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Preface

Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the
one hand, they are very flexible, since for any time increment∆t any infinitely divisible distribution
can be chosen as the increment distribution over periods of time∆t. On the other hand, they have a
simple structure in comparison with general semimartingales. Thus stochastic models based on Lévy
processes often allow for analytically or numerically tractable formulas. This is a key factor for practical
applications.

This thesis is divided into two parts. The first, consisting of Chapters 1, 2, and 3, is devoted to the study
of stock price models involving exponential Lévy processes. In the second part, we study term structure
models driven by Lévy processes. This part is a continuation of the research that started with the author's
diploma thesis Raible (1996) and the article Eberlein and Raible (1999).

The content of the chapters is as follows. In Chapter 1, we study a general stock price model where the
price of a single stock follows an exponential Lévy process. Chapter 2 is devoted to the study of the
Lévy measure of infinitely divisible distributions, in particular of generalized hyperbolic distributions.
This yields information about what changes in the distribution of a generalized hyperbolic Lévy motion
can be achieved by a locally equivalent change of the underlying probability measure. Implications for
option pricing are discussed. Chapter 3 examines the numerical calculation of option prices. Based on
the observation that the pricing formulas for European options can be represented as convolutions, we
derive a method to calculate option prices by fast Fourier transforms, making use of bilateral Laplace
transformations. Chapter 4 examines the Lévy term structure model introduced in Eberlein and Raible
(1999). Several new results related to the Markov property of the short-term interest rate are presented.
Chapter 5 presents empirical results on the non-normality of the log returns distribution for zero bonds.
In Chapter 6, we show that in the Lévy term structure model the martingale measure is unique. This
is important for option pricing. Chapter 7 presents an extension of the Lévy term structure model to
multivariate driving Lévy processes and stochastic volatility structures. In theory, this allows for a more
realistic modelling of the term structure by addressing three key features: Non-normality of the re-
turns, term structure movements that can only be explained by multiple stochastic factors, and stochastic
volatility.
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Chapter 1

Exponential Lévy Processes in Stock Price
Modeling

1.1 Introduction

Lévy processes have long been used in mathematical finance. In fact, the best known of all Lévy
processes—Brownian motion—was originally introduced as a stock price model (see Bachelier (1900).)
Osborne (1959) refined Bachelier's model by proposing the exponential1 exp(Bt) of Brownian motion as
a stock price model. He justified this approach by a psychological argument based on the Weber-Fechner
law, which states that humans perceive the intensity of stimuli on a log scale rather than a linear scale.
In a more systematic manner, the same processexp(Bt), which is called exponential—or geometric—
Brownian motion, was introduced as a stock price model by Samuelson (1965).

One of the first to propose an exponential non-normal Lévy process was Mandelbrot (1963). He observed
that the logarithm of relative price changes on financial and commodities markets exhibit a long-tailed
distribution. His conclusion was that Brownian motion inexp(Bt) should be replaced by symmetric
α-stable Lévy motionwith indexα < 2. This yields a pure-jump stock-price process. Roughly speaking,
one may envisage this process as changing its values only by jumps. Normal distributions areα-stable
distributions withα = 2, so Mandelbrot's model may be seen as a complement of the Osborne (1959)
or Samuelson (1965) model. A few years later, an exponential Lévy process model with a non-stable
distribution was proposed by Press (1967). His log price process is a superposition of a Brownian motion
and an independent compound Poisson process with normally distributed jumps. Again the motivation
was to find a model that better fits the empirically observed distribution of the changes in the logarithm
of stock prices.

More recently, Madan and Seneta (1987) have proposed a Lévy process withvariance gammadistributed
increments as a model for log prices. This choice was justified by a statistical study of Australian stock
market data. Likeα-stable Lévy motions, variance gamma Lévy processes are pure jump processes.
However, they possess a moment generating function, which is convenient for modeling purposes. In
particular, with a suitable choice of parameters the expectation of stock prices exists in the Madan and

1One should be careful not to confuse this with thestochastic—or Doléans-Dade—exponential. For Brownian motion, the
exponential and the stochastic exponential differ only by a deterministic factor; for Lévy processes with jumps, the difference
is more fundamental.
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Seneta (1987) model. Variance Gamma distributions are limiting cases of the family ofgeneralized
hyperbolic distributions.The latter were originally introduced by Barndorff-Nielsen (1977) as a model
for the grain-size distribution of wind-blown sand. We give a brief summary of its basic properties in
Appendix A.

Two subclasses of the generalized hyperbolic distributions have proved to provide an excellent fit to em-
pirically observed log return distributions: Eberlein and Keller (1995) introduced exponentialhyperbolic
Lévy motion as a stock price model, and Barndorff-Nielsen (1995) proposed an exponentialnormal in-
verse GaussianLévy process. Eberlein and Prause (1998) and Prause (1999) finally study the whole
family of generalized hyperbolic Lévy processes.

In this chapter, we will be concerned with a general exponential Lévy process model for stock prices,
where the stock price process(St)t∈IR+ is assumed to have the form

St = S0 exp(rt) exp(Lt),(1.1)

with a Lévy processL that satisfies some integrability condition. This class comprises all models men-
tioned above, except for the Mandelbrot (1963) model, which suffers from a lack of integrability.

The chapter is organized as follows. In Section 1.2, we formulate the general framework for our study
of exponential Lévy stock price models. The remaining sections are devoted to the study of Esscher
transforms for exponential Lévy processes and to option pricing. The class of Esscher transforms is
an important tool for option pricing. Section 1.3 introduces the concept of an Esscher transform and
examines the conditions under which an Esscher transform that turns the discounted stock price process
into a martingale exists. Section 1.4 examines option pricing by Esscher transforms. We show that the
option price calculated by using the Esscher transformed probability measure can be interpreted as the
expected payoff of a modified option under the original probability measure. In Section 1.5, we derive
an integro-differential equation satisfied by the option pricing function. In Section 1.6, we characterize
the Esscher transformed measure as the only equivalent martingale measure whose density process with
respect to the original measure has a special simple form.

1.2 Exponential Lévy Processes as Stock Price Models

The following basic assumption is made throughout the thesis.

Assumption 1.1. Let(Ω,A, (At)t∈IR+ , P ) be a filtered probability space satisfying theusual conditions,
that is, (Ω,A, P ) is complete, all the null sets ofA are contained inA0, and (At)t∈IR+ is a right-
continuous filtration:

As ⊂ At ⊂ A areσ-algebras fors, t ∈ IR+, s ≤ t, and As =
⋂
t>s

At for all s ∈ IR+.

Furthermore, we assume that
A = σ

(
∪t∈IR+ At

)
.

This allows us to specify a change of the underlying probability measureP to a measureQ by giving a
density process(Zt)t∈IR+. That is, we specify the measureQ by giving, for eacht ∈ IR+, the density
Zt = dQt/dPt. HereQt andPt denote the restrictions ofQ andP , respectively, to theσ-algebraAt. If

Zt > 0 for all t ∈ IR+, the measuresQ andP are then calledlocally equivalent, Q
loc∼ P .

2



We cite the following definition from Protter (1992), Chap. I, Sec. 4.

Definition 1.2. An adapted processX = (Xt)0≤t<∞ with X0 = 0 a.s. is aLévy processif

(i) X hasincrements independent of the past:that is,Xt−Xs is independent ofFs, 0 ≤ s < t <∞;

(ii) X hasstationary increments:that is,Xt−Xs has the same distribution asXt−s, 0 ≤ s < t <∞;

(iii) Xt is continuous in probability:that is,limt→s Xt = Xs, where the limit is taken in probability.

Keller (1997) notes on page 21 that condition (iii) follows from (i) and (ii), and so may be omitted here.
Processes satisfying (i) and (ii) are calledprocesses with stationary independent increments (PIIS). (See
Jacod and Shiryaev (1987), Definition II.4.1.)

The distribution of a Lévy processes is uniquely determined by any of its one-dimensional marginal
distributionsPLt , say, byPL1. From the property of independent and stationary increments ofL, it is
clear thatPL1 is infinitely divisible. Hence its characteristic function has the special structure given by
theLévy-Khintchine formula.

E [exp(iuL1)] = exp
(
iub− c

2
u2 +

∫ (
eiux − 1− iux

)
F (dx)

)
.

Definition 1.3. TheLévy-Khintchine triplet(b, c, F ) of an infinitely divisible distribution consists of the
constantsb ∈ IR andc ≥ 0 and the measureF (dx), which appear in the Lévy-Khintchine representation
of the characteristic function

We consider stock price models of the form

St = S0 exp(rt) exp(Lt),(1.2)

with a constant deterministic interest rater and a Lévy processL.

Remark 1: In the stock price model (1.2), we could as well omit the interest rater, since the process̃L
with L̃t := rt + Lt is again a Lévy process. This would lead to a simpler formSt = S0 exp(L̃t) of the
stock price process. However, in the following we often work withdiscountedstock prices, that is, stock
prices divided by the factorexp(rt). These have a simpler form with representation (1.2).

Remark 2: Stochastic processes in mathematical finance are often defined by stochastic differential
equations (SDE). For example, the equation corresponding to the classical Samuelson (1965) model has
the form

dSt = St(µdt + σdWt),(1.3)

with constant coefficientsµ ∈ IR andσ > 0. W is a standard Brownian motion. (“Standard” means
E[W1] = 0 andE[W 2

1 ] = 1 here.) The solution of (1.3) is

St = S0 exp
(
µt− σ2

2
t + σWt

)
.

Comparing this formula with (1.2), we see that the Samuelson model is a special case of (1.2). The Lévy
processL in this case is given byLt = (µ − σ2/2 − r)t + σWt. Apart from the constant factorσ, this

3



differs from the driving processW of the stochastic differential equation (1.3) only by a deterministic
drift term.

One may ask whether the process defined in equation (1.2) could equivalently be introduced by a stochas-
tic differential equation (SDE) analogous to (1.3). This is indeed the case. However, unlike the situation
in (1.3), the driving Lévy process of the stochastic differential equation differs considerably from the
processL in (1.2). More precisely, for each Lévy processL the ordinary exponentialSt = S0 exp(Lt)
satisfies a stochastic differential equation of the form

dSt = St−dL̃t,(1.4)

whereL̃ is a Lévy process whose jumps are strictly larger than−1. On the other hand, if̃L is a Lévy
process with jumps strictly larger than−1, then the solutionS of (1.4), i. e. the stochastic exponential of
the process̃L, is indeed of the form

St = S0 exp(Lt)

with a Lévy processL. This connection is shown in Goll and Kallsen (2000), Lemma 5.8.

This relation between the ordinary exponential and the stochastic exponential of Lévy processes does not
seem to be aware to some authors. For example, in a recent publication Chan (1999) compares the direct
approach via (1.1) and his own approach via an SDE (1.4) as if they were completely different.

Note that, in particular, the restriction that the jumps ofL̃ are bounded below does not mean that the
jumps ofL are bounded. For technical reasons, we impose the following conditions.

Assumption 1.4. The random variableL1 is non-degenerate and possesses a moment generating func-
tion mgf : u 7→ E[exp(uL1)] on some open interval(a, b) with b− a > 1.

Assumption 1.5. There exists a real numberθ ∈ (a, b− 1) such that

mgf(θ) = mgf(1 + θ).(1.5)

Assumption 1.5 will be used below to prove the existence of a suitable Esscher transform.

Remark: One may wonder if 1.5 follows from 1.4 if the interval(a, b) is the maximal open interval on
which the moment generating function exists. In fact, this is true if the moment generating function tends
to infinity asu ↓ a and asu ↑ b. However, in general assumption 1.4 is not sufficient for assumption 1.5.
This can be seen from the following example.

Example 1.6. Consider normal inverse Gaussian (NIG) distributions.2 The moment generating function
of NIG is given by

mgf(u) = exp(µu)
exp(δ

√
α2 − β2)

exp(δ
√

α2 − (β + u)2)
.

For the parameters, choose the valuesα = 1, β = −0.1, µ = 0.006, andδ = 0.005. Figure 1.1 shows
the corresponding moment generating function. Its range of definition is[−α− β, α− β] = [−0.9, 1.1],
so the maximal open interval on which the moment generating function exists is(−0.9, 1.1). Hence
assumption 1.4 is satisfied, but assumption 1.5 is not. For clarity, figure 1.2 shows the same moment
generating function on the range(−0.9, 0). There are no two pointsθ, θ + 1 in the range of definition
such that the values of the moment generating function at these values are the same.

2See Section A.2.2. NIG distributions belong to the family of generalized hyperbolic distributions. They are infinitely
divisible and thus can appear as the distributions ofL1 whereL is a Lévy process.

4
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Figure 1.1: Moment generating function of a NIG distribution with parametersα = 1, β = −0.1,
µ = 0.006, andδ = 0.005.

Remark: Note that in the examplemgf(u) stays bounded asu approaches the boundaries of the range
of existence of the moment generating function. This is no contradiction to the fact that the boundary
points are singular points of the analytic characteristic function (cf. Lukacs (1970), Theorem 7.1.1), since
“singular point” is not the same as “pole”.

1.3 Esscher Transforms

Esscher transforms have long been used in the actuarial sciences, where one-dimensional distributionsP
are modified by a density of the form

z(x) =
eθx∫
eθx

P (dx),

with some suitable constantθ.

In contrast to the one-dimensional distributions in classical actuarial sciences, in mathematical finance
one encounters stochastic processes, which in general are infinite-dimensional objects. Here it is tempt-
ing to describe a transformation of the underlying probability measure by the transformation of the
one-dimensional marginal distributions of the process. This naive approach can be found in Gerber and
Shiu (1994). Of course, in general the transformation of the one-dimensional marginal distributions does
not uniquelydetermine a transformation of the distribution of the process itself. But what is worse, in
general there is no locally absolutely continuous change of measure at all that corresponds to a given
set of absolutely continuous changes of the marginals. We give a simple example: Consider a normally
distributed random variableN1 and define a stochastic processN as follows.

Nt(ω) := tN1(ω) (t ∈ IR+).

All paths ofN are linear functions, and for eacht ∈ IR+, Nt is distributed according toN(0, t2). Now
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Figure 1.2: The moment generating function from figure 1.1, drawn on the interval(−0.9, 0).

we ask whether there is a measureQ locally equivalent toP such that the one-dimensional marginal
distributions transform as follows.

1. for 0 ≤ t ≤ 1, Nt has the same distribution underQ as underP .

2. for 1 < t <∞, QNt = P 2Nt , that is,QNt = N(0, 4t2).

Obviously, these transformations of the one-dimensional marginal distributions are absolutely continu-
ous. But a measureQ, locally equivalent toP , with the desired properties cannot exist, since the relation
Nt(ω) = tN1(ω) holds irrespectively of the underlying probability measure: It reflects a path property
of all paths ofN . This property cannot be changed by changing the probability measure, that is, the
probabilities of the paths. Hence for allt ∈ IR+—and hence, in particular, for1 < t < ∞—we have
QNt = QtN1 , which we have assumed to beN(0, t2) by condition 1 above. This contradicts condition
2.3

Gerber and Shiu (1994) were lucky in considering Esscher transforms, because for Lévy processes there
is indeed a (locally) equivalent transformation of the basic probability measure that leads to Esscher
transforms of the one-dimensional marginal distributions.4 The concept—but not the name—of Esscher
transforms for Lévy processes had been introduced to finance before (see e. g. Madan and Milne (1991)),
on a mathematically profound basis.

Definition 1.7. LetL be a Lévy process on some filtered probability space(Ω,F , (Ft)t∈IR+, P ). We call

Esscher transformany change ofP to a locally equivalent measureQ with a density processZt = dQ
dP

∣∣
Ft

of the form

Zt =
exp(θLt)
mgf(θ)t

,(1.6)

3In Chapter 2, will encounter more elaborate examples of the importance of path properties. There again we will discuss
the question whether the distributions of two stochastic processes can be locally equivalent.

4However, it is not clear whether this transformation is uniquely determined by giving the transformations of the one-
dimensional marginal distributions alone.

6



whereθ ∈ IR, and wheremgf(u) denotes the moment generating function ofL1.

Remark 1: Observe that we interpret the Esscher transform as a transformation of the underlying proba-
bility measure rather than as a transformation of the (distribution of) the processL. Thus we do not have
to assume that the filtration is the canonical filtration of the processL, which would be necessary if we
wanted to construct the measure transformationP → Q from a transformation of the distribution ofL.

Remark 2: The Esscher density process, which formally looks like the density of a one-dimensional Es-
scher transform, indeed leads to one-dimensional Esscher transformations of the marginal distributions,
with the same parameterθ: Denoting the Esscher transformed probability measure byP θ, we have

P θ[Lt ∈ B] =
∫

1lB(Lt)
eθLt

mgf(θ)t
dP

=
∫

1lB(x)
eθx

mgf(θ)t
PLt(dx)

for any setB ∈ B1.

The following proposition is a version of Keller (1997), Proposition 20. We relax the conditions imposed
there on the range of admissible parametersθ, in the way that we do not require that−θ also lies in the
domain of existence of the moment generating function. Furthermore, our elementary proof does not
require that the underlying filtration is the canonical filtration generated by the Lévy process.

Proposition 1.8. Equation (1.6) defines a density process for allθ ∈ IR such thatE[exp(θL1)] <∞.
L is again a Lévy process under the new measureQ.

Proof. ObviouslyZt is integrable for allt. We have, fors < t,

E[Zt|Fs] = E[exp(θLt)mgf(θ)−t|Fs]

= exp(θLs)mgf(θ)−sE[exp(θ(Lt − Ls))mgf(θ)−(t−s)|Fs]

= exp(θLs)mgf(θ)−sE[exp(θLt−s)]mgf(θ)−(t−s)

= exp(θLs)mgf(θ)−s.

= Zs

Here we made use of the stationarity and independence of the increments ofL, as well as of the definition
of the moment generating functionmgf(u). We go on to prove the second assertion of the Proposition.
For any Borel setB, any pairs < t and anyFs ∈ Fs, we have the following

1. Lt − Ls is independent of theσ-fieldFs, so1l{Lt−Ls∈B}
Zt
Zs

is independent of1lFsZs.

2. E[Zs] = 1.

3. Again because of the independence ofLt − Ls andFs, we have independence of1l{Lt−Ls∈B}
Zt
Zs

andZs.
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Consequently, the following chain of equalities holds.

Q({Lt − Ls ∈ B} ∩ Fs) = E
[
1l{Lt−Ls∈B}1lFsZt

]
= E

[
1l{Lt−Ls∈B}

Zt

Zs
1lFsZs

]
1.= E

[
1l{Lt−Ls∈B}

Zt

Zs

]
E [1lFsZs]

2.= E

[
1l{Lt−Ls∈B}

Zt

Zs

]
E [Zs]E [1lFsZs] .

3.= E

[
1l{Lt−Ls∈B}

Zt

Zs
Zs

]
E [1lFsZs] .

= Q({Lt − Ls ∈ B})Q(Fs).

For the stationarity of the increments ofL underQ, we show

Q({Lt − Ls ∈ B}) = E[1l{Lt−Ls∈B}Zt]

= E[1l{Lt−Ls∈B}
Zt

Zs
Zs]

= E[1l{Lt−Ls∈B} exp(θ(Lt − Ls))mgf(θ)s−t]E[Zs]

= E[1l{Lt−s∈B} exp(θ(Lt−s))mgf(θ)s−t]

= E[1l{Lt−s∈B}Zt−s]

= Q({Lt−s ∈ B}),

by similar arguments as in the proof of independence.

In stock price modeling, the Esscher transform is a useful tool for finding an equivalent probability
measure under which discounted stock prices are martingales. We will use this so-calledmartingale
measurebelow when we price European options on the stock.

Lemma 1.9. Let the stock price process be given by (1.2), and let Assumptions 1.4 and 1.5 be satisfied.
Then the basic probability measureP is locally equivalent to a measureQ such that the discounted stock
price exp(−rt)St = S0 exp(Lt) is a Q-martingale. A density process leading to such a martingale
measureQ is given by the Esscher transform density

Z
(θ)
t =

exp(θLt)
mgf(θ)t

,(1.7)

with a suitable real constantθ. The valueθ is uniquely determined as the solution of

mgf(θ) = mgf(θ + 1), θ ∈ (a, b).

Proof. We show that a suitable parameterθ exists and is unique.exp(Lt) is aQ-martingale iffexp(Lt)Zt

is aP -martingale. (This can be shown using Lemma 1.10 below.) Proposition 1.8 guarantees thatL is a
Lévy process under any measureP (θ) defined by

dP (θ)

dP

∣∣∣
Ft

= Z
(θ)
t ,(1.8)

8



as long asθ ∈ (a, b). Choose a solutionθ of the equationmgf(θ) = mgf(θ + 1), which exists by
Assumption 1.5.

Because of the independence and stationarity of the increments ofL, in order to prove the martingale
property ofeL underQ we only have to show thatEQ

[
eL1

]
= 1. We have

EQ

[
eL1

]
= E

[
eL1eθL1mgf(θ)−1

]
= E

[
e(θ+1)L1

]
mgf(θ)−1

=
mgf(θ + 1)

mgf(θ)
.

ThusEQ

[
eL1

]
= 1 iff

mgf(θ + 1) = mgf(θ).(1.9)

But the last equation is satisfied by our our choice ofθ. On the other hand, there can be no other solution
θ to this equation, since the logarithmln[mgf(u)] of the moment generating function is strictly convex
for a non-degenerate distribution. This can be proved by a refinement of the argument in Billingsley
(1979), Sec. 9, p. 121, where only convexity is proved. See Lemma 2.9.

1.4 Option Pricing by Esscher Transforms

The locally absolutely continuous measure transformations appearing in mathematical finance usually
serve the purpose to change the underlying probability measureP—theobjective probability measure—

to a so-calledrisk-neutral measureQ
loc∼ P .5 Under the measureQ, all discounted6 price processes

such that the prices areQ-integrable are assumed to be martingales. Therefore such a measure is also
calledmartingale measure. By virtue of this assumption, prices of certain securities (calledderivatives)
whose prices at some future dateT are known functions of other securities (calledunderlyings) can be
calculated for all datest < T just by taking conditional expectations. For example, a so-calledEuropean
call option with a strike priceK is a derivative security that has a value of(ST − K)+ at some fixed
future dateT , whereS = (St)t∈IR is the price process of another security (which consequently is the
underlying in this case.) Assuming that the savings account process is given byBt = ert, the process
e−rtSt is a martingale underQ, sinceQ was assumed to be a risk-neutral measure. The same holds true
for the value processV of the option, for which we only specified the final valueV (T ). (e−rtV (t))t≥0

is aQ-martingale, so

e−rtV (t) = EQ

[
e−rT V (T )

∣∣Ft

]
= EQ

[
e−rT (ST −K)+

∣∣Ft

]
,

and hence

V (t) = ertEQ

[
e−rT (ST −K)+

∣∣Ft

]
= EQ

[
e−r(T−t)(ST −K)+

∣∣∣Ft

]
.(1.10)

5Local equivalence of two probability measuresQ andP on a filtered probability space means that for eacht the restrictions
Qt := Q|Ft andPt := P |Ft are equivalent measures.

6Discountedhere means that prices are not measured in terms of currency units, but rather in terms of units of a security
called thesavings account. The latter is the current value of a savings account on which one currency unit was deposed at time
0 and that earns continuously interest with the short-term interest rater(t). For example, ifr(t) ≡ r is constant as in our case,
the value of the savings account at timet is ert.
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In this way, specification of the final value of a derivative security uniquely determines its price process
up to the final date if one knows the risk-neutral measureQ.

We start with an auxiliary result.

Lemma 1.10. Let Z be a density process, i.e. a non-negativeP -martingale withE[Zt] = 1 for all
t. Let Q be the measure defined bydQ/dP

∣∣
Ft = Zt, t ≥ 0. Then an adapted process(Xt)t≥0 is a

Q-martingale iff(XtZt)t≥0 is aP -martingale.

If we further assume thatZt > 0 for all t ≥ 0, we have the following. For any pairt < T and any
Q-integrableFT -measurable random variableX,

EQ [X| Ft] = EP

[
X

ZT

Zt

∣∣∣Ft

]
.

Proof. The first part is a rephrasing of Jacod and Shiryaev (1987), Proposition III.3.8a, without the
condition thatX has càdlàg paths. (This condition is necessary in Jacod and Shiryaev (1987) because
there a martingale is required to possess càdlàg paths.) We reproduce the proof of Jacod and Shiryaev
(1987): For everyA ∈ Ft (with t < T ), we haveEQ [1lAXT ] = EP [ZT 1lAXT ] andEQ [1lAXt] =
EP [Zt1lAXt]. ThereforeEQ [XT −Xt| Ft] = 0 iff EQ [ZT XT − ZtXt| Ft] = 0, and the equivalence
follows.

The second part follows by considering theQ-martingale(Xt)0≤t≤T generated byX:

Xt := EQ [X|Ft] (0 ≤ t ≤ T ).

By what we have shown above,(ZtXt)0≤t≤T is aP -martingale, so

ZtXt = EP [ZT XT | Ft] .

Division byZt yields the desired result.

Consider a stock price model of the form (1.2), that is,St = S0 exp(rt) exp(Lt) for a Lévy processL.
We assume that there is a risk-neutral measureQ that is an Esscher transform of the objective measure
P : For a suitable valueθ ∈ IR,

Q = P (θ),

with P (θ) as defined in (1.8). All suitable discounted price processes are assumed toQ-martingales. In
particular,Q is then a martingale measure for the options market consisting ofQ-integrable European
options onS. These are modeled as derivative securities paying an amount ofw(ST ), depending only on
the stock priceST , at a fixed timeT > 0. We callw(x) thepayoff functionof the option.7 Assume that
w(x) is measurable and thatw(ST ) is Q-integrable. By (1.10), the option price at any timet ∈ [0, T ] is
given by

V (t) = EQ

[
e−r(T−t)w(ST )

∣∣∣Ft

]
= e−r(T−t)E

[
w(ST )

ZT

Zt

∣∣∣∣Ft

]
= e−r(T−t)E

[
w

(
St

ST

St

)
ZT

Zt

∣∣∣∣Ft

]
= e−r(T−t)E

[
w

(
Ste

r(T−t) exp
(
LT − Lt

)) exp(θ(LT − Lt))
mgf(θ)T−t

∣∣∣∣Ft

]
.

7This function is also calledcontract functionin the literature.
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By stationarity and independence of the increments ofL we thus have

V (t) = e−r(T−t)E

[
w

(
yer(T−t)+LT−t)

)exp(θ(LT−t))
mgf(θ)T−t

] ∣∣∣
y=St

.(1.11)

Remark: The payoffw(ST ) has to beQ-integrable for this to hold. This is true ifw(x) is bounded
by some affine functionx 7→ a + bx, since by assumption,S is aQ-martingale and hence integrable.
However, one would have to impose additional conditions to pricepower options, for which the payoff
functionw is of the formw(x) = ((x−K)+)2. (See Section 3.4 for more information on power options
and other exotic options.)

The following proposition shows that we can interpret the Esscher transform price of the contingent
claim in terms of a transform of payoff functionw and interest rater.8

Proposition 1.11. Let the parameterθ of the Esscher transform be chosen such that the discounted stock
price is a martingale underQ = P (θ). Assume, as before, thatQ is a martingale measure for the option
market as well. Fixt ∈ [0, T ]. Then the price of a European option with payoff functionw(x) (that
is, with the valuew(ST ) at expiration) is the expected discounted value of another option under the
objective measureP . This option has a payoff function

w̃St(x) := w(x)
( x

St

)θ
,

which depends on the current stock priceSt. Also, discounting takes place under a different interest
rate r̃.

r̃ := r(θ + 1) + ln mgf(θ).

Proof. In the proof of formula (1.11) for the price of a European option, we only used the fact that the
density processZ is aP -martingale. Settingθ = 0 in this formula we obtain the expected discounted
value of a European optionunder the measureP . Calling the payoff functionw and the interest rater,
we get

E(t; r,w) ≡ E
[
exp(−r(T − t))w(ST )

∣∣∣Ft

]
= exp(−r(T − t))E

[
w

(
y exp(r(T − t) + LT−t)

)]∣∣∣
y=St

= exp(−r(T − t))E
[
w

(
y
ST

St

)]∣∣∣
y=St

.(1.12)

On the other hand, by (1.11) the price of the option considered before is

V (t) = exp(−r(T − t))E
[
w

(
y
ST

St

)ZT

Zt

]∣∣∣
y=St

.(1.13)

Because of the special form of the Esscher density processZ we can expressZT
Zt

in terms of the stock

8This result is has an aesthetic value rather than being useful in practical applications: If we actually want to calculate option
prices, we can always get the density of the Esscher transformed distribution by multiplying the original density by the function
exp(θx− κ(θ)t).
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price:

ZT

Zt
=

exp(θLT − ln mgf(θ)T )
exp(θLt − ln mgf(θ)t)

=
exp(θLT + θrT )
exp(θLt + θrt)

exp(−(T − t)θr) exp(−(T − t) ln mgf(θ))

=
(ST

St

)θ
exp(−(T − t)(θr + ln mgf(θ)))

=
1
yθ

(
y
ST

St

)θ
exp

(
− (T − t)(θr + lnmgf(θ))

)
,

for any real numbery > 0. Inserting this expression for the density ratio into (1.13), we get

V (t) = exp
(
− (r + θr + ln mgf(θ))(T − t)

) 1
yθ

E
[
w

(
y
ST

St

)(
y
ST

St

)θ]∣∣∣
y=St

.(1.14)

Comparing this with the expected value (1.12) of an option characterized by the payoff functionw, as
given in the statement of the proposition, we see that (1.14) is theP -expectation of the discounted price
of an option with payoff functioñw, discounted by the interest ratẽr.

1.5 A Differential Equation for the Option Pricing Function

Equation (1.11) shows that for a simple European option, one can express the option price at timet as a
function of the timet and the stock priceSt. V (t) = g(St, t), with the function

g(y, t) := e−r(T−t)EQ

[
w

(
yer(T−t)+LT−t

)]
.

Note that unlike (1.11), the expectation here is taken under the martingale measureQ. This formula is
valid not only for option pricing by Esscher transforms, but moreover for all option pricing methods for
which the log price process is a Lévy process under the martingale measure used for pricing. In what
follows, it will turn out to be convenient to express the option price as a function of the log forward price.
Xt := ln

(
er(T−t)St

)
. This yieldsV (t) = f

(
Xt, t

)
, with

f(x, t) := e−r(T−t)EQ

[
w

(
ex+LT−t

)]
(1.15)

In the following, denote by∂if the derivative of the functionf with respect to itsi-th argument. Like-
wise,∂iif shall denote the second derivative.

Proposition 1.12. Assume that the functionf(x, t) defined in (1.15) is of classC(2,1)(IR × IR+), that
is, it is twice continuously differentiable in the variablex and once continuously differentiable in the
variablet. Assume further that the law ofLt has supportIR. Thenf(x, t) satisfies the following integro-
differential equation.

0 =− rf
(
x, t

)
+ (∂2f)

(
x, t

)
+ (∂1f)

(
x, t

)
b +

1
2
(∂11f)

(
x, t

)
c

+
∫ (

f(x + y, t)− f(x, t)− (∂1f)
(
x, t

)
y
)
F (dy),

w
(
ex) = f(x, T ) (x ∈ IR, t ∈ (0, T )).

The only parameters entering here are the short-term interest rater and the Lévy-Khintchine triplet
(b, c, F ) of the Lévy processL under the pricing measureQ.
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Proof. The log forward price process(Xt)0≤t≤T introduced above satisfies the following relation.

Xt = ln
(
er(T−t)St

)
(1.16)

= ln St + r(T − t)
= ln S0 + rT + Lt.

By assumption, the discounted option price processe−rtV (t) = e−rtf(Xt, t) is aQ-martingale. Hence it
is a special semimartingale, and any decompositione−rtV (t) = V (0)+Mt +At, with a local martingale
M and a predictable processA with paths of bounded variation, has to satisfyAt ≡ 0. In the following,
we derive such a representation. The condition thatA vanishes will then yield the desired integro-
differential equation.

By Ito's formula, we have

d(e−rtV (t)) = −re−rtV (t)dt + e−rtdV (t)
= −re−rtV (t)dt

+ e−rt
{

(∂2f)
(
Xt−, t

)
dt + (∂1f)

(
Xt−, t

)
dXt +

1
2
(∂11f)

(
Xt−, t

)
d〈Xc,Xc〉t

+
∫

IR

(
f(Xt− + y, t)− f(Xt−, t)− (∂1f)

(
Xt−, t

)
y
)
µ(X)(dy, dt)

}
,

whereµ(X) is the random measure associated with the jumps ofXt. By equation (1.16), the jumps of
X and those of the Lévy processL coincide, and so do the jump measures. Furthermore, the stochastic
differentials ofX and〈Xc,Xc〉 coincide with the corresponding differentials for the Lévy processL.
Hence we get

d(e−rtV (t)) =− re−rtV (t)dt

+ e−rt
{

(∂2f)
(
Xt−, t

)
dt + (∂1f)

(
Xt−, t

)
dLt +

1
2
(∂11f)

(
Xt−, t

)
c dt

+
∫

IR

(
f(Xt− + y, t)− f(Xt−, t)− (∂1f)

(
Xt−, t

)
y
)
µ(L)(dy, dt)

}
The right-hand side can be written as the sum of a local martingale and a predictable process of bounded
variation, whose differential is given by

−re−rtf
(
Xt−, t

)
dt + e−rt

{
(∂2f)

(
Xt−, t

)
dt + (∂1f)

(
Xt−, t

)
b dt +

1
2
(∂11f)

(
Xt−, t

)
c dt

+
∫

IR

(
f(Xt− + y, t)− f(Xt−, t)− (∂1f)

(
Xt−, t

)
y
)
ν(L)(dy, dt)

}
,

whereν(L)(dy, dt) = F (dy)dt is the compensator of the jump measureµ(L). By the argument above,
this process vanishes identically. By continuity, this means that for all valuesx from the support ofQXt−

(that is, by assumption, for allx ∈ IR) we have

0 = −rf
(
x, t

)
+ (∂2f)

(
x, t

)
+ (∂1f)

(
x, t

)
b +

1
2
(∂11f)

(
x, t

)
c

+
∫ (

f(x + y, t)− f(x, t)− (∂1f)
(
x, t

)
y
)
F (dy).
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Relation to the Feynman–Kac Formula

Equation (1.15) is the analogue of the Feynman–Kac formula. (See e. g. Karatzas and Shreve (1988),
Chap. 4, Thm. 4.2.) The difference is that Brownian motion is replaced by a general Lévy process,Lt.
The direction taken in the Feynman-Kac approach is the opposite of the one taken in Proposition 1.12:
Feynman–Kac starts with the solution of some parabolic partial differential equation. If the solution
satisfies some regularity condition, it can be represented as a conditional expectation.

A generalization of the Feynman-Kac formula to the case of general Lévy processes was formulated in
Chan (1999), Theorem 4.1. The author states the this formula can be proven exactly in the same way as
the classical Feynman-Kac formula. We have some doubts whether this is indeed the case. For example,
an important step in the proof given in Karatzas and Shreve (1988) is to introduce a stopping timeSn

that stops if the Brownian motion leaves some interval[−n, n]. Then on the stochastic interval[0, S]
the Brownian motion is bounded byn. But this argument cannot be easily transferred to a Lévy process
having unbounded jumps: At the timeS, the value of the Lévy process usually lies outside the interval
[−n, n]. Furthermore, it is not clear which regularity condition has to be imposed on the solution of the
integro-differential equation.

1.6 A Characterization of the Esscher Transform

In the preceding section, we have seen the importance of martingale measures for option pricing. In some
situations, there is no doubt what the risk-neutral measure is: It is already determined by the condition
that the discounted price processes of a set of basic securities are martingales. A famous example is the
Samuelson (1965) model. Here the price of a single stock is described by a geometric Brownian motion.

St = S0 exp
(
(µ− σ2/2)t + σWt

)
(t ≥ 0),(1.17)

whereS0 is the stock price at timet = 0, µ ∈ IR andσ ≥ 0 are constants, and whereW is a standard
Brownian motion. This model is of the form (1.2), with a Lévy processLt = (µ − r − σ2/2)t + σWt.
If the filtration in the Samuelson (1965) model is assumed to be the one generated by the stock price
process,9 there is only one locally equivalent measure under whiche−rtSt is a martingale. (See e. g.
Harrison and Pliska (1981).) This measure is given by the following density processZ with respect to
P .

Zt =
e

(
(r−µ)/σ

)
Wt

E

[
e

(
(r−µ)/σ

)
Wt

] .(1.18)

The fact that there is only one such measure implies that derivative prices are uniquely determined in
this model: If the condition thate−rtSt is a martingale is already sufficient to determine the measure
Q, then necessarilyQ must be the risk-neutral measure for any market that consists of the stockS and
derivative securities that depend only on the underlyingS. The prices of these derivative securities are
then determined by equations of the form (1.10). For European call options, these expressions can be
evaluated analytically, which leads to the famous Black and Scholes (1973) formula.

9This additional assumption is necessary since obviously the condition thatexp(Lt) be a martingale can only determine the
measure of sets in the filtration generated byL.
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Note that the uniquely determined density process (1.18) is of the form (1.6) withθ = (r− µ)/σ2. That
is, it is an Esscher transform.

If one introduces jumps into the stock price model (e. g. by choosing a more general Lévy process instead
of the Brownian motionW in (1.17)), this in general results in losing the property that the risk-neutral
measure is uniquely determined by just one martingale condition. Then the determination of prices for
derivative securities becomes difficult, because one has to figure out how the market chooses prices.
Usually, one assumes that the measureQ—that is, prices of derivative securities—is chosen in a way
that is optimal with respect to some criterion. For example, this may involve minimizing theL2-norm of
the density as in Schweizer (1996). (Unfortunately, in general the optimal densitydQ/dP may become
negative; so, strictly speaking, this is no solution to the problem of choosing a martingale measure.) Other
approaches start with the problem of optimal hedging, where the aim is maximizing the expectation of a
utility function. This often leads to derivative prices that can be interpreted as expectations under some
martingale measure. In this sense, the martingale measure can also be chosen by maximizing expected
utility. (Cf. Kallsen (1998), Goll and Kallsen (2000), Kallsen (2000), and references therein.)

For a large class of exponential Lévy processes other than geometric Brownian motion, Esscher trans-
forms are still a way to satisfy the martingale condition for the stock price, albeit not the only one. They
turn out to be optimal with respect to some utility maximization criterion. (See Keller (1997), Section
1.4.3, and the reference Naik and Lee (1990) cited therein.) However, the utility function used there
depends on the Esscher parameter. Chan (1999) proves that the Esscher transform minimizes the relative
entropy of the measuresP andQ under all equivalent martingale transformations. But since his stock
price is the stochastic exponential (rather than the ordinary exponential) of the Lévy process employed
in the Esscher transform, this result does not hold in the context treated here.

Below we present another justification of the Esscher transform: If Conjecture 1.16 holds, then the
Esscher transform is the only transformation for which the density process does only depend on the
current stock price (as opposed to the entire stock price history.)

Martingale Conditions

The following proposition shows that the parameterθ of the Esscher transform leading to an equivalent
martingale measure satisfies a certain integral equation. Later we show that an integro-differential equa-
tion of similar form holds for any functionf(x, t) for whichf(Lt, t) is another density process leading to
an equivalent martingale measure. Comparison of the two equations will then lead to the characterization
result for Esscher transforms.

Proposition 1.13. Let L be a Lévy process for whichL1 possesses a finite moment generating function
on some interval(a, b) containing0. Denote byκ(v) the cumulant generating function, i. e. the logarithm
of the moment generating function. Then there is at most oneθ ∈ IR such thateLt is a martingale under
the measuredP θ = (eθLt/E[eθL1 ]t)dP . This valueθ satisfies the following equation.

b + θc +
c

2
+

∫ (
eθx(ex − 1)− x

)
F (dx) = 0,(1.19)

where(b, c, F ) is the Lévy-Khintchine triplet of the infinitely divisible distributionPL1.

Remark: Here we do not need to introduce a truncation functionh(x), since the existence of the mo-
ment generating function implies that

∫
{|x|>1} |x|F (dx) < ∞, and henceL is a special semimartingale

according to Jacod and Shiryaev (1987), Proposition II.2.29 a.
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Proof of the proposition.It is well known that the moment generating function is of the Lévy-Khintchine
form (1.2), withu replaced by−iv. (See Lukacs (1970), Theorem 8.4.2.) SinceL has stationary and
independent increments, the condition thateLt be a martingale underP θ is equivalent to the following.

E
[
eL1

eθL1

E[eθL1 ]

]
= 1.

In terms of the cumulant generating functionκ(v) = lnE [exp(vL1)], this condition may be stated as
follows.

κ(θ + 1)− κ(θ) = 0.

Equation (1.19) follows by inserting the Lévy-Khintchine representation of the cumulant generating
function, that is,

κ(u) = ub +
c

2
u2 +

∫ (
eux − 1− ux

)
F (dx).(1.20)

The density process of the Esscher transform is given byZ with

Zt =
exp(θLt)

exp(κ(θ)t)
.

Hence it has a special structure: It depends onω only via the current valueLt(ω) of the Lévy process
itself. By contrast, even on a filtration generated byL, the value of a general density process at timet
may depend on the whole history of the process, that is, on the pathLs(ω), s ∈ [0, t].

Definition 1.14. Let τ(dx) be a measure on(IR,B1) with τ(IR) ∈ (0,∞). ThenGτ denotes the class of
continuously differentiable functionsg : IR→ IR that have the following two properties

For all x ∈ IR,
∫
{|h|>1}

g(x + h)
|h| τ(dh) <∞.(1.21)

If
∫

g(x + h)− g(x)
h

τ(dh) = 0 for all x ∈ IR, theng is constant.(1.22)

In (1.22), we define the quotientg(x+h)−g(x)
h to beg′(x) for h = 0.

Lemma 1.15. a) Assume that the measureτ(dx) has a support with closureIR. For monotone continu-
ously differentiable functionsg(x), property (1.21) implies property (1.22).

b) If the measureτ(dx) is a multiple of the Dirac measureδ0, thenGτ contains all continuously differ-
entiable functions.

Proof. a) Without loss of generality, we can assume thatg is monotonically increasing. Then
g(x+h)−g(x)

h ≥ 0 for all x, h ∈ IR. (Keep in mind that we have setg(x+0)−g(x)
0 = g′(x).) Hence∫ g(x+h)−g(x)

h τ(dh) = 0 implies thatg(x + h) = g(x) for τ(dh)-almost everyh. Since the closure of
the support ofτ(dx) was assumed to beIR, continuity ofg(x) yields the desired result.

b) Now assume thatτ(dx) = αδ0 for someα > 0. Condition (1.21) is trivially satisfied. For the proof of
condition (1.22), we note that

∫ g(x+h)−g(x)
h αδ0(dh) = αg′(x). But if the derivative of the continuously

differentiable functiong(x) vanishes for almost allx ∈ IR, then obviously this function is constant.
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Conjecture 1.16. In the definition above, if the support ofτ has closureIR, then property (1.21) implies
property (1.22).

Remark: Unfortunately, we are not able to prove this conjecture. It bears some resemblance with the
integrated Cauchy functional equation(see the monograph by Rao and Shanbhag (1994).) This is the
integral equation

H(x) =
∫

IR
H(x + y)τ(dy) (almost allx ∈ IR),(1.23)

whereτ is aσ-finite, positive measure on(IR,B1). If τ is a probability measure, then the functionH
satisfies (1.23) iff ∫

IR

(
H(x + y)−H(x)

)
τ(dy) = 0 (almost allx ∈ IR).

