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PREFACE

This book can serve as a textbook for two to three courses at the advanced
undergraduate and the graduate student level. It is also suitable as a basis for
continuing education of engineers in the nuclear power industry, who wish to
expand their knowledge of the principles of thermal analysis of nuclear sys-
tems. The book, in fact, was an outgrowth of the course notes used for teaching
several classes at MIT over a period of nearly 15 years.

The book is meant to cover more than thermal hydraulic design and analy-
sis of the core of a nuclear reactor. Thus, in several parts and examples, other
components of the nuclear power plant such as the pressurizer, the contain-
ment and the entire primary coolant system are addressed. In this respect the
book reflects the importance of such considerations in thermal engineering of a
modern nuclear power plant. The traditional concentration on the fuel element
design in earlier textbooks was appropriate when the fuel performance had a
higher share of the cost of electricity than in modern plants. The cost of the
nuclear electricity proved to be more influenced by the steam supply system
and the containment building than previously anticipated.

The desirability of providing in one book the basic concepts as well as the
complex formulations for advanced applications has resulted in a more compre-
hensive textbook than any previously authored in the field. The basic ideas of
both fluid flow and heat transfer as applicable to nuclear reactors are discussed
in Volume I. No assumption is made about the degree to which the reader is
already familiar with the subject. Therefore, various reactor types, energy
source distribution, and fundamental laws of conservation of mass, momen-
tum, and energy are presented in early chapters. Engineering methods for
analysis of flow hydraulics and heat transfer in single-phase as well as two-
phase coolants are presented in later chapters. In Volume II, applications of the
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fundamental ideas to the multichannel flow conditions in the reactor are de-
scribed as well as specific design considerations such as natural convection and
core reliability. They are presented in a way that renders it possible to use the
analytical development in simple exercises and as the bases for numerical
computations similar to those commonly practiced in the industry.

A consistent nomenclature is used throughout the text and a table of the
nomenclature is included in the Appendices. Each chapter includes problems
identified as to their topic and the section from which they are drawn. While the
SI unit system is principally used, British Engineering Units are given in brack-
ets for those results commonly still reported in the United States in this system.



ACKNOWLEDGMENTS

Much material in Volume I of this book originated from lectures developed at
MIT by Professor Manson Benedict with Professor Thomas Pigford for a sub-
ject in nuclear reactor engineering and by Professors Warren Rohsenow and
Peter Griffith for a subject in boiling heat transfer and two-phase flow. We have
had many years of pleasant association with these men as their students and
colleagues and owe a great deal of gratitude to them for introducing us to the
subject material. The development of the book has benefited from the discus-
sion and comments provided by many of our colleagues and students. In partic-
ular Professor George Yadigaroglu participated in the early stage of this work
in defining the scope and depth of topics to be covered.

We are at a loss to remember all the other people who influenced us.
However, we want to thank particularly those who were kind enough to review
nearly completed chapters, while stressing that they are not to be blamed for
any weaknesses that may still remain. These reviewers include John Bartzis,
Manson Benedict, Greg Branan, Dae Cho, Michael Corradini, Hugo DaSilva,
Michael Driscoll, Don Dube, Tolis Efthimiadis, Gang Fu, Elias Gyftopoulos,
Pavel Hejzlar, Steve Herring, Dong Wook Jerng, John Kelly, Min Lee, Alan
Levin, Joy Maneke, Mahmoud Massoud, John Meyer, Hee Cheon No, Klaus
Rehme, Tae Sun Ro, Donald Rowe, Gilberto Russo, Robert Sawdye, Andre
Schor, Nathan Siu, Kune Y. Suh, and Robert Witt. Finally, we want to express
our appreciation to all students at MIT who proof-tested the material at its
various stages of development and provided us with numerous suggestions and
corrections that have made their way into the final text.

Most of the figures in this book were prepared by a number of students
using a microcomputer under the able direction of Alex Sich. Many others have
participated in the typing of the manuscript. We offer our warmest thanks to



Xiv ACKNOWLEDGMENTS

Gail Jacobson, Paula Cornelio, and Elizabeth Parmelee for overseeing prepara-
tion of major portions of the final text.

A generous grant from the Bernard M. Gordon (1948) Engineering Curricu-
lum Development Fund at MIT was provided for the text preparation and for

this we are most grateful.

Mujid S. Kazimi
Neil E. Todreas



CHAPTER

ONE

FORMULATION OF THE REACTOR THERMAL
HYDRAULIC DESIGN PROBLEM

I INTRODUCTION

This chapter presents the mathematical definition of the reactor thermal analy-
sis problem. The various sets of applicable boundary conditions are stressed.
The solution procedures that are applicable to the various reactor types are
introduced here and presented in detail in subsequent chapters.

II POWER REACTOR HYDRAULIC CONFIGURATIONS

The power reactor we wish to analyze is similar to that sketched in Figure I-1.
The typical core under consideration consists of a heterogeneous arrangement
of fuel and coolant. The coolant channels are connected to common plena at
both the inlet and outlet of the core.

In pressurized water reactors (PWRs) the coolant channels are in commun-
ication with each other over their entire length. In this case the core can be
considered as a heterogeneous arrangement of continuously interacting coolant
channels in parallel flow.

Prismatic graphite-moderated cores are a variant of this arrangement in
that the coolant channels are transversely connected only at distinct axial
planes as shown in Figure 1-2. The planes at which transverse coolant flow
occurs correspond to the horizontal faces of the stacked graphite moderator
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OUTLET PLENUM

INLET PLENUM

Figure 1-1 Reactor assembly schematic.
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Figure 1-2 Coolant flow in graphite-moderated core of high temperature gas reactor (HTGR).

blocks. The transverse flow paths arise from the nonuniform dimensional
changes between blocks which are caused by radiation damage.

In boiling water reactors (BWRs) and liquid metal cooled reactors (LMRs),
on the other hand, groups of fuel pins are enclosed by flow boundaries called
cans, ducts, or channels to form assemblies. This yields a heterogeneous,
parallel flow arrangement with continuous mass, momentum, and energy ex-
changes taking place only between coolant channels within an assembly. How-
ever in LMRs, significant energy exchange can also occur between adjacent
assemblies by conduction through the duct walls and the sodium-filled spaces
between assemblies.

Generally in all reactor designs a fraction of the inlet coolant is bypassed
around the core to maintain the core support structure and the thermal shields
near inlet temperature conditions. The bypass flow is mixed with the core flow
at the core outlet.

In practice the core neutronic and thermal/hydraulic behavior can be
strongly coupled so that the energy generation rate cannot be prescribed inde-
pendently of the coolant density or fuel temperature distributions. The need for
consideration of this coupling exists principally for BWRs under steady-state as
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well as transient operation and for PWRs and LMRs under transients that may
cause large coolant density changes.

Actual core boundary conditions reflect the physical arrangement of the
reactor assembly as a component within a flow loop. Although outlet plenum
designs generally yield a uniform pressure distribution at the core outlet, inlet
plenum configurations often produce a situation in which the inlet mass flow
and pressure can have radial variations. One must then consider the details of
the flow in the inlet plenum in order to determine the pressure and velocity
distributions at the inlet of the core. In some cases such calculations can be
made using two- or three-dimensional flow formulations. When the inlet
plenum is included in the region under study, the boundary at which the appro-
priate boundary conditions are applied must be located further upstream. It
might be set, for example, at the inlet flow nozzle if the flow conditions are
sufficiently well known there. Generally, however, the core inlet plane should
be considered as the interface at which the solutions for the inlet plenum region
and for the core region must be matched.

Since the core inlet pressure and velocity distributions are interrelated, any
analysis of the core alone as a boundary value problem must be set up to ensure
that the applied boundary conditions do not overspecify the problem.

III BOUNDARY CONDITIONS FOR THE
HYDRAULIC PROBLEM

Historically because of the limited detail with which components could be
represented in loop codes, reactor design and analysis have been performed in
an iterative fashion using simple overall loop representations and separate
detailed component representations. Consequently, reactor cores have been
separately analyzed subject to imposed boundary conditions. Two fundamental
types of boundary conditions exist—the pressure and the mass flow rate (or
velocity) boundary conditions. The application of these boundary conditions
depends on the problem definition in terms of:

* Subsonic or supersonic flow, i.e., the Mach number (M)
* Compressible or incompressible flow
* The dimensionality, i.e. single or multiple dimensions

In this chapter only subsonic flow (M < 1) will be considered. The general case
will be compressible flow, with incompressibility considered as a limiting case.
The dimensionality factor will be used to distinguish among the flow arrange-
ments possible between fixed inlet and outlet plena. The flow arrangements
useful for nuclear reactor technology are illustrated in Figure 1-3.
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Figure 1-3 Flow arrangements in nuclear reactor technology.

IV PROBLEMS TREATED IN THIS BOOK

The problem statements presented in this chapter identify the spectrum of
cases useful in nuclear reactor assembly analysis. Table 1-1 lists these state-
ments and identifies the section in which the method of solution is presented.
These problem statements range from the simplest case of a single channel
between inlet and outlet plena to multiple channels between common inlet and
outlet plena which are interconnected along their length. Additionally, Chapter
3 of this text treats flow loops. A flow loop can be viewed as a single channel
whose exit closes upon its inlet. Chapter 3 treats single flow loops under both

single- and two-phase conditions.

Table 1-1 Synopsis of reactor assembly problem statements and solutions

Problem Problem
Problem definition solution
Single channel between plena (decoupled mass, momentum, Table 1-3 Chapter 13
energy coolant region solution under specified flow or Volume I
pressure boundary conditions)
Single channel between plena (coupled mass, momentum, Table 1-3 Chapter 2
energy coolant region solution under specified flow or
pressure boundary conditions)
Multiple channels in parallel low connected only at plena Table 1-4 Chapter 4
(decoupled mass, momentum, energy coolant region
solution)
Multiple channels in parallel flow connected only at plena Table 1-4 Chapter 4
(coupled mass, momentum, energy coolant region solution)
Multiple interconnected channels in parallel flow Table 1-6 Chapters S, 6, 7
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V FLOW IN SINGLE CHANNELS

The principal sets of boundary conditions for flow in a single channel will be
described. Flow conditions are usually categorized by the assumption made
regarding the dependence of density on pressure and enthalpy. Four cases will
be considered involving possible assumptions of pressure and enthalpy influ-
ence. These cases are summarized in Table 1-2. For example, for a typical
unheated, compressible flow, the density can be taken as only a function of
pressure, i.e., p(p) and a reference enthalpy, A*, must be prescribed. The
heated, incompressible case in which density is a function of enthalpy only,
i.e., p(h), is commonly called a thermally expandable flow.

A Unheated Channel

Consider a single, unheated channel bounded by inlet and outlet plena under
compressible flow for which the density is taken as a function of pressure only
and a reference enthalpy is prescribed. The principal boundary condition sets
for subsonic flow in this channel are listed below. They are also illustrated in
Figure 1-4.

Boundary condition

set numbers Imposed conditions

(1) Pressure at inlet and outlet boundaries

) Mass flow rate or velocity at inlet boundary; pressure at outlet boundary
3) Pressure at inlet boundary; mass flow rate or velocity at outlet boundary
4) Mass flow rate or velocity at inlet and outlet boundaries

Notice that for compressible, subsonic flow a single boundary condition is
applied at each end of the flow channel since conditions at each end do affect
flow behavior within the channel. In contrast, in supersonic flow, two boundary
conditions must be applied at the boundary across which flow enters the chan-
nel. Further, the case of both boundary conditions applied at the outlet bound-
ary does not exist.

For unheated, incompressible flow the boundary condition set is truncated
because the density is no longer a function of local pressure. Rather, a single
value of density is assumed which is usually prescribed by adoption of a refer-
ence pressure from which density as well as other necessary properties can be
obtained. Further, since the density is constant, the mass flow rate is spatially
uniform at each time, and the sonic propagation velocity is infinite.

Now, consider the boundary sets for unheated, incompressible flow. Since
the density of the fluid has been established by the selected reference pressure
and enthalpy, the flow conditions in the channel are not influenced in an inde-
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Table 1-2 Four treatments of density dependence
on pressure and enthalpy

p Dependence
Required auxiliary information
Channel type Compressible Incompressible
= Constant
Unheatedt % ppT
h h
Heated p(L_) A *)
— p

t There may be unheated problems in which enthalpy varia-
tions are important (e.g., cases with time variation of enthalpy at
the inlet or with rapid pressure changes); in those cases, consider
the categories to be heated.

The error incurred in the computation of pressure varia-
tions by assuming fluid incompressibility can be found in terms of
stagnation parameters p,, p,, and ¢, as:

Po” P _ ]<V)z+ (isentropic flo fect gas)
1p.V? a\e isentropic flow, perfect gas
\4 Po— P
for — = 0.2, => -1 =-0.0I.
Co $p,V?
Inlet Boundary Outlet Boundary
Prescribed 1
Pressure
3
Prescribed Mass Flowrate 2
or Velocity
4

Figure 1-4 Boundary condition sets for subsonic, compressible flow in a single, unheated channel.
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pendent manner by local values of pressure specified at the boundaries. They
depend only on the pressure difference applied across the channel. Hence,
boundary set (1) becomes (1) prescribed pressure difference between plena.
Similarly, for sets (2) and (3) the prescribed pressures do not influence the
density since it is established at the reference pressure and enthalpy. In prac-
tice then, the inlet or the outlet pressure is considered equal to the reference
pressure. Further, the mass flow rate is spatially uniform so that only a mass
flow rate value which applies to the entire channel can be prescribed. Hence,
sets (2), (3), and (4) reduce to (2) prescribed mass flow rate. These boundary
condition sets, together with the reference pressure and enthalpy, define the
unheated incompressible flow problem to be analyzed.

B Heated Channel

Now for heated, compressible flow, an enthalpy (or temperature) boundary
condition must be added. In practical cases only channel cross-sectional aver-
ages are considered so that the problem is formulated as a lumped parameter,
one-dimensional situation. For compressible flow, each of the sets of boundary
conditions of Figure 1-4 can be specified. Table 1-3 summarizes the problem
statement for a single, heated channel in subsonic, compressible flow. For this
one-dimensional, lumped parameter case, any surface heat addition per unit
length is represented by an equivalent volumetric energy generation rate. If the
channel being considered is a coolant passage heated by fuel rods, the relevant
constraints are the design limits of Section 2.4, Volume 1. The solutions of this
problem for the decoupled and coupled conservation equation cases are ad-
dressed in Chapter 13, Volume I and Chapter 2, respectively.

For heated, incompressible flow, the density can change locally with en-
thalpy, i.e., a thermally expandable flow. The mass flow rates at the inlet and
exit can differ, but they are interdependent. The two boundary sets identified
for unheated, incompressible flow are applicable here with the note that for set
(2), the boundary at which the mass flow rate needs to be identified must be
specified. Additionally, as stated above, an enthalpy boundary condition must
be specified.

VI FLOW IN MULTIPLE, HEATED CHANNELS CONNECTED
ONLY AT PLENA

Figure 1-5 illustrates this case which represents BWR and LMR fuel assemblies
between inlet and outlet plena. This arrangement is an array of N one-dimen-
sional channels so that the hydrodynamic boundary conditions can be obtained
by adaptation of those already presented in Figure 1-4.

The pressure-pressure boundary condition set is directly applicable. The
specification of either the inlet or outlet pressure for this set (or any other set)
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OUTLET PLENUM ’

L _ | | |

INLET PLENUM l

——

Figure 1-5 Array of channels connected only at plena.

requires the prior knowledge or assumption of the pressure distribution within
both plena. The other boundary condition sets, (2) through (4), must now be
expressed in terms of the total mass flow rate through a plenum and not the
partition of this total mass flow rate among the channels. Thus, for an N
channel array, N — 1 additional boundary conditions must be supplied at the
inlet to supplement set (2), at the outlet for set (3), and at both boundaries for
set (4). Considering set (2) as an example, the choice for this additional infor-
mation which may initially come to mind is the inlet pressure level distribution.
However, this provides N instead of N — 1 boundary conditions. Additionally,
taken in combination with the outlet pressure level distribution, this approach
would yield mass flow rates of all channels which, when summed up, may not
necessarily equal the prescribed total mass flow rate. Therefore, designation of
the inlet pressure level distribution, i.e., p;,(r) would overprescribe the prob-
lem. The correct additional boundary conditions to be supplied are provided by
specifying the inlet radial pressure distribution with respect to an arbitrary
reference pressure, p* (this reference p* can be different from that specified to
define density). Figure 1-6 illustrates the full set of boundary conditions for the
new set (2). Hence, for any arbitrary value of p*, the relative pressure drop
among all channels is given by N — 1 equations, i.e.,

Piin — P2iins P1in — P3ins ° ° " Prin — PNiin
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Figure 1-6 Boundary conditions for set (2).

This hydrodynamic set of boundary conditions consisting of the total inlet
mass flow rate, inlet radial pressure gradient distribution, and outlet pressure
level is designated set (2). Conversely interchanging the specification of radial
pressure gradient distribution and pressure level between the inlet and outlet
yields a new set labeled (3). These cases thus involve the total inlet mass flow
rate and the radial pressure gradient between channels at the one plenum and
the pressure level for each channel at the other plenum. For set (4) the radial
pressure gradient distribution and the total mass flow rate are supplied at each
plenum. Figure 1-7 illustrates these sets.

For incompressible flow in these heated channels, a reference pressure is
prescribed, i.e., a thermally expandable flow. The reduction of boundary condi-
tion sets is analogous to the changes discussed for a thermally expandable flow
in single channels. Set (1) reduces to a prescribed pressure difference. Sets (2)
and (3) reduce respectively to a prescribed inlet or outlet radial pressure gradi-
ent and a total mass flow rate which can be prescribed at either the inlet or the
outlet for each case. Set (4) becomes identical to set (2) or to set (3).

For all boundary condition sets radial pressure gradients between channels
in the same plenum can be accommodated. Again, in most practical cases these
pressure gradients are taken equal to zero. Hence, in Figure 1-6 generally:

Pin(r) = constant (1-1)
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INLET OUTLET

Prescribed Pressure

*Pressure Level

*Radial (between
channels) Pressure
Gradient

Prescribed Total
Mass Flowrate

Figure 1-7 Boundary conditions for multiple channels connected only at plena in subsonic, com-
pressible flow.

which is equivalent to:

| _ 0 (1-2)
ar lin
and/or:
Pou(r) = constant (1-3)
which is equivalent to:

leading to the condition of equal channel pressure drop, i.e.,
Apy=Ap2=. . .ApN (1-5)

Table 1-4 summarizes the problem statement for multiple, heated channels
connected only at plena except for boundary set (4) since it is not a very
practical case.

The solution of the multiple, heated channel problem can be simplified if
coolant property variations with enthalpy and pressure can be neglected. This
is appropriate for many single-phase, incompressible coolant applications. In
these cases continuity requires that the sum of the channel flow rates equal the
total flow rate, and the momentum equation can be decoupled from the energy
equation since the coupling arises only from property variations.
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Analogously for two-phase flow problems in which density variations can-
not be ignored, the mass and energy equations can still be partially decoupled
from the momentum equation. For example, this can be done if it is assumed
that the two phases are saturated, and that the pressure does not vary much
along the channel; all properties are then calculated at a reference system
pressure. This adoption of a heated, incompressible system approach is satis-
factory if acoustic pressure propagation effects can be ignored.

However, the velocity at some location in the channel is still needed to
proceed with the solution of the energy and mass equations since the density
depends on the enthalpy, i.e., a thermally expandable flow. If additionally this
density dependence on enthalpy can be neglected, then the conservation equa-
tions can be completely decoupled. This problem statement is the most basic
one and is easily solved analytically for energy generation rates expressed by
analytic functions and homogeneous (equal vapor and liquid velocities) flow.
The methods of solution for all cases, which introduce much useful information
on heat and momentum transfer, are presented in Chapter 13, Volume I and
Chapter 2 for single-phase and two-phase coolants. Table 1-5 summarizes the
method of solution for the conditions in which the conservation equations are
coupled and uncoupled.

Example 1-1 Reactor boundary condition determination

PrROBLEM A heated reactor core model with radially orificed, ducted sub-
assemblies is instrumented as shown in Figure 1-8. A prediction of the
steady-state enthalpy distribution test results is desired utilizing measured
boundary conditions. Identify the boundary conditions that could be uti-
lized.

SoLuTtioN Two sets of boundary conditions are possible. Set (1) inlet and
outlet pressure distributions are specified from the pressure gauges in the
inlet and outlet plena. (The distribution is usually assumed to be flat in
these cores since the fluid moves short distances at relatively low velocities
within the plena.) Inlet enthalpy is also specified from inlet pressure and
temperature measurements. Set (2) outlet pressure and inlet radial pressure
gradient, total mass flow rate, and inlet enthalpy are specified.

Note that the existence of different combinations of instrument read-
ings allows us to check the unused reading against the analytic answer. It is
possible, for example, to predict the flow through the reactor based on the
two pressure measurements and then check this against the reading from
the flow meter. Such an operation, called signal validation by use of ana-
lytic redundancy, is increasingly used to ensure that the information sent to
reactor operators is accurate.
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m

Outlet Plenum movable
— pressure
gauge

Radial Orificing of
Subassemblies in
the Inlet Plenum

movable .
pressure Figure 1-8 Instrumented reactor

gauge test model.

VII FLOW IN INTERCONNECTED, MULTIPLE
HEATED CHANNELS

In this case communication between the channels is allowed. This necessitates
the inclusion of a transverse momentum equation to describe the situation
analytically. This flow arrangement is intrinsically two-dimensional and hence
fundamentally different from the preceding one-dimensional cases. For this
two-dimensional arrangement two conditions are needed at each inlet flow
surface, and one is needed at each outflow surface.

Therefore, the inlet plenum boundary set for the one-dimensional case
must be supplemented by the prescription of the lateral velocity. For the side
surface the additional boundary conditions necessary are dependent upon
whether inflow or outflow occurs. In either case let us only consider the case in
which velocities are to be supplied as boundary conditions. For the side surface
inflow case both the lateral and axial velocity components have to be pre-
scribed as illustrated in Figure 1-9. For the outflow case only one velocity
component has to be prescribed, and we propose it to be the lateral velocity.

The full set of boundary conditions is composed of the axial set for the one-
dimensional array of channels (Figure 1-9) plus the appropriate set for the side
surfaces. This combined set for the two-dimensional arrangement is illustrated
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Figure 1-9 Lateral velocity boundary conditions for an array of interconnected heated channels
with side boundary inlet flow.

in Figure 1-10. In the normal reactor case, these lateral and axial side surface
velocities are zero.

In practice this problem is sometimes solved by specifying the inlet radial
flow rate distribution from the plenum. This set of N boundary conditions
replaces the N — 1 conditions from the inlet radial pressure gradient distribu-
tion and the total inlet mass flow rate (set (2)). However, it is found that the
solution is not sensitive to the inlet boundary condition whether it be the radial
flow rate distribution or the radial pressure gradient distribution because cross-
flow between the interconnected channels largely obliterates the inlet boundary
condition influence at a distance equal to 10 to 20 equivalent subchannel hy-
draulic diameters downstream of the inlet. Therefore the distinction between
specifying individual channel inlet flows versus the total inlet flow which exists
for the previous case of channels-connected-only-at-plena disappears here. Ta-
ble 1-6 summarizes the problem statement for the case of interconnected chan-
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INLET OUTLET
PLENUM PLENUM

Prescribed Pressure

*Pressure Level

*Radial (between
channels) Pressure
Gradient

Prescribed Total
Mass Flowrate

Lateral Velocity 01,234
Prescribed Side Inlet Flow Across Outlet Flow Across
Velocities Side Boundaries Side Boundaries
+*Axial Velocity 01,234
+Lateral Velocity 01234 01,234

Figure 1-10 Boundary conditions for multiple interconnected channels in subsonic, compressible
flow.

nels. The solution of this interconnected channel problem is addressed in Chap-
ters 5, 6, and 7 for the cases of decoupled and coupled solutions of the
conservation equations.

VIII APPROACHES FOR REACTOR ANALYSIS

The characteristics of each reactor type (and, to some extent the nature of the
problem to be solved) determine which situation among those presented in
Sections V through VII is the applicable modeling approach. The key charac-
teristic is whether or not fuel rod arrays are bounded periodically by shrouds or
ducts. If so, then a set of isolated channels in parallel flow between plena is
created, and the isolated-channels-between-plena case is applicable if the
cross-section of the flow channel is considered only on a homogenized basis.
However, a subsequent or parallel solution of local conditions within any of
these isolated channels requires the consideration of the interconnected array
of fuel pins and coolant channels. Hence the interconnected case is applicable
in such a subsequent or parallel solution.
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Table 1-7 Approaches for power reactor core thermal
hydraulic analyses

Reactor Fuel assembly

BWR/LMR Isolated (array of fuel Interconnected (array of coolant
assemblies) subchannels)

PWR Interconnected (array of fuel Interconnected (array of coolant
assemblies) subchannels)

Table 1-7 summarizes the approaches that have been adopted for power
reactor core thermal-hydraulic analysis. These are discussed in the following
subsections.

A BWR and LMR Core Analysis

In these cores, arrays of fuel elements are both mechanically and hydraulically
grouped into assemblies. For overall core analysis these assemblies are homog-
enized and represented as single channels. Since the assemblies do not interact
along their length, the core is represented as an array of single channels con-
nected only at the inlet and outlet plena, as shown in upper left region of Figure
1-11. In this case the outlet and inlet conditions are strongly coupled. A typical
boundary condition set adopted is a prescribed core inlet radial pressure gradi-
ent and outlet pressure level, both generally assumed to be uniform, and a total
inlet mass flow rate (set (2) of Figure 1-7).

When analysis of an individual BWR or LMR assembly is desired, the
assembly is modeled as an array of parallel, continuously interacting channels
as shown in lower right region of Figure 1-11. This situation is equivalent to
that of the PWR core discussed in the next section. Since the LMR utilizes a
hexagonal rod array, it can be modeled as a set of concentric annuli in two-
dimensional geometry if radial power gradients across the array can be ignored.

B PWR Core Analysis

Arrays of fuel elements are mechanically grouped for handling purposes into
units called assemblies. However, PWR cores do not have shrouds or ducts
that hydraulically isolate these arrays of fuel elements or assemblies between
plena. All regions of coolant therefore interact continuously with their neigh-
bors over the entire core length between the plena.

PWR analysis has traditionally been done in a two-staged manner. In both
stages the situation is that of a group of interacting channels as Table 1-7
emphasizes. In the first stage entire assemblies are homogenized and repre-
sented as single channels. The homogenization process consists of representing
a set of flow channels (e.g., entire fuel assembly or several assemblies) by a
single channel having average properties such that it behaves macroscopically
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TOP VIEW OF
LATERAL FLOW WITHIN
AN ASSEMBLY

Assembly
Wall

Figure 1-11 Fuel assembly within a BWR core (similar for a hexagonal array in an LMR core).

as the original set of flow channels. The microscopic details of the flow descrip-
tion within the assemblies are obviously lost, but a considerable reduction in
computational effort results. In fact, it is practically impossible to consider,
separately and simultaneously, all the flow channels in a reactor core because
of their large number. The first stage of the analysis proceeds then by applying
either set of boundary conditions to identify the macroscopic behavior of the
core and the ‘‘hot’’ assembly.

The lateral exchange of mass, momentum, and energy through the faces of
the hot assembly over its length is also obtained. The second, subsequent stage
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is an analysis of the hot assembly only, which utilizes the lateral boundary
conditions obtained in the first stage. In this stage the detailed description of
the flow over a more restricted core region is sought. It is important to keep in
mind that this two-staged approach of identifying and then analyzing only the
hot assembly makes the problem tractable at the cost of some approximation.
Additionally, single-stage or parallel methods of analysis have been developed
also which represent the region around the hot channel in detail but represent
the remainder of the core by increasingly larger homogenized regions.

IX LUMPED AND DISTRIBUTED PARAMETER
SOLUTION APPROACHES

Table 1-1 summarizes all the problem statements presented in this chapter and
identifies the section in which the method of solution is presented. The multiple
interconnected channel array is the configuration that presents the major analy-
sis challenge. The direct solution of this interconnected channel problem, that
is, a three-dimensional, transient, multi- but discrete-region problem, is the
theoretically ideal approach. However, from an engineering point of view, such
an approach is both unnecessary and impractical. A spectrum of simplifying
assumptions can indeed be made, and it is possible to transform the problem
into a tractable one. These simplified problems range in difficulty from state-
ments that are handled by state-of-the-art methods on large-scale computers,
e.g., subchannel analysis methods, to those which can be solved by hand
computations, e.g., isolated unit-cell methods. In each case the strategy of
identifying unit cells and homogenizing certain material zones within each unit
cell is employed to varying degrees. These cases are classified and presented in
this book in Chapters S, 6, and 7.

The initial step in the solution process is the selection of either a thermody-
namic system or control volume approach. Since the fuel assembly consists of
stationary fuel rods and flowing coolant, it is inconvenient to utilize the system
approach. Therefore the control volume approach is adopted in all the methods
to be presented. The definition of the shape and size of the control volume
varies and will be discussed for each method of analysis. These methods are
most clearly categorized according to whether

» the fundamental conservation equations are applied to the continuum in a
lumped or distributed manner, and whether

* the region of the fuel assembly selected for analysis is considered to be
isolated from or interacting with its neighboring regions.

Since each point above identifies two paths for analysis, taken in combina-
tion, we find four methods for the analysis of rod bundles which we will present
in the following sequence:
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1. Lumped parameter-isolated region (Chapter 13, Volume I; Chapters 2, 3, 4)
2. Lumped parameter-interacting regions (Chapters 5, 6)

3. Distributed parameter-isolated region (Chapter 7)

4. Distributed parameter-interacting regions (Chapter 7).

The lumped method implies that the fuel assembly is divided into regions
that are homogenized, and each homogenized region is characterized by one
value of each property. For this case then, spatial property gradients within
each homogenized region or control volume are not defined. Conversely the
distributed manner means that the assembly properties have spatially depen-
dent values that are defined for all spatial locations. These methods will be
referred to as the lumped parameter (LP) and distributed parameter (DP) meth-
ods, respectively.

For the LP methods, the coolant region of the fuel assembly is subdivided
into control volumes. The subchannel approach is a special case of the LP
approach. In this case the fuel assembly is broken into symmetric channels.
The fuel rod portions associated with each subchannel are included by either
applying a heat flux boundary condition to the proper portion of the subchannel
perimeter or creating fuel and clad control volumes that are in contact with
each other and with their associated subchannels. However, it is the interaction
of the adjacent homogenized coolant regions which introduces complexity in
the analysis.

PROBLEMS

Problem 1-1 Boundary conditions for flow transients in test loops (Sections V and VII)

Identify the hydraulic and thermal boundary condition sets applicable for analysis of the three
test sections described below in a loss of flow transient with constant power. Consider the cases of
each test section located in the test loops sketched in Figures 1-12 and 1-13.

Test section 1. Single channel with a flow blockage that reduces the cross-sectional area for flow by
50% at the axial midposition.

Test section 2. Two interconnected channels, one of which has a flow blockage as described for test
section 1.

Test section 3. Twenty interconnected channels, one of which has a flow blockage as described for
test section 1.

Note that this problem requires six answers as illustrated below.

Test section

Case 1 Case 2 ‘ Case 3

Loop A

Loop B
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Problem 1-2 Boundary conditions for a multiple channel representation of a reactor system
(Section VI)

An engineer proposes that a primary system flow analysis of a multiloop reactor plant should
be done using only boundary condition set (2) or (3) instead of set (1) (see Figure 1-7) because the
system loops are reducible to channels between plena and hence can be represented as such. With
loops represented as channels, the continuity relation on total mass flow becomes rr;, = 0 since
the loops return the flow from the outlet to the inlet plena so that the algebraic sum of flows is zero
at the inlet (and exit) plenum.

Questions: Is the proposal valid? If so, why is this representation in only limited use? Be sure
to start your answer with a sketch defining the geometric situation to be analyzed.






CHAPTER

TWO

SINGLE, HEATED CHANNEL
TRANSIENT ANALYSIS

I SIMPLIFICATION OF TRANSIENT ANALYSIS

The general transient equations are difficult to solve because of the coupling
between the momentum and energy equations and the nonlinear nature of these
general equations. However, it is possible to simplify these equations in two
ways:

1. By decoupling the momentum and energy equations by approximating the
velocity distribution in the channel. This approach encompasses the mo-
mentum integral method and other related methods described in Section I1.

2. By transforming the partial differential equations into ordinary differential
equations that can be solved separately in the time domain and the space
domain. This approach is the foundation of the method of characteristics,
which is described in Section III.

II SOLUTION OF TRANSIENTS WITH APPROXIMATIONS TO
THE MOMENTUM EQUATION

Several approximations can be used to decouple the momentum and energy
equations to facilitate solution of the transient problem. Additionally, the nu-
merical solution of a transient problem would be particularly simplified if the
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compressibility of the fluid could be ignored. The nature and impact of several
approximations will be discussed here following the work of Meyer [10] and
specific applications from Lee and Kazimi [8].

The following initial approximations are made:

1. Intwo-phase flow the vapor and liquid move at the same velocity (no slip).
2. The lateral variations of properties in the flow channels can be neglected.

For the above conditions, Eqgs. I,13-1, 1,13-2a, and I,13-9b* are directly
applicable:

9pm , 3Gm _ ]
m + 3z 0 (I,13-1)
Gm d (G?n) ap meIGmI
Pm y & (Zm) = - P _[olml - 1,132
at 0z \ pm 0z  2Dcpm Pm& ( 2)

dh ohm _q'Py . 9p . Gnm [ap fcmlcml]
m = 2y Jm |28 el (1,13-9b
Gm az Az * at * Pm ( )

Pm =5 - 3z © 2Depm

Egs. I,13-1, 1,13-2a, and 1,13-9b of Volume I, and appropriate constitutive
relations, provide the solutions for G(z,?), p(z,t), and hy(z,t) for a given set of
initial and boundary conditions. The initial distributions of these variables are
assumed known from steady-state solutions.

The heat flux g” can be specified as an input, whether constant or time
dependent. However, in reality the heat flux in a reactor is dependent on the
coolant and fuel thermal conditions. Hence, the specification of ¢” assumes that
the effects of the neutronic response and the transient heat conduction in the
fuel can be specified.

The boundary conditions for solving the momentum equation are to be
specified as G(0,¢) or p(0,t) at the inlet and G (L,t) or p(L,t) at the outlet. As
discussed in Chapter 1, a common approach is to specify p(L,t) and either of
p(0,t) or Gn(0,¢). In the discussion that follows we shall assume the inlet and
outlet pressures are specified. This corresponds to boundary condition set (1) in
Chapter 1. This condition is suitable for transients in channels that are con-
nected to large plena since the pressure in the plena would not be significantly
affected by the transients in the channels themselves.

To solve the energy equation, the specific enthalpy of the fluid entering the
channel should be specified, whether from the bottom or the top of the channel.
In our case the flow is assumed initially upward everywhere in the channel,
hence, the enthalpy A,(0,¢) at the inlet will be specified. Also ¢"(z,t) needs to be
specified.

Furthermore, constitutive equations for p,, and f are required to complete
definition of the problem. The equation of state for the density, assumed differ-

* The reader is referred to Volume I for review of equations designated.
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entiable with respect to h, and p, is specified as:

Pm = pm(hm aP) (2-1)
The friction factor can be specified as:
f = f(hm 9P'Gm ’ q”) (2'2)

The dependence of fon g” comes about because the fluid properties, in particu-
lar the viscosity, are evaluated at the mid-film temperature, which depends
on qu‘

Now, we consider several approaches to solution of the specified set of
equations.

A Sectionalized, Compressible Fluid (SC) Model

The most general approach involves numerical solution of a set of difference
equations representing the differential transport equations, arranged to con-
sider h,, G, and p, and state variables at multiple points along the channel.
The term sectionalized reflects the need to divide a channel into segments to
execute the numerical solution. Using Eq. 2-1 we get:

9m _ 9| Ohm \ 9pm| 0P _ o Ohm o 0P
Bt_ahmpat+6p hmaz_R" o TRy (2-3)
where:
— 9Pm — 9Pm .
Rh B ahm p=const and Rp N 3P hgm=const (2 4)
From Eq. I,13-1 and 2-3 we get:
h 0
Rym . g %, 30n_ (2-5)

ot P ot 9z

Egs. I,13-9b and 2-5 may be combined into two equations by eliminating (3p/dt)
and (9h,/at):

Pm Op 0Gm = RuGm dp ohm [Q"Ph fG$n|Gmf]
—_—— —_— —_— e — —_— = —_— -
ct o P 9z * Pm 02 RyG 9z Ry A, 2Depr2n (2-6)
and
Pm Ohm | 3Gm _ RyGum 3P Ohm _ [q"Ph fGEnIGml]
c? ot * 9z Pm 02 * Rme 9z B RP A, * 2Dep|2'n @7

where we have defined c? as:

2= —Pm (2-8)
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Note that c is the isentropic speed of sound in the fluid, generally given by:

ap
2 = 92 _
c % (2-9)
The equivalence of Egs. 2-8 and 2-9 can be shown as follows:
ap| _ap| , oo| on| _ ah
aps aPh ahpaps_RP+Rhap: (210)
But since dh = Tds + vdp then:
g_" = v = 1pn 2-11)
hence:
% _ R, + Ry (2-12)
apls Pm

Now Egs. 1,13-2a, 2-6, and 2-7 are partial differential equations in p, Gn,
and A, (i.e., the density does not appear as a differentiated variable). These
equations can be written in pointwise difference form and solved in p, G, and
ha. Numerical considerations (i.e., the stability and/or accuracy) of the differ-
ence solution require that the time step of integration be less than the time
interval for sonic wave propagation across the spatial grid points, i.e.,

At = Az/(c + |Va)) (2-13)

where V, = G./pn is the mean transport velocity. Compared with the transport
velocity, the fluid sonic velocity is large, thus limiting the time step in most
numerical schemes to very small values. This leads to a computationally expen-
sive solution of this problem. The reader can consult Richtmyer and Morton
[11] for a discussion of stability considerations of finite difference equations.

B Momentum Integral Model (MI) (Incompressible but Thermally
Expandable Fluid)

To eliminate the computational limitations of the sonic effects, it is desirable to
assume the fluid to be incompressible (i.e., dp/dp = 0). For this case Eq. 2-1 is
replaced by:

Pm = pm(hm,p*) (2-14)

where p* is a system pressure assumed constant during the transient. This
assumption is physically acceptable for classes of reactor transients such as
operational transients that are not associated with loss of significant amounts of
coolant. Because of the above assumption, the density becomes independent of
the pressure p. However, the density is dependent on the enthalpy, which
means the fluid is thermally expandable.
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Furthermore, it can be assumed that the terms due to pressure changes and
wall friction forces can be neglected in the energy equation. Thus Eq. I,13-9b is
reduced to:

ohn ohm _ q'Py

Png * Gn g =4 (2-15)

Because of the assumption of fluid incompressibility, the local pressure
gradient will not influence the mass flux of the fluid along the channel. In fact,
for an isothermal incompressible fluid, the mass flux along the channel will
equal the inlet mass flux so that the mass flux is determined by the inlet and
outlet pressures only. For the present case of a heated channel, the momentum
equation is only useful in determining the axially averaged mass velocity, Gn,
which can be obtained by solving the integral of the momentum Eq. I,13-2a:

L GZ G}
o () —(—m)
0o ot Pm/ z=L Pm/ z=0

AlGalGn , _ * @10
— P=L J’ 2D pm dz — Jo pmgdz
If we define:
. 1 L
Gn = T o Gndz 2-17)
Eq. 2-16 can be written as:
dGn 1
ar "L (Ap — F) (2-18)
where:
Ap =P, = Pi-1
(2-19)

_ GE.,> _( ) f1Gn|Gm L
F= (pm =L =0 f 2Depm fo Pmgdz

It is possible to include form loss terms in the definition of F to account for
entrance, exit, and spacers. Here, these terms are ignored for simplicity. Thus,
the momentum Eq. 2-18 provides the means to estimate G,. For the variation
of G, with z, we turn to the continuity and energy equations. The local mass
velocity is given by the continuity equation:

a_an__aﬂ__(aﬂ) (a_mn_)__ (ah) -
oz ot \ohg/p\ ot/ R\t (2-20)
By combining Eqgs. 2-15 and 2-20, the local mass velocity (due to local expan-
sion) is given by:

=~ —R, — Gp 50 -21)

3G 1 [ q'Py Ohm ]
a4z Pm A, a9z
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A difference approximation for the above equation provides the variation of the
local mass velocity, G, about the average mass velocity, Gn. Thus Egs. 2-14,
2-15, 2-18, and 2-21 provide the needed equations for determining Gal0),
Gu(z,t), pm(hm,p*), and hy(z,t) for given initial and boundary conditions.

As expected, the main advantage of the momentum integral method is that
the numerical limitation of Eq. 2-13 is now replaced by the less stringent re-
quirement that the time step does not exceed:

At < Az/|Va) (2-22)

However, the approximations imposed on the density and therefore the mo-
mentum equation lead to loss of information within the time it takes for sonic
waves to propagate through the channel.

C Single Mass Velocity (SV) Model

Further computational simplicity can be obtained if it is assumed that the mass
velocity is constant. The implication of this assumption can be realized by
considering the continuity equation of the MI model, Eq. 2-20.

Since 9Gn _ _ 9 _ _ 9Pm Ohm

dz at  dhy ot
dGn s
then —— =0 if either
9z
) . . C .
P g (i.e., neglect thermal expansion which is adequate (2-23)
dhn . o
for single-phase flow within a moderate
temperature range)
dhm .
or _at =0 (i.e., slow transient)

With this assumption the mass flux at any location is then equal to the
average flux, G,. Thus Egs. 2-15 and 2-18 are to be solved in G(t) and hy(z,t).

D The Channel Integral (CI) Model

As an alternate simplification to the single mass velocity approach, it is possible
to integrate the mass and the energy equations over the channel length. Thus,
the conservation of mass equation would be given by:

f p"‘d j:"an"‘dz— tf:pmd“j:acm:o
or

aMm
7 = Gin — Gou (2-24)
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where M is the total mass in the channel per unit area:
L
M = [ pund; G = Gulz = 0); Gaw = Galz = L) 2:25)

The differential conservation of energy equation is given by:
qHPh

d d
57 (Puhm) + = (Grhtm) = A (2-26)
which can be integrated to give:
F.] L L _ L q”Ph
EL“”“*La@M“‘LET“ 2-27)
Note that in view of Eq. 2-24 we can write:
am
Gouthoust — Ginhin = Gouthour — (Gout + W) hin
4 (2-28)
= Goul(houl - hin) - E (Mhm)
where by, = hn(z = 0), how = hm(z = L), and h;, is taken to be constant.
Therefore, using Eq. 2-28 in Eq. 2-27 we get:
dE _
E =q - Gout(hout - hin) (2-29)
where:
L
E = [ polhn = hi)dz (2:30)
and
L IIP
i=] Lt @3

To perform the integration of Eq. 2-30, an axial profile of the enthalpy is
required. A shape factor 8(z) can be defined such as

ho(2,1) = hn(0,8) + B@hn(t) = hum(0,0] (2-32)

where h,(0,¢) is a constant equal to h,(0,0), ﬁm is the average enthalpy in the
entire channel:

. 1 (L
fin(®) = T J, (2,002 @-33)
and the shape factor B(z) satisfies the relation:

L
T [ B@dz =1 (2-34)

In practice B(z) is chosen to represent the steady-state solution.
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Also a profile for the mass flux can be assumed such that it can be related to
the fluid thermal expansion as:

Gulz,1) = Gu(0,1) + Y(2,hn)[Gu(t) = Gr(0,1)] (2-35)
where:
— dpm r
Yahn) =g [ - B2 (236)
and
L 4
e=1 [f ( de'“> ]dz (2:37)

Thus, in the channel integral model the mass Eq. 2-24, the momentum Eq.
2-18 and the energy Eq. 2-29 are solved to provide the values of M, Gn, and E,
while Eqgs. 2-32 and 2-35 provide the local values of hy(z,t) and Gn(2,t), respec-
tively.

This approach is a more acceptable approximation to the momentum inte-
gral model than the single mass velocity model, especially in cases of rapid
boiling. However, since the enthalpy profile is preselected, this approximation
should be avoided if there is a special interest in the enthalpy transport and
distribution in the channel. An overview of the implications of the approxima-
tions discussed above is given in Table 2-1.

Example 2-1 PWR inlet pressure transient

ProBLEM Consider the case of a sudden pressure reduction at the inlet of a
PWR channel whose outlet is maintained at constant pressure such that:

pin(’) — Pout = 05[p|n(0) - poul](l + 9_400‘) (2-38)
where ¢ is time in seconds.

The geometry and operating conditions are given in Table 2-2.

SoLuTioN The solutions by each of the above four methods will be dis-
cussed and the results will be compared. In these calculations the channel
is divided into 10 axial segments. Details of the finite difference schemes
used are found in Lee and Kazimi [8].

1. Short-term channel flow response
a. Sectionalized, compressible (SC) model: Figure 2-1. At the inlet,
due to the pressure decrease, the mass flux begins to decrease, and
this perturbation propagates into the channel as time elapses. The
sonic velocity can be computed as about 900 m/s, and the channel
transit time of this sonic wave is about 4.1 ms. For ¢t < 4.1 ms, the
rapid decrease of the mass flux has not yet reached the end of the
channel; that is, the downstream region is not yet affected by the
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Table 2-2 Geometry and operating conditions
for cases analyzed in examples of Chapter 2

Operating condition PWR BWR
Channel length (m) 3.66 3.05
Rod diameter (mm) 9.70 12.70
Pitch (mm) 12.80 15.95
Flow area for rod (mm?) 90.00 128.00
Equivalent diameter (mm) 12.00 13.00
q' Linear heat (kW/m) 17.50 16.40
(axially constant)

Mass flux (kg/m?s) 4,125 2,302
Inlet pressure (MPa) 15.50 6.96
Outlet pressure (MPa) 15.42 6.90
Inlet enthalpy (kJ/kg) 1,337.2 1,225.5

Transient conditions:

1. Pressure drop decrease transient
pin(l) ~ Powt = O-S[Pin(o) - pou(](l + e~400r) (2-38)

where ¢ is time in seconds.
2. Heat flux increase transient

q'(1) = 1.1g'(0)
PWR-SC

1.01
o
S 2
& 1.00 =
S ™
N // 4ms
(; T
@ L—" _// 5ms
- ———"——"__’____-—p—-—""“
g 0% ==
3 .
8 T~ ~_i6ms

\

§ T~ 8ms
T 0.98
£ a'ms
[e)
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0.97

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Axial Position, z/L

Figure 2-1 Short-term response of the PWR inlet pressure transient using the SC model.
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pressure wave. Figure 2-1 shows a decrease in G(L,¢) for t < 4.1 ms
because of the finite difference segmentation.

For ¢+ > 4.1 ms, reflected pressure waves affect the mass flux
profile for short times. Because of the assumption of constant outlet
pressure, the incoming rarefaction wave will be reflected as a com-
pression wave at the exit boundary. Thus a wave travels in the
opposite direction with the same amplitude but opposite sign. The
profiles at t = 5 ms and after show the effect of the reflected wave
progressing toward the channel inlet from the exit. The net mass
flux is the superposition of the forward wave and the reflected
wave.

During this short period, the average mass flux ratio, Gn/
Gmn(0,0), decreases only from 1.00 to 0.98.

b. Momentum integral (MI) model: Figure 2-2. The assumption of
infinite sonic propagation results in the complete loss of local mass
flux variation due to pressure perturbation. We only see the de-
creasing trend of the average mass flux.

Two reasons contribute to changing both the average mass flux
and the slope from the steady-state profile:
i. The decrease of inlet pressure which reduces the driving force,
thus lessening the channel average mass flux.
ii. The fluid thermal expansion due to heating which causes a small
slope change, i.e., G;, becomes less than G,.
PWR-MI
1.01
S
S)
& 100
5 2ms
&
& 4 ms
o 5ms
© 0.99
4
3 6 ms
°
w
3 8 ms
N
® 0.98 9 ms
£
[+
4
0.97
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Axial Position, z/L

Figure 2-2 Short-term response of the PWR inlet pressure transient using the MI model.
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Normalized Flow Rate, Gy(2,1)/Gn(0,0)
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Figure 2-3 Short-term response of the PWR inlet pressure transient using the CI model.

c. Channel integral (CI) model: Figure 2-3. An abrupt change in the

mass flux profile appears right after the transient begins. The reason
is that the CI model applies global balances of mass, momentum,
and energy based on the steady-state enthalpy profile. Since G
near the inlet is decreased, h, increases, which forces an expansion
at the end of the channel.

The G, profiles predicted by the CI model agree reasonably
well with those of the MI model for ¢+ = 3 ms, which confirms that
the transient enthalpy profile does not deviate much from the
steady-state enthalpy profile. Thus we can conclude that the CI
approach is a good approximation to the MI approach for a single-
phase (liquid) flow transient.

Single mass velocity (§V) model: Figure 2-4. Here a single velocity
prevails within the whole channel because of the rigid body type
approximation.

The mass flux predicted by the SV model tends to be almost the
same as the average mass fluxes predicted by MI and CI models,
which is an expected result for liquid phase flow transients.

2. Long-term channel flow response: Figures 2-5 to 2-8. The predictions
of the MI, CI, and SV methods for the inlet and exit mass flux histories
are shown in Figures 2-5 and 2-6, respectively. Even after boiling be-
gins (¢ = 1.1 s), the exit mass fluxes predicted by the three methods
remain close.
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PWR-SV
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Figure 2-4 Short-term response of the PWR inlet pressure transient using the SV model.
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Figure 2-5 Inlet flow rate history of the PWR inlet pressure transient.
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Figure 2-6 Outlet flow rate history of the PWR inlet pressure transient.
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Figure 2-7 Flow rate profile of the PWR inlet pressure transient using the SC model.
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Figure 28 Flow rate profile of the PWR inlet pressure transient using the MI model.

The long-term response of the MI model is essentially a continua-
tion of the short-term response. The average mass flux remains
bounded as Gj, < Gm < Gexiy due to fluid thermal expansion, and the
magnitude of G, drops steadily but at a slower and slower rate as a new
steady state is approached.

The result of the CI model shows surprisingly good agreement with
the MI model throughout the transient. This demonstrates that the CI
model has the potential for good prediction of PWR transients unless
significant boiling occurs. The SV model also shows reasonably good
agreement with the previous two models even though it significantly
underpredicts the amount of boiling near the exit.

The G, profiles by the SC and MI methods are shown with an
expanded mass flow rate scale in Figures 2-7 and 2-8. It is clear that the
effect of boiling in the last segment is to enhance the exit flow rate due
to thermal expansion in the MI method but to a lesser extent than
calculated by the SC method.

Example 2-2 PWR channel step heat flux transient

PrROBLEM A second transient problem of interest is that of a rapid increase
in the heat flux without change in the applied pressure drop. The PWR
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initial and geometry conditions are identified in Table 2-2. A 10% flux
increase is applied in a step fashion.

SorLuTioN The solution by the SC approach for a 10% heat flux step in-
crease in the PWR channel is shown in Figure 2-9. It is seen that because
the pressure begins to rise at internal channel points, a reduction in inlet
flow rate and an accelerated exit flow rate occur. The magnitudes of inlet
flow reduction and exit flow increase show an oscillatory behavior within
the 20 ms shown. This is because of the sonic speed with which the pres-
sure changes are propagated in the channel, allowing momentary cancel-
lation of velocity variation due to interference between the various re-
flected waves.

The solution via the MI approach is shown in Figure 2-10. It is seen
that the deviation of the local flow rate from the average flow rate remains
within 0.5% from the very first instant until 20 ms.

The long-time behavior (not shown here) indicates that at boiling, the
local mass velocity profile is changed (but not the average mass velocity)
due to the more pronounced variation in the local expansion of the fluid.
The increased friction at the exit limits the increase in the exit mass flow
rate. A new steady state is reached at a lower average mass flux than the
initial condition.
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Figure 2-9 Flow rate profile of the PWR heat flux transient using the SC model.
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Figure 2-10 Flow rate profile of the PWR heat flux transient using the MI model.

Example 2-3 BWR inlet pressure decrease transient

PrRoBLEM Consider the same pressure decrease function of Example 2-1,
Eq. 2-38, applied to the BWR channel whose conditions are defined in
Table 2-2. Let us compare the results from the various models.

SoLUTION

1. Short-term channel flow response
a. SC model: Figure 2-11. The inlet mass flux drops immediately, like

in the PWR case, but more than half of the downstream channel
maintains the initial pressure and mass flux. This situation, which is
quite different from the PWR case, occurs because the sonic wave
velocity is significantly lower in the two-phase flow region. Hence,
the inlet pressure perturbation is not quickly transmitted into the
two-phase region.

Since the sonic velocity is about ~100 m/s in the two-phase
region, the channel transit time of the sonic perturbation becomes
~20 ms. Consequently we cannot see any effect of reflected waves
in Figure 2-11.

The mass flux decrease in the front region is about 10%, which
is much larger than in the PWR case. This is due to the fact that the
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Figure 2-11 Short-term response of the BWR inlet transient using the SC model.

pressure gradient is confined to the front nodes during this short
time.

b. MI model: Figure 2-12. We again see the averaging trend in this

model, i.e., the severe local deviation of mass flux shown in the SC
result tends to spread out across the whole channel. Thus, the mass
flux in the single-phase region is overpredicted while that in the
two-phase region is underpredicted. This deviation is the result of
the infinite sonic propagation assumption and the application of the
momentum balance in an integral sense. Based on this result, the
MI model is not a good approximation for the few initial millisec-
onds in BWR channel flow transient where the amount of boiling
extends over a significant fraction of the channel length.

Cl and SV models: Figures 2-13 and 2-14. The predictions of the CI
and SV models are much worse than the MI model in this case. The
result of the CI model shows a large deviation from those of the MI
and SC models for 1 = 4 ms, then improves and approaches that of
the MI model for t = 16 ms. In this respect, the CI model is a better
approximation than the SV model. The agreement of the CI and MI
models for + = 16 ms implies that the CI model has a potential for
good approximation to the MI model if an appropriate enthalpy
profile is chosen for the given transient.
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Figure 2-12 Short-term response of the BWR inlet pressure transient using the MI model.
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Figure 2-13 Short-term response of the BWR inlet pressure transient using the CI model.
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Figure 2-14 Short-term response of the BWR inlet pressure transient using the SV model.

2.

Long-term channel flow response: Figures 2-15 and 2-16. The decrease
in the flow rate at the inlet is very dramatic, reaching zero flow in
0.365 s. This is due to the tremendous increase in the pressure within
the channel due to the increased boiling. The MI model predicts flow
stagnation, or onset of flow reversal, in the first node at about ¢ =
0.3 s. The only drawback of the MI model compared with the SC model
is the neglect of information on the scale of the sonic channel transit
time.

Calculations beyond flow stagnation were not possible by the nu-
merical schemes used. The following is a plausible explanation for the
occurrence of this local flow reversal:

If liquid is vaporized, the specific volume increases about 21 times
(ve/ve = 21 at 6.9 MPa). This will cause a large flow resistance and,
hence, a decrease of upstream mass flux. The decrease of G;, will
further promote the vapor formation within the channel, driving the
boiling boundary downward and increasing the channel flow resis-
tance. Continuation of this chain process will eventually result in a flow
reversal at the inlet node.

The result of the CI model is very close to the SC and MI results
for the first 0.4 s. However, flow reversal does not occur as the results
tend to overestimate the channel mass inlet flux. Beyond ¢ = 0.8 s, the
result of the CI model shows that the channel flow approaches a new
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Figure 2-15 Inlet flow rate history of the BWR inlet pressure transient.

steady-state value after undergoing severe fluctuation in the axial mass
flux profile and the quality profile.

The results of the SV model shown in Figure 2-15 consistently
overpredict the mass flux and show large deviation from that of the CI
model. This deviation seems to be caused by the inability to account
for the large degree of boiling during a relatively short time.
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Figure 216 Outlet flow rate history of the BWR inlet pressure transient.
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In summary, the inlet and exit mass flux histories predicted by the
four methods, shown in Figures 2-15 and 2-16, respectively, illustrate
clearly the failure of the SV method for a BWR channel transient.
However, the other three methods predict close results during the
period of inlet flow reduction.

III SOLUTION OF TRANSIENTS BY THE METHOD OF
CHARACTERISTICS (MOC)

A Basics of the Method

The basic premise of the method of characteristics is the transformation of
linear partial differential equations into ordinary differential equations. This
can lead to analytical solution of the simple problems and more rapid numerical
solution of the complicated problems. The versatility of the method of charac-
teristics has been recognized in single-phase flow problems for a long time [12].
A review of its applications in the nuclear engineering field can be found in
Weisman and Tentner [15].
Consider the linear first-order partial differential equation:

WD) | p WD) _

A at 0z

R (2-39)

where A, B, and R are functions of ¢ and z. It is well known that for Eq. 2-39 to
be linear, A and B have to be independent of y, but R can be a linear function of
Y [5]. Abbott [1] has shown that for Eq. 2-39 to be linearly dependent on dy,
ie.,

m=%m+%a (2-40)

the variables A, B, and R should satisfy:

dr_dz_ dy

A B R (2-41)

Others have shown that Eq. 2-41 can be valid for quasi-linear partial differential
equations in which A and B are also dependent on ¢ [14].

The solution of any two equalities of Eq. 2-41 is equivalent to solving Eq.
2-39. Solving dt/A = dz/B yields a relation between z and ¢ starting from a
specific value of z, say zo at + = 0. The set of curves representing the z—t
relationship are called the characteristic curves. The characteristic velocity is
given by the slope of the z—¢ curve:

dz B

F=a=C (2-42)
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Similarly, the relationship dt/A = dy/R provides the value of s at time ¢ starting
from a specific value of ¢, say o at z = 0. The relation dz/B = d{/R provides the
value of  as a function of z, starting from a known elevation z, say zpat t = 0.

B Applications to Single-Phase Transients

In a fluid system, a characteristic defines a path in the z—¢ space such as the
path followed by a small packet of fluid or the path followed by a fluid distur-
bance propagating in the fluid. If we consider one-dimensional pipe flow, the
characteristic is defined in a two-dimensional space having the axial location of
the disturbance as one dimension and time as another. Note that the character-
istics are related to the capacity for propagation in the particular physical
system rather than to a particular propagation process. They are defined even
when there are no physical disturbances present.

The MOC technique may be easily illustrated using a problem described by
Tong and Weisman [14]. Consider the behavior during a flow transient with a
single, heated channel. We assume that the inlet mass velocity follows the
equation:

Gin = Go/(1 + 1) (2-43)

for t > 0 and where G is a constant. In addition, we assume (a) steady-state
conditions at ¢t = 0 and (b) the heat flux ¢"(z) and inlet enthalpy, h;,, remain
constant throughout the transient at their steady-state values. If the system
pressure is taken constant, i.e., independent of z and ¢, the change in coolant
enthalpy, hy, is given by (same as Eq. 2-15 for a thermally expandable fluid):
ohm ohm q'Pn

Pm ? + Gn 9z = A, (2-44)
where P, is the wall surface per unit length. When p,, is also taken constant,
this becomes essentially the SV model of section II since G(z,?) is now equal
to Giz(¢). Eq. 2-44 has the same form as Eq. 2-39, and hence the characteristic
equations are:

dtlpm = dz/Gn = dhu/(q'PrlAs) (2-45)

Note that even if p, is dependent on Ay, Eq. 2-45 is still valid [14].

There are two solutions to Eq. 2-45. The first belongs to the packet of fluid
within the reactor at a given position z, when the transient began. The subse-
quent positions of such a packet are shown by an appropriate line in region I of
Figure 2-17. A second packet of fluid is one that had not yet entered the reactor
when the transient began. This packet can be described in terms of ¢, the time
interval between the beginning of the transient and the entrance of the packet
into the reactor. The position-time history of such a packet is shown by a line
within region II of Figure 2-17. Regions I and II are separated by the limiting
characteristic, which corresponds to a fluid packet that was just at the reactor
inlet when the transient began, i.e., for which zo = 0 and ¢, = 0.
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Figure 2-17 Time-distance relationships during a hypothetical flow transient.

The solution forregion I is determined by first integrating dz/G, = dt/pn, to
obtain:
_[__Go _ Gy
-2 = fo ol + 0 dt = P {n(l + 1) (2-46)
This is the equation describing the characteristic curves of region I and repre-
sents the path of a fluid packet. From the integration of dz/G, = dhn/(q"Pn/A,)
we get:
21+t q"Py
GO Az
where hy(zo) is the coolant enthalpy at zero time and axial position zp, and Gy is

the mass velocity at ¢ = t,. From steady-state conditions we evaluate Ay(z,) and
substitute this in Eq. 2-47 to obtain:

Ph “ " Ph z "
it | qdz + v j (1 + 1)q'dz (2-48)

ha(z) — ho(z0) = dz (2-47)

ha(z) = hin +

where h;, is the inlet enthalpy. After using Eq. 2-46 to solve for (1 + ), we
substitute into Eq. 2-48 and finally obtain:

Ph @ "

Az 0 fo 9 dz

Pn v, _
+ a |, a'explpatz = 2)/Goldz

ha(z) = hip +

(2-49)
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Equation 2-49 may be integrated for a given flux shape to obtain the enthalpy at
2 for any packet of fluid starting at z. The corresponding time is obtained from
Eq. 2-46.

To obtain the solution for region 11, we integrate dt/p, = dz/Gn, but now
conduct the integration from ¢, the time when the fluid packet first entered the
reactor (at that time z = 0), to ¢ and obtain:

¢ = Gulpm) [ T = Golpmtnl(l + DI(1 + 1) (2-50)

This equation describes the characteristic curves in region Il of Fig. 2-17. From
integration of dz/G, = dh,/(q"Py/A,) from 0 to z and substitution for (1 + ¢), we
have:

Ild P Z
(@) = hin + 5 [ TE = o+ g [ g0+ 0z

(2-51)

hm(z) = h

The limiting characteristic curve is obtained from the solution of region I,
Eq. 2-46 for zo = 0, or from the solution of region 11, Eq. 2-50 at t, = 0. We then
have:

en(l + 1) = limiting characteristic (2-52)

G ’
The solution of the foregoing example is complete since the fluid enthalpy
and flow velocity are known at each point in space and time. Inregion I, hy(z,¢)
is given by Eqgs. 2-49 and 2-46, while in region II the analogous equations are
2-51 and 2-50. The flow velocity, by virtue of the assumption of constant
density, is equal everywhere in the channel at any given time, i.e., V(z,t) =
Vin(¢). This model is reasonable for a liquid whose flow velocity is much smaller
than the acoustic propagation velocity. However, in many situations, it is
important to evaluate the pressure disturbance that accompanies an abrupt
change in local fluid velocity. To deal with such problems both the continuity
and momentum conservation equations should be included in the analysis.

C Applications to Two-Phase Transients

1 General approach The method of characteristics has been applied to a vari-
ety of two-phase flow models. Tong and Weisman [14] consider the homoge-
neous flow model with vapor and liquid having the same velocity and in thermal
equilibrium. Shiralkar et al. [13] allow for the existence of a drift flux but keep
the assumption of thermal equilibrium. Ferch [2] derived characteristic equa-
tions that included thermal nonequilibrium but retained the assumption of equal
phase velocities. Kroeger [6] included thermal nonequilibrium in his drift flux
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formulation of the conservation equations. He did assume vapor to be at satu-
ration conditions and the liquid to have a constant density. Lyczkowski [9]
applied the method of characteristics to the two-fluid model with the assump-
tion that the pressure drop occurs in the vapor phase only. Gidaspow and Shin
(3] introduced a two-fluid model that contains a specific constitutive equation
for the relative velocity of the two phases. Their model leads to a ‘‘well-posed’’
set of equations with all real characteristics. Depending on the constitutive
relations, a two-fluid model can be ‘‘ill-posed’’ in which case some of the
characteristics become imaginary, leading to unstable numerical solutions.

To illustrate the application in two-phase flow problems we shall consider a
boiling channel under the assumptions of constant system pressure and homo-
geneous flow with thermal equilibrium, drawing from the treatments of Zuber
[16], Gonzales-Santalo and Lahey [4], and Lahey and Moody [7]. The fluid
packets in the single-phase region of the channel can be described in the man-
ner presented in Section IIIB.

Let us first define the boundary between the single-phase and two-phase
regions. This boundary will be characterized by two parameters:

A(t) = The distance along the channel which it takes the fluid to reach the
saturation condition. This distance is illustrated in Figure 2-18.

Subcooled

h. Figure 2-18 Basic regions in a heated channel.
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and v = The time it takes a fluid packet to lose its subcooling once it enters
the channel.

For our assumptions, the mass flux in the single-phase region is constant,
Gn(z,t) = Gin(t). For the constant density liquid we have:

Vm(z,t) = Ve(z,t) = Vin(t) at the channel inlet (2-53)

Hence the parameter A(¢) can be obtained from integration of dz/G, = dt/p, as:

f G,,,(t)

) = ] dz = f Vit)dt = (2-54)

For a constant system pressure, just like the MI method of Section II, the
energy equation (I,13-9b) can be written as:

ohm ohm q'Py
m _ 2.
Pm —, at + pnVm 0z A, (2-55a)
o Dhy, _ q"P
h
= 2-55b
Po"Dr T A, ( )
In accordance with Eq. 2-41, Eq. 2-55aleads to the characteristic equation:
dhn, 4 .
d ~ pud, (2-56)

where: ¢’ = q"Py,

If the heat input along the channel is axially and temporally constant, Eq.
2-56 can be easily integrated between the inlet enthalpy and the saturation
enthalpy:

! r

h[ q
;..“dh" oA, Jis t>v (2-57)

or

b= (he = hio) (” cA:) (2-58)
Thus, v is the time it takes the fluid packet to lose its subcooling once it enters
the channel. Note that since the volumetric heating (q'/A,) is constant, if the
inlet enthalpy is also constant, v is constant. However, the distance traveled,
A(1), varies according to the velocity as illustrated by Eq. 2-54. For a decreas-
ing inlet flow transient, the position of A(¢) is as shown in Figure 2-19. Note that
v is constant since the inlet enthalpy and the axial heat addition are held
constant.

Let us now turn our attention to the two-phase domain (i.e., z > \). In this
domain, the continuity Eq. I,13-1 can be written as:

9pm apm 0V
+ Va — = -
ot 9z * Pm 4 0 (2-59a)
or
Dpm Vi

Di P er (2-390)



54 NUCLEAR SYSTEMS II

4‘ Single Phase Two Phase
Domain Domain

A (1)

Time, t
\
el
\
\

7
e
Figure 2-19 Major characteristics in a
— channel with decreasing inlet flow;
Distance From Inlet , z the single-phase region.
The density and enthalpy are given by:
_ 1
Pm Vi + xvgg’
hm = hf + thg,

where x is the vapor flowing quality.

We can explicitly relate the change in the velocity to the vapor quality and
phase-specific volumes as:

%=_L0pm=__1_£< 1 >
aZ Pm Dt Pm Dt ' + fog
I D D Dx
~ p(ve + xvg? [E Vet X oy Vet Vis E] (2-60)

=;[2V+ D, ., &]
vi + xvg, LDt £ Xy Ve fe Dy

Under the conditions applied here, namely incompressible fluids (Dv¢/Dt = 0)
and a near constant pressure system (Dvg/Dt = 0) we get:

oV, Vi Dx
—-m_ ____ = -
9z (v + fog) Dt (2-61)

which can be integrated to yield:

¢ Vig Dx

Va(z,t) = Via(t) + A Vg + XV Dt

dz (2-62)
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The energy equation can be manipulated to determine the flow quality. From
Eq. 2-55b, for constant system pressure (hg and hr are constant) we get:

Dx _ q' _ q'(vi + xvgp)
Ly S (2-63)
Define the parameter (), the characteristic boiling frequency [16] as:
Q=9 2-64
A, (2-64)
Eq. 2-63 reduces to:
Dx _ Vg
Dr Qx = Vie (2-65)

The rate of change of quality can be eliminated between Eq. 2-62 and Eq. 2-
65 so that we obtain:

dz _ Gult) | [ Vi (w )
= — = — _— —_— + -
Vn(z,t) dt Pe + jm) vi + XxVvgg b Vig x) dz (2-66)
or
dz _ Gin(’) :
dr — pe + fm) (2-67)

Eq. 2-65 is the desired general relation for the quality change with time, while
Eq. 2-67 is the general equation for the position change with time. It should be
noted that the value of p, at the inlet is nearly equal to the saturation value py,
and in practice, therefore, p, is taken as p;.

There are two types of fluid packets to be considered: namely those that
were outside the two-phase region initially and those that were in the two-phase
region initially. The path of the liquid initially at the saturation position defines
the main path characteristic line, as illustrated in Figure 2-20.

Considering the packets initially present in the two phase region (region II
in Figure 2-20), the initial conditions are defined by:

att =90
Xo = f(z) established by a steady-state balance and (2-68)
Zo > A(0)

The packets initially outside the two-phase region, including those outside the
channel (region I in Figure 2-20), reach the two-phase region at a time tg. The
conditions for x and z at the time, tg, that a packet of fluid starts boiling are:

att =13 >0
0 and (2-69)
z= A1)

X
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Figure 2-20 Major characteristics in a channel with a two-phase region and a decreasing fluid flow
or increasing heat input.

Under our assumptions () is a constant, and so for all Gj;(¢) of practical
significance, both Eqs. 2-65 and 2-67 are integrable. Hence, for any constant
pressure flow transient, we can obtain an exact solution for the fluid velocity
and quality as a function of space and time along the heated length. This will be

seen through an application to an example situation, namely an exponential
flow decay in the channel.

2 The case of an exponential flow decay, constant heat flux Let us assume that:
Gip = Goe"“ fort >0 (2-70)

along with the previously stated assumptions of constant inlet enthalpy and
axial heat addition rate q’'. First we define the suitable A(¢) for the distinct time
domains, ¢t < v and ¢ > v, in Figure 2-20.

In the single-phase regionand for packets of fluid not initially in the channel
(which will reach the two-phase region at ¢ > v) from Eq. 2-54, when p, = p; per
our assumptions:

A = ,%( e Xi(ek — 1);t > v (2-71)
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For packets initially in the single-phase region but reaching the two-phase
region at ¢ < v, then:

' Gig Gy " Goe K
A() = —dt = — dt + —dt
® jf—v Pt t=v pf IO Pt
so that:
Gy Gy
MD)=—@w-0+—7F(U-eK)t< 2-72
()= 2w =0+ g (= e )<y @-72)

The value of A(¢) applicable in each of the two time domains is summarized in
Table 2-3, along with the significance of the time-space regions (1A, IB, IC,
IIA, and IIB).

Now we define the time-space relation. For the two-phase region, we have
to consider regions I and II separately. Region I is the region of fluid packets
entering the two-phase regions at ¢ > 0.

For region I To obtain the quality we integrate Eq. 2-65 under the condition
x = 0at ¢t = tg. This leads to:

x = L [ee-m _ 1 (2-73)
Vg
Hence the parameter t3 is required to complete the specification of the quality.
It is obtained from integrating Eq. 2-67, which for constant () and the assumed
exponential flow decay yields:
dz Goe X

— - Uz - \D) =

dr pr @74

Table 2-3 Tabulation of the boiling boundary for the various two-phase
regions in the channel

Time Zone Expression for boiling boundary Significance of region
Go Fluid packets that had not yet
t> = —_— — —
v IA A() piK exp(—Ki)[exp(Kv) — 1] entered the heater at r = 0.

IC A(f) Same as IA The packets that at r = 0 were
in the single-phase region of
the heater.

IIB A(r) Same as IA The packets that at r = 0 were
in the two-phase portion of
the heater.

Gy Gy The packets that at r = 0 were
1< = _ —_2 — _
v 1B Mo or v-n+ oK (I = exp(=Kn)] in the single-phase portion

of the heater.

1A A(r) Same as IB The packets in the two-phase
portion of the heater for
0=t=yp.
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To obtainthe parameter 5, Eq. 2-74 is integrated using the appropriate value of
A(t) from Table 2-3 and the appropriate initial condition. The results for the
three subregions are:

For subregion IA: t > tg > v; using A(tg > v) and the initial condition at ¢ = ¢,

Z = A(tp) results in:
_ 9 1 1 _GoKs _K,)]
"Ta+k'" Q+K€"[ (+Q+K (2-73)

For subregion IB: v > ¢t > tg; using A(fg < t) and the initial condition at ¢t = 1y,
Z = A(tp) results in:

_ 1 oo _Kio 1 _"]}
tg =t Qen{Q[GO n+Q+z+ X (2-75b)

For subregion IC: ¢t > v > tg; using A(fg > v) and the initial condition at t = p,
Z = zjp (since a fluid packet crosses from IB to IC at ¢t = v):

=t — _1_ — (413 _Gﬁ -K:}]
tg =t Qen [GOQ{Z Kiet¥ + Q+Ke (2-75¢)

Note that for any combination of z and ¢, Eqgs. 2-75a through 2-75c can be
used to specify tg. The K; constants are defined as:

K;E%r[l —%(e""— ])]
Ks= % + Qv
T )

For region II This is the region where the fluid packets were in the two-phase
region at ¢t = 0. In this case x = xgand z = g9 at ¢t = 0, so that Eq. 2-65 can be
integrated to give:

x(t,20) = xo(z)e® + F [ — 1] 2-76)
fg

The value of xj is determined from the steady-state energy balance as:

sz = g [gof{’ (h hm)] @77

Note that Eq. 2-74 can now be integrated using the appropriate values of A
from Table 2-3 to yield two subregions. For region IIA (t <v),att =0,z =z
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leading to:
—g_ol:&_l_ _e__f_ Ql:| (o]
2(t,z0) = xla 0 t K Kse'™| + ze (2-78a)
and for region IIB (¢ > v) at t = v, z = z;4 leading to:
Z(I,Zo) = Zoe(ll + K(,e“’ — ﬂi‘_ e Kt (2-78b)

LG (1Ll ek ) )
Kﬁ— pr e K QO+ K K5€

The solutions to this problem and the significance of each region are summa-
rized in Tables 2-3 and 2-4.

Example 2-4 Time to boiling inception due to flow decay problem

ProBLEM Assume liquid flows axially through a heated tube. At ¢ = 0, the
inlet flow starts to decrease exponentially such that:

Gin(t) = Gin(0)e™

where ¢ is in seconds. Let the initial flow velocity at the inlet be: V;,(0) =
3.05 m/s.

Determine the time boiling starts in the channel. Ignore wall friction
and liquid compressibility. Assume that inlet temperature and the heating
rate remain constant.

Table 2-4 Expressions for the quality and time-to-boil in the two-phase portion of
the channel

Region Expression for quality Expression for tg and/or z

—_—

>v 1A x=vv—r'g[exp[0(t—15)]~l] IB:Q—(:_K(I—%&I [KL,(Z*'%(K’)])
IC Same as 1A p=1- % ¢n (9(‘;_? [z - K. + (;70_:%( e""])
1IB x = xgexp({dr) + vl:g (e —1) z=_z0eM + Kge™ — % ek

<v 1B Same as IA lgzt—éen(n[%j—mgl+t+%ﬂ])
ITA Same as IIB z= % [% ~ é -1 - %K’ - K«“’] + zpe™
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Input information:

Tube diameter = 12.7 mm

Tube heated length, L = 3.05 m

Heating rate, ¢’ = 16.4 kW/m

Water inlet temperature = 204°C

For water at 6.9 MPa: p; = 740 kg/m3

¢, = 4.2kl/kg K

Tsa = 285°C

Take p, = pr = 740 kg/m?

SoLuTioN We are looking for the time ¢ that it takes the coolant enthalpy
at the channel exit to reach boiling.

Using the method of characteristics, the value of ¢ is first assumed less
than » since particles are initially in the channel and heating.

Integrating Eq. 2-54 for A(¢ < v) one obtains Eq. 2-72 where V;,(0) is
substituted for Go/ps and K is set equal to unity:

t 0 .
<) = [ Val)dt = [ Vi@t + [ Vi@edr

AN <v)=VaO[ -0+ -e] (2-79)
Using Eq. 2-58:

hf — hin — Cp(Tsat - Tin)Azpf =1
q'/(A.pe) q'

Setting A(t < v) = L = 3.05 m since boiling initially occurs at the exit, one
may obtain ¢ from Eq. 2-79. Note that if the time ¢ is found to be negative,

the assumption of ¢ < v is incorrect, and A must be obtained for ¢t > v.
Solving Eq. 2-79 for ¢ gives:

3.05 = 3.05[2.95 — t — e71]
t=178s

95 s

Example 2-5 Determining the exit enthalpy after flow decay

ProBLEM For the heated tube described in Example 2-4, use the method of
characteristics to determine the exit enthalpy of the fluid packets that enter
the tube at saturated liquid conditions. Assume the system pressure re-
mains constant and inlet flow rate, Gi () is described by:

Gin(t) = Gy fort <0

Gin(t) = Gy exp(—1t) fort=0
where:

Gy = 2260 kg/m? s
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SoLuTiON There are two cases that must be considered in solving this
problem:

Case 1. Fluid packets in the channel before the flow decay starts (at ¢t = 0,
these packets will be located at z(0) = 2o).

Case 2. Fluid packets entering the channel at ¢t = ¢, 1y > 0 (at ¢t = ¢y, these
packets will be located at z(z) = 0).

An expression for Dx/Dt is given in Eq. 2-65, which is repeated below:

X ax=qX -
D; ~ Qvfg (2-65)

where () is determined from Eq. 2-64. Using properties of water at 6.9
MPa, we get:

Q- 4V _ (164 kW/m)26.5 x 1072 m¥/kg)
T Ay (127 x 10 m)(I1511.6 ki/kg)

The position of a fluid, z(¢), may be obtained from Eq. 2-67 with A(¢) = 0:

=226s"!

(2-80)

For case 1, which describes fluid packets already in the channel at ¢ = 0,
Eq. 2-65 is integrated to obtain Eq. 2-76:

x(t,z0) = [xo(ZO) + ﬁ] exp({lt) — nl (2-76)
Vfg Vfg

Substituting values for {) and water properties at 6.9 MPa gives:
x(t,20) = (xo(zo) + 0.051) exp(2.26¢) — 0.051 (2-81)
The quality at ¢ = 0, xo(zg) may be determined from a heat balance that

results in Eq. 2-77. In our case hs — hj, = 0:
q'z

G()Azhfg
Eq. 2-80 may then be integrated to find the time required for the packet to

reach the channel exit, f.,, using the boundary conditions at t = 0, z(0) =
Zoand at t = f.x, Z(texi) = L represents the channel length:

dz _
dt

xo(20) = =378 x 1072 z, (2-82)

Oz = Go exp(—1t)
Pt

L exp(—Qexit) Go fexit
| dlz(r) exp(~) = [ expl-1 - Qnar - 2-83)

G
L= 20 exP(Q’exil) + pr(T(‘)*'B {exp(()texil) - exp(_lexil)}
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Exit Enthalpy, h,; (kJ/kg)

Substituting values from Example 2-4 and water at 6.9 MPa, this simplifies
to:

3.05 = 2o eXp(2.261cxi) + 0.937{exp(2.26¢cxir) (2-84)
—exp(—lexi}

For a given initial fluid packet position, z,, one may then obtain x(2o,0)
and fe,;; from Eqgs. 2-82 and 2-84. These values may then be substituted into
Eq. 2-81 to obtain the exit quality from which the exit enthalpy may be
obtained utilizing Eq. 2-85 below:

hexit = h(L,texi) = hs + x(Latexil)hfg

(2-85)
= 1262 + x(L,texi)(1511.6) kl/kg

Values of the exit enthalpy for different initial fluid packet positions are
shown in Figure 2-21.

To obtain a solution for case 2 fluid packets that enter the channel at a
time f, after the transient begins, Eq. 2-73 must be used. Given that in this
case ty = tg and we are interested in the particular time ¢ = ¢.,; at which the
fluid reaches the channel exit, we get:

\Y
x(texitatB) = V_ff {exp -Q(texil - tB) - 1}
B

1490
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1470 \\
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Figure 2-21 Exit enthalpies for various initial fluid packet positions (Case 1 packets).
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Substituting values for () and water at 6.9 MPa and ¢, for tg gives:
X(fexits to) = 0.051{exp[2.26(texir — #)] — 1} (2-86)

To determine the time required for the packets to reach the channel exit,
Eq. 2-80 must be integrated with the boundary conditions at t = ¢, z(¢)) =
0, and at = fexit, (texi) = L:

dz _ Goexp(-1t)

E_QZ_ s

L exp(—Qtexit) Lexit Go
| dlz(t) exp(- Q)] = f U expl—1(@ + D}ds
Lps(2 + 1)

Gy

Substituting values for the channel described in Example 2-4 gives:
3.25 = exp[Qtexi = to) = to] — exp(—rexit) (2-87)

For a given time at which the fluid packet entered the channel, ¢, the
channel exit time, .., may be obtained from Eq. 2-87. These times may be
substituted in Eq. 2-86 to obtain the exit quality, which may then be utilized
in Eq. 2-85 to obtain the exit enthalpy. Values of the exit enthalpy for
different inlet times are shown in Figure 2-22.

= explﬂ(texil - tO) - tO] - exp(_texit)
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Figure 2-22 Exit enthalpies for packets entering at various times, /o, after the start of the transient
(Case 2 packets).
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PROBLEMS

Problem 2-1 Comparison of approximate channel transient analysis methods (Section II)

The momentum integral (MI) model or the single velocity (SV) model under certain conditions

may be an acceptable alternative to the sectionalized, compressible flow (SC) model. Consider a
transient for a BWR channel where the inlet pressure decays as:

pin(’) = OS[Pm(O) + poul(o)]
+ 05[pm(0) - pou((o)] CXP(—I/T)

where:

Pin(0) = 6.96 MPa
Poul?) = 6.90 MPa for all «.

7=5ms
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a. Why would you consider using either the SV or MI models instead of the SC model? What are
the important trade-offs?

SINGLE VELOCITY MODEL

bl. Calculate the channel-averaged mass flux at some time ¢ > 0 using the SV model. Assume that
acceleration, frictional and gravitational effects are negligible. Comment on the physical reality
of the result.

b2. What is the axial mass flux distribution predicted by the SV model?

b3. Describe briefly how you would calculate the axial enthalpy distribution.

MOMENTUM INTEGRAL MODEL

cl. Calculate the channel-averaged mass flux at some time ¢ > 0 using the MI model. Again,
assume that acceleration, frictional and gravitational effects are negligible.

c2. Identify the relevant equations you would use to calculate the axial mass flux and enthalpy
distributions. For these equations identify the unknowns and the inputs for the solution.

Problem 2-2 Verification of the equations for the method of characteristics (Section III)
Derive Eq. 2-75a, b, c and 2-78a and b from the characteristic equation:

dZ Gi"(f)

a Qz — A() = T (2-74)
for the case of an exponential flow decay given by:

Gin = Goe % fort>0 (2-70)

Simplify your expressions using the definitions for K3, K4, Ks, K¢, K7, Ky given in Section III.

Problem 2-3 Application of MOC to an inlet enthalpy change (Section III)
Water flows upward in a uniformly heated channel that is being tested under transient condi-
tions. In one transient the inlet enthalpy is being decreased at a rate given by:

hi = hige™"" = hi,e~00

while the inlet flow rate and the heating rate are kept constant. For the initial conditions given
below, evaluate the time it takes to eliminate all evaporation in the channel. Use the method of
characteristics, and ignore the pressure drop along the channel.

BWR CHANNEL CONDITIONS

Heated length L=30m
Flow area Ar=3.5x10m?
Inlet mass flux Gin = 1,900 kg/m?s

Linear heat generation q' = 1,000 kW/m (axially uniform)
Inlet enthalpy at hi, = 1225 kl/kg
Water properties: liquid density = 760 kg/m?

saturated liquid enthalpy = 1254 kJ/kg

Answer: t = 223 s
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Problem 2-4 Application of MOC to an increase in the inlet mass flux (Section III)
The flow in a uniformly heated channel is being increased as a function of time from a steady-
state value of G, as

Gi" = Ggeh'

where b is constant. The inlet enthalpy is kept constant. Derive an equation to determine the time it
will take for the enthalpy rise in the channel to equal half the original value.
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THREE
FLOW LOOPS

I INTRODUCTION

The operation of a nuclear reactor plant requires an understanding of the plant
response to both expected and unlikely transients. To ensure that the thermal
and pressure design limits are not exceeded, the plant protection system is to
be actuated at certain set points when the flow conditions approach alarming
values but while still below the design limits. Thus it is desirable to be able to
analyze the transients of the entire coolant primary and secondary loops in
order to prejudge the sequence of events and provide for any intervening
actions at sufficiently early times so as to avert reaching the limiting conditions.

The methods of coolant loop analysis can be of various levels of complica-
tion. For application in reactor operation and control, rather rapid calculational
schemes and simplified models are needed. For safety analysis, detailed
models, particularly of the core, may be needed. Very often the loop or system
analysis can be done in a simplified way to obtain boundary conditions of
pressure and flow for the core or steam generator. Then detailed analysis of
these components are performed utilizing the boundary conditions obtained
from the system analysis. System analysis methods are thus used to describe
the macrobehavior of the plant under such events as loss of flow, steam line
break accidents, and turbine trip events. Then component codes can be used to
analyze the local behavior of the hottest fuel assembly.

