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Many-Body Perturbation Theory:
The GW Approximation

Christoph Friedrich and Arno Schindlmayr

Institute of Solid State Research
Forschungszentrum Jülich

52425 Jülich, Germany
E-mail: �c.friedrich, a.schindlmayr�@fz-juelich.de

In this lecture we present many-body perturbation theory asa method to determine quasiparticle
excitations in solids, especially electronic band structures, accurately from first principles. The
main ingredient is the electronic self-energy that, in principle, contains all many-body exchange
and correlation effects beyond the Hartree potential. As its exact mathematical expression is
unknown, approximations must be used in practical calculations. The�� approximation is
obtained using a systematic algebraic approach on the basisof Green function techniques. It
constitutes an expansion of the self-energy up to linear order in the screened Coulomb poten-
tial, which describes the interaction between the quasiparticles and includes dynamic screening
through the creation of exchange-correlation holes aroundthe bare particles. The implemen-
tation of the�� approximation relies on a perturbative treatment startingfrom density func-
tional theory. Besides a detailed mathematical discussionwe focus on the underlying physical
concepts and show some illustrative applications.

1 Introduction

In the previous lectures we have seen that density functional theory (DFT) is the method
of choice when we are interested in the ground-state properties of a many-electron sys-
tem. DFT is based on the Hohenberg-Kohn theorem,1 which states that there is (a) a
one-to-one correspondence between the ground-state density �� ��� and the external po-
tential as well as (b) a variational principle for the energyfunctional	 
�� � � 	 
��. The
second statement allows to obtain the ground state of a many-electron system by variation
of its density, a quantity that is much less complicated thanthe many-electron wave func-
tion � �� � � � � � � �� �, where� is the particle number. The first statement implies that the
many-particle Hamiltonian is a functional of the ground-state density. Since the diagonal-
ization of the Hamiltonian yields the complete excitation spectrum, the excited states can
ultimately be regarded as functionals of the ground-state density as well. However, the
Hohenberg-Kohn theorem does not provide us with an explicitmathematical form. In this
lecture we show that excited-state properties can be accessed more directly with a purpose-
built method, the so-called many-body perturbation theory.2, 3 Incidentally, in practice its
implementation within the�� approximation4 for the electronic self-energy is based on a
perturbative evaluation with Kohn-Sham orbitals and can, therefore, finally be interpreted
as the desired density functional.

The solution of the Kohn-Sham equation5 of DFT yields a whole spectrum of single-
particle states, and one is tempted to identify the corresponding eigenvalues with excitation
energies. Strictly speaking, such an interpretation is wrong: the Kohn-Sham wave func-
tions and eigenvalues must be considered as mathematical tools and cannot be endowed
with a physical meaning. The only exception is the energy of the highest occupied state,

1



Si
Ge

diamond
3C SiC

LiCl
β−C3N4

BN
BP

BAs
AlN
AlP

AlAs
AlSb
GaN
GaP

GaAs
GaSb

InP
InAs
InSb

Al0.5Ga0.5As
In0.53Ga0.47As

GaAs0.5N0.5

GaAs0.75N0.25

ZnO
ZnS

ZnSe
ZnTe
CdS

CdSe
CdTe
MgO
MnO
NiO

CaCuO2

Li2O
ZrO2

SnO2

−2 0 2 4 6 8 10

Energy gap (eV)

LDA

GWA

Expt., indirect gap

Expt., direct gap

Figure 1. Comparison of LDA,�� and experimental band gaps for a variety of materials. Takenfrom Ref. 8.

which equals the exact ionization potential (or chemical potential for metals).6, 7 Con-
sequently, while often qualitatively correct, the DFT bandstructure fails to give reliable
quantitative values for the band gaps of insulators and semiconductors, which are often
underestimated by as much as 1.0 eV or more. In the case of Ge the local-density approx-
imation (LDA) of DFT even predicts a semi-metal with a negative band gap rather than
a semiconductor. In this lecture we demonstrate that the Kohn-Sham eigenvalues can be
corrected using Green function techniques and the�� approximation for the electronic
self-energy. Figure 1 shows a comparison of LDA and self-energy corrected band gaps
with respective experimental values for a variety of materials. The underestimation within
the LDA as well as the improvement by the�� approximation are evident.

Band gaps are experimentally measured by photoelectron spectroscopy. Figure 2 gives
a schematic illustration. In direct photoelectron spectroscopy a photon with energy��
impinges on the sample and ejects an electron, whose kineticenergy	 ��� is subsequently
measured. The binding energy�� of this electron is given by the difference�� � 	 ��� � �� .
Actually, we already simplified the argumentation here, as the formulation “binding energy
of an electron” suggests that the electrons are independent. In reality they are correlated
through the Coulomb interaction, and the ejection of an electron is always a many-body
process. In this general sense�� equals the difference�� � 	 �

� � 	 � 	�
� between the

total energy	 �
� of the� -particle ground state�

� and the energy	 � 	�
� of the �� � 
�-

particle state� 	�
� that remains after the emission. Inverse photoelectron spectroscopy is

2



Figure 2. Schematic illustration of direct and inverse photoelectron spectroscopy. In both processes the particle
number changes. The measured energy difference���� � �� corresponds to�� 	 � 
� � � 
 �� in direct and

�� 	 � 
 � � � � 
� in inverse photoelectron spectroscopy.

