exp(dy/a2 — 32
mgf (u) = exp(uu) ( > ) —.
exp(dy/a? — (B +u)?)

For the parameters, choose the values= 1, 5 = —0.1, p = 0.006, andé = 0.005. Figure 1.1 shows
the corresponding moment generating function. Its range of definitipads- 3, « — 3] = [-0.9, 1.1],
so the maximal open interval on which the moment generating function exist9.i$,1.1). Hence
assumption 1.4 is satisfied, but assumption 1.5 is not. For clarity, figure 1.2 shows the same moment
generating function on the rande-0.9,0). There are no two pointg, # + 1 in the range of definition
such that the values of the moment generating function at these values are the same.

2See Section A.2.2. NIG distributions belong to the family of generalized hyperbolic distributions. They are infinitely
divisible and thus can appear as the distributionsofvhereL is a Lévy process.

4
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Figure 1.1: Moment generating function of a NIG distribution with parameters 1, 5 = —0.1,
1 = 0.006, andé = 0.005.

Remark: Note that in the examplengf(u) stays bounded as approaches the boundaries of the range

of existence of the moment generating function. This is no contradiction to the fact that the boundary
points are singular points of the analytic characteristic function (cf. Lukacs (1970), Theorem 7.1.1), since
“singular point” is not the same as “pole”.

1.3 Esscher Transforms

Esscher transforms have long been used in the actuarial sciences, where one-dimensional distibutions
are modified by a density of the form

with some suitable constafit

In contrast to the one-dimensional distributions in classical actuarial sciences, in mathematical finance
one encounters stochastic processes, which in general are infinite-dimensional objects. Here it is tempt-
ing to describe a transformation of the underlying probability measure by the transformation of the
one-dimensional marginal distributions of the process. This naive approach can be found in Gerber and
Shiu (1994). Of course, in general the transformation of the one-dimensional marginal distributions does
not uniquelydetermine a transformation of the distribution of the process itself. But what is worse, in
general there is no locally absolutely continuous change of measure at all that corresponds to a given
set of absolutely continuous changes of the marginals. We give a simple example: Consider a normally
distributed random variabl®; and define a stochastic procégsas follows.

Ne(w) :=tN1(w) (t € Ry).

All paths of N are linear functions, and for ea¢ke R, N, is distributed according té/(0,#2). Now

5
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Figure 1.2: The moment generating function from figure 1.1, drawn on the interged, 0).

we ask whether there is a meas@pdocally equivalent toP such that the one-dimensional marginal
distributions transform as follows.

1. for0 <t <1, V¢ has the same distribution und@ras underP.

2. forl <t < oo, QN = P2Ne thatis,QNt = N(0, 4t?).

Obviously, these transformations of the one-dimensional marginal distributions are absolutely continu-
ous. But a measum@, locally equivalent taP, with the desired properties cannot exist, since the relation
Ni(w) = tN1(w) holds irrespectively of the underlying probability measure: It reflects a path property
of all paths of N. This property cannot be changed by changing the probability measure, that is, the
probabilities of the paths. Hence for alke IR,—and hence, in particular, fdr < ¢ < co—we have

QN = Q1 which we have assumed to B&0, ¢?) by condition 1 above. This contradicts condition

23

Gerber and Shiu (1994) were lucky in considering Esscher transforms, because for Lévy processes there
is indeed a (locally) equivalent transformation of the basic probability measure that leads to Esscher
transforms of the one-dimensional marginal distributibi$ie concept—but not the name—of Esscher
transforms for Lévy processes had been introduced to finance before (see e. g. Madan and Milne (1991)),
on a mathematically profound basis.

Definition 1.7. Let L be a Lévy process on some filtered probability spézeF, (F;)icr., . P). We call

Esscher transforrany change of to a locally equivalent measur@ with a density procesg; = % \ 7
of the form '

exp(6Ly)

(1.6) Zy = Tgf(0)

%In Chapter 2, will encounter more elaborate examples of the importance of path properties. There again we will discuss
the question whether the distributions of two stochastic processes can be locally equivalent.

“However, it is not clear whether this transformation is uniquely determined by giving the transformations of the one-
dimensional marginal distributions alone.



wheref € IR, and wherangf(u) denotes the moment generating functiotd of

Remark 1: Observe that we interpret the Esscher transform as a transformation of the underlying proba-
bility measure rather than as a transformation of the (distribution of) the pracé&dsus we do not have

to assume that the filtration is the canonical filtration of the proéesghich would be necessary if we
wanted to construct the measure transformation: (Q from a transformation of the distribution @f.

Remark 2: The Esscher density process, which formally looks like the density of a one-dimensional Es-
scher transform, indeed leads to one-dimensional Esscher transformations of the marginal distributions,
with the same parametér Denoting the Esscher transformed probability measurBhywe have

0L,

PY[L, € B] :/llB(Lt)mdP

e@x
— / 1p(x) mgf(@)tPLt (dz)

for any setB € B!.

The following proposition is a version of Keller (1997), Proposition 20. We relax the conditions imposed
there on the range of admissible parametgiis the way that we do not require that also lies in the
domain of existence of the moment generating function. Furthermore, our elementary proof does not
require that the underlying filtration is the canonical filtration generated by the Lévy process.

Proposition 1.8. Equation (1.6) defines a density process fowall IR such thatE[exp(6L;)] < co
L is again a Lévy process under the new measgre

Proof. Obviously Z; is integrable for alt. We have, fors < t,

E[Zy|F,] = Elexp(0L;)mgf(0) " Fy]
= exp(0Ls)mgf(0) * Elexp(0(L¢ — Ls))mgf(0) | 7]
= exp(0Ls)mgf () ~* Eexp(0L;_,)|mgf (0) )
= exp(0Ls)mgf(0)".
— 7,

Here we made use of the stationarity and independence of the increméntsofiell as of the definition
of the moment generating functiongf (). We go on to prove the second assertion of the Proposition.
For any Borel seB3, any pairs < t and anyFy € Fs, we have the following

1. L; — L, isindependent of the-field 7, so ﬂ{LthseB}g—i is independent ofl i, Z
2. E|Zs] = 1.

3. Again because of the independencd.pt- L, and F;, we have independence ﬂ)th,LseB}g—z
andZ;.



Consequently, the following chain of equalities holds.

QU{Li—Lse B}NF) = [H{Lt L.eBy R, Z4]

Z
= F H{Lt Ls GB}Zt ]lFsZ:|

[~

Zy
E ]l{Lt—LSeB} 7] E g, Z]

Z
E ]l{Lt Ls eB}Zt] (Zs) E (1, Zs] .

(|8

II¢

FE
[ A
E H{LtheB}iZs:| ElgZ].
= QU{L:— Ls € B})Q(Fy).

For the stationarity of the increments bfunder@, we show

QU{L¢ — Ls € B}) = E[ly1,_1,en1 2]
Z.
= E[H{Lt—LseB}ths]
= E[ly,_1,en) exp(0(Ls — Ly))mgf(0)* "1 E[Z,]
= B[y, ,enyexp(0(Li—s))mgf(6)° ]
= E[l41, ,eByZi—s]
= Q({Lts € B}),

by similar arguments as in the proof of independence. O

In stock price modeling, the Esscher transform is a useful tool for finding an equivalent probability
measure under which discounted stock prices are martingales. We will use this sortaitedale
measurebelow when we price European options on the stock.

Lemma 1.9. Let the stock price process be given by (1.2), and let Assumptions 1.4 and 1.5 be satisfied.
Then the basic probability measureis locally equivalent to a measue@ such that the discounted stock
price exp(—rt)S; = Spexp(L;) is a Q-martingale. A density process leading to such a martingale
measure)) is given by the Esscher transform density

exp(6L¢)

) _
(1.7) 7 = et

with a suitable real constartt. The value) is uniquely determined as the solution of

mgf(§) =mgf(d +1), 6¢€ (a,b).

Proof. We show that a suitable paramefiesxists and is uniquexxp(L;) is aQ-martingale iffexp(L;) Z;
is a P-martingale. (This can be shown using Lemma 1.10 below.) Proposition 1.8 guarantefessthat
Lévy process under any measur€) defined by

ap®) B Z(g)

1. =
( 8) dP ]_.t t )

8



as long a9 € (a,b). Choose a solutiod of the equationmgf(§) = mgf(f + 1), which exists by
Assumption 1.5.

Because of the independence and stationarity of the incremeritsioforder to prove the martingale
property ofe’ underQ we only have to show thaf [¢“*] = 1. We have

Eq [eLl] =F [eLleelegf(Q)_l]

=F {e(GH)LI] mgf(h) ™

_ megf (0 + 1)
mgf(0)
ThusEg [el1] = 1iff
(1.9) megf (0 + 1) = mgf(6).

But the last equation is satisfied by our our choicé.dDn the other hand, there can be no other solution

6 to this equation, since the logarithm[megf(u)] of the moment generating function is strictly convex

for a non-degenerate distribution. This can be proved by a refinement of the argument in Billingsley
(1979), Sec. 9, p. 121, where only convexity is proved. See Lemma 2.9. O

1.4 Option Pricing by Esscher Transforms

The locally absolutely continuous measure transformations appearing in mathematical finance usually
serve the purpose to change the underlying probability med3urthe objective probability measure

to a so-calledrisk-neutral measure) % p5 Under the measuré, all discountefl price processes
such that the prices a@-integrable are assumed to be martingales. Therefore such a measure is also
calledmartingale measuteBy virtue of this assumption, prices of certain securities (caliexivative$
whose prices at some future d&feare known functions of other securities (calleaderlying3 can be
calculated for all dates < T just by taking conditional expectations. For example, a so-c8ledpean

call optionwith a strike price K is a derivative security that has a value(6f — K)* at some fixed
future dateT’, whereS = (S;):cr IS the price process of another security (which consequently is the
underlying in this case.) Assuming that the savings account process is givBn-bye’?, the process

e~ " S; is a martingale unde®, since was assumed to be a risk-neutral measure. The same holds true
for the value proces¥ of the option, for which we only specified the final valugT’). (e="*V (t)):>0

is a@)-martingale, so

e "V (t) = Eg [e "TV(T)|F] = Eq [e "™ (S — K)T| 7],
and hence

(1.10) V(t) =" Eq [e” (St — K)*| F] = Eq [e_T(T_t)(ST - K)Jr‘ ft] .

SLocal equivalence of two probability measur@sind P on a filtered probability space means that for eaitte restrictions
Q: := Q|r, andP; := P|z, are equivalent measures.

®Discountechere means that prices are not measured in terms of currency units, but rather in terms of units of a security
called thesavings accountThe latter is the current value of a savings account on which one currency unit was deposed at time
0 and that earns continuously interest with the short-term interest (gteFor example, if-(¢) = r is constant as in our case,
the value of the savings account at tirmis e"*.



In this way, specification of the final value of a derivative security uniquely determines its price process
up to the final date if one knows the risk-neutral measpre

We start with an auxiliary result.

Lemma 1.10. Let Z be a density process, i.e. a non-negatiemartingale withE[Z;] = 1 for all
t. Let @ be the measure defined H@/dP\ft = Z;, t > 0. Then an adapted proce$x;);>o is a
@-martingale iff(X;Z;);>o is a P-martingale.

If we further assume that, > 0 for all ¢ > 0, we have the following. For any pair < 7" and any
Q@-integrable Fr-measurable random variabl&,

Eq[X|F] = Ep [X%F‘Ft} .

Proof. The first part is a rephrasing of Jacod and Shiryaev (1987), Proposition I11.3.8a, without the
condition thatX has cadlag paths. (This condition is necessary in Jacod and Shiryaev (1987) because
there a martingale is required to possess cadlag paths.) We reproduce the proof of Jacod and Shiryaev
(1987): For everyd € F; (with t < T), we haveEq (14 X7] = Ep [Zr1aX7] and Eqg [14X,] =
Ep[Z14X). ThereforeEg [ X — Xi| Fi] = 0iff Eq [Zr X1 — Z: X¢| F¢] = 0, and the equivalence
follows.

The second part follows by considering femartingale(X;)o<:<7 generated by:
Xe=Eg[X|F] (0<t<T).
By what we have shown above?; X;)o<:<r is a P-martingale, so
Zi Xy = Ep [ Zr Xr| Fi].
Division by Z; yields the desired result. O

Consider a stock price model of the form (1.2), thatSs= Sy exp(rt) exp(L;) for a Lévy procesq..
We assume that there is a risk-neutral meagutbat is an Esscher transform of the objective measure
P: For a suitable valué € IR,

Q="r7,
with P®) as defined in (1.8). All suitable discounted price processes are assuifethastingales. In
particular,@ is then a martingale measure for the options market consistidgrinfegrable European
options onS. These are modeled as derivative securities paying an amoutriiSgf), depending only on
the stock priceSt, at a fixed timel’ > 0. We callw(x) the payoff functiorof the option’ Assume that
w(z) is measurable and that(S7) is Q-integrable. By (1.10), the option price at any time [0, 7] is
given by

V(t) = Eq [T w(Sr)| 7]

=e TR w(ST)ﬁ .7-}}
i Z
—r(T— [ St\ Z
=€ (T t)E _w <St§7;> 77; ft:|

—e T | w (Ster(Tft) exp (LT _ Lt)) exp(0(Lr — L)) ‘ t:| .

mgf(6)T—t

"This function is also calledontract functiorin the literature.

10



By stationarity and independence of the increments wfe thus have

m Yy=»ot

Remark: The payoffw(Sr) has to beQ-integrable for this to hold. This is true if(x) is bounded
by some affine function: — a + bz, since by assumptiorfy is a Q-martingale and hence integrable.
However, one would have to impose additional conditions to gr@m&er optionsfor which the payoff
functionw is of the formw(z) = ((z — K)*)2. (See Section 3.4 for more information on power options
and other exotic options.)

The following proposition shows that we can interpret the Esscher transform price of the contingent
claim in terms of a transform of payoff functian and interest rate.®

Proposition 1.11. Let the parametef of the Esscher transform be chosen such that the discounted stock
price is a martingale undef) = P(®). Assume, as before, th@tis a martingale measure for the option
market as well. Fix € [0,7]. Then the price of a European option with payoff functiofx) (that

is, with the valuew(S7) at expiration) is the expected discounted value of another option under the
objective measur. This option has a payoff function

wg, (z) := w(zx) (%)9,

which depends on the current stock prige Also, discounting takes place under a different interest

rater.
r:=r(0+ 1)+ Inmgf(0).

Proof. In the proof of formula (1.11) for the price of a European option, we only used the fact that the
density proces¥ is a P-martingale. Setting = 0 in this formula we obtain the expected discounted
value of a European optiaimder the measur®. Calling the payoff functionw and the interest rat@

we get

Et;7,w) = E [exp(—F(T — ))w(Sr) ‘ft]

= exp(—F(T ~ ) E[w{yexp(F(T — 1) + Lr-0) || _

(1.12) — exp(—F(T — t))E[m(y%“)] ‘y:s;

On the other hand, by (1.11) the price of the option considered before is

St\ Zr

(1.13) V(t) = exp(—r(T — t))E[w(y?t) 7 ] ‘y:S{

Because of the special form of the Esscher density praZess can expres% in terms of the stock

8This result is has an aesthetic value rather than being useful in practical applications: If we actually want to calculate option
prices, we can always get the density of the Esscher transformed distribution by multiplying the original density by the function
exp(fx — K(0)t).
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price:

Zp _ exp(0Ly — Inmgf(9))
Z,  exp(0L; — Inmgf(0)?)
_exp(0Lr +60rT)
~ exp(OL; + 0rt)

exp(—(T —t)0r) exp(—(T — t) Inmgf(0))

- (%:)9 exp(— (T — t)(0r + Inmgf(0)))
_ %@%)9 exp (— (T — £)(6r + nmgf(6))),

for any real numbey > 0. Inserting this expression for the density ratio into (1.13), we get

1 St St\?
(1.14) V(t) =exp (= (r+ 0r + Inmgf(0))(T —t)) ?E[w <y§> (y§> } ‘y:St'
Comparing this with the expected value (1.12) of an option characterized by the payoff fumctimn
given in the statement of the proposition, we see that (1.14) i®tbepectation of the discounted price
of an option with payoff functionv, discounted by the interest rate O

1.5 A Differential Equation for the Option Pricing Function

Equation (1.11) shows that for a simple European option, one can express the option price aistene
function of the timet and the stock pricé,. V (t) = g(S;, t), with the function

g(y,t) == e "IV Eg [w(yeT(T—tHLTJ)} .

Note that unlike (1.11), the expectation here is taken under the martingale méasthes formula is

valid not only for option pricing by Esscher transforms, but moreover for all option pricing methods for
which the log price process is a Lévy process under the martingale measure used for pricing. In what
follows, it will turn out to be convenient to express the option price as a function of the log forward price.
X, :=1In (e"T=DS,). This yieldsV (t) = f(X;,t), with

(1.15) fz,t) = e_T(T_t)EQ [w(e“‘LT*f)]

In the following, denote by); f the derivative of the functiorf with respect to itg-th argument. Like-
wise, 0;; f shall denote the second derivative.

Proposition 1.12. Assume that the functiofi(z, t) defined in (1.15) is of clas§ > (IR x IR, ), that
is, it is twice continuously differentiable in the variableand once continuously differentiable in the
variablet. Assume further that the law &f has supporiR. Thenf(x, t) satisfies the following integro-
differential equation.

0=~ rf(2,1) + @) (1) + (01 ()b + 500 ) 1)e

+ [ (Fatut) = flat) = @) (at)y) Fid),
w(e®) = f(z,T) (x e R, t€(0,7)).

The only parameters entering here are the short-term interestrated the Lévy-Khintchine triplet
(b, ¢, F') of the Lévy process under the pricing measurg.

12



Proof. The log forward price processX;)o<:<7 introduced above satisfies the following relation.

(1.16) X, =In(erT7Dg,)
= hlSt +T‘(T—t)
= 1HS(] +’I"T+Lt

By assumption, the discounted option price proeegéV (t) = e " f(X;, t) is aQ-martingale. Hence it
is a special semimartingale, and any decompositigiV (t) = V (0) + M; + A, with a local martingale
M and a predictable procegbswith paths of bounded variation, has to satigfy= 0. In the following,
we derive such a representation. The condition thatanishes will then yield the desired integro-
differential equation.

By Ito's formula, we have

d(e "V (t)) = —re "V (t)dt + e " dV (1)
= —re "V (t)dt

e (@) (Xim ) + 01) (Xi-, 04X, + 5(00]) (Yoo, )(X7, X,

[ (e +08) = Fat) = @) (X1 1)) )}

wherenX) is the random measure associated with the jumpX,0fBy equation (1.16), the jumps of

X and those of the Lévy procegscoincide, and so do the jump measures. Furthermore, the stochastic
differentials of X and (X*¢, X¢) coincide with the corresponding differentials for the Lévy prockss
Hence we get

d(e "V () = —re "V ()t
e (02) (Koo t)dt + (01) (Ko, 1)Ly + % Ouf) (e t)e dt

+ /IR(foct +9,1) = f(Xim 1) = (01F) (X )y )P (dy, ) |

The right-hand side can be written as the sum of a local martingale and a predictable process of bounded
variation, whose differential is given by

1
—re " f (X, t) dt + e—”{(azf) (X, t)dt + (B1f)(Xi—,t)b dt + 501f) (Xi—,t)cdt
+ [ (P4 90 = 1K) = @) (Krm ) )}
wherev()(dy, dt) = F(dy)dt is the compensator of the jump measufé&). By the argument above,

this process vanishes identically. By continuity, this means that for all valéresn the support o)Xt~
(that is, by assumption, for all € IR) we have

0=—rf(z,t) + (02f) (2, t) + (OLf) (=, )b+ %(811f)(:1:,t)c

_|_/(f(x—i—y,t)—f(x,t)—(51f)(xat)y>F(dy)'
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Relation to the Feynman—Kac Formula

Equation (1.15) is the analogue of the Feynman—Kac formula. (See e. g. Karatzas and Shreve (1988),
Chap. 4, Thm. 4.2.) The difference is that Brownian motion is replaced by a general Lévy ptocess,

The direction taken in the Feynman-Kac approach is the opposite of the one taken in Proposition 1.12:
Feynman—Kac starts with the solution of some parabolic partial differential equation. If the solution
satisfies some regularity condition, it can be represented as a conditional expectation.

A generalization of the Feynman-Kac formula to the case of general Lévy processes was formulated in
Chan (1999), Theorem 4.1. The author states the this formula can be proven exactly in the same way as
the classical Feynman-Kac formula. We have some doubts whether this is indeed the case. For example,
an important step in the proof given in Karatzas and Shreve (1988) is to introduce a stoppirig}, time

that stops if the Brownian motion leaves some intefvak,n]. Then on the stochastic intervil, S]

the Brownian motion is bounded by But this argument cannot be easily transferred to a Lévy process
having unbounded jumps: At the tintg the value of the Lévy process usually lies outside the interval
[—n, n]. Furthermore, it is not clear which regularity condition has to be imposed on the solution of the
integro-differential equation.

1.6 A Characterization of the Esscher Transform

In the preceding section, we have seen the importance of martingale measures for option pricing. In some
situations, there is no doubt what the risk-neutral measure is: It is already determined by the condition
that the discounted price processes of a set of basic securities are martingales. A famous example is the
Samuelson (1965) model. Here the price of a single stock is described by a geometric Brownian motion.

(1.17) Sy = Spexp ((u— /2t + W) (t >0),

whereS) is the stock price at timé = 0, u € IR ando > 0 are constants, and wheVg is a standard
Brownian motion. This model is of the form (1.2), with a Lévy procéss= (1 — r — 02/2)t + cW.

If the filtration in the Samuelson (1965) model is assumed to be the one generated by the stock price
process, there is only one locally equivalent measure under whict S, is a martingale. (See e. g.
Harrison and Pliska (1981).) This measure is given by the following density pracesth respect to

P.

(=)o) W

(1.18) Z = .
B [e((r—wa) wt]

The fact that there is only one such measure implies that derivative prices are uniquely determined in
this model: If the condition that~"S; is a martingale is already sufficient to determine the measure

Q, then necessarilg) must be the risk-neutral measure for any market that consists of the Stactl
derivative securities that depend only on the underlyhgrhe prices of these derivative securities are

then determined by equations of the form (1.10). For European call options, these expressions can be
evaluated analytically, which leads to the famous Black and Scholes (1973) formula.

®This additional assumption is necessary since obviously the conditioexth@l ;) be a martingale can only determine the
measure of sets in the filtration generatediby
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Note that the uniquely determined density process (1.18) is of the form (1.6) witty — 1) /2. That
is, it is an Esscher transform.

If one introduces jumps into the stock price model (e. g. by choosing a more general Lévy process instead
of the Brownian motiori?” in (1.17)), this in general results in losing the property that the risk-neutral
measure is uniquely determined by just one martingale condition. Then the determination of prices for
derivative securities becomes difficult, because one has to figure out how the market chooses prices.
Usually, one assumes that the measrethat is, prices of derivative securities—is chosen in a way
that is optimal with respect to some criterion. For example, this may involve minimizingmerm of

the density as in Schweizer (1996). (Unfortunately, in general the optimal delisity” may become
negative; so, strictly speaking, this is no solution to the problem of choosing a martingale measure.) Other
approaches start with the problem of optimal hedging, where the aim is maximizing the expectation of a
utility function. This often leads to derivative prices that can be interpreted as expectations under some
martingale measure. In this sense, the martingale measure can also be chosen by maximizing expected
utility. (Cf. Kallsen (1998), Goll and Kallsen (2000), Kallsen (2000), and references therein.)

For a large class of exponential Lévy processes other than geometric Brownian motion, Esscher trans-
forms are still a way to satisfy the martingale condition for the stock price, albeit not the only one. They
turn out to be optimal with respect to some utility maximization criterion. (See Keller (1997), Section
1.4.3, and the reference Naik and Lee (1990) cited therein.) However, the utility function used there
depends on the Esscher parameter. Chan (1999) proves that the Esscher transform minimizes the relative
entropy of the measure and(@ under all equivalent martingale transformations. But since his stock
price is the stochastic exponential (rather than the ordinary exponential) of the Lévy process employed
in the Esscher transform, this result does not hold in the context treated here.

Below we present another justification of the Esscher transform: If Conjecture 1.16 holds, then the
Esscher transform is the only transformation for which the density process does only depend on the
current stock price (as opposed to the entire stock price history.)

Martingale Conditions

The following proposition shows that the parameief the Esscher transform leading to an equivalent
martingale measure satisfies a certain integral equation. Later we show that an integro-differential equa-
tion of similar form holds for any functiotf(z, ¢) for which f(L;, t) is another density process leading to

an equivalent martingale measure. Comparison of the two equations will then lead to the characterization
result for Esscher transforms.

Proposition 1.13. Let L be a Lévy process for which, possesses a finite moment generating function
on some intervala, b) containing0. Denote by:(v) the cumulant generating function, i. e. the logarithm
of the moment generating function. Then there is at mos#andR such thaie’* is a martingale under
the measureP? = (/% / E[ef%1]t)d P. This valued satisfies the following equation.

(1.19) b+ 0c+ g + / (W(ew —1)— x)F(dx) —0,
where(b, ¢, F) is the Lévy-Khintchine triplet of the infinitely divisible distributiét .
Remark: Here we do not need to introduce a truncation funcfigm), since the existence of the mo-

ment generating function implies th o|>1 |z| F'(dx) < oo, and hencd. is a special semimartingale
according to Jacod and Shiryaev (1987), Proposition 11.2.29 a.
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Proof of the proposition.It is well known that the moment generating function is of the Lévy-Khintchine
form (1.2), withwu replaced by—iv. (See Lukacs (1970), Theorem 8.4.2.) Sidchas stationary and

independent increments, the condition tht be a martingale undg?? is equivalent to the following.
L et

1 —
E [e E[e%ﬂ -

In terms of the cumulant generating functiefw) = In E [exp(vL4)], this condition may be stated as
follows.

k(@ +1)—k(0) =0.
Equation (1.19) follows by inserting the Lévy-Khintchine representation of the cumulant generating
function, that is,

(1.20) k(u) = ub + g?ﬂ + / (e“x —1- u:I:) F(dx).

The density process of the Esscher transform is giveff ingth
B exp(0L;)
" exp(r(0)t)
Hence it has a special structure: It dependsvamnly via the current valud;(w) of the Lévy process

itself. By contrast, even on a filtration generated/hythe value of a general density process at ttme
may depend on the whole history of the process, that is, on thelpéth, s € [0, t].

Definition 1.14. Let7(dz) be a measure ofiR, B') with 7(IR) € (0, o). Theng, denotes the class of
continuously differentiable functions: IR — IR that have the following two properties

(1.21) Forall z € IR, IEER) Ly < oo
=1y 1A
(1.22) If / g(z+ h}z — g(x)T(dh) = (O for all z € IR, theng is constant.

In (1.22), we define the quotieﬁi%‘g(”) to beg'(x) for h = 0.

Lemma 1.15. a) Assume that the measuré&ix) has a support with closur®R. For monotone continu-
ously differentiable functiong(x), property (1.21) implies property (1.22).

b) If the measure (dx) is a multiple of the Dirac measu®), thenG, contains all continuously differ-
entiable functions.

Proof. a) Without loss of generality, we can assume thats monotonically increasing. Then
M > 0 for all z,h € R. (Keep in mind that we have SM = ¢'(x).) Hence
i Mr(dh) = 0 implies thatg(z + h) = g(x) for 7(dh)-almost everyh. Since the closure of
the support of-(dx) was assumed to BB, continuity ofg(x) yields the desired result.

b) Now assume that(dx) = ady for somea > 0. Condition (1.21) is trivially satisfied. For the proof of

condition (1.22), we note thgft Moﬁo(dh) = ag'(z). But if the derivative of the continuously
differentiable functiory(z) vanishes for almost alt € IR, then obviously this function is constant]
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Conjecture 1.16. In the definition above, if the support-ohas closurdR, then property (1.21) implies
property (1.22).

Remark: Unfortunately, we are not able to prove this conjecture. It bears some resemblance with the
integrated Cauchy functional equatigeee the monograph by Rao and Shanbhag (1994).) This is the
integral equation

(1.23) H(x) = /]RH(x + y)7(dy) (almost allz € R),

wherer is ac-finite, positive measure oflR, B'). If 7 is a probability measure, then the functiéh
satisfies (1.23) iff

/ (H(x+y)— H(z))7(dy) =0  (almostallz € IR).
R

According to Ramachandran and Lau (1991), Corollary 8.1.8, this impliedtH#s every element of

the support of- as a period. In particular, the cited Corollary concludes fha constant if the support

of 7 contains two incommensurable numbers. This is of course the case if the suppdra®tlosure

IR, which we have assumed above. However, we cannot apply this theorem since we have the additional
factor1/h here.

As above, denote b§; f the derivative of the functiorf with respect to itg-th argument. Furthermore,
the notationX - Y means the stochastic integral &f with respect taY". Note thatY” can also be the
deterministic process HenceX -t denotes the Lebesgue integral’6f seen as a function of the upper
boundary of the interval of integration.

We are now ready to show the following theorem, which yields the announced uniqueness result for
Esscher transforms.

Theorem 1.17.Let L be a Lévy process with a Lévy-Khintchine trip{étc, F'(dz)) satisfying one of
the following conditions

1. F(dzx) vanishes and > 0.

2. The closure of the support &f(dx) is IR, and f{\x\>1} e" F(dr) < oo for u € (a,b), where
a<0<b. B

Assume thatl € (a,b— 1) is a solution ofx(0 + 1) = x(0), wherex is the cumulant generating function
of the distribution ofZ.;. SetG(dx) := cdo(dx) + z(e* — 1)e?® F(dz). Define a density process by

~exp(0Ly)
Zy = 7exp(t/£(9)) (t e Ry).

Then under the measur@ % P defined by the density procegswith respect toP, exp(L;) is a
martingale!® Z is the only density process with this property that has the f@gm= f(L;,t) with a
function f € C>V(IR x IR, ) satisfying the following: For every> 0, g(z,t) := f(z,t)e % defines
a functiong(-,t) € Gg.

19see Assumption 1.1 for a remark why a change of measure can be specified by a density process.
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Proof. First, note that the condition of(dx) implies that the distribution of ever§, has supporiR
and possesses a moment generating functiotuob). (The latter is a consequence of Wolfe (1971),
Theorem 2.)

We have already shown thek indeed is aQ-martingale.

Let f € CD(R x IR, ) be such thaff (L, t) is a density process. Assume that under the transformed
measureg’t is a martingale. Therfi(L;,t) as well asf(L;,t)e’ are strictly positive martingales under
P. By Ito's formula for semimartingales, we have

f(Ltvt) = f(L07 0) + 82f(Lt—at) -t
+ o f(Li—,t) - Ly
+ (1/2)811f(Lt—7t) ' <L67Lc>t

+ (F(Le+,t) = f(Lot) = 01 f (Lo 1))+
and

F(Le,t)elt =f(Lo,0)el® + O f (L, t) exp(L;_) - t
+ (O1f (Li—, t) + f(Li—, 1)) exp(Le-) - Ly
+ (1/2) (01 f (Ly— s t) + 201 f (Lo t) + f(Ly,t)) - (L, LE),

+ ((f(Lt, b )e® — f(Limt) — (01 f(Lie,t) + f(Lt,,t))x) eLt—) «ub.

Since both processes are martingales, the sum of the predictable components of finite variation has to be
zero for each process. So we have

0 =02 f (Li—t) -t + O1f(Le—, )b - t + (1/2)001 f (Ly—, t)e - t
// f(Li— 4+, t) — f(Le—,t) — 81f(Lt,,t)x>F(daz)dt
and

0 —32f(Lt st)exp(Li-) -t 4 (O1f (Le—,t) 4+ f(Le—,t))bexp(Ls—) -
1/2) (811f(Lt , ) + 281f(Lt_, t) + f(Lt_, t))C -1

/ / F(Lee + 2,8)e® — f(Li_,t) — D1 f(Le_, ) + f(Lt,,t))x> eLt—)F(dx)dt.

By continuity, we have for any > 0 andy in the support of£(L,_) (which is equal to the support of
L(L¢), which in turn is equal tdR)

0= 0af (1) + D0 .0+ (120011 flyt)e+ [ (£(u+.6) = F.8) = 01 fly, ) ) Fida)
and

0= 82f(y7t) + (81f(y7t) + f(yvt))b + (1/2)(811f(y7t) + 2f1(y7t) + f(yvt))c
+ [ (#2906 = Fuut) = @uf (0 1) + Flu.)) Pldo).

18



Subtraction of these integro-differential equations yields

0= £+ lw e+ Fu /2 + [ (Fl+2.0(e =1 = fut)e) Flde) (v € R)

Division by f(y, t) results in the equation

o fl(yvt)c ¢ f(y—i_xvt) e — — -
(1.24) 0=b+ S *2*/(7]0(@,,@ ("= 1) —2)F(dz). (y€TR)

By Proposition 1.13, the Esscher paramétsatisfies a similar equation, namely

(1.25) 0=b+0c+ g + / (ef’w(eﬂf 1) - x)F(d:z:).

Subtracting (1.25) from (1.24) yields

For the ratiog(y, t) := f(y,t)/e’, this impliest

_g1(y,t)c glyt+azt) o — 1169 F(do
- 9(y.t) +/< 9(y, 1) 1)( De™F(dz) (y € R).

Multiplication by g(y, t) finally yields

(1.26) 0= e+ | (gly +2,t) — gy, 1)) (" — 1)e’" F(dx)

—91(y, ) +/g(y+x t) g(y’t)x(ex—l)eemF(dx)

X

:/g(y+x7t) g(y,t)G(dx) (y € ),

8

where we set agaiﬁwgw := ¢'(y). The measuré(dz) = cdo +z(e* — 1)e?* F(dx) is finite on
every finite neighborhood af = 0. Furthermore(=(dz) is non-negative and has supp#itt {0}. Since
we have assumed théatlies in the intervala,b — 1) (where(a, b) is an interval on which the moment
generating function of; is finite), we can find > 0 such that the intervdl) — e, 0 + 1 +¢) is a subset of
(a,b). Using the estimatiofr| < (e™“* 4 e“*) /e, which is valid for allx € IR, it is easy to see that one
can form a linear combination of the functiogl§ =%, ¢(0+9)7 c(0+1-6)z ande(®+1+e)e that is an upper
bound for the function:(e® — 1)e?*. Choosings > 0 small enough, all the coefficients in the exponents
liein (a,b). Therefore the measudz) is finite. Since by assumptiane G, equation (1.26) implies
thatg(-,¢) is a constant for every fixet sayg(z,t) = ¢(t) for all z € IR,¢ > 0. By definition of g,
this implies f(z,t) = c(t)e?* for all z € R,t > 0. It follows from the relationE[f(L;,t)] = 1 that
c(t) = 1/E [e"F1] = exp(—tr(0)). O

Note that
e Dn(0.0) _ O = 0fw.0)™ _ St

g(y,t) g(y,t)  fly,t)

glyrat) ooy Slutazt)
9.t © p(0a) fly,t)

and

19



20



Chapter 2

On the Lévy Measure
of Generalized Hyperbolic Distributions

2.1 Introduction

The Lévy measure determines the jump behavior of discontinuous Lévy processes. This measure is
interesting from a practical as well as from a theoretical point of view. First, one can simulate a purely
discontinuous Lévy process by approximating it by a compound Poisson process. The jump distribution
of the approximating process is a normalized version of the Lévy measure truncated in a neighborhood
of zero. This approach was taken e. g. in Rydberg (1997) for the simulation of normal inverse Gaussian
(NIG) Lévy motions and in Wiesendorfer Zahn (1999) for the simulation of hyperbolic and NIG Lévy
motions® Of course, simulating the Lévy process in this way requires the numerical calculation of the
Lévy density. We present a generally applicable method to get numerical values for the Lévy density
based on Fourier inversion of a function derived form the characteristic function. We refine the method
for the special case of generalized hyperbolic Lévy motforiEhis class of Lévy processes matches

the empirically observed log return behavior of financial assets very accurately. (See e. g. Eberlein and
Prause (1998) for the general case, and Eberlein and Keller (1995), Barndorff-Nielsen (1997) for a study
of some special cases of this class.)

The second important area where knowledge of the Lévy measure is essential is the study of singularity
and absolute continuity of the distribution of Lévy processes. Here the density ratio of the Lévy measures
under different probability measures is a key element. For the case of generalized hyperbolic Lévy
processes, we study the local behavior of the Lévy measurernead. This is the region that is most
interesting for the study of singularity and absolute continuity. We apply this knowledge to a problem in
option pricing: Eberlein and Jacod (1997b) have shown that with stock price models driven by pure-jump
Lévy processes with paths of infinite variation, the option price is completely undetermined. Their proof
relied on showing that the class of equivalent probability transformations that transform the driving
Lévy process into another Lévy process is sufficiently large to generate almost arbitrary option prices
consistent with no-arbitrage. For the class of generalized hyperbolic Lévy processes, we are able to

IThese processes are Lévy procedsasich that the unit incremetdt; has a hyperbolic respectively NIG distribution. See
Appendix A.