Another important application of the loop analysis is the optimization of
the geometry of the plant so as to ensure adequate shutdown heat removal
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capacity by maximizing the natural circulation potential. An interesting objec-
tive for plant designs is to remove the postshutdown heat by passive means
without the use of externally provided power to the pump. Often, however,
active cooling of the core is pursued for some time (few days) after shutdown.
In boiling water reactors, because of the buoyancy head associated with the
extensive change of phase in the core, the coolant is even capable of passively
removing a high level of operating power amounting to hundreds of megawatts.
A number of sophisticated thermal-hydraulic codes have been developed
for power reactor flow loops (including the systems codes such as RETRAN,
RELAP, and TRAC for light water reactors (LWRs) and SSC for the LMRs).
However, the basic trends of coolant and fuel temperatures during transient
events can be observed from simplified approaches to loop analysis as will be
presented here. This is demonstrated in a simplified one-dimensional model.
In this chapter we shall consider a loop with a single, heated channel
representing the core and one or more cooled channels representing the heat
exchangers. One loop in a PWR system with a U-tube steam generator is
schematically shown in Figure 3-1. Although this loop represents the geometry

cold side <-—-’———’ hot side
i
i

Generator
f

2= Eeeee——

Figure 3-1 Schematic of a simplified PWR loop with a U-tube steam generator.
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of a PWR, its treatment can be generalized to all reactors in which the primary
coolant is not also the working fluid in the turbine.

I1 LOOP FLOW EQUATIONS

Let us develop general, one-dimensional equations for the loop as shown in
Figure 3-1. The loop has the essential features of interest for application to
single-phase as well as two-phase core conditions, namely:

1. Heat is added in the ‘‘hot leg’’ over a segment length Ly representing the
core and starting from height z = Z, from an arbitrary datum.

2. Boiling occurs within Ly such that the boiling length Lg starts at a height Zp
from the datum of our system.

3. A portion of the hot leg of length Ly above the core does not provide heat
input, thus representing a reflector or gas plenum in the fuel rods.

4. Cooling occurs over the length 2Lg of the heat exchanger, which repre-
sents a simplified U-tube steam generator in this loop.

The one-dimensional equations for a channel of axially constant cross-
sectional area for flow at an angle 6 with the positive z axis (see Figure 3-1) can
be stated as follows:

For momentum:

9Gn | 3 (G_?n) _ P _ fGalGul _
5t T3l\pn) = "3l 2Depn _ PmECOSO (-1
and for energy:
dhn o Ohm _0p _ q'Py &[a_p fcmlel]
Pm 5, + Gn 3l - A +pm ol + 2Depr (3-2)

In the above equations / is the dimension in the flow direction along the channel
length, which may not always be in the vertical direction, and fis the appropri-
ate friction factor for the existing single or two-phase flow regime.

Let us integrate each term of Eq. 3-1 around the loop in Figure 3-1 from the

pump outlet position, a, to pump inlet position, i, starting with the terms of the
right side of Eq. 3-1.

The static pressure is integrated to give:
i ap

\Yhere Appump is positive under operating conditions and is negative for a sta-
tionary pump due to losses.
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The friction term is integrated over the core and blanket, over the steam
generator and the rest of the loop to give:

i fGulGul ,, _ [ _ fGulGnl ?  fGn|Gal b fGu|Gnl
J.- Depm L fb 2D.pm d”L Depm LT J 2D.pm (d’ |
3-4

+ [0 di+ [ dl= ~Bper ~ Bpsc. ~ Apes
d 8

where Apex is the pressure drop external to the core and steam generator. Note
that Apcoe, APsc., and Apex are positive quantities when representing the
magnitude of the frictional pressure losses in the flow direction around the
loop. When the phasic density is assumed to vary only in the gravitational term,
fand G, become position independent within the constant-area heated channel,
then:

* _ fGulGu| , _ _ (feocmlcml

2 '
b 2D.pn 2D.pe. )Cm (Lnp + @%(Lp + Lp)) (3-5)

Note that if form losses exist within the heated channel then Eq. 3-5 may be
modified to:

4 fGnlGal
————dl
b 2Depr _
ftoGan|Gal(Lnp + ¢3o(Lp + L)) + DK{(Ga|Gnl);De
J

- 2D.pe (3-6)

where Kj takes on the appropriate value of the form loss coefficient at position j
within the channel. Position j can involve either single phase or two-phase
conditions.

The gravity term is integrated as follows:

f — pmg cosO dl = — J: Pmg dz

a

- f pmg dz — f Pmg dz — Jb pmgdz  (3-7)

- f: Pmg dz — f: Pmg dz — fr Pmg dz

where dz = cos@ dl.

It can be easily seen that when the effect of pressure drop on the density of
each phase is neglected, the value of p,, changes only due to heating or cooling
in the core and steam generator. Hence in the adiabatic sections a' — a" and
b’ — b the upward and downward flow sections have equal gravity heads. Thus:

p
L, Pmg dz =0 (3-8)
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and

b
[, g dz=0 (3-9)

Also, there is no change in z between the positions a and a’. Therefore, Eq. 3-7
reduces to:

i f i b
L - pmg dz = — fb Pmg dz — ffpmg dz — f Pmg dz
(3-10)
f b’
= - fbpmg dz - fr Pmg dz
so that the integration around the whole loop can be written as:
. png c0s6 dl = ~(Bade-rlZn ~ Zi]
- (ﬁm)f—b'g[Zb - Zm]
or
|, - pmg cos8 dl = (B = (Gdo-rlelZn = 2] G-1D)
where:
_ f{,f Pmdz ffb' pm dz
(Pmlp-£ = A (Pmde-v = Zi— 7. (3-12)

Thus, the net buoyancy term is due to the difference between the average
densities of the cold side and hot side multiplied by the height over which the
density variation occurs.

Now, considering the left hand side of Eq. 3-1, we integrate each term so
that we get the mass temporal acceleration for the coolant in the loop:

"(9Gm) o _ Gk _ § Li 9my
L(ar)‘ﬂ_;L“ at —;Ak ot (3-13)

where L, is the length of the kth flow section of constant area Ay .
As for the spatial acceleration:

i 2 2 2
[5G a=(G2) - (52) 619

If the pipes on both sides of the pump are of equal cross-sectional area and the
fluid density does not change through the pump, then

(%) - (%:T) =0 (3-15)
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The loop momentum equation can be written neglecting form losses as:

(G
S L 20 = iy — Apc + Aps (3-16)
k

where:
Appump = pressure head provided by the pump

Aps = frictional pressure drop around the entire loop which can be
divided into core, steam generator, and external loop pres-
sure drops so that:

fGn|Gal ) (meIGml
o - ()
Pt 2Depm core 2Depm

and

) + Apr,ex (3'17)
S.G.

Apg = buoyancy pressure head given by;

App = [(Pm)cold leg — (Pmhot leg]g(zm - Zy) (3-18)

Let us now examine the energy equation, Eq. 3-2. The last two terms
involving the pressure changes and frictional dissipation along the loop are
usually negligible relative to the heat addition and enthalpy change terms.t
Therefore, the loop energy equation can be written as the integral of Eq. 3-2
around the complete loop (dropping the last two terms on the right side):

pr,,, d1+fAG —dl fA di=[qprd (319

For small changes in pressure, the term involving dp/dt can be neglected.
Because enthalpy changes outside the core and the steam generator are negligi-
ble, Eq. 3-19 may be written as:

prm%dHf Apm—d1+f AG, —dl || AGa :1 dl

(3-20)
4 8
= fb q"Pndl + L q"Pyndl; negligible pressure variation

Although the above equations are written in terms that can be applied to
two-phase as well as single-phase coolant conditions, it is important to note
that in many reactor systems the primary loop consists of a single phase coolant
(PWR, LMR, and HTGRs). Only under severe transients would the primary
side of a steam generator of a PWR or a heat exchanger in the LMR involve a
two-phase primary coolant. Therefore, analysis of single-phase conditions is
first presented followed by an analogous analysis of two-phase conditions.

t Bau and Torrence [3] have theoretically examined single-phase laminar free convection loops.
They found the frictional dissipation and pressure work terms to be of comparable magnitude but
opposing effects. The frictional dissipation enhances the flow, while the pressure work retards it.
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[l STEADY-STATE, SINGLE-PHASE, NATURAL
CIRCULATION

Under natural circulation conditions, a loop operates without a pump, and the
flow is driven entirely by the buoyancy-generated pressure head. Properly
designed reactor plants generally benefit from the natural circulation potential
in obtaining a decay power removal capability. The exact power that may be
removed from the core varies according to plant design.

A Dependence on Elevations of Thermal Centers

Under steady-state conditions all the time-dependent terms disappear from
Eqgs. 3-16 and 3-20. For single-phase flow conditions, Lxg = Ly and the boiling
length Lg and the averaging subscript m (for G and 4) can be dropped.

Thus the momentum equation, Eq. 3-16, can be reduced to:
Apr = Aps (3-21)

From the equations defining Apr and Apg, Eq. 3-17 and 3-18, Eq. 3-21 can also
be written as:
(fGIGIL) N (fG|G|L) + Apr,
2DePt’ core 2DeP€ S.G. ! (3-22)

= (5cold leg — Phot leg)g(zm - Zy)

The density dependence on temperature can be assumed linear so that in
general:

p = poll — B(T — To)] (3-23)

where p, is a reference density at a reference temperature T, and 8 is the
expansion coefficient, which equals (—dp/aT)/p.

Consider, for simplicity, uniform axial heat addition and extraction in the
core and the steam generator, respectively. The energy balance across the core
is given by:

rithe = hy) = gh(Pwulu = QOu (3-24)

Thus, the coolant temperature rise across the core (heated channel) is given by:
A V) _

ATy =T.- T, = Zor (3-25)

Where Cp is the coolant average specific heat at constant pressure for the core

temperature range (i.e., dh = ¢,dT). For uniform axial heat addition, the axial

temperature rise in the hot leg (b — e) is given by:

Z— Zb
Z

Ze =2y (3-26)

= ATy Z.=z2=Z.

T‘Tb=ATH
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In terms of the distance from the beginning of the heated channel, /, we can
recast Eq. 3-26 in the form:

l
T-T, =ATHE; 0<I<Ly (3-27)
=ATH 5 LH<1<LH+L;{

At steady state, the temperature drop across the steam generator, ATg, is
equal to ATy.

It is possible to rearrange the buoyancy term into a form that depends on
the maximum density difference and the vertical height between the center of
heating and the center of cooling in the loop. Since the buoyancy head is given
by the integral of the gravity term around the loop, it is possible to write it as:

Apg = — fb pgdz — f pgdz — f pgdz — f: pgdz (3-28)

heating adiabatic cooling  adiabatic

But dT/dz is constant within the first integral in the above equation, and dp/dT
can be taken approximately constant in single-phase flows, then the density
varies linearly with z, and the first integral can be written as:

c +
- | pgdz = - £ > feer, (3-292)
For the second integral, p is constant. Therefore:

- f pgdz = —p.gly (3-29b)

For the third integral, we can assume a linear increase of p with z between the
points e and f, and similarly between the points f and g. Therefore:

I3 S f
—f pgdz = — f pgdz + f pgdz
e 4
+ + -
But since p. = p. and pg = pp, We get:
g —_
- f pgdz = P2 Pe g1 (3-29¢)

The last term in Eq. 3-28 can be given by:

b
- fg pgdz = pogLi (3-29d)
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Substituting Eqgs. 3-29a through d into Eq. 3-28 yields:

L , L Lg L
Aps—pb(ﬁus——“)g—p( +LH+—“)g (3-30)

2 2 2 2
But since:
I -LH _ ’ ﬂ

Lg > = Ly + 3 (3-31)
Eq. 3-30 becomes:

Aps = (pp — pJ)gAL (3-32)
where:

AL = Lz + Ly + %’i (3-33)

That is, AL is the vertical distance between the center of the core and the
center of the steam generator

Aps = (Pin — Poudcore AL (3-34a)

o = (Pout — Pin)s.c. AL (3-34b)
and using Eq. 3-23:

App = BpoATugAL (3-34¢)

The physical interpretation of Eqs. 3-34a and b is that the buoyancy head is
equal to the difference between the maximum coolant density and minimum
coolant density along the loop times the difference in elevation between the
thermal ‘‘center’’ of heat extraction and the thermal ‘‘center’’ of heat addition.
This general statement holds for other axial profiles of heat addition and extrac-
tion.

The frictional losses may also be written in the form:

_ (fGlG| ) (fGIGl ) m:o
Apf - <2Dcp€ L core * 2De Pe S.G. * Apfex - CR 2 (3 358)

Where m is the mass flow rate in the loop

Cr = R(m)™" is the hydraulic resistance coefficient, where R is the
proportionality constant which can also include form losses.
For highly turbulent flow, n = 0.2. For laminar flow, n = 1.

Therefore:
(m)Z n
A R
Dt = 2 pe

Substituting from Eqs. 3-34c and 3-35b into Eq. 3-21 and assuming that the
temperature variation around the loop is such that the density variation is

(3-35b)
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relatively small so that pp = pe, We get:

1 R (m)>"

) = BpoATugAL (3-36)

where po denotes the reference coolant density. Therefore for a given tempera-
ture difference the mass flow rate may be obtained from

: 28ATygAL ,\"*™"
m = ( BATug p(z))

R (3-37)

For a given heating power Qy, the flow rate is determined by substituting
for ATy from Eq. 3-25 into Eq. 3-36 to obtain

. ZBQHgAL 2)I/(Z‘—l’x)
_ (2BQugAL 3-38
" ( LR PO (3-38)

It should be clear that in actual reactor systems the temperature increase in
the core may not be linear, and the temperature decrease in the heat exchanger
may be close to exponential. Thus, the solution of the exact equations in
reactor systems may have to be achieved numerically. Zvirin et al. [16] have
shown that the difference between the exact solutions and the linear tempera-
ture models is small, on the order of 5% in m and ATy.

For a given allowable ATy, the maximum power that can be removed by
natural convection for a given system configuration is given by substituting Eq.
3-38 into Eq. 3-37 and rearranging the result:

2\ 1/2-n)
QH = ¢, (%@) (AT},)B-/@-n) (3-39)

It is seen that the heat removal capability is most affected by ATy, ¢,, and po,
and to a lesser extent by AL and R.

B Friction Factors in Natural Convection

It is important to note that the friction factor associated with natural convection
in small tube experiments has been observed to be higher than that of forced
convection at the same Reynolds number. Figure 3-2 illustrates this observa-
tion. It is seen that transition between laminar and turbulent flow was observed
to occur around Re = 1,500, similar to forced convection flow conditions. It is
also seen that the friction factor is dependent on the channel geometry.
When a fluid is forced to flow at a rather low velocity in a heated channel,
the selection of the proper value of the friction factor depends on the dominant
flow regime in the loop. One of three regimes may exist: forced convection,
mixed convection or natural convection. Several dimensionless groups have
been proposed to characterize the flow regime boundaries. Reference 10 pro-
poses Re and GrPr. The higher the Re number, the higher is the value of GrPr
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Figure 3-2 Friction coefficient as a function of the Reynolds number for water loops. Solid lines are
for natural convection. Dotted lines are for forced convection. (After Zvirin et al. [17] based on the
work of H. F. Creveling et al. [4] and Bau and Torrence [2].)

needed to reach a purely natural convection flow regime. The geometry of the
channel will also influence the boundaries between the regimes.

Example 3-1 Natural circulation in a PWR

ProBLEM Consider the PWR system, shown schematically in Figure 3-3,
when operating at natural circulation conditions given in Table 3-1.
Compute:

1. The steady-state natural circulation flow rate as a percentage of the full
power flow rate
2. The power level.

Table 3-1 PWR system parameters

Full power Natural circulation
Geometry operating conditions operating conditions
See Fig. 3-3 Oy = 2772 MW thermal Ou.. = unspecified
Degaieg = 0661 m  Tin = 291.7°C T = 291.7°C

Tow = 321.1°C Tou = 326.7 °C

p = 15.17 MPa p = 15.17 MPa

APpump = 0.62 MPa APpump = 0.0
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Figure 3-3 Schematic diagram of primary system model (not to scale).

Water properties are given in Table 3-2. Assume that the friction factor for
both steady state and full power can be approximated by:

f=0.184 Re™02
SoLuTiOoN Let us first evaluate the hydraulic resistance proportionality

constant R by considering the normal operating conditions.
From Eq. 3-16 applied to steady-state conditions:

Aps = Appump + App
Under normal conditions the buoyancy pressure head is estimated by
APB = (pin - pout)core gAL (3-34a)
pin is p at 291.7 °C = 740.0 kg/m3, poy = p at 321.1 °C = 674.2 kg/m3

74 +
az =% zs_zazhz 10.67 — 4.57 = 6.10 m

- App = (740.0 — 674.2)(9.8)(6.1) = 3.93 x 103 Pa



Table 3-2 Water properties at 15.17 MPa
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T (O p(kg/m?) cp(kJ/kg K) w(kg/m-s)

287.8 747.9 5.23 9.714 x 103
293.3 736.7 5.32 9.549 x 10-5
298.9 725.5 5.44 9.342 x 105
304.4 712.7 5.61 9.177 x 103
310.0 699.8 5.78 8.970 x 10-5
315.6 687.0 6.03 8.764 x 105
321.1 674.2 6.28 8.598 x 10—
326.7 659.8 6.53 8.350 x 103
332.2 645.4 7.08 8.102 x 10-3

Therefore:

APt = APpump + Aps = 6.2 X 105 + 3.93 x 103 = 6.24 x 105 Pa

Now, the loop hydraulic resistance constant R is obtained by rearranging
Eq. 3-35b:

__ bpr
1/2pe"n'12—"
but
: g) _ O _ Ou(kW) ~ y
" < s/ T ZAT ~ (5.785kl kg K)(29.4K) _ ~-58 X 107°CukW)

5.88 x 1073(2.77 x 10% = 1.629 x 10* kg/s

_ 6.24 x 10° )
(1/2)(740.0)7'(1.629 x 10%)'8 —

Next consider natural circulation condition for AT = 326.7 —291.7 = 35°C;

. 2BATygAL )\
i = (20055 )

. R 24.2

(3-37)

Now, B between 291.7 and 326.7 °C can be obtained from Table 3-2:

B = _l<£1£> = |4p]
P dT PaveAT

_ 659.8 — 740.0]
659.8 + 740.0
(T—) (326.7 — 291.7)
80.2

= — = -3 oM -1
©99.9)35.00 _ 227 X 107°C
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. (2(0.00327)(35.0)(9.8)(6.1)(740)2)'“'8

s> = 1123 kg/s

= 6.89% of full-power rate

The energy equation for both decay and full power cases can be used to
obtain the decay power level:

QH,n = ’hnép.n(Toul.n = Ti)

QH = ’hEp(Toul - Ti)
> A ﬂ Em Tout,n — Ti _
Onn = Oy Ton — T (40
where:
— Cpin.n + cpoul.n
Con =" 5
- CPin + CPoul
G="7
Numerical calculation:
. + 6.
Epn = 222222 = 591 kilkg K
g = &%6._28 = 5.785 kl/kg K

Substituting the above values in Eq. 3-40 we get:

. . (1123 )(5.91 )(35.0)
Orin = On (16290 5.785/\29.4
= 0.0838 Oy
= 232.4 MWth

Example 3-2 Thermosyphon analysis

ProBLEM In this example the flow loop principles are applied to the ther-
mosyphon phenomena. As shown in Figure 3-4 (top), a loop of tubing full
of fluid is heated by a uniform heat flux, g", throughout its lower half,
whereas the upper half rejects heat at the same rate. A slight disturbance
would cause fluid to circulate forming a ‘‘thermosyphon.’’ Show that the
natural circulation in laminar flow is established such that:

1
Re = = (G, (3-41)
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Figure 3-4 Flow loop schematic and temperature variation along the loop.

where;:
Re = —— (3-42)

and

(Gr)ar, = (3-43)

p’gBATD’
u?
The fluid and wall temperature variations around the loop are ATy and
.ATW. Show that the ratio of the two characteristic temperature differences
in Figure 3-4 (bottom) is given by:
ATy 4L

AT.- D St (3-44)
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where:

h

St= —ve

(3-45)

where h is the wall heat transfer coefficient.
To simplify the analysis, the following assumptions may be introduced:

¢ The tube diameter is small such that L > D.

* The tube vertical length is much larger than the horizontal length.

* The effect of gradual rather than sudden wall temperature variation near
points 2 and 4 on Figure 3-4 (top) may be neglected.

e Laminar fully developed flow exists throughout the loop.

e Fluid properties are temperature independent except for the density
which has a temperature dependence given by Eq. 3-23.

* Pressure losses at the end bends 1 and 3 on Figure 3-4 (top) are negligible.

* The effect of the transverse temperature distribution on the velocity pro-
file may be neglected.

With these assumptions, the velocity V and the internal heat transfer
coefficient are essentially constant around the loop so that the tempera-
ture distribution around the loop can be simplified as shown in Figure 3-4
(bottom).

SoLuTioN The flow rate can be related to the temperature difference along
the loop by Eq. 3-37:

‘ T oA 1/(2-n)
m = <ZBA HgAL pg)

R (3-37)

For this example ATy = 2AT;, the difference between the maximum and
minimum temperatures in the loop, and AL = L, the elevation of the center
of heat addition above the center of heat extraction. For laminar flow n = 1.
Taking po = p¢ = p, therefore:

[ d
. 4BATgL
Mm="R

2

In this system, if wall friction is assumed to dominate over all form
losses, Eq. 3-35b can be manipulated to get:

2p 2p
R = mi-n Aps = " Aps

Thus:
2p 4L 1 m? 4L m

R= D 2p (xDY4)? ~ ) D (#D¥4)?
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For laminar flow in a circular pipe:

_6_ 64 o,
f= Re = wD (mD*/4)
"R = 64u(mD?4) 4L m _ 64u(4L)
a mD D (wD?/4)2 ~ DX(wD?/4)
and
. 4ﬁAngL 212 2
m= —64/.L(4L) p*D¥(wD?/4)
But

_ mD _ BAngp2D3
(mD%4)u 64u?

Re
] (3-41)
.. Re = a (Gr)AT[

To derive the second relation, the definition of Stanton number may be
employed:

_h _ q'IAT,
SU= e = Ve, (3-46)

In Eq. 3-46 ¢" can be replaced by performing a heat balance on the loop
from point 4 to point 3:

q"(wDL) = mcy(Ts — Ty) (3-47)
or alternatively:
wD?
q"(wDL) = pV —‘4— CpATf
which can be rearranged as:
qN . 12
oV, 4L AT (3-48)
Substitution in Eq. 3-46 yields Eq. 3-44:
147 (1)
St=3ar, \L

IV STEADY-STATE, TWO-PHASE, NATURAL CIRCULATION

From Egs. 3-16, 3-17 and 3-18, the momentum equation of a natural circulation
loop can be written for steady state with boiling in the core as:

ft’oGrzn w2 ,
2D.p, (Lng + ¢oo(Lp + Lp) + Apgsc. + Apgex

core (3_49)
= [(ﬁm)cold leg — (Pm)not leg]g(zm — Zy)



84 NUCLEAR SYSTEMS II

The energy equation, Eq. 3-2 when integrated over the core for steady-
state conditions (and neglecting the work terms) yields:

7 % " Z dhn
On= [, aPudz = [ 4Gn T2 a2 (3-50)

where the elevations are defined in Figure 3-1. The solution of the above two
equations will be illustrated now for idealized conditions. The following as-
sumptions are made:

1. The heat sink is capable of instantaneous condensation of the arriving
steam such that the cold leg contains liquid only. Consequently:
(ﬁm)cold leg = Pt (3-51)

The condensation effectively occurs at the mid-elevation level, at z = Zs g,
where Zs_o. - Ze = LE/2.
2. The friction and form pressure drops are negligible outside the core:

Aprex =0 and Apgsc. =0 (3-52)
3. The axial heat flux is uniform so that:
" _ _ QH .
q"(2) = constant = ——; Z. > 7 > Z, (3-53)
LyPy,

Under these conditions the position for boiling inception Zg is defined from
the energy balance over the single phase length Lg:

q"Pu(Zy — Zp) = q"PpnLng = m(hy — hin); hin < b (3-54)

It is easier to describe the average enthalpy in terms of equilibrium vapor
quality x so that at any position the enthalpy is given by:

h = ht + xhgg (3-55)

If the inlet quality is xj, and the pressure along the core is approximately
constant (i.e., hg, = constant), Eq. 3-54 can be written as:

q'Pu(z — Zp) = m(x — Xin)hg (3-56)

The coolant heating starts for z > Z,, and for a uniform heat addition the
axial change in enthalpy is linear so that:

X —Xxa =0 0<z< 2

x — X =—.Qiz_—z" Iy < z1<Z (3-57)
in mhfg LH c

x—xin=Q” Zc<z<Ze+LE

rhgg 2
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The mixture density p, for saturated conditions is given by Eq. 5-50b of
Volume I:

Pm = apg + (1 — a)pg (I,5-50b)
= pr — alps — pg) (3-58)

where « is the cross-sectional average void fraction, which may be estimated
using the homogeneous equilibrium model (HEM) by:
1
@= T (I1,11-30)
1+ 1=xp
X ps

From Eqgs. 3-58 and I,11-30, p, can also be written in terms of quality as:

Pt — Pg Py

Pm = Pt~ | = (3-59)
1+ "(9—8) 1+x(ﬂ—1)
X Pt Pe
so that for p; > p,:
Pm = __pt (3-60)
1+
Pg

Thus, the average density in the heated channel can be estimated from Eq. 3-60
as:

_ 1 Z5.G. Pt
(pm)hot leg = — f dZ (3-61)
ZS.G. Zb Zy 1+ x ﬂ
Pe
1 l: o Ps dz
= ———— |piZs — Zp) + f (——) dx
Zsg. — Zy O 4P dx
Pg
Pt
+ ———— (Zsc. — Zc)] (3-62)
1+ x P
Pe

Where x, is the core outlet quality, and x;, is assumed less than zero.
Since

dx _ Xp _ Xo — Xi

dz Ly Ln

Equation 3-62 may be written as:

= constant (3-63)

P en(l + ) (g + )]
[LNB + y Lg + T+ y Ly + 2 (3-64)
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where

Pi
=x 3-65
Y = Xo o, (3-65)

Now we can write the buoyancy pressure term using Egs. 3-49 and 3-64
along with assumption 1 as:

(5m,cold - f)m.hot)(zm - Zb) = (ﬁm,cold - l_)m.hot)(ZS.G. - Zb)

en(l + v) | L (3-66)
n '
= pi(Zsc. — Zv) — pt [LNB + —y},— Ly + 17 5 <LH + ‘2£>]
The friction multiplier ¢3 according to the HEM model is given by:
2 P
o = — (I,11-81)
%=
Therefore, the average multiplier over the boiling length is:
— Z4
o= [ g, (3-67)

B Lpg + Lii Zs Pm
Using Eq. 3-60, we substitute for p,, in Eq. 3-67 and get after integration:

= __ Ls [ z] Ly )
¢€0 LB +L£i 1+ 2 +LB + Lé [1 + ‘Y] (3 68)

Equations 3-52, 3-66, and 3-68 can be used to rewrite Eq. 3-49 in the form:

e P P PO D ) o+ 10)
<2Depf B L U Vs sl R Tyt ]) e+ L)

L n(1 + ) I L 369
’ n + ,
=pf<7E+LE)g_PII:LNB+ " 7L3+1+7<LH+TE>:|g
where it was noted that
L
ZsG. — Zy = TE + L
Equation 3-69 may be rearranged to get:
L , ¢n(1 + 1 L
pf(_25+LE>g=Pf{LNB+ ('y Y)LB+1+7(LH+—2§)}8
(3-70)

) ool
(2Depf core LNB+LB l+2 +LB[1+‘)’]

The left side of the Eq. 3-70 represents the static pressure in the cold leg, which
can be viewed as an external pressure head driving the flow in the hot leg. The
first term on the right side represents the hot leg static pressure, and the second
term represents the pressure needed to overcome frictional and form losses in
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the hot channel. Thus for a given cold leg, the left side is a constant, indepen-
dent of G, . On the other hand, the right side is a set of curves depending on the
exit quality xo (or ). The steady-state G, is determined from the positions of
intersection of the curves expressing the right side terms and the horizontal line
expressing the left side term on a Ap versus G, figure. The potential for multi-
ple intersections of these curves reflects the potential for oscillatory behavior in
natural circulation loops [7].

Eq. 3-70 may be expanded to include the friction in any part other than
those explicitly considered here. For example a friction length L; in the single-
phase part of the loop and an equivalent length L; due to form losses can be
added so that Eq. 3-70 can be written as:

L , €n(l + vy) 1 , L
pf(_2£+LE>g=Pf{LNB+ 7La+1+y<LH+7E)}g
G 3-71)
+ (——z%ep";)m {LNB + L+ L]+ Lg [1 + %J + Lg[1 + 'y]}
where:
Y= J\foﬂf
Pg

and where the boiling length and nonboiling length can be determined for given
X;n and x, from the relations:

Lg =Ly — Lng
Lyg _ 0 — xin
Ly X0 — Xin
. On _ q"(PnLy)
Yo = Kin = b T rithyg

Example 3-3 Stability of natural circulation in a boiling loop: A homoge-
neous flow approach

PrOBLEM A boiling water test loop at low pressure has been operated to
simulate LMR natural circulation when boiling occurs in the core. Examine
the flow/pressure drop characteristics for the test loop operating on natural
circulation. The numerical values of the fixed parameters involving hot
channel geometry and fluid properties are as follows:

ps = 957.9 kg/m? (T = 100 °C, p = 101.3 kPa)

Xy = —0.146
Br _ 1603
Pg

S = .0055
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D = 3.86 mm
A = 11.68 mm?

L, = 177.8 mm, single-phase length before
entering the heated length

L, + L| = 266.6 mm, effective length to account for
L, and form losses

Ly = 914.4 mm, heated length
Ly = L = 1.219 m, effective length after the heated

These loop parameters are compared with the LMR reactor parameters in
Table 3-3. Table 3-4 compares fluid conditions for the water test loop and

the LMR.

length
Ly + Lg™ = 1.397 m (due to form losses)
LE =0

Table 3-4 Comparison of fluid conditions for water tests at atmospheric
pressure with those for LMR at inception of boiling during loss of piping
integrity (LOPI) accident

Condition Tests Fast test reactor LMR
Fluid Water Na Na
p (kPa) 101.3 172.4 172.4
T (°C) 100 948.9 948.9
pr (kg/m?) 957.9 7273 727.3
ps (kg/m?) 0.5975 0.4406 0.4406
(pe/py) 1603 1651 1651
heg (kY/kg) 2.257 x 10? 3.814 x 10 3.814 x 107
cp (kl/kg K) 4.186 1.298 1.298
T (°C) 21.1 4222 385.0
%o or 2T = To) ~0.146 ~0.179 -0.192

h
T, () 433 593.3 535

Tsa -

xyor 2l = T ~0.105 -0.121 -0.141

fg
k¢ (kg/m-s) 2.839 x 10~ 1.500 x 104 1.500 x 104
¢ (N/m) 0.058 Approximately 0.175 Approximately 0.175
ki (W/m K) 0.682 54.5 54.5
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Pressure Drop, Ap (kPa)

SoLuTioN Solutions for Eq. 3-71 for these conditions are shown in Figure
3-5 for various values of x;.
The left side of Eq. 3-71 can be added to Figure 3-5 as:

pe(Ly + Ly)g = 957.9(0.9144 + 1.219)9.8 = 2.00 x 10¢ Pa

Since the test loop is operated at a constant heat flux, it is useful to
convert Figure 3-5 from a set of curves representing fixed values of x, to a
set of curves representing fixed ¢g". This can be done by using Eq. 3-56 to
determine for a given ¢" the values of m corresponding to the various
values of x, presented in Figure 3-5. For example at ¢" = 175 kW/m?, we
can find the value of m as a function of x, using:

i = (1.75 X 10%(0.00386)(0.9144)/[(xo — xin)(2.257 X 108)]
= 8.54 X 10%/(xo — Xin)

Therefore, for xo = 0.04, i = 4.59 x 1073 kg/s and for xo = 0.4, m = 1.56 X
1073 kg/s. Thus the graph for ¢" = 175 kW/m? can be generated by plotting
the calculated values of Ap for each combination of n and x,.

The general results are shown in Figure 3-6 for values of ¢" from 30 to
300 kW/m? (approximately 1 to 10 x 104 BTU/h ft?).

For a fixed heat flux, Ap — m curves exhibit S shapes at low pressures.
Note, however, that in this case the loop Ap does not include an accelera-
tion component. Hence, the S shape is solely due to the trend of increasing
friction factor, ¢%,, as the mass flux, G, decreases while Ap is a product
of ¢3, and G2,.

. x°!=1'§°/ 05 °-2§5/ o.1izs/ // // //
o Lot L2 e A
/// // // ,/ 0.0156//
30 ... 0.0078 ., 4]
/ / / y / // /,/ / /ﬁgg -
|
20 /L // " M == ’
WA 4D s LHS
[/ 4
7 =
10 F-A
°0 1 2 3 4 5 6 7 8 9 10

Mass Flowrate , m/10-3 (kg/sec)

Figure 3-5 Flow/pressure drop characteristics of test loop with exit quality as a parameter.
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Figure 3-6 Flow/pressure drop characteristics of test loop with heat flux as a parameter: The
analytical solution.

The only operating values for the loop are those corresponding to Ap =

20 kPa. Thus, from Figure 3-6 at the heat flux of 175 kW/m? this may occur
at three different flow rates: for a mass flow of 5.22 x 1073 kg/s, (and from
Figure 3-5 the exit quality is about 0.022), a mass flow of 1.9 x 1073 kg/s
(for xo = 0.307), or a mass flow of 5.75 X 1073 kg/s (for xo = 0.0037). The
first of these intersections is for an unstable situation, as will be explained
below.

From Figure 3-6 one can observe the following:

. For heat fluxes below approximately 144 kW/m? there is only one

steady-state flow rate satisfying Eq. 3-71. This flow rate corresponds to
a value of xo < 0 (subcooled) and is stable. (That is, a momentary
decrease in flow rate at constant g” causes a decrease in Ap.)

At heat fluxes between 144 and 250 kW/m? there are three steady-state
flow rates satisfying Eq. 3-71. These three flow rates correspond to
values of x, between zero and 1.0. However, only the flow rates cor-
responding to the lowest and highest x, are stable. At a flow rate of
5.22 x 1073 kg/s a momentary decrease in flow rate at constant ¢" =
175 kW/m? causes an increase in Ap which causes flow to decrease
further until the lowest of the three stable flow rates is reached. An
increase in flow rate is associated with a lower Ap which would lead to
furthering the increase in the flow rate.

Example 3-4 Stability of natural circulation in a boiling loop: A nonhomo-
geneous flow approach

ProBLEM For the conditions of the test loop given in Example 3-3 examine
the natural circulation flow rate/pressure drop characteristics using the
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Figure 3-7 Flow/pressure drop characteristics of test tube: The computer solution.

nonhomogeneous flow model of Example 13.5 of Volume I (the PEDROP
routine).

Since in this case the water properties are no longer held constant, use
an inlet pressure of 117.2 kPa to lead to channel average pressure of about
101.3 kPa (which was the basis for calculating the water properties in
Example 3-3).

SoruTioN Theresults ofthe PEDROP calculation are shown in Figure 3-7.
It is seen that in this case:

1. For heat fluxes below about 96 kW/m? only single flow rate is stable at
a subcooled exit condition.

2. Attheheatfluxes between 96 and 160 kW/m? three possible flow rates
exist.

3. Above the heat flux 160 kW/m? only superheated exit conditions will
exist.

V LOOP TRANSIENTS

In describing the loop transients we shall use a simplified approach, which
renders the problem analytically solvable. The purpose of our treatment will be
to identify the major time constants in thermal-hydraulic analysis and the phys-
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ical parameters controlling these time constants. Essentially three time con-
stants are of interest:

71: the time constant for flow decay
72: the time constant for primary system temperature response
73: the time constant for fuel temperature transients.

If any of these time constants is small relative to the time period involving
significant changes of system parameters during a transient, the process associ-
ated with that time constant may be treated using a quasi-steady-state process.
This often helps simplify the treatment of the system. On the other hand if the
time constant is much longer than the time involved in the transient, the treat-
ment can also be simplified by considering some of the system parameters as
constants. For example, if 7; is on the order of a few seconds when a power
transient of only a few milliseconds is being analyzed, the fuel temperature can
be evaluated with constant coolant temperature.

A Single-Phase Loop Transients

1 Hydraulic considerations Under normal PWR and LMR plant operation flow
conditions, the buoyancy effects can be neglected. As the pumping power
changes, the buoyancy effects on the transient can be neglected until the flow is
reduced to only a few percent of the normal level. Thus, even in the event of
pump coastdown, the flow behavior is dominated initially by the inertia term
and the hydraulic resistance term (see Figure 3-8).

53 Steady Negiigible Buoyancy

E State Buoyancy Important

]

&

3 1.0

k)

P ith inertia
2 with pump inerti
§ «

] v

@ without — /

pump inertia

0.0

Time , t

Figure 3-8 Flow coastdown stages.
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In describing the loop transients a simplified pump relation is used here to
keep the problem analytically solvable. Later in Section VC, a rigorous treat-
ment of the centrifugal pumps commonly used in nuclear power plants will be
described.

From Eq. 3-16, by defining the friction pressure drop using the approach of
Eq. 3-35b, the momentum equation for pump dominated transients can be
written as:

Ly\ dn IR .
<§ /Tt) Tr:l = Appump - 5 E (m)Z—n (3'72)

Thus the rate of change of the fluid momentum (the left side) is controlled
by the resistive forces of the loop and the pressure change at the pump.

The pump head will vary according to the product of the square of the rotor
speed, w, and a function depending on the ratio m/w so that:

Appump = w’f (%) (3-73)

For single-phase flow, the flow rate may be assumed directly proportional
to the pump rotor angular speed:

m = ko (3-74)
For a first approximation, f(/w) in Eq. 3-73 may be taken constant so that:
. 2
m
Appump = Apr <m_R) (3-75)

where the subscript R denotes rated conditions. Thus, the pump head-flow
relation has been simplified to a parabolic behavior. This is adequate under
quasi-steady-state conditions, but considerable deviation from this relation
may occur under transient conditions, as will be discussed in Section VC.
Substituting from Eq. 3-75 into Eq. 3-72 we get an explicit equation for m:

Leydm _Ape .o 1R .
(; Ak> " 20, G719

which can be solved to obtain the transient flow rate, given appropriate values
for the constants.

An important time constant in determining the plant response to possible
pump failures is the time rate of flow decay if the pumping power was lost. If
the pump failure is assumed to result in pump-free coastdown (i.e., Appump = 0),
flow is governed by the equation:

L\dh _ 1R ...
($h) =12 o7

An analytical solution for the initial flow behavior (prior to significant buoyancy
effects) for pump-free coastdown can be obtained as long as R can be assumed



FLOW LOOPS 95

independent of the flow. The constant R assumption is adequate if transitions

from turbulent flow to laminar flow do not occur during the transient. A con-

stant p assumption is appropriate for single-phase liquids and high-pressure

gases, i.e., pe = p = constant. In this case the flow transient is obtained as:
m 1

’hR _ . (1-n) Wi—-n)
[1 + (1 — n)R(mp) t]
2p ; (Li/AY)

1 (3-78a)

T ]

Note that for laminar flow, n = 1, Eq. 3-78a is inapplicable, and the flow
coastdown is described by:

m Rt
m—R =exp| — ——Tk = exp[—t/(7))am] (3-78b)
20 2 A
k k

Therefore, flow decay time constants for pump free coastdown are given by:

(T = 772 n)R(mR)“ o Z (3-78¢)

_ 2p Ly
Tam = R Z i (3-78d)

From the above equations it is obvious that the flow decay time constant is
inversely proportional to the hydraulic resistance R but is directly proportional
to the density p.

2 Primary coolant temperature The primary coolant energy equation Eq. 3-19
may be written as:

pcoA dl + | ey = A% L dl = Qu~ 0 (3-79)
J J ey Grat = [ 43

Where dhy, is approximated by c¢,dT, Qu is the heat addition rate to the coolant
in the core, and Qk is the heat extraction rate in the heat exchanger. The second
term on the left side can be dropped for a closed loop, and the third term on the
left side can be neglected when the temporal pressure changes are negligible
(such as when the system is equipped with a pressurizer). This reduces the
primary coolant energy equation to:

oT

= = O~ Qe (3-80)

pcpV —
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where:

= average primary coolant temperature in the loop (3-81)

~i

I

—
?. S

and

> AL, = the entire coolant volume (3-82)
k

Let us now obtain the desired time-dependent behavior of T by solving Eq.
3-80 under simplified conditions. The coolant heat addition and heat extraction
rates, Oy and Qg, will be expressed without considering the thermal inertia of
the core fuel and structure and the heat exchanger structure, respectively. The
core fuel and structural thermal inertia will be considered when their tempera-
tures are to be evaluated in Section VC3. Further, Qy will vary with time by
virtue of its dependence on T. The dependence will be derived next for substitu-
tion into Eq. 3-80.

For a steady secondary flow in the heat exchanger equal to m,, and neglect-
ing structural thermal inertia:

QE = "hs(hse — hs) (3-83)
If the secondary flow is only single phase, the value of O may be given by:
Ok = ritCps(Tee — Tsi) (3-84)

where T is the secondary coolant inlet temperature and T is the exit tempera-
ture of the secondary flow. In PWRs, the inlet subcooling of the secondary flow
is small, so that Eq. 3-83 is more appropriate. However, for simplicity we shall
use Eq. 3-84 to describe the energy removal process.

Then the energy equation Eq. 3-80 may be written as:

PCp = QH mscp.s(Tse - Ty) (3-85)
Ignoring energy storage in the heat exchanger structures and assuming

constant mass flow rate m;, the heat balance between the primary and second-
ary coolants may be given by:

hS(T - Ts) = 'hscp,s(Tse - T (3-86)
where:
- + T
T, = ¥ (3-87)

and where h and S are the heat transfer coefficient and surface area within the
heat exchanger, respectively.
From the last two equations, T, may be defined by:

= [hST + (ritsc;,,s - hTS) Ts;]/[rhscp,s + %] (3-88)
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Substituting from Eq. 3-88 into Eq. 3-85 we get:
T — i shS 0
pey 2Ty o3 77— g, (3-89)
thCp's + T

The solution to Eq. 3-89 when T as well as Qy is assumed constant pro-
vides an insight into the parameters controlling the coolant temperature re-
sponse: a

~ Tg)e ' + Qm; — e '] (3-90)

where T is the value of T atf = 0 and:

pcpV(mscps + hS/2)
mgcp shS

™= (3-91)

The time constant 7, illustrates the significance of both the secondary flow
rate and the heat transfer coefficient in the steam generator for the rate at which
the primary coolant temperature will change. For a small heat transfer coeffi-
cient, the time constant is given by:

= pcpV/hS; hS < mgc, (3-92a)

For a small secondary flow rate, the time constant becomes:

= p V y -
Ty = ——P—zm Con hS > mycp s (3-92b)
The value of the product hS, the inverse of the thermal resistance in the
heat exchanger, can be approximated as follows. The value of h, the thermal
conductance per unit surface area, is obtained from the thermal resistances of
the primary coolant, the tube wall, the secondary coolant and fouling in series:
1 1 &6 1 1
SE=—t Tt —+ ) — -
h hy, k h h; (3-93)
For simplicity, we may ignore the term, 2 1/h;, which is due to fouling in
the heat exchanger, and the conduction term across the tubes, 8/k. Hence, the
total thermal resistance in the heat exchanger is obtained from:

1 _ 1 .1
hS ~ h,S  hS

Let us treat the effects of power transients in two cases: (a) constant primary
coolant flow rate and (b) change of primary flow rate. Recall that the secondary
flow rate m, was taken constant.

To a first approximation, the ratio hy/h, may be assumed proportional to
the mass flow rates:

(3-94)

P - -9
ls .S (3 5)
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Substituting from Eq. 3-95 into Eq. 3-94, we can express the thermal resistance
in the heat exchanger as a function of the secondary to primary mass flow ratio:

1 _ 1t .1 _1 (ﬂ )
hs = - +hsS—hSS ’h+l (3-96a)
s ()
ms

which can be used for a constant primary flow rate.
For a change in the primary flow rate, express h, as:

« \08
by = (ﬂ) (from Dittus-Boelter Eq.) (3-97)
hpO mg

Substituting Eq. 3-97 into 3-94 leads to the result for the second case:

Lt L (3-96b)

hS i )M h,S

hyoS (.—

my

In a U-tube PWR steam generator, it is possible that the transient involves a
two-phase level drop on the secondary side which divides the region into one
with a good heat transfer coefficient and the other with a smaller heat transfer
coefficient. The analysis can then be carried out for a two-zone steam genera-
tor. The simple analysis presented here for the primary average temperature
was found satisfactory for both one- and two-loop natural convection experi-
ments as long as the flow is not unstable [15 and 17].

Example 3-5 Calculation of primary system temperature time constants

ProBLEM For a Babcock and Wilcox PWR, calculate the time constant 7,
and the mean primary system temperature at ¢t = 60 s for the case of:

1. A step decrease in the power to the coolant, Ou, to 10% of full power.

2. A step decrease of power to 10% full power and instantaneous flow
decrease to 10% nominal flow. (Ignore time variant mass flow due to
temperature/buoyancy effects.)

Refer to Table 3-5 for specifications of the Babcock and Wilcox PWR.
SoLuTiON The time constant is given by Eq. 3-91:
pV (rhscp,s + h—2S>

mshS

where it is assumed that the specific heats of the primary and secondary
coolants are equal, ¢, = ¢;.

T2 =
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Table 3-5 Typical characteristics for a Babcock
and Wilcox PWR

—

Gross thermal power 3,818 MW(th)

Thermal hydraulics
Primary coolant

Pressure, p 15.5 MPa
Core inlet temperature, T 301 °C
Average core exit temperature, T, 332°C
Core flow rate, m 21.0 Mg/s
Volume, V 402 m?
Secondary coolant
Pressure, p, 7.83 MPa
Steam generator inlet temperature, T 244 °C
Steam generator exit temperature, Tse 313°C

The mean temperature is given by Eq. 3-90:
P Ts = (o = T) expl= Qurr
T—-Tg=(Ty — Tg) exp(—t/Ty) + pe,V (1 — exp(—t/T2))

Evaluate fluid properties at the mean temperature of the cxtremes of the
system:

T _ Tce + Tsi

sys 2
where T, is the core exit temperature and T; is the secondary coolant inlet
temperature, and assume both are constant over the transient.

Tsys = 332 ; 244 = 288 °C

p = 748 kg/m* (Table 3-2)
& = 5.23 kl/kg K

1. To find the values of hS and m the assumption is made that h is
temperature invariant. Eq. 3-86 can be evaluated at steady full-power
conditions.

hS(Ty = T,) = mycp(Tse — Ty) = 3818 MW

where:
Tse = 313 °C, T4 = 244 °C

T; =301°C, T, = 332°C

= 332 + 301 _ 313 + 244
=77 Thh=—"5—

=317°C =279 °C
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Hence:

10.5 Mg/s = 10.5 x 103 kg/s
105 kW/°C

my

hS$

This yields:

5
750(402) ((10.5 x 10%(5.23) + 13—)
10.5 x 10%(10)

=30s

T, =

- - Ou(30) -
T = , 7/ IR 4 : \CA LS R |
244 + T3e 750(5.23)402 (1= &™)

so that T = 260 °C for r = 60 s at Oy = 381,800 kW
2. Solving Egs. 3-96a and 3-95 for hsS and h,S at the initial conditions

yields:
(hs8)o = (hS)o <1 + %)
= 103 (1 + %) = 1.5 x 105 kW/°C
(hpS)o = (hsS)o mﬁs =1.5 x 10° (%) =3 x 10° kW/°C

The desired value of 1/hS is obtained from Eq. 3-96b where h,S, which
is constant, is evaluated at the initial conditions:

1 1 L
hS ~ i \08 (08
s (22)

Mo

Now, substituting the numerical values for the decreased primary

flow:
I 1 I
hS ~ 3 x 1050.0%% ' 1.5 x 103
hS = 3.61 x 104
and
750(402) ((10.5 x 10%)(5.23) + 3—6‘;—'04)

T =

10.5 X 10°3.61 X 109 =38
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Also:
- . hS)
On (mscp.s + 2) QHTz _

mscpshS YA
= 14 °C when Qy = 381,800 kW
T =244 + 7378 + 14(1 — e~ ")
at t=60s T =279 °C.

The results of both parts 1 and 2 of this example are plotted in Figure
3-9. It is clear that for these cases of power reduction the decrease in
the primary flow leads to a more gradual reduction in the primary
temperature than does the case with a constant primary flow rate.

3.67 X 1075Qy

3 Thermal time constants of the core Thermal response of the reactor fuel and
coolant transients is sufficiently intricate to require detailed numerical analysis
of the three-dimensional distribution of the heat flow. However, the simple
lumped parameter approach will again be used here to illustrate the basic pa-
rameters governing the rate of fuel temperature change.

B is possible to write the rate of heat addition to the coolant from the core,
Ou, as dependent on an overall heat transfer coefficient h. and on the overall
heat transfer area in the core S.:

On = hS(T; ~ T) (3-98)
320
310 \\\
\\
~ 300 \,\
3 AN
I~ 20 |od) N
g N\
% N
3 260 N
E Part2:7 =58s
2 270 N
5 ; A
§ " - T u258°C £
2 260|--i-Pat1:7r =309 -~ 2
~
250 T
. =250°C
240 L
0 20 40 60 80 100 120 140 160 180 200 220

Time, t (s)

Figure 3.9 Mean temperature decay curves.
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where T;is the core average fuel element temperature and T is the core average
coolant temperature.

At steady state, Qy is equal to the heat generated in the core. For transient
conditions, however, the core fuel and structure heat capacity have to be
considered so that in general:

. . dT;

Ou = Qcore — Micq T (3-99)
where M; is the mass of solid materials in the core, and c; is their effective heat
capacity. Then substituting Eq. 3-98 into Eq. 3-99 we get:

dT];f = Qcore - hcsc(Tf - T) (3_100)

Mfo
The energy convected by the coolant outside the core is given by:
QR = 'hcp(Tce - Tci) (3-10])

where T, and T are the core exit and inlet temperatures of the primary cool-
ant. Now, the core average coolant temperature may be approximated by:

T = .ﬁ (3-102)
2
So that the coolant average temperature in the core is given by:
dT . :
Mccp I = QH - QR
or
dT - - I
M., i heS(Ty — T) — 2mcy[T — T (3-103)

where M. is the coolant mass in the core. Egs. 3-100 and 3-103 provide a simple
representation of the core average response of the fuel temperature and the
coolant temperature, respectively. From Eq. 3-100 it is possible to define a fuel
time constant 73 such that:

Ty = Mfo/thc (3-104)

It is a measure of the time required to transport heat from fuel to coolant. For
UO,-Zr-clad fuel elements 7 is typically few seconds. For HTGRs with much
larger core heat capacity the value of 73 is much larger.

The significance of 7; can be illustrated by the heat removal from the core
by a constant temperature coolant when Qo = 0 (hypothetically). In this case,
Eq. 3-100 can be solved to yield:

Ti(t) = T + [Ty — Tle " (3-105)

Therefore, half the sensible heat in the fuel is removed in 0.693 7.
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It is desirable to decouple the two energy equations 3-100 and 3-103 for
core average fuel element and coolant temperatures, respectively. This can be
done by observing that in many reactors the following conditions can be rea-
sonably met:

1. The heat capacity of the solid fuel is much larger than that of the coolant in
the core:
Mice > Mcc, (3-106)

2. The average fuel temperature drop is much larger than the average temper-
ature rise of the coolant:

i —T>T-T; (3-107)

Because of the second assumption we can write Eq. 3-100 as:

d_Tf _ Qcore _ _1_
dt M 13

Then, the first assumption can be used to ignore thermal inertia of the
coolant, thereby obtaining a quasi-steady relation from Eq. 3-103 of the form:

hS«(Ts — T) = 2mcy(T — Ty) (3-109)
Therefore, differentiating Eq. 3-109:

(Tr — To) (3-108)

dT; <2mc ) dT  2c, .- dm
(R 1) S EE (- T S8 -
dt h.S. ! dt * h.S. (T = To) dt (3-110)
From the fact that Ty — T > T — T,;, Eq. 3-109 yields:
2mc
“mcp o
hes, > |

Hence:

dT; __2mcp d_T ZCP(T - T) d_m

dt ~hS. dr | hS. dt
Rearranging Eq. 3-111 and utilizing Eq. 3-108 yields:
dT _ hS. {Q'm 1 2

- - dm
Mt E(Tf - Tci)} ~ Zc, T - Ta)

(3-111)

dt  2mc,

Finally, again utilizing Eq. 3-109 and the second assumption, the above relation
reduces to:

dT Qcore ( 11 drh) -
—_— = - - + -~ 5 - i =

dt  2mc,my T3 om dt (T = Ta) (3-112)
Equ@tions 3-108 and 3-112 provide the desired two uncoupled equations in Ty
and T, for fixed T.. Itis clear that the core time constant 75 is dominant unless a
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coolant transient were so rapid that:
| 1 dm
<

- < == 3-113
(K} m df ( )
Thus for reactor power transients, with m essentially unchanged, the core
response is only dependent on 73. If the power transient were very rapid with
respect to 73, the core may be treated as adiabatic. On the other hand, if the
power transient were slow, then steady-state temperature distributions in the

fuel may be assumed.

B Two-Phase Loop Transients

The major difference in this case from the single-phase case is the inclusion of
the buoyancy effects that are much more significant here as well as modifica-
tion of the friction term to reflect the changing boiling distance and the friction
multiplier ¢, with quality. Again, we impose the assumptions:

1. Axially uniform heat generation rate in core

2. The HEM model is applicable

3. The friction losses are negligible outside the hot leg

4. Form losses are small compared with friction pressure losses.

Using Eqgs. 3-16 and 3-70, the momentum equation may be written as:
L\ dm G; ,
(Z A—t> a5 = APpump — gelo)_ep_r: {LNB + [1 + %] Lg +[1 + ‘)’]LB}

k
L , en(l + ) 1 , L
+pfg{‘2—E+LE—[LNB+ y YLB+1+y<L”+7E)]} 3-119)
where only y and Ly are dependent on G,,,. Note that as G, decreases, both y
and Ly increase. Therefore, the friction term and the buoyancy term increase,
and the net effect could be an oscillatory behavior, as encountered in the steady
state discussed in Example 3-3.

C Detailed Pump Representation

Flow loop transients are substantially influenced by pump transients and often
initiated by them. The start-up and stoppage of pumps are among the routine
operations of reactor plants. Pump failures, due to loss of power or inadvertent
operator action, are events of relatively common occurrence in all power
plants.

Accurate prediction of pump performance includes specification of its head
(H), torque (7), discharge or volumetric flow rate (Q), and rotor speed (w). The
pump motor, by exerting a torque on the rotating shaft, provides energy to the
impeller which creates the flow associated with a head increase from the suc-
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Cover Gas

— ]

Coolant

Hg, suction Hy , discharge

Figure 3-10 Schematic diagram of a pump with a reserve tank.

tion side to the discharge side (see Figure 3-10). The pump head H is used here
to define the available head at the discharge side, Hy — Hj.
During any transient, the motor provides torque for the following:

1. Overcoming frictional resistance and form losses in the loop (piping,
valves, core, etc.)

2. Overcoming frictional losses in the pump rotating parts

Acceleration of fluid in loop

4. Acceleration of pump rotating parts.

w

At steady state, no acceleration is involved, and only the first two items
need be considered. Detailed transient analysis can be found in Wylie and
Streeter [13] and Grover and Koranne [5].

Also, under certain transient conditions, a pump impeller may be forced to
spin in a direction opposite to normal. This may be caused by the gravity head
af}d the head provided by other pumps in a loop which may overcome the
frictional resistances. Thus positive and negative values of w and Q may have
1o be modeled.

_ Finally, it should be recognized that in principle the hydraulic representa-
ROn of a turbine resembles a reverse pump operation since the flow will lose a
head™ but generate a torque at the rotor.

For a pump, only two operation parameters can be considered independent
among H, Q, w, and 7. The other two are determined from the pump character-
1stics. It is commonly assumed that the pump steady-state characteristics also
hold for transient conditions. For a pump operating at any two conditions / and
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2, the characteristics are described by specific relationships (often referred to
as homologous relations) among the four operating parameters:

H_H

= 3-115
o ol ( )
and
o _Q (3-116)
(O7] (OF)

Equations 3-115 and 3-116 can be manipulated to yield the relationship between
head and volumetric flow:

H _ H,
oi 0}
A more realistic relationship, usually available from tests, relates the head
H to both the volumetric flow Q and the angular velocity w:

2
fourn(dn(

where a,, a,, and a; are empirical constants.
The common approach uses nondimensional parameters with respect to the
rated conditions:

(3-117)

(0] ™

WR TR

h

H 0
—v==:qa 3-119
Hg Or ( )
where the subscript R refers to the rated quantities, which represent the point
of best performance.

Introduction of the nondimensional parameters in Eq. 3-118 results in the

general relation:

h 2
== b, + by~ + b (5) for 0 < ‘3‘ <1 (3-120a)
(04 a a a
where:
2 2
_awr , _ GOrwR _ ;0r
b, = Hy ’ b = He b; He (3-120b)

Similarly, because of the linear relation between the angular velocity and
the volumetric flow rate, the head may be related to the square of the flow rate
in the form:

2
§= by + by (%) + b, (%) (-121)

The above equations are often used in nuclear reactor system codes.
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If the pump efficiency is assumed independent of operating conditions,
then the ratio of the rotational energy 7w to the flow work Q H is constant so

that:

W MW )
—Q|H| 0. H. (3-122)
which, using Eq. 3-116, leads to:
m_m )
H -1 (3-123)

Similar equations to the head equations, Egs. 3-120a and 3-121 can therefore be
established for the dependence of 8/a? on (v/a) and B/v? on (a/v). The polyno-
mial of Eq. 3-120a is of ten expanded to the third degree. For example, the Main
Yankee pump curves for positive rotation as provided in the final safety analy-
sis report [9] are:

L S (3) +0.35 (12) - 0.85 (1,) (3-124)
a a a a
b1 1a(2) e 10(2)-on ()
5=137-1.28 (=) + 1.61 () - 0.70 (3-125)
For zero rotor speed, the pump head can be described as
h = —0.00418|v|v (3-126)

For negative rotor speed, Rust [12] provides representative fits for a centrifugal
pump:

h
2= 0.5+ 0.51 (5) - 0.26 (12) +0.25 (%) (3-127)
(84 [0 a (s %

B _ 065+ 1.9 (3> - 1.28 (12) +0.54 (%) (3-128)
434 a (04 a

Equations 3-127 and 3-128 can be used to represent negative rotation. It is
necessary in a numerical analysis to allow transitions from positive rotor speed
to negative speed to be smoothed out to avoid numerical difficulties. Linear
interpolations between 3-124 and 3-127 can be used between —0.1 < a = 0.1
[8]. It should also be noticed that the required work should always be greater
than the delivered work to force the coolant flow. Hence:

o > Q(Ap)pump (3-129a)
wm > Q(pgH) (3-129b)

So that if during a calculation, Eq. 3-129a or b is not satisfied, the calculated
torque can be arbitrarily fixed, assuming the pump has fixed efficiency:

- = QlpgH)

Tlpump

(3-130)
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Figure 3-11 Pump configurations under different regimes of operation.
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Additionally, the pump head calculated above should be greater than the pump
suction head specified for a given pump by the manufacturer. For Maine Yan-
kee [9], the suction head is given by:

§= 1.15 (ﬁ) ~0.149 (3-131)

If the head of Eq. 3-124 for positive flow or Eq. 3-127 for negative flow falls
below that of Eq. 3-131, the pump is tripped automatically.

Figure 3-11 illustrates the various regimes of pump operations, some of
which are usually allowed in system codes [1,11]. During a coastdown tran-
sient the pump may pass from the normal pumping region, quadrant I, through
a reverse flow but positive rotation region, quadrant 11, to reverse flow and
rotation, region III, unless the rotor shaft is equipped with an antireverse
ratchet to avoid regions 111 as usually is the case for most PWRs. Figures 3-12,
3-13, and 3-14 provide the general shape of the homologous relations as dc-
scribed in the final analysis safety report of Maine Yankee [9] and presented
in [1,8].

Several experiments have been performed to investigate the generality of
the homologous representation for two-phase as well as single-phase character-
istics [14]. Figure 3-15 illustrates the general behavior for single-phase tests.
Figure 3-16 illustrates the head degradation in case of two-phase flow with
increasing void fraction up to a void fraction « = 0.8, with head recovery for
higher voids. The model of Zarechnak et al. [14] does not represent the smooth
head recovery observed in the two-phase experiments.

2.5

2.0 N

a>0
15 ™

1.0

0.5

Wa?

0.0 f o< 0 b \

-0.5
\
1.0
\

-1.5
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

via

Figure 3-12 Homologous head curves for a centrifugal pump. (After Agrawal et al. [1].)
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Figure 3-13 Maine Yankee pump head capacity curves for a > 0. (After Kao [8].)
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Figure 3-14 Pump head capacity curves for a < 0. (After Kao [8].)
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Fign‘re 3-16 Calculated and measured homologous heads (h/a?) versus void fraction plots for
Semiscale data at both 2,700 and 1,600 rpm for flow/speed (v/a) between 0.75 and 1.25. (From

Zarechnak et al. [14].)
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Figure 3-17 Pump performance data in transient two-phase flows, forward flow direction. N = 1180
rpm; po = 5.5 MPa. (From Heidrick et al. [6].)

Finally, the pump characteristics under severe transient flow conditions
have also been tested and found to yield results well represented by the steady-
state conditions, as seen in Figure 3-17 where the substantial scatter is probably
due to measurement imprecision [6]. It must be noted that normal operation of
a liquid pump (as in a PWR main pump) would avoid the conditions leading to
creation of bubbles due to cavitation to prevent pump damage. Therefore, the
two-phase flow tests described in this figure are motivated by the conditions
that may arise in unlikely events such as a loss of coolant and not the antici-
pated transients.
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PROBLEMS

Problem 3-1 Natural circulation in a boiling channel with steam separation (Section 1V)

Consider a small BWR being designed torely completely on natural circulation in the vessel to

achieve heat removal from the core, as depicted in Figure 3-18. Assume that the separator is 100%
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e — Separator P From Condenser
am T
“....2m -
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............................. '
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-

Figure 3-18
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efficient (i.e., all vapor is allowed to pass, and all liquid is returned to the downcomer) and that the
pressure losses in the separator are negligible. The chimney region can be assumed to have the
same geometry as the core region. The steam emerging from the vessel expands through a turbine,
is condensed, pumped up, and returned at the top of the downcomer.

Estimate the maximum allowable core thermal power for the system and fuel bundle design
conditions given in the Table such that the core exit average steam quality is 15%.

You may use the HEM model. Assume the single-phase friction factor in the core and the
chimney to be f = 0.02 and the water thermodynamic properties to be pressure independent. Ignore
friction pressure loss outside the core and the chimney and acceleration pressure drop.

BWR DESIGN CONDITIONS

System pressure = 7.1 MPa

Fuel assembly flow area = 9.55 x 10~} m*

Fuel assembly equivalent hydraulic diameter = 0.013 m
Number of fuel assemblies = 400

Condensate vessel inlet subcooling = 25 °C

Length of core = 4 m

Length of chimney = 2 m

Separator effective length = 2 m

Radial and axial heat generation profiles = uniform

Answer: Q = 1311 MWth

Problem 3-2 Regions of instability in a boiling channel (Section 1V)
Consider the boiling water loop test apparatus described in Example 3-3. Evaluate the possi-
bility of unstable heat fluxes in the loop if the system pressure was raised to p = 100 p.s.i. such that:

Pr_ 250

Pe
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FOUR

MULTIPLE HEATED CHANNELS CONNECTED
ONLY AT PLENA

I INTRODUCTION

In this chapter the solution of the continuity, momentum, and energy transport
equations of the coolant in a vertical, parallel array of heated channels con-
nected only at plena will be discussed. These solutions are applicable to a fuel
assembly modeled as an array of laterally isolated subchannels. We will start
with the one-dimensional transient transport equations of the coolant. The
solution procedure will be presented for conditions according to the problem
statement for these channel arrays as outlined in Table 1-4. The physical basis
for channel behavior will be stressed since the problem formulation allows
multiple solutions for the flow in individual channels. Instability mechanisms
will be pointed out. Sample results for steady-state conditions available in the
literature will also be presented.

Sections I through V present the governing equations, boundary condi-
tions, and general solution procedure. The low flow rate situation is treated in
Sections VI and VII and requires inclusion of gravity effects that are neglected
at high flow rates. This regime is applicable to decay heat conditions with
impaired circulation through the primary system in which substantial internal
circulation occurs within the reactor vessel. These internal circulation flows
involve both upflow and downflow zones and are instrumental in minimizing
peak temperatures in the core. Section VIII presents the solution procedure for
the case of decoupled conservation equations which is applicable to high flow
rate conditions. These results provide a useful indication of coolant flow and
temperature distribution for assessment of assembly thermal performance. The
isolated channel geometry of this chapter is relaxed in Chapters S and 6 to allow
subchannels to communicate laterally along their length.
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II GOVERNING ONE-DIMENSIONAL, STEADY-STATE FLOW
EQUATIONS

Figure 4-1 illustrates the geometry of multiple, heated channels that are con-
nected only at plena. It will be assumed that the one-dimensional mass, mo-
mentum, and energy transport equations derived in Volume I, Chapter 5 in the
form stated in Chapter 13 are applicable. For transients in which time-depen-
dent boundary conditions vary slowly compared with the fluid transit time in
the channel, a quasi-steady-state approach is adequate. For simplicity we shall
only treat the steady-state equations, although most numerical solution
schemes can treat both the steady-state and transient forms of the conservation
equations. The relevant conservation equations will be rewritten to specifically
allow for downflow as well as upflow within the array of channels. The sign
convention adopted is positive for upflow and negative for downflow. We as-
sume, in order to simplify the notation, that for our system of N channels, any
one of which is n, 1 through M are in upflow, and (M + 1) through N are in
downflow.

A Continuity Equation
The relevant continuity equation is:

9m . 9 Gy =
o1 T 37 Gn) =0 (I,13-1)

UPPER PLENUM
z=1L —z=1

LOWER PLENUM |

Figure 4-1 Flow in vertical, parallel channels connected only at plena.
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Integrating along a channel under steady-state conditions and multiplying by
the constant cross-sectional area yield:

GmA, = constant 4-1)

where GmA, = m,. Additionally, the total net flow through the system is the
algebraic sum of all the channel flows:

N
Y. GmnAn = iy (4-2)

If the net flow is from the lower plenum to the upper plenum, m is positive,
whereas if the net flow is from the upper plenum into the lower plenum, m is
negative.

It is possible to take the system return path between plena as simply an-
other channel. In that case this channel flow rate would be —mr, and the right
side of Eq. 4-2 would be zero. That approach is not taken here, i.e., the system
return path is not considered as one of the N total channels; rather it is repre-
sented as a separate path for each plenum.

B Momentum Equation

The relevant momentum equation is:

3G (G’) P _ fGulGul _
at +az ot ) pmg cos®  (I,13-2a)

0z 2Depr
This momentum equation can be rewritten in terms of the channel pressure
loss, Ap,. If all channels are vertically oriented and are of length L, we can
define Ap, for each channel as:
Ap, = pa(lower) — py(upper) (4-3)
For steady-state conditions and local losses the momentum equation becomes:

fn mn|Gmn d +ZK1nGmn|Gmn|

L
Apn = jo Pmngdz + 2Dcnpumn ; 2Pmn

(4-4)

) 11 ]
¥ G [p;m(L) pinl0)

If in this equation p;, is replaced by pm. and f, is taken for single phase, it
becomes strictly valid for single-phase fluids as well as homogeneous multi-
Phase flow. The third term on the right side of Eq. 4-4 represents the local
Pressure losses in the channel. Included are entrance and exit losses as well as
form losses along the channel. In some applications (a heavily orificed channel,
for example) this term is the largest contributor to the overall channel pressure
drop and therefore should not be neglected.
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Let us examine the application of this result for a system of channels, in
both upflow and downflow, connected to common plena. Figure 4-2 illustrates
the direction of the friction and gravity forces acting on the control volume for
both cases.

For upflow, the first three terms on the right side of Eq. 4-4 are positive.
The fourth term, the acceleration pressure drop term, is also positive for the
heated case with fluids whose density decreases with temperature since this
implies:

Pmn(0) > pma(L) (heated upflow)

For downflow, however, the channel has as its inlet the upper plenum and
discharges to the lower plenum.
Examining each term of Eq. 4-4, we observe that:

* The gravity term is positive, independent of flow direction.

* The friction and local loss terms are negative as indicated by our sign conven-
tion on G, because these terms cause the pressure to decrease in the direc-
tion of flow.

The acceleration term takes its sign from the difference of its two compo-
nents. Two cases are of interest: heated and cooled downflow:
Pmn(L) > pma(0) (heated downflow)
Pmn(L) < pma(0) (cooled downflow)

(A) (B)
p (UPPER) p (UPPER)
L
Flow Flow
Control Control
f Volume : i| Volume
Gravitation Gravitation |}
+Z .: +Z E :
L i| Friction L | Friction
-0 eereanenns i 0 feeecene i
p (LOWER) p (LOWER)

Figure 4-2 External forces exerting on control volume for upflow (a) and downflow (b) cases.
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Thus the acceleration term for heated downflow is negative, whereas for cooled
downflow it is positive. For downflow, then, the pressure drop Ap,, defined by
Eq. 4-3, is composed of a positive gravity component and negative friction and
local loss components, while the acceleration component is negative for heated
downflow and positive for cooled downflow.

C Energy Equation

The relevant equation is:
. d )
mo hm =q'(2) (I,13-13c¢)

Integrating the equation along the constant area channel » to position z yields,
for steady-state upflow:

e
hon(2) = @) + - [ aiaz 1=n<=m @-5)

For heated upflow conditions, the second term is positive. For downflow
we integrate Eq. I,13-13c from position L to position z, yielding:
hoo(@) = o) + == [ qidz M4 1=ns=N
mnl mn m, L dn =n=
(4-6)
1t
=hmn(L)—”-l—nandz M+1=n=N

where the second term is positive for heated downflow and negative for cooled
downflow by the sign conventions on m, and g;,. Considering that the total heat
input rate over the channel length is g,, both of these equations yield:

_ Gn ]
hmo(L) = hmnl0) + - 4-7)

n

where the second term on the right side will be positive for cooled downflow
and heated upflow, and negative for heated downflow and cooled upflow.

III STATE EQUATION

To complete the equation set, we write the equation of state, i.e.:

p = p(h,p) (4-8)
which for the mixture is written as:

Pm = pm(hm »P) 4-9)
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all variables being functions of position z. Now we can explicitly relate the
parameters in Eqs. 4-4, 4-5, and 4-6 by the following equations:

Pm = pe(p) + ape(p) (4-10)
hm = he(p) + xhe(p) 4-11)

where the relation between the void fraction, «, and the flow quality, x, for
homogeneous flow has been presented earlier, i.e.:

a= I (I1,11-30)
1+ (152)(2)
X Pe
and
Pev = Pv — Pe
hey = hy — he

The state equations, Eqgs. 4-10, 4-11, and 1,11-30 can be rearranged to yield:

Pv(P) he(p) — hm + hl(p))]_l -
pep) ha — he(p) @1

Pm = pe(p) + pev(p) [1 +

IV APPLICABLE BOUNDARY CONDITIONS

Boundary conditions are specified for the channels and the plena in this situa-
tion.

A Channel Boundary Conditions

Table 1-4 summarizes the sets of boundary conditions applicable to the chan-
nels of this problem. The hydrodynamic components of these sets are as fol-
lows:

Set (1). Prescribed pressure levels at the inlet and outlet plena. In this case the
net flow between plena is the algebraic sum of the individual channel flows.
This net flow is a consequence of the prescribed pressure boundary condi-
tions.

Sets (2) and (3). Prescribed total inlet flow rate, radial pressure gradient at one
plenum, and the pressure level at the other plenum. Depending on plena
specification, this yields two sets of pressure boundary conditions:

Set (2). Lower plenum pressure gradient/upper plenum pressure level.
Set (3). Upper plenum pressure gradient/lower plenum pressure level.

In these cases also, the net flow rate between plena is the algebraic sum of the
individual channel flows; however, here this net flow rate is specified. Although
these boundary sets do not specify numerical values for the axial pressure drop
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Ap. they do establish the relationships between radial pressure drops in the
plena, i.e.:
po(upper) = f(pi(upper)) forn =2,3,4, . . . N (4-13)

or
po(lower) = f(p,(lower)) forn =2,3,4, . . . N (4-14)

Special cases of particular interest are:

1. Equal pressure drop for each channel. This is usually the case if the plena
flow Reynolds numbers are low and the plena equivalent diameters are
large. For all boundary sets it follows that:

pa(upper) = py(upper) forn =2,3,4, .. . N (4-15)

and
pa(lower) = pi(lower) forn =2,3,4, . . . N (4-16)

2. Zero net inlet mass flow rate. This situation, which physically represents
an isolated reactor vessel, is of safety-related interest since it describes a
situation in which the primary loop heat exchangers (i.e., steam generators
for an LWR) are not available. For this case Eq. 4-2 becomes:

N
Y GunAn =0 4-17)

n=|

B Plena Heat Transfer Boundary Conditions

For this geometry of plena connected by channels, an additional consideration
is heat addition or extraction from the plena. A fundamental common approxi-
mation is that of fully mixed plena which obviates the need for an analysis of
the velocity and temperature fields within the plena. For steady-state, fully
mixed plena conditions, the general case is that of plena at unequal but constant
temperatures. For this case, heated or cooled channels can be in upflow or
downflow; however, plenum temperatures are maintained constant by heat
extraction or addition from external reservoirs.

The relevant fully mixed plenum energy balances are written next for each
plenum. The plena flow rates and heat addition rates Q are illustrated in Figure
4-3. Our sign convention is that heat addition is positive and upflow is positive.
The heat addition rate Q in each plenum at steady state is equal to:

. M N
Q(upper) = — 21 maha(L) — 2 mohi(upper) + mthr(upper) (4-18)
n= n=M+1
and
. M N
QO(lower) = 2 mahy(lower) + z moha(0) — mrhr(lower)  (4-19)
n=1 n=M+1
Since:

my(downflow) < 0 and mg(upflow) > 0
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Q (UPPER)
— Emn Elm |= my
n=1 n=M+1
l UPPER PLENUM *
‘ ~z=1L
N M
m, 2 g
naM+1 n=1
I z=0

‘ LOWER PLENUM

| M N
< iy Sl = iy

n=1 n=M+1

Q (LOWER)

Figure 4-3 Plena mass and energy balances.

For positive mr, hr(upper) equals the upper plenum enthalpy, A(upper), and
hr(lower) must be a prescribed inlet enthalpy; whereas for negative mr,
hr(lower) = h(lower) and Ar(upper) must be a prescribed inlet enthalpy.

For illustration, consider the special case of zero net flow between two
plena connected by three otherwise noncommunicating channels (i.e., mr = 0).
Let two channels be heated but with channel 2 at a lower rate than 1 and the
third be cooled or adiabatic. In this case, illustrated in Figure 4-4, channel 1 will
be in upflow, channel 3 in downflow, whereas channel 2 can flow in either
direction. For steady-state conditions, heat must be extracted from or added to
the plena to maintain the prescribed plena conditions of T(upper) and T(lower).
Consider two cases for single-phase coolants: channel 2 in upflow and channel
2 in downflow.
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Q (UPPER)
v — If'IT = 0
T (UPPER) |—_
UPPER PLENUM
- z=L
. my
my f7.11
- -1 - g ‘
a3 qg q1

z=0
LOWER PLENUM I
T (LOWER) .

) «——m;=0

Q (LOWER)

Figure 4-4 Flow in a three-channel array with zero net flow between the plena.

1 For channel 2 in upflow:
hi(0) = hy(0) = h(lower) (4-20)

and
hy(L) = h(upper) (4-21)

Eq. 4-18 becomes:
QO(upper) = —rhy(L) — riaha(L) — msh(upper)

By continuity;
fh] + I’;’lz + ""!3 =0 (4-22)

Hence:
O(upper) = r[h(upper) — hi(L)] + r[h(upper) — hy(L)] (4-23)
Similarly, Eq. 4-19 becomes:
O(lower) = riyh(lower) + myh(lower) + ryhs;(0)
—m;lh(lower) — h;(0)]

(4-24)
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Under the special case that T(upper) equals T(lower):
h(upper) = h(lower) (4-25)
Consequently:
h1(0) = hy(0) = h(upper)
and
hy(L) = h(lower)
Hence Q(upper) from Eq. 4-23 becomes:
Q(upper) = rm(0) = h(L)] + rlha(0) = (L))

: . . (4-26)
Q(upper) = —q1 — ¢
and Q(lower) from Eq. 4-24 becomes
Q(lower) = —rinlhy(L) = hy(0)] = —gs (4-27)
2 For channel 2 in downflow
Analogously:
hi(0) = h(lower) (4-28)
hy(L) = hy(L) = h(upper) (4-29)
Eq. 4-18 becomes:
Q(upper) = —mhi(L) — myh(upper) — msh(upper)
By continuity again:
my+my+my=0 (4-22)
Hence:
QO(upper) = riu[h(upper) — hy(L)] (4-30)
Similarly, Eq. 4-19 becomes:
Q(lower) = mh(lower) + myh(0) + m3h4(0) (4.31)

Q(lower) = —mylh(lower) — hy(0)] — mslh(lower) — h3(0)]
Again for the special case that T(upper) equals T(lower), for single phase:
h(0) = h(upper)
and
hy(L) = hy(L) + h(lower)
Hence Q(upper) from Eq. 4-30 becomes:
Q(upper) = riu[hy(0) — h(L)] = =4, (4-32)
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and Q(lower) from Eq. 4-31 becomes:
Odower) = —rinlhy(L) = hy0)] = k(L) — hy(0)]
Q(lower) = —q; — ¢3

Therefore, for this illustration case of zero net flow and equal plenum
temperatures, external heat addition or extraction from the plena may be re-
quired as dictated by Eqs. 4-26 and 4-27 for channel 2 in upflow and by Eqgs.
4-32 and 4-33 for channel 2 in downflow. )

Now if there is no external plena heat addition or extraction, Q(upper) =
Q(lower) = (0. Then for the case of zero net flow under steady-state conditions,
the heat added in channels 1 and 2 must be extracted in channel 3. Hence
channel 3 cannot be adiabatic. Additionally the plena temperatures cannot be
maintained equal. This temperature inequality condition follows from the ob-
servation that for adiabatic plena the plenum temperatures are equal to the
mass averaged temperatures of the flow streams entering the plena. Specifically

for the case of channel 2 in upflow and for Q(upper) and Q(lower) equal to zero,
Egs. 4-23 and 4-24 become:

(4-33)

mhy(L) + mohy(L)

h(upper) = o (4-34)
h(lower) = h3(0) (4-35)
Now an energy balance in channel 3 by Eq. 4-6 yields:
1 L
) = (L) ~ = | aidz (4-6)

By definition for downflow in channel 3, h3(L) = h(upper) so that combining the
above results into Eq. 4-6a we obtain:

1 L,
h(lower) = h(upper) — n jo q3dz

Since g3 is nonzero, the enthalpies and hence the temperatures of the plena are
unequal in steady state.

V THE GENERAL SOLUTION PROCEDURE

The continuity equation, Eq. 4-1, indicates that G, and m, are constant for
each channel. In general, the density and the friction factor will vary along the
channel. To account for these variations, we will use the axially averaged
density and friction factor defined by:

1 L
pon =7 |, P2z (4-36)
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o1
fo=1 [, f0de (437)

For a single-phase fluid, the axial variation of the friction factor is due to the
changes of fluid viscosity along the channel, whereas for two-phase fluids, both
the viscosity and two-phase multiplier, ¢%,, will change along the length. Since
the energy and momentum equations are integrated over the channel length, we
can only state the fluid conditions entering and leaving the channel. We shall

Table 4-1 Coupled momentum-energy solution procedures for
parallel channel arrays connected only at plena

Boundary Boundary Boundary
set (1) set (2) set (3)
Unknown variables
Gun» po(lower), p,(upper) 3N 3N
Pmnl(0), pmalL), Prn 3N N
Sul0), fo(L), fo 3N IN
han(0), halL) IN 2N
Q(lower), Q(upper) 2 2
mr - ?, 1
1IN + 2 1IN +3
Governing equations
Conservation equations
® Momentum, Eq. 4-4 N N
® Energy, Eq. 4-7 N N

Constraint equation

¢ Total low, Eq. 4-2 - ? I
State eqgs.: Density as a function of *
pressure and enthalpy evaluated at:

® pmn(0), pma(L), Eq. 4-12 2N 2N

® pmns Eq. 4-38 N N
Constitutive equations

® £2(0), fi(L), Eq. 1,9-13 or Eq. 1,9-20 2N 2N

e f., Eq. 4-39 N N

8N 8N + 1
Boundary conditions

Pa(upper) N N -
Po(lower) N - N
hma(0) OF hra(L) N N N
my - 1 1
pn(upper) = f(p(upper)), Eq. 4-13 - - N-1
pa(lower) = f(p((lower)), Eq. 4-14 - N -1 -

Q(upper), Eq. 4-18 1 1

QO(upper), Eq. 4-19 1 !

3N +2 3N +2 3N +2

— = not applicable.
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thus approximate the average density and friction factor for single-phase fluid
by:
- Pmn(O) + pmn(L)
Pan == 5 —

- £a(0) + fa(L)
8 2
The solution procedures for boundary sets (1), (2), and (3) differ. These
three cases have been specified as:

(4-38)

(4-39)

[
E"’:l

Set (1). Prescribed inlet and exit pressure levels.
Set (2). Upper plenum pressure level/lower plenum pressure gradient and mr.
Set (3). Lower plenum pressure level/upper plenum pressure gradient and mr.

Table 4-1 illustrates the governing equations and boundary conditions nec-
essary to balance the unknown variables for each case. In each case the total
heat input rate for each channel, ¢,, is a given input condition. As Table 4-1
illustrates, the number of equations and boundary conditions necessary for
closure is 11N + 2 for boundary set (1) and 11N + 3 for boundary sets (2)
and (3).

These sets of equations are coupled through the dependence of the density
Pm on both the energy equation through the enthalpy 4 and the momentum
equation through the pressure p. The solution procedure can be simplified by
use of a reference pressure p* that eliminates the dependence of p, on local
variations of p throughout the system but does not affect the dependence of p,
on h, i.e.:

Pm(2) = Pm(hm(l),P*) (2-14)

This approach is an approximation that is valid as long as the density variation
with pressure is small and local pressures are close to the reference pressure
p*. Although the use of a reference pressure p* does simplify the solution
procedure by reducing the effort expended in evaluating py(z), the equations
are still coupled and in general require numerical solution techniques.

VI CHANNEL HYDRAULIC CHARACTERISTICS

The general solution procedure presented in Section V in principle is sufficient
for problem solutions. However, the momentum equation in particular leads to
complexities because the channel pressure drop/flow rate behavior when ex-
tended over the entire flow rate range is not a simple linearly increasing func-
tion. In fact this characteristic curve has a shape that can lead to multiple
solutions and instabilities. Familiarity with these characteristics provides the
l[:hysical basis essential to understanding and analyzing complex system be-
avior.
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We will discuss the channel pressure drop/flow rate characteristic in two
stages to emphasize the friction-dominated versus the gravity-dominated flow
regimes. For this section, we will assume that the channel power, flow rate, and
inlet subcooling are such that two-phase conditions are encountered in the
friction-dominated regime as well as in the gravity-dominated regime. For gen-
erality, conditions of upflow and downflow will be included. In Section VII a
single-phase example is considered in which single-phase conditions exist well
within the gravity-dominated regime.

A The Friction-Dominated Regime

The S-shaped pressure drop/flow rate characteristic for the friction-dominated
regime has been described in Section 13.VB of Volume 1.

For multiple, identical channels operating at different heat fluxes, the S-
curve takes different shapes. In general, in the friction-dominated regime, an
increase in g for identical channel geometry and constant inlet subcooling
causes the S-curve to change as shown in Figure 4-5. The onset of nucleation
and the achievement of complete vaporization, points B and C, respectively,
occur at higher m for increased g due to simple energy balance considerations.
Additionally, for increased ¢q, the overall pressure drop for fixed m is higher in
both the liquid and vapor regions due to property variations with the tempera-
ture. These property variations influence the pressure drop as given below:

Ap is proportional to [%] for fixed m (4-40)

For liquid water, both u and p decrease approximately equally with tempera-
ture increase, but the effect of p dominates because the exponent n is only

Increasing q' with
i fixed axial profile

Puppen

P ower~ Puprer

-— Jq' (z) 0z

Ap

PLowen

-

mass flow rate, m

Figure 4-5 The effect of channel power on the channel hydraulic characteristic.
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about 0.2. For the vapor region, u increases while p decreases as temperature
increases. Hence in both regions at a fixed m, Ap increases as g increases as
shown in Figure 4-5. From this equation one can appreciate that an array of
channels of arbitrary geometry and heat flux can have a variety of possible
specific S-curves. For a fixed boundary Ap,,, a variety of flow rate distributions
will exist among the channels in the array.