the complementary process: electrons are injected into thesample, and the energy of the
emitted photon is measured. The number of electrons in the system thus increases from�
to � � 
, and we can identify	 ��� � �� with the energy difference�� � 	 � � �

� � 	 �
� of

the many-electron systems.
The fact that the independent-electron picture breaks downdue to the strong Coulomb

interaction questions single-electron concepts like bandstructure or Fermi surface. Still, in
practice these work surprisingly well. In fact, we can at least retain a nearly-independent-
particle picture if we consider quasiparticles instead of electrons (or holes). In the case
of electron injection into a sample the repulsive Coulomb interaction creates a Coulomb
hole around the additional electron (see Figure 3). Analogously, if an electron leaves the
system, its Coulomb hole also disappears. Relative to the ground-state� -electron system,
the addition (removal) of an electron in indirect (direct) photoelectron spectroscopy hence
creates (annihilates) an ensemble consisting of the bare electron and its oppositely charged
Coulomb hole. This ensemble behaves in many ways like a single-particle and is thus
called “quasiparticle”. Since the Coulomb hole reduces thetotal charge of the quasipar-
ticle, the effective interaction between quasiparticles is screened and considerably weaker
than the bare Coulomb interaction between electrons. In fact, the screened interaction is
sufficiently small so that the quasiparticles can be regarded as approximately independent,
which finally justifies the independent-particle approximation and explains the success of
mean-field theories.

A theoretical description of processes involving the ejection or injection of electrons
requires a framework that links the� -particle with the�� � 
)-particle systems. For
this purpose we employ many-body perturbation theory. The central variable is the time-
ordered Green function� ��� � � � � � �. As we will see, it contains the excitation energies��
and even the excitation lifetimes. Besides, we can directlyobtain the ground-state electron
density, the expectation values of one-particle operatorsand the ground-state total energy
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Figure 3. The electrons in a many-electron system are correlated by the strong Coulomb interaction� . The
motion of one electron depends on the motion of all other electrons. A nearly-independent-particle picture can
be recovered within the quasiparticle concept. Due to exchange and correlation effects a Coulomb hole forms
around an electron and behaves together with it like a singleentity, which is called quasiparticle. Quasiparticles
interact via a weak screened interaction� instead of the strong Coulomb interaction.

from it. The Green function is hence capable of giving accessto the same observables as
the ground-state electron density. In contrast to the DFT expression	 
��, the functional
	 
�� is even known exactly.2 While the Green function contains much more information
than the electron density, it is also a more complicated function and thus rarely applied
to ground-state properties. In the present lecture we will,therefore, concentrate on the
calculation of excited states.

Section 2 lays the theoretical foundations of the method. More complicated derivations
are deferred to the appendix. The�� approximation is discussed in Section 3.1, and
some aspects of its numerical implementation are given in Section 3.2. As an illustration,
Section 3.3 presents a number of selected applications. Section 4 contains the summary.

2 Theory

2.1 Green Function

In this section we introduce the time-ordered Green function and examine its properties.
We use the second-quantization formulation of quantum mechanics.2, 3 For the present
purpose it is sufficient to know that this formalism involvesfield operators

�� ��� and
�� � ���

that describe the annihilation and the creation of an electron at the position�, respectively.
We will not take spin dependence explicitly into account. Ifnecessary, the spin quantum
number can simply be added to the formulas by considering it to be part of the spatial
coordinate�.

The Green function� � ��� � � � � � � is defined such that��� � ��� � � � � � � is the probability
amplitude for the propagation of an additional electron from �� � � �� � to �� � �� in a many-
electron system with the Hamiltonian (Eq. 41)). This process brings the system from the
� -electron ground state��

�
� ��� �� to a final state

�� ���� �� � �� � �� � �� � � ��
�
� ��� ��. The final

state is constructed by the successive action of the electron creation operator
�� � �� � �, the

evolution operator
�� �� � �� � � 	
� 
��

�� �� � �� ���, which takes the system from�� to a later
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time � � ��, and the electron annihilation operator
�� ��� on the� -electron ground state. As

the probability amplitude is given by the overlap of the finalstate with��
�
� ����, the Green

function becomes

� � ��� � � � � � � � � �
�
�
�
� ��� ���

�� ��� �� �� � �� � �� � �� � � ���
�
� ��� �� � �� � �� �

� � �
�
�
�
� ���

�� ���� �� � �� � � �� ���
�
� � � �� � �� � � (1)

where� �� � �� � is the Heaviside step function defined by� �� � ��� � � 
 if � � �� ��
if � � �� � (2)

For the last equality in Eq. (1) we changed from the Schrödinger to the Heisenberg picture,
where the expression is particularly simple. States and operators in the two pictures are
related by �

� 	 �
�� �� � �� �
 ���	 and

��� ��� �
�� �� � �� ��
 �� �� � � � � (3)

In the following we always omit the indices S and H. Similarly, we have the Green function

� � �� � � � � ��� � � �
�
�
�
� ���

�� � �� � � � � �� ���� ���
�
� � � ��� � �� (4)

for the propagation of an additional hole from�� � �� to �� � � �� �. As a matter of convenience,
we combine the two expressions in one time-ordered Green function

� ��� � � � � �� � � � ��� � � � � � � � � � �� � � � � ��� � � �
�
�
�
� ���

� � �� ���� �� � �� � � � �� ����
� � � (5)

where we used the time-ordering operator
�
, which rearranges a series of field operators

in order of ascending time arguments from right to left with afactor ��
� for each pair
permutation. Depending on the time order, Eq. (5) describeseither electron (� � ��) or
hole (� � ��) propagation. The electron density� ��� can be expressed in terms of the
Green function as

� ���� �
�
�
� ���

�� � ���� �� ���� ���
�
� � � ���� ��� � �� � � � � (6)

Here and in the following� is an infinitesimal positive number. It serves only to enforce
the correct order of the field operators. Its unit should always be clear from the context;
presently it is an infinitesimal time.

