Today’s topics

* Proof techniques
— Indirect, by cases, and direct
— Rules of logical inference
— Correct & fallacious proofs

* Reading: Section 1.5
* Upcoming

— Sets and Functions

CompSci 102 © Michael Frank a1

Proof Terminology

» Theorem
— A statement that has been proven to be true.

» Axioms, postulates, hypotheses, premises

— Assumptions (often unproven) defining the
structures about which we are reasoning.

* Rules of inference

— Patterns of logically valid deductions from
hypotheses to conclusions.
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More Proof Terminology

e Lemma - A minor theorem used as a stepping-
stone to proving a major theorem.

» Corollary - A minor theorem proved as an easy
consequence of a major theorem.

* Conjecture - A statement whose truth value has
not been proven. (A conjecture may be widely
believed to be true, regardless.)

» Theory — The set of all theorems that can be
proven from a given set of axioms.
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Inference Rules - General Form

* An Inference Rule is

— A pattern establishing that if we know that a
set of antecedent statements of certain forms
are all true, then we can validly deduce that a
certain related consequent statement is true.

*| antecedent 1
antecedent 2 ...
.". consequent “..” means “therefore”

CompSci 102 © Michael Frank 44




Inference Rules & Implications Some Inference Rules
 Each valid logical inference rule . p Rule of Addition
corresponds to an implication that is a 5. pVq
tautology. * [ pag Rule of Simplification
* | antecedent 1 Inference rule .
P
antecedent 2 ... . _
. consequent . 12 Rule of Conjunction
» Corresponding tautology: : 9
((ante. I) A (ante. 2) A ...) = consequent - PNq
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Modus Ponens & Tollens Syllogism Inference Rules
- “the mode of .
| p Rule of modus ponens | affirming” [ p—¢q Rule of hypothetical
p—q — (a.k.a. law of detachment) q—r syllogism
q | | S p—r
‘=g | VAKX Rule of disjunctive
p—q — Rule of modus tollens -p syllogism
~pPl “the mode of denying” S q
Aristtle
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Formal Proofs

* A formal proof of a conclusion C, given
premises py, p,, ...,p, consists of a sequence
of steps, each of which applies some
inference rule to premises or previously-
proven statements (antecedents) to yield a
new true statement (the consequent).

» A proof demonstrates that if the premises
are true, then the conclusion is true.
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Formal Proof Example

* Suppose we have the following premises:
“It is not sunny and it is cold.”
“We will swim only if it is sunny.”
“If we do not swim, then we will canoe.”
“If we canoe, then we will be home early.”

* Given these premises, prove the theorem
“We will be home early” using inference rules.
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Inference Rules for Quantifiers

* Vx P(x) " ' 1at1
Tror GRiysrsal instaptiafion

* P(2) (for g a general element of u.d.)
~Vx P(x) Universal generalization

* I Pix). F)%istential instantiation
su )

~.P(c) stitute a new constant c
* P(o) (substitute any extant object 0)
~.dx P(x)

Existential generalization
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Common Fallacies

* A fallacy is an inference rule or other proof
method that is not logically valid.

— A fallacy may yield a false conclusion!

* Fallacy of affirming the conclusion:

— “p—>q is true, and ¢ is true, so p must be true.”
(No, because F—T is true.)

* Fallacy of denying the hypothesis:

— “p—>q is true, and p is false, so ¢ must be
false.” (No, again because F—T is true.)
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Circular Reasoning

» The fallacy of (explicitly or implicitly) assuming the very
statement you are trying to prove in the course of its
proof. Example:

* Prove that an integer n is even, if n? is even.

« Attempted proof: “Assume n? is even. Then n?=2k for
some integer k. Dividing both sides by n gives n = (2k)/n
= 2(k/n). So there is an integer j (namely k/n) such that
n=2j. Therefore n is even.”

— Circular reasoning is used in this proof. Where?
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A Correct Proof

We know that » must be either odd or even.
If n were odd, then n? would be odd, since an
odd number times an odd number is always
an odd number. Since n? is even, it is not
odd, since no even number is also an odd
number. Thus, by modus tollens, # is not odd
either. Thus, by disjunctive syllogism, »
must be even. m
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A More Verbose Version

Uses some number theory we haven’t defined yet.

