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Today’s topics

•• Proof techniquesProof techniques

– Indirect, by cases, and direct

– Rules of logical inference

– Correct & fallacious proofs

•• Reading: Section 1.5Reading: Section 1.5

•• UpcomingUpcoming

–– Sets and FunctionsSets and Functions
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Proof Terminology

•• TheoremTheorem

–– A statement that has been proven to be true.A statement that has been proven to be true.

•• AxiomsAxioms, , postulatespostulates, , hypotheseshypotheses,, premises premises

–– Assumptions (often unproven) defining theAssumptions (often unproven) defining the

structures about which we are reasoning.structures about which we are reasoning.

•• Rules of inferenceRules of inference

–– Patterns of logically valid deductions fromPatterns of logically valid deductions from

hypotheses to conclusions.hypotheses to conclusions.
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More Proof Terminology

•• LemmaLemma -  - A minor theorem used as a stepping-A minor theorem used as a stepping-
stone to proving a major theorem.stone to proving a major theorem.

•• CorollaryCorollary -  - A minor theorem proved as an easyA minor theorem proved as an easy
consequence of a major theorem.consequence of a major theorem.

•• ConjectureConjecture -  - A statement whose truth value hasA statement whose truth value has
not been proven.not been proven.    (A conjecture may be widely(A conjecture may be widely
believed to be true, regardless.)believed to be true, regardless.)

•• TheoryTheory  ––  The set of all theorems that can beThe set of all theorems that can be
proven from a given set of axioms.proven from a given set of axioms.
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Inference Rules - General Form

•• An An Inference RuleInference Rule is is

–– A pattern establishing that if we know that aA pattern establishing that if we know that a

set of set of antecedentantecedent statements of certain forms statements of certain forms

are all true, then we can validly deduce that aare all true, then we can validly deduce that a

certain related certain related consequentconsequent statement is true. statement is true.

••  antecedent 1 antecedent 1

 antecedent 2  antecedent 2 ……

!!  consequent           consequent           ““!!”” means  means ““thereforetherefore””
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Inference Rules & Implications

•• Each valid logical inference ruleEach valid logical inference rule
corresponds to an implication that is acorresponds to an implication that is a
tautology.tautology.

••  antecedent 1                antecedent 1               Inference ruleInference rule
 antecedent 2  antecedent 2 ……
!!  consequentconsequent

•• Corresponding tautology:Corresponding tautology:

((((ante. 1ante. 1) ) "" ( (ante. 2ante. 2) ) ""  ……) ) ##  consequentconsequent
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Some Inference Rules

••             pp Rule of AdditionRule of Addition

!!  pp$$qq

••   p  p""qq Rule of SimplificationRule of Simplification

  !!  pp

••        p       p Rule of ConjunctionRule of Conjunction

              qq

  !!  pp""qq
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Modus Ponens & Tollens

••       pp Rule of Rule of modus modus ponensponens

pp##qq                                (a.k.a. (a.k.a. law of detachmentlaw of detachment))

!!qq

••     ¬¬qq

pp##qq   Rule of Rule of modus modus tollenstollens

!¬!¬pp

“the mode of 

affirming”

“the mode of denying”
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Syllogism Inference Rules

••    p   p##qq Rule of hypotheticalRule of hypothetical

      qq##rr syllogismsyllogism

!!pp##rr

•• p p $$  qq Rule of disjunctiveRule of disjunctive

    ¬¬pp syllogismsyllogism

!!  qq

Aristotle

(ca. 384-322 B.C.)
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Formal Proofs

•• A formal proof of a conclusion A formal proof of a conclusion CC, given, given

premises premises pp11, , pp22,,……,,ppnn  consists of a sequenceconsists of a sequence

of of stepssteps, each of which applies some, each of which applies some

inference rule to premises or previously-inference rule to premises or previously-

proven statements (proven statements (antecedentsantecedents) to yield a) to yield a

new true statement (the new true statement (the consequentconsequent).).

•• A proof demonstrates that A proof demonstrates that ifif the premises the premises

are true, are true, thenthen the conclusion is true. the conclusion is true.
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Formal Proof Example

•• Suppose we have the following premises:Suppose we have the following premises:

““It is not sunny and it is cold.It is not sunny and it is cold.””

““We will swim only if it is sunny.We will swim only if it is sunny.””

““If we do not swim, then we will canoe.If we do not swim, then we will canoe.””

““If we canoe, then we will be home early.If we canoe, then we will be home early.””