According to Ramachandran and Lau (1991), Corollary 8.1.8, this implies thatH has every element of
the support ofτ as a period. In particular, the cited Corollary concludes thatH is constant if the support
of τ contains two incommensurable numbers. This is of course the case if the support ofτ has closure
IR, which we have assumed above. However, we cannot apply this theorem since we have the additional
factor1/h here.

As above, denote by∂if the derivative of the functionf with respect to itsi-th argument. Furthermore,
the notationX · Y means the stochastic integral ofX with respect toY . Note thatY can also be the
deterministic processt. HenceX · t denotes the Lebesgue integral ofX, seen as a function of the upper
boundary of the interval of integration.

We are now ready to show the following theorem, which yields the announced uniqueness result for
Esscher transforms.

Theorem 1.17. Let L be a Lévy process with a Lévy-Khintchine triplet(b, c, F (dx)) satisfying one of
the following conditions

1. F (dx) vanishes andc > 0.

2. The closure of the support ofF (dx) is IR, and
∫
{|x|≥1} e

uxF (dx) < ∞ for u ∈ (a, b), where
a < 0 < b.

Assume thatθ ∈ (a, b− 1) is a solution ofκ(θ +1) = κ(θ), whereκ is the cumulant generating function
of the distribution ofL1. SetG(dx) := cδ0(dx) + x(ex − 1)eθxF (dx). Define a density processZ by

Zt :=
exp(θLt)

exp(tκ(θ))
(t ∈ IR+).

Then under the measureQ
loc∼ P defined by the density processZ with respect toP , exp(Lt) is a

martingale.10 Z is the only density process with this property that has the formZt = f(Lt, t) with a
functionf ∈ C(2,1)(IR× IR+) satisfying the following: For everyt > 0, g(x, t) := f(x, t)e−θx defines
a functiong(·, t) ∈ GG.

10See Assumption 1.1 for a remark why a change of measure can be specified by a density process.

17



Proof. First, note that the condition onF (dx) implies that the distribution of everyLt has supportIR
and possesses a moment generating function on(a, b). (The latter is a consequence of Wolfe (1971),
Theorem 2.)

We have already shown thateLt indeed is aQ-martingale.

Let f ∈ C(2,1)(IR× IR+) be such thatf(Lt, t) is a density process. Assume that under the transformed
measure,eLt is a martingale. Thenf(Lt, t) as well asf(Lt, t)eLt are strictly positive martingales under
P . By Ito's formula for semimartingales, we have

f(Lt, t) = f(L0, 0) + ∂2f(Lt−, t) · t
+ ∂1f(Lt−, t) · Lt

+ (1/2)∂11f(Lt−, t) · 〈Lc, Lc〉t
+

(
f(Lt− + x, t)− f(Lt−, t)− ∂1f(Lt−, t)x

)
∗ µL

t

and

f(Lt, t)eLt =f(L0, 0)eL0 + ∂2f(Lt−, t) exp(Lt−) · t
+ (∂1f(Lt−, t) + f(Lt−, t)) exp(Lt−) · Lt

+ (1/2)
(
∂11f(Lt−, t) + 2∂1f(Lt−, t) + f(Lt−, t)

)
· 〈Lc, Lc〉t

+
((

f(Lt− + x, t)ex − f(Lt−, t)− (∂1f(Lt−, t) + f(Lt−, t))x
)
eLt−

)
∗ µL

t .

Since both processes are martingales, the sum of the predictable components of finite variation has to be
zero for each process. So we have

0 =∂2f(Lt−, t) · t + ∂1f(Lt−, t)b · t + (1/2)∂11f(Lt−, t)c · t

+
∫ ∫ (

f(Lt− + x, t)− f(Lt−, t)− ∂1f(Lt−, t)x
)
F (dx)dt

and

0 =∂2f(Lt−, t) exp(Lt−) · t +
(
∂1f(Lt−, t) + f(Lt−, t)

)
b exp(Lt−) · t

+ (1/2)
(
∂11f(Lt−, t) + 2∂1f(Lt−, t) + f(Lt−, t)

)
c · t

+
∫ ∫ ((

f(Lt− + x, t)ex − f(Lt−, t)− (∂1f(Lt−, t) + f(Lt−, t))x
)
eLt−

)
F (dx)dt.

By continuity, we have for anyt > 0 andy in the support ofL(Lt−) (which is equal to the support of
L(Lt), which in turn is equal toIR)

0 = ∂2f(y, t) + ∂1f(y, t)b + (1/2)∂11f(y, t)c +
∫ (

f(y + x, t)− f(y, t)− ∂1f(y, t)x
)
F (dx)

and

0 = ∂2f(y, t) + (∂1f(y, t) + f(y, t))b + (1/2)(∂11f(y, t) + 2f1(y, t) + f(y, t))c

+
∫ (

f(y + x, t)ex − f(y, t)− (∂1f(y, t) + f(y, t))x
)
F (dx).
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Subtraction of these integro-differential equations yields

0 = f(y, t)b + f1(y, t)c + f(y, t)c/2 +
∫ (

f(y + x, t)(ex − 1)− f(y, t)x
)
F (dx) (y ∈ IR).

Division byf(y, t) results in the equation

0 = b +
f1(y, t)
f(y, t)

c +
c

2
+

∫ (f(y + x, t)
f(y, t)

(ex − 1)− x
)
F (dx). (y ∈ IR)(1.24)

By Proposition 1.13, the Esscher parameterθ satisfies a similar equation, namely

0 = b + θc +
c

2
+

∫ (
eθx(ex − 1)− x

)
F (dx).(1.25)

Subtracting (1.25) from (1.24) yields

0 =
(f1(y, t)

f(y, t)
− θ

)
c +

∫ (f(y + x, t)
f(y, t)

− eθx
)
(ex − 1)F (dx) (y ∈ IR).

For the ratiog(y, t) := f(y, t)/eθy, this implies11

0 =
g1(y, t)
g(y, t)

c +
∫ (g(y + x, t)

g(y, t)
− 1

)
(ex − 1)eθxF (dx) (y ∈ IR).

Multiplication byg(y, t) finally yields

0 = g1(y, t)c +
∫ (

g(y + x, t)− g(y, t)
)
(ex − 1)eθxF (dx)(1.26)

= g1(y, t)c +
∫

g(y + x, t)− g(y, t)
x

x(ex − 1)eθxF (dx)

=
∫

g(y + x, t)− g(y, t)
x

G(dx) (y ∈ IR),

where we set againg(y+0,t)−g(y,t)
0 := g′(y). The measureG(dx) = cδ0 +x(ex−1)eθxF (dx) is finite on

every finite neighborhood ofx = 0. Furthermore,G(dx) is non-negative and has supportIR\{0}. Since
we have assumed thatθ lies in the interval(a, b − 1) (where(a, b) is an interval on which the moment
generating function ofL1 is finite), we can findε > 0 such that the interval(θ−ε, θ+1+ε) is a subset of
(a, b). Using the estimation|x| ≤ (e−εx + eεx)/ε, which is valid for allx ∈ IR, it is easy to see that one
can form a linear combination of the functionse(θ−ε)x, e(θ+ε)x, e(θ+1−ε)x, ande(θ+1+ε)x that is an upper
bound for the functionx(ex − 1)eθx. Choosingε > 0 small enough, all the coefficients in the exponents
lie in (a, b). Therefore the measureG(dx) is finite. Since by assumptiong ∈ GG, equation (1.26) implies
that g(·, t) is a constant for every fixedt, sayg(x, t) = c(t) for all x ∈ IR, t > 0. By definition ofg,
this impliesf(x, t) = c(t)eθx for all x ∈ IR, t > 0. It follows from the relationE[f(Lt, t)] = 1 that
c(t) = 1/E

[
eθLt

]
= exp(−tκ(θ)).

11Note that
g1(y, t)

g(y, t)
=

(∂1f(y, t)− θf(y, t))e−θy

g(y, t)
=
∂1f(y, t)

f(y, t)
− θ

and
g(y + x, t)

g(y, t)
exp(θx) =

f(y + x, t)

f(y, t)
.
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Chapter 2

On the Lévy Measure
of Generalized Hyperbolic Distributions

2.1 Introduction

The Lévy measure determines the jump behavior of discontinuous Lévy processes. This measure is
interesting from a practical as well as from a theoretical point of view. First, one can simulate a purely
discontinuous Lévy process by approximating it by a compound Poisson process. The jump distribution
of the approximating process is a normalized version of the Lévy measure truncated in a neighborhood
of zero. This approach was taken e. g. in Rydberg (1997) for the simulation of normal inverse Gaussian
(NIG) Lévy motions and in Wiesendorfer Zahn (1999) for the simulation of hyperbolic and NIG Lévy
motions.1 Of course, simulating the Lévy process in this way requires the numerical calculation of the
Lévy density. We present a generally applicable method to get numerical values for the Lévy density
based on Fourier inversion of a function derived form the characteristic function. We refine the method
for the special case of generalized hyperbolic Lévy motions.2 This class of Lévy processes matches
the empirically observed log return behavior of financial assets very accurately. (See e. g. Eberlein and
Prause (1998) for the general case, and Eberlein and Keller (1995), Barndorff-Nielsen (1997) for a study
of some special cases of this class.)

The second important area where knowledge of the Lévy measure is essential is the study of singularity
and absolute continuity of the distribution of Lévy processes. Here the density ratio of the Lévy measures
under different probability measures is a key element. For the case of generalized hyperbolic Lévy
processes, we study the local behavior of the Lévy measure nearx = 0. This is the region that is most
interesting for the study of singularity and absolute continuity. We apply this knowledge to a problem in
option pricing: Eberlein and Jacod (1997b) have shown that with stock price models driven by pure-jump
Lévy processes with paths of infinite variation, the option price is completely undetermined. Their proof
relied on showing that the class of equivalent probability transformations that transform the driving
Lévy process into another Lévy process is sufficiently large to generate almost arbitrary option prices
consistent with no-arbitrage. For the class of generalized hyperbolic Lévy processes, we are able to

1These processes are Lévy processesL such that the unit incrementL1 has a hyperbolic respectively NIG distribution. See
Appendix A.

2For a brief account of generalized hyperbolic distributions and the class of Lévy processes generated by them, see Appendix
A.
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specialize this result: It is indeed sufficient to consider only those measure transformations that transform
the driving generalized hyperbolic Lévy process into a generalized hyperbolic Lévy process.

The chapter is structured as follows. In Section 2.2 we show how one can calculate the Fourier transform
of the Lévy measure once the characteristic function of the corresponding distribution is known. The
only requirement is that the distribution possesses a second moment. Section 2.3 considers the class of
Lévy processes possessing a moment generating function. Here one can apply Esscher transforms to the
basic probability measure. We study the effect of Esscher transforms on the Lévy measure and show
how the Lévy measure is connected with the derivative of the characteristic function by means of Fourier
transforms. Section 2.4 considers the class of generalized hyperbolic distributions. For a suitable modifi-
cation of the Lévy measure, we calculate an explicit expression of its Fourier transform. It is shown how
the Fourier inversion of this function, which yields the density of the Lévy measure, can be performed
very efficiently by adding terms that make the Fourier transform decay more rapidly for|u| → ∞.3 In
Section 2.5 we examine the question whether there are changes of probability that turn one generalized
hyperbolic Lévy process into another. Proposition 2.20 identifies those changes of the parameters of
the generalized hyperbolic distribution that can be achieved by changing the probability measure. The
key to this is the behavior of the Lévy measures nearx = 0. With the same methodology, we show in
Proposition 2.21 that for the CGMY distributions a similar result holds. Due to the simpler structure of
the Lévy density, the proof is much easier than for the generalized hyperbolic case. In Section 2.6, we
demonstrate that the parametersδ andµ are indeed path properties of generalized hyperbolic paths, just
as the volatility is a path property of the path of a Brownian motion. Section 2.7 studies implications for
the problem of option pricing in models where the stock price is an exponential generalized hyperbolic
Lévy motion.

2.2 Calculating the Lévy Measure

Let χ(u) denote the characteristic function of an infinitely divisible distribution. Thenχ(u) possesses a
Lévy-Khintchine representation.

χ(u) = exp
(
iub− u2

2
c +

∫
IR\{0}

(
eiux − 1− iuh(x)

)
K(dx)

)
.(2.1)

(See also Chapter 1.) Hereb ∈ IR andc ≥ 0 are constants, andK(dx) is theLévy measure. This is a
σ-finite measure onIR\{0} that satisfies∫

IR\{0}
(x2 ∧ 1) K(dx) <∞.(2.2)

It is convenient to extendK(dx) to a measure onIR by settingK({0}) = 0. Unless stated otherwise, by
K(dx) we mean this extension. The functionh(x) is atruncation function, that is, a measurable bounded
function with bounded support that that satisfiesh(x) = x in a neighborhood ofx = 0. (See Jacod and
Shiryaev (1987), Definition II.2.3.) We will usually use the truncation function

h(x) = x1l{|x|≤1}.

3The author has developed an S-Plus program based on this method. This was used by Wiesendorfer Zahn (1999) for the
simulation of hyperbolic Lévy motions.
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The proofs can be repeated with any other truncation function, but they are simpler with this particular
choice ofh(x).

In general, the Lévy measure may have infinite mass. In this case the mass is concentrated aroundx = 0.
However, condition (2.2) imposes restrictions on the growth of the Lévy measure aroundx = 0.

Definition 2.1. Let K(dx) be the Lévy measure of an infinitely divisible distribution. Then we call
modified Lévy measurethe measurẽK on (IR,B) defined byK̃(dx) := x2K(dx).

Lemma 2.2. Let K̃ be the modified Lévy measure corresponding to the Lévy measureK(dx) of an
infinitely divisible distribution that possesses a second moment. ThenK̃ is a finite measure.

Proof. Sincex 7→ x2 ∧ 1 is K(dx) integrable, it is clear that̃K puts finite mass on every bounded
interval. Moreover, by Wolfe (1971), Theorem 2, if the corresponding infinitely divisible distribution has
a finite second moment,x2 is integrable over any whose closure does not containx = 0. SoK̃ assigns
finite mass to any such set. Hence

K̃(IR) = K̃
(
[−1, 1]

)
+ K̃

(
(−∞,−1) ∪ (1,∞)

)
<∞.

The following theorem shows how the Fourier transform of the modified Lévy measurex2K(dx) is
connected with the characteristic function of the corresponding distribution. This theorem is related to
Bar-Lev, Bshouty, and Letac (1992), Theorem 2.2a, where the corresponding statement for the bilateral
Laplace transform is given.4

Theorem 2.3. Let χ(u) denote the characteristic function of an infinitely divisible distribution onIR
possessing a second moment. Then the Fourier transform of the modified Lévy measurex2K(dx) is
given by ∫

IR
eiuxx2K(dx) = −c− d

du

(χ′(u)
χ(u)

)
.(2.3)

Proof. Using the Lévy-Khintchine representation, we have

d

du
χ(u) = χ(u) ·

(
ib− uc +

d

du

∫
IR

(
eiux − 1− iuh(x)

)
K(dx)

)
.

The integrandeiux − 1− iuh(x) is differentiable with respect tou. Its derivative is

∂u

(
eiux − 1− iuh(x)

)
= ix eiux − ih(x).

This is bounded by aK(dx)-integrable function as we will presently see. First, for|x| ≤ 1 we have

|ix eiux − ih(x)| = |x| · |eiux − 1|
≤ |x| · (| cos(ux)− 1|+ | sin(ux)|)
≤ |x| · 2|ux| = |u| · |x|2.

4However, Bar-Lev, Bshouty, and Letac (1992) do not give a proof. They say “The following result does not appear clearly
in the literature and seems rather to belong to folklore.”
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Foru from some bounded interval, this is uniformly bounded by some multiple of|x|2. For |x| > 1,

|ix eiux − ih(x)| = |ix eiux| = |x|.

From Wolfe (1971), Theorem 2, it follows that
∫
{|x|>1} |x|K(dx) < ∞ iff the distribution possesses a

finite first moment. Hence for eachu ∈ IR we can find some neighborhoodU such thatsupu∈U |ix eiux−
ih(x)| is integrable, Therefore the integral is a differentiable function ofu, and we can differentiate under
the integral sign. (This follows from the differentiation lemma; see e. g. Bauer (1992), Lemma 16.2.)
Consequently, we have

χ′(u)
χ(u)

= ib− uc +
∫

IR

(
ix eiux − ih(x)

)
K(dx).

Again by the differentiation lemma, differentiating a second time is possible if the integrandix eiux −
ih(x) has a derivative with respect tou that is bounded by someK(dx)-integrable functionf(x), uni-
formly in a neighborhood of anyu ∈ IR. Here this is satisfied withf(x) = x2, since∣∣∣ ∂

∂u

(
ix eiux − ih(x)

)∣∣∣ = | − x2 eiux| = x2 for all u ∈ IR.

Again by Wolfe (1971), Theorem 2, this is integrable with respect toK(dx) because by assumption
the second moment of the distribution exists. Hence we can again differentiate under the integral sign,
getting

d

du

(χ′(u)
χ(u)

)
= −c +

∫
IR

eiux · x2 K(dx).

This completes the proof.

Corollary 2.4. Let χ(u) be the characteristic function of an infinitely divisible distribution on(IR,B)
that integratesx2. Assume that there is a constantc̃ ∈ IR such that the function

ρ̂(u) := −c̃− d

du

(χ′(u)
χ(u)

)
(2.4)

is integrable with respect to Lebesgue measure. Thenc̃ is equal to the Gaussian coefficientc in the Lévy-
Khintchine representation, and̂ρ(u) is the Fourier transform of the modified Lévy measurex2K(dx).
This measure has a continuous Lebesgue density onIR that can be recovered from the functionρ̂(u) by
Fourier inversion.

x2 dK

dλ
(x) =

1
2π

∫
IR

e−iuxρ̂(u)du.

Consequently, the measureK(dx) has a continuous Lebesgue density onIR\{0}:

dK

dλ
(x) =

1
2πx2

∫
IR

e−iuxρ̂(u)du.

For the proof, we need the following lemma.

Lemma 2.5. Let G(dx) be a finite Borel measure onIR. Assume that the characteristic function̂G(u)
of G tends to a constantc as|u| → ∞. ThenG({0}) = c.
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Proof of Lemma 2.5.For any Lebesgue integrable functiong(u) with Fourier transformĝ(x) =∫
eiuxg(u) du, we have by Fubini's theorem that∫

ĝ(x) G(dx) =
∫ ∫

eiuxg(u) du G(dx)

=
∫ ∫

eiux G(dx) g(u) du =
∫

Ĝ(u)g(u) du.(2.5)

Settingϕ(u) := (2π)−1/2e−u2/2, we get the Fourier transform̂ϕ(x) = e−x2/2. Now we consider the
sequence of functionsgn(u) := ϕ(u/n)/n, n ≥ 1. We haveĝn(x) = ϕ̂(nx) → 1l{0}(x) asn → ∞,
for anyx ∈ IR. By dominated convergence, this implies∫

ĝn(x) G(dx)→
∫

1l{0}(x) G(dx) = G({0}) (n→∞).(2.6)

On the other hand, settinĝGn(u) := Ĝ(nu), n ≥ 1, we haveĜn(u) → 1l{x=0} + c1l{x 6=0} pointwise
for u ∈ IR. Hence, again by dominated convergence,∫

Ĝ(u)gn(u) du =
∫

Ĝ(u)ϕ(u/n)/n du

=
∫

Ĝ(nu)ϕ(u) du→
∫

(1l{x=0} + c1l{x 6=0})ϕ(u) du = c.(2.7)

Since we have
∫

ĝn(x) G(dx) =
∫

Ĝ(u)gn(u) du by (2.5), now relations (2.6) and (2.7) yield the
desired result: ∫

ĝn(x) G(dx)
(2.6)−→ G

(
{0}

)
||∫

Ĝ(u)gn(u) du
(2.7)−→ c.

Proof of Corollary 2.4.By Lemma 2.2,x2K(dx) is a finite measure under the hypotheses of Corollary
2.4. By Theorem 2.3, its Fourier transform is given by∫

IR
eiuxx2K(dx) = −c− d

du

(χ′(u)
χ(u)

)
.

On the other hand, the assumed integrability ofρ̂(u) implies thatρ̂(u)→ 0 as|u| → ∞. Soρ̂(u)+ c̃−c,
which is just the Fourier transform ofx2K(dx), converges to the valuẽc − c as|u| → ∞. Lemma 2.5
now yields that the limit̃c−c is just the modified Lévy measure of the set{0}. But this is zero, so indeed
c̃ = c.

The remaining statements follow immediately from Theorem 2.3 and the fact that integrability of the
Fourier transform implies continuity of the original function. (See e. g. Chandrasekharan (1989), I.(1.6).)
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2.3 Esscher Transforms and the Lévy Measure

Lemma 2.6. LetG(dx) be a distribution onIR with a finite moment generating function on some interval
(−a, b) with −a < 0 < b. Denote byχ(z) the analytic characteristic function ofG. Then the Esscher
transform ofG(dx) with parameterθ ∈ (−b, a), i. e. the probability measure

Gθ(dx) :=
1

χ(−iθ)
eθxG(dx),

has the analytic characteristic function

χθ(z) =
χ(z − iθ)
χ(−iθ)

.

Proof. This is immediately clear from the definition of the characteristic function.

The Esscher transform of an infinitely divisible distribution is again infinitely divisible. The parameter
θ changes the drift coefficientb, the coefficientc, and the Lévy measureK(dx). This is shown in the
following proposition.

Proposition 2.7. LetG(dx) be an infinitely divisible distribution onIR with a finite moment generating
function on some interval(−a, b) with −a < 0 < b. Let the Lévy-Khintchine representation of the
corresponding characteristic functionχ(u) be given by

χ(u) = exp
(
iub− u2

2
c +

∫
IR\{0}

(
eiux − 1− iuh(x)

)
K(dx)

)
.

Then for any parameterθ ∈ (−b, a) the Esscher transformGθ(dx) is infinitely divisible, with the pa-
rameters given by

bθ = b + θc +
∫

IR\{0}
h(x)(eθx − 1)K(dx),

cθ = c,

and Kθ(dx) = eθxK(dx).

Proof. By Lukacs (1970), Theorem 8.4.2, we know that the Lévy-Khintchine representation of the char-
acteristic function still holds if we replaceu by a complex valuez with Imz ∈ (−b, a). Hence by
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Lemma 2.6 the characteristic function of the Esscher-transformed distribution is given byχθ(u), with

χθ(u) =
exp

(
i(u− iθ)b− (u−iθ)2

2 c +
∫

IR\{0}
(
ei(u−iθ)x − 1− i(u− iθ)h(x)

)
K(dx)

)
χ(−iθ)

= exp
(
iub + θb− u2

2
c + iuθc +

θ2

2
c

+
∫

IR\{0}

(
eiuxeθx − 1− iuh(x) − θh(x)

)
K(dx)

− θb− θ2

2
c−

∫
IR\{0}

(
eθx − 1− θh(x)

)
K(dx)

)
= exp

(
iu(b + θc)− u2

2
c +

∫
IR\{0}

(
eiux − 1− iuh(x)

)
eθxK(dx)

− iu

∫
IR\{0}

h(x)(1− eθx)K(dx)
)
.

But this is again a Lévy-Khintchine representation of a characteristic function, with parameters as given
in the proposition.

In Chapter 1, we saw that in mathematical finance, Esscher transforms are used as a means of finding
an equivalent martingale measure. The following proposition examines the question of existence and
uniqueness of a suitable Esscher transform. It generalizes Lemma 1.9.

Proposition 2.8. Consider a probability measureG on(IR,B) for which the moment generating function
mgf(u) exists on some interval(−a, b) with a, b ∈ (0,∞]. Then we have the following.

(a) If G(dx) is non-degenerate, then for eachc > 0 there is at most one valueθ ∈ IR such that

mgf(θ + 1)
mgf(θ)

= c.(2.8)

(b) If mgf(u) → ∞ asu → −a and asu → b, and if b + a > 1, then equation (2.8) has exactly one
solutionθ ∈ (−a, b− 1) for eachc > 0.

For the proof of the proposition, we will need the following lemma. The statement is well known, but
for the sake of completeness we give an elementary proof here.

Lemma 2.9. Letµ(dx) be a non-degenerate probability measure on(IR,B1) which possesses a moment-
generating function. Then the logarithm of this moment generating function possesses a strictly positive
second derivative on the interior of its range of existence. In particular, it is strictly convex on its range
of existence.

Proof. Consider an arbitrary valueu from the interior of the range of existence of the moment generating
function. The second derivative of the log of the moment generating function, taken atu, is

(
ln mgf

)
′′(u) =

mgf ′′(u)mgf(u)−mgf ′(u)2

mgf(u)2

=
∫

x2euxµ(dx)∫
euxµ(dx)

−
(∫

xeuxµ(dx)∫
euxµ(dx)

)2

> 0,
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since obviously the last expression is the variance of the non-degenerate distributioneuxR
euxµ(dx)

µ(dx).

Proof of Proposition 2.8. Part (a).Equation (2.8) is equivalent toln mgf(θ + 1) − ln mgf(θ) = ln c.
The left-hand side is a strictly increasing function ofθ, since by the mean value theorem there is a value
ξ ∈ (θ, θ + 1) such that

d

dθ

(
ln mgf(θ + 1)− ln mgf(θ)

)
=

(
ln mgf

)′′(ξ).
The last term is strictly positive by Lemma 2.9. But a strictly increasing function possesses an inverse.

Part (b). By assumption, the functionθ 7→ ln mgf(θ+1)− lnmgf(θ) is well-defined forθ from the non-
empty interval(−a, b − 1). It tends to+∞ asθ reaches the boundaries of this interval. By continuity,
there is a valueθ where this function takes the valueln c. This solves equation (2.8). Obviously, a
distribution which satisfies the assumptions cannot be degenerate, so uniqueness follows by part (a).

Corollary 2.10. Let G be a non-degenerate distribution on(IR,B1) for which the moment generating
functionmgf(u) exists on some interval(−a, b) with a, b ∈ (0,∞].

(a) For eachc > 0, there is at most one valueθ such that the Esscher-transformed distribution

Gθ(dx) := eθxG(dx)R
eθxG(dx)

satisfiesmgfGθ(1) = c.

(b) If, in addition, we havea + b > 1, and if the moment generating function tends to infinity as one
approaches the boundaries of the interval(−a, b), then for eachc > 0 there is exactly oneθ ∈ IR
such that the Esscher transformed distributionGθ(dx) has a moment generating function equal to
c at u = 1.

Proof. This follows at once from Proposition 2.8 and Lemma 2.6.

2.4 Fourier Transform of the Modified Lévy Measure

The characteristic function of a generalized hyperbolic distribution with parametersλ ∈ IR, α > 0,
−α < β < α, δ > 0, andµ ∈ IR is given by

χ(u) = eiµu (δ
√

α2 − β2)λ

Kλ(δ
√

α2 − β2)
·
Kλ

(
δ
√

α2 − (β + iu)2
)(

δ
√

α2 − (β + iu)2
)λ

.(2.9)

(See Appendix A.) This distribution possesses a moment generating function on the interval(−α −
β, α − β).5 Therefore there is an analytic extension of the characteristic function to the stripS :=
IR − i(−α − β, α − β) ⊂ C. Since the expression given above for the characteristic function can be
shown to yield an analytic function if one replaces the real variableu by a complex variablez ∈ S, by
standard arguments it coincides with the analytic characteristic function.

5For parameter valuesλ < 0, the moment generating function exists on the endpoints of this interval as well. However, most
results concerning the analytic extension of the characteristic function only deal with the interior of the interval of existence.
This is because by Lukacs (1970), Theorem 7.1.1, the endpoints are singular points of the moment generating function, which
means that the usual arguments involving analyticity are not valid there.
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For further reference, we formulate the following statements as propositions. Proposition 2.11 general-
izes Keller (1997), Lemma 52, which considers hyperbolic distributions. Moreover, using characteristic
functions we are able to give a more elegant proof.

Proposition 2.11. An Esscher transform of a generalized hyperbolic distributionGH(λ, α, β, δ, µ)
(with Esscher parameterθ ∈ (−α − β, α − β)) corresponds to a change of parameterβ ; β + θ
and vice versa. The same holds for any member of a generalized hyperbolic convolution semigroup.

Proof. By Lemma 2.6, the following connection exists between the characteristic functionχθ of an
Esscher transformed distribution and the (analytic) characteristic function of the original distribution.

χθ(z) =
χ(z − iθ)
χ(−iθ)

.(2.10)

By the argument above, the analytic characteristic function of a generalized hyperbolic distribution has
the form

χ(z) =
exp

(
iµ(z − iβ)

)
exp

(
iµ(−iβ)

) (δ
√

α2 + (iβ)2)λ

Kλ(δ
√

α2 + (iβ)2)
·
Kλ

(
δ
√

α2 + (z − iβ)2
)(

δ
√

α2 + (z − iβ)2
)λ

.(2.11)

Clearly the parameterβ acts exactly as the Esscher parameterθ in (2.10). Taking thet-th power yields
the statement for arbitraryt > 0.

Proposition 2.12. If λ ≥ 0, then the moment generating function of a generalized hyperbolic distribu-
tion tends to+∞ as u → α − β or u → −α − β. On the other hand, ifλ < 0, then the moment
generating function converges to a finite limit asu approachesα− β or −α− β.

Proof. If u tends to one of the valuesα − β or −α − β, the expressionδ
√

α2 − (β − u)2 converges
to zero. Consequently, in this case the behavior of the moment generating function coincides with the
behavior of the expressionKλ(x)

xλ
for x ↓ 0. From Abramowitz and Stegun (1968), equations 9.6.6, 9.6.8,

and 9.6.9, we know that, asz → 0,

Kλ(z) ∼


Γ(λ)2λ−1

zλ
for λ > 0,

− ln z, for λ = 0,
Γ(−λ)
2λ+1 zλ for λ < 0.

Hence ifx ↓ 0, Kλ(x)
xλ

converges to a finite limit iffλ < 0. Otherwise it tends to+∞. This completes
the proof.

Corollary 2.13. Letλ ≥ 0 andα > 1/2, and choose arbitrary valuesδ > 0, µ ∈ IR, andc > 0. Then
there is a unique valueβ such that the moment generating functionmgfGH(λ,α,β,δ,µ)(1) = c.

Proof. The distributionGH(λ, α, 0, δ, µ) possesses a moment generating function on the set(−α,α).
Sinceα > 1/2, the conditions of Corollary 2.10 (b) are satisfied, and so there is a unique Esscher
parameterθ such that the moment generating function of the Esscher transformed distribution has the
valuec atu = 1. By Proposition 2.11, the Esscher parameter is exactly the increment of the parameterβ
due to an Esscher transformation.
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2.4.1 The Lévy Measure of a Generalized Hyperbolic Distribution

The Lévy measure of a generalized hyperbolic distribution depends on the parametersλ, α, β, andδ. It
is continuous with respect to Lebesgue measure. The following formulas for the densities are proven in
Prause (1999), Theorem 1.43 (for the caseλ ≥ 0), and in Wiesendorfer Zahn (1999), Anhang C (for the
case of generalλ).

dK(x)
dx

=


eβx

|x|

(∫ ∞
0

exp
(
−

√
2y + α2|x|

)
π2y

(
J2

λ(δ
√

2y) + Y 2
λ (δ
√

2y)
)dy + λe−α|x|

)
, λ ≥ 0

eβx

|x|

∫ ∞
0

exp
(
−

√
2y + α2|x|

)
π2y

(
J2
−λ(δ
√

2y) + Y 2
−λ(δ
√

2y)
)dy, λ < 0.

(2.12)

However, numerical evaluation of these expressions is cumbersome, especially for small values of|x|,
where the decay of the exponential term in the numerator becomes very slow. Because of the two Bessel
functionsJλ andYλ appearing in the denominator, it is also difficult to examine the density analytically.
Therefore we do not use representation (2.12) for our studies of the Lévy measure. Instead, we represent
the Lévy density as a Fourier back-transform as in Corollary 2.4.

The following considerations show that we can limit our examinations to the caseβ = 0. From (2.11) it
is clear that changing the value of the parameterβ from β1 to β2 amounts to shifting the argumentu of
the characteristic function by−i(β2−β1) while multiplying by a normalizing factor. By Lemma 2.6, this
corresponds to an Esscher transform with parameterβ2 − β1. By Proposition 2.7, this only introduces
a factorexp((β2 − β1)x) into the Lévy measure. Hence we only have to derive a formula for the Lévy
measure for the caseβ = 0: If we know the Lévy densityKβ=0(dx)/dx for vanishingβ, then the Lévy
measure forβ 6= 0, with the other parameters unchanged, is given by the relation

Kβ(dx) = exp(βx)Kβ=0(dx).

Corollary 2.4 provides a way to get a formula for the density of the Lévy measure that is analytically
and computationally more tractable than (2.12). We first derive an expression for the Fourier transform
of the modified Lévy measurex2K(dx) as given in (2.3) and then apply numerical methods to invert the
Fourier transform. In the following proposition, we examine the Lévy measureK(dx) and the Gaussian
coefficientc of generalized hyperbolic distributions.

Proposition 2.14. a) LetK(dx) be the Lévy measure of a generalized hyperbolic distribution with pa-
rametersα, δ, andλ, and with skewness parameterβ = 0. Then the Fourier transform of the modified
measurex2K(dx) is given by

∫
eiuxx2 K(dx) =

[(
− 1− 2

λ + 1/2
v

k + k2
)(

δ2 − α2δ4

v2

)
+ k · α

2δ4

v3

]∣∣∣∣ k=
Kλ+1(v)

Kλ(v)

v=δ
√

α2+u2

,(2.13)

where the subscripts “k = · · · ” and “ v = · · · ” mean that the given expressions are to be substituted in
the term in square brackets. The variablek has to be substituted first.

b) The Gaussian coefficientc in the Lévy-Khintchine representation of any generalized hyperbolic distri-
bution vanishes.
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Proof. By Theorem 2.3, we have to calculate the derivative of−χ′(u)/χ(u). For a generalized hyper-
bolic distribution, the derivative of the characteristic function (2.9) is

χ′(u) = iµχ(u) + eiµu (δ
√

α2 − β2)λ

Kλ(δ
√

α2 − β2)
·
[

d

dv

Kλ(v)
vλ

]∣∣∣∣∣
v=δ
√

α2+u2

· ∂

∂u

(
δ
√

α2 + u2
)
.

Therefore
χ′(u)
χ(u)

= iµ +

[
d
dv

Kλ(v)
vλ

Kλ(v)
vλ

]∣∣∣∣∣
v=δ
√

α2+u2

· ∂

∂u

(
δ
√

α2 + u2
)
.

We have

d

dv

Kλ(v)
vλ

=
Kλ
′(v) · vλ −Kλ(v) · λ vλ−1

v2λ
=

Kλ
′(v)

vλ
− λ

v
· Kλ(v)

vλ
.

Hence

d

dv

Kλ(v)
vλ

Kλ(v)
vλ

=
Kλ
′(v)

Kλ(v)
− λ

v
= −Kλ+1(v)

Kλ(v)
+

λ

v
− λ

v
= −Kλ+1(v)

Kλ(v)
,

where for the second equality we have used the following relation for modified Bessel functions (see
Abramowitz and Stegun (1968), equation 9.6.26):

Kλ
′(v) = −Kλ+1(v) +

λ

v
Kλ(v).

Consequently, we have

χ′(u)
χ(u)

= iµ−
[

Kλ+1(v)
Kλ(v)

]∣∣∣∣∣
v=δ
√

α2+u2

∂

∂u

(
δ
√

α2 + u2
)
.(2.14)

Taking the negative derivative of this expression yields

− d

du

(χ′(u)
χ(u)

)
=

[
d

dv

Kλ+1(v)
Kλ(v)

·
(

∂

∂u

(
δ
√

α2 + u2
))2

+
Kλ+1(v)
Kλ(v)

· ∂2

∂u2

(
δ
√

α2 + u2
)]∣∣∣∣∣

v=δ
√

α2+u2

.

(2.15)

We go on to calculate the derivatives appearing in (2.15). First,

d

dv

Kλ+1(v)
Kλ(v)

=
K ′λ+1(v)Kλ(v) −Kλ+1(v)Kλ

′(v)
Kλ(v)2

(2.16)

=
K ′λ+1(v)
Kλ(v)

−Kλ+1(v)
Kλ
′(v)

Kλ(v)2
.

Again we can use Abramowitz and Stegun (1968), equation 9.6.26, to eliminate the derivatives of the
Bessel functions: By this relation, we have

K ′λ+1(v) = −Kλ(v) − λ + 1
v

Kλ+1(v)

and Kλ
′(v) = −Kλ+1(v) +

λ

v
Kλ(v).
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Substituting these expressions for the derivatives of the Bessel functions in (2.16) yields

d

dv

Kλ+1(v)
Kλ(v)

=
−Kλ(v)− λ+1

v Kλ+1(v)
Kλ(v)

−Kλ+1(v)
−Kλ+1(v) + λ

v Kλ(v)
Kλ(v)2

= −1− λ + 1
v
· Kλ+1(v)

Kλ(v)
+

Kλ+1(v)2

Kλ(v)2
− λ

v
· Kλ+1(v)

Kλ(v)
(2.17)

=
[
− 1− 2

λ + 1/2
v

k + k2
]∣∣∣

k=
Kλ+1(v)

Kλ(v)

.

Next, we calculate the two derivatives ofδ
√

α2 + u2 appearing in (2.15).

∂

∂u

(
δ
√

α2 + u2
)

=
δu√

α2 + u2
,(2.18)

and
∂2

∂u2

(
δ
√

α2 + u2
)

=
∂

∂u

( δu√
α2 + u2

)
=

δ√
α2 + u2

− δu2

√
α2 + u23 .(2.19)

It will turn out to be convenient to write the square of the first derivative (2.18), as well as the second
derivative (2.19), as a function ofv = δ

√
α2 + u2. This gives(

∂

∂u

(
δ
√

α2 + u2
))2

=
δ2u2

√
α2 + u22

=

(
δ
√

α2 + u2
)2 − α2δ2(

δ
√

α2 + u2
)2

/δ2
=

[
δ2 − α2δ4

v2

]∣∣∣∣
v=δ
√

α2+u2

(2.20)

and

∂2

∂u2

(
δ
√

α2 + u2
)

=
δ√

α2 + u2
− δ2u2

δ
√

α2 + u23

=
[
δ2

v
− v2 − α2δ2

v3/δ2

]∣∣∣∣
v=δ
√

α2+u2

=
[
δ2

v
− δ2

v
+

α2δ4

v3

]∣∣∣∣
v=δ
√

α2+u2

=
[
α2δ4

v3

]∣∣∣∣
v=δ
√

α2+u2

.(2.21)

Substituting relations (2.17), (2.20), and (2.21) into (2.15) we get

− d

du

(χ′(u)
χ(u)

)
=

[(
− 1− 2

λ + 1/2
v

k + k2
)(

δ2 − α2δ4

v2

)
+ k · α

2δ4

v3

]∣∣∣∣ k=
Kλ+1(v)

Kλ(v)

v=δ
√

α2+u2

.(2.22)

Denoting byρ̂(u) the function on the right-hand side, we have thatρ̂(u) is continuous. Moreover, in
Corollary 2.16 below we shall see that the modulus|ρ̂(u)| decays at least as fast as|u|−2 for |u| → ∞.
Thereforeρ̂(u) is absolutely integrable, and the conditions of Corollary 2.4 are satisfied withc̃ = 0.
This yields that Gaussian coefficient in the Lévy-Khintchine representation of a generalized hyperbolic
distribution vanishes, and thatρ̂(u) is the Fourier transform of the modified Lévy measure. This proves
part a) of the Proposition.

As a consequence of Propositions 2.7 and 2.11, the Gaussian coefficientc in the caseβ 6= 0 is the same
as in the caseβ = 0, with the other parameters unchanged. Above we have shown thatc = 0 for β = 0.
Thereforec vanishes for all generalized hyperbolic distributions, which proves part b).
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2.4.2 Asymptotic Expansion

For subsequent numerical calculations as well as for our theoretical considerations, it will turn out to be
useful to know the first few terms of the asymptotic expansion of the Fourier transform of

∫
eiuxx2K(dx)

for |u| → ∞. By Proposition 2.14,∫
IR

eiuxx2K(dx) = − d

du

(χ′(u)
χ(u)

)
= f

(
δ
√

α2 + u2
)
,

with the functionf(v) defined forv > 0 by

f(v) :=
[(
− 1− 2

λ + 1/2
v

k + k2
)(

δ2 − α2δ4

v2

)
+ k · α

2δ4

v3

]∣∣∣∣
k=

Kλ+1(v)

Kλ(v)

.(2.23)

In order to find an asymptotic expansion of the Fourier transform
∫

eiuxx2K(dx) for |u| → ∞, we
expand the functionf(v) in powers of1/v.

Proposition 2.15. The functionf(v) defined in (2.23) has the asymptotic expansion

f(v) =
N∑

n=2

cn

(δ

v

)n
+ O

( 1
vN+1

)
asv →∞.

for N = 2, . . . , 6, where

c2 := −(λ + 1/2),

c3 :=
α2δ2 − (λ + 1/2)(λ − 1/2)

δ
,

c4 :=
(λ + 1/2)

(
(3/2)(λ − 1/2) + 2α2δ2

)
δ2

,

c5 :=
(λ + 1/2)(λ − 1/2)

(
(λ + 5/2)(λ − 5/2) + 3α2δ2

)
2δ3

,

and c6 := −
(λ + 1/2)(λ − 1/2)

(
5(λ + 5/2)(λ − 5/2) + 4α2δ2 + 15

)
2δ4

.

Proof. For the modified Bessel functions of the third kind we have by Abramowitz and Stegun (1968),
eq. 9.7.2:

Kν(z)

√
2z
π

ez = 1 +
N∑

n=1

(4ν2 − 12) · · · (4ν2 − (2n− 1)2)
n!(8z)n

+ O
( 1

zN+1

)
as|z| → ∞, | arg z| < 3π

2
.

(2.24)

for arbitraryN ∈ IN. From this, one can derive the asymptotic expansion for the quotient of Bessel
functionsKν(z) andKν′(z) with different indices. For further reference, we note that in particular

Kλ+1(z)
Kλ(z)

= 1 + O
(1

z

)
,

Kλ+2(z)
Kλ(z)

= 1 + O
(1

z

)
as|z| → ∞.(2.25)

Using (2.24) to expandf(v) in powers of1/vn, we get, after a long and tedious calculation,

f(v) =
N∑

n=2

cn

(δ

v

)n
+ O

( 1
vN+1

)
asv →∞.(2.26)

with c2 throughc6 as given in the statement of the proposition.
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Corollary 2.16. LetK(dx) be the Lévy measure of a symmetric generalized hyperbolic distribution with
parametersα, δ, andλ. Then forN = 2, . . . , 6 the Fourier transform of the modified measurex2K(dx)
has the following expansion.

∫
eiuxx2 K(dx) =

N∑
n=2

cn

( 1√
α2 + u2

)n
+ O

( 1
|u|N+1

)
(|u| → ∞),(2.27)

with c2 throughc6 as in Proposition 2.15.

Proof. This follows from Proposition 2.15, since
√

α2 + u2 ∼ |u| as|u| → ∞.