Suppose n? is even .~.2|n% .. n”? mod 2 = 0. Of course n mod
2 is either 0 or 1. If it’s 1, then n=1 (mod 2), so n?=1 (mod
2), using the theorem that if a=b (mod m) and c¢=d (mod m)
then ac=bd (mod m), with a=c=n and b=d=1. Now n?=1
(mod 2) implies that n2 mod 2 = 1. So by the hypothetical
syllogism rule, (n mod 2 = 1) implies (n> mod 2 = 1). Since
we know n2 mod 2 = 0 = 1, by modus tollens we know that n
mod 2 = 1. So by disjunctive syllogism we have that » mod
2=0 ..2n .. nis even.
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Proof Methods for Implications

For proving implications p—¢, we have:

Direct proof: Assume p is true, and prove q.

Indirect proof: Assume —-¢, and prove —p.
* Vacuous proof: Prove —p by itself.

Trivial proof: Prove ¢ by itself.

Proof by cases:
Show p—(a v b), and (a—¢q) and (b—¢q).
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Direct Proof Example

* Definition: An integer » is called odd iff n=2k+1
for some integer k; n 1s even iff n=2k for some k.

* Theorem: Every integer is either odd or even.

— This can be proven from even simpler axioms.

* Theorem: (For all numbers ) If 7 is an odd
integer, then »? is an odd integer.

* Proof: Ifn is odd, then n = 2k+1 for some
integer k. Thus, n’ = (2k+1)> =4k +4k+ 1 =
2(2k* + 2k) + 1. Therefore n? is of the form 2; + 1
(withj the integer 24> + 2k), thus »” is odd. O
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Indirect Proof Example

* Theorem: (For all integers 7)
If 3#+2 is odd, then 7 is odd.

* Proof: Suppose that the conclusion is false, i.e., that 7 is
even. Then n=2k for some integer k. Then 3n+2 =
3(2k)+2 = 6k+2 = 2(3k+1). Thus 3n+2 is even, because it
equals 2/ for integer j = 3k+1. So 3n+2 is not odd. We
have shown that —(n is odd)——(3n+2 is odd), thus its
contra-positive (3n+2 is odd) — (n is odd) is also true. O
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Vacuous Proof Example

* Theorem: (For all n) If n is both odd and
even, then n? =n + n.

* Proof: The statement “n is both odd and
even” is necessarily false, since no number
can be both odd and even. So, the theorem
is vacuously true. O
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Trivial Proof Example

* Theorem: (For integers n) If n 1s the sum
of two prime numbers, then either # is odd
or n 1s even.

* Proof: Any integer n is either odd or even.
So the conclusion of the implication is true
regardless of the truth of the antecedent.
Thus the implication is true trivially. o
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Proof by Contradiction

A method for proving p.

» Assume -p, and prove both ¢ and —¢ for
some proposition g. (Can be anything!)
Thus -p— (¢ A —q)

(g A —q) 1s a trivial contradiction, equal to F

Thus -p—F, which is only true if —p=F

Thus p is true.
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Proof by Contradiction Example

J2  Theorem: /2 is irrational.

— Proof: Assume 2!2 were rational. This means
there are integers 7,/ with no common divisors
such that 212 = j/j. Squaring both sides, 2 =
i?/j?, s0 2j> =i2. So i* is even; thus i is even.
Let i=2k. So 2j2 = (2k)? = 4k*. Dividing both
sides by 2, j2=2k2. Thus j2 is even, S0 J is
even. But then i and j have a common divisor,
namely 2, so we have a contradiction. O
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Review: Proof Methods So Far

* Direct, indirect, vacuous, and trivial proofs
of statements of the form p—g¢.

» Proof by contradiction of any statements.

e Next: Constructive and nonconstructive
existence proofs.
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Proving Existentials

* A proof of a statement of the form Jx P(x)
is called an existence proof.

If the proof demonstrates how to actually
find or construct a specific element a such
that P(a) is true, then it is a constructive
proof.