Extending consideration to the downflow case, a mirror image S-shaped
curve results as shown in Figure 4-6 which illustrates the friction-dominated
regime. A consequence of the curve of Figure 4-6 for the friction-dominated
region is that for a fixed boundary condition, Ap., only all positive or all
negative flows are predicted in a multiple channel array. No situation exists for
the friction-dominated region in which the flow is upward in some channels and
downward in others. As will be shown, this is not true in the gravity-dominated
regime.

B The Gravity-Dominated Regime

The pressure drop/flow rate characteristic for the gravity-dominated regime is
governed by Eq. 4-41, which is the gravity term of the general momentum

Ap =p Lower - P UPPER

T Pupren
9 .
L 1= [q'(2) az
I PLower
m, h,
Negative m Positive m

:
—————

\ Gravity

Dominated
Region

-Ap = P yrPER - P LOWER

Figure 4-6 The friction-dominated region for upflow and downflow in a heated channel.
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balance of Eq. 4-4 expressed in terms of a two-phase density:

L
8pa = [ [pdl = @) + pya)gdz (4-41)

At low flow rates, the velocity levels become low enough so that friction and
acceleration losses become negligible compared with gravity effects. Hence
this is the gravity-dominated regime. The method of computing a characteristic
curve has been demonstrated in Section 13.V of Volume 1. Utilizing this proce-
dure, which includes both friction and gravity effects for three heat flux condi-
tions, yields the results presented in Figures 4-7 and 4-8. Figure 4-8 illustrates
the crossover behavior in the gravity-dominated regime of very low mass flow
rates in which pressure drop is inversely proportional to heat flux.

Let us focus now around the zero flow rate location. For positive (upward)
mass flow rates, both the liquid and gas phases flow upward. The pressure drop
is given mainly by the gravity head as represented by Eq. 4-41 where « is
determined by both the mass flow rate and the channel power. The zero flow
rate condition is a discontinuity in the curve since the heated channel with zero
flow rate would not exhibit a fixed Ap. Any initial liquid present would vapor-
ize, and the vapor would rise upon heating, thus creating an upflow. Also, as
the zero flow rate condition is approached, the fluid condition depends on the
channel geometric characteristics and the channel power. Figure 4-9 illustrates
the region around zero flow rate just described.

For negative mass flow rate or liquid downflow, Figure 4-9 illustrates an
initial decrease in pressure drop. In this region the vapor and liquid are in

100.0
—_ 80.0 / 1.5 MW/m?2
© N
o
) | AN
5 600 1.0 MW/m?2 \\ //
o ?
® i
& 400 0.5 MW/M?2 e
e —
o //
g V Geomelric Parameters (rod bundle)
[ BWR interior subchannel pitch = 18.8 mm
20.0 Rod Diameter = 14.3 mm
/ Length = 3.66 m
...... inlet Conditions
p=20MPa
T=380K
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Mass Flowrate, m (kg/s)

Figure 4-7 The effect of channel power on the characteristic curves: Full range of mass flow rate.



MULTIPLE, HEATED CHANNELS CONNECTED ONLY AT PLENA 131

100.0
Geometric Parameters (rod bundle)

BWR interior subchannel pitch = 18.8 mm

(o SER R TS P S TEE T 15 Mw/;-nz

Rod Diameter = 14.3 mm

Length = 3.66 m //
—~ 80.0 |'nletConditions b
] p =20 MPa /
3 T =380 K /
aQ /
< 600 /
& / 1.0 MW/m?
o
[}
5 7
a 40.0 74
8 S 0.5 MW/m2
¢ g
s i
le 20.0 /

A
0.0 :
0.00 0.02 0.04 0.06 0.08 0.10

Mass Flowrate, m (kg/s)

Figure 4-8 The effect of channel power on the characteristic curves: Low mass flow rate domain.
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counterflow. For the case of constant channel power, increased liquid down-
flow will slightly reduce net vapor generation but will also retard the rising
vapor produced. The retarding effect is dominant, yielding an increase in the
void fraction. Hence the gravity-dominated channel pressure drop given by Eq.
4-41 initially decreases since « increases. With increasing liquid flow rate this
trend first leads to a stagnation of the generated vapor and filling of the channel
with vapor. This condition is not a definable steady state since the channel will
first fill with vapor and then probably the vapor will be expelled. For an all-
vapor condition the Ap is not zero and is equal to:

L
Apa = [ pugdz (4-42)

Figure 4-9 shows this all-vapor Ap value at the point labeled the vapor-bound
condition.

For further increasing negative mass flow rates, the vapor flows concur-
rently downward with the liquid. The void fraction trend reverses to a decreas-
ing a, and the pressure drop increases as dictated by Eq. 4-41. The maximum
pressure drop in the gravity-controlled region is the all-liquid channel condi-
tion. For the heated channel this condition is generally not reached in the
gravity-dominated regime because the channel power will create some vapor-
ization. Further, the increase in pressure drop is bounded by the onset of a
friction drop component which, for negative flow, is opposite to the gravity
component. This balance between gravity and friction components leads to a
maximum in the pressure drop/flow rate characteristic. For further negative
flow rate increases, friction dominates, and the Ap decreases. This behavior is
shown in Figure 4-10, which illustrates performance over the full range of mass
flow rates. Characteristics of this type have been determined experimentally by
Singh and Griffith [3] who found that slight variations from this idealized behav-
ior occur about the flooding point due to bubble trapping at sharp entrance
corners unless the entrance is streamlined. These authors worked in terms of a
superficial liquid velocity, j¢, as Figure 4-10 reflects, in place of m, but these
parameters are almost proportional since:

m = (pVA) + (pVA)g = (jipr + Jgpe)Ar (4-43)
= ) & _—a ) -
where:
J=Vi(l — a) (4-45)

and S is the slip ratio, the gas-to-liquid velocity ratio. Note that typical parame-
ters for low void, high pressure systems, where a =< 0.5, p,/ps =< 1/20 and § = 2:

Peg < 01
pr 11—«
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Figure 4-10 Pressure drop versus flow rate curve schematic. (After Singh and Griffith [3].)
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and hence Eq. 4-44 becomes:
m = jeipAr (4-46)

For multiple, identical channels operating at different channel powers,
different individual curves of the shape of Figure 4-10 exist. The pressure drop
across the array is almost independent of the behavior of any one channel, and
thus each channel can be thought of as having a constant Ap., boundary condi-
tion as shown in Figure 4-11. It is possible to have upflow and downflow
simultaneously in different channels. This is illustrated schematically in Figure
4-11 in which downflow occurs in channel 1 (intersections 1 and 1') but upflow
only in channel 2 (intersection 2).

Let us now turn to analytical solutions of the general equation set. We shall
solve two single-phase examples. A coupled conservation equation solution
covering the gravity-dominated regime is covered in Section VII. A decoupled
solution of the momentum equation covering the friction-dominated regime is
covered in Section VIII.

VII COUPLED CONSERVATION EQUATION: SINGLE-PHASE,
NONDIMENSIONAL SOLUTION PROCEDURE

As stated in Section V the momentum and energy equations are in general
coupled since the density p,, which is a function of the enthalpy A, and
pressure p, appears in the momentum equation. If the dependence of pp, on A,
and p is not strong, then an average reference density evaluated at a reference
enthalpy and pressure can be used in the momentum equation to solve for the
channel flow rate. This flow rate can then be substituted into the energy equa-
tion. This is the procedure used in Section VIII.

There are situations in which the local dependence of py, on Ay, and p is
important (for example, if the gravity pressure drop is significant or if two-
phase conditions exist). It then becomes necessary to alter our approach. In-
stead, we will use the reference pressure approach described in Section V in
which the fluid is allowed to expand thermally but is considered to be incom-

pressible, i.e.:
apm)
- —_ 0
(ap A

In this section, the general solution procedure for the coupled energy and
momentum equations for the single-phase case will be discussed following
(1,2]. Included will be a nondimensional analysis of the integrated momentum
and energy equations and examples illustrating the implications of some of the
channel hydraulic characteristics discussed in Section VI.
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A Derivation of a Single, Coupled Momentum-Energy Equation

In order to simplify the general solution procedure, the following assumptions
are made:

1. The plena are fully mixed. Thus, the analysis of temperature and velocity
fields in the plena is not necessary.

2. No radial (transverse) pressure gradient exists in either plenum. The pres-
sure drops of all the channels are therefore equal, i.e., Ap, = Ap.

3. Fluid viscosity, specific heat, and thermal expansivity are independent of
temperature and pressure.

4. Fluid density is independent of temperature and pressure except for the
gravity term in the momentum equation, in which density is a linear func-
tion of temperature (the Boussinesq hypothesis).

5. Channels are all in either laminar or turbulent flow and of similar geometry
so that the friction factor dependence on Reynolds number is the same for
all channels, i.e., f = CRe "

6. Spatial acceleration is neglected. This is actually stated by assumption 4
since spatial acceleration is caused by density variations along the channel.

We start our derivation by applying assumptions 2, 3, 4, and 6 to momen-
tum Eq. 4-4 yielding:

L L G,|G,] KinG,|G,
Ap = fo Pn8dz +f"—D: 2p* + Z 2,:>ll< l

(4-47)
where the reference density p* is used in the friction and local loss terms. The
energy equations, Eqs. 4-5 and 4-6, when written in terms of temperature,
become:
To(2) — Tower) = | -919%_ (upflow) 4-48
nlZ > GuAnC, upflow (4-48)
L gndz

T.\(z) — T(upper) = — . CAc
n‘intp

(downflow) (4-49)

Because a reference density is used in the friction and local loss terms in Eq. 4-
47, the momentum and energy equations are now only coupled through the
gravity (integral) term of Eq. 4-47. By assumption 4, we can write this term as:

L L
fo Pngdz = fo p*e(l = B(T, — T¥)dz (4-50)

Let us first examine the upflow case. Using Eq. 4-48 to substitute for T, in Eq.
4-50 yields:

pr gdz = fL * [1 - B< ¢ gndz’ + T(lower) — T*)] dz (upflow) (4-51)
o 7n o P8 0 GaAncp p
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Expanding Eq. 4-51 we obtain:

[ st = s [ e L8[ g

i (4-52)
— p*gB[T(lower) — T*] f , 9z (upflow)
Combining the first and third terms on the right side gives:
L
[, pngdz = pgL(1 = BiT(ower) — T4)]
g (4-53)
P 8 P
~ Guuc, o f fo qndz'dz (upflow)
We can simplify Eq. 4-53 by defining:
L
dn = | aidz (4-54)
and
L 2z
[£J; e
A Y (4-55)

so that Eq. 4-53 becomes:

f pagdz = p*gl [1 — B[T(lower) — T*] — q“ﬁ ](upﬂow) (4-56)

S, is a dimensionless quantity that reflects the symmetry of the axial heat flux
shape of the channel. For the case of uniform heat flux, Eq. 4-55 simplifies to:

L
fo q'zdz

S0 =L

=0.5 (4-57)

This represents the case in which the average fluid density in the channel is the
arithmetic average of the fluid entering and leaving the channel. For a given
total channel power g, as S, decreases, the average fluid density in the channel
increases as can be seen from Eq. 4-56.

Our next step is to write the single momentum-energy equation. Substitut-
ing the result for the gravity term into the momentum equation, Eq. 4-47, we
get:

Ap = p*gl [1 ~ B[T(lower) — T*] — %] -k

LS K.,,G }

(upﬂow)
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Similarly, for downflow:

duB(1 = S,) L GilGi|
Ap = p*gL [] — B[T(upper) — T*] + m;— /o D, 2p*

(4-59)

+ > KinGalGol (downflow)

2p*

Eqs. 4-58 and 4-59 are the desired combined momentum—energy equations that
describe the system of N parallel channels connected only at plena. Note that
separate equations are written for upflow and downflow since the gravity com-
ponents have different temperatures, i.e., T(lower) versus T(upper) even
though the mass velocity terms are written as G,|G,| consistent with the con-
vention that G, is positive for upflow and negative for downflow.

Example 4-1 Calculation of the channel power shape factor

PrROBLEM A channel of length L has a linear heat generation rate of:

! ’

0 [

SoLuTION S, is defined by Eq. 4-55. For this case:

L rz L. ' , L L Z
_ jo L qo sin (%—) dz'dz B —qo ;fo (cos (%) - cos(0)>dz

Sn L T2 12
L fo qo sin (T) dz —qo P (cos(m) — cos(0))
L2
qQ —
T
= 7 = 0.5
2qo ?

Thus, a channel with a sine-shaped axial power distribution has the
same value of S, as one with uniform heat flux. In general this is true for
any channel power distribution that is symmetrical about the axial mid-
point. For these cases, the average density in the channel can be calculated
by the arithmetic average of the densities entering and leaving the channel.

B Nondimensional Equations

We start the dimensionless analysis by dividing the combined momentum-
energy equations, Eqgs. 4-58 and 4-59, by p*gL and subtracting unity from each
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to obtain:
Ap . _ _ i1 _G0BSa L G.|Gi|
p*gL I = —~plT(ower) = T*] GrAnCp ﬁ‘Den 2p*%gL
KinGa| Gl (4-60)
+ 2 “2pvgr, (upflow)
Abr - o o 9eBU = SW) L G,|G,
prel ~ | T AT T T G A DL
4-61
KinGn‘Gnl
+ Z 20%2gL (downflow)

We now introduce the following dimensionless variables:

GnDeq
Tu
Ap
p*gL
Xy = B[T(upper) — T*]
XL = B[T(lower) — T*]

Re, =

+ =

anDen
O = AnCpt

= C|Re,|™

5y = —CH _
" ZDgnp*zg
Z 1<inﬁ"'2

Yo = 5pi 7 oA,
2D Lp*’g
The new dimensionless momentum—energy equations can now be writtent as:

Ap* = [_XL - Re ] + 8,Re2 " + y,ReZ (upflow) (4-62)

(1 - 80,
Ap* = [—X + —-“—} + 8.Re,|Re,|! "
"7 Re [Resl (4-63)
+ vaReq|Re,| (downflow)

t The consistency in nomenclature maintained throughout the book requires using the letter n
as both an exponent (the Reynolds number exponent associated with the friction factor) and a
subscript (channel number designation) throughout Sections VII and VIII.
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The first term on the right side (in brackets) is the dimensionless gravity
pressure drop. X and Xy account for differences in the reference density
(which can be defined at any temperature) from the densities in the plena. The
second term in the brackets accounts for the density change caused by heating
(or cooling) the fluid. It is proportional to g, (through ®,) and inversely propor-
tional to G, (through Re,). The second and third terms on the right side repre-
sent the friction and local losses, respectively, where S, and vy, are functions of
fluid properties and the channel geometry.

The next step is to express the mass constraint equation in terms of the
channel Reynolds number as defined below and to non-dimensionalize this
constraint equation.

_ GiDen
M

We start by defining the total flow area, Ay, and hydraulic diameter, D.r, of our
system of N channels as:

Re,

N
Ar =D A, (4-64)
n=1
N
4> A, N
n=1 An
Der = +4) P (4-65)
wn

N n=1
Z_I Pun

where P, is the wetted perimeter of channel n. Note that D.r is not equal to the
sum of the individual channel hydraulic diameters.

Per our notation, channels 1 through M are in upflow, and (M + 1) through
N are in downflow. Substituting the channel Reynolds number into the mass
constraint Eq. 4-2 yields:

M

N
> R;““ A+ S Re =0 (4-66)
en n=M

n=1

Dividing through by pA1/Der results in:

M A DeT> N (A D T) . Dg
i el 1) RS Re, | =2=1) — L =0 4-67
,; Re (ATDen n=§+l © AtDeyq mT ILAT ( )

Defining the dimensionless parameters:

- AnDeT
ATDen

(4-68)

rﬂ
and

mTDeT

Rer =
T uAr

(4-69)
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we can write Eq. 4-67 as:
M N
> Reara + 2. Reqra — Rer =0 (4-70)

n=1 n=M+1

Eqgs. 4-62, 4-63, and 4-70 comprise a set of (N + 1) equations. The 2N + 1
unknowns are Ap*, Re,, and ®,. For closure, either Re, or ®, must be speci-
fied. For nuclear reactor system applications, typically @, (heat flux) is speci-
fied. Additionally, r,, Ret, S,, XL, Xu, 6., and vy, are specified.

Example 4-2 Flow characteristics of a three-channel system

PROBLEM A water test section consists of three identical channels con-
nected only at the upper and lower plena. Channel 1 is heated, channel
2 is adiabatic, and channel 3 is cooled where ¢, = 500 J/s, ¢, = 0, g3 =
—200 J/s. The relevant channel parameters are:

D, = 6.350 x 1073 m

L=2m

A =158 x 107¢ m?

S =S5;=0.5780

Z Ki = 0 (i.e., no form losses)

C=95

n =1 (i.e., laminar flow).

The water properties for the test are:
T(upper) = 20 °C

T(lower) = 20 °C

T* =25 °C

p* = 993.1 kg/m3

cp = 4186 J/kg °C

p* = 1.01325 x 10° Pa

u = 8.62 X 107% Pa-s

B =4.75 x 1074/°C

Calculate and plot Ap* versus Re, for the three channels on the same graph

for —1,000 < Re, < 1,000, where Re, < 0 indicates downflow. What
happens as Re, approaches 0?
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SoLuTiON By definition:
Xy = B(T(upper) — T*) = (4.75 X 107%)(20 — 25) = —2.375 x 1073
X, = B(T(lower) — T*) = (4.75 X 1074)(20 — 25) = —2.375 x 1073

Cu? (95)(8.62 x 1074)2

= = _ _S
_ 2 Kw
Y T 2D o
— q.nBDe
O Acpp
_ _(500)(4.75 x 1079(6.35 x 107) _
91 = {158 x 109, 186)(8.62 x 109 — 264
0,=0
_ » .
0, = (—=200)(4.75 x 1079)(6.35 x 1073 _ 1 os

~ (1.58 x 107%)(4,186)(8.62 x 107%)
The Ap* versus Re, curve for each channel is given by Egs. 4-62 and 4-63:

Apt = =X — ‘Si{f:)" + 8Re2™ + yRe? (upflow) (4-62)
n
(l - Sn)®n 1-
+ = -_— —_—— n
Ap Xy + Re, + 8Re,|Re,| 463

+ yRe,|Req| (downflow)
Substituting the values calculated above, we obtain:

O
Re,
O,

Ap* =2.375 x 1073 — 0.578 + 1.426 X 107°Re, (upflow)

Ap* = 2.375 x 103 + 0.422

Re, + 1.426 x 107°Re, (downflow)
For Re, ranging from 103 in downflow to 103 in upflow the resulting Ap* —
Re plots for each channel are shown in Figure 4-12.

We see that for a prescribed Ap*, there can be more than one combina-
tion of flow rates which satisfies the momentum—-energy equation. Also,
note that the curves for heated and cooled channels are not defined for a
very low Reynolds number. This is because our linear relationship between
density and temperature is not true in this region. Integrating Eqs. 4-48 and
4-49 we find T,(L) as a function of Re,, and as can be seen in Figure 4-13 for
the upflow condition, channel 1 will boil when Re = 70 corresponding to
Apt = —18.0 x 1073, and channel 3 will freeze at Re = 111 corresponding
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Figure 4-12 Flow characteristics of the three-channel system of Example 4-2. (Boiling and freezing
conditions shown for upflow cases only.)

to Ap* = +9.47 x 1073. These conditions are also plotted in Figure 4-12 at
the corresponding Ap™* values calculated from Eq. 4-62. Freezing and boil-
ing also occur under downflow conditions that can be calculated from Eq.
4-63. Depending on the specific channel conditions these phase change
conditions can be so located on a plot as Figure 4-12 to complicate the
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Figure 4-13 Temperature and density characteristics for upflow in the three-channel system of
Example 4-2.
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orderly transition from upflow to downflow and vice versa (see Prob-
lem 4-2).

Figure 4-14 illustrates the behavior of the system as the total plenum
inlet Reynolds number is varied. This result is obtained from algebraically
summing the channel flows of Figure 4-12 over the range of dimensionless
pressure drop. The double-valued results at large positive Ap* reflect the
multivalued behavior of channel 3. Only stable operating conditions of
channel 3 are considered. These vary depending on whether channel 3 is
operated initially in downflow or upflow. The horizontal jump (i.e., de-
crease in Re at fixed Ap*) for a decreasing positive Reynolds number
represents the transition of channel 3 from upflow to downflow. The analo-
gous behavior is exhibited for negative Reynolds number (i.e., inlet flow to
upper plenum) due to flow reversal in channel 1. Figure 4-14 illustrates that
for zero external flow into the system, Ap* is single valued at approxi-
mately 1.4 x 1073,

C Onset of Mixed Convection (Upflow)

Typically, a reactor core operates in the friction-dominated (forced convection)
regime. There are circumstances, however, under which the flow rate de-
creases such that the fluid buoyancy becomes significant. A reactor coolant
pump coastdown is one such event. Since at high power-to-flow ratios, the
momentum equation is coupled to the energy equation, it is desirable to calcu-

Dimensionless Pressure Drop, Ap*

------- -
-0.01 —
-0.02 A

-0.03
-0.04

-0.05 R — .

0.05

Initially large +Rer

0.04
------------ Initially large —Rer

0.03

0.02

0.01

0.00 sonss

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

Total Inlet Reynolds Number, Rer (= r\Re, + r,Re; + r;Re;)

Figure 4-14 Two-pressure drop-flow trajectories for the three-channel system of Example 4-2.
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late at what point the fluid buoyancy is significant. We will call this the onset
(upper limit) of mixed convection.
The momentum equation for upflow is:

5,0
Ap* = [_ X, — #] + 8.Rel™ + yuRe (upflow) (4-62)
n

For mixed convection, the buoyancy term:

_ 8.0,
Re,

(not the total gravity term), must be greater than some fraction of the friction
and local pressure drop terms. If we let this fraction be Fy,, then the onset of
mixed convection occurs when:

8.0,

ch[SnRe%_" + y,,Re%] = TC_ 4-71)
n

For the special case of no local pressure loss (y, = 0) and laminar flow (n = 1),
Eq. 4-71 simplifies to:

5.0,
Fnc[8:Re,] = _ﬁe_ (4-72)
Solving for Re,:
12
Re, = [g"—%‘] (4-73)
mc%n

where the positive root only should be selected since upflow is being consid-
ered.

This analysis shows that the onset of mixed convection in a channel with no
form loss and experiencing laminar flow occurs when:

1 |S5.0,
I

A typical value of F,c which reflects a reasonable buoyancy influence is 0.10.

We can also solve for the nondimensional pressure drop at the onset of
mixed convection. Substituting Eq. 4-73 into Eq. 4-62 and setting n = 1
(laminar flow) and y; = 0 (no local pressure loss), we obtain:

‘ chﬁn]m [Sn®n ]uz
+ = — — — - 5
Ap XL — 5.0, [®nsn + 6, F.0, (4-75)

which can be simplified to:

Ap+ = _XL + [Sn@)nﬁn]”z[Fr;uI:/z - Frlr/é] (4-76)
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D Adiabatic Channel Flow Reversal

For a system of parallel channels operating initially in upflow of which some are
adiabatic and some are heated, there will be a certain inlet flow rate below
which the flow will reverse in the adiabatic channels. For laminar flow and no
local pressure loss Eq. 4-62 becomes:
SnOn
Apt = =X — Re. + 8.Re, (upflow) 4-77)
Now, for the adiabatic channels (8, = 0) immediately before flow reversal,
the flow will stagnate. At this point, the dimensionless pressure drop in the
adiabatic channels (and all the other channels, by assumption) from Eq. 4-77 is
equal to —X;_since Re, = 0. Now, for the heated channels Eq. 4-77 becomes:
S.0,
Ap* = =XL = —XL - —— + §,Re, (4-78)
Re,
at flow stagnation in an adiabatic channel.
This implies that for the heated channels:

SnOn
Re, ~ d.Re, (4-79)
which can be solved for Re, for the heated channels as:
1R
Re, = [S'S—G)"] (4-80)

where the positive root only should be selected.
The inlet flow rate mt at which the flows in the adiabatic channels reverse is
derived from the mass constraint:

mr = D, GuApn (4-2)

We can solve the definition of Re, for G, to yield:

_ Reyu

G, D.. (4-81)
which can be substituted into Eq. 4-2, resulting in:
. Y ReapAn
=, 5 (4-82)
n=1 en

Our final substitution is to replace Re, with the expression derived for the
Reynolds number in the heated channels, Eq. 4-80. This substitution yields:

. N snen]“ wAq
= Saef 4-83
= 2, [ 5 | D (4-83)
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Equation 4-83 gives the inlet flow rate to the system of parallel channels at
which the flows in the adiabatic channels reverse.

E Stability of Cooled Upflow

In Volume I, Section 13V it was shown that for stable flow in a channel, the
channel must operate in a region in which:

() (329
amy am,
which for a purely gravity-driven system reduces to:

'aAp>
(am,, >0

Similarly, it can be shown that an equivalent requirement is that:

aAp“)
( dRe, =0

which is the relation to be used for our analyses.

Figure 4-15 shows the relation between Ap* and Re for the cooled upflow
conditions given by Eq. 4-62. Proceeding from a high flow rate to a lower flow
rate (point A), we see an initial decrease in Ap* as expected in the friction-
dominated regime. For further decrease in the flow rate, the average density in
the channel increases (because the channel is cooled). This causes an increase

Equations 4-62 and -63 for:
@=-1.06, X_ =-2.38 x 103,
-0.04 5=1.43x 1085, $=0.578,
n=1,vy=0

0.04
+
Q
<
g o002
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2
2
@
] 0.00
a
[7]
(7]
2
S -0.02 |- downflow
@
c
Q
E
=]

-1200 -800 -400 0 400 800 1200
Total Channel Reynolds Number, Re,

Figure 4-15 Behavior for initially cooled upflow.
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in the gravity component of Ap*. At some critical Reynolds number:

<6Ap+
dRe,

) = 0 (point B)

An infinitesimal further decrease in Ap* will cause the flow in the channel to
reverse (point C). The dotted line of Figure 4-15 shows this behavior for a flow
coastdown. Notice that stable downflow can exist for any Ap* so that once the
channel reverses to downflow it may not reverse again to upflow.

We can derive an expression for the Re, and Ap* at which the flow will
reverse from upflow to downflow. For upflow in a channel with no local pres-
sure loss and if laminar flow exists, Eq. 4-62 reduces to:

VP N
Notice that @, is negative for cooled channels. At the point of flow reversal:
0Ap* 5,0, _
_aRe,, =R +6,=0 (4-84)
Solving for Re,:
12
Re, = [_@%] (4-85)

where the positive root only should be selected. For the cooled channel of
Example 4-2 this yields:

Re. = [—(—1.058)(0.578)
© = (1426 x 10

i)
:l = 207.1

as point B of Figure 4-15 illustrates.
Substituting back into Eq. 4-78 for Ap* at point B:

5, ] ) [ _ @nsn] 1n
+ —_ e -_— -
Ap XL — 6.5, [“@nsn + 8, 5, (4-86)

which can be simplified to:
Ap* = =X + 2[—©0,8,84)'"? (4-87)

The cooled channel of Example 4-2 will reverse from upflow to downflow
when:

Ap* =2.375 x 1073 + (2)[—(—1.058)(1.426 x 107%)(0.578)]"> = 8.28 x 1073

as point B of Figure 4-15 illustrates.

This result indicates that for a quasi-steady flow coastdown, a cooled chan-
nel in upflow will reverse itself to downflow when the Ap* is less than that
given by Eq. 4-87. The flow rate at which this occurs has been calculated using
Eq. 4-85.
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F Stability of Heated Downflow

Figure 4-16 shows the relation between Ap* and Re for Eq. 4-63 for heated
downflow. As we proceed from a very negative (down) flow rate to a more
positive one (point A), we see an initial increase in Ap™*. This is because we are
in the friction-dominated regime. As the magnitude of the downflow decreases
further, the average density in the channel is decreasing (because the channel is
heated). This causes a decrease in the gravity component of Ap*. At some
critical Reynolds number, (0Ap*/dRe,) = 0 (point B). An infinitesimal further
increase in Ap* will cause the flow to reverse to upflow (point C).

An expression can be derived for the Re and Ap* of this reversal to upflow.
The pressure drop equation for downflow Eq. 4-63 applies and can be simpli-
fied to:

(1 - Sn)®n

+ - _
Ap XU + Re,,

+ 6,Re, (4-88)

for the case of no local pressure loss and with laminar flow present. The point
of reversal is given by:

+ _
d0Ap _ (1 S,)0, +

= - 6, =0 4-89
dRe, Re? " (4-89)
which can be solved for Re, to yield:
1-85)0,]"
Re, = - [(—8IQ—E:| (4-90)
n
where the negative root only should be selected.
Equations 4-62and-63 for:
N 0.04 [g-265 X =-2.38x 103,
Q 5=1.43x 105, S=0.578,
< n=1,y=0
g 0.02 upﬂw
® e
2 0.00 Pt
@ 0.
a downflow | o _.'——.‘“"\'.“,6
(7]
§ [—"a BN/
S -0.02
L/
E
: |
Q -0.04 \
-1200 -800 -400 0 400 800 1200

Total Channel Reynolds Number, Re,

Figure 4-16 Behavior for initially heated downflow.
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For the heated channel of Example 4-2, the flow will reverse from down-
flow to upflow when the Reynolds number in the channel is greater than:

Re, = — [(0.422)(2.645)

12
(1.426 x 10*5)] =-298

as illustrated in Figure 4-16 by point B.

Substituting back into our equation for Ap*:

8 ]"2 s [(1 ~ 520,

12
(l - Sn)@)n an ] (4-91)

Ap* = =Xy — (1 = §,)0, [

which can be simplified to:
Ap* = —Xy — 2[(1 = S,)0,5,]" (4-92)
For Example 4-2, the reversal will occur at:
Ap* = 2.375 x 1073 — (2)[(0.422)(2.645)(1.426 x 10-9)]"2 = —5.60 x 1073
as illustrated in Figure 4-16 by point B.

This result implies that a heated channel in downflow will reverse itself to
upflow when the Ap* is greater than that given by Eq. 4-92. The flow rate in the
channel at this condition has been calculated by Eq. 4-90.

G Preference for Upflow

Imagine a situation in which all the heated channels in a parallel channel system
are in downflow. As the pressure drop is increased, the channels will reverse
one by one to upflow. We can say that the channel that reverses first has the
strongest ‘‘preference for upflow.”’ This preference is related to Eq. 4-92 since
this equation determines the Ap* at which the channel reverses. Each channel
of our array has a critical Ap* from Eq. 4-92. The first to reverse has the most
negative Ap* value. Therefore, a more negative Ap* given by Eq. 4-92 indi-
cates a higher upflow preference. Hence, an upflow preference number must
decrease with increasing Ap*. Based on these observations and the form of Eq.
4-92, we define an upflow preference number for channel n by:

2 (=X - 8p°) (4-93)
where Ap* is given by Eq. 4-92. Note that Xy will not affect U, since all
channels have the same value of X ;. Substituting Eq. 4-92 into Eq. 4-93 yields:

Un = [0n84(1 — Sa)]"2 (4-94)

U, =

By definition:

®, is proportional to an—Den (4-95)
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and
8. Is proportional to D13 (4-96)
so that: " ,
) 121 — S,
U, is proportional to %—D:)— (4-97)

Yahalom and Bein [4] suggested that preference for downflow in a channel
can be determined by an increasing value of the dimensionless number Y de-

fined by:
(o)
y, = -2 A (4-98)

n .
(&)
a0
when channel 1 is taken as that channel with the greatest value of:

da
D&AR

The parameters a, 3 and y are constants. Then, for any other channel the larger
its value of Y, the greater is its preference for downflow. The form of the
expression:

qa
D&AR

agrees with the expression for U,, Eq. 4-97.

Moreover the measures of the preference for upflow, i.e., a large U,, and
the preference for downflow, i.e., a large Y,,, are also consistent. This follows
by observing that the channel with largest value of:

qz
D2AB

has the largest value of U, and the smallest value of Y, (= 1). Therefore it has
the largest preference for upflow and consistently the smallest preference for
downflow.

H Limits of the Solution Procedure of Section VII

It must be stressed that the results of Section VI have been obtained from a
one-dimensional laminar analysis of an array of subchannels communicating
through plena idealized by the assumptions stated in Section VIA. These as-
sumptions cause the plena to function only to impose the same axial pressure
drop across all channels and the same inlet and exit temperatures to all chan-
nels. More accurate analysis of the behavior of this channel plena system
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requires more realistic modeling of plenum—channel interaction and the multi-
dimensional nature of the flow in the channels particularly for conditions of
flow reversal [2].

VIII DECOUPLED CONSERVATION EQUATION:
ANALYTICAL SOLUTION PROCEDURE FOR HIGH FLOW
RATE CASES

We shall next introduce the necessary assumptions to permit an analytical
solution in the friction-dominated region but at low enough power-to-flow ra-
tios so that multiple solutions and instabilities are not of concern. Analytical
determination of the channel velocity and enthalpy fields for specified bound-
ary conditions requires decoupling of the momentum and energy equations.
This is done by neglecting variations of density with pressure and enthalpy and
assigning the density a value at a selected, average reference pressure p* and
enthalpy h*, i.e., the reference value p*:

pm(z) = p* = f(p*,h*) (4-99)

Such an assumption restricts the analysis to channels having single-phase
coolants that do not experience large changes in density through the channel.
This applies to PWR and LMR assemblies in which the coolant temperature
rise is typically 36 °C (64 F) and 160 °C (288 F), respectively, which corre-
sponds to a density variation of 8.8 and 4.9%, respectively.

With this assumption, Eq. 4-4 becomes:

— = L Gmn G n KinGmn Gmn
en

For high flow rates the gravitation term is much smaller than the other terms
and can be neglected. Our system of equations considering only mass and
momentum conservation now consists of N equations for pressure drop:

_F L GmnIGmnl KinGmanmnI
Apo=fape =t 2 2" 4-101)

and one overall system continuity equation:

N
it = GmaAn (4-2)
n=1

The boundary condition sets (1), (2), and (3) can be expressed more simply for
our reference pressure condition now as:

Set (1). Prescribed pressure drop, Ap,
Sets (2) and (3). Prescribed total flow rate, rt.
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Table 4-2 Momentum solution procedures for parallel channel arrays
connected only at plena

Prescribed Prescribed
pressure drop total flow rate
(Apn) (1)
Unknown variables
Gmn N N
Ap, N N
f N N
my - 1
3N IN+ 1
Governing equations
Conservation equation: Momentum, Eq. 4-101 N N
Constraint equation: Total flow, Eq. 4-2 - 1
Constitutive equation: Friction factor f,, Eq. 4-39 N N
2N 2N + 1
Boundary conditions
Ap, N -
my - 1
pa(upper) = f(p,(upper)), Eq. 4-13
or - N -1
pallower) = f(p,(lower)), Eq. 4-14
N N

— = not applicable.

Table 4-2 illustrates the governing equations and boundary conditions neces-
sary to balance the unknowns for each case.

A Prescribed Channel Pressure Drop Condition: Solution Procedure

For the pressure drop condition, m, is directly obtained from Eq. 4-101 after it
is rewritten with the friction factor represented as:

So= ¢ . ¢ (4-102 and 4-103)

BN
KA In [T
where C and exponent n are constants that are a function of channel geometry
and Reynolds number. Specifically, if we can neglect local pressure losses, Eq.

4-101 becomes:
- e[ e
Apn C [the . 2Dep*A2 . (4-104)

where subscriptn = 1,2, . . . N.
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B Prescribed Total Flow Condition: Solution Procedure

For the prescribed total flow condition, the solution procedure is more com-
plex. This is the commonly encountered situation of determining the flow distri-
bution among fuel assembly subchannels to the first order by neglecting cross-
flows. This discussion will be based on LWR and LMR assemblies which, as
described in Volume I, Chapter 1, are comprised of three different subchannel

types.
Eq. 4-17 is thus rewritten as:

Ih'r = Nm; + Nzrhz + Ny (4-105)

where N;, N,, N5 are the number of subchannels of types 1, 2 and 3 for the
bundle under consideration.

Rearranging Eq. 4-105 we obtain:
mr

N+ N; —2 + N3 —3
m my

Similar equations for m, and /5 can be written. The subchannel flow rate ratios:
™ and 28
my m
are found by equating the pressure drop in each subchannel type as given by
equations of the type 4-104, where the friction factors have been represented as
in Eq. 4-103. Even if geometry effects on the constants are neglected, differ-
ences in C and n can exist because each subchannel type can operate in a
different Reynolds number range. We will use the constant set C,n for the
conditions as yet unknown, of subchannel type 1, and C',n’' for subchannel
type 2.
Now expressing Eq. 4-104 first for subchannel type 1 and then for subchan-
nel type 2 and taking the ratio of these equations and applying the equal pres-
sure drop constraint of Egs. 4-15 and 4-16, we obtain:

[cl(uA)"' Li? ]
mD.) DapAll,

. (4-107)
(247 2]
mD./ Dg2p*A?],
After some algebraic simplification we obtain:
+2-n' AZ—n' D‘l:ﬂl’ n
m _ C A3 M (4-108)

mi" C AT DUT Y
where p; has been taken to equal to pf by virtue of Eq. 4-99. Variations in
viscosity can also be neglected (approximately 11 and 34% for typical PWR and
LMR cases) for simplicity. Now the ratio

ny
1y
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can be obtained in a similar manner. After making provisions for subchannel
type 3 to operate at a Reynolds number significantly different from subchannel
types 1 and 2 by introducing the constants C" and n", the result is:

i _ €AY DY

AT O ATT DI uf i

An explicit expression for m, from Eq. 4-106 using Eqs. 4-108 and 4-109 re-
quires either that the exponents n, n’, and n" be equal or that they be prese-
lected for different flow regimes. This preselection requirement leads to an
iterative solution procedure since the flow regimes are unknown. In the next
sections we will examine both cases.

When m, is available, the energy conservation equation, Eq. 4-5, can be
directly solved for h,(z) since the linear heat generation rate g, and the inlet
enthalpy h,(lower) are available for each subchannel type.

1 Prescribed total flow condition: Fuel assembly flow split for all-turbulent or
all-laminar conditions The simplest calculation for flow split between subchan-
nels is possible when all subchannels are operating in the same flow regime—
either all-laminar or all-turbulent. Under that case and assuming the differences
in subchannel geometries cause negligible differences in the constants, we can
take:

c=C =" (4-110)
and
n=n"=n" 4-111)
Eqgs. 4-108 and 4-109, neglecting viscosity differences between subchannels,
become:
@ B &>(I+n)/(2—n) <_f1_2.)
o (Dc, 2, 4-112)
and
@ B &>(l+n)/(2—n) (12)
o <De1 A, 4-113)

and the explicit relation for m; obtained by substituting Eqs. 4-112 and 4-113
into Eq. 4-106 is:

mr

my = e n ﬁ <&)(l+n)/(2n) PN ﬁ <&>(l+n)/(zﬁ,,) 4-114)
1 23 D, iy D.,

Note that since the density is taken constant, the above relations for the
ratios of subchannel mass flow rates, Eqs. 4-112 and 4-113, can be transformed
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to velocity ratios yielding:

ﬁ ~ (g)(nnllﬂ—n)
v, = \D, 4-115)
h _ (_Dﬁ)(lhx)/ﬂ—n)
vV, - D., (4-116)

Now to obtain the associated subchannel enthalpy or temperature in-
creases, we express Eq. 4-5 for each subchannel as:

ha(2) — hutin) = 222 [* giczy @117)

where P, is the heated perimeter of the subchannel. Assuming that the axial
heat flux distribution is equal for the rods that provide heat for channel types 1
and 2 and recalling that the density has been assumed constant, we can write
Eq. 4-117 for both a subchannel of type 1 and 2. Dividing these equations we
obtain:

[(h(z) = h(in)]; _ Pn (VA), _ PuQ:

[h(z) = h(in)];  Pw (VA),  PnQ,

where Q, and Q, are volumetric flow rates.

Using relations 4-115, 4-116, and 4-118, the ratio of the velocities and
temperature rises in various type subchannels can be calculated.

Significant decrease in flow rate passing through edge subchannels versus
interior subchannels results from a reduction in the outer rod to duct wall
spacing. This decrease in flow rate, i.e., in Q,/Q), results in an increase in
relative temperature rise, i.e., AT,/AT,. In hexagonal LMR bundles this tem-
perature rise increase due to the reduction of peripheral spacing would be
beneficial in reducing the temperature gradient around the periphery of edge
fuel pins and hence the induced stress in the clad. Of course a ratio AT,/AT),
equal to 1.00 is optimum.

These parameter ratios are strong functions of the Reynolds number, pitch
todiameter ratio, and edge spacing. Figure 4-17 presents a full set of results for
the half-spacing case. It should be remembered that these results are for a
uniform radial power distribution. Imbalances in temperature rise ratios can be
aggravated by a power skew across the bundle.

(4-118)

Example 4-3 Subchannel relative velocities and enthalpies for single-phase
flow in a PWR

ProBLEM Compute the ratio of mass flow rates for an edge subchannel
relative to an interior subchannel for a PWR core in a single-phase turbu-
lent flow conditions. Neglect fuel pin spacers and fluid property changes
with temperature. Assume that the fuel assemblies are arranged such that
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Figure 4-17 Relative performance of edge (type 2) and interior (type 1) subchannels of bare pins in a
hexagonal array. (After Zhukov et al. [5].)
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the spacing between the centerlines of the edge pins in adjacent assemblies
is 20% greater than that of the pins within an assembly.

Note that the consequences to channel enthalpy rise would also have
to consider the rod power levels of this assumed arrangement in addition to
this spacing effect.

SoLuTiOoN In the friction factor—Reynolds relation, take n = 0.2 since the
flow is turbulent.
From Eq. 4-112:

m-Z _ [&](Hn)/(rn) (/_1_2-) _ <&)0.67 (ﬁ_z)
rh] Del Al De\ Al

Consistent with Volume I, Chapter 1, take subchannel type 2 as the edge or
side channel and subchannel type 1 as the interior channel. From Table J-1
the area of the interior channel is:

2
_pr_TD
A =P 2
From the problem statement, the area of the edge subchannel is:
2
A, = (1.2P) - D’
4
P, =aD
also:
P,, = wD
Hence:

From Table I-3 in Volume I the geometrical parameters are:

P =12.6 mm
P 126
D-95 - 1.326
Hence:
A, = 87.9 mm?
A, = 157.7 mm?
D, _ 1.239
D - .
D,
2 =2.224

o
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Therefore:

. 0.67

y _ (2.224) (157.7) — 9655

m 1.239 87.9

2 Prescribed total flow condition: Flow split and temperature rise in the transi-
tion flow regime. The analysis of Section VIIIB1 assumed that all subchannels
in the bundle operated in laminar flow or that all the subchannels operated in
turbulent flow. In certain instances some of the subchannels are in laminar flow
and others are in turbulent flow. In these cases, the functional dependence of
the friction factor changes between subchannels in the bundle. In this analysis
we will take the following values for characterizing the friction factor:

Re C n

Re < 2100 80 1.0
Re > 2100 0.316 0.25

Note that for Re < 2100 (laminar flow), C is usually given as 64, which is
derived for flow in a round tube. For any given subchannel, C and n will vary
with pitch-to-diameter ratio in a manner that causes the friction factor to start
below the equivalent round tube value at P/D = 1.0 and increase above the
round tube value at P/D approximately 1.1 and greater. Numerical results are
available for some subchannel geometries under some flow conditions as dis-
cussed in Chapter 7. For illustrative purposes here, nominal values of C = 80
and n = 1 will be used for every subchannel in laminar flow, and nominal values
of C = 0.316 and n = 0.25 will be used for every subchannel in turbulent flow.

Regardless of the flow regime the pressure drop along each of the subchan-
nels is the same. Hence each subchannel type has the same pressure drop, i.e.:

Ap, = Ap; = Aps (4-15 and 4-16)

and the total mass flow rate is the sum of the mass flows through the different
subchannels. Relations for subchannel pressure drop and total mass flow rate
have been written already as Eqgs. 4-104 and 4-105, respectively, but we will
now recast them for convenience in terms of velocities as:

A;

A A
VT:N'ﬁV'+N2ﬁV2+N3EV3 (4-119)

and
Ap = g\Vi = gV = g;V5 (4-120)

where the functional relations g;, g,, and g; depend on flow regime in each
subchannel and the subchannel type. In Eq. 4-119 the densities are assumed
uniformly constant throughout all subchannels.
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Example 4-4 Flow distribution in a hexagonal bundle

ProBLEM Compute the ratio of the subchannel velocity to the total bundle
velocity for each subchannel, and subchannel Reynolds numbers for a 61-
pin hexagonal bundle. Assume water at 27 °C (80 F) is flowing through the
bundle to hydrodynamically simulate LMR conditions. The bundle geomet-
ric and operating conditions are given in Table 4-3.

SoLuTtioN The function g, for an interior subchannel in laminar flow is

therefore:
_GC L pvi_ p_ L pVi
APu =D, 2 LviD. D, 2
_ 80 (#) Lp
=p7\p) 7Y 4-121a)

= (6.1417 s7") (%) v,

where s~! reflects the units used in evaluating the first two terms of the
preceding equation.

Hence g,V for laminar flow is 6.1417 s~(Lp/2)V,. Table 4-4 gives g,
g2, and g; for both laminar and turbulent flow conditions. In turbulent flow,

Table 4-3 Hexagonal bundle geometric and
operating conditions

Channel parameters derived using formula of Table I-J3

Interior Edge Corner
N; 9% 24 6
D, 3.3555 mm 4.1131 mm 3.1025 mm
A 10.4600 mm? 20.9838 mm? 7.4896 mm?
P, 12.4690 mm 20.4070 mm 9.6562 mm
Geometry:

Number of pins, N, = 61
Diameter of fuel rod, D = 6.35 mm (0.25 inches)
Diameter of wire, D; = 1.588 mm (0.0625 inches) = g
Pitch = 7.9380 mm (0.3125 inches)
Lead length = 304.8 mm (12 inches)
Angle of wire inclination = 86°
Total flow area = 1552.7 mm?
Bundle hydraulic diameter = 3.56 mm
Water T = 27 °C (80 F)
p =997 kg/m’ (62.2 1bm/ft3)
n = 8.618 x 10-* kg/m-s (2.083 lbm/hr ft)
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using values of C = 0.316 and n = 0.25, Eq. 4-121a becomes:

0.316 (u\*¥ (L
AP|T=W(5> 7” Vi (4-121b)

Now considering first a low flow situation with all the subchannels in
laminar flow, we use the laminar function to express Eq. 4-120 as:

(6.1417 s71)V, = (4.0876 s™")V, = (7.1842 s~ ")V, (4-122a)

where the lengths and fluid densities of the channels are taken equal. Ap-
plying these velocity relations and the geometry characteristics of our bun-
dle from Table 4-3 to Eq. 4-119 yields:

1%

72 = X, = 1.2966 (4-123)

T

The other relative velocity or velocity fractions are readily determined
from Eq. 4-122a as:

1%
X, = 7’ = 0.8386 (4-124a)
T
and
Vi
Xy ==2=0.7378 (4-124b)
Vr

These calculated relative velocities hold until the first subchannel type
enters turbulent flow. This condition is assumed to occur when the sub-
channel Reynolds number reaches 2,100. Therefore we next express the
subchannel Reynolds numbers as a function of bundle velocity considering
the geometry of each subchannel.

These relations are:

Re, = p V;fﬂ = (3,881.9 %) X,\Vr (4-125a)
Re, = p szez - (4,758 3 %) X,Vs (4-125b)
Re, = p 22D - (3,589.2 %) X;Vz (4-125¢)
Rer = p KT%: = (4,118.3 %) 2 (4-125d)

Now using the laminar velocity ratios of Eqs. 4-123 and 4-124a and b
find that the edge subchannel becomes turbulent first (Re; = 2,100) at an
average bundle velocity V' of 0.340 m/s.

At this point, because of our assumptions of a sudden transition, the
edge subchannel friction characteristic g, changes, and the velocity ratio
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changes discontinuously. Under this condition, Eq. 4-122a is rewritten at
the new steady state as:
(6.1417 s~")V, = (9.2504 m~075 s-0.5)V1-75 = (7,1842 s~ 1)V; (4-122b)
and Eq. 4-119 becomes:

9.2504
6.1417

(9.2504
7.1842

Vi = (0.6467)V1™ + 0.3243V,
(4-122c)

) (0.0289)V17

which, when rewritten to yield a convergent iterative form, becomes:

v, = (%1312343"2) " (4-126a)
and from Eq. 4-122b:
vV, = 23—3(1),‘; VP (4-126b)
and

The subchannel velocities and associated relative velocities are determined
from Eqgs. 4-126a and b for successively increasing bundle flow rates until
the next subchannel type, the interior subchannel, enters turbulent flow.
This occurs at an average bundle velocity of 0.544 m/s. Note that between
an average bundle velocity of 0.340 and 0.544 m/s, the relative velocity
changes continuously because of the mixed friction characteristics of the
subchannels as expressed by the transcendental Eq. 4-126a.

The procedure for determining the relative velocity for higher bundle
flows is identical to that described above using values of g,, g;, g3 from
Table 4-4 in equations of the type 4-122b and c until the flow is calculated as
turbulent in all subchannel types. This occurs at a bundle Reynolds number
of approximately 2,388. Note that when Re, = 2,100, there are two possible
values for g,(V,), namely: f,; and f,7. By using f;, the velocities are com-
puted at Re = 2,100-, and by using f,7 they are computed at Re, = 2,100*.
For bundle Reynolds numbers that are higher than 2,388, the relative veloc-
ity remains constant. The subchannel relative velocities for bundle flow
rates between laminar and turbulent are plotted in Figure 4-18. Figure 4-19
illustrates the associated subchannel Reynolds numbers over this range.

This example is illustrative of the principles involved in calculating
velocity using classic tube friction characteristics for subchannel geome-
tries. In actual power reactor hexagonal assemblies, the transition is not
sharp, and the flow redistributes itself among the subchannels in a continu-
ous fashion.
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Figure 4-18 Subchannel relative velocities for the hexagonal bundle, Example 4-4.
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Figure 4-19 Subchannel Reynolds numbers for the hexagonal bundle, Example 4-4.
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3 Flow split considering manufacturing tolerance in hexagonal bundles. The
actual flow distribution within a bundle is also affected by the manufacturing
tolerances existing within a bundle. In this section the effect of these tolerances
on the analysis of Sections VIIIBI and 2 is presented.

This effect is presented in terms of the parameters T and F where:

1. T is defined as the magnitude of the as-fabricated clearance or tolerance in

an assembly along the flat-to-flat direction of nominal value Dy, i.e.:

T= th -2 [(VT§ Nrings) (D + Ds)NOM + g + Ds:| (4'127)
where Ny is defined in Table 1,1-5 as the number of rings of rods sur-
rounding the central rod. Dy, and other geometric parameters are illustrated
in Figure 4-20 which is a 19-rod bundle for which Nijpgs = 2.

. Fis defined as the fraction of the assembly tolerance T which is distributed
around the interior rods of the assembly. The value of F ranges from 0 to 1
where F = 0 represents the situation in which all the tolerance is in the edge
of the bundle, i.e., the rods are packed together toward the center of the
bundle, and F = 1 represents the situation in which all the tolerance is

o~y
e

QQQQ
Aﬁ@@@@@
(O ~O

QO@

s

Dy,

Figure 4-20 Distribution of manufacturing tolerances in the hexagonal bundle.
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within the interior subchannels, i.e., the edge and corner rods are packed

against the duct walls.

An expression for F is constructed by equating two expressions for the
clearance per interior pin, AP. Taking P as shown in Figure 4-20 as the actual
interior rod-to-rod centerline distance, the first expression for AP is based on

rod-to-rod parameters, i.e.:

AP =P - D — D;

Table 4-5 Hexagonal bundle subchannel geometric conditions
assuming bundle tolerance

Interior subchannel

V3 wD?* wD? \/§< FT )z m
Ay =—P - — - —=—"I(D+D;+—=——) - =(D*+ D)
" 8 8 4 V3 Now) 8

m
Py, =3 (D +D)

FT \' =
\/§(D+Ds+—————)——D1+D3

_ﬂ_ \/iNrings 2( )

" Py, T
5(D+Ds)

Edge subchannel

_ FT )(g T) T
Af,—<D+Ds+\/§Nws > tD+ (1 =F)3 g (D* + DY)

Pw2=12r(D+Ds)+<D+Ds+ il )

V3 Niings
FT D T L
4<D+Ds+———)<—+ + (1 - —)—— 1+ D?
dan V3 N/ \2 Ds+ (1 - F)5 7 (D* + DY)
e1‘“sz-
T FT
5(D+Ds)+(D+Ds+m)

Corner subchannel

2

1 (D T\' =
= —|—= — - _— 2 2
An \f3<2+DS+“ F’z) 22 (D" + DY
2 (D T T
Py, —\/i<—2+Ds+(l—F)5)+g(D+Ds)
4 (D N 7
7;(5*0”("”5)*6(0 + DY)
D, = )

(2+DS+(1—F)%->+%(D+DS)

V3 \2

(4-128)
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The second expression is based on total assembly geometric parameters, T, and
Nrings . The portion of the assembly tolerance within the bundle interior along
the rod-to-rod centerline connection path is F (T/(V3/2)), and the number of
interior pitches along which this tolerance is distributed is 2Nyi,,s. Hence AP
also equals

T
AP=F ———— (4-129)
\/gNrings
We find F from Eqs. 4-128 and 4-129 as
F= (%‘DS) V3N ings (4-130)

For the peripheral rods, the associated parameters are the actual rod cen-
terline-to-wall spacing, g + R, and the clearance per peripheral rod Ag. Hence
(g + R) is related to F as follows:

g+RE§+DS+Ag=§+DS+(l—F)—§ (4-131)

To find the flow split as a function of F, we must first find the corresponding
areas and wetted perimeters of the individual subchannels. We assume T is
given and fixed, and let F vary over the possible range 0.0 to 1.0.

The calculation of flow split and velocity ratios for laminar and turbulent
flow utilizes Eqs. 4-112 through 4-116 but with the use of flow areas and hydrau-
lic diameters that are now functions of F. These geometric parameters are
expressed in terms of F and T using Eqgs. 4-128 through 4-131 in Table 4-5.

In practice it is difficult to determine the appropriate value of F. Further,
pin bowing patterns can affect the distribution of flow. For the 61-pin hexagonal
bundle of Table 4-3, if a tolerance T of 0.0569 cm (0.0221 inches) is assumed,
the subchannel mass flow and velocity ratios change at least 10% from nominal
values over the possible range of accommodation of tolerance. This provides
an indication of the uncertainty inherent in any analytical assessment of flow
distribution within reactor bundles.
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PROBLEMS

Problem 4-1 Flow characteristics of an adiabatic channel in a multichannel array (Section VII)

A laboratory experiment has been run to collect Ap* versus Re data for the three parallel
channel system shown in Figure 4-1. System parameters, operating conditions, and water proper-
ties are tabulated below. The work has proceeded smoothly except for a problem when the flow
reverses in the adiabatic channel. It seems that a significantly higher Ap* is observed when the
upflow is decreased to zero than when the downflow is decreased to zero.

Set up the equations for Ap* in the adiabatic channel based on the system parameters and
properties given below. Plot the curve of Ap* versus Re for the adiabatic channel in very low flow.
Be careful to identify all important slopes and intercepts. Can you give an explanation for the
differences in Ap* at zero flow?

Water properties

System parameters Operating conditions (for a reference temperature at 25 °C)
L=2m g1 = 500 W B =4.75 x 10-/°C

D, =6.35x 10*m =0 c, = 4186 J/kg°C

A =158 x 10-* m? Gy = —200 W u = 8.62 x 10 Pa-s

S=173 p* = 993.1 kg/m?

S K=0 p* = 1.01325 x 10 Pa

i

T(upper) = 30 °C
T(lower) = 20 °C
Friction factor correlation

(laminar flow)

95
I R

Answer: Ap* = 2.375 x 1073 + 1.426 x 10~ Re,; upflow
Ap* = =2.375 x 1073 + 1.426 x 10-5 Re,; downflow

Problem 4-2 Flow characteristics of heated channels in a multichannel array (Section VII)

Consider the three-channel system of Example 4-2. Compute the Reynolds number and Ap*
values at which freezing occurs in the cooled channel (3) and boiling occurs in the heated channel
(1) for both upflow and downflow. Comment on the implications of your results for flow reversal
from upflow to downflow in channel 3 and for flow reversal from downflow to upflow in channel 1.
Do both transitions behave similarly?

Answer:  upflow: Ap; = —18.60 x 107! and Re; = 69.6 for boiling
Apy

downflow: Ap7 = —14.65 x 10-3 and Re; = —69.6 for boiling

Apy

+9.45 x 1073 and Re,y = 111.4 for freezing

1

+4.79 x 1073 and Re; = —111.4 for freezing



168 NUCLEAR SYSTEMS II

Problem 4-3 Channel preference for downflow (Section VII)
Consider a model LMR core consisting of a fuel, blanket, and poison channel with the
following operating conditions and geometry.

Fuel Blanket Poison

channel channel channel
Full power, MW S 2 0.5
Number of pins, N, 169 61 7
Pin diameter D, inches 0.3 0.5 1.0
Distance across flats of hexagon Dy, inches 4 4 4
Channel area for flow At, square inches 1.90 1.87 8.35
Channel total wetted perimeter P, inches 173 109.6 35.8

Order these channels relative to their preference for downflow in a decay heat condition after
shutdown from full power.

Answer: The preference for downflow is greatest for the poison channel and least for the fuel
channel

Problem 4-4 Flow split among tubes in a U-tube steam generator (Section VIII)
Consider a U-tube steam generator in a typical PWR in which the primary water flows through
the U-tubes connected at common plena. The tubes are of equal diameters but of various lengths.

1. Determine the ratio of the water flow rates m, in the short tube and m, in the long tube. The
dimensions are given in Figure 4-21. You may make reasonable approximations, but clearly
state your reasons for them. Assume the diameter of tube is 20 mm, and the flow is fully
turbulent.

Steam \

1+

Primary \-‘/ Primary Figure 4-21 U-tube steam genera-

Coolant Coolant tor schematic.
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g =1/2(P-D)
= 0.083 cm

O
O

O
O

D=0.635cm

Figure 4-22 Hexagonal bundle for Problem 4-5.

2. What is the pressure drop in the steam generator if there are 10,000 tubes of each kind and the
flow rate is 2,000 kg/s. Would the answer to questions a and b above be changed if the steam
generator were horizontal and not vertical? Explain your answer.

Form loss coefficient
Water properties due to U-bend

Density p = 690 kg/m? K=10

Dynamic viscosity p =9 x 10-° kg/m*s

Answer: ﬂ =1.11
my
Ap = 1.27 x 1073 MPa

Problem 4-5 Flow split among subchannels in a hexagonal bundle (Section VIII)

It is proposed to make the coolant temperature rise equal for edge and center channels of the
19-pin bundle in Figure 4-22 by attaching vertical wires to the edge pins (one wire per subchannel).
Find the required wire diameter assuming the coolant is single phase at 27 °C.

Answer: Dg = 0.062 cm

Problem 4-6 Flow split including manufacturing tolerance (Section VIII)

Recalculate the subchannel velocities and subchannel Reynolds numbers for Example 4-4
assuming the same coolant conditions but now include a tolerance T equal to 0.5245 mm, and
assume that this tolerance is distributed with F = |.






CHAPTER

FIVE

ANALYSIS OF INTERACTING CHANNELS
BY THE POROUS MEDIA APPROACH

I INTRODUCTION

This chapter presents the porous media procedure in which the region of inter-
est is divided into a network of volumes or lumped regions, each of which will
be characterized by volume-averaged parameters. This approach has been
widely used for analysis of large regions containing only fluid (continuum) and
for flows in regions with immersed solids. Here the principles of this method
will be illustrated for the situation of the behavior of a flow field in which an
array of heated rods is immersed.

Typical geometries of interest are a fuel rod array in a nuclear reactor core
or the shell side of a steam generator in which an array of tubes carrying the
primary coolant is immersed. Normally these arrays are periodic with an an-
isotropy characterized by the nominal array geometry. In specific circum-
stances rod distortions or foreign material blockages can exist. The porous
media approach is a practical method of analyzing both the reactor core and the
steam generator situations. Distributed parameter methods that yield the de-
tailed spatial velocity and temperature fields within the coolant of such arrays
are presented in Chapter 7. They are presently effective for only very idealized
situations. The subchannel analysis method, which is a special case of the
general porous media approach, is presented in Chapter 6.

The presence of solid objects in the flow domain has two significant effects:
the geometric effect of displacing fluid, and the physical effect of altering the
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momentum and the energy exchanges within the flow domain. In the porous
media approach solid material equivalent to the real solid material is uniformly
dispersed in the flow domain. By equivalent, it is traditionally meant that the
same volume of material yields the same overall shear and heat transfer effects
between the fluid and solid surface. In this way the characteristics of porosity,
flow resistance, and heat source (sink) of each cell replicate the volume-aver-
aged characteristics of their real domain counterparts.

The initial step in the application of the porous media approach to the
analysis of a rod array is to select the size of the volume-averaged region. Both
upper and lower size limits exist. The volume should be small relative to the
large-scale phenomena of interest but large relative to the scale of local phe-
nomena present. To be more specific take the example of a PWR recirculating
steam generator in which the primary coolant flows through a square array of
U-tubes. Heat is transferred to the secondary coolant that flows over these
tubes in upflow within the shell side of the steam generator. This secondary
coolant enters the shell region from an annular downcomer. The temperature
drop in the primary coolant along the tube length creates hot and cold sides of
the steam generator which have markedly different characteristics. Determina-
tion of the spatial distribution of velocity, enthalpy, and void fraction within the
secondary coolant is desired. A typical modern steam generator has a diameter
of 4.5 meters in which about 11,000 coolant tubes are located. If detection of
regions of secondary flow recirculation or stagnation is of interest, at least 6 to
8 control volumes should be placed radially across the steam generator diame-
ter. The maximum number of nodes will be dictated on practical grounds by the
required computation time but will always include many coolant tubes. Hence
for this example the smallest practical computational region does not approach
the scale of local phenomena.

On the other hand for some rod bundles of limited size, on the order of 100
or less pins, it becomes computationally practical to use a large number of
regions, each of a size that approaches the scale of the local phenomena.
However, even in such a case the region-averaged parameters cannot ade-
quately represent local gradients and fine flow structure.

I APPROACHES TO OBTAINING
THE RELEVANT EQUATIONS

There are two approaches to the development of the relevant porous media
equations. Mastery of both approaches will be well rewarded by an enhanced
ability to survey the existing literature. The approaches are:

* Integration of the differential, fluid conservation equations of Chapters 4 and
S of Volume I over a volume containing the distributed solids

* Direct application of the conservation principles to a volume containing the
distributed solids.
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Because most practical applications of porous body modeling are numerical,
any set of governing equations must be differenced. The first approach is a
conventional, analytical procedure. The second approach yields difference
equations directly, but since it is accomplished by observation, terms can be
forgotten by the inexperienced analyst. Both approaches will be demonstrated
for the mass conservation equations. For the linear momentum and energy
equations, only the first approach will be developed. The differential forms of
the relevant conservation equations used as the starting point for these deriva-
tions are those appearing in Table 4-6 of Volume I with gravity as the only body
force.

The conservation equations that are derived in this chapter are instantane-
ous, volume-averaged relations applicable to single-phase conditions. The for-
mal development of an analogous equation set for two-phase conditions is not
yet reported. The interested reader can consult Sha et al. [4] for work in this
area. Time averaging of these relations for turbulent conditions will introduce
turbulent parameters. The time averaging of the single-phase relations is done
in Chapter 6 as part of the procedure of specializing these results to a subchan-
nel-sized control volume.

Il FUNDAMENTAL RELATIONS

Consider a domain consisting of a single-phase fluid and distributed solids.
Initially the solids will be assumed deformable but stationary in space so that
the resulting equations may be also applied to describe a two-phase situation.
Heat may be generated or absorbed by the solid structure. About an arbitrary
point in the domain, we associate a closed surface At enclosing a volume, V7.
The portion of V1 which contains the fluid is V;. The total fluid-solid interface
within the volume Vris Ag. The portion of At through which the fluid may flow
is A¢. A schematic of the control volume is illustrated in Figure 5-1. The fluid
within the closed volume is bounded by an area Ay, which equals the sum of Ag,
and Ay, i.e.:

Ap = Ag + Ag

Note that Ag, is not identical to Art.

Two sets of relations are needed for the development of the relevant porous
media equations: a set of definitions for the porosity of the media, and a set of
theorems. These will be presented next.

A Porosity Definitions

The ratio of fluid volume Vi to the total volume V7 is defined as the volume
porosity Yy. Thus:

V
)’v_—r

=7 (5-1
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Figure 5-1 Region consisting of a single-phase fluid with stationary solids.

Utilizing the phase density function ay defined by Eq. I,5-1, the fluid volume V;
can be expressed as:

Vi=[ acav (5-2)
so that Yy can also be written as:
1
"= fVT aedV (5-3)

In some porous body formulations, only a volume porosity is utilized.
Some formulations have introduced the additional concept of an area porosity
or percentage area for flow associated with the surface enclosing the volume.
As Figure 5-2 shows, two grid selections can have the same volume porosity
but different surface porosities. The mathematical definition of the surface
porosity ¥, associated with any surface (not necessarily closed) is:
A1

Wegte [, xeda (5-4)
where A¢ is the portion of At which is occupied by the fluid. Some authors use
the term surface permeability in place of surface porosity. Since permeability is

conventionally defined in porous media to provide a relationship between su-
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Figure 5-2 Two mesh layouts and associated control volumes for light water reactor fuel.

perficial velocity and pressure gradient, the term surface porosity is adopted
here for v,.

Example 5-1 Computation of control volume characteristics for a PWR
square array

PrOBLEM The volumes V1 and Vi as well as the areas Ar, Ags, and Ar are
defined by Figure 5-1. Compute numerical values for these volumes, areas,
volume porosity, and surface porosities for the two control volumes of
Figure 5-2 assuming typical PWR characteristics.
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SoLuTtioN Take numerical values of pitch P and rod diameter D as 12.6
mm and 9.5 mm, respectively from Table I,1-3, i.e., P/D = 1.326.
The following results are applicable to both arrays:
Vi = 4P?Az = 4(12.6)*Az = 635.04Az mm?

wD?Az
4

A1 = 4Q2PAZ) + 2(2P)* = 8(12.6)Az + 8(12.6)°
= (100.8Az + 1270.1) mm?
A = 4nDAz = 47(9.5)Az = 119.38Az mm?.
The fluid area A; differs for the two grid layouts; for layout A:

2
Ar = 42PAz7) — 42DAZ) + 22P) - 2 (4 %)

= 8(12.6)Az — 8(9.5)Az + 8(12.6)2 — 2m(9.5)?
= (24.8Az + 703.0)mm?
and for layout B:

Vi = 4P?Az — 4 ( ) = [635.04 — 7(9.5)?)Az = 351.1Az mm?

Ar = 42PAz) + 2(2P)* - 2 (4 e

= 8(12.6)Az + 8(12.6)> — 2m(9.5)* = (100.8Az + 703.0)mm?

Next, let us compute the volume porosity Yy. From Eq. 5-1,

7TD2>

‘y = &
v=E Vi
VT = 4P2AZ
and
2
Vr = [4P2 —4 (%):I AZ
Hence:

|

|
N
—
~Io
~—

Yv =

™ 1Y
1 - 7 (TTZE) = 0.554 for both layouts.

Next, consider surface porosities Yo. From Eq. 5-4:

y, = Ar
A—AT

By observation: Y4, = Yv = 0.554 for both layouts.
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For layout B, again by observation:

Yax = Yay = 1
However, for layout A:
2(P — D)
Yax = Yay = T
=1-D/P

=1 - (1/1.326) = 0.246

B Theorems

Two theorems dealing with local volume averages are to be introduced. They
are derived in Slattery (5] utilizing the general or the Reynolds transport theo-
rem, which have been presented as Eqs. 1,4-11 and 1,4-12 respectively.

Theorem for local volume averaging of a divergence Let B be interpreted as
a spatial vector field or second-order tensor ﬁeld This theorem expresses how
to average the divergence of such a function B over a local volume. The result
that is derived in Slattery [5] is:

(v-§>=v-<§>+vi B-7dA (5-5)
T

where Ag; is the total fluid—solid interface within the volume V1 and ( ) desig-
nates that the average is associated with volume (as defined by Eq. I,5-2).

Expression for the divergence of an intrinsic local volume average Here let
B be any scalar, spatial vector, or second-order tensor associated with the fluid.
Now we desire to express the divergence of the intrinsic local volume average
of B over the fluid volume only. Slattery [5] obtains this result as a step in the
derivation of the theorem for local volume averaging of a divergence as:

v f B dv = f B ndA for B, a scalar (5-6a)
Ve Ar

and
v. f Bdv = f B - n dA for 1}), a vector (5-6b)
Ve Af

where V; is the fluid volume and A¢ is the portion of the total surface area
through which fluid may flow.

IV DERIVATION OF THE VOLUME-AVERAGED MASS
CONSERVATION EQUATION

Before integrating the differential form of the mass conservation equation,
some useful definitions of the averages will be given.
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A Some Useful Definitions of Averages

Let us introduce these definitions by performing the volume integration of the
governing differential equation for mass conservation of the fluid noted below:

6
3 +V-(p0)=0 (1,4-73)
Integrating Eq. 1,4-73 over the volume V1 and dividing by V7 yields:
ap 1
v fVT dv + f (V- pd)dV =0 (5-7)

Since fluid only exists over volume Vi, the integrals reduce to:
1
f P v+ f (V-pd)dV =0 (5-8)
Vi 0 T Vi

These volume integrals are commonly written in the following shorthand form
as:

ap
<az> +(V-p3) =0 (5-9)

Egs. 5-8 and equivalently 5-9 illustrate volume averages of interest. The
formal definition of a volume average operator acting on any parameter ¢ over
the entire volume has been given by Eq. I,5-2 as:

1
() =3 [[], cav (1,5-2)
Now if we specialize the parameter ¢ to be associated with phase k then
() = — | cardv (5-10a)
k) = Vo Jvr Cay
where the phase density function ay has been defined by Eq. I,5-1.
Let us focus attention on intensive properties associated with the fluid

which can be scalar, vector, or second-order tensor and define ci-, specifically
as Y. Hence Eq. 5-10a can be written as:

(ck=e) = (W) = Vl; fVT Yoy—e dV (5-10b)

Since ¢ equals zero outside the fluid, Eq. 5-10b reduces to:

1
(W) =7wa¢dv (5-11)

This volume averaging of properties is similar to the process for obtaining the
volumetric phase averaged properties in Volume I, Section SIII. Recall that the
bracket ( ) designates the average within a volume, and the bracket { } desig-
nates area averages.



ANALYSIS OF INTERACTING CHANNELS BY THE POROUS MEDIA APPROACH 179

The local volume average defined by Eqgs. 5-10a and b and 5-11 is for the
total volume Vr. If the average is taken over the fluid volume V¢, a different
average is obtained which is appropriately called the intrinsic local volume
average of ¢, i.e.:

W=y ), wav (5-12)

Utilizing the definition of volume porosity, i.e., Eq. 5-1, note that
(W) = 7vv ¥) (5-13)
Similarly, the local area average of s using the phase density function ay is:

> _ 1 —L
D} =g ], ven-edA = - | W dA (5-14)

The associated intrinsic area average is:

Py} = [ v (5-15)

The superscript 7 in the definition ‘P{y} is necessary to define the area over
which the averaging process is being performed. As an illustration, consider the
Cartesian coordinate system of Figure 5-3 in which the averaging volume is the
parallelpiped AxAyAz. The average mass flux through the surface AA, whose

ZT(UZ)
|
I I
L3
1 EESES i p e 4

x(vy)
Note: The Centroid of Volume V; is located at the origin.

Figure 5-3 Local averaging volume V; inthe Cartesian coordinate system.
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normal points in the direction of the positive x-axis is:

1
Npu,} = AA, J'Mx puxa-¢ dA
(5-16)
1

- AAX AAx g

pux dA

where AA, = AyAz, AA, ¢ denotes the fluid portion of the surface AA,, and v,
is the velocity component in the positive x-direction.
The corresponding intrinsic area average is:

W o) = K,«i— pvy dA (5-17)

f JAAxs

B Derivation of the Mass Conservation Equation: Method of
Integration over a Control Volume

Integrating the differential mass continuity Eq. I,4-73 over the volume V, yields
Eq. 5-9. The final desired form of the volume-averaged continuity equation is
found by transforming each term of Eq. 5-9 by use of the established theorems.
These transformations are performed next.

To transform the first term, (dp/dt), we must utilize a result obtained by
specializing the general transport theorem, Eq. 1,4-11, to the case of fluid
density. Since the fluid density is zero in the solid, Eq. I1,4-11 becomes:

% L pdv = f . % 4y + v DD 7 dA (5-18)
Now taking the volume stationary, the velocity Us on the surface Ay is zero since
Us has been defined identically as the velocity of the bounding surface (not the
fluid velocity) and the total derivative d/dt can be written as a partial derivative
a/at. Utilizing Eq. 5-11 which defines a volume average, Eq. 5-18 becomes:

20 = <—> v o [, pbu -t da (5-19)

where U; at the fluid-solid interface is written as Ug.

Eq. 5-19, valid for deformable solids, is a useful result for two-phase appli-
cations. Considering only nondeformable solids like fuel rods, ¢ = 0 since the
surface is completely fixed in the space and time domains so that:

1 S
v Lh plu - RdA =0 (5-20)

Eq. 5-19 then reduces to the desired result:
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Applying Eq. 5-13, the left side term of Eq. 5-21 can be further transformed into
an intrinsic local volume average yielding:

ot ot Voar (5-22)

Next transform the second term of Eq. 5-9, i.e., (V - p0). Applying Eq. 5-5
where B is taken as pU, gives:

(V- pd) =V - (pD) (5-23)

since the area integral term is zero because ¥ = 0 everywhere on Ag.
Rewriting Eq. 5-23 in terms of the definition of volume average gives:

V- (pd) = 1y. pv dV (5-24)
Vr Ve
which, utilizing Eq. 5-6b, can be expressed as
_l_ . > _ L > >
7V [, o8 v = v [, 0% 7 da (5-25)

Finally substituting the results of Eqs. 5-22 and 5-25 into Eq. 5-9 yields the
desired result:

ap) | f
Yv o V =0 (5-26)
Let us now consider the special case of a Cartesian coordinate system in which
the volume Vi is taken to be AxAyAz as shown in Figure 5-3. The associated
coordinate axes are x, y, and z, and their corresponding velocity components
are Uy, Uy, and v,. Evaluating the integral of Eq. 5-26 over the surfaces of the
volume Vr yields:

L, py - il dA = j ‘ pdeA f , ax PUx dAy + f ‘ pvydA
(5-27)
_ Lr‘y_ﬂ puydA, + L"z a2 pv.dA f ‘ vadA
2 B
Where Aq| ., . denotes the free flow area normal to the x-axis located at the

position x + Ax/2. It is equal to:

(AyAZ)yAx Ax

where:

yAx

xt —
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is the surface permeability. Likewise:

A; o = (AyAZ)Y oy

2

Ax
2

X — X —

Corresponding terms in the coordinates y and z are similarly evaluated.
From the definition of the intrinsic area average, Eq. 5-15, the surface integrals
can be written as:

J.
J,

Lr’y A pUydAy = (AzZAX) 7V, oy .'(y){pvy}|vy . Azy

N PdeAx = (AyAz) ‘yAx ax i[x){pvx}|x . ax
Ax 2

2

x+ X+

puxdAy, = (AyAz) Y bx i(x){PUx}lx ax
2

2

Ax
x - =
2

+ = ‘)’"’ -
2 2

and so on. Consequently, Eq. 5-26 becomes:

v a'(P) + Ax(‘yAxi(X){pvx}) + Ay(‘yAyi(‘V){pvy}) + Az(yAzi(Z){pvz})

™ o Ax Ay Az =0 6528
where:
Ax( )E( )x+A—x - ( )x—A—X
2 2
Ay( )=() ay () Ay (5-29)
y+"2— Y-y

A()=(0) &= () o
z+2

Eq. 5-28 is the volume-averaged mass conservation equation for the volume
element shown in Fig. 5-3. Table 5-1 compiles the single-phase porous media
equations, i.e., the mass conservation equation which has already been de-
rived, and the linear momentum and energy conservation equations which are
derived later. Both the general integral equation form and the specific form for
a control volume of size AxAyAz in the Cartesian coordinate system are pre-
sented. Eq. 5-28 contains the spatial average of the product of density and
various velocities, unknowns that have been introduced by the averaging pro-
cess. They are commonly dealt with by the approximation of neglecting certain
spatially varying cross-products as detailed next.

Analogous to the treatment of instantaneous temporal variations in turbu-
lent flow in Volume I, Section 4VI, the relevant densities and velocities can be
expressed as the sum of an average and fluctuating component. Here, however,
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the average is a spatial average, and the fluctuating component is a local spatial
variation. Thus

p=1{p} +p' where{p'}=0 (5-30)
and, for any velocity component v:
v={v}+ v where{v'}=0 (5-31)
Now by the above definitions, the following averages are zero:
{p}v'} =0
{p'vh} =0

and

{{oHv}} = {pHv}

Utilizing the above results the area average value of a typical density—velocity
product becomes:

{pv} = {{p} + p"(v} + v)} = {{p}Hv} + {p}v" + p'{v} + {p'V'}}

= {pHv} + {p'v'}

The result is the introduction of the term {p'v’} stemming from nonuniform
spatial differences of v and p as the fluid moves through the void space between
solids. This term is nonzero even if the local flow is laminar. However, it is
usually neglected compared with other terms in the equation. Similar spatially
varying cross-products exist but are also neglected in the momentum and en-
ergy equations. Rarely is an adequate assessment done of all terms in the
equations to determine their comparative magnitudes and thereby justify the
neglect of these spatially varying cross-product terms.

Additionally the time averaging of the density—velocity product introduces
an additional term, i.e., time averaging Eq. 5-32a yields:

{ov} = {pHo} + {p'0"} + {PHv'} + {p"Hv"} (5-32b)

where superscript prime refers to spatial variation, and superscript t refers to
time fluctuation.

The second, third and fourth terms on the right side physically represent
time averages of spatial and temporal variations, and should be included where
significant. The second term is usually ignored and the third and fourth terms
are usually referred to as the turbulent interchange as will be discussed in
Chapter 6.

Finally applying these conclusions to Eq. 5-28, the desired volume-aver-
aged equation is obtained:

3(p) + Ax(Yax N p} v}
at Ax

(5-32a)

Yv
A . . . (5-33)
8,y MY o) | A(Ya AP} Hu,p) _

+
Ay Az

0
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or in the usual shorthand notation:

x(yAx{p}{Ux}) y(yAy{p}{vy}) z(yAz{p}{Uz}) =0
at Ax Ay Az

)’v (5-34)

C Derivation of the Mass Conservation Equation: Application of
Conservation Principles to a Volume Containing Distributed Solids

In this derivation a specific coordinate system is adopted. Let us take the
Cartesian coordinate system and volume of Figure 5-3 which is considered as
before to be fixed in space. Applying the mass conservation principle directly to
the volume of Figure 5-3, we obtain:

)
a1 (pYvAxAyAz) | + l{pvaAxAyAz}x vy — {PUYAxAYAZ} - ax I

v
rate of mass increase net outflux in x direction
+ l{pvaAyAxAZ}y+(Ay/2) - {pUyYAyAXAZ}y—(Ayzz)l (5-35)
v

net outflux in y direction

+ ( {pv YA AxA Y} 4022 — 1PV YA, AXAYY, —a2n2) | = 0
3

net outflux in z direction

Now recognize that for nondeformable, spatially fixed solids, Yv is not a func-
tion of time. Further, denoting the densities as intrinsic densities over the
volume or its surrounding surfaces, Eq. 5-35 becomes identical to Eq. 5-28.

Subsequent treatment of the density—velocity cross-products as presented
in Section IVB is directly applicable here.

V DERIVATION OF THE VOLUMETRIC AVERAGED LINEAR
MOMENTUM EQUATION

We begin with the dynamic equation of fluid motion with gravity as the only
body force:

a >
(;’t”) +V-pi=-Vp+V-T+pd (1,4-80)
Performing the local volume averaging of Eq. 1,4-80 gives
d
< (;’,”)> (V- (pB) = (pE — (Vp) + (V- ) (5-36)

where g is taken as constant.
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Further manipulation of Eq. 5-36 will proceed analogously to the treatment
of the continuity Eq. 5-9. Specifically:

o The firstterm (3(pv)/at) is transformed as the term (dp/dt) was transformed in
Egs. 5-18 through 5-21 yielding:

3(93)> _9, s
< o | ot (p0) (5-37a)

* All additional terms other than the gravitational term are transformed using
the theorem for local averaging of a divergence, i.e., Eq. 5-5, yielding:

(V - (pvD)) = V - (pUD) since U equals zero on Ag (5-37b)
_ 1 >
(Vp) = V(p) + Ve fA“ pn dA (5-37¢c)
(V-z)—V-<:)+Lf T-HdA (5-37d)
T) = RS -

Now the divergence terms in Eqs. 5-37a through d can be rewritten using the
results for the divergence of an intrinsic local volume average (Eq. 5-6a and b)
noting that the velocity 0, pressure p, and shear stress 7 over the solid region
are zero. We obtain:

V- (pBd) = V- VLT f 3dv = iT L oB@ - A)dA (5-38)
V(p) = ( ) Vo L, pi dA (5-39)
v-(?>=v-(VinV~rdv) ;TLz-fsz (5-40)

The distributed resistance 13, a key concept associated with the porous
media approach, is the resistance force per unit volume of fluid exerted on the
fluid by the dispersed solid. It is defined by the following relation:

fvf Rav= L{s (—ph + 7 R)dA (5-41)

An equivalent but oppositely directed force is exerted on the dispersed solid by
the fluid and is an effective drag force per unit volume of fluid. Applying Egs.
5-37a through 5-37d and 5-38 through 5-41 to Eq. 5-36 yields:

3 I 1 _
5 (00 + L’ P - dA = (0)F + 3 L' (—ph + 7 - R)dA
(5-42)
+ L f R dv
Vi v
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Finally rewriting our result in terms of intrinsic local volume averages utilizing
Eqgs. 5-12 and 5-13 yields:

9 ./ > 1 >3 > i3 4 L -pR+7-n
'yva—t(pv)+ VTprv(U n)dA = Yvi(p)g + VTLr( ph + T - n)dA (5-43)

- d

+ YWYR)
We next specialize this result to the Cartesian coordinate system of Figure
5-3. By a procedure analogous to that employed for the mass conservation

equation, we can write the result for the z-component of the linear momentum
equation as:

i i Ax(yAxi(x){pvzvx}) Ay(yAyi(y){pszy}) Az(‘yAzi(Z){pvg})
Vv eva) ¥ Ax * Ay T A
i A PD) | Ax(Yax™ra))
= ~wilp)e, R (5-44)
Ay(Ya i(y){'r }) A,(Ya i(Z){Tzz}) ;
e + Yyl

where gravity is assumed acting along the negative z-axis. Eq. 5-44 is the
volume-averaged linear momentum conservation equation for the volume ele-
ment shown in Figure 5-3. This equation contains the spatial average of the
product of density and various velocities, unknowns introduced by the averag-
ing process. These terms are dealt with in a manner analogous to their treat-
ment in the mass conservation equation by neglecting certain spatially varying
cross-products.

Expressing the relevant densities and velocities as the sum of a spatially
averaged component and a local spatially varying component and proceeding
as in Section IVB, the average value of a typical density—velocity—velocity
product becomes:

{pvawy} = {pHudv,} + {pHwwy} + {He'v)} + {He'vid + {p'vivj} (5-49)

The result is the introduction of terms involving spatial averages of cross-
products of local spatially varying components. These terms stem from the
nonuniform spatial differences of p, vy, vy, and v, as the fluid moves through
the void space between solids. They are nonzero even if the local flow is
laminar. They are usually neglected compared with other terms.