2For a brief account of generalized hyperbolic distributions and the class of Lévy processes generated by them, see Appendix
A.
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specialize this result: Itis indeed sufficient to consider only those measure transformations that transform
the driving generalized hyperbolic Lévy process into a generalized hyperbolic Lévy process.

The chapter is structured as follows. In Section 2.2 we show how one can calculate the Fourier transform
of the Lévy measure once the characteristic function of the corresponding distribution is known. The
only requirement is that the distribution possesses a second moment. Section 2.3 considers the class of
Lévy processes possessing a moment generating function. Here one can apply Esscher transforms to the
basic probability measure. We study the effect of Esscher transforms on the Lévy measure and show
how the Lévy measure is connected with the derivative of the characteristic function by means of Fourier
transforms. Section 2.4 considers the class of generalized hyperbolic distributions. For a suitable modifi-
cation of the Lévy measure, we calculate an explicit expression of its Fourier transform. It is shown how
the Fourier inversion of this function, which yields the density of the Lévy measure, can be performed
very efficiently by adding terms that make the Fourier transform decay more rapidly|fes co.3 In

Section 2.5 we examine the question whether there are changes of probability that turn one generalized
hyperbolic Lévy process into another. Proposition 2.20 identifies those changes of the parameters of
the generalized hyperbolic distribution that can be achieved by changing the probability measure. The
key to this is the behavior of the Lévy measures neaf 0. With the same methodology, we show in
Proposition 2.21 that for the CGMY distributions a similar result holds. Due to the simpler structure of
the Lévy density, the proof is much easier than for the generalized hyperbolic case. In Section 2.6, we
demonstrate that the parametém@ndy are indeed path properties of generalized hyperbolic paths, just

as the volatility is a path property of the path of a Brownian motion. Section 2.7 studies implications for
the problem of option pricing in models where the stock price is an exponential generalized hyperbolic
Lévy motion.

2.2 Calculating the Lévy Measure

Let x(u) denote the characteristic function of an infinitely divisible distribution. Thér) possesses a
Lévy-Khintchine representation.

2
(2.1) u) = ex iub—u—c—l- e — 1 — juh(z)) K (dz)).
O R () K (d))

(See also Chapter 1.) Hebec IR andc > 0 are constants, anfl’ (dx) is theLévy measureThis is a
o-finite measure ofR\{0} that satisfies

(2.2) / (% A1) K(dz) < oo.
R\{0}

It is convenient to exten& (dx) to a measure ofR by settingK ({0}) = 0. Unless stated otherwise, by
K (dz) we mean this extension. The functibfiz) is atruncation functionthat is, a measurable bounded
function with bounded support that that satisfi¢s) = « in a neighborhood of = 0. (See Jacod and
Shiryaev (1987), Definition 11.2.3.) We will usually use the truncation function

h(l‘) = J:]l{|$|§1}.

3The author has developed an S-Plus program based on this method. This was used by Wiesendorfer Zahn (1999) for the
simulation of hyperbolic Lévy motions.
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The proofs can be repeated with any other truncation function, but they are simpler with this particular
choice ofh(x).

In general, the Lévy measure may have infinite mass. In this case the mass is concentrated around
However, condition (2.2) imposes restrictions on the growth of the Lévy measure arcdrid

Definition 2.1. Let K (dz) be the Lévy measure of an infinitely divisible distribution. Then we call
modified Lévy measurthe measurés on (IR, B) defined byK (dx) := 22K (dx).

Lemma 2.2. Let K be the modified Lévy measure corresponding to the Levy measute) of an
infinitely divisible distribution that possesses a second moment. Khisra finite measure.

Proof. Sincez +— 2% A 1 is K(dx) integrable, it is clear thak puts finite mass on every bounded
interval. Moreover, by Wolfe (1971), Theorem 2, if the corresponding infinitely divisible distribution has
a finite second moment;? is integrable over any whose closure does not contain 0. SoK assigns
finite mass to any such set. Hence

K(R) = K([~1,1]) + K ((—00, 1) U (1,00)) < o0.

O

The following theorem shows how the Fourier transform of the modified Lévy meagufédz) is
connected with the characteristic function of the corresponding distribution. This theorem is related to
Bar-Lev, Bshouty, and Letac (1992), Theorem 2.2a, where the corresponding statement for the bilateral
Laplace transform is giveh.

Theorem 2.3. Let x(u) denote the characteristic function of an infinitely divisible distributionI®n
possessing a second moment. Then the Fourier transform of the modified Lévy méas(ie) is
given by

(2.3) /IReiwx‘QK(dx) =—c— % <);</((§)))

Proof. Using the Lévy-Khintchine representation, we have

d

%X(u) = x(u) - (ib —uc+ 4 (ei“” —-1- wh(x))K(dJ:))

du JRr
The integrand®* — 1 — juh(z) is differentiable with respect to. Its derivative is
Oy, (eww —1—iuh(z)) =iz e —ih(z).
This is bounded by & (dx)-integrable function as we will presently see. First,|fdr< 1 we have

iz €™ —ih(z)| = |z| - [e™® — 1
< |z|- (] cos(ux) — 1| + | sin(ux)|)

< |zl 2luz| = Jul - |z

“However, Bar-Lev, Bshouty, and Letac (1992) do not give a proof. They say “The following result does not appear clearly
in the literature and seems rather to belong to folklore.”
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For u from some bounded interval, this is uniformly bounded by some multiple|®f For|z| > 1,

liz €™ —ih(z)| = |iz €| = |z|.

From Wolfe (1971), Theorem 2, it follows th4E|ac|>1} |z| K (dx) < oo iff the distribution possesses a

finite first moment. Hence for eache IR we can find some neighborhoétsuch thatup,,c;; |iz €% —

ih(x)] is integrable, Therefore the integral is a differentiable function, @ind we can differentiate under

the integral sign. (This follows from the differentiation lemma; see e. g. Bauer (1992), Lemma 16.2.)
Consequently, we have

X'(u) :ib—uc‘i‘/IR(ix " —ih(z)) K (dz).

Again by the differentiation lemma, differentiating a second time is possible if the integrat® —
ih(z) has a derivative with respect tothat is bounded by som& (dx)-integrable functionf(z), uni-
formly in a neighborhood of any < IR. Here this is satisfied witlfi(z) = 22, since

‘%(Zx eium o zh(x))‘ — | o xQ eiux| — xQ forall u € R.

Again by Wolfe (1971), Theorem 2, this is integrable with respeck{@/z) because by assumption
the second moment of the distribution exists. Hence we can again differentiate under the integral sign,

getting
d /Y (u i
du (>><<((U))> s e /]Rew o K(do)

This completes the proof. O

Corollary 2.4. Let x(u) be the characteristic function of an infinitely divisible distribution @R, 53)
that integratesc?. Assume that there is a constant IR such that the function

(2.4) plu) == —¢ — % (f{l((g)))

is integrable with respect to Lebesgue measure. Tisrqual to the Gaussian coefficienin the Lévy-
Khintchine representation, ang(«) is the Fourier transform of the modified Lévy measufé (dz).
This measure has a continuous Lebesgue densifi ¢timat can be recovered from the functiptu) by

Fourier inversion.
dK 1

T
Consequently, the measul&(dz) has a continuous Lebesgue densitylRk{0}:

z? e~ 5(u)du.

dK 1 — UL

For the proof, we need the following lemma.

Lemma 2.5. Let G(dx) be a finite Borel measure dR. Assume that the characteristic functi&{u)
of G tends to a constantas|u| — oo. ThenG({0}) = c.
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Proof of Lemma 2.5For any Lebesgue integrable functigiiu) with Fourier transformg(z) =
[ e g(u) du, we have by Fubini's theorem that

/ G(dx) // o) du G(dx)
(2.5) = / / e G(dx) g(u) du = / G(u)g(u) du.

Settingp(u) = (2m)~1/2e*/2, we get the Fourier transfor@(z) = e¢~"°/2. Now we consider the
sequence of functiong, (u) := ¢(u/n)/n, n > 1. We haveg,(z) = ¢(nz) — I (z) asn — oo,
for anyx € IR. By dominated convergence, this implies

(2.6) [ dta) Gtd) = [ 100z G0} (n— o).

On the other hand, settir@n(u) = @(nu), n > 1, we have@n(u) — lyp—0y + clz40y pointwise
for u € IR. Hence, again by dominated convergence,

/G w)gn (u du_/G o(u/n)/n du

(2.7) /G(nu) (u) du—>/ Ip—oy + clizroy)p(u) du = c.

Since we havef g,(z) G = [G( G(u ) du by (2.5), now relations (2.6) and (2.7) yield the
desired result:

f@(xhc:(dx) L)
f@(u)gn(u) du — e

O

Proof of Corollary 2.4.By Lemma 2.222 K (dz) is a finite measure under the hypotheses of Corollary
2.4. By Theorem 2.3, its Fourier transform is given by

/IRewfo(d:I;) =—c— % <);(((§)))

On the other hand, the assumed integrabilitg(af) implies thatp(u) — 0 as|u| — co. Sop(u)+¢—e¢,
which is just the Fourier transform af K (dz), converges to the valué— c as|u| — co. Lemma 2.5
now yields that the limit — c is just the modified Lévy measure of the $8}. But this is zero, so indeed
c=c.

The remaining statements follow immediately from Theorem 2.3 and the fact that integrability of the
Fourier transform implies continuity of the original function. (See e. g. Chandrasekharan (1989), 1.(1.6).)
O
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2.3 Esscher Transforms and the Lévy Measure

Lemma 2.6. LetG(dx) be a distribution oriR with a finite moment generating function on some interval
(—a,b) with —a < 0 < b. Denote byy(z) the analytic characteristic function @f. Then the Esscher
transform ofG(dx) with parameter € (—b,a), i. €. the probability measure

Gy(dzx) := ﬁG%G(daz),

has the analytic characteristic function

Proof. This is immediately clear from the definition of the characteristic function. O

The Esscher transform of an infinitely divisible distribution is again infinitely divisible. The parameter
6 changes the drift coefficiertt the coefficientc, and the Lévy measurk (dz). This is shown in the
following proposition.

Proposition 2.7. Let G(dx) be an infinitely divisible distribution ofR with a finite moment generating
function on some interval—a, b) with —a < 0 < b. Let the Lévy-Khintchine representation of the
corresponding characteristic functiop(«) be given by

x(u) = exp (iub - u—Qc + /IR\{O} (ei”m -1- zuh(x))K(dx))

Then for any parametef € (—b,a) the Esscher transforry(dx) is infinitely divisible, with the pa-
rameters given by

by = b+ O+ / h() (% — 1)K (dr),
R\{0}

Cp = C,

and  Ky(dzr) = " K (dz).

Proof. By Lukacs (1970), Theorem 8.4.2, we know that the Lévy-Khintchine representation of the char-
acteristic function still holds if we replace by a complex value: with Imz € (—b,a). Hence by
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Lemma 2.6 the characteristic function of the Esscher-transformed distribution is givgridy with
exp <i(u L A (S B U i@)h(x))K(dx))
xo(u) = .
x(—10)

u? 62
= exp <iub + 0b — 5 ¢ + iubc + ¢

n /IR\{O} <eiux€9$ —1—iuh(z) — gh(x)>K(dx)

— _9_20_ e —1— x T
ob— /IR\{O}( 1— 0h(z))K(d ))

2

= exp (zu(b + 6c) — %c + / (e —1— iuh(x))eaxK(dx)
R\{0}

—iu/ h(z)(1 —eax)K(dx)).
R\{0}

But this is again a Lévy-Khintchine representation of a characteristic function, with parameters as given
in the proposition. O

In Chapter 1, we saw that in mathematical finance, Esscher transforms are used as a means of finding
an equivalent martingale measure. The following proposition examines the question of existence and
uniqueness of a suitable Esscher transform. It generalizes Lemma 1.9.

Proposition 2.8. Consider a probability measur@ on (IR, ) for which the moment generating function
mgf(u) exists on some intervél-a, b) with a,b € (0, oc]. Then we have the following.

(@) If G(dx) is non-degenerate, then for each> 0 there is at most one valukc IR such that

mgfé + 1)
2.8 — L =
@9 mgf(9)
(b) If mgflu) — oo asu — —a and asu — b, and ifb + a > 1, then equation (2.8) has exactly one
solutionf € (—a,b — 1) for eachc > 0.

For the proof of the proposition, we will need the following lemma. The statement is well known, but
for the sake of completeness we give an elementary proof here.

Lemma 2.9. Letyu(dz) be a non-degenerate probability measureg(fity B1) which possesses a moment-
generating function. Then the logarithm of this moment generating function possesses a strictly positive
second derivative on the interior of its range of existence. In particular, it is strictly convex on its range
of existence.

Proof. Consider an arbitrary valuefrom the interior of the range of existence of the moment generating
function. The second derivative of the log of the moment generating function, takersat

aer w) — "u 2
(1 mgf) () = mgf “(u)maf(u) — maf(u)

mgf(u)?
_ J@Peu(de) ([ xe"p(dr)\?
- Jevru(dr) (f Wu(dw)> -
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since obviously the last expression is the variance of the non-degenerate distrljkﬂ)uﬁeﬁ(q@u(dx).

. U
€L

Proof of Proposition 2.8. Part (a)Equation (2.8) is equivalent tm mgf(6 + 1) — Inmgf(f) = Inc.
The left-hand side is a strictly increasing functiordogince by the mean value theorem there is a value
€ € (0,0 + 1) such that

%(m mgf(6 +1) — In mgf(9)) = (Inmgf)"(€).

The last term is strictly positive by Lemma 2.9. But a strictly increasing function possesses an inverse.

Part (b). By assumption, the functiof— In mgf(6 + 1) — In mgf(0) is well-defined for from the non-
empty interval(—a,b — 1). It tends to+oco asé reaches the boundaries of this interval. By continuity,
there is a valug) where this function takes the valuec. This solves equation (2.8). Obviously, a
distribution which satisfies the assumptions cannot be degenerate, so uniqueness follows by @art (a).

Corollary 2.10. Let G be a non-degenerate distribution ¢iR, B') for which the moment generating
functionmgf (u) exists on some intervak-a, b) with a, b € (0, o).

(a) For eachc > 0, there is at most one valu@ such that the Esscher-transformed distribution

Go(dz) := % satisfiesmgf, (1) = c.

(b) If, in addition, we haves + b > 1, and if the moment generating function tends to infinity as one
approaches the boundaries of the interyala, b), then for eache > 0 there is exactly oné € IR
such that the Esscher transformed distributi@p(dx) has a moment generating function equal to
catu = 1.

Proof. This follows at once from Proposition 2.8 and Lemma 2.6. 0

2.4 Fourier Transform of the Modified Lévy Measure

The characteristic function of a generalized hyperbolic distribution with parametersR, o > 0,
—a < f<a,d>0,andy € R is given by

S (00 =32 Ky (00 — (B +iu)?)
KOV =) (o/a? = (Brimp)

(See Appendix A.) This distribution possesses a moment generating function on the ifterval

B, — 3).5 Therefore there is an analytic extension of the characteristic function to theSstrip

R —i(—a — fB,a — §) C C. Since the expression given above for the characteristic function can be
shown to yield an analytic function if one replaces the real varialidy a complex variable € S, by
standard arguments it coincides with the analytic characteristic function.

(2.9) x(u) =

SFor parameter values < 0, the moment generating function exists on the endpoints of this interval as well. However, most
results concerning the analytic extension of the characteristic function only deal with the interior of the interval of existence.
This is because by Lukacs (1970), Theorem 7.1.1, the endpoints are singular points of the moment generating function, which
means that the usual arguments involving analyticity are not valid there.
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For further reference, we formulate the following statements as propositions. Proposition 2.11 general-
izes Keller (1997), Lemma 52, which considers hyperbolic distributions. Moreover, using characteristic
functions we are able to give a more elegant proof.

Proposition 2.11. An Esscher transform of a generalized hyperbolic distribut@# (\, o, 3, 9, 1)
(with Esscher paramete? € (—a — 3, — [3)) corresponds to a change of parameter— 3 + 6
and vice versa. The same holds for any member of a generalized hyperbolic convolution semigroup.

Proof. By Lemma 2.6, the following connection exists between the characteristic funggiaf an
Esscher transformed distribution and the (analytic) characteristic function of the original distribution.

x(z —if)

x(—i0)
By the argument above, the analytic characteristic function of a generalized hyperbolic distribution has
the form

(2.10) xo(z) =

@11) () = S (E—iB) (Ve T AR KAyt (e —ib?)
exp (ZN(_Zﬂ)) KM&W) (5\/m)>\

Clearly the paramete? acts exactly as the Esscher paramétar (2.10). Taking the-th power yields
the statement for arbitramy> 0. O

Proposition 2.12. If A > 0, then the moment generating function of a generalized hyperbolic distribu-
tion tends to+occ asu — o — foru — —a — (. On the other hand, iA < 0, then the moment
generating function converges to a finite limit@approachesy — g or —a — 3.

Proof. If u tends to one of the values — 5 or —a — (3, the expression\/a? — (§ — u)? converges
to zero. Consequently, in this case the behavior of the moment generating function coincides with the
behavior of the expressioﬁgg—“) for z | 0. From Abramowitz and Stegun (1968), equations 9.6.6, 9.6.8,
and 9.6.9, we know that, as— 0,
A—1
TR for A > 0,
Ky(z) ~¢ —Ilnz, forA=0,
DAL for A < 0.

Hence ifz | 0, K;—&"”) converges to a finite limit if\ < 0. Otherwise it tends ta-co. This completes
the proof. 0

Corollary 2.13. LetA > 0 anda > 1/2, and choose arbitrary values> 0, u € IR, andc > 0. Then
there is a unique valug such that the moment generating functiegf ;5 o, .5,.)(1) = ¢

Proof. The distributionGH (), «, 0,6, 1) possesses a moment generating function on thé-sefa).
Sincea > 1/2, the conditions of Corollary 2.10 (b) are satisfied, and so there is a unique Esscher
parametel such that the moment generating function of the Esscher transformed distribution has the
valuec atu = 1. By Proposition 2.11, the Esscher parameter is exactly the increment of the pardmeter
due to an Esscher transformation. O
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2.4.1 The Lévy Measure of a Generalized Hyperbolic Distribution

The Lévy measure of a generalized hyperbolic distribution depends on the paraimetgssandd. It

is continuous with respect to Lebesgue measure. The following formulas for the densities are proven in
Prause (1999), Theorem 1.43 (for the case 0), and in Wiesendorfer Zahn (1999), Anhang C (for the
case of general).

ﬁ(/‘” exp (= /2y + a?z)

oy @ | B\ TR V)

du éf/m exp (— /2y + o’
|z Jo  w2y(J25(6v2y) + V2, (62

dy + )\e_o“c>, A>0

dy, A<0.
)

However, numerical evaluation of these expressions is cumbersome, especially for small vatlies of
where the decay of the exponential term in the numerator becomes very slow. Because of the two Bessel
functionsJ, andY) appearing in the denominator, it is also difficult to examine the density analytically.
Therefore we do not use representation (2.12) for our studies of the Lévy measure. Instead, we represent
the Lévy density as a Fourier back-transform as in Corollary 2.4.

The following considerations show that we can limit our examinations to thetasé. From (2.11) it

is clear that changing the value of the paramgtérom 3, to 5, amounts to shifting the argumentof

the characteristic function byi(5; — 31) while multiplying by a normalizing factor. By Lemma 2.6, this
corresponds to an Esscher transform with parameter 5;. By Proposition 2.7, this only introduces

a factorexp((f2 — (1)z) into the Lévy measure. Hence we only have to derive a formula for the Lévy
measure for the cage= 0: If we know the Lévy densityx's_((dx)/dz for vanishingg, then the Lévy
measure fos = 0, with the other parameters unchanged, is given by the relation

Kp(dx) = exp(fx)Kg=o(dx).

Corollary 2.4 provides a way to get a formula for the density of the Lévy measure that is analytically
and computationally more tractable than (2.12). We first derive an expression for the Fourier transform
of the modified Lévy measure’ K (dx) as given in (2.3) and then apply numerical methods to invert the
Fourier transform. In the following proposition, we examine the Lévy meakijre:) and the Gaussian
coefficientc of generalized hyperbolic distributions.

Proposition 2.14. a) Let K (dx) be the Lévy measure of a generalized hyperbolic distribution with pa-
rametersa, 6, and A, and with skewness parametér= 0. Then the Fourier transform of the modified
measurer? K (dx) is given by

- A+1/2 a2t a?st
w2 _ 2 2
(2.13) /@ qumy_K—1—2 - k+k>@——;7)+k-w e
v=38v a2+u?
where the subscriptsi’= ---"and “ v = - - - " mean that the given expressions are to be substituted in

the term in square brackets. The variatiidas to be substituted first.

b) The Gaussian coefficieain the Lévy-Khintchine representation of any generalized hyperbolic distri-
bution vanishes.
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Proof. By Theorem 2.3, we have to calculate the derivative-qf (u)/x(u). For a generalized hyper-
bolic distribution, the derivative of the characteristic function (2.9) is

v (002 =622 | d K 0
X (w) = ipx(u) + e Ve 25 )2 . [d—#] -8—(5\/a2+u2).
E\(0y/a? = 6%) |40 vt | e O
Therefore
X/(u) . %K,\gv) 9
=1+ Kiz}) -a—(éva2+u2).
X(u) 2 ossvarra 9
We have
d Ex(v)  K)(v) o' = K\(v) - Ao K (v) A EKy\(v)
dv v v2A A voovr
Hence
d Kx(v)
v v _K'v) A Kia) n A A K
K)(v) Ky(v) v K)(v) voow Ky\(v) ’
)
v

where for the second equality we have used the following relation for modified Bessel functions (see
Abramowitz and Stegun (1968), equation 9.6.26):

KA/(U) = —K>\+1(U) + %K)\(U).

Consequently, we have

(2.14) XW _,, [K*“(”)]

(o 1),
v=38v a2 +u? v
Taking the negative derivative of this expression yields

Ky(v)

(2.15)
d X (w)y | d Kxa(v) (9 /o w2 > Kya(v) 6_2 Va2 +u
du ( x(u) ) B [dv Ky(v) <5u (0Va2+ 2)> * Ky(v) Ou? (Ova? +u?) v:(s\/m.

We go on to calculate the derivatives appearing in (2.15). First,
d Ky (v) K (0)Ex(v) — Ky (v)K)'(v)
dv Ky (v) K)(v)?

_ K,>\+1(U) _ (U) K)\/(U)
Ky(v) AR (0)2

(2.16)

Again we can use Abramowitz and Stegun (1968), equation 9.6.26, to eliminate the derivatives of the
Bessel functions: By this relation, we have

K'yi1(v) = —Ky(v) = ——Kx11(v)



Substituting these expressions for the derivatives of the Bessel functions in (2.16) yields
A Konl) _ ZE0) - Mm@ oK) 3K
dv Ky(v) Ky\(v) At Ky (v)2

A1 Kya(v) | Kya(@)? A Kya(v)

217 - .
@17) v KW K@ v K@)
12,
—[-1-9 k4 k } ‘ .
|: v + kijIA(-‘_(lU()U)

Next, we calculate the two derivativesébf/a2 + u? appearlng in (2.15).

(2.18) (5\/&2 +u?) = m,

and W (6\/ o? + u2> =3 (\/%)

B 1) du?

\/a2—i—u2 */a2+u23.
It will turn out to be convenient to write the square of the first derivative (2.18), as well as the second
derivative (2.19), as a function of= §v/ a2 + u2. This gives

<8%(NW)>2 -

(2.19)

(2.20 (e ra?)’ — a8 [52 04264]
' (6vaZ + u2)* /42 v Jlomsvarraz
and
(51/ 24 u?) = 0%u?
ac+u
¢a2 T SVt
|:52 U2 _ 06252]
Clw v /6% | —svarre
2 2 254 254
(2.21) :[5——5—+0‘§] :[ g} .
v v v v=0v a2 +u? v v=38v a2 +u?
Substituting relations (2.17), (2.20), and (2.21) into (2.15) we get
d (xX'(u)y A+1/2 o\ [ 26t a?st
(2.22) —@(X(u))_ (—1—2 . k:+l<:)(5 - )+k:-—v3 e
v=0va2+u?

Denoting byp(u) the function on the right-hand side, we have thét) is continuous. Moreover, in
Corollary 2.16 below we shall see that the modujis:)| decays at least as fast jag =2 for |u| — oo.
Thereforep(u) is absolutely integrable, and the conditions of Corollary 2.4 are satisfiedcwithO.

This yields that Gaussian coefficient in the Lévy-Khintchine representation of a generalized hyperbolic
distribution vanishes, and thatu) is the Fourier transform of the modified Lévy measure. This proves
part a) of the Proposition.

As a consequence of Propositions 2.7 and 2.11, the Gaussian coefficighe casel # 0 is the same
as in the casg = 0, with the other parameters unchanged. Above we have shown thétfor 5 = 0.
Thereforec vanishes for all generalized hyperbolic distributions, which proves part b). O
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2.4.2 Asymptotic Expansion

For subsequent numerical calculations as well as for our theoretical considerations, it will turn out to be
useful to know the first few terms of the asymptotic expansion of the Fourier transfofmzf%ﬁl( (dz)
for |u| — oco. By Proposition 2.14,

/IE{ei“xsz(dx) :_%<X,(U)> =f(5\/W),

x(u)

with the functionf (v) defined forv > 0 by
A+1/2 a?6t a?6t
(2.23) Fv) = [(—1—27/;@%2) (‘52_7) ke ]

v

Ky (o)
k=

In order to find an asymptotic expansion of the Fourier transféreft“z2 K (dz) for |u| — oo, we
expand the functiorf (v) in powers ofl /v.

Proposition 2.15. The functionf (v) defined in (2.23) has the asymptotic expansion

AN 1
flv) = ch (;) + O(W) asv — 0.

for N =2,...,6, where
co = —(A+1/2),
a2 — (A +1/2) (A —1/2)

C3 5 )
(A +1/2)((3/2)(A — 1/2) + 2a%6?)
Cq = 52 s
A+1/2)(A = 1/2) (A +5/2)(A — 5/2) + 3a?6?)
= 253 :
(A+1/2)(A = 1/2)(5(A +5/2)(A — 5/2) 4+ 4026* + 15)
and Ccg = — 557 .

Proof. For the modified Bessel functions of the third kind we have by Abramowitz and Stegun (1968),
eq. 9.7.2:

(2.24)
N

[22 , Z (4v? —12) - (42 — (2n — 1)?) 1 3

KV(Z) ?6 =1 =+ n|(8,z)n =+ O(W) as]z\ — 0Q, ‘ argz\ < 7

n=1

for arbitrary N € IN. From this, one can derive the asymptotic expansion for the quotient of Bessel
functions K, (z) and K, (z) with different indices. For further reference, we note that in particular

K,\Jrl(z) o 1 K,\Jrg(z) - 1
(2.25) A _1+0<;), o _1+o(;) as|z| — oo,

Using (2.24) to expand(v) in powers ofl /v™, we get, after a long and tedious calculation,

AN 1
(2.26) flv) = ch(;> + O(m) asv — oo.

with ¢ throughcg as given in the statement of the proposition. O
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Corollary 2.16. Let K (dx) be the Lévy measure of a symmetric generalized hyperbolic distribution with
parametersy, 6, and \. Then forNV = 2, ... ,6 the Fourier transform of the modified measufes (dz)
has the following expansion.

N

, 1 n 1
wux 2 _
with ¢ throughcg as in Proposition 2.15.
Proof. This follows from Proposition 2.15, sinéga? + u? ~ |u| as|u| — oc. O

Remark: One may ask why we chose to expand up to oidér|®, that is, why the maximal allowed

value of N is 6. The answer is that further expansion of the functi@n) is not advisable since we have

only an asymptotic expansion here. This seems to diverge for srifalle expand further and further,

while of course the decay far — oo becomes faster and faster. Choosing the order of expansion is
therefore a tradeoff between good behavior for smadind good behavior as — oo. An order of

N = 4 seemed to be a good compromise for the parameters we used in our numerical studies, so we
presume that providing formulas for orders ugtshould be enough for other applications.

2.4.3 Calculating the Fourier Inverse

By Corollary 2.16, the Fourier transform of the modified Lévy density is of the aidey?) as|u| —

oo. This implies that it is absolutely integrable. Hence the Fourier inversion integral converges. Since the
Fourier transform (2.13) is real and symmefrithis integral reduces to the following cosine transform
integral.

N
1 [ o\"
2.28 = — =] +R du,
(2.29) ple) =+ [ costue) L}Z;c (2)"+ rvna)| .
with the remainder term
N 5\n 1
(2.29) Ry4i(v) = f(v)—;;cn(;) :O<m>‘

The integral in (2.28) converges slowly, since in general the modulus of the integrand is only of the
order O(1/|ul?). Therefore this formula does not directly allow for a fast numerical calculation of
the Lévy density. But below we will explicitly calculate the Fourier inverse of the summands in the
integrand forn = 2,... ;6. Then Corollary 2.16 yields that fa¥ = 2, ... ,6 the integranctos(ux) -

Ry +1(6v/ a2 + u2) of the remaining Fourier inversion integral tends to zero like V! as|u| — oo.

Apart from speeding up the convergence of the integral, this will allow us to gain insights into the
behavior of the Lévy density near= 0.

5Remember that we have chosén= 0.
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We calculate explicitly the Fourier inversion integrals of the first five summands in (2.13) £o6,
n=2,...,6, we have

1 /°° Cn d
- L N
T Jo (a?+u2)n/?

Cn > 1
| @+ a2y

Cn /°° 1 d
. . _— w
a1 0 (1 +w2)n/2
Cn \/_% I'(n/2-1/2) Cn I'((n-1)/2)
) L(n/2)  2ymant L(n/2)
where the third equality follows from Abramowitz and Stegun (1968), egs. 6.2.1 and 6.2.2. For the

casex # 0, we observe that the integrand is a symmetric functior.ofTherefore we can limit our
examinations to the cagse> 0. There we have

I

2.30 L[ G gy = A

(2.30) ;/0 cos(ux) (02 - 12)2 u= 7 T(n/2)(@a) I (n—1)/2(ax),

where we have used an integral representation of the modified Bessel furftionsthat can be found

e. g. in Abramowitz and Stegun (1968), equation 9.6.25. Summing up the results of this subsection, we
get the following

Proposition 2.17. Let N be from the rangd2, ... ,6}. Then for a generalized hyperbolic distribution
with 3 = 0 the modified Lévy measur@ K (dx) has the density

(2.31)
N

‘x’(n 1)/2

Z VT T(n/2)(2a)n—1)/2 K(”—U/Q(O‘M)+/COS(W)RN+1(5\/m) du (z #0)

p(x) =

with ¢, ... , ¢¢ as defined in Proposition 2.15 aitly 1 («) as defined in (2.29).

Here is an example of the numerical calculation of the Lévy density with the approach presented above.
We calculate the modified Lévy density of a hyperbolic distribution. In order to have realistic parameters,
we take a log return dataset and fit a hyperbolic distribution by the method of maximum likelihood. The
dataset consists of log returns on the German stock index DAX from September 28, 1959 to April 16,
1999. The parameters are estimated by the C-progmgomof Bleesild and Sgrensen (1992).

a f 1 1
157 —1.82 0.00610 0.000458

Figure 2.1 shows the Fourier transform of the modified Lévy density and the fun@iptts R defined

in (2.29). Note that due to the log-log scale, one can easily see the speed of the decay®&s The

slopes of the function®3 to R at the right end of the plot are approximat8lyt, 5, and6, respectively.

This reflects the increase in the speed of decay that is achieved by subtracting the terms in the asymptotic
expansion. Note that at the left end of the plot, that is, for small valuestbé termRg is larger than the

term Rs. This indicates that one cannot expect the remainder funétion, (u) to become uniformly

small asN — oo.
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Fourier transform

remainder term R_3
remainder term R_4
remainder term R_5

.]‘_0

remainder term R_6

log( absolute value at u ) to the base 10
-12

-14

1.0 15 2.0 25 3.0 35 4.0
log( u ) to the base 10

Figure 2.1: Fourier transform of modified Lévy density for hyperbolic distribution and corresponding
termsR3 to R7 according to equation (2.29).

- Modified LevY\ldensity
S density term No 2
=N density term No 3
© density term No 4
density term No 5
8 | Sum of density terms
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-0.04 -0.02 0.0 0.02 0.04

Figure 2.2: Modified Lévy density for hyperbolic distribution and first four summands of representa-
tion (2.31).
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density minus first 4 summands
0.0002 0.0004 0.0006 0.0008 0.0010

0.0

-0.04 -0.02 0.0 0.02 0.04

Figure 2.3: Difference between modified Lévy density and first four summands of representation (2.31).

Figure 2.2 shows the modified Lévy density, together with the first four summands from representa-
tion (2.31), here called “density term No 2” to “density term No 5”. The sum of these density terms
differs from the correct density by the four times continuously differentiable function shown in figure
2.3. Note that the discontinuity of the modified density at 0 is captured entirely by the density term

No. 2, that is, in thes = 2 term of representation (2.31).

2.4.4 Sum Representations for Some Bessel Functions

By Watson (1944), Section 3.71, p. 80, eq. (12), we know that the modified Bessel funtionscan
be represented as finite sums of elementary functions=fm + 1/2 withm =0, 1,2, ...:

+
(2.32) Kpi12(2) = /7] (22)e ZT, it )

Hence we can speed up the calculation of the Bessel funclonsz), Ks3/2(2), and K j5(z) in (2.31)
by using the relations

(2.33) Ki2(z) =V /(22)e7,

and  K(z) = 7T/(2z)e_z<1 425 3).



2.4.5 Explicit Expressions for the Fourier Backtransform

For further reference, we write down the Fourier backtransform given in (2.30) explicitty fo2 and
n = 3. Forn = 2, we can usé'(1) = 1 and (2.33) to get

1 [ s s |IE‘1/2

- 2 == ._" K

7T/0 cos(ux) (o2 1 22 u 5 T(1)(20)72 1/2(alz])
1/2

e || T

VT (20)1/2 20|z
€2 afal _ _ATL2 o
20 20 ¢ '

—afz

(2.34) =

Forn = 3, we usel'(3/2) = \/m/2.

1 [ c c x|t
;/(; COS(Ux)m du = \/_SE . miﬁ(a\x’)
a?6? — (A +1/2)(A —1/2)

B T

(2.35) o] - Ky (afz]).

2.4.6 Behavior of the Density around the Origin

For the study of change-of-measure problems (see Section 2.5 below), it is important to know how the
Lévy measurek (dx) behaves around = 0. Up to now, we know that for any generalized hyperbolic
distribution, the modified Lévy measur€ K (dr) has a continuous Lebesgue density) since its
Fourier transform is absolutely integrable. Studying the behavipf9fof for z — 0 yields information

about the behavior of the Lévy measure in a neighborhoad ef 0. The following proposition gives

the first-order behavior gf(x) aroundz = 0.

Proposition 2.18. Let K (dz) be the Lévy measure of a generalized hyperbolic distribution with param-
eters(\, o, 3,6, 1). ThenK (dx) = p(x)/x? dx, with

5 )\+1/2 53

p(r) = ;

|| + x—i—o(!x\) (x — 0).

Proof. First consider the case = 0. By equation (2.28), the value of the densityrat 0 is given by
_ L [ dx'(u)
P(0) N 7T/0 ( (X(u) )) du

du
' U d ’(u) . ,( ) ,( )
= s [ () a= L (S0 -2

(2.14),218) 1 lim Kyi1(6va? +U?) oU )
T U—oo \ K, (5\/(12 4 UQ) Va2 + U2

s V—»oo Vv
Ky, / a262 4
K\(V v2 )T

38

= — lim
T Voo

(
1 (K,\+1 VI8 — a2 a2>
S



sinceK 11(V)/Kx(V) — 1 (V — o) by the asymptotic relation (2.25).

Now that we have established the valuep@f) atz = 0, we go on to study the behavior in the neigh-
borhood ofz = 0. The central idea here is to use the fact th@t) is an even function fof = 0. It will

turn out that for\ # —1/2, p(x) is not differentiable at = 0. But below we will give an even function
g(x) such that the sum(x) + g(z) is differentiable. Then we know that the derivative of the sum has to
vanish atr = 0, because the sum is an even function as well. Consequently,

p(x) +9(x) = p(0) +9(0) +o(lz])  (x—0),

by the definition of differentiability. This will allow us to prove the statement of the proposition, since it
means that around = 0 the behavior of the functions(z) — p(0) andg(x) — g(0) is the same up to
terms of orden(|x|).