Let us consider the time-ordered Green function� �� � � � � � � of a stationary system with� � � � ��. If we insert the closure relation� � ��
� � �
� � �� � �

� �� � 
 between the two
field operators in Eq. (5), where� ��� � �

� �� is the complete set of state vectors of the
�� � 
�-particle system, transform to the Schrödinger picture and use the definitions

�� 	�
� ��� �

�
� 	�
� ���

�� ��� ���
�
� � and

�� � �
� ��� �

�
�
� ���

�� ��� ���
� � �
� � (7)

together with the excitation energies

�
� 	�
� � 	 �

� � 	 � 	�
� and �

� � �
� � 	 � � �

� � 	 �
� � (8)
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then we obtain

� �� � � � � � � � � �
� �� � � � �

� ����� � �
� � �� � ��	��� ��� � 	
� �� �

� �
� �� � � 	�

� ����� 	�
� � �� � ��	��� ��� � 	
� ��� � � (9)

The sums run over the ground state and all excited states of the �� � 
�- and �� � 
�-
particle system, respectively. Expression (Eq. (9)) can beinterpreted as follows: The state
after the addition of an electron (� � �

) is represented by a linear combination of excited
states

�� � �� � � ��
�
� � � �� � � � �

� � �� � � ��
� � �
� � (10)

that subsequently evolve according to their respective phase factors	
� ����
� � �
� � ��. The

resulting state is then probed at the point� by the projections
�� � �
� ���. The case� � �

(hole propagation) is analogous. Consequently, the Green function indeed contains the
complete excitation spectrum of the�� � 
�-particle system. Fourier transformation of
Eq. (9) to the frequency axis using the Fourier transform of the Heaviside step function� �� � � 
� � �	�

� �� � � �� � 	� �� ��� � �� �� � �� � (11)

finally yields the Lehmann representation of the Green function

� �� � � � �� � � ��
�� � �
� ���� � � �

� � ���
�� � �

� � �
� � �� � ��

�� 	�
� ���� � � �

� � ���
�� � �

� 	�
� � �� � (12)

We observe that the Green function has poles at the true many-particle excitation energies
�
� � �
� . These energies correspond to excitations of an�� � 
�-particle and an�� � 
�-

particle system and hence to those processes measured in direct and inverse photoelectron
spectroscopy. In the case of a noninteracting (or mean-field) system the

�� � �
� ��� are

simply the unoccupied and the
� � 	�
� ��� the occupied single-particle wave functions, the

�
� � �
� are the corresponding single-particle energies. In order not to overload the notation,

we will drop the�� � 
� superscripts from now on.

2.2 Spectral Function

In connection with Eq. (9) we can define the spectral function
� �� � � � �� �, i.e., the density

of the excited (or quasiparticle) states that contribute tothe electron or hole propagation.
In a finite system this density is a series of delta functions at the excitation energies� �� � � � �� � � �� � � ���� �� �� � �� ��� � �� � (13)

weighted by the products of the corresponding projections (Eq. (7)). This allows us to
rewrite Eq. (12) as an integral over frequencies

� �� � � � �� � � � � �	�
� �� � � � �� ��

�� � �� � � sgn��� � � � � �� �
� � (14)
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Figure 4. The excitation peaks of a finite system in the spectral function� �� � merge into quasiparticle peaks
of finite width in the case of an infinite system. This gives rise to finite excitation lifetimes determined by the
inverse of the peak widths.

with ��
 ��� 	�
� � � � � � �� ��� � �

� �. In an infinite system� corresponds to the chemical
potential. The inequality��
 ��� 	�

� � � � �� ��� � �
� � follows from the convexity of the

total energy as a function of the particle number, i.e.,	 � 	�
� �	 �

� 	 	 �
� �	 � � �

� : we lose
more energy when removing an electron than we gain by adding one. With the identity



 � �� � �  

 � � � � �
 � (15)

in the limit � � ��
, where� �

 � is the principal value of

, we find that� �� � � � �� � � �sgn��� � � � 
 Im � �� � � � �� � � (16)

The closure relation of the functions in Eq. (7) yields another important property

� � �	�
� �� � � � �� ��� � �� � � ���� �� �� � � � � �� � � � � � (17)

When we change from a finite to an infinite system, the delta functions in
� �� � � � �� � merge

and form a series of smooth peaks with finite line widths instead of sharp resonances (see
Figure 4). However, if the resulting spectral features are of Lorentzian form, i.e.,� �� � � � �� � � �� � � ���� �� �� � � � �

��� � ��� �� � ��� � (18)

where the��� are the peak positions and

�
� �

�
the corresponding peak widths, then we can

perform the integration in Eq. (14) analytically and again obtain a discrete sum over� as in
Eq. (12), provided that the energies are defined as complex numbers�� � ��� � �� �. Conse-
quently, the form of the Fourier transform (Eq. (9)) remainsunchanged, too. The imaginary
component of�� leads to a damping term	
� ��

�
� �� ���, revealing that the excitation has

a finite lifetime of �
�
� �

�	�
. Physically, the de-excitation proceeds via Auger transitions

that create electron-hole pairs on the way. The damping of the particle propagator� may
seem surprising, as it suggests that the particle graduallydisappears. However, one must
keep in mind that we deal with an infinite system, i.e.,� � � , and an additional particle
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(electron or hole) can “dissipate” into the Fermi sea. In this sense, one often speaks of
finite quasiparticle lifetimes and calls

� � ��� and �� the quasiparticle wave functions and
energies, respectively. The quasiparticle equation (22) introduced in the next section holds
for infinite systems if one uses an analytic continuation of the self-energy into the complex
frequency plane.

2.3 Dyson Equation

Appendix A shows that the time-ordered Green function� �� � � � �� � of the interacting sys-
tem obeys an integral equation, the Dyson equation

� �� � � � �� � � �� �� � � � �� � � � � �� �� � � �� �� �� �� �� � � ��� �� �� �� ��� � � � �� ���� ���� � ��� � (19)

where�� �� � � � �� � is the Green function of a mean-field system defined by
���� �� ��� � ��� � �� ��� (20)

with the single-particle Hamiltonian

��� ��� � � ���� � � � ���	 ��� �
��
 �� � � �� � ��

� � � �
��� � � � (21)

The quantities���	 ���,
�

, � and
�� are defined as in Eq. (41). The Green function

�� �� � � � �� � is obtained from Eq. (12) with the wave functions� �� ��� and energies��� . The
nonlocal and frequency-dependent function� �� � � � �� � is the non-Hermitian self-energy
operator, which contains all many-body exchange and correlation effects beyond the elec-
trostatic Hartree potential. This can be more easily seen ina reformulation of the Dyson
equation. By inserting the Lehmann representation (Eq. (12)) into Eq. (19), we find that
the wave functions

� � ��� and energies�� obey the quasiparticle equation

��� ���� � ��� � � � �� � � � � ����� � �� � ��� � � � ��� � ��� (22)

(see Appendix B), which is nonlinear in��. Although it looks very similar to the one-
particle equations of mean-field approaches like Hartree, Hartree-Fock or DFT, it doesnot
constitute a mean-field formulation, since the self-energytakes all dynamic many-electron
processes into account. Consequently, the functions

� � ��� and energies�� must not be
understood as single-particle quantities. In fact, they are defined in Eqs. (7) and (8) as
properties of the many-electron system. From the nonlinearity of the quasiparticle equation
it follows that the wave functions

� � ��� are not orthonormal, in contrast to single-particle
wave functions. However, they do fulfill the closure relation (Eq. (17)).

The Dyson equation (19) can be rewritten in the form of a geometric series by subse-
quently replacing� on the right-hand side by�� � ���� , which leads to, symbolically
written,

� � �� � ����� � �������� � ����������� � � � � � (23)

This is a typical equation of scattering theory, where the different terms of the geometric
series describe single, double, triple, etc., scattering processes, and� is the scattering po-
tential. Such a succession of scattering processes can be illustrated by Feynman diagrams,

8



Figure 5. Illustration of a series of scattering processes using Feynman diagrams. All zigzag lines representing
the instantaneous Coulomb interaction must be drawn horizontally. Arrows going forward in time represent
electron and those going backward in time hole propagators.The self-energy is the sum of all possible single
scattering processes.

where�� is drawn as a straight arrow and the Coulomb interaction as a zigzag line. Ac-
cording to Eq. (23), a diagrammatic representation of a multiple scattering process should
involve a series of arrows (��) divided by single scattering processes (�). In the example
of Figure 5 these are the exchange interaction, the creationof an electron-hole pair (the
“bubble” diagram) and finally the creation of a pair that itself creates another pair. In order
to obtain the complete Green function, we have to sum all multiple scattering processes,
of which the one shown in Figure 5 is merely one example. The self-energy is given by
the sum of all single scattering processes. The interpretation in terms of scattering pro-
cesses allows to construct approximations for� by the summation of diagrams considered
essential for the physical behavior of a given electron system. In general, however, such
approximations are rarely convergent, and too many processes turn out to be quantitatively
important. Therefore, we apply a systematic algebraic method instead.

3 Implementation and Applications

3.1 GW Approximation

In practice we must use an approximation for the self-energy, such as the�� approxima-
tion, which contains the electron exchange and a large part of the electron correlation. It
is formally derived in Appendix A and has a very simple mathematical form in the time
domain

��� �� � � � � � � � ���� �� � � � � � �� �� � � � � � � � � � (24)
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In order to calculate the self-energy contribution to the quasiparticle energies, we need the
Fourier transform on the frequency axis

��� �� � � � �� � � ��� � �	�
�� �� � � � �� � � ��� �� � � � �� � �� �� �� �� � � (25)

The first function on the right-hand side is the Green function of the noninteracting sys-
tem defined by Eq. (20) and the second function the dynamically screened interaction
� �� � � � �� �, which is related to the bare Coulomb potential� �� � � � � � ��  �
 ��

�
� � � �

�
�

through the inverse of the dielectric function

� �� � � � �� � � � �	� �� � � �� �� �� �� �� � � � ��� � �� � � �� � � � � � � � ��� �� � � �� �� �� �� �� � � � ��� � �� �
(26)

The screened interaction� �� � � � �� � is the effective potential at� � induced by a quasipar-
ticle at�: the Coulomb potential of the electron repels other electrons in its neighborhood
and thus gives rise to the formation of an exchange and correlation hole, whose effective
positive charge� ��� �� � � �� �� � screens the bare Coulomb potential� �� � � � � (see Figure 6).
Analogously, an effective negative charge screens the Coulomb potential of a hole. The
screened interaction is considerably weaker than the bare Coulomb interaction. The��
approximation uses the random-phase approximation (RPA)

� �� � � � �� � � � �� � � � � � � � �� � � �� �� �� �� � � � �� ��� � �� � (27)� �� � � � � � � � ����� �� � � � � � ��� �� � � � � �� � � (28)

It corresponds to a subset of scattering processes in the many-electron system. Some of the
respective diagrams are just the ones shown in Figure 5. Using expression in Eq. (12) for
the Green function�� of the noninteracting system we observe that the Fourier transform
of the polarization function in Eq. (28) is given by� �� � � � �� � �

��� �
��

����� �
�� � �� ��� � �� � ��� � �� � �� � � � �� �� � �

	 




�� � ��� � ��� � �� � 

�� � ��� � ��� � �� � (29)

in terms of the wave functions� �� ��� and energies��� .

Figure 6. The formation of the Coulomb hole around an electron at � screens its Coulomb potential� ��  �� �.
This leads to the definition of the screened interaction� ��  �� � that takes into account the combined potentials
of the bare electron and its screening cloud� ��� . The ensemble consisting of the electron and its polarization
cloud is called “quasiparticle”.
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The well-known Hartree-Fock equations can be recovered from Eq. (22) if we use the
energy-independent self-energy

��� �� � � � � � ���� �� � � � � �� �� �� � � � � (30)

(given in the time domain) instead. By comparison with Eq. (24), we see that the��
approximation constitutes an expansion of the self-energyup to first order in the screened
interaction as opposed to the bare Coulomb interaction in Eq. (30). This approximates
the exact self-energy considerably better, because� is much smaller than� . Due to
the similarity of the two self-energy expressions, the�� approximation can formally be
regarded as a Hartree-Fock approach with a dynamically screened interaction� instead
of the static Coulomb interaction� .

3.2 Numerical Implementation

For band structure calculations it is more efficient to obtain the�� directly from the quasi-
particle equation (22) instead of solving the Dyson integral equation (19) and searching
for the poles of the Green function. Furthermore, it is then possible to exploit the formal
similarity to the Kohn-Sham equation

�����
� ��� � ��� �����
� ��� � ��
� ��
� ��� � (31)

where��� ��� is the local exchange-correlation potential. In many casesthe Kohn-Sham
eigenvalues��
� already provide a reasonable estimate of the band structureand are in
qualitative agreement with experiment. For systems where the quasiparticle wave functions
are known, one also finds�� 
� ��� � � � ���.9 This observation indicates that the self-energy
correction� �� � � � � ���� � ��� ���� �� � � � � is small and justifies the use of first-order
perturbation theory to obtain approximate energies

�� � ��
� � ���
� �
� ����� � ��� ���
� � � (32)

A solution of this nonlinear equation still requires the knowledge of the frequency depen-
dence of the self-energy, which is not known in general. Therefore, we use the linear
expansion

� �� � � � � ���� � � �� � � � � ��
� �� � �� � �� 
�
�

�� �� � � � � ��
� ���� � (33)

which leads to

�� � ��
� � � � ��� 
� ��
� ���
� �� � ��� ����
� � � (34)

The quasiparticle renormalization factor is given by

� � � 


 �

�
��
� �����



�
�� ���
� ���� �����

��
� �� 	�
(35)

and equals the quasiparticle weight� � � �
�
� � ���

�� ��� � 
 � (36)
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With the decomposition of� into the bare Coulomb interaction� and the remainder� �� , the�� self-energy (Eq. (24)) splits into exchange and correlation parts, symbolically
written as

��� � ����
� � � ���� 
� � � ���� 
� �� � � � � ���
� � ���� � (37)

Instead of�� we use the Kohn-Sham Green function��
� . After inserting this decompo-
sition into Eq. (25), we must evaluate the convolutions

���
� �� � � � �� � � ��� � �	�

��
� �� � � � �� � � � �� �� � � � �� �� �� �� � � (38a)

���� �� � � � �� � � ��� � �	�
��
� �� � � � �� � � � � 
� �� � � � �� � � � � �� � � � �� �� � � (38b)

The integral (Eq. (38a)) can be evaluated analytically and leads to the well-known expres-
sion for the Hartree-Fock exchange term���
� ��

���
� ���

�
� � � �
��
 ��

��� �
�� � ��
� � ��� ��
� ��� �� 
� � �� � � ��
� �� ���

� � � �
� �� � �� � � �

(39)
In general, the second convolution (Eq. (38b)) must be computed numerically. For this pur-
pose the integration contour is usually deformed to the complex plane, where the analytical
continuations of�� and� are smoother.