•• Given these premises, prove the theoremGiven these premises, prove the theorem

““We will be home earlyWe will be home early”” using inference rules. using inference rules.
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Inference Rules for Quantifiers

•• %%xx  PP((xx))
!!PP((oo)) (substitute (substitute anyany specific object  specific object oo))

•• PP((gg)) (for (for gg a  a general general element of u.d.)element of u.d.)
!%!%xx  PP((xx))

•• &&xx  PP((xx))
!!PP((cc)) (substitute a (substitute a newnew  constantconstant  cc))

•• PP((oo) ) (substitute any extant object (substitute any extant object oo))
!&!&xx  PP((xx))
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Common Fallacies

•• A A fallacyfallacy is an inference rule or other proof is an inference rule or other proof

method that is not logically valid.method that is not logically valid.

–– A fallacy may yield a false conclusion!A fallacy may yield a false conclusion!

•• Fallacy of Fallacy of affirming the conclusionaffirming the conclusion::

–– ““pp##qq is true, and  is true, and qq is true, so  is true, so pp must be true. must be true.””

(No, because (No, because FF##TT is true.) is true.)

•• Fallacy of Fallacy of denying the hypothesisdenying the hypothesis::

–– ““pp##qq is true, and  is true, and pp is false, so  is false, so qq must be must be

false.false.”” (No, again because  (No, again because FF##TT is true.) is true.)
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Circular Reasoning

•• The fallacy of (explicitly or implicitly) assuming the veryThe fallacy of (explicitly or implicitly) assuming the very

statement you are trying to prove in the course of itsstatement you are trying to prove in the course of its

proof.  Example:proof.  Example:

•• Prove that an integer Prove that an integer nn is even, if  is even, if nn22 is even. is even.

•• Attempted proof:Attempted proof:    ““Assume Assume nn22 is even.  Then  is even.  Then nn22=2=2kk for for

some integer some integer kk. Dividing both sides by . Dividing both sides by nn gives  gives n n = (2= (2kk)/)/nn

= 2(= 2(kk//nn)). So there is an integer . So there is an integer jj (namely  (namely kk//nn) such that) such that

nn=2=2jj.  Therefore .  Therefore nn is even. is even.””

–– Circular reasoning is used in this proof.  Where?Circular reasoning is used in this proof.  Where?
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A Correct Proof

We know that We know that nn must be either odd or even. must be either odd or even.

If If nn were odd, then  were odd, then nn22 would be odd, since an would be odd, since an

odd number times an odd number is alwaysodd number times an odd number is always

an odd number.  Since an odd number.  Since nn22 is even, it is not is even, it is not

odd, since no even number is also an oddodd, since no even number is also an odd

number.  Thus, by modus number.  Thus, by modus tollenstollens, , nn is not odd is not odd

either.  Thus, by disjunctive syllogism, either.  Thus, by disjunctive syllogism, nn

must be even. must be even. !!
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A More Verbose Version

Suppose Suppose nn22 is even  is even !!2|2|nn22  !!  nn2 2 mod 2 = 0.  Of course mod 2 = 0.  Of course nn mod mod

2 is either 0 or 1. If it2 is either 0 or 1. If it’’s 1, then s 1, then nn''1 (mod 2), so 1 (mod 2), so nn22''1 (mod1 (mod

2), 2), using the theorem that if using the theorem that if aa''b b (mod(mod m m) and) and c c''d d (mod(mod m m))

thenthen  acac''bdbd  (mod m), with (mod m), with aa==cc==n n and and bb==dd=1.=1.  Now   Now nn22''11

(mod 2) implies that (mod 2) implies that nn22 mod 2 = 1.  So  mod 2 = 1.  So by the hypotheticalby the hypothetical

syllogism rulesyllogism rule, (, (n n mod 2 = 1) implies (mod 2 = 1) implies (nn22 mod 2 = 1).  Since mod 2 = 1).  Since

we know we know nn22 mod 2 = 0  mod 2 = 0 (( 1,  1, by by modus modus tollenstollens we know that  we know that nn

mod 2 mod 2 (( 1.  So  1.  So by disjunctive syllogismby disjunctive syllogism we have that  we have that nn mod mod

2 = 0 2 = 0 !!2|2|n n !!  nn is even. is even.

Uses some number theory we haven’t defined yet.

CompSci 102 © Michael Frank
4.16

Proof Methods for Implications

For proving implications For proving implications pp##qq, we have:, we have:

•• DirectDirect proof: proof:  Assume Assume pp is true, and prove  is true, and prove qq..

•• IndirectIndirect proof: proof:  Assume Assume ¬¬qq, and prove , and prove ¬¬pp..

•• VacuousVacuous proof: proof:  Prove Prove ¬¬pp by itself. by itself.