Remark: One may ask why we chose to expand up to order1/|u|6, that is, why the maximal allowed
value ofN is 6. The answer is that further expansion of the functionf(v) is not advisable since we have
only an asymptotic expansion here. This seems to diverge for smallv if we expand further and further,
while of course the decay forv → ∞ becomes faster and faster. Choosing the order of expansion is
therefore a tradeoff between good behavior for smallv and good behavior asv → ∞. An order of
N = 4 seemed to be a good compromise for the parameters we used in our numerical studies, so we
presume that providing formulas for orders up to6 should be enough for other applications.

2.4.3 Calculating the Fourier Inverse

By Corollary 2.16, the Fourier transform of the modified Lévy density is of the orderO(1/u2) as|u| →
∞. This implies that it is absolutely integrable. Hence the Fourier inversion integral converges. Since the
Fourier transform (2.13) is real and symmetric,6 this integral reduces to the following cosine transform
integral.

ρ(x) =
1
π

∫ ∞
0

cos(ux)
[ N∑

n=2

cn

(δ

v

)n
+ RN+1(v)

]∣∣∣∣
v=δ
√

α2+u2

du,(2.28)

with the remainder term

RN+1(v) := f(v)−
N∑

n=2

cn

(δ

v

)n
= O

( 1
vN+1

)
.(2.29)

The integral in (2.28) converges slowly, since in general the modulus of the integrand is only of the
order O(1/|u|2). Therefore this formula does not directly allow for a fast numerical calculation of
the Lévy density. But below we will explicitly calculate the Fourier inverse of the summands in the
integrand forn = 2, . . . , 6. Then Corollary 2.16 yields that forN = 2, . . . , 6 the integrandcos(ux) ·
RN+1(δ

√
α2 + u2) of the remaining Fourier inversion integral tends to zero like|u|−N+1 as|u| → ∞.

Apart from speeding up the convergence of the integral, this will allow us to gain insights into the
behavior of the Lévy density nearx = 0.

6Remember that we have chosenβ = 0.
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We calculate explicitly the Fourier inversion integrals of the first five summands in (2.13). Forx = 0,
n = 2, . . . , 6, we have

1
π

∫ ∞
0

cn

(α2 + u2)n/2
du =

1
π
· cn

αn
·
∫ ∞

0

1
(1 + (u/α)2)n/2

du

=
1
π
· cn

αn−1
·
∫ ∞

0

1
(1 + w2)n/2

dw

=
1
π
· cn

αn−1
·
√

π

2
· Γ(n/2− 1/2)

Γ(n/2)
=

cn

2
√

παn−1
· Γ((n− 1)/2)

Γ(n/2)
,

where the third equality follows from Abramowitz and Stegun (1968), eqs. 6.2.1 and 6.2.2. For the
casex 6= 0, we observe that the integrand is a symmetric function ofx. Therefore we can limit our
examinations to the casex > 0. There we have

1
π

∫ ∞
0

cos(ux)
cn

(α2 + u2)n/2
du =

cn√
π
· x(n−1)/2

Γ(n/2)(2α)(n−1)/2
K(n−1)/2(αx),(2.30)

where we have used an integral representation of the modified Bessel functionsKν(z) that can be found
e. g. in Abramowitz and Stegun (1968), equation 9.6.25. Summing up the results of this subsection, we
get the following

Proposition 2.17. Let N be from the range{2, . . . , 6}. Then for a generalized hyperbolic distribution
with β = 0 the modified Lévy measurex2K(dx) has the density

ρ(x) =


N∑

n=2

cn

2
√

παn−1
· Γ((n− 1)/2)

Γ(n/2)
+

∫
RN+1

(
δ
√

α2 + u2
)

du (x = 0)

N∑
n=2

cn√
π
· |x|(n−1)/2

Γ(n/2)(2α)(n−1)/2
K(n−1)/2(α|x|) +

∫
cos(ux)RN+1

(
δ
√

α2 + u2
)

du (x 6= 0)

(2.31)

with c2, . . . , c6 as defined in Proposition 2.15 andRN+1(x) as defined in (2.29).

Here is an example of the numerical calculation of the Lévy density with the approach presented above.
We calculate the modified Lévy density of a hyperbolic distribution. In order to have realistic parameters,
we take a log return dataset and fit a hyperbolic distribution by the method of maximum likelihood. The
dataset consists of log returns on the German stock index DAX from September 28, 1959 to April 16,
1999. The parameters are estimated by the C-programhyp of Blæsild and Sørensen (1992).

α β δ µ

157 −1.82 0.00610 0.000458

Figure 2.1 shows the Fourier transform of the modified Lévy density and the functionsR3 to R6 defined
in (2.29). Note that due to the log-log scale, one can easily see the speed of the decay asu → ∞. The
slopes of the functionsR3 to R6 at the right end of the plot are approximately3, 4, 5, and6, respectively.
This reflects the increase in the speed of decay that is achieved by subtracting the terms in the asymptotic
expansion. Note that at the left end of the plot, that is, for small values ofu, the termR6 is larger than the
termR5. This indicates that one cannot expect the remainder functionRN+1(u) to become uniformly
small asN →∞.
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Figure 2.1: Fourier transform of modified Lévy density for hyperbolic distribution and corresponding
termsR3 to R7 according to equation (2.29).
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Figure 2.2: Modified Lévy density for hyperbolic distribution and first four summands of representa-
tion (2.31).
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Figure 2.3: Difference between modified Lévy density and first four summands of representation (2.31).

Figure 2.2 shows the modified Lévy density, together with the first four summands from representa-
tion (2.31), here called “density term No 2” to “density term No 5”. The sum of these density terms
differs from the correct density by the four times continuously differentiable function shown in figure
2.3. Note that the discontinuity of the modified density atx = 0 is captured entirely by the density term
No. 2, that is, in then = 2 term of representation (2.31).

2.4.4 Sum Representations for Some Bessel Functions

By Watson (1944), Section 3.71, p. 80, eq. (12), we know that the modified Bessel functionsKν(z) can
be represented as finite sums of elementary functions ifν = m + 1/2 with m = 0, 1, 2, . . . :

Km+1/2(z) =
√

π/(2z)e−z
m∑

r=0

(m + r)!
r!(m− r)!(2z)r

.(2.32)

Hence we can speed up the calculation of the Bessel functionsK1/2(z), K3/2(z), andK5/2(z) in (2.31)
by using the relations

K1/2(z) =
√

π/(2z)e−z,(2.33)

K3/2(z) =
√

π/(2z)e−z
(
1 +

1
z

)
,

and K5/2(z) =
√

π/(2z)e−z
(
1 +

3
z

+
3
z2

)
.
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2.4.5 Explicit Expressions for the Fourier Backtransform

For further reference, we write down the Fourier backtransform given in (2.30) explicitly forn = 2 and
n = 3. Forn = 2, we can useΓ(1) = 1 and (2.33) to get

1
π

∫ ∞
0

cos(ux)
c2

(α2 + u2)2/2
du =

c2√
π
· |x|1/2

Γ(1)(2α)1/2
K1/2(α|x|)

=
c2√
π
· |x|

1/2

(2α)1/2
·
√

π

2α|x|e
−α|x|

=
c2

2α
e−α|x| = −λ + 1/2

2α
e−α|x|.(2.34)

Forn = 3, we useΓ(3/2) =
√

π/2.

1
π

∫ ∞
0

cos(ux)
c3

(α2 + u2)3/2
du =

c3√
π
· |x|1
(
√

π/2)(2α)1
K1(α|x|)

=
α2δ2 − (λ + 1/2)(λ − 1/2)

παδ
· |x| ·K1(α|x|).(2.35)

2.4.6 Behavior of the Density around the Origin

For the study of change-of-measure problems (see Section 2.5 below), it is important to know how the
Lévy measureK(dx) behaves aroundx = 0. Up to now, we know that for any generalized hyperbolic
distribution, the modified Lévy measurex2K(dx) has a continuous Lebesgue densityρ(x) since its
Fourier transform is absolutely integrable. Studying the behavior ofρ(x) of for x→ 0 yields information
about the behavior of the Lévy measure in a neighborhood ofx = 0. The following proposition gives
the first-order behavior ofρ(x) aroundx = 0.

Proposition 2.18. LetK(dx) be the Lévy measure of a generalized hyperbolic distribution with param-
eters(λ, α, β, δ, µ). ThenK(dx) = ρ(x)/x2 dx, with

ρ(x) =
δ

π
+

λ + 1/2
2

|x|+ δβ

π
x + o(|x|) (x→ 0).

Proof. First consider the caseβ = 0. By equation (2.28), the value of the density atx = 0 is given by

ρ(0) =
1
π

∫ ∞
0

(
− d

du

(χ′(u)
χ(u)

))
du

=
1
π

lim
U→∞

∫ U

0

(
− d

du

(χ′(u)
χ(u)

))
du =

1
π

lim
U→∞

(
χ′(0)
χ(0)

− χ′(U)
χ(U)

)
(2.14),(2.18)

=
1
π

lim
U→∞

(
Kλ+1

(
δ
√

α2 + U2
)

Kλ

(
δ
√

α2 + U2
) · δU√

α2 + U2

)
=

1
π

lim
V→∞

(
Kλ+1(V )
Kλ(V )

· δ
2
√

V 2/δ2 − α2

V

)
=

δ

π
lim

V→∞

(
Kλ+1(V )
Kλ(V )

·
√

1− α2δ2

V 2

)
=

δ

π
,
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sinceKλ+1(V )/Kλ(V )→ 1 (V →∞) by the asymptotic relation (2.25).

Now that we have established the value ofρ(x) at x = 0, we go on to study the behavior in the neigh-
borhood ofx = 0. The central idea here is to use the fact thatρ(x) is an even function forβ = 0. It will
turn out that forλ 6= −1/2, ρ(x) is not differentiable atx = 0. But below we will give an even function
g(x) such that the sumρ(x) + g(x) is differentiable. Then we know that the derivative of the sum has to
vanish atx = 0, because the sum is an even function as well. Consequently,

ρ(x) + g(x) = ρ(0) + g(0) + o(|x|) (x→ 0),

by the definition of differentiability. This will allow us to prove the statement of the proposition, since it
means that aroundx = 0 the behavior of the functionsρ(x) − ρ(0) andg(x) − g(0) is the same up to
terms of ordero(|x|).
From Fourier analysis, we know that differentiability of an original functionf(x) is closely linked with
the integrability of its Fourier transform̂f(u). More precisely, Chandrasekharan (1989), p. 18, Theorem
3.A, together with the remark following it on p. 20, yields that ifunf̂(u) is absolutely integrable for some
n ∈ IN, thenf(x) is continuously differentiablen times. The Fourier transform (2.13) of the density
ρ(x) does not satisfy an integrability condition of this kind ifλ 6= −1/2. But as outlined above, we can
find another functiong(x) so that the sum of the Fourier transforms satisfies the integrability condition.
Then we can use the linearity of the Fourier transformation to gain information on the behavior ofρ(x).

First, assumeβ = 0. We choose

g(x) := −λ + 1/2
2α

e−α|x|,

which by (2.34) is just the Fourier transform of

u 7→ c2

(α2 + u2)
.

This is the first term in the asymptotic expansion (2.27) for the Fourier transform
∫

eiuxx2 G(dx). By
this expansion, we have∫

eiuxx2 G(dx) − c2

(α2 + u2)
= O(1/|u|3) as|u| → ∞.

By the relation between integrability of the Fourier transform and differentiability of the original function
mentioned above, this means that the inverse Fourier transform of the l. h. s. is continuously differen-
tiable. But this inverse Fourier transform is given by

ρ(x) + g(x) = ρ(x)− λ + 1/2
2α

e−α|x|.

Consequently

ρ(x) = ρ(0) + g(0) − g(x) + o(|x|)

=
δ

π
− λ + 1/2

2α
+

λ + 1/2
2α

e−α|x| + o(|x|)

=
δ

π
+

λ + 1/2
2

|x|+ o(|x|) (|x| → 0).(2.36)
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For β 6= 0, Proposition 2.7 yields that the density of the Lévy measure iseβx times the density for
β = 0. Combining expansion (2.36), which is was derived for the caseβ = 0, and the expansion
eβx = 1 + βx + o(|x|), we get

ρ(x) =
(
1 + βx + o(|x|)

)( δ

π
+

λ + 1/2
2

|x|+ o(|x|)
)

=
δ

π
+

λ + 1/2
2

|x|+ δ

π
βx + o(|x|) (|x| → 0).

Remark 1: The proof of the preceding proposition depends crucially on the fact that an even, differen-
tiable function has derivative0 atx = 0. One cannot use the same method to gain knowledge about the
higher-order behavior of the densityρ(x) aroundx = 0. Fortunately, knowing the first-order behavior is
sufficient to tackle the problem of absolute continuity and singularity of the distributions of generalized
hyperbolic Lévy processes.

Remark 2: One must be aware that the series expansion for the modified Bessel functionsKν(z) is
only an asymptotic series. Therefore, driving the expansion (2.26) further and further and calculating
explicitly more and more terms of the cosine transformation (2.28) will in general not yield a convergent
series.

2.4.7 NIG Distributions as a Special Case

By Abramowitz and Stegun (1968), Eq. 9.6.6, we have

K−ν(z) = Kν(z).

ConsequentlyKλ+1(z)/Kλ(z) = K1/2(z)/K−1/2(z) = 1 if λ = −1/2. The generalized hyperbolic
distributions withλ = −1/2 are callednormal inverse Gaussian(NIG) distributions.7 Usingk = 1 and
λ = −1/2 in (2.14), we get∫

IR
eiuxx2KNIG(dx) =

[
δ2(k2 − 1)− δ2k(2λ + 1)

v
− α2δ4(k2 − 1)

v2
+

α2δ4k(2λ + 2)
v3

]∣∣∣∣k=1, λ=−1/2

v=δ
√

α2+u2

=
[
α2δ4

v3

]∣∣∣∣
v=δ
√

α2+u2

.

This is just then = 3 term in the expansion (2.27). Hence the Lévy measure can be calculated with the
help of equation (2.35).

KNIG(dx) = eβx δα

π|x|K1(α|x|) dx.(2.37)

This coincides with the formula derived in Barndorff-Nielsen (1997), eq. (3.15).

7See Barndorff-Nielsen (1997) and references therein for a thorough account of the class of NIG distributions.

40



2.5 Absolute Continuity and Singularity for Generalized Hyperbolic
Lévy Processes

2.5.1 Changing Measures by Changing Triplets

In this subsection, we shall be concerned with the question which changes of the distribution of a Lévy
process can be achieved by an equivalent change of the underlying probability measure. The probability
shall be changed in such a way that the property of stationary and independent increments is preserved.
In other words, the Lévy process stays a Lévy process under the change of probability.

The following proposition answers this question in terms of the Lévy-Khintchine triplet
(
b, c,K(dx)

)
of

the process under the two measures. An important point that—in my opinion—is missing in a similar
statement to be found in Keller (1997), Proposition 15, is the following: On a general stochastic basis,
do the conditions in part (b) indeed imply the existence of a suitable density process? The question is
yes, but—as may be seen in the proof—proving this requires some deep results from stochastic analysis.

Proposition 2.19. LetX be a Lévy process with Lévy-Khintchine triplet(b, c,K) under some probability
measureP . Then the following two conditions are equivalent.

(a) There is a probability measureQ
loc∼ P such thatX is aQ-Lévy process with triplet(b′, c′,K ′).

(b) All of the following conditions hold.

(i) K ′(dx) = k(x)K(dx) for some Borel functionk : IR→ (0,∞).

(ii) b′ = b +
∫

h(x)(k(x) − 1)K(dx) +
√

cβ for someβ ∈ IR.

(iii) c′ = c.

(iv)
∫

(1−
√

k(x))2K(dx) <∞.

Proof. (a)=⇒ (b). This is Jacod and Shiryaev (1987), Theorem IV.4.39 c.

(b) =⇒ (a). We define a local martingaleN according to Jacod and Shiryaev (1987), III.5.11.8

N := β ·Xc + (k(x) − 1) ∗ (µX − ν).(2.38)

Now choose some deterministic timeT and consider the stopped processNT . With this local martingale
NT , the processB(3,NT )p from Jacod (1979), (5.15), is

B(3,NT )pt = β2 < Xc,Xc >(t∧T ) +(1−
√

k(x))2 ∗ ν(t∧T )

= β2c · (t ∧ T ) + (t ∧ T )
∫

(1−
√

k(x))2K(dx).

By condition (iv) this process is bounded. Hence Jacod (1979), Corollaire (8.30), yields that the stochas-
tic exponentialE(NT ) = E(N)T is a uniformly integrable martingale. Jacod and Shiryaev (1987),
Lemma III.5.27, now yields that if we defineZt := E(N)t, then under the measureQ defined by
QT = ZT Pt the processX is a semimartingale with characteristics(b′t, c′t,K ′(dx)dt). Hence it is
a Lévy process with Lévy-Khintchine triplet(b′, c′,K ′(dx)).

8The formula given in Jacod and Shiryaev (1987), III.5.11 simplifies considerably because of the property of stationary and
independent increments.

41



2.5.2 Allowed and Disallowed Changes of Parameters

Proposition (2.19) connects the change of the Lévy measure with the change of the underlying probability
measure. In particular, for generalized hyperbolic Lévy processes it allows us to analyze whether a
certain change of parameters can be achieved by a change of the probability measure.

Proposition 2.20. Let X be a generalized hyperbolic Lévy process under the measureP . Let
(λ, α, β, δ, µ) denote the parameters of the generalized hyperbolic distribution ofX1. Then there is

another measureP ′
loc∼ P under whichX is again a generalized hyperbolic Lévy process, with parame-

ters(λ′, α′, β′, δ′, µ′), if and only ifδ′ = δ andµ′ = µ.

Proof. Since generalized hyperbolic Lévy processes are purely discontinuous, the change of measure is
determined by the densityk(x) := dK ′/dK, whereK ′(dx) andK(dx) are the Lévy measures of the
generalized hyperbolic distributions underP ′ andP , respectively. By Proposition (2.19), there exists a
measureP ′ under whichX is a generalized hyperbolic Lévy process with parameters(λ′, α′, β′, δ′, µ′)
if and only if this density satisfies the conditions∫ (

1−
√

k(x)
)2

K(dx) <∞(2.39)

and b +
∫

h(x)(k(x) − 1)K(dx) = b′.(2.40)

SinceK(dx) and K ′(dx) are both continuous with respect to the Lebesgue measure onIR\{0}, the
densityk(x) is equal to the quotient of the respective (modified) Lévy densities.

k(x) =

1
x2

ρ(λ′,α′,β′,δ′,µ′)(x)

1
x2

ρ(λ,α,β,δ,µ)(x)
=

ρ(λ′,α′,β′,δ′,µ′)(x)
ρ(λ,α,β,δ,µ)(x)

.

For the case of generalized hyperbolic Lévy processes, the integrability condition (2.39) is therefore

∫ (
1−

√
k(x)

)2
K(dx) =

∫ (
1−

√
ρ(λ′,α′,β′,δ′,µ′)(x)√
ρ(λ,α,β,δ,µ)(x)

)2 1
x2

ρ(λ,α,β,δ,µ)(x) dx

=
∫ (√

ρ(λ′,α′,β′,δ′,µ′)(x)−
√

ρ(λ,α,β,δ,µ)(x)
)2 dx

x2
<∞.

Since the Lévy densities—modified or not—of generalized hyperbolic distributions satisfying|β| < α
always decay exponentially as|x| → ∞, the only critical region for the boundedness of the integral is
the neighborhood ofx = 0. Here we have, by Proposition 2.18,

ρ(x) =
δ

π
+

λ + 1/2
2

|x|+ δβ

π
x + o(|x|) =

δ

π
+ O(|x|) (|x| → 0).

Therefore √
ρ(λ,α,β,δ,µ)(x) =

δ

π

√
1 + O(|x|) =

δ

π

(
1 + O(|x|)

)
(|x| → 0).
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since
√

1 + y = 1 + y/2 + o(|y|) for |y| → 0. Using this, the integrability condition (2.39) becomes∫ (
1−

√
k(x)

)2

K(dx) =
∫ (

δ′

π

(
1 + O(|x|)

)
− δ

π

(
1 + O(|x|)

))2 dx

x2

=
∫ (

δ′ − δ

π
+ O(|x|)

)2 dx

x2

=
∫ (

(δ′ − δ)2

π2x2
+

2(δ′ − δ)
π

O(1/|x|) + O(1)
)

dx <∞.

Clearly, this is satisfied if and only ifδ′ = δ.

Now we consider the second condition (2.40). Under the assumptionδ′ = δ, this will turn out to be
equivalent toµ′ = µ, thus providing the second constraint stated above.

By Jacod and Shiryaev (1987), Theorem II.4.15, the constantb from the Lévy-Khintchine representation
is indeed the drift coefficient from the characteristic triplet. We have

b = E[L1] +
∫

(h(x)− x)K(dx)(2.41)

and b′ = E′[L1] +
∫

(h(x)− x)K ′(dx),(2.42)

whereE′[·] denotes the expectation under the measureP ′. On the other hand, condition (2.40) requires

b′ = b +
∫

h(x)(k(x) − 1)K(dx),

which, in view of (2.41), is equivalent to

b′ = E[L1] +
∫

(h(x) − x)K(dx) +
∫

h(x)(k(x) − 1)K(dx)

= E[L1] +
∫

(h(x)k(x) − x)K(dx).

Comparison with equation (2.42) yields that condition (2.40) is satisfied if and only if

E′[L1]−E[L1] =
∫

x(1− k(x))K(dx).(2.43)

For the generalized hyperbolic distribution, the expectation is known explicitly. So

E[L1] = µ +
βδ ·Kλ+1(δ

√
α2 − β2)√

α2 − β2Kλ(δ
√

α2 − β2)
.

Hence ifL1 has a generalized hyperbolic distribution with equal parameterδ under both the measureP
andP ′, we have

E′[L1]−E[L1] = µ′ − µ +
β′δ ·Kλ′+1(δ

√
α′2 − β′2)√

α′2 − β′2Kλ′(δ
√

α′2 − β′2)
− βδ ·Kλ+1(δ

√
α2 − β2)√

α2 − β2Kλ(δ
√

α2 − β2)
.

43



Hence we can rewrite condition (2.43) (and hence condition (2.40)) as a condition on the change of the
parameterµ:

µ′ − µ =
∫

x(1− k(x))K(dx) +
βδ ·Kλ+1(δ

√
α2 − β2)√

α2 − β2Kλ(δ
√

α2 − β2)
− β′δ ·Kλ′+1(δ

√
α′2 − β′2)√

α′2 − β′2Kλ′(δ
√

α′2 − β′2)
.

(2.44)

It will turn out that the right-hand side vanishes, so that, under the assumptionδ′ = δ, condition (2.40)
is equivalent toµ′ = µ.

We consider two cases:Case 1:β′ = β = 0. Then(1−k(x))K(dx) is symmetric with respect tox = 0,
and the integral in (2.44) vanishes. On the other hand, the remaining expressions on the right-hand side
of (2.44) also vanish. Hence (2.44) is equivalent toµ′ − µ = 0.

Case 2:β arbitrary andβ′ = 0, with the remaining parametersλ′ = λ andα′ = α. Then alsoµ′ = µ.
Before we prove this, we will make clear why these two cases indeed suffice to complete the proof. We
can decompose a change of parameters(λ, α, β, δ, µ) ; (λ′, α′, β′, δ, µ′) into three steps:

(λ, α, β, δ, µ) ; (λ, α, 0, δ, µ2),
(λ, α, 0, δ, µ2); (λ′, α′, 0, δ, µ3),

and (λ′, α′, 0, δ, µ3); (λ′, α′, β′, δ, µ′).

In the second step the parameterµ does not change by what we have proved for case 1 above, soµ2 = µ3.
If we can, in addition, show that setting the parameterβ to zero does not changeµ—this is the statement
in case 2—, then we also haveµ = µ2 and, by symmetry,µ3 = µ′. So indeed the situation considered in
case 2 above is sufficiently general.

Now we prove the statement for case 2. We have∫
x(1− k(x))K(dx) =

∫
x(1− k(x))K(dx)

=
∫

x
( 1

x2
ρβ(x)− 1

x2
ρβ=0(x)

)
dx

=
∫

1
x

(
ρβ(x)− ρβ=0(x)

)
dx

= −
∫

1
2π

∫
1
i
· i

x
· exi u · d

du

(χβ
′(u)

χβ(u)
− χβ=0

′(u)
χβ=0(u)

)
du dx

=
i

2π

∫ ∫
i

x
· exi u · d

du

(χβ
′(u)

χβ(u)
− iµ− χβ=0

′(u)
χβ=0(u)

+ iµ′
)
du dx

=
i

2π

∫ ([ i

x
· exi uG(u)

]u=∞

u=−∞
−

∫
e
x
i
uG(u)du

)
dx,(2.45)

with

G(u) :=
χβ
′(u)

χβ(u)
− iµ− χβ=0

′(u)
χβ=0(u)

+ iµ′(2.46)
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By (2.14) and (2.18),

χβ=0
′(u)

χβ=0(u)
= iµ− ∂

∂u

(
δ
√

α2 + u2
)
· Kλ+1(δ

√
α2 + u2)

Kλ(δ
√

α2 + u2)

= iµ− δu√
α2 + u2

· Kλ+1(δ
√

α2 + u2)
Kλ(δ

√
α2 + u2)

(2.47)

Analogously one can derive the relation

χβ
′(u)

χβ(u)
= iµ′ +

iδ(β + iu)√
α2 − (β + iu)2

Kλ+1(δ
√

α2 − (β + iu)2)
Kλ(δ

√
α2 − (β + iu)2)

.(2.48)

Using relations (2.47) and (2.48), we can rewrite the expression forG(u) given in (2.46).

G(u) =
(χβ

′(u)
χβ(u)

− iµ
)
−

(χβ=0
′(u)

χβ=0(u)
− iµ′

)
=

δi(β + iu)√
α2 − (β + iu)2

· Kλ+1(δ
√

α2 − (β + iu)2)
Kλ(δ

√
α2 − (β + iu)2)

− δu√
α2 + u2

· Kλ+1(δ
√

α2 + u2)
Kλ(δ

√
α2 + u2)

=
iβ

2
· (λ + 1/2)(λ + 3/2) · 1

u2
+ O

( 1
|u|3

)
(|u| → ∞).

The last equality follows from the asymptotic expansion of the Bessel functionsKλ+1 andKλ. Around
u = 0, G(u) is bounded because it is a differentiable (and hence continuous) function. This, together
with the limit behavior as|u| → ∞, shows that in (2.45) the term in square brackets vanishes and the
integral converges absolutely. Consequently we can continue the chain of equalities in (2.45).∫

x(1− k(x))K(dx) = − i

2π

∫ ∫
e
x
i
uG(u)du dx

= − i

2π

∫ ∫
e
x
i
uG(u)du ei·0·xdx

= −
( δβ√

α2 − β2
· Kλ+1(δ

√
α2 + β2)

Kλ(δ
√

α2 + β2)
− δ

α
· Kλ+1(δα)

Kλ(δα)

)
Here we have used the fact that the integration with respect tox can be interpreted as a Fourier integral
taken at the pointu = 0. So since the functionG(u) is continuous, the Fourier transform of the inverse
Fourier transform ofG(u) coincides withG(u). Substituting this into (2.44) completes the proof.

The main difficulty in the proof of Proposition 2.20 was to derive the local behavior of the generalized
hyperbolic Lévy measure nearx = 0. For a distribution with a Lévy measure of a simpler structure, it is
much easier to derive an analogous result. As an example, consider the class of CGMY Lévy processes.
(See Section A.3.) For this class the Lévy measure is known explicitly and has a simple form.9

Proposition 2.21. LetL be a CGMY(C,G,M,Y ) Lévy process under the measureP . Then the follow-
ing statements are equivalent.

(i) There is a measureQ
loc∼ P under whichL is a CGMY(C ′, G′,M ′, Y ′) Lévy process.

9In fact, the CGMY distributions aredefinedby giving their Lévy measure.
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(ii) Either the CGMYparameters satisfy the relationsC ′ = C andY ′ = Y , or Y, Y ′ < 0.

Proof. TheCGMY(C,G,M,Y ) Lévy measure has Lebesgue density

kCGMY(x) =
C

|x|1+Y
exp

(G−M

2
x− G + M

2
|x|

)
.(2.49)

(Cf. eq. (A.9).) Conditions(i), (ii) , and(iii) of Proposition 2.19 are obviously satisfied if we set

k(x) :=
kCGMY(C′,G′,M ′,Y ′)(x)
kCGMY(C,G,M,Y )(x)

.

Hence a measureQ
loc∼ P with the desired property exists if and only if condition(iv) of Proposition 2.19

holds, that is, iff ∫ (
1−

√
k(x)

)2
K(dx) <∞.

Using the explicit form (2.49) of the Lévy density, this condition reads∫ (√
C ′

|x|1+Y ′ exp
(G′ −M ′

2
x− G′ + M ′

2
|x|

)
−

√
C

|x|1+Y
exp

(G−M

2
x− G + M

2
|x|

))2
dx <∞.

It is easy to see that this condition holds ifC = C ′ andY = Y ′. On the other hand, it does not hold if
any of these equalities is violated: First, it is clear that the finiteness of the integral depends only on the
local behavior of the integrand aroundx = 0. Since the exponential factor tends to1 for x→ 0, we can
skip it for this discussion. So all amounts to the question whether∫ 1

−1

( √
C ′

|x|(1+Y ′)/2
−

√
C

|x|(1+Y )/2

)2
dx <∞.(2.50)

For Y, Y ′ < 0, this integral is obviously finite. If any of the relationsY ≥ 0, Y ′ ≥ 0 holds, then the
integral can only be finite ifC = C ′ andY = Y ′, as was stated above:

• If 0 ≤ Y ′, Y < Y ′, then for|x| → 0 the first summand in (2.50) grows faster than the second.
Therefore we have

1
2
·
√

C ′

|x|(1+Y ′)/2
≥

√
C

|x|(1+Y )/2

for |x| ≤ ε, ε ∈ (0, 1) small enough. Hence we can estimate∫ 1

−1

( √
C ′

|x|(1+Y ′)/2
−

√
C

|x|(1+Y )/2

)2
dx ≥

∫ ε

−ε

(1
2
·
√

C ′

|x|(1+Y ′)/2

)2
dx =

C ′

4

∫ ε

−ε

1
|x|1+Y ′

dx =∞.

The case0 ≤ Y , Y ′ < Y may be treated analogously.

• If 0 ≤ Y ′ = Y , butC ′ 6= C, then∫ 1

−1

( √
C ′

|x|(1+Y ′)/2
−

√
C

|x|(1+Y )/2

)2
dx =

(√
C ′ −

√
C

)2
∫ 1

−1

1
|x|1+Y

dx =∞.
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2.6 The GH Parametersδ and µ as Path Properties

In the preceding section, we have seen that the distributions of two generalized hyperbolic Lévy processes
are (locally) equivalent if and only if the parameters satisfyδ = δ′ andµ = µ′. This suggests that the
parametersδ andµ should be determinable from properties of a typical path of a generalized hyperbolic
Lévy process. Indeed, this is the case here, as we will show below. Moreover, we present methods with
which one can—at least in principle—determine the parametersδ andµ by inspecting a typical path
of the Lévy process. This yields a converse statement to the property of absolute continuity mentioned
above: Since we can determineδ and µ from the restriction of every path to a finite interval, these
parameters cannot change during a change of measure. For the distributions (on the Skorokhod spaceID
of càdlàg functions) of two generalized hyperbolic Lévy processes with different parametersδ or µ this
implies the following. The restrictions of these distributions to every finite time interval are singular.10

2.6.1 Determination ofδ

For a Lévy process with very many small jumps whose Lévy measure behaves likea/x2 around the
origin, the constant factora can be determined by counting the small jumps of an arbitrary path. More
precisely, we have the following proposition.

Proposition 2.22. LetX be a Lévy process with a finite second moment such that the Lévy measure has
a densityρ(x) with the asymptotic behaviorρ(x) = a/x2 + o(1/x2) as x ↓ 0. Fix an arbitrary time
t > 0 and consider the sequence of random variables

Yn :=
1
t
·#

{
s ≤ t : ∆Xs ∈

[ 1
n + 1

,
1
n

)}
.

Then with probability one the sequence(Sk)k≥1 with

Sk :=
1
k

k∑
n=1

Yn =
1
k

#
{

s ≤ t : ∆Xs ∈
[ 1
k + 1

, 1
)}

, k ≥ 1,(2.51)

converges to the valuea.

Proof. The random measure of jumpsµX of the processX is defined by

µX(ω,A) := #
{

s ≤ t : (s,∆Xs) ∈ A
}

for any measurable setA ⊂ IR+ × IR. We have

Yn =
1
t
µX

(
ω; [0, t]×

[ 1
n + 1

,
1
n

))
=

1
t
1l[0,t]×[1/(n+1),1/n) ∗ µX ,

where the star denotes the integral with respect to a random measure. (See Jacod and Shiryaev (1987),
II.1.5, for a definition.)

By Jacod and Shiryaev (1987), Corollary II.4.19 and Theorem II.4.8, the fact thatX is a process with
independent and stationary increments implies thatµ is a Poisson random measure. Jacod and Shiryaev

10Of course, the distributions itself are also singular, but this is a trivial consequence of Jacod and Shiryaev (1987), Theorem
IV.4.39a.
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(1987), II.4.10 yields that any for any finite family(Ai)1≤i≤d of pairwise disjoint, measurable setsAi ⊂
IR+×IR the random variablesµX(ω,Ai), 1 ≤ i ≤ d, are independent. In particular, the random variables

Yn =
1
t
1l[0,t]×[1/(n+1),1/n) ∗ µX , n ≥ 1

form an independent family. By the definition of the compensatorν of the random measureµX (cf.
Jacod and Shiryaev (1987), Theorem II.1.8), we have

E[Yn] =
1
t
1l[0,t]×[1/(n+1),1/n) ∗ ν, n ≥ 1.

Jacod and Shiryaev (1987), Corollary II.4.19, yields thatν can be chosen deterministic, withν(dt, dx) =
dt K(dx), whereK(dx) is the Lévy measure of the processX. Hence

E [Yn] =
∫

[1/(n+1),1/n)
1 K(dx)

=
∫ 1/n

1/(n+1)

( a

x2
+ o

( 1
x2

))
dx = a + o(1) asn→∞.

Furthermore, we have

Var(Yn) = E
[
(Yn −E[Yn])2

]
=

1
t2

E
[
1l[0,t]×[1/(n+1),1/n) ∗ (µX − ν)t

]
=

1
t

∫ 1/n

1/(n+1)
1 K(dx) =

1
t

(
a + o(1)

)
.

Therefore the sequence(Yn − E[Yn])n≥1 satisfies Kolmogorov's criterion for the strong law of large
numbers (cf. Billingsley (1979), Theorem 22.4.) Hence we conclude that with probability 1 we have
Sk → a.

Remark: Obviously, an analogous result holds if one considers the behavior of the densityK(dx)/dx
asx ↑ 0 instead ofx ↓ 0.

Corollary 2.23. Consider a generalized hyperbolic Lévy processX with parameters(λ, α, β, δ, µ).
Then with probability1 the re-normed number of jumps

Nn =
1
nt

#
{
s ≤ t : ∆Xs ≥ 1/n

}
converges to the valueδ/π.

Proof. Since we always assume that a Lévy process has càdlàg paths, the number of jumps larger than1
is finite for each path. Hence the sequenceNn and the sequenceSn from Proposition 2.23 converge to the
same limit, viz the coefficienta of 1/x2 in the Lévy density. By Proposition 2.18, we havea = δ/π.
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2.6.2 Determination ofµ

In the preceding subsection we have seen how the parameterδ can be derived from almost every path
of a generalized hyperbolic Lévy motion. The key idea was to count the small jumps of the path. In
the current subsection, we will show how the drift parameterµ can be derived from an arbitrarily short
section of almost every path. Note that this is completely different from the case of a Brownian motion,
where the drift coefficient can only be “seen” by observing the whole path.

Proposition 2.24. Let X be a generalized hyperbolic Lévy process with parameters(λ, α, β, δ, µ). Fix
an arbitrary timet > 0. Then with probability1 the random variables

Yn := Xt −
∑

0≤s≤t

∆Xs1l|∆Xs|≥1/n

converge to the limitµ · t asn→∞.

Remark: Note that in spite of the similar notation, the GH parameterµ and the random measureµX

are completely different concepts. But since both notations are standard, we do not consider it useful to
change any of them.

Proof. First we note that it suffices to consider the caseβ = 0: Assume that the statement is proved
for this special case. Then consider a general parameter vector(λ, α, β, δ, µ). By Proposition 2.20, we
can change the underlying probability measureP to an equivalent probability measureP ′ such that only
the parameterβ changes, with the new parameterβ′ = 0. Since we have assumed that the statement is
proven for the caseβ = 0, we then haveYn → µ · t P ′-a.s.. Obviously this impliesYn → µ · t P -a.s., so
it is indeed sufficient to consider the symmetric case.

SinceX1 possesses a finite first moment, by Wolfe (1971) we have(x2 ∧ |x|) ∗ νt < ∞. So Jacod
and Shiryaev (1987), Proposition II.2.29 a yields thatX is a special semimartingale. Therefore we can
decompose the generalized hyperbolic Lévy process according to Jacod and Shiryaev (1987), Corollary
II.2.38:

Xt = X0 + Xc
t + x ∗ (µX − ν)t + At = x ∗ (µX − ν)t + µ · t.

So

Yn = Xt − (x1l|x|≥1/n) ∗ µX
t

= (x1l|x|<1/n) ∗ (µX − ν)t + (x1l|x|≥1/n) ∗ (µX − ν)t + µ · t− (x1l|x|≥1/n) ∗ µX
t

= (x1l|x|<1/n) ∗ (µX − ν)t − (x1l|x|≥1/n) ∗ ν + µ · t
= (x1l|x|<1/n) ∗ (µX − ν)t + µ · t,

where the last equality holds because(x1l|x|≥1/n)∗ν = 0 by symmetry of the Lévy measure. The process
(x1l|x|<1/n)∗ (µX −ν)t, t ∈ IR+, is a martingale by Jacod and Shiryaev (1987), Theorem II.1.33. Since
this martingale starts in0 at t = 0, we haveE[Yn] = µ · t. Furthermore, still by Theorem II.1.33 we
know that

Var(Yn) = E
[(

(x1l|x|<1/n) ∗ (µX − ν)t
)2]

= (x21l|x|<1/n) ∗ νt.

Sinceν(dt, dx) = dt × K(dx) with
∫

[−1,1] x
2K(dx) < ∞, the last term above tends to zero asn →

∞. Hence the sequence(Yn)n≥1 converges toµ · t in L2 and a fortiori in probability. It remains to
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show that convergence indeed takes place with probability one. To this end, observe that the sequence
(Y−n)n∈−IN is a martingale: BecauseµX is a Poisson random measure, we have thatYn − Yn+1 =
(x1l{1/(n+1)≤|x|<1/n}) ∗ (µX − ν)t is independent ofYn+1. Furthermore,E[Yn − Yn+1] = 0.

Doob's second convergence theorem (see Bauer (1991), Corollary 19.10), yields that the martingale
(Y−n)n∈−IN (and hence the sequence(Yn)n∈IN) converges with probability one.

2.6.3 Implications and Visualization

Corollary 2.23 and Proposition 2.24 give rise to two simple methods for determining the generalized
hyperbolic parametersδ andµ, respectively, from inspection of a typical path over a time interval of
finite length. For clarity, we assume that the interval has unit length and starts at time0.

• δ is the limit of the number of jumps larger than1/n, multiplied byπ/n.

• µ is the limit of the incrementXt+1 −Xt minus all jumps of magnitude larger than1/n, as one
letsn→∞.

So by counting jumps and summing up the jump heights one can determine the two parametersδ and
µ. One could say that the parametersδ andµ are imprinted on almost every path of the generalized
hyperbolic Lévy process, in the same way as the volatility is imprinted on almost any path of a Brownian
motion. Remarkably, the drift parameterµ is a path property for the GH Lévy motion, but not for the
Brownian motion.

In what follows, we give an example to illustrate the methods for the determination ofδ andµ from a
path of a generalized hyperbolic Lévy motion. In order to consider realistic parameters, we estimate the
parameters of a NIG distribution from observed log returns on the German stock index DAX. This yields
the following parameters.

α β δ µ

99.4 −1.79 0.0110 0.000459

We generate approximations to the sample paths of a NIG Lévy motion by the compound-Poisson ap-
proach. LetK(dx) denote the Lévy measure of the NIG distribution ofL1. Given a boundaryε > 0, we
simulate a compound Poisson process that has only jumps with jump heights≥ ε. The jump intensity
I(ε) of this process is determined by the measure of the set{|x| ≥ ε}:

I(ε) := K
(
(−∞,−ε] ∪ [ε,∞)

)
.

Given that a pathL·(ω) of L jumps at timet, the jump height has the distribution

K(ε)(dx) :=
1

I(ε)
K

(
dx ∩

(
(−∞,−ε] ∪ [ε,∞)

))
.

Denoting this compound Poisson process byN (ε), the NIG Lévy process is approximated by

L
(ε)
t := µt + N

(ε)
t .

The NIG parameterµ enters only by the drift termµt, and the three parametersα, β, andδ enter by the
compound Poisson processN (ε).
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Path of NIG Levy process, mu=0.000459

Figure 2.4: Sample path of NIG Lévy motion, determined by compound Poisson approximationL(ε)

with ε = 10−8. The line gives the drift componentµt.

Since the density of the NIG Lévy measure is known in closed form (see equation (2.37),) simulation of
the approximating Lévy processL(ε) is straightforward: Given a time horizonT , independent exponen-
tially distributed random variatesτi (i = 1, . . . ,N) with parameterI(ε) are generated. The numberN
of variates is determined by the condition that

∑N−1
i=1 τi < T ≤

∑N
i=1 τi. For i = 1, . . . ,N − 1, the

valueτi is the waiting time between the(i − 1)-th and thei-th jump. Then theN − 1 jump heights are
generated by inserting iidU(0, 1)-distributed (pseudo-)random variables into the inverse of the cumu-
lative distribution function ofK(ε). This inverse has to be determined numerically from the density of
K(ε)(dx).

Figure 2.4 shows a sample path of the processL(ε), which we take to be a sample path of the NIG Lévy
motionL itself. At ε = 10−8, such a path has around 700,000 jumps on the interval[0, 1].

Figure 2.5 shows how the normed jump countSk defined in subsection 2.6.1, equation (2.51) converges
against the valueδ/π. For thex-axis, we have chosen a log scale (with basis10). x denotes the lower
boundary1/(k + 1). That is, atx = 10−5 we give the valueS105 .

To illustrate the determination ofµ by the method described above, we plot again the path given in
Figure 2.4. But this time, we subtract the process of jumps with magnitude greater than10−5 (Fig. 2.6)
respectively greater than10−7 (Fig. 2.7). The convergence of the path against a straight line with slope
µ is obvious.
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Convergence of normed jump count, b=10^-3

Figure 2.5: Convergence of normed jump count against the true valueδ/π = 0.00350 (marked on the
right side of the plot). The three curves represent three different paths.

2.7 Implications for Option Pricing

In stock price models driven by generalized hyperbolic Lévy processes, one models the stock price as

St = S0e
rt+Lt ,(2.52)

whereL is a generalized hyperbolic Lévy process. (See Chapter 1.)