Let the Kohn-Sham wave functions be represented in a basis��� ����. According to
Eq. (29) we can then write the polarization function and all related quantities in terms of
products�� ��� � � �� ����� ��� with the composite index� � �� � � � as� �� � � � �� � � �� 	
 ��
 �� �� �� ���� 
 �� � � � (40)

The Eqs. (24) to (28) are solved by matrix operations:

1. A self-consistent DFT loop produces the Kohn-Sham wave functions��
� ��� and
energies��
� . At this point we can already evaluate the exchange term (Eq.(39)).

2. The polarization matrix��
 �� � is calculated according to Eq. (29).

3. The dielectric matrix is obtained from
��
 �� � � ��
 � � � ��� �� 
 �� � and inverted.

4. Next the screened interaction� �
 �� � � � � �	��� �� ��� 
 is calculated from a matrix
multiplication of the inverse dielectric function with theCoulomb matrix.

5. The correlation term���
� ��
���� ���

� 
� � is evaluated according to Eq. (38b) with a
numerical contour integration on the complex frequency plane.

6. Finally, approximate quasiparticle energies are obtained from Eqs. (34) and (35).

The computation of the dielectric function, its inversion and the convolution (Eq. (38b))
are very time-consuming. Therefore, some (especially older) codes approximate the in-
verse dielectric function by a so-called plasmon-pole model.10, 11 These models replace the
imaginary component of

�	� �� �, which has a peaked structure, by a sum of delta functions
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at the corresponding frequencies. This simplification reduces the third step to a single ma-
trix inversion of the static dielectric function at� � �

and makes an analytic evaluation of
the frequency integral (Eq. (38b)) possible.

3.3 Examples

Although Hedin’s seminal article4 was already published in 1965, it was not before the
middle of the 1980s that the first ab initio calculations for real materials were reported in
the literature. In spite of several approximations in the numerical treatment, which were
necessary because of the lack of computer power back then, initial results were already
very promising. Hybertsen and Louie12 as well as Godbyet al.13 showed that the cal-
culated band gap of Si fell within a margin of about 0.1 eV fromthe experimental value.
Shortly afterwards the same authors reported band gaps for several other semiconducting
materials that turned out to be equally accurate.14, 15 After these pioneering studies the
�� approximation was applied to a variety of semiconductors with great success (see,
e.g., Figure 1). The principal effect of the�� self-energy correction on the band struc-
ture of a semiconductor is to rigidly shift the valence bandsup and the conduction bands
down, thus opening the band gap. Figure 7 shows this effect for Si as an example.

Not only the band gaps of semiconductors and insulators are improved by the�� self-
energy correction, but the correlation-induced band narrowing of metals is also correctly
described. The band narrowing reflects the higher effectivemass of quasiparticles (the
polarization cloud adds to the electron mass) compared to bare electrons. For this reason,
the self-energy is sometimes also referred to as “mass operator”. Figure 8 shows the energy
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 2
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L Γ X
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gy
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Figure 7. LDA band structure (dashed lines) of silicon with�� self-energy corrected valence and conduction
bands (solid lines). The�� approximation shifts the corresponding bands up and down, respectively, but leaves
the dispersion essentially unaffected.

13



Figure 8. Comparison of LDA (dashed), quasiparticle (solidline) and experimental (crosses) bands for Na. Taken
from Ref. 16.

Figure 9. De-excitation dynamics measured in time-resolved two-photon photoemission spectroscopy (dia-
monds) and calculated with the�� approximation (solid line). Taken from Ref. 17.

dispersion of Na as an example.16 The band narrowing brought about by the�� self-
energy correction leads to nearly perfect agreement with experiment.

The calculated excitation or quasiparticle lifetimes can be directly compared with two-
photon photoemission spectroscopy. This experimental method allows to measure dynam-
ical de-excitation processes in electronic systems. Aftera first photon has excited the
electron system (creating a “hot” electron), a second photon probes the quasiparticle den-
sity of states like in ordinary direct photoelectron spectroscopy. The time delay between
the two photons can be tuned such that the system can be observed in different stages of the
electronic de-excitation process. From a series of measurements one can thus deduce the
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lifetime, which depends on the excitation energy, i.e., theenergy of the first photon. In the
example of Ag in Figure 9 the theoretical curve� � �

�
�
�	�

obtained from the imaginary
parts of the quasiparticle energies (see Section 2.2) closely follows the experimental data
points.17

4 Summary

In this lecture we presented the�� approximation for the electronic self-energy, which
allows to calculate excited-state properties like excitation energies and lifetimes. The
self-energy describes scattering processes between electrons and, in principle, contains
all exchange and correlation effects beyond the electrostatic Hartree potential. The��
approximation includes a subset of these scattering processes. Apart from exchange it de-
scribes the creation of electron-hole pairs within the random-phase approximation (RPA)
that leads to the formation of polarization clouds around the bare particles. The ensemble
of an electron or a hole together with its polarization cloudbehaves essentially like a sin-
gle entity and is called a quasiparticle. The quasiparticles interact via a screened potential
that is considerably weaker than the bare Coulomb interaction. This makes a perturbative
treatment possible. In this respect, the�� approximation constitutes an expansion of the
self-energy up to linear order in the screened interaction.It works well in a large class
of systems where the polarization effects covered by the RPAplay the dominant role in
electron correlation, such as simple metals and semiconductors.

