Today's topics

- Proof techniques
- Indirect, by cases, and direct
- Rules of logical inference
- Correct \& fallacious proofs
- Reading: Section 1.5
- Upcoming
- Sets and Functions

More Proof Terminology

- Lemma - A minor theorem used as a steppingstone to proving a major theorem.
- Corollary - A minor theorem proved as an easy consequence of a major theorem.
- Conjecture - A statement whose truth value has not been proven. (A conjecture may be widely believed to be true, regardless.)
- Theory - The set of all theorems that can be proven from a given set of axioms.

Proof Terminology

- Theorem
- A statement that has been proven to be true.
- Axioms, postulates, hypotheses, premises
- Assumptions (often unproven) defining the structures about which we are reasoning.

- Rules of inference

- Patterns of logically valid deductions from hypotheses to conclusions.

Inference Rules - General Form

- An Inference Rule is
- A pattern establishing that if we know that a set of antecedent statements of certain forms are all true, then we can validly deduce that a certain related consequent statement is true.

$$
\begin{array}{|l}
\hline \text { antecedent } 1 \\
\text { antecedent } 2 \ldots \\
\hline \therefore \text { consequent }
\end{array}
$$

$$
" \therefore " \text { means "therefore" }
$$

Inference Rules \& Implications

- Each valid logical inference rule corresponds to an implication that is a tautology.
- antecedent 1 Inference rule antecedent 2 ... \therefore consequent
- Corresponding tautology:

```
((ante. 1)^ (ante. 2)^ ...) }->\mathrm{ consequent
```


Modus Ponens \& Tollens

Some Inference Rules

Rule of Addition

Rule of Simplification

Rule of Conjunction

Syllogism Inference Rules

Formal Proofs

- A formal proof of a conclusion C, given premises $p_{1}, p_{2}, \ldots, p_{n}$ consists of a sequence of steps, each of which applies some inference rule to premises or previouslyproven statements (antecedents) to yield a new true statement (the consequent).
- A proof demonstrates that $i f$ the premises are true, then the conclusion is true.

Inference Rules for Quantifiers

- $\forall x P(x)$ Universal instantiation $\therefore P(o)$ (substitute any specific object o)
- $P(g) \quad$ (for g a general element of u.d.) $\therefore \forall x P(x)$ Universal generalization
- $\exists x P(x)$ Existential instantiation $\therefore P(c) \quad$ (substitute a new constant c)
- $P(o) \quad$ (substitute any extant object o) $\therefore \exists x P(x)$ Existential generalization

Formal Proof Example

- Suppose we have the following premises:
"It is not sunny and it is cold."
"We will swim only if it is sunny."
"If we do not swim, then we will canoe."
"If we canoe, then we will be home early."
- Given these premises, prove the theorem
"We will be home early" using inference rules.

Common Fallacies

- A fallacy is an inference rule or other proof method that is not logically valid.
- A fallacy may yield a false conclusion!
- Fallacy of affirming the conclusion:
- " $p \rightarrow q$ is true, and q is true, so p must be true." (No, because $\mathbf{F} \rightarrow \mathbf{T}$ is true.)
- Fallacy of denying the hypothesis:
- " $p \rightarrow q$ is true, and p is false, so q must be false." (No, again because $\mathbf{F} \rightarrow \mathbf{T}$ is true.)

Circular Reasoning

- The fallacy of (explicitly or implicitly) assuming the very statement you are trying to prove in the course of its proof. Example:
- Prove that an integer n is even, if n^{2} is even.
- Attempted proof: "Assume n^{2} is even. Then $n^{2}=2 k$ for some integer k. Dividing both sides by n gives $n=(2 k) / n$ $=2(k / n)$. So there is an integer j (namely $k / n)$ such that $n=2 j$. Therefore n is even."
- Circular reasoning is used in this proof. Where?

A More Verbose Version

Uses some number theory we haven't defined yet.
Suppose n^{2} is even $\therefore 2 \mid n^{2} \therefore n^{2} \bmod 2=0$. Of course $n \bmod$ 2 is either 0 or 1 . If it's 1 , then $n \equiv 1(\bmod 2)$, so $n^{2} \equiv 1(\bmod$ 2), using the theorem that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a c \equiv b d(\bmod m)$, with $a=c=n$ and $b=d=1$. Now $n^{2} \equiv 1$ $(\bmod 2)$ implies that $n^{2} \bmod 2=1$. So by the hypothetical syllogism rule, $(n \bmod 2=1)$ implies $\left(n^{2} \bmod 2=1\right)$. Since we know $n^{2} \bmod 2=0 \neq 1$, by modus tollens we know that n $\bmod 2 \neq 1$. So by disjunctive syllogism we have that $n \bmod$ $2=0 \therefore 2 \mid n \therefore n$ is even.