For option pricing, one changes the probability measure such that the discounted stock price process
S∗t := e−rtSt becomes a martingale. Then one prices European options by calculating the conditional
expectations of discounted payoffs. In incomplete models, there are usually many different equivalent
probability measures turning the discounted stock price process into a martingale. In general this leads
to many different possible prices for European options. By Eberlein and Jacod (1997b), for infinite-
variation stock price models of the form (2.52), the range of call option prices that can be calculated this
way is the whole no-arbitrage interval.11

If one applies the pricing method described above to the generalized hyperbolic stock price model, the
distribution of the generalized hyperbolic Lévy process changes with the change of probability. In par-
ticular, with the changes of probability used in Eberlein and Jacod (1997b), the process does not stay a
generalized hyperbolic Lévy process. One might ask if one can narrow the range of option prices by im-
posing the additional condition that the processL is again a generalized hyperbolic Lévy process under
the transformed measure. But in Proposition 2.28 we will show that even with this severe restriction, the

11The boundaries of this interval are given by the following condition. If the price lies beyond either of these boundaries,
there is a simple buy/sell-and-hold strategy that allows a riskless arbitrage.
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Only jumps smaller than 10^-5; mu=0.000459

Figure 2.6: Path of NIG Lévy motion minus
jumps of magnitude> 10−5.
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Only jumps smaller than 10^-7; mu=0.000459

Figure 2.7: Path of NIG Lévy motion minus
jumps of magnitude> 10−7.

range of possible option prices does not shrink. Before we can prove this, we have to prove the following
proposition.12 We consider functionsg(x) that satisfy the following conditions.13

0 ≤ g(x) < x for x > 0,
g(x)
x
→ 1 asx→∞, g convex.(2.53)

Proposition 2.25. Let (πn) be a sequence of probability measures on(IR,B1) with πn((−∞, 0]) = 0
for all n. Assume that there is a constantc <∞ such that∫

x πn(dx) = c for all n ≥ 1.

(a) If πn → π weakly for some probability measureπ on (IR,B1) satisfying
∫

x π(dx) = c, then∫
g(x) πn(dx)→

∫
g(x) π(dx)

for any functiong(x) satisfying (2.53).

(b) The following conditions are equivalent.

(i)
∫

xd πn(dx)→ 0 for all d ∈ (0, 1).

(ii)
∫

xd πn(dx)→ 0 for somed ∈ (0, 1).

(iii) (πn) converges weakly to the Dirac measureδ0.

(iv)
∫

g(x) πn(dx)→ c for all g with (2.53).

(v)
∫

g(x) πn(dx)→ c for someg with (2.53).

(c) Furthermore, there is equivalence between the following conditions.

12Points (b) [(iii) and (iv)] and part (c) [(i) and (ii)] are essentially contained in Frey and Sin (1999), Proposition 2.3 or
Eberlein and Jacod (1997a), Theorem 1-1. The former source considers only call payoff functions.

13Up to a constant factor,g(ST ) will be the payoff of the option at expiration. The class of payoff functions covered here is
the same that was used in Eberlein and Jacod (1997b).
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(i) (πn) converges weakly to the Dirac measureδc.

(ii)
∫

g(x) πn(dx)→ g(c) for all functionsg(x) with (2.53).

(iii)
∫

g(x) πn(dx) → g(c) for some functiong(x) with (2.53) that satisfiesg(c) = αc + β and
g(x) > αx + β for x 6= c, whereα andβ are real constants.

(d) If
∫

ln x πn(dx)→ ln c, then(πn) converges weakly to the Dirac measureδc.

Remark: When applying this proposition to mathematical finance, the measuresπn, the constantc, and
the functiong(x) will have the following significance:

πn is the distribution of the stock price at expiration,ST , under
some martingale measure.

c is the expectation ofST under any of those martingale mea-
sures. That is,c = erT S0.

g(x) is the payoff functionof the option. That is, the option
pays an amount ofg(ST ) at timeT . For a European call
option, this meansg(x) = (x − K)+, whereK > 0 is
the strike price. Obviously, this payoff function satisfies
condition (2.53).∫

g(x) πn(dx) is the expected payoff of the option, calculated under some
martingale measure. The option price would be thedis-
countedexpected payoff, that is,e−rT

∫
g(x) πn(dx).

Proof of Proposition 2.25.We recall the following definition from Chow and Teicher (1978), Sec. 8.1,
p. 253.

Definition 2.26. If (Gn)n≥1 is a sequence of distribution functions onIR, andg is a real, continuous
function on(−∞,∞), theg is calleduniformly integrable relative to(Gn) if

sup
n≥1

∫
{|y|≥a}

∣∣g(y)
∣∣ dGn(y) = o(1) asa→∞.

Note that—unlike the usual notion of uniform integrability of a sequence of functions with respect to a
fixed probability measure—here the function is fixed and a sequence of probability measures is consid-
ered.

Obviously, uniform integrability of a functiong implies uniform integrability of all real, continuous
functionsf with |f | ≤ |g|.
Uniform integrability is tightly linked with the convergence of integrals under weak convergence of the
integrating measures. This is shown in the following theorem, which we cite from Chow and Teicher
(1978), Sec. 8.1, Theorem 2.

Theorem 2.27. If (Gn)n≥1 is a sequence of distribution functions onIR with Gn → G weakly, andg is
a nonnegative, continuous function on(−∞,∞) for which

∫∞
−∞ g dGn <∞, n ≥ 1, then

lim
n→∞

∫ ∞
−∞

g dGn =
∫ ∞
−∞

g dG <∞

if and only ifg is uniformly integrable with respect to(Gn).
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Remark: We will be concerned with functions defined on the nonnegative real axisIR+. Obviously,
Theorem 2.27 holds in this context as well if the functiong satisfies the additional conditiong(0) = 0.
Then one can extend it continuously to the negative real axis by settingg(x) := 0, x < 0.

Now we can start to prove Proposition 2.25.

Part (a). Since
∫

x πn(dx) = c for all n and
∫

x π(dx) = c, we trivially have the convergence∫
x πn(dx) →

∫
x π(dx). Together with the weak convergenceπn → π, this implies the uniform

integrability ofx with respect to the sequence(πn). (See Theorem 2.27.) The boundedness condition
0 ≤ g(x) < x thus implies the uniform integrability of the functiong(x) with respect to the same
sequence. Another application of Theorem 2.27 yields the desired convergence.

Part (b). (i)⇒ (ii) is trivial.

(ii)⇒ (iii): We have

πn({|x− c| > ε}) =
∫

1l{x>ε}πn(dx) ≤ 1
εd

∫
xdπn(dx)→ 0,

which implies weak convergence.

(iii)⇒ (i): For any fixedd ∈ (0, 1) andx0 > 0 we have∫
xd1l{x>x0}πn(dx) ≤

∫
x

x1−d
0

1l{x>x0}πn(dx) ≤ c

x1−d
0

.

The last expression tends to0 asx0 → ∞, and so the functionx 7→ xd is uniformly integrable with
respect to the sequence(πn). By Theorem 2.27, weak convergenceπn → δ0 then implies

∫
xdπn(dx)→

0.

(iii)⇒ (iv) : Fix an arbitrary functiong(x) satisfying (2.53). We have

c−
∫

g(x) πn(dx) =
∫

(x− g(x)) πn(dx).

The functionx 7→ x− g(x) is nonnegative and continuous.14 In addition, it is uniformly integrable with
respect to the sequence(πn): Becauseg(x)/x→ 1 asx→∞, for anyε > 0 there exists a valuexε <∞
such thatx− g(x) ≤ εx asx ≥ xε. So∫

(x− g(x))1l{x>xε} πn(dx) ≤
∫

εx πn(dx) ≤ ε

∫
x πn(dx) = εc,

which implies uniform integrability. Hence, again by Theorem 2.27, weak convergenceπn → δ0 implies
convergence of the expectations. Thus

c−
∫

g(x) πn(dx) =
∫

(x− g(x)) πn(dx)→
∫

(x− g(x)) δ0(dx) = 0.

(iv)⇒ (v) : Trivial.

(v)⇒ (iii) : Convexity ofg(x) together with0 ≤ g(x) < x implies thatx 7→ x−g(x) is non-decreasing
and strictly positive. Hence for anyε > 0 we have

πn({x ≥ ε}) =
∫

1l{x≥ε} πn(dx) ≤
∫

x− g(x)
ε− g(ε)

πn(dx) =
1

ε− g(ε)

∫
(x− g(x)) πn(dx)

14Remember that we extend all functions by setting them equal to zero on the negative real axis.
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By assumption, for fixedε > 0 the last expression tends to0 asn → ∞. Weak convergenceπn → δ0

follows.

Proof of part (c).(i)⇒ (ii) : Since
∫

x δc(dx) = c, we can apply part (a). This yields∫
g(x) πn(dx)→

∫
g(x) δc(dx) = g(c).

(ii)⇒ (iii) : Trivial.

(iii)⇒ (i) : By assumption, we have∫
(αx + β) πn(dx) = α

∫
x πn(dx) + β = αc + β = g(c), for all n ≥ 1.

Hence
∫

g(x) πn(dx)→ g(c) implies∫ (
g(x)− (αx + β)

)
πn(dx)→ 0 asn→∞.

Becauseg(x) − (αx + β) > 0 for x 6= c, and because this function is convex, for eachε ∈ (0, 1) there
is a constantCε such that

1l(0,c(1−ε)]∪[c(1+ε),∞)(x) ≤ Cε ·
(
g(x) − (αx + β)

)
for x ∈ (0,∞).

This implies that for every fixedε > 0, πn((0, c(1 − ε)] ∪ [c(1 + ε,∞)) → 0 asn→∞, and hence the
weak convergenceπn → δc.

Proof of part (d). By our standing assumption (2.4) concerning the sequence(πn), we have
∫ (

1 −
x/c

)
πn(dx) = 0. The functionx 7→ ln(x/c) + 1 − x/c is strictly convex and takes on its minimum

value0 atx = c. Hence for anyε > 0 there is a constantCε <∞ such that1l{|x−c|≥εc} ≤ Cε ·(ln(x/c)+
1− x/c) for x > 0. Consequently

πn

(
{|x− c| ≥ εc}

)
=

∫
1l{|x−c|≥εc}πn(dx)

≤ Cε ·
∫ (

ln(x/c) + 1− x/c
)
πn(dx)

= Cε ·
∫ (

ln(x/c)
)

πn(dx) + Cε ·
∫ (

1− x/c
)

πn(dx)

= Cε ·
( ∫

ln x πn(dx)− ln c
)
,

which by assumption tends to0 asn→∞ for fixed ε.

In what follows, we show that for generalized hyperbolic distributions the constraint that the generalized
hyperbolic Lévy process should stay a generalized hyperbolic Lévy process under the martingale measure
is not sufficient to make the interval of possible option prices smaller. The key to the proof will be to
notice that by changing the basic probability measure we can transform a given generalized hyperbolic
Lévy process into a generalized hyperbolic Lévy process with arbitrary values ofα andβ. If λ > 0, we
can, for any givenα, satisfy the martingale condition by choosingβ in a suitable way. We will show that
changingα continuously will result in a weakly continuous change of the distribution ofLt for arbitrary
fixed t.
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Proposition 2.28. Fix arbitrary numbersλ > 0, δ > 0, andµ ∈ IR. Consider a convex functiong(x) on
(0,∞) satisfying (2.53). Fix arbitrary constantsc, t ∈ (0,∞). Then for eachp ∈ (g(c), c) we can find
α > 0 andβ with |β| < α such that for the time-t memberH∗t of the generalized hyperbolic convolution
semigroup with parameters(λ, α, β, δ, µ), the following two conditions are satisfied.

1.
∫

ex H∗t(dx) = c and

2.
∫

g(x) H∗t(dx) = p.

Before we prove the theorem, we want to highlight its significance for option pricing.

Corollary 2.29. LetSt = S0 exp(rt + Lt) describe the evolution of a stock price, whereL is a general-
ized hyperbolic Lévy process. Then we have the following.

1. If λ > 0, the range of possible call option prices is the whole no-arbitrage interval((S0 −
e−rtK)+, S0) even if one restricts the set of possible equivalent pricing measures to those mea-
sures that makeLt := ln(St) − rt again a generalized hyperbolic Lévy process with the same
parametersλ, δ, andµ.

2. If λ ≤ 0, then one has an analogous result, but one is only allowed to keep the parametersδ and
µ fixed.

Proof of Corollary 2.29.Part 1 follows at once from Propositions 2.28 and 2.20, sinceE[eL1 ] = 1 iff
S0e

Lt is a martingale. Part 2 is reduced to part 1 by first changing the parameterλ to a positive value,
sayλ = 1, using Proposition 2.20.

Proof of Proposition 2.28.Sinceλ > 0, we can always satisfy condition 1 by varying the parameterβ
alone. This follows at once from Corollary 2.10 and Proposition 2.12.

Given α, the corresponding valueβ = β(α) is determined as the unique zero of the strictly mono-
tonic functionβ 7→ e−rmgf(α,β=0)(β + 1) − mgf(α,β=0)(β). We will now show that the mapping
α 7→ (α, β(α)) 7→

∫
(ex −K)+ GH(λ,α,β(α),δ,µ)(dx) is continuous: Sincemgf(α,β=0)(β) depends con-

tinuously onα, so does the solutionβ(α). By inspection of the characteristic function (2.9), one sees
that for any sequence(αn) with αn > 1/2 andαn → α ∈ (1/2,∞), the following convergence holds
for the characteristic functions.

χ(λ,αn,β(αn),δ,µ)(u)t → χ(λ,α,β(α),δ,µ)(u)t for all u ∈ IR.

(The exponentt of the characteristic function denotes that we consider thet-fold convolution.) By
the Lévy continuity theorem, this implies weak convergence of the distributions. An application of
Proposition 2.25 (a) yields∫

(ex −K)+ GH∗t(λ,αn,β(αn),δ,µ)(dx)→
∫

(ex −K)+ GH∗t(λ,α,β(α),δ,µ)(dx).

By standard properties of continuous functions, the function

α 7→
∫

(ex −K)+ GH∗t(λ,α,β(α),δ,µ)(dx)
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maps the interval(1/2,∞) onto an interval. The statement of the proposition follows if we can show
that the image of(1/2,∞) contains values arbitrarily close to the boundaries of the interval(g(c), c).
More precisely, we will show the following: If one letsα ↓ 1/2, then the expectation tends to the upper
boundaryc. On the other hand, ifα ↑ ∞ then the expectation tends to the lower boundary,g(c).

The caseα ↓ 1/2.
Sinceβ(α) ∈ (−α,α) and[0, 1] ⊂ (−α − β, α − β), along withα ↓ 1/2 the corresponding values of
β(α) have to tend to−1/2. By equation (2.9) and the remark following this equation, we have

mgf(d) = χ(−id) = eµdt

(
(δ

√
α2 − β(α)2)λ

Kλ(δ
√

α2 − β(α)2)
·
Kλ

(
δ
√

α2 − (β(α) + d)2
)(

δ
√

α2 − (β(α) + d)2
)λ

)t

.(2.54)

We show that the moment generating function, taken atd = 1/2, tends to zero asα ↓ 1/2 and, con-
sequently,β(α) → −1/2. By Abramowitz and Stegun (1968), equation 9.6.9, we have the following
asymptotic relation for the Bessel functionKλ(z).

Kλ(z) ∼ Γ(λ)
2

(z

2

)−λ
and hence

zλ

Kλ(z)
∼ z2λ

2λ−1Γ(λ)
(λ > 0 fixed,z → 0.)

Hence the first fraction in (2.54) tends to zero asα ↓ 1/2, β(α)→ −1/2.

(δ
√

α2 − β(α)2)λ

Kλ(δ
√

α2 − β(α)2)
∼ (δ

√
α2 − β(α)2)2λ

2λ−1Γ(λ)
→ 0 asα ↓ 1/2,(2.55)

becauseδ
√

α2 − β(α)2 → 0 (α ↓ 0). For the second fraction in (2.54), we note that

δ
√

α2 − (β(α) + d)2 → δ
√

d− d2 asα ↓ 1/2.

Hence ford = 1/2 the second fraction in (2.54) tends to a finite constant.

Kλ

(
δ
√

α2 − (β(α) + 1/2)2
)(

δ
√

α2 − (β(α) + 1/2)2
)λ
→ Kλ(δ/4)

(δ/4)λ
<∞.(2.56)

Taking together (2.55) and (2.56), we see that indeed the moment generating function (2.54), taken at
d = 1/2, tends to0 asα ↓ 1/2. By Proposition 2.25 (b), this is equivalent to saying that the expectation∫

g(ex) GH∗t(λ,α,β(α),δ,µ)(dx) tends to the upper boundary,c, of the interval given in the proposition.

The caseα ↑ ∞.
First, we show that asα ↑ ∞, β(α)→∞ in such a way thatβ(α)/α tends to a valueγ∗ ∈ (−1, 1).

The martingale condition 1 is equivalent to

χβ(α)(−i) = c1/t,

where we have indicated the parameterβ(α) as a subscript. Since changingβ(α) corresponds to an
Esscher transform, Lemma 2.6 yields the following equivalence.

χβ(α)(−i) = c1/t ⇐⇒ e−(ln c)/tχβ=0(−i · (β(α) + 1)) = χβ=0(−i · β(α)),
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whereχβ=0 denotes the characteristic function of the generalized hyperbolic distribution with parameter
β = 0 and the other parameters unchanged. If we further change the parameterµ to the valueµ̃ :=
µ− (ln c)/t, then the condition above takes the form

χβ=0,µ=eµ(−i · (β(α) + 1)) = χβ=0,µ=eµ(−i · β(α)).(2.57)

Because of the complicated structure of the characteristic functionχβ=0,µ=eµ(u), it is difficult to analyze
the properties of the functionβ(α) directly using (2.57). Therefore we consider a modification of condi-
tion (2.57). Since the moment generating functionu 7→ χβ=0,µ=eµ(−iu) is strictly convex, relation (2.57)
implies that the unique minimum ofχβ=0,µ=eµ(−iu) is attained for someu∗ ∈ (β(α), β(α) + 1). As we
will see, the quotientu∗/α converges to a limit in(−1, 1) asα ↑ ∞. (This implies the convergence of
β(α)/α to the same limit.)

We have

d
duχβ=0,µ=eµ(−iu)
χβ=0,µ=eµ(−iu)

= µ̃ +
δu√

α2 − u2
· Kλ+1(δ

√
α2 − u2)

Kλ(δ
√

α2 − u2)
.(2.58)

Because of the strict convexity of the moment generating function, this function has only one zero, which
is located at the minimum of the moment generating function. Denoting the position of the minimum by
u again, we have

− µ̃

δ
=

u√
α2 − u2

· Kλ+1(δ
√

α2 − u2)
Kλ(δ

√
α2 − u2)

.(2.59)

Obviously forµ̃ = 0 the unique solution of this equation isu = 0, so we only have to study the cases
µ̃ > 0 andµ̃ < 0. These can be treated analogously, and so we only consider the caseµ̃ < 0. It is clear
that in this case the solution satisfiesu > 0. Lettingγ = u

α > 0, condition (2.59) is equivalent to

− µ̃

δ
=

1√
1
γ2
− 1
· Kλ+1(δα

√
1− γ2)

Kλ(δα
√

1− γ2)
.(2.60)

The Bessel function quotient in this condition tends to1, uniformly forγ from any fixed compact interval
I ⊂ (−1, 1). This is clear from the asymptotic relation (2.25). Therefore it is easy to see that the solution
γ of (2.60) tends to the solutionγ∗ of the equation

− µ̃

δ
=

1√
1

(γ∗)2
− 1

, which is given byγ∗ =
1√

δ2

µ̃2
+ 1

.(2.61)

Soγ∗ ∈ (0, 1), which had to be proved. (The analogous proof for the caseµ̃ > 0 would yield γ∗ ∈
(−1, 0).)

Using these results we examine the behavior of the mean of the convoluted generalized hyperbolic dis-
tribution GH∗t(λ,α,β(α),δ,µ) asα ↑ ∞. We show that the expectation tends to zero in this case.

By insertion ofu = β(α) into the right-hand side of equation (2.58) we get an expression for the mean
value of a generalized hyperbolic distribution with parametersα, β(α), andµ̃. As the quotientβ(α)/α
tends to the limitγ∗ solving (2.61), locally uniform convergence of the right-hand side of equation
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(2.60) yields that the mean value of the distribution tends to zero. Consequently the mean value of
the distribution withµ instead ofµ̃ tends toln c. Now let πn denote the law ofex under the measure
GH∗t(λ,α=n,β(n),δ,µ)(dx). Then

∫
x πn(dx) = c. Proposition 2.25 (d) and (c) yields that the convergence∫

ln x πn(dx)→ ln c implies convergence of
∫

g(ex) GH∗t(λ,α,β(α),δ,µ)(dx) to g(c).
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Chapter 3

Computation of European Option Prices
Using Fast Fourier Transforms

3.1 Introduction

Suppose a stock price is modeled by a stochastic processSt with discrete or continuous time parametert.
The evolution of the stock price is governed by the underlying probability measureP . As mentioned in
Chapter 1, when pricing European options on the stock one usually looks for a so-calledequivalent

martingale measure, that is a probability measureQ
loc∼ P such thatexp

(
−

∫ t
0 r(s)ds

)
St is a Q-

martingale. Then the option price is calculated as theQ-conditional expectation of the discounted payoff.
Q is also calledrisk-neutral measure.

In general, there is more than one equivalent martingale measure. As mentioned in Chapter 1, this
induces the problem of choosing one of these measures. Here we do not want to dive into the theory
of choosing the martingale measure. Instead, we assume that the choice has happened, and that we are
given the measureQ.

The remaining task for option pricing is the calculation of the expected final value of the option. This
requires knowledge of the distribution of the stock price under the martingale measureQ. What is known
in many cases is the characteristic function of the stock return to expiration. Exponential Lévy processes
are a typical example. Here the logarithm of the stock price is assumed to follow a process with stationary
independent increments. Consequently, the characteristic function of then-period return is just then-th
power of the characteristic function of the one-period return, which is known in most of the models.

In the current chapter, we present an elegant way to calculate the prices of European options once the
pricing measureQ is chosen. It uses the characteristic function of the log return on the stock from now
till the expiration date of the option. There is no need to know the density of the stock price distribution
explicitly. This is particularly favorable in the Lévy stock price models mentioned above: Generally,
here the characteristic functions are easier to compute than the corresponding probability densities. In
some cases, closed-form expressions for the densities do not exist at all.

Our approach applies to a large class of European options that depend only on the price of the underlying
at expiration. It is based on the observation that one can represent the pricing formula for European
options as a convolution. This allows us to profit from the fact that the bilateral (or, two-sided) Laplace

61



transform of a convolution is the product of the bilateral Laplace transforms of the factors. Usually the
latter transformations are known explicitly.

Inversion of the bilateral Laplace transformation yields the option prices as a function of the current
price of the underlying. Approximate values for the inverse Laplace transform can be calculated by
discretizing the inversion integral and applying the Fast Fourier Transform (FFT) algorithm. This has
the advantage that one can simultaneously calculate the option prices for a range of current underlying
prices.

The approach presented here turns out to be a generalization of the approach of Carr and Madan (1999)
to the pricing of European call options. In this article, the pricing of call options was reduced to the cal-
culation of a discrete Fourier transform by introducing thedampened call value. Applying our approach
to the pricing of European call options reproduces their formula. In fact, the Fourier transform of the
dampened call value is exactly the bilateral Laplace transform of the call price function itself.

The rest of the chapter is organized as follows. In Section 3.2, we give the basic assumptions about the
price model for the underlying and about the option to be priced. Section 3.3 shows that the general
formula for the price of a European option may be interpreted as a convolution of the payoff function
and the distribution of the log of the price/forward-price ratio. This yields a Laplace back-transformation
representation of the option pricing formula. In section 3.4 we calculate the Laplace transforms of power
call and put payoff functions. For these options a simple transformation yields a formula for the option
price as a function of the strike price rather than the current underlying price. Section 3.5 presents a way
to discretize the inversion integral. This allows us to apply the FFT algorithm to the calculation of the
option price. Section 3.6 outlines an algorithm that implements the option price calculation by FFT.

3.2 Definitions and Basic Assumptions

In the following, we assume that the probability measureQ is a martingale measure (orrisk neutral
measure) for the stock and options market. This means that discounted stock and option prices are
martingales under this measure.

We place ourselves at time0 and want to price European options with some fixed expiration dateT .
These options are characterized by their payoff at timeT . We assume that the payoff is given by some
measurable functionw(ST ) of the stock price at timeT . As in Chapter 1, we callw(x) the payoff
function. ST is assumed to be given by the random variable

ST = S0 exp(rT ) exp(XT ),(3.1)

whereS0 is the stock price at time0. We assume that the interest rater is deterministic. Then equation
(3.1) represents the time-T stock price as the product of theforward priceS0 exp(rT ) and a random
factorexp(XT ). The random variable

XT = ln
(
ST /(erT S0)

)
is the log of the ratio between the actually realized price at timeT and the forward price for timeT ,
contracted at time0. ThusXT is the log return on aforward contractto buy the stock at timeT . Some
readers might prefer a model of the form

ST = S0 exp(YT )(3.2)
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instead. Appendix B.2 shows how one can easily gain the characteristic function ofXT from the charac-
teristic function ofYT . Since the characteristic function is the only information we need about the stock
price model, it effectively makes no difference whether we start with a stock price model of type (3.1) or
with a model of type (3.2).

Since by assumptionQ is a martingale measure,ST must be integrable with respect toQ. This implies
the existence of the first exponential moment ofXT :

EQ

[
eXT

]
<∞.

Consequently, the moment generating functionmgf(u) = EQ

[
euXT

]
exists at least on the interval[0, 1].

The following lemma shows how risk neutrality ofQ corresponds to a property of the moment generating
function.

Lemma 3.1. Assume thatEQ[eXT ] < ∞. If Q is a martingale measure for the stock market, then the
moment generating functionm of QXT satisfiesmgf(1) = 1.

Proof.

mgf(1) ≡ EQ[eXT ] = EQ[e−rT ST ]/S0 = 1.

We sum up the required properties of the distribution ofXT .

Assumption [Distribution]: The distribution of the log returnXT = ln{e−rT ST/S0} satisfies the
following.

1. It is continuous with respect to Lebesgue measure, with density functionρ(x).

2. Its extended characteristic functionχ(z) = E [exp(izXT )] is defined for allz ∈ IR− i[0, 1] ⊂ C,
with χ(−i) = 1.

Concerning the option to be priced, we make the following

Assumption [Option]: We are given a European option which pays its holder the amountw(ST ) at time
T . The payoffw(ST ) is integrable with respect toQ. In accordance with martingale pricing, the option
price at time0 is given by the discounted expectatione−rT EQ[w(ST )].

3.3 Convolution Representation for Option Pricing Formulas

Since we have assumed thatQ is martingale measure for the options market, we can calculate the price
of a European option withQ-integrable payoffw(ST ) at timeT by taking the expectation. The following
theorem shows how this expectation may be calculated by a Laplace transformation.

Theorem 3.2. Consider a European option with payoffw(ST ) at timeT . Let v(x) := w(e−x) denote
themodified payoff function. Assume thatx 7→ e−Rx|v(x)| is bounded and integrable for someR ∈ IR
such that the moment generating functionmgf(u) of XT satisfiesmgf(−R) <∞.
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LettingV (ζ) denote the time-0 price of this option, taken as a function of the negative log forward price
ζ := − ln{erT S0}, we have

V (ζ) =
eζR−rT

2π

∫ ∞
−∞

eiuζ · L[v](R + iu) · χ(iR − u) du,(3.3)

whenever the integral on the r. h. s. exists at least as the limitlimM→∞
∫ M
−M · · · du. HereL[v](z) is the

bilateral(or, two-sided) Laplace transform1 of v for z ∈ C, Rez = R:

L[v](z) :=
∫ ∞
−∞

e−zxv(x) dx.

Proof. The current forward price is given bye−ζ . By definition ofXT the stock price at expiration is
ST = e−ζeXT .

For the option price, this implies

V (ζ) = e−rT EQ

[
w(e−ζ+XT )

]
= e−rT EQ [v(ζ −XT )] = e−rT

∫
IR

v(ζ − x)ρ(x) dx.

Apart from the discounting factore−rT , the last expression is the convolution of the functionsv(x) and
ρ(x), taken at the pointζ. By Theorem B.2, the bilateral Laplace transform of a convolution equals the
product of the bilateral Laplace transforms of the factors. Denoting the bilateral Laplace transforms of
V , v, andρ by L[V ], L[v], andL[ρ], respectively, we thus have

L[V ](R + iu) = e−rT L[v](R + iu) · L[ρ](R + iu) for all u ∈ IR.(3.4)

We can apply Theorem B.2 to the functionsF1(x) := v(x) andF2(x) := ρ(x).2 This shows that the
bilateral Laplace integral definingL[V ](z) converges absolutely and thatζ 7→ V (ζ) is a continuous
function. Hence we can invert the bilateral Laplace transformation by Theorem B.3:

V (ζ) =
1

2πi

∫ R+i∞

R−i∞
eζzL[V ](z)dz

=
1
2π

∫ ∞
−∞

eζ(R+iu)L[V ](R + iu)du

=
eζR

2π
lim

M→∞

∫ M

−M
eiuζL[V ](R + iu)du,(3.5)

where we have made explicit the Cauchy principal value. The bilateral Laplace transformL[ρ] of the
densityρ is given byL[ρ](z) =

∫
IR e−zxρ(x)dx. Obviously, we have the identityL[ρ](R + iu) =

χ(iR− u). Hence substituting (3.4) into (3.5) completes the proof.

Remark: The integral in (3.3) is a Fourier transformation. Hence we will be able to apply FFT methods
to its calculation.

1For a thorough account of the bilateral Laplace transform, see Doetsch (1950).
2The conditions imposed by Theorem B.2 on the functionF1 are clearly satisfied. Moreover, as required by Theorem B.2,

the functionx 7→ e−Rx|F2(x)| is integrable because of the assumptionmgf(−R) <∞.
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3.4 Standard and Exotic Options

3.4.1 Power Call Options

Consider the problem of calculating the value of aEuropean call optionon the underlying. At the
expiration timeT , the holder of this option has the right to buy one share of the underlying for the price
K(> 0). K is called thestrike priceor simply strike of the option. Assuming frictionless markets
without transaction costs, this right to buy is worth(ST −K)+ at the expiration dateT . Therefore we
can identify the option with a contract that pays its holder the amount(ST −K)+ at timeT . We consider
at once the more general case ofpower call options. These are characterized by the payoff

w(ST ) =
(
(ST −K)+

)d

at maturity.3 The exponentd is positive, withd = 1 corresponding to the standard European call de-
scribed above. The cased = 2 can be visualized as follows: It corresponds to a contract that pays at time
T the quantity(ST −K)+ of standard European call options with the same strike price.

The general Laplace approach described above is applicable here. It yields the option price as a function
of the negative log forward priceζ = − ln(erT S0). The FFT method described below calculates approx-
imate values of this function for argument valuesζk = k ∆ζ, where the integerk ranges from−N/2 to
N/2. This corresponds to forward prices around1. But in general the interesting values for the forward
price are not the ones close to1, but rather values around the strike priceK. The remedy for this issue is
a simple transformation of the call price function.

Lemma 3.3. LetCd(ζ;K) denote the price of a power call, expressed as a function of the negative log
forward priceζ := − ln erT S0 and the strike priceK > 0. Then we have the following relation between
prices for strikeK and prices for strike1.

Cd(ζ;K) = Kd Cd(ζ + ln K; 1),(3.6)

where the second argument of the functionCd denotes the strike price.

Proof.

Cd(ζ;K) ≡ e−rT EQ

[(
(ST −K)+

)d
]

= e−rT EQ

[(
(e−ζeXT −K)+

)d
]

= Kd e−rT EQ

[(
(e−ζ−ln KeXT − 1)+

)d
]

= Kd Cd(ζ + ln K; 1).

Hence we only need to calculate approximate values for the functionC(·; 1) in order to be able to price
call options for all strike prices. The argumentζ + ln K in (3.6) is exactly the log forward-price ratio, so
its interesting values lie around0.

3Cf. Eller and Deutsch (1998), p. 167.
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Another advantage is that we can gain insight into the behavior of power call prices as a function of the
strike rather than the forward price. This is achieved by fixingζ and varyingK in (3.6), using the FFT
approximation of the functionC(·; 1).
In order to apply the Laplace inversion formula deduced in Theorem 3.2, we have to know the bilateral
Laplace transform of the modified payoff function

cd(x) :=
(
(e−x − 1)+

)d (d > 0, x ∈ IR).

The bilateral Laplace transform exists forz ∈ C with Rez < −d. For these values ofz andd we have∫
IR

e−zxvd(x)dx =
∫ 0

−∞
e−zx(e−x − 1)ddx

=
∫ 1

0
t−z(1/t − 1)d

dt

t

=
∫ 1

0
t−z−d−1(1− t)ddt

= B(−z − d, d + 1)

=
Γ(−z − d)Γ(d + 1)

Γ(−z + 1)
.

HereB(·, ·) andΓ(·) denote the Euler Beta and Gamma functions respectively.4 We give some brief
comments on the chain of equalities above: In the second line, we have substitutedt = ex. The fourth
equality follows directly from the definition of the Beta function (cf. Abramowitz and Stegun (1968),
Formula 6.2.1):

B(z,w) :=
∫ 1

0
tz−1(1− t)w−1dt (Rez > 0, Rew > 0)

The last line is a consequence of the relation between the Beta and Gamma function (cf. Abramowitz
and Stegun (1968), Formula 6.2.2):

B(z,w) =
Γ(z)Γ(w)
Γ(z + w)

.

For practical purposes, writing the Beta function as a quotient of Gamma functions may be necessary if
the Beta function is not implemented in the programming environment you use.5

The practically relevant cases of power calls have exponentsd = 1 or d = 2. Here we can simplify the
expression given above, using the relationΓ(z+n+1)/Γ(z) = (z+n)(z+n−1) · · · z for n = 0, 1, 2, . . .
(cf. Abramowitz and Stegun (1968), Formula 6.1.16). Ford = 1, that is the standard European call, we
have

L[c1](z) =
Γ(2)

(−z)(−z − 1)
=

1
z(z + 1)

.

Ford = 2,

L[c2](z) =
Γ(3)

(−z)(−z − 1)(−z − 2)
=

−2
z(z + 1)(z + 2)

.

4Properties of these functions may be found e. g. in Abramowitz and Stegun (1968), Chapter 6.
5This is the case for S-Plus 3.4: Here, the Gamma function is available, but the Beta function is not.
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3.4.2 Power Put Options

Now consider the case of thepower putwith payoff

w(ST ) :=
(
(K − ST )+

)d

for some constantd > 0. The choiced = 1 corresponds to the standard European put. By a completely
analogous proof as in Lemma 3.3, one shows the following relation for the put price functionP d(ζ;K).

Lemma 3.4. LettingP d(ζ;K) denote the price of a power put, expressed as a function of the negative
log forward priceζ = − ln{erT S0}, we have

P d(ζ;K) = Kd · P d(ζ + ln K; 1).

The modified payoff function forK = 1 is

pd(x) :=
(
(1− e−x)+

)d (d > 0, x ∈ IR).

Its Laplace transform exists for Rez > 0:∫
IR

e−zxvd(x)dx =
∫ ∞

0
e−zx(1− e−x)ddx

=
∫ 1

0
tz−1(1− t)ddt

= B(z, d + 1)

=
Γ(z)Γ(d + 1)
Γ(z + d + 1)

.

Again,B(·, ·) andΓ(·) denote the Euler Beta and Gamma functions respectively.6

The practically relevant cases are againd = 1—the standard European put—andd = 2. The bilateral
Laplace transform ford = 1 is

L[p1](z) =
1

z(z + 1)
(Rez > 0),

and for the cased = 2 we have

L[p2](z) =
2

z(z + 1)(z + 2)
(Rez > 0).

Remark: There is no put-call parity for power calls withd 6= 1, so explicit calculation of both put and
call values is required here.

3.4.3 Asymptotic Behavior of the Bilateral Laplace Transforms

Below we will encounter integrals in which the integrands contain a factorL[v](R + iu). In order to
determine absolute integrability, we will need information about the asymptotic behavior of this term for

6See e. g. Abramowitz and Stegun (1968), Chapter 6.
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large |u|. This amounts to studying the asymptotic behavior of the Beta function, which in turn can be
deduced from the behavior of the Gamma function. For|z| → ∞, the Gamma function behaves in the
following way (cf. Abramowitz and Stegun (1968), Formula 6.1.39):

Γ(az + b) ∼
√

2πe−az(az)az+b−1/2 (| arg z| < π, a > 0).

From this relation we can derive the asymptotic behavior if the Beta functionB(z,w) for fixedw.

B(z,w) ∼ Γ(w)
√

2πe−zzz−1/2

√
2πe−(z+w)(z + w)z+w−1/2

= Γ(w)ew
( z

z + w

)z+w−1/2
z−w

∼ Γ(w)z−w (| arg z| < π).

Hence we get the following Lemma.

Lemma 3.5. For fixedw, the asymptotic behavior of the Beta functionB(z,w) appearing in the bilateral
Laplace transforms for power calls and puts is as follows.

B(z,w) ∼ Γ(w)
zw

(| arg z| < π).

In particular,

|B(R + iu, d + 1)| = O
( 1
|u|d+1

)
and

|B(−(R + iu)− d, d + 1)| = O
( 1
|u|d+1

)
(|u| → ∞),

if R lies in the respective allowed range.

3.4.4 Self-Quanto Calls and Puts

A self-quanto callhas the payoff function

wK(ST ) = (ST −K)+ST .

This cash flow may be visualized as follows: At exercise, the buyer of the call receives the quantity
(ST −K)+ of shares of the underlying. This contrasts with the usual European call where(ST −K)+

is the amount ofcurrency unitsreceived.

Writing the value of a self-quanto call as a functionCS(ζ;K) of ζ = − ln{erT ST }, we have

CS(ζ;K) = EQ

[
(e−ζ+XT −K)+e−ζ+XT

]
= K2EQ

[
(e−ζ−ln(K)+XT − 1)+e−ζ−ln(K)+XT

]
= K2CS(ζ + ln K; 1).

Hence we can again limit our studies to the caseK = 1. The modified payoff function for a self-quanto
call with K = 1 is

v(x) = e−x(e−x − 1)+.

68



Its bilateral Laplace transform exists for Rez < −2 and is given by∫
IR

e−zxe−x(e−x − 1)+dx =
∫

IR
e−(z+1)x(e−x − 1)+dx

=
1

(z + 2)(z + 1)
.

Here the last equality is based on the following observation: The expression in the second line is nothing
else than the bilateral Laplace transform of the modified payoff function of a standard call, taken atz+1.

Analogous relations hold for aself-quanto putwith payoff function

w(ST ) = (K − ST )+ST .

The bilateral Laplace transform in this case exists for Rez > −1 and is equal to the bilateral Laplace
transform of the standard European put, taken at the pointz + 1.∫

IR
e−zx(1− e−x)+e−xdx =

1
(z + 1)(z + 2)

(Rez > −1).

Remark: Of the call and put options considered here, this is the only one where the bilateral Laplace
transform exists for Rez = 0.

3.4.5 Summary

Table 3.1 summarizes the results for standard and exotic call and put options. The second column shows
the payoff at expiration as a functionw(ST ;K) of stock priceST and strikeK. The third column gives
the bilateral Laplace transform of the modified payoff functionv(x) := w(e−x; 1). The fourth column
gives the range of existence of the Laplace transform. The fifth column gives the option price for arbitrary
strike priceK > 0, expressed by the option price function for strikeK = 1.

3.5 Approximation of the Fourier Integrals by Sums

In order to compute the value of the Fourier integral in (3.3), we approximate the integral by a sum.

Consider the problem of calculating ∫ ∞
−∞

eiuxg(u)du

for some continuous complex-valued functiong with the propertyg(−u) = g(u).7 The integral en-
countered in (3.3) is of this form, withg(u) = L[v](R + iu)χ(iR − u). In particular, the symmetry
condition ong is satisfied:L[v](z) is the bilateral Laplace transform of a real-valued function (namely,
the modified payoff functionv), and soL[v](z) = L[v](z). An analogous relation holds for the function
z 7→ χ(iz).

7z denotes the complex conjugate of a complex numberz.
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Laplace trans- Option price
Option Payout form of modif. Region of for arbitrary

w(ST ;K) payoff (K = 1) existence strikeK > 0

classical call (ST −K)+ 1
z(z+1) Rez < −1 K C(ζ + ln K; 1)

power call [(ST −K)+]d Γ(−z−d)Γ(d+1)
Γ(−z+1) Rez < −d Kd Cd(ζ + ln K; 1)

power call(d = 2) [(ST −K)+]2 −2
z(z+1)(z+2) Rez < −2 K2 C2(ζ + ln K; 1)

self-quanto call (ST −K)+ST
1

(z+1)(z+2) Rez < −2 K2 CS(ζ + ln K; 1)

classical put (K − ST )+ 1
z(z+1) Rez > 0 K P (ζ + ln K; 1)

power put [(K − ST )+]d Γ(z)Γ(d+1)
Γ(z+d+1) Rez > 0 Kd P d(ζ + ln K; 1)

power put(d = 2) [(K − ST )+]2 2
z(z+1)(z+2) Rez > 0 K2 P 2(ζ + ln K; 1)

self-quanto put (K − ST )+ST
1

(z+1)(z+2) Rez > −1 K2 PS(ζ + ln K; 1)

Table 3.1: Standard and exotic calls and puts.

We choose a number2N − 1 of intervals and a step size∆u. We truncate the integral at the points
−(N − 1/2) ·∆u and(N − 1/2) ·∆u. Subsequent application of the midpoint rule8 yields∫ ∞

−∞
eiuxg(u) du ≈

∫ (N−1/2)·∆u

−(N−1/2)·∆u
eiuxg(u) du

≈ ∆u ·
n=N−1∑

n=−(N−1)

ei·n·∆u·xg
(
n ·∆u

)
.

By making use of the propertyg(−u) = g(u) for the integrand, we can reduce the number of summands
to N . In fact, we have

ei·n·∆u·xg
(
n ∆u

)
= ei·(−n)·∆u·xg

(
(−n) ·∆u

)
,

and hence adding the terms for−n andn (n = 1, . . . ,N − 1) in the sum eliminates the imaginary parts.

ei (−n) ∆u xg
(
(−n) ∆u

)
+ ei n ∆u xg

(
n ∆u

)
= 2 Re

(
ei n ∆u xg

(
n ∆u

))
.

This leads to the following formula for the sum approximation:∫ ∞
−∞

eiuxg(u) du ≈ ∆u ·Re

(
N−1∑
n=0

ei·n·∆u·xgn

)
,(3.7)

with g0 := g(0)/2 andgn := g(n · ∆u) (n = 1, . . . ,N − 1). The sum appearing here is called
discrete Fourier transformof the complex numbers(gn)n=0,... ,N−1.

