C++ for Programmers: Deitel® Developer Series
by Paul J. Deitel - Deitel & Associates, Inc.; Harvey M. Deitel - Deitel & Associates, Inc.

Can Faar Pragrammers

Publisher: Prentice Hall

Pub Date: January 23, 2009

Print ISBN-10: 0-13-700130-4
Print ISBN-13: 978-0-13-700130-9
Web ISBN-10: 0-13-701849-5
Web ISBN-13: 978-0-13-701849-9
Pages: 1056

Overview

PRACTICAL, EXAMPLE-RICH COVERAGE OF:
e C(Classes, Objects, Encapsulation, Inheritance, Polymorphism

e |Integrated OOP Case Studies: Time, GradeBook, Employee

e Industrial-Strength, 95-Page OOD/UML® 2 ATM Case Study

e Standard Template Library (STL): Containers, Iterators and Algorithms
® |/O, Types, Control Statements, Functions

® Arrays, Vectors, Pointers, References

e String Class, C-Style Strings

® Operator Overloading, Templates

e Exception Handling, Files

e Bit and Character Manipulation

® Boost Libraries and the Future of C++

e GNU™ and Visual C++® Debuggers
e And more...
VISIT WWW.DEITEL.COM

e [For information on Deitel® Dive-Into® Series corporate training courses offered at customer sites worldwide
(or write to deitel@deitel.com)

e Download code examples

® Check out the growing list of programming, Web 2.0 and software-related Resource Centers

e To receive updates for this book, subscribe to the free DEITEL® BUZZ ONLINE e-mail newsletter at
www.deitel.com/newsletter/subscribe.html

® Read archived issues of the DEITEL® BUZZ ONLINE

The professional programmer's DEITEL® guide to C++ and object-oriented application development

Written for programmers with a background in high-level language programming, this book applies the Deitel signature
live-code approach to teaching programming and explores the C++ language and C++ Standard Libraries in depth. The
book presents the concepts in the context of fully tested programs, complete with syntax shading, code highlighting,
code walkthroughs and program outputs. The book features 240 C++ applications with over 15,000 lines of proven C++
code, and hundreds of tips that will help you build robust applications.

Start with an introduction to C++ using an early classes and objects approach, then rapidly move on to more advanced
topics, including templates, exception handling, the Standard Template Library (STL) and selected features from the

Boost libraries. You'll enjoy the Deitels' classic treatment of object-oriented programming and the OOD/UML® 2 ATM
case study, including a complete C++ implementation. When you're finished, you'll have everything you need to build
object-oriented C++ applications.

The DEITEL® Developer Series is designed for practicing programmers. The series presents focused treatments of
emerging technologies, including C++, .NET, Java™, web services, Internet and web development and more.

PRE-PUBLICATION REVIEWER TESTIMONIALS

"An excellent 'objects first' coverage of C++. The example-driven presentation is enriched by the optional UML case
study that contextualizes the material in an ongoing software engineering project." —Gavin Osborne, Saskatchewan
Institute of Applied Science and Technology

"Introducing the UML early on is a great idea." —Raymond Stephenson, Microsoft

"Good use of diagrams, especially of the activation call stack and recursive functions." —Amar Raheja, California State
Polytechnic University, Pomona

"Terrific discussion of pointers—probably the best | have seen." —Anne B. Horton, Lockheed Martin

"Great coverage of polymorphism and how the compiler implements polymorphism 'under the hood." —Ed
James-Beckham, Borland

"The Boost/C++0x chapter will get you up and running quickly with the memory management and regular expression
libraries, plus whet your appetite for new C++ features being standardized.”" —Ed Brey, Kohler Co.

"Excellent introduction to the Standard Template Library (STL). The best book on C++ programming!" —Richard
Albright, Goldey-Beacom College

"Just when you think you are focused on learning one topic, suddenly you discover you've learned more than you
expected." —Chad Willwerth, University of Washington, Tacoma

"The most thorough C++ treatment I've seen. Replete with real-world case studies covering the full software
development lifecycle. Code examples are extraordinary!" —Terrell Hull, Logicalis Integration Solutions/

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
800) 382-3419
:orpsales@pearsontechqroup.coni

For sales outside the U. S., please contact:

nternational@pearsoned.co;l
Visit us on the Web:jnformit.com/P

Library of Congress Cataloging-in-Publication Data

On file

© 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
One Lake Street

Upper Saddle River, NJ 07458

ISBN-13: 978-0-13-700130-9
Text printed in the United States on recycled paper at R.R . Donnelley in Crawfordsville, Indiana.

First printing, January 2009

Trademarks
DEITEL , the double-thumbs-up bug and Dive Into are registered trademarks of Deitel and Associates, Inc.

Microsoft, Windows, Visual Studio and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Object Management Group, OMG, Unified Modeling Language and UML are either trademarks or registered
trademarks of Object Management Group, Inc.

Rational Unified Process and RUP are registered trademarks of IBM Corporation.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/PH

Unicode is a registered trademark of The Unicode Consortium.

Dedication

In memory of Joseph Weizenbaum MIT Professor Emeritus of Computer Science: For making us
think.

—Paul and Harvey Deitel

Deitel® Series Page

How to Program Series

C++ How to Program 6/E

Visual C++® 2008 How to Program 2/E
C How to Program, 5/E
Internet & World Wide Web How to Program 4/E

Java How to Program, 7/E
Visual Basic® 2008 How to Program

Visual C#® 2008 How to Program 3/E
Small Java™ How to Program, 6/E

Small C++ How to Program, 5/E

Simply Series
Simply C++: An Application-Driven Tutorial Approach

Simply Java™ Programming: An Application-Driven Tutorial Approach

Simply C#: An Application-Driven Tutorial Approach

Simply Visual Basi(:® 2008, 3/E: An Application-Driven Tutorial Approach

SafariX Web Books

l/vww.deitel.com/books/SafariX.htm

C++ How to Program, 5/E & 6/E

Java How to Program, 6/E & 7/E

Simply C++: An Application-Driven Tutorial Approach

Simply Visual Basic 2008: An Application-Driven Tutorial Approach 3/E
Small C++ How to Program 5/E

Small Java How to Program 6/E

Visual Basic 2008 How to Program

Visual C# 2008 How to Program, 3/E

http://www.deitel.com/books/SafariX.html

Deitel Developer Series
AJAX, Rich Internet Applications and Web Development for Programmers
C++ for Programmers
C# 2008 for Programmers 3/E
Java for Programmers

Javascript for Programmers

LiveLessons Video Learning Products

l/vww.deitel.com/books/LiveLessonsJ

Java Fundamentals Parts 1 and 2
C# Fundamentals Parts 1 and 2
C++ Fundamentals Parts 1 and 2

JavaScript Fundamentals Parts 1 and 2

To follow the Deitel publishing program, please register for the freeDeiteI® Buzz Online e-mail newsletter at:

l/vww.deitel.com/newsletter/subscribe.htm

To communicate with the authors, send e-mail to:

Heitel@deitel.co

For information on government and corporate Dive-lnto® Series on-site seminars offered by Deitel & Associates, Inc.
worldwide, visit:

l/vww.deitel.com/trainian

or write to

pHeitel@deitel.co

For continuing updates on Prentice Hall/Deitel publications visit:

l/vww.prenhall.com/deitel

Check out our Resource Centers for valuable web resources that will help you master Visual C#, other important
programming languages, software and Internet- and web-related topics:

l/vww.deitel.com/ResourceCenters.htm

http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/newsletter/subscribe.html
mailto:deitel@deitel.com
http://www.deitel.com/training/
mailto:deitel@deitel.com
http://www.deitel.com/
http://www.prenhall.com/deitel
http://www.deitel.com/ResourceCenters.html

Deitel Resource Centers

Our Resource Centers focus on the vast amounts of free content available online. Find resources, downloads, tutorials,
documentation, books, e-books, journals, articles, blogs, RSS feeds and more on many of today's hottest programming
and technology topics. For the most up-to-date list of our Resource Centers, visit:

l/vww.deitel.com/ResourceCenters.htm

Let us know what other Resource Centers you'd like to see! Also, please register for the 1‘relbeitel® Buzz Online e-mail
newsletter at:

l/vww.deitel.com/newsletter/subscribe.htm

Computer Science
Functional Programming
Regular Expressions

Programming

ASP.NET 3.5

Adobe Flex

Ajax

Apex

ASP.NET Ajax

ASP.NET

C

C++

C++ Boost Libraries

C++ Game Programming

C#

Code Search Engines and Code Sites
Computer Game Programming
Css 21

Dojo

Facebook Developer Platform
Flash 9

Functional Programming

Java

Java Certification and Assessment Testing
Java Design Patterns

Java EE 5

Java SE 6

Java SE 7 (Dolphin) Resource Center
JavaFX

JavaScript

JSON

Microsoft LINQ

Microsoft Popfly

NET

.NET 3.0

.NET 3.5

OpenGL

Perl

PHP

Programming Projects

Python

Regular Expressions

Ruby

http://www.deitel.com/ResourceCenters.html
http://www.deitel.com/newsletter/subscribe.html

Ruby on Rails

Silverlight

Visual Basic

Visual C++

Visual Studio Team System

Web 3D Technologies

Web Services

Windows Presentation Foundation
XHTML

XML

Games and Game Programming
Computer Game Programming
Computer Games

Mobile Gaming

Sudoku

Internet Business
Affiliate Programs
Competitive Analysis
Facebook Social Ads
Google AdSense

Google Analytics

Google Services

Internet Advertising
Internet Business Initiative
Internet Public Relations
Link Building
Location-Based Services
Online Lead Generation
Podcasting