The�� approximation is by nature a perturbative approach. Actual�� calculations
are usually based on the self-consistent Kohn-Sham wave functions and energies as a start-
ing point. This method has its limitations in materials where DFT already gives unphysical
results. It breaks down for systems with very strong electronic correlation, which is in-
sufficiently described by the available exchange-correlation functionals. The large error in
the band gap of NiO in Figure 1 is an example. In reality, NiO isa strongly correlated
Mott-Hubbard insulator, whereas it comes out as a semiconductor with a very small band
gap (nearly a semi-metal) in DFT calculations.

The�� method is designed for the analysis of excited states of the�� � 
�-electron
systems. The treatment of optical absorption processes, where the particle number does
not change due to the promotion of valence electrons into unoccupied conduction states
rather than emission, requires the simultaneous description of two particles, an electron
and a hole, i.e., an exciton. Consequently, one must describe such a process with a two-
particle Green function. In this case many-body perturbation theory leads to the so-called
Bethe-Salpeter equation. Absorption spectra obtained from this equation are indeed very
accurate.18 An alternative is time-dependent density functional theory,19 which also gives
access to the excited states of an� -electron system.
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Appendix A

Hedin equations

With the field-operators introduced in Section 2.1 we can rewrite the many-particle Hamil-
tonian

�� � ��
�
� ���� � �� � ���	 �� � �� � 
� ��� � �� � � �� � � (41)

where���	 ��� is the potential created by the atomic nuclei,� �� � � � � � ��  �
 ��
�
� � � �

�
�

the Coulomb interaction,
�

the electron mass,� the electron charge and
�� the vacuum

dielectric constant, as

�� � � �� � ��� �� ��� �� ����� � � 
� � � �� � ��� �� � �� � �� �� � � � � �� �� � � �� ����� � ��� � (42)

with the one-particle operator

�� ��� � � ���� � � � ���	 ��� � (43)

The expression in Eq. (42) is just a mathematical reformulation of Eq. (41) and should not
be mistaken for the energy expectation value in Hartree theory, although it looks similar.

From the equation of motion for the annihilation operator

��
�� � �� �� � �� � � �� �� � �� � �� �	 �

�� ��� �� �� � �� � � � �� � � � � �� � �� � � �� �� �� � � �� �� �� � ���� � � �
(44)

which describes the time evolution of a Heisenberg operatorin the same way as the
Schrödinger equation describes that of a wave function, wecan directly deduce the equa-
tion of motion for the Green function

��
�� �� ��� � � � � � � � � �� � � � �� �� � �� � � �� ���� ��� � � � � � � (45)

� �
� � � �� � � �� � ��

� ���
� � �� � �� �� � �� �� �� �� � �� �� �� � �� �� � �� � � ���� ����

� � ��� �� �
This is not a closed equation, because it involves the two-particle Green function

� �
��
 � � � 

�� �

�
� ���

� � �� �
� �� ��� �� � �
 � �� � ���� ����
� � � (46)

Here and in the following we denote the set of space-time coordinates�� � � �� � with a natural
number 1, etc., and further define� �
�� � � �� � � �� �� ��� � �� � � (47)� �
�� � � �� � � �� �� ��� � �� � � (48)

� �

 � � �� � � � �	�

��� � (49)



�

� �� � � �� � � � � (50)
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where� is an infinitesimal positive time. With the two-particle Green function (Eq. (46))
we can rewrite Eq. (45) as

��
�� �� � �
�� � � �
�� � �� �
�� �
�� � �� � � �
� � �� �
���� ��� � (51)

The additional infinitesimals in

�

and
��

make sure that the time order is the same as in
Eq. (45).

In order to employ the functional-derivative method, we introduce an external potential� �
� that is again set to zero at the end. Of course, all quantitiesfrom now on depend on
� �
�, while the equations remain invariant provided that we replace

�� �
� � �� �
� � � �
�.
We can use functional differentiation to define a number of useful quantities. The reac-
tion of the density to changes in the external potential is governed by the linear-response
function �

�
�� �
�� �
��� ��� ������� � (52)

The test potential and the Coulomb potential created by the induced charge can be com-
bined into an effective potential

�
�� �
� � � �
� � � � � �
� �� ����� ����� �� � (53)

which is related to� �
� via the inverse dielectric function

�	� �
�� �
��

�� �
��� ��� ������� � � �
�� � � � �
��� ������ � (54)

With the definition of the polarization function� �
�� �
�� �
���
�� ��� ����� �� (55)

and the chain rule for functional derivatives one obtains the geometric series

�	� �
�� � � �
�� � � � �
��� ������ � � � � � �
��� ��
 �� �
��� ������ �
 �� � � � � �
(56)

which can easily be inverted to yield

� �
�� � � �
�� � � � �
��� ������ � (57)

If we take the Coulomb potential of an electron at
�

as the test potential, we get the screened
potential

� �
�� � � �	� �
� �� ������ � � �
�� � � � � �
��� ��
 �� �
���� �

(58)

as the effective potential at position
.
After this interlude we can go on with the derivation. For thefunctional derivative of

the Green function with respect to the test potential we find4, 20�� �
���� ��� ����� �� � � �
��� ���� � � � �
���� � � (59)
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This allows us to eliminate the two-particle Green function, and the integral in Eq. (51)
becomes

��� � � �
� � �� �
���� ���
� ��� � � �
� �� ���� ����

� �� �

� � �
�
� �
�� � �� � � �
� �� �� �
���� �� �

��
(60)