A Correct Proof

We know that n must be either odd or even. If n were odd, then n^{2} would be odd, since an odd number times an odd number is always an odd number. Since n^{2} is even, it is not odd, since no even number is also an odd number. Thus, by modus tollens, n is not odd either. Thus, by disjunctive syllogism, n must be even.

Proof Methods for Implications

For proving implications $p \rightarrow q$, we have:

- Direct proof: Assume p is true, and prove q.
- Indirect proof: Assume $\neg q$, and prove $\neg p$.
- Vacuous proof: Prove $\neg p$ by itself.
- Trivial proof: Prove q by itself.
- Proof by cases:

Show $p \rightarrow(a \vee b)$, and $(a \rightarrow q)$ and $(b \rightarrow q)$.

Direct Proof Example

- Definition: An integer n is called odd iff $n=2 k+1$ for some integer $k ; n$ is even iff $n=2 k$ for some k.
- Theorem: Every integer is either odd or even. - This can be proven from even simpler axioms.
- Theorem: (For all numbers n) If n is an odd integer, then n^{2} is an odd integer.
- Proof: If n is odd, then $n=2 k+1$ for some integer k. Thus, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=$ $2\left(2 k^{2}+2 k\right)+1$. Therefore n^{2} is of the form $2 j+1$ (with j the integer $2 k^{2}+2 k$), thus n^{2} is odd. \square

Vacuous Proof Example

- Theorem: (For all n) If n is both odd and even, then $n^{2}=n+n$.
- Proof: The statement " n is both odd and even" is necessarily false, since no number can be both odd and even. So, the theorem is vacuously true.

Indirect Proof Example

- Theorem: (For all integers n)

If $3 n+2$ is odd, then n is odd.

- Proof: Suppose that the conclusion is false, i.e., that n is even. Then $n=2 k$ for some integer k. Then $3 n+2=$ $3(2 k)+2=6 k+2=2(3 k+1)$. Thus $3 n+2$ is even, because it equals $2 j$ for integer $j=3 k+1$. So $3 n+2$ is not odd. We have shown that $\neg(n$ is odd $) \rightarrow \neg(3 n+2$ is odd), thus its contra-positive ($3 n+2$ is odd) $\rightarrow(n$ is odd) is also true. \square

Trivial Proof Example

- Theorem: (For integers n) If n is the sum of two prime numbers, then either n is odd or n is even.
- Proof: Any integer n is either odd or even. So the conclusion of the implication is true regardless of the truth of the antecedent. Thus the implication is true trivially.

Proof by Contradiction

- A method for proving p.
- Assume $\neg p$, and prove both q and $\neg q$ for some proposition q. (Can be anything!)
- Thus $\neg p \rightarrow(q \wedge \neg q)$
- $(q \wedge \neg q)$ is a trivial contradiction, equal to \mathbf{F}
- Thus $\neg p \rightarrow \mathbf{F}$, which is only true if $\neg p=\mathbf{F}$
- Thus p is true.

Review: Proof Methods So Far

- Direct, indirect, vacuous, and trivial proofs of statements of the form $p \rightarrow q$.
- Proof by contradiction of any statements.
- Next: Constructive and nonconstructive existence proofs.

Proof by Contradiction Example

$\sqrt{2}$ - Theorem: $\sqrt{2}$ is irrational.

- Proof: Assume $2^{1 / 2}$ were rational. This means there are integers i, j with no common divisors such that $2^{1 / 2}=i / j$. Squaring both sides, $2=$ $i^{2} j^{2}$, so $2 j^{2}=i^{2}$. So i^{2} is even; thus i is even. Let $i=2 k$. So $2 j^{2}=(2 k)^{2}=4 k^{2}$. Dividing both sides by $2, j^{2}=2 k^{2}$. Thus j^{2} is even, so j is even. But then i and j have a common divisor, namely 2 , so we have a contradiction.

Proving Existentials

- A proof of a statement of the form $\exists x P(x)$ is called an existence proof.
- If the proof demonstrates how to actually find or construct a specific element a such that $P(a)$ is true, then it is a constructive proof.
- Otherwise, it is nonconstructive.

Constructive Existence Proof

- Theorem: There exists a positive integer n that is the sum of two perfect cubes in two different ways:
- equal to $j^{3}+k^{3}$ and $l^{3}+m^{3}$ where j, k, l, m are positive integers, and $\{j, k\} \neq\{l, m\}$
- Proof: Consider $n=1729, j=9, k=10$, $l=1, m=12$. Now just check that the equalities hold.