Search Engine Optimization
Selling Digital Content
Sitemaps

Web Analytics

Website Monetization
YouTube and AdSense

Java

Java

Java Certification and Assessment Testing
Java Design Patterns

Java EE 5

Java SE 6

Java SE 7 (Dolphin) Resource Center
JavaFX

Microsoft

ASP.NET

ASP.NET 3.5

ASP.NET Ajax

C#

DotNetNuke (DNN)
Internet Explorer 7 (IE7)
Microsoft LINQ

.NET

.NET 3.0

.NET 3.5

SharePoint

Silverlight

Visual Basic

Visual C++

Visual Studio Team System
Windows Presentation Foundation
Windows Vista

Microsoft Popfly

Open Source & LAMP Stack
Apache
DotNetNuke (DNN)
Eclipse

Firefox

Linux

MySQL

Open Source

Perl

PHP

Python

Ruby

Software

Apache
DotNetNuke (DNN)
Eclipse

Firefox

Internet Explorer 7 (IE7)
Linux

MySQL

Open Source
Search Engines
SharePoint

Skype

Web Servers
Wikis

Windows Vista

Web 2.0

Alert Services

Attention Economy

Blogging

Building Web Communities
Community Generated Content
Facebook Developer Platform
Facebook Social Ads

Google Base

Google Video

Google Web Toolkit (GWT)
Internet Video

Joost

Location-Based Services
Mashups

Microformats

Recommender Systems

RSS

Social Graph

Social Media

Social Networking

Software as a Service (SaaS)
Virtual Worlds

Web 2.0

Web 3.0

Widgets

Dive Into Web 2.0 eBook
Web 2 eBook

Other Topics
Computer Games
Computing Jobs
Gadgets and Gizmos
Ring Tones

Sudoku

Preface

"The chief merit of language is clearness . . ."

—Galen

Welcome to C++ for Programmers ! At Deitel & Associates, we write programming language professional books and
textbooks for publication by Prentice Hall, deliver programming languages corporate training courses at organizations
worldwide and develop Internet businesses. This book is intended for programmers who do not yet know C++, and may or
may not know object-oriented programming.

Features of C++ for Programmers

The Tour of the Book section of this Preface will give you a sense d++ for Programmers' coverage of C++ and
object-oriented programming. Here's some key features of the book:

Early Classes and Objects Approach.We present object-oriented programming, where appropriate, from the
start and throughout the text.

. .] . .
Integrated Case Studies. We develop theGradeBook class in 7], the Time class in several sections of
13

, the Employee class in , and the optional OOD/UML ATM case study iH,

Unified Modeling Language™ 2 (UML 2). The Unified Modeling Language (UML) has become the preferred
graphical modeling language for designers of object-oriented systems. We use UML class diagrams to visually
represent classes and their inheritance relationships, and we use UML activity diagrams to demonstrate the flow of
control in each of C++'s control statements. We emphasize the UML in the optional OOD/UML ATM case study

Optional OOD/UML ATM Case Study. We introduce a concise subset of the UML 2, then guide you through a
first design experience intended for the novice object-oriented designer/programmer. The case study was reviewed
by a distinguished team of OOD/UML industry professionals and academics. The case study is not an exercise;
rather, it's a fully developed end-to-end learning experience that concludes with a detailed walkthrough of the
complete 877-line C++ code implementation. We take a detailed tour of the nine sections of this case study later in
the Preface.

Function Call Stack Explanation. In , we provide a detailed discussion (with illustrations) of the
function call stack and activation records to explain how C++ is able to keep track of which function is currently
executing, how automatic variables of functions are maintained in memory and how a function knows where to
return after it completes execution.

Class string. We use class string instead of C-like pointer-basedchar * strings for most string manipulations
throughout the book. We include discussions of char * strings in, @ E and@ to give you practice with
pointer manipulations, to illustrate dynamic memory allocation with new and delete , to build our ownstring class, and
to prepare you for working with char * strings in C and C++ legacy code.

=

Class Template vector. We use class templatevector instead of C-like pointer-based array manipulations
throughout the book. However, we begin by discussing C-like pointer-based arrays in to prepare_you f
working with C and C++ legacy code and to use as a basis for building our own customized Array class in Chaptel

Treatment of Inheritance and Polymorphism. E include anEmployee class hierarchy that makes
the treatment of inheritance and polymorphism clear and accessible for programmers who are new to OOP.

Discussion and lllustration of How Polymorphism Works "Under the Hood." contains a detailed
diagram and explanation of how C++ can implement polymorphism, virtual functions and dynamic binding

internally. This gives you a solid understanding of how these capabilities really work. More importantly, it helps you
appreciate the overhead of polymorphism—in terms of additional memory consumption and processor time. This
helps you determine when to use polymorphism and when to avoid it.

e Standard Template Library (STL). This might be one of the most important topics in the book in terms of
software reuse. The STL defines powerful, template-based, reusable components that implement many common
data structures and algorithms used to process those data structures. introduces the STL and
discusses its three key components—containers, iterators and algorithms. Using STL components provides
tremendous expressive power, often reducing many lines of non-STL code to a single statement.

® |SO/IEC C++ Standard Compliance. We have audited our presentation against the most recent ISO/IEC C++
standard document for completeness and accuracy, [Note: A PDF copy of the C++ standard (document number
INCITS/ISO/IEC 14882-2003) can be purchased at jvebstore.ansi.org/ansidocstore/default.asg.

e Future of C++. In , which considers the future of C++, we introduce the Boost C++ Libraries, Technical
Report 1 (TR1) and C++0x. The free Boost open source libraries are created by members of the C++ community.
Technical Report 1 describes the proposed changes to the C++ Standard Library, many of which are based on
current Boost libraries. The C++ Standards Committee is revising the C++ Standard. The main goals for the new
standard are to make C++ easier to learn, improve library building capabilities, and increase compatibility with the
C programming language. The last standard was published in 1998. Work on the new standard, currently referred
to as C++0x, began in 2003. The new standard is likely to be released in 2009. It will include changes to the core

language and, most likely, many of the libraries in TR1. We overview the TR1 libraries and provide code
examples for the "regular expression" and "smart pointer" libraries.

—

® Debugger Appendices. We include two Using the Debugger appendice, Using the Visual Studio
Debugger, and endix H|, Using the GNU C++ Debugger.

e Code Testing on Multiple Platforms. We tested the code examples on various popular C++ platforms. For the
most part, the book's examples port easily to standard-compliant compilers.

e FErrors and Warnings Shown for Multiple Platforms.For programs that intentionally contain errors to illustrate a
key concept, we show the error messages that result on several popular platforms.

All of this was carefully reviewed by distinguished industry developers and academics. We believe that this book will provide
you with an informative, interesting, challenging and entertaining C++ educational experience.

As you read this book, if you have questions, send an e-mail tfdeitel@deitel.com ; we'll respond promptly. For updates on this

book and the status of all supporting C++ software, and for the latest news on all Deitel publications and services, visit

. Sign up a .deitel.com/newsletter/subscribe.h itel® i -mail newsletter and
check out our growing list of C++ and related Resource Centers at .deitel.com/ResourceCenters.htm|. Each week we

announce our latest Resource Centers in the newsletter.

Learning Features

C++ for Programmers contains a rich collection of examples. The book concentrates on the principles of good software
engineering and stresses program clarity. We teach by example. We are educators who teach programming languages in
industry classrooms worldwide. The Deitels have taught courses at all levels to government, industry, military and academic
clients of Deitel & Associates.

Live-Code Approach. C++ for Programmers is loaded with "live-code" examples—by this we mean that each new concept is
presented in the context of a complete working C++ application that is immediately followed by one or more actual
executions showing the program's inputs and outputs.

Syntax Shading. We syntax-shade all the C++ code, similar to the way most C++ integrated development environments
(IDEs) and code editors syntax-color code. This greatly improves code readability—an especially important goal, given that

http://webstore.ansi.org/ansidocstore/default.asp
mailto:deitel@deitel.com
http://www.deitel.com/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/ResourceCenters.html

this book contains over 15,500 lines of code. Our syntax-shading conventions are as follows:

comments appear in italic

keywords appear in bold italic

errors and ASP.NET script delimiters appear in bold black
constants and literal values appear in bold gray

all other code appears in plain black

Code Highlighting. We place white rectangles around the key code segments in each program.

Using Fonts for Emphasis. We place the key terms and the index's page reference for each defining occurrence ifold italic
text for easier reference. We emphasize on-screen components in the bold Helvetica font (e.g., theFile menu) and
emphasize C++ program text in the Lucida font (e.g.,int x = 5).

e-code examples forC++ for Programmers are available for download from
.deitel.com/books/cppfp}.

Objectives. Each chapter begins with a statement of objectives. This lets you know what to expect and gives you an
opportunity, after reading the chapter, to determine if you've met the objectives.

Quotations. The learning objectives are followed by quotations. Some are humorous; some are philosophical; others offer
interesting insights. We hope that you enjoy relating the quotations to the chapter material.

Outline. The chapter outlines help you approach the material in a top-down fashion, so you can anticipate what is to come
and set a comfortable and effective learning pace.

lllustrations/Figures. Abundant charts, tables, line drawings, programs and program output are included. We model the flow
of control in control statements with UML activity diagrams. UML class diagrams model the fields, constructors and methods
of classes. We make extensive use of six major UML diagram types in the optional OOD/UML 2 ATM case study.

Programming Tips. We include programming tips to help you focus on important aspects of program development. These
tips and practices represent the best we've gleaned from a combined seven decades of programming experience—they
provide a basis on which to build good software.

Good Programming Practice

.ﬁ Good Programming Practices call attention to techniques that will help you produce
programs that are clearer, more understandable and more maintainable.

Common Programming Error

T
ﬁ Pointing out these Common Programming Errors reduces the likelihood that you'll
make the same mistakes.