* Otherwise, it 1S nonconstructive.
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Constructive Existence Proof

* Theorem: There exists a positive integer n
that is the sum of two perfect cubes in two
different ways:

— equal to j3 + &3 and P + m3 where j, k, [, m are
positive integers, and {j,k} # {l,m}

* Proof: Considern=1729, j=9, k=10,
[=1,m=12. Now just check that the
equalities hold.
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Another Constructive
Existence Proof

* Theorem: For any integer n>0, there
exists a sequence of n consecutive
composite integers.

» Same statement in predicate logic:
V>0 dx Vi (1=isn)—(x+i is composite)

e Proof ?
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The proof...

Given n>0, letx=(n + 1)! + 1.
Leti=1 and i < n, and consider x+i.
Note x+ti=m+ 1)+ G+ 1).

Note (i+1)|(n+1)!, since 2 < i+1 < n+1.
Also (i+1)|(i+1). So, (i+1)|(x+i).

e .. x+i 1s composite.

- Vn Ax Vls=isn : x+i is composite. Q.E.D.
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Nonconstructive Existence Proof

* Theorem:
“There are infinitely many prime numbers.”

* Any finite set of numbers must contain a maximal
element, so we can prove the theorem if we can just show
that there is no largest prime number.

* [e., show that for any prime number, there is a larger
number that is also prime.

* More generally: For any number, 3 a larger prime.
* Formally: Show Vn dp>n : p is prime.
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The proof, using proof by cases...

* Given n>0, prove there is a prime p>n.

Consider x = n!+1. Since x>1, we know
(x 1s prime)v(x is composite).

Case 1: x is prime. Obviously x>n, so let
p=x and we’re done.

Case 2: x has a prime factor p. But if p=n,
then p mod x = 1. So p>n, and we’re done.
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The Halting Problem (Turing‘36)

* The halting problem was the first
mathematical function proven to
have no algorithm that computes it!
— We say, it is uncomputable.
e The desired function is Halts(P,l) =
the truth value of this statement:
— “Program P, given input I, eventually terminates.”
* Theorem: Halts is uncomputable!
— le., There does not exist any algorithm A4 that
computes Halts correctly for all possible inputs.
* Its proof is thus a non-existence proof.
* Corollary: General impossibility of predictive analysis of
arbitrary computer programs.

Alan Turing
1912-1954
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The halting problem: writing doesHalt

public class ProgramUtils
/ * %
* Returns true if progname halts on input,
* otherwise returns false (progname loops)
*/
public static boolean doesHalt(String progname,
String input) {
}
}
® A compiler is a program that reads other programs as input
> Can a word counting program count its own words?
® The doesHalt method might simulate, analyze, ...

> One program/function that works for any program/input
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Consider the class Confuse. java

public static void main(String[] args) {
String prog = "Foo.java'";
if (ProgramUtils.doesHalt (prog,prog)) {
while (true) {
// do nothing forever
}
}
}
® We want to show writing doesHalt is impossible
» Proof by contradiction:

> Assume possible, show impossible situation results
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Limits on Proofs

« Some very simple statements of number
theory haven’t been proved or disproved!
— E.g. Goldbach’s conjecture: Every integer n>2

is exactly the average of some two primes.

— Vn>2 3 primes p,q: n=(p+q)/2.

* There are true statements of number theory
(or any sufficiently powerful system) that
can never be proved (or disproved) (Gddel).
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More Proof Examples

* Quiz question la: Is this argument correct or incorrect?

— “All TAs compose easy quizzes. Seda is a TA. Therefore, Seda
composes easy quizzes.”

* First, separate the premises from conclusions:
— Premise #1: All TAs compose easy quizzes.
— Premise #2: Seda is a TA.
— Conclusion: Seda composes easy quizzes.
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Another example

* Quiz question 2b: Correct or incorrect: At least one of the
9 students in the class is intelligent. Y is a student of this
class. Therefore, Y is intelligent.

 First: Separate premises/conclusion,
& translate to logic:
— Premises: (1) 3x InClass(x) A Intelligent(x)
(2) InClass(Y)
— Conclusion: Intelligent(Y)
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Another Example

* Quiz question #2: Prove that the sum of a rational number
and an irrational number is always irrational.

 First, you have to understand exactly what the question is
asking you to prove:

— “For all real numbers x,y, if x is rational and y is irrational, then
x+y is irrational.”

— Vx,: Rational(x) A Irrational(y) — Irrational(x+y)
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