Finally, making the approximation of equating the average of the product
of p, vy, v,, and v, to the product of the averages of p, vy, vy, and v,, Eq. 5-44
becomes:

(1 Q)
J : i(x) i(x) i(x)
Yv E ((p)(v,) + A (Y ax {p}Ax{vz} {v:})
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(3)
4 D0 Ao} ol uy)
Ay
4
+ Ao} v} (3-46)
Az
(5) (6) (7)
= —y i( Ve, — Az(yAzl(Z){p}) + Ax(yAx’(x){sz})
vip)8: AZ Ax
8) 9) (10
A,(Ya i(y){'r }) Az(yAzi(l){'rzz}) i
+ =y + YWi(R
Ay AZ 7v ( z)
The physical meanings of the terms of this equation are:
1) (2, 3, and 4) (5)
rate of increase of linear + net linear momentum out- = the body force due to
momentum of the fluid flux through the surfaces gravity acting on the fluid
mass in Vg enclosing Vy mass
(6) (7, 8, and 9) (10)
+ the surface force due to + the surface force due to the + the surface force exerted on
normal fluid stress (pres- fluid shear stress acting on the fluid by the dispersed
sure) acting on the fluid the fluid mass solid

mass

Generally the shear stress component 7., is small compared with 7,, and
7yz. Also for rod bundles R, is relatively large compared with the shear stress
components 7, while for continuum regions like an open plenum, R, is rela-
tively small compared with the shear stress components. These shear stress
components arise from both molecular and turbulent phenomena in turbulent
flow.

Example 5-2 Components of the distributed resistance vector for a PWR
fuel array

ProBLEM The distributed resistance ‘(ﬁ) in Cartesian coordinates consists
of three components (R,), ‘(R,), {(R,). Compute these components assum-
ing a flow in each direction characterized by a Reynolds number of 10°
based on the volume-averaged direction velocity and length scales D, for
axial flow and Dy for transverse flow where:

4(net free volume)
friction surface

Dy = volumetric hydraulic diameter =

Obtain these resistance coefficients for mesh layouts A and B of Example
5-1 which are based on PWR fuel geometry. Utilize properties based on
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nominal PWR operating conditions, i.e.:
= 726 kg/m’
=963 x 103 kg/m-s

SoruTtioN The definition of "(13) from Eqs. 5-41 and 5-12 is

i(R) = vif . (-pi + 7 R)dA

The term _fA,, —pn dA is the form drag, and the term —fA[s T-ndAis
the friction drag. The minus sign in each term has been introduced since the
drag force (which is the force exerted on the solid by the liquid) is directed
opposite to the resistance force (which is the force exerted on the liquid by
the solid). For pure axial flow (flow along the rod axis) without any spacers
or baffles, there is no form drag. In transverse flows, due to the presence of
boundary layer separation phenomena, both form and friction drag forces
are important. For flow at an arbitrary direction with respect to the rod
axis, separation effects, which are responsible for the transverse form drag,
will also affect the axial friction drag. However, due to lack of general
constitutive relations accounting for simultaneous action of form drag and
friction phenomena for flow at an arbitrary direction, simple combinations
of axial and transverse flow resistance correlations are typically used.

For the square array, the transverse directions x and y are symmetri-
cal. We associate the z;coordinate with axial or longitudinal flow. Hence
the resistance vector {(R) is composed of the transverse components:

i(Ry) and (R,) which are equal
and the axial component:
“R,)

For axial flow, recognizing there is no form drag and applying a force
balance, we obtain:

_ Apfrit:Aﬂow - _ Apfric
Vf Az

i _1z. = = =
<Rz> = Vf k fA[s TN dA =
since:

V C .
Afow = K;_ and 1, = 7, which is proportional to —Apgic
Now the axial pressure loss Apgic is available in terms of the empirical
friction factor correlations, i.e., for turbulent flow in a square array with
P/D equal to 1.326 at a Re = 10%, using Eq. 7-60, we obtain:

L 104+ 0.06(PID - 1) = 1.06

c.t.
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where the circular tube friction factor f., can be obtained from the correla-
tion of Eq. 7-59:

1
(fer)?

for = 0.0182

= 2.035 log,o[ReDe(fc_l,)”z] — 0.989

Hence:
f=1.06f.. = 1.06(0.0182)

f=0.0193

By definition, in terms of our nomenclature:

Az (p)i(v,)?
Apfric Ef'D—e P 2

where for both mesh layouts, A and B:

=4_m=4[4<P2—7TTD2)]

P, 4mD
D, =118 x103m

where P = 12.6 mm and D = 9.5 mm from Table I,1-3.
Combining the previous results gives:

D,

kg m’
i i 2 3 Q2
Ry = - Ii [(p);vz) ]; mms

0.0193 [i<p)i<uz>2] . ["<p>"2<vz>2]

T TTlsx100 | 2
From the definition of Rep,:

Repe'(p) _ 1059.63 x 1079

vz = ip)D. _ 726(11.8 x 1073)

= 1.12 m/s

Hence for both mesh layouts:

- 726(1.12)2 2
i(R,) = —1.63 [_(__l] = —7.44 x 102 kg(m/s) or Pa
2 m? m
For transverse flow in the y direction:
i - _ AptrAfy
(Ry) = v

where for both mesh layouts:

Vi = YwdP?Az
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while for mesh layout A:
Ay = 2(P — D)Az

and for mesh layout B:

Ay = 2PAz
since Ay, is the flow area in the planes across which Ap,, is taken. Hence:
Ry = Ap, 2P — D)Az _  Ap, <1 _ Q)
Yv4P2Az Yv2P P
and
R,y = Ap2PAz _ Ap,

T ywdPAz Yy 2P

since Ap, is the same for each mesh layout because each has the same
number of transverse flow cells, i.e., two.

A correlation is needed for Ap,.. Use the correlation of Gunter and
Shaw [1] which expresses Ap, in terms of a friction factor based on a
Reynolds number, Rep,, which is defined in terms of a volumetric hydrau-
lic diameter, Dy, and the velocity at the gap between rods, {v,}gp, i.€.:

= DyG — DV{p}gap{Uy}gap
® {n}

Re,

v

The correlation is expressed in the literature as:

& _ ApuDvp <£>0.14 (2!)—0.4 <ﬁ>—0.6

2 GL  \uy St St
0.96
= W for Rep, > 200 (5-47a)
Dy
90
= Re, for Rep, < 200 (5-47b)

Figure 5-4 defines the parameters in the Gunter-Shaw correlation. This
correlation is applicable to a variety of rod array shapes provided appropri-
ate definitions of S and St are employed as discussed in Volume I, Chap-
ter 9. Reformulating the Gunter-Shaw correlation in the nomenclature of
this chapter for a PWR square array of pitch P yields Ap,, as:

Apy = %DLV {Pheap {0} ((_;ﬂ%) o (%)“

The desired Ap, for the two mesh layouts is given by this expression when
L is taken as 2P since each layout has two transverse unit flow cells.



192 NUCLEAR SYSTEMS II

Surface Ay,
A'y = NS7Az

L=NS,

—_ ..: * — APy

Figure 5-4 Geometric parameters characterizing an in-line square array.

Next the parameters {v,}zp and Dy are expressed in terms of known
parameters. Referring to Figure 5-5, from continuity:

{p}gap{v}gapAgap = i<p>i<vy>i(Afy>
For the transverse unit flow cells in both layouts A and B:
Agp = (P — D)Az

iany = Vi - (ﬁ)(ﬂ) _

note that while the flow areas on the y-faces of the volumes of layouts A
and B are not equal, i.e., Ag|s # Ag|s, the volume-averaged y-areas of
these layouts are equal, i.e., (Ag)a = (Ag)s.-

Assume:
{p)eap = p)

Then obtain the gap velocity as:

e = 7 (52p)
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-

X

Figure 5-5 Velocities characterizing an in-line square array.

To evaluate f;;, the relevant flow regime must be determined utilizing the
given Re. The Re defined in the problem statement is based on the volume-
averaged transverse velocity, i.e.:

Re = (OY@Dy _

()
On the other hand the Gunter-Shaw laminar-turbulent transition is defined
in terms of Re,, . Combining previous results yields Rep, in terms of known
parameters:

Rep, = RolUme _ g 4,

Kuy)

P
P-D
since Dy is equal to D., i.e.:

Dy = 4(net free volume)  4[P? — wD?%4]Az
Y~ friction surface 7DAz

EDe

From Example 5-1, for both mesh layouts and, consequently, for the trans-
verse unit flow cells of both layouts:

Yv = 0.554

P

Hence:
Rep, = 105(0.554)(4.06) = 2.25 x 10°
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Since the flow is turbulent, the friction factor is given by Eq. 5-47a as:

fe 096

2 - (ReDV)ous

Returning to the expression for A p, since L = 2P and (u) is taken equal to
i(u) obtain for both mesh layouts:

0.96 P
Apy = <

0.6
(Rep )o 145 D—v) ZP{Uy}gap

Next evaluate Dy and {vy}gp as:
_ 4(net free volume) _ 4[P? — wD?4)Az

friction surface mDAz
_ D[4(P/D)* — ] _ 9.5 x 1073[4(1.326)? — 7]
T T
=11.8 x 103m
and
.} Reov{#}gap 2.25 x 105(9.63 x 1079)
yieap = Dv{p}gap 11.8 x 1073(726)

= 2.53 m/s
Applying these values obtain:

B 0.96 (12.6)0'6 )
Ape = 325 x 1095 \11.8)  272002:53)

= 15542 <& or p,
ms

Finally returning to the expressions for distributed resistance, for mesh
layout A:

Ry = — 1554.2 (1— 1 )
YA T 0.554(2)(12.6 x 1073) 1.326

= ~2.74 x 104 = kg _or 12
S m
while for mesh layout B:
; _ 1554.2
(Ry)s = 0.554(2)(12.6 x 1073)
= —1.11 x 105 kgzorgg
S m
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In summary the following distributed resistances have been computed:

Based on Repe, iR,y = —7.44 x 10? %

Based on Rep,,  (Ryayowa = —2.74 x 104 %

) P
'(Ry)layoutB = —-1.11 x 105 a

Hence cross-flow resistance is 50 to 200 times the longitudinal flow resis-
tance for a Reynolds number of 10° based on the volume-averaged direc-
tion velocity, i.e.:

Rep, = {pYwaDe _ s
)
Rep, = <‘°—>{f2¥%‘-& 2.25 X 10°

In practice the transverse Reynolds numbers encountered are generally
less than 10° so that typical |/(R,)| values are less than the magnitudes
displayed in this example.

VI DERIVATION OF THE VOLUMETRIC AVERAGED
EQUATIONS OF ENERGY CONSERVATION

A Energy Equation in Terms of Internal Energy

The differential transport equation for internal energy is:

(pu)
ot

>y

+ V- (puv) = 3" +q"-pV-U+ o (1,4-109)

where ¢ is the dissipation function defined by Eq. 1,4-107.
The local volume average of Eq. 1,4-109 is:

<6(pu)

D) 4 (V- () = ~(V ) + ")~ VD) + () (54

Following a procedure analogous to that employed with the linear momentum
equation by (a) transforming the volume average of a time derivative to the time
derivative of a volume average; (b) using the theorem of local volume averaging
of a divergence; and (c) using the result for divergence of an intrinsic local
volume average and the concept of an intrinsic local average volume, we obtain
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the volume-averaged internal energy equation:
1 .

’Yv— i(pu) + L pul - #dA = —yvi(pV - D)
T r

+ o [ ki VT dA + T (igh) + Ua™ + (oY) (549
T A

where k. is the effective fluid thermal conductivity including both molecular
and turbulent effects.

The treatment of the term (V - §") merits elaboration to show the origin of
the second and third terms on the right side of Eq. 5-49. Applying the theorem
of local volume averaging of a divergence Eq. 5-5 to this term and then express-
ing the divergence of an intrinsic local volume average we obtain:

>\ _ > o ')II_-)
V3= V@ -], e daa

1 f >y 1 f p A=A )
Vo la n dA Ve Jae q" - ndA (5-50)
The first surface integral in Eq. 5-50 represents conduction heat transfer across
the fluid surface A¢, and the second represents conduction heat transfer across
all fluid-solid interfaces Ag.

Considering each term individually:

1

-4 = L > -
AKX ndA—+VTfArken VT dA (5-51)

where Fourier’s conduction law is used. The term

- VLT L,, 37 dA (5-52)
represents the rate of heat release at all fluid—solid interfaces inside Vr since i
is the unit normal vector drawn outward from the control volume, i.e., from the
fluid into the solid. In reactor cores or heat exchangers with rod bundles, the
integral denotes all of the heat released or removed at the immersed rod bundle
surface. Hence, it is convenient to define an equivalent, dispersed heat source
(or sink) per unit volume of the fluid, g/, such that:

f ndv=—[ 3 -7da (5-53)

Ags

Hence rewriting our result in terms of intrinsic local volume averages utilizing
Eqgs. 5-12 and 5-13 yields:

1 2y, 2 — L m = il M -
A L[s q'-ndA = Vs L b dV = Yvi(gm (5-54)
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Example 5-3 Computation of the equivalent dispersed heat source for a
PWR fuel assembly

ProBLEM For the PWR square fuel array of Example 5-2 and the grid
layouts of Figure 5-2 compute the rate of energy addition expressed as:

(gt and {(q")

SoLuTioN From Section 1,311 about 87 percent of the total energy per
fission is produced in the fuel itself. About 3 percent is produced in the
moderator. This total energy per fission is expressible in terms of the
core average, fuel element linear heat rate g’ which per Table 1,2-3 is
17.8 kW/m.

Now per Eq. 5-54:

i/ 1 1 2y >

] —_ — ——_— .

(qrb Vv VT Are q n dA
Since:

- | §' -ndA= Ng'Az

Ars

where N is the number of rods each generating a linear power ¢’ averaged
over Az,

- Nqg'Az
then: gy = qu
For both grid layouts:
iom _ 40.87)q’ since only 87 percent of the total energy per
(ar) = 0.95A¢ fission is recovered in the fuel and 5 per-

cent of the total energy per fission is lost to
the neutrinos.

D?\ where P = 12.6 mm and D = 9.5 mm from
_ y _ T
Ar=4 (P 7 ) Table 1,1-3.
Hence:
g = (0.5%9

o113

(0.87)(17.8)

2
aplm _1_) ]
0.95(12.6 x 1073 [1 3 (1_326

= 1.86 x 10° kW/m?3
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Considering the second term:

(qm = _f qm dv = 'Yv <qm>

and assuming that an infinite lattice g" represents 3 percent of the total
energy produced in fission, we obtain:

il M\ — 0.03 " 3 3
(q") = (087) i(qwy = 6.40 X 10° kW/m

We next specialize Eq. 5-49 to the Cartesian coordinate system of Figure 5-
3 including the approximation of equating the average of products to the prod-
uct of the averages. Both steps are performed analogously to the procedures
employed for the mass conservation equation. The result is:

(1) (2)
Y A pHiE Y,
X
3
4 By Al o)
Ay
@
Az(yAz'(Z){p}'(Z){u}‘(Z){vz})
Az
(5) (5-55)
i/ (dvy vy avz)>
= — —_— — 4+ —=
Y <p (Bx Ty T
(6) @)
ix) oT i(y) oT
N Ax (YAx {kc a}) A Ay <7Ay {ke 5})
Ax Ay
(8) %)
i(2) oT
s (. {"e a_z})
+ e + (g + 4q") + ()
The terms in this equation have the following physical meaning:
m 2, 3, and 4)
rate of increase of internal energy + net outflux of internal energy
of the fluid mass in V through A
(5)
= reversible rate of pressure work when the density is not constant
(6, 7, and 8)
+ heat conduction through the portion of A that is free to fluid low
)

+ sum of heat liberated (or absorbed) due to immersed solid,
extraneous internal sources and viscous dissipative effects.
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B Energy Equation in Terms of Enthalpy
The differential equation for the transport of static enthalpy A (= u + p/p) is:

"(ph) + V- (phD) = -V -q" + q" + %’I’ + ¢ (1,4-108)

where ¢ is dissipation function defined by Eq. 1,4-107, and the volume-aver-
aged enthalpy equation is:

9, _1_ 2.9 = 4 — <l_)£>
Yy 5 o) + - [, okt -ida =+ [ kit VA + WA
+ Yv({gb) + (g") + (@)
Since:
Dp ap
Di = o + V. (p0)—pV-0D (5-57)
and utilizing Eq. 5-23, the term (Dp/Dt) can be expressed alternately as:
_@> p) _
<Dt o TV (pB) = (pV - ) (5-58)

Again expressing this result in Cartesian coordinates and approximating the
average of products as the product of averages yields:

9 i i Ax(-yAxi(x){p}i(.r){h}i(.\){vx})
'Yva_t(<P> (h) + Ax

y('}’Ay’(”{p}'(”{h}‘(’){Uy}) Z(ym_i(z){p}i(zl{h}i(z){vz})
Ay Az

“ 67}) ( ”"’{ aT}) (5-59)
'<Dp> Ay <7Ax {kc ox Ay YAy k —y
=Yv \5/ t +

Dt Ax Ay

i(2)
o )

+ A7 + wigw) + g™ + )

+

VII CONSTITUTIVE RELATIONS

The foregoing derivation of the relevant conservation equations has led to the
introduction of certain parameters and the neglect of others Notably the dis-
tributed resistance and heat source (sink) parameters, R and gy, respectively,
have been introduced. The cross-product terms involving local spatial varia-
tions of density and velocity have been neglected.

Although the constitutive relations are derived from a fixed set of physical

considerations and correlations, they must be formulated anew for each grid
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layout, This procedure is laborious but relatively straightforward for the param-
eters R and q/». However, for other parameters like those arising from consid-
ering a turbulent flow field, as introduced in Eq. 5-32b, the procedure is com-
plex. An example is the parameter that characterizes turbulent mixing between
regions.

VIII CONCLUSION

This chapter has been developed principally from the work of Sha and Chao
[3]. As has been noted, most practical applications of these porous body equa-
tions are numerical. It is therefore necessary to relate volume and surface
averages of the same variables. Such relations with respect to the staggered
mesh system commonly employed in numerical models are extensively treated
in Sha and Chao [3].

In the example that follows, a simple two-subchannel case is analyzed
utilizing the porous medium approach with the distributed resistance values
computed in Example 5-2.

Example 5-4 Porous body analysis of two adjacent, interacting subchannels

PrROBLEM Consider two adjacent, unheated, interacting subchannels of
PWR geometry at nominal PWR fluid conditions as illustrated in Figure 5-6.
The total flow rate is 0.58 kg/s. Take the inlet subchannel velocities as
unequal where:
v2i(0)
Uzj(O)

Provide all the needed geometric and constitutive relations necessary, and
compute the axial distribution of axial mass flux and pressure in each
channel and the transverse mass flow rate between the channels assuming

NN

D

heated rods

=2

— solid wall

--- non-physical boundary Figure 5-6 Test section of Exam-
between subchannels ple 5-4.
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the exit subchannel pressures are equal at 15.5 MPa, i.e.:
pi(L) = pi(L) = 15.5 MPa
Applicable PWR conditions:
P/D =1.326,D =9.5mm, L = 3.66 m
Ti, = 292 °C (565.15 K)

SoLuTioN This example requires simultaneous solution of the continuity,
axial momentum, and transverse momentum equations since cross-flow is
induced by the inlet velocity upset conditions. This solution can be accom-
plished by using a numerical code such as THERMIT-2 [2] subject to
boundary condition set 3 of Chapter 1. In this case the subchannel inlet
axial velocities are used in place of the inlet radial pressure gradient. The
resulting boundary conditions are:

exit pressure pi(L) = pi(L) = 15.5 MPa
inlet axial velocity v:i(0) = 5.94 m/s; v,(0) = 2.97 m/s
inlet transverse velocity vy(0) = v,;(0) = 0
which are obtained from the given conditions as follows:
mr = m;(0) + m;(0)
mr

[‘ * 040)

since for identical channels at the same inlet density:

mj(O) _ Pvzj(O)Aﬁ — U24(0)
mi0)  pv,i(0)As  v;(0)

Expressing m;(0) in terms of pv,;(0)A; obtain the desired result:

mi(0) =

mr 1
Ui(0) = —— | ————
pAs ||, vi0)
vzi(o)
= 0.58 1 ~
~ 724878 X 107) [1 + 0.5] = 394 m/s (5-60)
v5(0) = —”Z‘é"’ = 5% =297 m/s

since:
P>2 n]
= = PD? —_] ==
Aa = 4Aa =D [(D 4

= (9.5 x 1073)? [(1.326)2 - %] = 8.78 x 107° m?
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In addition to boundary conditions, geometry and constitutive relations
must be provided as follows:

1. Geometry. The geometry is similar to that of grid layout A, Example

5-1. Hence:
L 7 (D) _ 77( 1 )’_
Yv="VYa.=1- Z (F) =1 Z —1.326 = 0.554

However, these channels are bounded by solid walls except for their
interconnection so that:
Yax =0
Yay = 0 at all boundaries except the gap region
P-D D 1
Yay = —p 1 - P= 1 - 1326 = 0.246 for boundary that
) includes the gap region
P, =@D + 3(P — D) = w(9.5) + 3(12.6 — 9.5) = 39.14 mm
A = 8.78 X 1075 m?

_ 4(net free volume) _ 4A; _ 4(8.78 X 107°) _ .
Dy = friction surface = P, (3.914 x 1072 8.97 x 103 m

D, = Dy =897 x 10*m

2. Constitutive laws.
a. Axial distributed resistance, '(R,). Following Example 5-2:
R [f<p>f<vz>2] Pa
<RZ> - De 2 m
where:

f=f.[1.04 + 0.06(P/D — 1)]
and from Eq. 7-59:

1

——75 = 2.035 logio[Repe(f:..)"2] — 0.989

(fer)

(Note D, = 8.97 x 103 m which is different than the D, of Example
5-2 since the channels here are enclosed by bounding walls.)

b. Transverse distributed resistance, (R,). The geometry of the test
section here corresponds to mesh layout A of Example 5-2. How-
ever, the value of A, is  that of A, in mesh layout A, while the
value of V¢ is i that in mesh layout A. Hence:

_ Aperl'y _ Aplr (l _ D)

‘<RY> - Ve - YvP F




Subchannel Pressure, p; and p; (MPa)

15.58

15.56
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Here L = P so that:

0.96 P Dy\"*
Apy = Re, 018 (5;) {p}eap{vy}ap (%)

and

Re = M&&
» {/J"}gap

Hence dropping average symbols on the properties:

; 1 0.96 P
i(Ry) = — Yo (D, 078 pod (08551 0-145(y } L855]

1

1 0.96 (1 - 1,326> 5SS 0145 1 558

- (0.554) (8.97 x 10-3)0745 (12.6 x 10-3)04 [p855p0-145{p, } Ls°
Pa

= — 82.12{p0855u0 5{0 9]

. kg . kg .. m
forpmm,p.mm.s,vmS

. Transverse turbulent momentum transfer, V1(A(yay{r,,})/Ay). The

shear stress {7,,} will be discussed in Chapter 6 as part of the sub-
channel analysis process. While the THERMIT-2 code is a porous

N

N

15.54 \\
\\
pbi=p \\
15.52 ‘\
.
N
15.50
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Axial Position, z/L

Figure 5-7 Axial pressure profile of Example 5-4.
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Figure 5-8 Axial distribution of the cross-flow rate between channels i and j of Example 5-4.

body formulation, it has been expanded to include correlations for
processes like turbulent momentum transfer which are important
predominantly for interactions between subchannel scale regions.
The subchannel equivalent parameter for turbulent momentum
transfer in a single-phase flow Wi}‘M which is defined by Eq. 6-15 is

1.4
N\
4
o \
N
S .
@ Subchanne |
a 5 ; ——
s 10 S S
g __—Suochanne! |
o /
8
5 08 /.
E
s /
/
0.6
0.0 0.2 04 0.6 0.8 1.0

Normalized Axial Position, z/L

Figure 5-9 Axial distribution of the subchannel axial mass fluxes of Example 5-4.
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Table 5-2 Subchannel parameters of Example 5-4

———
ZIL pi(MPa) p;(MPa) W;(kg/m-s) Z/L Gi(kg/m2s) G;(kg/m?s)
;o;— 15.566764 15.564359 0.0 4403.8 2201.9
0.05 15.562153 15.562147 1.383 x 10! 0.1 3827.8 2778.8
0.15 15.555151 15.555153 6.237 x 102 0.2 3561.9 3045.0
0.25 15.548380 15.548380 3.013 x 102 0.3 34353 3172.1
0.35 15.541796 15.541796 1.414 x 10-2¢ 0.4 33714 3236.3
0.45 15.535306 15.535306 1.117 x 102 0.5 3339.9 3267.9
0.55 15.528863 15.528863 2.517 x 103 0.6 33235 3284.2
0.65 15.522448 15.522448 1.589 x 103 0.7 3315.1 32924
0.75 15.516048 15.516048 1.068 x 103 0.8 3310.2 3297.4
0.85 15.509634 15.509634 -3.52 x 10} 0.9 3306.1 3301.2
0.95 15.503232 15.503232 -6.05 x 10-¢ 1.0 3306.6 3300.7

1.00 15.500000 15.500000

t All values of W; for Z/L = 0.25 are due to numerical roundoff.

taken from the result of Example 6-4, i.e.:
k

WM = 0.0363 —=-

m-s

Figures 5-7 through 5-9 present the calculated results. Notice that the
cross-flow is sufficient to cause the subchannel axial velocities to equili-
brate well before the channel exit. The subchannel pressure differences are
too small to appear on Figure 5-7. These pressures, accurate to about 10
Pa, are tabulated in Table 5-2.
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PROBLEMS

Problem 5-1 Approach for analysis of the shell side of a U-tube steam generator (Sections I and VII)

Define the thermal hydraulic analysis approach appropriate to determine if flow stagnation
areas will exist near the bottom tube sheet of a typical PWR U-tube steam generator under steady-
state conditions. This definition should include:

1. The degree of spatial averaging, i.e., field or distributed parameter, porous body or subchannel
approach

2. The number of spatial dimensions and number of nodes

3. The boundary conditions

4. Identification of the required constitutive equations.

Problem 5-2 Control volume characteristics of a hexagonal array (Section I11)

Compute the surface and volume porosities of the interior subchannels of a 19-pin hexagonal
array with the geometry P/D = 1.24, D = 8.65 mm, and H/D = 35. Take the axial length of each
subchannel as H, the wire lead length.

Answer: Yar1 = 0.175; vv; = 0.376

Yter = 0.376, where TB1 means top and bottom surfaces of subchannel type 1, and
AL1 means lateral surface of subchannel type 1.

Problem 5-3 Distributed resistance for a triangular array (Section V)
Compute the distributed resistances for axial and cross-flow for an equilateral triangular array
with geometry typical of a tight pitch light water high converter lattice, P = 9 mm and D = 8.2 mm,

control volume

=II

)

@
v

l,=

Figure 5-10
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for a flow in each direction characterized by a Reynolds number of 10° where:

(p)(v)D,

for axial flow Re = —
)

i(p)(v,) Dy
i)

The array is illustrated in Figure 5-10 which specifies the coordinate system and dimensions. Use
water properties and other necessary assumptions from Example S-2.

and for transverse flow Re =

Evaluate the ratio f/f., for this triangular array by Eq. 1,9-86 and /., from 7-59:
Answer: axial i(R,) = —6.20 x 10¢ Pa/m
transverse (R,) = —4.13 x 10% Pa/m
i(R) = —1.76 x 10¢ Pa/m

Problem 5-4 Distributed heat sources for the shell side of U-tube steam generator (Section VI)

Compute the distributed heat sources, i(g;) and /(q™) for a control volume located in the hot
leg side of the bottom region of a U-tube steam generator. In this steam generator primary coolant
flows in tubes and transfers energy to secondary coolant in the shell side. Relevant geometry and
operation conditions are given below.

Geometry:
Tube inner diameter 2.05 x 102 m
Tube outer diameter 222 x 102 m
Pitch in square array 3.67 x 1072 m
Tube material Inconel
Total number of tubes 3240
Inner diameter of steam

generator inner shell 335m

Primary coolant operating conditions:

Inlet temperature 324 °C
Outlet temperature 284 °C
Flow rate 4218 x 10 kg/s

Secondary coolant operating conditions:

Inlet temperature 263.3 °C
Outlet temperature 273.0 °C
Flow rate 1850.58 kg/s
Recirculation ratio 4.1

Answer: (@") = 0
(gre) = 34.9 MW/m’

Problem 5.5 Distributed heat source for a pebble bed reactor (Sections 1,21V and VI in this volume)

The thermal/hydraulic design of a pebble bed gas (helium) cooled reactor is to be considered
here. This reactor is fueled by spheres of about I-inch diameter containing coated fuel particles
dispersed within a graphite matrix.

1. What would you recommend for the core thermal design limits for this design? Identify and
justify the functional types of limits: exact numerical values are not necessary.
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2. In operation assume (for simplicity) that the spheres are levitated by the helium flow (upflow)
to space the spheres that operate at an average power of 5 kW/sphere in a square array of
P/D = 1.3. Take the core as a cube, 12-feet per side.

If you were asked to calculate the coolant temperature field to determine the mean tempera-
ture in each region between spheres, identify and justify the solution method you would use among
the following:

Porous body, 3D
Subchannel, 2D
Tube type geometry, 1D

For each method identify the heat source term and calculate its numerical value.
Answer: Part 2
(aw) = 5155 kW/fv3
q' = 46.2 KW/ft
Q = 6796/n MW/node, where n equals the number of axial nodes by which the core is
represented.



CHAPTER

SIX
SUBCHANNEL ANALYSIS

I INTRODUCTION

The subchannel approach for rod bundle analysis was introduced in Section
VIII of Chapter S by standardizing the porous body control volume equations
to a specific nodal layout. This nodal layout defines volumes of a size equiva-
lent to a single fuel rod and its associated fluid. There are two approaches to the
definition of this subchannel volume: the coolant-centered and the rod-centered
subchannels, as illustrated in Figure 6-1. The traditional approach for rod bun-
dle analysis has been coolant-centered subchannels. That approach is treated in
this chapter. However, in two-phase flow, particularly in the annular regime,
the liquid flow around the rod is difficult to accommodate by this approach.
Hence it makes sense to consider rod-centered subchannels as suggested by
Gaspari et al. [11, 12], who demonstrated good results using this concept in the
prediction of high-quality critical heat flux. However, little additional system-
a.tic work has been accomplished on the development of the constitutive rela-
tions required for this rod-centered nodal layout.

_ Subchannel properties, like axial velocity and density, are represented by
Single, averaged values. Constitutive equations are required for input parame-
ters like friction factors and lateral momentum and energy exchange rates
between adjacent subchannels. This choice of nodal layout in terms of subchan-
nels does not yield simpler constitutive equations than would other choices.
l3ather, it offers a convenient arrangement for which a specific set of constitu-
tive equations can be formulated. In a practical sense this leads to a focusing of
effort on a single set of constitutive relations.
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Figure 6-1 Options for subchannel definition.
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Further, in the subchannel approach a major simplification is the treatment
of lateral exchanges between adjacent subchannels. It is assumed that any
lateral flow through the gap region between subchannels loses its sense of
direction after leaving the gap region. This allows subchannels to be connected
arbitrarily since no fixed lateral coordinate is required. A fully three-dimen-
sional physical situation can be represented simply by connecting the channels
in a three-dimensional array. This leads to simplifications in the lateral convec-
tive terms of the linear momentum balance equation, that makes the method
most appropriate for predominantly axial flow situations. The subchannel anal-
ysis approach and its associated boundary conditions are therefore not a fully
three-dimensional representation of the flow.

II CONTROL VOLUME SELECTION

Consider the coolant-centered subchannel approach. The actual subchannel
control volume encompasses only the coolant, not the fuel rod. It is illustrated
in Figure 6-2 relative to the entire reactor core. However, the control volume of
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Figure 6-2 is used only for the mass, axial momentum, and energy conservation
balances. For the transverse momentum balance, a separate control volume
between adjacent subchannels is employed. Typical transverse control vol-
umes are illustrated by the dashed lines in Figure 6-3. The dimension Ax’ must
be specified by the analyst. Staggered control volumes are also used in porous
body approaches, but they generally differ in three respects from the subchan-

CORE SUBCHANNEL
(CONTAINS 200 FUEL ASSY's) (10 - 60 CELLS)
AXIAL
LATERAL
\J L./
CONTROL VOLUME
FUEL ASSEMBLY
ICONTAINS 50 - 50
SUBCHANNELS)
4 v, m
y v, (WIYJ)Az
X v, (W,’;)AZ
b c

Cartesian Coordinate System
Velocities in Cartesian Coordinate System
Mass Flow Rates in Cartesian Coordinate System

O oo o
|

Figure 6-2 Relation of subchannel control volume to reactor core. (After Siewart et al. [27].)
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Figure 6-3 Control volume for transverse momentum equation.

nel control volumes, as illustrated in Figure 6-4. First, all porous body control
volumes include fueled regions, not just coolant regions. Second, the trans-
verse momentum control volume is of the same dimensions, although stag-
gered, as the control volume for mass and energy. Finally, the axial momentum
control volume, like the transverse momentum control volume, is also stag-
gered axially with respect to the mass and energy control volume.

:\Jnmsvense
| MOMENTUM

—————————— l
TRANSVERSE
MASS, ENERGYANDAXIAL MOMENTUM |

MOMENTUM |
|
\\ |
______ |
Figure 6-4 Control volumes for porous body

& ——FUEL RODS analysis.
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III DEFINITIONS OF TERMS IN THE
SUBCHANNEL APPROACH

Some important parameters that appear in the subchannel formulations are
presented next. Since the subchannel control volume includes only fluid re-
gions, the superscript i for intrinsic volume averages is redundant and will be
dropped after it is first introduced.

A Geometry

The key parameter is the spacing or gap size between adjacent fuel rods. The
gap size between the adjacent fuel rods, s;, in conjunction with the axial mesh
size, Az, represents the minimum flow area, S; = s;;Az, available to the fluid in
the transverse direction. As Figure 6-3 illustrates, the gaps along the x- and y-
directions, s¥ and s, respectively, can be different. The fuel rods can also be
bowed axially leading to axially-varying gap widths. Most numerical subchan-
nel codes allow for such variations, although in this chapter we consider axi-

ally-independent gap widths.

B Mass Flow Rates

There are both axial and transverse mass flow rates associated with the control
volume.

C Axial Mass Flow Rate, m;

This term represents the predominant axial flow rate of the selected subchannel
control volume, i. It has the dimensions of mass/time and is written as:

i = [ pu.da 6-1)
Af
where Ag represents the total axial cross-sectional area of the subchannel

which is coincident by definition to the area for coolant flow. Using the area
average definition of Eq. 5-15, Eq. 6-1 is written as:

m; = ‘X py,}Ag = {pv,} Ay mass/time (6-2)

D Transverse Mass Flow Rate Per Unit Length, W;; and Wi'jD

Two mechanisms create transverse mass flows: transverse pressure gradients
that drive diversion cross-flow, and turbulent fluctuations in the axial flow that
drive turbulent mass interchanges.

1 Diversion cross-flow rate, W;;. In a reactor, transverse pressure gradients
Can be established by either of two types of phenomena: geometry variations or
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nonuniform changes in fluid density. Geometry variations include such things
as fuel rod bowing and swelling, whereas density changes encompass the small
differences across a bundle due to radial heat flux variations and the large local
difference due to the onset of boiling. In a tracer experiment, diversion cross-
flow will be present if the test section geometry varies along its axis due to
fabrication tolerances. The magnitude of diversion cross-flow rate is small
compared with axial flow under reactor operational conditions except in cases
such as flow blockage or fuel rod bowing. It is written as follows for flow along
the x- and y-directions, respectively. Note the dimensions are mass flow rate
per unit length:

x_ L — i(x) y
Wi = Y fAz L% puxds dz = "{pvx}sij 63)

{ pvx}sﬁ (mass/length time)
and

1 .
Yy — = i(y) X
Wi p fAZ f‘ﬁ pvyds dz Mpuy}s; (6-4)

= {pv,}sj (mass/length time)

1 Turbulent interchange, W{,-D. This exchange is postulated to involve equal
volumes of eddies which cross a transverse subchannel boundary. If these
eddies are also of equal density, as they effectively are for single-phase flow
conditions, then no net mass exchange results. However, in two-phase flow, a
net mass exchange can occur as described in Section VII where the constitutive
relations are presented. In single-phase flow although no net mass exchange
occurs, both momentum and energy are exchanged between subchannels, and
their rates of exchange are characterized in terms of hypothetical turbulent
interchange flow rates. These flow rates are defined separately for momentum
and energy as WigM and Wi}H. Hence the superscript D is utilized for turbulent
mass interchange W;".
Both flow rates W; and W reflect the nomenclature convention that:

subscript ij represents flow from subchannel i to j
whereas:
subscript i<»j will be used for net flow between subchannels i and j.

Hence in single-phase flow:
Wi = Wi (6-5)
therefore:
wi=w-wi=0 (6-6)

E Momentum and Energy Transfer Rates

Three types of transverse momentum and energy transfer exist: transport by
diversion cross-flow; transport by turbulent interchange; and viscous transfer
due to transverse gradients of axial velocity and temperature.
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The momentum and energy transfer by diversion cross-flow is written as
area averages of the product of the transverse mass flux, pvy or pv,, and the
transported axial velocity and enthalpy, respectively, i.e., {pvxv.} or {pvyv,}
and {puvxh} or {puvyh}. Although the diversion cross-flow rate is defined, the
characteristic enthalpy and axial velocity transported cannot be well character-
ized in terms of defined subchannel properties. For convenience, they are
labeled as starred quantities {vy} and {h*} for later definition by subchannel
analysis computer code users. No distinction is made between the v, and v,
velocity components with respect to the definition of {v;}, i.e.:

i} = {pv.v} {pvyvz} the effective velocity transported by
~ {puvd {pv,} ’ diversion cross-flow rate, length/time

hi = {pvxh} | (hY) = {pvyh} the effective enthalpy transported by the
thit = {pvd {pv,} ’ diversion cross-flow rate, energy/mass

The turbulent interchange flow rates are defined by the following time-
averaged balance equations:

(78)i0j = WiPv,; — W;Pu, (6-7)
(q")iej = WiPh; — WiPh (6-8)

where (7s);.,; and (g"s);.,; represent, respectively, the net turbulence driven
momentum and energy per unit time crossing the gap per unit length. These
momentum and energy transfer processes occur for single-phase flow when v;;
and h; are not equal to v, and A;. In single phase, W'D = j'iD. Egs. 6-7 and 6-8
can be written for single- phase flow as:

('TS);HJ- = W'.l (U_Zl - v_Zj) (6'9)
where:
R Wi,'DUZi - W.'iDUZj
WM=_4 — (6-10)
y Uzi — Uy

i.e., WigM is a hypothetical flow rate for momentum transfer and

@), = WiE(; - k) (6-11)
where:
— Wi(Dhi — W!Dh
WH=_8 . N - (6-12)
v hi — h;

ie., W'H is a hypothetical flow rate for energy transfer.

However in two- -phase flow W’D # W]’D, so the terms such as W’Dh must
be evaluated individually rather than expressed in terms of the product of the
hypothetical flow rate W;ﬁ and the adjacent subchannel enthalpy difference.
This is done for the two-phase situation in Section VIIE3 where the product
W!D h. is developed as the two-phase analogue to the product W'“(h - h) in
smgie phase.
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Table 6-1 Instantaneous transverse flow rates used in
subchannel analysist

Mass Momentum Energy
transfer transfer transfer
Flow from subchannels i and j
Diversion cross-flow W;
. ' '
Turbulent interchange wiP wiM wH
Turbulent plus viscous interchange W{{‘D Wi’}‘M Wi}‘"
Net flow between subchannels i and j
Turbulent interchange Wil

t All flow rates are expressed in units of mass/time-length.

Molecular or viscous effects also cause energy and momentum transfer
across the gap. These effects are proportional to temperature and velocntzl
gradlents at the gap. For compactness and convenience the parameters WlJ
and Wi can be redefined as wi™ and WIJ to include these viscous effects. In
this case Egs. 6-7 and 6-8 are rewritten as:

(r5)sj = Wilvs — Wity (6-13)
(q"s)%; = Wihi — WiiPh (6-14)
and for single-phase Eqs. 6-9 and 6-11 are rewritten as:

(r8)ei = Witz — v) (6-15)
(@"s)ts; = Willth — hy) (6-16)

For simplicity the time-averaged overbars are dropped starting with the para-
graph preceding Eq. 6-13 whenever these parameters are utilized in the remain-
der of the chapter. The terms W,TM and W,TH will be used in expressing the
subchannel conservatlon equatlons The associated turbulent and viscous com-
ponents of Wi and W.J are discussed later in this chapter. Table 6-1 summa-
rizes the transverse flow rates that have been defined in this section.

IV DERIVATION OF THE SUBCHANNEL CONSERVATION
EQUATIONS: METHOD OF SPECIALIZATION OF THE
POROUS MEDIA EQUATIONS

We proceed to derive the subchannel relations by applying the volume-aver-
aged porous body equations of Table 5-1 to the subchannel geometry of Figure
6-5. Use is made of the subchannel parameters defined in Section III. This
procedure will make explicit the approximations characteristic of the subchan-
nel approach. Since the porous body equations of Chapter 5 are single-phase
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ij . AX |

Y

e
3

;j.“

Subchannel i Subchannel j

Figure 6-5 Subchannel control volumes.

equations the resulting subchannel equations will be for single-phase condi-
tions. The additional terms to describe two-phase conditions are introduced as
appropriate utilizing the definitions of Section III.

A Geometric Relations

The total volume of the porous media unit cell that encompasses a subchannel
control volume of Figure 6-5 is:

Vr = AxAyAz = AtAz 6-17)
where At is the total axial cross-sectional area. This area is taken axially
constant in the following derivations. The volume porosity following Eq. 5-1 is:
Y

Vr
Also, according to Eq. 5-4 for this control volume, the surface porosity in the z-
direction is expressed as:

Yv (6-18)

_ A

Yaz = 6-19a
Az AT ( )
Likewise, the surface porosities in the x-direction and the y-direction can be

expressed as:

s;Az 6-19b
‘yAx - A)’AZ ( = )
s;Az
Vay = A2 (6-19¢)

T AxAz
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Multiplying Eqs. 6-18 and 6-19a, b and c by V1 expressed as Eq. 6-17, we can
write:

Vi¥v = Vr % =V (6-20)
T
A
Vi¥a, = (A1A2) A—f = AfAz (6-21a)
T
y
Vi¥a, = (AxAyA 502 _ oy 6-22
™Vax = (AxAyAz) AyAz syAxAz (6-22a)
X
— (ArxAyaz) 182 _ oan 6-23
Vi¥ay = (AxAyAz) 7= = s5Az4y (6-23)

These are the geometry relations needed for application to the conservation
relations.

B Continuity Equation

By multiplying Eq. 5-281 by V1 and making use of the definitions of Sections 111
and IVA, we have:

Vf% + A({pudsAz) + Ay(puy)s;Az)

(6-24)
+ Az({pUz}Af) =0

Applying Egs. 6-2, 6-3, and 6-4, dividing through by Az, collecting the trans-
verse direction terms (the second and third terms of Eq. 6-24), and including
mass transfer by turbulent interchange, we get the continuity equation for
subchannel i:

d Am, _ J 'D
An g (p) + 57 = JZI (W + Wio; (6-25)
where J is the number of neighboring subchannels. Figure 6-6 illustrates the
mass flow rate and diversion cross-flow rate terms of Eq. 6-25 which are cross-
ing the subchannel control volume surfaces.

For single-phase flow, application of Eq. 6-5 simplifies Eq. 6-25 to:

3 Ary z
Ag Y, (p)) + _A—Z— = = 21 Wi (6-26)
iz

t We actually use the shorthand version of this equation in which the superscript i is dropped
throughout. The lateral turbulent interchange terms must be inserted directly because the time-
averaging procedure has not been formally accomplished.
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Figure 6-6 Subchannel control volume for continuity.

C Energy Equation

Eq. 5-59 represents the energy equation in terms of enthalpy in the porous body
approach. Consider the shorthand version of this equation without the super-
script i and without the approximation of treating the average of products as the
Product of the averages. Multiplying each term of the equation by V1 and using
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the definitions of Sections III and IVA, we obtain for subchannel i:

d d
Vivv 3 (ph) = Ag 3 (ph)lAz (6-27)

Ve 22 Dadohod] = AWithi}A2) (6-28)

where {h,’(k }, the enthalpy carried by diversion cross-flow, has been defined as:

{vah}

(o) (6-29)

{h3} =
The area-averaged character of this diversion transported enthalpy is specifi-

cally retained in this definition, in contrast to the definition of axially trans-
ported enthalpy presented subsequently in Eq. 6-31:

VT Ay [Yaiphv ]l = Ay (Wi{hy}Az) (6-30)

where {h}} is defined analogously to {Ay}. For the axial transport of enthalpy:
Vr 52 Undphu] = Ak ©31)

where for axial-averaged enthalpies it is simply assumed that {phv,} = hi{pv,},

i.e., no distinction is made between the area and volume-averaged enthalpy in
the subchannel i. Expanding other terms:

(%) - 0 ()
x : T
vl D (e < D (e 1]
= - 2 [W;Phi — W;PhilAz (6-33)

where ke = kmolecular + keddy, and axnal temperature gradients have been ne-
glected Further, {W.J h} and {W;; h} have been taken equal to W.J Pp; and
WJl hJ , respectively, consistent with the convention for expressing subchannel
enthalpy. For the volumetric energy generation terms:

Vivvlign) + (") + ()] = g + (gi)]Az + Vi(d) (6-34)

where (grb) is the equivalent dispersed heat source (or sink) per unit volume of
the fluid due to immersed solids, and (g") is the extraneous heat source (or
sink) per unit volume of the fluid. Accordingly, (g{)s and (gq{) represent the
subchannel linear heat generation (or absorption) rates of the aforementioned
values. Dividing each term by Az and regrouping Eq. 5-59, we have for single-
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phase flow:

3 A S
A 5 Kph)il + ag bl =g — ; Wit — k)
, , (6-35)
- (¥ (2P
2 Wilk™} + Aq <D,>

where Eq. 6-35 reflects the following simplifying assumptions:

« For single-phase flow: W;°h — W;iPh = WMk — hy]

 Axial heat conduction in fluid is negligible: {k.(37/dz)} = 0

* No heat generation in the fluid: (g") = 0

» Heat dissipation due to viscous effects is negligible: (¢) = 0

e The inthalpy carried by diversion cross-flow {/}} and {h;‘} is represented
as {h'}

* No distinction between the area and volume averaged enthalpy in channel i:
{phv}{pv.} = (phv,)/{pv,) = h;

e A, is written as A.

Figure 6-7 illustrates the heat generation rate and convective energy transport
rates that cross the subchannel control volume surfaces.

D Axial Linear Momentum Equation

Applying the same procedure and parallel assumptions to those used in deriva-
tion of the continuity and energy equations, the terms of Eq. 5-46 (shorthand
version without the superscript i) become:

Vv a% (pv) = <% (’hi)> Az (6-36)
Vr W = A Wi{v;}A2) (6-37)

where the axial velocity associated with the diversion cross-flow has been
taken as: {v)} = {pvxv}/{vy}.

Ve Ax(yAyA{;)Uzvy}) _ Ay(Wiyj{U:}AZ) (6-38)
12 ———A’(Y'Xipv%}) = A,(ifv) = A iy) (6-39)
VT7V<P>gz = Aﬁ<p>ngz (6-40)

vy 808P _ fa iy (©-41)

Az
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n;ihiI(Aﬁ)z ;J pvzhdA
(Aﬁ)z,+AZ A1—Z q" dPhdZ = (ql' )fb AZ

Az Py

P

Z, + Az, 3

H {h*}Az_ _” pv,hdsdz
Az ‘<y \\
‘\ W':; hi AZ

Wi Az

Figure 6-7 Subchannel control volume for energy (enthalpy) balance.
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Madnad) |y A0mAT) _ 5o, oy 1a, (6.42a)

V i
T Ax Ay 7 ’

where for single-phase flow utilizing Eq. 6-15 becomes:
=~ 2 Wu (vll Uz_j)AZ (6-42b)

where in this case for velocity, again no distinction is made between area and
volume-averaged properties of subchannel i. The effect of the axial component
{r.2} has been neglected:

VIYW(R,) = Vi(R,) = — {i—'zz} Az (6-43)
where {F;,/Az} is the subchannel circumferentially averaged force per unit
length of the fluid on the solid for vertical flow over the solid surfaces in the
control volume. Note that the minus sign must be introduced in Eq. 6-43
because (R,) and {F;,/Az} are defined as the force of the solid on the fluid and
the fluid on the solid, respectively. This difference arises because in subchannel
analysis the force that is conventionally expressed and correlated is the drag
force, i.e., the force of the fluid on the solid. Dividing each term by Az and
regrouping Eq. 5-46, we obtain:

2 iy + 2 wiol) + 202 dol

A Fiz
{p 2 Wl] ( Uzi Uzj) - {A—Z}

—As(p)g:
(6-44)

where again A, has been written as A.

Figure 6-8 illustrates the axial momentum that crosses and the axial forces
that act on the subchannel control volume surfaces.

In some thermal-hydraulic computer codes such as TORC, LYNX, and
various versions of COBRA, different symbols are used in the conservation
equations as follows:

symbol for axial direction: x
symbol for the effective axial velocity associated with the diversion cross-
flow: vy,

For example, a change of z to x and v} to vy will transform Eq. 6-29 into the

form of the COBRA code axial momentum equation, as will be shown in
Section VI.

E Transverse Linear Momentum Equation

For each transverse momentum control volume, transverse flow is allowed
only along one dimension. Adjacent subchannels (upon which mass, energy,
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Figure 6-8 Subchannel control volume for axial momentum balance.

and axial momentum balances have been taken) are thereby coupled by similar
transverse control volumes that each admit only one-dimensional transverse
flow rates. Specifically, typical subchannels i and j are coupled by a transverse
flow rate Wj across the gap. The x-direction momentum equation analogous to
equation 5-46 (shorthand version without the superscript i) may now be applied
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to the control volumes shown in Figure 6-3. Taking the control volume lying in
the x-direction between the rows of rods as an example:

Vr = AfAx' (6-45)
and
Ar = AzAy = Azs (6-46)

where Ax' may also be replaced by /, the transverse length, which is approxi-
mately the distance between adjacent channel centroids. Note that y,, and y,,
for this case are unity (ya, is also unity, but the term involving the y-direction
equals zero because vy equals zero) so that Eqs. 6-21a and 6-22a become identi-
cal, i.e.

V1Y, = AzsjAx’ (6-21b)
Vi¥ax = sjAx'Az (6-22b)

By ignoring shear stresses and gravity terms, Eq. 5-46 (written for x-direction)
reduces to:

3{puy) + A{pvd} + A{pvyv,} + A{pv,v;} _ _ Ax{p}
ot Ax' Ay Az Ax'

By neglecting the shear stresses, no turbulent mixing term will appear in the
final results. Multiplying each term of Eq. 6-47 by V1 and making use of defini-
tions and parallel assumptions to those used previously, we can show that:

+ (R (6-47)

i —_ i y ' — i X ] ~
I (pv) Vi = T (pvy)si)Ax'Az = Py (W)Ax'Az (6-48)

where (pv,) has been taken equal to {pv,} at plane A, of Figure 6-3;

Vr- % {pvd} = A (Wi{u DAz (6-49)
where the v, velocity on faces B, and B, equals the v, velocity on face A;;
V- -2—; {pvsvy} = 0, because vy, = 0 (6-50)
Vi 52 o) = AW3AY (651)
Where the v, velocity on xy plane equals the v, velocity on face A;;
Ve 25 (6} = Ac(sl{phAz (6-52)
Vi (R = — { Fiy } 24x'Az (6-53)
2Ax'Az

Where {F;,/2Ax'Az} represents the frictional and form loss or the total drag
force per unit area where the area is taken in the xz plane.
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Because this {Fi/2Ax'Az} force is a combination of friction and form ef-
fects, it is defined in a way fundamentally different from {F;,/Az} in Eq. 6-44,
which is a force per axial length. Additionally, Eqs. 6-48 and 6-49 reflect the
major assumption that the vy velocity that exists on the faces B, and B, of the
transverse momentum control volume is equivalent to the v, velocity on face A,
of the axial momentum control volume (see Figure 6-3). Similarly, Eq. 6-51
embodies an assumed equivalence of the v, velocity in the control volume faces
in the xy plane to that on face A,. Dividing Eqgs. 6-48 through 6-53 by Ax'Az, the
resulting equation is:

LW+ Wi + WD = ) oD - { ] (659

where A4, and A, are written simply as A.

Figure 6-9 illustrates the momentum that crosses and the force that acts on
the control volume surface. Now if the control volume of Figure 6-3 is selected
so that there is no transverse flow through the lateral faces, then we must select
a value of Ax’ = [ to allow either A,({vx}) = 0 or v, = 0 at planes B, and B,.
Upon such a control volume selection, Eq. 6-54 reduces to:

d x A x Fix
3 Wy + Az (Wilvr) = - —l (A{p} — {lAz} (6-55)

The steady-state form of the transverse momentum equation can be found by
taking d(Wj)/ar = 0, then:

A _[Fy
A—Z(Wij{vz})— (A{P}) {IAZ} (6-56)

AXW (v, ), = | _[pvxv ds dx<—

2 A"s

s’
i
pI-AK' - { Fx AX’AZ pI
T = C2AXA - — 1 Plar
{Ux }AZ—II Pvazds az 1—'F'§—}AX'AZ Wij{”x }AZ=I J’ ,pv,vzds dz
azsf 2AxAZ - ar’?,
| i,
az ,

.

Figure 6-9 Subchannel control volume for transverse momentum.

Ax'W {v, }. Al_f I pu,v, ds dx

ax s|,
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The simplest form of the transverse momentum equation is applicable in assem-
bly-wise analysis where the term A(Wj{v,})/Az is negligible, yielding:

S agon + (Bt < o (6-57)
Here, Fix/IAz has been written as F;/lAz and s} as s since Eq. 6-57 is a
generalized result that represents the transverse control volume between any
subchannel j adjacent to subchannel i.

The above-mentioned cases, in the forms employed in various thermal-
hydraulic codes, are presented in Table 6-2. Table 6-3 summarizes the subchan-
nel continuity, axial momentum and enthalpy conservation equations derived
in this section.

Example 6-1 Computation of mixing flow rate for a test assembly

ProBLEM Find the mixing flow rate, wi;D, between two adjacent channels i
and j as shown in Figure 6-10. The channels are geometrically identical so
that no diversion cross-flow occurs. Channel i is seeded with 400 ppm of a
dye at the channel inlet. The dye concentration at the exit of channel j is
121 ppm. The channel’s length is 3.66 m, and flow rate in each channel is
0.29 kg/s.

mc(0) | mco

Figure 6-10 Mixing schematic.
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SoLuTioN Since the adjacent channels are geometrically identical, no di-
version cross-flow occurs. Further, for dyes in water, molecular diffusion
is normally many times smaller than turbulent effects. Hence Wi}"D = W,'JD_
In this case the subchannel energy equation (Eq. 6-35) can be written in

terms of tracer concentration simply as:

d(m; C)

—g = ~WilCi-G) (6-58)

Figure 6-10 illustrates the mixing process. The flow rate m; is a constant
and equal to m;. Also the mixing flow rates are equal. Hence:
m=m;=m
wi=wP=w

’

The subchannel equations are:

dC, W
s + — (C C)=0 (6-59)
WI
ZC +—(G-C)=0 (6-60)
Z

For this two-channel case:

Ci(z) = Co — Gi(2)
where Cy = C;(0).
Substituting this result into Eq. 6-60 yields:

dcC; W
dJ + — (2C -Cy)=0 (6-61)
The solution of this equation, taking W’ as a constant, is:
=G G [_ w ]
Ci(2) = 5 + 5 exp 2 o Z (6-62)
The initial condition for the untraced subchannel, j, is:
C(z=0=0
Using this result, Eq. 6-62 becomes:
Ci(z) = G [l — exp (—2% z)] (6-63)

which upon inversion is

w =-2¢n (1—2

Ci(2)
2 ) (6-64)

Co
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Utilizing the experimentally determined dye concentration at the channel

exit, z = L, yields:
. —0.290 < (121))
W= —== —
26.66) "\ = 2 300

kg

W’ = 0.0368 ——
m-s

V APPROXIMATIONS INHERENT IN THE
SUBCHANNEL APPROACH

The subchannel approach is based on two fundamental premises:

¢ The control volume is fixed—generally as the fluid volume between rods. The
crucial point is that a definite selection is made from the myriad possibilities
of specific control volumes. This selected volume is used for all conservation
equations except the transverse momentum equation.

* Any lateral flow is directed by the rod-to-rod gap through which it flows and
loses its sense of direction after leaving the gap region. For this reason
transverse momentum flux contributions in a three-dimensional application
are not represented completely. Further, a separate control volume is em-
ployed for the transverse momentum equation.

The specification of a standard control volume is not an approximation.
Rather, it is a step that narrows the user’s flexibility in applying the method by
dictating the region for which hydrodynamic parameters describing the array
can be determined. The advantage is the concurrent focusing of experimental
and correlating effort to a fixed configuration for which semiempirical predic-
tions for constitutive relations are needed. These relations are discussed in
Section VII.

The treatment of transverse momentum fluxes is an approximation. A fully
three-dimensional physical situation can be represented by simply connecting
channels in a three-dimensional array. However, because the transverse mo-
mentum formulation is incomplete, situations that depart from that of a pre-
dominantly axial flow field cannot be well represented. An example of such a
situation is flow under conditions of mixed natural and forced convection in rod
bundles. Table 6-4 contrasts the conservation equations developed in the pre-
vious chapter for the porous body with those of the subchannel formulation.
The porous body equations contain several more terms than do the correspond-
Ing subchannel equations. However, only the omission in the subchannel trans-
verse momentum equation (Eq. 6-54) of terms 2b and 6b which exist in the
Porous body formulation (Eq. 5-46) are inherent approximations.

_ All other deletions could be directly reintroduced into the subchannel equa-
tions. The criteria for the reintroduction is only the numerical significance of
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the term with respect to other terms in the equation. These deleted terms are
summarized below.

Energy equation (Eq. 5-59)

Term 6b. Energy directly deposited in the coolant volume

Term 6¢. Energy from viscous dissipation

Term 5c. Molecular and turbulent energy exchange in the axial direction
Axial momentum equation (z component from Eq. 5-46)

Term 6a. Molecular and turbulent momentum flux in the axial direction
Transverse momentum equation (Eq. 5-46)

Term 4. Transverse gravity or other body force

Term 6a and 6¢. Molecular and turbulent momentum flux in the transverse

direction.

Finally, note that although the subchannel equations are written with the nota-
tion W-;‘ M and W,’f H, which per Egs. 6-15 and 6-16 includes both molecular and
turbulent transfer of momentum and energy, in practice for high Prandtl num-
ber fluids the molecular effect is small.

Example 6-2 Computation of transverse molecular momentum flux and dis-
tributed resistance for a PWR rod array

PrOBLEM Show that the transverse molecular momentum flux is several
orders of magnitude less than the distributed resistance for flow in a typical
PWR rod array.

SoLuTioN Referring to the porous body axial momentum equation in Ta-
ble 6-4, we will compare the following terms:

* Molecular portion of term 6b—transverse molecular momentum flux:
A y(yA yi(y){Tyz})
Ay
¢ Distributed resistance: Yv/(R,)

Take PWR water properties as:

=963 x 1075 kg/m-s

p = 726 kg/m?
and an axial velocity v, of
v, = 6 m/s.

For a typical PWR fuel bundle array:
Ay = P = (P/D)D = (1.33) 9.5 mm = 12.6 mm
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From Example 5-1, we obtain:
Yv = 0.554
Yay = 0.246

Taking the molecular portion of the term ‘¥{r,,} as u(dv,/dy), the trans-
verse molecular momentum flux becomes:

Ay(yAyi(y){Tyz}) — (szz>
by e Gy

Now assuming that Av, is normally, at most, of order v,, take it as 2v,:

y [A_zu_] __0.246(9.63 X 10-%)(2)(6)
Al Ay~ (0.0126)2

= —1.79% (—1.14 x 1072 Ib/ft3)

From Example 5-2, the distributed resistance is:

YR, = =7v1.63 [M] %

with i(p) in kg/m3 and ‘(v,) in m/s. Substituting the numerical values:

726(6)2]
2

Yvi(R;) = —0.554(1.63) [

= —11,801 % (—75.12 Ibg/ft?)

Summarizing, for this PWR example:

Pa

Transverse molecular momentum flux = —1.8 o
. . Pa
Distributed resistance = —11,801 -

VI COMMONLY USED FORMS OF THE SUBCHANNEL
CONSERVATION EQUATIONS

Since the introduction of numerical subchannel analysis methods in the 1960s,
a great number of computer tools have been developed for utilizing this ap-
proach. In this section the conservation equations of a typical method for PWR
analysis, the COBRA family, will be presented and be shown to be equivalent
to the set derived in Section IV (see Table 6-3). The homogeneous equilibrium
set of conservation equations of COBRA IV will be used, which were pre-
sented by Stewart et al. [27]. The COBRA subchannel control volumes and
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Uy

Fuel Rod

V= AAX Figure 6-11 Subchannel control
volume for mass, energy, and ax-
ial momentum balances. (From

Uy Stewart et al. [27].)

their associated nomenclature are illustrated in Figures 6-11 and 6-12 for the
mass, energy, axial momentum, and the transverse momentum balances, re-
spectively. Note that the fuel rod array is triangular, which will allow demon-
stration of these conservation equations for a subchannel with nonorthogonal

fluid (rod-to-rod gaps) boundaries.

A Definitions

The nomenclature conventions in this text and COBRA are related as follows:

COBRA This text

U = (¢) Volume average

(d)a = {¢} Surface average

{¢} =4 Vector definition

[] =[] Matrix definition

S =5 Gap width

X;v, =z, Coordinate system and associated

velocity component definitions
w' = Wa;H Fluctuating cross-flow per unit length

for turbulent enthalpy exchange

(6-65)
(6-66)
(6-67)
(6-68)
(6-69)
(6-70)

(6-71)
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A Surface A’

fomcccacay
o

ephmmcscscncsnsacnncncey

o

T
l“

.
.
.
.
LT
.

S Figure 6-12 Subchannel control

| . _\__. volume for transverse momentum
v balances. (From Stewart et al.
Channel Centroid [27].)

The COBRA equations also make extensive use of vector and matrix notations
to define the connections among subchannels, rods, and walls as follows:

* Connections between subchannels use the matrix [D.] and its transpose [D{]

* Connections between rods and subchannels use the matrix [D,] and its trans-
pose [Df]

* Connections between walls and subchannels use the matrix [D,] and its
transpose [D1].

As an example, consider the net lateral heat conduction into channel j for the
three channel array of Figure 6-13. For this configuration, we can write:

Qi=C(Ti-T) - Cu(T; — T (6-72)
where:

Ci,Cn = constant functions of fluid conductivity and gap dimensions

An equivalent compact general form in terms of connection matrix operators
[D.] and [DT] and the diagonal matrix of conduction coefficients [C]ly is:

{0} = [IDT[ClalDclim{Tm} (6-73)
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' —;—»ql ! ——-5—>qm . :
Channel Channel Channel
' i j k :

Figure 6-13 Three-channel array for lateral heat conduction problem. (From Stewart et al. [27].)

defined as:
1 0
1 -1 0
[Dc] = [O : 1]; [DI1 =1} -1 1 (6-74 and 6-75)
0 -1

For those not yet skilled in matrix algebra, it is sufficient to think of these
operators as simply providing a shorthand way of managing the sign conven-
tions for exchanges among rod array regions.

B The COBRA Continuity Equation
The COBRA continuity equation is:

A= (v + 5 (puad + {DTKpu)sS = 0 (676)

In this case, since the sum of cross-flows around only a single subchannel is
represented, the vector {DI} has been used. The term-by-term equivalence
between the COBRA continuity form (6-76) and the form presented in Eq.
6-26 i.e.:

9 Amp
Ang (o) + 3+ X Wy =0 (6-77)

can be confirmed directly when the definitions presented in Section VIII are
employed.
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C The COBRA Energy Equation
The COBRA subchannel energy equation is:
((Ph))v t oY (PU h)aA + {DI}(pv,h)sS} =

{DTYPSHIDNT} + {DIHNLHIDWKT} +

4 (k55), - 00 [ 52 arm -

{DHw'IIDKA'}

This equation and our general Eq. 6-35 are equivalent when it is recognized that
COBRA Eq. 6-78 reflects the following differences from our general Eq. 6-35.
The COBRA equation:

(6-78)

* Represents the molecular and turbulent or eddy contributions to energy ex-
change separately

¢ Includes heat transfer from walls in addition to rods into the subchannel

e Includes axial heat conduction in the fluid

¢ Excludes the pressure work term.

D The COBRA Axial Momentum Equation

The COBRA axial momentum equation is:

2 (ovIVA + = (puBaA + (DTHpu,)sS =

: 6-79
A % (P)a = % (I_ + L) (pvoaA — A((p))vg. cosb — (6-79)

Cr{DTHw' DKy}

where 0 is the channel axis orientation angle measured from the vertical.

The COBRA equation neglects only the fluid-to-fluid viscous shear stress
relative to the general subchannel axial momentum equation, Eq. 6-44. Specifi-
cally, only turbulent momentum transfer across the fluid gap is considered, i.e.,
molecular effects that are included in our terms W;" are neglected in the
gOBRA formulation. The correspondence of the remaining termst follows

irectly.

force mass
———— Or = 3
distance ~ time

t These terms are expressed as
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E The COBRA Transverse Momentum Equation

For a triangular array the COBRA transverse control volume is shown in
Figure 6-12. This control volume, V', is bounded laterally by the fuel rod
surfaces and by planes joining the adjacent channel centroids and the fuel rod
centerlines. The upper and lower surfaces of V' are closed by the flow area A’,
and the pseudolength, /, is prescribed as:
A’
S
Note that [ is approximately but not exactly equal to the distance between

adjacent channel centroids.
For this control volume the COBRA transverse momentum equation is:

)

(6-80)

S
2 (oS + 2 puudnS + CADADT] {N S (pups cosap) =
N 18 (68D
7 IDH(PIa} = 57 Kalpv)s — ((pDv-g.S sinf cosp

This formulation represents the following approximations:

1 Net lateral momentum flux term This net flux is expressed in terms of lateral
momentum carried by cross-flows through the adjacent gaps, i.e.:

(pvd)sSAx

Each gap is assigned a direction angle, 8, from some arbitrary reference
direction. The angle AB is the difference between the reference angle of a
communicating gap and the gap of interest. For the transverse control volume
of Figure 6-14, the gap of interest has a direction angle 3,, and the four commu-
nicating gaps have reference angles 3,, B3, B4, and 8s. A factor C;, typically
taken as unity, is provided to allow for the fact that the lateral momentum flux
through a gap may be affected by the adjacent upstream gap conditions. Fi-
nally, utilizing the binary operator N to indicate the direction of flow, i.e., +1
for cross-flow into subchannels i orj and —1 for cross-flow out of subchannels
orj and the connection matrices defined previously, the net lateral momentum
flux out of V' is written as:

C{DJDTKN(pv3)sSAX cosAB}
2 Pressure surface force The total lateral pressure force properly given by the

difference in forces on the control volume lateral surfaces is approximated by
the subchannel area averaged pressure differences, i.e.:

SAX{DH(p)a}
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Reference
Direction

Positive

< S Direction

for Gap 2

Figure 6-14 Rod orientation from vertical and gap reference angles in plane A. (After Stewart et al.

1271.)

3 Lateral gravity force Provision for inclined bundles is allowed if the refer-
ence direction for 8 is chosen parallel to the plane described by the bundle axis,
and the vertical and 6 is the angular orientation from vertical. Then this force is:

—{(p))v' g.SIAX sinf cosfB

The correspondence between the COBRA formulation of Eq. 6-81 and the
general subchannel transverse momentum equation, Eq. 6-54, is not as direct
as for the other conservation equations because these two forms include differ-
ent levels of approximation. The two levels of difference are:

1. The general transverse formation has replaced all terms involving pv, and a
lateral area by the cross-flow Wj by invoking the necessary approximations
as described in Section IVE.

2. The COBRA equation has replaced all lateral length differences Ax' by the
pseudolength ! defined on a geometric basis by Eq. 6-80.

With these differences and the differences in symbol definitions in mind, the
Temaining terms correspond.
Table 6-5 summarizes the COBRA subchannel conservation equations.
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VII CONSTITUTIVE EQUATIONS

In addition to the conservation equations, it is necessary to specify fluid prop-
erties and constitutive equations to form a closed set of equations for solution.
The fluid properties are obtained from an equation of state. The parameters for
which constitutive relations are needed can be identified by inspecting the
subchannel conservation equations.

The generalized form of the equations of state is:

p = ph,p) (analogous to Eq. 2-1)

However, consistent with our assumption in development of the axial momen-
tum equation of neglecting sonic effects, we assume that density may be evalu-
ated as a function of enthalpy only:

p = p(h,p*) (analogous to Eq. 2-14)

where p* is a reference pressure considered constant for the problem. The
equation of state, p = p(h,p*), is for an incompressible but thermally expand-
ing fluid. This approach was introduced by Meyer [20] as the momentum inte-
gral model and is judged most appropriate for a wide class of intermediate
speed reactor coolant channel transients. The complete spectrum of models
studied by Meyer for the treatment of transient fluid flow through reactor
coolant channels is presented in Chapter 2.

The parameters for which constitutive relationships are necessary are
listed in Table 6-6. Generally, steady-state formulations are used for both
steady and transient situations. Differences between formulations under forced
and mixed convection conditions are recognized although forced convection
formulations are generally used due to the lack of mixed convection correla-
tions, The parameters are discussed individually in the following sections.

A Surface Heat Transfer Coefficients (Parameter 1) and Axial
Friction and Drag (Parameter 4)

Correlations for these parameters have been presented for single-phase flow in
circular tubes in Chapters 10 and 9 of Volume I and for two phase flows in
circular tubes in Chapters 12 and 11 of Volume 1. Adjustments for rod arrays
having pitch-to-diameter ratios below which the equivalent diameter approach

Is adequate are presented in Chapter 9 of Volume I and Chapter 7 of this
volume.

B Enthalpy (Parameter 3) and Axial Velocity (Parameter 6)
Transported by Pressure-Driven Cross-flow

In reality, enthalpy and axial velocity gradients exist in the vicinity of the gap
across which cross-flow occurs. Therefore, the value of enthalpy and axial
velocity which is laterally transported across the gap is not possible to specify a



sauepunoq
awnjoA [01jU0 [eIdle] Y] Yy3nouy) ssed jou saop
ysiym sded Sunesunwwod ayj ydnoiyy moy jo uorpgod

18-9 o) papnpout 10N 93 I0oJ S1uUnoddYy :sAewue Jenduell) J0J J03o8] MO[] °6
18-9 s $$-9 ,XV/%s 413u3]/YIpIA\ SWN[OA [OJIUOD JO ONjel 103adsy °g
18-9 oy $$-9 ¥ JUSIOYJI0I IO $3210J Selp WO pUB UOIIOLJ ISIdASURIY, L wnjuawou 3sI9Asue |
6L-9 *a 9 Za MOJ-SSOID UdALIp-aInssald Aq pauodsuen) AJ100[9A [BIXY ‘9
Hodsuel) WNUIWOW ISIIASURI)
6L-9 (uaInqim) aln -9 zh\s Yim pajerdosse Yi3us| jiun Jad 9381 MOY-SSOID AP ¢
6L-9 Y f 9 2y (VHd0)D) s101o8] 10 $3210] Selp pue uonpu ¢ wnjuawoul [eIXy
8L-9 M Se-9 M MOY-SS0ID uaALIp-aInssald Aq pajlodsuen Adjeyiuyg ¢
(dejnosow) H yodsuen) £319ud asi1aAsue)
8L-9 (3u3[nqIm) *a S€-9 :mxs Yim pajerdosse Yi3ua| j1un 1ad 3jel MOY-SSOId ANDIPYT T
(V¥40D) 1a1yja0
8L-9 H S€-9 a4('b) Jajsuel) 18Iy I0BUNS JO Ikl UONBIIUIT JBay Jeaul] | AS10ug
9L-9 92-9 dUON Anunuo)
uonenbyg loqui4g uonenby [oquiAg J91oweled uonenba
UoIBAIISUOD)

uonegnuiioy VY40

juajeainbyg

UOIB[NWIOJ [BI2UID)

A1ess303u 3IE SUOHIR[AI FANNIIISUOD YIIYM I10] SIdjoweled 9-9 dqe]



SUBCHANNEL ANALYSIS 245

priori. The normal approximation is to use the donor approach in which the
transported enthalpy or axial velocity is simply taken equal to the subchannel
value from which the cross-flow occurs, i.e.:

if Wi > 0, i* =k (6-82)
Wij < 0, h* = h.i (6-83)

The donor cell method is physically based, easy to compute, and enhances
computational stability but at the expense of high numerical diffusion that tends
to degrade sharp gradients across the computation mesh.

C Transverse Friction and Form Drag Coefficient (Parameter 7)

The transverse friction and form force are to be specified. Many formulations
have been proposed but since they each are empirically reduced from data, it is
essential that the form of the transverse momentum equation used to perform
this correlation be kept in mind. For example, if the data were interpreted using
a form that did not include lateral inertia, then the resulting net lateral force or
coefficient must include skin, drag, and lateral inertia effects. As Table 6-2
illustrates, the lateral inertia has not always been included in transverse mo-
mentum equation formulations.

Rouhani [26] reviewed the historical development of formulations for this
transverse force. For typical rod arrays the coefficient K in Eq. 6-81 can be
assigned a value of 0.5 or deduced from transverse flow correlations for faminar
or turbulent flow as applicable.

D Transverse Control Volume Aspect Ratio (Parameter 8)

The value of the parameter siyj/Ax’ or, equivalently, s/! also depends on the
form of the transverse momentum equation to be used. In practice, the control
volume is sized so that the term:

A
E (Wij{vx})

is made zero, leading to the use of equations of the form of Eq. 6-55. Physically,
this is equivalent to selecting Ax’ or equivalently /, long enough so that all
transverse flow between the adjacent channels is within the transverse control
volume, and no flow enters or leaves the lateral faces, i.e., v, = 0 at planes B,
and B, of Figure 6-3. Equivalently, the control volume could be sized to yield
A.({v,}) = 0, but this implies strong enough cross-flow to pass through the
control volume undiminished.

Since the gap width is established by the rod array, only Ax' or / is to be
selected. Based on the physical interpretation above, the value of Ax’ should be
directly proportional to the magnitude of the cross-flow. For typical rod arrays
with predominantly axial flow, experience has shown that a value of / equal to
twice s, i.e., s/l = 0.5, yields satisfactory results. As the cross-flow rate in-
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creases, the value of / would be expected to increase, causing s// to decrease.
This trend has been confirmed by Brown et al. [3] who analyzed two-channel
data of varying shapes and blockages. However, care must be taken in analyz-
ing blockage situations to ensure both that the numerical tool used can handle
flow recirculation situations and that use of an axially variable s// is allowed to
account for diminishing cross-flow downstream of the blockage.

E Effective Cross-Flow Rate for Molecular and Turbulent Momentum
and Energy Transport (Parameters 2 and 5)

The evaluation of the terms Wi}‘M and Wi}‘“ will include:

e Molecular and turbulent contributions
¢ Single- and two-phase effects.

The molecular contribution is directly proportional to the axial velocity and
temperature gradients across the gap separating the subchannels. The turbulent
contribution must be modeled phenomenologically. Two options exist. One is
to assume that momentum and energy are transferred across the gap by the
exchange of globs of fluids of equal mass. The other is to assume that the globs
of fluid being exchanged are of equal volume. Either of these models should be
satisfactory when the resulting differences are compensated for by the diver-
sion cross-flow rate. The specific procedure of partitioning the transverse mass
flow rate between the mixing and diversion cross-flow phenomena is not of
concern as long as the applications are within the range of experimental obser-
vations.

Let us develop the equi-volume model since it is reducible to the equi-mass
model when applied to constant density, single-phase flow situations. The con-
ceptual hypothesis of equal fluid volumes V being exchanged between subchan-
nels across their separating gap is sketched in Figure 6-15. Expressing this
hypothesis mathematically:

Vi =V} (6-84)

where the following superscript notation will be employed:

fluctuating (in time): ' B
time average: — (note that g and G are spatial averages).

Since V' = v;A, where A is an effective cross-sectional area, we take the
volume-for-volume exchange model as implying equal transverse fluctuating

fluid velocities, i.e.:
Ui'j = vj; (6-85)

The fluctuating transverse mass flow rate per unit length across the gap be-
tween subchannels i and j is:
D piU{iSijAZ

wiP = BRI (6-86)
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Subchannel i Subchannel j

Figure 6-15 Hypothesis of equal fluid volume mixing between subchannels.

Rewriting Eq. 6-86 in terms of mixing length theory, obtain:
W;P is proportional to p; [l T:yi] Sij = Pi ] ) Sij

and therefore is proportional to p; §s;,- (6-87)

where [ is the turbulent mixing length, and ¢ is the eddy diffusivity.

Defining / divided by the constant of proportionality of Eq. 6-87 as z], Eq. 6-87
becomes:
'D €
Wi~ =pi(-5) si (6-88)
Analogously, the fluctuating transverse mass flow rate per unit length from
subchannel j to i is:
, €
leD = Pj <‘T> sij (6-89)
Zij
since the values of the geometric parameters z and s are independent of the

sequence of the subscripts. The ner fluctuating transverse mass flow rate per
unit length between subchannels i/ and j, W{Bj, is equal to:

Wl = wiP - WP = (ZET) si(pi — pj) (6-90)

ij
The physical character of transverse mass flow rates for single- and two-phase
flows can be seen directly from Eq. 6-90. In the single-phase case in which the
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subchannel densities are effectively equal, Eq. 6-90 yields:

s W2 =0 .., the net fluctuating mass flow rate is zero.
. Wi}D = W;P i.e., the volume-for-volume exchange model reduces to the
mass-for-mass exchange model.

In two-phase flow, since the subchannel densities are not equal, the net fluctu-
ating mass flow rate is nonzero. For example, if p; > pj, the net fluctuating
mass flow rate is from subchannel i to subchannel j and given by Eq. 6-90.
Utilizing the general two-phase definition of density, Eq. 1,5-50b in Eq. 6-90,
and taking the phasic densities p, and p, as constant, the net fluctuating mass
flow rate equals:

Wi = WiP = W® = 2 (pe ~ pola; — @) (6-91)
L]

where a; and «; are the void fractions of channels j and i, respectively. Eq. 6-91
illustrates that the net transverse flow rate is from subchannel i to j if the void
fraction is larger in subchannel j than i. This net flow rate is composed of a net
mass of liquid proportional to p¢(a; — a;) which is transferred from subchannel i
toj and a net mass of vapor proportional to p,(aj — a;) which is transferred from

subchannel j to i.
Both energy and momentum transfer between subchannels must also be
characterized. We treat turbulent energy transfer explicitly next. The energy
transferred per unit time across the gap area per unit length has been written as:

(@"s)ir; = WiPhi — WiPh (6-8)
Further development of this equation depends on whether the flow is single or
two phase.
1 Single phase Equation 6-11 is the result for single-phase turbulent flow:
(") = Will(h; — ) (6-11)

The molecular contribution to the energy transfer is:

(qus)ﬁ(—))glduction — L (__k £ ) ds (6'92)

which for a constant temperature gradient along the gap can be written in terms
of a laminar subchannel mixing length 2 as:

T, — T

(qus)icgljlduclion = k %l sU (6‘93)
ij
where:
d i 4
o) _Ti—-T (6-94)

an gap Zl.l"
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The effective mixing length, zUL is that distance defined by Eq. 6-94 which
allows the gradient across the gap to be expressed in terms of the available
subchannel average temperatures T; and T;. These parameters are illustrated in
Figure 6-16 which shows the difference between the subchannel centroid-to-

centroid distance n;; and the laminar subchannel mixing length z}-.

Centroid of
Subchannel j

Centroid of
Subchannel i

—y
* Ti
T
aT \ T
d IGap < '/_
o
y
T T_.T\'(— -7
Ty
/A\/ ]
\
ar N\ T
an | Gap !
.
|<—77a1—>l y

_Figure 6-16 Difference between the subchannel centroid-to-centroid distance and the laminar mix-
Ing distance.
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Summing the turbulent and molecular contributions from Egs. 6-11 (drop-
ping time-averaged overbars) and 6-93 we obtain:

@5y = k2 55+ Witk = ) (6-95)
ij
This result has been written compactly in terms of WiH as Eq. 6-16:
(q"s)ie; = Withi — hy (6-16)

where W*H includes both molecular and turbulent effects. Comparing Eqs. 6-95
and 6-11, it can be seen that W*H equals:

i 4 g (6-96)

which can be expressed in terms of the Prandtl number and eddy diffusivity
using Eq. 6-88, i.e.:

I
Wi = us; [L_Pr ey] (6-97)

Two principal dimensionless parameters have been introduced to charac-
terize Wi}‘”. These are the mixing Stanton number M;; and the mixing parameter
B. They both are formed by dividing the transverse mass flow rate per unit area,
i.e., the transverse mass flux Wi}*”/sij by the axial mass flux G.

Transverse mass flux _ Wit/s;

Dimensionless mixing parameter = Axialmass iux ~ — G (6-98)

The parameters M;; and B differ with respect to the exact axial mass flux
employed. The mixing Stanton number employs that of subchannel i, G;,
whereas the mixing parameter 8 employs that of the interacting subchannels G.
Hence:

WE'FH
SijG'
W*H

RASTE -
B= G (6-100)

Mij = (6-99)

where:

- _ GA; + G4
C="A+A ©-101
i j

Single-phase correlations. Evaluation of W Hby Eq. 6-97 requires approxima-
tions for the eddy diffusivity and the laminar and turbulent mixing lengths.
The laminar mixing length is an effective constriction factor for conduction
across the gap. It can be evaluated directly from the temperature field of a
distributed parameter solution. A complexity arises if significant energy trans-
fer between subchannels occurs via the fuel and/or clad. This would be favored
if the conductivity and thickness of the clad and the conductivity of the fuel are
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important relative to the coolant conductivity and gap dimension. The laminar
mixing length is obtained by equating Eqs. 6-92 and 6-93 yielding:

k(T - T)

1 aT
}; [‘{“i - kE’T gap ds:|

Eq. 6-102 can be evaluated when the temperature and axial velocity fields are
available since the average subchannel temperature equals:

n—fknﬂA (6-103)

—]L%m

and the temperature gradient across the gap is directly available. Since the
velocity and temperature solutions are dependent on boundary conditions and
initial conditions, it should be expected that the mixing lengths similarly de-
pend on these conditions. For example, France and Ginsberg [9] have evalu-
ated mixing lengths for the two-subchannel geometry of Figure 6-16 for a uni-
form velocity profile and two different developing temperature fields, i.e.:

L —
Zij_

(6-102)

Case 1. Unheated rods with subchannels i and j at different inlet temperatures,
i.e., an inlet source of heated fluid where the dimensionless temperature T*
boundary conditions are:

T¥z=0)=0
THz=0) = |
where:
T* = To(z) — Tiz)
" Ti0) — Ty0)

Case 2. Heated rods (rod i and rod j) at different heat fluxes but identical inlet
subchannel temperatures

where:
- Tr
B (qHD/kcoolanl)

and @" is the subassembly average fuel element heat flux.

T*

Their results that are shown in Figure 6-17 for a triangular geometry of P/D =
1.2 demonstrate the existence of a development length with asymptotic values
dependent on boundary and initial conditions. Table 6-7 summarizes the limited
investigations to date in which mixing lengths have been determined. All inves-
tigations have used a slug, not a laminar velocity profile. In principle, the
approach described here can yield turbulent as well as laminar mixing lengths if
the corresponding temperature and velocity fields are available.
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Figure 6-17 Laminar mixing lengths. (After France and Ginsberg [9].)

The turbulent mixing flow rate, which from Eq. 6-97 is equal to:

H_ S £ i
Wil =ty (6-104)

requires introduction of assumptions for the parameters /v and zi,T . The param-
eter €/v is typically taken proportional to the Reynolds number as:

S = K'Re? (6-105)

The turbulent mixing length has not been consistently represented by investiga-
tors. Some have scaled it with fuel rod diameter D, others with gap width, and
others with both. The latter approach yields:

J = KD (EDJ) (6-106)

where D is the fuel rod diameter. Substituting the results of Eqs. 6-105 and
6-106 into Eq. 6-104 we obtain:

Wi"H ’ . 1-r
- =g Re? (fﬂ) (6-107)
4
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Now if subchannels i and j are not of the same shape, an average Reynolds
number is used, i.e.:

Re!/ + Re? Re? \°
Reh:#ﬁ:%[l * <%)] (6-108)

For equal axial pressure drop in the subchannels and equal property values:

V' D (1 +m)/2-n)
- (2
) €j
Hence:
Re’.’ D 3b/(2~n)
Re® = —= [1 + (D—) ] (6-109)

Substituting Eq. 6-109 into 6-107 yields the general form of the correlation for
turbulent mixing flow rate, i.e.:

' D 3bl(2—n) . I-r
ol @) ew
g &

K
where: K = 5 (6-111)
Rogers and Tahir [24] have correlated the available literature for the various
types of interacting subchannels of design interest. The mixing flow rate in Eq.
6-110 has been intentionally written without superscript H because the correla-
tion of Rogers and Tahir [24] is not explicitly for energy mixing.

Table 6-8 summarizes their recommendations for the parameters K/K,, b and r
of Eq. 6-110.