•• TrivialTrivial proof: proof:  Prove Prove qq by itself. by itself.

•• Proof by cases:Proof by cases:

Show Show pp##((aa  $$  bb), and (), and (aa##qq) and () and (bb##qq).).
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Direct Proof Example

•• Definition:Definition: An integer  An integer nn is called  is called oddodd  iffiff  nn=2=2kk+1+1
for some integer for some integer kk; ; nn is  is eveneven  iffiff  nn=2=2kk for some  for some kk..

•• Theorem:Theorem: Every integer is either odd or even. Every integer is either odd or even.
–– This can be proven from even simpler axioms.This can be proven from even simpler axioms.

•• Theorem:Theorem: (For all numbers  (For all numbers nn) If ) If nn is an odd is an odd
integer, then integer, then nn22 is an odd integer. is an odd integer.

•• Proof:Proof:  If   If nn is odd, then  is odd, then nn = 2 = 2kk+1+1 for some for some
integer integer kk.  Thus, .  Thus, nn22 = (2 = (2kk+1)+1)22 = 4 = 4kk22 + 4 + 4kk + 1 = + 1 =
2(22(2kk22 + 2 + 2kk) + 1) + 1.  Therefore .  Therefore nn22 is of the form  is of the form 22jj + 1 + 1
(with (with jj the integer  the integer 22kk22 + 2 + 2kk), thus ), thus nn22 is odd.  is odd. ##
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Indirect Proof Example

•• Theorem:Theorem:  (For all integers   (For all integers nn))

If If 33nn+2+2 is odd, then  is odd, then nn is odd. is odd.

•• Proof:Proof:  Suppose that the conclusion is false,   Suppose that the conclusion is false, i.e.i.e., that , that nn is is

even.  Then even.  Then nn=2=2kk for some integer  for some integer kk.  Then .  Then 33nn+2 =+2 =

3(23(2kk)+2 = 6)+2 = 6kk+2 = 2(3+2 = 2(3kk+1)+1).  Thus .  Thus 33nn+2+2 is even, because it is even, because it

equals equals 22jj for integer  for integer jj = 3 = 3kk+1+1.  So .  So 33nn+2+2 is not odd.  We is not odd.  We

have shown that have shown that ¬(¬(nn is odd) is odd)""¬(3¬(3nn+2 is odd)+2 is odd), thus its, thus its

contra-positive contra-positive (3(3nn+2 is odd) +2 is odd) " " ((nn is odd) is odd) is also true.  is also true. ##
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Vacuous Proof Example

•• Theorem:Theorem: (For all  (For all nn) If ) If nn is both odd and is both odd and

even, then even, then nn22 =  = nn +  + nn..

•• Proof: Proof: The statement The statement ““nn is both odd and is both odd and

eveneven”” is necessarily false, since no number is necessarily false, since no number

can be both odd and even.  So, the theoremcan be both odd and even.  So, the theorem

is vacuously true. is vacuously true. ##
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Trivial Proof Example

•• Theorem:Theorem:  (For integers   (For integers nn) If ) If nn is the sum is the sum

of two prime numbersof two prime numbers, then either , then either nn is odd is odd

or or nn is even. is even.

•• Proof:Proof:    AnyAny integer  integer nn is either odd or even. is either odd or even.

So the conclusion of the implication is trueSo the conclusion of the implication is true

regardless of the truth of the antecedent.regardless of the truth of the antecedent.

Thus the implication is true trivially. Thus the implication is true trivially. ##
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Proof by Contradiction

•• A method for proving A method for proving pp..

•• Assume Assume ¬¬pp, and prove both , and prove both qq and  and ¬¬qq for for

some proposition some proposition qq.  (Can be anything!).  (Can be anything!)

•• Thus Thus ¬¬pp## ( (qq  ""  ¬¬qq))

•• ((qq  ""  ¬¬qq) is a trivial contradiction, equal to ) is a trivial contradiction, equal to FF

•• Thus Thus ¬¬pp##FF, which is only true if , which is only true if ¬¬pp==FF

•• Thus Thus pp is true. is true.
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Proof by Contradiction Example

•• Theorem:Theorem:        is irrational.        is irrational.