Error-Prevention Tip

http://www.deitel.com/books/cppfp/

@ These tips contain suggestions for exposing bugs and removing them from your
programs; many describe aspects of C++ that prevent bugs from getting into programs
in the first place.

Performance Tip

These tips highlight opportunities for making your programs run faster or minimizing
the amount of memory that they occupy.

Portability Tip

@' We include Portability Tips to help you write code that will run on a variety of platforms
T and to explain how C++ achieves its high degree of portability.

Software Engineering Observation

1
| The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Wrap-Up Section. Each of the chapters ends with a brief "wrap-up" section that recaps the chapter content and transitions to
the next chapter.

Thousands of Index Entries. We've included an extensive index which is especially useful when you use the book as a
reference.

"Double Indexing" of C++ Live-Code Examples. For every source-code program in the book, we index the figure caption both
alphabetically and as a subindex item under "Examples." This makes it easier to find examples using particular features.

Tour of the Book

You'll now take a tour of the C++ capabilities you'll study ifC++ for Programmers. illustrates the dependencies
among the chapters. We recommend studying the topics in the order indicated by the arrows, though other orders are
possible.

Fig. 1. C++ for Programmers chapter dependency chart.

f/— | Introduction -\\.

2 Introduction to
C++ Programming

3 Introduction to Classes and Chjects
4 Control Statements: Part |

5 Control Statements: Fart 2

Intreduchon oo
Object-Onented Programming

& Functions and an
Imtroductbon to Recursion

T Arrays and Vectors

|9 Bits. Characters. -= 8 Pointers and
C-Strings and structs \,\‘_ Pnintzr—Easled Stnngs

e
S

9 Classes: A Deeper
Look, Part |

10 Classes: A Deeper
Look, Part 2

| 1 Operator Overloading:
Swing and Array Obygects

12 QOP: Inhentance

13 OOP: Polymorphism

Object-Onented
Programming: A Deeper Look

14 Templates
£ r“f 15 Stream - .
£ Input/Output | & Exception = 20 Standard Template
E _ Handling _,./I Library (STL)
=1 17File 18 Class
HE4 Processing stringand 21 Boost Libranes, 22 Other
8 String Stream | Technical Report | Topics
v \\ Pr-::-::miny and C++0x

' Maost of Chapter |5 is readable after Chapter 7.
A small portion requires Chapters 12 and 14.

, Introduction, discusses the origin of the C++ programming language, and introduces a typical C++
programming environment. We walk through a "test drive" of a typical C++ application on the Windows and Linux platforms.
We also introduce basic object technology concepts and terminology, and the Unified Modeling Language.

, Introduction to C++ Programming, provides a lightweight introduction to programming applications in C++. The
programs in this chapter illustrate how to display data on the screen, obtain data from the keyboard, make decisions and
perform arithmetic operations.

, Introduction to Classes and Objects, provides a friendly early introduction to classes and objects. We introduce
classes, objects, member functions, constructors and data members using a series of simple real-world examples. We
develop a well-engineered framework for organizing object-oriented programs in C++. We motivate the notion of classes with
a simple example. Then we present a carefully paced sequence of seven complete working programs to demonstrate
creating and using your own classes. These examples begin our integrated case study on developing a grade-book
class that an instructor can use to maintain student test scores. This case study is enhanced over the next several chapters,

culminating with the version presented in [Chapter 7. The GradeBook class case study describes how to define a class and
how to use it to create an object. The case study discusses how to declare and define member functions to implement the
class's behaviors, how to declare data members to implement the class's attributes and how to call an object's member
functions to make them perform their tasks. We introduce C++ Standard Library class string and createstring objects to store
the name of the course that a GradeBook object represents. We explain the differences between data members of a class and
local variables of a function, and how to use a constructor to ensure that an object's data is initialized when the object is
created. We show how to promote software reusability by separating a class definition from the client code (e.g., function
main) that uses the class. We also introduce another fundamental principle of good software engineering—separating

interface from implementation.

, Control Statements: Part 1, focuses on the program-development process involved in creating useful classes.
The chapter introduces some control statements for decision making (if andif...else) and repetition (while). We examine
counter-controlled and sentinel-controlled repetition using the GradeBook class from , and introduce C++'s
increment, decrement and assignment operators. The chapter includes two enhanced versions of theGradeBook class,
each based on 's final version. The chapter uses simple UML activity diagrams to show the flow of control through
each of the control statements.

, Control Statements: Part 2, continues the discussion of C++ control statements with examples of thier
repetition statement, the do...while repetition statement, the switch selection statement, thebreak statement and thecontinue
statement. We create an enhanced version of classGradeBook that uses aswitch statement to count the number of A, B, C,
D and F grades entered by the user. The chapter also a discusses logical operators.

, Functions and an Introduction to Recursion takes a deeper look inside objects and their member functions.
We discuss C++ Standard Library functions and examine more closely how you can build your own functions. The chapter's
first example continues the GradeBook class case study with an example of a function with multiple parameters. You may
enjoy the chapter's treatment of random numbers and simulation, and the discussion of the dice game of craps, which makes
elegant use of control statements. The chapter discusses the so-called "C++ enhancements to C," including inline functions,
reference parameters, default arguments, the unary scope resolution operator, function overloading and function templates.
We also present C++'s call-by-value and call-by-reference capabilities. The header files table introduces many of the header
files that you'll use throughout the book. We discuss the function call stack and activation records to explain how C++ keeps
track of which function is currently executing, how automatic variables of functions are maintained in memory and how a
function knows where to return after it completes execution. The chapter then offers a solid introduction to recursion.

, Arrays and Vectors, explains how to process lists and tables of values. We discuss the structuring of data in
arrays of data items of the same type and demonstrate how arrays facilitate the tasks performed by objects. The early parts

of this chapter use C-style, pointer-based arrays, which, as you'll see in Chapter §, can be treated as pointers to the array

contents in memory. We then present arrays as full-fledged objects, introducing the C++ Standard Library vector class
template—a robust array data structure. The chapter presents numerous examples of both one-dimensional arrays and
two-dimensional arrays. Examples in the chapter investigate various common array manipulations, printing bar charts,
sorting data and passing arrays to functions. The chapter includes the final two GradeBook case study sections, in which
we use arrays to store student grades for the duration of a program's execution. Previous versions of the class process a set
of grades entered by the user, but do not maintain the individual grade values in data members of the class. In this chapter,
we use arrays to enable an object of the GradeBook class to maintain a set of grades in memory, thus eliminating the need to
repeatedly input the same set of grades. The first version of the class stores the grades in a one-dimensional array. The
second version uses a two-dimensional array to store the grades of a number of students on multiple exams in a semester.

Another key feature of this chapter is the discussion of elementary sorting and searching techniques.

, Pointers and Pointer-Based Strings, presents one of the most powerful features of the C++
language—pointers. The chapter provides detailed explanations of pointer operators, call by reference, pointer expressions,
pointer arithmetic, the relationship between pointers and arrays, arrays of pointers and pointers to functions. We demonstrate
how to use const with pointers to enforce the principle of least privilege to build more robust software. We discuss using the
sizeof operator to determine the size of a data type or data items in bytes during program compilation. There is an intimate
relationship between pointers, arrays and C-style strings in C++, so we introduce basic C-style string-manipulation concepts
and discuss some of the most popular C-style string-handling functions, such as getline (input a line of text),strcpy and strncpy
(copy a string), strcat and strncat (concatenate two strings),stremp and strncmp (compare two strings), strtok (“tokenize" a string
into its pieces) and strlen (return the length of a string). We frequently usestring objects (introduced in in place of
C-style, char * pointer-based strings. However, we includechar * strings in to help you master pointers and prepare
for the professional world in which you'll see a great deal of C legacy code that has been implemented over the last three
decades. In C and "raw C++" arrays and strings are pointers to array and string contents in memory (even function names
are pointers).

, Classes: A Deeper Look, Part 1, continues our discussion of object-oriented programming. This chapter uses a
rich Time class case study to illustrate accessing class members, separating interface from implementation, using access
functions and utility functions, initializing objects with constructors, destroying objects with destructors, assignment by default
memberwise copy and software reusability. We discuss the order in which constructors and destructors are called during the
lifetime of an object. A modification of the Time case study demonstrates the problems that can occur when a member
function returns a reference to a private data member, which breaks the encapsulation of the class.

, Classes: A Deeper Look, Part 2, continues the study of classes and presents additional object-oriented
programming concepts. The chapter discusses declaring and using constant objects, constant member functions,
composition—the process of building classes that have objects of other classes as members, friend functions and friend
classes that have special access rights to the private and protected members of classes, thethis pointer, which enables an
object to know its own address, dynamic memory allocation, static class members for containing and manipulating class-wide
data, examples of popular abstract data types (arrays, strings and queues), container classes and iterators. In our discussion
of const objects, we mention keywordmutable which is used in a subtle manner to enable modification of "non-visible"
implementation in const objects. We discuss dynamic memory allocation usingnew and delete. When new fails, the program
terminates by default because new "throws an exception” in standard C++. We motivate the discussion obtatic class
members with a video-game-based scenario. We emphasize how important it is to hide implementation details from clients of
a class; then, we discuss proxy classes, which provide a means of hiding implementation (including the private data in class
headers) from clients of a class.

, Operator Overloading; String and Array Objects, presents one of the most popular topics in our C++
courses. Professionals really enjoy this material. They find it a perfect complement to the detailed discussion of crafting
raptersd

valuable classes in [Chapters 4 and[L] . Operator overloading enables you to tell the compiler how to use existing operators
with objects of new types. C++ already knows how to use these operators with built-in types, such as integers, floats and
characters. But suppose that we create a new String class—what would the plus sign mean when used betweenString
objects? Many programmers use plus (+) with strings to mean concatenation. I, you'll see how to "overload" the
plus sign, so when it is written between two String objects in an expression, the compiler will generate a function call to an
"operator function" that will concatenate the two String s. The chapter discusses the fundamentals of operator overloading,
restrictions in operator overloading, overloading with class member functions vs. with nonmember functions, overloading

unary and binary operators and converting between types. features a collection of substantial case studies
including an Array class, aString class and aDate class. Using operator overloading wisely helps you add extra "polish” to

your classes.