Example 6-3 Mixing flow rate for square and triangular subchannels

ProBLEM Consider mixing across the gap separating a square and triangu-
lar subchannel. Demonstrate that the mixing rate from the square to the
triangular subchannel Wj is equal to that from the triangular to the square
subchannel Wj (as it should be for single-phase flow).

SoLuTioN From Eq. 6-110 for equal properties:

=

D 3b/I2-n)

1+ | =2

_ E)b (De.)
—(Rej —_— (6-112)

Wj'i D\ %2-m
+ ==
t (5)
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Table 6-8 Empirical mixing parameters for clean geometries

Array parameter Trangular-triangular Square-triangular Square-square
K/K, 0.0018/2 0.0027 0.005/2

r 1.4 0.95 0.894

b 0.9 0.9 0.9

Restrictions:

Re > 5,000
% > 0.032

Note: % S =1.273 (g)z - L
% angulr ay = 1.101 (g)z -1

(After Rogers and Tahir [24] for Eq. 6-110.)

For equal axial pressure drop in the subchannels:

K!) ~ (&)(Hn)la-n)
(vj -5 4-115)

. b ViDe b De- 3b/(2—n)
(k) = (72 - () @1y
Re; VD, D,

Therefore we obtain the desired result that:

Hence:

3b/(2—-n)

S I A et

Wl/ De. 3b/Q2-n) ( )
Wi _ <_> A0 VAR, (6-114)

Wj,i D (D 3b/(2—n)
1+ D_)

¢
The results of Table 6-8 are for subchannel geometries without the pres-
ence of spacers, i.e., clean geometries. Also, they have been deduced from
experiments in which subchannel interactions have been measured using a
variety of tracers. If a radioactive dye tracer is used, then W represents an
effective transverse flow for mass exchange, i.e., W.-}D. Conversely, if a hot
water tracer is used, then Wj represents an effective transverse mass flow
rate for energy exchange, i.e., Wi!. Finally, in the axial momentum bal-
ance, the effective transverse mass flow rate for momentum exchange WM
is needed. In practice, this distinction is not maintained since there have



256 NUCLEAR SYSTEMS II

not been sufficient data available for correlations like that of Rogers and
Tahir [24] to differentiate between these transverse mass flow rates. Sub-
channel computer codes like COBRA have recognized the distinction be-
tween these factors but crudely relate the momentum and energy terms by
a single factor fr, which in practice is invariably taken as unity:

it =wM (6-115)

A formal expression for W;iP starting with the defining balance equations
can be developed analogous to Egs. 6-15 and 6-16 for W;™ and W;":

. (pi — pi)
(j$)k,; = WiP —'7—3—J (6-116)

The analogous parameters for describing molecular and eddy diffusivity of
mass, energy, and momentum are summarized in Table 6-9. The corre-
sponding fluxes of mass, momentum, and energy in the x-direction are
given by Bird et al. [2]:

) d
Jax = —Dap p (pa)

d
Txz = —V a (Pl’z)

d
qx = —a - (pcT)
where ja, is the flux of species A diffusing through a binary mixture of A
and B because of the concentration gradient of A. Note, although 7,, is
shear stress in the z-direction of the fluid surface of constant x, it can be
equally interpreted as the viscous flux of z-momentum in the x-direction.

Example 6-4 Computation of mixing flow rate

PROBLEM Compute the mixing flow rate between interior channels of a
typical PWR at inlet conditions. Express it as Wj; and 8. Take the subchan-
nel inlet flow rate as 0.290 kg/s as in Example 5-4.

Table 6-9 Parameters for describing molecular and eddy
diffusivity of mass, energy, and momentum

Mass Energy Momentum
Molecular diffusivity (cm?/s) D a v

D 1 1
D/v (dimensionless) - = — - _ Y- 1

v Sc v Pr v
Eddy diffusivity (cm?/s) €p €y M

Effective mixing flow rate (g/(cm-s)) w;P wiH wM
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SoLuTioN The PWR array is a square lattice. The fluid viscosity at PWR
conditions is 9.63 X 105 kg/m s or Pa-s. The correlation of Rogers and
Tahir (Eq. 6-107) is appropriate if Re > 5,000 and s;/D > 0.032. For this
case:

0290 (9 55 x 1073 m)

e = UL _ 1D _
T om pA kg
9.63 x 1073 —=-(87.8 x 10°° m?)
=3 x 10’
since:
2
- . _ mD? _ 2[(£)_E]= 2[ 2_EJ
A=P 4 =D D p (9.5)% | (1.326) 4
= 87.8 mm?
Also:
% = P—BQ =0.326

Hence the parameters of Table 6-8 are applicable, and Eq. 6-107 becomes:
% = .2_K Re? ( U) ”
kK D

when Eq. 6-111 is utilized.
s 0.106
Wi = p(0.005)(Re)*?® <5>

— 0.0363 &
m-S

from Eq. 6-100:

— W|*! H/S.’!'

G

For our case of PWR conditions and use of the Rogers-Tahir correlation,
take Wi = Wj and s; = s. Now:

s = 0.326D = 0.326(9.5) = 3.10 mm

m _ 0290 kg/s kg
A8 x10em 2025

G=Gi=
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and the transverse mass flux equals:

Wi_ 0033 _ . ke

s 3.10 x 1073 m? s
Hence:
Wils  11.71
= AR g = ——— =
B = 3302 0.0035

Example 6-5 Computation of the single-phase mixing flow rate for subchan-
nels of a BWR test model

ProBLEM Compute the single-phase mixing flow rate between the side or
edge and interior channel of a 3 X 3 rod BWR test model operating at a
mass flux of 1356 kg/m? s with the following dimensions.

Rod diameter, D, 14.478 mm
Rod-rod gap, P — D, 4.267 mm
Rod-wall gap, g, 3.429 mm

Radius of corner, 10.2 mm

Heated length, L, 1829.0 mm
Assembly face length, D, 58.826 mm

Assume that the relevant liquid water properties are:
p = 742.0 kg/m3
© = 945.5 x 1077 kg/ms

SoLuTioN First compute the assembly Reynolds number:
_ GDex
N
Obtain D, from Table J-2 neglecting spacers (i.e., 8§ = 0) and rounded
corners (i.e., take assembly as square):
p.. - 4Ar _ 4Di = NonD?
‘T™ P, 4D+ N,mD
_ 4(58.826) — 97 (14.478)
4(58.826) + 97(14.478)

= 12.278 mm or 1.23 X 1072 m

_ 1.356 x 103 kg/m?s(1.23 x 102 m) _ ;
Re = 945.5 x 1077 kg/m-s =1.76 x 10

Re

Hence the flow is turbulent so that n = 0.2.
Also, s;/D = 4.267/14.478 = 0.295.
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Both restrictions of Table 6-8 are therefore met. These two channels, al-

though having different equivalent diameters, are on a square array.
Hence, select the square-square constants in Eq. 6-110 from Table 6-8

yielding:
' 1.5 0.106
_;'iz_'()_(ls_[] +<&) ]Reo.‘) (ﬁ) (
I 2 D, "\D

3b
2-n

since:

=15

Taking i as the side subchannel and j as the interior, from Example 4-3
where P/D = 1.295 and g/D = 0.237:

D°J'—1273(P)2— 1=1.134
D D =L
P 4g) T
—(2+22)-2
Dei D < D 2 _
D= PDtan - 07836
sij = 4.267 mm
D = 14.478 mm
GD,,
Rei = RCZ =
kg .
1.356 x 10° —=-(0.7836(14.48) x 10~* m]
945.5 x 10-7 XE_
m-S
= 1.63 x 10°
Wi _ 0.005 [ ( 1.134 )“5] sos (4.267 )o..«,
Wy _ 295.5

The effective transverse mass flow rate (from side to interior) is:

Wi = 295.5(945.5 x 1077)

= 0.028 kg/m-s
The effective transverse mass flux (from side to interior) is:
Wi 0.028

S T 4267 x 1053~ 0-36 ke/m’s
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Hence:

2 Two Phase In two-phase flow Wj is not generally equal to Wj;, so the single-
phase treatment of Eq. 6-8 is not applicable in this case. Rather, let us expand
Eq. 6-8 directly using Eqgs. 6-88 and 6-89 which define W;° and W; and the
assumption that the subchannel enthalpy is composed of both saturated liquid
and vapor. Hence, for the cross-flow originating in subchannel i:

' & ESji

Wilhi = 5 sipihi = 3 [pdl = adhe + pyaihy] (6-117)
y n

Utilizing Eq. 6-8 and the analogous result for cross-flow originating in subchan-

nel j, the net energy transfer across the gap becomes:

(@"5)ioi = S Wpche = pehe)(a; = )] (6-118)
ij

This result indicates that the net energy transfer is from subchannel i to j when
a; > a; since:
pehe > pghy (6-119)

as shown in Figure 6-18. This may seem paradoxical since it indicates energy
transfer to the higher void channel. This will be explained shortly. Now the net

1000
(=]
£
N \
~ N
< N Water
< 100 B,
e <
©
c <
€
£ N
8 Y
g 10 ™
_Q_ I
£ N
G N\
1
0.1 1 10 100

Pressure, p (MPa)

Figure 6-18 Saturated liquid-to-vapor enthalpy content ratio for equal volumes.
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energy transferred across the gap per unit length is also equal to the net trans-
verse mass flow rate times the effective enthalpy transported, i.e.:

(q"s )i:-.j = W:BJ P (6-120)

Under two-phase conditions, even when thermal equilibrium does not exist,
subchannel temperature differences are small enough so that molecular trans-
port contributions to heat transfer can be neglected.

Substituting the results of Equations 6-118 and 6-91 for saturation conditions
into Eq. 6-120, he¢ can be obtained as:

e = pehe — pghy _ (P — pohs + pglhs — hy)

eff = = 6-121
T pr—py Pr — Pg (€121)
From this result observe that hey < A since h, = hi, i.e.:
hi — pgh
piht — Pghty he (6-122)
Pt — Pg

The apparently paradoxical implication of Eq. 6-118 can now be explained, i.e.,
if net energy transfer is into subchannel j with the higher void fraction, does
that imply the void fraction is further increased? The component and net ex-
changes of mass and energy which are expressed by Egs. 6-91 and 6-118,
respectively, are illustrated on Figure 6-19. For «; > «;, observe that both net
mass and energy are transferred to subchannel j. While net vapor is transferred
from subchannelj to i, a larger mass of liquid is transferred from subchannel i to
J. Now since this net mass carries enthalpy of a value h. less than saturated
liquid, the void fraction of j is not increasing. Rather, the void fraction de-
creases since mixing decreases the specific energy content of the coolant in the
hot subchannel j.

In the two-phase case, W;5; also must be correlated. It is expressed by Eq.
6-91 written for saturated conditions as:

W2 = & 24 (pr ~ po)la; = ) (6-123)
y

This equation indicates that the mixing rate is finite whenever a difference in
subchannel void fraction exists. This implies that mixing will occur so as to
equalize adjacent subchannel void fractions. A body of evidence has been
developed, however, which demonstrates that subchannel void fractions do not
equalize in rod bundles. In fact, a clear tendency has been demonstrated for
void to migrate to that subchannel with the larger cross-sectional area and
higher velocity. Figures 6-20 and 6-21 illustrate this behavior for a developing
diabatic two-phase case with uniform rod power for a square lattice test bundle.
The power-to-flow ratio g/m for subchannel 3 (corner) is the highest since its
area is the smallest as is its mass flux, as Figure 6-20 indicates. Even though the
g/m ratio is highest for subchannel 3, the quality as shown in Figure 6-21 is the
lowest of all subchannels. This behavior is also observed in developed adiabatic
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Figure 6-19 Mass and energy exchange between subchannels in two-phase flow.
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two-phase flow, although a fundamental understanding of this ‘‘void drift”
phenomenon is presently unavailable.

Two-phase correlations In practice, the mixing flow rate is reformulated to
limit this flow rate as the equilibrium void distribution is approached. Hence
Eq. 6-123 is reformulated as:

r Sij

Whi=e z_% (pr — pllaj — ai — (aj — A))equill (6-124)
ij

This result can be rewritten in terms of the single-phase mixing rate expressed
by Eq. 6-88 if p; is taken equal to ps. The result is:

Willte = WiPlsp 0la; — ai — (& — ai)equill (6-125)
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Figure 6-20 Comparison of subchannel flows for the three subchannels. (After Lahey et al. [18).)
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Figure 6-21 Variation of subchannel qualities with average quality for the three subchannels. (After
Lahey et al. [18].)
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where:

0

I

(elzf)1e ( 3 B&) )
(e/z])sp : pr (6-126)
Correlations for 6 and (aj — a;)equit are required to evaluate Wi’BjITP from Eq. 6-
125. Beus [1] developed a two-phase mixing model that suggested the concept
of this two-phase multiplier, 6, and demonstrated that it depends strongly on
flow regime. This multiplier has been modeled as increasing linearly with qual-
ity x between x = 0 and the slug-annular transition point xy. For qualities
greater than xy, 6 is assumed to decrease hyperbolically from its maximum xy .
The functions that describe this behavior are:

0=1+ 6y — Dx/xy) if x < xm (6-127a)

1 - X()/XM
xlxpm — xol xm

6=1+6Bu-—-1 ( ) if x > xm (6-127b)
where xy/xm = 0.57 Re®%7 from the work of Beus [1] and 6y = S from the work
of Faya [8]. Figure 6-22 illustrates this behavior.

The quality xy at the slug—annular transition point from Wallis’s [29] model
is:

[0.4(pf(pr — pg)gD)"?

o4
XM = G (6-128)

[(8)" <o

The remaining parameter (aj — ai)equil has been developed following the sugges-
tion of Lahey and Moody [17] as proportional to the fully developed (equilib-

)
[}
[}
[}
L

J Quality, x

b}

X | mmmm e

l_'
o><

)

[ 2

1

rRegion A Region B

Figure 6-22 Variation of the two-phase mixing parameter with quality.
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rium) mass flux difference between channels, i.e.:

@L—?% (6-129)
avg

where (G; — Gi)equil is in practice taken equal to the existing mass flux difference
Gj — Gi

and

(aj - ai)equil =K,

K,=14

It is important to recall that for two-phase flow, the assumption adopted here of
volume-to-volume exchange caused a net mass flow between channels. As
pointed out at the beginning of this section, this is satisfactory since it is to be
compensated by a reformulation of the diversion cross-flow rate. The work of
Faya et al. [8] is an example of a consistent treatment for diversion, mixing, and
void drift effect. This treatment was introduced into the two-fluid formulation
of the THERMIT code by Kelly et al. [16]. The effects of mixing and void drift
are significant at pressures equal to BWR conditions as illustrated in Figure
6-23. This figure compares additional results from Lahey et al. [18] with
THERMIT calculations that both included and excluded the mixing and void
drift mechanisms. Kelly et al. [16] also demonstrated that these effects are
reduced for higher pressures.

Example 6-6 Computation of two-phase mixing flow rates

ProBLEM For the BWR test assembly of Example 4-3, compute the two-
phase mixing flow rate (for enthalpy) and the energy transfer rate from the

0.5
X 0.4
=
5
3
O o3
[}
[ =4
c
(]
P =4
[3}
S o2
t‘I.J I p =689 MPa
o G=1450kgm2 s
S -
© 01 - -i‘ ----- THERMIT

g ;- ----- THERMIT - No Mixing
ot or Void Drift
H‘ ¥ ——x3=X
0.0
0.0 0.1 0.2 0.3 04 0.5 0.6

Bundle Average Quality, x

Figure 6-23 Comparison of measured and predicted exit quality in corner subchannels for BWR-
type, uniformly heated geometry. (After Kao and Kazimi [15].)
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edge, type 2, to an interior, type 1, subchannel for a bundle average quality,
(x), equal to 20 percent.

At BWR operating pressure of 70.3 x 103 Pa, the relevant saturation
properties for two-phase calculations are:

pr = 738.2 kg/m?
he = 1261.4 kJ/kg
pg = 36.0 kg/m?
hy = 2771.6 k/kg.

SoLuTtioN The relevant equation for calculation of the two-phase mixing
flow rate is Eq. 6-125. In evaluating this equation numerically we will need
the subchannel mass flux and void fraction distribution for the assembly
which are available from Figures 6-20 and 6-21. You should recognize that
the mixing flow rate to be calculated, W;5| e, is an instantaneous rate for a
bundle average quality of 0.20 and hence is applicable only at a certain axial
position in the bundle. The mixing flow rates above and below this location
for higher and lower average bundle qualities are different. A complete
axial solution to compare to the experimental results of Figures 6-20 and
6-21 should start at the inlet and progress stepwise to the end of the heated
length.
Proceeding with Eq. 6-125 for i = 2 (edge) and j = 1 (interior):

W32 lmp = WiBilse 0l(ar — a2) — (a1 — @2)equill (6-125)

where the relevant parameters are obtained as follows:

W52, |sp from Example 6-5 = 0.028 kg/m-s

0 = f(6m,x0,xm) (from 6-127a and b)

where: Om=35

xo = xm0.57 Re®™!7 (following Eq. 6-127b)
and xm = f(p,G,D) (from Eq. 6-128)

a;, a; (from Figure 6-21)

(a1 = @z)equii = f(K,,G) (from Eq. 6-129)

First, evaluate 0:

[0.4[pf(pf — pggD]"?

+ 0.6}
xm = G (6-128)

[(2)" + 06]
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Neglecting p, relative to pr and taking their ratio about 20.5 for BWR
conditions:
0.4[(738.2)29.81(1.45 x 10-2)]'2
1.356 x 103 + 0.6
(20.5)"2 + 0.6

M

0.682
33 0.133

Since x = 0.2, Eq. 6-127b is applicable for 6:

)
XM

= + - —_—
1+ @m—-1) X n
XM M

where xo/xy = 0.57 Re0-0417

Take Re = Re, = 1.63 x 10° from Example 6-5, then:
Xo
— = 0.57(1.63 x 10900417 = (. 94
M
6=1+G-1 __ﬂ
0.2 )
(0.133 0.94

Next evaluate (a; — a;) and (@) — a@2)equi- From Figures 6-20 and 6-21, for
(x) =0.2:

= 1.424

G‘Gf G_ 0.072; x = 0.223

G-G_ 0.011; x,=0.168
G

Assuming homogeneous flow:

a = S (1,11-30)
L. (L’E)
X Ps
yields:
a; = 0.855
ay = 0.805
or
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From Eq. 6-129 and the subsequent discussion:

G — Gy)equi
(ay — az)equil =K, (_l%
=14 (GI - Gz)actual
G

Using the results from Figure 6-20:
(@) — az)equii = 1.4(0.072 — 0.011) = 0.085

Substituting these parameter values into Eq. 6-125, obtain the desired
result, i.e.:

WL, |tp = 0.028(1.424)(0.05 — 0.085)

= —1.40 x 1073
i.e., the mixing cross-flow rate proceeds from the interior toward the side
subchannel.
Next evaluate the energy transfer rate between these subchannels.
Recall:
(q"s)ioj = Wili|1p herr (6-119)
where:
— pgh
e = L2 Lelg (6-120)
Pt~ Pg

Using the given properties:

738.2(1261.4) — 36.0(2771.6
hesr = ( 738 ; Y 0( ) _ 1184.0 kJ/kg

(q"s)ie; = —1.40 X 1073(1184.0) = —1.657 kJ/m"s

Compare this with the energy transferred to the subchannel per meter from
the one-half effective fuel rod bordering the subchannel which is operating
at conditions noted in Figure 6-21:

q' =0.5¢" =D
= 0.5(1.42 x 103 kJ/m?s)[()(0.01227) m]
=274 k]J/m-s

Hence the lateral energy transfer is 6.0 percent of the energy deposited in
the channel by the fuel rods, i.e., 1.634/27.4 x 100 = 6.0
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Example 6-7 Subchannel analysis of two adjacent, interconnecting sub-
channels

ProBLEM Consider the two adjacent, unheated interacting PWR subchan-
nels of Example 5-4. The problem conditions are:

P/D, 1.326; D, 9.5 mm; L, 3.66 m
Inlet temperature, 292 °C (565.15 K)

wi0) _
w;(0)

Outlet subchannel conditions, pi(L) = p;(L) = 15.5 MPa

Inlet subchannel velocity ratio, 2

Compute the axial profiles of axial mass flux and pressure in each channel
and the transverse mass flow rate between channels.

SoLuTioN The solution of this example can be accomplished using a nu-
merical code such as COBRA IIIC/MIT-2 [14] subject to boundary con-
dition set (2), Figure 1.10. The required boundary conditions, geometry,
and constitutive relations are presented below (English units are used in
COBRA IIIC/MIT-2) which are physically identical to those utilized in
Example 5-4.

Boundary conditions:
hi(0) = hj(0) = 1,229 kJ/kgt
wi(0) = 6.04 m/s
w;(0) = 3.02 m/s
pi(L) = pj(L) = 15.5 MPa

Geometry:

Ag = Ag = 8.78 x 105 m?
Py = Py =mD + 3(P — D) = m(9.5) + 3(12.6 — 9.5) = 39.14 mm

t The numerical values of these enthalpies and velocities are slightly different from those in
Example 5-4. This arose because the equation of state in the THERMIT code (Example 5-4)
computes subcooled conditions, whereas the COBRA code utilizes an equation of state for satu-
rated conditions only. For example the densities utilized to calculate these velocities were different
in the two cases (741.89 kg/m? (Example 5-4) versus 731.01 kg/m’ (Example 6-7)). The results of
these two examples are comparable, however, because the same inlet mass flow rate was used, i.e.,
the inlet velocities are derived versus input quantities.
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Note that the bounding walls provide wetting perimeter in addition to
the heated rod walls.

_ _ 4A; _ 48.78 X 107%) 3
Dei = Dej = P, - 003914 8.974 X 103 m

Constitutive laws:
Axial wall friction, fuia (Eq. 7-60):
Saxiat = fc.1(1.04 + 0.06(P/D — 1)) = 1.06f;, for PID = 1.326
and f;, from Eq. 7-59:

1
(fe)?

Cross-flow resistance Kg:

= 2.035 logjo[Repe( f;.r)"?] — 0.989

2
Apy, = % Kg % (from Eq. 6-81)

To estimate Kg, use the Gunter-Shaw correlation as applied in Example
5-2. For this case taking [ as approximately the distance between subchan-
nel centroids:

s P-D 1
157 1m0
Now from Example 5-4:
0.96 P Dy\™*
Apy = Rep )0 <D_v> {p}eap{vy)iap <7>

where:

Re, = {p}esp{vy}eap Dy
b {“}gap

Dy =8974 x 103 m
P=126x103m

Ap. - 096 ( 12.6) ) <8.974>°"‘
Pu = (Rep, )7 \8.974/ PV \ 126
which expressed in terms of velocity head pv#/2 equals:

_ 23535 pui
(ReDV)O.MS 2

To evaluate K from this relation, Re,, must be estimated. Again from
Example 5-4, obtain the maximum cross-flow rate per unit length as:

kg

W =0.15 ——
m-S
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Now:
A
W; = p‘ZZ Y = pu,(P — D)
since:
A, = (P — D)Az
for
p = 742 kg/m?
Az = 0.366 m
r=9.6 X103 kg/m-s
W 0.15 K&
vy = —p e = ms ~ 6.528 x 102 ™
Y p(P—D) 742 kg/m3(12.6 — 9.5) X103 m ) s
kgm
_ puyyDy  742(6.528 x 107%)(8.974 X 10°) m3 s
R = = =
€p, " 96 X 10-3 ke 4,528
m-s
Hence:
2353 pvi _ ;_w_f,
AP = gsagpms 7 — 06947
Since:
s v3
A.Dtr = 7 Kqg E’z_y
and
s
1= 0.25
then
Kg =238
Mixing parameters, S:
_ Wils
= G
now:
Wi = 0.0363 <&
m-s
s =126 —9.5=3.1 mm

_m _ 0.58 kg/s
T Ar 2(8.78 x 10~5)m?

—3.30 x 100 K&
me s
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Figure 6-24 Axial pressure profile of Examples 5-4 and 6-7.

Hence:
0.0363

B =310 x 10°(3.30 x 109

= 0.0035

In summary the following constitutive laws are used:

e Axial friction, faa = 1.06f., where f., is obtained from Eq. 7-59
¢ Cross-flow resistance coefficient, Kg = 2.8
e Mixing coefficient, 8 = 0.0035

0.20
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=
i
wn
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o
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Figure 6-25 Axial distribution of the diversion cross-flow rate of Examples 5-4 and 6-7.
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Figure 6-26 Axial distribution of the subchannel axial mass fluxes of Examples 5-4 and 6-7.

REsuLTS Figures 6-24 through 6-26 present the results from the COBRA
IIIC/MIT-2 [14] subchannel code and compare these results directly with
the porous body results of Example 5-4. Differences exist but are not
striking. However, it is interesting that such differences exist even though
the constitutive relations used in the two examples are derived from the
same physical correlations.

VIII APPLICATION OF THE SUBCHANNEL
ANALYSIS APPROACH

The ideal way to analyze a reactor core utilizing the lumped subchannel ap-
proach is by taking each radial node in the analysis as an actual subchannel.
This implies that for a typical PWR core over 30,000 radial nodes should be
considered (because of symmetry reasons this number may be reduced to
4,000). These numbers are so large that, currently, numerical solutions are
impractical. Therefore, this possibility has historically been ruled out, and two
other general approaches have been developed.

One is the chain or cascade (multistage) method, and the other is a one-
stage method. The development of both schemes has reflected the limit im-
posed on the number of radial nodes in any single-pass calculation by previ-
ously existing subchannel code formulations. The chain method has maximized
the radial mesh representation by performing a multistage analysis of the core.
In the first stage the whole core is analyzed on an assembly-to-assembly basis
(each radial node represents an actual assembly). From this analysis the hot
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assembly, i.e., the one with the largest enthalpy, and its boundary conditions
can be identified. In the second stage of the two-stage method the hot assembly
is analyzed on a subchannel basis (eachradial node is an actual subchannel or is
created by lumping of a few subchannels) taking advantage of the boundary
conditions found in the previous stage. The three-stage method sequentially
analyzes the hot assembly as four regions and then the hottest of the four
regions by subchannels.

In the simplified one-stage method the core has been analyzed in only one
stage using a fine mesh in a zone consisting of those subchannels with the larger
radial peaking factors and a coarse mesh outside this zone. However, because
available codes require that the boundaries of any mesh node must be con-
nected to another point or be impervious to mass, momentum, and energy
exchange, the coarse mesh zone has traditionally been extended to the core
boundary. Figure 6-27 illustrates a typical nodalization scheme for simplified
one-stage method [22].

It is important to recognize that in both the cascade and one-stage methods,
the nodal layout does dictate in some stages and in some locations that several

Hot Subchannel: numbered 1*
Fine Mesh Nodes: numbered 2 through 9
Coarse Mesh Nodes: numbered 10 and 11

————

____II :
| |
! i
.{ ..... .L"“T .....
| AR
| ] '
[ S S L____
37 1 !
\10} d i
1 |
[T PR R R —
|
1
|

/Eé

Figure 6-27 Example of layout of channels used in one-pass method for one hot subchannel in #
PWR core.
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channels be homogenized into one equivalent channel. Now momentum and
energy exchanges between nodes are expressed by the subchannel equations as
being proportional to differences in nodal properties. In reality, however, such
exchanges between nodes are proportional to the gradients of such properties
across the boundaries between regions. This difference is analogous to that
described in Section VII by Figure 6-16 regarding exchange between single
subchannels.

This difference in momentum and energy exchange is illustrated by refer-
ence to Figure 6-28 and the subchannel conservation equations. This figure

TOP VIEW OF A CLUSTER OF PWR FUEL
RODS
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000,

,_
c
=

Q
I
>

OO0 0000
O O
O O
O O O

LUMPED CHANNEL |

Diversion Crossflow and Turbulent Interchange across the
—— Boundary between Channels | and J or Equally
Subchannels i and j

Boundary Subchannels, i and j

D Lumped Channels, | and J

Figure 6-28 Typical lumped channel layout.
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illustrates two lumped subchannels 7 and J composed of six and four subchan-
nels each. The energy and momentum exchange between these lumped sub-
channels occurs between the boundary subchannels i and j. The relevant terms
of the conservation equations for the boundary subchannels and lumped chan-
nels are respectively:

(hi — )W versus (h; — hy) Wil (6-130a)
(Vs — vy) WiM versus (vg — vy) WiM (6-130b)
Pi — Dj Versus p; — pj (6-130c)

The values of these terms are different since the enthalpies A, axial velocities
., and the pressures p of the boundary subchannels and the lumped channels
are not equal. The task is to adjust the lumped channel representation to equal
the subchannel representation in a way that is applicable to an arbitrary selec-
tion of lumped channel geometry. Hence we introduce coefficients, called
transport coefficients, into lumped channel terms so that the relevant terms of
Egs. 6-130a through 130c are equal, i.e.:

1

(hi = h) = 7= O = o) (6-131)
or
Ny = H (6-132a)
N,, = ‘;—‘:%Lj' (6-132b)
N, = 1;: - Z; (6-132¢)

The task of evaluating these transport coefficients Ny, N,,, and N, requires
solution of various sized lumped channel regions both as lumped channels and
on a detailed subchannel basis. These analyses yield both the numerator and
denominator of Eqs. 6-130a through 130c. The task is formidable because the
coefficients for any single set of lumped channels are a function of many operat-
ing variables. Chiu [6] has performed a sensitivity analysis for PWR conditions
and concluded that the calculated values of 4y, v,;, p;, and Wy are insensitive to
the values used for N,, and N,. However, the value of Ny is very important to
the predicted channel fluid conditions. Moreno and Leira [21] have developed a
correlation for the axially averaged value of the enthalpy transport coefficient,
i.e., Ny, for radially constant inlet flow. The correlation was tested and con-
firmed accurate for slow (10 percent change per second) power, flow, and
pressure transients. It was developed from analyses in which the following
variables were studied:
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1. Size of the homogenized channels. Both fuel assemblies and quarter as-
semblies were employed in the analysis, i.e., channels identical to those
found in a cascade or coupled neutronic-thermohydraulic analysis.

2. Power axial profile. All cases were studied with both sinusoidal and uni-
form axial profile for the heat flux.

3. Mixing rate. Values of the mixing parameter 8 between 0.005 and 0.04
were tested.

4. Length of the core. Cores of L = 3.218, 3.658, and 4.216 m were analyzed.

S. Power peaking factors of the channels defining the boundary. Each of the
previous cases was analyzed with the following power ratios for the chan-
nels defining the boundary:

a. Pg = 1.37/1.35 = 1.01
b. Pg = 1.37/1.30 = 1.05
c. P =1.37/1.20 = 1.14
d. Pg = 1.37/1.00 = 1.37
e. Pr = 1.37/0.65 = 2.10

where Py is defined as the ratio of the larger power peaking factor to the
smaller.

6. Power peaking factors of channels not defining the boundary. Different
configurations were studied. They correspond both to limiting cases, i.e.,
cases in which the influence of all these channels is added either to increase
or to decrease Ny, and intermediate cases.

From the results the two following correlations were suggested:

1. Problems with Pg > 1.10:

. B )0.6 o (_l:—>0.5 ([]Y)O.IS )
Ny=10+a (0.005 Pr 144 17 (6-133)

where a = 0.62 for sinusoidal or quasi-sinusoidal axial power profile, a =
0.70 for uniform or quasi-uniform axial power profile, and N = the number
of subchannels of each homogenized square channel.

2. Problems with Pg < 1.10:

B 0.72 L 0.5
S _ 66 [ _L_ :
Nu=10+b (o.oos) Pr <144) (6-134)

where b is a constant equal to the 1.0 for sinusoidal or quasi-sinusoidal
axial power profile, and » = 1.12 for uniform or quasi-uniform power axial
profile problems.

These equations determine values of Ny with an error ranging from 0 to
+10%. These results for Ny are conservative, i.e., provide values of Ny larger
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Table 6-10 Expected errors in two-dimensional, homogenized region enthalpy

'

NP
B 2 3 4 5 7 9 11 15 23
0.0 0 0 0 0 0 0 0 0 0
0.005 0 —-0.66 —0.61 —-0.53 —0.40 —-0.33 —-0.27 —0.206 —0.135
0.02 0 -3.4 -3.6 -3.2 -23 -2.0 -1.72 -1.3 —0.86
0.04 0 -7.83 —-8.5 —-7.56 —-5.31 —4.63 -39 —2.83 ~1.83
0.06 0 -13.3 -14.4 -12.3 -9.34 -7.4 —6.12 —4.53 -2.36

1 — I/Ny
[PeN,A{/(Pg — )LBS] — /Ny
where L = 12 ft, A, = 0.00519 ft2, Py = 1.5, § = 0.22 in.

Note: This table is built by using error percent =

_ N‘ -2 3.56/(0.015+8) .
Ny=1+1In [1 + [353 ( "N, ) ﬁ‘-‘]} + 5 percent (a two-dimensional result analo-
14 gous to the three-dimensional

correlations of 6-133 and 6-134.)

N, = number of rows of rods
(After Chiu et al. [7].)

than the actual ones. This implies lower interchange of energy due to mixing,
which means larger enthalpy for the hot channel.

The importance of the enthalpy transport coefficient depends strongly on
the sizes of interacting lumped channels. This is because the coefficient cor-
rects the lateral energy exchange, i.e., the energy exchange across the channel
surfaces. The importance of this exchange is measured by its magnitude with
respect to internal channel energy addition from the encompassed fuel rods.
The larger the channel volume, the larger is the internal energy addition relative
to the surface energy exchange. This suggests that Ny is important for smaller
channels. However, at the limit of single subchannels, Ny is defined as unity.
Therefore, use of the Ny concept becomes most important for intermediate size
lumped channels. Table 6-10 from Chiu et al. [7] based on a two-dimensional
analysis illustrates this conclusion. It presents the error in subchannel enthalpy
by neglect of Ny, i.e., taking Ny = 1. This error is largest for intermediate size
lumped channels, those composed of four subchannels which for a modern
PWR is a quarter subassembly.

Example 6-8 Computation of energy transfer rates between subchannels

PrOBLEM For a typical PWR compute the energy transferred across the
surface per unit length and the energy internally generated per unit length
for (a) single subchannel; and (b) a homogenized group of four subchannels.
Make these estimates assuming that the difference in enthalpies between
the region of interest and the neighboring subchannels is 5 percent of the
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nominal enthalpy rise in a channel, i.e., 0.05¢'L/m. For a typical PWR
take:

17.8 kW/m for a fuel rod
0.290 kg/s for a subchannel
= 3.66 m

q
m
L
Wi = 0.0363 ﬁ (Example 6-4)

SoLuTiON

1. For a single subchannel:
The internal generated energy = g’ = 17.8 kW/m.

The energy transferred across the subchannel surface (four gaps per
subchannel) = 4Wj(h; — h; since Wj is:

kg across a gap
m-s
Now:

h_oqu
17.8(3.66)
0.290

= ]123ﬁo kW
kgs

Hence, the energy transferred across the subchannel surface
4(0.0363)(11.23)
1.63 kW/m

= 0.05

Therefore:

energy transferred across the subchannel surface
energy internally generated

1.6
=178 9.2 percent.

2. For a homogenized group of four subchannels:

w

Four equivalent fuel rods exist in this region.
Eight rod gaps bound this region.

The internally generated energy = 4’ = 4(17.8)
= 71.2 kW/m
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The energy transferred across the subchannel surface
= 8W;(h — k)

= 8(0.0363)11.23

= 3.26 kW/m.

Therefore:

energy transferred across the region surface
energy internally generated
3.26

=312 4.6 percent.
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PROBLEMS

Problem 6-1 Evaluation of turbulent interchange flow rate for energy, W} (Section 1V)

Generally, it is postulated that the parameter W™ is equal to W;". Example 6-1 describes an

experiment by which W;" was determined. In this problem, you are asked to design an experiment
by which W;™ can be determined using the same two geometrically identical subchannels of
Example 6-1.

1.
2.
3.

Your answer to this question should include:

The boundary conditions to be imposed.

The parameters to be measured and the locations at which the measurements are to be made.
The conservation equation(s) to be used in reducing the data and a description of how the
equations are used to obtain W™ including;

a. Exact form of equations to be used.

b. Description of each necessary parameter in the equation(s) and how you would obtain it.

Be careful to avoid overspecifying the necessary parameters to be measured and thereby creating a
redundant situation.
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Problem 6-2 The axial momentum equation (Section V)
For the subchannel axial momentum equation (Eq. 6-44) identify:

1. The approximations that are inherent in the equation.
2. The physical quantity represented by v}.
3. The relation of F;, to the Moody friction factor.

Problem 6-3 Subchannel analysis of two interacting test channels (Section VII)
Describe how to apply and solve continuity, momentum, and energy equations to two geomet-
rically identical test channels by answering the following questions:

1. Explain the procedure to solve the equations using the subchannel analysis approach. This
should include identifying necessary equations, unknowns, and appropriate boundary condi-
tions.

2. Sketch qualitatively the axial profiles of the identified unknowns.

3. Identify all constitutive inputs necessary to solve these equations.

4. Provide the numerical value for Wi’f” under single-phase conditions.

Utilize the following geometry, reference coolant properties, operating conditions, and assump-
tions.

Geometry:
Typical PWR square array with P/D = 1.326, D = 9.5 mm, length = 3.66 m.

Reference coolant properties:

p* = 726 kg/m?
p* =963 x 10-* kg/m-s.

Operating conditions:

® Total test section flow rate is 1.452 kg/s

® Same inlet mass flow rate for both channels
® p(L) = p(L) = 15.5 MPa

® Ti(0) = T,(0) = 280 °C

® (gi/qy) = 1.2 axially uniform heat input

® Steady-state condition.

Assumption:

Axial friction factor f = £ [1.04 + 0.06(P/D — 1)).

Problem 6-4 Two interacting channels with equilibration of radial pressure difference (Section VII)

Consider two parallel channels of PWR assembly geometry under transient upflow conditions
in single-phase flow. The channels differ only by virtue of the energy generation rate differences in
the fuel pins bounding the channels due to the radial power profile. For an axial step Az, derive the
set of equations from which the cross-flow rate between the channels can be determined assuming
that the channel pressures are equal at the top of the step as a result of the cross-flow over the axial
increment Az. Indicate the manner in which you would ascribe a value to each parameter in this set
of equations if you were to calculate the cross-flow rate numerically.
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Assumptions:

1. Steady-state conditions exist.

2. Axial friction factor is f.

3. Linear energy generation ratio is q;/q; = R.

4. All inlet conditions to the two-channels are equal.

Problem 6-5 Consequence of two-phase mixing between adjacent, adiabatic interacting channels
(Section VII)

Consider turbulent interchange only occurring between two adjacent, adiabatic subchannels,
and j, over an element of length Az. Inlet conditions to these subchannels are:

Mass flow rate, rit; and riy;
Enthalpy, A; and k;
Void fraction, a; and «;

If @; > a; show that:

1. The exit enthalpy of the element Az of subchannel j, h/, is decreased, i.e., h; > h/.
2. The exit enthalpy of the element Az of subchannel i, A, is increased, i.e., hj > h;.

Problem 6-6 Core-wide, lumped parameter PWR thermal analysis (Section VIII)

Imagine you have the task to use a subchannel code, like COBRA-IIIC in order to make a
core-wide analysis of the enthalpy distribution in a PWR. This necessitates, due to computer
storage limitations, modeling a full 17 X 17 rod subassembly simply as one node in which a single
rod is surrounded by the appropriate flow area. Therefore, in changing the whole layout you have
to specify a new value for the turbulent interchange for energy W.;” to link the nodes of the two
adjacent ‘‘single-rod assemblies.”’ Consider the rod heat flux and flow conditions as being already
adjusted.

1. What conditions on enthalpies /,(z) and h,(z) of the single-rod assemblies must be satisfied to
achieve the desired representation of two full 17 x 17 subassemblies as illustrated in Figure
6-29?

2. What is the value of (W;ﬁH z) which will achieve the condition listed under 1? Express this in
terms of cross-flow between individual subchannels, (W; H) (z), the subchannel enthalpies
within the full assemblies, and the enthalpies of the single-rod assemblies.

17x17 17x17
Assembly I Assembly J

Total N subchannels i Total N subchannels

Figure 6-29 Configuration of two 17 x 17 assemblies.
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Answers:
1 N N
I (@) - ha) = [2 LOEDY hj(z):|
i J

1
3 [hi(2) — h(2)]

*H _ ywHH S
2. Wy =Wy [h(2) — hi(2)]



CHAPTER

SEVEN

DISTRIBUTED PARAMETER ANALYSIS OF
REACTOR FUEL ROD ASSEMBLIES

I INTRODUCTION

In the lumped parameter analysis of Chapter 6, the cross-sectional description
of velocity and temperature variations within a subchannel was not considered.
This chapter presents the solution of these velocity and temperature fields
within a rod array by the distributed parameter method. These fields are consid-
ered mainly for fully developed flow leading to the formulation of a two-dimen-
sional problem. As in Chapter 4, the subchannel will be initially viewed as
isolated from its neighbors. However, in Section XI the method for treating
interacting subchannels will be presented.

At the outset we will make several restricting assumptions allowing solu-
tion of some simple problems which will nevertheless illustrate the key features
of this method of analysis. Remember that we start initially having made a key
assumption that the subchannel is taken as isolated from its neighbors. The
other assumptions are:

1. A two-dimensional problem will be considered in r, 8 coordinates. (The
three-dimensional approaches in which the axial dimension z is included
along with interacting subchannels are discussed in Section XI).

2. The subchannel type to be considered will be an interior subchannel. This
is the only type subchannel that occurs in an infinite array of rods (analyses
of edge and corner subchannels are discussed in Section XI).

The subchannel we wish to analyze is shown in Figure 7-1 for both square
and triangular arrays. The domain of interest includes coolant, clad, and fuel. It
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—! P2

a) Infinite Rectangular b) Infinite Triangular

m Characteristic Domain

............ Zero Flux Lines
............ Equivalent Annulus

Figure 7-1 Subchannel and characteristic domains for square and triangular arrays.

is the area within the square or the equilateral triangle formed by connecting
the centers of rods a, b, ¢, and d, and a, b, and c, respectively. Now if this
arrangement has symmetry in the distribution of volumetric energy generation
rates, g"(r), for all rods, a smaller region of symmetry can be defined within the
subchannel. This region is cross-hatched in Figure 7-1 and is called the charac-
teristic domain.

It is equally possible to view this characteristic domain as the symmetry
section of a rod-centered subchannel. Such a subchannel about rod e is also
pictured in Figure 7-1 and is the more common viewpoint of distributed param-
eter analysis. The square or hexagon circumscribed about rod e bounds the
cross-sectional area of coolant flow assignable to that particular rod and is
assumed to be the locus of points of zero shear stress in the coolant stream.
Within a characteristic domain the heat leaving the rod surface will not flow
solely radially outward through the coolant stream. This is particularly true for
close rod spacings. We will begin by examining whether the rod-centered sub-
channel can be treated as an equivalent annulus thus neglecting circumferential
heat flow and shear stress variations. After this approach is examined, we will
turn to the analytical methods of solving the true subchannel geometry consid-
ering only the coolant region. The reader should be aware that all our presenta-
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tions of the distributed parameter analysis of rod bundles, however formidable
they appear mathematically, do not include the effect of spacers between rods.

IT EQUATIONS FOR MOMENTUM AND HEAT TRANSFER IN
THE COOLANT REGION

Only the coolant region equations will be presented here. They will be given in
the form necessary for turbulent flow in a noncircular flow region. The forms
sufficient for both laminar and turbulent flow in equivalent annuli and laminar
flow in noncircular geometries are obtained as simplified forms of these equa-
tions.

An incompressible fluid with temperature-independent properties is con-
sidered. Under conditions of steady flow and heat transfer, d/0¢t = 0, the axial
(z-direction) momentum and the energy balances for the differential volume
element rdfdrdz of Figure 7-2 are given as follows:

p( W, Vo by %) 14 Lore | Oma _ 9 5

+ — — —_— =
U T T ) Tra e i e Ty, 3z

dF.n) dF, oF,

r=r,
ot
C oy Momentum: F, =1, F, =1, dF,=dp

Energy: F,=q;: Fo=Qq%: oF,=pv,GdT+dq;

Figure 7-2 Axial momentum and energy balances on a volume element in the coolant region.
Momentum is Eq. 7-8, and energy is Eq. 7-9.
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where p = p + pgz.

aT vy dT g)__[__ n . 13gs ai'z']
pc"(”’ar+rao V2oz) = T lrar ) Ty aa+az (7-2)

where viscous heating effects are neglected. Figure 7-2 illustrates the momen-
tum and energy components acting on the volume element.
With the further restrictions of fully developed flow, we have:

vh=0v=0 (7-3)
Xz (7-4)
0z
T2 =0 (7-5)
_9 _ 4 Tw .
a2 4 De (7-6)
and for fully developed heat transfer, we have:
9 T_w;l) _ ]
0z (Tw_Tb =0 (77)

where T, is the bulk fluid temperature.
Note that we cannot evaluate dT/dz yet without specifying the axial surface
boundary condition.
Now applying Eqs. 7-3 through 7-5, Eq. 7-1 and 7-2 become:
o(Te2r) + 97z ap

o 6 - 32" (7-8)

"

aq" . 397 _ 37
+ o 7-9
30 az | POV, (7-9)

Now for a constant axial wall heat flux, boundary condition g;-,, = constant
and constant heat transfer coefficient h:

(r)+

0Tw _ 3Ty :
0z oz (7-10)
and, with this result Eq. 7-7 reduces to:
3T _ 3T, _ 3T, -
32 = oz az , independent of r (7-11)
The magnitude of d7/3z can be determined from an energy balance as:
O _ AGew__ 9" _ constant (7-12)

0z {vcppDe  ricy

where {v,} = average coolant speed;
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and also, from Eq. 7-12 we note:

0T _ aqy-w
—k Sz =" =0 (7-13)

On the other hand, for a constant axial wall temperature boundary condition,
T,(z) = constant, then:

o,

Pl 0 (7-14)

and Eq. 7-7 reduces to:

of _ (Tw—T) Ty (.’.) Ty
az (T - Tb) az ro/ oz (7-15)
and we note specifically:

9qz-w
” +0

Therefore to eliminate the axial conduction term of Eq. 7-9, it must be
assumed that either axial conduction effects are negligible or a constant axial
heat flux boundary condition exists. Under these circumstances Eq. 7-9 simpli-
fies to:

=t + 5 —peyr S (7-16)
For fully developed flow, the r- and 6-direction momentum balances reduce to
the condition of constant pressure in these directions. The momentum fluxes 7.,
and 79, incorporate transport contributions due to viscous effects, turbulent
velocity fluctuations and, for the geometrical configuration considered here,
also that due to secondary flow. Secondary flows are the radial and circumfer-
ential velocities that exist in noncircular ducts under turbulent but fully devel-
oped flow. They do not exist in laminar flow in noncircular ducts or in annuli
under laminar or turbulent flow. The momentum fluxes are expressed by the
equations:

_ du, dv ] 3
2 = —pV [ar + oz + pvzv, (7-17)
and

_ du,  dug ] :

= —pv [rao + + PUzUs (7-18)

where p and v are the fluid density and kinematic viscosity; v,, v;, and v, are
time-averaged velocity components; and v;, vy and vg are fluctuating velocity
components. The turbulent stress terms puv,v; and pugv, representing one-point
correlations of mutually perpendicular velocity fluctuations, have a value dif-
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ferent from zero. In a similar manner, the heat fluxes g; and g canbe expressed
as:

T
—Cppa o= 9 ot copT'v] (7-19)

ar
" oT .1
s = —Cppa 730 + cppT'vg (7-20)

where T is the time-average temperature and 7" its fluctuating component.

A Turbulent Flow Equations for Noncircular Channels

The preceding equations can be developed further only when expressions are
available relating the turbulent flux terms to the mean flow properties. These
aspects are dealt with in detail by Nijsing and Eifler [35] for the general case
which includes anisotropy effect terms and develop the general form for the
turbulent flux terms.

Here, however, we will treat the simpler case in which secondary flow can
be neglected and the velocity fluctuations can be related to the velocity gradi-
ents by turbulent or eddy diffusivities, i.e.:

av,

0 = o 2 (7-21)
Utk = oy 7 o (7-22)
0 = —euc o0 (7-23)
T = —eun 7 2 (1:24)

Applying Egs. 7-17 through 7-24 to Eqs. 7-8 and 7-9, the fully developed turbu-
lent flow equations are obtained as:

9 1 9 v, | _op
7or [Pr(v + emr) ] t [p(v + &mo) ] =% (7-25)

19 aT | ] oT oT
plry [cppr(a + &ur) ] + 7338 [Cpp(a + Eno) 80] = cppU; 2 (7-26)

where it should be recalled that the term 827/9z2 has been eliminated from Eq.
7-26 by Eq. 7-13.

B Laminar Flow Equations for Noncircular Channels

In this case Eqgs. 7-25 and 7-26 are simplified only by taking the eddy diffusivi-
ties as identically zero. With that step, we obtain:
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0%v, l1ov, 1 o%w, 19p
%%, == 7-27
ar Trar TR 002w oz (7-27)

T 19T 19T wv,dT
o 13T 19T v dT 7.2
ar?  rar r2of? a dz (7-28)

C Turbulent and Laminar Flow Equations for Annuli

In this case symmetry exists in the 6 direction. Upon eliminating the 6-depen-
dent terms and expanding the r-dependent terms, Eqs. 7-25 and 7-26 reduce to
the following forms for turbulent flow:

0 v, 1 ov, _ a_ﬁ

o [P(V + emr) ar] o [p(v + EMr)J = 32 (7-29)
d oT 10T oT

3 [(a + eqr) 5] + 7 (a+ ew) =0, 2 (7-30)

where v,, T, ey and ey only are position dependent. For laminar flow the eddy
diffusivities are identically zero, and Egs. 7-29 and 7-30 become:

o, laov, 1dp
T ror i 9z (7-31)

T 10T v, dT
Wt T wa (732)

III THE EQUIVALENT ANNULUS MODEL

The dotted circle about rod ‘‘¢’’ in Figure 7-1 together with the rod surface
define an annulus having a flow area equal to that bounded by the square or the
hexagon and the rod surface but with a zero shear stress condition on the outer
boundary. Consequently this approach is called the equivalent annulus model.
This equivalent annular flow area is assumed to be fluid-dynamically equivalent
to that portion of an annulus which extends from its inner radius to its radius of
maximum axial velocity. From the condition of equal flow areas between the
equivalent annulus and the actual flow area bounded by the square or the
hexagon:

P? T wrz]
2 2y — - Z_1Mo .
(rfax ro) 12 l: 8 tan 6 12 (7 33)
The position of the radius of maximum axial velocity is:
1/2
Fmax = Fo <¥> P/D (for triangular array) (7-34a)

1/2
Fmax = ro <%) P/D (for square array) (7-34b)
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The boundary conditions at this location at zero gradients of axial velocity and
temperature:
av,
ar

_oT
ar

(7-35)

=0 (7-36)

Tmax Tmax

The boundary conditions at the inner wall are no slip, uniform axial heat flux,
and both uniform circumferential heat flux and wall temperature:

vZ],O =0 (7-37)
(7-38)

d
- (ﬂ ) = 9 (a—T ) = constant; T,(0) = independent of 8 = T,, (7-39)
az \arl,/ a0 \orl,, (7-40)

Note that circumferentially, the conditions of uniform heat flux and wall tem-
perature are compatible for the equivalent annulus by virtue of its symmetrical
geometry.

Take the case of fully developed conditions with no temperature depen-
dence of thermal properties. Let us first examine solutions to the momentum
equation and then the energy equation for this geometry.

A Momentum Balance Solutions

1 Laminar flow Eq. 7-31 is the applicable equation. Applying the boundary
conditions of Eqs. 7-35 and 7-37 the velocity distribution resulting from the
solution of Eq. 7-31 is:

v, _\/3 r 1 r\ (rg)z]
P——z< 16,5)—7""70‘2[(%> ~\pn (741
P Lo

K 02
We can now calculate the friction factor-Reynolds number product. First
note that the definitions of friction factor f and Reynolds number Re,, are:

dp _4f plof _ f o

“dz D. 2 D.P2 (7-42)
and
Rep, = D_e{”Z_}P (7-43)
n
where:
_Am(rha — 1))
D, = 2rry (7-44)
Hence:
_ 1 d‘) D§]
fRep. = [2 (,L dz) [, (7-43)
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where {v,} is obtained from Eq. 7-41 as:

{vs} _ X tnXn ( 2 )[1_ 13 2]
( 1 dp 2xz, -1 X5 - 1/la " Texz ~ 164m] (749
),

U dz

or consolidating:

~ 64(X2 — 1)}
SRepe = 334Xt tn X, = 1 + 4X2, (7-47)
where:
X, = [ma (7-48)

o
which is related to the P/D per Eq. 7-34 as:
Xn = 1.0SP/D

Eq. 7-47 represents the equivalent annulus solution plotted in Figure 1,9-22.
Note that for our case of fully developed laminar flow, Eq. 7-47 is a function of
geometry only. This approach is a direct solution of the equivalent annulus
problem.

Example 7-1 next illustrates the method for prediction of fRep. for an
equivalent annulus geometry using the existing annular literature. The two
geometries are shown in Figure 7-3.

Equivalent Annulus
Annulus

x-ﬂ X, = =< X—L
fo " A ro

Figure 7-3 Annular geometries.
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Example 7-1 Determination of the friction factor-Reynolds product for a
triangular array using existing annular literature

ProBLEM Find fRep, for a triangular array of P/D = 2 in laminar flow by
the equivalent annulus method from existing annular literature.

SoLuTION

A. Given (P/D), find (rq,/ro) from Eq. 7-34 as:
Tmax ) (2\/3) 1”2

ro ko
OF Fpax/ro = 2.1

B. Given the knowledge that r, is the point of maximum velocity,
dv,/dr = 0, find ry/ry for the annulus geometry:

Axial momentum equation:

14 ( ﬂ) _ldp _
rdr \" dr udz 0
integrate:
dv, _c . Kor dv, _ -
ar '_r+ > 5 2 =0atr = rpax
Therefore:
- _Korrznax
2
integrate:
_ —KorZax Kor? .
v, = ) €nr + —4- + ¢);

v, = 0at r = ry and r,. Apply both boundary conditions and then
subtract to obtain:

13— 22 b, =rh = 2rka bnrg
which upon rearrangement yields:

(rmax>2 — (r2/r0)2 -1
ro 2 €n(ry/rg)

(7-49)
Now utilizing the result of part A for ry,/ro in Eq. 7-49, by trial and
error find ry/ry = 3.458.

C. Now knowing r,/ry for laminar flow look up the annulus friction—-Rey-
nolds number product, i.e., fRe]a from Kays and Perkins [24] who also
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treated turbulent conditions:
SfRela = (r/ry = 3.5) = 94
where f is the Moody friction factor.

. Now relate the equivalent annulus friction-Reynolds number product,
i.e., fRIga to fRela. First express fRe utilizing Eq. 7-45 as:

_ _2dp De
fRe w dz {v}
or fRelga = fRejy 22 v Dilea (7-50)

{vea DA

. Hydraulic diameter:

— 2 2
D)ga = 4m(rhax — 1) =2 ((M) - 1) ro = 2(3.4Dry (7-51a)

27r ro

I = 4m(rd — ) _ ., ((n/r)* = 1)
elA ™ 27r(r2 + r()) B (rz/ro + 1) "o

= 2(2.46)ry (7-51b)

Find {v,} for the equivalent annulus and the annulus utilizing these
definitions:

r
Xm — lmax, Xz =22 X -
ro ’o ry

( f ;m“ Uz(r)rdr)

{VJga = ————— (7-52)

o
( f’ ’: vz(r)rdr)

s = — (7-53)
CE
272
fodea _ 1 [XZ X 2<€nX 1)]"”_
“Kohw  2XH D l2xg “axz P\ mg)), 018
foda _ 1 [XZ X (en X 1)]’“ _
Kok 20X =1 l2xa _axz VX5 )], =06

. Utilize Eq. 7-50 to obtain the desired result:
_ o4 (0 1164><ﬁ>2 _
fReles = 94 <0 133 /\226) =180

compared to 155 from Figure 9-22, Vol. I
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2 Turbulent flow Eq. 7-29 is the applicable equation for this condition. To
solve this equation directly, the radial description of the eddy diffusivity of
momentum, ey(r) is the necessary input. The selection of gy(r) is not a straight-
forward procedure. Even for the simple case of a circular tube, disagreements
exist regarding the proper form. For a discussion of turbulent diffusivities of
momentum and heat in tubes, parallel plates, and annuli, the interested reader
should consult the review of Nijsing [33].

Rather than select an eddy diffusivity distribution and perform the required
integrations, we will quote the result of Maubach [31] for the turbulent friction
factor of the equivalent annulus. He obtained this result assuming that the
universal velocity profile for circular tubes written below applied equally to the
annulus:

vf =25¢ny* +5.5 (7-54)
where:
vy = % (dimensionless velocity) (7-595)
z
*
yt = yzl (dimensionless distance from the wall) (7-56)
v = (rw/p)'"? (friction or shear velocity) (7-57)

The resulting friction factor expression that appears in Rehme [41] is:

172 1/2
(O - 25 re ()] 5 2206 L35k
f 1+ X (7-58)

-25¢n201 + Xy)
Based on f;, (circular tube) given by:

72 t)wz = 2.035 logo[Repe( fe.t)"?] — 0.989 (7-59)

the ratio of S from Eqs. 7-58 and 7-59 is:
c.t.

for a triangular array per Rehme [41]:

Rep. = 10% f—f = 1.045 + 0.071(P/D — 1) (1,9-85)
c.t.

Rep. = 105:% = 1.036 + 0.054(P/D — 1) (1,9-86)
c.t.

for a square array per Marek et al. [28]:

Rep. = 105 S 1.04 + 0.06(P/D — 1) (7-60)

e
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Eq. 7-60 is the equivalent annulus result which is plotted in Figure 1,10-12.
Note that from this equation the friction factor ratio continually increases
with P/D.

B Energy Balance Solutions

1 Laminar flow Eq. 7-32 is the relevant equation to be solved subject to the

boundary conditions of Eqs. 7-36, 7-38, and 7-39 or 7-40. The required velocity

profile is given by Eq. 7-41. To solve this problem let us first express a7T/9z

which for our case of uniform heat transfer per unit length (Egs. 7-10 to 7-12) is:
q’ q'/12

oT
Frl constant = e, = Gnide, (7-61)

where m and q’', respectively, represent the mass flow and the heat transfer per
unit length of the equivalent annulus. If we define a dimensionless grouping M
as:

m/12p

P (L)
16 n dz

M= (7-62)

then with the velocity profile on Eq. 7-41 the governing differential Eq. 7-32
becomes:

T 19T _ g'/12 {ﬁ r_1 [(L)z _ (1)2]} :
ot T rar —mpualw r T al\e) T\ (7-63)

where the flow parameter M in laminar flow is obtained as follows when the
velocity v, is related to the flow rate m:

_ Ly rme 3 ﬁ(_ro_)z_z ’_ro_)‘
M=t %12 \Pi2) 9% (P/Z (7-64)

The basis for the selected form of the parameter M is not obvious from this
example but is based on convenience in the later analysis of triangular arrays
where the symmetry segment will be seen to be 15 of the coolant hexagon
surrounding each rod.

Now for boundary conditions Eqs. 7-36 and 7-40, the temperature distribu-
tion is:

_q'12k {[\/'3' n 1 r 6MP2/4]€ r

— — = 2 —_— Y
P4 L ar 1~ g Pg ro

[ )
“ s | @ T1e\pn) [

T-1,
(7-65)
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Finally the desired Nusselt number can be obtained from the definitions below
since T — Ty, q', and m are known, i.e.:

hD _ (X3 — g’

Nup, = = , (7-66)
k2mp [ j (Tu - T)vzrdr]
where:
h= L0 (7-67)
and
2mp J’:m“ (Tw — T)vrdr
T, — T, = . : (7-68)

m

The results of Nu,,_evaluated from Eq. 7-66 as a function of P/D are presented
in Figure I,10-6.

2 Turbulent flow: Transformation of bilateral heated annular results Eq. 7-30 is
the relevant equation. To solve this equation directly the radial description of
the eddy diffusivity of heat, ey(r), and the radial velocity distribution are the
necessary inputs. Selection of ey(r) is even more complex than the selection of
em(r), and again the interested reader should consult the review of Nijsing [36]
for a lucid discussion of the options available. Although the method to solve
Eq. 7-52 is direct, the algebraic complexity of the diffusivity and velocity
distributions lead to an involved procedure. '

Therefore we first examine how to transform the extensive results in the
literature of bilaterally heated full annuli to our case of an equivalent annulus.
The turbulent and laminar flow bilaterally heated annulus cases have been
solved by Kays and Lueng [23] and by Lundberg et al. [27], respectively. Of
course the turbulent results are not unique as are the laminar solutions but
depend on the asgumptions made for velocity profile and eddy diffusivity.
These authors solved the two cases of (a) inner surface heated, outer insulated,
and (b) inner surface insulated, outer heated. From these cases, it is possible
because of the linearity of the energy equation, Eq. 7-30, to use superposition
methods to solve any desired case. The equivalent annulus is in fact the inter-
mediate case of the inner surface heated and a zero temperature gradient at the
position of maximum axial velocity. Let us examine how to use the literature
results for that case.

The Nusselt numbers, Nu; and Nu,, for any intermediate case are given by
(utilizing the literature nomenclature):

Ny = ——oi (7-69)
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Ny, = — U= (7-70)
1- 4 ox
do
'De
Ny, = h'k (7-71)
h,D.
Nuy, = °k (7-72)
where i and o refer to inner and outer surfaces
D. = D¢|s = 2(r, — r;) for the full annulus (7-51b)

Nu; is the Nusselt number for the inner surface with the inner surface heated,
outer surface insulated

Nu.. is the Nusselt number for the outer surface with the inner surface insu-
lated, outer surface heated and

®F, OF are influence coefficients obtained from the fundamental solutions.

These results will be transformed into the nomenclature illustrated in Fig-
ure 7-3 which is based on the fact that the solid circle in this figure represents a
fuel element having an outside radius of r,. Hence, the literature symbols »; and
r, are equivalent to our symbols ry and r,, respectively.

ri(literature) = ry
ro(literature) = r,

In our case we desire the Nusselt number on surface ro, i.e., Nu,, defined in
terms of the equivalent annulus hydraulic diameter, D.|g4 given by Eq. 7-51a.
From the above equations the desired Nusselt number can be expressed in our
nomenclature as:

e]EA 2(rmax r(z))/rO
Nu, = Nu; =2EA = Ny, =iz — "0 -
U = NG, = 2 = o) (7-73)
2
()
Nu,
- S < (7-74)
qrz or|| Lo
r

r0

where r* = ry/r, for the bilaterally heated annulus.

Evaluation of Nu,, from Eq. 7-74 first requires determination of g,/q;, and r*. In
the existing literature Nusselt numbers for bilaterally heated annuh are ex-
pressed in terms of the bulk annulus temperature. Therefore the first condition
for evaluating the above two parameters is that the bulk temperatures of the
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two annuli are equal, i.e. (if length, inlet temperature, and fluid are the same):

2 v + g2
quz‘ffro 2] =GO7T§0 (21 7"2] (7-75)
{Uz}'n'(rmax = rp) EA m(r; — rO){Uz} A
which reduces to:
() -

q,f’z ro ( {vz}A ) ro
= -1 -
gn 2| \{vdea (rmax)z | (7-76)

ro

The second condition is that the radius of minimum temperature (r,) of the
bilaterally heated annulus corresponds to the radius (7,x) of minimum tempera-
ture (also zero shear stress) of the equivalent annulus. Now since we have
made the boundary conditions similar, r, is also the radius of zero shear stress.
We know r,, from the lattice dimensions. Thus if we know the relationship
between r,, and r, we have solved the problem. Rehme [43] gives rnay in terms
of r, for turbulent flow as:

g% = p*0.386 7-77)
where:

* %
Fmax — 1
§* =

— pk
1 Fmax

"o
pr=2

r;
r — rmax
max

r;

One should note that in turbulent flow the positions of zero shear stress and
maximum velocity are not coincident because of the diffusion of turbulent
energy, as discussed by Rehme [44].

Example 7-2 Determination of the Nusselt number for a square array using
existing bilaterally heated annuli literature

ProBLEM Find Nu for a square array of P/D = 1.5 in turbulent flow by the
equivalent annulus method from existing literature for bilaterally heated
annuli.

Given:

* square array
* PID=1.5
eD=1.12cm

e Re =105 Pr=1



DISTRIBUTED PARAMETER ANALYSIS OF REACTOR FUEL ROD ASSEMBLIES 301

SoLuTION
A. Given P/D find rp,, by the same method as in Example 7-1 but for a
square array:

Fmax/to = 1.68

B. Given knowledge that r,,, is the point of maximum velocity, dv,/dr = 0,
find r,/rq for the annulus geometry. Use Rehme’s turbulent profile for

rmax *

(_"_0)0-336 — (rmax/rz) — ("0/"2)

Py - 7-77)
r;
By trial and error:
B 67
ro
C. Find 22, Assume that oada _ 1. Then Eq. 7-76 gives:
qro {UZ}EA
I _ 0.888
. 2 Vmax qlrlz
E. Now given T T g Re and Pr, we find ©F, and Nu,,, from Kays
0 0 o
and Leung [23] as 0.225 and 227, respectively. Hence:
-
Nu,,,
Nuy, = q!? ':’
1-=erll Z2-1
9n To (7-74)
_ [ 227 ][(1.68)2 - 1]
1 — 0.888(0.225)JL (2.67) — 1
=309

From the well known Dittus—Boelter equation:
Nu., = 0.023 Re08 . pPro4
obtain Nu., = 230.

Therefore:
Nu,,
Nug,,
The direct literature solutions of this ratio, defined as G, are tabulated

below for comparison. A wide range of numerical values exists for this
turbulent flow situation.

= 1.34
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Investigators G

Deissler and Taylor [7] 1.1 equivalent annulus solutions for
boundary condition case A

Presser (f/f..) [39] 1.06 equivalent annulus solutions

Presser [39] 1.14 square array solution

Weisman [53] 1.69 square array solution

Markoczy [30] 1.2 square array solution

where f., = ffor circular tube.

3 Turbulent flow: Direct solution approach Although this approach was devel-
oped for application to liquid metals, the general method presented holds for all
Prandtl number fluids. Numerical evaluations which are made here are limited
to liquid metals. We desire to find the heat transfer coefficient h. It does not
vary circumferentially by virtue of our equivalent annulus geometry.
By Newton’s cooling law define h as:
_ v, )

N = ST, Ty 778

The Nusselt number for the equivalent annulus is given by:

hD.
k

Now, g;,, the linear heat generation rate, is readily expressible by an axial
energy balance as:

Nujga =

(7-79)

dT,

Gy = T(rhax — r){udpc, =7 4z (7-80)
which, when substituted into Eq. 7-78, yields:
T,
_ (rlgnax - r%) dz
h - 2)‘0 {vz}pcp Tro — Tb (7'81)

Next express the temperature difference between the tube wall and the bulk
coolant temperature, T,, — T}, in terms of known variables. This temperature
difference is defined using Eq. 7-68 as:

[ @, = 1e)ws0ry2mrar

Ty = (7-82)

T,
T (rkax — ro){vs}

where:

~r=[ - (7-83)
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Now establish —dT/dr in terms of Fourier’s equation, i.e.:

T _ _-¢q

or  keg2mr

(7-84)

where g’ is the linear heat flow rate from an annulus with an outer radius r, and
ks is the effective thermal conductivity which is equal to the sum of the
molecular thermal conductivity and the eddy (k.) thermal conductivity of the
fluid for the general case of turbulent flow, i.e., kgx = k + pcpen. This heat
transfer rate must be equal to the rate of heat transport by the coolant flowing in
the annulus with an inner radius r and outer radius 7 :

g =" 2mrpusric, g dr (7-85)

Combining Eqgs. 7-85, 7-84, and 7-83 with 7-82 obtain:

oT
T,-To=r5— | f dr' | v(r)rdr  (7-86)

’ N {Uz}(rrznax - r[2)) "o o r'ke"

Now for uniform radial and axial heat flux and axially independent heat transfer
coefficient:

dT dT,

- & + f(r) (7-87)
as was shown in Section II, since the flow and heat transfer conditions have
been taken as fully developed and the wall heat flux has been taken as uniform
axially as well as radially. Hence in Eq. 7-86 the axial temperature gradient
dT/dz is a constant in the integration and when Eq. 7-86 is substituted into Eq.
7-81, the axial temperature gradients dT/dz and dT/dz will cancel each other.
Similarly, since we assume no changes in physical properties the product pc,
cancels, yielding:

Tmax -1
22— 22| e [ pr | PU)AY
h = {0} ran — 1o (r":;; o L <er —— ko dr' | v,(r)rdr (7-88)

Now we can express the average axial velocity {v,} more generally in terms of

an integral of the local velocity by equating equivalent expressions for the rate

of heat flow from the rod per unit length. These expressions are Eqs. 7-80 and

7-85 with r = ry. Applying the equality of temperature gradients expressed by

Eq. 7-87:

2 ro,(r)dr
o

{v} = (7-89)

2 - 2
Fmax ro

We will use this relation together with the following definitions of the equiva-
lent diameter of the annular flow area D, and dimensionless distance X to
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obtain our general equation for the Nusselt number:

_ 47 (rZax — r%)

D, = 2 2ro(XZax — 1) (7-90)

where:
_Tmax. y _ T (7-91a)
Xinax = rox’ X= ro (7-91b)

Substituting Eqs. 7-89, 7-90, and 7-91 into Eq. 7-88, we obtain the desired
general equation for the Nusselt number:

Xmax 2
AN~ D [ ) vz(X)XdX]

Nujg, = h-kDe = Xomax € (7-92)
Xmax . J’ ' UZ(X”)X”dX”
j f X dx' | v, xdx
1 1 X' kesr
k

This general equation for the Nusselt number for the equivalent annulus model
can now be applied to the cases of turbulent flow and laminar flow.

For slug flow, the velocity is taken as uniform with radius while the heat
transfer is by conduction only, i.e., k. = k. For these conditions, the integra-
tion of Eq. 7-92 can be performed directly, yielding:

8(XZax — 1)}
4X‘r‘nax €n Xmax — (3X|gnax - 1)(Xr2nax -1

For turbulent flow integration of Eq. 7-92 requires specification of the
radial variation of both the velocity and the effective conductivity k.. The
velocity correlations of Rothfus et al. [46] (which rely on coincidence of the
positions of zero shear stress and maximum velocity) have been used for this
purpose by Dwyer and Tu [16]. The problem of expressing keg explicitly has
been circumvented by invoking the analogy between eddy diffusivity of heat
and momentum and expressing this analogy in parametric form in terms of the
parameter which is the ratio of these respective diffusivities. In our nomencla-
ture, we have:

Nuglga = (7-93)

ey = ey¥ (7-94)
p"—; = % v (7-95)
where:
ey = eddy diffusivity of heat, m?/s (ft%/s)
em = eddy diffusivity of momentum, m?/s (ft?/s)
and

w. = effective eddy viscosity, kg/m - s (Ilbm/ft - s)
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The term . is made available at every radial position in the annylyg from the
defining equation:

7(r) = (n + we) % (7-96)
where:
_ Ap rrznax = r? _fp{UZ}z I:rlgnax - rz]
A T 2 (7-97)

The specification of ey becomes complete if we prescribe with Egs. 7-96 and 7-
97 a friction law for flow through our selected array of parallel rods by which
the shear stress 7 can be evaluated. The velocity correlation cited earlier is also
used in Eq. 7-96 to permit evaluation of the local velocity gradient, dv,/dr. This
procedure is applicable for all Prandtl numbers since this effect is included in
the specification of the ratio k.g/k. The practical difficulty is the specification of
¥ which is actually a function of Re, Pr, and position.

Results for Pr < 0.01: Liquid metals in turbulent flow Following the above
procedure, Dwyer and Tu [16] first solved the equivalent annulus turbulent flow
problem for liquid metals graphically, and later Maresca and Dwyer [29] ob-
tained a numerical solution. Both solutions were based on the same fundamen-
tal assumptions, and only minor differences were found between the calcula-
tions. The latter investigators correlated their results very well by the
semiempirical equation:

Nujga = a + B(¥Pe)’ (7-98)
where:
a = 6.66 + 3.126(P/D) + 1.184(P/DY? (7-99)
B = 0.0155 (7-100)
y = 0.86 (7-101)

for the ranges 1.3 < P/D < 3.0 and 102 < Pe < 104 Note that in Eq. 7-98 the
spatially averaged value ¥ was utilized by the original investigators for reasons
of convenience. To evaluate the turbulent Nusselt number by Eq. 7-98, an
auxiliary relation for ¥ is required, which for liquid metals, Dwyer [8] recom-
mends as:
- 1.82
v =1 Priem/v), (7-102)
This equation should be used with care at small Pe since it yields negative
values of W. Values for (em/v)max for rod bundles are to be obtained from Figure
2 of Dwyer [8].
The dependence of Eq. 7-98 on the term ¥Pe can be traced directly from
the term keg/k in our general equation, Eq. 7-92. The eddy dependent portion of
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this term, k./k, can be expressed by utilizing the definitions of k. = pc,eq, Eq.
7-94 and the Prandtl number; we write:

& _ chEM\I’ B emPrv (7-103a)
k k m v

Now since fM/ v is practically proportional to Re, and RePr = Pe, we obtain the
parameter ¥Pe which led the investigators to correlate results by a relationship
of the form:

Nu = f(P/D, ¥Pe) (7-103b)

of which Eq. 7-98 is one form.

The logic of the development leading to Eq. 7-103b is in fact applicable to
fluids of all Prandtl number. For a fluid of Pr = 1, the Nusselt number is
expressed as:

NuJga = B'(¥Pe)” (7-103c)

Now since V¥ is a function of Pr, this dependence can be included by reformu-
lating Eq. 7-103c as:

Nuiea = B'(Re”Pr7)

which is the expected Dittus—Boelter form of the forced convection equation
for fluid of Pr = 1. In this case the constant 8 is a function of geometry.

IV COMPARISON OF LAMINAR, SLUG, AND TURBULENT
FLOW NUSSELT NUMBERS FOR LIQUID METALS IN
EQUIVALENT ANNULI

Table 7-1 summarizes these results. Since the effective diffusivity is a variable
only for turbulent conditions, only for such conditions does the Nusselt number
vary with Peclet number for a fixed P/D. The slug flow condition is one of
uniform velocity with molecular conduction only. Therefore, we would expect
that slug flow Nusselt numbers will be higher than laminar flow Nusselt num-
bers for the same geometry because the laminar velocity gradient at the wall is
less than that for slug flow. Comparing slug to turbulent flow conditions, the
wall velocity gradients and effective thermal conductivities yield opposite
trends. For most flow conditions, as Table 7-1 illustrates, the eddy contribution
to the thermal conductivity is significant enough to overcome the velocity
gradient difference and make turbulent Nusselt numbers greater than compara-
ble slug results. The values of Table 7-1 also demonstrate that for suitably low
values of flow rate, i.e., ¥Pe = 100, slug Nusselt numbers can exceed turbulent
Nusselt numbers at fixed P/D ratios. It must be emphasized that agreement of
slug flow predictions with experimental data or with results of more realistic
analyses will occur only for special conditions that cannot be specified a priori.
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Table 7-1 Nusselt numbers calculated using

the equivalent annulus model for longitudinal
flow of coolant through infinite unbaffled rod
bundles under conditions of uniform heat flux
and fully developed velocity and temperature

fields

P/ID NuyJea NugJga Nuga

1.01 8.58 —

1.02 8.64 —

1.03 8.70 —

1.04 8.76 —

1.05 8.82 12.66

1.06 8.88 —

1.07 8.94 12.71

1.10 9.12 12.96

1.20 9.75 13.63

1.30 10.40 14.34

1.40 11.07 15.06 ¥Pe NuJga
1.50 11.75 15.81 102 14.8
1.51 — - — {0 19.9
1.60 12.46 16.57 10 56.6
1.80 13.92 18.15

1.90 14.68 —

2.00 15.46 19.81

2.10 16.21 20.66 102 19.5
2.13 — — — {0 24.6
2.38 18.56 23.16 10* 61.3
2.86 22.77 27.70 102 27.5
3.01 — - — L1 32.6
3.81 32.22 37.70 10¢ 69.3

Sources (for reference use only):
Nuy Jga: Table 2 in [11]; Table 2.17 in [9].
Nu,Jga: Table 1 in [13]; Table 2.17 in [9).
NuJga: Table 1 in [10].

Itis instructive also to examine such results in graphical form as illustrated
in Figure 7-4. Note that Nusselt numbers are plotted against the Peclet number
of a fixed P/D of 1.5. The figure legend refers to these as results for rod bundles
since for such large P/D ratios, the equivalent annulus represents rod bundle
geometry. Curves A-A and B-B represent the turbulent flow solution, Eq. 7-98,
with W taken as 1 for curve A-A and evaluated by Eq. 7-102 for curve B-B. As
the Peclet number decreases, the corresponding Nusselt number decreases
reflecting the decreasing contribution of eddy conduction to the heat transfer
process. At sufficiently low Peclet numbers, the solution of Eq. 7-92 with a
turbulent velocity profile but with eddy effects neglected, i.e., k.q/k = 1 would
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102
P
4 -
2 P _,/4‘/
= 3 R i -
- A e
E D [
3 10 0
%
@ Curve A-A : Eq. 7-98'with ¥ =1
3 Curve BB : EQ. 7-98 with ¥ evaluated
by Eq. 7-102
Curve c-c : Eq. 7-104 for molecular
conduction only
Curve p-D : laminar flow
Curve EE : slug flow
1
10 102 103 104

Peclet Number, Pe

Figure 7-4 Analytical predictions for longitudinal flow of liquid metals through unbaffled rod bun-
dles under conditions of uniform heat flux and fully developed velocity and temperature profiles.
(After Dwyer [10].)

represent the limit for the turbulent solution. This solution was obtained by
Maresca and Dwyer [29] who correlated their results by the empirical equation:

Nu_me = —2.79 + 3.97(P/D) + 1.025(P/D)?

(7-104)
+ 3.12 logio Re — 0.265(logjo Re)?

Eq. 7-104 appears on Figure 7-4 as curve C-C. The laminar flow solution curve
D-D differs from curve C-C in that the velocity profile to be introduced in the
general equation, Eq. 7-92, must be the laminar annulus flow profile. Finally the
slug solution NugJga = 15.81 from Table 7-1 illustrated on the figure as curve
E-E is slightly larger than turbulent values at low Peclet numbers. It should be
noted that the actual Pe for transition from laminar to turbulent conditions
varies with the fluid through its Prandtl number and has only been drawn
illustratively in Figure 7-4. In summary then, the predicted Nu versus Pe curve
is a composite curve with a dogleg shape of the type C-B-B with the C-B
portion representing the molecular conduction regime but with a turbulent
velocity profile and the B-B portion representing the molecular plus eddy con-
duction regime. The exact magnitudes of the Nusselt numbers along these
curves are dependent on the relationships used to evaluate velocity profiles and
the ¥ function. Relationships other than the illustrative ones presented here
can also be employed.



DISTRIBUTED PARAMETER ANALYSIS OF REACTOR FUEL ROD ASSEMBLIES 309

V LAMINAR FLOW BETWEEN LONGITUDINAL HEATED
CYLINDERS (FUEL RODS)

Let us now return to the problem of the velocity and temperature fields within a
symmetrical portion of an infinite array of rods presented in Section I, but
abandon the simplified equivalent annulus approach and consider circumferen-
tial heat transfer which can occur. The elemental coolant flow area of interest
was introduced in Figure 7-1.

In the next several sections we will address the problem of fully developed
laminar flow with boundary conditions applied to those surfaces bounding only
the coolant region. This problem is aptly defined as a single-region problem.
The more complex but more realistic multiregion problems include the various
additional portions of the fuel rod with the coolant region and involve the
simultaneous solution of the energy equations in these regions.

The momentum and energy conservation equations can be solved sequen-
tially by virtue of the assumption that physical properties can be taken indepen-
dent of temperature. However, the momentum equation solution must first be
solved to provide the required velocity field for the energy equation. The chal-
lenge of this problem comes with the task of fitting the general solutions of the
conservation equations to the particular boundary conditions in view of our
unusual geometric flow configuration.

VI MOMENTUM TRANSFER IN LAMINAR FLOW BETWEEN
FUEL RODS

The applicable form of the conservation of momentum equation is Eq. 7-27.
This partial differential equation is frequently called Poisson’s equation.

We will follow the solution of Sparrow and Loeffler [49] by expressing Eq.
7-27 in terms of a reduced velocity, v}¥. Here p is utilized for generality versus
the use of p in the Sparrow and Loeffler [49] definition of v¥.

2 (1 dp
vt =, — % (; d—’z’) (7-105)

Under this transformation Eq. 7-27 becomes:

%u¥ 1 9vf _l_azv’lk
or: r ar  r? 960?

=0 (7-106)
which is the well-known Laplace equation. The general solution of Eq. 7-106 is:
v} =A+Bénr+ D (Curk + Der*) - (B¢ coskf + Fy sink6) (7-107)

k=1

where k takes on integral values to ensure that the velocity is single valued, i.e.,
the velocity computed at a location (r, ) is identical to that computed at (r,6 +
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Figure 7-5 Momentum bound-
—e ary conditions on characteristic
I-q— r, | v /lon=0 coolant element of an infinite tri-
| P2 »-| angular array.

27). The constants A, B through Fy in Eq. 7-107 will be determined from the
boundary conditions, as are the number of terms k of the series.
Combining Eqs. 7-105 and 7-107 yields the general velocity solution:

r? ldﬁ) -
v;“=A+B€nr——<———+ Cyrk + Dyr*
2 \" k;( k k) (7-108)

 (Ey cos k@ + Fy sink6)

This solution is next specialized to flow parallel to cylindrical rods in regular
arrays.

The characteristic coolant domain for a triangular array is shown in Fig-
ure 7-5 with its applicable momentum boundary conditions. From symmetry
dv,/on = 0 at @ = 0, 6 = 30 degrees and along the line r = (P/2)/cos6. The no-
slip requirement of viscous flow at the inner boundary is v, = 0.

Now apply these boundary conditions to determine the constants of Eq.
7-108. From the symmetry condition at § = 0:

F,=0 (7-109)
while from this condition at 8 = 30 degrees:
=6,12,18. .. (7-110)

to guarantee that sink7/6 = 0. Next imposing the condition that v, = 0atr = ry
yields:

D, —Ck"(z)k

A

2 5 7-111)

r(_1 d_P) (
Bénry + 2 ( w dz

Further, the total friction force exerted on the fluid by the solid rod must be

balanced by the net pressure force acting over the entire cross-section of the

typical element yielding:

(™' (avz) [ [PlGeoso) (dﬁ)
Jo w(52) o= [ [T (S2) raras (7-112)
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Evaluating this overall force balance from Eq. 7-108 yields:

-2 (-14)
B=->23) \-2% (7-113)

Utilizing the preceding results, Eq. 7-108 becomes:
2 A A
U, =L§<£) <_l@> gni - 1<_ld_p_> (r2 — r(Z])
7 \2 M dz ro 4 u dz
. (7-114)
@ . r(l)z'l
+ Y G; (ﬂv - T) cos6j0
j=1 r
where Gj = CjEj.
G; must still be obtained by the condition that dv,/ on is zero on the bound-
ary where r = (P/2)/cos 0. It is convenient to make use of the identity:
v, _ av, dv, sinf

on - ar cos6 — 0 r

(7-115)

Substituting Eq. 7-114 into 7-115 and setting dv,/on = 0 when r = P/2cos®,
obtain after rearrangement:

Dcos@
P

w 12
2 Aj(cos0)' Y [cos(6j - 1o+ ( ) cos(6j + 1)6]
j=1

V3 1
+ - cosB—E—O (7-116)

where:

o
8 = G —ER" (7-117)

()
p dz)\2
The A (that is G;) can be determined from Eq. 7-116. However, the nature of
Eq. 7-116 precludes the use of Fourier analysis to provide an infinite set of A;
because the cosine terms in Eq. 7-116 cannot be multiplied by appropriate sine
or cosine functions to yield orthogonal functions.