From Fourier analysis, we know that differentiability of an original functfdm) is closely linked with

~

the integrability of its Fourier transforrfi(u). More precisely, Chandrasekharan (1989), p. 18, Theorem
3.A, together with the remark following it on p. 20, yields thatff (u) is absolutely integrable for some

n € IN, then f(z) is continuously differentiable. times. The Fourier transform (2.13) of the density
p(z) does not satisfy an integrability condition of this kind\if2 —1/2. But as outlined above, we can
find another functiory(z) so that the sum of the Fourier transforms satisfies the integrability condition.

Then we can use the linearity of the Fourier transformation to gain information on the behawia .of

First, assume = 0. We choose
A+1/2
——F e
2a

—alz|
)

g(x) =
which by (2.34) is just the Fourier transform of

U — 2
(a2 +u?)

This is the first term in the asymptotic expansion (2.27) for the Fourier transfari¥fz? G(dx). By
this expansion, we have

C2

Zta?) O(1/luf’)  aslu| — occ.

/e"“’:av2 G(dx) —
By the relation between integrability of the Fourier transform and differentiability of the original function
mentioned above, this means that the inverse Fourier transform of the I. h. s. is continuously differen-
tiable. But this inverse Fourier transform is given by

(@) + o) = pla) ~ 22 eolel
Consequently
p(z) = p(0) + g(0) — g(x) + of|z|)
(2.36) =242 +21/2|x\ collel) (2] — o).
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For 3 # 0, Proposition 2.7 yields that the density of the Lévy measure’fstimes the density for
6 = 0. Combining expansion (2.36), which is was derived for the gase 0, and the expansion
e’ =1+ Bx + o(|z]), we get

)\+1/2

= (1+ Bz +of \xy))<5

6 A+1/2
£ At
™

2l + o(la))

|| + ﬁx+0(lx\) (lz] = 0).

0

Remark 1. The proof of the preceding proposition depends crucially on the fact that an even, differen-
tiable function has derivativeé atz = 0. One cannot use the same method to gain knowledge about the
higher-order behavior of the densjtyz) aroundx = 0. Fortunately, knowing the first-order behavior is
sufficient to tackle the problem of absolute continuity and singularity of the distributions of generalized
hyperbolic Lévy processes.

Remark 2: One must be aware that the series expansion for the modified Bessel funktjionsis

only an asymptotic series. Therefore, driving the expansion (2.26) further and further and calculating
explicitly more and more terms of the cosine transformation (2.28) will in general not yield a convergent
series.

2.4.7 NIG Distributions as a Special Case
By Abramowitz and Stegun (1968), Eg. 9.6.6, we have
K_(2) = K, (2).
Consequentlyi,1(z)/Kx(z) = Ky2(2)/K_1/2(2) = 1if A = —1/2. The generalized hyperbolic

distributions with\ = —1/2 are callechormal inverse GaussiafNIG) distributions! Usingk = 1 and
A= -1/2in(2.14), we get

k=1, A=—1/2

k(22X +1) o254 (K2 —1) N a5k (2) + 2)]
v=38v a2 +u?

/]R "2 Knig (dw) = [52(# —1) - _

v v2 v3
a5t
===

This is just then = 3 term in the expansion (2.27). Hence the Lévy measure can be calculated with the
help of equation (2.35).

v=30v a2 +u?

(2.37) Knio(ds) = 2 2%
||

This coincides with the formula derived in Barndorff-Nielsen (1997), eq. (3.15).

1(alz]) dv

’See Barndorff-Nielsen (1997) and references therein for a thorough account of the class of NIG distributions.

40



2.5 Absolute Continuity and Singularity for Generalized Hyperbolic
Lévy Processes

2.5.1 Changing Measures by Changing Triplets

In this subsection, we shall be concerned with the question which changes of the distribution of a Lévy
process can be achieved by an equivalent change of the underlying probability measure. The probability
shall be changed in such a way that the property of stationary and independent increments is preserved.
In other words, the Lévy process stays a Lévy process under the change of probability.

The following proposition answers this question in terms of the Lévy-Khintchine trﬁbjetK(dx)) of

the process under the two measures. An important point that—in my opinion—is missing in a similar
statement to be found in Keller (1997), Proposition 15, is the following: On a general stochastic basis,
do the conditions in part (b) indeed imply the existence of a suitable density process? The question is
yes but—as may be seen in the proof—proving this requires some deep results from stochastic analysis.

Proposition 2.19. Let X be a Lévy process with Lévy-Khintchine triplgtc, K) under some probability
measureP. Then the following two conditions are equivalent.
(&) There is a probability measurg ¢ P such thatX is aQ-Lévy process with triplett/, ¢/, K').
(b) All of the following conditions hold.
(i) K'(dz) = k(z)K (dx) for some Borel functiot : IR — (0, 00).
(i) ¥ =b+ [h(z)(k(z) —1)K(dz)+ /B for somes3 € R.
(i) d =c.

(v) [(1—k(z))*K(dz) < oo.

Proof. (a)=> (b). This is Jacod and Shiryaev (1987), Theorem 1V.4.39 c.
(b) = (a). We define a local martingal¥ according to Jacod and Shiryaev (1987), 11.5811.
(2.38) N :=3- X+ (k(z) — 1) * (1 —v).

Now choose some deterministic tirfieand consider the stopped procegs. With this local martingale
NT, the process3(3, NT)? from Jacod (1979), (5.15), is

BB, N =82 < X, X >unr) +(1 — VE(@))? % vynr)

:ﬁ2c-(t/\T)+(t/\T)/(1— (@))2K (dx).

By condition (iv) this process is bounded. Hence Jacod (1979), Corollaire (8.30), yields that the stochas-
tic exponential€(N7) = &£(N)T is a uniformly integrable martingale. Jacod and Shiryaev (1987),
Lemma I11.5.27, now yields that if we defing, := £(N);, then under the measur@ defined by

Qr = ZrP; the processX is a semimartingale with characteristigst, ¢'t, K'(dz)dt). Hence it is

a Lévy process with Lévy-Khintchine tripl¢t’, ¢, K'(dx)). O

8The formula given in Jacod and Shiryaev (1987), 111.5.11 simplifies considerably because of the property of stationary and
independent increments.
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2.5.2 Allowed and Disallowed Changes of Parameters

Proposition (2.19) connects the change of the Lévy measure with the change of the underlying probability
measure. In particular, for generalized hyperbolic Lévy processes it allows us to analyze whether a
certain change of parameters can be achieved by a change of the probability measure.

Proposition 2.20. Let X be a generalized hyperbolic Lévy process under the meaBure Let
(A, a, 3,0, u) denote the parameters of the generalized hyperbolic distributioX ;0f Then there is

loc

another measur@’ ~ P under whichX is again a generalized hyperbolic Lévy process, with parame-
ters(\, o/, 3, ¢, 1), ifand only ify’ = § and ' = p.

Proof. Since generalized hyperbolic Lévy processes are purely discontinuous, the change of measure is
determined by the density(z) := dK’/dK, where K'(dx) and K (dx) are the Lévy measures of the
generalized hyperbolic distributions undet and P, respectively. By Proposition (2.19), there exists a
measure”’ under whichX is a generalized hyperbolic Lévy process with paramétgrsy’, 5/, ', ')

if and only if this density satisfies the conditions

(2.39) / (1 - k(x))zK(dac) <
(2.40) and b+ / h(z)(k(z) — 1)K (dz) = V.

Since K (dz) and K'(dx) are both continuous with respect to the Lebesgue measuig\do}, the
densityk(x) is equal to the quotient of the respective (modified) Lévy densities.

1
2P0 830 &) i g (@)

1 - .

—3P(0a,8.00) (2)

k(x) =
(=) Pxa,8,6,m)(T)

For the case of generalized hyperbolic Lévy processes, the integrability condition (2.39) is therefore

/ (1 = /R(@)) 2K (de) — / <1 - \/P(x,a',ﬂ/,af,w)()x)>2 % s e

P(a,B.6.m) (T

) / (\/p()\/7alﬂl’5/7w)(x) B \/p(ka,ﬂ,é,u) (33))2% < 0.

Since the Lévy densities—modified or not—of generalized hyperbolic distributions sati$firg o
always decay exponentially &8| — oo, the only critical region for the boundedness of the integral is
the neighborhood of = 0. Here we have, by Proposition 2.18,

p@) = 2+ 22 Dy oal) = 24 O(lal)  (al ).

Therefore
) 1)
Povapam (@ = ~VI+0(a]) = Z(1+0(a))) (2] = 0).
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sincey/T+y =1+y/2+ o(|y|) for |y| — 0. Using this, the integrability condition (2.39) becomes
) 2 dx
(1+ O(\x!))) 3

[ (1= @) s = [ (Lo o) -2

- [(Z2+oum) &

_ / (“' —0° 2(‘5’; ) 0(1/]a]) + O(l))dx < .

22

Clearly, this is satisfied if and only & = 4.

Now we consider the second condition (2.40). Under the assumgtien ¢, this will turn out to be
equivalent tg.’ = p, thus providing the second constraint stated above.

By Jacod and Shiryaev (1987), Theorem 11.4.15, the constantm the Lévy-Khintchine representation
is indeed the drift coefficient from the characteristic triplet. We have

(2.41) b= E[L] + / (h(z) — 2)K (dz)

(2.42) and ¥ = B'[L1] + / (h(z) — ) K (dz),

whereFE’[-] denotes the expectation under the meagtireéOn the other hand, condition (2.40) requires
bV =b+ /h(x)(k:(x) — 1)K (dx),

which, in view of (2.41), is equivalent to

B[+ / (h(@)k(z) — 2)K (dz).
Comparison with equation (2.42) yields that condition (2.40) is satisfied if and only if
(2.43) F'L] - E[L1] = / (1 — k(2)) K (dz).

For the generalized hyperbolic distribution, the expectation is known explicitly. So

E[Li] = p+ 36 - Kx41(0y/a2 — 3?)
Va2 = 2K\ (6,/a? — B2)

Hence if L, has a generalized hyperbolic distribution with equal parameterder both the measure
andP’, we have

E'L1]| - E[L\]| =y — p+ ﬁ/(s.KNH(é\/m) B 86 - Kxp1(04/a% = 32) |
Vo RV el PR - )
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Hence we can rewrite condition (2.43) (and hence condition (2.40)) as a condition on the change of the
parameteyu:

(2.44)

== /x(l — k(z))K (dx) +

B0 - Kxi(6y/a? = 32) B8 Ky(0ve? = 7
VoZ — PRV — ) o — BPKy(0v/a” = §7)

It will turn out that the right-hand side vanishes, so that, under the assumptierd, condition (2.40)
is equivalent tq.' = p.

We consider two case€ase 1:3' = 3 = 0. Then(1—k(x)) K (dz) is symmetric with respect to = 0,
and the integral in (2.44) vanishes. On the other hand, the remaining expressions on the right-hand side
of (2.44) also vanish. Hence (2.44) is equivalentte- 1 = 0.

Case 2: arbitrary and3’ = 0, with the remaining parameted$ = X anda’ = «. Then alsq.’ = p.
Before we prove this, we will make clear why these two cases indeed suffice to complete the proof. We
can decompose a change of paramet&rsy, 3,6, u) ~ (N, o/, 3,6, ') into three steps:

()‘7047/87 57”) ~ (A,OZ,O, 57”2)7
()\7 «, 07 67 /-1/2) ~ ()‘/7 O/v 07 57 M3)7
and N, a,0,0, u3) ~ (N, o/, 8,6, 1).

In the second step the parametafoes not change by what we have proved for case 1 aboyg,s0qus.

If we can, in addition, show that setting the paramétés zero does not change—this is the statement
in case 2—, then we also haue= p5 and, by symmetryus = /. So indeed the situation considered in
case 2 above is sufficiently general.

Now we prove the statement for case 2. We have

/x(l — k(2))K (dz) = /x

2m z Cdu \ yg(u) Xp=0(u)
(2.45) = % ({é . e%“G(u)] Z:io - /e%“G(u)du)dx,
with
_Xxg'(w) o xp=0'(w)
(2.46) G(u) := o) 7 Xomo (W) +ip
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By (2.14) and (2.18),

Xp=0'(u) "(u) 0 Kyi1(0vVa? +u?)

Yomo(w) M (5 VaZ+uw)- K\(6Va? + u2)
ou .K)\H(é\/a + u?)

VaZ+u?  Ky(0vVa? +u?)

Analogously one can derive the relation

(2.48) xg'(w) o i6(B+iu) Ky (0y/a% — (B +iu)?)
' ) T =GR KA =Bt

Using relations (2.47) and (2.48), we can rewrite the expressio@ foy given in (2.46).

= (g o)~ (255 )

(2.47) =ip—

_ diB+iu)  Kya(0y/e? = (B+iu)?)  ou Ky(0Va? +u?)
V- (BrmeE K\6y/a2—(Btin)?) VR +u K0V +ud)
1

5 (A+1/2) (A +3/2) - %+O(W) (Ju| — o).

The last equality follows from the asymptotic expansion of the Bessel funciigns and K. Around

u = 0, G(u) is bounded because it is a differentiable (and hence continuous) function. This, together
with the limit behavior asu| — oo, shows that in (2.45) the term in square brackets vanishes and the
integral converges absolutely. Consequently we can continue the chain of equalities in (2.45).

/ (1 — k(x))K (dx) :——//ez u)du dx
//ez u)du e dx

_ ( Ky (0yer+52) 6 K,\+1(504))
M K\(6y/a2 1 ) o Kx(a)
Here we have used the fact that the integration with respecicin be interpreted as a Fourier integral

taken at the point. = 0. So since the functio(u) is continuous, the Fourier transform of the inverse
Fourier transform o€+ (u) coincides withG (). Substituting this into (2.44) completes the proof. O

The main difficulty in the proof of Proposition 2.20 was to derive the local behavior of the generalized
hyperbolic Lévy measure near= 0. For a distribution with a Lévy measure of a simpler structure, it is
much easier to derive an analogous result. As an example, consider the class of CGMY Lévy processes.
(See Section A.3.) For this class the Lévy measure is known explicitly and has a simpfé form.

Proposition 2.21. Let L be a CGMYC, G, M,Y") Lévy process under the measute Then the follow-
ing statements are equivalent.

(i) There is a measure % p under whichL is a CGMYC',G', M',Y") Lévy process.

®In fact, the CGMY distributions ardefinedby giving their Lévy measure.
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(i) Either the CGMYparameters satisfy the relatiafis= C andY’ =Y, orY,Y’ < 0.

Proof. TheCGMY(C, G, M,Y') Lévy measure has Lebesgue density

C
(249) kCGMY(x) = ‘xyl_i_y €xp (

G—2M G—l—M’ ‘)

(Cf. eq. (A.9).) Conditiongi), (ii), and(iii) of Proposition 2.19 are obviously satisfied if we set

kcemvicr,ar v vy ()
kcemvic,a,m,y) ()

k(x) :=

Hence a measui@ % P with the desired property exists if and only if conditifm) of Proposition 2.19

holds, that is, iff
/(1 — V(@)K (dz) < o

Using the explicit form (2.49) of the Lévy density, this condition reads

G’ M’ G’+M’ G—-M G+M 2
|‘Hy,exp 5T~ H HlJrYexp( 5T T ]x\)) dx < 0.

It is easy to see that this condition hold<If= C’ andY = Y’. On the other hand, it does not hold if

any of these equalities is violated: First, it is clear that the finiteness of the integral depends only on the
local behavior of the integrand aroumd= 0. Since the exponential factor tendsltéor z — 0, we can

skip it for this discussion. So all amounts to the question whether

[ VT

|| (1+Y7)/2 - || (1+Y)/2

2
(2.50) ) dr < o0.

ForY,Y’ < 0, this integral is obviously finite. If any of the relatiods > 0, Y’ > 0 holds, then the
integral can only be finite i = ¢’ andY = Y”, as was stated above:

e If 0 <Y, Y <Y’ then for|z| — 0 the first summand in (2.50) grows faster than the second.

Therefore we have
1 V! VC
2 || (Y2 = (g |(14Y)/2

for |z| < ¢, e € (0,1) small enough. Hence we can estimate

/11( ver Ve )%Z/e<1.L>2da):£’/e;dw:w

|| (Y2 || (0+Y)/2 L \2 g0/ 4 ) JattY

The casdé) <Y, Y’ <Y may be treated analogously.

e If0<Y' =Y, butC’ # C, then

/_11( vo Ve )dx—(\/— \/_)/ 1=

‘x’(1+Y/)/2 m(lﬂ/)/z ‘ ’1+Y
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2.6 The GH Parameters) and i as Path Properties

Inthe preceding section, we have seen that the distributions of two generalized hyperbolic Lévy processes
are (locally) equivalent if and only if the parameters satisfy ¢’ andy = /. This suggests that the
parameters andy should be determinable from properties of a typical path of a generalized hyperbolic
Lévy process. Indeed, this is the case here, as we will show below. Moreover, we present methods with
which one can—at least in principle—determine the parametensd ;. by inspecting a typical path

of the Lévy process. This yields a converse statement to the property of absolute continuity mentioned
above: Since we can determideand i from the restriction of every path to a finite interval, these
parameters cannot change during a change of measure. For the distributions (on the SkorokHbd space
of cadlag functions) of two generalized hyperbolic Lévy processes with different parametessthis

implies the following. The restrictions of these distributions to every finite time interval are siffular.

2.6.1 Determination ofd

For a Lévy process with very many small jumps whose Lévy measure behaves/fikearound the
origin, the constant factar can be determined by counting the small jumps of an arbitrary path. More
precisely, we have the following proposition.

Proposition 2.22. Let X be a Lévy process with a finite second moment such that the Lévy measure has
a densityp(z) with the asymptotic behavigr(z) = a/x? + o(1/2?) asx | 0. Fix an arbitrary time
t > 0 and consider the sequence of random variables

Ynzzi #{s<t AX, e[ -1m i)}

Then with probability one the sequenc®; ) >; with

(2.51) :%i :—#{5<t AXe[kill)} k>,

converges to the value

Proof. The random measure of jumps’ of the processX is defined by
X (w, A) == #{8 <t:(s,AX;) € A}

for any measurable set C IR, x IR. We have

1 11 1 x
Y, = ;M <w; [0,2] x [H—Ha g)) = Zﬂ[o,t}x[l/(nJrl),l/n) U,
where the star denotes the integral with respect to a random measure. (See Jacod and Shiryaev (1987),
11.1.5, for a definition.)

By Jacod and Shiryaev (1987), Corollary 11.4.19 and Theorem 11.4.8, the fac&Xthata process with
independent and stationary increments implies thigta Poisson random measure. Jacod and Shiryaev

190f course, the distributions itself are also singular, but this is a trivial consequence of Jacod and Shiryaev (1987), Theorem
1V.4.39a.
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(1987), 11.4.10 yields that any for any finite fami{yl; )1 <;<q Of pairwise disjoint, measurable sets C
IR, xIR the random variables™ (w, 4;),1 < i < d, are independent. In particular, the random variables

1

Y, = Zﬂ[o,t]x[1/(n+1),1/n) w n>1

form an independent family. By the definition of the compensatarf the random measure™ (cf.
Jacod and Shiryaev (1987), Theorem 11.1.8), we have

1
E[Y,] = zﬂ[o,t}x[l/(n-i—l),l/n) * U, n > 1.

Jacod and Shiryaev (1987), Corollary 11.4.19, yields tha&n be chosen deterministic, withdt, dz) =
dt K (dz), whereK (dx) is the Lévy measure of the proce&s Hence

BV, = / | K (dz)
[1/(n+1),1/n)

:/II/n <i—|—o<i2)) dr =a+o(1) asn — oo.

J(nt1) \ T2 T

Furthermore, we have

Var(y,) = E [(Y, — E[Y,)])?]

1

1 /l/n 1 K(dx) 1( (1))
Tt r)=—-(a+o .

tJ1/(n+1) ¢

Therefore the sequenc®,, — E[Y,,]),>: satisfies Kolmogorov's criterion for the strong law of large
numbers (cf. Billingsley (1979), Theorem 22.4.) Hence we conclude that with probability 1 we have
Sk — Q. O

Remark: Obviously, an analogous result holds if one considers the behavior of the dé&fsity /dx
asxz T 0 instead ofr | 0.

Corollary 2.23. Consider a generalized hyperbolic Lévy processwith parameters(\, «, 3, 9, u1).
Then with probabilityl the re-normed number of jumps

N, = %#{s <t:AX,> 1/n}

converges to the valug/r.

Proof. Since we always assume that a Lévy process has cadlag paths, the number of jumps latger than
is finite for each path. Hence the sequenggand the sequencg, from Proposition 2.23 converge to the
same limit, viz the coefficient of 1/22 in the Lévy density. By Proposition 2.18, we have- § /7. O
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2.6.2 Determination ofu

In the preceding subsection we have seen how the parameter be derived from almost every path

of a generalized hyperbolic Lévy motion. The key idea was to count the small jumps of the path. In
the current subsection, we will show how the drift paramgtean be derived from an arbitrarily short
section of almost every path. Note that this is completely different from the case of a Brownian motion,
where the drift coefficient can only be “seen” by observing the whole path.

Proposition 2.24. Let X be a generalized hyperbolic Lévy process with paramdtera, 3, J, u1). Fix
an arbitrary timet > 0. Then with probabilityl the random variables

Y, = X; — Z AXNax,|>1/n

0<s<t

converge to the limit - t asn — oo.

Remark: Note that in spite of the similar notation, the GH parametemnd the random measure®
are completely different concepts. But since both notations are standard, we do not consider it useful to
change any of them.

Proof. First we note that it suffices to consider the cg@ise- 0: Assume that the statement is proved
for this special case. Then consider a general parameter @cters, d, ). By Proposition 2.20, we
can change the underlying probability measfrio an equivalent probability measul® such that only

the parametef changes, with the new paramet#r= 0. Since we have assumed that the statement is
proven for the casg = 0, we then havé’,, — -t P’-a.s.. Obviously this implie¥,, — u -t P-a.s., SO

it is indeed sufficient to consider the symmetric case.

Since X; possesses a finite first moment, by Wolfe (1971) we HaveA |z|) * v; < oo. So Jacod
and Shiryaev (1987), Proposition 11.2.29 a yields thais a special semimartingale. Therefore we can
decompose the generalized hyperbolic Lévy process according to Jacod and Shiryaev (1987), Corollary
11.2.38:

Xi=Xo+ Xf+ax(ps —v)i+ A =ax (s —v)i+p-t.

So

Yy =Xt — (@jg>1/n) * e
= (ljgcasn) * (W5 = V)i + @higpsayn) * (05 =)+t — (@l ym) *
= (@y<1/n) * (WX = V) = (@Digs1/n) * v+ -t
= (@y<1/m) * (WX = V) +p-t,
where the last equality holds becausd |~ /,)*v = 0 by symmetry of the Lévy measure. The process
(213 <1/n) * (X —v)s, t € Ry, is a martingale by Jacod and Shiryaev (1987), Theorem 11.1.33. Since

this martingale starts ifh at¢ = 0, we haveE[Y,] = u - t. Furthermore, still by Theorem 11.1.33 we
know that

Var(Y,) = E[((x]l|x|<l/n) « (uX - V)t)Q} = (@ Njgj<ryn) * V-

Sincev(dt,dz) = dt x K(dx) with fH 1 22K (dxr) < oo, the last term above tends to zeroras-
co. Hence the sequend®,,),>1 converges tqu - ¢ in L? and a fortiori in probability. It remains to
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show that convergence indeed takes place with probability one. To this end, observe that the sequence
(Y_p)ne—w is @ martingale: Because® is a Poisson random measure, we have ¥at- Y, =
(@1g1/(nr1)<|a|<1/n}) * (X — v); is independent of;,, 1. FurthermoreE[Y;, — Y,,11] = 0.

Doob's second convergence theorem (see Bauer (1991), Corollary 19.10), yields that the martingale
(Y_,)ne—w (and hence the sequen(s, ),.cv) converges with probability one. O

2.6.3 Implications and Visualization

Corollary 2.23 and Proposition 2.24 give rise to two simple methods for determining the generalized
hyperbolic parameter§ and i, respectively, from inspection of a typical path over a time interval of
finite length. For clarity, we assume that the interval has unit length and starts &t time

e ¢ is the limit of the number of jumps larger tharin, multiplied by /n.

e 1 is the limit of the incremeniX;; — X; minus all jumps of magnitude larger thayn, as one
letsn — co.

So by counting jumps and summing up the jump heights one can determine the two paranaettrs

1. One could say that the parametérand ;. are imprinted on almost every path of the generalized
hyperbolic Lévy process, in the same way as the volatility is imprinted on almost any path of a Brownian
motion. Remarkably, the drift parameteris a path property for the GH Lévy motion, but not for the
Brownian motion.

In what follows, we give an example to illustrate the methods for the determinatiérand 1. from a
path of a generalized hyperbolic Lévy motion. In order to consider realistic parameters, we estimate the
parameters of a NIG distribution from observed log returns on the German stock index DAX. This yields
the following parameters.

o 16 0 I

99.4 —1.79 0.0110 0.000459

We generate approximations to the sample paths of a NIG Lévy motion by the compound-Poisson ap-
proach. LetK (dz) denote the Lévy measure of the NIG distribution/gf Given a boundary > 0, we
simulate a compound Poisson process that has only jumps with jump height3he jump intensity

I(°) of this process is determined by the measure of th¢|s¢t> ¢}

1) .= K ((—00,—€] U [e,00)).

Given that a patfil.(w) of L jumps at timet, the jump height has the distribution

KO (dz) := %K(daz N ((—o0, —€] U [¢,0))).

Denoting this compound Poisson process\dy, the NIG Lévy process is approximated by
L =t + N,

The NIG parameter enters only by the drift termpt, and the three parametets, andd enter by the
compound Poisson proce3&®).
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Path of NIG Levy process, mu=0.000459

0.006

X_t
0.004
T

0.002
{
£

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4: Sample path of NIG Lévy motion, determined by compound Poisson approximé&tion
with e = 10~8. The line gives the drift componenpt.

Since the density of the NIG Lévy measure is known in closed form (see equation (2.37),) simulation of
the approximating Lévy proceds® is straightforward: Given a time horizdh, independent exponen-
tially distributed random variates (i = 1,... , N) with parameted (¢ are generated. The numhbat

of variates is determined by the condition thaf" ' 7, < T < >°N 7. Fori = 1,...,N — 1, the
value; is the waiting time between thg — 1)-th and thei-th jump. Then theV — 1 jump heights are
generated by inserting iif (0, 1)-distributed (pseudo-)random variables into the inverse of the cumu-
lative distribution function ofK(¢). This inverse has to be determined numerically from the density of
K (dx).

Figure 2.4 shows a sample path of the prodelss which we take to be a sample path of the NIG Lévy
motion L itself. Ate = 10~%, such a path has around 700,000 jumps on the intébyal.

Figure 2.5 shows how the normed jump codptdefined in subsection 2.6.1, equation (2.51) converges
against the valué/m. For thex-axis, we have chosen a log scale (with bds$is = denotes the lower
boundaryl/(k + 1). That is, atc = 10~° we give the values, s .

To illustrate the determination gf by the method described above, we plot again the path given in
Figure 2.4. But this time, we subtract the process of jumps with magnitude greateiOtha(Fig. 2.6)
respectively greater thaid—" (Fig. 2.7). The convergence of the path against a straight line with slope
1 1S obvious.
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Convergence of normed jump count, b=10"-3

0.002 0.003 0.004

Ratio #{Jumps in [a,b]} / (1/a-1/b)

0.001

0.0

107-3 104 10"-5 10"-6 1077 10"-8
Lower boundary a

Figure 2.5: Convergence of normed jump count against the true vatue= 0.00350 (marked on the
right side of the plot). The three curves represent three different paths.

2.7 Implications for Option Pricing

In stock price models driven by generalized hyperbolic Lévy processes, one models the stock price as
(2.52) Sp = Spe" T,

whereL is a generalized hyperbolic Lévy process. (See Chapter 1.)

For option pricing, one changes the probability measure such that the discounted stock price process
S} = e S, becomes a martingale. Then one prices European options by calculating the conditional
expectations of discounted payoffs. In incomplete models, there are usually many different equivalent
probability measures turning the discounted stock price process into a martingale. In general this leads
to many different possible prices for European options. By Eberlein and Jacod (1997b), for infinite-
variation stock price models of the form (2.52), the range of call option prices that can be calculated this
way is the whole no-arbitrage intervd.

If one applies the pricing method described above to the generalized hyperbolic stock price model, the
distribution of the generalized hyperbolic Lévy process changes with the change of probability. In par-
ticular, with the changes of probability used in Eberlein and Jacod (1997b), the process does not stay a
generalized hyperbolic Lévy process. One might ask if one can narrow the range of option prices by im-
posing the additional condition that the procésis again a generalized hyperbolic Lévy process under

the transformed measure. But in Proposition 2.28 we will show that even with this severe restriction, the

The boundaries of this interval are given by the following condition. If the price lies beyond either of these boundaries,
there is a simple buy/sell-and-hold strategy that allows a riskless arbitrage.
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Only jumps smaller than 10"-5; mu=0.000459 Only jumps smaller than 10"-7; mu=0.000459

0.0006
0.0004

0.0004
0.0003

X_t
0.0002
0.0002

0.0001

0.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.6: Path of NIG Lévy motion minus Figure 2.7: Path of NIG Lévy motion minus
jumps of magnitude- 10~°. jumps of magnitude> 10~ 7.

range of possible option prices does not shrink. Before we can prove this, we have to prove the following
proposition? We consider functiong(x) that satisfy the following condition's’

(2.53) 0 < g(x) < zforz >0, 9®) 1 asy — 00, g COnvex.
xr

Proposition 2.25. Let (7,,) be a sequence of probability measures(@it, B') with 7, ((—00,0]) = 0
for all n. Assume that there is a constant oo such that

/x T (dx) = ¢ forall n > 1.

(@) If m, — 7 weakly for some probability measureon (IR, B') satisfying [ = 7(dz) = c, then

[ 9t@) matin) = [ g(a) wldo)

for any functiong(z) satisfying (2.53).
(b) The following conditions are equivalent.
(i) [z¢m,(dz) — 0forallde (0,1).
(i) [ 2¢ m,(dz) — 0 for somed € (0, 1).
(iii) (m,) converges weakly to the Dirac measudge
(iv) [g(x) m,(dz) — cfor all g with (2.53).
(v) [ g(x) m,(dx) — c for someg with (2.53).

(c) Furthermore, there is equivalence between the following conditions.

2points (b) [(iii) and (iv)] and part (c) [(i) and (ii)] are essentially contained in Frey and Sin (1999), Proposition 2.3 or
Eberlein and Jacod (1997a), Theorem 1-1. The former source considers only call payoff functions.

13Up to a constant factog(S7) will be the payoff of the option at expiration. The class of payoff functions covered here is
the same that was used in Eberlein and Jacod (1997b).
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() () converges weakly to the Dirac measdre

@iy [g(z)my, — g(c) for all functionsg(z) with (2.53).

(i) [g(z) m ) — g(c) for some functiory(x) with (2.53) that satisfieg(c) = ac + 5 and
g(x) > ax + g for x # ¢, wherea and 3 are real constants.

(d) If [Inz m,(dz) — Inc, then(m,) converges weakly to the Dirac measure

Remark: When applying this proposition to mathematical finance, the measyreke constant, and
the functiong(x) will have the following significance:

Th is the distribution of the stock price at expirati@y;, under
some martingale measure.

c is the expectation db under any of those martingale mea-
sures. Thatis; = e Sj.

g(x) is the payoff functionof the option. That is, the option

pays an amount of(Sy) at timeT'. For a European call
option, this meang(z) = (zr — K)*, whereK > 0 is
the strike price. Obviously, this payoff function satisfies
condition (2.53).

[ g(z) m,(dz) is the expected payoff of the option, calculated under some
martingale measure. The option price would be dise
countedexpected payoff, that ig, " [ g(x) m,(dz).

Proof of Proposition 2.25We recall the following definition from Chow and Teicher (1978), Sec. 8.1,
p. 253.

Definition 2.26. If (G,,),>1 is a sequence of distribution functions & andg is a real, continuous
function on(—oo, o), the g is calleduniformly integrable relative t¢G,, ) if

su dG,(y) = o(1 a — 0.
p /{ 6w = o) s

n>1

Note that—unlike the usual notion of uniform integrability of a sequence of functions with respect to a
fixed probability measure—here the function is fixed and a sequence of probability measures is consid-
ered.

Obviously, uniform integrability of a functioy implies uniform integrability of all real, continuous
functions f with | f| < |g].

Uniform integrability is tightly linked with the convergence of integrals under weak convergence of the
integrating measures. This is shown in the following theorem, which we cite from Chow and Teicher
(1978), Sec. 8.1, Theorem 2.

Theorem 2.27.1f (Gy,)»>1 is @ sequence of distribution functions Bawith G,, — G weakly, andy is
a nonnegative, continuous function eAcc, co) for which [ g dG,, < oo, n > 1, then

lim gdGn:/ g dG < oo

—00 —00

if and only ifg is uniformly integrable with respect (@, ).
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Remark: We will be concerned with functions defined on the nonnegative realldxis Obviously,
Theorem 2.27 holds in this context as well if the functipratisfies the additional conditiaf(0) = 0.
Then one can extend it continuously to the negative real axis by sefting=0, 2z < 0.

Now we can start to prove Proposition 2.25.

Part (a). Since [z m,(dz) = cfor all n and [z w(dx) = ¢, we trivially have the convergence
[« mp(dz) — [« w(dx). Together with the weak convergengg — m, this implies the uniform
integrability of z with respect to the sequenc¢e,,). (See Theorem 2.27.) The boundedness condition
0 < g(z) < z thus implies the uniform integrability of the functigr(z) with respect to the same
sequence. Another application of Theorem 2.27 yields the desired convergence.

Part (b). (¢) = (¢4) is trivial.

(73) = (i17): We have
mallle =l > ) = [Umgmaldn) < 5 [ a'm(da) 0,

which implies weak convergence.

(791) = (7): For any fixedd € (0, 1) andzy > 0 we have

T &
/xdll{m>x0}7rn(dx) < /Fﬂ{x>mo}ﬂn(dx) < p=d
0 0

The last expression tends @iocaszy — oo, and so the function: — z¢ is uniformly integrable with

respect to the sequenge, ). By Theorem 2.27, weak convergengg — 4, then implies/ x4, (dr) —
0.

(791) = (dv) : Fix an arbitrary functiory(z) satisfying (2.53). We have
e~ [ 9@ maldo) = [ (@ = gl@)) ma(ao).

The functionz — 2 — g(x) is nonnegative and continuotfsIn addition, it is uniformly integrable with
respect to the sequente, ): Because(z)/x — 1 asz — oo, for anye > 0 there exists a value, < co
such thate — g(x) < ex asz > x.. SO

@ = 6@ Uy i) < [ e mafi) < [ mn) = ec

which implies uniform integrability. Hence, again by Theorem 2.27, weak converggnee j, implies
convergence of the expectations. Thus

e~ [ 9la) mdn) = [ (@~ 9(o) maldo) | (= gla)) So(dx) =0,

(iv) = (v) : Trivial.
(v) = (i4i) : Convexity ofg(x) together with) < g(z) < x implies thatr — x—g(x) is non-decreasing
and strictly positive. Hence for ary> 0 we have

mulle 2 ) = [Upsg malde) < [ 2208 a0) = s [0 = glo) mde)

14Remember that we extend all functions by setting them equal to zero on the negative real axis.
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By assumption, for fixed > 0 the last expression tends @asn — oo. Weak convergence,, — d&o
follows.

Proof of part (c).(i) = (i7) : Since[ z §.(dz) = ¢, we can apply part (a). This yields
[ ota) mldn) — [ gla) 8.de) = g(c).

(#9) = (i73) : Trivial.

(1i) = (i) : By assumption, we have
/(ax + ) mp(dx) = a/x mn(dx) + 8 =ac+ B =g(c), foralln>1.
Hence[ g(z) m,(dz) — g(c) implies

/ (9(x) = (azx + B))mp(dz) — 0 asn — oo.

Becausg(z) — (ax + 3) > 0 for z # ¢, and because this function is convex, for each (0,1) there
is a constant’, such that

T(0,c(1—-e)|ufe(146),00) () < Ce - (g(x) = (e + B))  forz € (0,00).