, Object-Oriented Programming: Inheritance, introduces one of the most fundamental capabilities of
object-oriented programming languages—inheritance: a form of software reusability in which new classes are developed
quickly and easily by absorbing the capabilities of existing classes and adding appropriate new capabilities. In the context of
an Employee hierarchy case study, this chapter presents a five-example sequence demonstratingrivate data, protected data
and good software engineering with inheritance. The chapter discusses the notions of base classes and derived classes,
protected members, public inheritance, protected inheritance, private inheritance, direct base classes, indirect base classes,

constructors and destructors in base classes and derived classes, and software engineering with inheritance. The chapter
also compares inheritance (the is-a relationship) with composition (thehas-a relationship) and introduces theuses-a and
knows-a relationships.

, Object-Oriented Programming: Polymorphism deals with another fundamental capability of object-oriented
programming: polymorphic behavior. _Chaéter 13 builds on the inheritance concepts presented i Chaéter 12 and focuses on
the relationships among classes in a class hierarchy and the powerful processing capabilities that these relationships enable.
When many classes are related to a common base class through inheritance, each derived-class object may be treated as a
base-class object. This enables programs to be written in a simple and general manner independent of the specific types of
the derived-class objects. New kinds of objects can be handled by the same program, thus making systems more extensible.
The chapter discusses the mechanics of achieving polymorphic behavior via virtual functions. It distinguishes between

abstract classes (from which objects cannot be instantiated) and concrete classes (from which objects can be instantiated).
Abstract classes are useful for providing an inheritable interface to classes throughout the hierarchy. We include an
illustration and a precise explanation of the vtables (virtual function tables) that the C++ compiler builds automatically to
support polymorphism. To conclude, we introduce run-time type information (RTTI) and dynamic casting, which enable a
program to determine an object's type at execution time, then act on that object accordingly.

, Templates, discusses one of C++'s more powerful software reuse features, namely templates. Function
templates and class templates enable you to specify, with a single code segment, an entire range of related overloaded
functions (called function template specializations) or an entire range of related classes (called class-template
specializations). This technique is called generic programming. We might write a single class template for a stack class, then
have C++ generate separate class-template specializations, such as a "stack-of-int" class, a "stack-offloat" class, a
"stack-of-string " class and so on. The chapter discusses using type parameters, nontype parameters and default types for
class templates. We also discuss the relationships between templates and other C++ features, such as overloading,
inheritance, friends and static members. We greatly enhance the treatment of templates in our discussion of the Standard

Template Library (STL) containers, iterators and algorithms in .

, Stream Input/Output, contains a comprehensive treatment of standard C++ input/output capabilities. This
chapter discusses a range of capabilities sufficient for performing most common 1/O operations and overviews the remaining
capabilities. Many of the I/O features are object oriented. The various I/O capabilities of C++, including output with the stream
insertion operator, input with the stream extraction operator, type-safe 1/0, formatted 1/O, unformatted I/O (for performance).
Users can specify how to perform I/O for objects of user-defined types by overloading the stream insertion operator &<) and
the stream extraction operator (>>). C++ provides various stream manipulators that perform formatting tasks. This chapter
discusses stream manipulators that provide capabilities such as displaying integers in various bases, controlling floating-point
precision, setting field widths, displaying decimal point and trailing zeros, justifying output, setting and unsetting format state,
setting the fill character in fields. We also present an example that creates user-defined output stream manipulators.

, Exception Handling, discusses how exception handling enables you to write programs that are robust, fault
tolerant and appropriate for business-critical and mission-critical environments. The chapter discusses when exception
handling is appropriate; introduces the basic capabilities of exception handling withtry blocks, throw statements andcatch
handlers; indicates how and when to rethrow an exception; explains how to write an exception specification and process
unexpected exceptions; and discusses the important ties between exceptions and constructors, destructors and inheritance.
We discuss rethrowing an exception, and illustrate how new can fail when memory is exhausted. Many older C++ compilers
return O by default when new fails. We show the new style ofrew failing by throwing abad_alloc (bad allocation) exception. We
illustrate how to use function set_new_handler to specify a custom function to be called to deal with memory-exhaustion
situations. We discuss how to use the auto_ptr class template todelete dynamically allocated memory implicitly, thus avoiding
memory leaks. To conclude this chapter, we present the Standard Library exception hierarchy.

, File Processing, discusses techniques for creating and processing both sequential files and random-access
files. The chapter begins with an introduction to the data hierarchy from bits, to bytes, to fields, to records and to files. Next,
we present the C++ view of files and streams. We discuss sequential files and build programs that show how to open and
close files, how to store data sequentially in a file and how to read data sequentially from a file. We then discuss
random-access files and build programs that show how to create a file for random access, how to read and write data to a file
with random access and how to read data sequentially from a randomly accessed file. The case study combines the
techniques of accessing files both sequentially and randomly into a complete transaction-processing program.

, Classstring and String Stream Processing, The chapter discusses C++'s capabilities for inputting data from
strings in memory and outputting data to strings in memory; these capabilities often are referred to as in-core formatting or
string stream processing. Class string is a required component of the Standard Library. We preserved the treatment of C-like,

pointer-based strings in .Chaéterg and later for several reasons. First, it strengthens your understanding of pointers. Second,
for the next decade or so, C++ programmers will need to be able to read and modify the enormous amounts of C legacy code
that has accumulated over the last quarter of a century—this code processes strings as pointers, as does a large portion of
the C++ code that has been written in industry over the last many years. In we discussstring assignment,
concatenation and comparison. We show how to determine various string characteristics such as astring 's size, capacity and
whether or not it is empty. We discuss how to resize a string . We consider the various "find" functions that enable us to find a
substring in a string (searching thestring either forwards or backwards), and we show how to find either the first occurrence or
last occurrence of a character selected from a string of characters, and how to find the first occurrence or last occurrence of a
character that is not in a selected string of characters. We show how to replace, erase and insert characters in atring and how
to convert a string object to a C-stylechar * string.

, Bits, Characters, C Strings andstructs , begins by comparing C++ structures to classes, then defining and
using C-like structures. We show how to declare structures, initialize structures and pass structures to functions. C++'s
powerful bit-manipulation capabilities enable you to write programs that exercise lower-level hardware capabilities. This helps
programs process bit strings, set individual bits and store information more compactly. Such capabilities, often found only in
low-level assembly languages, are valued by programmers writing system software, such as operating systems and

networking software. We discuss C-style char * string manipulation inEhaéter g, where we present the most popular
ﬁ

string-manipulation functions. In , we continue our presentation of characters and C-stylehar * strings. We

present the various character-manipulation capabilities of the <cctype> library—such as the ability to test a character to
determine whether it is a digit, an alphabetic character, an alphanumeric character, a hexadecimal digit, a lowercase letter or
an uppercase letter. We present the remaining string-manipulation functions of the various string-related libraries.

, Standard Template Library (STL), discusses the STL's powerful, template-based, reusable components that
implement many common data structures and algorithms used to process those data structures. The STL offers proof of
concept for generic programming with templates—introduced in . This chapter discusses the STL's three key
components—containers (templatized data structures), iterators and algorithms. Containers are data structures capable of
storing objects of any type. We'll see that there are three container categories—first-class containers, adapters and near
containers. Iterators, which have similar properties to those of pointers, are used by programs to manipulate the container
elements. In fact, standard arrays can be manipulated as STL containers, using pointers as iterators. Manipulating
containers with iterators is convenient and provides tremendous expressive power when combined with STL algorithms—in
some cases, reducing many lines of code to a single statement. STL algorithms are functions that perform common data
manipulations such as searching, sorting and comparing elements (or entire containers). Most of these use iterators to
access container elements.

, Boost Libraries, Technical Report 1 and C++0x, focuses on the future of C++. We introduce the Boost
Libraries, a collection of free, open source C++ libraries. The Boost libraries are carefully designed to work well with the C++
Standard Library. We then discuss Technical Report 1 (TR1), a description of proposed changes and additions to the
Standard Library. Many of the libraries in TR1 were derived from libraries currently in Boost. The chapter briefly describes the
TR1 libraries. We provide in-depth code examples for two of the most useful libraries, Boost.Regex and Boost.Smart_ptr. The

Boost.Regex library provides support for regular expressions. We demonstrate how to use the library to search a string for
matches to a regular expression, validate data, replace parts of a string and split a string into tokens. The Boost.Smart_ptr
library provides smart pointers to help manage dynamically allocated memory. We discuss the two types of smart pointers
included in TR1—shared_ptr and weak_ptr . We provide examples to demonstrate how these can be used to avoid common
memory management errors. This chapter also discusses the upcoming release of the new standard for C++.

, Other Topics, is a collection of miscellaneous C++ topics. We discuss one more cast operator-eenst_cast. This
operator, static_cast), dynamic_cast) and reinterpret_cast 1), provide a more robust mechanism
for converting between types than do the original cast operators C++ inherited from C (which are now deprecated). We
discuss namespaces, a feature particularly crucial for software developers who build substantial systems. Namespaces
prevent naming collisions, which can hinder such large software efforts. We discuss keyword mutable , which allows a
member of a const object to be changed. Previously, this was accomplished by "casting awagonst-ness", which is considered a

dangerous practice. We also discuss pointer-to-member operators .* and ->* multiple inheritance (including the problem of
"diamond inheritance") and virtual base classes.