The method used by Sparrow and Loeffler [49] was to apply Eq. 7-116 at a
finite number of points along the boundary. This approach of selecting j values
of 6 and truncating the series to A; terms is known as a point-matching tech-
nique. It represents the simplest approach to match equations and unknowns.
If the number of values of 6 used is greater than the number of coefficients
from the series truncation, the system of equations is overdetermined and a
boundary least-squares method is used. Another more rigorous approach is to
determine A; by having the equation boundary condition agree in an integral

sense; this is called the integral boundary least-squares method. The numerical
values of A;, computed as outlined above for up to five points between 8 = 0
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Table 7-2 Listing of A; and §; values for various spacing ratios

Values of 4;
PID A A, A, A, A Ag
4.0 —0.0505 —0.0008 0.0000
2.0 -0.0505 —0.0008 0.0000
1.5 —0.0502 —0.0007 0.0000
1.2 —0.0469 0.0007 0.0002 0.0000
1.1 —0.0416 0.0028 0.0004 0.0000
1.05 —0.0368 0.0043 0.0003 —0.0001 0.0000 —_—_—
1.04 -0.0357 0.0046 0.0002 —0.0001 0.0000 _—
1.03 —0.0345 0.0049 0.0002 —0.0001 0.0000 —
1.02 -0.0332 0.0051 0.0000 —0.0001 0.0000 e ——
1.01 —0.0319 0.0052 —0.0001 -0.0002 0.0000 e ———
1.00 —0.0305 0.0053 —0.0003 —-0.0002 0.0000 —_—
Values of §;
P/D 8, 82 8] 64 65 66
4.0 -0.1253 —0.0106 —0.0006 0.0000
2.0 —0.1250 -0.0105 —0.0006 0.0000
1.5 —-0.1225 —0.0091 —0.0002 0.0000
1.2 -0.1104 —0.0024 —-0.0015 0.0003 0.0001 0.0000 —_—
1.1 -0.0987 0.0036 0.0029 0.000S 0.0000 _—
1.05 —0.0904 0.0073 0.0032 0.0002 —0.0001 0.0000 —

(From Sparrow and Loeffler [49].)

degrees and 30 degrees are listed in Table 7-2. The P/D ratio is a parameter of
Table 7-2 since it appears in Eq. 7-116. Since P/D is raised to a large negative
power in Eq. 7-116, the A; values are little affected by increases of spacing for
large P/D. The tabulation is given to four decimal places because this is suffi-
cient for the shear stress and velocity computations that follow, although addi-
tional figures were used by the original authors to satisfy Eq. 7-116 to the
desired accuracy. With the determination of G; through 4;, the velocity distri-
bution for the infinite triangular array is now available by Eq. 7-114.

The key results in the application of this same procedure to flow between
rods in a square array is outlined next. The characteristic domain for the square
array has an opening angle equal to 45 degrees rather than the 60 degrees of the
triangular array. Therefore with only this exception, the boundary conditions
illustrated in Figure 7-5 for the triangular array apply to the square array. The
velocity solution as given by Eq. 7-107 applies, but the constants A, B, through
F, which are appropriate to the square array must be found.

Proceeding as before from the conditions that ov,/dn = ov,/ M=0atg=0
degrees and 6 = 45 degrees, find:

F,=0
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and
k=48 12. ..
Dk = —Ckr(z)k
r3 1 dp
A=-B¢n ro+£(—;£) (7-118)

The overall force balance between net pressure and wall shear, Eq. 7-112,
with 7/6 replaced by 7/4, yields:

_2 PZ( 1dp>
B—ﬂ(i) - (7-119)

The velocity is obtained by substituting these results into Eq. 7-108 yielding:
_2(1))2( 1dp> r 1( 1dp> , 2
=7 \2 p dz tn ro 4\ pdz (= ro

o 8j
+ > G; (r“j - %) cos4j0
j=1

(7-120)

where the G; (= CE)) still remain to be determined. Again applying the condi-
tion that 9v,/on = 0 on the right boundary of Figure 7-5 for which r = (P/2)/
cos@ yields:

® 8
Y, 8i(cosf)! 4 [cos(4j - 16+ (DCI?SO) cos(4j + l)GJ
Jj=1
2
20080 _1_ 4 792
™ 2

where:

4j(P/2)4

8 =G —L——
20
mdz/\2

Numerical values of the §; obtained by the point-matching technique are also
listed in Table 7-2 as a function of P/D.

Results from the Momentum Solution

Dimensionless velocity contours are presented in Figure 7-6 for the triangular
array at spacing ratios of P/D = 1.1 to represent close packings and P/D = 2.0
to represent open packings. The contours for the large spacing are essentially
circular for a sizable region near the rod surface indicating little effect there of
the neighboring rods. On the other hand for the small spacing example, the
influence of the neighboring rods extends to regions very near the rod surface.
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a) (P/2)/r, = 2.0 b) (P/2)/r, = 1.1

Figure 7-6 Representative velocity contour lines for an equilateral triangular array. (After Sparrow
and Loeffler [49].)

The local wall shear stress, exerted by the fluid on the wall 7, is given by:

dv,

W) = I (7-122)

r=ry

which varies with angular position because the velocity gradient at the wall
varies with angular position. For the triangular array the wall shear stress can
be evaluated utilizing Eq. 7-114 as:

_ _@) {ﬁ(i)z_l S (L) }
Tw(G)—( dz) "o e 2+I"_§7;2AJ o cos6jff (7-123)

™

Since we will plot the ratio of the local wall shear stress to the average value,
Tw(0)/7., we next evaluate the average wall shear stress. This is most simply
done for our case of fully developed flow by performing a force balance on a
unit length of our elemental coolant area A;. The force balance yields:
’I_'wl‘oeodz = ‘dﬁA[ (7-]24)

and since A;is equal to:

P\ tan6, rio
(g

> > (7-125)
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we obtain the following general expression for the average wall shear stress:

_— _@)[(1)fzm_@]
Tw = ( dz)|\2) “ary 2 (7-126)
Now for the triangular array:

™ 3
3 and tanf, = 3

For these conditions, the average wall shear stress becomes:

~ 2
Tw = (— Z—g) ro [ﬂ (ﬂ) - %] (for triangular array) (7-127)

T \2rp

and finally, the desired ratio of local to average wall shear stress is:

@ P 2-6

> 24, (2—) cos6j0

(6) =1+& 0 (for triangular array)  (7-128)

Tw V3 ( P )2 1
) "3

2

0():

m

Similarly, utilizing the velocity distribution for the square array, the compara-
ble ratio of wall stresses for that array is:

w© p\*Y
@) 2. 28; (270) cos4j0
—w;— =1+ &L > (for square array) (7-129)
w 2 (P) 1
™ 2"0 2

The manner in which the shear stress ratio varies is shown in Figure 7-7 for the
triangular array. These curves illustrate the role of neighboring rods on the flow
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pattern around a given rod. For large spacings, for example P/D = 1.5, the
local shear stress is essentially a constant around the periphery of the rod. The
angular dependence of the local wall shear stress increases as the spacing
decreases. This is a consequence of the increasing asymmetry of the flow due
to interference of neighbors.

The highest shear stress is associated with the location of highest velocities
(0 = 30 degrees), and the smallest shear stress is at the location of lowest
velocity (8 = 0 degrees).

Finally, we will develop the friction factor—-Reynolds number relationships
for these arrays. First write the definition of the friction factor as:

47,
f plu.}?
2

(7-130)

Now utilizing our general expression for 7,,, Eq. 7-124, the friction factor can

be expressed as:
__8 (_ @) A
f= p{v.P? dz/ rofo (7-131)

where for simplicity we have retained the designation A¢ rather than its ex-
panded form. Now let us introduce a Reynolds numberbased on the rod diame-
ter D as:

and recognize that the volume flow rate Q is given by:

0 = {v,}A¢
Utilizing these two relations and Eq. 7-131 the desired product is:
_ [y (_ gg)][ 164} }
fRep = [ on \~ a@/ ey (7-132)

From reference to Eq. 7-125, we see that for a given array type the second
term of Eq. 7-132 is only a function of P/D. If we can show also that the first
term is only a function of P/D for a specified array type, the product fRep is
then only a function of P/D and thus related to the fractional cross-section
available for flow.

Let us examine the first term by calculating Q through integration of the
velocity over the flow area. This integral is expressed as:

8p P/(2cos0)
0= vrardo=[" [ v,rdrdo (7-133)
f o
Now introducing the dimensionless variable:

4

[
ST

(7-134)
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and taking the example case of the square array, we apply the velocity profile of
Eq. 7-120 utilizing the defining Eq. 7-121 for the constants G; in terms of the
tabulated (Table 7-2) constants §;. Under these conditions, the volumetric rate
of flow O from Eq. 7-133 becomes:

B dﬁ) ra{ 714 (P/D)/cosé [2 (P)2 1
o-(-D 2" 2 E) me-fe-n

£ QLD%Y—Z (@Y - g-‘f)cos4ﬂ’] Lded "}
i=1

(7-135)

where 6, = w/4 has been introduced for the square array. The integral of Eq.
7-135 is only a function of P/D since { is a dummy variable.
The integral appearing in Eq. 7-135 can be directly evaluated giving:
T - 5 |
———— — —_— —_— —_ + —_
(—dpld) D2 o) |27 (2 €n(P/D) + €n2 — 3) 5

.. Y ) (7-136)
c(B) S a A (B) L+ L(E) -2
D/ &ajlg+2" \P) 4-2] " 4\D/ 64
where:
™4 cosd4j o
A= oyt 46 (7-137)
_ (™ cos4j0

The definite integrals represented by A; and 8; were computed numerically by
the Runge-Kutta method by Sparrow and Loeffler [49].

Now note that the left side of Eq. 7-136 is the inverse of the first term of the
right side product in Eq. 7-132. As Eq. 7-136 demonstrates, this term is only a
function of the ratio P/D. This term is known as the pressure drop/flow rela-
tionship. From the foregoing analysis the product fRep can be plotted solely as
a function of P/D for a defined array. This has been done in Figure 7-8. In this
figure the porosity &, the fraction of the total cross-sectional area available to
flow, is a coordinate along with the P/D ratio.

Utilizing the velocity profife of Eq. 7-114:

25

G, = o~ 2L (7-139)

- (P\?
O (5)
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Figure 7-8 Friction factor-Reynolds number as a function of rod spacing. (From Sparrow and
Loceffler (49].)

the final result for the flow rate for the triangular array is:

_2&__<£)‘[L< P_ -3 13\/3]
(—dpid)D ~ \D) |3m €nD €ncos30 degrees > + 516

) (7-140)
c(B) S al e, (B) xRy a
D/ S 6 Le +2 P 6 —2 12 \D 96
where:
_ (™ cos6j6
=, oeg 40 (7-141)
_ (™ cos6j6
Xi = _L Wdo (7-142)

On Figure 7-8 the curve representing the triangular array lies above that for
the square array. For tight packings, the curves for the two arrays are not
similar in shape. This is because at small spacings the flow passages of the two
arrays are very different. In the limiting case of rods touching (P/D = 1.0), the
passages of the square array are curvilinear squares, whereas those of the
triangular array are curvilinear triangles giving different flow profiles. On the
other hand, at large spacings, the flow passages of the two arrays are almost
geometrically similar so the curves merge as we expect.
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VII HEAT TRANSFER IN LAMINAR FLOW BETWEEN
FUEL RODS

The appropriate conservation of energy equation is Eq. 7-28 where for fully
developed flow and heat transfer and uniform axial heat flux boundary condi-
tion, the term 97/9z is a constant, i.e.:

o _ 44w _ g _
57 = odpc,De e, ~ constant (7-143)

In the previous section solutions were obtained for the velocity distribu-
tion. Taking the triangular array case, rewrite the velocity solution of Eqgs. 7-
114 and 7-117 in the form:

bV r (2] (2]

I B
2 m dz (7-144)

AJRINCN
+ Z:l Y 1 ; cos6né
where the index n has been introduced in place of j to avoid later algebraic
confusion with this equation in obtaining the temperature field solution.

When the relations 7-143 and 7-144 are introduced into the energy equation,
Eq. 7-28, the resulting governing equation for the temperature field is:

T 13T , 19T _ q'/12k {\/5 ro 1 [(g)z ~ <@)2]

v TR e T Py P P

2 ﬁ (&)6" [ (rO)IZn] }
+ ,.21 = \p 1 ; cos6né

where for convenience the dimensionless grouping M has been introduced:

GIEEY
2 ® dz
Numerical values of M can be obtained as a function of spacing ratio from the

pressure drop/flow parameter (—(1/u)(dp/dz))r$/Q plotted in Sparrow and
Loeffler [49] by noting the following relation between this parameter and M,

ie.:
_l@)ﬁ_il(i)4
( pwdz) Q MI12\P/2 (7-147)

12 (P/2) (94(_&%) 1 <r0 )“

(raydonem WUaa) o
rdz/ Q° p 12 (P2)* m/12p 12 \P/2

—~fn— —
™ ro 4

(7-145)

since:
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The general solution of Eq. 7-145 is expressed as the sum of particular and
homogeneous solutions:

T=T,+T,

For a particular solution, any function satisfying Eq. 7-145 will suffice. It can be
verified by direct substitution that the following expression is a satisfactory
particular solution:

_ (q712k)r2{__ V3 o1 (1))2 1 <2r)2 V3 o

= —_— — + — én —
Ty M(P/2)? 4m * 16 ar " o (7-148)

= A, 2)m [ 1 (ro/r)IZn] }
+,§,24n<P 6”+1+6n—1 cos6nd

The homogeneous equation is obtained by setting the right side of Eq. 7-145 to
zero yielding:

P

64

P

azTh 1 9T, 1 azTh

o i T O (7-149)

Like Eq. 7-106 this is a Laplace equation that has a general solution of the form
of Eq. 7-108. To avoid confusion we will write the series portion of this equa-
tion for T, in terms of the index m as:

Tha=A+Bénr+ D (Cor™ + Dur™)(Encosmf + Fpsinmf) (7-150)
m=1

where m takes on integral values to ensure that T is single valued, i.e., T(0) =
T(0 + 27). As before, the constants A, B, through F,, remain to be determined
from the boundary conditions.

The characteristic coolant domain with its applicable thermal boundary
conditions is shown in Figure 7-9. The rod surface condition shown is one of
circumferentially uniform surface temperature. An alternate limiting possibility
is that of circumferentially uniform heat flux. Both reactor fuel rods and electri-
cally heated rods generally used in low temperature experimental studies have
low thermal conductivity ceramic cores encased in metallic claddings. For

Figure 7-9 Thermal boundary con-
ditions on the characteristic coolant
element of an infinite triangular ar-
ray for the circumferentially uni-

~~— [, ——] aT /06 =0 form rod surface temperature as-
P2 — sumption.




DISTRIBUTED PARAMETER ANALYSIS OF REACTOR FUEL ROD ASSEMBLIES 321

these materials, a nearly uniform wall heat flux is achieved on the inner wall of
the cladding. Under these circumstances the boundary condition of circumfer-
entially uniform surface temperature is approached for thick and high-conduc-
tivity claddings, whereas the condition of circumferentially uniform heat flux is
approached for thin and low-conductivity claddings. Numerical criteria for
these conditions are given in Section IX.

We proceed here with the solution for the uniform surface temperature
condition because it is more instructive to follow an analytical versus numerical
solution procedure, and only for this condition has a nearly completely analyti-
cal solution been performed [50]. Following closely their procedure, we start
the application of the boundary conditions by first imposing the symmetry
requirements that 7/6n = 0 at 6 = 0 degrees and at § = 30 degrees. The
condition at 8 = 0 degrees yields:

Fn=0
and the condition at § = 30 degrees yields:
m=6,12,18,. ..

to ensure that sin (mm/6) = 0. The temperature solution, Eq. 7-150, then be-
comes:

T=T,+ A+ Bénr+ 2 (Cr¥+ Dyr¥:cos66 (7-151)
j=1
where E, has been set equal to unity without loss of generality and j = m/6.

Next at the surface of the rod, r = D/2, the temperature equals T, indepen-
dent of angle. Applying this condition to Eq. 7-151 yields:

(q’/lzk)ra{ Vi 3 (o)’}

A=TW—B€nro—m —z;+a F

(7-152)

and

(@'N2%k) A, rg™?
M(P2)> 2(36n% — 1) (P/2)*"

Note thatin Eq. 7-153 and thereafter, the condition n = j applies so that the two
subscripts in Eq. 7-153 could be combined. However, following Sparrow et al.
[50] for convenience we will retain both.

Further, since a point-matching procedure will be applied for the last
boundary condition, an energy conservation requirement is imposed for the
typical element of Figure 7-9. This ensures that there is no net energy transport
across the other boundaries of the typical element. Equating the heat transfer
per unit length q'/12 to the heat conducted at the surface of the fuel rod, obtain:

w/6 oT
gn2=[" -k (;)

D, = Gyl - n=j 015y

rod6 (7-154)

(]




322 NUCLEAR SYSTEMS II

Inserting Eq. 7-151 into the energy conservation condition 7-154 gives:

_ q’/12k 6M< \/i(D2 _i<£:| ]
B_M(P2/4)[ ™ >+ = ) 16 4,,2) (7-155)

Introducing Eqgs. 7-152, 7-153, and 7-154 into the temperature solution 7-151
and substituting for T, from Eq. 7-148 gives:

S i) e
T-Tu=yprp Lar \© T 4) 16 \ap?) ~ & ) tn o
1 (r* — (D*16)) Vi o1 D)2]< _<g }
e (PUd) +[" ar T 16<P r 4))
= D\ ,
+ 2 Cr¥ [1 - <$> ] cos6j6 (7-156)

(q'/l2k)r2 = {(2r/P)6" [ 1 (D/2r)‘2"]
M(P?4) EA 2n len+1 " 6n-1

__(Dl2rp (D/2)'2"}
2(36n2 — 1) rS(P/2)o"

Since A, and M are known numerical constants whose values depend upon P/
D, the temperature distribution will be completely determined when the C; are
found. The condition available to determine C; is that aT/on = 0 on the nght
boundary of the typical element where r = (P/2)/ cos 6. The following identity is

useful in applying this condition:

oT oT aT sin6

- == - — 7-157

- ar 00 T (7-157)
then utilizing the temperature distribution of 7-156 and setting 6T/dn = 0 for r =
(P/2)/cos6, after considerable rearrangement one obtains:

@ 12
> wj(cos)!-¢ [cos(6j - 1)9 + (D CI‘,’SG) cos(6j+ 1)0]

Jj=1

@ D 12n+2
Z {m ( > (cos0)®"*'cos(6n + 1)

cos(6n — 1)8 + (1/3n)cosfBcos6nb
4(6n + 1)(cosg)bn+!

(D/P)"n(cos g)tr-!
4(1 — 6n)

[ R B 5 (B oo

_1(2)2_£e ( P >+ 1, V3
8 \P 2T Dcosé 16cos?6 ' 47

(7-158)

[cos(6n + 1) — (l/3n)cosocos6n0]}
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(P\?
Méj (5)
(0/12k)

The only unknowns appearing in Eq. 7-158 are the coefficients wj (i.e., C)).
Sparrow et al. [50] applied the point-matching technique in which j values of 6
were selected and the series was truncated to w; terms. This yields j linear
equations, each of which contains j unknown values of w;. As soon as the P/D
ratio is specified, the values of A, and M become available, and the right side of
each equation can be reduced to a numerical constant. The numerical results
that have been obtained for the wj are listed in Table 7-3 as a function of the
spacing ratio P/D.

The coefficients C; can be determined by Eq. 7-159 knowing the w; values.
The summation involving C; in the temperature distribution Eq. 7-156 can be
expressed in terms of the w; values as:

- o\ 'Y
> Crti [1 - (—f) ] cos6j6
j=1

255G [ - )] e
== ;@. P 1 5, cos6j0 (7-160)

The temperature distribution within the coolant region of an array with speci-
fied geometry, i.e., ro and P/2, can be determined from Eq. 7-156 since Cj, A,,
and M are now known. Presentation of heat transfer results follows.

where:

wj = Cj (7-159)

Results from the Temperature Distribution Solution

Let us first compute the Nusselt number for the circumferentially uniform rod
surface temperature condition just solved. Defining the Nusselt number for the
infinite rod bundle in terms of the equivalent diameter, we have:

NG, - PDe _ (2)(&) q'l12k
L= -\D) T 1 (7-161)

Table 7-3 Listing of w; values for various
Spacing ratios

PID  w x 102 o, x 10° wy X 105wy x 107
4.0 2.9649 0.39239 0.579 ~0.3
2.0 1.2712 0.12031 0.136 ~0.05
1.5 0.71081 0.014556  —0.195 ~-15
1.2 0.37039 -0.1323 -1.20 ~-6.0
1.1 0.25961 -0.2065 -112 ~7.0

(From Sparrow et al. [50].)
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where:
= q' 3
h = —wD(Tw _— (7-162)
and
6 (PY
D.=D|—— (—) - l] 7-163
[\/377 D ( )

Regarding notation, we have used the subscript EA for equivalent annulus and
unsubscripted Nusselt numbers are taken to be applicable to rod arrays. The
bar superscript refers to parameters averaged over the entire rod surface of the
characteristic coolant region. The standard definition of the bulk temperature is
used to compute the wall-to-bulk temperature difference:

f f Tpv,rdrd6

area

j j pu,rdrd6

area

T, = (7-164)

where the denominator is the mass flow rate. Specializing to the elemental
coolant area and subtracting the wall temperature, we obtain:

30 degrees ~P/(2cos6)
o [ @ - Dy,rdras

T, - T, = YT (7-165)

The integrand is evaluated using the velocity distribution from Eq. 7-114 and
the temperature distribution from Eq. 7-156 with Cj given by Eq. 7-159. Evalua-
tion of Eq. 7-165 leads to the following relation:

Tw - Tb
q'/12k

= f(P/D) (7-166)

When this is applied to Eq. 7-161 and D, is evaluated by Eq. 7-163, we find that
the resulting laminar Nusselt number is solely a function of P/D for a fixed type
array. Numerical values of [Nug] for this case are presented in Table 7-4 as
boundary condition case A.

At this point, observe that since only the quantity T, — T from Eq. 7-156
entered the Nusselt number computation, we have proceeded so far without
the need to establish a wall temperature value numerically. For our case of
prescribed radially averaged uniform axial heat flux ¢”, the following relation-
ships between T,,, ¢" and T,, — T, exist. First the bulk coolant temperature is
known from an axial energy balance as:

To(2) = Tinter + (q mD ) z (7-167)

mc,
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Table 7-4 Heat transfer characteristics
for in-line, laminar flow through
unbaffled rod bundles and for the
thermal boundary conditions of: (A)
uniform wall heat flux axially and
uniform rod surface temperature
circumferentially and (B) uniform wall
heat flux in all directions

[mL]r.b = N—UL

Boundary Boundary
condition condition
PID A B NuyJga
1.001 1.26 0.149 8.52
1.01 1.52 0.263 8.58
1.02 1.82 0.404 8.64
1.03 2.14 0.580 8.70
1.04 2.48 0.795 8.76
1.05 2.82 1.06 8.82
1.06 3.18 1.36 8.88
1.07 3.54 1.70 8.94
1.10 4.62 2.94 9.12
1.20 7.48 6.90 9.75
1.30 9.19 9.03 10.40
1.40 10.34 10.28 11.07
1.50 11.26 11.22 11.75
1.60 12.08 12.05 12.46
1.75 13.28 13.26 13.55
1.80 13.68 13.66 13.92
1.90 14.47 14.46 14.68
2.00 15.27 15.26 15.46

(From Dwyer and Berry [11].)

Now, using a defining relationship for 7,(z) and Eq. 7-167 we obtain the desired
result linking 7,(z) to other known parameters, i.e.:

=

q'mD
mc,

T\(2) = To(z) + (Tw — Tv) = Tinter + z+ Ty — Ty (7-168)
where it should be observed that although T,,(z) increases with z (for a heated
fuel rod), T, — Ty is a constant with z as demonstrated by Eq. 7-166 for our case
of fully developed laminar flow and heat transfer.

For the boundary condition case of circumferentially uniform heat flux on
the rod surface, a fully numerical solution has been performed by Dwyer and
Berry [11] for the triangular array using a velocity profile of the form of Eq. 7-
114. Values of the rod-averaged Nusselt numbers for this case are presented in
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Table 7-4 as boundary condition case B. Also the Nusselt numbers calculated
from the equivalent annulus model and already presented in Table 7-1 are
tabulated in Table 7-4 for comparison. From Table 7-4 it is seen that the results
for boundary condition cases A and B are very different for small spacings,
P/D < 1.2, but above this value they rapidly approach each other and the
limiting equivalent annulus model results. At P/D ratios of 1.20, 1.50, and 2.00,
the simple equivalent annulus model gives Nusselt numbers that are too high
versus case B by 41.3, 4.7, and 1.3 percent, respectively. For the slug flow case
[13] these comparable differences are less because in that situation, only a
geometrical difference exists between the annulus and the true flow area assign-
able to each rod, whereas in the case of laminar velocity profile there is a
difference between velocity distributions in these flow areas as well.

The fact that the results for cases A and B approach those of the equivalent
annulus model at large spacing follows physically from the observation that in
the annulus model all the heat is transferred radially. In this situation boundary
conditions A and B coexist. Another way to demonstrate this merging of
boundary conditions at large spacings is to examine directly the circumferential
variation of rod surface heat flux and temperature for boundary conditions A
and B, respectively. To compute the local wall heat flux variation for case A,

we use Fourier’s law as:
_ aT)
= —k (ar (7-169)

The temperature distribution is introduced from Eq. 7-156 with C; coefficients
given by Eq. 7-159, and after some rearrangement, it is found that:

P 6n+2
pr 1 - — {2 2w (—) cos6f + O, Sen =1 cos6n0} (7-170)
r n=1

Utilizing tabulated values of w; from Table 7-3, A, from Table 7-2, and M from
Sparrow and Loeffler [49], the circumferential variation of q” can be evaluated.
The results are tabulated in Dwyer and Berry [11] and plotted in Figure 7-10 as
a function of 6 for varying spacing ratios P/D.

The local wall temperature variation for case B has been computed directly
[11]. The local wall temperature is of interest from the standpoints of mass
transfer corrosion, thermal stress, and the possibility of nucleate boiling incep-

"

q

(Tw,e — Tp)k
q”De

From Eq. 7-161 it can be seen that this ratio is actually the reciprocal of the
local Nusselt number. It is seen that for P/D = 1.07, the wall temperature at
6 = 30 degrees is very slightly less than the bulk temperature of the coolant. As
the P/D ratio is decreased below 1.07, a small circumferential region of nega-
tive values of (T4 — Ty,) occurs. Of course under all conditions heat flows from

(7-171)
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Figure 7-10 Circumferential wall heat flux variation for laminar flow through equilateral triangular
array rod bundles under conditions of uniform wall heat flux axially and uniform wall surface
temperature circumferentially (case A). (From Sparrow et al. [50].)
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Figure 7-11 Circumferential wall temperature variation for laminar flow through equilateral trian-

gular rod bundles under conditions of uniform wall heat flux in all directions (case B.) (From Dwyer
and Berry [11].)
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the rod to the coolant so that the local radial temperature gradient at the rod
surface is always positive. Because the use of T, introduces negative values in
the normal definition of the local heat transfer coefficient, we have not chosen
to present any results from the literature in these terms. Now from both Figures
7-10 and 7-11 it is obvious that circumferential variations in the plotted vari-
ables become negligible for P/D ratios of 1.5 and higher. This behavior is
entirely consistent with the tendency of the rod-averaged Nusselt numbers in
Table 7-4 to merge at high P/D ratios and demonstrates that for wide spacings
boundary conditions A and B coexist.

The single-region laminar flow problem has now been completed. The
physical conditions to which boundary condition cases A and B apply have
been qualitatively discussed. More precise numerical criteria require the more
complex analysis of simultaneously considering the clad or the fuel and clad
with the elemental coolant region. These analyses are called multiregion analy-
ses and represent two- and three-region problems. These analyses will be ad-
dressed in Section 1X.

VIII TURBULENT LONGITUDINAL FLOW IN ROD BUNDLES

The relevant differential equations that have been derived in Section Il are Egs.
7-25 and 7-26. It should be recalled that these equations are based on (a) the
eddy diffusivity approach for modeling the Reynolds shear stresses and turbu-
lent heat fluxes, and (b) the neglect of secondary flows.

The eddy diffusivity approach is only one, albeit the most practical,
method for handling the turbulent fluxes. The others are the phenomenological
turbulence model approach and the statistical turbulence model approach. The
former is centered on the mixing length theories proposed by Prandtl [38] and
Taylor [52]. Buleev’s [4, 5] extension of these theories falls into this category.
The inherent assumptions of this approach are not in many respects consistent
with observation [33], and additionally this method cannot provide needed
information with respect to turbulent transfer tangential to the channel wall.
The latter approach concentrates on a few of the statistical properties of turbu-
lence which are supposed to obey laws of generation, dissipation, and trans-
port. The proposed models consist of a set of differential equations and associ-
ated algebraic ones, the solution of which simulate the real behavior of
turbulent fluids in important respects. A short review of the different ap-
proaches arranged in order of the number of equations may be found in the
review by Launder and Spaulding [26]. However, prediction methods are so-
phisticated and still require a trial-and-error adjustment of the empirical input.
Furthermore, they have not yet been used extensively enough to study flow
and heat transfer in nonuniform channels to permit their general recommenda-
tion. An example of a theoretical and experimental study of the interior sub-
channel of a triangular array by this method using a two equation model is the
work of Bartzis and Todreas [2].
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A Eddy Diffusivities and Secondary Flow

Using the eddy diffusivity approach one is still faced with providing em,, eme»
€nr, and eyq distributions. Contrasted to our previous example of the circumfer-
entially symmetrical equivalent annulus, the subchannel is nonsymmetric. Fur-
ther, experimental evidence indicates that tangential diffusivities can be several
times the radial diffusivities, thereby giving rise to so-called anisotropic effects.
These effects are important since they are effective mechanisms for lateral
transport of momentum and energy. The necessity to provide thermal diffusivi-
ties encountered in the equivalent annulus problem also exists here but now is
even more complicated since both ey, and ey, are required.

In reality all four diffusivity terms above are spatially varying. Since reli-
able information on such variations is only available for the radial component of
momentum transfer gy, in uniform channels, one can appreciate that providing
the necessary input for solution of Eqs. 7-25 and 7-26 is a major difficulty.
Generally the path taken has been to postulate a distribution of ey, from circu-
lar tube results based on the observation that the radial distribution of axial
velocity for a nonuniform channel also obeys a universal velocity profile if
based on the local wall shear. Then a global (infrequently a local) value for the
ratio of &me/Ey;, is postulated from experiment. The resulting global value of
circumferential eddy diffusivity &y, is either used directly or used as the base
to postulate a local distribution of circumferential eddy diffusivity. Finally
either local or global eddy diffusivities of heat are related to those of momen-
tum by factors that stem from semiempirical theories or heat transfer experi-
ments.

The direct solution of the turbulent flow equations including secondary
flow for triangular array geometries is a difficult task. An alternate approach
useful for assessing the importance of secondary flows is to postulate their
distribution function and estimate their amplitude based on allied experimental
results. This result is then fed into the analysis for axial velocity distribution
and heat transfer behavior. An example of this approach can be found in
Nijsing and Eifler [35].

In view of the large variety of options available for specifying the eddy
diffusivities and secondary flows and the complexity of the algebraic operations
involved in the solution of the relevant differential equations, we will not
present a detailed solution of the turbulent problem as we did for laminar flow.
Rather we will present results from the Nijsing and Eifler [35] study which
shows the importance of the different elements in the analysis. Proceeding from
the equivalent annulus solution these new elements are:

1. Channel geometry, isotropic turbulence:

EMr = EM9

EHr = EHs
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Figure 7-12 Geometric parameter definitions for turbulent flow in the coolant region.

2. Anisotropic turbulence:
EMo ¥ EMr
€He # EHr
3. Secondary flow.
These results are for a triangular array of P/D = 1.05 for a fluid of Pr = 0.0045
with uniform heat flux (case B) boundary condition. The geometric parameters
in which the results are expressed, R, and y,, are defined in Figure 7-12. The

momentum solution is given in Figure 7-13 in terms of the circumferential
distribution of the dimensionless velocity v which denotes the ratio for the

1.4 T T T T ]
‘2 i ! i ! H
= . ./_' .....
2 1.2 Triangular Array et
8 P/D =1.05 . —9
- Re = 50000 A
>
Z 1.0 /
'g e
c i
T T S s S W e i %
L * Sl B P
£ ,____.,——1 .......
3 7 i N et
o LN ©® Experimental Values
5 08 pmmmr— Eifler and Nijsing [18]
(2]
8 Theoretical Predictions
c 04 Isotropic Turbulence, No Secondary Flow
,g Anisotropic Turbulence, No Secondary Flow
S 0.2 Anisotropic Turbulence, Secondary Flow
g o
5 (vﬂ/vlb)mal = 002

0.0 L

0.0 0.2 0.4 0.6 0.8 1.0

i - o
Normalized Azimuthal Angle, 76

Figure 7-13 Circumferential distribution of dimensionless velocity vgs. (From Nijsing and Eifler
[35].)
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radially averaged (from R, to ro + yo) coolant velocity at position 6 to the bulk
coolant velocity vg.

In evaluating the velocity profile the following eddy diffusivity properties
were used:

1. em, given by the following relationship developed by Eifler as reported in
(35]

K y 2 y T yo T 172
M =20+ b)Y [” * <1 - %) J[2 - %] v (yg - y)(?) (7-172)

where K is a coefficient depending weakly on the ratio yo/ro and b is a
parameter depending both on Re and on y¢/r¢, given by:

K = 0.407 + 0.02yy/ro (7-173)
-1
b= [1.82 -13 ? (1 + 074080 Re) = 3 1;‘:) - 5)] (7-174)
0

2. &me = 0.185y¢(7w/p)"? is a radially averaged diffusivity which is two to three
times greater than &y;.

Examining Figure 7-13 we first see that variations of vy with 6 are induced
by the subchannel geometry and would not exist for a circularly symmetrical
channel like an annulus. Next the curves for zero secondary flow show that the
influence of circumferential turbulent diffusion is relatively small since the
curves for anisotropic turbulence and isotropic turbulence differ only slightly
from each other. Finally the effect of secondary flow is pronounced and tends
to smooth the variations of vy with angle.

The energy solution is given in terms of the dimensionless circumferential
clad temperature distribution in Figure 7-14. The dimensionless temperature
parameter is:

kcoolant[TRo(e) - TRO]

7 (7-175)
q

In evaluating this parameter, the following additional eddy diffusivity proper-
ties were used:

0.5 1.5
1. Sur 1.45 ( Ve ) [l — exp(—0.62(107%) (‘7_-&) Repl'm)jl (7-176)
EMr Uz max Tw
& v 0.5 T 1.5
2. 50 _ 45 ( 2 ) [1 — exp(—1.24(10-%) (—W) RePr‘”)] (7-177)
EMo Uz max Tw

The results of Figure 7-14 indicate that circumferential turbulent diffusion
has a much larger effect on cladding temperature variation than secondary
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Figure 7-14 The effect of turbulent heat transport on circumferential cladding temperature varia-
tion. (From Nijsing and Eifler [35].)

flow. This is contrary to the behavior exhibited in Figure 7-13 for the circumfer-
ential velocity distribution. The small effect of secondary flow on circumferen-
tial heat transport in the coolant is due to the fact that the radial temperature
variation in the coolant is very small compared with the circumferential coolant
temperature variation.

B Turbulent Friction Factors and Nusselt Numbers

As with laminar flow the analysis can be extended to predict friction factors and
Nusselt numbers (for example [15]). These turbulent results are sensitive to the
approach for modeling Reynolds shear stresses and turbulent heat fluxes. The
range among results encompasses results from finite rod array experiments and
analyses which have already been given in Volume I, Chapters 9 and 10,
respectively, for friction factors and Nusselt numbers.

IX MULTIREGION ANALYSIS OF LONGITUDINAL
LAMINAR FLOW

A The General Solution Procedure

To illustrate the principles involved, we will be content to present a two-region
analysis, i.e., clad and coolant. As mentioned in Section VII, however, since
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the ceramic fuel of power reactors and the core of electrically heated rods have
low thermal conductivity, the assumption of uniform circumferential wall heat
flux which will be applied to the inner surface of the clad in our two-region
example is physically realistic.

The problem is formulated by expressing the conservation of energy equa-
tions and boundary conditions for the coolant and clad regions as shown in
Figure 7-15. Retaining the assumptions of no physical property variations with
temperature and no axial heat conduction, the coolant energy conservation
equation is still Eq. 7-28 i.e.:

oT (aZT 10T 132T>
. af

Pz 5z M\ T ¥ ar T P o02

Z (7-28)

where the subscript fhas been added to distinguish the coolant and clad thermal
conductivities. The boundary conditions at § = 0 degrees, 6 = 30 degrees, and
r = P/(2cos@) are also the same, i.e.:

%g = 0 at 0 = 0 degrees and 30 degrees (7-178)
oT
—'_l, = 0atr = P/(2cos0) (7-179)

However, the boundary condition on the rod surface r = rg is now different and
reflects continuity of heat flux and temperature at the rod surface; for r/ry = 1,

Coolant /

Cladding /

Gap or Bond

T

-~4

— — — Zero Flux Lines Figure 7-15 Characteristic —multi-
n = 6: triangular array region domain of an infinite rod ar-
n = 4: rectangular array ray.
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0 degrees < 6 < 30 degrees:

aT
= k.2 =g 7-18
. ky or ., qr(0) (7-180)

Tul,, = T,(6) (7-181)

The cladding energy conservation equation, assuming no energy generation in
the clad as for the coolant, is:
T, 19T, 19T
ar rar r?oae?

=
E]
[

=0 (7-182)

for which the boundary condition, in addition to Eqs. 7-180 and 7-181, are the
symmetry conditions at § = 0 and 30 degrees, i.e.:
oT

30 - 0 at 6 = 0 and 30 degrees (7-178)

and a prescribed heat flux at the inner clad surface, r = r(, i.e.:

—ky, % = ¢/, = a constant (7-183)

Forthe laminar flow case that we are examining, an analytical three-region
solution assuming the volumetric heat generation rate in the fuel to be constant
has been performed by Axford [1] utilizing the method of finite Fourier cosine
transforms. For two-region problems only an iterative, numerical solution by
Dwyer and Berry (12] exists. It is the Dwyer and Berry results that we will
present along with first a summary of their procedure because it is instructive to
see how the boundary conditions are adapted for an iterative solution. Similar
procedures have been applied to the more complicated problem of coupled
solution of adjacent but geometrically dissimilar coolant regions, i.e., edge
subchannel to interior subchannel.

For the iterative procedure the differential equations and boundary condi-
tions of Eqs. 7-28 and 7-178 through 7-183 are applied in the following way. The
wall flux boundary condition of Eq. 7-180 is temporarily assumed to be a
constant with 6, i.e., case B. Now utilizing Eqs. 7-178 and 7-179, Eq. 7-28 is
solved to give the wall temperature distribution. Using this distribution, which
is the boundary condition given by Eq. 7-181 as well as Egs. 7-178 and 7-183,
Eq. 7-182 is solved to give a clad temperature distribution from which a wall
heat flux can be calculated as:

-k for all 6

" —
or |,

At this point we now have a circumferentially dependent wall heat flux to
compare against our originally assumed constant heat flux and have completed
one iteration. The iterative process is continued until the circumferential heat
flux distribution at r, (boundary condition 7-180) used to obtain the solution of
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Eq. 7-28 is in close agreement with the circumferential heat flux distribution at
ro as obtained from the temperature distribution resulting from the solution of
Eq. 7-182. Dwyer and Berry state that their results are quite accurate for the
conditions investigated since in the numerical solution a very fine mesh size
was used, the series expansion for the velocity distribution was carried to at
least five terms, and boundary condition 7-179 was satisfied at nine points along
its applicable line of symmetry.

B Results from a Two-Region Analysis of Longitudinal Flow between
Fuel Rods

1 Average Nusselt number Values of the average Nusselt number as a function
of three independent parameters P/D, (rq — r)/ry, and k,/k; are given in Table
7-5. The parameters (ry — r|)/roand k,/k; characterize the geometry and thermal
characteristics (for steady-state behavior) of the second region, the clad. Table
7-5 also gives for reference the corresponding values of [Nu, ], and [Nu J; for
the two limiting cases of boundary conditions B and A, respectively. The blank
entries in Table 7-5 represent cases in which more than 16 iterations would
have been required to get convergence. These blank entries occur at low values
of P/D and high values of k,/k; and (rg — r;)/ro. Physically these are for cases in
which a relatively large variation in circumferential heat transfer through the
coolant and the cladding exists.
The results can be represented by the empirical equation:

= _ [N—UL]q" A[Nu, Jr
Nu =T v T +a

(7-184)

where:
A= 20(kw/kf)[r0 - r,)/ro]y" (7-]85)

Eq. 7-184 represents the results in Table 7-5 with an average deviation of about
+2%. From this equation, it is apparent that for the same percentage change,
the thermal conductivity of the wall has an appreciably greater influence on the
rod-averaged heat transfer coefficient than the cladding thickness. From Eq. 7-
184 it is seen that the case of boundary condition B is applicable for the parame-
ter A < 1 while the case of boundary condition A is applicable for values of the
parameter A > 1. As an example, for sodium-cooled fast breeder reactors
where the P/D is about 1.20, typical values of k,/k; and (g — r;)/rg are 0.20 and
0.10, respectively. The parameter A per Eq. 7-185 is then 0.071, thereby justify-
ing boundary condition B for that application.

From the average Nusselt values given in the table, it is seen that they
increase with an increase in either the cladding thickness or the cladding con-
ductivity.

These effects, however, decrease as the P/D ratio increases, until at a
P/D = 1.2, they are practically negligible. However, at the lower P/D ratios,



0vs°C 0L1°C £L6°1 058’1 00¢°0
— - 96L°C I6v'¢ vel'e 6v6°1 9¢8°1 002°0
- - 1€L°C 9T L80°C 0Z6°1 LIS'I 0s1°0
- 18L°C L09°C S0t'¢ L00C 0L8°1 06L°1 001°0
86L°C £L9°C 4 44 1ee 0561 9¢8°1 ELL'] SL00
6£9°¢C £0S°C 0ee’c $80°C 088°1[ 96L’1 SSL'1 050°0
SEe’T e 680°C 026°1 L6L'1 [AYAN | 0EL’1 §20°0 Syo'e SoL'l Lo’
- - 69v°C 891°¢C L08'1 L19°1 86v°1 00t°0
- - Yt 121'¢ wL'l £6S°1 S8yl 002°0
— - 9¢°C 860°C L'l §9¢°1 891 0s1°0
- - 0£C'C 8¢6°1 6¥9°1 LIS1 ¥l 001°0
- £0e°¢C [Y4 iy w8l y6S°1 S8Y°I yor'l SLO0
a9T'¢ LET'T ¥96°1 STl LTSl Pl Poy°1 0500
896°1 6S8°1 8Ll 9961 Plad Yoy 1 (3190 | §20°0 £8l°t 6S¢°1 90’1
- - - 8’1 Lyl L6T'1 981°I 00¢°0
- - - 6LL'1 344 SLT'1 (YAN 002°0
- - - 9IL'] 10v°1 8Tl 8S1°1 0S1°0
- - $88°1 w09°1 Lee'l Tl IE1°1 001°0
- - 8LL'1 1419 SLT'1 (YA Il SLO'0
- - 979°1 66¢°1 [AYA 8EI'1 L60°1 050°0
- - wor'l 6vT'1 6¢1°1 860°1 8L0°1 §20°0 §I8'C SSO°l So°'1
oY =" 0E="" 0T=M L= yo="uM To =N 10 =ty u ImN] (Nl arid
b —u
‘__.-Z

/%y pue ‘U — ) ‘q/d sidpwered
yudpuadapur 3y) ul SUOIJBLIBA JO S}I3JJ3 Ay} Sunesysny|i ‘s1daquInu J|IsSNN\ MOl Jeurwe| padeIdAe-poy S-L dqeL



("[z1] Ka42g pup 428mqg wio4.)
O%H ._v\ 0y 7]

ST0 = = ﬁ ‘{(491deyd siyy) T = (‘321 [euidrio) TG I
(430 916 911’6 $60°6 890°6 £50°6 Sv0°6 00¢°0
9l'6 611°6 801°6 L80°6 650°6 506 wo'6 0s1°0
clre ¥0l°6 60°6 1L0'6 150°6 ¥v0°6 8t0°6 SLO0
101°6 60°6 080°6 650°6 8¥0°6 0¥0°6 9£0'6 0500
080°6 o6 650°6 506 0¥0°6 9t0°6 ££0°6 §20°0 v61°6 ££0°6 0l
(433 90t°L £9C°L SLI'L 090°L 0669 6569 00¢°0
60¢°L 08C°L L Il £E0°L ¥L6'9 96'9 0s1°0
0sT’L vicL 191°L £L0°L £86'9 £56°9 LT69 SLO0
[4\7ar3 1L Ire oL 969 L£6'9 6169 0500
L LLO'L £€0°L ¥L69 LE6°9 0769 116’9 §20°0 y8Y°L 06°9 0’1
vL6'S ¥26°S ££8°S £99°¢ orv's 141 [4Y4Y 00¢°0
£C6°S $98°S wL's 96S°S L8E'S ELT'S (443 0s1°0
808°S 8EL'S SE9°S S9v°S 86C°S XA [4: 1889 SLO0
SIL'S Iv9°S 6¢S°S 98t°S 0sT'S TS 691°S 0500
wes's ELY'S 88¢°S LTS £0C°S 691°S s §20°0 w9 SEI'S ST
- IS’y yi10°y LEL'E 6Lt 10T°¢ LLO't 00£°0
00T'¥ 601°Y 896'¢ w69t 96t 8LI't $90°¢ 00C°0
STy €90V 116°t ££9°t et 6vi't 80°¢t 0s1°0
850’V 096°t £6L°E 61S°t et 000t o't 001°0
LL6'E LS8t £69't oty 8LI't $90°¢t 600°¢ SLO0
078’ £0L't £vs'e ore’¢ oIr'e LT0't 986°C 0500

8YS'€ 1341 tlt'e 0s1°¢ 870°t 986°C 196°C §70°0 079y 9t6°C or'l



338 NUCLEAR SYSTEMS II

Nu_ can be significantly affected by changes in either cladding thickness or
cladding thermal conductivity, particularly the latter.

2 Circumferential temperature variation around outer surface of cladding The
local clad surface temperature is a maximum at the gap, 8 = 0 degrees. Since it
is in general a function of 6, gy,, P/D, (ro — r)/ry and ky/k;, it is not feasible to
develop an empirical correlation to handle all these variables. However, as in
the analogous study on slug flow ([13]), T, can be very well represented by the
empirical equation:

[Tw.e - Tw,JO degrees ]
q

T,o— T, 30 degrees Tw o — Ty ’
' : = : 7-186
Two — T T+ alkelko) (7-186)

where the coefficient a is a function of P/D and (ry — r|)/ro, and the subscript q"
refers to the case of boundary condition B. Values of a and [(Ty, g — Tw,30 degrees)/
(Tws — Ty)ly are given in Figure 7-16 and Table 7-6, respectively. Dwyer and
Berry [12] estimated that values of the ratio [(T,. ¢ — T30 degrees)/(fw,e = Tp)lg
from Eq. 7-186 were correct to 1% except possibly those for P/D values equal
to 1.05 for (ry — ry)/ry greater than 0.1 and for k,/ks values greater than 2.0. In
this very limited range, the accuracy was estimated to be within +2%. Further
they found that for (ry — r1)/ry values less than 0.10, the effect on the circumfer-
ential temperature variation was the same as for k,/k;. However, above (ry —
r)/ro = 0.1, changes in cladding thickness had progressively less influence than
changes in k,/k;.
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Figure 7-16 Effects of variations in rod spacing and relative cladding thickness on the value of the
constant a in Eq. 7-186. (From Dwyer and Berry [12].)
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Example 7-3 Prediction of local clad surface temperature

PrROBLEM Suppose we have the conditions:

P/D = 1.10
(ro — ri)lro =0.2
kolke = 0.2

ki = 69.24 W/m °C (40 Btu/hr ft F)

ro = 3.175 mm (0.125 in)

ar, = 3.154 x 10 W/m? (106 BTU/hr/ft)
T, = 593.33 °C (1100 F)

and wish to predict T,, at § = 8 degrees.

SoruTioN The equivalent diameter D, for this geometry per Eq. 7-163 is
2.12 mm (0.006963 ft). From Table 7-5 we see that Nu; = 3.178, and from
this we determine from Eq. 7-161 that:

_ 12D, q'/12k _ De @ _ 2.12x 1073 (3.154 x 106>

L =T =779 Nu, ki Nu, | 69.24 3.178

= 30.4 °C (7-187)
Twp = 593.3 + 304 = 623.7°C

3

The next step is to calculate T, 30 gegrees- We begin by recognizing that:

Tw - Tw egrees Tw - Tw egrees

[ .8 — ,30 degree: ] — ,0 _ ,30 degi (7-188)
T,o— Ty avg Twe — Ty
which permits Eq. 7-186 to be transformed to:
[[Tw,e - Tw.30 degrees ] ]
Twe = Ty degrees Twe - Ty q'Javg
= . = . 7-189
Too - T, T+ atke/k) (7-189)
T, = 1w rees .
Now the term [[ L Tu30deg ee] ] is tabulated on the bottom of
Tue — T q'Javg

Table 7-6 for P/D = 1.10 as 0.8942. From Figure 7-16, the coefficient a is
equal to 0.875. We now solve Eq. 7-189 for T, 30:

0.8942

m] (30.4) = 600.6 °C

TW,JO degrees — 623.7 — [

Next employing Eq. 7-186 directly and taking the value of:

I:Tw,ﬂ - Tw,30 degrees :|
q

Tw.e - Tb
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Table 7-6 Calculated values of [(Twe — Tw30/(Tw,e — Tu)lg- for use in
Egs. 7-186 and 7-189

P/ID

6, degrees 1.05 1.06 1.07 1.10 1.12 1.15 1.20 1.30
0 2.1352 2.0934 2.0404 1.8046 1.5990 1.2723 0.8090 0.3161
1 2.1282 2.0868 2.0342 1.7994 1.5944 1.2687 0.8068 0.3152
2 2.1075 2.0673 2.0158 1.7839 1.5810 1.2581 0.8001 0.3126
3 2.0736 2.0355 1.9856 1.7585 1.5588 1.2407 0.7891 0.3084
4 2.0268 1.9914 1.9438 1.7231 1.5279 1.2164 0.7738 0.3024
5 1.9684 1.9360 1.8912 1.6786 1.4889 1.1858 0.7545 0.2949
6 1.8995 1.8706 1.8289 1.6254 1.4424 1.1492 0.7313 0.2859
7 1.8206 1.7954 1.7570 1.5640 1.3886 1.1067 0.7045 0.2754
8 1.7336 1.7121 1.6771 1.4954 1.3284 1.0591 0.6744 0.2637
9 1.6399 1.6219 1.5905 1.4205 1.2625 1.0071 0.6415 0.2509
10 1.5400 1.5254 1.4974 1.3397 1.1914 0.9508 0.6058 0.2370
11 1.4359 1.4244 1.3996 1.2543 1.1161 0.8911 0.5680  0.2222
12 1.3290 1.3201 1.2984 1.1655 1.0377 0.8289  0.5285 0.2068
13 1.2196 1.2130 1.1942 1.0737 0.9564 0.7643 0.4875 0.1908
14 1.1097 1.1050 1.0888 0.9803 0.8737 0.6985 0.4456 0.1744
15 1.0003 0.9971 0.9833 0.8865 0.7905 0.6322 0.4035 0.1579
16 0.8918 0.8899 0.8781 0.7927 0.7071 0.5657 0.3611 0.1414
17 0.7859 0.7848 0.7750 0.7003 0.6249 0.5001 0.3194 0.1250
18 0.6836 0.6831 0.6749 0.6105 0.5449 0.4363 0.2786 0.1091
19 0.5851 0.5851 0.5783 0.5235 0.4674 0.3743 0.2391 0.0936
20 0.4920 0.4922 0.4866 0.4408 0.3937 0.3153 0.2015 0.0789
21 0.4049 0.4053 0.4008  0.3633 0.3246 0.2600 0.1661 0.0651
22 0.3244 0.3247 0.3213 0.2913 0.2603 0.2086 0.1333 0.0522
23 0.2515 0.2518 0.2492 0.2260 0.2020 0.1618 0.1034  0.0405
24 0.1869 0.1872 0.1852 0.1681 0.1502 0.1204 0.0770  0.0315
25 0.1309 0.1311 0.1298 0.1178 0.1053 0.0844 0.0539  0.0211
26 0.0844 0.0846 0.0837 0.0760 0.0679 0.0544 0.0348 0.0136
27 0.0478 0.0790 0.0474 0.0430 0.0385 0.0308 0.0197 0.0077
28 0.0213 0.0214 0.0211 0.0192 0.0172 0.0137 0.0088 0.0034
29 0.0054 0.0054 0.0053 0.0048 0.0043 0.0035 0.0022 0.0009
30 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000  0.0000
Av 1.0332 1.0226 1.0014 0.8942 0.7949 0.6341 0.4040 0.1580

(From Dwyer and Berry [12].)

for 8 degrees from Table 7-6 as 1.4954, we calculate T, g gegrees aS:

Twe — Tw3o
Tw.8 degrees — Tw,30 degrees + :
q

= 600.6 +

Tw.o -

kw>
l+a<kr

304

1 + 0.875(0.2)

|

Tw,ﬂ — Ty

[1.4954] = 639.3 °C
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It is possible if desired to calculate the local values of the wall heat flux and
subsequently the heat transfer coefficient from additional empirical equa-
tions and tables given by Dwyer and Berry [12].

X SURVEY OF ISOLATED CELL PROBLEMS SOLVED BY
THE DISTRIBUTED PARAMETER METHOD

Having completed the description of a specific case, a two-region analysis of
laminar flow in an infinite array of heat-generating fuel rods, we will now return
to the general class of problems which this case typifies. A vast amount of
literature exists on the solution of these problems which can be made more
easily accessible to the reader by introducing a classification system based on
common key problem characteristics.

Single Versus Multirod Analyses

In analyzing rod bundles with longitudinal flow, the first step generally is to
apply symmetry conditions to divide the bundle into characteristic unit cells.
True characteristic cells neither influence nor are influenced by their neighbor-
ing cells, i.e., neither mass, momentum, nor heat transfer occurs across the
boundaries of the cells. Since each such cell includes a portion of one of the
rods of the array, this analysis procedure has been called single-rod analysis. In
our example case of fully developed laminar and turbulent flow and heat trans-
ferin an infinite array of fuel rods each with axisymmetrical and identical mean
radial energy generation rates, this method is correct for the stated boundary
conditions, cases A or B. For the general case of arbitrarily prescribed axial
and circumferential wall temperature or heat flux distribution, solutions can be
obtained using these standard boundary conditions using the superposition
technique. This technique is applicable to our case of fully developed steady
flow with constant fluid properties since all the governing energy equations of
Section II are linear and homogeneous in temperature. Therefore any linear
combination of solutions is itself a solution. Sutherland and Kays [51] present
an example of the exploitation of this approach for turbulent flow in infinite rod
arrays.

If the bundle were to be limited by a fixed wall, if irregularities of rod
spacing exist, and/or if the energy generation rate of the rods varies radially
across the bundle, the single-rod analysis method can be considered only as an
approximation. Exact multirod analyses have been performed to date only for a
limited number of problems. For both cases of analysis the full range of flow
situations can be addressed, i.e., laminar, slug, and turbulent flow. Additionally
the mixed convection condition, a situation that includes the effects of buoy-
ancy or free convection, can also be addressed. Further, cases of both symmet-
rically located and asymmetrically located rods in an assembly can be defined
for each case although the approximation involved in solving the asymmetri-
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cally located rod problem with the single-rod method may need investigation
depending on the application of the results. Hsu [19] has analyzed the effect of
central rod displacement on heat transfer for slug flow.

With the above definitions/characteristics in hand, Table 7-7 identifies
some of the existing literature developed using the single-rod method. Notice
that for the single-rod method only, it is necessary to identify which portion of
the rod array is being considered, i.e., interior subchannels or cells, edge cells
or corner cells. Further, for the single-rod method in either the symmetrical or
asymmetrical cases, one-region or multiregion analyses can be performed. Re-
call that this refers to whether the coolant alone is considered or the coolant in
combination simultaneously with the clad, clad and bond, or clad, bond, and
fuel regions. For the multirod method it is consistent to perform only a multire-
gion analysis. For single-region and those multiregion analyses that do not
extend to the rod centerline, the circumferential boundary condition on the
innermost defined surface must be prescribed as indicated in Table 7-7. As can
be seen from Table 7-7 for our laminar flow example, we drew our discussion
from the papers of Sparrow et al. [49] and Dwyer and Berry [11-15]. We
mentioned the work of Axford [1] but did not present it since it involves a three-
region analysis. For turbulent flow we drew our examples from the review of
Nijsing and Eifler [36]. The paper of Dwyer and Berry [15] includes an interest-
ing comparison of the effect of various assumptions for eddy diffusivities on
Nusselt numbers. Multiregion turbulent results were not presented as was done
for laminar flow but can be obtained from the papers of Dwyer et al. [17] and
Nijsing and Eifler [34]). The work of Bobkov et al. [3] and Markoczy (30] is
significant in that prediction methods applicable to edge and corner subchan-
nels are given.

Although Table 7-7 does not give a comprehensive listing of all the relevant
literature, if it is taken in combination with the reviews of Nijsing [33] and
Dwyer [10] and the latest publications, the interested reader should easily be
able to become acquainted with the existing literature in the area of distributed
parameter methods in rod bundles.

XI ANALYSIS OF INTERACTING CHANNELS

In the previous section the distributed parameter analysis procedure applied to
single rods or single cells was discussed. However, cells can be considered as
isolated from their neighbors only in the case of a regular, infinite array of rods
in which each rod has an axisymmetrical and equal mean energy generation
rate. Such conditions are very restrictive in both a geometric and a thermal
sense. In practical situations we must consider geometrically finite rod arrays
that can also exhibit local position distortions. Further reactor power profiles
usually lead to spatially varying energy generation rates across rod arrays, i.e.,
so-called power skews. Finally, self-shielding effects in rods containing fission-



344 NUCLEAR SYSTEMS II

able, fertile or absorber materials can lead to asymmetrical energy generation
rates within the rods.

For these reasons most practical situations are multicell problems for
which solution attempts by the distributed parameter approaches lead to formi-
dable mathematical difficulties. In fact, this area requires very specialized ana-
lytical and numerical techniques. For these reasons the current approaches will
be identified but not described in detail as was done for the single-cell ap-
proaches. The interested reader can consult Shah and London [48], Chen et al.
[6], and Yeung and Wolf [56] for the literature covering the three principal
approaches to the multicell problem.

A The Three Methods of Solution

The most complex statement of the problem to be solved is the determination of
the velocity and temperature fields in a geometrically arbitrary array of rods
with spacers where each rod has a prescribed but asymmetrical energy genera-
tion rate and the array has an arbitrary power skew. Conversely a very simple
statement would involve a geometrically regular but finite bare rod array with
rods having an axisymmetrical but equivalent mean energy generation rate. To
address the spectrum of cases suggested by these extremes three general ap-
proaches exist:

1. Direct analytical solution of the multicell problem
2. Direct numerical solution of the multicell problem
3. Utilization of single-cell results by iterative or superposition procedures.

As might be anticipated, the analytical approaches are applicable to a much
narrower range of cases than are the numerical approaches, as will be dis-
cussed next.

B Direct Analytical Solution Methods

One of the earliest solutions [47] is a good starting point because it deals with a
simple but physically important problem. The situation of developed laminar
flow in a semiinfinite square array limited by a fixed wall was investigated to
determine the influence of the wall. An analytical solution of the governing
Poisson equation in polar coordinates was employed using point matching of
boundary conditions at the cell boundaries. This was necessitated by the non-
orthogonality of the coordinate system with portions of the finite array bound-
ary—a difficulty for any analytical approach to the general multicell problem.
Figure 7-17 presents a typical result for the influence of the wall on volumetric
flow rates for the case of P/D = 2.0 and a range of first-cell (cell adjacent to the
wall) geometries relative to the remainder of the cells as characterized by the
ratios of hydraulic diameters of the cell next to the wall, D.,, to the other cells,
D, i.e., D /D. The abscissa indicates the cell position from the wall. The
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ordinate 7 is equal to the ratio of cell volume flow rates in the presence of the
wall to that for the infinite array, i.e., no wall influence. The figure demon-
strates that the ratio of cell volume flow rates between the case with the wall
present and absent is less than 1% for the first and second cells for the condi-
tions considered. It is more negligible for the third and subsequent row of cells.

The other analytical solutions have utilized special mathematical functions
but have been able to solve only a limited class of problems. The majority have
been limited to laminar, fully developed flow around a triangular array of seven
rods located inside a flow tube as illustrated in Figure 7-18. Some solutions for

Concentric Ring

Tube

Figure 7-18 One-ring concentric
seven-rod bundle in a tube.
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this geometry for the thermally developing, hydrodynamically developed case
have been made. Mottaghian and Wolf [32] have relaxed this one-ring problem
and solved the case of an arbitrary number of rods, with different radii, placed
in concentric rings about a central rod. For the finite hexagonal array Wong and
Wolf [55] have solved the interesting case of a seven-pin cluster with a radial
power tilt under three-dimensional, steady-state conditions.

References and results for these solutions are available in Shah and Lon-
don [48]. However, as this brief summary demonstrates, the range of cases
successfully solved by analytical (or semianalytical) methods is limited.

C Direct Numerical Solution Methods

Accurate numerical solutions are also limited by the lack of coincidence of the
numerical mesh and the system boundaries. In the normal finite difference case
this lack of coincidence requires interpolation. However, it is particularly im-
portant to avoid interpolation with strong curvature or slope discontinuities,
both of which are common in physical applications. Consequently an essential
part of a general numerical approach for solution of the Navier—Stokes and the
energy equations such as the technique of boundary-fitted coordinate systems
is the generation of a curvilinear coordinate system with coordinate lines coin-
cident with all boundaries. This procedure does not use conformal transforma-
tion and consequently is not limited to two dimensions. The Navier-Stokes and
the energy equations are solved in the transformed plane using the finite differ-
ence technique once the curvilinear coordinates are generated.

This procedure has been incorporated in a computer code developed for
application to a broad range of rod array problems. The interested reader is
referred to the work of Chen et al. [6] for details of the formulation and applica-
tion of this method.

D Utilization of Single-Cell Results

There are two approaches to the utilization of single-cell results: the iterative
approach and a superposition approach.

The iterative approach described here was applied by Yeung and Wolf [56]
to the solution of a two-dimensional, finite array in slug flow. However, it is
applicable to any array for which the unit cell solutions are available for bound-
ary conditions of prescribed temperatures and zero heat flux. Consider the
symmetry section of a 19-rod bundle as illustrated in Figure 7-19. Divide the
section into cells for which unit cell solutions exist or can be obtained. In
Figure 7-19 the boundaries between these cells are labeled A through D.
Boundaries E and F are external boundaries of the symmetry section which are
also boundaries of cells 3 and 4.

The iterative solution procedure starts with the temperature fields for the
unit cells for adiabatic boundary conditions. This not only yields a temperature
field within each cell but also along the adiabatic boundary since the rod linear
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Figure 7-19 Configuration of the symmetry section of a 19-rod bundle.

power generation rate has been prescribed. The resulting temperatures along
the common boundary of two cells are generally different. The initial adiabatic
boundary condition is then relaxed by assuming that the temperature along the
common boundary is the average of the temperatures of the two neighboring
cells resulting from the initial calculation. This new boundary condition is used
to produce an updated temperature field for one of the unit cells from which an
updated heat flux distribution along the common boundary is developed. This
heat flux distribution in turn is used as the boundary condition for its neighbor-
ing cell, producing a new temperature field for the neighboring cell. The second
loop of the iteration utilizes these temperature boundary conditions at the
outset, and the procedure continues until an acceptable solution is achieved.
For adiabatic boundaries E and F of Figure 7-19 this calculation sequence
is illustrated in Figure 7-20. This figure shows that with average temperatures

cell A B C D E F

4 | Tave Tava q" =0

3 | o Tavg q
!
2 q'\r q"\r Tav

"

1 q\
T

repeat

Figure 7-20 The iterative solution procedure for multicell arrays. Start with adiabatic boundaries
on each cell, solve for T field, find T,,, on each boundary as listed for starting point.
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initially available on all interior boundaries, the procedure is to calculate cells
in the sequence 4, 3, 2, 1. Such a series of calculations comprises an iteration
that yields a set of new average temperatures along the interior boundaries. The
coolant temperature along boundary D converges rapidly so that a practical
solution is obtained in three iterations.

The range of application of this iterative procedure is limited since it re-
quires availability of single-cell solutions. It could be used to determine the
velocity field under laminar or turbulent conditions. However for the tempera-
ture field in finite arrays under nonslug conditions, single-cell temperature solu-
tions are not available for the velocity fields that would exist. This is because
the velocity fields are slightly distorted due to the presence of the bundle wall.
In principle however these single cell temperature solutions could be obtained
from an initial solution for the velocity field. For mixed convection conditions,
on the other hand, the velocity and temperature fields cannot be sequentially
addressed. Therefore, the iterative solution is not applicable under these condi-
tions.

A superposition approach has been developed by Rehme [40] for friction
factors for finite arrays in laminar flow using individual subchannel friction
factor values which he also developed. He later developed a method to predict
subchannel and bundle friction factors for turbulent flow on the basis of these
laminar flow results [42]. The friction factors of central subchannels with
P/D > 1.2 were also shown to be predicted with good approximation from the
equivalent annulus solutions [41]. These laminar and turbulent flow results
were summarized by Rehme and Trippe [45] and appear in Volume I as friction
factor—Reynolds number products for subchannels and for triangular and
square array rod bundles (see Section VI, Chapter 9).
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PROBLEMS

Problem 7-1 Friction factor—Reynolds number product for equivalent annulus in laminar and turbu-

lent flow (Section I11)

Compute the value of fRep, for an interior subchannel in a triangular array of P/D = 1.50
using the equivalent annulus formulation if you can justify its applicability.

Answer: Laminar fRep.Jga = 126.4

Repeat for a Reynolds number equal to 5 x 10%.

Answer: Turbulent f]ga = 0.023
Problem 7-2 Nusselt number for an equivalent annulus in laminar and turbulent flow (Sections III
and IV)

Compute the value of Nu for an interior subchannel in a triangular array of P/D = 1.50 using
the equivalent annulus formulation if you can justify its applicability.

Repeat for a fluid at Re = 5 x 10* with a Pr = 0.0045.

Answer: Laminar Nulga = 11.75

Turbulent NuJga = 14.28

Problem 7-3 Friction factor—Reynolds number product for an interior subchannel in laminar flow
(Section VI)

Determine the value of fRep, for an interior subchannel in a triangular array of P/D = 1.10.

Answer: fRep, = 80.2
Problem 7-4 Nusselt number for an interior subchannel in laminar flow (Section VII)

Determine the Nusselt number for an interior subchannel in laminar flow in a triangular array
of P/D = 1.10 for the boundary condition of uniform wall heat flux.

Answer: Nu = 2.94
Problem 7-5 Nusselt number for an interior subchannel in laminar flow including pin geometry and
coolant-clad conductivities (Section IX)

Repeat Problem 7-4 for the clad dimensions and material thermal conductivities typical of fast
reactor core mixed/oxide fuel. Note that for these practical conditions, the clad boundary condition
is neither uniform wall heat flux or temperature.

Answer: Nu = 6.96
Problem 7-6 Friction factor—Reynolds number product for a finite triangular array laminar pressure
drop (Section XI)

Compute the fRep. for a seven-rod triangular array bundle with a P/D = 1.10. Take the gap g

between the pin outside diameter and the wall equal to (P — D)/2.
Compare your result with the answer to Problem 7-3 and explain any differences.
Answer: fRep, = 52.






CHAPTER

EIGHT

TREATMENT OF UNCERTAINTIES
IN REACTOR THERMAL ANALYSIS

I INTRODUCTION

The designer of a reactor core strives to achieve the goal of safe and reliable
economic operation. Uncertainties in core materials and operating conditions
affect the achievement of this goal. These uncertainties stem from two main
sources:

1. Uncertainties from randomness inherent in a process, e.g., fuel pellet di-
ameter variation from a manufacturing process or reactor power level de-
termination variation arising from temperature variations due to turbulent
flow conditions

2. Uncertainties from imperfect modeling or estimation of a parameter, e.g.,
the degree of overheating caused by rod bowing.

Uncertainties of the first type can be reduced but not eliminated by gather-
ing more data whereas uncertainties of the second type can be effectively
eliminated by development and confirmation of modeling procedures. In prac-
tice both types of uncertainties are treated, although historically many uncer-
tainties of the second type introduced in early thermal design procedures have
been eliminated over the ensuing years. This chapter describes the principles
inherent in the methods utilized for treatment of uncertainties in reactor ther-
mal analysis [8].

II RELEVANT STATISTICAL FUNDAMENTALS

A knowledge of some underlying statistical relationships is necessary to under-
stand the methods of treating uncertainties in reactor thermal analysis. This
section reviews concepts and definitions relevant to these methods. Because of
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its usefulness in this problem area, emphasis is placed on the characteristics of
the normal distribution. Of interest are:

1. The properties of the normal distribution
2. The means for estimating normal distribution population parameters from
sampling data.

A Estimating the Mean and Standard Deviation of Distributions

Let us identify the random variable x; as that which is of interest in our analysis.
As an example, let it be the percentage of U-235 enrichment in the fuel pellets.
Hence the population involved in the characterization of x; for this case is all
the fuel pellets in the core. If every pellet were assayed and its percent enrich-
ment reported, we would have a distribution of data points which can be char-
acterized by its mean, w;, a measure of its central tendency and its standard
deviation, oj, a measure of its dispersion. If N is the population size and ;x; is
the value of the ith sample of x;:

1
Y 2 i @&-1)

l 12
WE{NZG“_Wﬂ (8-2)

Since it is generally impractical to sample the entire parent population, a
smaller sample is employed to estimate wj and o of the parent population. Let
n be the number of pellets sampled where commonly n < N. If the enrichment
of the ith sampled pellet was reported as ;x;, then the mean and standard
deviations of the parent population can be estimated from the data of the
smaller sample as:

b == (8-3)
and
Z’llisz ) 1/2
g = ;—1_(n—1)‘2j2 &4

where the parameter estimates are signified by a caret (°), and again the sub-
script j represents the property of interest, and the subscript / represents a
sample of the population. Eq. 8-4 uses a denominator of n — 1 instead of n to
correct for statistical bias. It also is presented in a form somewhat easier to use
than Eq. 8-2. Note that all of these equations are independent of the parent
population distribution.
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Example 8-1 Estimates of mean and standard deviation of a population
ProBLEM Compute the mean and standard deviation estimators from the

following sample of the U-235 enrichment percentages in 12 fuel pellets.
(This and several subsequent examples of this section are taken from [11].)

Sample
n iXj
1 1.8620
2 1.8535
3 1.8495
4 1.8560
) 1.8595
6 1.8485
7 1.8585
8 1.8715
9 1.8515
10 1.8585
11 1.8515
12 1.8595
12
Y, ix; = 22.2800

i=1

SoLuTtioN From the given data, E ix; = 22.2800. From Eq. 8-3, fi; =
i=1

22.2800

1 - 1.85667; i} = 3.4472. To compute d;, form the following table:

2
iXj

3

3.46704400
3.43546225
3.42065025
3.44473600
3.45774025
3.41695225
3.45402225
3.50251225
3.42805225
3.45402225
3.42805225
3.45774025

00 NN E W -

o =5 wv

12
> ix? = 41.3669865

i=1
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41.3669865 12

12
From Eq. 8-4, ¢; = [ 1 BET (3.4472111)] = 0.00642.

B The Normal Distribution

We inherently think of a set of data as coming from some distribution. Among
the set of continuous statistical distributions, one of the most useful is the
normal distribution. This arises from the central limit theorem whose existence
allows us to use the normal distribution to characterize the distribution of the
means of random samples drawn from any distribution whose mean u and
variance o2 are finite. With this characterization, we can proceed to use certain
statistics derived from samples even though we do not know the exact form of
the distribution from which the samples are drawn.

Suppose the random variable x; is normally distributed. The probability P
that x; will be less than some value, x, is:

Pe=P{x=x}= f_m p(x')dx' (8-5)

where p(x) is called the probability density function and is for a normal distribu-
tion given by:

= e {- 1[0 3-6)
PO v P2l '

which is plotted in Figure 8-1. Therefore, the probability that x; will lie between
x; and x; is:t
Hn<qsxﬁ=LpWMﬂ (8-7)

If the random variable x; is expressed as a number of standard deviations about

the mean, we obtain:
X=u+zo (8-8a)

where z can be a real number (e.g., fraction or integer and positive or negative)

or rearranging:

=" F (8-8b)
and

dx = agdz (8-9)
since u and o are constants. Since the probability is unaffected by the variables

of measurement i.e. p(x)dx = p(z)dz, from Eq. 8-6 we obtain the standardized
normal distribution:

1
(2)dz = —= exp{—2*/2}dz (8-10)
P 27 p{ }
t The form of the LHS of Eq. 8-7 explicitly excludes the event x; = x; which is dropped through

the subtraction of P,, from P,,. Practically, this is only limiting if there is a singularity in the
probability density function at x; = x,.
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p(x)

-00 400

0

Figure 8-1 The probability density function for the normal distribution.

or
1 [z 1
Plzi<z=2}=Ppy— P, =——| ex {——’Z}d’ 8-
{z) 2} 2 = om p 57 z 8-11)
P, values from Eq. 8-11 are compiled in Table 8-1 for z; = —x.

We frequently need to evaluate P, to determine the probability that a
normally distributed variable will lie within certain bounds. For example if z,
and z; are chosen to be ¥2 (corresponding to x; lying within two standard
deviations about the mean), then P{—2 < z = 2} = 0.9545. This is interpreted as
being a probability of 95.45 percent that a sample x; drawn from a parent
population that is normally distributed, will lie within two standard deviations
of the mean, u;, of the parent population. This result is obtained from Eq. 8-11
and Table 8-1 using the fact that p(z) is an even function around z = 0. The
specific calculation procedure is:

rerrsn [ e (-5 ]
1 27
-2 [Ww [ae{-5] dZ']
2 o -5 - g o -5 ]

= 2(0.50000 — 0.02275]
= 0.95450
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Example 8-2 Properties of a sample drawn from a population

PrROBLEM Suppose the parent population of values of pellet U-235 enrich-
ment percentage is normally distributed about a mean value of u = 1.8534
with a standard deviation of o = 0.00996. What is the probability that a
sample drawn from this distribution will lie within the extremes of those
samples reported in Example 8-1?

SoLuTtioN The extreme values of U-235 reported in Example 8-1 are
1.8715 (high) and 1.8485 (low). Hence:

_ 1.8485 — 1.8534

_ 1.8715 — 1.8534
Q= 0.00996

and 2 = ——("56506

or
g = —0.492 = —0.49; z, = 1.817 = 1.82

Therefore:

] +1.82 Z'2
P{-049 < z=1.82}= Tf__j exp |~ 5 dz'
T

—-0.49

which from Table 8-1 yields:
= [0.50000 — 0.03438 + 0.50000 — 0.31207]
= 0.65355

C Confidence Level

Complete characterization of any finite population is usually impractical be-
cause of the large number of samples required. Consequently, limited sampling
procedures are used to estimate parent population parameters. Scaling down
the number of samples, however, conflicts with the requirements for an accu-
rate result. Intuitively we feel that the confidence in the estimation process
improves as the number of samples increases. Note also that our confidence
that the parent population parameter lies within a certain range increases as we
extend that range. It is desirable to quantify such trends by quantifying the level
of confidence in our estimates of parent population parameters.

The confidence level expresses the probability that a parent population
parameter estimated from a sample is within a stated range. We denote the
confidence level as a where « is the probability obtained by integrating a
probability density function between appropriate limits as in Eq. 8-7. Now the
stated range or interval for the parameter is termed the confidence interval and
the end points of the interval are called confidence limits. Using Eq. 8-7 for the
normal distribution:

x, — x; is the confidence interval.
x, and x; are confidence limits
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For example, suppose we wish to find confidence limits for the parent
population mean w using the sample mean . If the population is normally
distributed, the ratio [(w — f)/d] is proportional to a quantity ¢ which has a
known distribution p(r) called the Student t distribution; u is then determined
to a prescribed confidence level a by finding the limits of integration of the
known distribution so that the required probability « is obtained, i.e.:

j:zp(t’)dt’ -« (8-12)

or
aEP{t|<tSIz}=Pt2_Ptl

If 1, and 1, have equal absolute values, the equation ¢t = f[(d — w)/d] yields u,
and u, for a prescribed. This procedure will be demonstrated in Example 8-3.

When f; becomes —x and ¢, is finite, a lower single-ended confidence
interval is obtained. Conversely, when ¢, tends to + and ¢, is finite, an upper
confidence interval is defined. Both the upper and lower confidence intervals
are single-ended confidence intervals.

D Estimating the Population Mean, u

The estimation of a population mean w depends on a particular relationship that
exists between it and the mean of some sample 4 which is drawn from the
population characterized by w. The standard procedure for estimating ., based
on the asymptotic normality of the random variable £ (or exact normality if the
population distribution is normal) assumes that the difference between u and @&
divided by &, the estimated standard deviation for £, follows the Student ¢
distribution with n — 1 degrees of freedom.t The ratio ¢ is thus defined as:

A—p_A—p
t = ~ = 8']3
(o 6/\Vn ( )

where ¢ can be positive or negative. Consequently, ¢ increases with sample
size n.

The relationship
g

oy = v (8-14)

used in Eq. 8-13 can be derived by determining the true standard deviation o;
of the sample mean, 4 (recall that the 4 is a random variable in this case) and

t The number of degrees of freedom f of a statistic (¢ is an example of a statistic) is defined as the
number n of independent observations in the sample or equivalently the sample size minus the
number k of population parameters which must be estimated from sample observations. Hence f =
n — k. In the case of the statistic ¢, the number of independent observations in the sample is n from
which 4 and ¢ can be computed. Since u must be estimated, k equals unity yielding f=n — 1.
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Figure 8-2 Relationship between P,(%), f, and ¢ of Table 8-2 for the Student ¢ distribution.

then employing the estimator ¢ for the true standard deviation of the popula-
tion o.

The distribution of ¢ for some degrees of freedom f are listed in Table 8-2.
Values of ¢ and P,(%) correspond to those defined in Figure 8-2. Notice that as
either P(%) gets smaller for a given number of degrees of freedom or the
number of degrees of freedom gets greater for a given P (%), the t values
decrease.

As an example of using Table 8-2 and Eq. 8-12, consider a system with 11
degrees of freedom for which it was desired to find the values of ¢ at which
P (%) would equal 95 percent. For f = 11 and P(%) = 95, Table 8-2 lists a ¢
value of 1.796. By definition, the 95 percent includes areas between +1.796 and
-, i.e., in terms of the equation for P,(%) given in Table 8-2:

+1.796
f_m p(t')dt' = 95 percent

Hence this value of ¢ defines the single-ended lower confidence interval.

The Student ¢ distribution is symmetrical and approaches the normal distri-
bution as n approaches «. Hence for an © number of degrees of freedom, the
results of Table 8-2 for the Student ¢ distribution are equivalent to those of
Table 8-1 for the normal distribution. For example, from Table 8-2 for P(%) =
97.5and f = =, t = 1.960, which is equivalent to the value of P, = 0.025 in Table
8-1 for z = 1.960.

Example 8-3 Interval estimate for the population mean value

ProBLEM Derive the symmetrical 95 percent confidence interval estimate
for the parent population mean value of U-235 pellet enrichment u from the
sample given in Example 8-1.
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SoLuTtioNn From Eq. 8-13 obtain u as:

t¢

A—p= N
where the following sample parameters were found in Example 8-1:
n=12
g = 0.00642
4 = 1.8567

To obtain the symmetrical 95 percent confidence interval (¢, and ¢, as in Eq.
8-12), S percent of the total area under the ¢ distribution should lie in the
two tails or 2.5 percent of that area for each tail (due to symmetry). From
Table 8-2 (which only gives upper confidence limits, i.e., P,) for a probabil-
ity of 97.5 percent and f = 11 degrees of freedom obtain t, as 2.201. By
symmetry, ¢, = —2.201.

Hence:
. o
n= g Vn
+2.201)(0.00642
= 1.8567 — ( \}(1_2 42)
The upper and lower confidence limits are then:
K1y = 1.8608
w = 1.8526

E Estimating the Population Standard Deviation o

The Student ¢ distribution was used to estimate the population mean u based on
a sample mean 4. Another distribution is used to estimate the population stan-
dard deviation o in terms of the sample standard deviation &

Define the statistic x? as:

22 —
- 9(—’;5j (8-15)

X2
This statistic follows the chi-squared (x?) distribution with n — 1 degrees of
freedom.
Values of the x? distribution for various degrees of freedom are listed in
Table 8-3. Since x?is always greater than zero, the values of x? are based on the
following relationship:

xZ
[ e ndx? = b, (8-16)
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Table 8-3 x2 values for the chi-square distribution

2
[} e rdx’t = P

W

o I

P,

(%)

0.5 1.0 2.5 5.0 10 20 25 30 50

SWVWOUAAULE LN — 7

—— —
W N -

14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30

0.000 0.000  0.001 0.004 0.016  0.064  0.102 0.148 0.455
0.010 0.020  0.051 0.103 0.211 0.446  0.575 0.713 1.386
0.072 0.115 0.216 0.352 0.584 1.005 1.213 1.424 2.366
0.207 0.297 0.484 0.711 1.064 1.649 1.923 2.195 3.357
0.412 0.554  0.831 1.145 1.610 2.343 2.675 3.000 4.351
0.676 0.872 1.237 1.635 2.204 3.070  3.455 3.828 5.348
0.989 1.239 1.690 2.167 2.833 3822 4.255 4.671 6.346
1.344 1.646  2.180 2.733 3490  4.594 5.071 5.527 7.344
1.735 2.088 2.700 3.325 4.168 5.380 5.899 6.393 8.343
2.156 2.558 3.247 3.940 4.865 6.179  6.737 7.267 9.342
2.603 3.053 3.816 4.575 5.578 6.989  7.584 8.148  10.341
3.074 3.571 4.404 5.226 6.304 7.807 8.438 9.034 11.340
3.565 4.107 5.009 5.892 7.042 8.634  9.299 9.926 12.340
4.075 4.660  5.629 6.571 7.790 9.467 10.165 10.821 13.339
4.601 5.229  6.262 7.261 8.547 10307 11.036 11.721 14.339
5.142 5.812 6.908 7.962 9.312 11.152 11912 12,624 15.338
5.697 6.408 7.564 8.672 10.085 12.002 12.792 13.531 16.338
6.265 7.015 8.231 9.390 10.865 12.857 13.675 14.440 17.338
6.844 7.633 8.907 10.117 11.651 13.716 14.562 15.352 18.338
7.434 8.260  9.591 10.851 12.443 14.578 15452 16.266 19.337
8.034 8.897 10.283 11.591 13.240 15.445 16344 17.182 20.337
8.643 9.542 10.982 12.338 14.041 16.314 17.240 18.101  21.337
9.260 10.196 11.688 13.091 14.848 17.187 18.137 19.021 22.337
9.886 10.856 12.401 13.848 15.659 18.062 19.037 19.943 23.337
10.520 11.524 13.120 14.611 16.473 18.940 19.939 20.867 24.337
11.160 12,198 13.844 15.379 17.292 19.820 20.843 21.792 25.336
11.808 12.879 14.573 16.151 18.114 20.703 21.749 22.719 26.336
12.461 13.565 15308 16.928 18.939 21.588 22.657 23.647 27.336
13.121  14.256 16.047 17.708 19.768 22.475 23.567 24.577 28.336
13.787 14953 16.791 18.493 20.599 23.364 24.478 25.508 29.336

where g is the probability density function for x2, fis the degrees of freedom,

and

P,: is the probability. As an example of the use of Table 8-3, the value of x

corresponding to a probability P,. of 0.05 or 5 percent for 11 degrees of freedom

is 4.

575.
Example 8-4 Interval estimate for the population standard deviation

ProBLEM Derive the 95 percent upper confidence interval (single-sided)
estimate for the parent population standard deviation o in U-235 pellet
enrichment from the sample given in Example 8-1.
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P, (%)
f 70

75 80 90 95 97.5 99 99.5 9.9
1 1.074 1323 1.642 2706 3.841 5024 6635 7.879 10.827
2 2.408 2773 3219 4605 5991  7.378  9.210 10.597 13.815
3 3.665 4.108 4642 6251  7.815  9.348 11345 12.838 16.268
4 4878 5385  5.989 7779  9.488 11.143 13.277 14.860  18.465
5 6.064 6.626 7.289  9.236 11.070 12.832 15086 16.750 20.517
6 7.231  7.841  B8.558 10.645 12.592 14.449 16.812 18.548  22.457
7 8.383  9.037  9.803 12.017 14.067 16.013 18.475 20.278 24.322
8 9.524 10.219 11.030 13.362 15.507 17.535 20.090 21.955 26.125
9 10.656 11389 12.242 14.684 16.919 19.023 21.666 23.589 27.877
10 11.781  12.549 13.442 15987 18.307 20.483 23209 25.188 29.588
11 12899 13.701 14.631 17.275 19.675 21920 24725 26757 31.264
12 14.011 14.845 15812 18.549 21.026 23.337 26.217 28.300 32.909
13 15.119 15984 16985 19.812 22.362 24.736 27.688 29.819 34.528
14 16.222  17.117 18.151 21.064 23.685 26.119 29.141 31.319 36.123
15 17.322 18245 19.311 22,307 24.996 27.488 30.578 32.801 37.697
16 18.418 19.369 20.465 23.542 26.296 28.845 32000 34.267 39.252
17 19.511 20489 21.615 24769 27.587 30.191 33.409 35.718 40.790
18 20.601 21.605 22.760 25.989 28.869 31.526 34.805 37.156 42.312
19 21.689 22.718 23.900 27.204 30.144 32.852 36.191 38.582 43.820
20 22775 23.828 25.038 28.412 31.410 34.170 37.566 39.997 45.315
21 23.858 24.935 26.171 29.615 32.671 35479 38932 41.401 46.797
22 24937 26039 27.301 30.813 33924 36.781 40289 42796 48.268
23 26.018 27.141 28.429 32,007 35.172 38076 41.638 44.181 49.728
24 27.096 28.241 29.553 33.196 36.415 39.364 42980 45.558 51.179
25 28.172  29.339  30.675 34.382 37.652 40.646 44.314 46928 52.620
26 29.246 30.434 31795 35.563 38.885 41.923 45.642 48.290 54.052
27 30.319  31.528  32.912 36.741 40.113  43.194 46.963 49.645 55.476
28 31391 32,620 34.027 37.916 41.437 44.461 48.278 50993  56.893
29 32.461 33.711 35.139 39.087 42.557 45722 49.588 52.336 58.302
30 33.530 34.800 36.250 40.256 43.773 46979 50.892 53.672  59.703
SoLuTtioN From Egq. 8-15, obtain o as:
n-—1

0'=o"[
X

where ¢ = 0.00642 from Example 8-1.
The value of x2 for 11 degrees of freedom and for a lower confidence
limit of 95 percent, i.e., P, is found in Table 8-3 as 19.675. Hence:

oy = 0.00642 [

11

19.675

P

T)
] = 0.00480
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i.e., this value of o should be lower than the true population value in 95
percent of all estimates (note that o, = «).