This implies that for every fixed > 0, 7,,((0,¢(1 — €)] U [¢(1 + €,00)) — 0 asn — oo, and hence the
weak convergence,, — ..

Proof of part (d). By our standing assumption (2.4) concerning the sequéngg we have [ (1 —
z/c) mp(dz) = 0. The functionz — In(z/c) + 1 — z/c is strictly convex and takes on its minimum
value0 atz = c. Hence for any > (O there is a constari. < oo such thatly,, _>cc} < Ce-(In(z/c)+

1 —=z/c) for z > 0. Consequently

Tn ({|$ e EC}) = /]l{|xc|>ec}ﬂ-n(dx)
<C.- / (In(z/c) +1 —x/c)mp(dx)
=Ce- / (In(x/c)) mp(da) + Ce - / (1 —a/c) mp(dx)

= .- (/mmn(dx) —1nc),

which by assumption tends @asn — oo for fixede. O

In what follows, we show that for generalized hyperbolic distributions the constraint that the generalized
hyperbolic Lévy process should stay a generalized hyperbolic Lévy process under the martingale measure
is not sufficient to make the interval of possible option prices smaller. The key to the proof will be to
notice that by changing the basic probability measure we can transform a given generalized hyperbolic
Lévy process into a generalized hyperbolic Lévy process with arbitrary valueswod . If A > 0, we

can, for any giveny, satisfy the martingale condition by choosifign a suitable way. We will show that
changinga: continuously will result in a weakly continuous change of the distributioh,dbr arbitrary

fixed t.

56



Proposition 2.28. Fix arbitrary numbers\ > 0, § > 0, andu € IR. Consider a convex functigf(z) on
(0, 00) satisfying (2.53). Fix arbitrary constantst € (0, 00). Then for eaclp € (g(c), c) we can find
a > 0 andg with | 3| < « such that for the time¢-memberH *! of the generalized hyperbolic convolution
semigroup with parameters\, «, 3, §, ), the following two conditions are satisfied.

1. [e” H*(dz) = cand
2. [g(x) H*(dz) = p.

Before we prove the theorem, we want to highlight its significance for option pricing.

Corollary 2.29. LetS, = Spexp(rt + L;) describe the evolution of a stock price, whérés a general-
ized hyperbolic Lévy process. Then we have the following.

1. If A > 0, the range of possible call option prices is the whole no-arbitrage intefyah —
e " K)T,Sp) even if one restricts the set of possible equivalent pricing measures to those mea-
sures that makd.; := In(S;) — rt again a generalized hyperbolic Lévy process with the same
parameters\, 4, and p.

2. If A <0, then one has an analogous result, but one is only allowed to keep the paramatets
u fixed.

Proof of Corollary 2.29.Part 1 follows at once from Propositions 2.28 and 2.20, siigé'] = 1 iff
Spelt is a martingale. Part 2 is reduced to part 1 by first changing the paraimtder positive value,
say\ = 1, using Proposition 2.20. O

Proof of Proposition 2.28Since\ > 0, we can always satisfy condition 1 by varying the paramgter
alone. This follows at once from Corollary 2.10 and Proposition 2.12.

Given «, the corresponding valug = [(«) is determined as the unique zero of the strictly mono-
tonic function3 — e "mgf(, 30)(8 + 1) — mef, g_o)(B). We will now show that the mapping

a (o, B(a)) = [(e” — K)" GH(x a,8(a),5,) (dr) is continuous: Sincengf ,, 5_) (/) depends con-
tinuously ona, so does the solutiofi(«). By inspection of the characteristic function (2.9), one sees
that for any sequencgy,) with o, > 1/2 anda,, — o € (1/2,00), the following convergence holds
for the characteristic functions.

XoanBlom) 6,0 (W = X(na8(a)6,0 (@) forallu € IR.

(The exponent of the characteristic function denotes that we considerttftdd convolution.) By
the Lévy continuity theorem, this implies weak convergence of the distributions. An application of
Proposition 2.25 (a) yields

[ =K GH o ey s10d) = [( = K GHY 0 (d0)
By standard properties of continuous functions, the function
o [ = K) GHE o100
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maps the intervall/2, c0) onto an interval. The statement of the proposition follows if we can show
that the image of1/2, co) contains values arbitrarily close to the boundaries of the intdiual), c).
More precisely, we will show the following: If one lets | 1/2, then the expectation tends to the upper
boundaryc. On the other hand, i T oo then the expectation tends to the lower bounda(y).

The casea | 1/2.
Sincef(a) € (—a,a) and[0,1] C (—a — f,a — ), along witha: | 1/2 the corresponding values of
B(«) have to tend te-1/2. By equation (2.9) and the remark following this equation, we have

N O N e IO R )
K\(0/a® = B(a)?)  (5y/a® — (B(a) + d)2)"

(2.54) mgf(d) = x(—id) = 6udt<

We show that the moment generating function, taked at 1/2, tends to zero as | 1/2 and, con-
sequently,3(a) — —1/2. By Abramowitz and Stegun (1968), equation 9.6.9, we have the following
asymptotic relation for the Bessel functidf) (z).

)\ A 2
Ky(z) ~ oY (%) and hence— :

5 ) ~ I (A > 0fixed,z — 0.)

Hence the first fraction in (2.54) tends to zeramas 1/2, [(a) — —1/2.

(0y/a? = B(@)?)*  (0y/a? = B(@)?)*
(2.55) O = Bl ~ PIT () —0 asa|1/2

becausé/a? — B(a)? — 0 (« | 0). For the second fraction in (2.54), we note that

6v/a?2 — (B(a) +d)? = 6/d—d?>  asa | 1/2

Hence ford = 1/2 the second fraction in (2.54) tends to a finite constant.

K)\((S\/OCQ — (ﬁ(Oé) + 1/2)2) R K)\((S/Zl) < 00
(5\/a2 = (Bla) + 1/2)2)  (6/9*

(2.56)

Taking together (2.55) and (2.56), we see that indeed the moment generating function (2.54), taken at
d =1/2,tends td) asa | 1/2. By Proposition 2.25 (b), this is equivalent to saying that the expectation
[ g(e*) GH(*At o B(0).6.0) (dz) tends to the upper boundary,of the interval given in the proposition.

The casex T oco.
First, we show that as 1 oo, f(a)) — oo in such a way thaB(«)/« tends to a value* € (—1,1).

The martingale condition 1 is equivalent to

Xg(a (1) = /1,

where we have indicated the parametén) as a subscript. Since changifiga) corresponds to an
Esscher transform, Lemma 2.6 yields the following equivalence.

X(a) (=) = e/t <= e ixg (=i (B(er) + 1)) = xp=0(—i - B(a)),
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wherey s—( denotes the characteristic function of the generalized hyperbolic distribution with parameter
# = 0 and the other parameters unchanged. If we further change the paramieténe valuey :=
u — (Ine)/t, then the condition above takes the form

(2.57) XB=0,u=7(—1 - (B(a) + 1)) = Xp—0,u=n(—i - B(a)).

Because of the complicated structure of the characteristic fungtieg ,—z (u), it is difficult to analyze
the properties of the functiofi(«) directly using (2.57). Therefore we consider a modification of condi-
tion (2.57). Since the moment generating function- x s—,,—p(—iu) is strictly convex, relation (2.57)
implies that the unique minimum ofs—¢ ,—u(—iu) is attained for some* € (3(«a), B(a) +1). Aswe

will see, the quotient.* /o« converges to a limit if—1,1) asa T oo. (This implies the convergence of
B(a)/« to the same limit.)

We have

@2.59) AXmouen(=in) o bu K (Va?— )

- + . .
XﬁzO,u=ﬁ(_2u) s Va2 — u? K)\((S\/ o? — uQ)
Because of the strict convexity of the moment generating function, this function has only one zero, which
is located at the minimum of the moment generating function. Denoting the position of the minimum by
u again, we have

7 2 _ 4,2
(2.59) E B (0ve? — u?)

Va2 —u?  Ky\(6vVa? —u?)
Obviously forg = 0 the unique solution of this equationds= 0, so we only have to study the cases
> 0andu < 0. These can be treated analogously, and so we only consider thg ease It is clear
that in this case the solution satisfies- 0. Lettingy = = > 0, condition (2.59) is equivalent to

(2.60) p 1 Ky(day/1—97)
: 5= —.
% 1 K\(ay1-19?%)

The Bessel function quotient in this condition tendg taniformly for~ from any fixed compact interval
I C (—1,1). Thisis clear from the asymptotic relation (2.25). Therefore it is easy to see that the solution
~ of (2.60) tends to the solutioft* of the equation

(2.61) —% = %, which is given byy* = ;
-1 52
(v*)2 ﬁ +1

So~* € (0,1), which had to be proved. (The analogous proof for the gase 0 would yield~* €

(_17 0))

Using these results we examine the behavior of the mean of the convoluted generalized hyperbolic dis-
tribution GH, ,, 5(a).4,.) @S T co. We show that the expectation tends to zero in this case.

By insertion ofu = ((«) into the right-hand side of equation (2.58) we get an expression for the mean
value of a generalized hyperbolic distribution with parameter§(«), andzu. As the quotients(«) /«
tends to the limity* solving (2.61), locally uniform convergence of the right-hand side of equation
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(2.60) yields that the mean value of the distribution tends to zero. Consequently the mean value of
the distribution withy instead ofx tends toln c. Now let 7,, denote the law o#* under the measure

GH?f\,a:n,B(n),é,u) (dz). Then [ z m,(dx) = c. Proposition 2.25 (d) and (c) yields that the convergence
JInz m,(dx) — Incimplies convergence of g(e”) GH(3 , 5(a) 5, (d2) 10 g(c). O
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Chapter 3

Computation of European Option Prices
Using Fast Fourier Transforms

3.1 Introduction

Suppose a stock price is modeled by a stochastic praétesgh discrete or continuous time parameter
The evolution of the stock price is governed by the underlying probability med@sufs mentioned in
Chapter 1, when pricing European options on the stock one usually looks for a soeglirdlent

martingale measurethat is a probability measur@ % P such thatexp( — fot T(S)ds)St is a@-
martingale. Then the option price is calculated asheonditional expectation of the discounted payoff.
Q is also calledisk-neutral measure

In general, there is more than one equivalent martingale measure. As mentioned in Chapter 1, this
induces the problem of choosing one of these measures. Here we do not want to dive into the theory
of choosing the martingale measure. Instead, we assume that the choice has happened, and that we are
given the measure.

The remaining task for option pricing is the calculation of the expected final value of the option. This
requires knowledge of the distribution of the stock price under the martingale méaswteat is known

in many cases is the characteristic function of the stock return to expiration. Exponential Lévy processes
are atypical example. Here the logarithm of the stock price is assumed to follow a process with stationary
independent increments. Consequently, the characteristic function effgkeod return is just the-th

power of the characteristic function of the one-period return, which is known in most of the models.

In the current chapter, we present an elegant way to calculate the prices of European options once the
pricing measuré) is chosen. It uses the characteristic function of the log return on the stock from now

till the expiration date of the option. There is no need to know the density of the stock price distribution
explicitly. This is particularly favorable in the Lévy stock price models mentioned above: Generally,
here the characteristic functions are easier to compute than the corresponding probability densities. In
some cases, closed-form expressions for the densities do not exist at all.

Our approach applies to a large class of European options that depend only on the price of the underlying
at expiration. It is based on the observation that one can represent the pricing formula for European
options as a convolution. This allows us to profit from the fact that the bilateral (or, two-sided) Laplace
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transform of a convolution is the product of the bilateral Laplace transforms of the factors. Usually the
latter transformations are known explicitly.

Inversion of the bilateral Laplace transformation yields the option prices as a function of the current
price of the underlying. Approximate values for the inverse Laplace transform can be calculated by
discretizing the inversion integral and applying the Fast Fourier Transform (FFT) algorithm. This has
the advantage that one can simultaneously calculate the option prices for a range of current underlying
prices.

The approach presented here turns out to be a generalization of the approach of Carr and Madan (1999)
to the pricing of European call options. In this article, the pricing of call options was reduced to the cal-
culation of a discrete Fourier transform by introducing daenpened call valueApplying our approach

to the pricing of European call options reproduces their formula. In fact, the Fourier transform of the
dampened call value is exactly the bilateral Laplace transform of the call price function itself.

The rest of the chapter is organized as follows. In Section 3.2, we give the basic assumptions about the
price model for the underlying and about the option to be priced. Section 3.3 shows that the general
formula for the price of a European option may be interpreted as a convolution of the payoff function
and the distribution of the log of the price/forward-price ratio. This yields a Laplace back-transformation
representation of the option pricing formula. In section 3.4 we calculate the Laplace transforms of power
call and put payoff functions. For these options a simple transformation yields a formula for the option
price as a function of the strike price rather than the current underlying price. Section 3.5 presents a way
to discretize the inversion integral. This allows us to apply the FFT algorithm to the calculation of the
option price. Section 3.6 outlines an algorithm that implements the option price calculation by FFT.

3.2 Definitions and Basic Assumptions

In the following, we assume that the probability meas@rés a martingale measure (ask neutral
measure) for the stock and options market. This means that discounted stock and option prices are
martingales under this measure.

We place ourselves at timeand want to price European options with some fixed expiration ‘fate
These options are characterized by their payoff at fimé&Ve assume that the payoff is given by some
measurable functiom(S7) of the stock price at timg". As in Chapter 1, we callo(z) the payoff
function St is assumed to be given by the random variable

(3.1) St = Spexp(rT) exp(Xr),

wheresS) is the stock price at tim@. We assume that the interest ratis deterministic. Then equation
(3.1) represents the timE-stock price as the product of thierward price Sy exp(r7") and a random
factorexp(Xr). The random variable

XT =In (ST/(erTSO))

is the log of the ratio between the actually realized price at fifmend the forward price for tim&,
contracted at tim@. Thus X is the log return on #orward contractto buy the stock at tim&'. Some
readers might prefer a model of the form

(3.2) St = Soexp(Yr)
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instead. Appendix B.2 shows how one can easily gain the characteristic functdon fodbm the charac-
teristic function ofYr. Since the characteristic function is the only information we need about the stock
price model, it effectively makes no difference whether we start with a stock price model of type (3.1) or
with a model of type (3.2).

Since by assumptio) is a martingale measur8y must be integrable with respectdn This implies
the existence of the first exponential momenaf:

Eq [eXT] < 0.

Consequently, the moment generating functiogf (v) = Eg [e“XT] exists at least on the intervi, 1].
The following lemma shows how risk neutrality @fcorresponds to a property of the moment generating
function.

Lemma 3.1. Assume thatE%[eX7] < co. If Q is a martingale measure for the stock market, then the
moment generating function of QX7 satisfiesmgf(1) = 1.

Proof.
mgf(1) = EQ[eX7] = EQ[e " TS7]/Sy = 1.

We sum up the required properties of the distributiorXef.

Assumption [Distribution]: The distribution of the log returdr = In{e~""Sr/Sy} satisfies the
following.

1. Itis continuous with respect to Lebesgue measure, with density funetion

2. Its extended characteristic functigz) = E [exp(izX7)] is defined for allz € IR — [0, 1] C C,
with x(—i) = 1.

Concerning the option to be priced, we make the following

Assumption [Option]: We are given a European option which pays its holder the amo(sit) at time
T. The payoffw(St) is integrable with respect tQ. In accordance with martingale pricing, the option
price at time0 is given by the discounted expectatien”” E[w(S7)].

3.3 Convolution Representation for Option Pricing Formulas

Since we have assumed thatis martingale measure for the options market, we can calculate the price
of a European option witf)-integrable payofiv(St) at timeT" by taking the expectation. The following
theorem shows how this expectation may be calculated by a Laplace transformation.

Theorem 3.2. Consider a European option with payaff St) at time7". Letv(z) := w(e™*) denote
the modified payoff function Assume that — e~7*|y(z)| is bounded and integrable for sonfiec IR
such that the moment generating functiagf(u) of Xt satisfieamgf(—R) < occ.

63



LettingV'(¢) denote the tim@&-price of this option, taken as a function of the negative log forward price
¢ = —In{e"T'Sy}, we have

CR—rT o
(3.3) vie)= ¢ / ¢ LI](R + i) - (iR — w) du,

2 oo
whenever the integral on the r. h. s. exists at least as the limit; . ffWM -+ -du. Here L[v](z) is the
bilateral(or, two-sided) Laplace transfortrof v for z € C,Rez = R:

Proof. The current forward price is given by ¢. By definition of X the stock price at expiration is
Sp = e SeXr,

For the option price, this implies
V(Q) = " Bq [w(e+¥n)] = e T B [o(¢ — Xr)] = e /]R o(C - 2)p(z) da.

Apart from the discounting factar—"7, the last expression is the convolution of the functiofis) and

p(z), taken at the poin{. By Theorem B.2, the bilateral Laplace transform of a convolution equals the
product of the bilateral Laplace transforms of the factors. Denoting the bilateral Laplace transforms of
V, v, andp by L[V], L[v], andL[p], respectively, we thus have

(3.4) LIVI(R +iu) = e " L[v](R + iu) - L[p](R +iu)  forallu € IR.

We can apply Theorem B.2 to the functioRs(z) := v(z) and Fy(x) := p(x).2 This shows that the
bilateral Laplace integral definingj[V'](z) converges absolutely and that— V'(¢) is a continuous
function. Hence we can invert the bilateral Laplace transformation by Theorem B.3:

1 R+ico ¢

- 2T,

V(Q) =5~ L [V](z)dz

1 [ :

- C(R+iu) 1 ;
o | e [V](R + iu)du
CR M

(3.5) = — lim e LIV](R + iu)du,

2T M—oo M
where we have made explicit the Cauchy principal value. The bilateral Laplace tranSfpfmof the
densityp is given by L[p](z) = [ e **p(z)dz. Obviously, we have the identity.[p](R + iu) =
x(iR — u). Hence substituting (3.4) into (3.5) completes the proof. O

Remark: The integral in (3.3) is a Fourier transformation. Hence we will be able to apply FFT methods
to its calculation.

For a thorough account of the bilateral Laplace transform, see Doetsch (1950).
2The conditions imposed by Theorem B.2 on the functirare clearly satisfied. Moreover, as required by Theorem B.2,
the functionz — e~ 7| F»(z)| is integrable because of the assumptiogf(— R) < oo.
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3.4 Standard and Exotic Options

3.4.1 Power Call Options

Consider the problem of calculating the value oEaropean call optioron the underlying. At the
expiration timeT’, the holder of this option has the right to buy one share of the underlying for the price
K(> 0). K is called thestrike priceor simply strike of the option. Assuming frictionless markets
without transaction costs, this right to buy is wot$y — K)™ at the expiration dat@. Therefore we

can identify the option with a contract that pays its holder the am@tint- K)* at time7". We consider

at once the more general casepofver call options These are characterized by the payoff

w(St) = ((Sr — K)*)?

at maturity> The exponentl is positive, withd = 1 corresponding to the standard European call de-
scribed above. The cade= 2 can be visualized as follows: It corresponds to a contract that pays at time
T the quantity(St — K)* of standard European call options with the same strike price.

The general Laplace approach described above is applicable here. It yields the option price as a function
of the negative log forward price= — In(e"?'Sy). The FFT method described below calculates approx-
imate values of this function for argument valugs= k£ A(, where the integek ranges from-N/2 to

N/2. This corresponds to forward prices aroundut in general the interesting values for the forward
price are not the ones closeltpbut rather values around the strike prige The remedy for this issue is

a simple transformation of the call price function.

Lemma 3.3. Let C%(¢; K) denote the price of a power call, expressed as a function of the negative log
forward price¢ := —Ine"”'Sy and the strike pricgl > 0. Then we have the following relation between
prices for strikeK and prices for strikel.

(3.6) CUGK) =K CU ¢+ InK;1),

where the second argument of the functigthdenotes the strike price.

Proof.
CUGK) =T Eg [((ST - K)*)d}
- T (e ~ 1))
— K¢ T R [((efgfanexT . 1)+)d]
= K4CU¢+InK;1).
]
Hence we only need to calculate approximate values for the fun€tier) in order to be able to price

call options for all strike prices. The argumeént In K in (3.6) is exactly the log forward-price ratio, so
its interesting values lie arourtd

3Cf. Eller and Deutsch (1998), p. 167.
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Another advantage is that we can gain insight into the behavior of power call prices as a function of the
strike rather than the forward price. This is achieved by fixjrand varyingK in (3.6), using the FFT
approximation of the functiod’(+; 1).

In order to apply the Laplace inversion formula deduced in Theorem 3.2, we have to know the bilateral
Laplace transform of the modified payoff function

)= (e =1 (d>0,z€R).

The bilateral Laplace transform exists foe C with Re z < —d. For these values of andd we have

0
/ e * () da :/ e *2(e™® — 1)%dx
R

—00

_T(—z—d)(d+1)
N I(—z+1)

Here B(-,-) andI'(-) denote the Euler Beta and Gamma functions respectivalje give some brief
comments on the chain of equalities above: In the second line, we have substituted The fourth
equality follows directly from the definition of the Beta function (cf. Abramowitz and Stegun (1968),
Formula 6.2.1):

1
B(z,w) = / 711 —-t)*"'dt  (Rez >0, Rew > 0)
0

The last line is a consequence of the relation between the Beta and Gamma function (cf. Abramowitz
and Stegun (1968), Formula 6.2.2):
I'(z)l(w)

Bz w) = I'(z4w)’

For practical purposes, writing the Beta function as a quotient of Gamma functions may be necessary if
the Beta function is not implemented in the programming environment yoti use.

The practically relevant cases of power calls have exponggisl or d = 2. Here we can simplify the
expression given above, using the relatiq+n+1)/I'(z) = (z+n)(z+n—1)---zforn =0,1,2,...
(cf. Abramowitz and Stegun (1968), Formula 6.1.16). &6t 1, that is the standard European call, we
have
I'2) 1
(—=2)(—z—1)  2(z+1)

Ford = 2,
. r@) -
L[c®)(2) = (—2)(—z—=1)(=2—-2)  z(z+1)(z+2)

“Properties of these functions may be found e. g. in Abramowitz and Stegun (1968), Chapter 6.
5This is the case for S-Plus 3.4: Here, the Gamma function is available, but the Beta function is not.
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3.4.2 Power Put Options

Now consider the case of tlpwer putwith payoff

w(Sr) == (K — Sr)*)*

for some constani > 0. The choiced = 1 corresponds to the standard European put. By a completely
analogous proof as in Lemma 3.3, one shows the following relation for the put price fufttigni).

Lemma 3.4. Letting P¢(¢; K) denote the price of a power put, expressed as a function of the negative
log forward price¢ = —In{e"7' Sy}, we have

PUGK) =K PY¢(+InK;1).
The modified payoff function fok = 1 is

pl(z) = (1—e )N (d>0,z €R).

/0 - )y

1
71 — )t

Its Laplace transform exists for Re> 0:

/ ey d
R

Il
D~

= B(z,d+ 1)
_T(T(d+1)
I(z+d+1)
Again, B(-,-) andI'(-) denote the Euler Beta and Gamma functions respecfively.

The practically relevant cases are agdis- 1—the standard European put—atid= 2. The bilateral
Laplace transform foi = 1 is

Lp'|(2) = (Rez > 0),

and for the casé = 2 we have

2
2(z+1)(z +2)

Remark: There is no put-call parity for power calls with+# 1, so explicit calculation of both put and
call values is required here.

Lp?(2) = (Rez > 0).

3.4.3 Asymptotic Behavior of the Bilateral Laplace Transforms

Below we will encounter integrals in which the integrands contain a fabfof( R + iu). In order to
determine absolute integrability, we will need information about the asymptotic behavior of this term for

6See e. g. Abramowitz and Stegun (1968), Chapter 6.
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large|u|. This amounts to studying the asymptotic behavior of the Beta function, which in turn can be
deduced from the behavior of the Gamma function. [Epr— oo, the Gamma function behaves in the
following way (cf. Abramowitz and Stegun (1968), Formula 6.1.39):

[(az + b) ~ V2me % (az)*T0—1/2 (largz| < m,a > 0).
From this relation we can derive the asymptotic behavior if the Beta funétienw) for fixed w.

\/ﬁefzzzfl/Q

2me~ (2 4w) (z 4 q)ztw=1/2

- I‘(w)ew (z +w

~T(w)z™" (larg z| < ).

B(z,w) ~ T'(w)

z )z+w—1/227w
Hence we get the following Lemma.

Lemma 3.5. For fixedw, the asymptotic behavior of the Beta functiB(x, w) appearing in the bilateral
Laplace transforms for power calls and puts is as follows.

B(z,w) ~ % (larg z| < ).

In particular,

1

B(—(R+iu) —d,d+1)| = o(’u‘%ﬂ) (lu| = o),

if R lies in the respective allowed range.

3.4.4 Self-Quanto Calls and Puts

A self-quanto calhas the payoff function
wi (St) = (S — K) T St.

This cash flow may be visualized as follows: At exercise, the buyer of the call receives the quantity
(St — K)™ of shares of the underlyingThis contrasts with the usual European call whgte — K)™*
is the amount o€urrency unitsreceived.

Writing the value of a self-quanto call as a functiofi (¢; K) of ¢ = —In{e’T S}, we have
CS(G K) = Eq |(e™T = K)feme ]
— K2E, [(e—c—ln(KHxT 1) e ¢ ImE)+Xr
= K2C%(¢C + I K;1).

Hence we can again limit our studies to the c&Se- 1. The modified payoff function for a self-quanto
callwith K = 11is
v(xr) =e "™ —1)7T.
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Its bilateral Laplace transform exists for Re< —2 and is given by

/ e e e =) dr = / e~ (e=T _ )T dy
R R

I
(z4+2)(z+1)

Here the last equality is based on the following observation: The expression in the second line is nothing
else than the bilateral Laplace transform of the modified payoff function of a standard call, takem. at

Analogous relations hold for self-quanto putvith payoff function
w(ST) = (K — ST)+ST.

The bilateral Laplace transform in this case exists forzRe —1 and is equal to the bilateral Laplace
transform of the standard European put, taken at the poini.

1

[CES ) (Rez > —1).

/ e (1 —e ") Te dr =
R

Remark: Of the call and put options considered here, this is the only one where the bilateral Laplace
transform exists for Re = 0.

3.4.5 Summary

Table 3.1 summarizes the results for standard and exotic call and put options. The second column shows
the payoff at expiration as a functian(S7; K) of stock priceSy and strikeK . The third column gives

the bilateral Laplace transform of the modified payoff functidge) := w(e=*;1). The fourth column

gives the range of existence of the Laplace transform. The fifth column gives the option price for arbitrary
strike priceK > 0, expressed by the option price function for strike= 1.

3.5 Approximation of the Fourier Integrals by Sums

In order to compute the value of the Fourier integral in (3.3), we approximate the integral by a sum.

/ eiumg(u)du

—00

Consider the problem of calculating

for some continuous complex-valued functigrwith the propertyg(—u) = @.7 The integral en-
countered in (3.3) is of this form, with(v) = L[v](R + iu)x(iR — w). In particular, the symmetry
condition ong is satisfied:L[v](z) is the bilateral Laplace transform of a real-valued function (namely,
the modified payoff functiom), and soL[v](Z) = L[v](z). An analogous relation holds for the function
z — x(iz).

"z denotes the complex conjugate of a complex nuraber
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Laplace trans- Option price
Option Payout form of modif. | Region of for arbitrary
w(St; K) | payoff(K =1)| existence strike K > 0

classical call (S — K)*t ﬁ Rez< 1| KC(+Ink;1)
power calll (St — K)*]? % Rez < —d | K¢ CY¢( +InK;1)
power call(d = 2) | [(St — K)*]? z(zﬁiﬁzu) Rez < -2 | K2C?*(+1InK;1)
self-quanto call | (S — K)* St m Rez < —2 | K2C%(+1InK;1)

classical put (K —Sp)* D Rez>0 | KP(+InK;l)
power put (K — St)T]¢ Fr(fgii&ﬁl)) Rez >0 | K¢ P4¢+InK;1)
power put(d = 2) | [(K - S7)*]* | sy Rez>0 | K2 P2((+InK;1)
self-quanto put | (K — Sp)* Sy m Rez>—1| K2 P(+InkK;1)

Table 3.1: Standard and exotic calls and puts.

We choose a numb&N — 1 of intervals and a step siz&u. We truncate the integral at the points
—(N —1/2) - Auand(N — 1/2) - Au. Subsequent application of the midpoint fyéelds

0o (N-1/2)-Au
/ e"g(u) du ~ / e g(u) du

—00 —(N-1/2)-Au
n=N-1
~ Au- Z ei'"'A“'xg(n . Au).
n=—(N-1)

By making use of the property(—u) = g(u) for the integrand, we can reduce the number of summands
to V. In fact, we have

ei-n-Au-xg(n Au) — ei'(_n)'A“'xg((—n) . Au)’
and hence adding the terms fer, andn (n = 1,... , N — 1) in the sum eliminates the imaginary parts.
et (—n) Au xg((_n) A’LL) + el Au xg(n A’LL) -9 Re(ei n Au xg(n Au)) )

This leads to the following formula for the sum approximation:

[e%9) N—-1
(3.7 / e g(u) du ~ Au - Re (Z ei'"'A“'xgn> )

-0 n=0
with go := ¢(0)/2 andg,, := g(n - Au) (n=1,...,N —1). The sum appearing here is called
discrete Fourier transfornof the complex number§y,, ),—o,... N—1.

80ne might wonder if some more elaborate scheme for numerical integration might improve the approximation. In the
opinion of the author, this is not the case if one restricts oneself to equidistant node points, which is essential for the application
of FFT techniques. Any improvements gained by employing methods like the Simpson method have to do with the better
behavior at the boundaries. But if the truncation is done correctly, boundary effects can be neglected here.
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3.5.1 Fast Fourier Transform

Fast Fourier Transform (FF¥)s an algorithm for the calculation of the discrete Fourier transform for a
range of parameter valuessimultaneously. It calculates the sum appearing in (3.7) for parameter values
z=ux,=kAz (k=0,.,N —1)with Az = 2. For the FFT to be most efficien has to be an
integer power ob.

Given a sequencgy, )n=o.... n—1 Of complex numbers, the FFT computes

N-1 NoLo
Z eznAumkgn — E ezmnﬁgn =: Gy, (k; = —N/Q, .. ,N/2)

n=0 n=0

Because the values fér= —N/2 andk = N/2 are equal, it suffices that the algorithm computes one of
them. Hence the FFT takéé complex numbers as input and gives ba€lcomplex numbers as output.

The approximation of the Fourier integral is best whgfiV is close to0. On the other hand, when

k = —N/2ork = +N/2, there are only two sampling points for each period ef: ¢~>*“%, Therefore

the approximation is not reliable there. Increasi¥idoy a factor2 while keeping/N Au constant leads

to a doubling of the sampling frequency, thereby improving the quality of the approximation. Keeping
N Awu constant implies that the discretization step stays the same.

3.6 Outline of the Algorithm

We summarize the steps we have to take in order to calculate the option price by the method described
above.

Let x be the (extended) characteristic function of the log retiftn = In(e~"7'S7/S;). Consider a
European option that pays its holder the amauf$r) at timeT". Let L[v](z) be the bilateral Laplace
transform of the modified payoff function(z) := w(e™").

e ChooseR € IR with x(iR) < oo andL[v](R) < oo. Choose the discretization step widku and
the number of interval&/. N has to be a power ¢f.

e Calculate the sequence,,),—o,.., n—1 defined by

- { SXR) LIl (R) (n=0)
X(iR—n Au) L)(R+in Au) (n=1,... ,N —1).

e Apply the FFT to(gy,)n—o,... n—1 t0 get the transformed sequer(@k)k:,N/sz/Q.

e SetA( := 2x/(N Au). Then the approximate option price for a negative log forward price of
(r = k AC (k = —N/2,..,N/2) — that means, a forward price ef’ Sy = =% 2¢ — is given
by

CeR—rT
(3.8) Cp = Aus

Re(G}).

™

°See e. g. Brigham (1974).
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e For standard and exotic calls and puts, you may use the Laplace transfoltn) of the payoff
function for K = 1 in the steps above. This yields approximate valdgof the function{ —
C?(¢;1) at the points{ = k& AC (k = —N/2,...,N/2). Since the price for the option with
arbitrary K is given by K¢ C4(¢ + In K;1), K¢ C}, approximates the price of this option for a
negative log forward price af = £k A — In K.

3.7 Applicability to Different Stock Price Models

In order to calculate option prices, one has to specify two things, namely the option to be priced and the
stock price model under which one wants to price it.

The pricing method presented above applies to European options that do only depend on the spot price
of the stock at expiration. Hence they are completely specified by giving the expiratiofi’ daie the

payoff functionw(St). For the new pricing method to be applicable, the bilateral Laplace transform

of the payoff function has to exist on a non-degenerate interval. In Section 3.4, we have presented a
number of standard and exotic options satisfying these conditions. The corresponding bilateral Laplace
transforms can be found in Table 3.1.

The second step is the specification of the stock price model. This should be done by giving the (ex-
tended) characteristic functiop(z) := Eq [exp(izX7)] of the random variabl&(r = In(Sr /(" Sp))

which we have identified as the log return on the forward contract to buy the stock &t tiBelow, we

give examples of stock price models, together with the corresponding extended characteristic function
x(z) and the strip of regularity of this characteristic function.

The algorithm developed above is applicable to any valid combination of option and stock price models.
Here “valid” means that there exists a const&nt IR as in Theorem 3.2, such th&tlies in the strip

of regularity of the bilateral Laplace transforfjv](z) and thatiR lies in the strip of regularity of the
extended characteristic functiarfz).

The method was successfully tested with the stock price models given in Table 3.2. All of these models
are of the exponential Lévy type, that is, they assume that the log return p(o€gssy+ is a process

with stationary and independent increments. Hence the distribution of the process is uniquely character-
ized by each of its one-dimensional marginal distributions. We chbese, that is, we characterize the

Lévy process by the distribution df;. The first column in Table 3.2 gives the type of this distribution,

and the second column gives its characteristic function.

e Anormally distributed log returtX; corresponds to the famous geometric Brownian motion model
introduced by Samuelson (1965).

¢ Generalized hyperbolic (GH) distributions were introduced by Barndorff-Nielsen (1978). Eberlein
and Prause (1998) used these class of distributions to model log returns on stocks. This generalized
earlier work by Eberlein and Keller (1995), where hyperbolically distributed log returns were
considered.

e The class of normal inverse Gaussian (NIG) distributions was proposed in Barndorff-Nielsen
(1995) and Barndorff-Nielsen (1998) as a model for log returns. NIG distributions constitute a
subclass of the class of GH distributions. See also Barndorff-Nielsen (1997).
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| Type | extended characteristic functioiz) | x(iR) < oo if...

2
o
normal | exp (iuzt — ?th) -0 < R< oo

GH eiuzt (5\/ a? — ﬂ2)>\t . K)\((S\/m)f
K0V = ) (5= 5+ iap)

NIG exp(iztu + td/a? — (3?)

exp(td/a? — (B +1i2)?)

b—a<R< B+«

b—a<R< B+«

0 202

VG exp(izti) R > o2 <1 YT W)
(1 — vz + (02v/2)22)t/v 0 202

R < F <1 +1/1+ V—92>

Table 3.2: Different models for the stock price: Characteristic functions and admissible valiigs for

e Variance gamma (VG) distributions were first proposed by Madan and Seneta (1987) for the mod-
eling of log returns on stocks. Madan, Carr, and Chang (1998) generalize this approach to non-
symmetric VG distributions.

All of the non-normal models cited above have been shown to capture the distribution of observed market
price movements significantly better than the classical geometric Brownian motion model. Moreover,
Madan, Carr, and Chang (1998) and Eberlein and Prause (1998) observed a substantial reduction of the
smile effect in call option pricing with the non-symmetrical VG and the GH model, respectively.

As a benchmark example, we have used the method described above to calculate the prices of European
call options with one day to expiration. The log return distributions employed were those displayed
in Table 3.2. The parameters shown in Table 3.3 were generated as follows. First, the parameters of
the respective distribution were estimated by maximum likelihood from a dataset of log returns on the
German stock index DAX, from June 1, 1997 to June 1, 1999. Then, an Esscher transform was performed
on each of these distributions so as to makea martingale. For simplicity, we have always assumed

that the interest rate vanishes—= 0. Hence the results should be not viewed as reasonable option prices,
but rather as an illustration of the algorithm. Figure 3.1 shows the prices of a European call option,
displayed as a function of the strike price at a fixed stock pricypot= 1. The option prices were
calculated by means of the algorithm described above. Note that this algorithm yields the option price
only at a discrete set of values Bf. But we have chosen this set so dense that—for the limited resolution

of the plot—the discrete point set looks like a solid line.