, Operator Precedence and Associativity Chart, presents the complete set of C++ operator symbols, in which
each operator appears on a line by itself with its operator symbol, its name and its associativity.

Appendix B, ASCIl Character Set. All the programs in this book use the ASCII character set, which is presented in this
appendix.

preprocessor symbolic constants (_LINE_ , _FILE_ ,_ DATE_ ,_ STDC__,_ TIME__and__TIMESTAMP__) are presented.
Finally, macro assert of the header file<cassert> is discussed, which is valuable in program testing, debugging, verification and
validation.

Appendix H, ATM Case Study Code, contains the implementation of our case study on object-oriented design with the
UML. This appendix is discussed in the tour of the case study (presented shortly).

Appendix H, UML 2: Additional Diagram Types, overviews the UML 2 diagram types that are not found in the OOD/UML
Case Study.

Appendix @, Using the Visual Studio Debugger, demonstrates key features of the Visual Studio Debugger, which allows a
programmer to monitor the execution of applications to locate and remove logic errors. The appendix presents step-by-step
instructions, so you learn how to use the debugger in a hands-on manner.

S
O
@]
D
=}
o
x

, Using the GNU C++ Debugger, demonstrates key features of the GNU C++ Debugger. The appendix presents
step-by-step instructions, so you learn how to use the debugger in a hands-on manner.

Bibliography . The Bibliography lists many books and articles for further reading on C++ and object-oriented programming.

Index . The comprehensive index enables you to locate by keyword any term or concept throughout the text.

Object-Oriented Design of an ATM with the UML: A Tour of the Optional Software Engineering Case Study

In this section, we tour the book's optional case study of object-oriented desi?n with the UML. This tour previews the

contents of the nine Software Engineering Case Study sections (in [Chapters ll»HH andE). After completing this case
study, you'll be thoroughly familiar with a carefully developed and reviewed object-oriented design and implementation for a
significant C++ application.

The design presented in the ATM case study was developed at Deitel & Associates, Inc. and scrutinized by a distinguished
developmental review team of industry professionals and academics. Real ATM systems used by banks and their customers
worldwide are based on more sophisticated designs that take into consideration many more issues than we have addressed
here. Our primary goal throughout the design process was to create a simple design that would be clear to OOD and UML
novices, while still demonstrating key OOD concepts and the related UML modeling techniques.

, Software Engineering Case Study: Introduction to Object Technology and the UML—introduces the
object-oriented design case study with the UML. The section introduces the basic concepts and terminology of object
technology, including classes, objects, encapsulation, inheritance and polymorphism. We discuss the history of the UML. This
is the only required section of the case study.

, (Optional) Software Engineering Case Study: Examining the ATM Requirements

Specification—discusses a requirements specification that specifies the requirements for a system that we'll design and
implement—the software for a simple automated teller machine (ATM). We investigate the structure and behavior of
object-oriented systems in general. We discuss how the UML will facilitate the design process in subsequent Software
Engineering Case Study sections by providing several additional types of diagrams to model our system. We discuss the
interaction between the ATM system specified by the requirements specification and its user. Specifically, we investigate the
scenarios that may occur between the user and the system itself—these are called use cases. We model these interactions,
using use case diagrams of the UML.

, (Optional) Software Engineering Case Study: Identifying the Classes in the ATM Requirements
Specification— begins to design the ATM system. We identify its classes, or "building blocks," by extracting the nouns and
noun phrases from the requirements specification. We arrange these classes into a UML class diagram that describes the
class structure of our simulation. The class diagram also describes relationships, known as associations , among classes.

, (Optional) Software Engineering Case Study: Identifying Class Attributes in the ATM System—focuses
on the attributes of the classes discussed in . A class contains bothattributes (data) and operations (behaviors).
As we'll see in later sections, changes in an object's attributes often affect the object's behavior. To determine the attributes

for the classes in our case study, we extract the adjectives describing the nouns and noun phrases (which defined our

classes) from the requirements specification, then place the attributes in the class diagram we created in Section 3.11.

, (Optional) Software Engineering Case Study: Identifying Objects' States and Activities in the ATM
System— discusses how an object, at any given time, occupies a specific condition called astate. A state transition occurs
when that object receives a message to change state. The UML provides the state machine diagram , which identifies the set
of possible states that an object may occupy and models that object's state transitions. An object also has an activity—the
work it performs in its lifetime. The UML provides the activity diagram —a flowchart that models an object's activity. In this
section, we use both types of diagrams to begin modeling specific behavioral aspects of our ATM system, such as how the
ATM carries out a withdrawal transaction and how the ATM responds when the user is authenticated.

, (Optional) Software Engineering Case Study: Identifying Class Operations in the ATM System—
identifies the operations, or services, of our classes. We extract from the requirements specification the verbs and verb

phrases that specify the operations for each class. We then modify the class diagram of Section 3.1 to include each
operation with its associated class. At this point in the case study, we will have gathered all information possible from the
requirements specification. However, as future chapters introduce such topics as inheritance, we'll modify our classes and
diagrams.

, (Optional) Software Engineering Case Study: Collaboration Among Objects in the ATM System—
provides a "rough sketch" of the model for our ATM system. In this section, we see how it works. We investigate the behavior

of the simulation by discussing collaborations —messages that objects send to each other to communicate. The class
operations that we discovered in turn out to be the collaborations among the objects in our system. We
determine the collaborations, then collect them into a communication diagram —the UML diagram for modeling
collaborations. This diagram reveals which objects collaborate and when. We present a communication diagram of the
collaborations among objects to perform an ATM balance inquiry. We then present the UML sequence diagram for modeling
interactions in a system. This diagram emphasizes the chronological ordering of messages. A sequence diagram models
how objects in the system interact to carry out withdrawal and deposit transactions.

, (Optional) Software Engineering Case Study: Starting to Program the Classes of the ATM System—
takes a break from designing the system's behavior. We begin the implementation process to emphasize the material
discussed in Ehaiter 9. Using the UML class diagram o and the attributes and operations discussed i

and[Section 6.29, we show how to implement a class in C++ from a design. We do not implement all classes—because

we have not completed the design process. Working from our UML diagrams, we create code for the withdrawal class.

, (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System—
continues our discussion of object-oriented programming. We consider inheritance—classes sharing common characteristics
may inherit attributes and operations from a "base" class. In this section, we investigate how our ATM system can benefit
from using inheritance. We document our discoveries in a class diagram that models inheritance relationships—the UML

refers to these relationships as generalizations. We modify the class diagram ofSection 3.1] by using inheritance to group

classes with similar characteristics. This section concludes the design of the model portion of our simulation. We fully

implement this model in 877 lines of C++ code in .

, ATM Case Study Code— The majority of the case study involves designing the model (i.e., the data and logic)
of the ATM system. In this appendix, we implement that model in C++. Using all the UML diagrams we created, we present
the C++ classes necessary to implement the model. We apply the concepts of object-oriented design with the UML and
object-oriented programming in C++ that you learned in the chapters. By the end of this appendix, you'll have completed the
design and implementation of a real-world system, and should feel confident tackling larger systems.

, UML 2: Additional Diagram Types— Overviews the UML 2 diagram types that are not found in the OOD/UML
Case Study.

Compilers and Other Resources

Many C++ development tools are available. We wroteC++ for Programmers_primarily using Microsoft's free Visual C++
Express Edition (l/vww.microsoft.com/express/vcl) and the free GNU C++ a, , Which is already installed on most
Linux systems and can be installed on Mac OS X i GNU C++ in their Xcode development
tools, which Max OS X users can download from developer.apple.com/tools/xcodd.

Additional resources and software downloads are available in our C++ Resource Center:

lw.deitel.com/cglusgluszl

and at the website for this book:

m.deitel.com/books/cggng

For a list of other C++ compilers that are available free for download, visit:

I/vww.thefreecountrv.com/developercitv/ccompilers.shtm

I/vww.compilers.ned

Warnings and Error Messages on Older C++ Compilers

The programs in this book are designed to be used with compilers that support standard C++. However, there are variations
among compilers that may cause occasional warnings or errors. In addition, though the standard specifies various situations
that require errors to be generated, it does not specify the messages that compilers should issue. Warnings and error
messages vary among compilers.

Some older C++ compilers generate error or warning messages in places where newer compilers do not. Although most of
the examples in this book will work with these older compilers, there are a few examples that need minor modifications to
work with older compilers.

Notes Regarding using Declarations and C Standard Library Functions

The C++ Standard Library includes the functions from the C Standard Library. According to the C++ standard document, the
contents of the header files that come from the C Standard Library are part of the "std " namespace. Some compilers (old and
new) generate error messages when using declarations are encountered for C functions.

The Deitel Online Resource Centers

Our website provides Resource Centers bvww.deitel.com/ResourceCenters.html) on various topics including programming
languages, software, Web 2.0, Internet business and open source projects. The Resource Centers evolve out of the research
we do for our books and business endeavors. We've found many (mostly free) exceptional resources including tutorials,

http://www.microsoft.com/express/vc/
http://gcc.gnu.org/
http://developer.apple.com/tools/xcode
http://www.deitel.com/cplusplus/
http://www.deitel.com/books/cppfp/
http://www.thefreecountry.com/developercity/ccompilers.shtml
http://www.compilers.net/
http://www.deitel.com/ResourceCenters.html

documentation, software downloads, articles, blogs, videos, code samples, books, e-books and more. We help you wade
through the vast amount of content on the Internet by providing links to the most valuable resources. Each week we

announce our latest Resource Centers in qQur newsletter, the Deitel® Buzz Online
(lWwww.deitel.com/newsletter/subscribe.html). The following Resource Centers may be of interest to you as you rea@++ for
Programmers:

o C++

e Visual C++ 2008

e C++ Boost Libraries

® C++ Game Programming

® Code Search Engines and Code Sites
e Computer Game Programming
e Computing Jobs

® Open Source

® Programming Projects

® Eclipse

® Linux

e NET

e \Windows Vista

Deitel® Buzz Online Free E-mail Newsletter

Each week, the Deitel® Buzz Online newsletter announces our latest Resource Centers and includes commentary on
industry trends and developments, links to free articles and resources from our published books and upcoming publications,
product-release schedules, errata, challenges, anecdotes, information on our corporate instructor-led training courses and
more. It's also a good way for you to keep posted about issues related to C++ for Programmers. To subscribe, visit

I/vww.deitel.com/newsletter/subscribe.htm

Deitel® LiveLessons Self-Paced Video Training

The Deitel® LiveLessons products are self-paced video training. Each collection provides approximately 14+ hours of an
instructor guiding you through programming training.