8One might wonder if some more elaborate scheme for numerical integration might improve the approximation. In the
opinion of the author, this is not the case if one restricts oneself to equidistant node points, which is essential for the application
of FFT techniques. Any improvements gained by employing methods like the Simpson method have to do with the better
behavior at the boundaries. But if the truncation is done correctly, boundary effects can be neglected here.
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3.5.1 Fast Fourier Transform

Fast Fourier Transform (FFT)9 is an algorithm for the calculation of the discrete Fourier transform for a
range of parameter valuesx simultaneously. It calculates the sum appearing in (3.7) for parameter values
x = xk = k ∆x (k = 0, ..,N − 1) with ∆x = 2π

N∆u . For the FFT to be most efficient,N has to be an
integer power of2.

Given a sequence(gn)n=0,..,N−1 of complex numbers, the FFT computes

N−1∑
n=0

ein∆u·xkgn =
N−1∑
n=0

e2πink
N gn =: Gk (k = −N/2, . . . ,N/2).

Because the values fork = −N/2 andk = N/2 are equal, it suffices that the algorithm computes one of
them. Hence the FFT takesN complex numbers as input and gives backN complex numbers as output.

The approximation of the Fourier integral is best whenk/N is close to0. On the other hand, when
k = −N/2 or k = +N/2, there are only two sampling points for each period ofu 7→ e−2πiux. Therefore
the approximation is not reliable there. IncreasingN by a factor2 while keepingN∆u constant leads
to a doubling of the sampling frequency, thereby improving the quality of the approximation. Keeping
N∆u constant implies that the discretization step∆x stays the same.

3.6 Outline of the Algorithm

We summarize the steps we have to take in order to calculate the option price by the method described
above.

Let χ be the (extended) characteristic function of the log returnXT = ln(e−rT ST /S0). Consider a
European option that pays its holder the amountw(ST ) at timeT . Let L[v](z) be the bilateral Laplace
transform of the modified payoff functionv(x) := w(e−x).

• ChooseR ∈ IR with χ(iR) <∞ andL[v](R) <∞. Choose the discretization step width∆u and
the number of intervalsN . N has to be a power of2.

• Calculate the sequence(gn)n=0,..,N−1 defined by

gn :=

{ 1
2
χ(iR) L[v](R) (n = 0)

χ(iR− n ∆u) L[v](R + in ∆u) (n = 1, . . . ,N − 1).

• Apply the FFT to(gn)n=0,... ,N−1 to get the transformed sequence(Gk)k=−N/2,..,N/2.

• Set∆ζ := 2π/(N ∆u). Then the approximate option price for a negative log forward price of
ζk = k ∆ζ (k = −N/2, ..,N/2) — that means, a forward price oferT S0 = e−k ∆ζ — is given
by

Ck := ∆u
eζkR−rT

π
Re(Gk).(3.8)

9See e. g. Brigham (1974).
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• For standard and exotic calls and puts, you may use the Laplace transformL[v](z) of the payoff
function for K = 1 in the steps above. This yields approximate valuesCk of the functionζ 7→
Cd(ζ; 1) at the pointsζ = k ∆ζ (k = −N/2, . . . ,N/2). Since the price for the option with
arbitraryK is given byKd Cd(ζ + ln K; 1), Kd Ck approximates the price of this option for a
negative log forward price ofζ = k ∆ζ − ln K.

3.7 Applicability to Different Stock Price Models

In order to calculate option prices, one has to specify two things, namely the option to be priced and the
stock price model under which one wants to price it.

The pricing method presented above applies to European options that do only depend on the spot price
of the stock at expiration. Hence they are completely specified by giving the expiration dateT and the
payoff functionw(ST ). For the new pricing method to be applicable, the bilateral Laplace transform
of the payoff function has to exist on a non-degenerate interval. In Section 3.4, we have presented a
number of standard and exotic options satisfying these conditions. The corresponding bilateral Laplace
transforms can be found in Table 3.1.

The second step is the specification of the stock price model. This should be done by giving the (ex-
tended) characteristic functionχ(z) := EQ [exp(izXT )] of the random variableXT = ln(ST /(erT S0))
which we have identified as the log return on the forward contract to buy the stock at timeT . Below, we
give examples of stock price models, together with the corresponding extended characteristic function
χ(z) and the strip of regularity of this characteristic function.

The algorithm developed above is applicable to any valid combination of option and stock price models.
Here “valid” means that there exists a constantR ∈ IR as in Theorem 3.2, such thatR lies in the strip
of regularity of the bilateral Laplace transformL[v](z) and thatiR lies in the strip of regularity of the
extended characteristic functionχ(z).

The method was successfully tested with the stock price models given in Table 3.2. All of these models
are of the exponential Lévy type, that is, they assume that the log return process(Xt)t∈IR+ is a process
with stationary and independent increments. Hence the distribution of the process is uniquely character-
ized by each of its one-dimensional marginal distributions. We chooset = 1, that is, we characterize the
Lévy process by the distribution ofX1. The first column in Table 3.2 gives the type of this distribution,
and the second column gives its characteristic function.

• A normally distributed log returnX1 corresponds to the famous geometric Brownian motion model
introduced by Samuelson (1965).

• Generalized hyperbolic (GH) distributions were introduced by Barndorff-Nielsen (1978). Eberlein
and Prause (1998) used these class of distributions to model log returns on stocks. This generalized
earlier work by Eberlein and Keller (1995), where hyperbolically distributed log returns were
considered.

• The class of normal inverse Gaussian (NIG) distributions was proposed in Barndorff-Nielsen
(1995) and Barndorff-Nielsen (1998) as a model for log returns. NIG distributions constitute a
subclass of the class of GH distributions. See also Barndorff-Nielsen (1997).
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Type extended characteristic functionχ(z) χ(iR) <∞ if...

normal exp
(
iµzt− σ2

2
z2t

)
−∞ < R <∞

GH eiµzt (δ
√

α2 − β2)λt

Kλ(δ
√

α2 − β2)t
·
Kλ

(
δ
√

α2 − (β + iz)2
)t(

δ
√

α2 − (β + iz)2
)λt

β − α < R < β + α

NIG
exp(iztµ + tδ

√
α2 − β2)

exp(tδ
√

α2 − (β + iz)2)
β − α < R < β + α

VG
exp(iztµ)

(1− iθνz + (σ2ν/2)z2)t/ν

R >
θ

σ2

(
1−

√
1 +

2σ2

νθ2

)
R <

θ

σ2

(
1 +

√
1 +

2σ2

νθ2

)

Table 3.2: Different models for the stock price: Characteristic functions and admissible values forR.

• Variance gamma (VG) distributions were first proposed by Madan and Seneta (1987) for the mod-
eling of log returns on stocks. Madan, Carr, and Chang (1998) generalize this approach to non-
symmetric VG distributions.

All of the non-normal models cited above have been shown to capture the distribution of observed market
price movements significantly better than the classical geometric Brownian motion model. Moreover,
Madan, Carr, and Chang (1998) and Eberlein and Prause (1998) observed a substantial reduction of the
smile effect in call option pricing with the non-symmetrical VG and the GH model, respectively.

As a benchmark example, we have used the method described above to calculate the prices of European
call options with one day to expiration. The log return distributions employed were those displayed
in Table 3.2. The parameters shown in Table 3.3 were generated as follows. First, the parameters of
the respective distribution were estimated by maximum likelihood from a dataset of log returns on the
German stock index DAX, from June 1, 1997 to June 1, 1999. Then, an Esscher transform was performed
on each of these distributions so as to makeeLt a martingale. For simplicity, we have always assumed
that the interest rate vanishes,r = 0. Hence the results should be not viewed as reasonable option prices,
but rather as an illustration of the algorithm. Figure 3.1 shows the prices of a European call option,
displayed as a function of the strike price at a fixed stock price ofS0 = 1. The option prices were
calculated by means of the algorithm described above. Note that this algorithm yields the option price
only at a discrete set of values ofK. But we have chosen this set so dense that—for the limited resolution
of the plot—the discrete point set looks like a solid line.

Because of the efficient calculation of option prices by the FFT method, it becomes easier to study the
behavior of the option pricing function. Figure 3.2 shows the difference of call option prices from the
standard Black-Scholes model. Here the W-shape that usually appears for these differences is distorted.
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Figure 3.1: Call option prices for the generalized hyperbolic stock price model. Parameters are given in
row “GH” of Table 3.3. Fixed current stock priceS0 = 1. One day to expiration.
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Figure 3.2: Difference of call option prices between alternative stock price models and Black Scholes
prices. The alternative models are GH (exponential generalized hyperbolic Lévy motion), NIG (normal
inverse Gaussian), and VG (variance gamma) with parameters as given in Table 3.3. Fixed current stock
priceS0 = 1. One day to expiration.
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Type Parameters

normal σ = 0.01773, µ = −1.572 · 10−4

GH α = 127.827, β = −31.689, δ = 7.07 · 10−31, µ = 0.0089, λ = 2.191
NIG α = 85.312, β = −27.566, δ = 0.0234, µ = 0.00784
VG σ = 0.0168, ν = 0.4597, θ = −0.00962, µ = 0.009461

Table 3.3: Estimated Parameters for stock price models in Table 3.2
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Figure 3.3: Empirical density of daily log returns on the German stock index DAX, 1 June 1997 to 1
June 1999. Gauss kernel estimate by S-Plus functiondensity .

This distortion is a result of the fact that the empirically observed return distribution for the DAX in the
interval 1 June 1997 till 1 June 1999 was relatively asymmetric. See Figure 3.3.

Figure 3.4 shows the difference of NIG and Black-Scholes option prices, seen as a function of the strike
priceK and the time to expiration. Note how the difference grows as time to maturity increases. Also
note that the shape of the difference curve changes as time to expiration increases. For largerτ , it
becomes increasingly bell-shaped. These effects are due to the different standard deviations of the NIG
and the normal distribution under the martingale measure: The standard deviation of the NIG distribution
is 0.0180, while that of the normal distribution is0.0177 (see Table 3.3.)
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Figure 3.4: Difference between call option prices in the NIG model minus call option prices in the
Black-Scholes model. Fixed initial stock priceS0 = 1; time to maturities between1 and50 (trading)
days. Strike prices between0.8 and1.2.

On the Choice of the Rate of Decay,R

It turns out that the precision of the calculation crucially depends on the choice of the rate of decay,R.
We have found that for usual parameter valuesR = −25 works best for call options. This coincides with
the findings of Carr and Madan (1999).

3.8 Conclusion

We have developed and presented an algorithm that prices general non-path-dependent European options
in a wide variety of stock price models. This method is based on first calculating the bilateral Laplace
transform of the option price and then inverting this transform. Calculating the bilateral Laplace trans-
form is easy in all models where one knows explicitly the (extended) characteristic function of the log
return to expiration. We have given some examples where this holds. The inversion of the bilateral
Laplace transform can be done with the aid of the Fast Fourier transform (FFT) algorithm. We have
given a detailed description of the calculation of option prices by the new method.
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Chapter 4

The Lévy Term Structure Model

This chapter is devoted to the further study of the term structure model proposed in Eberlein and Raible
(1999). This model can be driven by a wide range of Lévy processes. Hence we call it theLévy term
structure model.

The chapter is organized as follows. Section 4.1 introduces some basic concepts of term structure mod-
eling. In Section 4.2, we give a short overview of the Lévy term structure model. Section 4.3 studies
the decay behavior of the generalized hyperbolic characteristic function. This has implications for the
Markov property of the short-term interest rate in a Lévy term structure model driven by a generalized
hyperbolic Lévy motion. Section 4.4 shows that the Markov property of the short rate implies the exis-
tence of a so-calledaffine term structurefor the Lévy term structure model. Finally, in Section 4.5 we
derive an integro-differential equation for the price of simple interest-rate contingent claims.

4.1 Introduction

In this section, we give a very brief introduction to the terminology and methodology of term structure
modeling. A more detailed account of interest rate theory can be found in Björk (1998), Chapters. 15–19,
or Musiela and Rutkowski (1997), Part II.

When money is lent or borrowed, the interest rate received on this contract usually depends on the
length of the period for which money is transferred. Theterm structure of interest ratescaptures this
dependence. It gives the interest rate as a function of the length of the borrowing/lending contract.

Zero coupon bondsare the simplest contracts of this type. The issuer of a zero coupon bond will pay
the owner of the bond a fixed amount of money, theface value, at a pre-specified date,T . We call this
datematurity dateof the bond. There are no intermediate payments here. This is in contrast to so-called
coupon bonds, whose issuer pays the holder a certain percentage,p, of the face value,V , each year up to
the final repayment of the face value itself. A coupon bond can be thought of as a bundle of zero coupon
bonds:n bonds with face valuepV paying back1, . . . , n years from now, and one bond paying back
V n years from now.1 This decomposition shows that it is sufficient to build a model for zero coupon
bonds, since the price of a coupon bond is just the sum of the prices of its constituents.

1In fact, this is not merely a theoretical construction: On many bond markets there is a procedure calledstripping, where a
coupon bond is decomposed into these zero coupon bonds. Each of these bonds can then be traded separately.
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For many applications, the focus is more on interest rates than on bond prices. Given a zero coupon
bond maturing after a timeτ , with a current price ofP (t, t + τ). one introduces itsyield as the interest
rate at which an initial investment ofP (t, t + τ) would grow to a capital ofV , including continuously
compounded interest, in a time period of lengthτ .

Y (t, t + τ) :=
1
τ

ln
V

P (t, t + τ)
.

The derivative ofln
(
V/P (t, t + τ)

)
with respect toτ is called theforward rate.

f(t, t + τ) : S = − ∂

∂τ
ln P (t, t + τ).

This is the interest rate one gets on a contract (contracted now, at timet) to lend money at timet + τ for
an infinitesimal period of lengthdτ .

In particular, ifτ = 0, then lending takes place immediately at the time of the contract. The correspond-
ing interest rate is called theshort rate, r(t).

r(t) := f(t, t).

For each fixed time horizonT ∗ ∈ (t,∞], bond pricesP (t, T ) (t ≤ T ≤ T ∗) and forward ratesf(t, T )
(t ≤ T ≤ T ∗) carry the same information. Hence it does not matter whether one models forward rates
or bond prices in the first place: Every forward rate model implies a bond price model and vice versa.

In order to simplify notation, we will always assume that zero bonds have a face value of1, V = 1.

Historically, the first term structure models were based on models of the short rater(t). In these models,
the bond prices are calculated as conditional expectations under some martingale measureQ.

P (t, T ) = EQ

[
exp

(
−

∫ T

t
r(s) ds

)∣∣∣∣Ft

]
.

Note that if one starts with a short rate model alone, theneverymeasureQ satisfying

EQ

[
exp

(
−

∫ T

t
r(s) ds

)]
<∞ for all t < T

is a martingale measure for the bond market. There is no martingale condition here simply because one
starts with a market without assets other than the numéraire.

One of the simplest short rate models is the one introduced by Ho and Lee (1986), which was formulated
in a discrete-time context. According to Hull and White (1990), its continuous-time analogue is due to
Dybvig (1988)2 and Jamshidian (1988):

dr(t) = θ(t) dt + σ̂ dWt,

with a deterministic functionθ(t) and a constant̂σ. Another simple short rate model was introduced by
Vasicek (1977). He assumed that the short rate follows an Ornstein–Uhlenbeck process. This was later
generalized by Hull and White (1990), whose model allows for a time-dependence of the level of mean
reversion,ρ.3

dr(t) =
(
ρ(t)− r(t)

)
a dt− σ̂ dWt,(4.1)

2Meanwhile, this working paper has been published in Dempster and Pliska (1997).
3Actually, Hull and White (1990) allow all three parametersρ, a, andbσ to be time-dependent.
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with a deterministic functionρ(t) and constantsa andσ̂. This is called theextended Vasicek model. There
are other proposals for the dynamics ofr(t), which introduce diffusion coefficients depending onr(t).
The most important are the Cox, Ingersoll, and Ross (1985) model (with a diffusion termσ

√
r(t)dWt)

and the Dothan (1978) model (with a diffusion termσr(t) dWt.) For a deeper discussion of these and
other short rate models, we refer the reader to Musiela and Rutkowski (1997), Sec. 12.3.

A more recent approach to term structure modeling is based on modeling forward rates. Heath, Jarrow,
and Morton (1992) present a very general model of this kind. Their forward rates are diffusion processes
driven by a vector Brownian motion

(
W (1), . . . ,W (n)

)
.

f(t, T ) = f(0, T ) +
∫ t

0
α(v, T, ω) dv +

n∑
i=1

∫ t

0
σ̃(i)(v, T, ω) dW (i)

v .(4.2)

(Cf. Heath, Jarrow, and Morton (1992), eq. (4).) If the bond prices corresponding to these forward
rate processes are free of arbitrage, then the drift coefficientα(v, T, ω) and the diffusion coefficients
σ̃(i)(v, T, ω), i = 1, . . . , n are connected by the so-calledHeath-Jarrow-Morton (HJM) drift condi-
tion. See Björk (1998), Theorem 18.1. In particular, if (4.2) describes the dynamics under a martingale
measure, thenα(v, T, ω) are related by∫ T

t
α(t, s) ds =

1
2

∥∥∥∥∫ T

t
σ̃(t, s) ds

∥∥∥∥2

.

The Gaussian HJM Model

The special case where the coefficientsα(v, T, ω) and σ̃(v, T, ω) in (4.2) are deterministic yields the
so-called Gaussian Heath-Jarrow-Morton (HJM) model. In the risk-neutral setting, zero-bond prices are
then given by

P (t, T ) = P (0, T ) exp
( ∫ t

0
r(s)ds

)
exp

( n∑
i=1

∫ t

0
σ(i)(v, T ) dW (i)

v −
1
2

n∑
i=1

∫ t

0
σ(i)(v, T ) dW (i)

v

)
,

(4.3)

where the bond price volatility structureσ(i)(t, T ) is defined by

σ(i)(t, T ) := −
∫ T

t
σ̃(i)(t, s)ds.

(Cf. Heath, Jarrow, and Morton (1992), eq. 8.) Note that the bond price volatilityσ(i) and the forward
rate volatility σ̃(i) have opposite signs. This reflects the fact that bond prices fall as interest rates rise and
vice versa.

4.2 Overview of the Lévy Term Structure Model

Eberlein and Raible (1999) generalize the Gaussian Heath-Jarrow-Morton term structure model by re-
placing the Brownian motionW by a general Lévy processL in a suitable way. In this section, we
describe their approach and main results.
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Fix a finite time horizonT ∗. Denote byL = (Ls)s≥0 a Lévy process. The law ofL1,L(L1), is infinitely
divisible and hence by the Lévy-Khintchine formula is characterized by the Lévy-Khintchine triplet(
b, c, F (dx)

)
. its Lévy measureF . In order to guarantee the existence of the expectations that appear in

the term structure model, Eberlein and Raible (1999) impose the following integrability assumption on
the Lévy measureF :
There are constantsM, ε > 0 such that∫

{|x|>1}
exp(vx)F (dx) <∞ ∀ |v| ≤ (1 + ε)M.(4.4)

As the underlying filtration, the completed canonical filtration of the Lévy processL is chosen.

A zero bond maturing at timeT ∈ [0, T ?] is assumed to have the following price process.

P (t, T ) = P (0, T ) · β(t) ·
exp

(∫ t
0 σ(s, T )dLs

)
E

[
exp

(∫ t
0 σ(s, T )dLs

)] ,(4.5)

whereβ(t) denotes a process—called thenuméraire— that is later determined by the boundary condition
P (t, t) = 1, t ∈ [0, T ∗].

Besides (4.4), the following standard assumptions are made throughout the chapter. Recall thatT ? is the
fixed time horizon.

Assumption 4.1. The initial bond prices are given by a deterministic, positive, and twice continuously
differentiable functionT 7→ P (0, T ) on the interval[0, T ?].

Assumption 4.2. P (T, T ) = 1 for all T ∈ [0, T ?].

From this boundary condition, the explicit form of the processβ(t) is derived.

Assumption 4.3. σ(s, T ) is defined on the triangle∆ := {(s, T ) : 0 ≤ s ≤ T ≤ T ?}. This function
is twice continuously differentiable in both variables, andσ(s, T ) ≤ M for all (s, T ) ∈ ∆, whereM is
the constant from (4.4). Furthermore,σ(s, T ) > 0 for all (s, T ) ∈ ∆, s 6= T , andσ(T, T ) = 0 for all
T ∈ [0, T ?].

For fixedt ∈ [0, T ?], introduce theforward ratewith maturityT , contracted at timet, f(t, T ), and the
short rater(t) asFt-measurable random variables

f(t, T ) := − ∂

∂T
ln P (t, T ), and r(t) := f(t, t).(4.6)

It is then shown that the short rate process satisfies

r(t) = f(0, t) +
∫ t

0

∂

∂t
κ(σ(s, t))ds −

∫ t

0
∂2σ(s, t)dLs,(4.7)

whereκ(u) := ln E[exp(uL1)] denotes the cumulant generating function of the distribution ofL1. The
basic model (4.5) is proved to be equivalent to the following.

P (t, T ) = P (0, T ) · exp
(∫ t

0

(
r(s)− κ(σ(s, T ))

)
ds +

∫ t

0
σ(s, T )dLs

)
,(4.8)
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which generalizes the Gaussian HJM model (4.3). Section 4 of Eberlein and Raible (1999) examines
the special case where the short-rate processr—which is defined by (4.6)—is a Markov process. It
turns out that the subclass of the family of Lévy term structure models that has a Markovian short-rate
process is characterized by a special form of the volatility structure: The partial derivative∂2σ(t, T ) can
be factorized as a product of two functions depending only ont respectivelyT . For the case of stationary
volatility structures—that is, functionsσ(t, T ) that depend only on the time to maturity,(T − t)—the
Markov property of the short rate implies thatσ can only have a very special structure, namely,

σ(t, T ) =
σ̂

a
·
(
1− e−a·(T−t)

)
(Vasicek volatility structure)

or σ(t, T ) = σ̂ · (T − t) (Ho-Lee volatility structure),

with real constantŝσ > 0 anda 6= 0. (See Eberlein and Raible (1999), Theorem 4.4.) The proof of
theses results concerning the Markov property requires an additional assumption on the rate of decay of
the characteristic function for|u| → ∞. (See Section 4.4 below.)

Section 5 of Eberlein and Raible (1999) examines the special case of the Lévy term structure model
where the driving Lévy processL is a hyperbolic Lévy motion. For this case, the above-mentioned decay
condition concerning the characteristic function is verified. Option prices are calculated numerically by
first calculating a joint density of two stochastic integrals via a two-dimensional fast Fourier transform.

4.3 The Markov Property of the Short Rate: Generalized Hyperbolic
Driving Lévy Processes

In this section, we show that the characteristic function of a generalized hyperbolic distribution
GH(λ, α, β, µ, δ) is dominated by an exponential expression of some special form. This implies that
the results of Eberlein and Raible (1999), Section 4, not only hold for a model driven by a hyperbolic
Lévy motion, but as well for a model driven by ageneralizedhyperbolic Lévy motion. Thus the short-
term interest rater is a Markov process in this case iff the partial derivative∂2σ(t, T ) of the volatility
structure can be factorized into functions depending only ont respectivelyT .

Proposition 4.4. Let χ(u) denote the characteristic function of a generalized hyperbolic distribution
GH(λ, α, β, µ, δ). Then there exist constantsC, γ, η > 0 such that

|χ(u)| ≤ C exp
(
− γ|u|η

)
∀u ∈ IR.

More precisely, we can chooseγ := δ/2 andη := 1.

Application of Eberlein and Raible (1999), Theorem 4.3, then directly yields the following.

Corollary 4.5. LetL be a generalized hyperbolic Lévy process withL(L1) = GH(λ, α, β, µ, δ). Assume
that bond prices evolve according to the Lévy term structure model (4.8), where we additionally assume
∂2σ(t, T ) > 0.

Then the short rate process derived from the Bond price dynamics via relation (4.6) has the Markov
property iff the partial derivative∂2σ(t, T ) has a representation

∂2σ(t, T ) = τ(t) · ζ(T ) ∀ (t, T ) ∈ ∆,

whereτ : [0, T ?]→ IR andζ : [0, T ?]→ (0,∞) are continuously differentiable functions.
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Proof of Proposition 4.4.We cite the following definition from Abramowitz and Stegun (1968), 3.6.15:

Definition 4.6. A series
∑∞

k=0 akx
−k is said to be anasymptotic expansionof a functionf(x) if

f(x)−
n−1∑
k=0

akx
−k = O(x−n) asx→∞

for everyn = 1, 2, . . . . We write

f(x) ∼
∞∑

k=0

akx
−k.

The series itself may be either convergent or divergent.

The characteristic function of a generalized hyperbolic distribution is given by

χGH(λ,α,β,δ,µ)(u) = eiµu (δ
√

α2 − β2)λ

Kλ(δ
√

α2 − β2)
·
Kλ

(
δ
√

α2 − (β + iu)2
)(

δ
√

α2 − (β + iu)2
)λ

.

(See equation (A.3).) The modulus of this function is given by

∣∣χGH(λ,α,β,δ,µ)(u)
∣∣ = C1 ·

∣∣Kλ

(
δ
√

α2 − (β + iu)2
)∣∣∣∣δ√α2 − (β + iu)2

∣∣λ ,

with a constantC1 > 0 that depends only on the parametersλ, α, β, and δ (and not on the variable
u.) Abramowitz and Stegun (1968), 9.7.2, provides the following asymptotic expansion for the modified
Bessel function of the third kind:

Kν(z) ∼
√

π

2z
e−z

∞∑
n=0

(
n∏

k=1

(4ν2 − (2k − 1)2

8k

))
1
zn

(4.9)

=
√

π

2z
e−z

{
1 +

4ν2 − 1
8z

+
(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ · · ·

} (
| arg z| < 3

2
π
)
.

We deduce that ∣∣Kλ(z)
∣∣

|z|λ ∼
∣∣√π/(2z)e−z

∣∣
|z|λ =

√
π

2
e−Rez

|z|λ+1/2

(
| arg z| < 3

2
π
)
.(4.10)

For a generalized hyperbolic distribution, the argumentz has the valuez = δ
√

α2 − (β + iu)2. For this
function, we have the following estimates.

Lemma 4.7. a) For x ∈ IR, we have

Re(
√

1 + ix) ≥ 1,

where the square root of a complex numberz 6∈ (−∞, 0] denotes the complex numberz′ with
Re(z′) > 0 such thatz′2 = z.
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Figure 4.1: Illustration for Lemma 4.7a.

b) Letδ > 0, α > 0, andβ ∈ (−α,α). Then

Re
(
δ
√

α2 − (β + iu)2
)
≥ δ|u|,(4.11)

and ∣∣∣δ√α2 − (β + iu)2
∣∣∣ ≥ δ|u|.(4.12)

Furthermore, there is a constantC2 (depending on the parametersδ, α, andβ) such that∣∣∣δ√α2 − (β + iu)2
∣∣∣ ≤ C2

√
α2 − β2 + C2|u|. (u ∈ IR).

Proof. Part a. Elementary trigonometry shows that the real part of
√

1 + ix is given by (1 +
x2)1/4 cos(a/2), wherea is the angle spanned by1 and 1 + ix in the complex plane, that is,a =
arctan(x).

From the angle addition formula

cos(x + y) = cos(x) cos(y)− sin(x) sin(y),

we deduce that
cos(2y) ≤ cos(y)2 (y ∈ IR).

Sincecos(2y) > 0 for |y| < π/4, we thus have

1 ≤ cos(y)4

cos(2y)2

= cos(y)4 sin(2y)2 + cos(2y)2

cos(2y)2

= cos(y)4(tan(2y)2 + 1) (|y| < π/4).
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Insertingy = arctan(x)/2 yields

1 ≤ cos(arctan(x)/2)4(x2 + 1)

and hence
1 ≤ cos(arctan(x)/2)(x2 + 1)1/4.

But as was shown above, the right-hand side is nothing else than the real part of
√

1 + ix. For part b),
we note that

Re
(
δ
√

α2 − (β + iu)2
)

= δRe
√

α2 − β2 − 2βiu + u2

= δ
√

α2 − β2 + u2Re

√
1− 2βu

α2 − β2 + u2
i

≥ δ
√

α2 − β2 + u2

≥ δ|u|,

where we have used the result of part a). Estimation (4.12) follows trivially because|z| ≥ |Rez| for
z ∈ C. Furthermore, we have

∣∣∣δ√α2 − (β + iu)2
∣∣∣ = δ

√
α2 − β2 + u2

∣∣∣∣∣
√

1− 2βu

α2 − β2 + u2
i

∣∣∣∣∣
≤ δ

√
α2 − β2 + u2C2

≤ C2

√
α2 − β2 + C2|u|

for some suitable constantC2 > 0, becauseu 7→ 2βu
α2−β2+u2 is bounded.

With Lemma 4.7 at hand, we can proceed with the proof of Proposition 4.4. As was shown above, the
key to the estimation of the characteristic function is the estimation of the expression on the right-hand
side of (4.10), viz √

π

2
e−Rez

|z|λ+1/2
.

With δ
√

α2 − (β + iu)2 substituted forz, this expression is asymptotically equivalent to (a multiple of)
the modulus of the characteristic function.

∣∣χGH(λ,α,β,δ,µ)(u)
∣∣ ∼ C1

e−Re(δ
√

α2−(β+iu)2)

|δ
√

α2 − (β + iu)2|λ+1/2
(|u| → ∞)

≤ C1
e−δ|u|

|δ
√

α2 − (β + iu)2|λ+1/2

= C1
e−

δ
2
|u|

|δ
√

α2 − (β + iu)2|λ+1/2
e−

δ
2
|u|.

By Lemma 4.7b,
δ|u| ≤

∣∣δ√α2 − (β + iu)2
∣∣ ≤ C2

√
α2 − β2 + C2|u|
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for some constantC2. Hence for|u| → ∞,

e−
δ
2
|u|

|δ
√

α2 − (β + iu)2|λ+1/2
→ 0,

no matter what the value ofλ is. The statement of the proposition follows.

4.4 Affine Term Structures in the Lévy Term Structure Model

In some term structure models, the prices of zero coupon bonds can be written as exponential-affine
functions of the current level of the short rate.

P (t, T ) = exp
(
A(t, T )−B(t, T )r(t)

)
,

with the deterministic functionsA(t, T ) andB(t, T ). If this is the case, one says that the model possesses
anaffine term structure. (See e. g. Björk (1998), Definition 17.1.) Existence of an affine term structure
implies that for fixed timest < T the yields on zero-coupon bonds at timet are affine functions of the
current short rate.

Y (t, T ) = − ln P (t, T )
T − t

= −A(t, T )
T − t

+
B(t, T )
T − t

r(t).

The same holds for the forward rates.

f(t, T ) = −∂2 ln P (t, T ) = −∂2A(t, T ) + ∂2B(t, T ) r(t).

For Lévy term structure models satisfying a certain integrability condition, Eberlein and Raible (1999)
prove a connection between the Markov property of the short rate and a factorization property of the
volatility structure. (See Section 4.3.) The following theorem shows that the same factorization property
is also sufficient for the existence of an affine term structure.

Theorem 4.8. Assume that in a Lévy term-structure model there is a factorization

∂2σ(t, T ) = τ(t)ζ(T )

of the derivative of the volatility structure, with a strictly positive functionζ. Then for any datest < T
the bond price is

P (t, T ) = exp(A(t, T ) −B(t, T )r(t)),

with the deterministic functionsA(t, T ) andB(t, T ) given by

A(t, T ) = ln
(P (0, T )

P (0, t)

)
+ B(t, T )

(
f(0, t) +

∫ t

0

∂

∂t
κ(σ(s, t))ds

)
−

∫ t

0

[
κ
(
σ(s, T )

)
− κ

(
σ(s, t)

)]
ds

B(t, T ) =
1

ζ(t)

∫ T

t
ζ(u)du
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Proof. We already know the following representation for the short rate (see (4.7)):

r(t) = f(0, t) +
∫ t

0

∂

∂t
κ
(
σ(s, t)

)
ds−

∫ t

0
∂2σ(s, t)dLs.(4.13)

On the other hand, by (4.8),

P (t, T ) = P (0, T ) exp
(∫ t

0

(
r(s)− κ

(
σ(s, T )

))
ds +

∫ t

0
σ(s, T )dLs

)
,

where we can substitute forexp
( ∫ t

0 r(s)ds
)

by making use of the equalityP (t, t) = 1:

exp
(∫ t

0
r(s)ds

)
=

1
P (0, t)

exp
(
−

∫ t

0
σ(s, t)dLs +

∫ t

0
κ(σ(s, t))ds

)
.

Hence we have

P (t, T ) =
P (0, T )
P (0, t)

·
exp

(∫ t
0

[
σ(s, T )− σ(s, t)

]
dLs

)
exp

(∫ t
0

[
κ
(
σ(s, T )

)
− κ

(
σ(s, t)

)]
ds

)(4.14)

Observe that

σ(s, T )− σ(s, t) =
∫ T

t
∂2σ(s, u)du

= ∂2σ(s, t) · 1
ζ(t)

∫ T

t
ζ(u)du.(4.15)

Set

B(t, T ) :=
1

ζ(t)

∫ T

t
ζ(u)du.

Now consider the product−B(t, T ) · r(t). We have

−B(t, T ) · r(t) (4.13)
= −B(t, T )

(
f(0, t) +

∫ t

0

∂

∂t
κ
(
σ(s, t)

)
ds

)
+ B(t, T )

∫ t

0
∂2σ(s, t)dLs

(4.15)
= −B(t, T )

(
f(0, t) +

∫ t

0

∂

∂t
κ
(
σ(s, t)

)
ds

)
+

∫ t

0

[
σ(s, T )− σ(s, t)

]
dLs.

The only stochastic term appearing on the right-hand side is the integral
∫ t

0

[
σ(s, T )− σ(s, t)

]
dLs. But

this is also the only stochastic term in (4.14). Therefore the bond price can be written as a deterministic
function, applied to−B(t, T ) · r(t) (and hence as a deterministic function, applied tor(t).)

P (t, T ) =
P (0, T )
P (0, t)

exp
[
−B(t, T )r(t) + B(t, T )

(
f(0, t) +

∫ t

0

∂

∂t
κ(σ(s, t))ds

)
−

∫ t

0

(
κ(σ(s, T )) − κ(σ(s, t))

)
ds

]
.

Defining

A(t, T ) := ln
(P (0, T )

P (0, t)

)
+ B(t, T )

(
f(0, t) +

∫ t

0

∂

∂t
κ(σ(s, t))ds

)
−

∫ t

0

(
κ(σ(s, T )) − κ(σ(s, t))

)
ds

yields the desired result.
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Remark: Observe that the functionsA andB defined above satisfyA(T, T ) = 0, B(T, T ) = 0.

Implications for Term Structure Movements

Above we have noted that in a term structure model with an affine term structure, the forward rates are
given by

f(t, T ) = −∂2A(t, T ) + ∂2B(t, T ) r(t).

This means that for fixedt every possible forward rate curve is a member of the family{
T 7→ −∂2A(t, T ) + ∂2B(t, T )r

∣∣r ∈ R
}
.

The possible rangeR of the parameterr depends on the kind of interest rate model considered. In a
Gaussian term structure model or the general Lévy model, we haveR = IR, while in the Cox, Ingersoll,
and Ross (1985) model, it would beR = IR+.

4.5 Differential Equations for the Option Price

In what follows, we study one-factor interest rate models where the short-term interest rater constitutes
the only stochastic factor determining bond prices. We will see that the question of option pricing leads
to an integro-differential equation. The reasoning here is analogous to the case of stock price models
treated in Chapter 1.

Let r be given as the solution of a stochastic differential equation

r(t) = r(0) +
d∑

α=1

∫
fα(t−, r(t−))dLα

t ,(4.16)

driven by a vector(L1, . . . , Ld) of independent Lévy processes. Assume that eachfα is a Lipschitz
functionin the sense of the definition given in Protter (1992), Chapter V.3, p. 194:

Definition 4.9. A functionf : IR+ × IRn → IR is Lipschitz if there exists a (finite) constantk such that
(i) |f(t, x)− f(t, y)| ≤ k|x− y|, eacht ∈ IR+;
(ii) t 7→ f(t, x) is right-continuous with left limits, eachx ∈ IRn.

f is autonomousif f(t, x) = f(x), all t ∈ IR+.

As a consequence of Protter (1992), Theorem V.7, equation (4.16) has a unique solution.4 Protter (1992),
Theorem V.32, shows thatr is a Markov process. For this, the independence of the increments ofLα is
essential.

Remark: The above considerations are still valid for stochastic differential equations with an additional
drift term “. . . dt”. This is because one can take account of the drift term by considering the deterministic
Lévy processLd+1

t = t. This yields an equation of the form (4.16).

4The cited theorem is valid for so-called functional Lipschitz coefficient functions. According to a remark in Protter (1992),
p. 195, the functional Lipschitz functionsfα induce functional Lipschitz coefficients.

87



Assumption 4.10. The short rate follows the diffusion (with jumps) given by

drt = k(rt−, t)dt + f(rt−, t)dLt,(4.17)

with Lipschitz coefficient functionsk(r, t) andf(r, t).

For example, the Lévy version of the extended Vasicek model (4.1) is of this form. In this case, the
functionsk andf are given by {

k(r, t) = (ρ(t)− r)a
f(r, t) = −σ̂,

(4.18)

with a deterministic functionρ(t) and positive constantŝσ, a.

Proposition 4.11. Assume that we are given a European option with a price processV (t) satisfying the
following conditions.

(i) The payoff at the maturity dateT is V (T ) = v
(
r(T )

)
, with a deterministic functionv(x).

(ii) exp
(
−

∫ t
0 r(s) ds

)
V (t) is aQ-martingale. That is,Q is a martingale measure for this option.

(iii) exp
(
−

∫ T
t r(s) ds

)
V (T ) is Q-integrable for allt ∈ [0, T ].

Then there is a functiong(x, t) such that the option price at timet ∈ [0, T ] is given byV (t) = g
(
r(t), t

)
.

Remark. If the term structure model possesses an affine term structure, condition(i) is satisfied for all
simple European options on a zero bond.5 This is because the zero bond priceP (T, S) itself can be
written as a deterministic (exponential-affine) function of the short rater(T ).

Proof of Proposition 4.11.By assumptions(i) and (ii) , the option price at any timet ∈ [0, T ] can be
obtained by taking conditional expectations.

exp
(
−

∫ t

0
r(s)ds

)
V (t) = EQ

[
exp

(
−

∫ T

0
r(s)ds

)
v
(
r(T )

)∣∣∣∣Ft

]
,

hence V (t) =
1

exp
(
−

∫ t
0 r(s)ds

)EQ

[
exp

(
−

∫ T

0
r(s)ds

)
v
(
r(T )

)∣∣∣∣Ft

]
= EQ

[
exp

(
−

∫ T

t
r(s)ds

)
v
(
r(T )

)∣∣∣∣Ft

]
.

For the last equality, we have used condition(iii) from above. The last conditional expectation only
depends on the conditional distribution of(r(s))t≤s≤T givenFt. But because of the Markov property of
r, this is equal to the conditional distribution givenr(t), and hence

V (t) = EQ

[
exp

(
−

∫ T

t
r(s)ds

)
v
(
r(T )

)∣∣∣∣ r(t)] .

For eacht ∈ [0, T ], this conditional expectation can be factorized.V (t) = g
(
r(t), t

)
.

If we impose additional differentiability assumptions on the functiong(x, t), we can deduce that this
function satisfies a linear integro-differential equation.

5Simplehere means that the value of the option at its expiration dateT can be written as a deterministic function, of the
bond price.
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Proposition 4.12. We make the following assumptions.

(i) The value processV (t) of a security can be represented in the formV (t) = g
(
r(t), t

)
with a

deterministic functiong(x, t).

(ii) The functiong(x, t) from (i) is of classC2,1(IR×IR+), that is, it is twice continuously differentiable
in the first variable and once continuously differentiable in the second variable.

(iii) The short-rate processr satisfies Assumption 4.10. For eacht > 0, the distribution ofrt− has
supportI, whereI is a bounded or unbounded interval.

Then the functiong(r, t) satisfies the integro-differential equation

0 = −g(r, t)r + ∂2g(r, t) + (∂1g)(r, t)
(
f(r, t)b + k(r, t)

)
+

1
2
(∂11g)(r, t) · c · f(r, t)2(4.19)

+
∫ (

g
(
r + f(r, t)x, t

)
− g

(
r, t

)
− (∂1g)

(
r, t

)
f(r, t)x

)
F (dx)

(
r ∈ I, t ∈ (0, T )

)
v(r) = g(r, T ),

where(b, c, F (dx)) is the Lévy-Khintchine triplet of the Lévy process driving the stochastic differential
equation (4.10).

Remark. We are not aware of suitable results about continuity and differentiability of the functiong(x, t)
from Proposition 4.11 in the case wherer follows a jump-diffusion. Hence we introduce assumption(ii)
in the proposition in order to guarantee that the differential equation (4.19) makes sense.

Proof of Proposition 4.12.Consider the discounted option price process

Ṽ (t) := exp
(
−

∫ t

0
r(s)ds

)
V (t) = exp

(
−

∫ t

0
r(s)ds

)
g
(
r(t), t

)
.

The discount factor processγ(t) := exp(−
∫ t

0 r(s)ds) is continuous and of finite variation, and so the
quadratic co-variation[γ, V ] vanishes. (See e. g. Jacod and Shiryaev (1987), Proposition I.4.49 d.) Hence

d(γ V )t = γ(t−)dV (t) + V (t−)dγ(t).(4.20)

Ito's formula provides the stochastic differential ofV :

dV (t) = gt(rt−, t)dt + gr(rt−, t)drt +
1
2
grr(rt−, t)d〈rc, rc〉t

+
(
g(rt− + ∆rt, t)− g(rt−, t)− gr(rt−, t)∆rt

)
.

The predictable quadratic variation ofrc (which appears as an integrator here) is given byd〈rc, rc〉t =
f(rt−, t)2c dt. The processγ has differentiable paths. Therefore it is of bounded variation.

dγ(t) = −rtγ(t)dt.

HenceV is the sum of a local martingale and the following predictable process of finite variation.

gt(rt−, t)dt + gr(rt−, t)
(
f(rt−, t)b + k(rt−, t)

)
dt +

1
2
grr(rt−, t) · c · f(rt−, t)2dt(4.21)

+
[∫ (

g(rt− + f(rt−, t)x, t) − g(rt−, t)− gr(rt−, t)f(rt−, t)x
)
F (dx)

]
dt.
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By (4.20), this means that the processγV is the sum of a local martingale and the following predictable
process of finite variation starting in0.

γ(t)
{
− g(rt−, t)r(t) + gt(rt−, t) + gr(rt−, t)

(
f(rt−, t)b + k(rt−, t)

)
+

1
2
grr(rt−, t) · c · f(rt−, t)2(4.22)

+
[ ∫ (

g(rt− + f(rt−, t)x, t)− g(rt−, t)− gr(rt−, t)f(rt−, t)x
)
F (dx)

]}
dt.

This decomposition is the special semimartingale decomposition ofγV in the sense of Jacod and
Shiryaev (1987), Definition I.4.22. Since the decomposition of a special semimartingale into a local
martingale and a predictable process of finite variation is unique, we conclude that the process (4.22)
vanishes identically: Otherwise there would be two special semimartingale decompositions, because of
courseγV = γV + 0, whereγV is a (local) martingale by assumption. Hence we have

0 = −g(rt−, t)r(t) + gt(rt−, t) + gr(rt−, t)
(
f(rt−, t)b + k(rt−, t)

)
+

1
2
grr(rt−, t) · c · f(rt−, t)2

+
∫ (

g(rt− + f(rt−, t)x, t)− g(rt−, t)− gr(rt−, t)f(rt−, t)x
)
F (dx).