–– Proof:Proof: Assume 2 Assume 21/21/2 were rational.  This means were rational.  This means
there are integers there are integers ii,,jj with no common divisors with no common divisors
such that 2such that 21/21/2 =  = ii//jj.  Squaring both sides, 2 =.  Squaring both sides, 2 =
ii22//jj22, so 2, so 2jj22 =  = ii22.  So .  So ii22 is even; thus  is even; thus ii is even. is even.
Let Let ii=2=2kk.  So 2.  So 2jj22 = (2 = (2kk))22 = 4 = 4kk22.  Dividing both.  Dividing both
sides by 2, sides by 2, jj22 = 2 = 2kk22.  Thus .  Thus jj22 is even, so  is even, so jj is is
even.  But then even.  But then ii and  and jj have a common divisor, have a common divisor,
namely 2, so we have a contradiction. namely 2, so we have a contradiction. ##

2 2

CompSci 102 © Michael Frank
4.23

Review: Proof Methods So Far

•• DirectDirect, , indirectindirect, , vacuousvacuous, and , and trivialtrivial proofs proofs

of statements of the form of statements of the form pp##qq..

•• Proof by contradictionProof by contradiction of any statements. of any statements.

•• Next:  Next:  ConstructiveConstructive and  and nonconstructivenonconstructive

existence proofsexistence proofs..
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Proving Existentials

•• A proof of a statement of the form A proof of a statement of the form &&xx  PP((xx))

is called an is called an existence proofexistence proof..

•• If the proof demonstrates how to actuallyIf the proof demonstrates how to actually
find or construct a specific element find or construct a specific element aa such such
that that PP((aa) is true, then it is a ) is true, then it is a constructiveconstructive
proof.proof.

•• Otherwise, it is Otherwise, it is nonconstructivenonconstructive..
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Constructive Existence Proof

•• Theorem:Theorem: There exists a positive integer  There exists a positive integer nn

that is the sum of two perfect cubes in twothat is the sum of two perfect cubes in two

different ways:different ways:

–– equal to equal to jj33 +  + kk33 and  and ll33 +  + mm33 where  where jj, , kk, , ll, , mm are are

positive integers, and {positive integers, and {jj,,kk} } $ $ {{ll,,mm}}

•• Proof:Proof:  Consider   Consider nn = 1729,   = 1729,  jj = 9,  = 9, kk = 10, = 10,

ll = 1,  = 1, mm = 12.  Now just check that the = 12.  Now just check that the

equalities hold.equalities hold.
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Another Constructive

Existence Proof

•• Theorem:  Theorem:  For any integer For any integer nn>0, there>0, there

exists a sequence of exists a sequence of nn consecutive consecutive

composite integers.composite integers.

•• Same statement in predicate logic:Same statement in predicate logic:

%%nn>0 >0 &&x x %%ii (1 (1))ii))nn))##((xx++ii is composite) is composite)

•• Proof Proof ??
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The proof...

•• Given Given nn>0, let >0, let xx = ( = (nn + 1)! + 1. + 1)! + 1.

•• Let Let i i ** 1 and  1 and i i ))  nn, and consider , and consider xx++ii..

•• Note Note xx++ii = ( = (nn + 1)! + ( + 1)! + (ii + 1). + 1).

•• Note (Note (ii+1)|(+1)|(nn+1)!, since 2 +1)!, since 2 ))    ii+1 +1 ))  nn+1.+1.

•• Also (Also (ii+1)|(+1)|(ii+1).  So, (+1).  So, (ii+1)|(+1)|(x+ix+i).).

•• !!  x+ix+i is composite. is composite.

•• !!  %%nn  &&x x %%11))ii))n n : : xx++ii is composite. Q.E.D. is composite. Q.E.D.

CompSci 102 © Michael Frank
4.28

Nonconstructive Existence Proof

•• Theorem:Theorem:

““There are infinitely many prime numbers.There are infinitely many prime numbers.””

•• Any finite set of numbers must contain a maximalAny finite set of numbers must contain a maximal

element, so we can prove the theorem  if we can just showelement, so we can prove the theorem  if we can just show

that there is that there is nono largest prime number. largest prime number.

•• I.e.I.e., show that for any prime number, there is a larger, show that for any prime number, there is a larger

number that is number that is alsoalso prime. prime.

•• More generally: For More generally: For anyany number,  number, &&  a larger prime.a larger prime.

•• Formally: Show Formally: Show %%nn  &&p>n p>n : : pp is prime. is prime.
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The proof, using proof by cases...

•• Given Given nn>0, prove there is a prime >0, prove there is a prime pp>>nn..

•• Consider Consider x x = = nn!+1.  Since !+1.  Since xx>1, we know>1, we know

((xx is prime) is prime)$$((x x is composite).is composite).

•• Case 1:Case 1:  xx is prime.  Obviously  is prime.  Obviously xx>>nn, so let, so let

pp==xx and we and we’’re done.re done.