Because of the efficient calculation of option prices by the FFT method, it becomes easier to study the
behavior of the option pricing function. Figure 3.2 shows the difference of call option prices from the
standard Black-Scholes model. Here the W-shape that usually appears for these differences is distorted.
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0.02 0.03 0.04 0.05

option price (GH model)

0.01

0.0

0.96 0.98 1.00 1.02 1.04
strike price K

Figure 3.1: Call option prices for the generalized hyperbolic stock price model. Parameters are given in
row “GH” of Table 3.3. Fixed current stock pricg = 1. One day to expiration.

0.0002 0.0004

option price difference
0.0

-0.0002

-0.0004

0.96 0.98 1.00 1.02 1.04
strike price K

Figure 3.2: Difference of call option prices between alternative stock price models and Black Scholes
prices. The alternative models are GH (exponential generalized hyperbolic Lévy motion), NIG (normal
inverse Gaussian), and VG (variance gamma) with parameters as given in Table 3.3. Fixed current stock
price Sy = 1. One day to expiration.
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| Type | Parameters

=—1.572-107%

normal| o = 0.01773, pu

GH a = 127.827, [ = —31.689, d="707-10"3", 1 =0.0089, \=2191
NIG |a=285.312, (= —27.566, 5 =0.0234, 1= 0.00784

VG o =0.0168, v =0.4597, 0 = —0.00962, = 0.009461

Table 3.3: Estimated Parameters for stock price models in Table 3.2

estimated density
15 20 25

10

-0.05 0.0 0.05
log return x

Figure 3.3: Empirical density of daily log returns on the German stock index DAX, 1 June 1997 to 1

June 1999. Gauss kernel estimate by S-Plus functénsity

This distortion is a result of the fact that the empirically observed return distribution for the DAX in the

interval 1 June 1997 till 1 June 1999 was relatively asymmetric. See Figure 3.3.

Figure 3.4 shows the difference of NIG and Black-Scholes option prices, seen as a function of the strike
price K and the time to expiration. Note how the difference grows as time to maturity increases. Also
note that the shape of the difference curve changes as time to expiration increases. Far, ldarger
becomes increasingly bell-shaped. These effects are due to the different standard deviations of the NIG
and the normal distribution under the martingale measure: The standard deviation of the NIG distribution

is 0.0180, while that of the normal distribution &0177 (see Table 3.3.)
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Figure 3.4: Difference between call option prices in the NIG model minus call option prices in the

Black-Scholes model. Fixed initial stock pri¢g = 1; time to maturities betweeh and 50 (trading)
days. Strike prices betwe@®®s and1.2.

On the Choice of the Rate of DecayR

It turns out that the precision of the calculation crucially depends on the choice of the rate of Becay,

We have found that for usual parameter valiles: —25 works best for call options. This coincides with
the findings of Carr and Madan (1999).

3.8 Conclusion

We have developed and presented an algorithm that prices general non-path-dependent European options
in a wide variety of stock price models. This method is based on first calculating the bilateral Laplace
transform of the option price and then inverting this transform. Calculating the bilateral Laplace trans-
form is easy in all models where one knows explicitly the (extended) characteristic function of the log
return to expiration. We have given some examples where this holds. The inversion of the bilateral

Laplace transform can be done with the aid of the Fast Fourier transform (FFT) algorithm. We have
given a detailed description of the calculation of option prices by the new method.
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Chapter 4

The Lévy Term Structure Model

This chapter is devoted to the further study of the term structure model proposed in Eberlein and Raible
(1999). This model can be driven by a wide range of Lévy processes. Hence we calLévhéerm
structure model

The chapter is organized as follows. Section 4.1 introduces some basic concepts of term structure mod-
eling. In Section 4.2, we give a short overview of the Lévy term structure model. Section 4.3 studies
the decay behavior of the generalized hyperbolic characteristic function. This has implications for the
Markov property of the short-term interest rate in a Lévy term structure model driven by a generalized
hyperbolic Lévy motion. Section 4.4 shows that the Markov property of the short rate implies the exis-
tence of a so-calledffine term structurdor the Lévy term structure model. Finally, in Section 4.5 we
derive an integro-differential equation for the price of simple interest-rate contingent claims.

4.1 Introduction

In this section, we give a very brief introduction to the terminology and methodology of term structure
modeling. A more detailed account of interest rate theory can be found in Bjork (1998), Chapters. 15-19,
or Musiela and Rutkowski (1997), Part II.

When money is lent or borrowed, the interest rate received on this contract usually depends on the
length of the period for which money is transferred. Téen structure of interest ratesaptures this
dependence. It gives the interest rate as a function of the length of the borrowing/lending contract.

Zero coupon bondsare the simplest contracts of this type. The issuer of a zero coupon bond will pay
the owner of the bond a fixed amount of money, flhee value at a pre-specified dat&,. We call this
datematurity dateof the bond. There are no intermediate payments here. This is in contrast to so-called
coupon bondswhose issuer pays the holder a certain percentaged, the face valuey, each year up to

the final repayment of the face value itself. A coupon bond can be thought of as a bundle of zero coupon
bonds:n bonds with face valugV’ paying backi, ... ,n years from now, and one bond paying back

V n years from now. This decomposition shows that it is sufficient to build a model for zero coupon
bonds, since the price of a coupon bond is just the sum of the prices of its constituents.

1In fact, this is not merely a theoretical construction: On many bond markets there is a procedurstdppéety where a
coupon bond is decomposed into these zero coupon bonds. Each of these bonds can then be traded separately.
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For many applications, the focus is more on interest rates than on bond prices. Given a zero coupon
bond maturing after a time, with a current price of’(¢,t + 7). one introduces itgield as the interest

rate at which an initial investment d?(¢, ¢ + 7) would grow to a capital 0¥/, including continuously
compounded interest, in a time period of length

V

1
Y(t,t =—Iln ————.
(tt+7) TnP(t,t—l-T)

The derivative ofn (V/P(t,t + 7)) with respect tor is called theforward rate

0
ft,t+7):S=——MmIP(tt+7).
or
This is the interest rate one gets on a contract (contracted now, af)timkend money at time + 7 for
an infinitesimal period of lengttir.

In particular, ifr = 0, then lending takes place immediately at the time of the contract. The correspond-
ing interest rate is called thehort rate r(¢).

r(t) := f(t,t).

For each fixed time horizo™ € (t, oo], bond pricesP(¢,T) (t < T < T*) and forward rateg(¢,T")
(t < T < T*) carry the same information. Hence it does not matter whether one models forward rates
or bond prices in the first place: Every forward rate model implies a bond price model and vice versa.

In order to simplify notation, we will always assume that zero bonds have a face valy¥ 6f 1.

Historically, the first term structure models were based on models of the shor{raten these models,
the bond prices are calculated as conditional expectations under some martingale iQeasure

P(t,T) = Eg [exp ( - /t Tr(s) ds)

Note that if one starts with a short rate model alone, thearymeasure) satisfying

7.

Eqg [exp < —/tT'r(s) ds)] <oo forallt<T

is a martingale measure for the bond market. There is no martingale condition here simply because one
starts with a market without assets other than the numéraire.

One of the simplest short rate models is the one introduced by Ho and Lee (1986), which was formulated
in a discrete-time context. According to Hull and White (1990), its continuous-time analogue is due to
Dybvig (1988% and Jamshidian (1988):

dr(t) = 0(t) dt + & dW,,

with a deterministic functiod(¢) and a constart. Another simple short rate model was introduced by
Vasicek (1977). He assumed that the short rate follows an Ornstein—Uhlenbeck process. This was later
generalized by Hull and White (1990), whose model allows for a time-dependence of the level of mean
reversion,p.

4.1) dr(t) = (p(t) — r(t))a dt — & dWy,

2Meanwhile, this working paper has been published in Dempster and Pliska (1997).
3Actually, Hull and White (1990) allow all three parameters:, ands to be time-dependent.
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with a deterministic functiop(¢) and constants ands. This is called thextended Vasicek modélhere
are other proposals for the dynamicsrof), which introduce diffusion coefficients depending ).
The most important are the Cox, Ingersoll, and Ross (1985) model (with a diﬁusiom@fW)th)
and the Dothan (1978) model (with a diffusion tesm(t) dV;.) For a deeper discussion of these and
other short rate models, we refer the reader to Musiela and Rutkowski (1997), Sec. 12.3.

A more recent approach to term structure modeling is based on modeling forward rates. Heath, Jarrow,
and Morton (1992) present a very general model of this kind. Their forward rates are diffusion processes
driven by a vector Brownian motioiv' (), ... W (™),

(4.2) f(t,T) = f(0,T) + / a(v,T,w dv—l—Z/ W) AW,

(Cf. Heath, Jarrow, and Morton (1992), eq. (4).) If the bond prices corresponding to these forward
rate processes are free of arbitrage, then the drift coefficient?’,w) and the diffusion coefficients
LAl (v,T,w), 1 = 1,...,n are connected by the so-callétbath-Jarrow-Morton (HIM) drift condi-
tion. See Bjork (1998), Theorem 18.1. In particular, if (4.2) describes the dynamics under a martingale
measure, then(v, T, w) are related by

T

/ a(t,s) ds
t

r 1
/ aft, s) ds:—‘
: 2

2

The Gaussian HIM Model
The special case where the coefficiea{®, T, w) ando (v, T,w) in (4.2) are deterministic yields the

so-called Gaussian Heath-Jarrow-Morton (HJM) model. In the risk-neutral setting, zero-bond prices are
then given by

(4.3)

P(t,T) = P(0,T)exp (/ ds exp Z/ (v, T) dW — _Z/ (v, T) dW(Z))

where the bond price volatility structueé? (¢, 7)) is defined by

T
e (t,T) = —/ 5D (t, s)ds.
t

(Cf. Heath, Jarrow, and Morton (1992), eq. 8.) Note that the bond price volatifityand the forward
rate volatility %) have opposite signs. This reflects the fact that bond prices fall as interest rates rise and
vice versa.

4.2 Overview of the Lévy Term Structure Model

Eberlein and Raible (1999) generalize the Gaussian Heath-Jarrow-Morton term structure model by re-
placing the Brownian motioi?” by a general Lévy process in a suitable way. In this section, we
describe their approach and main results.
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Fix a finite time horizori™. Denote byL = (L)s>0 @ Lévy process. The law df;, £(L;), is infinitely
divisible and hence by the Lévy-Khintchine formula is characterized by the Lévy-Khintchine triplet
(b, ¢, F(dz)). its Lévy measurd”. In order to guarantee the existence of the expectations that appear in
the term structure model, Eberlein and Raible (1999) impose the following integrability assumption on
the Lévy measuré’:

There are constanty/, ¢ > 0 such that

(4.4) / exp(vr)F(dz) < oo ¥ |o] < (1+€)M.
{lz[>1}

As the underlying filtration, the completed canonical filtration of the Lévy proéasschosen.

A zero bond maturing at timé& € [0, 7*] is assumed to have the following price process.
exp <f0t o(s, T)dLS)
E [exp (fg o(s, T)dLs)} 7

whereg(t) denotes a process—called theméraire— that is later determined by the boundary condition
P(t,t) =1,t € [0,T%].

(4.5) P(t,T) = P(0,T) - B(t) -

Besides (4.4), the following standard assumptions are made throughout the chapter. Reétalisthiae
fixed time horizon.

Assumption 4.1. The initial bond prices are given by a deterministic, positive, and twice continuously
differentiable functior?” — P(0,7') on the intervall0, 7*].

Assumption 4.2. P(T,T) = 1 forall T € [0, T*].

From this boundary condition, the explicit form of the procgss is derived.

Assumption 4.3. (s, T) is defined on the trianglé\ := {(s,7) : 0 < s < T < T*}. This function
is twice continuously differentiable in both variables, an@d,7") < M for all (s,7) € A, whereM is
the constant from (4.4). Furthermore(s, 7)) > 0 for all (s,T) € A, s # T, ando(T,T) = 0 for all

T € [0,77].

For fixedt € [0,T*], introduce theorward ratewith maturity 7', contracted at time, f(¢,7), and the
short rater(t) asF;-measurable random variables

(4.6) f,T):= —a%ln P(t,T), and r(t) := f(t,1).
It is then shown that the short rate process satisfies

4.7) r(t) = £(0,1) + /0 %ff(a(s,t))ds— /O D20 (s, £)dLs,

wherex(u) := In E[exp(uL1)] denotes the cumulant generating function of the distributioh,0fThe
basic model (4.5) is proved to be equivalent to the following.

(4.8) P(t,T) = P(0,T) - exp < /0 t (T(s) . m(a(s,T)))ds + /0 ta(s,T)dLs> ,
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which generalizes the Gaussian HIM model (4.3). Section 4 of Eberlein and Raible (1999) examines
the special case where the short-rate proeessvhich is defined by (4.6)—is a Markov process. It
turns out that the subclass of the family of Lévy term structure models that has a Markovian short-rate
process is characterized by a special form of the volatility structure: The partial der®adifie 7") can

be factorized as a product of two functions depending onliyrespectivelyl’. For the case of stationary
volatility structures—that is, functions(¢, 7") that depend only on the time to maturif] — ¢)—the
Markov property of the short rate implies thatan only have a very special structure, namely,

ot,T) =2 <1 - e‘a'(T‘t)) (Vasicek volatility structure)
a
or ot,T)=0-(T—1) (Ho-Lee volatility structure),

with real constants > 0 anda # 0. (See Eberlein and Raible (1999), Theorem 4.4.) The proof of
theses results concerning the Markov property requires an additional assumption on the rate of decay of
the characteristic function fdu| — co. (See Section 4.4 below.)

Section 5 of Eberlein and Raible (1999) examines the special case of the Lévy term structure model
where the driving Lévy procedsis a hyperbolic Lévy motion. For this case, the above-mentioned decay
condition concerning the characteristic function is verified. Option prices are calculated numerically by
first calculating a joint density of two stochastic integrals via a two-dimensional fast Fourier transform.

4.3 The Markov Property of the Short Rate: Generalized Hyperbolic
Driving Lévy Processes

In this section, we show that the characteristic function of a generalized hyperbolic distribution
GH(\, «, 8, 11, 0) is dominated by an exponential expression of some special form. This implies that
the results of Eberlein and Raible (1999), Section 4, not only hold for a model driven by a hyperbolic
Lévy motion, but as well for a model driven byganeralizechyperbolic Lévy motion. Thus the short-
term interest rate is a Markov process in this case iff the partial derivatye (¢,7) of the volatility
structure can be factorized into functions depending only @spectivelyT.

Proposition 4.4. Let x(u) denote the characteristic function of a generalized hyperbolic distribution
GH(\, «, 8, 11, 0). Then there exist constant§ -, n > 0 such that

IX(u)| < Cexp (—[u|") VYueR.

More precisely, we can choose= ¢/2 andn := 1.

Application of Eberlein and Raible (1999), Theorem 4.3, then directly yields the following.

Corollary 4.5. LetL be a generalized hyperbolic Lévy process witli,; ) = GH(\, o, 3, i, §). Assume
that bond prices evolve according to the Lévy term structure model (4.8), where we additionally assume
820(t, T) > 0.

Then the short rate process derived from the Bond price dynamics via relation (4.6) has the Markov
property iff the partial derivativého (¢, ') has a representation

Oao(t,T) =7(t)-¢(T) vV (t,T) € A,

wherer : [0,7*] — R and( : [0,7*] — (0,00) are continuously differentiable functions. O
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Proof of Proposition 4.4 We cite the following definition from Abramowitz and Stegun (1968), 3.6.15:

Definition 4.6. A series)y ;- , arx~" is said to be arasymptotic expansioaf a functionf (z) if
— Z arzF =0(z™") asz — oo

foreveryn =1,2,.... We write
o0
x) ~ Zakx_k
k=0
The series itself may be either convergent or divergent.

The characteristic function of a generalized hyperbolic distribution is given by
i (6+/a2 — p2)A K)\((S\/Oé2—(ﬂ+iu)2)
XGH(Ma,8,6,) (W) = 5 2) . P

Ky\(6va? = B%)  (6y/a? — (B +iu)?)

(See equation (A.3).) The modulus of this function is given by

o ‘K)\((S\/QQ—(ﬂ-i-iu)zﬂ

1 )
|5\/042 — (B + iu)2‘)‘

with a constantC; > 0 that depends only on the parametarsy, 5, andé (and not on the variable
u.) Abramowitz and Stegun (1968), 9.7.2, provides the following asymptotic expansion for the modified
Bessel function of the third kind:

(4.9) K, ( \/; zZ( 4V —82kk—1)2>> Zin
B = S M GRS ]

‘XGH()\,a,ﬂ,é,u) (u) ‘

We deduce that

|K)\(z)‘ ‘ 7T/(22’)€_Z| T e Re

3
4.1 ~ —./Z ( 2 )
(4.10) BN ER 2 I |arg z| < 57

For a generalized hyperbolic distribution, the argumehas the value = 6/a? — (3 + iu)?. For this
function, we have the following estimates.

Lemma4.7. a) Forx € IR, we have
Re(v1+iz) > 1

where the square root of a complex numbeg (—oo, 0] denotes the complex numbegrwith
Re(z') > 0 such that:? = 2.
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Figure 4.1: lllustration for Lemma 4.7a.

b) Letd > 0, > 0,andf € (—a, «). Then
(4.11) Re(dv/aZ = (3 +iu)?) = olul,
and
(4.12) 0v/a? = (5 + w)?| = dlul.

Furthermore, there is a constant, (depending on the parametefsa, and ) such that
‘5\/042 - (B+ w)z‘ < Cyva? =32+ Colul. (ueTR).

Proof. Part a. Elementary trigonometry shows that the real part\0f +ix is given by (1 +
22)/4 cos(a/2), wherea is the angle spanned hlyand1 + iz in the complex plane, that is, =
arctan(zx).

From the angle addition formula
cos(z + y) = cos(zx) cos(y) — sin(x) sin(y),

we deduce that
cos(2y) < cos(y)? (y € R).
Sincecos(2y) > 0 for |y| < /4, we thus have

4
|- cos(y)

~ cos(2y)?
48in(2y)? + cos(2y)?
cos(2y)?
— cos(y) (tan(29)® + 1) (|| < 7/4).

— cos(y)
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Insertingy = arctan(z)/2 yields
1 < cos(arctan(z)/2)*(z* + 1)

and hence
1 < cos(arctan(z)/2)(z? + 1)/

But as was shown above, the right-hand side is nothing else than the real gartiofz. For part b),
we note that

Re<5\/042 - (B+ ZU)Q) = fRey/a? — 2 — 2fiu + u?
20 :

a? — 32 +u?
> 6]ul,

where we have used the result of part a). Estimation (4.12) follows trivially be¢ause |Rez| for

z € C. Furthermore, we have
- 28u .
‘5\/a2—(ﬁ+w)2‘:5 a? — (2 4+ u? \/1_7042—524—1@1

< 0/ a? — ﬁQ +u202
< Cyv/a? — B2 + Colul

for some suitable constant, > 0, because: — % is bounded. O

With Lemma 4.7 at hand, we can proceed with the proof of Proposition 4.4. As was shown above, the
key to the estimation of the characteristic function is the estimation of the expression on the right-hand
side of (4.10), viz

T —Re

2 |2 PH1/2

With §/a? — (8 + iu)? substituted for, this expression is asymptotically equivalent to (a multiple of)
the modulus of the characteristic function.

e_Re((S V a2_(6+iu)2)

XeHap0m ()] ~ C1 161/a2 — (B + )2 |1/2 (lu] — o0)
e—0lul
<C
= N6 y/aZ = (B + )2 P2
— 2 u
2

~5ul

=C
1’5

c €
/a2 — (3 + iu)2’>\+1/2
By Lemma 4.7b,
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for some constant’,. Hence forju| — oo,

e—%\m

— 0,
|64/ a2 — (B + iu)2|M1/2

no matter what the value ofis. The statement of the proposition follows. O

4.4 Affine Term Structures in the Lévy Term Structure Model

In some term structure models, the prices of zero coupon bonds can be written as exponential-affine
functions of the current level of the short rate.

P(t,T) =exp (A(t,T) — B(t, T)r(t)),

with the deterministic functiond (¢, 7") andB(¢, T'). If this is the case, one says that the model possesses
anaffine term structure(See e. g. Bjork (1998), Definition 17.1.) Existence of an affine term structure
implies that for fixed times$ < 7' the yields on zero-coupon bonds at timare affine functions of the
current short rate.

InP(t,T)  A(t,T) B(t,T)
T 71— T "W

The same holds for the forward rates.

Y(t,T) =

Ft,T) = - P(t,T) = 0 A(t,T) + - B(t, T) r(t).

For Lévy term structure models satisfying a certain integrability condition, Eberlein and Raible (1999)

prove a connection between the Markov property of the short rate and a factorization property of the
volatility structure. (See Section 4.3.) The following theorem shows that the same factorization property
is also sufficient for the existence of an affine term structure.

Theorem 4.8. Assume that in a Lévy term-structure model there is a factorization
Oao(t,T) = 7(t)¢(T)

of the derivative of the volatility structure, with a strictly positive functioriThen for any dates < T'
the bond price is

P(t,T) =exp(A(t,T) — B(t,T)r(t)),

with the deterministic functiond(¢,7') and B(t,T") given by

A(T) = In (1133((065))) £ BLT)(F0.0) + /0 t %H(J(s, 1))ds)

_ /Ot [K(U(S,T)) - /ﬁ(a(s,t))}ds
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Proof. We already know the following representation for the short rate (see (4.7)):
(4.13) r(t) = £(0,4) + /t gt (o (s, 8))ds — /Ot Do (5, 1)L,
On the other hand, by (4.8),

P(t,T) = P(0,T) exp </0t (r(s) = w(o(s, )))ds + )
where we can substitute fexp ( fot r(s) ds) by making use of the equalltij’(t t)=1:

exp(/otr(s)ds) - P((l),t) exp <— /Oto(s,t)dLs—i—/Ot /i(o(s,)f))ds).

Hence we have

PO, T) &P (f(f [o(s,T) — o(s,t)]dLs)
POL - exp (ff [5(o(s.)) = (o (s.0)))ds)

(4.14) P(t,T) =

Observe that

T
o(s,T) — (s, 1) = /t Do (5, 1)

(4.15) = 0o (s,t) / C(u

Set . .

Now consider the produet B(¢,T') - r(t). We have
(4.13)
—-B(t,T)-r(t) =" —B(t,T < £(0,¢) / o(s,t)) ds)—i—BtT/E)ngt)L

(4.15) _B(t,T) <f(0,t) +/0 aﬁ(U(Sﬂt))ds> +/0 [0(s,T) — o(s,t)] dLs.

The only stochastic term appearing on the right-hand side is the in'gﬁg[a[s, T)—o(s, t)] dLs. But
this is also the only stochastic term in (4.14). Therefore the bond price can be written as a deterministic
function, applied to-B(t,T') - r(t) (and hence as a deterministic function, applied(t9.)

t
%exp [_ B(t, T)r(t) + B(t,T) (f(O,t) +/0 %m(o(s,t))ds)

P(,T) =
t
- / ((o(s. ) — lo(s.1)))ds].
0
Defining

AT = In (];((%f))) + B T)(£(0.1) + /0 t %m(a(s,t))ds)

- /0 (k(o(5,T)) — r(o(s,1)))ds

yields the desired result. O
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Remark: Observe that the functions and B defined above satisty(7,7) = 0, B(T,T) = 0.

Implications for Term Structure Movements

Above we have noted that in a term structure model with an affine term structure, the forward rates are
given by
f(t,T)=—=02A(t, T)+ 02 B(t,T) r(t).

This means that for fixetlevery possible forward rate curve is a member of the family
{T— —8,A(t,T) + 8, B(t,T)r|r € R}.

The possible rang& of the parameter depends on the kind of interest rate model considered. In a
Gaussian term structure model or the general Lévy model, we RavdR, while in the Cox, Ingersall,
and Ross (1985) model, it would Be= IR ;.

4.5 Differential Equations for the Option Price

In what follows, we study one-factor interest rate models where the short-term interestoastitutes

the only stochastic factor determining bond prices. We will see that the question of option pricing leads
to an integro-differential equation. The reasoning here is analogous to the case of stock price models
treated in Chapter 1.

Letr be given as the solution of a stochastic differential equation

d
(4.16) rt) =r(0)+ > / falt—r(t=))dLS,
a=1

driven by a vector(L', ... , L9) of independent Lévy processes. Assume that efacls a Lipschitz
functionin the sense of the definition given in Protter (1992), Chapter V.3, p. 194:

Definition 4.9. A functionf : IRy x IR™ — IR is Lipschitzif there exists a (finite) constahktsuch that
i) [f({t,z) = f(t,y)| < klz —y|, eacht € Ry;
(i) t— f(t,x) is right-continuous with left limits, each € IR".

fisautonomousf f(t,z) = f(z),all t € R.

As a consequence of Protter (1992), Theorem V.7, equation (4.16) has a unique SoRritter (1992),
Theorem V.32, shows thatis a Markov process. For this, the independence of the incremelits isf
essential.

Remark: The above considerations are still valid for stochastic differential equations with an additional
driftterm “.. . dt". This is because one can take account of the drift term by considering the deterministic
Lévy processtJrl = t. This yields an equation of the form (4.16).

“4The cited theorem is valid for so-called functional Lipschitz coefficient functions. According to a remark in Protter (1992),
p. 195, the functional Lipschitz function, induce functional Lipschitz coefficients.

87



Assumption 4.10. The short rate follows the diffusion (with jumps) given by
(417) Cl’l”t = ]{I(T‘t,, t)dt + f(’f‘t,, t)st,
with Lipschitz coefficient functiorigr, t) and f (r, t).

For example, the Lévy version of the extended Vasicek model (4.1) is of this form. In this case, the
functionsk and f are given by

s (Henzon -

with a deterministic functiop(¢) and positive constants, a.

Proposition 4.11. Assume that we are given a European option with a price proggsssatisfying the
following conditions.

(i) The payoff at the maturity datg is V(T') = v(r(T))), with a deterministic functiom(x).
(i) exp (— fot r(s) ds)V (t) is aQ-martingale. That isQ) is a martingale measure for this option.
iy exp (— [ r(s) ds)V(T) is Q-integrable for all € [0, 7).
Then there is a function(x, ¢) such that the option price at tintes [0, 7] is given byV () = g(r(t), ).

Remark. If the term structure model possesses an affine term structure, con(@itisrsatisfied for all
simple European options on a zero béndhis is because the zero bond priBéT, S) itself can be
written as a deterministic (exponential-affine) function of the shortrritg.

Proof of Proposition 4.11By assumptiongi) and (ii), the option price at any time € [0,7] can be
obtained by taking conditional expectations.

eXp(—/Otr(s)ds)V(t) — Eq [exp(—/OTr(s)ds)v(r(T)) ft} ,
hence V(t) = o (—f} (o)) Eq [eXp < _/OT (s )ds) ‘}_t]

:EQ[eXp<—/tT ()ds) ‘ft}

For the last equality, we have used conditi@i) from above. The last conditional expectation only
depends on the conditional distribution(@f{s) ).<s<7 givenF;. But because of the Markov property of
r, this is equal to the conditional distribution give(t), and hence

V() = Fo [exp(—/tT (s)ds v

For eacht € [0, 77, this conditional expectation can be factorizédt) = ), t). O

If we impose additional differentiability assumptions on the functjdn, t), we can deduce that this
function satisfies a linear integro-differential equation.

SSimplehere means that the value of the option at its expiration @atan be written as a deterministic function, of the
bond price.
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Proposition 4.12. We make the following assumptions.

(i) The value proces¥ (t) of a security can be represented in the fobhtt) = g(r(t),t) with a
deterministic functiory(x, t).

(i) The functiong(z, t) from (i) is of classC?! (IR x IR, ), that is, it is twice continuously differentiable
in the first variable and once continuously differentiable in the second variable.

(i) The short-rate process satisfies Assumption 4.10. For each> 0, the distribution ofr;_ has
support/, wherel is a bounded or unbounded interval.

Then the functiory(r, t) satisfies the integro-differential equation
1
(419) 0= —g(r,t)r +dag(r,t) + (19)(r, ) (f (r, )b + k(r, 1)) + 5(Du1g) (1, 1) - ¢+ f(r, t)?

+ / <g(7“ + f(r,t)x,t) — g(r,t) — (O19)(r, t)f(r,t)x)F(dx) (rel,te(0,T1))
o(r) = g(r,T),

where(b, ¢, F'(dx)) is the Lévy-Khintchine triplet of the Lévy process driving the stochastic differential
equation (4.10).

Remark. We are not aware of suitable results about continuity and differentiability of the fungtion)
from Proposition 4.11 in the case wheréollows a jump-diffusion. Hence we introduce assumpf(in
in the proposition in order to guarantee that the differential equation (4.19) makes sense.

Proof of Proposition 4.12 Consider the discounted option price process

V(t) :=exp ( —/Otr(s)ds)V(t) = exp ( —/Otr(s)ds)g(r(t),t).

The discount factor procesgt) := exp(— fg r(s)ds) is continuous and of finite variation, and so the
quadratic co-variatioffry, V] vanishes. (See e. g. Jacod and Shiryaev (1987), Proposition 1.4.49 d.) Hence

(4.20) d(y V)i = 7(t=)dV () + V (t=)dy (1),
Ito's formula provides the stochastic differentiallof

1
dV (t) = gi(ri—, t)dt + gr(re—, t)dry + §grr(7“t_, t)d(re, r°),
+ (9(7“,5_ + A’I”t, t) - g(?“t_,t) - gr(rt—vt)Art) .

The predictable quadratic variation of (which appears as an integrator here) is givenlpy, r¢), =
f(ri_,t)%c dt. The process has differentiable paths. Therefore it is of bounded variation.

dy(t) = —ryy(t)dt.

HenceV is the sum of a local martingale and the following predictable process of finite variation.

(4.21) (e, O)dt + g (re—, t) (f(re—, 0)b + k(re—, t))dt + %grr(rt—a t) e fre,t)%dt

+ [ / <g(rt, ¥ e, )z, t) — g(re, 1) — gr(ri_, t) f(rt,t)x>F(dx)] dt.
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By (4.20), this means that the process is the sum of a local martingale and the following predictable
process of finite variation starting in

y(t){ — g(ri—, O)r(t) + ge(re—, t) + gr (11—, ) (f (re—, )b + k(re—, 1))
(4.22) - %grr(rt_,t) s flre,t)?
+ [ [ ol + £ )0, = glrie 1) = 9 0F 1)) F(da) | e

This decomposition is the special semimartingale decompositionlofin the sense of Jacod and
Shiryaev (1987), Definition 1.4.22. Since the decomposition of a special semimartingale into a local
martingale and a predictable process of finite variation is unique, we conclude that the process (4.22)
vanishes identically: Otherwise there would be two special semimartingale decompositions, because of
courseyV =~V + 0, wherevyV is a (local) martingale by assumption. Hence we have

0= ~g(ri r(0) + u(re 1)+ g1 ) (Fr b+ K ) gl 1) e,
+ / (9(re— + f(re— t)a,t) — g(re—,t) — g (re—, 1) f(r—, t)x) F(dx).

Since the distribution of,_ has support/, we conclude that for every € I the following equation
holds.

0= —g(r,t)r + gi(r,t) + gr(r,t) (f(r,t)b + k(r,t)) + %gm«(r,t) cc- f(r,t)?
+ / (g('r + f(?“,t)x,t) - g(r, t) - gr (7“, t)f('r, t)x) F(dz).

This is the desired integro-differential equation for the option pricing fungtient). O

The Fourier Transform of the Option Pricing Equation
We briefly sketch a possible method for solving the integro-differential equatiogiot). Of course,
further studies in this direction are necessary in order to come up with numerically tractable methods.

However, this would go far beyond the scope of this thesis. We assumgihat is sufficiently regular
for the Fourier inversion to make sense. Assume that we have coefficient functions (4.18).

We have the following identities for sufficiently regular functigfis
‘ 1 0 .
/f(x)x exp(iuz)dr = ;/f(x)% exp(iuz)dz
.0 .
= —za/f(x) exp(tuz)dz,
and
/ , 0 :
/f (x) exp(iux)dx = —/f(x)a— exp(iuz)dz
x
= —zu/f(x) exp(iuz)dz,
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The transform off’(x)z is therefore

—— —

f@)a(u) = =if (2),(v)
= —(uf(w)u = —F(u) — ufuu).

Thus by Fourier transforming (4.19) with respect to the variablee get the following equation for the
Fourier transforng(u, t) = [ exp(iur)g(r,t) dr.

~ o o PO EUNE
0 =1i01g + 029 — iu(cb + ap(t))g + ag + audrg — §ca2uzg
+ §/ (e*iuax — 1+ iugz)F(dz).

The sum of the third and the last two terms on the right-hand side is readily identifiglsh aé—ou),
whereg(u) denotes the exponent in the Lévy-Khintchine representation of the characteristic function of
L,. Hence

(4.23) Gt = —(au + )G, + (iuap(t) — a)g — § - In o(—5u)

This is a partial differential equation involving only the first derivatives of the Fourier transform
Furthermore, in contrast to the original integro-differential equation, integration with respect to the Lévy
measuref’(dx) is not required here. This could be an advantage, since the calculation of the density of
the Lévy measure often is computationally demanding.
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Chapter 5

Bond Price Models: Empirical Facts

5.1 Introduction

Since the introduction of exponential Brownian motion as a stock price model by Samuelson (1965)
and its application in the famous work by Black and Scholes (1973) leading to the Black-Scholes for-
mula, Brownian motion has become the basic building block of mathematical finance. In spite of this
overwhelming success, it has long been known that normal distributions provide only a poor fit to em-
pirically observed distributions of stock returns. We show that this is also true for zero-coupon bonds.
As in the case of stocks, generalized hyperbolic distributions provide a much better fit for the empirical
distributions of log returns on zero-coupon bonds.

5.2 Log Returns in the Gaussian HIM Model

Heath, Jarrow, and Morton (1992) propose a general model for the term structure, which is driven by a
Brownian motion. In their model, volatility is allowed to vary stochastically. The special case of deter-
ministic volatility, which was considered e. g. in El Karoui, Lepage, Myneni, Roseau, and Viswanathan
(1991) and Carverhill (1994), leads to a Gaussian process for the logarithm of zero bond prices. Therefore
we call it theGaussian HIM term structure modéInder very general assumptions, the martingale—or,
risk-neutral—measure is uniquely determined in the HIM model (see Heath, Jarrow, and Morton (1992),
Proposition 2; for the case of a Gaussian HIM model with a one-dimensional driving Brownian motion,
this also follows from Theorem 6.9.) Under the martingale measure, the bond price dynamics in the
Gaussian HIM model have the form

(5.1) P(t,T) = P(0,T)exp (/Otr(s)ds) exp (/Ot o(s,T)dBs — /Ot O(S;T)st)

(See El Karoui, Lepage, Myneni, Roseau, and Viswanathan (1991) or Eberlein and Raible (1999); the
latter gives a theorem for more general driving Lévy processes.) The volatility stragtufg), which

gives the volatility at timeg of a zero bond maturing at tiniE > ¢, is deterministic. By equation (5.1),

the log return (between timeésandt + At) on a zero-coupon bond maturing at tiffies given by

t+At t+At t+At 0'(8 T)2
P+ ALT) PO T) = [ rdst [ ol Tyan - [ T s
t t t
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For At — 0, the integrals may be replaced by the product of the value of the integrand at the left endpoint
times the increment of the integrator. Hence if we assumeAhas small enough, we have

t,T)?
InP(t+ At, T) — In P(t,T) ~ r(t) At + o(t,T)(Besar — By) — o 2 ) AL

Assume that the volatility is stationary, that iss, 7") depends only on the time to maturity given by
the differencel’ — s. For brevity, we will use the same symhofor the function depending only on the
difference:o(s,T') = o(T — s). Then thediscountedog-return is approximately normally distributed
under the martingale measure.

. _ 4\2
martingale measuré In P(;“(‘tA;; T) _ T(t)At) ~ N( _ U(T2 t) At,o(T — t)2At)

Since we have assumed that the risk-neutral dynamics of bond prices are described by (5.1), there has to
be an equivalent probability measure that describes the statistically observable dynamics on thk market.
As in Chapter 1, we call this measure thigiective probability measurdBy Girsanov's theorem we know

that under any equivalent probability measure the Brownian maitecomes a Brownian motion with

a (generally random) drift.(¢) (see e. g. Jacod and Shiryaev (1987), Theorem 111.3.24.)

dB, = dW; + p(t)dt,

with some optional stochastic procgsand a procesH’ that is a Brownian motion under the equivalent
measure.