The proof...

- Given $n>0$, let $x=(n+1)!+1$.
- Let $i \geq 1$ and $i \leq n$, and consider $x+i$.
- Note $x+i=(n+1)!+(i+1)$.
- Note $(i+1) \mid(n+1)!$, since $2 \leq i+1 \leq n+1$.
- Also $(i+1) \mid(i+1)$. So, $(i+1) \mid(x+i)$.
- $\therefore x+i$ is composite.
- $\therefore \forall n \exists x \forall 1 \leq i \leq n: x+i$ is composite. Q.E.D.

Another Constructive Existence Proof

- Theorem: For any integer $n>0$, there exists a sequence of n consecutive composite integers.
- Same statement in predicate logic: $\forall n>0 \exists x \forall i(1 \leq i \leq n) \rightarrow(x+i$ is composite $)$
- Proof?

Nonconstructive Existence Proof

- Theorem:
"There are infinitely many prime numbers."
- Any finite set of numbers must contain a maximal element, so we can prove the theorem if we can just show that there is no largest prime number.
- I.e., show that for any prime number, there is a larger number that is also prime.
- More generally: For any number, \exists a larger prime.
- Formally: Show $\forall n \exists p>n: p$ is prime.

The proof, using proof by cases...

- Given $n>0$, prove there is a prime $p>n$.
- Consider $x=n!+1$. Since $x>1$, we know (x is prime) $\mathrm{v}(x$ is composite).
- Case 1: x is prime. Obviously $x>n$, so let $p=x$ and we're done.
- Case 2: x has a prime factor p. But if $p \leq n$, then $p \bmod x=1$. So $p>n$, and we're done.

The halting problem: writing doesHalt

```
public class ProgramUtils
    /**
        * Returns true if progname halts on input,
        otherwise returns false (progname loops)
    */
    public static boolean doesHalt(String progname,
        String input){
    }
}
- A compiler is a program that reads other programs as input
> Can a word counting program count its own words?
```

- The doesHalt method might simulate, analyze, ...
> One program/function that works for any program/input

The Halting Problem (Turing'36)

- The halting problem was the first mathematical function proven to have no algorithm that computes it!
- We say, it is uncomputable.
- The desired function is $\operatorname{Halts}(P, I): \equiv$ the truth value of this statement:
- "Program P, given input I, eventually terminates."
- Theorem: Halts is uncomputable!

Alan Turing
1912-1954

- I.e., There does not exist any algorithm A that
computes Halts correctly for all possible inputs.
- Its proof is thus a non-existence proof.
- Corollary: General impossibility of predictive analysis of arbitrary computer programs.

Consider the class Confuse.java

```
public static void main(String[] args) {
    String prog = "Foo.java";
    if (ProgramUtils.doesHalt(prog,prog)) {
        while (true) {
            // do nothing forever
            }
    }
}
- We want to show writing doesHal \(t\) is impossible
> Proof by contradiction:
> Assume possible, show impossible situation results
```


Limits on Proofs

- Some very simple statements of number theory haven't been proved or disproved!
- E.g. Goldbach's conjecture: Every integer $n \geq 2$
is exactly the average of some two primes.
- $\forall n \geq 2 \exists$ primes $p, q: n=(p+q) / 2$.
- There are true statements of number theory (or any sufficiently powerful system) that can never be proved (or disproved) (Gödel).

Another example

- Quiz question 2b: Correct or incorrect: At least one of the 9 students in the class is intelligent. Y is a student of this class. Therefore, Y is intelligent.
- First: Separate premises/conclusion,
\& translate to logic:
- Premises: (1) $\exists x \operatorname{InClass}(x) \wedge \operatorname{Intelligent}(x)$

> (2) InClass(Y)

- Conclusion: Intelligent(Y)

More Proof Examples

- Quiz question 1a: Is this argument correct or incorrect?
- "All TAs compose easy quizzes. Seda is a TA. Therefore, Seda composes easy quizzes."
- First, separate the premises from conclusions:
- Premise \#1: All TAs compose easy quizzes.
- Premise \#2: Seda is a TA.
- Conclusion: Seda composes easy quizzes.

Another Example

- Quiz question \#2: Prove that the sum of a rational number and an irrational number is always irrational.
- First, you have to understand exactly what the question is asking you to prove:
- "For all real numbers x, y, if x is rational and y is irrational, then $x+y$ is irrational."
$-\forall x, y: \operatorname{Rational}(x) \wedge \operatorname{Irrational}(y) \rightarrow \operatorname{Irrational}(x+y)$