If alternatively the double-ended symmetrical 90 percent confidence
limits on the population standard deviation are desired, then:

x2 represents the S percent confidence limit
x? represents the 95 percent confidence limit.

From Table 8-3 for 11 degrees of freedom:

x} = 19.675
x;= 4.575
Hence, there is a (100-95) percent probability (confidence level) that o <

o, where:

11

1/2
—0.00642 | LL_|_
71 [19.675] 0.00480

and a (5-0) percent probability (confidence level) that o = o, where:

1 1 172
o, = 0.00642 [m] = 0.00995
Since there is a 10 percent probability that o lies outside the range of oy, o
(i.e., o = o, or o < a)), then there is a 90 percent probability that o lies
within the range o, o3 (i.e., ¢ =< 0, and o > ¢y). Hence 0.0048 < o =
0.00995, with a 90 percent confidence level.

III HOT SPOTS AND SUBFACTORS

In developing the thermal design of a nuclear reactor, it is customary to con-
sider first the nominal performance of the reactor with each of the primary
design variables at a completely specified nominal value and then to evaluate
the effect on reactor performance of possible variations in each of the primary
design variables from its nominal value. Hot spot and hot channel factors are
used to express the extent to which actual reactor performance may depart
from its nominal performance owing to the cumulative effect of variations of all
primary design variables from their nominal values.

A few examples of hot spot and hot channel factors introduced in different
design approaches will make the general notion clearer. In the design of the
early pressurized water reactors, a heat flux hot spot factor Fo was used. This
factor was defined as the ratio of the highest heat flux that would possibly occur
anywhere in the core, to the average heat flux. Similarly, a film temperature
drop hot spot factor Fy, was defined as the ratio of the maximum temperature
difference between cladding and coolant which could possibly occur anywhere
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in the core, to the average of this temperature difference. Finally, either a
coolant temperature rise hot channel factor Fr or a coolant enthalpy rise hot
channel factor F,, was used. The coolant temperature factor Far was defined as
the ratio of the maximum coolant temperature rise that could possibly occur in
any fuel assembly of the reactor, to the core average temperature rise. The
coolant enthalpy rise hot channel factor F,;, was defined as the ratio of the
maximum specific enthalpy increase of the coolant which could possibly occur
in any fuel assembly, to the average specific enthalpy increase. Note that when
the coolant heat capacity is independent of temperature, Far and F,p are nu-
merically equal.

The hot spot factors described above were defined for applications in
LWRs primarily because they relate to the onset of the critical heat flux condi-
tion. In the LMRs, however, critical heat flux is not a limiting condition. For
example, at one atmosphere sodium has a boiling point much higher than the
clad temperature limit, a low vapor pressure, and a large superheat for nuclea-
tion. All these conditions are quite different from those found in LWRs and
dictate the use of hot channel factors different from those defined for LWRs.

In the LMR case, the principal limits are:

1. The cladding temperature should not exceed a critical value which results
in unacceptable creep rates, which in turn depend on the material, applied
stresses, and irradiation-induced swelling.

2. The fuel temperature should be lower than the fuel melting point.

The temperature of interest M in an LMR core can be written in the form:

M
Tm = Tin + 2, Fin* ATmnom (8-17)
m=1

where:

_Iv—Tv _ _ATw
ATm,nOm ATm,an

T;, = coolant inlet temperature

F, (8-18)

nom = nominal value

The subscripts M and m represent temperature values and temperature
differences, respectively. Specifically:

M =5 — the fuel centerline temperature
m = 5 — the radial temperature difference between fuel surface and fuel cen-
terline

M = 4 — the fuel surface temperature
m = 4 — the radial temperature difference across the clad—fuel gap
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M = 3 — the clad inside temperature

m = 3 — the radial temperature difference across the clad

M = 2 — the clad outside temperature

m = 2 — the radial temperature difference across the coolant film

M =1 — the coolant mixed mean temperature

m = 1 — the axial coolant temperature rise from the inlet to an axial plane of
interest

M = 0 — coolant inlet temperature

m = 0 — not defined or used.

We have now identified the properties of interest in both LWRs and LMRs.
For each we are interested in finding the associated hot spot factors. For
example, in LWRs the properties of interest are

¢ Heat flux
* Film temperature rise (6)
* Enthalpy (Ah) or coolant temperature rise (AT)

whereas in LMRs the properties of interest are:
* Temperature rises (Ty where M =1, 2, . . . 5).

Since these quantities all have different nomenclature for historical rea-
sons, let us introduce the parameter y as the property whose hot spot factor is
of interest. Since this property is a function of many variables x; write:

y=fOy, ... .x,...x)

where x; (j = 1, . . . n) are individual parameters that affect the property y.
For examples of x; variables, see Table 8-4 which presents an extensive list
of both x; variables and the properties y that they affect.
Let x{ be the nominal value of x;. If Ax; is the deviation of x; from its
nominal value x,-o, then we can write:

xj=x) + Ax
Further defining the nominal value y° of y as:
Y=yt ..., x . XD (8-19)

We can also express the property y for the case where all x; are not at their
nominal values as:

y=y(Ax,, ... ,Ax;, . . . Axy) (8-20)

where for simplicity only the Ax; rather than x{ and Ax; are shown. There are
two ways of defining the subfactor that accounts for the influence of a single
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variable x; on the property y:

1. The first definition of subfactors relates deviations in x; to the nominal value
x). The specific definitions depend on the way deviations in x; affect y and
are formulated so that the subfactors are greater than unity when the devia-
tion in x; acts to increase y. Thus if an increase in x; increases y, the
subfactor of x; is defined as:

X Ax;
fi=3=1+-=+H (8-21)
Xj j
On the other hand, if a decrease in x; increases y, then the subfactor of x; is
defined as:
0 0
Xj X;j 1 AXj
=== = =1+ — 8-22
K v v &2
X
(Ax; < x))

2. The second way of defining subfactors (and the most used nowadays) de-
pends on the functional relationship between x; and the property y. This
way of defining subfactors relates deviations in the property y, which are
due to deviations in a single parameter x;, to the nominal value of y. We will
adopt the notation f; , meaning the subfactor relative to parameter x; affect-
ing the property y. It is given by

y(O,...,ij,...,O)z)ﬂ
y©0,...,0,...,0 y°

fiy = (8-23)

Example 8-5 Computation of hot spot factors from first principles

PrROBLEM Assume that the pellet diameters in a core have been determined
to be normally distributed with a mean (u; = xJ) of 0.23 inches and a
standard deviation, gj, of 0.0115. Compute the hot spot factor, f;, for the
pellet diameter, x;, and the hot spot factor f;,, for the temperature differ-
ence between the centerline and surface temperatures, (Y = Tax — Tro) of @
one-zone cylindrical fuel pellet due to variations in pellet outside diameter.
Compute these subfactors for a confidence level of 95.45 percent. Use a
symmetric confidence interval.

SoLuTtioN Eq. 8-21 is used here because an increase in pellet diameter
causes an increase in (Tp.x — Tfo) SO:

Ax;
=1+ f.l (8-21)

)

We require Ax; to be the variation in x{ such that there is a 95.45 percent
probability that the value of x; is within the interval x’ + Ax;. We can
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express Ax; as a number, z, of standard deviations, oj. Hence:

0
Xy + 205 .
’x—o’ since Ax; = z0; (8-22)
J

fj:

_ . g5 _0.0115
f;i = 1 + 2(0.05) since 2023

J

= 0.05

per the problem statement. A symmetrical 95.45 percent confidence inter-
val corresponds to +20 as seen in Table 8-1, i.e., z takes the value which
corresponds to:

p, = 102 — 0.02075

which per Table 8-1 is z = 2.0.
Hence:
f;=1+2.000.05) = 1.1
Similarly for z = —2.0, f; = 0.9.
From the definition of f;, we have:

yAx- )’m-
Ly = === (8-23)
f_;,y yO yO
In this case y? = (Tmax — Ti0)?, and from the solution of the general energy

equation for the one-zone pellet of thermal conductivity k and diameter Ds:

n/DZ
Thax — Tpo = q_l67f
Hence:
e 0N2
o - 4%5)
(Tmax Tfo) 16k
and

q"ed + 20
16k
Substituting these results and the value of z = +2.0 into Eq. 8-23 yields:
£ 90 * 2016k [0.23  2.000.09)0.23)F
y q"(x))?/16k (0.23)?
1.21; 0.81

This result tells us that 0.81 < (Tax — Tio)/(Tmax — Tio)® = 1.21 with a 95.45

percent probability when all other parameters affecting this quantity are at
their nominal values.

(Tmax — Tfo)za-J =
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A relationship between an f; affecting y and fj, can be derived in the
following manner. The differential of the property y is given by:

ay ay ay
- — + « e + — . + « s . + —_—
dy s dx, 3%, dx; o, dx,

Taking dx; = 0 for i # j (since we are only interested in the effect of x;), we
have:

ay
dy; ax; dx;
or for finite changes:
_ 9
Ay; = ax; Ax;

Since Ay is defined as y,, — y°, the following relationship exists:

ay
Yoax; — )’0 = [ax] (x_] extreme X_?)

The expression above can be put in the form:

Yoy _ 8 [a_y] [M}
y° y° Lox; X0

Noting that:

yAXj _
0 = Jiy
and
{f 9y | _ |8 €ny| (for small deviations of x and y
y® Lax;] = o €n x;] about their nominal values)
and
0
Xj.extreme — Xj
Zhexreme b = £ — |
! 5
we get:
d¢n y]
v =[5z 529

In the cases where (fjy — 1) <1 and (f; — 1) < 1, which happens most of
the time, we can write:

fiy = 1=¢€nll + (fiy — D] =¢Enf,
fi—1=¢&nll +(ff— D] =¢nf
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So, Eq. 8-24 can be rewritten as:

d€ny
tnfiy = [8 én x,] tn
[alny]
fj,y = fjaln X (8_25)

It can be easily proven thatthis expression is exact when functionally y
is the product of the parameters x;, raised to any exponent, i.e.:

=Axix5. . . x". .. X}
2 J

For other forms of the property y, the error involved in evaluating f;, by
Eq. 8-25 may be significant enough to dictate that it should be evaluated
directly by Eq. 8-23.

Example 8-6 Computation of hot spot factor f; , from factors f;

ProBLEM Use Eq. 8-25 to compute the hot spot factor f;, for the condi-
tions of Example 8-5.

SoLuTiON In this case:
xj = x + za5 = D¢
and
y = Tmax - Tfo
From the solution of the energy equation for the one-zone pellet of
thermal conductivity k and diameter Dj:
qufZ_

Toax — Tto = _167

Hence:
€n(Tpax — Tgo) =2€nDs+ €nq” — €n 16 — €n k

8 €n(Tmax — Tio) _

d¢n Df 2
From Example 8-5:
fi=11
Substituting these results into Eq. 8-25 yields:
dlny
fj.y —_ fj[,a In 11]
= (1.1)?

1.21 completing Example 8-6
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IV COMBINATIONAL METHODS: SINGLE HOT SPOT
IN CORE

The overall hot spot factor F is determined from contributions of all of the f;,,
that affect y. The procedure of combining these subfactors depends on the
nature of the individual variables. Several methods of combination of the sub-
factors have been suggested, and they will be critically reviewed in this section.

The differences in properties and limits central to the thermal design of
LWRs and LMRs were identified in the previous section. We will not present
the various reactor thermal design approaches in use since they are in continual
evolution. It is sufficient to say that for LWRs the dominant approach is to
derive a critical heat flux or critical power limit that includes uncertainties in
the correlation itself and in the parameters that enter the prediction of critical
heat flux or power. In LMRs and gas-cooled reactors attention is focused on
predicting coolant, clad or coating and fuel temperatures including relevant
uncertainties.

In the remainder of this chapter attention will be focused on two common
key elements in a reactor thermal design procedure:

1. A single hot pin analysis—The methods that can be used to combine the
effects of the uncertainties on a parameter y from variables x; to obtain the
probability of a single hot pin exceeding defined limits

2. A multiple hot pin or core-wide analysis—The summing of the probabilities
of each pin exceeding the defined limit which leads to a core-wide reliabil-
ity analysis.

Returning now to the focus of this section on combinational methods, the
predominant current approach is the semistatistical method. Originally pro-
posed by Chelemer and Tong [10] this approach was the logical culmination of
early work which treated all the uncertainties as either deterministic or statisti-
cal in nature. The deterministic approach takes each parameter that affects the
property of interest as having the most unfavorable value. In this way worst
values are taken to occur at the same location at the same time. This method is
very conservative and pessimistic. Within the approximations and the confi-
dence level of the hot spot or channel subfactors it assures that the limits will
not be exceeded at any location in the reactor core at any time.

Since the probability of the most unfavorable value of all uncertainties
occurring at the same position at the same time is very small, the statistical
method for combining uncertainties was introduced. In this method the uncer-
tainties are combined statistically, and the resulting hot spot (or channel) fac-
tors are a function of a chosen confidence level. This confidence level depends
upon the selected safety margin assigned to the reactor:

F, = F,(zo) (8-26)
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The statistical procedure of combining the hot spot (or channel) subfactors
depends on the assumed statistical distributions of these subfactors. The most
commonly used distributions are the normal and the rectangular distributions,
although there are nonparametric procedures, e.g., method of moments, avail-
able for application to arbitrary distributions.

Table 8-5 summarizes the formulas that are developed for each of these
combinational methods in the remainder of the section.

Example 8-7 Deterministic method of developing the heat flux hot spot
factor

ProBLEM Find the heat flux hot spot factor F, = F using the deterministic
approach if the nominal heat flux y = Q = (q/A)° is given functionally by:

q o ¢00'fP0Av"0QfTT(D?)2/4 8-27
Al T ArmD @27

where the x; variables are:

¢°—the average neutron flux

o—the U-235 fission cross-section

p%—the average uranium density

r'—the average weight fraction of uranium 235

QOr—the energy released by fission which is transferred within the fuel as
heat

D?—the average diameter of fuel

D?—the average outside diameter of cladding

Ag—the fuel atomic weight

A,—Avogadro’s number

since:

pAy ><Z 2 )
(2> _ g <0f 4, ")\q Pit) O 8-28
Al "~ Afuel surface B 7D L (8-28)

SoLuTioN The maximum possible value the heat flux can have at any point
in the reactor (g/A)nax occurs when the factors in the numerator have their
maximum possible values and the factor in the denominator has its mini-
mum possible value:

q _ d’maxa'fpmaxrmax Qf'n'(Df)tznax/4
<A)max B T(D)minAs (8-29)

The heat flux hot spot factor F is defined mathematically as:
Fq = (q/A)max/(q/A)° (8-30)
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Using the first definition of subfactor fjin Eq. 8-21, Fy can be put in the

form:
Fo = fofof(fo)¥o. (8-31)

where the subfactors are:

ﬂUX, f¢ - d’max/d)o

fuel density, f, — Pmax/p°

enrichment, f; — Frnax/1?

fuel diameter, fj, — (Dpmax/ DY
and

cladding diameter, f;,, — D%/(D¢)min (8-32)

Some of these subfactors, in turn, may be broken down into partial
subfactors. For example, the flux subfactor is often represented as:

f¢ = frfzfLocal

where fi is the ratio of peak flux to flux averaged with respect to radial
distance; f7 is the ratio of peak flux to flux averaged with respect to axial
distance; and f] .., is a subfactor to represent local variations in flux due to
control rods, water gaps, and other lattice irregularities. These factors are
usually treated separately.

In some treatments of hot spot and hot channel factors, the factors fi
and f; representing gross variations in neutron flux are incorporated into ¢°
and left out of the expression for the hot spot factor. In that case ¢° is the
nominal maximum flux in the reactor instead of the average flux.

A Deterministic Method Formulations

In Example 8-7 the property Fj is a function of the product of factors where
each factor is a function of a single variable x;. This is not the case for all
properties. However, if a property y can be expressed as a function that is
mainly the product of factors, where each factor is a function of a single
variable x;, then a good approximation for the hot spot factor Fy in terms of
subfactors f; defined to represent the maximum possible fractional variation of
the variables x; is:

dény
tn Fy _Z‘afnx

or
n dlny
Fy = ﬂf[m] (8-33)

The advantage of this approximation procedure is that it expresses the hot
channel factor as a product of individual subfactors, each raised to a power that
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can be evaluated from a general knowledge of how the property of interest
depends on the variables which may deviate from the nominal values used in
design.

The preceding development was done using the definition of subfactors
given by Eqgs. 8-21 and 8-22. Substituting Eq. 8-25 into Eq. 8-33 treats cases in
which the subfactors are given according to the definition in Eq. 8-23 yielding
the result:

Fy, = Jl:[)ﬁy (8-34)

Eqgs. 8-33 and 8-34 are the mathematical formulation for the approach
usually called the product deterministic (or cumulative) approach. An applica-
tion of these equations is illustrated in Table 8-6 for the hot spot factor for the
heat flux F. The end result Fg, calculated by these two approaches, is identi-
cal. The subfactors f; and f; , are calculated by Eqs. 8-21 and 8-22, and by Eq. 8-
23, respectively. For all variables except fuel diameter these subfactors are
equal since fuel diameter is the only factor among those listed upon which the
heat flux is not linearly dependent. This is illustrated by Eq. 8-29, from which
we can observe that:

3 €n (q/ A)max

aé’an =2

Table 8-6 Subfactors affecting (gq/A) for a typical early
LWR reactor

Subfactors
f; defined by f;.y defined by
Contributors Egs. 8-21 and 8-22 Eq. 8-23
1. Radial variation of power density, fg 2.058 2.058
2. Axial variation of power density, f; 1.484 1.484
3. Local variation of power density, fi,ca 1.050 1.050
4. Fuel density, f, 1.044 1.044
5. Fuel enrichment, f; 1.016 1.016
6. Fuel diameter, fp, 1.003 1.006
7. Cladding diameter, fp. 1.003 1.003

Fq (deterministic method by Eqgs. 8-33 and 8-34) = 3.43.
Fq (semistatistical methodt by Eq. 8-58) = 3.36.

q_ dapA,rQem(DHI4

A ArD, (8-28)

t Taking items 1, 2, and 3 as direct contributors and 4, 5, 6, and 7 as statistical
contributors. See Section IVC.
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Hence the subfactors fj, = figa) ..o and fj = fp, are different and related in
accordance with Eq. 8-25 as:

ﬁq/A)mnx:Df = (fD[)z

which is the relationship Table 8-5 reflects.

The mathematical formulation of the sum deterministic (or cumulative)
approach will now be developed.

When y is a linear function of individual variables x; such as:

= Z a; X (8-35)
J=1

the maximum value y can have owing to extreme variations in each of the-x;
values from nominal values x] is:

ymax - yO + 2 l:(')x

J

] [x_, extreme xjo] (8-36)

The hot spot or hot channel factor for y is defined as:
Fy= Ymax/¥° (8-37)

Further define subfactors f; as follows:

0

Xj,extreme — Xj
0
Xj

=1+ (8-21)

Dividing Eq. 8-36 by y° and multiplying the second term on the right side by
x?/x{ obtain:

Ymax C 3)’ xO Xj extreme — Xj
Jmax _ 4 [_- -J-] : 8-38
y° ,21 dx; y° xj (8-38)
and noting Eqs. 8-37 and 8-21 this becomes:

F—1+2[a”'J -1
and since 8 (¢n y) = ay/y® and 3 (£n x;) = dx;/x:

_ d €n y] _
F,=1+ A [86 P -0 (8-39)

This result can be expressed in terms of the subfactors defined by Eq. 8-23
by substituting Eq. 8-24 into Eq. 8-39 yielding:

+ E: (fiy— D (8-40)

This approach is called the sum deterministic (or cumulative) approach.
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Egs. 8-39 and 8-33 become equivalent when Fy and the f; values are close to
unity. The sum form, Eqgs. 8-39 and 8-40, gives more accurate results the closer
y is to being a linear function of the x; values, while the product form, Eqgs. 8-33
and 8-34, is preferable the closer y is to being a product of factors that are each
a function of only a single x;. For the cases of the hot spot factors for heat flux
Fq (Example 8-7) and film drop F (Problem 8-1), the product form is clearly
preferable.

B Statistical Method Formulations

The two procedures that were developed for combining factors by this method
parallel those introduced in the preceding section and are discussed next.

1 Product statistical method In this case F, again is given by a product of the
f;.y factors or 1™ gactors, but each is treated as a statistical variable with a
certain distribution function. The distribution function of a product of two or
more statistical variables is generally difficult to evaluate even when each
variable has a normal distribution because the product generally is not a ran-
dom variable of the same type. Even for the simplest case of only two subfac-
tors, f; and f;, with independent probability density functions p(f;) and p(f2),
respectively, the probability that a desired limit A is not exceeded is a compli-
cated calculation given by:

PUA - fi<Al= [ [ p(f) - pU)dfidf, (8-41)

For more than two subfactors, this calculation of the resulting distribution
function has to be done step by step starting from the first two variables, then
combining the distribution function of the first product with the third variable,
and so on. The solution of Eq. 8-41 has to be done numerically which can be
inconvenient and time consuming. However, if the subfactors are lognormally
distributed, then the procedure is simplified because the product of lognormal
variables is also lognormal. In this case Eq. 8-41 can be solved using a simple
transformation that relates the product to the standardized normal distribution
which is characterized by Table 8-1.

2 Sum statistical method This method was developed to avoid the originally
required cumbersome solution of Eq. 8-41. It is based on the fact that the sum
of n normal, independent random variables is also a random variable that is
normally distributed and whose mean and variance are the sum of the means
and variances of the n variables respectively. According to the central limit
theorem, this relationship between means and variances is valid even if the
random variables are not normally distributed, if n is a large number.

The definition of subfactors, for statistically distributed variables, will be a
function of the desired confidence level. Since each confidence level is related
to a specific value of z, the number of standard deviations about the distribution
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mean, we will use the terminology the confidence level corresponding to z in
the remainder of the chapter.

Let x; be a parameter with mean x{ and standard deviation g, affecting y.
Then, according to the definition supplied by Eqgs. 8-21 and 8-22, the subfactor
relative to x; is:

f=1+ ;‘TOJ (8-42)
J

According to the subfactor definition of Eq. 8-23:

. _ Y0, . 205, o, 0) Y —
fy =50, .0, .0 ) (8-43)

The distribution function of y is given by:

__ 1 (—(y - y°)2)
f(y) Viro, exp 557
where y° is the mean value of y, and gy is the standard deviation. The standard

deviation o, is related to the standard deviations o of the variables x; by the
following relationship:

2 8-44
2:: <6xj) (8-44)
Eq. 8-44 is true for any number of variables x; if y is a linear function of the x;
variables and if the x; variables are independent.

We define:

* _ 0
z=21—2 (8-45)

where y* is the maximum value assumed by y, for the confidence level corre-
sponding to z. Then from the definition of F, ,:

*
F,, =% (8-46)

(i)i)z O_;jlllz (8-47)
axj !

(xp 2
of =4 (= 1I? (8-48)

Using Eq. 8-42, we obtain for o}:

Substituting Eq. 8-48 into Eq. 8-47 where we assume that the z value corre-
sponding to the confidence level of F,, and that for f; are numerically equal
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=B 6]

Jj=1

obtain:

or

172
d €n
T T
For the case in which we are using the definition given by Eq. 8-23 for the

subfactor, we can write an equivalent expression for F, , by substituting Eq. 8-
24 into Eq. 8-49 and taking f;,, defined for the same confidence level:

n 12
= l+—[§§(ﬁm-—lﬁ] (8-50)
Jj=1

This method was developed originally for use in LWRs in which the prop-
erties like g/A, 0, and Ah are analyzed separately, i.e., studying g/A we only
have to take into account the variables that affect g/A to find Fo. The method
has also been used in the analysis of the LMR because it is quite convenient for
engineering calculations. In this case the property under study is the tempera-
ture of the element M, where M can be the inside surface of the cladding, the
fuel centerline, etc. This temperature can be put in the form:

M
Ty = Tin + O, ATy (8-51)
m=1

A variation in a parameter x; probably will affect more than one temperature
drop AT, as Table 8-4 illustrates. These effects must be combined statistically.
Applying this approach for each AT,, separately yields Ty as:

M
Ty=Tan+ 2 FmATm.nom (8-52)
m=1

where F, is given by Eqs. 8-49 or 8-50. This method is quite convenient for
engineering calculations because it allows the definition of an overall hot spot
factor for each of the AT,, values. Table 8-7 presents typical LMR hot channel
factors arranged in a matrix in which the rows are the effect of each factor on a
temperature rise m of interest, and the columns are the temperature rises of
interest. In this approach the factors affecting each temperature rise AT, are
arrayed vertically and grouped using Eq. 8-50 to yield F,, values that are then
applied individually to each AT,. Hence this method is called the statistical
vertical approach. This approach corresponds only to a partial statistical com-
bination because the overall effect of x; is given by the sum of the effects in each
one of the T, values, and hence it is conservative relative to the horizontal
method presented next.
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Table 8-7 Typical LMR hot channel factors at 3o confidence level

Coolant Film Clad Gap Fuel
fiy 1 2 3 4 5
A. Direct
1. Inlet flow maldistribution 1.05 1.012
2. Intrasubassembly flow 1.14 1.035
maldistribution
3. Interchannel coolant mixing 1.00%
4. Power control band 1.02 1.02 1.02 1.02 1.02
S. Wire wrap peaking 2.00(1.214)%
Direct combination 1.221 2.137(1.297)% 1.02 1.02 1.02
(Eq. 8-34)
B. Statistical
1. Fissile fuel maldistribution 1.035 1.035 1.035 1.035 1.035
2. Power level measurement 1.071 1.071 1.071 1.071 1.071
3. Nuclear power distribution 1.060 1.065 1.065 1.065 1.065
4. Rod diameter, pitch, and bow 1.011
S. Film coefficient 1.14
6. Gap coefficient 1.47§
7. Fuel conductivity 1.10
8. Clad conductivity and 1.12
thickness
Statistical combination 1.100 1.173 1.158 1.481 1.143
of items 1-8
(Eq. 8-50)
Product of direct and statistical 1.343 2.507(1.521)t 1.181 1.511 1.166

t Worst condition.

1 Numbers in parentheses should be used for calculating fuel temperatures.
§ Taken with hy(nominal) = 7950 W/m? K (1,400 BT U/hr ft? F)

For more accurate and less conservative calculations, another method was
developed called the statistical horizontal approach. This approach combines
statistically all of the effects of a variation in the variable x; on all of the
temperature differences up to the temperature Ty under study. So, for a typical
temperature Ty the variation of Ty due to the variable x; is:

M
8TM,ij = TM.L\xJ - Tin - 2 ATm.nom

m=1

Taking Ax; = za;, this deviation is also given by:

M
6TM.za, = z (fj,m - 1)ATm.nom
m=1

(8-53)

(8-54)

From basic statistics (8Tu.)* = D, (8Tw.0)% i.€., the variance (o?) of a

J=1

sum of independent random variables is the sum of the variances of each
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variable. Since the total deviation of 8Ty for the confidence level corresponding
to z, taking into account all variables, is given by:

n M 2712
8Twm.z = [2 [ >, (fim = I)ATm,m] ] (8-55)

J=1

the temperature Ty can be put in the form:

M
Tv =T+ 2 ATmnom + 8Tm. (8-56)
m=1

where ATy, is given by Eq. 8-55.
We can define an overall hot spot factor for this method in the following
manner:

_Tv — Tu

Fn = ATmoom (8-57)

Recall that in the case of M = 1, Ty_, represents the nominal coolant inlet
temperature T;,.

The temperature differences ATy, .o depend on the location of the hot spot
under study.

C Semistatistical Methods

The statistical methods assume that all uncertainties are of a statistical nature
and consequently are too optimistic. In fact, certain parameters that affect the
thermal performance of a reactor core are of systematic character. To account
for the distinct character of the uncertainties, the semistatistical method was
developed. According to this method, the parameters are divided into two
groups. The first group corresponds to the systematic or direct contributors,
which are cumulatively treated. The second group is the group of the statistical
contributors, and they are statistically combined. The resulting temperature
distribution from application of this procedure is presented in Figure 8-3. The
mean of this temperature distribution, Ty cun, is displaced from the nominal
value Ty ,om, due to the direct uncertainty contributors. The distribution about
the mean reflects the consideration of the statistical contributors. Table 8-7
presents some typical LMR hot channel factors illustrating direct versus statis-
tical groups.

In current reactor analysis, the semistatistical vertical and horizontal ap-
proaches are the most commonly used approaches.

1 Semistatistical vertical approach In this approach the overall hot spot factor
is given by:

n 12
F,=F?-F§=F?[1+[Z[ﬁ,y—1]2] ] (8-58)
=

stat



Probability Distribution
for TM

30

-

TM,nom Tu.cum T, max 30 Temperature

Figure 8-3 Illustration of the semistatistical method.

where:

F? — Hot spot factor resulting from the deterministic contributors. It can be
computed by Eqgs. 8-33 and 8-34 (most cases) or Eqgs. 8-39 and 8-40.
F§ — Hot spot factor resulting from the statistical contributors. It is calcu-
lated by Eqgs. 8-49 and 8;50 taking into account only the parameters of

statistical nature, i.e., 2

Jj=1
stat

2 Semistatistical horizontal approach The same comments presented for the
statistical horizontal approach are applicable in this case. Therefore, we only
have to study the temperature of element M.

The temperature Ty, this time, is given by:

M
Tv = Tin + 2, FRATmoom + 8Ti1. (8-59)

m=1

where:

n

M 2712
8Th, = Z[ (fim — 1)F2Arm.nom] (8-60)

Jj=1 Lm=1
stat

An overall hot spot factor for each temperature variation AT, can be de-
fined by analogy to the statistical horizontal approach.
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In studies of the temperature Ty applying the methods described above, it
is commonly assumed that we are computing Ty at its nominal hot spot, i.e.,
the point at which the function:

M

TM,nom(z) =T, + z ATm.nom(z) (8-61)

m=1

assumes its maximum value. This computation is done for the most critical fuel
pin, and z represents the axial direction. When we include the overall hot spot
factors Fy,, the axial position of the maximum of the function:

M
Tm(z) = Tin + 2, FrnATm om(2) (8-62)
m=1

will have a shift relative to the position of the maximum of the function of Eq.
8-61. This shift should be taken into account for more accurate calculations.
Obviously the criterion for not exceeding a limit given by the methods outlined
above, within the confidence level of the hot spot (or channel) subfactors, is
that the maximum of the function of Eq. 8-62 is equal to the limiting tempera-
ture of the element of interest M.

Example 8-8 Computation of hot spot factors and temperatures

ProBLEM Considering the fuel hot spot, calculate the hot spot factors F;
and the hot spot temperatures T; for each of the combinational methods of
Table 8-5 using the factors of Table 8-7 and the following nominal tempera-
ture values:

Tigjer = 315.6 °C

ATCoolanl = ATl.nom =114.6 °C

ATfim = ATy0om = 20.4 °C

ATcIad = AT3'n°m = 44.7 OC

ATgap = AT4,num = 3449 °C

ATwe = ATspom = 1469.8 °C

SoLuTioN Cumulative product method:

Fu=1]fim (8-34)
Jj=1

F; = 1.05(1.14)(1.00)(1.02)(1.035)(1.071)(1.060)(1.011) = 1.45
F, =1.297(1.035)(1.071)(1.065)(1.14) = 1.746
etc.

M
Tv = T + 2, Foo - ATmnom (8-52)

m=|
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T, =315.6 + 1.45(114.6) = 481.8 °C
T, =315.6 + 1.45(114.6) + 1.746(20.4) = 517.4 °C
etc.

Cumulative sum method:

Fo=1+2 (fim—1 (8-40)
Jj=1

F, =1+ 0.05 +0.14 + 0.02 + 0.035 + 0.071 + 0.060 + 0.011 = 1.387

etc.
M

Ty =T, + 2 Fn - ATm.l\om (8-52)
m=1

T, =315.6 + 1.387(114.6) = 474.6 °C

etc.

Total statistical (sum) vertical method:
n 172
Fn=1+ [2 (fim — 1)2] (8-50)
j=1

F, =1+ {(0.05)% + (0.14)2 + (0.02)> + (0.035)? + (0.071)?
+ (0.060)> + (0.011)%}'2 = 1.18

etc.
M

Ty = Tin + D, FnATmnom (8-52)
m=1

T, = 315.6 + 1.18(114.6) = 450.8 °C

etc.

Total statistical (sum) horizontal method:

n

M M 277172
TM = Tin + 2 ATm,nom + [E [2 (f]:,m - 1) ) ATm,nom:| ] (8'56)
m=1 m=1

j=1
T, =315.6 + 114.6
+ {(0.05(114.6))% + (0.14(114.6))* + (0.02(114.6))?

+ (0.035(114.6))2 + (0.071(114.6))?> + (0.060(114.6))?
+ (0.011(114.6))%}'2

= 315.6 + 114.6 + 0.18(114.6) = 450.8 °C
(same as for total statistical (sum) vertical)
T, =315.6 + 114.6 + 20.4
+ {(0.05(114.6) + 0.012(20.4))2 + (0.14(114.6)
+ 0.035(20.4))2 + (0.02(114.6) + 0.02(20.4))
+ (0 + 0.214(20.4))2 + (0.035(114.6) + 0.035(20.4))?
+ (0.071(114.6) + 0.071(20.4))2 + (0.060(114.6)
+ 0.065(20.4))2 + (0.011(114.6) + 0)2 + (0 + 0.14(20.4))%}'”2
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T, =315.6 + 114.6 + 20.4
+ {35.7 + 280.8 + 7.3 + 19.1 + 22.3 + 91.9 + 67.3 + 1.6 + 8.2}

T, = 473.7°C
etc.
Ty — Tm-
F, =M _ M1 8-57
ATm,nom ( )
T, - T, 4508 —315.6
LRy S TV
CT,= T, 4737 — 4508 _
F, = AT pom 20.4 = 1123

(where T, is the result computed by this procedure).

Semistatistical vertical:

n 1/2
FD (1 + {2 (fim — 1)2] ) (8-58)
j=t

F, = 1.221(1 + {(0.035)? + (0.071)> + (0.06) + (0.011)}'"?)
= 1.221(1.1) = 1.343

Fo

etc.
M

Tv = Tin + 2, Fmn - ATmoom (8-52)
m=|

T, = 315.6 + 1.343(114.6) = 469.5 °C

etc.

Semistatistical horizontal:

M
Tvm = Tin + D, FRATmpom + 8T, (8-59)

m=}
T, = 469.5 °C (same as semistatistical vertical for m = 1)

T, =315.6 + 114.6(1.221) + 20.4(1.297)
+ {(0.035(1.221)(114.6) + 0.035(1.297)(20.4))*
+ (0.071(1.221)(114.6) + 0.071(1.297)(20.4))?
+ (0.060(1.221)(114.6) + 0.065(1.297)(20.4))?
+ (0.011(1.221)(114.6)) + (0.14)(1.297)(20.4))}'?
= 315.6 + 139.9 + 26.5
+ {33.9 + 139.6 + 102.3 + 2.4 + 13.7}17

T, = 499.1°C
etc.
F, = v~ Tu-, (8-57)

ATITIJIOITI



*$1019eJ j0ds 10y [anJ 3Y) 2)B[NO[ED 0] PASN ISOY] AIe (7 = Jy) dA0qe sainjesadwa) pep ayJ |

L'$89C Svsol 6'6vS 1°66Y S 69% Qo) "L
o1r°1 €91 9tEI'l ISY°1 eve'l “d ‘lewozuoy
£'88LC SYL01 (M 1%Y §°00¢ $'69¢ Q) "I
991°1 TSI I8I°1 (449 | (3490 “o ‘[BIIIA
[ednIsneISIWAg
|4 ré €¢Il 0°¢eTs L'tLYy 8°0SY Q) L
6801 'l 180°1 (YA 081°1I Y4 ‘[eluozLIOH
v'zeLe $°6£01 L'8TS 6'9LY 8°0SY Qo) ML
3401 I18%°1 6SI°l 6LT1 081°I Y. ‘[ed1dap
[ednsness [eloL
0°9¢0¢t S'8tll 9°69¢ 0°L0S 'YLy (Q.) WL
16T°1 199°1 Ie’l 26S°1 L8] Y4 ‘wng
9°CElE 8811 LLLS pLIS 8’18y (Do) "I
[YA% 0LL'T (40! L'l oSyl “4 ‘1onpoid
ansIuIWIARQ
S=Nn y=w t=N =N I=W
S=w p=w g =w K=uw I =w

Do 8°69%1 = “LV Do 0°SPE = "IV Do LYY = UV Do ¥°0T = “LV . 9vIl = “UV

1ond dep PeID I 1ue[00)

g-g ajdwexy 1oj s)|nsai jo Arewwng g-g d[qeL



TREATMENT OF UNCERTAINTIES IN REACTOR THERMAL ANALYSIS 393

469.5 — 315.6
Fr=—ne 138

499.1 — 469.5
Fz———%j———LMI

Table 8-8 summarizes the results for F, and T, by all methods. Note
that the deterministic results are most conservative, and the total statistical
results are the least conservative. For each method individually, the prod-
uct and the vertical approaches, are the most conservative.

V EXTENSION TO MORE THAN ONE HOT SPOT

Inreality, a reactor core can have more than one limiting hot spot. Assume that
these hot spots are independent, are of number n, and have a probability p of
exceeding the temperature limit independently. The binomial distribution gives
the probability p(m) that exactly m of the n hot spots will exceed the tempera-
ture limit, i.e.:

|
pm) = s (L = P (8-61)

In the literature p is called the probability of success and 1 — p = q the
probability of failure. Care must be taken in applying these definitions to the
reactor case because physically a reactor engineer considers exceeding the
temperature limit as potentially leading to a pin failure. However in the statisti-
cal sense, the event is the occurrence of exceeding the temperature limit, and
its occurrence is a success, not a failure. Hence, we refrain from using the word
failure and rather refer to whether or not the temperature limit is exceeded.

For m = 0, Eq. 8-61 reduces to:

pim=0)=(1—p)" (8-62)

and p(m = 0) represents the probability that the event (that of exceeding the
temperature limit) will not occur. This is consistent with the result obtained by
further specialization of Eq. 8-62 for the case n = 1. Then

pm=0=1-p=gq (8-63)

where p(m = 0) and ¢ are the probabilities that an individual hot spot will not
exceed the temperature limit. The use of Eqs. 8-62 and 8-63 is illustrated in
Example 8-9.

As can be seen in Eq. 8-62, p(m = 0) decreases as the number of limiting
hot spots increases. This fact has an important ramification for reactor opera-
tion. If the reactor power distribution is flattened, the number of limiting hot
spots will increase. But the probability of not exceeding the temperature limit
within the core should not be allowed to decrease because of safety consider-
ations, so we have to decrease the individual hot spot values p by decreasing
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the reactor power. This action mitigates the power increase derived from the
flattening of the power distribution.

VI OVERALL CORE RELIABILITY

The results reached in the preceding section about the implications of power
distribution flattening arose because of an implicit assumption in the combina-
tional methods introduced in Section IV. That assumption is that if Ty jq is
reached, it will happen only at the hot spots. In other words, the probability of
not reaching Ty, is assumed to be (1 — p) for the hot spots and 1 for the
remainder of the core.

However, in reality, the remainder of the core can contribute to the proba-
bility of exceeding the temperature limit. A simple illustration, given by Fenech
and Gueron [12], clarifies this point. Assume the probability of exceeding the
temperature limit of the nominal hot spot A is p. Let two other core locations, B
and C, have individual probabilities of exceeding the temperature limit p’ < p.
The probability of exceeding the temperature limit at B or C (or both) is ob-
tained by applying Eq. 8-61:

Probability of exceeding
tl}e temperature limit at = —1'—]’ (pH)'a = pH)' =2p" = 2(p')?
eitherBorC(n=2,m=1) )

Probability of exceeding 2
the temperature limit at = §|—0' (p'Y(1 = p°=(p')P
BandC(n=2, m=2) o

Hence the total probability
of exceeding the temperature = 2p’ — 2(p')? + (p')? = 2p’' — (p')?
limit at B and/or at C

Certainly if it happens to be true that:
' = (p')>p

then the probability of exceeding the temperature limit at B and C must be
taken into account. However, even if the inequality is not achieved, these two
spots B and C may contribute to the core-wide probability of exceeding the
temperature, and their contributions to this probability should be considered.

The remainder of this chapter deals with methods that have been intro-
duced to account for the nonzero probability of exceeding the limits at spots
other than the nominal hot spots. These methods differ in the degree to which
they have relaxed other constraints of importance. Figure 8-4 illustrates the
evolution of these methods with respect to their capabilities to relax the specific
constraints of:

1. Ability to distinguish between the character of variables, i.e., does a vari-
able affect the whole core, an assembly only, a pin only, or a spot only?
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START
STATISTICAL DIRECT (17)
ALL CORE LOCATIONS SINGLE HOT SPOT (1, 2, 10, 16, 19)

DISTINGUISH BETWEEN THE NO DISTINCTION BETWEEN THE
CHARACTER OF VARIABLES CHARACTER OF VARIABLES

(Spot Method of Businaro and Pozzi (7)) .
/\ (Synthesis Method ot Fenech and Gueron [12))

SPECIFIED NUMBER OF SPOTS ALLOWED NO SPOTS EXCEEDING THE
TO EXCEED THE DESIGN LIMIT (F'>0) DESIGN LIMIT (F' =0 only) [3, 4]

/\

COOLANT, CLAD AND FUEL CALCULATION [9] COOLANT CALCULATION ONLY [5, 6]

Figure 8-4 Evolution of core reliability analysis methods.

2. Evaluation of the probability that no spots will exceed a desired limit.
3. Evaluation of coolant temperatures only.
4. Consideration of threshold limits only.

A Methods That Do Not Distinguish between the Character
of Variables

Both the spot method and the synthesis method made the major step of includ-
ing the probability of exceeding the limiting temperature at spots throughout
the core.

The spot method was introduced by Businaro and Pozzi [7] and repre-
sented the first attempts to use the Monte Carlo method in the treatment of
uncertainties in reactor design.

Basically, the Monte Carlo method has the following advantages:

1. The method can be very accurate, depending on the sample size.
2. The method is conceptually simple.
3. The variables may act in the opposite sense.

For the application of the Monte Carlo method, the spatial dimension of
interest of the fuel pin (or channel) is divided into a set of characteristic lengths
or ‘‘spots’’ at which the design parameters are assumed uniform. The distribu-
tion functions of the design parameters must be known over the length of
interest, and random values for the parameters are drawn over their distribu-
tions. By using the functional relations of some thermal-hydraulic model, the
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distribution of the maximum temperature (not the temperature at the hot spot)
of the element of interest is computed. In the spot method this distribution is
approximated by a normal distribution, and the overall hot spot (or channel)
factors for a desired confidence level are then determined.

The spot method has a number of limitations:

—

. It is computationally intensive.

2. The assumption of normally distributed maximum temperature is not quite
correct as demonstrated by Fenech and Gueron [12].

3. The number of characteristic lengths selected to compose the channel has

an influence on the result.

The synthesis method of Fenech and Gueron [12] presents a method for
hand calculations which takes into account the fact that the limiting tempera-
ture of the element of interest M can be reached away from the hot spot
position. As in the spot method, the fuel pin is divided into a number of
segments of characteristic length. The deterministic method is applied to deter-
mine those spots at which the probability of exceeding the specified limit is
significant. Then the statistical method is used to find the probability of exceed-
ing the limit of each one of those spots. Assuming that these individual proba-
bilities p;(Tm,; > Twm.iim) are independent, the overall probability of exceeding the
limit for a fuel pin is given by:

p(Ty > Twjim) = 1 — H (1 = pi(Tm,i > Twilim)] (8-64)

where i represents a segment of characteristic length.

This method allows a prediction of the expected number of locations at which
the limiting temperature is exceeded. This can be seen by the following exam-
ple. Let « and B characterize the overall and local shape, respectively, of the
power output of the fuel pinj. The overall probability of exceeding the tempera-
ture limit of that pin is p;(a,8) for a given Ty jim. Assuming that N(a, B) is the
number of fuel pins operating in that region, the expected total number of fuel
pins in the core which exceed the temperature limit is, per Fenech and Gueron
[12]:

(N) = [ NiaB)pia B)dads (865)

Besides the advantage of being able to be utilized by hand calculations, this
method also is more realistic than the methods reviewed previously because it
takes into account the possibility of exceeding the limit at locations other than
the nominal hot spot and does not make any assumption about the maximum
temperature distribution. However, this method does not account for the fact
that the uncertainties can have different character.
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B Methods That Do Distinguish between the Character of Variables

The uncertainties that affect the reactor performance do not have the same
character. For example, the uncertainty in the power level measurement acts
on the whole core, while the uncertainty in assembly flow orificing affects each
assembly independently. The pellet enrichment has local influence. To take this
variation in the character of variables into account, two methods were devel-
oped for the hot channel analysis: Amendola’s method [3, 4] and the method of
correlated temperatures [6].

In Amendola’s method, the uncertainties are divided into three groups,
namely:

1. Uncertainties affecting the individual channels in a subassembly
2. Uncertainties affecting individual subassemblies
3. Uncertainties affecting the whole core.

In this method Amendola works with more than one limiting hot channel.
The number used is called an equivalent number of hot channels—equivalent
in the sense of representing the net effect of all channels in a real core having a
nonzero probability of exceeding the limit. In addition this method assumes a
normal distribution for the probability of exceeding the limit of the limiting hot
channels and only allows the evaluation of the probability that none of the hot
channels will exceed the temperature limit.

This last condition is very restrictive to the designer who might otherwise
realistically tolerate a certain number c of occurrences in excess of the temper-
ature limit. Therefore, before presenting the method of correlated tempera-
tures, the potential for allowing ¢ to be nonzero will be demonstrated by a
simplified approach.

1 The effects of allowing a nonzero number of locations to exceed the specified
design limit To obtain the probability that m, the number of pins exceeding the
temperature limit, is smaller than or equal to a given number ¢, we sum the
contributions p(m) for m = 0 to m = ¢. This summation of contributions from
Eq. 8-61 yields:

C

P[mSc]=§=:lp( =>

= m|(n _ m)|p (]_ )n m (8'66)

which represents the cumulative binomial distribution. Eq. 8-66 is also based
on the assumptions that the probability of exceeding the limit is independent for
each pin, and p is constant over all hot spots. Of course, this procedure is
approximate because:

1. Some variables affect more than one hot spot, while others have only a
local effect (global and local uncertainties will be discussed in the next
section).
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2. It only takes into account a designed set of # hot spots. The probability of
exceeding the limit for all other core locations is not accounted for. This
contribution can be accounted for by transforming other core locations into
an equivalent number of limiting hot spots and using this method. An
example in which the equivalent number of equally limiting channels for
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a cosine power distribution has been calculated is given by Judge and
Bohl [16].

Despite these approximations, it is worthwhile to analyze this procedure to
get some insight into the effect of allowing some locations to exceed the design
limit. Figure 8-5 evaluated using Eq. 8-66 with ¢ = 0 shows a comparison for a
core of one or more equally limiting hot spots (n = 1 to n = 100,000). That
figure gives the results that:

1. For a given confidence level of the single hot spot case (n = 1) zo, the
probability of exceeding the limit anywhere in the core increases with
increasing numbers of hot spots.

2. To achieve a specific probability of remaining within the limit throughout
the core, the confidence level zo of the single hot spot must be increased
for increasing numbers of hot spots.

Allowing for a certain number ¢ of occurrences in excess of the tempera-
ture limit, Eq. 8-66 predicts results depicted in Figure 8-6. These results are
based on an overall core probability of 99.87 percent that the maximum rate of
occurrences above the temperature limit will not be exceeded (30 confidence
level). The parameter € in this figure is the number of rods exceeding the
temperature limit expressed as the percent of total reactor rods.

This figure illustrates the case of a reactor with 60,000 fuel rods and 1,000
independent limiting hot spots. The excess temperature occurrence rate found
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is 0.01 percent (i.e., six rods). Another result shown is that in the range of
30,000 to 100,000 rods, even for the worst theoretical case of as many equally
limiting hot spots as fuel rods (dotted line in Figure 8-6), the rate of pins
exceeding the limiting temperature will never exceed 0.2 percent of the total
number of rods for the 3o confidence level.

Example 8-9 Probability computations considering varying numbers of
equally limiting hot spots

ProBLEM Find the overall core probability of not exceeding a certain tem-
perature limit for a 3o value of the single hot spot confidence limit consider-
ing 1, 10, 100, and 1,000 equally limiting hot spots. Assume that this proba-
bility can be represented by the cumulative binomial distribution.

SoLuTION In this case, ¢ = 0, and Eq. 8-62 is applicable where p[m = 0] is
the unknown. Recall that while p[m] is the probability of exceeding the
temperature limit, i.e., P[T > T.;], p[m = 0] is the probability that this
event will not occur and hence is in fact p[T > T,;]. Further, p is the
probability that a single hot spot exceeds the temperature limit correspond-
ing to 30 which for a normal distribution is equal to 0.001350, and n = 1, 10,
100, and 1000. Hence from Eq. 8-62 we obtain:

pIT < Tylform =0) = (1 - p)»

= (1 — 0.001350)"
which for the various n values yields:

n p(T < T;) in percent
1,000 25.90
100 87.36
10 98.658
1 99.865

These results are illustrated in Figure 8-5.

Example 8-10 Computations of number of rods exceeding the design limit
considering 1,000 equally limiting hot spots

ProBLEM Compute the number of rods exceeding the design limit in a core
with 1,000 equally limiting hot spots for an overall core confidence level of
99.865 percent and an individual rod hot spot confidence level of 99.865
percent. Assume that the cumulative binomial distribution can represent
the probability that the number of rods that might exceed the temperature
limit is smaller than c.
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SoLuTION In this case Eq. 8-66 is applicable where
n = 1000

c is to be calculated:

p = 0.00135 (probability of an individual rod exceeding the hot spot limit)

and P[m = c¢] = 0.99865 (probability that the number of rods in the whole
core might exceed the temperature limit is smaller than c).

The procedure is to evaluate the right side of Eq. 8-66 term by term
to find the value of m such that the right side does not exceed the value
Plm = ¢] = 0.99865. Hence we evaluate the terms of Eq. 8-66 as follows
(note that a multiplication and division of like terms is introduced to make
use of the previous term value to reduce the computation process):

m = 0:term 1 = (1 — 0.001350)"%%0 = (.25901242
1,000!

= . = — 999
m = 1: term 2 = {5 (0.001350)'( ~ 0.001350)
_1,000(0.001350)(term 1)
- (1 — 0.001350)
= 0.35013946
_ . 1 000 2 — 998
m = 2: term 3 = iz (0.0013507(1 — 0.001350)
999  (0.001350)
= (T = 0.001350) &M 2)
= 0.23642696
o _1,000! - -
m = 3: term 4 = 375 (0.0013507(1 — 0.001350)

998 __(0.001350) .
3 (1 = 0.001350)
= 0.10632288
1,000!
41996!
_ 997 (0.001350)

4 (1 - 0.001350)

Completing this procedure we obtain:

m=4:term S =

(term 4)

m Value of term Sum of terms
0 0.25901242 0.25901242
1 0.35013946 0.60915188
2 0.23642696 0.84557884
3 0.10632288 0.95190172
4 0.03582468 0.98772640
5 0.00964700 0.99737340
6 0.00216264 0.99953600

(1 —0.001350)
(1 — 0.001350)
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Therefore, for P[m < c¢] = 0.99865, the above tabulation shows that the
maximum value of m is between 5 and 6. To guarantee that the probability
constraint is met, ¢ should be an integer, i.e., 6. For a core of 60,000 rods,
the maximum rate of exceeding the temperature limit is then:

6
60,000

as illustrated in Figure 8-6.

x 100% = 1072%

2 Method of correlated temperatures of Amsberger and Mazumdar [S, 6] This
method allows for a nonzero number of locations exceeding the limiting tem-
perature and recognizes the character of the variables. It uses a combination of
analytical and computational procedures.

Let T(i,j) be the exit coolant temperature relative to channel j in assembly
i. This temperature can be described by:

TG,j) — T = AT(,J) = [ATcum(i,))] - o - BU) - 8(k,)) (8-67)

with:
ATeum(i,J) = ATnom(i,j) * N(i,J) (8-68)
a=]]s (8-69)
i}
BG) = [T S840 (8-70)
8G,J) = [1 Smisi) (8-71)
where:
N(i,j) = product of the maximum value of all nonstatistical contributors to
uncertainties
M = statistical contributors to the whole core-wide uncertainties
S.(i) = statistical contributors to assembly-wide uncertainties

Sm(i,j) = statistical contributors to channel-wide uncertainties.
Taking the natural log of both sides of Eq. 8-67:
€n[AT(i,j)] — €n[ATcum(i,))] = €n o + €n B() + €n 8(i,))

= U(,))
and defining:
n a =X (8-72)
€n B(i) = Y(@) (8-73)

€n 8(i,j) = Z(,j) (8-74)
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we obtain:
UG,j) =X+ YY) + Z(,)) (8-75)
Defining:
€n[ATim) — €n[ATcum(@,))] = Ujim(i,J) (8-76)
where:

ATyim = Thim — T;
We must have for the condition of not exceeding the temperature limit:
Uinli,j) = X + Y() + Z(i,j) (8-77)

The U(i,j) values are not independent since they have the global random vari-
ables X and Y (i) in common. However, note that for a given core and assembly,
i.e., fixed X and Y (i), the subchannel temperatures and hence, the U(i,j) values
do become independent.

We now proceed to the computation of the overall probability of not ex-
ceeding the temperature limit in a number F* of pins in a core. Let us call this
probability P[F = F*]. The procedure is based on recognizing that for a given
core and assembly, the individual channel uncertainty contributors are inde-
pendent. Therefore the probability of not exceeding the temperature limit in a
number F* of pins is computed for a given core sample n. This conditional
probability P{F < F|sample} is well approximated by the following cumulative
distribution function which is based on the Poisson distribution [14]:

F* }\be—)\
P{F =< F*|sample} = D, B (8-78)
b=0 ©O:

where A = the expected number of occurrences of excess temperature must
satisfy A < (I x J)"2, i.e., the probability that each channel is a hot channel is
small.

The value of A for a given core sample must include consideration of all
assemblies /i and channels j. Hence A is a summation over all channels and
assemblies of the probability of excess temperature of a given channel in a
given assembly P;;[X,Y(i)] for a given set of core- and assembly-wide uncer-
tainties X and Y(i). This is equal to:

1 J
=23 PyX,Y ) (8-79)

i=1j=
It is permissible to obtain the expected excess temperature occurrences A by
Eq. 8-79 because the various probabilities P;;[x,y(i)] are independent for a
given X and Y (i). Therefore we must compute P, ;[X,Y(i)] for each core sample.
Now for a given core and assembly uncertainty set X,Y(i), the associated
channel conditions to yield excess temperature are by analogy from Eq. 8-77:

Z(i,j) > Uim(i,j) — X — Y(i) (8-80)
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In this expression, Ujn(i,j) is computed using appropriate functional relations
for the channel or a subchannel code to obtain AT,,m(i,j); X and Y(i) are
obtained by generation of random numbers drawn over their respective distri-
butions. Hence we can write the probability of excess temperature of a given
channel in a given assembly as:

P{X, Y (i)} = PiylZ(i,j) > Uin(i,j) — X = Y| X, Y(D)] (8-81)

The probability P;;{X,Y(i)} is obtained from Eq. 8-81 by computing Ujin(i,j) —
X — Y(i) for each randomly generated value of X and Y(i) over their assumed
distributions.

Once the P;;{X,Y(i)} are computed, the A values are determined from Eq.
8-79, which are thenused (one A for each sample) in Eq. 8-78. The desired over-
all probability of not exceeding the temperature limit in a number F* of pins
P[F = F*], can now be obtained as:

N
PIF < F*) = % >, P{F =< F*|sample} (8-82)
n=1

This method was initially only defined for the coolant temperature. Since the
coolant temperature is not the most limiting aspect of LMR design, Carajiles-
cov and Todreas [9] generalized this approach to the calculation of the clad and
fuel temperatures.

VII CONCLUSION

This chapter summarizes the principles that are utilized in the development of
methods for the treatment of uncertainties in reactor thermal design. The basic
methods in current use fall into two categories: the statistical summing of
bounding sensitivities [11] and Monte Carlo techniques to obtain a departure
from nucleate boiling ratio DNBR standard deviation [15, 20]. These specific
methods have not been presented in detail because they are under continuing
evolution. It is envisioned that future development will also address the as-
sumption of a distribution in the design limit about a nominal rather than the
threshold value concept embodied in the presentation of this chapter.
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PROBLEMS

Problem 8-1 Evaluation of the hot spot factor for film temperature drop due to variations in channel
width (Section III)

Forturbulent one-phase flow heat transfer in a parallel plate channel, find the engineering hot
spot subfactor for the film temperature drop due to variations in the channel width d, i.e., j}‘y,
where j refers to channel width, and y refers to film temperature drop. Assume that the friction
factor is proportional to Re-°2, and the heat transfer coefficient is correlated by the Colburn
equation. Consider two parallel flow channels having the same pressure drop: one having nominal
dimensions, and a ‘‘hot channel’’ of width dpy;, 5, along most of the length and width dpmay oc at the
hot spot.

Calculate the subfactor for a materials test reactor type fuel element for which d, = 0.117 in,
assuming dpgy 1oc = 0.120 in and dpip,y = 0.115 in.

AT 171
Anor: = e = (dpe) =) < 05
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Problem 8-2 Evaluation of the hot spot factor for pellet temperature drop due to variations in pellet
thermal conductivity (Section III)

Compute the hot spot subfactor for the temperature difference (T, — T;) between the
centerline and surface temperatures of a cylindrical fuel pellet due to variations in the pellet thermal
conductivity, i.e., f;,, wherej refers to pellet thermal conductivity, and y refers to pellet centerline-
to-surface temperature difference. Assume that the thermal conductivities of the pellets are nor-
mally distributed about a mean x}’ with a standard deviation, o = 0.04x,°. A confidence limit of 99.5
percent is desired.

Answer: f;, = 1.115

Problem 8-3 Evaluation of the limit DNBR by alternate combinational methods (Section IV)
Suppose Table 8-9 is a set of PWR experimental data for the critical heat flux at a certain
coolant operating condition. With this data, determine:

1. The nominal value of the critical heat flux.
2. The design minimum DNBR so that there will be 90 percent probability that DNB will not
occur when this DNBR limit is attained?

Assume that the uncertainties of the parameters affect the operating power as given in Table
8-10. With 97.7 percent confidence level to these measured parameters, use both cumulative and
statistical methods to determine

3. The limit DNBR with the DNBR determined in part 2.
4. The nominal operating heat flux under this limit DNBR.

Answers:

Btu

L. qla = 0.57 X 10°
2. MDNBR = 1.46

3. Cumulative limit DNBR = 1.598 (product); 1.596 (sum)
Statistical limit DNBR = 1.559

4. Cumulative nominal heat flux

= 0.357 x 10° product); 0.357 x 105 FBr% (sum)

hr ftz(

Statistical nominal heat flux

_ Btu
0.366 x 10°1—rs
Table 8-10
Nominal Standard Sensitivity factor;
value deviation dlny
Parameter (in) (in); o d1n x
Rod diameter 0.58 0.005

2
Pitch 0.64 0.010 1.8
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Probability Density Function, P(a)

0.94 aNom aNnom 1.06 aNom
Fuel Pin Radius, a

Figure 8-7 Probability density function for a, fuel pin radius.

Problem 8-4 Evaluation of subfactor for maximum of clad temperature by various combinational
methods (Section IV)

Consider the hot channel subfactors for AT,,4 to be used in evaluating the hot pin maximum
cladding temperature. We shall take into account only variations in the fuel pellet radius and the
cladding outer radius (assume that the cladding inner radius remains unchanged). The probability
density functions for these variables in the observed samples of fuel pins are shown in Figures 8-7
and 8-8. Use typical PWR fuel element geometry for needed nominal dimensions. With 99 percent

T012 by |

Probability Density Function, P (b)

i A
0.88 byom bom 1.12 byom
Clad Outer Radius, b

Figure 8-8 Probability density function for b, clad outer radius.
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confidence limit, calculate the overall hot pin subfactor for the maximum cladding temperature
using the following methods:

1. Cumulative

2. Sum statistical

3. Monte Carlo (with 100 trials); use a pair of dice as a crude random number generator. Compare
the resulting sample mean and variance to the true (or analytical) mean and variance.

-1
NoTE for part 3: if y = y(x) then p(y) = p(x) (%)

where x = y~!(y), and p(x) is the probability density function for x.
Answers:

1. 1.93
2. 1.713

Problem 8-5 Semistatistical method (Section IV)
Present a general proof that the semistatistical vertical approach is more conservative than the
horizontal approaCh, i.C., Tm.venical > Tm.huriznmal

Problem 8-6 Use of the semistatistical vertical method (Section 1V)

It is desired to increase core power by grinding the clad to reduce the distribution of clad
thickness (i.e., the nominal clad thickness is to be kept constant by starting the grinding process
with a nominally thicker clad).

Using the semistatistical vertical method of combining uncertainties, find the standard devia-
tion of the required ground clad thickness distribution such that the LMR core of Example 8-8 can
achieve | percent increased power for the same limiting maximum inside clad temperature as the
unground clad case (i.e., 553.3 °C from Table 8-8).

Assumptions:

. All hot channel factors of Table 8-7 are maintained except that for the clad thickness.

. The results of Table 8-8 are accurate.

. The nominal clad thickness is 0.7 mm.

. The clad hot spot temperature at 100% power of 550°C occurs at the core exit. At this condition
and location AT pom = 143°C, ATyp0m = 10°C and AT;0m = 22°C.

Answer: o = 0.0161

W N -

Problem 8-7 Contributions to fuel melting of all fuel spots in the core (Section VI)

For a hypothetical LMR reactor, the design procedure calls for a limited potential for fuel
failure by imposing restrictions on the maximum linear power in the core. The core has 40,000 fuel
pins. If each was divided into 10 spots, then the nominal linear power distribution for the operating
condition is given as:

Nominal linear power

(kW/ft) No. of spots
21 100
19 1,900
17 10,000
15 19,000
13 40,000
11 50,000
9 70,000
7 99,000
5 110,000

400,000
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The core power calculation is subject to the following uncertainty factors at a 3o level of
confidence:

30 uncertainty factor

Direct
Physics modeling 1.02
Control rod banking 1.02
Statistical
Nuclear data 1.07
Criticality 1.01
Fissile fuel model distribution 1.03

The power to melt has been measured in experiments in which the power was gradually
increased until melting was observed. The following results were obtained:

Measured power to melt No. of

(kW/ft) measurements

22 1

23 2

24 26

25 47

26 20

27 3

8 1
100

Determine:

1. The probability of fuel melting at one of the hottest spots with a 3o confidence level using the
semistatistical method.

2. The probability of fuel melting for this LMR core at a 30 level of confidence using the semi-
statistical method.

Answers:
1. 0.061
2. 0.998
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Problem 8-8 Effect of radial power flattening on overall core reliability (Section VI)

Assume calculations of P[F < F*] have been performed for a given core for a given design
limit, T};,for F* = 8 and F* = 16. The results are shown in Figure 8-9. Now assume that while the
total power of the core is kept constant the radial power is flattened. The P[F < F*)for F* = 16 and
F* = 8 are reevaluated as a function of Tj,.

Will the difference between the two curves be closer together or more widely separated than
in the unflattened core? Explain.

Answer: Closer

PlF<F]

‘ '

nim Figure 8-9
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APPENDIX

A

NOMENCLATURE

A-1 COORDINATES

Us, Uy, U,
Ur, Us, U,

Unit vectors along coordinate axes

Unit normal vector directed outward from control surface
Unit position vector

Cartesian

Cylindrical

Spherical

Velocity in cartesian coordinates

Velocity in cylindrical coordinates

A-2 EXTENSIVE AND SPECIFIC PROPERTIES

Dimensions in

two-unit systemst
Symbol Description ML 6T FE plus ML 6T
Cc General property Varies
E, e Total energy (internal + kinetic + potential) E, EM-!
H, h Enthalpy E,EM!
H°, h° Stagnation enthalpy E, EM-!
M, m Total mass M
A Entropy E, EM!
U, u Internal energy E,EM"!
Ue, u° Stagnation internal energy E,EM-!
V,v Volume L, L’M-!

t M, mass; F, force; L, length; —, dimensionless; 6, temperature; E, energy; T, time.
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A-3 DIMENSIONLESS NUMBERS

Location where

Symbol Description symbol first appearst
Br Brinkmann number I, E 10-6
Ec Eckert number I, P 10-413
Fr Froude number I, E 9-36
Gr Grashof number I, E 10-11
Ku Kutateladze number I, EI11-5
L Lorentz number I, E 10-10
M Mach number I, P 10-444
M; Mixing Stanton number E 699

Nu Nusselt number I, E 10-11
Pe Peclet number I, P 10-419
Pr Prandtl number I, E 10-6
Re Reynolds number I, E 9-36
St Stanton number I, E 10-76

t I = Volume 1; A = appendix; T =

P = page; F = figure. For example, E10-

table; E = equation;
6 = equation 10-6.

A-4 GENERAL NOTATION

Dimension in two

unit systems*
Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
General english notation
A, A General area or flow area L? I, E 2-8
A Availability function E I, E 4-27
Atomic mass number — I, E 3-48
A Projected frontal area of L? I, E 9-89
spacer
A, Avogadro’s number M-! I, E 34
Unobstructed flow area L2 I, E 9-89
in channels
Agp Sum of the area of the L2 P 5-173
total fluid—solid
interface and the area
of the fluid
*M = mass; § = temperature; E = energy; — = dimensionless; L = length; T = time;
F = force.
t I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,

E10-6 = equation 10-6.
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Dimension in two
unit systems*

Location where

Symbol Description ML 6T FEplus ML 0T symbol first appearst
Ars Area of the total L? P 5-173
fluid-solid interface
within the volume
a Atomic fraction L-3 I, E 3-14
Half thickness of plate L I, F89
fuel
B Buildup factor — I, E 3-54
C Tracer concentration — E 6-58
Constant for friction I, E 9-83
factor
Cp Nozzle coefficient — I, E9-17b
C, Correction factor in drift — 1, E 11-41
flux model for
nonuniform void
distribution
Cs Spacer drag coefficient — I, E 9-89
C, Modified drag coefficient — I, E 9-90
c Isentropic speed of sound LT I, E 11-120
in the fluid
cq Drag coefficient — I,E1l1-24
cp Specific heat, constant EM-16-! I, E 4-115
pressure
CR Hydraulic resistance — E 3-35a
coefficient
c, Specific heat, constant EM-16-! 1, P 4-121
volume
D Diameter, rod diameter L I, FI1-12
Tube diameter L I, E9-24
D, Hydraulic or wetted L I, E 9-55
diameter
Dy Heated diameter L I, E 10-12
D, Wire spacer diameter L I, FI-14
Dy Volumetric hydraulic L I, P 9-391
diameter
Dy Wall-to-wall distance of L I, Fl-14
hexagonal bundle
d Tube diameter L I, F9-4
Diameter of liquid drop L L EI11-24
E Neutron kinetic energy E I, E 3-1
F Modification factor of — I, E 12-29

Chen'’s correlation

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
Looseness of bundle — E 4-130
packing
R Hot spot factor — E 8-18
F,f,F Force, force per unit F, FM-! I, E 4-18
mass
Fq Heat flux hot channel — P 8-368
factor
F, Void factor —_ I, E 8-68
F,, Total drag force in the F E 6-53
control volume i in the
x direction
F, Subchannel F E 6-43
circumferentially
averaged force for
vertical flow over the
solid surface in the
control volume i
Fap Coolant enthalpy rise hot — P 8-369
channel factor
Fyr Coolant temperature rise — P 8-369
hot channel factor
f Moody friction factor — I, E 9-50
Mass fraction of heavy — I, E 2-13
atom in the fuel
f Fanning friction factor — I, E 9-52
feu Friction factor in a — I, E 9-85
circular tube
£ Subfactor of x; — E 8-21
fiy Subfactor relative to — E 823
parameter x; affecting
the property y
Sfre Two-phase friction factor — I, E11-77
fo Friction factor for the — E 5-47a
transverse flow
G Mass flux ML-T-! I, E 5-38a
g Distance from rod L I F1-12
surface to array flow
. boundary
gorg Acceleration due to LT I, E 4-23
gravity
H Axial lead of wire wrap L I, E9-93a
Head (pump) L E 3-115
*M = mass; 6§ = temperature; E = energy; — = dimensionless; L = length; T = time;
F = force.

1 I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,
E10-6 = equation 10-6.
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Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T  symbol first appearst
h Wall heat-transfer EL"20-'T-! I, E2-6
coefficient
Dimensionless pump — E 3-119
head
hg Gap conductance EL-20-'T-! I, E 8-106
h, Flow mixing-cup EM ' I, E 5-52
enthalpy
1 Geometric inertia of the L' I, E 13-38
fluid
Energy flux ET-'L-2 I, E 3-50
I Irreversibility or lost ET-! I, E 4-47
work
J Total number of — E 6-25
neighboring
R subchannels
J Generalized surface I, E 4-50
source or sink for
mass, momentum, and
R energy
jorj Volumetric flux LT! I, E 5-42
(superficial velocity)
Jax Flux of species A ML-T ! P 6-256
diffusing through a
binary mixture of A
and B due to the
concentration gradient
of A
K Total form loss — I, E9-23
coefficient
K Form loss coefficient in — E 6-81
transverse direction
k Thermal conductivity EL-'6-'T-! I, E 4-114
L Length L I, E2-5
Ly Boiling length L I, F13-1
Lyg Nonboiling length L E 3-5
¢ Transverse length L E 6-55
1 Axial dimension L E 3-1
€u, €y Mixing length L I, E 10-66
M Molecular mass M I, P2-34
m Mass flow rate MT-! I, E 4-30a
N Number of subchannels — I, TI1-4
Atomic density L-3 I, E 2-14

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FEplus ML 9T symbol first appearst
N, Total number of rods - LTI4
Ny Number of rows of rods P 6-278
Nu, Nu, N, Transport coefficient of — E 6-132a,b,c,
lumped subchannel
MNrings Number of rings in a rod — L TI-S
bundle
Niows Number of rows of rods — I, T1-4
P Porosity — I, E 8-17
Decay power ET! I, E 3-68a,b
Pitch L I, F1-12
Perimeter L I, E 5-64
Py Heated perimeter L I, P 10-444
Py Power peaking factor — P 6-277
P, Wetter perimeter L I, E 9-56
AP Clearance on a per-pin L E 4-128
basis
p Pressure FL-2 I, E2-8
p p=p+ pgz FL-?2 E 7-1
Ap* & _ P 4-138
P p*gL -
Q Heat ML?T-2 E I, E 4-19
Volumetric flow rate L3T-! I, E 5-45
o Power density ELT-! I, P222
Q Core power ET! I, P222
Heat flow ET-!' I,E 7-2a
Heat-generation rate ET-! I, E 5-124
q Rate of energy generated ET! I, P2-22
in a pin
q’ Linear heat-generation EL-'T! I, P2-22
rate
q” Volumetric EL-3T-! 1,P222
heat-generation rate
a.q" Heat flux, surface heat EL-2T-! I,P222
flux
Gor Critical heat flux EL-2T-! I, F23
9 Peak linear EL'T-! I, E 13-14
heat-generation rate
an Linear heat generation of EL-'T-! E 6-34
equivalent, dispersed
heat source
qr Equivalent dispersed heat EL-3T-! E 5-49
source
*M = mass; § = temperature; E = energy; — = dimensionless; L = length; T = time;
F = force.

t I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,
E10-6 = eauation 10-6.
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Dimension in two

unit systems*

Location where

Symbol Description ML T FEplus ML 6T  symbol first appearst
qw Heat flux at the wall EL-2T-! I, E 5-152
R Proportionality constant L-*Mro" E 3-35b
for hydraulic resistance
Gas constant EM-'9-! I, T6-3
Radius L I, E2-5
R Universal gas constant EM 9! 1, AP B634
RR Reaction rate in a unit T-'L-? I, P3-43
R volume
R Distributed resistance F E 5-41
r Enrichment — I, E 2-15
Radius L I, T4-7
r¥ Vapor bubble radius for L I, E 12-1
nucleation
e Pressure ratio — I, E 6-97
S Surface area L2 I, E 2-1
Suppression factor of — I, E 12-32
Chen'’s correlation
Slip ratio — I, E 5-48
Sii Minimum flow area in the L2 P 6213
) transverse direction
Sgen Rate of entropy E6! I, E 4-25b
generation
St Pitch L I, F9-28
Sij Gap within the transverse L P 6-213
direction
T Temperature 0 I, F2-1
Magnitude of L E 4-127
as-fabricated clearance
or tolerance in an
assembly
T, Reservoir temperature 0 I, E 4-27
T, Surroundings 0 I, E 4-25a
temperature
t Time T I, P 225
Spacer thickness L I, F1-12
™ Peripheral spacer L I, AT JI
thickness
ts Time after shutdown T I, F3-8
v Mean velocity LT I,E 28
Vi Mean velocity LT! I, E 9-44
v, Average bundle fluid LT I, E 9-90
velocity
Vo Bubble rise velocity LT I, E 11-50

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
Vi, vy Local drift velocity of LT! I, E11-32
vapor
v Velocity of a point LT I, T4-2
0 Velocity vector LT-! I, T 4-2
Ue, U Relative velocity of the LT! I, E 415
fluid with respect to
the control surface
U, Velocity of the control LT I, E 411
volume surface
w Work ML?T-2 FL I, E 4-19
Flow rate MT-! I, P7273
w, Useful work ML?T-2 FL I, E 4-29
w; Crossflow rate per unit MT-'L-! P 6-213
length of channel
WiP, wiM, Transverse mass flow MT-'L-! P 6-213 and P 6-214
wiH rate per unit length
associated with
turbulent mass,
momentum, and energy
exchange
WM wiH Transverse mass flow MT-'L-! P 6-216
rate associated with
both molecular and
turbulent momentum
and energy exchange
X Dimensionless radius — E 7-46
X? Lockart-Martinelli — I, E 11-92
parameter
X Flow quality — I, E 5-35
Xer Critical quality at CHF — I, P 12-557
Xg Static quality — I, E 5-22
Ax' Transverse length L F 6-3
Y Preference for downflow E 4-98
in a channel
Z, 2z Height L I,P222
Zy Boiling boundary L I, E 13-30a
z Axial position L I, E2-2
Zc Position of maximum L I, 13-25a
temperature in clad
Zf Position of maximum L I, E 13-28
temperature in fuel
*M = mass; § = temperature; E = energy; — = dimensionless; L = length; T = time;
F = force.

t I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,

E10-6 = equation 10-6.
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Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
7 Turbulent mixing length L E 6-38
in COBRA
75 Effective mixing length L E 6-93
General Greek symbols
a Confidence level — E 8-12
Local void fraction — I, E S-1la
Linear thermal expansion 6! I, P 8-309
coefficient
Dimensionless angular — E 3-119
speed (pump)
Thermal diffusivity LT-! I, E 10-43
ay Phase density function — I, E 5-1
B Delayed neutron fraction — I, E 3-65
Mixing parameter — P 6-250
Volumetric fraction of — I, E 5-51
vapor or gas
Thermal volume 9! I, E 4-117
expansion coefficient
Ratio of flow area — I, T9-1
Dimensionless torque —_ E 3-119
(pump)
Direction angle — E 6-81
Pressure loss parameter — I, P6-224
r Volumetric vaporization MT-'L-3 I, T 51
rate
8% Fraction of total power — I, E 3-28
generated in the fuel
Specific heat ratio (c,/c,) - I, T63
Porosity — E §5-1
) Ratio of axial length of —_ 1, AP J681
grid spacers to axial
length of a fuel bundle
Gap between fuel and L I, E 8-23b
clad
Thickness of L E 3-93
heat-exchanger tube
Thickness of liquid film L I, E 1l-1
in annular flow
& Dimensionless film —

thickness

I, E11-1

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML T symbol first appearst
5. Clad thickness L I, F 827
&, Gap between fuel and L I, E2-11
clad
St Thickness of temperature L I, F10-4
boundary layer
€ ¢2dw/dy in COBRA code LT E 6-87
Surface emissivity EL-20-*T! I, E 8-107a
En Eddy diffusivity of LT-! I, E 10-46
energy
em Momentum diffusivity L2T-! I, E 9-63
{ Thermodynamic — I, E 6-31
efficiency (or
effectiveness)
n Pump efficiency —_ E 3-130
s Isentropic efficiency — I, E6-37
Th Thermal efficiency — I, E 6-38
0 Position angle — I, T4-7
Two-phase multiplier for — E 6-126
mixing
Film temperature drop 0 P 8-370
0* Influence coefficient — E 7-69
A Length along channel L E 2-62
until fluid reaches
saturation
Ac Taylor instability L I, E 12-51
wavelength
n Attenuation coefficient L-! I, E 3-53
Dynamic viscosity ML-'T-! FTL"? I, E 4-84
u Bulk viscosity ML-'T-' FTL™? I, E 4-84
7 Estimated mean of — E 83
distribution
[T Absorption coefficient L-! I, E 3-51
v Kinematic viscosity (u/p) LT-! I, P 9-361
Time it takes fluid packet T E 2-57
to lose its subcooling
Dimensionless volumetric ~ — E 3-119
flow rate (pump)
T Torque FL E 3-119
p Density ML} I, E 2-11
Pm Two-phase momentum ML I, E 5-66
density
*M = mass; 0§ = temperature; E = energy; — = dimensionless; L = length; T = time;
F = force.

t I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,
E10-6 = equation 10-6.
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Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T  symbol first appearst
3 Macroscopic cross L-! I, E33
section
a Microscopic cross L2 I, E33
section
Normal stress FL-2 I, F4-8
component
Standard deviation — I, T39
Surface tension FL-! I, E 11-5
g Estimated standard — E 8-4
deviation of
distribution
T Shear stress component FL-2 I, F4-8
Time after start-up T I, E 3-68a
Time constant T E 3-78a
Ts Operational time T I, E 3-69a
0] Dissipation function FL-T-! I, E 4-107
Neutron flux L-2T! I, P343
) Generalized volumetric I, E 4-50
source or sink for
mass, momentum, or
energy
Relative humidity — I, E7-19
Azimuthal angle — I, T47
to Two-phase friction — I, E 11-66
multiplier based on
all-liquid-flow pressure
gradient
bt Two-phase frictional — I, E11-86
multiplier based on
pressure gradient of
liquid flow
d2 Two-phase frictional — I, E 11-86
multiplier based on
pressure gradient of
gas or vapor flow
¢ Logarithmic energy —_ I, E 3-41
decrement
X Energy per fission E I, P3-43
deposited in the fuel
] Force field per unit mass FLM-! I, E 4-21

of fluid

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML T symbol first appearst
Ratio of eddy diffusivity — I, E 10-71
of heat to momentum
® Angular speed T! I, E 9-2b
Subscripts
A Area E 54
Annulus E 7-50
AF Atmospheric flow I, E 6-68
a Air I, E7-1
Absorption I, P3-44
acc Acceleration I, E 9-22
avg Average I, F2-1
B,b Boiling I, E 13-30a
B Buoyancy E 3-16
b Bulk I, E 26
C Cold I, F 2-1
Condensate I, P7-273
CD Condensor I, E 6-87
Ccp Compressor I, E 6-102
q. Center line I, F89
[ Capture I, P3-43
Cladding I, E 8-38
Conduction I, E 4-113
Containment I, E7-1
Contraction I, F 9-35
Coolant I, E 6-2
Core P 3-74
Critical point I, E 9-31
(thermodynamic)
ci Clad inside I, P 8-309
co Clad outside I E 2S5
cr Critical flow I, E11-113
crit Critical I, T 6-1
c.m. Control mass I, E 4-17¢c
c.v. Control volume 1, E 430
ct Circular tube I, E 10-99
EA Equivalent annulus E 7-50
EQUIL Equilibrium void E 6-124
distribution
€ Expansion I, F 9-35
Extrapolated I, E 3-35
*M = mass; 6 = temperature; E = energy; — = dimensionless; L = length; T = time;

F = force.

t I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,

E10-6 = equation 10-6.
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Dimension in two

unit systems*

Location where

Symbol Description ML 6T FE plus ML T  symbol first appearst
Equilibrium I, E 5-53
Eddy P 7-303
Electrical I, E 10-10
eff Effective (molecular + I, E 5-129
eddy)
ex External E 3-4
exit, ex, e Indicating the position of E 2-84
flowing exit
ef Elastic I, E 3-39
FL Flashing I, T7-4
f Friction I, E 9-91a
Fluid E 3-41
Flow I, P 10-444
Saturated liquid I, E 5-53
Fuel I, E 3-19
Fission I, P3-43
fg Difference between fluid I, T6-3
and gas
fi Flow without I, E 9-82
spacers
fo Fuel outside surface I, E2S
fric Friction I, T9-S
fi, flow including spacers I, AT J3
g Gap between fuel and I, E 8-106
cladding
Saturated vapor I, E 5-53
H, h Heated I, F2-1
HX Heat exchanger I, E 6-104
h, (heater) Pressurizer heater I, F7-10
i Denoting the selected P 6-213
subchannel control
volume
Index of direction I, E 5-48
Inner surface E 7-69
Index of streams into or I, E 4-30a
out of the control
volume
in, IN Indicating the position of I, E 6-38
flowing in, inlet
iso Isothermal I, E 13-74
i€ Inelastic I, E 3-59

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two
unit systems*

Location where
Symbol Description ML 6T FE plus ML 6T symbol first appearst

i Adjacent subchannel P 6-213
control volume of the
subchannel control

volume i
Index of properties E 8-1
Index of isotopes I, P 343
k Index of phase I, E 5-1
L Lower I, F7-14
Laminar I, E 9-82
¢ Liquid phase in a I, T 5-1
two-phase flow
€o Liquid only I, E 11-66
M Temperature of a E 8-17
quantity of interest
m Temperature difference E 8-17
of a quantity of interest
Mixture I, E 5-38a
mc Molecular conduction E 7-104
nom Nominal E 8-17
n Nuclear core I, E 7-2d
o Indicating initial value I, E 3-56
Operating I, E 3-68
Outer surface E 7-69
Reservoir conditions I, E 427
out, OUT Outlet I, P6-189
P Pump I, E 6-48
p Primary I, E 6-49
Pore I, P 8-301
R Rated E 3-76
Reactor I, E 6-53
RO Condensation as rainout I, E 7-128
r Radiation I, E 4-113
Enrichment E 8-31
rb Equivalent or dispersed E 6-34
Rod bundle E 5-53
ref Reference I, E 9-23
SC Condensation at spray I, E 7-128
drops
SCB Subcooled boiling I, E 13-57
SG, S.G. Steam generator I, E 6-54
SP Single phase E 6-125
Spray I, E 7-135
*M = mass; 6 = temperature; E = energy; — = dimensionless; L = length; T = time;

F = force.
t I = Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,
E10-6 = equation 10-6.
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APPENDICES 427

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
s Scattering I, E 3-39
Secondary I, E 6-49
Sintered I, E 898
Slug flow E 7-93
Solid I, P 8-301
Spacer, wire spacer I, F1-14
Surface, interface I, E 4-11
s Isentropic I, E 6-10b
sat Saturated I, Té6-1
st Structures I,E7-2a
Static I, E 522
s’ Interface between I, F7-14
continuous vapor and
falling liquid
droplets
s” Interface between the 1, F7-14
continuous vapor
phase of the upper
volume and the
continuous liquid phase
of the lower volume
s” Interface that separates I, F7-14
the discontinuous
phase in either the
upper or lower volume
from the continuous
same phase in the
other volume
T, t Turbine I, T6-S
T Total I, P 7-240
TD Theoretical density I, E 8-17
TP Two phase I, E 11-67
tb Transition boiling I, E 12-43
th Thermal I, E 6-38
tr Transverse flow P 5-190
u Upper I,F7-14
u Useful I, E 4-28
\% Volume I, P 9-386
v Cavity (void) I, E 8-55
Vapor or gas phase in a I, TS-1
two-phase flow
vj Local vapor drift I, E 11-32

(continued)
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A-4 GENERAL NOTATION (continued)

Dimension in two

unit systems*
Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
vo Vapor only I, E 11-66
wC Condensation at the wall I, E 7-128
w Wall I TS-1
Water I, P 7-240
) Neutron flux E 8-31
lo Single phase I, F 13-1
2¢ Two phase I, F12-11
P Fuel density E 8-31
o Free stream I, F 10-4

Superscripts

D Hot spot factor resulting E 8-58
from direct
contributors
j Index of isotopes I, P 3-43
S Hot spot factor resulting E 8-58

from statistical
contributors

t Turbulent effect I, E 4-132

> Vector I, P2-22
Spatial average I, E 3-41

L Per unit length, surface I, P2-22

area, volume,
respectively

' Denoting perturbation I, E 4-125

TP Two phase I, E11-77

* Reference P 1-10
Denoting the velocity or P 6-215

enthalpy transported
by the diversion

crossflow
i Intrinsic E 5-12
= Tensor I, E 4-8
-, Averaging (time) I, E 4-124, E 5-6
o Stagnation I, T42
Denoting nominal E 8-27
Special symbols
A Change in, denoting I, E28
increment
\Y Gradient I, E 42
*M = mass; § = temperature; E = energy; — = dimensionless; L = length; T = time;

F = force.
t 1= Volume 1; A = appendix; T = table; E = equation; P = page; F = figure. For example,
E10-6 = equation 10-6.
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APPENDICES 429

Dimension in two
unit systems*

Location where

Symbol Description ML 6T FE plus ML 6T symbol first appearst
b Change in, denoting I, T33
increment
) Volumetric averaging I, E2-5
{} Area averaging I, E 3-20
= Defined as I, P2-22

Approximately equal to

I, E3-38







APPENDIX

PHYSICAL AND MATHEMATICAL CONSTANTSTY

Avogadro’s number, A,

Barn
Boltzmann's constant, k = R/A,

Curie
Electron charge

Faraday's constant
g. conversion factor

Gravitational acceleration (standard)
Joule’s equivalent
Mass—energy conversion

Mathematical constants

Molecular volume

Neutron energy

0.602252 x 10%* molecules/g mol

2.731769 x 10% molecules/Ibm mol

10-2* cm?, 1.0765 x 10~ fy2

1.38054 x 10-'¢ erg/K

8.61747 x 105 eV/K

3.70 x 10' dis/s

4.80298 x 10-'% esu, 1.60210 x 10" Coulombs

9.648 x 10* coulombs/mol

1.0 gm cm?/erg s2, 32.17 Ibm ft/lb; s2

4.17 x 108 Ibm ft/Ib; hr2, 0.9648 x 10'® amu cm?/MeV
§2

32.1739 ft/s?, 980.665 cm/s?