We assume that is a deterministic constant. Then under the objective measure, again discounted log
returns are (approximately) normally distributed.

— _ 2
objective measuréh(1 P(;“(‘tAjf; T) _ T(t)At) ~ N([M _ U(T2 t) ]At,J(T _ t)QAt).

5.3 The Dataset and its Preparation

We work with a dataset containing daily data on zero-coupon bonds on the German market. For each of
the 2343 trading day between 31-Dec-1985 and 10-May-1995, it lists the yields of zero-coupon bonds
with maturities ranging from one to ten years, in steps of one year. In the covered period, government
zero-coupon bonds did not exist on the German markeiterefore, the quoted yields have been calcu-
lated from the known prices of government coupon bonds. Although we do not have information on the
actual algorithm used for this calculation, we will assume that the given yields are those seen by market
participants.

As usual, we adopt a trading day time scale here. That is, we assume that the time var@biés

trading days rather than calendar days. All interest rates are calculated relative to this time scale. For
example, at an interest rate of= 0.0002, an initial capital of1000 will earn an interest ot0 - 1000 -

0.0002 = 2 during a period ofi0 trading days (which is corresponds to two weeks in calendar time.)

The usual statement is that there exists an equivalent martingale measure for the market; here we go the other way around
and start with the martingale measure, assuming that it is in fact the uniquely determined martingale measure belonging to a
certain objective probability measure.

20nly recently, so-calledtrippedgovernment bonds have been introduced for trade in Germany. These are government
bonds whose coupons are traded separately. This means that the annual payments are traded as separate securities, while the
stripped bond is effectively a zero bond. That is, it pays its holder the face value at the maturity date.
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Figure 5.1: Implied prices for zero-coupon bonds on the German market on 2-Jan-1986. (Source: Zero
coupon yields dataset)

5.3.1 Calculating Zero Coupon Bond Prices and Log Returns From the Yields Data

The zero-coupon yield for a maturity efyears is the numbey,, for which the expressio(ll + yn)_”
equals the pricé’(t,t + (n yearg) of a zero-coupon bond with years to maturity. Thus for each day,
we can recover zero-coupon prices from zero yields:

(5.2) P(t,t+ (nyear9) = (1+y,) "

Fort =2-Jan-1986, these bond prices are given in Figure 5.1. Bond prices for a time to maturity of up
to 10 years can be interpolated from these prices. In order to be able to interpolate bond prices with a
maturity of less than one year, we use the fact that a zero-coupon bond has a vakteitsfmaturity

date. Hence we can extend the bond price “curve” in Figure 5.1 by setting the bond prifae sotime-
to-maturity of0 years. Even with a constant interest rate, bond prices fall exponentially as a function of
the time to maturity. Therefore the curvature of the bond price curve is usually positive, which leads to
errors when interpolating linearly to find bond prices for intermediate times to maturity. Therefore we
transform zero bond prices by taking the logarithm of the inverse bond price, or, equivalently, taking the
negative of the logarithm of the bond price. In the case of a constant interest thig transformation
yields a linear function, namely — r7. So linear interpolation is likely to introduce smaller errors
when working with the transformed bond price curve. We approximate the negative of the logarithm of
the zero-bond price by fitting a cubic smoothing spline, generated with the S-Plus command

s <- smooth.spline(0:10,-log(zeroBond.price[1:11,i]),df=10).
Figure 5.2 shows the negative log bond prices as well as the fitted smoothing spline.
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Figure 5.2: Negative of the log bond prices for the German market, 2-Jan-1986.

As usual, the forward rate is the derivative of the negative logarithm of the bond price, with respect to
the maturity datd’".

Ft,T) = 8% < —nP(t, T)).

They can be estimated from our discretely sampled bond price curve by taking the derivative of the
smoothing spline. We will only need the derivativetat T', which yields the short-term interest rate

r(t).
(5.3) r(t) = f(t,t) = —

We estimate this by the S-Plus command

Oln P(t,T) ‘
or T=t

predict.smooth.spline( s, 0, 1 ),

which gives the first derivative at = 0 of the smoothing spline fitted above.

One may wonder why we do not determine the short-term interest rate directly by taking a time series of
short-term money market rates such as three-month LIBOR rates. The reason for this is the following.
The money market is a market for short term lending and borrowing only. As such, it is intrinsically
different from the bond market, which is a market for long-term investment and financing. In particular,
the usances on the two market are different. We prefer to stay within one market, namely the bond
market. Therefore it makes sense for us to use the short-term interest rate (5.3), which is the one implied
by the bond market itself.

At time t, the price of a bond with an integer numbenf years to maturity can be calculated directly
from the data, using equation (5.2). But one trading day later, att#tisné\¢, the same bond will have
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Figure 5.3: Estimated daily discounted log-returns on zero bonds with five years to maturity on the
German market, January 1986 to May 1995.

a time to maturity of» years minusA¢, which cannot be calculated directly from the dataset; hence we
have to use the interpolation method described above to determine its market price. With the prices of
the same bond today and tomorrow, we calculate the log return on a bond with a time to maturity of
years. This log return is then discounted with the short term interest rate estimated above. Hence we
approximate the discounted log return over a the pefigdt- At] by the expression

In P(t,t + (n years) — In P(t + At,t + (n years)interpolated— At - 7(t)derived from bond prices

In this way, we build up a dataset of daily log returns for zero-coupon bonds with times to maturity of
n=1,...,10 years. For each value af we have a time series of 2342 log returns.

5.3.2 AFirst Analysis

Figure 5.3 shows the log returns on zero bonds with five years to maturity, from January 1986 to May
1995. Figure 5.4 shows the log returns on the German stock index DAX for comparison. Both time series
do not seem to be perfectly stationary over a range of ten years. For the practical use of models with
a stationary volatility structure (in the bond price case) or a constant volatility parameter (in the stock
price case), this means that one should better concentrate on shorter time horizons. The log returns on
bonds are markedly smaller than those on the stock index. Table 5.1 shows this quantitatively. Note how
volatility (that is, the standard deviation of the discounted log return) increases with time to maturity.
Hence bonds that are closer to maturity are less risky. The dependence of the volatility on the time to
maturity is displayed graphically in Figure 5.5.
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Figure 5.4: Daily log-returns on the German stock index DAX, January 1986 to May 1995.

DAX Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 7 10
mean abs]| 0.91% | 0.041%/| 0.068% | 0.089%| 0.11% | 0.13% | 0.21% | 0.36%
std. dev. || 1.3% | 0.062%| 0.1% 0.13% | 0.17%| 0.19% | 0.31% | 0.54%

Table 5.1: Mean absolute log returns and standard deviation of log returns on the German stock index
DAX and on German zero-coupon bonds with maturities of up to ten years. January 1986 to May 1995.
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Figure 5.5: Standard deviation of zero-bond log returns: Dependence on time to maturity.

5.4 Assessing the Goodness of Fit of the Gaussian HIM Model

5.4.1 Visual Assessment

Quantile-quantile plots and density plots are powerful tools for the visual assessment of the goodness of
fit for an empirical distribution. Aguantile-quantile ploof an ordered samplg = (y1 < ... < y,)

plotsy; (that is, the empiricalj — 1/2)/n-quantile of the data) against tigg — 1/2)/n-quantile of the

fitted distribution, which we assume to have a continuous distribution function. If the fit is good, then the
points(z;,y;), j = 1,... ,n, should lie close to the ling = . Figure 5.6 shows the strong deviation

from normality of the log return distribution for 5-year bonds. The fact that the points lie far below
the linex = y for small quantiles and far above this line for large quantiles shows that the empirical
distribution has fatter tails than the fitted normal distribution.

In density plotsthe empirical density of the sample, that is, a Gaussian kernel estimation of the den-
sity from the sample, is compared with the density of the fitted distribution. Figure 5.7 shows the two
densities. It can be clearly seen that the empirical distribution is leptokurtic, that is, it puts more mass
around the origin and in the tails than a normal distribution with the same mean and standard deviation.
In terms of bond prices, this means that relatively small daily price changes and relatively large daily
price changes take place more frequently than the Gaussian HIM model predicts. On the other hand,
price changes of medium size are observed less frequently than in the Gaussian model. Choosing the log
scale for they-axis allows us to study the tail behavior of the distributions. Figure 5.8 compares the log
densities of the empirical distribution and the log density of the fitted normal distribution. The log den-
sity of the normal distribution is a parabola, while the log of the empirical density resembles a hyperbola,

3The normal distribution was fitted by choosing the sample mean and the sample standard deviation.
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Figure 5.6: Quantile-quantile plot: Empirical quantiles of log returns on 5-year bonds against quantiles
of fitted normal distribution. January 1986 to May 1995.
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Figure 5.7: Density plot: Empirical density of log returns on 5-year bonds and density of fitted normal
distribution. January 1986 to May 1995.
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Figure 5.8: Log-density plot: Logarithm of empirical density of log returns on 5-year bonds against log
density of fitted normal distribution. German bond market, January 1986 to May 1995.

at least in the central region. We see that the empirical distribution puts considerably more mass into the
tails than one would expect if log returns were normally distributed. As a conclusion, we can say that,
judged by the visual measures of quantile-quantile plot and density plot, the Gaussian model performs
poorly as a description of the empirically observed daily movements of bond prices.

5.4.2 Quantitative Assessment

In this subsection, we apply two common goodness-of-fit tests to test the null hypothesis that the dis-
counted log returns on zero-coupon bonds are normally distributed.Kdlneogorov distancef two
probability distributions orfIR, B) (given by their distribution function$’ andG) is defined by

di(F,G) := sup |F(z) — G(x)|.

z€R
If G is the empirical distributiortzz of a samplet = (z, ... ,x,) of sizen, this distance can be written
as follows.
i (F,Gz) = max {F( o kEL R )}
KA S = R Tk n 'n k)|

where F(x—) denotes the left limit of the distribution functioR at the pointz, i. e. F(z—) is the
measure assigned to the open interfrabo, ). For a distributionF' without point masses we have
F(z—) = F(z), and consequently
E—1 k
dx (F,Gz) = F -——\—-—-F .
K(F,Gz) = max {Play) ===, = = F(ay) |

1<k<n
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o 20% | 10% | 5% | 2% | 1%
Al—q || 1.08 | 1.23 | 1.36| 1.52| 1.63

Table 5.2: Critical values for the Kolmogorov-Smirnov test if- 40. (From: Hartung (1986))

l—a || 85% | 90% | 95% | 97.5%| 99%
R1-o || 0.775| 0.819| 0.895| 0.995 | 1.035

Table 5.3: Approximate quantiles of the distribution of the modified Kolmogorov-Smirnov stdii$fié
for the test against a normal distribution whose parameters are estimated from the sample via the standard
estimators. (From: Stephens (1986))

The Kolmogorov-Smirnov testses the Kolmogorov distance of the empirical distribution funcfign
and a given continuous distribution functiénhto test whethef was sampled from the distributiafi. It
rejects this hypothesis if the Kolmogorov distance is too large, that is, if

Dn = \/EdK(Fu GT) 2 A17017

with a value)\; _,, that depends on the significance leuel

The situation is somewhat different if one wants to test whether the samyds drawn from a distribu-

tion from a parameterized clags= {F? : § € O}, where®© c IR? for some dimensiod. Then usually

one first estimates the unknown paramétéom the samplé&, say, by maximum likelihood. Then one
calculates the Kolmogorov distance between the empirical distribGtipand the estimated distribution

F?. However, since one has used the sarpte determine the distributiof?, the distribution of the
Kolmogorov distance is not known in general. For the Kolmogorov-Smirnov test on normal distribution,
a formula for the tail probability was derived in Tyurin (1985). Another approach by Stephens (1974)
(see Stephens (1986)) uses the fact that the modified Kolmogorov-Smirnov statistic

(5.4) DMd:— D, - (v/n — 0.01 + 0.85/y/n)

has a distribution that exhibits a very weak dependence. gkpproximate quantiles of this distribution
are given in Stephens (1986), Table 4.7. We reproduce them in Table 5.3.

We analyze the log return data for different maturities. The values,pthat we get ifF’ is a normal
distribution fitted to the respective sampl@are displayed in Table 5.4. (There is virtually no difference
between the values @ and D™ here because the additional ter1.01+0.85/+/n is close to zero for

n = 2342.) Comparison with the critical values given in Table 5.3 yields that the Kolmogorov-Smirnov

Zero coupon bonds with time to maturity [in years]
1 2 3 |4 5 6 7 |8 9 10
D 4.37|386|4.2|482|456|4.08| 4.3| 4.15| 4.01| 3.87
Dmod [1437]3.86|4.2]482|456(4.08| 43]4.15] 4.01] 3.87

Table 5.4: Values of Kolmogorov-Smirnov test statistic: Test of the normal fit of the log-return distribu-
tion for zero bonds with maturities of up to ten years. January 1986 to May 1995.
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Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 6 7 8 9 10
normal fit || 391 | 316 | 366 | 518 | 465 | 351 | 386 | 375| 348 | 331

Table 5.5: Values of? test statistic: Test of the normal fit of the log-return distribution for zero bonds
with maturities of up to ten years. The number of classes was 45; the 90%-, 95%-, 98%, and 99%-
quantiles of they?(44)-distribution are 56.4, 60.5, 65.3, 68.7, respectively.

test clearly rejects the assumption of normality.

The x? test for goodness of fit counts the number of sample points falling into certain intervals and
compares these counts with the expected number in these intervals under the null hypothesis. Following
the recommendation in Moore (1986), Section 3.2.4, we choose a nithber[2n2/%] of equiprobable
classe$.

The log-return datasets under consideration have lemgth2342, soM = 45. We choose thg /M -
guantiles { = 1,... , M — 1) of the fitted distribution as the boundary points of the classes.

Table 5.5 shows the values of tlyé-test statistic for the null hypothesis of normality. As the number of
degrees of freedom, we have chodénwhich is the number of classes minus one. The exact distribution

of the test statistic under the null hypothesis is now known. However, the correct quantiles lie between
those ofx?(44) and x?(42) if the distribution has two unknown parameters that are estimated via the
maximum likelihood. (See Moore (1986), Section 3.2.2.) Choosing the quantil€g4f) thus yields a

test that is too conservative. But even this conservative test rejects the assumption of normality.

5.5 Normal Inverse Gaussian as Alternative Log Return Distribution

In the preceding section, we have seen that normal distributions do not provide a good description of
the log return distributions for zero bonds. In the current section, we study the class of normal inverse
Gaussian (NIG) distributions as an alternative model. For a brief overview of NIG distributions, see
Section A.2.2.

For bonds with different times to maturity, we estimate the parameters of the NIG distribution by the
method of maximum likelihood. Table 5.6 shows the estimated values.

5.5.1 Visual Assessment of Fit

The quantiles of the NIG distributions can be calculated by numerical integration of the density, which is
explicitly known for NIG distributions. This is done by the functiqggh provided by Karsten Prause (see
Eberlein, Ehret, Liibke, Ozkan, Prause, Raible, Wirth, and Wiesendorfer Zahn (1999)). Figure 5.9 shows
the quantile-quantile plot for a maturity of 5 years. The fit is excellent; in particular, comparison with
Figure 5.6 shows the vast improvement that can be achieved by replacing the class of normal distributions
with the class of NIG distributions.

“This is also the default value used by the S-Plus built-in funatitisq.gof , which performsy?-goodness-of-fit tests
for various distributions.
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time to maturity || « I} 0 1

[years]

1 1030 | —7.53 | 0.000384 | 0.17 - 10~*
2 735 —26.4 | 0.000712 | 0.53 - 104
3 492 —21.8 | 0.000851 | 0.71-10%
4 327 | —18.2 1 0.000937 | 0.85- 101
5 309 —25.4 | 0.00116 | 0.000132
6 291 | —25.1 | 0.00159 | 0.000188
7 220 | —18 0.00203 | 0.000214
8 184 | —12.1 | 0.00258 | 0.000199
9 159 | —6.55 | 0.00319 | 0.000143
10 133 | —2.15 | 0.00378 | 0.56 - 10~*

Table 5.6: Estimated parameters of NIG distribution: Maximum likelihood estimates produced by the
S-Plus functiorghe by Karsten Prause (see Eberlein et al (1999)).
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Figure 5.9: Quantile-quantile plot: Empirical quantiles of log returns on 5-year zero bonds against quan-
tiles of fitted NIG distribution. January 1986 to May 1995.
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Figure 5.10: Density plot: Empirical density of log returns on 5-year bonds and density of fitted NIG
distribution. January 1986 to May 1995.

Figures 5.10 (resp., 5.11) show the empirical density (resp., log density) compared with the density
(resp., log density) of the fitted NIG distribution for log-returns on zero bonds with 5 years to maturity.

Obviously the NIG distribution provides a very good fit to the empirical distribution in the center as well
as in the tails.

5.5.2 Quantitative Assessment of Fit

As in the case of the normal fit, we apply the Kolmogorov-Smirnov test angttest. The values of

the Kolmogorov-Smirnov test statistic are shown in Table 5.7. Comparison with the values for the fitted
normal distribution shows an enormous improvement in the quality of the fit. Unfortunately, the distri-
bution of the test statistic of the Kolmogorov-Smirnov test is unknown for the case of NIG distributions
with unknown parameters Therefore we cannot apply a Kolmogorov-Smirnov test here. Furthermore,
when comparing the values of the Kolmogorov-Smirnov statistic in Table 5.7, one must take into ac-
count that the class of NIG distributions has four parameters, that is, two more than the class of normal
distributions. Nevertheless, the values indicate the superiority of the NIG distributions.

Table 5.8 shows the values of thé test statistic. We see that at thé level, we cannot reject the
hypothesis that the log returns are NIG distributed, except for the maturitiearal5 years.

The problem is that the parameters of the NIG distribution have been estimated from the sample. Therefore the standard
Kolmogorov-Smirnov test is not appropriate here. See Kulinskaya (1995) for a deeper discussion of this issue. Of course, one
could try to estimate the quantiles of this statistic by Monte Carlo methods. However, this would involve an enormous effort
since the maximum likelihood estimation of the four NIG parameters is computationally very demanding.
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Figure 5.11: Log density plot: Logarithm of empirical density of log returns on 5-year bonds and log
density of fitted NIG distribution. January 1986 to May 1995.

Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 6 7 8 9 10
normal fit|| 4.37| 3.86| 4.2 | 4.82| 456| 4.08| 4.3 | 4.15| 4.01| 3.87
NIG fit 0.46| 0.56| 0.42| 0.6 |0.84|05 | 0.56|0.73| 0.65| 0.61

Table 5.7: Values of Kolmogorov-Smirnov statistic: Normal fit vs. NIG fit of the log-return distribution
for zero bonds with maturities of up to ten years. January 1986 to May 1995.

Zero coupon bonds with time to maturity [in years]
1 2 |3 4 5 |6 7 8 9 10
NIGfit | 28.4| 46 | 39.3| 64.6 | 75| 55.9| 49.7 | 52.7| 55.7 | 42.2

Table 5.8: Values of? test statistic: Test of the NIG fit of the log-return distribution for zero bonds with
maturities of up to ten years. The number of classes was 45; the 90%-, 95%-, 98%, and 99%-quantiles
of the x?(40)-distribution are 51.8, 55.8, 60.4, 63.7, respectively.
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5.6 Conclusion

We have shown that the Gaussian HIM model under some simple assumptions predicts approximately
normally distributed daily log returns for discounted zero-coupon bonds. However, empirically observed
log returns on bonds turn out to have a leptokurtic distribution. Visually, the inadequacy of the normal
distribution assumption was shown by quantile-quantile plots and by comparing the empirical density
with the density of the fitted normal distribution. Kolmogorov-Smirnov tests ahtests for goodness

of fit clearly reject the hypothesis of normality for the log return distribution. In contrast to this, normal
inverse Gaussian (NIG) distributions provide a much better fit for the distribution of log returns. This
was shown visually by quantile-quantile plots and density plots. The Kolmogorov-Smirnov test statistic
was calculated and turned out to be much smaller than for the normal distribution fit. However, since
the limiting distribution of this statistic is not known for samples from a NIG distribution with unknown
parameters, we were not able to determine the critical region for this test. At significance level 2%, the
test does not reject the assumption of a NIG distribution for eight of the ten times to maturity considered.
From the point of view of data analysis, we therefore recommend replacing the driving Brownian motion
in term structure models by more general Lévy processes such as the NIG Lévy process.
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Chapter 6

Lévy Term Structure Models: Unigueness
of the Martingale Measure

6.1 Introduction

In Chapter 1, we studied a generalization of the Samuelson (1965) stock-price model. Brownian motion
was replaced by a more general exponential Lévy motion. Every non-Brownian Lévy process has jumps,
and if the jump-height distribution allows for infinitely many jump heights while there is only a finite
number of underlying securities, the model is incomplete. Incompleteness is reflected by non-uniqueness
of the martingale measure. In other words, the condition that discounted security prices be (local) mar-
tingales is not sufficient to fix a unique equivalent probability meagureSince derivative prices are
formed as expectations under an equivalent martingale measure, non-uniqueness of the martingale mea-
sure implies non-uniqueness of derivative prices. This means that the model for the underlying alone
does not suffice to uniquely determine derivative prices. An extreme example was given by Eberlein
and Jacod (1997b). They examined stock price models driven by general pure-jump exponential Lévy
processes with infinite variation. In this context, the price of European call options is completely unde-
termined even though the price dynamics of the underlying are known: The range of prices one may get
by choosing an equivalent martingale measure is identical with the trivial no-arbitrage interval.

The underlying securities in term structure modeling are zero coupon bonds. These are characterized
by a real numbef” which marks the time when they are paid back. At this time, the holder of the zero
coupon bond receives an amount of one currency unit. Since generally the set of maturity’ dates

an interval, we have an infinitude of securities in the market. Consequently, we may expect that even
when the driving Lévy process has infinitely many possible jump heights, the martingale measure is
unique. We will show below that in this is indeed the case for the Lévy term structure model introduced
in Chapter 4. This is the statement of the main Theorem 6.9 proved below. Thus once the model is fixed,
derivative prices are fixed as well. This parallels the situation in the Samuelson (1965) stock price model
that led to the famous option pricing formula of Black and Scholes (1973).

The chapter is structured as follows. Section 6.2 reviews a general term structure model presented in
Bjork, Di Masi, Kabanov, and Runggaldier (1997). In Section 6.3, we show that the term structure
model presented by Eberlein and Raible (1999) is a special case of this general term structure model.
Section 6.4 presents some results from the general theory of stochastic processes as displayed in Jacod
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and Shiryaev (1987). Using the generalization of the Heath, Jarrow, and Morton (1992) drift condition
by Bjork et al. (1997), we prove the central result of this chapter, namely Theorem 6.9. This is done in
Section 6.5. Section 6.6 concludes with a short remark on the relationship between completeness and
uniqueness of the martingale measure.

6.2 The Bjork/Di Masi/Kabanov/Runggaldier Framework

In Section 5 of Bjork, Di Masi, Kabanov, and Runggaldier (1997), the following forward rate dynamics
are considered.

(6.1) dif(t,T) = a(t, T)dt + o(t, T)dW; + / O(t,z, T)(u(dt,dz) — v(dt,dx)).
X

Here, W is a standard Brownian motion iR", (X, X’) is a Lusin space, and is aP ® X-o-finite
optional random measure such that its compensasocontinuous. It is assumed that the coefficient
functionsa(w,t,T'), o(w,t,T), andd(w, t, z, T') are continuous functions @f. Furthermoreq(w, t,T')
ando(w,t,T") have to beP ® B -measurable, andlis assumed to b ® X ® B,-measurable.

In addition, the following integrability conditions have to be satisfied: For all finged7 > ¢,

T [T T [T
/ / la(u, s)| ds du < oo, / / o (u, 8)|* ds du < oo,
0 Jt 0 Jt
T T
/ / / 16(u, x, 8)|*ds v(du, dz) < co.
0 JXJt

By Bjork et al. (1997), Proposition 5.2, the bond price processes in this model are given by

and

P(t,T) = P(0,T)exp (/Otr(s)ab) exp </0t As(T)ds + /Ot Ss(T)dWs

+/Ot/X D(s,z,T)(u— v)(dsadl’)>,

with the notation

T

(6.2) A(T) := —/t a(t, s)ds
T

(6.3) D(t,z,T) = —/ o(t,x, s)ds,
tT

(6.4) Sy(T) = — /t o(t, 5)ds

!For a definition of the compensator of an optioRab X -o-finite random measure, see Jacod and Shiryaev (1987), Theorem
11.1.8, where a proof of existence is given.

110



6.3 The Lévy Term Structure Model as a Special Case

6.3.1 General Assumptions

Let L be a Lévy process, that is, an adapted stochastic process with stationary independent increments
which is continuous in probability. According to Protter (1992), Theorem 1.30, for every Lévy process
there is a unique cadlag version. We will always work with this version. This enables us to use the
general theory of stochastic processes as presented in Jacod and Shiryaev (1987), where semimartingales
and their components, i. e. local martingales and processes of finite variation, are always assumed to
have cadlag paths.

Assume thatl; possesses a moment generating function on some open interwab) containing
[—M, M], with M > 0. By Lukacs (1970), Section 7.2, this implies that has ananalytic charac-
teristic function Thus, the characteristic function(u) of L; can be extended to an analytic function
on the vertical stripR — i(—a,b) C €. We will denote this extended characteristic function by the
same symbok. Thecumulant generating function(u) := In E[exp(uL1)] is a (real) analytic function,
because it is the restriction of the analytic function- In y(—iz) to the real lin€?

Let (Q, F, P) be a complete probability space, and Mtbe theos-field generated by the null sets.
Assume that the filtratio(/7; ) o<:< - IS generated by, andV in the sense of Jacod and Shiryaev (1987),
1.2.12.

6.3.2 Classification in the Bjork/Di Masi/Kabanov/Runggaldier Framework

In Chapter 4, we have discussed some properties of the Lévy term structure model of Eberlein and Raible
(1999). In this model, the price of a zero coupon bond maturing atTiméth 7" € (0, 7*] is given by
the stochastic process

t t
(6.5) P(t,T) = P(0,T) exp [ /0 (r(s) — R(S(s,T)))ds + /0 Z(s,T)dLS] ,

whereL is a Lévy process with finite moment generating function on some intervalb) with a, b > 0.
The volatility structureX(s,T') is assumed to be deterministic and continuously differentiable, with
X(t,t) =0VtandX(t,s) >0 (t < s). Itis required to be bounded by the constaft< min(a,b).

Remark: We use a slightly different notation here than in Chapter 4: The volatility structure of zero
bonds is denoted b¥ (¢, T") instead ofo(¢,7'). This is because we want to refer to Bjork, Di Masi,
Kabanov, and Runggaldier (1997), whetg, T') is the symbol for the forward rate volatility.

The bond price model (6.5) can be equivalently stated in terms of forward rateq. Eof0,7*) the
forward rate procesg(-,T") has to satisfy the stochastic differential equation

(6.6) def(t,T) = 6 (3(t,T)) 0 5(¢t, T)dt — 05(t, T)d Ly,

where 9,3 denotes the derivative of the functid(¢,7") with respect to the second argument. This
forward rate formulation allows us to prove the next lemma.

Lemma 6.1. The class of term structure models (6.5) is a subclass of the class considered in Bjork et al.
(2997).

2By In x(z) we understand that determinationlafy (z) which is continuous and vanisheszat 0.
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Proof. Write the integrable Lévy procedsin its canonical decompositigrihat is?
(6.7) Ly = bt + /Wy + x + (uF — vF),.

We get the forward rate version (6.6) of the Lévy term structure model of Eberlein and Raible (1999) by
the following specification of the model (6.1):

alt,T) = &3(t, T) [v (S(t,T)) — b,
T):=

( —0aXi(t, T)\/E,
(t,z,T) := —03(t, T,
(X, %) = (R, BY),
p=p* and
v=uvk

By definition, the compensater” of the random measure of jumps, is the third characteristic of the
Lévy processL. It is given byv(dt,dz) = dtF(dx), whereF is the Lévy measure of the infinitely
divisible distribution ofL;.

Using the above specifications far o, 6, 1, andv and the conditiort(¢,¢) = 0 V¢, the functionsA, D,
andS defined in (6.2)-(6.4) above become

T
AT = —/t a(t,s)ds = X(t,T)b — n(E(t,T)),

T
D(t,z,T) = —/ o(t,z,s)ds = X(t, T)x,
t

T
S{(T) = —/t o(t,s)ds = X(t,T)/c.

6.4 Some Facts from Stochastic Analysis

Let X = (X?),<4 be ad-dimensional semimartingale with characteristié C, ) relative to a given
truncation functionh, with continuous martingale paX¢ relative to P, and withC% = ¢ . A, A
increasing and predictable. Then we have the following Girsanov theorem for semimartingales (Jacod
and Shiryaev (1987), 111.3.24):

1
Theorem 6.2. Assume thaf) & P, and letX be as above. There existR® B}r—measurable nonneg-
ative functionY” and a predictable proces$ = (3');<, satisfying

|h(x)(Y — 1) * 1y < oo Q-a.s. fort € IR

3The canonical decomposition of a special semimartingalis the unique decompositiok = X, + M + A, with the
initial value Xy, a local martingale\/ and a predictable process of bounded variationvhere both\/ and A start in0, that
is, Mo = 0 and Ao = 0. By Jacod and Shiryaev (1987), Corollary 11.2.38, we ha¥e= X + z * (1~ — v~), whereX¢ is
the continuous local martingale part &, .~ is the random measure of jumps Bfandv* is the compensator gf*. The
stochastic integral with respect to the compensated random measure exists Bédawsspecial semimartingale and so by
Jacod and Shiryaev (1987), Proposition 2.2%al? A |z|) * v has locally integrable variation.
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‘Zc"jﬁj‘ Ay < 00 and( > ﬁjcﬂ“ﬁ’“) Ay < 0 Q-a.s. fort € R,

Jj<d Ji:k<d
and such that a version of the characteristics¥ofelative to() are

B'=B+ (ngdcijﬁj) A+ R ()Y 1) xv

By Theorem 6.2)Y and 3 tell us how the characteristics of the semimartingale transform under the
change of measur® ~+ (. Since we assumed that the filtration is generated by the Lévy process
L, Y and g tell us even more—they completely determine the change of the underlying probability
measure. The reason for this is displayed below. By Jacod and Shiryaev (1987), Theorem 111.4.34, the
independence of increments bfimplies thatevery local martingaléV/ has the representation property
relative to L, in the sense of Jacod and Shiryaev (1987), Definition 111.4.22. This means that every local
martingaleM can be represented in the form

(6.8) M = My+ H - L+ W (uF — vF)
with H € L2 (L¢) andW € Gioc(pl).

If Q 12<C P, there is a unique (cadlagy-martingaleZ such thatZ; = dQ,/dP, for all ¢ (cf. Jacod

and Shiryaev (1987), Theorem 111.3.4.) Itis called thensity process ap, relative toP. SinceZ is a
martingale, it can be represented in the form (6.8). Jacod and Shiryaev (1987), Theorem 111.5.19, provide
explicit expressions for the integranédsand W in this case.

~

Y —
(6.9) Z=2Zy+(Z2.8) - L°+ Z_ (Y 1+ TSB{M}) x (ul — b,

Here,3 (resp.,Y’) are the predictable process (resp., function) whose existence follows by the Girsanov
theorem for semimartingales. The predictable processeslY are defined by

(6.10) ar(w) = vE(w; {t} x RY),

{fm w,t,)v(w; {t} x dz) (if the integral is well-defined)

(6.11) Yi(w) oo otherWISe

In our casel is a Lévy process. This implies a considerable simplification of equation (6.9).

1
Lemma 6.3. Let L be a Lévy process under the measireConsider another measurg < P. Then
the density proces8, = dQ/dP has the following representation as a stochastic integral.

(6.12) Z =20+ (Z_B) - L°+ (Z_(Y — 1)) = (u* —v").

“These two set of integrands are defined in Jacod and Shiryaev (1987), I11.4.3 resp. Definition 11.1.27 a.
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Proof. L has stationary and independent increments, so
(6.13) v({t} xIR)=0 forallte R;.

This follows from Jacod and Shiryaev (1987), 11.4.3, and the fact that for processes with independent
increments, quasi-left-continuity is equivalent to condition (6.13). Tches0 andY = 0, and equation
(6.9) simplifies to (6.12). O

If 5 =0andY = 1, then obviously the density process (6.12) vanishes up to indistinguishability. The
conditions ong andY can be relaxed somewhat, admitting them to be different from zero on some null
sets. We will make this precise in Lemma 6.7 below. In order to prove this, we need the following
two propositions. ﬂ%c denotes the class of locally square integrable local martingales; see Jacod and
Shiryaev (1987), Definitions 1.1.33 and 1.1.41.]

Proposition 6.4. Consider a local martingaleX € H2.. Let H be a predictable process such that
H? . (X, X) = 0 up to indistinguishability. Then the stochastic integfal X exists and

H - X=0

up to indistinguishability.

Proof. According to Jacod and Shiryaev (1987), Theorem 4.40 d,
(H-X,H-X)=H*-(X,X),

and this process vanishes up to indistinguishability. This means that the local marfifigateH - X
is orthogonal to itself, and we havd = M, = 0 up to indistinguishability. See Jacod and Shiryaev
(1987), Lemma 4.13 a. O

Remark: Since continuous local martingales are locally bounded, the class of continuous local martin-

gales is contained i .. Thus Proposition 6.4 applies to all continuous local martingales.

Proposition 6.5. If V' € Goc(pe) with v({V' # 0}) = 0 P-a.s., then for the stochastic integrals with
respect to the compensated random meagurer we have

Vsx(p—v)=0

up to indistinguishability.
Proof. According to Jacod and Shiryaev (1987), Theorem 11.1.33 a, we Wavéu — v) € HZ,, with

(6.14) (Ve (u=v),Va(p—v))=(V-V)sm+ Y (1-a) (Vi)
s<t

wherea and V are defined analogously to (6.10) and (6.11). Fwalmost allw, a.(w) = 0 and
V(w, -,-) = 0. This implies that the predictable quadratic variation (6.14\bf:= V * (1 — v) is
equal to0, that is, the local martingal®/ is orthogonal to itself. By Jacod and Shiryaev (1987), Lemma
1.4.13 a,M = My = 0 up to an evanescent set. O
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Corollary 6.6. If VW € Gloc(pr) Withv({V # W}) = 0 P-a.s., then
Vis(p—v)=Wsx(p—v)
up to indistinguishability.

Proof. Gioc(1t) is a linear space and the mappitig— V x (u — v) is linear onGioc(x) up to indistin-
guishability (cf. Jacod and Shiryaev (1987), remark below 11.1.27.) H&éheelW € G)oc(1), and

V(=) = W (—v) = (V= W) * (u— ).

But by Proposition 6.5, this vanishes up to indistinguishability. O

The following lemma uses Propositions 6.4 and 6.5 to examine a change-of-measure problem.

Lemma 6.7. Let L be a Lévy process with respect to the probability meagurAssume that the stochas-
tic basis is generated b and the null sets. Le®) be a probability measure which is locally absolutely
continuous w.r.tP, and letg andY be the predictable process (resp. function) associated according to
Theorem 6.2 with the change of probabili®/~ Q. If [ 3(w, s)d(L¢, L¢) = 0 P-almost-surely and
v(w;{Y (w,-,-) # 1}) = 0 P-almost-surely, the) = P.

Proof. According to equation (6.12), the conditions imply that= Z, up to indistinguishability. But
Zy =1 P-a.s., since under the assumptions abdyesonsists only of null-sets and their complements.
ThusZ = Z; =1 P-a.s. O

In addition to this result from the theory of stochastic processes, we need the following lemma. It states
that a measure ofR is uniquely characterized by the values of its bilateral Laplace transform on an
interval of the real line.

Lemma 6.8. LetG(dz) and H(dz) be measures ofR, B!). If
/ exp(ux)G(dx) :/ exp(ux)H (dx) < oo
R R

for all  from a non-empty finite intervdk, b) C IR, thenH = G.

Proof. Setc := (a +b)/2,d := (b — a)/2, and define measurég and H' by
G'(dz) := exp(cr)G(dx), H'(dz) := exp(cz)H (dz).