Your instructor, Paul Deitel, has personally taught programming at organizations ranging from IBM to Sun Microsystems to
NASA. With the powerful videos included in our LiveLessons products, you'll learn at your own pace as Paul guides you
through programming fundamentals, object-oriented programming and additional topics.

Deitel® LiveLessons products are based on its corresponding best-selling books and Paul's extensive experience presenting
hundreds corporate training seminars. To view sample videos, visit

I/vww.deitel.com/books/livelessonsl

The Java Fundamentals | and Il LiveLessons are available now. For announcements about upcoming DeiteLiveLessons

http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/livelessons/

products, including C++ F
Online email newsletter at .deitel.com/newsletter/subscribe.html.

Deitel® Dive-lnto® Series Instructor-Led Training

JavaScript Fundamentals , subscribe to theDeiteI® Buzz

With our corporate, on-site, instructor-led Dive-lnto® Series programming training courses @), professionals can learn
C++, Java, C, Visual Basic, Visual C#, Visual C++, Python, and Internet and web programming from the internationally
recognized professionals at Deitel & Associates, Inc. Our authors, teaching staff and contract instructors have taught over
1,000,000 people in more than 100 countries how to program in almost every major programming language through:

e Deitel Developer Series professional books

® How to Program Series textbooks
e University teaching

® Professional seminars

® |nteractive multimedia CD-ROM Cyber Classrooms, Complete Training Courses and LiveLessons Video Training

e Satellite broadcasts

Fig. 2. Deitel Dive Into® Series programming training courses.

Deitel Dive Into®Series Programming Training Courses

Java

Intro to Java for Non-Programmers: Part 1

Intro to Java for Non-Programmers: Part 2

Java for Visual Basic, C or COBOL Programmers

Java for C++ or C# Programmers

Advanced Java

C++

Intro to C++ for Non-Programmers: Part 1
Intro to C++ for Non-Programmers: Part 2
C++ and Object Oriented Programming

C

Intro to C for Non-Programmers: Part 1

Intro to C for Non-Programmers: Part 2

C for Programmers

Visual C# 2008

http://www.deitel.com/newsletter/subscribe.html

Deitel Dive Into® Series Programming Training Courses

Intro to Visual C# 2008 for Non-Programmers: Part 1

Intro to Visual C# 2008 for Non-Programmers: Part 2

Visual C# 2008 for Visual Basic, C or COBOL Programmers

Visual C# 2008 for Java or C++ Programmers

Advanced Visual C# 2008

Visual Basic 2008

Intro to Visual Basic 2008 for Non-Programmers: Part 1

Intro to Visual Basic 2008 for Non-Programmers: Part 2

Visual Basic 2008 for VB6, C or COBOL Programmers

Visual Basic 2008 for Java, C# or C++ Programmers

Advanced Visual Basic 2008
Visual C++ 2008

Intro to Visual C++ 2008 for Non-Programmers: Part 1

Intro to Visual C++ 2008 for Non-Programmers: Part 2

Visual C++ 2008 and Object Oriented Programming

Internet and Web Programming

Client-Side Internet and Web Programming

Rich Internet Application (RIA) Development

Server-Side Internet and Web Programming

We're uniquely qualified to turn non-programmers into programmers and to help professional programmers move to new

programming languages. For more information about our on-site, instructor-led Dive-lnto® Series programming training, visit

I/vww.deitel.com/traininqj

Acknowledgments

It is a great pleasure to acknowledge the efforts of many people whose names may not appear on the cover, but whose hard
work, cooperation, friendship and understanding were crucial to the production of the book. Many people at Deitel &
Associates, Inc. devoted long hours to this project—thanks especially to Abbey Deitel and Barbara Deitel.

We'd also like to thank one of the participants in our Honors Internship program who contributed to this publication—Greg
Ayer, a computer science major at Northeastern University.

We are fortunate to have worked on this project with the talented and dedicated team of publishing professionals at Prentice

http://www.deitel.com/training/

Hall. We appreciate the extraordinary efforts of Marcia Horton, Editorial Director of Prentice Hall's Engineering and Computer
Science Division, Mark Taub, Editor-in-Chief of Prentice Hall Professional, and John Fuller, Managing Editor of Prentice Hall

Professional. Carole Snyder, Lisa Bailey and Dolores Mars did a remarkable job recruiting the book's large review team and

managing the review process. Sandra Schroeder designed the book's cover. Scott Disanno and Robert Engelhardt managed
the book's production.

This book was adapted from our bookC++ How to Program, 6/e . We wish to acknowledge the efforts of our reviewers on that
book. Adhering to a tight time schedule, they scrutinized the text and the programs, providing countless suggestions for
improving the accuracy and completeness of the presentation.

C++ How to Program, 6/e Reviewers

Industry and Academic Reviewers: Dr. Richard Albright (Goldey-Beacom College), William B. Higdon (University of
Indianapolis), Howard Hinnant (Apple), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis Integration Solutions), Rex
Jaeschke (Independent Consultant), Maria Jump (The University of Texas at Austin), Geoffrey S. Knauth (GNU), Don
Kostuch (Independent Consultant), Colin Laplace (Freelance Software Consultant), Stephan T. Lavavej (Microsoft), Amar
Raheja (California State Polytechnic University, Pomona), G. Anthony Reina (University of Maryland University College,
Europe), Daveed Vandevoorde (C++ Standards Committee), Jeffrey Wiener (DEKA Research & Development Corporation,
New Hampshire Community Technical College), and Chad Willwerth (University of Washington, Tacoma). Boost/C++0Ox
Reviewers: Edward Brey (Kohler Co.), Jeff Garland (Boost.org), Douglas Gregor (Indiana University), and Bjérn Karlsson
(Author of Beyond the C++ Standard Library: An Introduction to BoostAddison-Wesley/Readsoft, Inc.).

These reviewers scrutinized every aspect of the text and made countless suggestions for improving the accuracy and
completeness of the presentation.

Well, there you have it! Welcome to the exciting world of C++ and object-oriented programming. We hope you enjoy this look
at contemporary computer programming.

As you read the book, we would sincerely appreciate your comments, criticisms, corrections and suggestions for improving
the text. Please address all correspondence to:

deitel@deitel.co

We'll respond promptly, and post corrections and clarifications on:

lw.deitel.com/books/cggng

We hope you enjoy reading C++ for Programmers as much as we enjoyed writing it!

Paul J. Deitel

Dr. Harvey M. Deitel

About the Authors

Paul J. Deitel , CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate of MIT's Sloan School of
Management, where he studied Information Technology. Through Deitel & Associates, Inc., he has delivered C++, Java, C,
C# and Visual Basic courses to industry, government and military clients, including Cisco, IBM, Sun Microsystems, Dell,
Lucent Technologies, Fidelity, NASA at the Kennedy Space Center, White Sands Missile Range, the National Severe Storm
Laboratory, Rogue Wave Software, Boeing, Stratus, Hyperion Software, Adra Systems, Entergy, CableData Systems, Nortel
Networks, Puma, iRobot, Invensys and many more. He has lectured on C++ and Java for the Boston Chapter of the
Association for Computing Machinery, and on .NET technologies for ITESM in Monterrey, Mexico. He and his father, Dr.
Harvey M. Deitel, are the world's best-selling programming language textbook authors.

Dr. Harvey M. Deitel , Chairman and Chief Strategy Officer of Deitel & Associates, Inc., has 47 years of academic and
industry experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees from the MIT and a Ph.D. from Boston
University. He has 20 years of college teaching experience, including earning tenure and serving as the Chairman of the

mailto:deitel@deitel.com
http://www.deitel.com/books/cppfp/

Computer Science Department at Boston College before founding Deitel & Associates, Inc., with his son, Paul J. Deitel. He
and Paul are the co-authors of several dozen books and multimedia packages and they are writing many more. The Deitels'
texts have earned international recognition with translations published in Japanese, German, Russian, Spanish, Traditional
Chinese, Simplified Chinese, Korean, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered
hundreds of professional seminars to major corporations, academic institutions, government organizations and the military.