778.16 ft-lby/BTU

1 amu = 931.478 MeV = 1.41492 x 107"* BTU =
4.1471 x 1077 kWhr

1 g =5.60984 x 10 MeV = 2.49760 x 10" kWhr =
1.04067 MWd

1 Ibm = 2.54458 x 10*2 MeV = 3.86524 x 10'¢ BTU

e = 1271828

T = 3.14159

€n 10 = 2.30259

22413.6 cm®/g mol, 359.0371 ft*/Ib,, mol, at 1 atm and
0°C

0.0252977 eV at 2200 m/s, 4~10 eV at 2187.017 m/s

t (After EI-Wakil, M. M. Nuclear Heat Transport. Scranton, PA: International Textbook Co.,

1971.
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Planck’s constant

Rest masses:
Electron
Neutron

Proton

Stephan- Boltzmann constant

Universal gas constant, R

Velocity of light

6.6256 x 10-2 erg s, 4.13576 x 10~ eV s

5.48597 x 10~¢ amu, 9.10909 x 10-28 g, 2.00819 x
10-% Ibm

1.0086654 amu, 1.6748228 x 10-2* g, 3.692314 x 10-%
Ibm

1.0072766 amu, 1.672499 x 10-% g, 3.687192 x 10-%
Ibm

5.67 x 10712 W/cm2K*

1545.08 ft-Ib;/Ibm mol R, 1.98545 cal/g mol K,

1.98545 BTU/Ibm mol R, 8.31434 x 107 erg/g mol K

2.997925 x 10'° cm/s, 9.83619 x 108 ft/s




APPENDIX

UNIT SYSTEMS

Table Unit Reference
C-1 Length 2
C-2 Area 2
C3 Volume 2
C-4 Mass 2
C-5 Force 1
C-6 Density 2
C-7 Time 2
C-8 Flow 2
C9 Pressure, momentum flux |
C-10 Work, energy, torque 1
C-11 Power 2
C-12 Power density 2
C-13 Heat flux 2
C-14 Viscosity 1
C-15 Thermal conductivity |
C-16 Heat transfer coefficient 1
C-17 Momentum, thermal, or 1
molecular diffusivity
C-18 Surface tension —

1. Bird, R. B., Stewart, W. E., and Lightfoot,
E. N. Transport Phenomena. New York: John
Wiley and Sons, 1960. Reprinted by permission
of John Wiley and Sons, Inc.

2. ElI-Wakil, M. M. Nuclear Heat Transport.
Scranton, PA: International Textbook Com-
pany, 1971.
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C-1 RELEVANT SI UNITS

Quantity Name Symbol
SI base units
Length Meter m
Time Second s
Mass Kilogram kg
Temperature Kelvin K
Amount of matter Mole mol
Electric current Ampere A
SI derived units
Force Newton N = kg m/s?
Energy, work, heat Joule J = N m =kg m?/s?
Power Watt W =1J/s
Frequency Hertz Hz = s-!
Electric charge Coulomb C =As
Electric potential Volt v =J/C
Allowed (to be used with SI units) units
Time Minute min
Hour h
Day d
Plane angle Degree °
Minute !
Second "
Volume Liter |
Mass Tonne t = 1,000 kg
Atomic mass unit u = 1.66053 x 10727 kg
Fluid pressure Bar bar = 10° Pa
Temperature Degree Celsius °C
Energy Electron volt eV = 1.60219 x 10-19]
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C-2 UNIT CONVERSION TABLES

Utilization of Conversion Tables

The column and row units correspond to each other as illustrated below.
Given a quantity in units of a row, multiply by the table value to obtain the
quantity in units of the corresponding column.

Example How many meters is 10 centimeters?

Answer: We desire the quantity in units of meters (the column entry) and
have been given the quantity in units of centimeters (the row
entry), i.e., 10 cm.

Hence meters = 0.01 cm

= 0.01 (10)
= 0.1.
Columns a b [ d
Rows Centimeters Meters

= centimelers 0.01

a
b = meters
[
d
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Table C-17 Momentum, thermal, or molecular diffusivity

cm? s7! m? s 't ft2 hr-'$ Centistokes
cm?s! 1 10~ 3.8750 102
m?s! 104 1 3.8750 x 104 10¢
ft2 hr-! 2.5807 x 10! 2.5807 x 10-3 1 2.5807 x 10'
Centistokes 102 10-¢ 3.8750 x 1072 1

t SI units.
1 English units.

Table C-18 Surface tension

N/m% Dyne/cm Ibs/ftt
N/m 1 1000 0.06852
Dyne/cm 0.001 1 6.852 x 103
Iby/ft 14.594 1.4594 x 104 1

t SI units.
1 English units.



APPENDIX

D

BESSEL FUNCTION*

MATHEMATICAL TABLES

Some useful derivatives and integrals of Bessel functions are given in Tables

D-1 and D-2.

* El-Wakil, M. M. Nuclear Heat Transport. Scranton, PA: International Textbook Co., 1971.

Table D-1 Derivatives of Bessel functions

dJo(x) _

P =Ji(x)
dl
t;,(:) =I,(x)
v
LD _ g, ) = 20
v
= _",l.H—l(x) + ;J.,(X)
- %[Ju-.(x) — Jonr()]
dl,
L 10 - 21w
v
= Iyyy(x) + x I,(x)
1
= 3 [, \(x) + I (0)]
dx*J,
)
dx'Y,
me = X%, ((x)
dxI (x)
d—x(x = 2L, \(x)
‘M = _qu —I(X)

dx

dYy(x)
dx

dK(x)
dx

dY,(x)
dx

dK,(x)
dx

dxvJ,(x)
dx

dxvY,(x)
dx

dx~*I(x)

dx

dxK,(x)

dx

=~ %)

- K

= Yol — = K@)

= —Yyx) + g Yy(x)
= ek = Foui0)]
= —Ke () — = Ku®)
= ~Kpu) + 2 Kufo)
= - %[Ku,l(x) + Kyi(x)]
= —x" . i(x)

= —x"Y,.i(x)

= +x7" 4 y(x)

= —x""Ky1(x)
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Figure D-1 The four Bessel functions of zero order.
Table D-2 Integrals of Bessel functions

[ 30 dx = ~J40) + € [ Y dx=-vym + €

[ 1) dx = 1 + € [ K dx = ~Ko0) + €

[#1 @ de = 000 + € [ x U@ dr = —x U0 + C

The Bessel and modified Bessel functions of zero and first order are tabu-
lated in Table D-3 for positive values of x up to x = 4.0. Some roots are given
below:

Roots of Jy(x): x = 2.4048, 5.5201, 8.6537, 11.7915, . . .
Roots of Jy(x): x = 3.8317, 7.0156, 10.1735, 13.3237, . . .
Roots of Yy(x): x = 0.8936, 3.9577, 7.0861, 10.2223, . . .
Roots of Y (x): x = 2.1971, 5.4297, 8.5960, 11.7492, . . .



Table D-3 Some Bessel functions
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X Jo(x) Jy(x) Yo(x) Yi(x) Io(x) 5i(x) Ko(x) K;(x)
0 1.0000 0.0000 — —o0 1.000 0.0000 kg kg

0.05 0.9994 0.0250 -1.979 -12.79 1.001 0.0250 3.114 19.91
0.10 0.9975 0.0499 -1.534 —6.459 1.003 0.0501 2.427 9.854
0.15 0.9944 0.0748 -1.271 -4.364 1.006 0.0752 2.030 6.477
0.20 0.9900 0.0995 —1.081 -3.324 1.010 0.1005 1.753 4.776
0.25 0.9844 0.1240 -0.9316 -2.704 1.016 0.1260 1.542 3.747
0.30 0.9776 0.1483 —0.8073 -2.293 1.023 0.1517 1.372 3.056
0.35 0.9696 0.1723 —0.7003 —2.000 1.031 0.1777 1.233 2.559
0.40 0.9604 0.1960 —0.6060 —1.781 1.040 0.2040 1.115 2.184
0.45 0.9500 0.2194 -0.5214 —-1.610 1.051 0.2307 1.013 1.892
0.50 0.9385 0.2423 —0.4445 —-1.471 1.063 0.2579 0.9244 1.656
0.55 0.9258 0.2647 -0.3739 -1.357 1.077 0.2855 0.8466 1.464
0.60 0.9120 0.2867  —0.3085  —1.260 1.092 03137 07775 1.303
0.65 0.8971 0.3081 -0.2476  —1.177 1.108  0.3425  0.7159 1.167
0.70 0.8812 0.3290 —0.1907 —1.103 1.126 0.3719 0.6605 1.050
0.75 0.8642 0.3492 -0.1372 —1.038 1.146 0.4020 0.6106 0.9496
0.80 0.8463 0.3688 —0.0868 -0.9781 1.167 0.4329 0.5653 0.8618
0.85 0.8274 0.3878 -0.0393 -0.9236 1.189 0.4646 0.5242 0.7847
0.90 0.8075 0.4059 —-0.0056 —0.8731 1.213 0.4971 0.4867 0.7165
0.95 0.7868 0.4234 0.0481 —0.8258 1.239  0.5306  0.4524 0.6560
1.0 0.7652 0.4401 0.0883 -0.7812 1.266 0.5652 0.4210 0.6019
1.1 0.6957 0.4850 0.1622 -0.6981 1.326 0.6375 0.3656 0.5098
1.2 0.6711 0.4983 0.2281 -0.6211 1.394 0.7147 0.3185 0.4346
1.3 0.5937 0.5325 0.2865 —0.5485 1.469 0.7973 0.2782 0.3725
1.4 0.5669 0.5419 0.3379 —0.4791 1.553 0.8861 0.2437 0.3208
1.5 0.4838 0.5644 0.3824 -0.4123 1.647 0.9817 0.2138 0.2774
1.6 0.4554 0.5699 0.4204 —0.3476 1.750 1.085 0.1880 0.2406
1.7 0.3690 0.5802 0.4520 —0.2847 1.864 1.196 0.1655 0.2094
1.8 0.3400 0.5815 0.4774 -0.2237 1.990 1.317 0.1459 0.1826
1.9 0.2528 0.5794 0.4968 —0.1644 2.128 1.448 0.1288 0.1597
2.0 0.2239 0.5767 0.5104 -0.1070 2.280 1.591 0.1139 0.1399
2.1 0.1383 0.5626 0.5183 -0.0517 2.446 1.745 0.1008 0.1227
2.2 0.1104 0.5560 0.5208 —0.0015 2.629 1.914 0.0893 0.1079
23 0.0288 0.5305 0.5181 0.0523 2.830 2.098 0.0791 0.0950
2.4 0.0025 0.5202 0.5104 0.1005 3.049 2.298 0.0702 0.0837
2.5 0.0729 0.4843 0.4981 0.1459 3.290 2.517 0.0623 0.0739
2.6 —0.0968 0.4708 0.4813 0.1884 3.553 2.755 0.0554 0.0653
2.7 —0.1641 0.4260 0.4605 0.2276 3.842 3.016 0.0493 0.0577
2.8 —0.1850 0.4097 0.4359 0.2635 4.157 3.301 0.0438 0.0511
2.9 ~0.2426 0.3575 0.4079 0.2959 4.503 3.613 0.0390 0.0453
3.0 -0.2601 0.3391 0.3769 0.3247 4.881 3.953 0.0347 0.0402
3.2 -0.3202 0.2613 0.3071 0.3707 5.747 4.734 0.0276 0.0316
3.4 —0.3643 0.1792 0.2296 0.4010 6.785 5.670 0.0220 0.0250
3.6 -0.3918 0.0955 0.1477 0.4154 8.028 6.793 0.6175 0.0198
3.8 —0.4026 0.0128 0.0645 0.4141 9.517 8.140 0.0140 0.0157
4.0 -0.3971 —0.0660 -0.0169 0.3979 11.302 9.759 0.0112 0.0125
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* Bird, R. B., Stewart, W. E., and Lightfoot, E. N. Transport Phenomena. New York: Wiley,

1960.

Table D-4 Summary of differential operations involving the V-operator in

rectangular coordinates* (x, y, z)

V- = Z_‘: % N %%z
(Vi) = % + %;—,si + gi;;
() (5] () o
+1 <6Uy+§y_z> ‘s (%+au,>
¥\ oz “\ox 9z
[Vs), = % (D) vV x 3], = _'::-’7: _ %l%
(Vsl, = g—; (E) vV x 3], = ‘2’;’ - %‘%
w5 9 x 8l =52 - 5
V-7l = '3; a;—y" 631;
v-7),= a;: 6;_; 6;';
93], = 5 + 5 + 5
vii), = 2% ‘;’;’; a;zvzy
- 2 2
00
(3 V3], = ';”r + y?;;y . vz'z—’;’
( Vb’]z=ux%+ ”»V%*Uzz—l;

(A)

(B)

(&)

(G)

(M)

0)]

)

(K)

(L)

(M)

(N)

0)

P)

Q)

(R)

* Operations involving the tensor 7 are given for symmetrical = only.
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Table D-5 Summary of differential operations involving the V-operator in
cylindrical coordinates* (r, 0, z)

> l 1 av, Bvl
V-v) = 73 (rv,) *230 Tz (A)
19 ( as) 1 9% 3%
2 - — —_ —_— —_
(Vi) ror\" or * ragt t az? (B)
= > av,) (1 Avg u,) (6!}2) [ 9 (Ug) 1 av,]
. = — —_— —_— —_— — + —_——_—
(7:V0) = 7, (ar + oo r 30 + * Ta 9z e |r ar \r r 46 ©)
122 (22
T\ 30 © oz To: \gr
_s 3y - Lov v,
[Vs), = ar (D) [V xv) = F 30 ez (G)
1 9ds > du, dv,
= XPly=—-— H
(Vsle 730 (E) [V x 0)s z  or (H)
as > 13 1 dv,
[Vs], = 3z (F) [V x 0], = T ar (rus) ;30 )
= 19 19 1 a7,
[V'T]r:rar("'n)‘*';a_e‘frs_;"as _az_z )
= 10199 971, 2 a7g,
. = —— — - — K
V-th=13g * 5 it 5 K
= l d 197e, 07T
(V- Flo= 15 (ma) + S50+ 5% (L)
(19 ) 1 9%, 2 9vy 3%,
23 = - T _ =
(veol, ar( )t Ese et (M)
19 ) 1 3%y 2 0v, 0%,
W = 2 9V , 29U, 90U
(V20 (r ar (rve) 1307 " r2 a0 * az? N
139 ( av) 1 9%, %,
23 = — -3 0
vzl rar\' or 12 397 * az? 0
v, v, v v,
3-8, = v r+ 2220, (P)
> > dvg Vg 0Ug Urlg dvg
. 3 — — — + .4 + —
[v-V0]y = v, wtTe T Ty Q)
(- Vo), = o, 2 By, ®)

"ar r a0 * oz

* Operations involving the tensor 7 are given for symmetrical 7 only.
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Table D-6 Summary of differential operations involving the V-operator in
spherical coordinates* (r, 0, ¢)

o = %air(rzv') ﬁ a0 (vo sin 6) + r sin 6 %% (4)
(Vis) = r :r (,z 3:) * r—zﬁ_() aio (sm o 60) r? siln2 0 :J%SZ (B)

(7:V9) = T"(%) + T"o(:%!;?+ v,) t oo (r siln 0?3_[(:-'_%-'- ”0Cr°‘ 0)

+‘r,¢(| aU‘"+ 1 vy cotd ¢)
r 00  rsin 0 d¢ r

[Vs), = % (D) vV x3?), = r—ﬁ—o P (v, sin ) — ; siln 5 Z—: (G)
Vsl = 12 () 19 % Bl = 55 3~ 7 35 (09) )
Vsl = ; siln 6:—; (F) [V x D), = %éa;(rua) - %% 1))
v-7) = r—lzga-(r?r,,) - Sl'n 535 (T sin 6) + si'n 5 ‘%’ L ’: Tee )
V- 7= r2 ar (r 7o) + r slln 6 660 (7oq sin 6) + r 511n 9 a;g - cort : Teo (K)
v T]¢=ﬁ%(r2T’°)+%t—;¢ rs:neaaLr+L7+2c_rMTg° w
(V23] = Vo, - r? sl;:lz 0 * r? szin 0 :_l()i; * rzzcs::)nszgﬂ %% ©
[5'V3],=v,% E)rgl;_l;’ rs!l{:f)g_:;_ugtvé (P)
R AT T A @

* Operations involving the tensor 7 are given for symmetrical = only.
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Table no. Table title

E-1 Saturation state properties of steam and water 452
E-2 Thermodynamic properties of dry saturated steam, pressure 454
E-3 Thermodynamic properties of dry saturated steam, temperature 457
E-4 Thermodynamic properties of sodium 460
E-S Thermodynamic properties of helium 464
E-6 Thermodynamic properties of CO, 465
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Table E-1 Saturation state properties of steam and water

Specific volume

Specific enthalpy

m/’kg kJ/kg

Temperature Pressure
°C bart Water Steam Water Steam

001 0-006 12 1:000 2 x 1073 206-146 0-000 611 2501
10 0-012 271 1-000 4 x 107} 106-422 41-99 2519
20 0-023 368 1:001 8 x 1073 57836 83-86 2538
30 0042 418 1-004 4 x 1073 32:929 125-66 2556
40 0-073 750 1-007 9 x 1073 19-546 167-47 2574
50 0123 35 1:012 1 x 1072 12045 2093 2592
60 0199 19 1:017 1 x 1073 76776 25111 2609
70 0-311 61 10228 x 107? 50453 293-0 2626
80 0-473 S8 10290 x 107} 3-408 3 3349 2643
90 0-701 90 1:0359 x 1073 2360 9 3769 2660
100 1-013 25 1-043 5 x 1072 11673 0 419-1 2676
110 1-4327 1-051 5 x 1073 1-210 1 461-3 2691
120 1-985 4 1-060 3 x 107} 0-891 71 503-7 2706
130 2:701 1 1069 7 x 1073 0-668 32 5463 2720
140 36136 1079 8 x 1073 0-508 66 589-1 2734
150 47597 1:090 6 x 1073 0392 57 6322 2747
160 6180 4 1:1102 1 x 1073 0-306 85 6755 2758
170 7-920 2 1-1144 x 1073 0242 62 719-1 2769
180 10-027 1-127 5 x 1072 0-193 85 7631 2778
190 12:553 1-141 5 x 1073 0-156 35 8075 2786
200 15-550 1-156 5 x 10732 0-127 19 852:4 2793
210 19-080 1-11726 x 1073 0-104 265 8977 2798
220 23-202 1190 0 x 1073 0-086 062 9437 2802
230 27979 1-208 7 x 1073 0-071 472 9903 2803
240 33-480 12291 x 1073 0-059 674 10376 2803
250 39776 1-2512 x 1073 0-050 056 1085-8 2801
260 46-941 1-275 5 x 1073 0-042 149 1135-0 2796
270 55-052 1-3023 x 1073 0-035 599 1185-2 2790
280 64-191 1-3321 x 1073 0-030 133 12368 2780
290 74-449 1-365 5 x 1073 0-025 537 1290 2766
300 85-917 1:403 6 x 1073 0-021 643 1345 2749
310 98-694 1-447 5 x 1073 0-018 316 1402 2727
320 112-89 14992 x 1073 0-015 451 1462 2700
330 128-64 1-562 x 1073 0012 967 1526 2666
340 146-08 1-639 x 1073 0-010 779 1596 2623
350 165-37 1:741 x 1073 0-008 805 1672 2565
360 186-74 1-894 x 10732 0-006 943 1762 2481
370 210-53 222 x 1073 0-004 93 1892 2331
374-15 2212 317 x 107} 0-003 17 2095 2095

From U.K. Steam Tables in S.1. Units. London: Edward Arnold Pub., L.td., 1970.)

1 bar = 105 N/m2,
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Water Steam
ot a X 100 ppx 105 wpx 105 ke Cpg g X 105 pg x 108 kg x 10} Temperature
ki/kg K N/m Ns/m?2 m¥s W/mK (Pr)y kJ/kgK Ns/m? m¥s W/mK (Pr)y °C
4218 7560 1786 1786 0569  13:2 11863 8-105 1672 176 0858 00l
4194 7424 1304 1-305 0-587 9-32 1:870 8504 905 182 0873 10
4182 7278 1002 1-004 0603 695 1-880  8:903 s15 18-8 0888 20
4179 7123 7983 0-802 0-618 540 1-8%0  9-305 306 195 0901 30
4179 696l 6539 0659 0-631 433 14900  9-701 190 202 0912 40
4181 6793 5478 0554 0-643 3-56 1912 10:10 121 209 0924 50
4185 6619 4673 0473 0-653 299 14924 10-50 80-6 2146 0934 60
4191  64-40 4048 0414 0-662 2:56 14946 10-89 54-9 224 0946 70
4198 6257 3554  0-366 0-670 223 11970 1129 385 232 0959 80
4207 6069 3156 0327 0676 1:96 1199 1167 276 24-0 0973 90
4218 5878 2831 0295 0-681 1-75 2:034 1206 20-2 249 0987 100
4230 5683 2548 0-268 0-684 1-58 2:076 1245 151 25-8 1:00 110
4244 5485 2310 0245 0-687 1-43 2125 12:83 11-4 267 1102 120
4262 5283 21009 0226 0-688 1-31 2180 1320 882 278 103 130
4282 5079 1941 0-210 0-688 1-21 2:245  13-57 690 289 1.05 140
4306 4870 1798 0-196 0-687 1113 2320 13-94 547 300 1-08 150
4334 4659 1677 0185 0-684 106 2406  14-30 439 313 1110 160
4366 4444 1574 0175 0-681 1-01 2:504  14:66 355 326 1113170
4403 4226 1485 0167 0677 0967 2615 1502 291 341 1115 180
4446 4005 1407 0-161 0671 0932 2741 1537 240 357 1118 190
4494 378 1339 0155 0-664 0906 2883 1572 200 374 121 200
4550 3553 1279 0-150 0-657 0886 3043 16:07 168 394 1:24 210
4613 3323 1224 0146 0-648 0-871 3223 1642 141 415 1128 220
4685 3090 17-s 0142 0-639 0-861 3426 1678 120 439 1131 230
4769 2856 1129 0139 0628 0850 3656 17-14 1102 465 1135 240
4866 2619 1087 0136 0-616 0859 3918 17-51 0876  49-S 1139 250
4985 2382 1048 0134 0603 0866 4221 1790 0755 528 143 260
5134 2144 1011 0132 0-589 0882 4575 1831 0652 566 1448 270
5307 1907 975 0130 0574 0902  499% 1874 0565 609 1-54 280
5520 1671 941 0128 0-558 0932 5509 1921 0491 660 161 290
5794  14-39 %07 0127 0-541 0970 6148 1973 0427 719 169 300
6143 1211 872 0126 0523 1024 6968 2030 0372 791 1179 310
6604 9-89 835 0125 0-503 111 8-060 2095 0324 878 192 320
7-241 7-75 795 0124 0-482 120 9580 2170 0281 990 2:10 330
8-225 571 754 0123 0-460 135 1187 2270 0245 114 2:36 340
10:07 379 69-4 0121 0-434 1-61 15-8 24-15 0213 134 2-84 350
15:0 2:03 62:1 0118 0397 234 270 2645 0-184 162 440 360
sS 047 518 0116 0340 837 107 306 0150 199 164 370

© 0 414 0-131 0-240 o 414 0-131 240 374-15
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460 NUCLEAR SYSTEMS II

Table E-4 Thermodynamic properties of sodium

Temperature of superheated vapor, R

Temperature, R Sat. Sat.
(Sat. press., psia) liquid vapor 800 900 1000 1100 1200
Voo 17232 x 1072 1010 L e e e e
700 hooo... 219.7 2180.5 2203.1 22247 2246.4 2268.0 2289.5
37472 x 1079 s...... 0.6854 3.4866 3.5169 3.5424 3.5652 3.5857 3.6043
Voo 1.7548 x 1072 74375 x 108 ...... 8.3835 x 108 9.3168 x 108 1.0249 x 10% 1.1180 x 109
800 hooo... 2523 22001 ... 2224.4 2246.3 22679 2289.5
(5.0100 X 1077) s5...... 0.7290 31637 ... 3.1925 3.2155 3.2360 3.2546
[/ 1.7864 x 1072 3.6411 x 107 ...... ........... 4.0267 x 107 4.4718 x 107 4.8789 x 107
900 hoo.... 284.3 217.6 e e 2245.2 2261.7 2289.4
(1.1480 x 107%) s5...... 0.7667 29148 ... 2.9440 2.9653 2.9811
Voo 1.8180 x 1072 3323 x 106 ...... .........eh aeeiee.l 3.6834 x 106  4.0254 x 108
1000 hooo... 325.9 22327 e i e 2264.8 2288.6
(13909 x 107%) s5...... 0.7999 27168 e i e 2.7474 2.7680
Vool 1.8496 x 1072 47592 x 105 ...... .iiiiiiiin ceeiceiiein e 5.2512 x 10%
1100 hoo.... 347.0 2245.1 i e e 2282.7
(1.0616 x 1073 s5...... 0.8296 2 1 1 3 2.5878
[T 1.8812 x 1072 95235 x 10% ...... ....eiih eieiiiien.
1200 h.. 377.7 22549 L. s i
(5.7398 X 107Y) s5...... 0.8563 24207 e e i
Voo 19128 x 1072 24520 x 10% ...... .......ciev eeiiiia...
1300 h.. 4082 22628 e i e
(23916 X 107 s5...... 0.8807 b 117
Vool 1.9444 x 1072 76798 x 10> ...... ......ccee. il
1400 h.. 438.4 22693 ... s
(8.1347 x 107) s5...... 0.9031 22109 e e e
Vol 1.9760 x 1072 28334 x 107 ...... ..iceiiiiin aiean...
1500 hoo.... 468.5 22749 L e
(23351 x 107 Y 5...... 0.9239 2.0282 e s
Vot 20076 X 1072 11935 x 10> ...... .iiiiiiin aiiiiieans
1600 ho..... 498.5 2.1 1 |
(58425 x 1071 s...... 0.9433 20567 i e e
Vool 20329 x 1072 S.5S85 X 102 ... ciiiiiiiir eeeiien e e
1700 hoo.... 528.5 22853 L e e e
(1.3170) Seeii. 0.9615 19948 L e e e e
V..o 20708 x 1072 2.8200 X 102 ...... .iiiiiiien eieeeeeees e e
1800 hooo... 558.6 71 8
(2.7164) Seeenn. 0.9786 29411 L e e s
v 21024 X 1072 LSSI2 X 102 ..ot ciiiiiiies i e e
1900 ho ... 588.8 22972 it e e e
(5.1529) Seiiinn 0.9949 T
v 21340 X 1072 90914 ... i e s
2000 hooo... 619.1 2304.1 e e e
(9.1533) Seiiiis 1.0105 18530 i e e e s
Voo 21656 X 1072 S6.185 ... e e e e
2100 hoooon. 649.7 2
(15.392) Seiins 1.0255 .
[P 20972 x 1072 36338 .. i e i
2200 hooo... 680.7 23210 e e i s
(24.692) Soie... 1.0399 L7885 L i s e
[ 22288 X 1072 24454 ... i e
2300 ho..... 712.0 23307 i e e e

(38.013) S 1.0538 1.7576
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Temperature o f superheated vapor, R

1400 1600 1800 2000 2200 2400 2600 2700
2332.7 2375.9 2419.1 24623 2505.4 2548.6 2591.8 2613.4
3.6381 3.6665 3.6924 3.7148 3.7354 3.7545 3.7713 3.7796
1.3044 x 10°  1.4907 x 10° 1.6771 x 10° 1.8634 x 10° 2.0498 x 10° 2.2361 x 10° 2.4224 x 10° 2.5156 x 10°
2332.7 2375.9 2419.1 24623 2505.4 2548.6 2591.8 2613.4
3.2884 3.3169 3.3428 3.3652 3.3858 3.4048 3.5217 3.4299
5.6924 x 107  6.5056 x 107  7.3188 x 107  8.1320 x 107  8.9452 x 107  9.7584 x 107  1.0572 x 108  1.0978 x 108
2332.7 2375.9 2419.1 2462.3 2505.4 2548.6 2591.8 2613.4
3.0179 3.0464 3.0723 3.0947 3.1153 3.1343 31511 3.1594
4.6978 x 106 5.3693 x 106  6.0406 x 105 6.7118 x 106  7.383 x 108  8.0541 x 106  8.7253 x 106  9.0609 x 106
2332.6 2375.9 2419.1 2462.3 2505.4 2548.6 2591.8 2613.4
2.8024 2.8309 2.8568 2.8792 2.8998 2.9188 2.9357 2.9439
6.1515 x 105 7.0339 x 105  7.9139 x 105 87935 x 10° 9.6729 x 10>  1.0552 x 106  1.1432 x 106  1.1871 x 106
2331.7 2375.7 2419.0 24623 2505.4 2548.6 2591.8 2613.4
2.6263 2.6552 2.6812 2.7036 2.7243 2.7433 2.7601 2.7684
1.1345 x 105 1.3001 x 105  1.4635 x 105  1.6263 x 105  1.7891 x 105  1.9517 x 105  2.1144 x 105  2.1957 x 10°
2327.6 2374.7 2418.7 24622 2505.4 2548.6 2591.8 2613.4
2.4778 2.5089 2.5353 2.5578 2.5785 2.5975 2.6143 2.6226
26936 x 10*  3.1124 x 104  3.5095 x 10* 3.9019 x 10° 42931 x 10* 4.6838 x 10* 50743 x 10*  5.2695 x 10*
2312.2 2371.1 2417.6 2461.7 2505.1 2548.5 2591.8 2613.4
2.3445 2.3836 2.4115 2.4343 2.4551 2.4742 2.4911 2.4993
........... 9.0793 x 10°  1.0292 x 10*  1.1460 x 10*  1.2616 x 10°  1.3767 x 10°  1.4916 x 10*  1.5491 x 10*
........... 2359.9 2414.0 2460.3 2504.5 2548.1 2591.6 2613.2
........... 2.2715 2.3040 2.3280 2.3491 2.3683 2.3853 2.3935
........... 3.1025 x 10’ 3.5625 x 10>  3.9820 x 10° 43896 x 10> 47929 x 103  5.1944 x 103  5.3948 x 102
........... 2332.6 2404.7 2456.5 2502.7 2547.2 2591.0 2612.8
........... 2.1651 2.2083 2.2352 2.2573 2.2769 2.2940 2.3023
...................... 1.4040 x 10°  1.5823 x 107  1.7496 x 103  1.9128 x 103  2.0743 x 10°  2.1548 x 10}
...................... 2384.7 2448.0 2498.7 2545.1 2589.7 2611.8
...................... 2.1192 2.1523 2.1765 2.1969 2.2144 2.2228
........... 6.0659 x 102 6.9378 x 102  7.7180 x 102  8.4601 x 102  9.1858 x 102  9.5458 x 10?
........... 2347.7 2431.3 2490.5 2540.7 2587.1 2609.8
........... 2.0309 2.0747 2.1031 2.1252 2.1433 2.1519
...................... 3.2952 x 102 3.7033 x 102 4.0785 x 102  4.4385 x 102  4.6158 x 102
...................... 24023 2475.6 2532.5 25822 2605.9
..................... 1.9996 2.0347 2.0597 2.0792 2.0882
...................... 1.6838 x 102 1.9197 x 102 2.1298 x 102 2.3265 x 102 2.4224 x 10?
........... e e 23595 2451.8 2518.8 2573.9 2599.3
................................. 1.9259 1.9701 1.9996 2.0212 2.0209
............................................ 1.0543 x 102 1.1816 x 102 1.2980 x 102 1.3539 x 102
............................................ 2417.4 2498.0 2560.9 2588.9
............................................ 1.9072 1.9426 1.9673 1.9780
........................................... 60.665 68.825 76.167 79.656
............................................ 2372.9 2469.0 2451.9 2573.5
............................................ 1.8455 1.8876 1.9164 1.9284
....................................................... 41.754 46.622 48.920
....................................................... 2431.8 2516.2 2552.3
....................................................... 1.8340 1.8674 1.8811
............................................ 26.244 29,585 31.163
............................................ 2388.2 2484.0 2525.0

................................. 1.7820 1.8201 1.8356



462 NUCLEAR SYSTEMS II

Table E-4 Thermodynamic properties of sodium (continued)

Temperature of superheated vapor, R

Temperature, R Sat. Sat.

(Sat. press., psia) liquid vapor 800 900 1000 1100 1200
Voo 22604 x 1072 17.109  iiii e i e e

2400 hoooo.. 743.8 23412 i e e i

(56.212) Seeiin 1.0673 L7329 i e s e i
Vool 22920 X 1072 12388 ... ieeiiiiie e i eeieeennn

2500 hoooo.. 776.2 235206 iiiih i e e e

(80.236) Seaein 1.0805 2 1
TR 23236 X 1072 9.2328 ... eeiiiiiiin e e e

2600 hoooo.. 809.1 T3 75

(L1116 X 10) s...... 1.0934 L6919 i i e e e
[/ 2.3552 x 1072 7.0380

2700 hoo.... 842.7 2378.8

(1.0S2 X 109 s...... 1.1061 1.6751

(From Meisl, C. 3., and Shapiro, A. Thermodynamic Properties of Alkali Metal Vapors and Mercury (2nd ed.). Gen. Elec. Flight
Propulsion Lab. Rept., R60FPD358-A, November 1960. Reprinted by permission of General Electric Company, 1988.
Units: v in ft>/lbm, A in BTU/lbm, s in BTU/Ibm R.
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Temperature of superheated vapor, R

1400 1600 1800 2000 2200 2400 2600 2700
................................. 19.460 20.580
................................ 2446.8 24926
................................. 1.7748 1.7922

............................................ 13.219 14.032

............................................ 2406.5 2456.5

............................................ 1.7321 1.7501

............................................................................. 9.8326

........................................................................... 2418.1

........... 1.7120




Table E-5 Thermodynamic properties of helium

Temperature (F)

Pressure

(psia) 100 200 300 400 500 600

14.696

% 102.23 120.487 138.743 157.00 175.258 193.515
p 0.0097820 0.0082997 0.0072076 0.0063694 0.0057059 0.0051676
h 707.73 827.56 952.38 1077.20 1202.02 1326.83

s 6.8421 7.0472 7.2233 7.3776 7.5149 7.6386
50

v 30.085 35.451 40.817 46.183 51.549 56.915

p 0.033239 0.028208 0.024500 0.021653 0.019399 0.017570
h 703.08 827.90 952.72 1077.54 1202.36 1327.18

s 6.2342 6.4393 6.6153 6.7697 6.9070 7.0307
150

v 10.063 11.8522 13.6407 15.4293 17.2183 19.008

p 0.099372 0.084372 0.073310 0.064812 0.058078 0.052610
h 704.08 828.91 953.73 1078.55 1203.37 1328.19

s 5.6886 5.8937 6.0698 6.2241 6.3614 6.4852
400

A 3.8062 4.4775 5.1487 5.8197 6.4905 7.1616
P 0.26273 0.22334 0.194225 0.171831 0.154072 0.139633
h 706.58 831.42 956.24 1081.06 1205.88 1330.70

s 5.2013 5.4065 5.5827 5.7371 5.8744 5.9981
600

v 2.5546 3.0023 3.44995 3.8973 4.3449 4.7923
P 0.39146 0.33308 0.28986 0.25658 0.23016 0.20867
h 708.49 833.33 958.15 1082.97 1207.79 1332.61

s 4.9998 5.2050 5.3813 5.5357 5.6730 5.7968
900

v 1.7200 2.0187 2.3173 2.6157 2.91399 3.2124
p 0.58139 0.49537 0.43154 0.38230 0.34317 0.31129
h 710.29 835.38 960.40 1085.42 1210.42 1335.36

s 4.7981 5.0035 5.1797 5.3342 5.4715 5.5953
1500

v 1.05192 1.2314 1.4108 1.58994 1.7690 1.9483
p 0.95064 0.81207 0.70880 0.62897 0.56528 0.51328
h 715.54 840.77 965.88 1090.92 1215.93 1340.97

s 4.5437 4.7475 4.9257 5.0801 5.2176 5.3414
2500

v 0.65044 0.75847 0.86635 0.97410 1.08176 1.18947
4 1.53741 1.31845 1.15427 1.02659 0.92442 0.84071
h 724.37 849.73 974.95 1100.10 1225.22 1350.29

s 4.2887 4.4928 4.6712 4.8258 4.9634 5.0873
4000

v 0.42377 0.49161 0.55932 0.62694 0.69444 0.76191
p 2.3598 2.0341 1.78789 1.59503 1.44000 1.31248
h 736.48 862.24 987.70 1113.12 1238.46 1363.73

s 4.0531 4.2576 4.4363 4.5912 4.7287 4.8530

Units: v in ft3/Ibm, A in BTU/Ibm, and s in BTU/Ibm °R

From Fabric Filter Systems Study. In: Handbook of Fabric Filter Technology (Vol. 1). PB200-
648, APTD-0690, National Technical Information Service, December 1970; wherein reprinted from El-
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APPENDIX

F

THERMOPHYSICAL PROPERTIES
OF SOME SUBSTANCES

This appendix is adapted from Poppendiek, H. F., and Sabin, C. M. Some Heat
Transfer Performance Criteria for High Temperature Fluid Systems. American
Society of Mechanical Engineers, 75-WA/HT-103, 1975. The section on so-
dium is from Liquid Metals Handbook. NAV EXOS P-733 Rev., June 1952,
AEC.

CaurTioN: The following property values are presented in a comparative
manner which, however, may not yield accuracies needed for detailed assess-
ments. In such cases recent tabulated property listings should be consulted:

Density

Specific heat
Prandtl modulus
Vapor pressure

The section on physical properties of some solids is from Collier, J. G.
Convective Boiling and Condensation (2nd ed.). New York: McGraw-Hill,
1981.

NoTE: For dynamic and kinematic fluid viscosities, see Figures I, 9-10 and
I, 9-11, respectively. For thermal conductivity of engineering materials, see
Figure I, 10-1.
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APPENDIX

G

DIMENSIONLESS GROUPS OF FLUID
MECHANICS AND HEAT TRANSFER

Name Notation Formula Interpretation in terms of ratio
Biot b B hL Surface conductance - internal conduction
iot number o k. of solid
Cauch b c v: v? Inertia force +~ compressive force = (Mach
auchy number a Bip=a number)?
v? Temperature rise due to energy conversion
Eckert number Ek cpAT + temperature difference
Euler number Eu ;A‘% Pressure force -+ inertia force
. kt o« Rate of conduction of heat -+ rate of
Fourier number Fo pc, L2~ 2 storage of energy
2
Froude number Fr :—L Inertia force + gravity force
D D Re Pr + (L/D); heat transfer by convection
Graetz number Gz I Yﬂf’— in entrance region + heat transfer by
conduction
3
Grashof number Gr g%ﬂ, Buoyancy force - viscous force
Knud b K A Mean free path of molecules -+
nudsen numboer n L characteristic length of an object
Lewis number Le Dl Thermal diffusivity + molecular diffusivity
c
Mach number M %/ Macroscopic velocity =+ speed of sound
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Name Notation Formula Interpretation in terms of ratio
N hL Temperature gradient at wall + overall
Nusselt number u k temperature difference
VpcpD (Re Pr); heat transfer by convection + heat
Péclet number Pé k transfer by conduction
Prandtl number Pr chn = i Diffusion of momentum - diffusion of heat
VL VL . .
Reynolds number Re pT = Inertia force + viscous force
Schmidt number Sc p’B = DL Diffusion of momentum - diffusion of mass
hpL o e o e
Sherwood number Sh D Mass diffusivity < molecular diffusivity
c
h _h Heat transfer at wall + energy transported
Stanton number St Vec, = .G by stream
ApL .
Stokes number Sk uv Pressure force + viscous force
L Frequency of vibration + characteristic
Strouhal number SI % frequency
2
Weber number We "%L Inertia force + surface tension force
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H

tera
giga
mega
kilo
hecto
deca
(deka)

Sxz0=

1012
10°
106
103
102

10!

deci
centi
milli
micro
nano
pico
femto
atto

®» T SoDE 3 0a

MULTIPLYING PREFIXES
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APPENDIX

J

SQUARE AND HEXAGONAL ROD
ARRAY DIMENSIONS

J-1 LWR FUEL BUNDLES: SQUARE ARRAYS

Tables J-1 and J-2 present formulas for determining axially averaged unit sub-
channel and overall bundle dimensions, respectively.

The presentation of these formulas as axially averaged values is arbitrary
and reflects the fact that grid-type spacers occupy a small fraction of the axial
length of a fuel bundle. Therefore this fraction 6 has been defined as:

_ total axial length of grid spacers
axial length of the fuel bundle

Formulas applicable at the axial grid locations or between grids are easily
obtained from Tables J-1 and J-2 by taking § = 1 or § = 0, respectively.
Determination of precise dimensions for an LWR assembly would require
knowledge of the specific grid configuration used by the manufacturer. Typi-
cally the grid strap thickness at the periphery is slightly enhanced. Here it is
taken as thickness #*. It should also be carefully noted that these formulas are
based on the assumptions of a rectangular grid and no support tabs or fingers.
The dimension g is the spacing from rod surface to the flow boundary of the
assembly. In the grid plane, the segment along g open for flow is g — /2.
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Table J-2 Square arrays: Axially averaged overall dimensions
for ductless assembly (assuming grid spacer around N, rods of
thickness ¢ and that g = (P — D)/2

1. Total area inside square At:
Ay = D}
where D, is the length of one side of the square.
2. Total average cross-sectional area for flow A :
T t

Aq =D} - N, =D N,

,2
b T p2P45+1\g,(—> 48

2
A = D} - [Np % (D) + 26(VN)Du) ~ NpﬂB]

since D = VNP and t* = ¢
where:

D = rod diameter
N, = number of rods
t = interior spacer thickness
t* = peripheral spacer thickness.

3. Total average wetted perimeter Pyr:
Pur = NymD + 4V N, D¢ — 4N 18
4. Equivalent hydraulic diameter for overall square D,r:
4Ar 4D} — [N,mD + 8V N, D18 — 4N 28]

De = —_— =
T Pu N,mD + 4V/N,D¢8 — 4N,t8

J-2 LMR FUEL BUNDLES: HEXAGONAL ARRAYS

Tables J-3 and J-4 summarize the formulas for determining axially averaged
unit subchannel and overall bundle dimensions, respectively. Fuel pin spacing
is illustrated as being performed by a wire wrap. In practice both grids and
wires are used as spacers in LMR fuel and blanket bundles. The axially aver-
aged dimensions in these tables are based on averaging the wires over one lead
length.
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Table J-4 Hexagonal array: Axially averaged overall
dimensions (assuming wire wrap spacers around each rod)

1. Total area inside hexagon Ar:
1

V3
2) DuDe sin30 degrees = —— D}

AhT = DHD( +2 ( 2

since:

where:

D, is the length of one side of the hexagon.
Dy, is the distance across flats of the hexagon, for a bundle considering
clearances or tolerances between rods and duct.

Now:
De = (Nps = DD + D) + —2\3/5 (2+¢)
D0 =2 [(*2) Newip + ) + 2+ ¢]
where:

D is the rod diameter

D; is the wire wrap diameter

g is the rod-to-duct spacing

N, is the number of rods

N,s is the number of rods along a side
Niings is the number of rings.

2. Total cross-sectional area for flow Ay:
T
An = AhT - sz (DZ + D§)

3. Total wetted perimeter P,r:
Pyt = 6D¢ + NyrD + NywD, = 23Dy + Nyr(D + D)
4. Equivalent diameter for overall hexagonal array D,r:

MAn

PwT

_ 2V3D} - N,m(D? + DY)
2V3Dy + Nym(D + D,

D =
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APPENDIX

K

PROOF OF LOCAL VOLUME-AVERAGING
THEOREMS OF CHAPTER 5

Two theorems dealing with local volume averaging were presented in Section
III without proof. They were the theorem for local volume-averaging of a
divergence, Eq. 5-5 and an expression for the divergence of an intrinsic local
volume average, Eq. 5-6. A formal derivation has been given by Slattery [1]. A
simple geometrical derivation was more recently presented by Whitaker [2].
Whitaker’s derivation is presented in this Appendix in nearly directly in the
manner he proposed it. Although it is performed using the scalar fluid property
B, the results can be directly generalized to vector forms such as Egs. 5-§
and 5-6.

The essential question that these theorems involve is the rule for inter-
changing the sequence of spatial integration with spatial differentiation for the
function B associated with the fluid in a system consisting of a continuous fluid
phase and a separate discontinuous phase. This discontinuous phase can be
either a solid (porous or nonporous), liquid or gas. In Chapter S our interest was
focused on a system in which the continuous fluid phase was a single-phase,
liquid and the discontinuous phase was stationary solids. This question can be
expressed as the determination of the second term on the right side in the
following equation:

(div B) = div(B) + ? (K-1)

Start by geometrically identifying the average volume for our system for
convenience as a sphere arbitrarily placed within the fluid—solid system. Fol-
lowing the definitions of Chapter S as illustrated in Figure 5-1, this sphere has
total volume V, fluid volume Vi, fluid—solid interfacial area A¢, and fluid en-
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Figure K-1 A uniform translation of
the averaging volume.

trance and exit area A;. For the derivation two such averaging volumes are to
be considered with centroids at positions » and r + Ar along a s_t)raight line. The
orientation of this straight line is designated by the unit vector A. These averag-
ing volumes, the second of which is created by a uniform translation of the first
in the A direction, are illustrated in Figure K-1. The directional derivative d/dr
of the function B integrated over the fluid volume Vi(r, ) is written using the
definition of the derivative as:

ng(r+Ar,l) BdV - Vilr.1) Bdv

d - ]
dr er(r.r) Bdv Aliin.o Ar (K 2)
The intersection of the two integrals of Eq. K-2 cancel yielding:
BdVy — BaV,
di BdV = lim IV”(A"” f Vi(ar,1) (K-3)
r J V.1 Ar—0 Ar

where the fluid volumes V((Ar,t) and V(Ar,t) are illustrated in Figure K-1 as
V[ and V“ .

Next we represent the volume integrals over fluid volumes Vi(Ar,t) and
Vu(Ar,t) in terms of the fluid surface areas A; and Ay, which are identified by
the unit outwardly directed normal vector 7 shown in Figure K-1. Note that as
Ar— 0, these two areas will be coincident with the area of fluid entrances and
exits, A¢(z). The essential concept in the approach used to represent the vol-
umes V| and Vj; is to visualize that the displacement of a circular element of
surface area dA; or dA; by the amount Ar creates a cylinder of volume dV
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whose cross-sectional area dAcs depends on the angle between the surface
normal 7; and the orientation X of the line segment Ar. Specifically, the cylinder
cross-sectional area dA; is related to the surface elements dA; and dA;; by:

dA. = X - AedAy over Ay (K-4a)
and
dA. = —X\ - PrdA; over A (K-4b)

Hence the volume integrals in Eq. K-3 can be expressed in terms of area
integrals as:

dV, = —Ark - dA (K-5a)

and
dVy = +ArX - BrdAy (K-5b)

Now these relations do not properly account for the volume elements
located in the vicinity of the contact point between the surface of the averaging
volume and the fluid-solid interface because the shape of the solid surface is
not necessarily aligned in the X direction. Figure K-2 illustrates this region. The
error in volume can be approximated by assuming that Ar also represents the
average width of such a typical volume element and that P is the length of the
contact line between the surface of the averaging volume and the fluid—solid

5V = O(PAr?) dVy, = AFEAOA,

!

Figure K-2 Detail of volumes near the fluid—surface interface.
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interface. Then the error in volume is of order PAr?, i.e.:
8V = 0(PAr?) (K-6)
Substituting the results of Eqs. K-5 and K-6 into K-3 yields:

d
d—r fV;(r,I) de

= lim

Ar—0

[ BAR - AdAu+ [ BAR - FdAr + 0BPAR)
Aui(r.) A(r,1)
Ar (K-7)

>
Since Ar and A are independent of position, they can be removed from the
integrals. Further, since:

Ac(r,t) = Alf_f{}) (Ai(r, 1) + Au(r,1) (K-8)

Eq. K-7 in the limit as Ar — 0 becomes:

d

— = *l » -
& . Bav =X fm(m 7t:BdA (K-9)

Expressing the derivative with respect to r in the form:

d >
3;=A-i7 (K-10)

leads to the desired result, an expression for the divergence of the intrinsic
local volume average of B over the fluid volume only:

¢ fw) BdV = er #BdA (5-6a)

where 7; here is identically # in Chapter 5.

The second desired result, the local volume average of a divergence, can be
obtained by utilizing Eq. 5-6a in the divergence theorem, i.e.:

1

0 tpaved( amansll
7 | VB4V = 5 er FiBdA + < L,,m 7t BdA

becomes:

. . 1
(div B) = div(B) + 7, Lﬁ 7 BdA
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Numbers in italics indicate figures. Page numbers followed by t indicate tables.

Annulus
bilateral heated, turbulent flow in,
298-302
equivalent
friction factor-Reynolds number
product for laminar and turbu-
lent flow in, 351
model, 291-306
Nusselt numbers for, laminar and
turbulent flow in, 351
Nusselt numbers for liquid metals
in, 306-308
turbulent and laminar flow equations
for, 291, 351
Area, conversion table for, 436t
Array. See Fuel rod bundle.
Averages, definitions of, 178-180
Axial friction and drag, 243
Axial linear momentum equation, in
subchannel analysis, 221-223
Axial mass flow rate, in subchannel
analysis, 213
Axial velocity, in pressure-driven
cross-flow, 243, 245

Bessel function, 445t—-447t
Biot number, 475t

Boiling boundary, for two-phase re-
gions in channel, 57t, 59t
Boiling channel
natural circulation stability in, 87-92,
114
with steam separation, natural circu-
lation in, 113-114
Boiling inception
during LOPI accident, fluid condi-
tions in, 89t
flow decay problem and, 59-60
Boiling water reactor (BWR)
array of channels connected only at
plena in, 9-16
coolant flow in, 3-4
core analysis of, 20
inlet pressure decrease transient in,
43-48, 64-65
subchannels of, computation of mix-
ing flow rate for, 258-260, 265-
268
Boundary conditions
for flow in multiple heated channels
connected only at plena, 120-
125
for hydraulic problem, 4-5
for plena heat transfer in multiple
heated channels, 121-125
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Buoyancy, in mixed convection, 143-
144
BWR. See Boiling water reactor.

Carbon dioxide, thermodynamic prop-
erties of, 466t—467t
Cartesian coordinate system, local
averaging volume in, 179, 181-
182, 198
Cauchy number, 475t
Channel integral (CI) model of flow,
32-34, 38, 44, 45
Channel(s). See also Flow, single-
phase; Subchannel(s).
adiabatic
flow characteristics in, 167
flow reversal in, 145-146
two-phase mixing in, 283
boiling
natural circulation stability in, 87—
92, 114
with steam separation, natural
circulation in, 113-114
with decreasing inlet flow
major characteristics in single-
phase region, 54
major characteristics in two-phase
region, 56
hot, equivalent number of, in deter-
mining core reliability, 397
interacting, analysis of, 343-348
by direct analytical solution meth-
ods, 344-346
by direct numerical solution meth-
ods, 346
by iterative approach, 346-
348
by porous media approach, 171-
208
by utilization of single-cell results,
346-348
multiple heated
connected only at plena, 115-169
boundary conditions for, 120-
125
coupled conservation equation
for, 134-151
flow in, 9-16, 116
friction-dominated regime of,
128-129
governing one-dimensional
steady-state flow equations for,
116-119

gravity-dominated regime of,
129-134
hydraulic characteristics of, 127-
134
flow characteristics of, 167
interconnected, flow in, 16-19, 23—
24
multiple unheated, flow in, compress-
ible, 7t, 8t
noncircular, laminar and turbulent
flow equations for, 290-291
parallel .
connected only at plena, momen-
tum equation for, 152t
heated, preference for upflow in,
149-150
power shape factor of, 137
preference for downflow in, 168
preference for upflow in, 149-150
pressure drop condition, solution
procedure for, 152
single heated
flow in, 9
transient analysis of, 27-66
single unheated, flow in, 6, 9
single-phase region, decreasing inlet
flow in, 54
two-phase region of
boiling boundary for, 57t
decreasing inlet flow in, 56
Characteristic curves and velocity, in
MOC, 48
Characteristics, method of. See Method
of characteristics.
CI (channel integral model of flow), 32—
34, 38, 44, 45
Circulation
dependence of, on elevation of ther-
mal centers, 73-76
natural
in boiling channel, stability of, 87—
92, 114
in boiling channel with steam sepa-
ration, 113-114
in a PWR, 77-80
steady-state, single-phase, 73-83
steady-state, two-phase, 83-92
Cladding region, in multiregion analysis
of longitudinal laminar flow,
332-341
Cladding temperature
circumferential
turbulent heat transfer effect on,
332



Cladding temperature (cont’'d)
variation around outer surface,
338-341
maximum, evaluation of, 408
prediction of surface temperature of,
339-341
COBRA conservation equations, 235—
242, 244t
Conductivity, thermal, conversion table
for, 443t
Confidence level, in thermal analysis of
reactor, 360-361
Conservation, application of principles
of, to volume containing distrib-
uted solids, 185
Conservation equations. See also En-
ergy conservation equation.
COBRA, 235-242, 244t
coupled, single-phase nondimen-
sional, 134-151
decoupled, for high flow rate, 151-
166
mass volume-averaged, derivation of,
177-185
in porous body, 232t
for single-phase fluid
in porous media, 183t
in subchannel, 229t
for subchannel analysis
commonly used forms of, 235-242
derivation of, 216-231
Constants, physical and mathematical,
431-432
Constitutive equations, in subchannel
analysis, 243-273
Continuity equation
COBRA, 238, 244t
for one-dimensional steady-state flow
in multiple heated channels con-
nected only at plena, 116-117,
125t
for single-phase fluid
in porous media, 183t
in subchannel, 229t
for subchannel analysis, 218-219,
232t
Control volume. See also Volume.
characteristics of, in PWR square
array, 175-177, 206
for enthalpy balance, 222
method of integration over, in deriva-
tion of mass conservation equa-
tion, 180-185
for porous body analysis, 212
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selection, in subchannel analysis
approach, 210-212
subchannel
for axial momentum balance, 224
for transverse momentum, 226
transverse, aspect ratio, 245-246
for transverse momentum equation,
212
Convection
forced, in multiple heated channels
connected only at plena, 128-129
mixed, onset of, 143-144
natural, friction factors in, 76-83
Conversion tables, 435t—444t
Coolant element, characteristic, of
infinite triangular array
momentum boundary conditions on,
310
thermal boundary conditions on, 320
Coolant flow
in BWR, 3-4
in HTGR, 3
in PWR, 3-4
Coolant loop. See Flow loop.
Coolant region
momentum and heat transfer equa-
tions in, 287-291
in multiregion analysis of longitudinal
laminar flow, 332-341
Coolant temperature
primary, 95-98
rise in, across heated channel, 73
Coordinates, 413
Core. See Reactor core.
Correlated temperature method of
determining core reliability, 402—
404
Cross-flow
pressure-driven, enthalpy and axial
velocity in, 243, 245
rate
diversion, 213-214
for molecular and turbulent mo-
mentum and energy transport,
246-273
Cylindrical coordinates, differential
operators in, 449t

Density
conversion table for, 438t
dependence of, on pressure and
enthalpy, 7t
versus temperature, 468
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Deterministic method formulations for

thermal analysis of reactor, 380-

383
Differential operators, 448t—450t
Diffusivity
eddy
of mass, energy, and momentum,
256t
secondary flow and, 329-330
molecular
conversion table for, 444t
of mass, energy, and momentum,
256t
thermal, conversion table for, 444t
Dimensionless groups of fluid mechan-
ics and heat transfer, 475t-476t
Dimensionless numbers, 414
Distributed parameter approach to
thermal hydraulic design prob-
lem, 22-23
Distribution of heat. See also Energy;
Heat transfer.
chi-squared, 363-367
confidence level in, 360-361
estimating mean and standard devia-
tion of, 354-356
normal, 356-360
Student t, 361-362
Diversion cross-flow rate, in subchan-
nel analysis, 213-214
Downflow
channel preference for, 168
heated, stability of, 148-149
Drag, 243
transverse friction and form, 245

Eckert number, 475t
Eddy diffusivity
of mass, energy, and momentum,
256t
secondary flow and, 329-332
Elements, list of, 479t—481t
Energy. See also Distribution of heat;
Enthalpy; Heat transfer.
evaluation of turbulent interchange
flow rate for, 281
internal
energy equation in terms of, 183t,
195-198
of single-phase fluid in porous
media, 183t
work, torque, conversion table for,
440t

Energy balance
in laminar flow, 297-298
in turbulent flow, 298-306
Energy conservation equation
for cladding, 334
volume-averaged, derivation of, 195-
199
Energy equation
COBRA, 239, 244t
for core average fuel element and
coolant temperatures, 102-103
for determining flow quality, S5
for flow loop, 69
for natural circulation loop, 84
for one-dimensional steady-state flow
in multiple heated channels con-
nected only at plena, 119, 126t
for porous body, 232t
for primary coolant temperature,
95
single, coupled with momentum
equation, derivation of, 135-
137
for single-phase fluid, in subchannel,
229t
for subchannel analysis, 219-221,
232t
in terms of enthalpy, 183t, 199
in terms of internal energy, 183t,
195-198
Energy transfer
between subchannels, computation of
rate of, 278-280
cross-flow rate for, 246-273
rate of, in subchannel analysis, 214—
216
Enthalpy. See also energy entries.
content ratio, saturated liquid-to-
vapor, for equal volumes, 260
energy equation in terms of, 183t,
199
exit, after flow decay, 60-63
inlet, application of MOC to change
in, 65
in pressure-driven cross-flow, 243,
245
Enthalpy balance, subchannel control
volume for, 222
Equivalent annulus model, 291-306
Euler number, 475t
Exit enthalpy, after flow decay, 60—
63
Extensive thermodynamics properties,
413



Flow. See also Coolant flow; Cross-
flow; Mass flow rate.
arrangements of, in nuclear reactor
technology, 5
channel integral (CI) model of, 32—
48, 45
coastdown stages of, 93
compressible
in multiple heated channels,
connected only at plena, 13t
interconnected, 18t, /9
in single heated channel, 8t, 9
conversion table for, 439t
distribution of, in hexagonal bundle,
159-163
high rate, decoupled conservation
equation for, 151-166
incompressible
but thermally expandable fluid, 30-
32
in multiple heated channels con-
nected only at plena, 11
in single unheated channel, 6
laminar
in annulus, equations for, 291
between fuel rods,
heat transfer in, 319-328
longitudinal heated, 309
momentum transfer in, 309-319
in circular pipe, 83
energy balance in, 297-298
flow split in, 154-158
friction factor-Reynolds number
product for equivalent annulus
in, 351
longitudinal, multiregion analysis
of, 332-341
momentum balance in, 292-295
in noncircular channels, equations
for, 290-291
Nusselt number for equivalent
annulus in, 306-308, 351
rod-averaged, 336t-337t
through equilateral triangular
bundles, circumferential wall
heat flux variation for, 327
of liquid metal, 306-308
longitudinal, between fuel rods, two-
region analysis of, 335-341
momentum integral (MI) model of,
30-32, 37, 41, 43, 44-45, 64-65
in multiple heated channels
connected only at plena, 9-16,
115-169
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interconnected, 16-19, 23-24
one-dimensional steady-state, equa-
tions for, 116-119
secondary, eddy diffusivity and, 329-
330
sectionalized compressible (SC) fluid
model of, 29-30, 34, 36, 40, 42,
43-44
in single channel, 6-9
single mass velocity (SV) model of,
32, 38, 39, 44, 406, 47, 64-65
single-phase
in porous media, conservation
equations of, 183t
with stationary solids, 174
subchannel relative velocities and
enthalpies for, in PWR, 155,
157-158
slug, Nusselt number in, for liquid
metals in equivalent annuli, 306-
308
subsonic, 4
compressible, 6, 7t, 8t
in multiple heated channels con-
nected only at plena, 13t
total, prescribed condition, solution
procedure for, 153-166
in three-channel system, 140-
143
turbulent. See also Turbulent mo-
mentum transfer.
in annulus, equations for, 291
in bilateral heated annulus, 298-
302
energy balance in, 298-306
flow split in, 154—158
friction factor-Reynolds number
product for equivalent annulus
in, 351
liquid metals in, 305-308
longitudinal, in rod bundles, 328-
332
momentum balance in, 296—
297
in noncircular channels, equations
for, 290
Nusselt number for equivalent
annulus in, 306-308, 351
single-phase,
cross-flow rate for molecular and
turbulent momentum and energy
transport in, 248-260
determining hot spot factor for
film temperature drop in, 405
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Flow (cont’d)
two-phase
cross-flow rate for molecular and
turbulent momentum and energy
transport in, 260-273
mass and energy exchange be-
tween subchannels in, 262
in multiple heated channels con-
nected only at plena, 12, 15
Flow decay
boiling inception and, 59-60
exit enthalpy after, 60-63
hydraulic considerations in, 93-95
Flow loop, 67-114. See also Coolant
flow.
equations for, 69-72
steady-state, single-phase, natural
circulation, 73-83
Flow rate
dimensionless volumetric, in sub-
channel, wall influence on, 345
mixing
computation of, 256-258
for square and triangular subchan-
nels, 254-256
for subchannels of BWR test
model, computation of, 258-260
two-phase,
between adjacent adiabatic inter-
acting channels, 283
computation of, 265-268
turbulent interchange, evaluation of,
for energy, 281
Flow reversal, in adiabatic channel,
145-146
Flow split
for all-turbulent, all-laminar condi-
tions, 154-158
among subchannels in hexagonal
bundle, 169
among tubes in U-tube steam genera-
tor, 168-169
considering manufacturing tolerance
in hexagonal bundles, 164-166,
169
in transient flow regime, 158-163
Flow transient
flow split and temperature rise in,
158-163
pump representation, 104—112
single-phase transients in loop, 93—
104
time-distance relationships in, 50
two-phase transients in loop, 104

Fluid, incompressible but thermally
expandible, momentum integral
model of flow, 30-33

Fluid mechanics, dimensionless groups
of, and heat transfer, 475t—476t

Force, conversion table for, 438t

Fourier number, 475t

Friction

axial, 243
transverse, drag, 245
Friction factor
in natural convection, 76-83
turbulent, Nusselt numbers and,
332

Friction factor-Reynolds number prod-

uct

for equivalent annulus in laminar and
turbulent flow, 351

as function of rod spacing, 318

for triangular array, determination of,
294-295

Friction-dominated regime, in multiple
heated channels connected only
at plena, 128-129

Froude number, 475t

Fuel melting, of all fuel spots in core,
contributions to, 409-411

Fuel pin, bare, in hexagonal array,
relative performance of edge and
interior types of, 156

Fuel rod(s)

laminar flow between
heat transfer in, 319-328
with longitudinally heated rods,
309
momentum transfer in, 309-319
longitudinal flow between, two-region
analysis of, 335-341
Fuel rod assembly
in BWR core, 2/
distributed parameter analysis of,
285-351
equations for momentum and heat
transfer in coolant region, 287-
291
equivalent annulus model, 291-306
heat transfer in laminar flow be-
tween fuel rods in, 319-328
interacting channel analysis in,
343-348
isolated cell problems solved by,
341-343
laminar flow between fuel rods in,
309-328



Fuel rod assembly (cont’d)
momentum transfer in laminar flow
between fuel rods in, 309-318
multiregional analysis of longitudi-
nal laminar flow in, 332-341
Nusselt numbers for liquid metals
in equivalent annuli, 306-308
turbulent longitudinal flow in bun-
dles in, 328-332
flow split for all-turbulent, all-laminar
conditions, 154-158
in LMR core, 88t
in lumped channel layout in PWR,
275
in PWR, computation of equivalent
dispersed heat source for, 197-
198
single versus multirod analysis of,
341-343
Fuel rod bundle
arrays of
porous media approach for analy-
sis of, 171-208
in PWR, computation of distrib-
uted resistance for, 234-235
subchannel approach for analysis
of, 209-284
hexagonal array, 21, 483-485
control volume characteristics of,
206
flow distribution in, 159-163
flow split among subchannels in,
169
flow split considering manufactur-
ing tolerance in, 164-166, 169
relative performance of edge and
interior type subchannels of bare
pins in, 156
infinite array, characteristic multire-
gion domain of, 333
square array
computation of equivalent dis-
persed heat source for, 197-198
control volume characteristics of,
in PWR, 175-177
determination of Nusselt number
for, 300-302
dimensions of, 481-483
distributed parameter analysis of,
285-287
distributed resistance vector com-
ponents for, in PWR, 189-195
subchannel and characteristic do-
mains for, 286
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three-channel array, for lateral heat
conduction problem, 238
triangular array
determination of friction factor-
Reynolds product for, 294-295
distributed parameter analysis of,
285-287
distributed resistance for, 206-207
equilateral,
circumferential wall heat flux
variation for laminar flow
through, 327
local wall shear stress distribu-
tion for, 315
finite, pressure drop in, friction
factor-Reynolds number product
for, 351
momentum boundary conditions on
characteristic coolant element
of, 310
subchannel and characteristic do-
mains for, 286
velocity contour lines for, 3/4
turbulent longitudinal flow in, 328-
332
unbaffled
heat transfer of laminar flow
through, 325t
longitudinal flow of liquid metal
through, 308

Generator. See Steam generator.

Geometry, in subchannel analysis, 213,
217-218

Graetz number, 475t

Grashof number, 475t

Gravity force, lateral, in COBRA sys-
tem, 241

Gravity-dominated regime, in multiple
heated channels connected only
at plena, 129-134

Gunter-Shaw correlation, 191, 193

Heat, specific, versus temperature, 468
Heat flux
conversion table for, 442t
hot spot factor, deterministic ap-
proach for finding, 378, 380
variation in, of circumferential wall,
for laminar flow through equilat-
eral triangular rod bundles, 327
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Heat source, equivalent dispersed, for
PWR fuel assembly, computa-
tion of, 197-198
Heat transfer. See also Distribution of
heat; Energy.
coefficient of
conversion table for, 443t
dimensionless groups of fluid me-
chanics and, 475t-476t
equations for, in coolant region, 287-
291
of laminar flow
between fuel rods, 319-328
through unbaffled rod bundles, 325t
turbulent, effect on circumferential
cladding temperature, 332
High temperature gas reactor (HTGR),
coolant flow in, 3, 72
Homogeneous equilibrium model
(HEM) of flow, 85, 86
Hot channels, equivalent number of, in
determining core reliability, 397
Hot spot
analysis of, combinational methods
for, 379t
limiting
extension to more than one, 393-
394
varying numbers of, probability
computations considering, 400-
402
single
confidence level of, core probabil-
ity of not exceeding temperature
limit of, 398
in core, in reactor thermal analy-
sis, 377-393
temperature of
computation of, 389-393
variables affecting, 372t-373t
Hot spot factor
computation of, 371, 374-376, 389-
393
for film temperature drop due to
variations in channel width, 405
for heat flux, deterministic approach
for finding, 378, 380
for LMR, 369, 370
for pellet temperature drop due to
variation in pellet thermal con-
ductivity, 407
for PWR, 368
in thermal analysis of reactor, 368-
377

HTGR. See High temperature gas reac-
tor.
Hydraulic characteristics, of multiple
heated channels connected only
at plena, 127-134
Hydraulic design problem
boundary conditions for, 4-5
synopsis of, and solutions, S5t

Interchange, turbulent
flow rate, evaluation of, for energy,
281
in subchannel analysis, 214

Knudsen number, 475t

Laminar flow. See Flow, laminar.
Length
conversion table for, 436t
mixing, based on subchannel slug
flow, 253t
Lewis number, 475t
Light water reactor (LWR)
flow loops of, 68
fuel assembly designs of, 88t
hot spot factor in, 369
mesh layouts and control volumes
for fuel in, 175
prescribed total flow condition for,
153-166
square fuel rod array dimensions of,
481-483
thermal analysis of, 377
Linear momentum equation. See Mo-
mentum equation, linear.
Liquid metal
in equivalent annuli, comparison of
laminar, slug, and turbulent flow
Nusselt numbers for, 306-308
longitudinal flow of, through unbaf-
fled rod bundles, 308
turbulent flow of, 305-308
Liquid metal cooled reactor (LMR)
array of channels connected only at
plena in, 9-16
channel preference for downflow in,
168
coolant flow in, 3-4
core analysis of, 20
flow loop in, 68, 72



Liquid metal cooled reactor (cont’d)
fluid conditions at boiling inception
during LOPI accident, 89t

fuel rod bundle hexagonal array
dimensions, 485-487
hot spot factor in, 369, 370
natural circulation with boiling core
in, 87-91
prescribed total flow condition for,
153-166
pressure drop coefficients for hexag-
onal subchannel types in,
160t
single-phase loop transients in, 93
thermal analysis of, 377
typical hot channel factors for, 386t
LMR. See Liquid metal cooled reactor.
Loop. See Flow loop.
LOPI. See Loss of piping integrity.
Loss of piping integrity (LOPI) acci-
dent, fluid conditions in, 89t
Lumped parameter approach to thermal
hydraulic design problem, 22-
23
LWR. See Light water reactor.

Mach number, 4, 475t
Mass, conversion table for, 437t
Mass conservation equation. See also
Conservation equations.
volume-averaged, derivation of, 177-
185
Mass flow rate, in subchannel analysis
axial, 213
transverse, 213, 216t
Mathematical tables, 445t—450t
Media. See Porous media approach;
Porous media equations.
Metal, liquid. See Liquid metal.
Metals, solid, thermal properties of,
472t-473t
Method of characteristics (MOC)
application to increase in inlet mass
flux, 66
application to inlet enthalpy change,
65
basics of method, 48—-49
for single-phase transients, 49-51
for solution of transients, 48—63
for two-phase transients, 51-63
verification of equations for, 65
MI. See Momentum integral model of
flow.
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Mixing flow rate. See Flow rate, mix-
ing.
Mixing lengths, based on subchannel
slug flow, 253t
Mixing parameters, empirical, for clean
geometries, 255t
MOC. See Method of characteristics
Molecular diffusivity
conversion table for, 444t
of mass, energy, and momentum,
256t
Momentum
conversion table for, 440t, 444t
molecular, cross-flow rate for, 246—
273
transverse, subchannel control vol-
ume for, 226
turbulent
cross-flow rate for, 246-273
transverse transfer of, 203-205
Momentum balance
axial, subchannel control volume for,
224
in laminar flow, 292-295
in turbulent flow, 296-297
Momentum equation
approximations to
implications of, 35t
solution of transients with, 27—
48
axial, 282
COBRA, 239, 244t
for porous body, 233t
for single-phase fluid, in subchan-
nel, 229t
boundary conditions for solving, 28
for coolant region, 287-291
for flow loop, 69
linear
axial, in subchannel analysis, 221-
223
for single-phase fluid in porous
media, 183t
transverse, in subchannel analysis,
223-231
volume-averaged, derivation of,
185-195
for natural circulation loop, 83
for one-dimensional steady-state flow
in multiple heated channels con-
nected only at plena, 117-119,
126t
for parallel channel arrays connected
only at plena, 152t
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Momentum equation (cont’d)
single, coupled with energy equation,
derivation of, 135-137
transverse
COBRA, 239-241, 244t
control volume for, 212
for porous body, 233t
for single-phase fluid, in subchan-
nel, 229t
various forms of, 228t, 232t
Momentum flux
net lateral, in COBRA system, 240
transverse molecular, for PWR rod
array, computation of, 234-235
Momentum integral (MI) model of flow,
with incompressible but ther-
mally expandable fluid, 30-32,
37,41, 43, 44-45
Momentum transfer
in laminar flow between fuel rods,
309-319
rate of, in subchannel analysis, 214—
216
Monte Carlo method of determining
overall core reliability, 395-396
Multiplying prefixes, list of, 477

Navier-Stokes equation, numerical
approach for solution of, 346
Nondimensional equations, for multiple
heated channels connected only
at plena, 137-143
Nusselt number, 298-299, 476t
average, in two-region analysis of
longitudinal flow between fuel
rods, 335~338
for liquid metals in equivalent annuli,
306-308
for square array, determination of,
300-302
turbulent friction factors and, 332

Pebble bed reactor, distributed heat
source for, 207-208

Peclet number, 476t

PEDROP routine, 92

Permeability, surface, 174-175

Pin, fuel, bare, in hexagonal array,
relative performance of edge and
interior types of, 156

Population mean, 361

Population standard deviation, 363

Porosity definitions, in interacting
channels, 173-177
Porous body
analysis of, control volumes for, 212
conservation equations in, 232t
Porous media approach to analysis of
interacting channels, 171-208
constitutive relations in, 199-200
derivation of volume-averaged en-
ergy conservation equation for,
195-199
derivation of volume-averaged linear
momentum equation for, 185- 195
derivation of volume-averaged mass
conservation equation for, 177-
185
fundamental relations in, 173-177
relevant equations for, 172-173
Porous media equations, specialization
of, for subchannel analysis, 216—
231
Power, conversion table for, 441t
Power density, conversion table for,
441t
Power reactor. See Reactor.
Prandtl number, 476t
versus temperature, 47/
Prefixes, multiplying, list of, 477
Pressure
dry saturated steam, thermodynamic
properties of, 454t—456t
momentum flux, conversion table
for, 440t
vapor, versus temperature, 47/
Pressure drop coefficients, for hexago-
nal subchannel types in LMR,
160t
Pressure drop condition, in channel,
solution procedure for, 152
Pressure surface force, in COBRA
system, 240
Pressure-driven cross-flow, enthalpy
and axial velocity in, 243, 245
Pressurized water reactor (PWR)
Babcock and Wilcox, characteristics
of, 99t
COBRA conservation equations in
subchannel analysis of, 235-242
coolant flow in, 4
core
analysis of, 20-22
channel layout used in one-pass
method for one hot subchannel,
274



Pressurized water reactor (cont’d)
energy transfer between subchannels
of, computation of rate of, 278—
280
flow loop in, 72
with U-tube steam generator, 68
flow split among tubes in U-tube
steam generator of, 168—169
flow transient in, with U-tube steam
generator, 98
fuel array of, components of distrib-
uted resistance vector for, 188—
195
fuel assembly of, computation of
equivalent dispersed heat source
for, 197-198
hexagonal array in, control volume
characteristics of, 206
hot spot factor in, 368
hydraulic configuration of, 1
inlet pressure transient of, 34-41
lumped channel layout in, analysis
of, 275, 283
natural circulation in, 77-80
porous body analysis of two adjacent
interacting subchannels in, 200—
205
primary system temperature time
constants for, 98-101
rod array of, computation of distrib-
uted resistance for, 234-235
single-phase flow in, subchannel
relative velocities and enthalpies
for, 155, 157-158
single-phase loop transients in, 93—
104
square array in, control volume char-
acteristics of, 175-177
subchannel analysis of two adjacent
interconnecting subchannels in,
269-273
Pump characteristics, in flow loop
transients, 104—112
Pump configurations, under different
regimes of operation, /08
Pump failure, 94-95
Pump head curves, 109-112
PWR. See Pressurized water reactor.

Reactor. See also Fuel rod assembly;
Fuel rod bundle; Reactor core;
Thermal analysis of reactor;
tyres of reactor.
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assembly schematic, 2
boundary condition of
determination of, 16
for hydraulic problem, 4
flow arrangements of, 5
thermal hydraulic configurations of,
1-4
thermal hydraulic design problem of,
formulation of, 1-25
Reactor assembly problem, synopsis of,
and solutions, 5t
Reactor core
analysis of, 19-22
overall reliability of, 394-404, 411
single hot spot in, 377-393
subchannel control volume relation
to, 211
temperature time constants of, 101-
104
Rectangular coordinates, differential
operators in, 448t
Resistance, distributed
axial, 202
components of, for PWR fuel array,
188—195
for PWR rod array, computation of,
234-235
transverse, 202-203
for triangular array, 206-207
Reynolds number, 476t
friction coefficient as function of, for
water loops, 77
Reynolds number-friction factor product
as function of rod spacing, 318
for triangular array, determination of,
294-295
Rod. See Fuel rod(s); Fuel rod assem-
bly; Fuel rod bundle.

Saturation state properties of steam
and water, 452t—453t
SC. See Sectionalized compressible
fluid model of flow.
Schmidt number, 476t
Sectionalized compressible (SC) model
of flow, 29-30
in BWR inlet pressure transient, 43—
44
in PWR inlet pressure transient, 34,
36, 40, 42
Semistatistical methods of thermal
analysis of reactors, 387-393,
409
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Shear stress distribution, for equilateral
triangular array, 315
Sherwood number, 476t
SI units for conversion tables, 434t
Single mass velocity (SV) model of
flow, 32, 38, 39, 4, 46, 47
Slug flow, Nusselt number in, for liquid
metals in equivalent annuli, 306-
308
Sodium, thermodynamic properties of,
460t-463t
Solids, distributed, application of con-
servation principles to volume
containing, 185
Specific properties of thermodynamics,
413
Spherical coordinates, differential oper-
ators in, 450t
Spot method of determining overall
core reliability, 395-396. See
also Hot spot.
Stanton number, 476t
definition of, 83
State equation, for one-dimensional
steady-state flow in multiple
heated channels connected only
at plena, 119-120
Statistical method formulations for
thermal analysis of reactor, 383-
393
Steam
dry saturated temperature, thermody-
namic properties of, 457t—459t
saturation state properties of, 452t-
453t
Steam generator, U-tube
analysis of shell side of, 206
distributed heat sources for shell side
of, 207
flow split among tubes in, 168169
PWR flow transient in, 98
PWR loop with, 68
Steam pressure, dry saturated, thermo-
dynamic properties of, 454t—456t
Stokes number, 476t
Stress, shear, distribution of, for equi-
lateral triangular array, 315
Strouhal number, 476t
Subchannel(s). See also Channel(s).
analysis of, 209-284
application of, 273-280
approximations inherent in, 231-
23S

commonly used conservation equa-
tions in, 235-243
constitutive equations in, 243-273
control volume selection in, 210-
212
definitions of terms in, 213-216
derivation of conservation equa-
tions in, 216-231
of two adjacent interconnecting
subchannels, 269-273
of two interacting test channels,
282-283
of BWR, computation of mixing flow
rate for, 258-260, 265-268
control volume of, relation to reactor
core, 211
definition of, options for, 210
energy transfer between, computa-
tion of rate of, 278-280
square, mixing flow rate for, 254-256
triangular, mixing flow rate for, 254-
256
Subsonic flow. See Flow, subsonic.
Surface heat transfer coefficients, 243
Surface permeability, 174-175
Surface tension, conversion table for,
444t
SV. See Single mass velocity model of
flow.
Synthesis method, of determining over-
all core reliability, 395-396

Temperature

circumferential, variation around
outer surface of cladding, 338-
341

of cladding, turbulent heat transfer
effect on, 332

of coolant, primary, 95-98

correlated, as method of determining
core reliability, 402-404

dry saturated steam, thermodynamic
properties of, 457t—459t

of film, drop in, from variation in
channel width, hot spot factor
for, 405

of hot spot

computation of, 389-393
variables affecting, 372t-373t

of pellet, drop in, from variation in
pellet thermal conductivity, hot
spot factor for, 407



Temperature (cont’d)
rise in, in transient flow regime, 158—
163
versus density, 470
versus Prandtl number, 47/
versus specific heat, 470
versus vapor pressure, 471
Temperature time constants
primary, of PWR, 98-101
of reactor core, 101-104
Thermal analysis of reactor
approaches for, 19-22
combinational methods of, 377-393
deterministic method formulations
for, 380-383
extension of,, to more than one hot
spot, 393-394
hot spots and subfactors in, 368-
377
mathematical definition of problem,
1-25
overall core reliability in, 394-404
relevant statistical fundamentals of,
353-368
semistatistical method formulations
for, 387-393
single hot spot in core of, 377-393
statistical method formulations for,
383-387
treatment of uncertainties in, 353-
411
Thermal boundary conditions, on char-
acteristic coolant element, of
triangular array, 320
Thermal center, dependence of circula-
tion on elevation of, 73-76
Thermal conductivity
conversion table for, 443t
of pellet, variations in as cause of
pellet temperature drop, 407
Thermal diffusivity, conversion table
for, 444t
Thermal hydraulic design problem
boundary conditions for, 4-5
synopsis of, and solutions, 5t
Thermodynamic properties, 451t—467t
of carbon dioxide, 466t-467t
of dry saturated steam pressure,
454t-456t
extensive and specific, 413
of helium, 464t
of sodium, 460t—463t
of solid metals, 472t—473t
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Thermophysical properties, of some
substances, 467-471
Thermosyphon analysis, 80-83
Time, conversion table for, 439t
Torque, work, energy, conversion table
for, 440t
Transient, flow. See Flow transient.
Transient analysis of single heated
channel, 27-66
simplification of, 27
solutions by approximations to mo-
mentum equation, 27-48
solutions by method of characteris-
tics, 48-64
Transverse mass flow rate, in subchan-
nel analysis, 213, 216t
Turbulent friction factors, Nusselt
numbers and, 332
Turbulent heat transfer, effect of, on
circumferential cladding temper-
ature, 332
Turbulent interchange
flow rate, evaluation of, for energy,
281
in subchannel analysis, 214
Turbulent momentum transfer. See also
Flow, turbulent.
cross-flow rate for, 246-273
transverse, 203-205

Uncertainties in reactor thermal analy-
sis, 353
Unit conversion tables, 435t—444t
Unit systems, 433
Upflow. See also Convection, mixed.
cooled, stability of, 146—147
preference for, in parallel heated
channels, 149-150

Vapor pressure, versus temperature,
469
Velocity
axial, in pressure-driven cross-flow,
243, 245
contour lines for, in equilateral trian-
gular array, 314
Viscosity, conversion table for, 442t
Volume. See also Control volume.
conversion table for, 437t
Volume-averaged energy conservation
equation, derivation of, 195-199



Volume-averaged linear momentum Water, saturation state properties of,

equation, derivation of, 185-195 452t-453t
Volume-averaged mass conservation Weber number, 476t

equation, derivation of, 177-185 Work, energy, torque, conversion table
Volume-averaging theorems, local, for, 440t

proof of, 489-492
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