� � � �
�� �
�� � � � �
� �� ������ �

where� � �
� is the Hartree potential [cf. Eq. (21)] and

� �
�� � �� � � � �
� � � �� �

 ��� ��� � 	� �
���� �

� ��� � � � �
� ��� �

 �

�� 	� �
���� ��� �� �

(61)

� �� � � � �
� � �� �

 �� �
� � ���� �

the self-energy. For the second identity we used partial integration and for the third the
chain rule for functional derivatives, the definition of thescreened interaction (Eq. (58))
and the vertex function

� �
� � � � � �
�� 	� �
����

�� ���
����� ��

� (62)

With the self-energy (Eq. (61)) the equation of motion for the Green function (Eq. (51))
now becomes �

��
�� �� �

��� �
�� � �
�� � � � �
��� ������ � � �
�� � (63)

where we incorporated the Hartree potential into the one-particle operator
��� �
� �

�� �
� � � � �
� � (64)

The delta function on the right-hand side of Eq. (63) demonstrates that� �
�� is indeed
a Green function in the mathematical sense. In a noninteracting system the self-energy
vanishes, and Eq. (63) becomes�

��
�� �� �

��� �
�� �� �
�� � � �
�� � (65)

Multiplication of Eq. (63) with�� and Eq. (65) with� from the left followed by integra-
tion yields the Dyson equation

� �
�� � �� �
�� � � � �� �
� �� ��
 �� �
���� �
 � (66)

Finally, Eqs. (65) and (66) allow us to rewrite the vertex function (Eq. (62)) as

� �
� � � � � � �
��� �
� � � �� �
����
�� ��� � (67)
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and with the identity�� �
����
�� ��� �

���
�� ��� � � � �

 �� 	� �
��� �����
 ��

� � �� �
����
�� ��� � � � � �

 �

�� 	� �
����
�� �� � � �����
 ��

(68)

we obtain

� �
� � � � � � �
��� �
� � � � � � � �� �
���� �
�� � ��� �� ��� � ��� ��
 ��
 �� �� ��
(69)

and analogously� �
�� � ���
�� �

� ���

�� ��� � ��� � � � �
� �� ��
 � ��� �
 
��� �
 � (70)

The Eqs. (58), (66), (61), (69) and (70) constitute Hedin’s set of integro-differential equa-
tions, whose self-consistent solution, in principle, solves the many-electron problem ex-
actly. Unfortunately, they are not just numerical relations but contain a functional deriva-
tive in Eq. (69). Therefore, the Hedin equations cannot be solved self-consistently by com-
puter codes, but they may be iterated analytically in order to derive useful approximations.
In practice we can only perform one iteration. We start with the Green function�� of the
noninteracting system, which corresponds to the single-particle Hamiltonian (Eq. (64)).
As the corresponding self-energy vanishes in this case, theset of equations simplifies to

� �
� � �� � � �
��� �
�� � (71)� �
�� � ����� �
���� ��
� � (72)

� �
�� � � �
�� � � � � �
��� ��
 �� �
���� �
 � (73)

� �
�� � ���� �
��� �
� �� � (74)

� �
�� � �� �
�� � � � �� �
� �� ��
 �� �
���� �
 � (75)

The polarization function here corresponds to the bubble diagram of Feynman’s diagram-
matic approach to many-body perturbation theory and leads to the random-phase approx-
imation for the screened interaction (cf. Figure 5). The expression for the self-energy in
this first iteration coined the name�� approximation.

Appendix B

Quasiparticle equation

Inserting Eq. (12) into the equation of motion for the Green function of a stationary system
in the frequency domain��� �

��� ���� � �� � � � �� � � � � �� � � �� �� �� �� �� � � � �� ��� � �� � � �� � � � � � (76)
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which is equivalent to the Dyson equation, yields

��
� �� �� ��

�� � �� � �� � ��� �
��� ���� � � ��� � � � �� � � �� �� � � � �� �� � ��� �� � � � �� � � �� �

(77)
Now we multiply with ��� � �� � and take the limit� � �� � on both sides. If we assume
that the system is nondegenerate (i.e., all�� are different), the left-hand side becomes

����� �� 	
 ��� � �� � �� � �� �� ��
�� � �� � �� � ��� �

��� ���� � � ��� � � � �� � � �� �� � � � �� �� � ��� �� �

� � �� �� � � � ��� �
��� ���� � � ��� � � � �� � � �� � �� �� � � �� �� � �� � �� � � (78)

and the right-hand side becomes
����� �� 	
 ��� � �� � � �� � � � � � � � (79)

Since
� �� �� � � does not vanish for all� �, the expression in the curly brackets must be zero.

This leads directly to the quasiparticle equation

��� ��� � � ��� � � � �� � � �� � �� �� �� �� �� � ��� �� � �� �� ��� � (80)

It remains valid in the degenerate case, which is seen as follows. We assume that
the solution of Eq. (80) leads to degenerate amplitudes

� � ��� and energies�� . Then we
introduce an arbitrary perturbation

��
, e.g., an additional external potential in

��� ���, that
breaks the symmetry in such a way that the degeneracy is lifted. For this (nondegenerate)
case the above proof applies. The validity of Eq. (80) for thedegenerate case is then
established by taking the limit

�� � �
.
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