Then

(6.15) / exp(vz)G' (dx) :/ exp(vz)H'(dz) < oo

R R
for all v € (—d,d). In particular, takingp = 0 shows thatG’ and H' are finite (positive) measures
with equal mass, and without loss of generality we can assume that this miasEhas we can apply
the theory of probability distributions. Equation (6.15) says that the moment generating functi@hs of
andH' coincide on the interval—d, d). By well-known results about moment generating functions (cf.
Billingsley (1979), p. 345), this implies th&t' = H’ and hence> = H. O
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6.5 Uniqueness of the Martingale Measure

Theorem 6.9. In the Lévy term structure model (6.5), there is no meagurg P with Q % P such

that all bond prices, when expressed in units of the money account, are local martingales. Thus—under
the paradigm of martingale pricing—prices of integrable contingent claims are uniquely determined by
this model and can be calculated by taking conditional expectations under

loc

Proof. We proceed as follows: We assuide~ P is a (local) martingale measure for the bond market.
Using Proposition 5.6 of Bjork et al. (1997), we show that the characteristic triplet of the prbcess
which is a Lévy process under the measHreas the same unde? and under). Then Lemma 6.7 shows
that the two measures are equal.

Bjork et al. (1997), Proposition 5.6, states the following: If a meaguiga (local) martingale measure

which is locally equivalent taP, then there exist a predictable processvith values inIR" (that is,

the state space of the Brownian motitin) and aP ® X'-measurable functiot” = Y (w,t,z) > 0

satisfying the following integrability conditions (6.16) and (6.17) as well as conditions 1 through 4 below.
(The compensator of the jump measure is assumed to be continuous with respect to Lebesgue measure,
v(ds,dx) = As(dz)ds.) The integrability conditions op andY are

t
(6.16) / lps|?ds < 0o fort < oo P-as,
0

t
(6.17) and // (VY (s,z) — 1)2)\3(dx)d8 <oo fort<oco P-as.
0Jx
The martingale conditions are as follows.

1. The process
t
Wéf = Wi —/ psds
0
is a standard Brownian motion with respecto
2. The random measuté := Y v is theQ-compensator ofi.

3. The following integrability condition is satisfied for all finitand 7"
t
(6.18) // (exp(D(s,:r,T)) - 1) U p(s,,1)>n2yY (8, 7)As(dr)ds < o0 P-a.s.
0Jx
4. For anyT it holds thatd Pdt-almost everywhere

ar(T) + S¢(T)er + /X [(exp(D(s,z,T)) = 1)Y (t,2) — D(s,z, T)| \(dx) = 0

Here a;(T) is defined bya;(T) = Ay(T) + %|St(T)|2. This is a generalization of the Heath,
Jarrow, and Morton (1992) drift condition to the case of jump-diffusion models.

The functionsy andY come from the Girsanov theorems for semimartingales and random measures
(see Theorems 6.2 and Jacod and Shiryaev (1987), Theorem I11.3.17, respectively.) Bjork et al. (1997)
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consider very general random measureand v, so they need the more general Girsanov theorem.

In the case of the Lévy model presented in Eberlein and Raible (1899 the jump-measure of a
semimartingale. Consequently we can rely entirely on the Girsanov theorem for semimartingales here.
The characteristi€’ can be represented &5= ¢ - A, with ¢ > 0 predictable and! increasing. Sincé,

is a Lévy process, we can choade = t and¢ = ¢, with the constant from (6.7).

The proof of Bjork et al. (1997), Proposition 5.6, examines the prozgss; that describes the dis-
counted price process of tiiebond. By assumption, this process is a local martingale under the measure
@, and so is the stochastic integrdl := Z () - Z(¢9). Trivially, M is a special semimartingale, and

the predictable finite-variation process in the canonical decomposition is zero. Bjork et al. (1997) give
an explicit formula for this process:

(6.19) /0 [as() + Ss(F)ps]ds + /O/X[(eD(s’x’ﬁ) — 1Y (s,x) — D(s,z,9)]v(ds,dx) = 0.

As usual in the theory of stochastic processes, this equality is to be understood up to indistinguishability:
For eachy, there is a sefv (1) C Q of P-measure zero such that the paths of the process are zero for
all w € Q\N(¥). Below it will turn out to be convenient to differentiate this equation with respect to
the variabled while keepingw fixed. But for this to be possible, relation (6.19) must hold for any
which is not necessarily true because the exceptiotVgét) may depend om. It is tempting to work
around this problem by removing the “null setN(}) from Q. But since the set of repayment dates

is uncountable, uniting alN () might result in a set of strictly positive measure, or in a set that is not
measurable at all. Therefore we will have to use a different approach below, using the contirtity of

Given anyd € [0, T*], equation (6.19) is valid far € [0, 9] andw € Q\N(9). In order to avoid the prob-
lems mentioned above, we choose a countable dense sbiluget, 7] and defineN := Uyce N (9).
For the arguments to come, we fix an arbitrarye Q\ V.

With the coefficients of the Lévy term structure model inserted into equation (6.19), and fixbd as
described, we get

t
1
/ (S5, )b — w(S(s, 9)) + 2 5(s,9)% + 25, 0) /s )
0
+ / (™7 _1)Y (s, 2,w) — 2(5,19)$]F(d$)] ds=0
R
forall ¥ € © and allt € [0,v]. Since the integral with respect tas zero for all¢, the integrand must be
zero for \!-almost everys. We can choose a Lebesgue null 88tc [0, T*], not depending o, such
that
(6.20) X(s,0)b — k(%(s,9)) + %E(s,ﬂ)zc + 2(s,9)V/eps(w)
- / (X7 _ 1Y (s, 2,w) — B(s, 0] F(dx) = 0
R

forall ¥ € © and alls € [0,9]\N’. Note thatV’ depends on the value we have fixed above.

Equation (6.20) may be written in the form

(6.21) f(X(s,9),s,w) + /IRg(E(S,ﬂ),x,Y(s,x,w))F(dx) =0

forall¥ € © and alls € [0, 9]\N’,
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with the functionsf andg defined by

flo,s,w) :=ob— H(U) + %ch—i- ov/eps(w),
g(o,z,y) := (7" — 1)y — ox.

SinceT’ — X(s,T) is continuous for fixed, it maps the se® onto a dense subsét, C X(s, [s,T7]).
By assumption}(s,s) = 0 andX(s,t) > 0 (s < t < T™*), so that intX(s, [s,7*])) = (0, a) for some
a = as > 0. For any fixeds € [0,7*)\ N’ we have, by equation (6.21),

f(d, s,w) +/ 9(d,z,Y (s, z,w)) F(dx) =0 Vi es, T*]NO, dEe Ds.
R
The next proposition shows that the function

o f(a,s,w) —l—/IRg(J,x,Y(s,x,w))F(dx)

is twice continuously differentiable and that we can interchange differentiation and integration. As we
will see below, this implies the equality of the bilateral Laplace transforms of the meagurégr) and
Y (s, z,w)r?F(dzx).

Proposition 6.10. Let F'(dx) be the Lévy measure of an infinitely divisible distribution. i.et) be a
strictly positive function ofiR such that there exist an open inter\al a) and a dense subsét C (0, a)
with

(6.22) /IR (V@) - 1)°F(dz) < oo,

6.23) [t  lafyPlaa) < oo

(6.24) and /]R(e“’*” — Dlypsimayy(2)F(dr) < oo Vu € D.
Then for any constants ¢, and, the function

(6.25) u s ub — K(u) + %u2c + up + /IR (" — 1)y(x) — ux]F(dz)

is twice continuously differentiable @f, a). Its first and second derivative is given by

(6.26) urb— K (u) +uc+p+ / [ - x-y(z) — z]F(dx)
R
(6.27) and w— —k"(u) +c+ / x2e"y(x) F(dx), respectively.
R

Proof. Obviously, all the terms in (6.25) but the integral are twice continuously differentiable. Below
we will prove that the integral term is twice continuously differentiable, and that differentiation and
integration can be interchanged there. This proves that the first two derivatives are given by (6.26) and
(6.27), respectively.

We have to show that — [ [(e"* — 1)y(x) — ux]|F(dx) is twice continuously differentiable dif), a).
Since differentiability is a local property, it suffices to prove differentiability on any subsa) C (0, a)
with 0 < u < @ < a. For the rest of the proof, we fix such an interval.
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The first derivative. It is well known that an integral whose integrand depends on a parameter is dif-
ferentiable with respect to this parameter, with the derivative being the integral of the derivative of the
integrand, if the following three conditions are satisfied (cf. Bauer (1992), Lemma 16.2.)

(D-1) For all parameter values, the integrand has to be integrable.
(D-2) The integrand has to be differentiable in the parameter.

(D-3) There has to exist an integrable bound for the derivative of the integrand that does not depend
on the parameter.

The first two points are clearly satisfied here. We denotg(lbyx) the integrand in (6.25). The first
derivative ofg(u, t) with respect ta: is given by

Og(u,x) = x - (exp(uz)y(x) —1).
In order to verify (D-3), we have to find afi(dz)-integrable functiorG(z) that satisfies

sup [d1g(u, z)| < G(x).

u€(u,u)
Below, in equation (6.29), we define a functiéf(z, y) such thatd (x, y(z)) is F'(dx)-integrable and

sup ‘x-(e“xy—l)‘SH(x,y) forx € R, y > 0.
u€(u,a)

ThenG(x) := H(z,y(x)) is the desired bound fa#; g(u, ). The following lemma will be used to
prove that the functiod/ (z, y) defined in (6.29) indeed satisfies the condition that, y(x)) be F'(dx)-
integrable.

Lemma 6.11. Let F'(dz) andy(z) be as in Proposition 6.10. Then the following functions Bfex)-
integrable over any bounded interval:

z — 22, z — y(z)z?.

On the other hand, the following functions a&dx)-integrable over any interval that is bounded away
from zero.
ez, zey()

Finally, for everyu from the dense sd? the function
x +— exp(uz)y(z)

is F'(dx)-integrable over any interval of the forfg, co) with £ > 0.

Proof. The integrability ofr? and|z| over the respective intervals is trivially implied by condition (6.23).

For arbitrary numbers € IR, w > 0, the following estimation holds.

(w =)o = |(Vw —1)* + 2v/w — 2[[v|
< (Vw = 1)?Jv] + 2|y — 1[o|
< (Vw = 12| + (Vo = 1)? + v?
(6.28) < (Vw — 1)%(Jv] +1) + 02
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Hence we have
y(:z:)av2 = (y(z) — l)aL‘2 +22< ( y(z) — 1)2(9L‘2 +1)+ 2t + 22,

Since the functions: — (22 + 1), z — 2%, andz — 22 are bounded on any bounded interval, the
integrability ofz — y(z)z? follows by condition (6.22).

For the functiony(z), we have

y(x) < Algy)<ay + V(@) — 1)?Agy)say,
which by (6.22) and (6.23) i8'(dx)-integrable over any set bounded away from zero.
Finally,
e y(x) = (" = Dlfuesmayy(@) + (€ = Dljye<inayy () + y(2),
with 0 < (e"* — 1) - Tgyp<imoy < 1forz > 0. Hence
e y(x)| = (" = Djuemmayy(@) + 2y(2),

which is integrable ovef¢, o) because of condition (6.24) and becayse) was already shown to be
integrable over any interval bounded away from zero. O

Now we proceed with the proof of Proposition 6.10. We define a fundtién, y) that is a bound for the
function (z, y,u) — x - (e**y — 1), uniformly for u € (u,@). For this, we choose sonde> 0 such that
u+6 € D. The functionH (z, y) will be defined piecewise for € (—oco, —1/u), z € [-1/u,1/u], and

x € (1/m, o), respectively. We use the following estimations.

1. Forx € (—oo, —1/u),

|z(exp(uz)y — 1) < |z|exp(uz)y + |z|
< |z|exp(—ulz|)y + ||
S Cly + |l‘|,

sinceu > 0 implies that|z| exp(—u|z|) is bounded by some constafit.

2. Forx € [-1/u,1/q], we have|z| < 1/u anduz < u/m < 1. Hence with the aid of relation
(6.28), we get

|z (exp(uz)y — 1)| = [][exp(uz) — 1+ (y — 1) exp(uz)]
< ||| exp(uz) — 1] + |y — 1]]x| exp(uz)

1
< |z|le - uz| + (Vy — 1)2(5 + 1) + |a;|2

< (@e + 1)|z* + (Vy — 1)2(% +1).

3. Forz € (1/u,00),

|z(exp(ur)y — 1)| < |z|exp(uz)y + |z| < |x|exp(ur)y + ||
< |z| exp(—dz) exp((@ + §)z)y + |z|
< Cyexp((T+ 9)z)y + |z,

whereCy > 0 is a bound forr — zexp(—dx) onz > 0.
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Now we defineH (x, y) by

Cry + |z (7 € (=00, —1/u)),
(6.29) H(z,y) =4 @+ +(7-1(;+1)  (ze[-1/u1/a]),
Crexp((T+ 6)x)y + |z (z € (1/m,0)).

Lemma 6.11 yields that — H (z,y(x)) is F'(dx)-integrable. Hence we have proved that the integral in
(6.25) is continuously differentiable, and that we can interchange differentiation and integration.

The second derivative. The proof here is completely analogous to the proof for the first derivative.
Again we use the fact that an integral is differentiable with respect to a parameter of the integrand if the
three conditions (D-1), (D-2), and (D-3) hold. The first two conditions are obviously satisfied. For the
proof of (D-3), we only have to find some uniform bound on the second derivative. In order to do this,
we show thaly; (u, z) = 22 e“Ty(x) is bounded, uniformly in for u € (u, %), by a functionH (z, )

that turns into arF'(dz)-integrable function when we substitujér) for y..

Again fix a valueé > 0 with @ + 6 € D. We defineH (z,y) piecewise inz, using the following
estimations.

1. Forz € (—o0, —1/u),
2% exp(uz)y| < |zPe™ly < Cyy,
wherez — |z|2e~%*l is bounded by some constafi§ > 0 because. > 0.
2. Forz € [—1/u, 1/}, we have

u
—l<——<ux<
U

<1,

gl

because: € (u,u) by assumption. Hencg* < e, and thus
a® exp(uz)y < a*-e-y.

3. Forz € (1/w@, 0),

z? exp(ux)y < z% exp(uz) - y
< 2® exp(—dz) exp((@ + 8)z) - y

< Cy-exp ((ﬂ + 5)x) Y,
whereCy > 0 is a bound for: — z2¢7%% on {2 > 0}.

The functionH (z, y) is defined as follows.

Csy (z € (=00, —1/u)),
H(z,y) == z’ey (z € [~1/u,1/7]),
Cy-exp((@+6)x) -y (x € (1/u,00)).

Again Lemma 6.11 yields that— H(z,y(x)) is F'(dx)-integrable. Hence the integral in (6.25) is twice
continuously differentiable, and we can interchange differentiation and integration. This completes the
proof. O
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We now apply Proposition 6.10 to our change-of-measure prolitem . Condition (6.16) implies
that for P-a. e.w, ps(w) < oo for A(ds)-a. e.s € IR. Condition (6.17) implies that faP-a. e.w

/ (VY (s,z,w) — 1)2F(dx) < 0 for A\(ds)-a. e.s € R.
R
Equation (6.18) implies that faf € © and P-a. e.w,
/ (exp(E(s, ¥)z) — 1)]1{2(57,9)m>1n2}Y(5,x,w)F(daz) < oo forA(ds)-a. e.s.
R

Fixing w € Q\N outside the three null sets corresponding to the three conditions above, and fixing
s outside the corresponding Lebesgue-null sets, we can apply Proposition 6.10 with the fyielion
defined by

y(x) =Y (s,z,w).

This yields that the function

(6.30) o+ ob— k(o) + %‘0‘20 + oveps(w) + /

[(e” - 1)Y(s,z,w) — ox|F(dzx)
R

is twice continuously differentiable. By equation (6.20) the function vanishes forD;. SinceDy is
dense in some interval, a), the function (6.30) has to vanish on the whole intef¢ak). Hence the
first and second derivative of this function are zero on this interval:

(6.31) —K'(0) + oc+ ps(w) + / (7Y (s,z,w) — D)z F(dzx) =0
R
(6.32) and — k(o) +c+ / 7 2%Y (s, x,w)F(dx) = 0
R

forall o € (0,a), respectively.

By assumption, the measufreitself is a martingale measure. Consequently, the chdidesz,w) = 1
and ps(w) = 0, corresponding to the trivial change of measire-- P, satisfy equations (6.31) and
(6.32). Equation (6.32) yields

/ e’ 2’ F(dx) = k" (0) — c,
R
and hence

/ 7 2%Y (s, x,w)F(dx) = / e’ 2?F(dz) foro € (0,a).
R R

Because the measuré F'(dx) is uniquely characterized by the values of its bilateral Laplace transform
on any non-degenerate interval (see Lemma 6.8), we Wayer,w) = 1 for F(dx)-almost allz € IR

and for alls € [0, 7*]\N'. Equation (6.31) then yields,(w) = 0 for s € [0, T*]\N".

With these conditions satisfied, we ggt= P by Lemma 6.7. Hence there is no meas@rez P with

loc

@ ~ P such that all bond prices are local martingales when expressed in units of the money account.
O
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6.6 Conclusion

Using a drift condition of the Heath, Jarrow, and Morton (1992) type, we have shown that the martingale
measure is unique in the Lévy term structure model of Eberlein and Raible (1999). However, as was noted
by Bjork, Di Masi, Kabanov, and Runggaldier (1997), in models with a continuum of securities there is

a marked difference between completeness and uniqueness of the martingale measure, the latter being a
strictly weaker condition in general: Even with measure-valued strategies as introduced in Bjork et al.
(1997), uniqueness of the martingale measure does not imply that one can hedge every contingent claim.
Instead, the right concept to replace completeness in this context seemapprbeimate completeness

as defined in Bjork et al. (1997), section 6.3. Approximate completeness means that every (bounded)
contingent claim can be approximated i by final values of admissible strategies. Under certain
conditions on the compensator of the driving random measure, uniqueness of the martingale measure is
equivalent to approximate completeness (see Bjork et al. (1997), Theorem 6.11.) In this sense, the Lévy
term structure model of Eberlein and Raible (1999) is approximately complete.
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Chapter 7

Lévy Term-Structure Models:
Generalization to Multivariate Driving
Lévy Processes and Stochastic Volatility
Structures

7.1 Introduction

The Lévy term structure model of Eberlein and Raible (1999), which was presented in Chapter 4, is
driven by a one-dimensional general Lévy process. This allows for a more realistic modeling of the
return distribution of zero coupon bonds. The volatility structure employed in this model is deterministic.

Empirical evidence suggests that term structure movements can be captured even better by a multi-factor
model. Furthermore volatility seems to fluctuate randomly in financial markets, so there is need for term
structure models featuring a multivariate driving process and stochastic volatility. In what follows, we
present such a model as a generalization of the Lévy term structure model described in Chapter 4. As in
this chapter, the model is based on a driving Lévy process, which preserves analytical tractability because
of the simple structure of Lévy processes.

The chapter is structured as follows. In section 7.2, we show in general how one can construct martingales
of an exponential form. In particular, this is applied to martingales driven by Lévy processes. As a
corollary, we verify the martingale condition for a multivariate stochastic-volatility term structure model.
Section 7.3 shows how one can construct the model in such a way that forward rates are well defined.
An explicit expression for the forward rate processes is derived. Section 7.4 concludes.

7.2 Constructing Martingales of Exponential Form

Definition 7.1. Let X be an adapted stochastic procesX. belongs to class O the family of ran-
dom variables( X )7 stopping timeiS Uniformly integrable. X belongs to class LDf for eacht € IR,
(X7)7 < ¢ stopping timelS uUniformly integrable.
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For the convenience of the reader, we cite the following lemma, which does not seem to be standard
textbook material.

Lemma 7.2 (Loéve (1963), Sec. 25.1.2)et X,, — X in L? for p > 1. Then for any-algebrag c 2
we haveF [ X,|§] — E[X|§]in LP.

Proof. Jensen's inequality for conditional expectations yields

E[E[X,|8] - E[X|S][P] = E[|E[X, - X[§]["]
SE[E[Xy - XP[S]]=E[Xs - XP],

where the right hand side tends to zero by assumption. O

The following proposition was formulated in Elworthy, Li, and Yor (1999), Proposition 2.2. We feel that
the proof given there is incomplete because it uses a formula (namely, formula (2) in their article) that
was only proven focontinuoudocal martingales. We give an alternative proof here.

Proposition 7.3. A local martingale()M;) such thatE [|Mj|] < oo and that its negative pard/~ be-
longs to class LD is a supermartingale. It is a martingale if and only [f\/;] = E [M,] for all ¢ > 0.

Proof. Let (T},),en be a localizing sequence of stopping times, thafljs,7 oo almost surely, with
M a7, being a uniformly integrable martingale for all € IN. Fix an arbitrary pairs,t € R4 with
s < t. Then obviously the following sequences converge almost surely-asx.

(7.1) M

+ —
o, — M, M

ot — My, and Mgap, — M.

For alln € IN, we have by assumption
(7.2) Mnt, = E[Mint, | Fo) = E [M}\p | Fs] = E [ My, | Fsl -

The stopping timest A T,,),eN are bounded by < co. SinceM ~ belongs to LD, this implies that
(M7, Jnen is a uniformly integrable sequence. Hence almost sure convergence entails convergence in

L', which by Lemma 7.2 implie.! -convergence of the conditional expectations.
(7.3) E M, | Fs] = E[M;|F,] inL'andhence in probability.

Without loss of generality, we can assume that we have almost sure convergence here. (Otherwise we
would repeat the proof with a suitable subsequef¥Gg )rc Of stopping times.) On the other hand,
Fatou's Lemma for conditional expectations (see e. g. Chow and Teicher (1997), Section 7.1, Theorem
2(ii)) yields

(7.4) liminf B [ M, | 7] = B | liminf My, | 7 | B B[] 7]
Combining (7.1), (7.2), (7.3), and (7.4) yields the almost sure relations
M, D tim Mg, 2 timint BE[M;, | F) - lim E[M;,, | F]

(7.3), (7.4)
> E[M;|F] - E[M|F]=E[M|F].
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The second part of the proposition is a well-known result. The “only if” part is trivially true. On the
other hand, ifM is a supermartingale that is not a martingale, then there is at least onetpailR .,
s < t,and asefd, € A, such that

/MsdP>/ MdP.
A As

But since the complement¢ is also contained i, the supermartingale property 8f implies

MydP > MdP.
A¢ A¢

Adding these inequalities yields

IMMi/MM+ mw>/mw+ MidP = E[M)].
As A¢ As A¢

Corollary 7.4. a) Any local martingale belonging to LD is a martingale.
b) Let M be a local martingale. If for any > 0 there is an integrable random variablig(?) (w) such
that | M, (w)| < B®(w) for all w € Q and for all s < ¢, thenM is a martingale.

Proof. a) Obviously,M~ and(—M )~ = M belong to LD if M does. Application of Proposition (7.3)
yields thatM as well as— M are supermartingales. Heng€ must be a martingale.
b) If T"is a stopping time that is bounded by some constantx, then we have

|Mr(w)| = My, (w)| < BP(w)  forallw e Q.

Consequently, the familyM7 )7 stopping time withr” < + IS bounded by the integrable random variable)
and hence is uniformly integrable. This implies that the local martinfjaleelongs to LD and thus is a
martingale. (See part a.) O

The following proposition shows how one can use arguments from complex analysis to prove the mar-
tingale property for a larger class of stochastic processes when it is known for a subclass.

Proposition 7.5. Let M (s, w; z) be a family of adapted stochastic processes parameterized by a complex
variable z. Assume that the mapping— M (s,w; z) is analytic forz € S, with a horizontal stripS :=

R + i(a,b) C € wherea < 0 < b, a,b € IR. Assume further that the partial derivativesM (s, -; z)

are bounded by integrable functions, locally4ine S; that is, assume that for eache IR,z € S

there is an open neighborhodt(z;) and an integrable random variablB(*20) () such that

0, M (s,w; 2)] < B (w)  forall z € N(z),w € Q.

Under these conditions, # (-, -;u) is a martingale for each. € IR, then allM(-,-;z), z € S, are
martingales as well.
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Proof. First, we have to show integrability of — M (s,w;z) for arbitrary fixeds € Ry, z € S.
To this end, we note that the compact se{Ret i[0,Im(z)] C C is covered by a finite number of
neighborhoods, sa¥(z;),j = 1,... , k. Hence

k
M (s,w; 2)| < |M(s,w; Re(2))| + [Im(2)| Y B (w),
j=1
where the right-hand side is integrable by assumption.

Next, consider an arbitrary sdt, € 2. Then for anyt with ¢ > s we have that
(7.5) zZ / g, M(t,w;2) P(dw)
is a differentiable function o8 C C, with

aZ/A M(t,w; z) P(dw) = /A 0, M(t,w;z) P(dw).

This is true because the integrand on the right-hand side is by assumption bounded locally around each
z € S by an integrable functio3(“#)(w). Obviously, the Cauchy-Riemann differential equations are
satisfied by the functior — 14, M(t,w;z2) in the integrand, and interchanging differentiation and
integration yields the validity of these equations for the integral. Hence the function (7.5) is analytic for
each fixed > s. In particular, it is analytic fot = s. Taking an arbitrary pait > s, we have

(7.6) / M(s,w;z) P(dw) = / M(t,w;z) P(dw) forallz e IR, A; € U,
As As

becausé\/(s; z) was assumed to be a martingale for real values &ince both sides in (7.6) depend on
z in an analytic way, this equality carries over toak S, in virtue of the identity theorem for analytic
functions. Hence indeel/ (s; z) is a martingale for each € S. O

Proposition 7.6. Let X be ad-dimensional locally bounded predictable process andYlebe a d-
dimensional special semimartingale that has characterisiés C"', and Y with respect to a trun-
cation functionh. Then the stochastic integral process

d
X-Y::/XdY:ZZ/Xiin
=1

is a special semimartingale as well and has the following characteristics with respect to the truncation
functionh.

BXY = X . BY 4 (h(Xz) — Xh(zx)) ¥,

d
XY = 30 [l
ij=1
and Y with W(w,t,z) XY = W(w,t, Xs(w)x) * ¥

for all non-negative predictable function®' (w, ¢, x).
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Proof. Consider the canonical representation of dkdimensional special semimartingafe(see Jacod
and Shiryaev (1987), Corollary 11.2.38.)

(7.7) Y =Y+ Y+ax(uy —v)+AY,

whereY ¢ is the continuous local martingale part¥sfandAY = BY + (z — h(z)) * v¥, according to
Jacod and Shiryaev (1987), Proposition 11.2.29 a. [In order to stay within the framework set by Jacod
and Shiryaev (1987), we have to use a truncation fundii@r) here even though this is not necessary

for specialsemimartingales.] From (7.7), it is obvious that

(7.8) /XdY:/Xch—i—/Xd(x*(uY—uY))—i—/XdAY.

Hence[ XdY*¢ = ([ XdY )¢ is the continuous local martingale part pfXdY, and [ X d(x * (¥ —
vY)) is the purely discontinuous local martingale part. Siiés locally bounded and predictable,
[ X dAY is locally integrable and predictable. Therefdfe Y is indeed a special semimartingale. By
Jacod and Shiryaev (1987), Corollary 11.2.38,belongs toGi.c(1Y ). Consequently we can use Jacod
and Shiryaev (1987), Proposition 11.1.30 b, to get

/X d(z s (u¥ —vY)) = (Xyz) « (¥ —vY).
Since the jump process of - Y is XAY’, the jump measure of the process Y satisfies
(7.9) Wi(w, t,z)* XY = W(w,t, Xp(w)z) * p¥.

for all predictable (i. e.P® B'-measurable), non-negative functios. The characteristic*"Y is
defined to be the compensator of the random measure associated with the jukhgs.ofih general, the
compensatoof an optional,P ® B!-o-finite random measurg is defined to be the unique predictable
random measure satisfying

E[W(w,t,z)* p] = E[W(w,t,x) x V]

for all predictable, non-negative functioh®. (See Jacod and Shiryaev (1987), Theorem 11.1.8.) From
this definition, we can directly derive the form of the compensatot : For all predictable, non-negative
functionsW (w, t, ), W (w, t, X;(w)x) is again predictable and non-negative. Sinéeis the compen-
sator ofuY’, we have

E [W(w,t,x) * MX'Y] (9 g [W(w,t,Xt(w)J:) * MY]
= E [W(w,t, X;(w)z) * "]
Hence the natural candidate for the compensatot” is the optional random measure defined by
(7.10) Viw,t,z) « XY = V(w,t, Xy (w)z) x ¥

for all optional functions’. This measure is indeed predictable: By definition (see Jacod and Shiryaev
(1987), Definition 1.6 a), a random measures called predictable iff for every predictable functii
the integral proces8l * y is predictable. But the definition (7.10) shows that for predictdb)ehe
integral procesd” x Y is equal to an integral of a predictable function (naméfyw, t, X;(w)x))
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with respect to the compensateY . SincerY is predictable by definition, this integral is a predictable
process. Hence indeed 'Y is a predictable random measure.

The quadratic characterist¢ of a d-dimensional semimartingalg is defined component-wise:
CY = (2, (Z7)°),

where(Z%)¢ is the continuous local martingale part of théh component oZ (i = 1,... ,d). The two
semimartingalesY - Y andY that we consider here have continuous local martingale party © =
S% X7 (Yi)e andY, respectively. Hence we can use the relation

(X1 (VX7 (V7)) = (XTXY) - ((Y9)S, (YY)9),
which is valid by Jacod and Shiryaev (1987), Theorem 1.4.40 d, to get

d d d
CXY = 3T X (V) X (V) = ST (XX (YT (VD)) = 3 (XX 0
ij=1 ij=1 ij=1

as was stated above. Finally, the drift component can be derived from the locally integrable, predictable
summand4XY in the canonical decomposition (7.8) of the special semimartingal&

BXY = 4XY _ (x — h(x)) * XY
=X -BY+ X ((z—h@) ) — (Xz—h(Xz)) ¥
=X -BY + (M(Xz) — Xh(z)) Y.
U

Corollary 7.7. Let L be alR?-valued Lévy process. Then for afiy-valued bounded predictable pro-
cessX the stochastic integrak - L has the characteristic triplet

t
XL / (bx. + / (h(Xox) — Xoh(x) F(dr) ) ds,
0
(7.11) ol = / XTeX, ds,
vl (W, ds, dz) = ds F*Xs@)(dy),

where F*~¥X:(“)2(dy) denotes the image oF(dz) under the mappingr — X,(w)z, that is,
FroXs@r(A) = [M4(X (w)x)F(dr) for A€ B s € Ry, w € Q.
Proof. By Jacod and Shiryaev (1987), Corollary 11.4.19, the characteristic triplét cdn be chosen
deterministic: It is given by

BE(w):=bt, Clw):=ct, vF(w;dt,dx):=dt F(dz),
where the constarit € IR¢, the constant non-negative definite matrpand thes-finite measure(dx)
on (IR%, B4) with [(|z|? A1)F(dz) < coandF({z € R?: 27 = 0 for atleastong € {1,... ,d}}) =
0 appear in the Lévy-Khintchine representation of the characteristic functidy ¢see Jacod and
Shiryaev (1987), 11.4.21):

. 1 ,
(7.12) E [eW'Ll] = exp (w b — §uTcu + /(e““” —1—iu- h(m))F(da@))
Proposition 7.6, then yields the stated expressions for the characteristic triplet of the pfockss [
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Proposition 7.8. Let X be ad-dimensional predictable bounded process andléte ad-dimensional
Lévy process. For each € IR, define a procesd (u); as in Jacod and Shiryaev (1987), Eq. 11.2.40:

(7.13) Au)y = iuBt — u; XLy /(ei“x — 1 —iuh(z))rXL([0,1] x dz).

Then .
Au)y = /thb(u.Xs) ds = /Ot@/)(;uj)(g) ds,

where(u) is the exponent of the Lévy-Khintchine representation (7.12) of the characteristic function
of Ly, i. e. the uniquely determined continuous function wifh) = 0 that satisfiesE[exp(iuL;)] =
exp(y(u)), u € IR. Furthermore, for each € IR the procesg M (t; u));cr .. defined by

exp(iuX - Ly)
exp (fg Y(u- Xy) ds)

(7.14) M(t;u) :== (teRy)

is a martingale.

Proof. In virtue of (7.11), we have

t 2t t A
Au)y = iub/ Xsds — u_/ XTeX ds+ // (eXs® 1 —juh(Xx)) F(dz) ds
0 2 Jo 0 JIR?

t 2 ,
= / (iubXsds - u—XsTcXS + / (e X _ 1 —juh(X,x)) F(dx))ds
0 2 R4

= [vtuxy as,

Obviously A(u) has continuous paths. In particular, we always hav&(u),(w) # —1, and hence the
conditions of Jacod and Shiryaev (1987), Corollary 11.2.48, are satisfied. This means that

exp(iuX - L)

(7.15) £(AW)

is a local martingale for allk € IR, where€(A(u)) denotes the Doléans-Dade exponential of the process
A(u). A formula for the exponential of a general real-valued semimartingaie given in Jacod and
Shiryaev (1987), 1.4.64:

5(Z)t = €Zt—ZO—1/2<Zc7ZC>t H(l + AZS)G_AZS,

s<t

In Jacod and Shiryaev (1987), below Eq. 11.2.40, it is noted tat) is of finite variation. In addition, in
our case it is continuous. Hence the continuous local martingaledgajt as well as the jump process
AA(u) vanish identically, and the stochastic exponential turns out to be the ordinary exponential,

E(A(u))t = eA(u)t—A(u)o — GA(U)t’

since obviouslyA(u)y = 0. In order to show that (7.15) is actually a martingale (and not only a local
martingale), we show that it is uniformly bounded on each intgfudl, ¢t € IR,.. Then Corollary 7.4 b
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yields the desired result. The numerataip(iuX - L) in (7.15) satisfiegexp(iuX - L)| = 1. The
modulus of the denominator is

‘exp (/w(qu)ds>‘ = exp </Re¢(qu) ds).

But ¢)(x) (and hence Re)(z)) is continuous by assumption. In particular, it is bounded over bounded
subsets ofR?. So we can find a constaft > —oo such that

Rey(ux) > C for all z in the range ofX . ;.

Therefore 5 5
/ Rey(uXs) ds > / Cds>t(CN0) >0,
0 0
foranys <t < oo, and so

exp(iuX - L)
exp(A(u)s)

1
~ exp(t(C A0))

< 00.

We are now ready to prove the main result of the chapter.

Theorem 7.9. Let X be an adaptedR“-valued process with left-continuous paths. AssumeXhttkes

only values in ai-dimensional rectanglés, b] := [a!,b'] x --- x [a%,b%] ¢ R? witha’ < 0 < b?,i =

1,...,n. LetL be a Lévy process. Assume tliatpossesses a finite moment generating function on an

open neighborhood’ of [a, b]. Then the procesd with

_ X - Ly B eXP(Z?:l fot x{ L)
exp(fot K(Xs)ds) exp(f(f K(Xs)ds)

is a martingale, where

N, - (t € IR+)

k(u) =In E [ exp(uly) |
:b-u+%uTcu+/(e“'x—1—u-x)F(dx) (uelU)
is the cumulant generating function of the infinitely divisible distributiof of

Proof. First we note thatX is predictable and bounded, and so the stochastic intégral. is well
defined. It was shown in Proposition 7.8 that for eaoh IR the process

exp(iuX - L)
exp(f P(uXs)ds)’

is a martingale, wher¢y : IR? — IR is the exponent of the Lévy-Khintchine representation of the
characteristic function of ;.

Since the moment generating functionlof exists on an open neighborhood of the compac{séi,
there is ai-dimensional rectanglu., b,) = (al,bl) x --- x (a2, b%) C R¢ with [a, b] C (a.,bs) C U.
The functiom)(u) can be extended to an analytic function on the comglelimensional rectangle

R —i(ax, b)) == {(at —irt,. .. 2% —ird) e € 2’ € R,a! <17 < bl} c ¢
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We denote this extension by the symholagain. The functiong and are then connected by the
relation
k(u) = P(—iu) for u € (ax, by).

Define the seZ C C by

J J
Z = {z eC: max{%,%} < —Im(2) < min{%,%} forj=1,... ,d}
Forz € Z, we havezX,(w) € R? — i(a,,b,) forall s € R, w € Q. Hence the procesd(z) with
A(2)i(w) == [¥(2Xs(w))ds is well defined. For fixedv andt, the functionz — A(z)¢(w),z € Z,
is an analytic extension of the functien— A(u),(w) defined in (7.13). (Analyticity follows because
the partial derivativé), x(z X (w)) = Xs(w)r'(2Xs(w)) is bounded, locally i € Z, if X is bounded.
Therefore we can interchange integration with respedstand differentiation with respect ta)

Furthermore, the function
z+— exp(izX - L) (z€2)

is an analytic extension af — exp(iuX - L). Define
exp(izX - L)
exp <f1/)(sz(w))ds)

M(t,w;z) =

Then it follows from what was said above that
z = M(t,w;2) (z€2)

is an analytic extension af — M (t,w;u), with M (t,w;u) as defined forw € IR in (7.14). The
derivative of this analytic function is given by

0:M(t,w;z) = (iX <Ly — /t X' (2X5) ds)M(t,w;z).
0

We want to show that this is bounded, locally uniformlyzirby an integrable function @. To this end,
we estimate

) exp(—Im(z)X - L) '
exp (fRelb(sz(w))ds)

t
0. M (t,w; 2)| < (\X Ly + \/ X, (2X,) ds
0

e For anye > 0, we have

X 1 < B L) | owleX L)

since the relatiofz| < e"p(;”) + 222 olds for allz € IR.