About Deitel & Associates, Inc

Deitel & Associates, Inc., is an internationally recognized corporate training and content-creation organization specializing in
computer programming languages, Internet and web software technology, object technology education and Internet business
development through its Internet Business Initiative. The company provides instructor-led professional courses on major
programming languages and platforms, such as C++, Java, C, C#, Visual C++, Visual Basic, XML, Perl, Python, object
technology and Internet and web programming. The founders of Deitel & Associates, Inc., are Paul J. Deitel and Dr. Harvey
M. De-itel. The company's clients include many of the world's largest companies, government agencies, branches of the
military, and academic institutions. Through its 32-year publishing partnership with Prentice Hall, Deitel & Associates, Inc.
publishes leading-edge programming professional books, textbooks, LiveLessons video courses, interactive multimedia
Cyber Classrooms, web-based training courses and e-content for popular course management systems. Deitel &
Associates, Inc., and the authors can be reached via e-mail at:

Heitel@deitel.co

To learn more about Deitel & Associates, Inc., its publications and its Dive-lnto® Series Corporate Training curriculum
offered on-site at clients worldwide, visit:

and subscribe to the freeDeiteI® Buzz Online e-mail newsletter at:

l/vww.deitel.com/newsletter/subscribe.html

Check out the growing list of online Deitel Resource Centers at:

INWW.deitel.com/resourcecenters.html

Individuals wishing to purchase Deitel publications can do so through:

INWW.deitel.com/books/index.html

Bulk orders by corporations, the government, the military and academic institutions should be placed directly with Prentice
Hall. For more information, visit

INWW.prenhall.com/mischtm/support.html#ordell

mailto:deitel@deitel.com
http://www.deitel.com/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/resourcecenters.html
http://www.deitel.com/books/index.html
http://www.prenhall.com/mischtm/support.html#order

Before You Begin

Please follow the instructions in this section to download the book's examples before you begin using this book.

Downloading theC++ for Programmers Example Code

The examples for C++ for Programmers can be downloaded as a ZIP archive file fron’lw.deitel.com/books/cppfgj.

After you register and log in, click the link for the examples underDownload Code Examples and Other Premium

Content for Registered Users . Save the ZIP file to a location that you'll remember. Extract the example files to your hard
disk using a ZIP file extractor program, such as WinZip (_NWW.WinZié.COH).

Installing/Choosing a Compiler

f you have a computer running Windows XP or Windows Vista, you can install Visual C++ Express
(@ .microsoft.com/express/vc]) to edit, compile, execute, debug and modify your programs. Follow the on-screen
instructions to install Visual C++ Express. We recommend that you use the default installation options and select the
option to install the documentation as well.

If your computer has Linux or Mac OS X, then you probably already have the GNU C++ command-line compiler
installed. There are many other C++ compilers and IDEs. We provide links to various free C++ development tools for
Windows, Linux and Mac OS X platforms in our C++ Resource Center at

l/vww.deitel.comlcplusplusll

This Resource Center also links to online tutorials that will help you get started with various C++ development tools.

You are now ready to begin usingC++ for Programmers . We hope you enjoy the book! If you have any questions,
please feel free to email us at geitel@deitel.coml. We'll respond promptly.

http://www.deitel.com/books/cppfp/
http://www.winzip.com/
http://www.microsoft.com/express/vc/
http://www.deitel.com/cplusplus/
mailto:deitel@deitel.com

1. Introduction

Objectives

In this chapter you'll learn:

Object-technology concepts, such as classes, objects, attributes, behaviors, encapsulation and
inheritance.

A typical C++ program development environment.
The history of the industry-standard object-oriented system modeling language, the UML.
The history of the Internet and the World Wide Web, and the Web 2.0 phenomenon.

To test-drive C++ applications in two popular C++ environments—GNU C++ running on Linux and

Microsoft's Visual C++® on Windows®.

What open source is, and two popular C++ open source libraries—Ogre for graphics and game
programming, and Boost for broadly enhancing the capabilities of the C++ Standard Library.

The chief merit of language is clearness.

—Galen

Our life is frittered away by detail. . . . Simplify, simplify.

—Henry David Thoreau

He had a wonderful talent for packing thought close, and rendering it portable.
—Thomas B. Macaulay

Man is still the most extraordinary computer of all.

—John F. Kennedy

Outline

o = O I e O

Introduction

History of C and C++

C++ Standard Library

Key Software Trend: Object Technology
Typical C++ Development Environment
Notes About C++ and C++for Programmers

Test-Driving a C++ Application

B ElE e

Software Technologies

Future of C++: Open Source Boost Libraries, TR1 and C++0x

Software Engineering Case Study: Introduction to Object Technology and the UML
Wrap-Up

Web Resources

1.1. Introduction

Welcome to C++! We've worked hard to create what we hope you'll find to be an informative, entertaining and
challenging learning experience. C++ is a powerful computer programming language that is appropriate for experienced
programmers to use in building substantial information systems. C++ for Programmers, is an effective learning tool for
each of these audiences.

The book emphasizes achieving program clarity through the proven techniques of object-oriented programming. This is
an "early classes and objects" book. We teach C++ features in the context of complete working C++ programs and show

the outputs produced when those prog,_a.mj_a.wu_an_a_c_o_mm_LQLTwe call this the live-code approach . You may
download the example programs from pvww.deitel.com/books/cppfpl.

The early chapters introduce the fundamentals of C++, providing a solid foundation for the deeper treatment of C++ in
the later chapters. Experienced programmers tend to read the early chapters quickly, then find the treatment of C++ in
the remainder of the book rigorous and challenging.

C++ is one of today's most popular software development languages. This book discusses the version of C++
standardized in the United States through the American National Standards Institute (ANSI) and worldwide through the
International Organization for Standardization (ISO).

To keep up to date with C++ developments at Deitel & Associates, please register for our free e-mail newsletter, the

Deitel® Buzz Online, at

l/vww.deitel.com/newsletter/subscribe.html

Please check out our growing list of C++ and related Resource Centers at

l/vww.deitel.com/ResourceCenters.html

Some Resource Centers that will be valuable to you as you read this book are C++, C++ Game Programming, C++
Boost Libraries, Code Search Engines and Code Sites, Computer Game Programming, Programming Projects, Eclipse,

Linux, Open Source and Windows Vista. Each st Resource Centers in the
newsletter. Errata and updates for this book are posted at .deitel.com/books/cppfp].

You are embarking on a challenging and rewarding path. As you proceed, if you have any questions, please send
e-mail to . We'll respond promptly. We hope that you'll enjoy learning witiC++ for Programmers.

http://www.deitel.com/books/cppfp/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/ResourceCenters.html
http://www.deitel.com/books/cppfp/
mailto:deitel@deitel.com

1.2. History of C and C++

C++ evolved from C, which evolved from two previous programming languages, BCPL and B. BCPL was developed in
1967 by Martin Richards as a language for writing operating systems software and compilers for operating systems. Ken
Thompson modeled many features in his language B after their counterparts in BCPL and he used B to create early
versions of the UNIX operating system at Bell Laboratories in 1970.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories. C uses many important concepts of BCPL
and B. C initially became widely known as the development language of the UNIX operating system. Today, most
operating systems are written in C and/or C++. C is available for most computers and is hardware independent. With
careful design, it is possible to write C programs that are portable to most computers.

The widespread use of C with various hardware platforms unfortunately led to many variations. This was a serious
problem for program developers, who needed to write portable programs that would run on several platforms. A
standard version of C was needed. The American National Standards Institute (ANSI) cooperated with the International
Organization for Standardization (ISO) to standardize C worldwide; the joint standard document was published in 1990
and is referred to as ANSI/ISO 9899:1990.

C99 is the latest C standard. It was developed to evolve the C language to keep pace with today's powerful hardware
and with increasingly demanding user requirements. The C99 Standard is more capable (than earlier C Standards) of
competing with languages like Fortran for mathematical applications. C99 capabilities include the long long type for
64-bit machines, complex numbers for engineering applications and greater support of floating-point arithmetic. C99
also makes C more consistent with C++ by enabling polymorphism through type-generic mathematical functions and
through the creation of a defined boolean type. For more information on C and C99, see our book C How to Program,
Fifth Edition and our C Resource Center (located al/vww.deitel.com/C,I).

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell Laboratories. C++ provides a
number of features that "spruce up" the C language, but more importantly, it provides capabilities for object-oriented
programming.

You'll be introduced to the basic concepts and terminology of object technology i. Objects are essentially
reusable software components that model items in the real world. Software developers are discovering that a modular,
object-oriented design and implementation approach can make them much more productive than can previous popular
programming techniques. Object-oriented programs are easier to understand, correct and modify. You'll begin
developing customized, reusable classes and objects in , Introduction to Classes and Objects. This book is
object oriented, where appropriate, from the start and throughout the text. This gets you "thinking about objects"
immediately and mastering these concepts more completely.

We also provide an optional automated teller machine (ATM) case study in the Software Engineering Case Study
sections of ,Hand[L3, andEéEendix H, which contains a complete C++ implementation. The case
study presents a carefully paced introduction to object-oriented design using the UML—an industry standard graphical

modeling language for developing object-oriented systems. We guide you through a first design experience intended for
the novice object-oriented designer/programmer. Our goal is to help you develop an object-oriented design to
complement the object-oriented programming concepts you learn in this chapter and begin implementing in .

http://www.deitel.com/C/

1.3. C++ Standard Library

C++ programs consist of pieces calledclasses andfunctions. You can program each piece that you may need to form a
C++ program. However, most C++ programmers take advantage of the rich collections of existing classes and functions
in the C++ Standard Library . Thus, there are really two parts to learning the C++ "world." The first is learning the C++
language itself; the second is learning how to use the classes and functions in the C++ Standard Library. Throughout
the book, we discuss many of these classes and functions. P. J. Plauger's book, The Standard C Library (Upper Saddle
River, NJ: Prentice Hall PTR, 1992), is a must read for programmers who need a deep understanding of the ANSI C
library functions that are included in C++, how to implement them and how to use them to write portable code. The
standard class libraries generally are provided by compiler vendors. Many special-purpose class libraries are supplied
by independent software vendors.

Software Engineering Observation 1.1

-
! When programming in C++, you typically will use the following building blocks:
classes and functions from the C++ Standard Library, classes and functions you
and your colleagues create and classes and functions from various popular
third-party libraries.