Since the distribution ofrt− has supportI, we conclude that for everyr ∈ I the following equation
holds.

0 = −g(r, t)r + gt(r, t) + gr(r, t)
(
f(r, t)b + k(r, t)

)
+

1
2
grr(r, t) · c · f(r, t)2

+
∫ (

g
(
r + f(r, t)x, t

)
− g

(
r, t

)
− gr

(
r, t

)
f(r, t)x

)
F (dx).

This is the desired integro-differential equation for the option pricing functiong(r, t).

The Fourier Transform of the Option Pricing Equation

We briefly sketch a possible method for solving the integro-differential equation forg(x, t). Of course,
further studies in this direction are necessary in order to come up with numerically tractable methods.
However, this would go far beyond the scope of this thesis. We assume thatg(x, t) is sufficiently regular
for the Fourier inversion to make sense. Assume that we have coefficient functions (4.18).

We have the following identities for sufficiently regular functionsf :∫
f(x)x exp(iux)dx =

1
i

∫
f(x)

∂

∂u
exp(iux)dx

= −i
∂

∂u

∫
f(x) exp(iux)dx,

and ∫
f ′(x) exp(iux)dx = −

∫
f(x)

∂

∂x
exp(iux)dx

= −iu

∫
f(x) exp(iux)dx,
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The transform off ′(x)x is therefore

̂f ′(x)x(u) = −if̂ ′(x)u(u)

= −(uf̂(u))u = −f̂(u)− uf̂u(u).

Thus by Fourier transforming (4.19) with respect to the variablex, we get the following equation for the
Fourier transform̂g(u, t) =

∫
exp(iur)g(r, t) dr.

0 = i∂1ĝ + ∂2ĝ − iu(σ̂b + aρ(t))ĝ + aĝ + au∂1ĝ −
1
2
cσ̂2u2ĝ

+ ĝ

∫ (
e−iubσx − 1 + iuσ̂x

)
F (dx).

The sum of the third and the last two terms on the right-hand side is readily identified asĝ ln φ(−σ̂u),
whereφ(u) denotes the exponent in the Lévy-Khintchine representation of the characteristic function of
L1. Hence

ĝt = −(au + i)ĝu + (iuaρ(t) − a)ĝ − ĝ · ln φ(−σ̂u)(4.23)

This is a partial differential equation involving only the first derivatives of the Fourier transformĝ.
Furthermore, in contrast to the original integro-differential equation, integration with respect to the Lévy
measureF (dx) is not required here. This could be an advantage, since the calculation of the density of
the Lévy measure often is computationally demanding.
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Chapter 5

Bond Price Models: Empirical Facts

5.1 Introduction

Since the introduction of exponential Brownian motion as a stock price model by Samuelson (1965)
and its application in the famous work by Black and Scholes (1973) leading to the Black-Scholes for-
mula, Brownian motion has become the basic building block of mathematical finance. In spite of this
overwhelming success, it has long been known that normal distributions provide only a poor fit to em-
pirically observed distributions of stock returns. We show that this is also true for zero-coupon bonds.
As in the case of stocks, generalized hyperbolic distributions provide a much better fit for the empirical
distributions of log returns on zero-coupon bonds.

5.2 Log Returns in the Gaussian HJM Model

Heath, Jarrow, and Morton (1992) propose a general model for the term structure, which is driven by a
Brownian motion. In their model, volatility is allowed to vary stochastically. The special case of deter-
ministic volatility, which was considered e. g. in El Karoui, Lepage, Myneni, Roseau, and Viswanathan
(1991) and Carverhill (1994), leads to a Gaussian process for the logarithm of zero bond prices. Therefore
we call it theGaussian HJM term structure model. Under very general assumptions, the martingale—or,
risk-neutral—measure is uniquely determined in the HJM model (see Heath, Jarrow, and Morton (1992),
Proposition 2; for the case of a Gaussian HJM model with a one-dimensional driving Brownian motion,
this also follows from Theorem 6.9.) Under the martingale measure, the bond price dynamics in the
Gaussian HJM model have the form

P (t, T ) = P (0, T ) exp
( ∫ t

0
r(s)ds

)
exp

(∫ t

0
σ(s, T )dBs −

∫ t

0

σ(s, T )2

2
ds

)
.(5.1)

(See El Karoui, Lepage, Myneni, Roseau, and Viswanathan (1991) or Eberlein and Raible (1999); the
latter gives a theorem for more general driving Lévy processes.) The volatility structureσ(t, T ), which
gives the volatility at timet of a zero bond maturing at timeT ≥ t, is deterministic. By equation (5.1),
the log return (between timest andt + ∆t) on a zero-coupon bond maturing at timeT is given by

ln P (t + ∆t, T )− ln P (t, T ) =
∫ t+∆t

t
r(s) ds +

∫ t+∆t

t
σ(s, T ) dBs −

∫ t+∆t

t

σ(s, T )2

2
ds.
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For∆t→ 0, the integrals may be replaced by the product of the value of the integrand at the left endpoint
times the increment of the integrator. Hence if we assume that∆t is small enough, we have

ln P (t + ∆t, T )− ln P (t, T ) ≈ r(t)∆t + σ(t, T )(Bt+∆t −Bt)−
σ(t, T )2

2
∆t.

Assume that the volatility is stationary, that is,σ(s, T ) depends only on the time to maturity given by
the differenceT − s. For brevity, we will use the same symbolσ for the function depending only on the
difference:σ(s, T ) = σ(T − s). Then thediscountedlog-return is approximately normally distributed
under the martingale measure.

Lmartingale measure
(

ln
P (t + ∆t, T )

P (t, T )
− r(t)∆t

)
≈ N

(
− σ(T − t)2

2
∆t, σ(T − t)2∆t

)
Since we have assumed that the risk-neutral dynamics of bond prices are described by (5.1), there has to
be an equivalent probability measure that describes the statistically observable dynamics on the market.1

As in Chapter 1, we call this measure theobjective probability measure. By Girsanov's theorem we know
that under any equivalent probability measure the Brownian motionB becomes a Brownian motion with
a (generally random) driftµ(t) (see e. g. Jacod and Shiryaev (1987), Theorem III.3.24.)

dBt = dWt + µ(t)dt,

with some optional stochastic processµ and a processW that is a Brownian motion under the equivalent
measure.

We assume thatµ is a deterministic constant. Then under the objective measure, again discounted log
returns are (approximately) normally distributed.

Lobjective measure
(

ln
P (t + ∆t, T )

P (t, T )
− r(t)∆t

)
≈ N

([
µ− σ(T − t)2

2

]
∆t, σ(T − t)2∆t

)
.

5.3 The Dataset and its Preparation

We work with a dataset containing daily data on zero-coupon bonds on the German market. For each of
the 2343 trading day between 31-Dec-1985 and 10-May-1995, it lists the yields of zero-coupon bonds
with maturities ranging from one to ten years, in steps of one year. In the covered period, government
zero-coupon bonds did not exist on the German market.2 Therefore, the quoted yields have been calcu-
lated from the known prices of government coupon bonds. Although we do not have information on the
actual algorithm used for this calculation, we will assume that the given yields are those seen by market
participants.

As usual, we adopt a trading day time scale here. That is, we assume that the time variablet counts
trading days rather than calendar days. All interest rates are calculated relative to this time scale. For
example, at an interest rate ofr = 0.0002, an initial capital of1000 will earn an interest of10 · 1000 ·
0.0002 = 2 during a period of10 trading days (which is corresponds to two weeks in calendar time.)

1The usual statement is that there exists an equivalent martingale measure for the market; here we go the other way around
and start with the martingale measure, assuming that it is in fact the uniquely determined martingale measure belonging to a
certain objective probability measure.

2Only recently, so-calledstrippedgovernment bonds have been introduced for trade in Germany. These are government
bonds whose coupons are traded separately. This means that the annual payments are traded as separate securities, while the
stripped bond is effectively a zero bond. That is, it pays its holder the face value at the maturity date.
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Figure 5.1: Implied prices for zero-coupon bonds on the German market on 2-Jan-1986. (Source: Zero
coupon yields dataset)

5.3.1 Calculating Zero Coupon Bond Prices and Log Returns From the Yields Data

The zero-coupon yield for a maturity ofn years is the numberyn for which the expression
(
1 + yn

)−n

equals the priceP (t, t + (n years)) of a zero-coupon bond withn years to maturity. Thus for each day,
we can recover zero-coupon prices from zero yields:

P (t, t + (n years)) =
(
1 + yn

)−n
.(5.2)

For t =2-Jan-1986, these bond prices are given in Figure 5.1. Bond prices for a time to maturity of up
to 10 years can be interpolated from these prices. In order to be able to interpolate bond prices with a
maturity of less than one year, we use the fact that a zero-coupon bond has a value of1 at its maturity
date. Hence we can extend the bond price “curve” in Figure 5.1 by setting the bond price to1 for a time-
to-maturity of0 years. Even with a constant interest rate, bond prices fall exponentially as a function of
the time to maturity. Therefore the curvature of the bond price curve is usually positive, which leads to
errors when interpolating linearly to find bond prices for intermediate times to maturity. Therefore we
transform zero bond prices by taking the logarithm of the inverse bond price, or, equivalently, taking the
negative of the logarithm of the bond price. In the case of a constant interest rater, this transformation
yields a linear function, namelyτ 7→ rτ . So linear interpolation is likely to introduce smaller errors
when working with the transformed bond price curve. We approximate the negative of the logarithm of
the zero-bond price by fitting a cubic smoothing spline, generated with the S-Plus command

s <- smooth.spline(0:10,-log(zeroBond.price[1:11,i]),df=10).

Figure 5.2 shows the negative log bond prices as well as the fitted smoothing spline.
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Figure 5.2: Negative of the log bond prices for the German market, 2-Jan-1986.

As usual, the forward rate is the derivative of the negative logarithm of the bond price, with respect to
the maturity dateT .

f(t, T ) =
∂

∂T

(
− ln P (t, T )

)
.

They can be estimated from our discretely sampled bond price curve by taking the derivative of the
smoothing spline. We will only need the derivative att = T , which yields the short-term interest rate
r(t).

r(t) = f(t, t) = −∂ ln P (t, T )
∂T

∣∣∣
T=t

.(5.3)

We estimate this by the S-Plus command

predict.smooth.spline( s, 0, 1 ),

which gives the first derivative atn = 0 of the smoothing spline fitted above.

One may wonder why we do not determine the short-term interest rate directly by taking a time series of
short-term money market rates such as three-month LIBOR rates. The reason for this is the following.
The money market is a market for short term lending and borrowing only. As such, it is intrinsically
different from the bond market, which is a market for long-term investment and financing. In particular,
the usances on the two market are different. We prefer to stay within one market, namely the bond
market. Therefore it makes sense for us to use the short-term interest rate (5.3), which is the one implied
by the bond market itself.

At time t, the price of a bond with an integer numbern of years to maturity can be calculated directly
from the data, using equation (5.2). But one trading day later, at timet + ∆t, the same bond will have
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Figure 5.3: Estimated daily discounted log-returns on zero bonds with five years to maturity on the
German market, January 1986 to May 1995.

a time to maturity ofn years minus∆t, which cannot be calculated directly from the dataset; hence we
have to use the interpolation method described above to determine its market price. With the prices of
the same bond today and tomorrow, we calculate the log return on a bond with a time to maturity ofn
years. This log return is then discounted with the short term interest rate estimated above. Hence we
approximate the discounted log return over a the period[t, t + ∆t] by the expression

ln P (t, t + (n years))− ln P (t + ∆t, t + (n years))interpolated−∆t · r(t)derived from bond prices.

In this way, we build up a dataset of daily log returns for zero-coupon bonds with times to maturity of
n = 1, . . . , 10 years. For each value ofn, we have a time series of 2342 log returns.

5.3.2 A First Analysis

Figure 5.3 shows the log returns on zero bonds with five years to maturity, from January 1986 to May
1995. Figure 5.4 shows the log returns on the German stock index DAX for comparison. Both time series
do not seem to be perfectly stationary over a range of ten years. For the practical use of models with
a stationary volatility structure (in the bond price case) or a constant volatility parameter (in the stock
price case), this means that one should better concentrate on shorter time horizons. The log returns on
bonds are markedly smaller than those on the stock index. Table 5.1 shows this quantitatively. Note how
volatility (that is, the standard deviation of the discounted log return) increases with time to maturity.
Hence bonds that are closer to maturity are less risky. The dependence of the volatility on the time to
maturity is displayed graphically in Figure 5.5.
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Figure 5.4: Daily log-returns on the German stock index DAX, January 1986 to May 1995.

DAX Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 7 10

mean abs. 0.91% 0.041% 0.068% 0.089% 0.11% 0.13% 0.21% 0.36%
std. dev. 1.3% 0.062% 0.1% 0.13% 0.17% 0.19% 0.31% 0.54%

Table 5.1: Mean absolute log returns and standard deviation of log returns on the German stock index
DAX and on German zero-coupon bonds with maturities of up to ten years. January 1986 to May 1995.
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Figure 5.5: Standard deviation of zero-bond log returns: Dependence on time to maturity.

5.4 Assessing the Goodness of Fit of the Gaussian HJM Model

5.4.1 Visual Assessment

Quantile-quantile plots and density plots are powerful tools for the visual assessment of the goodness of
fit for an empirical distribution. Aquantile-quantile plotof an ordered sampley = (y1 ≤ . . . ≤ yn)
plotsyj (that is, the empirical(j − 1/2)/n-quantile of the data) against the(j − 1/2)/n-quantile of the
fitted distribution, which we assume to have a continuous distribution function. If the fit is good, then the
points(xj , yj), j = 1, . . . , n, should lie close to the liney = x. Figure 5.6 shows the strong deviation
from normality of the log return distribution for 5-year bonds. The fact that the points lie far below
the linex = y for small quantiles and far above this line for large quantiles shows that the empirical
distribution has fatter tails than the fitted normal distribution.3

In density plots, the empirical density of the sample, that is, a Gaussian kernel estimation of the den-
sity from the sample, is compared with the density of the fitted distribution. Figure 5.7 shows the two
densities. It can be clearly seen that the empirical distribution is leptokurtic, that is, it puts more mass
around the origin and in the tails than a normal distribution with the same mean and standard deviation.
In terms of bond prices, this means that relatively small daily price changes and relatively large daily
price changes take place more frequently than the Gaussian HJM model predicts. On the other hand,
price changes of medium size are observed less frequently than in the Gaussian model. Choosing the log
scale for they-axis allows us to study the tail behavior of the distributions. Figure 5.8 compares the log
densities of the empirical distribution and the log density of the fitted normal distribution. The log den-
sity of the normal distribution is a parabola, while the log of the empirical density resembles a hyperbola,

3The normal distribution was fitted by choosing the sample mean and the sample standard deviation.
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Figure 5.6: Quantile-quantile plot: Empirical quantiles of log returns on 5-year bonds against quantiles
of fitted normal distribution. January 1986 to May 1995.
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Figure 5.7: Density plot: Empirical density of log returns on 5-year bonds and density of fitted normal
distribution. January 1986 to May 1995.
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Figure 5.8: Log-density plot: Logarithm of empirical density of log returns on 5-year bonds against log
density of fitted normal distribution. German bond market, January 1986 to May 1995.

at least in the central region. We see that the empirical distribution puts considerably more mass into the
tails than one would expect if log returns were normally distributed. As a conclusion, we can say that,
judged by the visual measures of quantile-quantile plot and density plot, the Gaussian model performs
poorly as a description of the empirically observed daily movements of bond prices.

5.4.2 Quantitative Assessment

In this subsection, we apply two common goodness-of-fit tests to test the null hypothesis that the dis-
counted log returns on zero-coupon bonds are normally distributed. TheKolmogorov distanceof two
probability distributions on(IR,B) (given by their distribution functionsF andG) is defined by

dK(F,G) := sup
x∈IR
|F (x)−G(x)|.

If G is the empirical distributionGx of a samplex = (x1, . . . , xn) of sizen, this distance can be written
as follows.

dK(F,Gx) = max
1≤k≤n

{
F (xk−)− k − 1

n
,
k

n
− F (xk)

}
,

whereF (x−) denotes the left limit of the distribution functionF at the pointx, i. e. F (x−) is the
measure assigned to the open interval(−∞, x). For a distributionF without point masses we have
F (x−) = F (x), and consequently

dK(F,Gx) = max
1≤k≤n

{
F (xk)−

k − 1
n

,
k

n
− F (xk)

}
.
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α 20% 10% 5% 2% 1%
λ1−α 1.08 1.23 1.36 1.52 1.63

Table 5.2: Critical values for the Kolmogorov-Smirnov test ifn > 40. (From: Hartung (1986))

1− α 85% 90% 95% 97.5% 99%
Q1−α 0.775 0.819 0.895 0.995 1.035

Table 5.3: Approximate quantiles of the distribution of the modified Kolmogorov-Smirnov statisticDmod

for the test against a normal distribution whose parameters are estimated from the sample via the standard
estimators. (From: Stephens (1986))

The Kolmogorov-Smirnov testuses the Kolmogorov distance of the empirical distribution functionGx

and a given continuous distribution functionF to test whetherx was sampled from the distributionF . It
rejects this hypothesis if the Kolmogorov distance is too large, that is, if

Dn :=
√

ndK(F,Gx) ≥ λ1−α,

with a valueλ1−α that depends on the significance levelα.

The situation is somewhat different if one wants to test whether the samplex was drawn from a distribu-
tion from a parameterized classF = {F θ : θ ∈ Θ}, whereΘ ⊂ IRd for some dimensiond. Then usually
one first estimates the unknown parameterθ from the samplex, say, by maximum likelihood. Then one
calculates the Kolmogorov distance between the empirical distributionGx and the estimated distribution
F θ. However, since one has used the samplex to determine the distributionF θ, the distribution of the
Kolmogorov distance is not known in general. For the Kolmogorov-Smirnov test on normal distribution,
a formula for the tail probability was derived in Tyurin (1985). Another approach by Stephens (1974)
(see Stephens (1986)) uses the fact that the modified Kolmogorov-Smirnov statistic

Dmod
n := Dn · (

√
n− 0.01 + 0.85/

√
n)(5.4)

has a distribution that exhibits a very weak dependence onn. Approximate quantiles of this distribution
are given in Stephens (1986), Table 4.7. We reproduce them in Table 5.3.

We analyze the log return data for different maturities. The values ofDn that we get ifF is a normal
distribution fitted to the respective samplex are displayed in Table 5.4. (There is virtually no difference
between the values ofD andDmod here because the additional term−0.01+0.85/

√
n is close to zero for

n = 2342.) Comparison with the critical values given in Table 5.3 yields that the Kolmogorov-Smirnov

Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 6 7 8 9 10

D 4.37 3.86 4.2 4.82 4.56 4.08 4.3 4.15 4.01 3.87
Dmod 4.37 3.86 4.2 4.82 4.56 4.08 4.3 4.15 4.01 3.87

Table 5.4: Values of Kolmogorov-Smirnov test statistic: Test of the normal fit of the log-return distribu-
tion for zero bonds with maturities of up to ten years. January 1986 to May 1995.
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Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 6 7 8 9 10

normal fit 391 316 366 518 465 351 386 375 348 331

Table 5.5: Values ofχ2 test statistic: Test of the normal fit of the log-return distribution for zero bonds
with maturities of up to ten years. The number of classes was 45; the 90%-, 95%-, 98%, and 99%-
quantiles of theχ2(44)-distribution are 56.4, 60.5, 65.3, 68.7, respectively.

test clearly rejects the assumption of normality.

The χ2 test for goodness of fit counts the number of sample points falling into certain intervals and
compares these counts with the expected number in these intervals under the null hypothesis. Following
the recommendation in Moore (1986), Section 3.2.4, we choose a numberM := d2n2/5e of equiprobable
classes.4

The log-return datasets under consideration have lengthn = 2342, soM = 45. We choose thej/M -
quantiles (j = 1, . . . ,M − 1) of the fitted distribution as the boundary points of the classes.

Table 5.5 shows the values of theχ2-test statistic for the null hypothesis of normality. As the number of
degrees of freedom, we have chosen44, which is the number of classes minus one. The exact distribution
of the test statistic under the null hypothesis is now known. However, the correct quantiles lie between
those ofχ2(44) andχ2(42) if the distribution has two unknown parameters that are estimated via the
maximum likelihood. (See Moore (1986), Section 3.2.2.) Choosing the quantiles ofχ2(44) thus yields a
test that is too conservative. But even this conservative test rejects the assumption of normality.

5.5 Normal Inverse Gaussian as Alternative Log Return Distribution

In the preceding section, we have seen that normal distributions do not provide a good description of
the log return distributions for zero bonds. In the current section, we study the class of normal inverse
Gaussian (NIG) distributions as an alternative model. For a brief overview of NIG distributions, see
Section A.2.2.

For bonds with different times to maturity, we estimate the parameters of the NIG distribution by the
method of maximum likelihood. Table 5.6 shows the estimated values.

5.5.1 Visual Assessment of Fit

The quantiles of the NIG distributions can be calculated by numerical integration of the density, which is
explicitly known for NIG distributions. This is done by the functionqgh provided by Karsten Prause (see
Eberlein, Ehret, Lübke, Özkan, Prause, Raible, Wirth, and Wiesendorfer Zahn (1999)). Figure 5.9 shows
the quantile-quantile plot for a maturity of 5 years. The fit is excellent; in particular, comparison with
Figure 5.6 shows the vast improvement that can be achieved by replacing the class of normal distributions
with the class of NIG distributions.

4This is also the default value used by the S-Plus built-in functionchisq.gof , which performsχ2-goodness-of-fit tests
for various distributions.
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time to maturity
[years]

α β δ µ

1 1030 −7.53 0.000384 0.17 · 10−4

2 735 −26.4 0.000712 0.53 · 10−4

3 492 −21.8 0.000851 0.71 · 10−4

4 327 −18.2 0.000937 0.85 · 10−4

5 309 −25.4 0.00116 0.000132
6 291 −25.1 0.00159 0.000188
7 220 −18 0.00203 0.000214
8 184 −12.1 0.00258 0.000199
9 159 −6.55 0.00319 0.000143
10 133 −2.15 0.00378 0.56 · 10−4

Table 5.6: Estimated parameters of NIG distribution: Maximum likelihood estimates produced by the
S-Plus functionghe by Karsten Prause (see Eberlein et al (1999)).

quantiles of fitted NIG distribution
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Figure 5.9: Quantile-quantile plot: Empirical quantiles of log returns on 5-year zero bonds against quan-
tiles of fitted NIG distribution. January 1986 to May 1995.
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Figure 5.10: Density plot: Empirical density of log returns on 5-year bonds and density of fitted NIG
distribution. January 1986 to May 1995.

Figures 5.10 (resp., 5.11) show the empirical density (resp., log density) compared with the density
(resp., log density) of the fitted NIG distribution for log-returns on zero bonds with 5 years to maturity.
Obviously the NIG distribution provides a very good fit to the empirical distribution in the center as well
as in the tails.

5.5.2 Quantitative Assessment of Fit

As in the case of the normal fit, we apply the Kolmogorov-Smirnov test and theχ2-test. The values of
the Kolmogorov-Smirnov test statistic are shown in Table 5.7. Comparison with the values for the fitted
normal distribution shows an enormous improvement in the quality of the fit. Unfortunately, the distri-
bution of the test statistic of the Kolmogorov-Smirnov test is unknown for the case of NIG distributions
with unknown parameters.5 Therefore we cannot apply a Kolmogorov-Smirnov test here. Furthermore,
when comparing the values of the Kolmogorov-Smirnov statistic in Table 5.7, one must take into ac-
count that the class of NIG distributions has four parameters, that is, two more than the class of normal
distributions. Nevertheless, the values indicate the superiority of the NIG distributions.

Table 5.8 shows the values of theχ2 test statistic. We see that at the2% level, we cannot reject the
hypothesis that the log returns are NIG distributed, except for the maturities of4 and5 years.

5The problem is that the parameters of the NIG distribution have been estimated from the sample. Therefore the standard
Kolmogorov-Smirnov test is not appropriate here. See Kulinskaya (1995) for a deeper discussion of this issue. Of course, one
could try to estimate the quantiles of this statistic by Monte Carlo methods. However, this would involve an enormous effort
since the maximum likelihood estimation of the four NIG parameters is computationally very demanding.
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Figure 5.11: Log density plot: Logarithm of empirical density of log returns on 5-year bonds and log
density of fitted NIG distribution. January 1986 to May 1995.

Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 6 7 8 9 10

normal fit 4.37 3.86 4.2 4.82 4.56 4.08 4.3 4.15 4.01 3.87
NIG fit 0.46 0.56 0.42 0.6 0.84 0.5 0.56 0.73 0.65 0.61

Table 5.7: Values of Kolmogorov-Smirnov statistic: Normal fit vs. NIG fit of the log-return distribution
for zero bonds with maturities of up to ten years. January 1986 to May 1995.

Zero coupon bonds with time to maturity [in years]
1 2 3 4 5 6 7 8 9 10

NIG fit 28.4 46 39.3 64.6 75 55.9 49.7 52.7 55.7 42.2

Table 5.8: Values ofχ2 test statistic: Test of the NIG fit of the log-return distribution for zero bonds with
maturities of up to ten years. The number of classes was 45; the 90%-, 95%-, 98%, and 99%-quantiles
of theχ2(40)-distribution are 51.8, 55.8, 60.4, 63.7, respectively.
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5.6 Conclusion

We have shown that the Gaussian HJM model under some simple assumptions predicts approximately
normally distributed daily log returns for discounted zero-coupon bonds. However, empirically observed
log returns on bonds turn out to have a leptokurtic distribution. Visually, the inadequacy of the normal
distribution assumption was shown by quantile-quantile plots and by comparing the empirical density
with the density of the fitted normal distribution. Kolmogorov-Smirnov tests andχ2-tests for goodness
of fit clearly reject the hypothesis of normality for the log return distribution. In contrast to this, normal
inverse Gaussian (NIG) distributions provide a much better fit for the distribution of log returns. This
was shown visually by quantile-quantile plots and density plots. The Kolmogorov-Smirnov test statistic
was calculated and turned out to be much smaller than for the normal distribution fit. However, since
the limiting distribution of this statistic is not known for samples from a NIG distribution with unknown
parameters, we were not able to determine the critical region for this test. At significance level 2%, theχ2

test does not reject the assumption of a NIG distribution for eight of the ten times to maturity considered.
From the point of view of data analysis, we therefore recommend replacing the driving Brownian motion
in term structure models by more general Lévy processes such as the NIG Lévy process.
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Chapter 6

Lévy Term Structure Models: Uniqueness
of the Martingale Measure

6.1 Introduction

In Chapter 1, we studied a generalization of the Samuelson (1965) stock-price model. Brownian motion
was replaced by a more general exponential Lévy motion. Every non-Brownian Lévy process has jumps,
and if the jump-height distribution allows for infinitely many jump heights while there is only a finite
number of underlying securities, the model is incomplete. Incompleteness is reflected by non-uniqueness
of the martingale measure. In other words, the condition that discounted security prices be (local) mar-
tingales is not sufficient to fix a unique equivalent probability measureQ. Since derivative prices are
formed as expectations under an equivalent martingale measure, non-uniqueness of the martingale mea-
sure implies non-uniqueness of derivative prices. This means that the model for the underlying alone
does not suffice to uniquely determine derivative prices. An extreme example was given by Eberlein
and Jacod (1997b). They examined stock price models driven by general pure-jump exponential Lévy
processes with infinite variation. In this context, the price of European call options is completely unde-
termined even though the price dynamics of the underlying are known: The range of prices one may get
by choosing an equivalent martingale measure is identical with the trivial no-arbitrage interval.

The underlying securities in term structure modeling are zero coupon bonds. These are characterized
by a real numberT which marks the time when they are paid back. At this time, the holder of the zero
coupon bond receives an amount of one currency unit. Since generally the set of maturity datesT is
an interval, we have an infinitude of securities in the market. Consequently, we may expect that even
when the driving Lévy process has infinitely many possible jump heights, the martingale measure is
unique. We will show below that in this is indeed the case for the Lévy term structure model introduced
in Chapter 4. This is the statement of the main Theorem 6.9 proved below. Thus once the model is fixed,
derivative prices are fixed as well. This parallels the situation in the Samuelson (1965) stock price model
that led to the famous option pricing formula of Black and Scholes (1973).

The chapter is structured as follows. Section 6.2 reviews a general term structure model presented in
Björk, Di Masi, Kabanov, and Runggaldier (1997). In Section 6.3, we show that the term structure
model presented by Eberlein and Raible (1999) is a special case of this general term structure model.
Section 6.4 presents some results from the general theory of stochastic processes as displayed in Jacod
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and Shiryaev (1987). Using the generalization of the Heath, Jarrow, and Morton (1992) drift condition
by Björk et al. (1997), we prove the central result of this chapter, namely Theorem 6.9. This is done in
Section 6.5. Section 6.6 concludes with a short remark on the relationship between completeness and
uniqueness of the martingale measure.

6.2 The Björk/Di Masi/Kabanov/Runggaldier Framework

In Section 5 of Björk, Di Masi, Kabanov, and Runggaldier (1997), the following forward rate dynamics
are considered.

dtf(t, T ) = α(t, T )dt + σ(t, T )dWt +
∫

X
δ(t, x, T )(µ(dt, dx) − ν(dt, dx)).(6.1)

Here,W is a standard Brownian motion inIRn, (X,X ) is a Lusin space, andµ is aP ⊗ X -σ-finite
optional random measure such that its compensator1 is continuous. It is assumed that the coefficient
functionsα(ω, t, T ), σ(ω, t, T ), andδ(ω, t, x, T ) are continuous functions ofT . Furthermore,α(ω, t, T )
andσ(ω, t, T ) have to beP ⊗ B+-measurable, andδ is assumed to beP ⊗ X ⊗ B+-measurable.

In addition, the following integrability conditions have to be satisfied: For all finitet andT ≥ t,∫ T

0

∫ T

t
|α(u, s)| ds du <∞,

∫ T

0

∫ T

t
|σ(u, s)|2 ds du <∞,

and ∫ T

0

∫
X

∫ T

t
|δ(u, x, s)|2ds ν(du, dx) <∞.

By Björk et al. (1997), Proposition 5.2, the bond price processes in this model are given by

P (t, T ) = P (0, T ) exp
(∫ t

0
r(s)ds

)
exp

(∫ t

0
As(T )ds +

∫ t

0
Ss(T )dWs

+
∫ t

0

∫
X

D(s, x, T )(µ− ν)(ds, dx)
)

,

with the notation

At(T ) := −
∫ T

t
α(t, s)ds,(6.2)

D(t, x, T ) := −
∫ T

t
δ(t, x, s)ds,(6.3)

St(T ) := −
∫ T

t
σ(t, s)ds.(6.4)

1For a definition of the compensator of an optionalP⊗X -σ-finite random measure, see Jacod and Shiryaev (1987), Theorem
II.1.8, where a proof of existence is given.
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6.3 The Lévy Term Structure Model as a Special Case

6.3.1 General Assumptions

Let L be a Lévy process, that is, an adapted stochastic process with stationary independent increments
which is continuous in probability. According to Protter (1992), Theorem I.30, for every Lévy process
there is a unique càdlàg version. We will always work with this version. This enables us to use the
general theory of stochastic processes as presented in Jacod and Shiryaev (1987), where semimartingales
and their components, i. e. local martingales and processes of finite variation, are always assumed to
have càdlàg paths.

Assume thatL1 possesses a moment generating function on some open interval(−a, b) containing
[−M,M ], with M > 0. By Lukacs (1970), Section 7.2, this implies thatL1 has ananalytic charac-
teristic function. Thus, the characteristic functionχ(u) of L1 can be extended to an analytic function
on the vertical stripIR − i(−a, b) ⊂ C. We will denote this extended characteristic function by the
same symbolχ. Thecumulant generating functionκ(u) := lnE[exp(uL1)] is a (real) analytic function,
because it is the restriction of the analytic functionz 7→ ln χ(−iz) to the real line.2

Let (Ω,F , P ) be a complete probability space, and letN be theσ-field generated by the null sets.
Assume that the filtration(Ft)0≤t<∞ is generated byL andN in the sense of Jacod and Shiryaev (1987),
III.2.12.

6.3.2 Classification in the Björk/Di Masi/Kabanov/Runggaldier Framework

In Chapter 4, we have discussed some properties of the Lévy term structure model of Eberlein and Raible
(1999). In this model, the price of a zero coupon bond maturing at timeT with T ∈ (0, T ?] is given by
the stochastic process

P (t, T ) = P (0, T ) exp
[∫ t

0

(
r(s)− κ(Σ(s, T ))

)
ds +

∫ t

0
Σ(s, T )dLs

]
,(6.5)

whereL is a Lévy process with finite moment generating function on some interval(−a, b) with a, b > 0.
The volatility structureΣ(s, T ) is assumed to be deterministic and continuously differentiable, with
Σ(t, t) = 0 ∀t andΣ(t, s) > 0 (t < s). It is required to be bounded by the constantM < min(a, b).

Remark: We use a slightly different notation here than in Chapter 4: The volatility structure of zero
bonds is denoted byΣ(t, T ) instead ofσ(t, T ). This is because we want to refer to Björk, Di Masi,
Kabanov, and Runggaldier (1997), whereσ(t, T ) is the symbol for the forward rate volatility.

The bond price model (6.5) can be equivalently stated in terms of forward rates. ForT ∈ (0, T ?) the
forward rate processf(·, T ) has to satisfy the stochastic differential equation

dtf(t, T ) = κ′
(
Σ(t, T )

)
∂2Σ(t, T )dt− ∂2Σ(t, T )dLt,(6.6)

where∂2Σ denotes the derivative of the functionΣ(t, T ) with respect to the second argument. This
forward rate formulation allows us to prove the next lemma.

Lemma 6.1. The class of term structure models (6.5) is a subclass of the class considered in Björk et al.
(1997).

2By lnχ(z) we understand that determination oflnχ(z) which is continuous and vanishes atz = 0.
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Proof. Write the integrable Lévy processL in its canonical decomposition, that is,3

Lt = bt +
√

cWt + x ∗ (µL − νL)t.(6.7)

We get the forward rate version (6.6) of the Lévy term structure model of Eberlein and Raible (1999) by
the following specification of the model (6.1):

α(t, T ) := ∂2Σ(t, T )
[
κ′

(
Σ(t, T )

)
− b

]
,

σ(t, T ) := −∂2Σ(t, T )
√

c,

δ(t, x, T ) := −∂2Σ(t, T )x,

(X,X ) = (IR,B1),

µ = µL, and

ν = νL.

By definition, the compensatorνL of the random measure of jumps,µL, is the third characteristic of the
Lévy processL. It is given byνL(dt, dx) = dtF (dx), whereF is the Lévy measure of the infinitely
divisible distribution ofL1.

Using the above specifications forα, σ, δ, µ, andν and the conditionΣ(t, t) = 0 ∀t, the functionsA, D,
andS defined in (6.2)-(6.4) above become

At(T ) ≡ −
∫ T

t
α(t, s)ds = Σ(t, T )b− κ

(
Σ(t, T )

)
,

D(t, x, T ) ≡ −
∫ T

t
δ(t, x, s)ds = Σ(t, T )x,

St(T ) ≡ −
∫ T

t
σ(t, s)ds = Σ(t, T )

√
c.

6.4 Some Facts from Stochastic Analysis

Let X = (Xi)i≤d be ad-dimensional semimartingale with characteristics(B,C, ν) relative to a given
truncation functionh, with continuous martingale partXc relative toP , and withCij = cij · A, A
increasing and predictable. Then we have the following Girsanov theorem for semimartingales (Jacod
and Shiryaev (1987), III.3.24):

Theorem 6.2. Assume thatQ
loc
� P , and letX be as above. There exist aP ⊗ B1

+-measurable nonneg-
ative functionY and a predictable processβ = (βi)i≤d satisfying

|h(x)(Y − 1)| ∗ νt <∞ Q-a.s. fort ∈ IR+

3The canonical decomposition of a special semimartingaleX is the unique decompositionX = X0 + M + A, with the
initial valueX0, a local martingaleM and a predictable process of bounded variationA, where bothM andA start in0, that
is,M0 = 0 andA0 = 0. By Jacod and Shiryaev (1987), Corollary II.2.38, we haveM = Xc + x ∗ (µX − νX), whereXc is
the continuous local martingale part ofX, µX is the random measure of jumps ofX andνX is the compensator ofµX . The
stochastic integral with respect to the compensated random measure exists becauseX is a special semimartingale and so by
Jacod and Shiryaev (1987), Proposition 2.29a,(|x|2 ∧ |x|) ∗ νX has locally integrable variation.
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∣∣∣∑
j≤d

cijβj
∣∣∣ ·At <∞ and

( ∑
j,k≤d

βjcjkβk
)
·At <∞ Q-a.s. fort ∈ IR+,

and such that a version of the characteristics ofX relative toQ are
B′i = Bi +

(∑
j≤d cijβj

)
·A + hi(x)(Y − 1) ∗ ν

C ′ = C
ν ′ = Y · ν

By Theorem 6.2,Y and β tell us how the characteristics of the semimartingale transform under the
change of measureP ; Q. Since we assumed that the filtration is generated by the Lévy process
L, Y and β tell us even more—they completely determine the change of the underlying probability
measure. The reason for this is displayed below. By Jacod and Shiryaev (1987), Theorem III.4.34, the
independence of increments ofL implies thatevery local martingaleM has the representation property
relative toL, in the sense of Jacod and Shiryaev (1987), Definition III.4.22. This means that every local
martingaleM can be represented in the form

M = M0 + H · Lc + W ∗ (µL − νL)(6.8)

with H ∈ L2
loc(L

c) andW ∈ Gloc(µL).4

If Q
loc
� P , there is a unique (càdlàg)P -martingaleZ such thatZt = dQt/dPt for all t (cf. Jacod

and Shiryaev (1987), Theorem III.3.4.) It is called thedensity process ofQ, relative toP . SinceZ is a
martingale, it can be represented in the form (6.8). Jacod and Shiryaev (1987), Theorem III.5.19, provide
explicit expressions for the integrandsH andW in this case.

Z = Z0 + (Z−β) · Lc + Z−
(
Y − 1 +

Ŷ − a

1− a
1l{a<1}

)
∗ (µL − νL).(6.9)

Here,β (resp.,Y ) are the predictable process (resp., function) whose existence follows by the Girsanov
theorem for semimartingales. The predictable processesa andŶ are defined by

at(ω) := νL(ω; {t} × IRd),(6.10)

Ŷt(ω) :=
{ ∫

IR Y (ω, t, x)νL(ω; {t} × dx) (if the integral is well-defined)
+∞ otherwise.

(6.11)

In our case,L is a Lévy process. This implies a considerable simplification of equation (6.9).

Lemma 6.3. Let L be a Lévy process under the measureP . Consider another measureQ
loc
� P . Then

the density processZt = dQ/dP has the following representation as a stochastic integral.

Z = Z0 + (Z−β) · Lc +
(
Z−(Y − 1)

)
∗ (µL − νL).(6.12)

4These two set of integrands are defined in Jacod and Shiryaev (1987), III.4.3 resp. Definition II.1.27 a.
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Proof. L has stationary and independent increments, so

ν({t} × IR) = 0 for all t ∈ IR+.(6.13)

This follows from Jacod and Shiryaev (1987), II.4.3, and the fact that for processes with independent
increments, quasi-left-continuity is equivalent to condition (6.13). Thusa ≡ 0 andŶ ≡ 0, and equation
(6.9) simplifies to (6.12).

If β ≡ 0 andY ≡ 1, then obviously the density process (6.12) vanishes up to indistinguishability. The
conditions onβ andY can be relaxed somewhat, admitting them to be different from zero on some null
sets. We will make this precise in Lemma 6.7 below. In order to prove this, we need the following
two propositions. [H2

loc denotes the class of locally square integrable local martingales; see Jacod and
Shiryaev (1987), Definitions I.1.33 and I.1.41.]

Proposition 6.4. Consider a local martingaleX ∈ H2
loc. Let H be a predictable process such that

H2 · 〈X,X〉 = 0 up to indistinguishability. Then the stochastic integralH ·X exists and

H ·X = 0

up to indistinguishability.

Proof. According to Jacod and Shiryaev (1987), Theorem 4.40 d,

〈H ·X,H ·X〉 = H2 · 〈X,X〉,

and this process vanishes up to indistinguishability. This means that the local martingaleM := H ·X
is orthogonal to itself, and we haveM = M0 = 0 up to indistinguishability. See Jacod and Shiryaev
(1987), Lemma 4.13 a.

Remark: Since continuous local martingales are locally bounded, the class of continuous local martin-
gales is contained inH2

loc. Thus Proposition 6.4 applies to all continuous local martingales.

Proposition 6.5. If V ∈ Gloc(µ) with ν({V 6= 0}) = 0 P -a.s., then for the stochastic integrals with
respect to the compensated random measureµ− ν we have

V ∗ (µ− ν) = 0

up to indistinguishability.

Proof. According to Jacod and Shiryaev (1987), Theorem II.1.33 a, we haveV ∗ (µ− ν) ∈ H2
loc, with

〈V ∗ (µ− ν), V ∗ (µ− ν)〉 = (V − V̂ )2 ∗ νt +
∑
s≤t

(1− as)(V̂s)2,(6.14)

wherea and V̂ are defined analogously to (6.10) and (6.11). ForP -almost allω, a·(ω) ≡ 0 and
V̂ (ω, ·, ·) ≡ 0. This implies that the predictable quadratic variation (6.14) ofM := V ∗ (µ − ν) is
equal to0, that is, the local martingaleM is orthogonal to itself. By Jacod and Shiryaev (1987), Lemma
I.4.13 a,M = M0 = 0 up to an evanescent set.
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Corollary 6.6. If V,W ∈ Gloc(µ) with ν({V 6= W}) = 0 P -a.s., then

V ∗ (µ− ν) = W ∗ (µ− ν)

up to indistinguishability.

Proof. Gloc(µ) is a linear space and the mappingV 7→ V ∗ (µ − ν) is linear onGloc(µ) up to indistin-
guishability (cf. Jacod and Shiryaev (1987), remark below II.1.27.) HenceV −W ∈ Gloc(µ), and

V ∗ (µ− ν)−W ∗ (µ− ν) = (V −W ) ∗ (µ− ν).

But by Proposition 6.5, this vanishes up to indistinguishability.

The following lemma uses Propositions 6.4 and 6.5 to examine a change-of-measure problem.

Lemma 6.7. LetL be a Lévy process with respect to the probability measureP . Assume that the stochas-
tic basis is generated byL and the null sets. LetQ be a probability measure which is locally absolutely
continuous w.r.t.P , and letβ andY be the predictable process (resp. function) associated according to
Theorem 6.2 with the change of probabilityP ; Q. If

∫∞
0 β(ω, s)d〈Lc, Lc〉 = 0 P -almost-surely and

ν(ω; {Y (ω, ·, ·) 6= 1}) = 0 P -almost-surely, thenQ = P .

Proof. According to equation (6.12), the conditions imply thatZ ≡ Z0 up to indistinguishability. But
Z0 = 1 P -a.s., since under the assumptions above,F0 consists only of null-sets and their complements.
ThusZ ≡ Z0 = 1 P -a.s.

In addition to this result from the theory of stochastic processes, we need the following lemma. It states
that a measure onIR is uniquely characterized by the values of its bilateral Laplace transform on an
interval of the real line.