•• Case 2:Case 2:  xx has a prime factor  has a prime factor pp.  But if .  But if pp))nn,,

then then pp mod  mod xx = 1.  So  = 1.  So pp>>nn, and we, and we’’re done.re done.
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The Halting Problem (Turing‘36)

•• The The halting problemhalting problem was the first was the first
mathematical function proven tomathematical function proven to
have have nono algorithm that computes it! algorithm that computes it!
–– We say, it is We say, it is uncomputableuncomputable..

•• The desired function is The desired function is HaltsHalts((PP,,II) :) :%%
the truth value of this statement:the truth value of this statement:
–– ““Program P, given input I, eventually terminates.Program P, given input I, eventually terminates.””

•• Theorem:Theorem:    HaltsHalts is  is uncomputableuncomputable!!
–– I.e., There does I.e., There does notnot exist  exist anyany algorithm  algorithm AA that that

computes computes HaltsHalts correctly for  correctly for allall possible inputs. possible inputs.

•• Its proof is thus a Its proof is thus a nonnon-existence proof.-existence proof.

•• Corollary:Corollary: General impossibility of predictive analysis of General impossibility of predictive analysis of
arbitrary computer programs.arbitrary computer programs.

Alan Turing

1912-1954
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The halting problem: writing doesHalt

public class ProgramUtils

    /**

     * Returns true if progname halts on input,

     * otherwise returns false (progname loops)

     */

    public static boolean doesHalt(String progname,

                                   String input){

    }

}

! A compiler is a program that reads other programs as input

! Can a word counting program count its own words?

! The doesHalt method might simulate, analyze, …

! One program/function that works for any program/input
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Consider the class  Confuse.java

public static void main(String[] args){

    String prog = "Foo.java";

    if (ProgramUtils.doesHalt(prog,prog)) {

        while (true) {

            // do nothing forever

        }

    }

}

! We want to show writing doesHalt is impossible

! Proof by contradiction:

! Assume possible, show impossible situation results
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Limits on Proofs

•• Some very simple statements of numberSome very simple statements of number

theory haventheory haven’’t been proved or disproved!t been proved or disproved!

–– E.g. E.g. GoldbachGoldbach’’s s conjectureconjecture: Every integer : Every integer nn&&22

is exactly the average of some two primes.is exactly the average of some two primes.

–– %%nn!!2 2 && primes  primes pp,,qq: : nn=(=(pp++qq)/2.)/2.

•• There are true statements of number theoryThere are true statements of number theory

(or any sufficiently powerful system) that(or any sufficiently powerful system) that

can can nevernever be proved (or disproved) (Gödel). be proved (or disproved) (Gödel).

CompSci 102 © Michael Frank
4.34

More Proof Examples

•• Quiz question 1a: Is this argument correct or incorrect?Quiz question 1a: Is this argument correct or incorrect?

–– ““All TAs compose easy quizzes.  All TAs compose easy quizzes.  SedaSeda is a TA.  Therefore,  is a TA.  Therefore, SedaSeda

composes easy quizzes.composes easy quizzes.””

•• First, separate the premises from conclusions:First, separate the premises from conclusions:

–– Premise #1: All TAs compose easy quizzes.Premise #1: All TAs compose easy quizzes.

–– Premise #2: Premise #2: SedaSeda is a TA. is a TA.

–– Conclusion: Conclusion: SedaSeda composes easy quizzes. composes easy quizzes.
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Another example

•• Quiz question 2b:  Correct or incorrect: At least one of theQuiz question 2b:  Correct or incorrect: At least one of the

99 students in the class is intelligent.  Y is a student of this students in the class is intelligent.  Y is a student of this

class.  Therefore, Y is intelligent.class.  Therefore, Y is intelligent.

•• First: Separate premises/conclusion,First: Separate premises/conclusion,

& translate to logic:& translate to logic:

–– Premises: (1) Premises: (1) &&xx  InClassInClass((xx) ) "" Intelligent( Intelligent(xx))

  (2)   (2) InClassInClass(Y)(Y)

–– Conclusion: Intelligent(Y)Conclusion: Intelligent(Y)
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Another Example

•• Quiz question #2: Prove that the sum of a rational numberQuiz question #2: Prove that the sum of a rational number

and an irrational number is always irrational.and an irrational number is always irrational.

•• First, you have to understand exactly what the question isFirst, you have to understand exactly what the question is

asking you to prove:asking you to prove:

–– ““For allFor all real numbers  real numbers xx,,y,y, if  if xx is rational and  is rational and yy is irrational, then is irrational, then

xx++yy is irrational. is irrational.””

–– %%xx,,yy: Rational(: Rational(xx) ) ""  Irrational(Irrational(yy) ) " " Irrational(Irrational(xx++yy))