€

e Forz from any bounded set whose closure is contained,iwe have that fg X' (2X5) ds| <

fot | Xs| - |/ (2X5)| ds is bounded by an expression of the foratonst becausd’ is bounded and
¢’ (w) is analytic and hence bounded over compact subsets of its domain of regularity.
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e For z from any bounded set¥ whose closure is contained i@, we have witha :=
inf,cw (—Im(z)) andg := sup, ¢y (—Im(z)) that

exp(—Im(2)X - L) < exp(aX - L) +exp(8X - L)
Clearly,—iac € Z and—i € Z, and so the right hand side is an integrable function.

e Forz from any bounded sét” whose closure is contained iy we have that X takes only values
in a compact subset @? — i(a«, bs), and hence

t
exp (/ Rew(sz(w))ds) >exp(t-C)>0 (telRy)
0
for some finite constan®'.

Taking these points together we see that the conditions of Proposition 7.5 are satisfied. Hence

(M(t; 2))ter, is @ martingale for each € Z. Settingz = —i, which is indeed an element df
in virtue of the relations:, < o/ and¥®’ < b (j = 1,...,d), yields the statement that was to be
shown. 0

Corollary 7.10. Leto : Q x A — IR? with n € IN be ad-dimensional stochastic volatility structure
such that for each fixed, T the functions — o(w, s, T') is continuous to the left and that is globally
bounded by constantgé < 0 < b%,i = 1,... ,d. Assume that d-dimensional Lévy procedsis given
that possesses a moment generating function on some open neighborfedd ef [a!,b'] x --- x
[a?, b?]. Let the price of a bond that matures at tiffiebe given by the stochastic process

exp (fg o(w,s, T)dLs>
exp (f(f k(o(w, s,T))ds) .

t
P(t,T) = P(0,T)exp </ 'r(s)ds)
0
Then for eacl” the discounted bond price process

exp (— /Otr(s)d.S) P(t,T)

is a martingale.

Proof. For fixedT’, the discounted bond price process is

exp <f0t o(w, s, T)dL5>
exp (fg k(o (w, S,T))ds) ’

exp (— /0 tr(s)ds) P(t,T) = P(0,T)

which is—up to a constant—a process of the form treated in Theorem 7.9. Since the conditions of this
theorem are satisfied here, the statement follows. O
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7.3 Forward Rates

Proposition 7.11. Assume that the conditions for the multivariate stochastic-volatility term structure
model as described in Corollary 7.10 are given. Additionally, assumeThat P(0,7) € (0,00) is

a continuously differentiable initial bond price structure. Further, assume dtiatl’) be twice differ-
entiable in the second variable, with a bounded derivativer (t, T;w) = (dr)%0 (¢, T;w) that is a
continuous function of. Then the stochastic integralso (s, T')dLs appearing in the definition of the
bond price processes can be chosen such that the (instantaneous) forward rates

F(t,T) = —8%11(1]3(1% ) (t<T).

are well defined and are given by
t t
(7.16) FLT) = F(0,T) — / Do0(5, T)d L, + / Do (5, TV (0(5, T))ds.
0 0

Remark: The instantaneous forward rafét, 7'), contracted at timefor time 7" > ¢, is the interest rate
one will get on an investment over the infinitesimal pefiddT” + dT] if this investment is contractually
fixed at timet. The term “instantaneous” reflects the fact that money is lent only over an infinitesimal
period.

Proof of the proposition.The first and the third summand in (7.16) are the negative logarithmic deriva-
tives of 7' — P(0,7) andT — exp(— fo (s,T))ds, respectively. (For the latter term, this follows
by standard arguments used before, singean analytlc function and, d,c are bounded.)

So we only have to prove that the second term in (7.16), nachezﬂga (s,T)dLs, is the logarithmic

derivative ofT" — fo s,T)dLs. Since we want to differentiate a family of stochastic integrals with
respect to a continuous parameter (nanigyjt is essential to choose the stochastic integrals in the right
way in order to avoid trouble with null sets. (Remember that each stochastic integral is defined up to a
null set only, which leads to problems when considering an uncountable family of stochastic processes.)

Consider the functiosoo (w;t, T'). Definedsgo(w;t,T) := 0 for ¢t > T. The functiondeeo(w;t, T)

is P ® B'-measurable and bounded by assumption. Hence by Protter (1992), Theorem V.44, there is a
2l ® B(IR.y) ® B'-measurable functio& (w;¢,T) such that for eaci’ € IRy, Z(w;t,T) is a cadlag,
adapted version of the stochastic integfgaﬁgga(w; s,T)dLs.

Now define for eacts € IR, the finite measure(®) := ll[oys]Al(dT) on B!. By Fubini's Theorem
for stochastic integrals (see Protter (1992), Theorem IV.45), we have that foSeadR ., the process
Y (%) defined by

v (w) ::/IRZ(w;t,T) ms(dT):/OSZ(w;t,T) T

is a cadlag version of

/(/IRaQU(W;S’T) RS(dT)) dLs = / (/S a0 (w; s, T) dT) dLs = /g(s,s) dL,

The functionY (w, ¢; S) := Yt(S) (w) isA® B(IR, ) ® B-measurable, and for ea¢he IR, itis a cadlag
adapted version of the stochastic integfdho (s, S) dL, where the integrand,o is P@B'-measurable
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and bounded. Hence we can apply Protter (1992), Theorem IV.44, a second time and get that

T
/ Y (w1 8) 1T (dS) = / Y (w,:9) dS
0

is a cadlag version of

//820(3,5) xTN(dS) dLg = //OT do0(s,8) dS dLs = /J(S,T) dLs.

Hence we have shown that one can choose the stochastic intﬁ@r@dsb’) dLg, S € Ry, by

(7.17) /J(S,T) dLs := /OTfaga(s,S) dLg dS, (w e Q),

with [ 9y0(s, S) dL, defined by

S
/820(575) dLs := /0 Z(w,s;U)dU  (w € Q).

Since the latter is obviously continuous (in fact, absolutely continuous) as a functynaf have that
the right-hand side (and hence the left-hand side) of (7.17) is continuously differentiable with respect to
T, with the derivative given by dy0(s,T) dLs. O

7.4 Conclusion

We have shown how one can construct a Lévy-driven multi-factor term structure model with a stochastic
volatility structure. In this way, it is possible to capture three key features of the empirical behavior of
the term structure: Non-normal return behavior, multi-factor movement, and stochastic volatility.

As in most cases, more precise modeling requires a more complex model here, so in practice one will
have to trade off precision and numerical tractability. In particular, it would be illustrative to check which

of the three features named above yields the biggest improvements for the modeling of real term structure
movements.
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Appendix A

Generalized Hyperbolic and CGMY
Distributions and Levy Processes

In the following, we give a brief description of generalized hyperbolic distributions, CGMY distribu-
tions, and the Lévy processes generated by this class of distributions. For a more detailed account of
generalized hyperbolic distributions see Eberlein (1999) or Prause (1999). More information on CGMY
distributions can be found in Carr, Geman, Madan, and Yor (1999).

A.1 Generalized Hyperbolic Distributions

Generalized hyperbolic distributions constitute a five-parameter class of Lebesgue-continuous, infinitely
divisible distributionsGH(A, o, 3,6, ). The Lebesgue density is given pgx .,3,6,u): wheré

(A.1)

_ _ _ -1
PGH(Nap.60(T + 1) = (2m) V267207 M2 (02 — BHNAE, (502 — 2) -

A—1/2
/ 2 / x2
1 =+ 5—2 K/\71/2 <(50& 1 =+ ﬁ) exp(ﬂx)

el (6/a2 = 32)* A-1/2
(A.2) = Tora g o (VaE = ) (V02 + 2?) Ky_1/2(aV/ 6% 4 22).

The domain of variation of the parameters is as followsc R, « > 0, 8 € (—«a,«a), § > 0, and
1 € IR.2 The functionsK andK),_, , are the modified Bessel functions of the third kind with orders
Aand\ — 1/2, respectively

'Representation (A.1) can be found in e. g. in Barndorff-Nielsen (1997), eq. (4.3).

2Some authors include the limits into the parameter rangesde=g0, leading to the variance gamma distributions; see
Section A.3.) Hence they inlcude certain limiting distributions into the definition. However, often the behavior of the limiting
distributions differs considerably from the behavior of the generalized hyperbolic distributions as defined here. Therefore we
do not include limiting distributions.

3See Abramowitz and Stegun (1968), Section 9.6.
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The characteristic function @H(\, a, 3, 6, 1) was calculated in Prause (1999), Lemma $.18:
i OV/@? — P K\ (/07 — (B + )

Ky(6v/a? — 3?) (5\/042 — (5+iu)2))‘
This is a real-analytic function, which can be extended to a holomorphic function on the strip

Si={z:—a<f-Im(z) < a}.

(A.3) X(\a,8,6,0) (1) =

The form of the expression for the characteristic function is preserved under the extension, because all
functions appearing here are restrictions of analytic functions. This means that one can calculate the
extended characteristic function at some pairgt S by just plugging inz instead ofu into expression

(A.3). In particular, we get the moment-generating function

U X(n 8.8 (—it).

(See Prause (1999), Lemma 1.13.) Taking derivativas at0 then yields the algebraic moments of a
random variableX ~ GH(\, «, 3, 6, 1) (Prause (1999), Lemma 1.14.)

B o p K9
(A.4) EX]=p+4d J1-2 KO

o [ Kia(Q) p? (K2 [ Exsa(Q) :
A9) v (cmo (- R >>

Here we have used the new parameters 6/«a? — 52 andp := (/.

The characteristic function of the time-element of the convolution semigroup generated by
GH(\, o, 3,0, 1) IS

N (u) = et (6y/a2 = 32N Ky(0\/a? — (B+ iu)2)t
7a7 767 ; = ’ :
(A, B,0,u3t) K\(6+/a2 — B2)t (5 /Z — (B 1 i) iu)2)’\t
Note that we have be careful when taking thétf power” of the characteristic function; The main branch

of the t-th power function, applied to the complex numbex . s,5,.,) (), in general doesot yield the
desired characteristic function. [Cf. Bauer (1991), p. 250, Bemerkung 1.]

A.2 Important Subclasses of GH

A.2.1 Hyperbolic Distributions

Setting the first parameter = 1 yields the four-parameter class lofperbolic distributions For this
subclass, the density takes the form

B 5+/a2 — 32
PHYP(a,8,6.,) (T + 1) = \/2670“52 N (5%) - (av/o? +$2)l/2K1/2 (/62 + 22)
I Ny _
= 5057 Kl((; a2_52) -exp(—oe\/5 + )7

“The square root sign in (A.3) is taken to mean the main branch of the square root function. The same holds-flor the
power functionz — z* etc.
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where we have used the relation

(A.6) Kl/Q(z) =/7/(2z)e”?

from Watson (1944), Section 3.71, p. 80, eq. (12). Note that—in contrast to the general form (A.2)—
the Bessel function appears only in the norming factor. Hence the hyperbolic density is numerically
more tractable than the generalized hyperbolic density: When calculating the density at a rushber
different points, e. g. for numerical integration, the Bessel function has to be evaluated only once. This
considerably reduces the computational effort compared with the generalized hyperbolic cas@ywhere
evaluations of Bessel functions have to be calculated.

The log density of a hyperbolic distribution is a hyperbola, which is the origin of the memerbolic
distribution

A.2.2 Normal Inverse Gaussian (NIG) Distributions

Setting A\ := —1/2 leads to the class of Normal Inverse Gaussian (NIG) distributions. The name of
this class stems from the fact that a NIG distribution can be represented as a variance-mean mixture of
normal distributions, where the mixing distribution is inverse Gaussian. (See e. g. Barndorff-Nielsen
(1998), Section 2.)

In contrast to the case of hyperbolic distributions, the characteristic function of NIG is expressible by
elementary functions: The Bessel functién ; ,(z) is equal tok /»(z) by Abramowitz and Stegun
(1968), 9.6.6, which in turn can be reduced to elementary functions via relation (A.6).

i (VT =) K (/0 = (Bt iu)?)
K 100/ =) (5:/a® — (B + ) "
= s exp (163/@T = 5F) - exp 16/ = (5+ ).

XNIG(av,3,8,u;t) (u) -

Obviously,
XNIG(ev, 8,6, ;t) (u) = XNIG(a,ﬂ,té,tu;l)(u)'

This yields another favorable property of NIG distributions: The convolution semigroup generated by

a NIG distribution only contains NIG distributions. Hence the Lévy process generated by a NIG dis-

tribution in the sense of Section A.6 possesses only NIG distributed increments. Thus the density of
the increment distribution is known, which constitutes an important advantage over other generalized
hyperbolic distributions.

A.3 The Carr-Geman-Madan-Yor (CGMY) Class of Distributions

In Carr, Geman, Madan, and Yor (1999), a new class of infinitely divisible probability distributions—
called CGMY—is introduced as a model for log returns on financial markets. This class is an extension
of the class of variance gamma distributions, which date back to Madan and Seneta (1987).
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A.3.1 Variance Gamma Distributions

The class ofvariance gammalistributions was introduced in Madan and Seneta (1987) as a mode for
stock returns. There, as in the succeeding publications (Madan and Seneta 1990) and (Madan and Milne
1991), the symmetric case (i.®= 0 in the parameterization given below) was considered. In (Madan,
Carr, and Chang 1998), the general case with skewness is treated. Variance gamma distributions are
limiting cases of generalized hyperbolic distribution® as 0 in the parameterization by, «, 3, 6, 1),

as we will see below.

In the literature, variance gamma distributions always appear as the one-dimensional marginal distribu-
tions of variance gamma Lévy processeEhese are time-changed Brownian motions with drift. The

time change process is itself a Lévy process, namely a gamma process, characterized by having a gamma
distribution as its increment distribution. More precisely, the increment of the gamma process over a
time interval of lengtht has a distribution given by the probability density

pan@ = (5) " ) (r>0)

Heren = tp andv = tv, wherep > 0 andv > 0 are the parameters of the distribution for 1.

The characteristic function of the Gammayg) distribution is

[¥]

%

1 v
XGammaf, u)(u) = 1 — il )

M

where the exponential is well-defined because < arg(#) < m. Consequently, the characteristic

uZ
n
function of the timet element of the gamma convolution semigroup is

u?
t 1 Y
XGammaf:, u)(u) = 1 _iul s

U
w

which is again the characteristic function of a gamma distribution, with parametensl as defined
above. (Of course, this was already clear from the behavior of the densities.)

The variance gamma Lévy procek$”?*) is defined as a time-changed Brownian motion with drift:
X{70 = 071 (1) + oW (1),

whereWV is a standard Brownian motion ané") is a gamma process wih = 0, independent ofV.
In contrast to the exposition in (Madan, Carr, and Chang 1998), we would like to modify the definition
of the process by adding a linear dyift.> Hence our variance gamma Lévy process is

X7 = it 4+ 04 (8) + oW (1),

Consequently, the distribution dft("’e’”) is a variance-mean mixture of normals, with a gamma distri-
bution as mixing distribution: It is the marginal distributionzoin a pair(z, z) wherez is distributed as

~(t) and, conditionally or, x is distributed asV (u + 0z, 022).

®Note that the parameteris notthe parameter of the Gamma distribution, which will not be used in the following.
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The characteristic function of the distributiMG(o, 0, v, 1) is given by

| 1 1/v
XVG(a,0,v,11) (u) = exp(z,uU) (1 —i0vu + (0'27//2)“2> .

(See (Madan, Carr, and Chang 1998), eq. 7.)

Consequently, the timeelement of th&/G(o, 6, v, ;1) convolution semigroup has the characteristic func-
tion

1 t/v
XG0 (1) = exp(ityuu) <1 —ibvu+ (o%v/ 2)u2> ’

which is just the characteristic function W¥G(v/to, t0, v /t, tu):

| . o
XvG(vio 10ty (#) = EXPlitn) <1 —ithv]tu + (tov /2t)u2>

. 1 t/v
= exp(ityu) <1 — i0vu + (02y/2)u2> '

Therefore the convolution semigroup of a particular variance gamma distribution is nested in the set
of all variance gamma distributions. This is the same situation as in the case of the NIG distributions.
Therefore, these two classes of distributions are analytically more tractable than a generalized hyperbolic
distribution withA # —1/2, as for example the hyperbolic distributions studied in (Eberlein and Keller
1995), (Keller 1997) and (Eberlein, Keller, and Prause 1998).

The density oVG(s, 0, v, 11) can be calculated by making use of the mixture representatibis. given
by P(o,0,v,1) (x)! with
1 1
2exp(fz/0?) z? w4 22202 /v + 62)
A7 = K .
A Poswnet i) =0 aray 2ot 2 v o?

As a consequence of our considerations above, the density of the éteeient of the convolution
semigroup is of the same form, with the parametet®, v, 1) replaced by(v/to, t0, v /t, tp).

NI

The Lévy measure of the variance gamma distributi@{o, 0, v, ) is

/2 62
- SRV (02/7%) exp Vv e o || | de.

vz o

(A8) KVG(O‘,@,V,M) (dx)

(See Madan, Carr, and Chang (1998), eq. 14.) This measure has infinite mass, and hence a variance
gamma Lévy process has infinitely many jumps in any finite time interval. Since the functiefiz| is
integrable with respect thyg(,.4,.,,) (dz), @ variance gamma Lévy process has paths of finite variation.

A.3.2 CGMY Distributions

The class of CGMY distributions is a class of infinitely divisible distributions that contains the variance
gamma distributions as a subclass. It is defined in Carr, Geman, Madan, and Yor (1999) by giving its

®See (Madan, Carr, and Chang 1998), pp. 87 and 98.
"Actually, it was this density which was calculated in (Madan, Carr, and Chang 1998).
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Lévy-Khintchine triplet(b, ¢, K (dz)) with respect to a truncation functidr{x).
b= (h(x)k (x) — 21 L€7|x|>dl‘ c=0, K(dz)=k () dx
= CGMY! {|z|<1} ‘x|1+y s =Y — RCGMY! )

with the four-parameter Lévy density

C% forz < 0

A9 k =
(A.9) comy() { C%% forz >0

e G-M G+M
_\xyHYeXp( 7o~y lel):

The range of parameters is not made explicit in Carr, Geman, Madan, and Yor (1999), but natural choices
would beC, G, M > 0 andY € (—o0,2). ChoosingY” > 2 does not yield a valid Lévy measure, since

it violates the condition that any Lévy measure must integrate the funetion1 A |z|2.8 ForY < 1,

the Lévy measure integrates the functien— |z|; hence we could choose the “truncation function”

h(x) = 0. This would let the first component of the Lévy-Khintchine triplet vanisk: 0. But in order

to preserve generality, we always use a truncation function here.

Like for the variance gamma distribution, one could introduce an additional location paramet#t
here.

ForY < 0, the characteristic function @GMYis given by
xeanu) = exp { CT(=Y)[(M = )" = MY + (G + i) - G¥]}.

This formula was derived in Carr, Geman, Madan, and Yor (1999), Theofem 1.

The CGMY Lévy Process

As described below in Section A.6, every infinitely divisible distribution generates a Lévy process. The
CGMY Lévy process is pure-jump, that is, it contains no Brownian part. As shown in Carr, Geman,
Madan, and Yor (1999), Theorem 2, the path behavior of this process is determined by the pdrameter
The paths have infinitely many jumps in any finite time intervalYiffe [0, 2), and they have infinite
variation iff Y € [1, 2).

Variance Gamma as a Subclass of CGMY

Variance gamma distributions constitute the subclass of the class of CGMY distributions ¥vkefe
(See Carr, Geman, Madan, and Yor (1999), Sec. 2.2.) One can easily see this by comparing formula
(A.9) with the variance gamma Lévy density (A.8). The parameters are related as follows.

2
1 G-M 0 G+M i+ &
C=-, =—, and = .
v 2 o 2 o

8However, Carr, Geman, Madan, and Yor (1999) also consider theitase.
This theorem does not mention a restriction on the rangé.dflowever, examination of the proof reveals that it can only
work for Y < 0. Otherwise at least one of the integrals appearing there does not converge.
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A.3.3 Reparameterization of the Variance Gamma Distribution

We think that it is useful to change the parameterization of the variance gamma distribution in order to
compare it to the generalized hyperbolic distribution: Let

1
A= —,
1%
N R 2
ar= o2 —\ ve? o2 )’
0
ﬁzﬁ
Then we havé) < |3| < aand\ > 0, and
2
2 _
U_a2_52’
26\
3.2 _
9—ﬁ0—a2_ﬁ2,
1
V= —.
A

The parameter transformatith(c, 0, v, 1) — (v/to,t0,v/t,tu) has the following effect on the param-
eters(\, «, 3, p):

A=t A,

a— «,

B — B,

p—=1t-p.
Therefore this parameterization seems to be useful for the study of the convolution semigroup.

In the new parameterization, the characteristic function of the variance gamma distribution takes the form
XVG(A,a,8,p) (1), With

‘ 1 1/v
XVG(a (1) = exp(ipu) <1 — ifvu + (02v/ 2)u2>
1/v
— eiuu 1
28\ 1 2) L o

g T E

__ _iuu 062—ﬁ2 *
- <a2—(5+iu)2> '

Note how the structure of the characteristic function becomes clearer in this parameterization.

1ONote that this is the transformation that we need in order to get the variance gamma parameters oftledetinest of
the convolution semigroup.
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The variance gamma density takes the ferm, 5 ,,)(z), with

1_
v

N[

1_1
o1 2e0(0/0?) il N g, (VERE )
POedu\ &4 1) = T (1) \ 02 /307 1 82 o2

i (Y ()

exp(fz €z A-1/2
i e (2) o

This is the pointwise limit of the generalized hyperbolic density as 0:

PGH(Na,8,0,0) (T + 1) = (2m) 2672072 (02 — BHM2K, (6va? - ﬁ2)71 :

A—1/2
R / x?
1+ 5z Ky_1)2 <5a 1+ 5—2> exp(fx)

_ exp(Bz)(a?® — BA)N? 1 5172 —
=z ar PENoyar = ) 2 YO T Ky 1ja(aV/&? +2?)

exp(fz)(a? — 2)M? 1 A-1/2
= \/ 52 + 2 K,_ 62 + 2
fomar—1/2 P Ky (5/a? = B?) u r-1/2(@v 2?)

But from (Abramowitz and Stegun 1968), formula 9.6.9, we know that for fixed0,
1 AN
Kx(z) ~ 5100 (5) (z —0).

Insertingz = §+/a2 — (32, we conclude

21—)\/2 (a2 _ 52)>\/2

1
DKy JaE — ) I'(A)

and hence for fixed # 0

(6 —0),

1 A—1/2
5}\[(}\ (5\/m) \V4 (52 + .’L'2 KA—I/Q (Oé \V (52 + .’11'2)

91-2/2 (a2 _ ﬂQ))\/2

F()\) \/ﬁ)\il/QKA_l/Q (O[\/P)

For A > 1/2, convergence holds also for= 0.

In the new parameterization, the Lévy measure of the variance gamma distribi@{ona, 3, 1) has
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the form

exp (0x/c? 2 62
Kvgna,p,u (dr) = # exp (— — + F\x! dx

vz vo
_exp (50233/02) 92 (Bo2)2
= W] eXp(‘\/ N2 o ’“”‘)‘“”

_ Aexp (Br) exfx‘”@ exp (—v/aT = P4 ) o

A
= —exp (fz — alz|) dz.

]

A.4 Generation of (Pseudo-)Random Variables

For simulation purposes, it is essential to know how to generate (pseudo-)random variables with a given
distribution. The standard random-number generators provide pseudo-random numbers with a uniform
distribution on(0,1). The aim is now to find a transformation that turns a sequence of independent,
identically distributed (iid) random variables with a uniform distribution(6nl) into an iid sequence

of random variables with the given distribution. One approach which always works is to invert the cu-
mulative distribution function (cdff’(z) of the distribution in question. This yields a functiéir! (),

and if U is uniformly distributed or{0, 1), then the random variable—!(U) has a distribution with cdf

F(zx). In practice, this is often cumbersome since inversio'of) is often only possible numerically.
However, for some special distributiodd ) there are other possibilities. For normal distributions, Box
and Muller (1958) showed how one can generate twaViid, 1-distributed random variables by apply-

ing a simple transformation to two iitf (0, 1)-distributed random variables: If; and U are iid with
distributionU (0, 1), then the random variable€$; and N, defined by

(AlO) N1 =V —21In U1 COS(27TU2)
(A.12) and Ny :=+/—2InU; sin(27U3)

are iid with distributionNV (0, 1).

With the same approach, one can generate chi-square distributed random numbers: For an even number
2n of degrees of freedom,

n

(A.12) Xy = (-2InT)
k=1

is X%n)—distributed, while for an odd number + 1, one simply has to add,,) and the square of an
independent normally distributed random variable.

Inverse Gaussian (IG) distributions can be generated by a method introduced in Michael, Schucany,
and Haas (1976) which we describe below. Since NIG distributions are variance-mean mixtures of
normals with an IG mixing distribution, once we have a IG-distributed random variable, we can take an
independentV (0, 1) random variate and generate a NIG random variate. Below we sketch the resulting
algorithm for the generation of NIG random variables.
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First, take two independent random variablés U, that are uniformly distributed o0, 1). ThenNV;
and N, defined by (A.10) and (A.11) are independent normally distributed variables. HieneeN? is
X%l)-distributed. Thatis, it has the same distributiorf-a& —4)? /Z with an arbitrarlG(y, 4)-distributed
random variableZ, and we can hope to construct such a random varigldtem V.

Because we want to getMIG(«, 3, u, 6)-distributed random variable in the end, we have to choose
v = /a2 — 32, as we will see below.

If v =0,thenZ = §2/V is alreadyiG(0, §) distributed.

For~ > 0, the value ofZ is not uniquely determined by := (vZ — 6)%/Z. Instead, giver/ = v with
v > 0 the variableZ has a binomial distribution with values andz,, where

2= 0/7+ (v/7*) = V2057 + (v/4?)?,
22 = (5/V)2/21
are the roots of the equatighz — §)?/z = v. The probability ofZ = 2 (v) givenV = vis

46
IR

Pz ()

according to Michael, Schucany, and Haas (19#6).
Let Uz be a third uniform random variable, independentpfandUs, and defineZ by

= [ 2(V) on{Us <p.,(V)},
(A.13) o '—{ V) = @2 /a0)

Then the distribution o is IG (5, 7).

Once we have anG(d,~)-distributed random variable, we can use the mixture representation of
NIG(«, 3,0, 1): With the standard normal random variab\e, which is independent aiV; and Us,
we define

X = p+Z8+VZN,.

Conditionally onZ = z, X has distributionN (1 + (z,z). BecauseZ has distributionlG(d,y =
Va2 — 3?), X is distributed according tNIG(a, 3, i1, ). (See e. g. Barndorff-Nielsen (1997), p. 2.)

Remark 1

Using three independerdf (0, 1)-distributed random variables, we have gdiEs-distributed random
variable. Consequently, plugging into this algorithm three “independent” pseudo-random numbers from
aU(0, 1) population produces a pseudo-random number froshGpopulation.

Remark 2

Normal inverse Gaussian distributed variates can be very efficiently generated by the approach described
above. This algorithm is perfect for list-oriented statistics packages such as S-Plus, since it can be
given in terms of listable functions. In other words, there appear only simple functions such as addition,
multiplication, square root and logarithm. In S-Plus, these functions can be applied to a whole vector
of arguments at once, generating a vector of results. Other approaches to random number generation
generally use loops. For example, the acceptance-rejection method is an iterative procedure. However, it
is well known that loops considerably slow down S-Plus programs.

1To be strict, one would have to show thét(, §) has a representation as a mixture of the binomial distributions described
above, with a7, as the mixing distribution.
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A.5 Comparison of NIG and Hyperbolic Distributions

Analytically, NIG is easier to handle for us than the hyperbolic distribution, because we are working
primarily with the log moment-generating function. In the NIG case, this function is very simple. For the
hyperbolic distribution, it contains the modified Bessel function which makes numerical evaluation
difficult.

Itis interesting to observe the different behavior of the moment generating functionwteeds towards
the boundary of the interval-o — 3, o« — (]: For the hyperbolic distribution, the moment generating

function
u&—>e“’“‘< a? — 32 )1/2K1(5\/a2—(ﬂ+u)2)
a? — (0 4 u)? Ki(6y/a? = 32)

diverges becausk(z) ~ % for small z, according to Abramowitz and Stegun (1968), 9.6.9.

In contrast, the moment generating function MI&(«, 3, 1, 6) distribution,

wi exp (5(v/a2 = B — \/a? = (B + u)?) + juu),

stays finite wheng + u| T a, while its derivative becomes infinite.

Another striking difference becomes apparent if we examine, for the classes of hyperbolic and normal
inverse Gaussian distributions, the subclasses of symmetric distributions with varidndeoth cases,
symmetry of the distribution is equivalent fo= 0. In the hyperbolic case, the condition of unit variance

means
_ ba Ky (da)

T 2K (b))’
so given the valué = da we have to choose

(K32(Q)
Ki(¢)

Since the parameter restrictions for hyperbolic distributions aflewad to vary in the interval0, o),

a can take on only values in the intenf@al’2, oo), wherey/2 = lim | 4%8 because of the limiting

form of the modified Bessel functiorfs,, for z — 0 with fixed R€v) > 0:

21 (v)
v

Ky (z) ~

(Remembei’(1) = I'(2) = 1.) So there is a positive lower bound faer which means that the exponen-
tial decay of the tails of the distribution takes place with a positive minimum rate.
On the other hand, from the expression for the variance of a normal inverse Gaussian distribution,
0
o (1= ()"

«

we see thatv = ¢ is the choice which leads to unit variance. Thus the admissible rangésdhe whole
interval (0, c0), and the exponential decay of the tails can take place with arbitrarily low rates.

This different behavior of NIG and hyperbolic distributions is illustrated by Figures A.1 and A.2. Both
show the log densities of three symmetric and centered distributions with vatiafbere remains one
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Figure A.1l: Log densities of normalized hy- Figure A.2: Log densities of normalized nor-
perbolic distributions for parametefs= 100 mal inverse Gaussian distributions for param-
(dotted line),¢ = 1 (dashed line){ = 0.01 eters¢ = 100 (dotted line),( = 1 (dashed
(solid line). line), ¢ = 0.01 (solid line).

free parameter;, in both classes. When changigdrom large values to values ne@dyrwe observe the
following. For large values aof, both log densities look very much like a parabola near 0. For( | 0,

the log density of the hyperbolic distribution converges (pointwise) to the fungtienconst. — v/2|xz|.

By contrast, for the NIG distribution there is no finite limit function. Instead, the log density becomes
increasingly pointed around= 0 as¢ | 0.

There is some connection between this difference of hyperbolic and normal inverse Gaussian distribu-
tions and another point: Hyperbolic log-densities, being hyperbolas, are strictly concave everywhere
Therefore they cannot form any sharp tips neat 0 without losing too much mass in the tails to have
variancel. In contrast, normal inverse Gaussian log-densities are concave only in an interval around
x = 0, and convex in the tails. Therefore they can form very sharp tips in the center and yet have
variancel.

A.5.1 Implications for Maximum Likelihood Estimation

The program “hyp”, which does maximum likelihood estimation for hyperbolic distributions (see Blaesild
and Sgrensen (1992)), often fails to find an estimate or runs towatds This behavior is probably due

to the above-mentioned property of the family of hyperbolic distributions. Obviously it is not favorable
for maximum likelihood estimation to have convergence of the densities when parameters tend towards
the boundary of the allowed domain. “hyp” does not seem to tackle these boundary problems.

A.6 Generalized Hyperbolic Lévy Motion

Every infinitely divisible distribution has a characteristic function of the form

x(u) = exp(¢p(u))

with some continuous functiop(u) satisfying¢(0) = 0. (See Chow and Teicher (1997), Section 12.1,
Proposition 2 and Lemma 1. The Lévy-Khintchine formula gives the explicit form of the fungfioy
but this is not needed here.) For every 0, one can form the exponentiglu)! := exp(tp(u)). x(u)t
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is again a characteristic function. The corresponding probability meaB{freform a convolution semi-
group, for which can construct@nonical processvith stationary, independent increments according
to Bauer (1991), 8835, 36. The increment of this process over a period of lAndtas the distribution
Py,

In this sense, every infinitely divisible distributio® on (IR, B) generatesa Lévy processl. with

Ly ~ D. As in Eberlein (1999), Section 4, we denote ¢mwneralized hyperbolic Lévy motidhe

Lévy processes corresponding to generalized hyperbolic distributions. Analogously, we define the terms
hyperbolic Lévy motioandNIG Lévy motion
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Appendix B

Complements to Chapter 3

B.1 Convolutions and Laplace transforms

For the convenience of the reader, we present here some easy consequences of theory of the Laplace
transformation as displayed e. g. in Doetsch (1950).

Theorem B.1. Let F} and F;, be measurable complex-valued functions on the real lineFilfx)| is
bounded and if;(x) is absolutely integrable, then the convolutiéh x F5, defined by

Fy * Fy(x) := /]RFl(x —y)F>(y)dy,

is a well-defined function ofR. F; * F; is bounded and uniformly continuous.

Proof. Existence and boundedness follow from Doetsch (1950), p. 108, Satz 1. Uniform continuity
follows by Doetsch (1950), p. 111, Satz 3. O

Theorem B.2. Let F} and F, be measurable complex-valued functions on the real linezleet(C and
R :=Rez. If

/ e B Ry (z)|dz < o0 and / e B By () |dz < oo,
R R

and ifz — e~ 7| F|(z)| is bounded, then the convolutidi(z) := F; * Fy(z) exists and is continuous
for all z € IR, and we have

/ e | F(x)|dz < 0o and / e_sz(x)dx:/ e_szl(x)dx'/ e " Fy(x)dx.
R R R R

Proof. Except for the statement of continuity, this is a part of the statements proven in Doetsch (1950),
p. 123, Satz 3. For the continuity, note that

Fi(z) = e ™ F (2) and  Fy(z) = e T Fy(x)

satisfy the conditions of Theorem B.1. Thus their convolution

Flz): = /}R By (2 — ) Fo(y)dy

:/ e ey (& — y)e ™Ry (y)dy.
R
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is uniformly continuous. But we have
Fa) = [ R )Ry

= eRx/ efR(xfy)Fl(x —y)e By (y)dy
R
= eRf”]:;(x),
which proves the continuity of'. O
Remark: Theorem B.2 shows that the Laplace transform of a convolution is the product of the Laplace

transforms of the factors. This is a generalization of the well-known analogous result for Fourier trans-
forms.

The next theorem shows how one can invert the Laplace transformation. Together with Theorem B.2,
this enables us to calculate the convolution if we know the Laplace transforms of the factors.

Theorem B.3. Let F' be a measurable complex-valued function on the real line ALetIR such that
f(z) = / e *F(r)dx (z € C,Rez =R),
R

with the integral converging absolutely for= R.! Letz € IR such that the integral
R—+ico
/ e f(z)dz
R—ic0
exists as a Cauchy principal value. Assume thas continuous at the point. Then
1 R+ioco
F(z)=— e** f(z)dz,
2mi R—ioco

where the integral is to be understood as the Cauchy principal value if the integrand is not absolutely
integrable.

Proof. Cf. Doetsch (1950), p. 216, Satz 5. O

B.2 Modeling the Log Return on a Spot Contract Instead of a Forward
Contract

In the text, we assume thgtis the characteristic function of the distribution ¥f := In(e ="' S7/S).
This corresponds to a stock price model of the form
Sp = Spe’ T,

whereXr is the log return on a forward contract to buy the stock at the forwardiddesome contexts,
models of the form
ST = S()@YT

1Obviously, then the integral converges absolutely foeatl C with Rez = R.
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are used instead. Hel& is the log return on a spot contract in which one buys the stock today and sells
it at dateT’. Equating the stock prices leads to the relation

'+ X =Yrp.

Consequently, if we are given the characteristic functign) of Y-, we can calculate the characteristic
function x(u) of X1 as

X(U) — E[eiuXT] — efiurTE[eiuYT] — efiurTw(u).

Therefore if we know the characteristic functignwe at once have an expression for the characteristic
functiony(u). This can then be used to price the options as described in the text.
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