Lemma 6.8. LetG(dx) andH(dx) be measures on(IR,B1). If∫
IR

exp(ux)G(dx) =
∫

IR
exp(ux)H(dx) <∞

for all u from a non-empty finite interval(a, b) ⊂ IR, thenH = G.

Proof. Setc := (a + b)/2, d := (b− a)/2, and define measuresG′ andH ′ by

G′(dx) := exp(cx)G(dx), H ′(dx) := exp(cx)H(dx).

Then ∫
IR

exp(vx)G′(dx) =
∫

IR
exp(vx)H ′(dx) <∞(6.15)

for all v ∈ (−d, d). In particular, takingv = 0 shows thatG′ andH ′ are finite (positive) measures
with equal mass, and without loss of generality we can assume that this mass is1. Thus we can apply
the theory of probability distributions. Equation (6.15) says that the moment generating functions ofG′

andH ′ coincide on the interval(−d, d). By well-known results about moment generating functions (cf.
Billingsley (1979), p. 345), this implies thatG′ = H ′ and henceG = H.
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6.5 Uniqueness of the Martingale Measure

Theorem 6.9. In the Lévy term structure model (6.5), there is no measureQ 6= P with Q
loc∼ P such

that all bond prices, when expressed in units of the money account, are local martingales. Thus—under
the paradigm of martingale pricing—prices of integrable contingent claims are uniquely determined by
this model and can be calculated by taking conditional expectations underP .

Proof. We proceed as follows: We assumeQ
loc∼ P is a (local) martingale measure for the bond market.

Using Proposition 5.6 of Björk et al. (1997), we show that the characteristic triplet of the processL,
which is a Lévy process under the measureP , is the same underP and underQ. Then Lemma 6.7 shows
that the two measures are equal.

Björk et al. (1997), Proposition 5.6, states the following: If a measureQ is a (local) martingale measure
which is locally equivalent toP , then there exist a predictable processϕ with values inIRn (that is,
the state space of the Brownian motionW ) and aP ⊗ X -measurable functionY = Y (ω, t, x) > 0
satisfying the following integrability conditions (6.16) and (6.17) as well as conditions 1 through 4 below.
(The compensator of the jump measure is assumed to be continuous with respect to Lebesgue measure,
ν(ds, dx) = λs(dx)ds.) The integrability conditions onϕ andY are∫ t

0
|ϕs|2ds <∞ for t <∞ P-a.s.,(6.16)

and
∫ t

0

∫
X

(√
Y (s, x)− 1

)2
λs(dx)ds <∞ for t <∞ P-a.s.(6.17)

The martingale conditions are as follows.

1. The process

W ′
s := Ws −

∫ t

0
ϕsds

is a standard Brownian motion with respect toQ.

2. The random measureν ′ := Y ν is theQ-compensator ofµ.

3. The following integrability condition is satisfied for all finitet andT :∫ t

0

∫
X

(
exp(D(s, x, T ))− 1

)
1l{D(s,x,T )>ln 2}Y (s, x)λs(dx)ds <∞ P -a.s.(6.18)

4. For anyT it holds thatdPdt-almost everywhere

at(T ) + St(T )ϕt +
∫

X

[
(exp(D(s, x, T ))− 1)Y (t, x)−D(s, x, T )

]
λt(dx) = 0

Hereat(T ) is defined byat(T ) = At(T ) + 1
2

∣∣St(T )
∣∣2. This is a generalization of the Heath,

Jarrow, and Morton (1992) drift condition to the case of jump-diffusion models.

The functionsϕ andY come from the Girsanov theorems for semimartingales and random measures
(see Theorems 6.2 and Jacod and Shiryaev (1987), Theorem III.3.17, respectively.) Björk et al. (1997)
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consider very general random measuresµ and ν, so they need the more general Girsanov theorem.
In the case of the Lévy model presented in Eberlein and Raible (1999),µL is the jump-measure of a
semimartingale. Consequently we can rely entirely on the Girsanov theorem for semimartingales here.
The characteristicC can be represented asC = c̃ · A, with c̃ ≥ 0 predictable andA increasing. SinceL
is a Lévy process, we can chooseAt = t andc̃ = c, with the constantc from (6.7).

The proof of Björk et al. (1997), Proposition 5.6, examines the processZ(ϑ)t that describes the dis-
counted price process of theϑ-bond. By assumption, this process is a local martingale under the measure
Q, and so is the stochastic integralM := Z(ϑ)− · Z(ϑ). Trivially, M is a special semimartingale, and
the predictable finite-variation process in the canonical decomposition is zero. Björk et al. (1997) give
an explicit formula for this process:∫ t

0
[as(ϑ) + Ss(ϑ)ϕs]ds +

∫ t

0

∫
X

[(eD(s,x,ϑ) − 1)Y (s, x)−D(s, x, ϑ)]ν(ds, dx) = 0.(6.19)

As usual in the theory of stochastic processes, this equality is to be understood up to indistinguishability:
For eachϑ, there is a setN(ϑ) ⊂ Ω of P -measure zero such that the paths of the process are zero for
all ω ∈ Ω\N(ϑ). Below it will turn out to be convenient to differentiate this equation with respect to
the variableϑ while keepingω fixed. But for this to be possible, relation (6.19) must hold for anyϑ,
which is not necessarily true because the exception setN(ϑ) may depend onϑ. It is tempting to work
around this problem by removing the “null set”∪N(ϑ) from Ω. But since the set of repayment datesϑ
is uncountable, uniting allN(ϑ) might result in a set of strictly positive measure, or in a set that is not
measurable at all. Therefore we will have to use a different approach below, using the continuity ofΣ.

Given anyϑ ∈ [0, T ?], equation (6.19) is valid fort ∈ [0, ϑ] andω ∈ Ω\N(ϑ). In order to avoid the prob-
lems mentioned above, we choose a countable dense subsetΘ of [0, T ?] and defineN := ∪ϑ∈ΘN(ϑ).
For the arguments to come, we fix an arbitraryω ∈ Ω\N .

With the coefficients of the Lévy term structure model inserted into equation (6.19), and withω fixed as
described, we get∫ t

0

[
Σ(s, ϑ)b− κ

(
Σ(s, ϑ)

)
+

1
2
Σ(s, ϑ)2c + Σ(s, ϑ)

√
cϕs(ω)

+
∫

IR
[(eΣ(s,ϑ)x − 1)Y (s, x, ω)− Σ(s, ϑ)x]F (dx)

]
ds = 0

for all ϑ ∈ Θ and allt ∈ [0, ϑ]. Since the integral with respect tos is zero for allt, the integrand must be
zero forλ1-almost everys. We can choose a Lebesgue null setN ′ ⊂ [0, T ?], not depending onϑ, such
that

(6.20) Σ(s, ϑ)b− κ
(
Σ(s, ϑ)

)
+

1
2
Σ(s, ϑ)2c + Σ(s, ϑ)

√
cϕs(ω)

+
∫

IR
[(eΣ(s,ϑ)x − 1)Y (s, x, ω)− Σ(s, ϑ)x]F (dx) = 0

for all ϑ ∈ Θ and alls ∈ [0, ϑ]\N ′. Note thatN ′ depends on the valueω we have fixed above.

Equation (6.20) may be written in the form

(6.21) f
(
Σ(s, ϑ), s, ω

)
+

∫
IR

g
(
Σ(s, ϑ), x, Y (s, x, ω)

)
F (dx) = 0

for all ϑ ∈ Θ and alls ∈ [0, ϑ]\N ′,
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with the functionsf andg defined by

f(σ, s, ω) := σb− κ
(
σ
)

+
1
2
σ2c + σ

√
cϕs(ω),

g(σ, x, y) := (eσx − 1)y − σx.

SinceT 7→ Σ(s, T ) is continuous for fixeds, it maps the setΘ onto a dense subsetDs ⊂ Σ(s, [s, T ?]).
By assumption,Σ(s, s) = 0 andΣ(s, t) > 0 (s < t ≤ T ?), so that int(Σ(s, [s, T ?])) = (0, a) for some
a = as > 0. For any fixeds ∈ [0, T ?)\N ′ we have, by equation (6.21),

f
(
d, s, ω

)
+

∫
IR

g
(
d, x, Y (s, x, ω)

)
F (dx) = 0 ∀ ϑ ∈ [s, T ?] ∩Θ, d ∈ Ds.

The next proposition shows that the function

σ 7→ f
(
σ, s, ω

)
+

∫
IR

g
(
σ, x, Y (s, x, ω)

)
F (dx)

is twice continuously differentiable and that we can interchange differentiation and integration. As we
will see below, this implies the equality of the bilateral Laplace transforms of the measuresx2F (dx) and
Y (s, x, ω)x2F (dx).

Proposition 6.10. Let F (dx) be the Lévy measure of an infinitely divisible distribution. Lety(x) be a
strictly positive function onIR such that there exist an open interval(0, a) and a dense subsetD ⊂ (0, a)
with ∫

IR

(√
y(x)− 1

)2
F (dx) <∞,(6.22) ∫

IR
(|x| ∧ |x|2)F (dx) <∞,(6.23)

and
∫

IR
(eux − 1)1l{ux>ln 2}y(x)F (dx) <∞ ∀u ∈ D.(6.24)

Then for any constantsb, c, andϕ, the function

u 7→ ub− κ(u) +
1
2
u2c + uϕ +

∫
IR

[(eux − 1)y(x) − ux]F (dx)(6.25)

is twice continuously differentiable on(0, a). Its first and second derivative is given by

u 7→ b− κ′(u) + uc + ϕ +
∫

IR
[eux · x · y(x)− x]F (dx)(6.26)

and u 7→ −κ′′(u) + c +
∫

IR
x2euxy(x) F (dx), respectively.(6.27)

Proof. Obviously, all the terms in (6.25) but the integral are twice continuously differentiable. Below
we will prove that the integral term is twice continuously differentiable, and that differentiation and
integration can be interchanged there. This proves that the first two derivatives are given by (6.26) and
(6.27), respectively.

We have to show thatu 7→
∫

IR[(eux− 1)y(x)− ux]F (dx) is twice continuously differentiable on(0, a).
Since differentiability is a local property, it suffices to prove differentiability on any subset(u, u) ⊂ (0, a)
with 0 < u < u < a. For the rest of the proof, we fix such an interval.
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The first derivative. It is well known that an integral whose integrand depends on a parameter is dif-
ferentiable with respect to this parameter, with the derivative being the integral of the derivative of the
integrand, if the following three conditions are satisfied (cf. Bauer (1992), Lemma 16.2.)

(D-1) For all parameter values, the integrand has to be integrable.

(D-2) The integrand has to be differentiable in the parameter.

(D-3) There has to exist an integrable bound for the derivative of the integrand that does not depend
on the parameter.

The first two points are clearly satisfied here. We denote byg(u, x) the integrand in (6.25). The first
derivative ofg(u, t) with respect tou is given by

∂1g(u, x) = x · (exp(ux)y(x) − 1).

In order to verify (D-3), we have to find anF (dx)-integrable functionG(x) that satisfies

sup
u∈(u,u)

|∂1g(u, x)| ≤ G(x).

Below, in equation (6.29), we define a functionH(x, y) such thatH(x, y(x)) is F (dx)-integrable and

sup
u∈(u,u)

∣∣x · (euxy − 1)
∣∣ ≤ H(x, y) for x ∈ IR, y > 0.

ThenG(x) := H(x, y(x)) is the desired bound for∂1g(u, x). The following lemma will be used to
prove that the functionH(x, y) defined in (6.29) indeed satisfies the condition thatH(x, y(x)) beF (dx)-
integrable.

Lemma 6.11. Let F (dx) andy(x) be as in Proposition 6.10. Then the following functions areF (dx)-
integrable over any bounded interval:

x 7→ x2, x 7→ y(x)x2.

On the other hand, the following functions areF (dx)-integrable over any interval that is bounded away
from zero.

x 7→ |x|, x 7→ y(x).

Finally, for everyu from the dense setD the function

x 7→ exp(ux)y(x)

is F (dx)-integrable over any interval of the form(ξ,∞) with ξ > 0.

Proof. The integrability ofx2 and|x| over the respective intervals is trivially implied by condition (6.23).

For arbitrary numbersv ∈ IR, w > 0, the following estimation holds.

|(w − 1)v| = |(
√

w − 1)2 + 2
√

w − 2||v|
≤ (
√

w − 1)2|v|+ 2|
√

w − 1||v|
≤ (
√

w − 1)2|v|+ (
√

w − 1)2 + v2

≤ (
√

w − 1)2(|v|+ 1) + v2.(6.28)
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Hence we have

y(x)x2 = (y(x)− 1)x2 + x2 ≤
(√

y(x)− 1
)2(x2 + 1) + x4 + x2.

Since the functionsx 7→ (x2 + 1), x 7→ x4, andx 7→ x2 are bounded on any bounded interval, the
integrability ofx 7→ y(x)x2 follows by condition (6.22).

For the functiony(x), we have

y(x) ≤ 41l{y(x)<4} + (
√

y(x)− 1)21l{y(x)≥4},

which by (6.22) and (6.23) isF (dx)-integrable over any set bounded away from zero.

Finally,
euxy(x) = (eux − 1)1l{ux>ln 2}y(x) + (eux − 1)1l{ux≤ln 2}y(x) + y(x),

with 0 < (eux − 1) · 1l{ux≤ln 2} ≤ 1 for x > 0. Hence∣∣euxy(x)
∣∣ = (eux − 1)1l{ux>ln 2}y(x) + 2y(x),

which is integrable over(ξ,∞) because of condition (6.24) and becausey(x) was already shown to be
integrable over any interval bounded away from zero.

Now we proceed with the proof of Proposition 6.10. We define a functionH(x, y) that is a bound for the
function(x, y, u) 7→ x · (euxy − 1), uniformly for u ∈ (u, u). For this, we choose someδ > 0 such that
u+ δ ∈ D. The functionH(x, y) will be defined piecewise forx ∈ (−∞,−1/u), x ∈ [−1/u, 1/u], and
x ∈ (1/u,∞), respectively. We use the following estimations.

1. Forx ∈ (−∞,−1/u),

|x(exp(ux)y − 1)| ≤ |x| exp(ux)y + |x|
≤ |x| exp(−u|x|)y + |x|
≤ C1y + |x|,

sinceu > 0 implies that|x| exp(−u|x|) is bounded by some constantC1.

2. Forx ∈ [−1/u, 1/u], we have|x| ≤ 1/u andux ≤ u/u < 1. Hence with the aid of relation
(6.28), we get

|x(exp(ux)y − 1)| = |x|| exp(ux)− 1 + (y − 1) exp(ux)|
≤ |x|| exp(ux)− 1|+ |y − 1||x| exp(ux)

≤ |x||e · ux|+ (
√

y − 1)2
(1
u

+ 1
)

+ |x|2

≤ (ue + 1)|x|2 + (
√

y − 1)2
(1
u

+ 1
)
.

3. Forx ∈ (1/u,∞),

|x(exp(ux)y − 1)| ≤ |x| exp(ux)y + |x| ≤ |x| exp(ux)y + |x|
≤ |x| exp(−δx) exp((u + δ)x)y + |x|
≤ C2 exp((u + δ)x)y + |x|,

whereC2 > 0 is a bound forx 7→ x exp(−δx) onx > 0.
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Now we defineH(x, y) by

H(x, y) :=


C1y + |x| (x ∈ (−∞,−1/u)),
(ue + 1)|x|2 + (

√
y − 1)2

(
1
u + 1

)
(x ∈ [−1/u, 1/u]),

C2 exp((u + δ)x)y + |x| (x ∈ (1/u,∞)).
(6.29)

Lemma 6.11 yields thatx 7→ H(x, y(x)) is F (dx)-integrable. Hence we have proved that the integral in
(6.25) is continuously differentiable, and that we can interchange differentiation and integration.

The second derivative. The proof here is completely analogous to the proof for the first derivative.
Again we use the fact that an integral is differentiable with respect to a parameter of the integrand if the
three conditions (D-1), (D-2), and (D-3) hold. The first two conditions are obviously satisfied. For the
proof of (D-3), we only have to find some uniform bound on the second derivative. In order to do this,
we show thatg11(u, x) = x2 euxy(x) is bounded, uniformly inu for u ∈ (u, u), by a functionH(x, y)
that turns into anF (dx)-integrable function when we substitutey(x) for y..

Again fix a valueδ > 0 with u + δ ∈ D. We defineH(x, y) piecewise inx, using the following
estimations.

1. Forx ∈ (−∞,−1/u),

|x2 exp(ux)y| ≤ |x|2e−u|x|y ≤ C3y,

wherex 7→ |x|2e−u|x| is bounded by some constantC3 > 0 becauseu > 0.

2. Forx ∈ [−1/u, 1/u], we have

−1 < −u

u
≤ ux ≤ u

u
< 1,

becauseu ∈ (u, u) by assumption. Henceeux < e, and thus

x2 exp(ux)y ≤ x2 · e · y.

3. Forx ∈ (1/u,∞),

x2 exp(ux)y ≤ x2 exp(ux) · y
≤ x2 exp(−δx) exp((u + δ)x) · y
≤ C4 · exp

(
(u + δ)x

)
· y,

whereC4 > 0 is a bound forx 7→ x2e−δx on{x > 0}.

The functionH(x, y) is defined as follows.

H(x, y) :=


C3y (x ∈ (−∞,−1/u)),
x2ey (x ∈ [−1/u, 1/u]),
C4 · exp

(
(u + δ)x

)
· y (x ∈ (1/u,∞)).

Again Lemma 6.11 yields thatx 7→ H(x, y(x)) is F (dx)-integrable. Hence the integral in (6.25) is twice
continuously differentiable, and we can interchange differentiation and integration. This completes the
proof.
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We now apply Proposition 6.10 to our change-of-measure problemP ; Q. Condition (6.16) implies
that forP -a. e.ω, ϕs(ω) <∞ for λ(ds)-a. e.s ∈ IR. Condition (6.17) implies that forP -a. e.ω∫

IR

(√
Y (s, x, ω)− 1

)2
F (dx) <∞ for λ(ds)-a. e.s ∈ IR.

Equation (6.18) implies that forϑ ∈ Θ andP -a. e.ω,∫
IR

(
exp(Σ(s, ϑ)x)− 1

)
1l{Σ(s,ϑ)x>ln 2}Y (s, x, ω)F (dx) <∞ for λ(ds)-a. e.s.

Fixing ω ∈ Ω\N outside the three null sets corresponding to the three conditions above, and fixing
s outside the corresponding Lebesgue-null sets, we can apply Proposition 6.10 with the functiony(x)
defined by

y(x) := Y (s, x, ω).

This yields that the function

σ 7→ σb− κ(σ) +
1
2
|σ|2c + σ

√
cϕs(ω) +

∫
IR

[
(eσx − 1)Y (s, x, ω) − σx

]
F (dx)(6.30)

is twice continuously differentiable. By equation (6.20) the function vanishes forσ ∈ Ds. SinceDs is
dense in some interval(0, a), the function (6.30) has to vanish on the whole interval(0, a). Hence the
first and second derivative of this function are zero on this interval:

−κ′(σ) + σc + ϕs(ω) +
∫

IR
(eσxY (s, x, ω)− 1)xF (dx) = 0(6.31)

and − κ′′(σ) + c +
∫

IR
eσxx2Y (s, x, ω)F (dx) = 0(6.32)

for all σ ∈ (0, a), respectively.

By assumption, the measureP itself is a martingale measure. Consequently, the choicesY (s, x, ω) ≡ 1
andϕs(ω) = 0, corresponding to the trivial change of measureP ; P , satisfy equations (6.31) and
(6.32). Equation (6.32) yields ∫

IR
eσxx2F (dx) = κ′′(σ)− c,

and hence ∫
IR

eσxx2Y (s, x, ω)F (dx) =
∫

IR
eσxx2F (dx) for σ ∈ (0, a).

Because the measurex2F (dx) is uniquely characterized by the values of its bilateral Laplace transform
on any non-degenerate interval (see Lemma 6.8), we haveY (s, x, ω) = 1 for F (dx)-almost allx ∈ IR
and for alls ∈ [0, T ?]\N ′. Equation (6.31) then yieldsϕs(ω) = 0 for s ∈ [0, T ?]\N ′.
With these conditions satisfied, we getQ = P by Lemma 6.7. Hence there is no measureQ 6= P with

Q
loc∼ P such that all bond prices are local martingales when expressed in units of the money account.
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6.6 Conclusion

Using a drift condition of the Heath, Jarrow, and Morton (1992) type, we have shown that the martingale
measure is unique in the Lévy term structure model of Eberlein and Raible (1999). However, as was noted
by Björk, Di Masi, Kabanov, and Runggaldier (1997), in models with a continuum of securities there is
a marked difference between completeness and uniqueness of the martingale measure, the latter being a
strictly weaker condition in general: Even with measure-valued strategies as introduced in Björk et al.
(1997), uniqueness of the martingale measure does not imply that one can hedge every contingent claim.
Instead, the right concept to replace completeness in this context seems to beapproximate completeness
as defined in Björk et al. (1997), section 6.3. Approximate completeness means that every (bounded)
contingent claim can be approximated inL2 by final values of admissible strategies. Under certain
conditions on the compensator of the driving random measure, uniqueness of the martingale measure is
equivalent to approximate completeness (see Björk et al. (1997), Theorem 6.11.) In this sense, the Lévy
term structure model of Eberlein and Raible (1999) is approximately complete.
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Chapter 7

Lévy Term-Structure Models:
Generalization to Multivariate Driving
Lévy Processes and Stochastic Volatility
Structures

7.1 Introduction

The Lévy term structure model of Eberlein and Raible (1999), which was presented in Chapter 4, is
driven by a one-dimensional general Lévy process. This allows for a more realistic modeling of the
return distribution of zero coupon bonds. The volatility structure employed in this model is deterministic.

Empirical evidence suggests that term structure movements can be captured even better by a multi-factor
model. Furthermore volatility seems to fluctuate randomly in financial markets, so there is need for term
structure models featuring a multivariate driving process and stochastic volatility. In what follows, we
present such a model as a generalization of the Lévy term structure model described in Chapter 4. As in
this chapter, the model is based on a driving Lévy process, which preserves analytical tractability because
of the simple structure of Lévy processes.

The chapter is structured as follows. In section 7.2, we show in general how one can construct martingales
of an exponential form. In particular, this is applied to martingales driven by Lévy processes. As a
corollary, we verify the martingale condition for a multivariate stochastic-volatility term structure model.
Section 7.3 shows how one can construct the model in such a way that forward rates are well defined.
An explicit expression for the forward rate processes is derived. Section 7.4 concludes.

7.2 Constructing Martingales of Exponential Form

Definition 7.1. Let X be an adapted stochastic process.X belongs to class Dif the family of ran-
dom variables(XT )T stopping timeis uniformly integrable.X belongs to class LDif for each t ∈ IR+,
(XT )T ≤ t stopping timeis uniformly integrable.
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For the convenience of the reader, we cite the following lemma, which does not seem to be standard
textbook material.

Lemma 7.2 (Loève (1963), Sec. 25.1.2).LetXn → X in Lp for p ≥ 1. Then for anyσ-algebraF ⊂ A

we haveE [Xn|F]→ E [X|F] in Lp.

Proof. Jensen's inequality for conditional expectations yields

E [ |E [Xn|F]−E [X|F] |p ] = E [ |E [Xn −X|F] |p ]
≤ E [ E [ |Xn −X|p | F ] ] = E [ |Xn −X|p ] ,

where the right hand side tends to zero by assumption.

The following proposition was formulated in Elworthy, Li, and Yor (1999), Proposition 2.2. We feel that
the proof given there is incomplete because it uses a formula (namely, formula (2) in their article) that
was only proven forcontinuouslocal martingales. We give an alternative proof here.

Proposition 7.3. A local martingale(Mt) such thatE [|M0|] < ∞ and that its negative partM− be-
longs to class LD is a supermartingale. It is a martingale if and only ifE [Mt] = E [M0] for all t > 0.

Proof. Let (Tn)n∈IN be a localizing sequence of stopping times, that is,Tn ↑ ∞ almost surely, with
Mt∧Tn being a uniformly integrable martingale for alln ∈ IN. Fix an arbitrary pairs, t ∈ IR+ with
s ≤ t. Then obviously the following sequences converge almost surely asn→∞.

M+
t∧Tn

→M+
t , M−

t∧Tn
→M−

t , and Ms∧Tn →Ms.(7.1)

For alln ∈ IN, we have by assumption

Ms∧Tn = E [Mt∧Tn | Fs] = E
[
M+

t∧Tn

∣∣Fs

]
−E

[
M−

t∧Tn

∣∣Fs

]
.(7.2)

The stopping times(t ∧ Tn)n∈IN are bounded byt < ∞. SinceM− belongs to LD, this implies that
(M−

t∧Tn
)n∈IN is a uniformly integrable sequence. Hence almost sure convergence entails convergence in

L1, which by Lemma 7.2 impliesL1-convergence of the conditional expectations.

E
[
M−

t∧Tn

∣∣Fs

]
→ E

[
M−

t

∣∣Fs

]
in L1 and hence in probability.(7.3)

Without loss of generality, we can assume that we have almost sure convergence here. (Otherwise we
would repeat the proof with a suitable subsequence(Tnk)k∈IN of stopping times.) On the other hand,
Fatou's Lemma for conditional expectations (see e. g. Chow and Teicher (1997), Section 7.1, Theorem
2(ii)) yields

lim inf
n→∞

E
[
M+

t∧Tn

∣∣Fs

]
≥ E

[
lim inf
n→∞

M+
t∧Tn

| Fs

]
(7.1)= E

[
M+

t

∣∣Fs

]
.(7.4)

Combining (7.1), (7.2), (7.3), and (7.4) yields the almost sure relations

Ms
(7.1)= lim

n→∞
Ms∧Tn

(7.2)= lim inf
n→∞

E
[
M+

t∧Tn

∣∣Fs

]
− lim

n→∞
E

[
M−

t∧Tn

∣∣Fs

]
(7.3), (7.4)
≥ E

[
M+

t

∣∣Fs

]
−E

[
M−

t

∣∣Fs

]
= E [Mt| Fs] .
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The second part of the proposition is a well-known result. The “only if” part is trivially true. On the
other hand, ifM is a supermartingale that is not a martingale, then there is at least one pairs, t ∈ IR+,
s < t, and a setAs ∈ As such that ∫

As

MsdP >

∫
As

MtdP.

But since the complementAc
s is also contained inAs, the supermartingale property ofM implies∫

Acs

MsdP ≥
∫

Acs

MtdP.

Adding these inequalities yields

E [Ms] =
∫

As

MsdP +
∫

Acs

MsdP >

∫
As

MtdP +
∫

Acs

MtdP = E [Mt] .

Corollary 7.4. a) Any local martingale belonging to LD is a martingale.
b) LetM be a local martingale. If for anyt ≥ 0 there is an integrable random variableB(t)(ω) such
that |Ms(ω)| ≤ B(t)(ω) for all ω ∈ Ω and for all s ≤ t, thenM is a martingale.

Proof. a) Obviously,M− and(−M)− = M+ belong to LD ifM does. Application of Proposition (7.3)
yields thatM as well as−M are supermartingales. HenceM must be a martingale.
b) If T is a stopping time that is bounded by some constantt <∞, then we have

|MT (ω)| = |MT (ω)(ω)| ≤ B(t)(ω) for all ω ∈ Ω.

Consequently, the family(MT )T stopping time withT ≤ t is bounded by the integrable random variableB(t)

and hence is uniformly integrable. This implies that the local martingaleM belongs to LD and thus is a
martingale. (See part a.)

The following proposition shows how one can use arguments from complex analysis to prove the mar-
tingale property for a larger class of stochastic processes when it is known for a subclass.

Proposition 7.5. LetM(s, ω; z) be a family of adapted stochastic processes parameterized by a complex
variablez. Assume that the mappingz 7→M(s, ω; z) is analytic forz ∈ S, with a horizontal stripS :=
IR + i(a, b) ⊂ C wherea < 0 < b, a, b ∈ IR. Assume further that the partial derivatives∂zM(s, ·; z)
are bounded by integrable functions, locally inz ∈ S; that is, assume that for eachs ∈ IR+, z0 ∈ S
there is an open neighborhoodN(z0) and an integrable random variableB(s,z0)(ω) such that

|∂zM(s, ω; z)| ≤ B(s,z0)(ω) for all z ∈ N(z0), ω ∈ Ω.

Under these conditions, ifM(·, ·;u) is a martingale for eachu ∈ IR, then allM(·, ·; z), z ∈ S, are
martingales as well.
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Proof. First, we have to show integrability ofω 7→ M(s, ω; z) for arbitrary fixeds ∈ IR+, z ∈ S.
To this end, we note that the compact set Re(z) + i[0, Im(z)] ⊂ C is covered by a finite number of
neighborhoods, sayN(zj), j = 1, . . . , k. Hence

|M(s, ω; z)| ≤ |M(s, ω; Re(z))| + |Im(z)|
k∑

j=1

B(s,zj)(ω),

where the right-hand side is integrable by assumption.

Next, consider an arbitrary setAs ∈ As. Then for anyt with t ≥ s we have that

z 7→
∫

1lAsM(t, ω; z) P (dω)(7.5)

is a differentiable function onS ⊂ C, with

∂z

∫
As

M(t, ω; z) P (dω) =
∫

As

∂zM(t, ω; z) P (dω).

This is true because the integrand on the right-hand side is by assumption bounded locally around each
z ∈ S by an integrable functionB(t,z0)(ω). Obviously, the Cauchy-Riemann differential equations are
satisfied by the functionz 7→ 1lAsM(t, ω; z) in the integrand, and interchanging differentiation and
integration yields the validity of these equations for the integral. Hence the function (7.5) is analytic for
each fixedt ≥ s. In particular, it is analytic fort = s. Taking an arbitrary pairt ≥ s, we have∫

As

M(s, ω; z) P (dω) =
∫

As

M(t, ω; z) P (dω) for all z ∈ IR, As ∈ As,(7.6)

becauseM(s; z) was assumed to be a martingale for real values ofz. Since both sides in (7.6) depend on
z in an analytic way, this equality carries over to allz ∈ S, in virtue of the identity theorem for analytic
functions. Hence indeedM(s; z) is a martingale for eachz ∈ S.

Proposition 7.6. Let X be a d-dimensional locally bounded predictable process and letY be a d-
dimensional special semimartingale that has characteristicsBY , CY , andνY with respect to a trun-
cation functionh. Then the stochastic integral process

X · Y :=
∫

X dY :=
d∑

i=1

∫
Xi dY i

is a special semimartingale as well and has the following characteristics with respect to the truncation
functionh.

BX·Y = X ·BY + (h(Xx) −Xh(x)) ∗ νY ,

CX·Y =
d∑

i,j=1

∫
(XiXj)sd((CY )ij)s,

and νX·Y with W (ω, t, x) ∗ νX·Y = W (ω, t,Xt(ω)x) ∗ νY

for all non-negative predictable functionsW (ω, t, x).
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Proof. Consider the canonical representation of thed-dimensional special semimartingaleY (see Jacod
and Shiryaev (1987), Corollary II.2.38.)

Y = Y0 + Y c + x ∗ (µY − νY ) + AY ,(7.7)

whereY c is the continuous local martingale part ofY andAY = BY + (x − h(x)) ∗ νY , according to
Jacod and Shiryaev (1987), Proposition II.2.29 a. [In order to stay within the framework set by Jacod
and Shiryaev (1987), we have to use a truncation functionh(x) here even though this is not necessary
for specialsemimartingales.] From (7.7), it is obvious that∫

X dY =
∫

X dY c +
∫

X d
(
x ∗ (µY − νY )

)
+

∫
X dAY .(7.8)

Hence
∫

XdY c = (
∫

XdY )c is the continuous local martingale part of
∫

XdY , and
∫

X d(x ∗ (µY −
νY )) is the purely discontinuous local martingale part. SinceX is locally bounded and predictable,∫

X dAY is locally integrable and predictable. ThereforeX · Y is indeed a special semimartingale. By
Jacod and Shiryaev (1987), Corollary II.2.38,xi belongs toGloc(µY ). Consequently we can use Jacod
and Shiryaev (1987), Proposition II.1.30 b, to get∫

X d(x ∗ (µY − νY )) = (Xtx) ∗ (µY − νY ).

Since the jump process ofX · Y is X∆Y , the jump measure of the processX · Y satisfies

W (ω, t, x) ∗ µX·Y = W (ω, t,Xt(ω)x) ∗ µY .(7.9)

for all predictable (i. e.,P̃ ⊗ B1-measurable), non-negative functionsW . The characteristicνX·Y is
defined to be the compensator of the random measure associated with the jumps ofX ·Y . In general, the
compensatorof an optional,P̃ ⊗ B1-σ-finite random measureµ is defined to be the unique predictable
random measureν satisfying

E [W (ω, t, x) ∗ µ] = E [W (ω, t, x) ∗ ν]

for all predictable, non-negative functionsW . (See Jacod and Shiryaev (1987), Theorem II.1.8.) From
this definition, we can directly derive the form of the compensatorνX·Y : For all predictable, non-negative
functionsW (ω, t, x), W (ω, t,Xt(ω)x) is again predictable and non-negative. SinceνY is the compen-
sator ofµY , we have

E
[
W (ω, t, x) ∗ µX·Y ] (7.9)= E

[
W (ω, t,Xt(ω)x) ∗ µY

]
= E

[
W (ω, t,Xt(ω)x) ∗ νY

]
.

Hence the natural candidate for the compensatorνX·Y is the optional random measure defined by

V (ω, t, x) ∗ νX·Y := V (ω, t,Xt(ω)x) ∗ νY(7.10)

for all optional functionsV . This measure is indeed predictable: By definition (see Jacod and Shiryaev
(1987), Definition 1.6 a), a random measureµ is called predictable iff for every predictable functionW
the integral processW ∗ µ is predictable. But the definition (7.10) shows that for predictableV , the
integral processV ∗ νX·Y is equal to an integral of a predictable function (namely,V (ω, t,Xt(ω)x))
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with respect to the compensatorνY . SinceνY is predictable by definition, this integral is a predictable
process. Hence indeedνX·Y is a predictable random measure.

The quadratic characteristicC of ad-dimensional semimartingaleZ is defined component-wise:

Cij := 〈(Zi)c, (Zj)c〉,

where(Zi)c is the continuous local martingale part of thei-th component ofZ (i = 1, . . . , d). The two
semimartingalesX · Y andY that we consider here have continuous local martingale partsX · Y c =∑d

i=1 Xi · (Y i)c andY c, respectively. Hence we can use the relation

〈Xi · (Y i)c,Xj · (Y j)c〉 = (XiXj) · 〈(Y i)c, (Y j)c〉,

which is valid by Jacod and Shiryaev (1987), Theorem I.4.40 d, to get

CX·Y =
d∑

i,j=1

〈Xi · (Y i)c,Xj · (Y j)c〉 =
d∑

i,j=1

(XiXj) · 〈(Y i)c, (Y j)c〉 =
d∑

i,j=1

(XiXj) · Cij,

as was stated above. Finally, the drift component can be derived from the locally integrable, predictable
summandAX·Y in the canonical decomposition (7.8) of the special semimartingaleX · Y :

BX·Y = AX·Y − (x− h(x)) ∗ νX·Y

= X ·BY + X · ((x− h(x)) ∗ νY )− (Xx− h(Xx)) ∗ νY

= X ·BY + (h(Xx) −Xh(x)) ∗ νY .

Corollary 7.7. LetL be aIRd-valued Lévy process. Then for anyIRd-valued bounded predictable pro-
cessX the stochastic integralX · L has the characteristic triplet

BX·L
t =

∫ t

0

(
bXs +

∫
(h(Xsx)−Xsh(x))F (dx)

)
ds,

CX·L
t =

∫
XT

s cXs ds,(7.11)

νX·L(ω, ds, dx) = ds F x 7→Xs(ω)x(dx),

where F x 7→Xs(ω)x(dx) denotes the image ofF (dx) under the mappingx 7→ Xs(ω)x, that is,
F x 7→Xs(ω)x(A) =

∫
1lA(Xs(ω)x)F (dx) for A ∈ B1, s ∈ IR+, ω ∈ Ω.

Proof. By Jacod and Shiryaev (1987), Corollary II.4.19, the characteristic triplet ofL can be chosen
deterministic: It is given by

BL
t (ω) := bt, CL

t (ω) := ct, νL(ω; dt, dx) := dt F (dx),

where the constantb ∈ IRd, the constant non-negative definite matrixc, and theσ-finite measureF (dx)
on (IRd,Bd) with

∫
(|x|2 ∧ 1)F (dx) <∞ andF ({x ∈ IRd : xj = 0 for at least onej ∈ {1, . . . , d}}) =

0 appear in the Lévy-Khintchine representation of the characteristic function ofL1 (see Jacod and
Shiryaev (1987), II.4.21):

E
[
eiu·L1

]
= exp

(
iu · b− 1

2
uT cu +

∫
(eiu·x − 1− iu · h(x))F (dx)

)
.(7.12)

Proposition 7.6, then yields the stated expressions for the characteristic triplet of the processX · L.
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Proposition 7.8. Let X be ad-dimensional predictable bounded process and letL be ad-dimensional
Lévy process. For eachu ∈ IR, define a processA(u)t as in Jacod and Shiryaev (1987), Eq. II.2.40:

A(u)t := iuBX·L
t − u2

2
CX·L

t +
∫

(eiux − 1− iuh(x))νX·L([0, t] × dx).(7.13)

Then

A(u)t =
∫ t

0
ψ(u ·Xs) ds ≡

∫ t

0
ψ

( d∑
j=1

ujXj
s

)
ds,

whereψ(u) is the exponent of the Lévy-Khintchine representation (7.12) of the characteristic function
of L1, i. e. the uniquely determined continuous function withψ(0) = 0 that satisfiesE[exp(iuL1)] =
exp(ψ(u)), u ∈ IR. Furthermore, for eachu ∈ IR the process(M(t;u))t∈IR+ defined by

M(t;u) :=
exp(iuX · Lt)

exp
(∫ t

0 ψ(u ·Xs) ds
) (t ∈ IR+)(7.14)

is a martingale.

Proof. In virtue of (7.11), we have

A(u)t = iub

∫ t

0
Xsds− u2

2

∫ t

0
XT

s cXs ds +
∫ t

0

∫
IRd

(eiuXs·x − 1− iuh(Xsx)) F (dx) ds

=
∫ t

0

(
iubXsds− u2

2
XT

s cXs +
∫

IRd
(eiuXs·x − 1− iuh(Xsx)) F (dx)

)
ds

=
∫ t

0
ψ(uXs) ds,

ObviouslyA(u) has continuous paths. In particular, we always have∆A(u)t(ω) 6= −1, and hence the
conditions of Jacod and Shiryaev (1987), Corollary II.2.48, are satisfied. This means that

exp(iuX · L)
E(A(u))

(7.15)

is a local martingale for allu ∈ IR, whereE(A(u)) denotes the Doléans-Dade exponential of the process
A(u). A formula for the exponential of a general real-valued semimartingaleZ is given in Jacod and
Shiryaev (1987), I.4.64:

E(Z)t = eZt−Z0−1/2〈Zc,Zc〉t
∏
s≤t

(1 + ∆Zs)e−∆Zs .

In Jacod and Shiryaev (1987), below Eq. II.2.40, it is noted thatA(u) is of finite variation. In addition, in
our case it is continuous. Hence the continuous local martingale partA(u)c as well as the jump process
∆A(u) vanish identically, and the stochastic exponential turns out to be the ordinary exponential,

E(A(u))t = eA(u)t−A(u)0 = eA(u)t ,

since obviouslyA(u)0 = 0. In order to show that (7.15) is actually a martingale (and not only a local
martingale), we show that it is uniformly bounded on each interval[0, t], t ∈ IR+. Then Corollary 7.4 b
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yields the desired result. The numeratorexp(iuX · L) in (7.15) satisfies| exp(iuX · L)| ≡ 1. The
modulus of the denominator is∣∣∣ exp

( ∫
ψ(uXs)ds

)∣∣∣ = exp
(∫

Reψ(uXs) ds
)
.

But ψ(x) (and hence Reψ(x)) is continuous by assumption. In particular, it is bounded over bounded
subsets ofIRd. So we can find a constantC > −∞ such that

Reψ(ux) ≥ C for all x in the range ofX·∧t.

Therefore ∫ s

0
Reψ(uXs) ds ≥

∫ s

0
C ds ≥ t(C ∧ 0) > 0,

for anys ≤ t <∞, and so ∣∣∣∣exp(iuX · Ls)
exp(A(u)s)

∣∣∣∣ ≤ 1
exp(t(C ∧ 0))

<∞.

We are now ready to prove the main result of the chapter.

Theorem 7.9. LetX be an adaptedIRd-valued process with left-continuous paths. Assume thatX takes
only values in ad-dimensional rectangle[a, b] := [a1, b1] × · · · × [ad, bd] ⊂ IRd with ai < 0 < bi, i =
1, . . . , n. LetL be a Lévy process. Assume thatL1 possesses a finite moment generating function on an
open neighborhoodU of [a, b]. Then the processN with

Nt :=
X · Lt

exp(
∫ t

0 κ(Xs)ds)
=

exp(
∑d

j=1

∫ t
0 Xj

s dLj
s)

exp(
∫ t

0 κ(Xs)ds)
(t ∈ IR+)

is a martingale, where

κ(u) = ln E [ exp(uL1) ]

= b · u +
1
2
uT cu +

∫ (
eu·x − 1− u · x

)
F (dx) (u ∈ U)

is the cumulant generating function of the infinitely divisible distribution ofL1.

Proof. First we note thatX is predictable and bounded, and so the stochastic integralX · L is well
defined. It was shown in Proposition 7.8 that for eachu ∈ IR the process

exp(iuX · L)
exp(

∫
ψ(uXs)ds)

,

is a martingale, whereψ : IRd → IR is the exponent of the Lévy-Khintchine representation of the
characteristic function ofL1.

Since the moment generating function ofL1 exists on an open neighborhood of the compact set[a, b],
there is ad-dimensional rectangle(a∗, b∗) = (a1

∗, b
1
∗)× · · · × (ad

∗, b
d
∗) ⊂ IRd with [a, b] ⊂ (a∗, b∗) ⊂ U .

The functionψ(u) can be extended to an analytic function on the complexd-dimensional rectangle

IRd − i(a∗, b∗) := {(x1 − ir1, . . . , xd − ird) ∈ Cd : xi ∈ IR, aj
∗ < rj < bj

∗} ⊂ Cd
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We denote this extension by the symbolψ again. The functionsκ andψ are then connected by the
relation

κ(u) = ψ(−iu) for u ∈ (a∗, b∗).

Define the setZ ⊂ C by

Z :=
{
z ∈ C : max

{aj
∗

bj
,
bj
∗

aj

}
< −Im(z) < min

{aj
∗

aj
,
bj
∗

bj

}
for j = 1, . . . , d

}
For z ∈ Z, we havezXs(ω) ∈ IRd − i(a∗, b∗) for all s ∈ IR+, ω ∈ Ω. Hence the processA(z) with
A(z)t(ω) :=

∫
ψ(zXs(ω))ds is well defined. For fixedω and t, the functionz 7→ A(z)t(ω), z ∈ Z,

is an analytic extension of the functionu 7→ A(u)t(ω) defined in (7.13). (Analyticity follows because
the partial derivative∂zκ(zXs(ω)) = Xs(ω)κ′(zXs(ω)) is bounded, locally inz ∈ Z, if X is bounded.
Therefore we can interchange integration with respect tods and differentiation with respect toz.)

Furthermore, the function
z 7→ exp(izX · L) (z ∈ Z)

is an analytic extension ofu 7→ exp(iuX · L). Define

M(t, ω; z) :=
exp(izX · L)

exp
(∫

ψ(zXs(ω))ds
) .

Then it follows from what was said above that

z 7→M(t, ω; z) (z ∈ Z)

is an analytic extension ofu 7→ M(t, ω;u), with M(t, ω;u) as defined foru ∈ IR in (7.14). The
derivative of this analytic function is given by

∂zM(t, ω; z) =
(
iX · Lt −

∫ t

0
Xsψ

′(zXs) ds
)
M(t, ω; z).

We want to show that this is bounded, locally uniformly inz, by an integrable function ofω. To this end,
we estimate

|∂zM(t, ω; z)| ≤
(
|X · Lt|+

∣∣∣ ∫ t

0
Xsψ

′(zXs) ds
∣∣∣) exp(−Im(z)X · L)

exp
( ∫

Reψ(zXs(ω))ds
) .

• For anyε > 0, we have

|X · Lt| ≤
exp(−εX · Lt)

ε
+

exp(εX · Lt)
ε

,

since the relation|x| ≤ exp(−εx)
ε + exp(εx)

ε holds for allx ∈ IR.

• For z from any bounded set whose closure is contained inZ, we have that|
∫ t

0 Xsψ
′(zXs) ds| ≤∫ t

0 |Xs| · |ψ′(zXs)| ds is bounded by an expression of the formt ·const becauseX is bounded and
ψ′(w) is analytic and hence bounded over compact subsets of its domain of regularity.
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• For z from any bounded setW whose closure is contained inZ, we have withα :=
infz∈W (−Im(z)) andβ := supz∈W (−Im(z)) that

exp(−Im(z)X · L) ≤ exp(αX · L) + exp(βX · L)

Clearly,−iα ∈ Z and−iβ ∈ Z, and so the right hand side is an integrable function.

• Forz from any bounded setW whose closure is contained inZ, we have thatzX takes only values
in a compact subset ofIRd − i(a∗, b∗), and hence

exp
( ∫ t

0
Reψ(zXs(ω))ds

)
≥ exp(t · C) > 0 (t ∈ IR+)

for some finite constantC.

Taking these points together we see that the conditions of Proposition 7.5 are satisfied. Hence
(M(t; z))t∈IR+ is a martingale for eachz ∈ Z. Settingz = −i, which is indeed an element ofZ
in virtue of the relationsaj

∗ < aj and bj < bj
∗ (j = 1, . . . , d), yields the statement that was to be

shown.

Corollary 7.10. Let σ : Ω × ∆ → IRd with n ∈ IN be ad-dimensional stochastic volatility structure
such that for each fixedω, T the functions 7→ σ(ω, s, T ) is continuous to the left and thatσi is globally
bounded by constantsai < 0 < bi, i = 1, . . . , d. Assume that ad-dimensional Lévy processL is given
that possesses a moment generating function on some open neighborhood of[a, b] := [a1, b1] × · · · ×
[ad, bd]. Let the price of a bond that matures at timeT be given by the stochastic process

P (t, T ) = P (0, T ) exp
(∫ t

0
r(s)ds

) exp
(∫ t

0 σ(ω, s, T )dLs

)
exp

(∫ t
0 κ(σ(ω, s, T ))ds

) .

Then for eachT the discounted bond price process

exp
(
−

∫ t

0
r(s)ds

)
P (t, T )

is a martingale.

Proof. For fixedT , the discounted bond price process is

exp
(
−

∫ t

0
r(s)ds

)
P (t, T ) = P (0, T )

exp
(∫ t

0 σ(ω, s, T )dLs

)
exp

(∫ t
0 κ(σ(ω, s, T ))ds

) ,

which is—up to a constant—a process of the form treated in Theorem 7.9. Since the conditions of this
theorem are satisfied here, the statement follows.
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7.3 Forward Rates

Proposition 7.11. Assume that the conditions for the multivariate stochastic-volatility term structure
model as described in Corollary 7.10 are given. Additionally, assume thatT 7→ P (0, T ) ∈ (0,∞) is
a continuously differentiable initial bond price structure. Further, assume thatσ(t, T ) be twice differ-
entiable in the second variable, with a bounded derivative∂22σ(t, T ;ω) := (∂T )2σ(t, T ;ω) that is a
continuous function oft. Then the stochastic integrals

∫
σ(s, T )dLs appearing in the definition of the

bond price processes can be chosen such that the (instantaneous) forward rates

f(t, T ) = − ∂

∂T
ln P (t, T ) (t ≤ T ).

are well defined and are given by

f(t, T ) = f(0, T )−
∫ t

0
∂2σ(s, T )dLs +

∫ t

0
∂2σ(s, T )κ′(σ(s, T ))ds.(7.16)

Remark: The instantaneous forward ratef(t, T ), contracted at timet for timeT ≥ t, is the interest rate
one will get on an investment over the infinitesimal period[T, T + dT ] if this investment is contractually
fixed at timet. The term “instantaneous” reflects the fact that money is lent only over an infinitesimal
period.

Proof of the proposition.The first and the third summand in (7.16) are the negative logarithmic deriva-
tives ofT 7→ P (0, T ) andT 7→ exp(−

∫ t
0 κ(σ(s, T ))ds, respectively. (For the latter term, this follows

by standard arguments used before, sinceκ is an analytic function andσ, ∂2σ are bounded.)

So we only have to prove that the second term in (7.16), namely
∫ t

0 ∂2σ(s, T )dLs, is the logarithmic

derivative ofT 7→
∫ t

0 σ(s, T )dLs. Since we want to differentiate a family of stochastic integrals with
respect to a continuous parameter (namely,T ), it is essential to choose the stochastic integrals in the right
way in order to avoid trouble with null sets. (Remember that each stochastic integral is defined up to a
null set only, which leads to problems when considering an uncountable family of stochastic processes.)

Consider the function∂22σ(ω; t, T ). Define∂22σ(ω; t, T ) := 0 for t > T . The function∂22σ(ω; t, T )
is P ⊗ B1-measurable and bounded by assumption. Hence by Protter (1992), Theorem IV.44, there is a
A ⊗ B(IR+) ⊗ B1-measurable functionZ(ω; t, T ) such that for eachT ∈ IR+, Z(ω; t, T ) is a càdlàg,
adapted version of the stochastic integral

∫ t
0 ∂22σ(ω; s, T )dLs.

Now define for eachS ∈ IR+ the finite measureκ(S) := 1l[0,S]λ
1(dT ) on B1. By Fubini's Theorem

for stochastic integrals (see Protter (1992), Theorem IV.45), we have that for eachS ∈ IR+, the process
Y (S) defined by

Y
(S)
t (ω) :=

∫
IR

Z(ω; t, T ) κS(dT ) =
∫ S

0
Z(ω; t, T ) dT

is a càdlàg version of∫ (∫
IR

∂2σ(ω; s, T ) κS(dT )
)

dLs =
∫ ( ∫ S

s
∂2σ(ω; s, T ) dT

)
dLs =

∫
σ(s, S) dLs.

The functionY (ω, t;S) := Y
(S)
t (ω) is A⊗B(IR+)⊗B1-measurable, and for eachS ∈ IR+ it is a càdlàg

adapted version of the stochastic integral
∫

∂2σ(s, S) dLs, where the integrand∂2σ isP⊗B1-measurable
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and bounded. Hence we can apply Protter (1992), Theorem IV.44, a second time and get that∫
Y (ω, t;S) κ(T )(dS) =

∫ T

0
Y (ω, t;S) dS

is a càdlàg version of∫ ∫
∂2σ(s, S) κ(T )(dS) dLs =

∫ ∫ T

0
∂2σ(s, S) dS dLs =

∫
σ(s, T ) dLs.

Hence we have shown that one can choose the stochastic integrals
∫

σ(s, S) dLs, S ∈ IR+, by∫
σ(s, T ) dLs :=

∫ T

0

∫
∂2σ(s, S) dLs dS, (ω ∈ Ω),(7.17)

with
∫

∂2σ(s, S) dLs defined by∫
∂2σ(s, S) dLs :=

∫ S

0
Z(ω, s;U) dU (ω ∈ Ω).

Since the latter is obviously continuous (in fact, absolutely continuous) as a function ofS, we have that
the right-hand side (and hence the left-hand side) of (7.17) is continuously differentiable with respect to
T , with the derivative given by

∫
∂2σ(s, T ) dLs.

7.4 Conclusion

We have shown how one can construct a Lévy-driven multi-factor term structure model with a stochastic
volatility structure. In this way, it is possible to capture three key features of the empirical behavior of
the term structure: Non-normal return behavior, multi-factor movement, and stochastic volatility.

As in most cases, more precise modeling requires a more complex model here, so in practice one will
have to trade off precision and numerical tractability. In particular, it would be illustrative to check which
of the three features named above yields the biggest improvements for the modeling of real term structure
movements.
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Appendix A

Generalized Hyperbolic and CGMY
Distributions and Lévy Processes

In the following, we give a brief description of generalized hyperbolic distributions, CGMY distribu-
tions, and the Lévy processes generated by this class of distributions. For a more detailed account of
generalized hyperbolic distributions see Eberlein (1999) or Prause (1999). More information on CGMY
distributions can be found in Carr, Geman, Madan, and Yor (1999).

A.1 Generalized Hyperbolic Distributions

Generalized hyperbolic distributions constitute a five-parameter class of Lebesgue-continuous, infinitely
divisible distributionsGH(λ, α, β, δ, µ). The Lebesgue density is given byρGH(λ,α,β,δ,µ), where1

ρGH(λ,α,β,δ,µ)(x + µ) = (2π)−1/2δ−1/2α−λ+1/2(α2 − β2)λ/2Kλ

(
δ
√

α2 − β2
)−1 ·

(A.1)

√
1 +

x2

δ2

λ−1/2

Kλ−1/2

(
δα

√
1 +

x2

δ2

)
exp(βx)

=
eβx

√
2πα2λ−1δ2λ

·
(
δ
√

α2 − β2
)λ

Kλ

(
δ
√

α2 − β2
) · (α√

δ2 + x2
)λ−1/2

Kλ−1/2

(
α
√

δ2 + x2
)
.(A.2)

The domain of variation of the parameters is as follows.λ ∈ IR, α > 0, β ∈ (−α,α), δ > 0, and
µ ∈ IR.2 The functionsKλ andKλ−1/2 are the modified Bessel functions of the third kind with orders
λ andλ− 1/2, respectively.3

1Representation (A.1) can be found in e. g. in Barndorff-Nielsen (1997), eq. (4.3).
2Some authors include the limits into the parameter ranges (e.g.δ = 0, leading to the variance gamma distributions; see

Section A.3.) Hence they inlcude certain limiting distributions into the definition. However, often the behavior of the limiting
distributions differs considerably from the behavior of the generalized hyperbolic distributions as defined here. Therefore we
do not include limiting distributions.

3See Abramowitz and Stegun (1968), Section 9.6.
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The characteristic function ofGH(λ, α, β, δ, µ) was calculated in Prause (1999), Lemma 1.18:4

χ(λ,α,β,δ,µ)(u) = eiµu (δ
√

α2 − β2)λ

Kλ(δ
√

α2 − β2)
·
Kλ

(
δ
√

α2 − (β + iu)2
)(

δ
√

α2 − (β + iu)2
)λ

.(A.3)

This is a real-analytic function, which can be extended to a holomorphic function on the strip

S :=
{
z : −α < β − Im(z) < α

}
.

The form of the expression for the characteristic function is preserved under the extension, because all
functions appearing here are restrictions of analytic functions. This means that one can calculate the
extended characteristic function at some pointz ∈ S by just plugging inz instead ofu into expression
(A.3). In particular, we get the moment-generating function

u 7→ χ(λ,α,β,δ,µ)(−iu).

(See Prause (1999), Lemma 1.13.) Taking derivatives atu = 0 then yields the algebraic moments of a
random variableX ∼ GH(λ, α, β, δ, µ) (Prause (1999), Lemma 1.14.)

E[X] = µ + δ · ρ√
1− ρ2

· Kλ+1(ζ)
Kλ(ζ)

,(A.4)

V ar[X] = δ2

(
Kλ+1(ζ)
ζKλ(ζ)

+
ρ2

1− ρ2

(
Kλ+2(ζ)
Kλ(ζ)

−
[
Kλ+1(ζ)
Kλ(ζ)

]2 ))
.(A.5)

Here we have used the new parametersζ := δ
√

α2 − β2 andρ := β/α.

The characteristic function of the time-t element of the convolution semigroup generated by
GH(λ, α, β, δ, µ) is

χ(λ,α,β,δ,µ;t)(u) = eiµtu (δ
√

α2 − β2)λt

Kλ(δ
√

α2 − β2)t
·
Kλ

(
δ
√

α2 − (β + iu)2
)t(

δ
√

α2 − (β + iu)2
)λt

.

Note that we have be careful when taking the “t-th power” of the characteristic function; The main branch
of the t-th power function, applied to the complex numberχ(λ,α,β,δ,µ)(u), in general doesnot yield the
desired characteristic function. [Cf. Bauer (1991), p. 250, Bemerkung 1.]

A.2 Important Subclasses of GH

A.2.1 Hyperbolic Distributions

Setting the first parameterλ = 1 yields the four-parameter class ofhyperbolic distributions. For this
subclass, the density takes the form

ρHYP(α,β,δ,µ)(x + µ) =
eβx

√
2παδ2

· δ
√

α2 − β2

K1

(
δ
√

α2 − β2
) · (α√

δ2 + x2
)1/2

K1/2

(
α
√

δ2 + x2
)

=
eβx

2αδ2
· δ

√
α2 − β2

K1

(
δ
√

α2 − β2
) · exp

(
− α

√
δ2 + x2

)
,

4The square root sign in (A.3) is taken to mean the main branch of the square root function. The same holds for theλ-th
power functionz 7→ zλ etc.
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where we have used the relation

K1/2(z) =
√

π/(2z)e−z(A.6)

from Watson (1944), Section 3.71, p. 80, eq. (12). Note that—in contrast to the general form (A.2)—
the Bessel function appears only in the norming factor. Hence the hyperbolic density is numerically
more tractable than the generalized hyperbolic density: When calculating the density at a numbern of
different points, e. g. for numerical integration, the Bessel function has to be evaluated only once. This
considerably reduces the computational effort compared with the generalized hyperbolic case, where2n
evaluations of Bessel functions have to be calculated.

The log density of a hyperbolic distribution is a hyperbola, which is the origin of the namehyperbolic
distribution.

A.2.2 Normal Inverse Gaussian (NIG) Distributions

Settingλ := −1/2 leads to the class of Normal Inverse Gaussian (NIG) distributions. The name of
this class stems from the fact that a NIG distribution can be represented as a variance-mean mixture of
normal distributions, where the mixing distribution is inverse Gaussian. (See e. g. Barndorff-Nielsen
(1998), Section 2.)

In contrast to the case of hyperbolic distributions, the characteristic function of NIG is expressible by
elementary functions: The Bessel functionK−1/2(z) is equal toK1/2(z) by Abramowitz and Stegun
(1968), 9.6.6, which in turn can be reduced to elementary functions via relation (A.6).

χNIG(α,β,δ,µ;t)(u) = eiµtu (δ
√

α2 − β2)−(1/2)t

K−1/2(δ
√

α2 − β2)t
·
K−1/2

(
δ
√

α2 − (β + iu)2
)t(

δ
√

α2 − (β + iu)2
)−(1/2)t

= eiµtu exp
(
tδ

√
α2 − β2

)
· exp

(
− tδ

√
α2 − (β + iu)2

)
.

Obviously,

χNIG(α,β,δ,µ;t)(u) = χNIG(α,β,tδ,tµ;1)(u).

This yields another favorable property of NIG distributions: The convolution semigroup generated by
a NIG distribution only contains NIG distributions. Hence the Lévy process generated by a NIG dis-
tribution in the sense of Section A.6 possesses only NIG distributed increments. Thus the density of
the increment distribution is known, which constitutes an important advantage over other generalized
hyperbolic distributions.

A.3 The Carr-Geman-Madan-Yor (CGMY) Class of Distributions

In Carr, Geman, Madan, and Yor (1999), a new class of infinitely divisible probability distributions—
called CGMY—is introduced as a model for log returns on financial markets. This class is an extension
of the class of variance gamma distributions, which date back to Madan and Seneta (1987).
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A.3.1 Variance Gamma Distributions

The class ofvariance gammadistributions was introduced in Madan and Seneta (1987) as a mode for
stock returns. There, as in the succeeding publications (Madan and Seneta 1990) and (Madan and Milne
1991), the symmetric case (i. e.θ = 0 in the parameterization given below) was considered. In (Madan,
Carr, and Chang 1998), the general case with skewness is treated. Variance gamma distributions are
limiting cases of generalized hyperbolic distributions asδ → 0 in the parameterization by(λ, α, β, δ, µ),
as we will see below.

In the literature, variance gamma distributions always appear as the one-dimensional marginal distribu-
tions of variance gamma Lévy processes. These are time-changed Brownian motions with drift. The
time change process is itself a Lévy process, namely a gamma process, characterized by having a gamma
distribution as its increment distribution. More precisely, the increment of the gamma process over a
time interval of lengtht has a distribution given by the probability density

ρ(eµ,eν)(τ) =
(µ

ν

) eµ2

eν
τ
eµ2

eν
−1 exp

(
− eµ

eν τ
)

Γ
( eµ2

eν
) (τ > 0)

Hereµ̃ = tµ andν̃ = tν, whereµ > 0 andν > 0 are the parameters of the distribution fort = 1.

The characteristic function of the Gamma(µ, ν) distribution is

χGamma(µ, ν)(u) =

(
1

1− iu ν
µ

)µ2

ν

,

where the exponential is well-defined because−π < arg( 1
1−iu ν

µ
) < π. Consequently, the characteristic

function of the time-t element of the gamma convolution semigroup is

χGamma(µ, ν)(u)t =

(
1

1− iu ν
µ

) tµ2

ν

,

which is again the characteristic function of a gamma distribution, with parametersµ̃ and ν̃ as defined
above. (Of course, this was already clear from the behavior of the densities.)

The variance gamma Lévy processX(σ,θ,ν) is defined as a time-changed Brownian motion with drift:

X
(σ,θ,ν)
t = θγ(1,ν)(t) + σWγ(t),

whereW is a standard Brownian motion andγ(1,ν) is a gamma process withµ = 0, independent ofW .
In contrast to the exposition in (Madan, Carr, and Chang 1998), we would like to modify the definition
of the process by adding a linear driftµt.5 Hence our variance gamma Lévy process is

X
(σ,θ,ν,µ)
t = µt + θγ(1,ν)(t) + σWγ(t),

Consequently, the distribution ofX(σ,θ,ν)
t is a variance-mean mixture of normals, with a gamma distri-

bution as mixing distribution: It is the marginal distribution ofx in a pair(x, z) wherez is distributed as
γ(t) and, conditionally onz, x is distributed asN(µ + θz, σ2z).

5Note that the parameterµ is not the parameter of the Gamma distribution, which will not be used in the following.
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The characteristic function of the distributionVG(σ, θ, ν, µ) is given by

χVG(σ,θ,ν,µ)(u) = exp(iµu)
(

1
1− iθνu + (σ2ν/2)u2

)1/ν

.

(See (Madan, Carr, and Chang 1998), eq. 7.)

Consequently, the time-t element of theVG(σ, θ, ν, µ) convolution semigroup has the characteristic func-
tion

χVG(σ,θ,ν,µ)(u)t = exp(itµu)
(

1
1− iθνu + (σ2ν/2)u2

)t/ν

,

which is just the characteristic function ofVG(
√

tσ, tθ, ν/t, tµ):

χVG(
√

tσ,tθ,ν/t,tµ)(u) = exp(itµu)
(

1
1− itθν/tu + (tσ2ν/2t)u2

)1/(ν/t)

= exp(itµu)
(

1
1− iθνu + (σ2ν/2)u2

)t/ν

.

Therefore the convolution semigroup of a particular variance gamma distribution is nested in the set
of all variance gamma distributions. This is the same situation as in the case of the NIG distributions.
Therefore, these two classes of distributions are analytically more tractable than a generalized hyperbolic
distribution withλ 6= −1/2, as for example the hyperbolic distributions studied in (Eberlein and Keller
1995), (Keller 1997) and (Eberlein, Keller, and Prause 1998).

The density ofVG(σ, θ, ν, µ) can be calculated by making use of the mixture representation.6 It is given
by ρ(σ,θ,ν,µ)(x), with

ρ(σ,θ,ν,µ)(x + µ) =
2 exp(θx/σ2)

ν1/ν
√

2πσ2Γ( 1
ν )

(
x2

2σ2/ν + θ2

) 1
2ν
− 1

4

K 1
ν
− 1

2

(√
x2(2σ2/ν + θ2)

σ2

)
.(A.7)

As a consequence of our considerations above, the density of the time-t element of the convolution
semigroup is of the same form, with the parameters(σ, θ, ν, µ) replaced by(

√
tσ, tθ, ν/t, tµ).7

The Lévy measure of the variance gamma distributionVG(σ, θ, ν, µ) is

KVG(σ,θ,ν,µ)(dx) =
exp

(
θx/σ2

)
ν|x| exp

−
√

2
ν + θ2

σ2

σ
|x|

 dx.(A.8)

(See Madan, Carr, and Chang (1998), eq. 14.) This measure has infinite mass, and hence a variance
gamma Lévy process has infinitely many jumps in any finite time interval. Since the functionx 7→ |x| is
integrable with respect toKVG(σ,θ,ν,µ)(dx), a variance gamma Lévy process has paths of finite variation.

A.3.2 CGMY Distributions

The class of CGMY distributions is a class of infinitely divisible distributions that contains the variance
gamma distributions as a subclass. It is defined in Carr, Geman, Madan, and Yor (1999) by giving its

6See (Madan, Carr, and Chang 1998), pp. 87 and 98.
7Actually, it was this density which was calculated in (Madan, Carr, and Chang 1998).

141



Lévy-Khintchine triplet(b, c,K(dx)) with respect to a truncation functionh(x).

b =
∫ (

h(x)kCGMY(x)− x1l{|x|≤1}
C

|x|1+Y
e−|x|

)
dx, c = 0, K(dx) = kCGMY(x) dx,

with the four-parameter Lévy density

kCGMY(x) :=

{
C exp(−G|x|)

|x|1+Y for x < 0

C exp(−M |x|)
|x|1+Y for x > 0

(A.9)

=
C

|x|1+Y
exp

(G−M

2
x− G + M

2
|x|

)
.

The range of parameters is not made explicit in Carr, Geman, Madan, and Yor (1999), but natural choices
would beC,G,M > 0 andY ∈ (−∞, 2). ChoosingY ≥ 2 does not yield a valid Lévy measure, since
it violates the condition that any Lévy measure must integrate the functionx 7→ 1 ∧ |x|2.8 For Y < 1,
the Lévy measure integrates the functionx 7→ |x|; hence we could choose the “truncation function”
h(x) ≡ 0. This would let the first component of the Lévy-Khintchine triplet vanish:b = 0. But in order
to preserve generality, we always use a truncation function here.

Like for the variance gamma distribution, one could introduce an additional location parameterµ ∈ IR
here.

ForY < 0, the characteristic function ofCGMYis given by

χCGMY(u) = exp
{

CΓ(−Y )
[
(M − iu)Y −MY + (G + iu)Y −GY

]}
.

This formula was derived in Carr, Geman, Madan, and Yor (1999), Theorem 1.9

The CGMY Lévy Process

As described below in Section A.6, every infinitely divisible distribution generates a Lévy process. The
CGMY Lévy process is pure-jump, that is, it contains no Brownian part. As shown in Carr, Geman,
Madan, and Yor (1999), Theorem 2, the path behavior of this process is determined by the parameterY :
The paths have infinitely many jumps in any finite time interval iffY ∈ [0, 2), and they have infinite
variation iff Y ∈ [1, 2).

Variance Gamma as a Subclass of CGMY

Variance gamma distributions constitute the subclass of the class of CGMY distributions whereY = 0.
(See Carr, Geman, Madan, and Yor (1999), Sec. 2.2.) One can easily see this by comparing formula
(A.9) with the variance gamma Lévy density (A.8). The parameters are related as follows.

C =
1
ν

,
G−M

2
=

θ

σ
, and

G + M

2
=

√
2
ν + θ2

σ2

σ
.

8However, Carr, Geman, Madan, and Yor (1999) also consider the caseY > 2.
9This theorem does not mention a restriction on the range ofY . However, examination of the proof reveals that it can only

work for Y < 0. Otherwise at least one of the integrals appearing there does not converge.
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A.3.3 Reparameterization of the Variance Gamma Distribution

We think that it is useful to change the parameterization of the variance gamma distribution in order to
compare it to the generalized hyperbolic distribution: Let

λ : =
1
ν
,

α : =

√
2σ2/ν + θ2

σ2
=

√
2

νσ2
+

(
θ

σ2

)2

,

β : =
θ

σ2
.

Then we have0 ≤ |β| < α andλ > 0, and

σ2 =
2λ

α2 − β2
,

θ = βσ2 =
2βλ

α2 − β2
,

ν =
1
λ

.

The parameter transformation10 (σ, θ, ν, µ) → (
√

tσ, tθ, ν/t, tµ) has the following effect on the param-
eters(λ, α, β, µ):

λ→ t · λ,

α→ α,

β → β,

µ→ t · µ.

Therefore this parameterization seems to be useful for the study of the convolution semigroup.

In the new parameterization, the characteristic function of the variance gamma distribution takes the form
χVG(λ,α,β,µ)(u), with

χV G(λ,α,β,µ)(u) = exp(iµu)
(

1
1− iθνu + (σ2ν/2)u2

)1/ν

= eiµu

 1

1− i
2βλ

α2 − β2
· 1
λ

u +
2λ

α2 − β2
· 1
2λ

u2


1/ν

= eiµu

(
α2 − β2

α2 − (β + iu)2

)λ

.

Note how the structure of the characteristic function becomes clearer in this parameterization.

10Note that this is the transformation that we need in order to get the variance gamma parameters of the time-t element of
the convolution semigroup.
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The variance gamma density takes the formρ(λ,α,β,µ)(x), with

ρ(λ,α,β,µ)(x + µ) =
2 exp(θx/σ2)

ν1/ν
√

2πσ2Γ( 1
ν )

(
σ2|x|

σ2
√

2σ2/ν + θ2

) 1
ν
− 1

2

K 1
ν
− 1

2

(√
x2(2σ2/ν + θ2)

σ2

)

=
2λλ exp(βx)√

2πΓ(λ)

(
α2 − β2

2λ

)λ (
|x|
α

)λ−1/2

Kλ−1/2

(
α|x|

)
=

√
2
π

exp(βx)
2λΓ(λ)

(
α2 − β2

)λ
(
|x|
α

)λ−1/2

Kλ−1/2

(
α|x|

)
.

This is the pointwise limit of the generalized hyperbolic density asδ → 0:

ρGH(λ,α,β,δ,µ)(x + µ) = (2π)−1/2δ−1/2α−λ+1/2(α2 − β2)λ/2Kλ

(
δ
√

α2 − β2
)−1 ·√

1 +
x2

δ2

λ−1/2

Kλ−1/2

(
δα

√
1 +

x2

δ2

)
exp(βx)

=
exp(βx)(α2 − β2)λ/2

√
2πδ1/2αλ−1/2Kλ

(
δ
√

α2 − β2
) 1

δλ−1/2

√
δ2 + x2

λ−1/2
Kλ−1/2

(
α
√

δ2 + x2
)

=
exp(βx)(α2 − β2)λ/2

√
2παλ−1/2

1
δλKλ

(
δ
√

α2 − β2
)√

δ2 + x2
λ−1/2

Kλ−1/2

(
α
√

δ2 + x2
)

But from (Abramowitz and Stegun 1968), formula 9.6.9, we know that for fixedλ > 0,

Kλ(z) ∼ 1
2
Γ(λ)

(z

2

)−λ
(z → 0).

Insertingz = δ
√

α2 − β2, we conclude

1
δλKλ(δ

√
α2 − β2)

→ 21−λ/2(α2 − β2)λ/2

Γ(λ)
(δ → 0),

and hence for fixedx 6= 0

1

δλKλ

(
δ
√

α2 − β2
)√

δ2 + x2
λ−1/2

Kλ−1/2

(
α
√

δ2 + x2
)

→ 21−λ/2(α2 − β2)λ/2

Γ(λ)

√
x2

λ−1/2
Kλ−1/2

(
α
√

x2
)
.

Forλ > 1/2, convergence holds also forx = 0.

In the new parameterization, the Lévy measure of the variance gamma distributionVG(λ, α, β, µ) has
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the form

KVG(λ,α,β,µ)(dx) =
exp

(
θx/σ2

)
ν|x| exp

(
−

√
2

νσ2
+

θ2

σ4
|x|

)
dx

=
exp

(
βσ2x/σ2

)
(1/λ)|x| exp

(
−

√
2

(1/λ) 2λ
α2−β2

+
(βσ2)2

σ4
|x|

)
dx

=
λ exp

(
βx

)
|x| exp

(
−

√
α2 − β2 + β2|x|

)
dx

=
λ

|x| exp (βx− α|x|) dx.

A.4 Generation of (Pseudo-)Random Variables

For simulation purposes, it is essential to know how to generate (pseudo-)random variables with a given
distribution. The standard random-number generators provide pseudo-random numbers with a uniform
distribution on(0, 1). The aim is now to find a transformation that turns a sequence of independent,
identically distributed (iid) random variables with a uniform distribution on(0, 1) into an iid sequence
of random variables with the given distribution. One approach which always works is to invert the cu-
mulative distribution function (cdf)F (x) of the distribution in question. This yields a functionF−1(x),
and ifU is uniformly distributed on(0, 1), then the random variableF−1(U) has a distribution with cdf
F (x). In practice, this is often cumbersome since inversion ofF (x) is often only possible numerically.
However, for some special distributionsF (x) there are other possibilities. For normal distributions, Box
and Muller (1958) showed how one can generate two iidN(0, 1-distributed random variables by apply-
ing a simple transformation to two iidU(0, 1)-distributed random variables: IfU1 andU2 are iid with
distributionU(0, 1), then the random variablesN1 andN2 defined by

N1 :=
√
−2 ln U1 cos(2πU2)(A.10)

and N2 :=
√
−2 ln U1 sin(2πU2)(A.11)

are iid with distributionN(0, 1).

With the same approach, one can generate chi-square distributed random numbers: For an even number
2n of degrees of freedom,

X(n) =
n∑

k=1

(−2 ln Uk)(A.12)

is χ2
(n)-distributed, while for an odd number2n + 1, one simply has to addX(n) and the square of an

independent normally distributed random variable.

Inverse Gaussian (IG) distributions can be generated by a method introduced in Michael, Schucany,
and Haas (1976) which we describe below. Since NIG distributions are variance-mean mixtures of
normals with an IG mixing distribution, once we have a IG-distributed random variable, we can take an
independentN(0, 1) random variate and generate a NIG random variate. Below we sketch the resulting
algorithm for the generation of NIG random variables.
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First, take two independent random variablesU1, U2 that are uniformly distributed on(0, 1). ThenN1

andN2 defined by (A.10) and (A.11) are independent normally distributed variables. HenceV := N2
1 is

χ2
(1)-distributed. That is, it has the same distribution as(γZ−δ)2/Z with an arbitraryIG(γ, δ)-distributed

random variableZ, and we can hope to construct such a random variableZ from V .

Because we want to get aNIG(α, β, µ, δ)-distributed random variable in the end, we have to choose
γ =

√
α2 − β2, as we will see below.

If γ = 0, thenZ = δ2/V is alreadyIG(0, δ) distributed.

Forγ > 0, the value ofZ is not uniquely determined bỹV := (γZ − δ)2/Z. Instead, giveñV = v with
v > 0 the variableZ has a binomial distribution with valuesz1 andz2, where

z1 = δ/γ + (v/γ2)−
√

2vδ/γ3 + (v/γ2)2,

z2 = (δ/γ)2/z1

are the roots of the equation(γz − δ)2/z = v. The probability ofZ = z1(v) given Ṽ = v is

pz1(v) =
δ

δ + γz1
,

according to Michael, Schucany, and Haas (1976).11

Let U3 be a third uniform random variable, independent ofU1 andU2, and defineZ by

Z̃ :=
{

z1(V ) on{U3 < pz1(V )},
z2(V ) ≡ (δ/γ)2/z1(V ).

(A.13)

Then the distribution of̃Z is IG(δ, γ).

Once we have anIG(δ, γ)-distributed random variable, we can use the mixture representation of
NIG(α, β, δ, µ): With the standard normal random variableN2, which is independent ofN1 andU3,
we define

X = µ + Z̃β +
√

Z̃N2.

Conditionally onZ̃ = z, X has distributionN(µ + βz, z). BecauseZ has distributionIG(δ, γ =√
α2 − β2), X is distributed according toNIG(α, β, µ, δ). (See e. g. Barndorff-Nielsen (1997), p. 2.)

Remark 1
Using three independentU(0, 1)-distributed random variables, we have got aNIG-distributed random
variable. Consequently, plugging into this algorithm three “independent” pseudo-random numbers from
aU(0, 1) population produces a pseudo-random number from aNIG population.

Remark 2
Normal inverse Gaussian distributed variates can be very efficiently generated by the approach described
above. This algorithm is perfect for list-oriented statistics packages such as S-Plus, since it can be
given in terms of listable functions. In other words, there appear only simple functions such as addition,
multiplication, square root and logarithm. In S-Plus, these functions can be applied to a whole vector
of arguments at once, generating a vector of results. Other approaches to random number generation
generally use loops. For example, the acceptance-rejection method is an iterative procedure. However, it
is well known that loops considerably slow down S-Plus programs.

11To be strict, one would have to show thatIG(γ, δ) has a representation as a mixture of the binomial distributions described
above, with aχ2

(1) as the mixing distribution.
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A.5 Comparison of NIG and Hyperbolic Distributions

Analytically, NIG is easier to handle for us than the hyperbolic distribution, because we are working
primarily with the log moment-generating function. In the NIG case, this function is very simple. For the
hyperbolic distribution, it contains the modified Bessel functionK1, which makes numerical evaluation
difficult.

It is interesting to observe the different behavior of the moment generating function whenu tends towards
the boundary of the interval[−α − β, α − β]: For the hyperbolic distribution, the moment generating
function

u 7→ euµ
( α2 − β2

α2 − (β + u)2

)1/2 K1(δ
√

α2 − (β + u)2)

K1(δ
√

α2 − β2)

diverges becauseK1(z) ∼ 1
z for smallz, according to Abramowitz and Stegun (1968), 9.6.9.

In contrast, the moment generating function of aNIG(α, β, µ, δ) distribution,

u 7→ exp
(
δ(

√
α2 − β2 −

√
α2 − (β + u)2) + µu

)
,

stays finite when|β + u| ↑ α, while its derivative becomes infinite.

Another striking difference becomes apparent if we examine, for the classes of hyperbolic and normal
inverse Gaussian distributions, the subclasses of symmetric distributions with variance1. In both cases,
symmetry of the distribution is equivalent toβ = 0. In the hyperbolic case, the condition of unit variance
means

1 =
δα

α2

K2(δα)
K1(δα)

,

so given the valueζ = δα we have to choose

α =

√
ζK2(ζ)
K1(ζ)

.

Since the parameter restrictions for hyperbolic distributions allowζ = αδ to vary in the interval(0,∞),
α can take on only values in the interval(

√
2,∞), where

√
2 = limζ↓0

ζK2(ζ)
K1(ζ) because of the limiting

form of the modified Bessel functionsKν for z → 0 with fixed Re(ν) > 0:

Kν(z) ∼ 2ν−1Γ(ν)
zν

.

(RememberΓ(1) = Γ(2) = 1.) So there is a positive lower bound forα, which means that the exponen-
tial decay of the tails of the distribution takes place with a positive minimum rate.

On the other hand, from the expression for the variance of a normal inverse Gaussian distribution,

δ

α ·
(
1−

(β
α

)2)3/2
,

we see thatα = δ is the choice which leads to unit variance. Thus the admissible range ofα is the whole
interval(0,∞), and the exponential decay of the tails can take place with arbitrarily low rates.

This different behavior of NIG and hyperbolic distributions is illustrated by Figures A.1 and A.2. Both
show the log densities of three symmetric and centered distributions with variance1. There remains one
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Figure A.1: Log densities of normalized hy-
perbolic distributions for parametersζ = 100
(dotted line),ζ = 1 (dashed line),ζ = 0.01
(solid line).
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Figure A.2: Log densities of normalized nor-
mal inverse Gaussian distributions for param-
etersζ = 100 (dotted line),ζ = 1 (dashed
line), ζ = 0.01 (solid line).

free parameter,ζ, in both classes. When changingζ from large values to values near0, we observe the
following. For large values ofζ, both log densities look very much like a parabola nearx = 0. Forζ ↓ 0,
the log density of the hyperbolic distribution converges (pointwise) to the functionx 7→ const.−

√
2|x|.

By contrast, for the NIG distribution there is no finite limit function. Instead, the log density becomes
increasingly pointed aroundx = 0 asζ ↓ 0.

There is some connection between this difference of hyperbolic and normal inverse Gaussian distribu-
tions and another point: Hyperbolic log-densities, being hyperbolas, are strictly concave everywhere
Therefore they cannot form any sharp tips nearx = 0 without losing too much mass in the tails to have
variance1. In contrast, normal inverse Gaussian log-densities are concave only in an interval around
x = 0, and convex in the tails. Therefore they can form very sharp tips in the center and yet have
variance1.

A.5.1 Implications for Maximum Likelihood Estimation

The program “hyp”, which does maximum likelihood estimation for hyperbolic distributions (see Blæsild
and Sørensen (1992)), often fails to find an estimate or runs towardsδ = 0. This behavior is probably due
to the above-mentioned property of the family of hyperbolic distributions. Obviously it is not favorable
for maximum likelihood estimation to have convergence of the densities when parameters tend towards
the boundary of the allowed domain. “hyp” does not seem to tackle these boundary problems.

A.6 Generalized Hyperbolic Lévy Motion

Every infinitely divisible distribution has a characteristic function of the form

χ(u) = exp(φ(u))

with some continuous functionφ(u) satisfyingφ(0) = 0. (See Chow and Teicher (1997), Section 12.1,
Proposition 2 and Lemma 1. The Lévy-Khintchine formula gives the explicit form of the functionφ(u),
but this is not needed here.) For everyt ≥ 0, one can form the exponentialχ(u)t := exp(tφ(u)). χ(u)t
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is again a characteristic function. The corresponding probability measuresP (t) form a convolution semi-
group, for which can construct acanonical processwith stationary, independent increments according
to Bauer (1991), §§35, 36. The increment of this process over a period of length∆t has the distribution
P (∆t).

In this sense, every infinitely divisible distributionD on (IR,B) generatesa Lévy processL with
L1 ∼ D. As in Eberlein (1999), Section 4, we denote bygeneralized hyperbolic Lévy motionthe
Lévy processes corresponding to generalized hyperbolic distributions. Analogously, we define the terms
hyperbolic Lévy motionandNIG Lévy motion.
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Appendix B

Complements to Chapter 3

B.1 Convolutions and Laplace transforms

For the convenience of the reader, we present here some easy consequences of theory of the Laplace
transformation as displayed e. g. in Doetsch (1950).

Theorem B.1. Let F1 and F2 be measurable complex-valued functions on the real line. If|F1(x)| is
bounded and ifF2(x) is absolutely integrable, then the convolutionF1 ∗ F2, defined by

F1 ∗ F2(x) :=
∫

IR
F1(x− y)F2(y)dy,

is a well-defined function onIR. F1 ∗ F2 is bounded and uniformly continuous.

Proof. Existence and boundedness follow from Doetsch (1950), p. 108, Satz 1. Uniform continuity
follows by Doetsch (1950), p. 111, Satz 3.

Theorem B.2. Let F1 andF2 be measurable complex-valued functions on the real line. Letz ∈ C and
R := Rez. If ∫

IR
e−Rx|F1(x)|dx <∞ and

∫
IR

e−Rx|F2(x)|dx <∞,

and if x 7→ e−Rx|F1(x)| is bounded, then the convolutionF (x) := F1 ∗ F2(x) exists and is continuous
for all x ∈ IR, and we have∫

IR
e−Rx|F (x)|dx <∞ and

∫
IR

e−zxF (x)dx =
∫

IR
e−zxF1(x)dx ·

∫
IR

e−zxF2(x)dx.

Proof. Except for the statement of continuity, this is a part of the statements proven in Doetsch (1950),
p. 123, Satz 3. For the continuity, note that

F̃1(x) := e−RxF1(x) and F̃2(x) := e−RxF2(x)

satisfy the conditions of Theorem B.1. Thus their convolution

F̃ (x) : =
∫

IR
F̃1(x− y)F̃2(y)dy

=
∫

IR
e−R(x−y)F1(x− y)e−RyF2(y)dy.
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is uniformly continuous. But we have

F (x) ≡
∫

IR
F1(x− y)F2(y)dy

= eRx

∫
IR

e−R(x−y)F1(x− y)e−RyF2(y)dy

= eRxF̃ (x),

which proves the continuity ofF .

Remark: Theorem B.2 shows that the Laplace transform of a convolution is the product of the Laplace
transforms of the factors. This is a generalization of the well-known analogous result for Fourier trans-
forms.

The next theorem shows how one can invert the Laplace transformation. Together with Theorem B.2,
this enables us to calculate the convolution if we know the Laplace transforms of the factors.

Theorem B.3. LetF be a measurable complex-valued function on the real line. LetR ∈ IR such that

f(z) =
∫

IR
e−zxF (x)dx (z ∈ C, Rez = R),

with the integral converging absolutely forz = R.1 Letx ∈ IR such that the integral∫ R+i∞

R−i∞
ezxf(z)dz

exists as a Cauchy principal value. Assume thatF is continuous at the pointx. Then

F (x) =
1

2πi

∫ R+i∞

R−i∞
ezxf(z)dz,

where the integral is to be understood as the Cauchy principal value if the integrand is not absolutely
integrable.

Proof. Cf. Doetsch (1950), p. 216, Satz 5.

B.2 Modeling the Log Return on a Spot Contract Instead of a Forward
Contract

In the text, we assume thatχ is the characteristic function of the distribution ofXT := ln(e−rT ST /S0).
This corresponds to a stock price model of the form

ST = S0e
rT+XT ,

whereXT is the log return on a forward contract to buy the stock at the forward dateT . In some contexts,
models of the form

ST = S0e
YT

1Obviously, then the integral converges absolutely for allz ∈ C with Rez = R.
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are used instead. HereYT is the log return on a spot contract in which one buys the stock today and sells
it at dateT . Equating the stock prices leads to the relation

rT + XT = YT .

Consequently, if we are given the characteristic functionψ(u) of YT , we can calculate the characteristic
functionχ(u) of XT as

χ(u) = E[eiuXT ] = e−iurT E[eiuYT ] = e−iurT ψ(u).

Therefore if we know the characteristic functionψ, we at once have an expression for the characteristic
functionχ(u). This can then be used to price the options as described in the text.
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