We include many Software Engineering Observations throughout the book to explain concepts that affect and improve
the overall architecture and quality of software systems. We also highlight other kinds of tips, including Good
Programming Practices (to help you write programs that are clearer, more understandable, more maintainable and
easier to test and debug—or remove programming errors), Common Programming Errors (problems to watch out for and
avoid), Performance Tips (techniques for writing programs that run faster and use less memoryRortability Tips
(techniques to help you write programs that can run, with little or no modification, on a variety of computers—these tips
also include general observations about how C++ achieves its high degree of portability) and Error-Prevention Tips
(techniques for removing programming errors—also known as bugs—from your programs and, more important,
techniques for writing bug-free programs in the first place).

Performance Tip 1.1

Using C++ Standard Library functions and classes instead of writing your own
versions can improve program performance, because they are written carefully to
perform efficiently. This technique also shortens program development time.

Portability Tip 1.1

@' Using C++ Standard Library functions and classes instead of writing your own
R improves program portability, because they are included in every C++
implementation.

1.4. Key Software Trend: Object Technology

One of the authors, Harvey Deitel, remembers the great frustration felt in the 1960s by software development
organizations, especially those working on large-scale projects. During his undergraduate years, he had the privilege of
working summers at a leading computer vendor on the teams developing timesharing, virtual memory operating
systems. This was a great experience for a college student. But, in the summer of 1967, reality set in when the
company "decommitted" from producing as a commercial product the particular system on which hundreds of people
had been working for many years. It was difficult to get this software right—software is "complex stuff."

Improvements to software technology did emerge, with the benefits of structured programming (and the related
disciplines of structured systems analysis and design) being realized in the 1970s. Not until object-oriented
programming became widely used in the 1990s, though, did software developers feel they had the necessary tools for
making major strides in the software development process.

Actually, object technology dates back to the mid 1960s. The C++ programming language, developed at AT&T by
Bjarne Stroustrup in the early 1980s, is based on two languages—C, which initially was developed at AT&T to
implement the UNIX operating system in the early 1970s, and Simula 67, a simulation programming language
developed in Europe and released in 1967. C++ absorbed the features of C and added Simula's capabilities for creating
and manipulating objects. Neither C nor C++ was originally intended for wide use beyond the AT&T research
laboratories. But grass roots support rapidly developed for each.

What are objects and why are they special? Actually, object technology is a packaging scheme that helps us create
meaningful software units. These can be large and are highly focused on particular applications areas. There are date
objects, time objects, paycheck objects, invoice objects, audio objects, video objects, file objects, record objects and so
on. In fact, almost any noun can be reasonably represented as an object.

We live in a world of objects. Just look around you. There are cars, planes, people, animals, buildings, traffic lights,
elevators and the like. Before object-oriented languages appeared, procedural programming languages (such as
Fortran, COBOL, Pascal, BASIC and C) were focused on actions (verbs) rather than on things or objects (nouns).
Programmers living in a world of objects programmed primarily using verbs. This made it awkward to write programs.
Now, with the availability of popular object-oriented languages such as C++ and Java, programmers continue to live in
an object-oriented world and can program in an object-oriented manner. This is a more natural process than procedural
programming and has resulted in significant productivity gains.

A key problem with procedural programming is that the program units do not effectively mirror real-world entities, so
these units are not particularly reusable. It's not unusual for programmers to "start fresh" on each new project and have
to write similar software "from scratch." This wastes time and money, as people repeatedly "reinvent the wheel." With
object technology, the software entities created (called classes), if properly designed, tend to be reusable on future
projects. Using libraries of reusable componentry can greatly reduce effort required to implement certain kinds of
systems (compared to the effort that would be required to reinvent these capabilities on new projects).

Software Engineering Observation 1.2

Extensive class libraries of reusable software components are
available on the Internet. Many of these libraries are free.

Some organizations report that the key benefit object-oriented programming gives them is not software reuse but,
rather, that the software they produce is more understandable, better organized and easier to maintain, modify and
debug. This can be significant, because perhaps as much as 80 percent of software costs are associated not with the
original efforts to develop the software, but with the continued evolution and maintenance of that software throughout its
lifetime.

Whatever the perceived benefits, it's clear that object-oriented programming will be the key programming methodology
for the next several decades.

1.5. Typical C++ Development Environment

Let's consider the steps in creating and executing a C++ application using a C++ development environment (illustrated in
). C++ systems generally consist of three parts: a program development environment, the language and the C++
Standard Library. C++ programs typically go through six phases: edit, preprocess, compile, link, load andexecute. The
following discussion explains a typical C++ program development environment.

Fig. 1.1. Typical C++ environment.

) Phase |:

| Programmer creates a program
Disk in the editor and stores it on
y disk.

Editor -

Phase 2
Freprocessor - " Preprocessor program

Disk madifes the code.

) Phase 3;

Compiler SE—— | Compiler creates the
Cisk object code and stores

it on disk.

g

% Phase 4:
_ Linker links the object
Linker - . * code with the libranes,
Cisk
creates an executable file and
stores it on disk.

.

Primary)
Memory

Loader -

Phase 5:
+ Loader puts the program
I eI,

Disk

Primary A
mMemory

CcPU - -

Phase &:

CPL takes each
instruction and
+ execubes it, possibly
stonng new data
values as the program
. ExECULES,

Phase 1: Creating a Program

Phase 1 consists of editing a file with areditor . You type a C++ program using the editor, make any necessary
corrections and save the program on a secondary storage device, such as your hard drive. C++ source code filenames
often end with the .cpp, .cxx, .cc or .C extensions (note thatC is in uppercase) which indicate that a file contains C++ source
code. See the documentation for your C++ compiler for more information on filename extensions.

Two editors widely used on UNIX systems arevi and emacs . C++ software packages for Microsoft Windows such as
Microsoft Visual C++ and cross-platform tools such as Eclipse have editors integrated into the programming environment.
You can also use a simple text editor, such as Notepad in Windows, to write your C++ code.

Phases 2 and 3: Preprocessing and Compiling a C++ Program

In phase 2, you give the command to compile the program. In a C++ system, @reprocessor program executes
automatically before the compiler's translation phase begins (so we call preprocessing phase 2 and compiling phase 3).
The C++ preprocessor obeys commands called preprocessor directives, which indicate that certain manipulations are to
be performed on the program before compilation. These manipulations usually include other text files to be compiled, and
perform various text replacements. The most common preprocessor directives are discussed in the early chapters; a

detailed discussion of preprocessor features appears in Appendix D| , Preprocessor. In phase 3, the compiler translates
the C++ program into object code.

Phase 4: Linking

Phase 4 is calledlinking. C++ programs typically contain references to functions and data defined elsewhere, such as in
the standard libraries or in the private libraries of groups of programmers working on a particular project. The object
code produced by the C++ compiler typically contains "holes" due to these missing parts. Alinker links the object code
with the code for the missing functions to produce an executable image (with no missing pieces). If the program compiles
and links correctly, an executable image is produced.

Phase 5: Loading

Before a program can be executed, it must first be placed in memory. This is done by the loader, which
takes the executable image from disk and transfers it to memory. Additional components from shared libraries that
support the program are also loaded.

Phase 6: Execution

Finally, the computer executes the program.

Problems That May Occur at Execution Time

Each of the preceding phases can fail because of various errors that we discuss throughout the book. This would cause
the C++ program to display an error message. If this occurs, you would have to return to the edit phase, make the
necessary corrections and proceed through the remaining phases again to determine that the corrections fix the
problem(s).

Most programs in C++ input and/or output data. Certain C++ functions take their input fromin (the standard input stream;
pronounced "see-in"), which is normally the keyboard, but cin can be redirected to another device. Data is often output to
cout (the standard output stream; pronounced "see-out"), which is normally the computer screen, butout can be redirected
to another device. When we say that a program prints a result, we normally mean that the result is displayed on a screen.
Data may be output to other devices, such as disks and hardcopy printers. There is also astandard error stream referred
to as cerr. The cerr stream (normally connected to the screen) is used for displaying error messages. It is common for
users to assign cout to a device other than the screen while keepingcerr assigned to the screen, so that normal outputs are

separated from errors.

Common Programming Error 1.1

e
E Errors such as division by zero occur as a program runs, so they are called
runtime errors or execution-time errors. Fatal runtime errors cause programs to
terminate immediately without having successfully performed their jobs. Nonfatal
runtime errors allow programs to run to completion, often producing incorrect
results. [Note: On some systems, divide-by-zero is not a fatal error. Please see
your system documentation.]

1.6. Notes About C++ andC++ for Programmers

Experienced C++ programmers sometimes take pride in being able to create weird, contorted, convoluted uses of the
language. This is a poor programming practice. It makes programs more difficult to read, more likely to behave
strangely, more difficult to test and debug, and more difficult to adapt to changing requirements. The following is our first
Good Programming Practice.

Good Programming Practice 1.1

@ Write your C++ programs in a simple and straightforward manner. This is
sometimes referred to as KIS ("keep it simple™). Do not "stretch” the language by
trying bizarre usages.

You have heard that C and C++ are portable languages, and that programs written in C and C++ can run on many
different computers. Portability is an elusive goal. The ANSI C standard document contains a lengthy list of portability
issues, and complete books have been written that discuss portability.

Portability Tip 1.2

@' Although it's possible to write portable programs, there are many problems
- among different C and C++ compilers and different computers that can make
portability difficult to achieve. Writing programs in C and C++ does not guarantee
portability. You often will need to deal directly with compiler and computer
variations. As a group, these are sometimes called platform variations.

We have audited our presentation against the ISO/IEC C++ standard document for completeness and accuracy.
However, C++ is a rich language, and there are some features we have not covered. If you need additional technical
details on C++, you may want to read the C++ standard document, which can be ordered from ANSI at

ebstore.ansi.ord

The title of the document is "Information Technology — Programming Languages — C++" and its document number is
INCITS/ISO/IEC 14882-2003.

We have included an extensive bibliography of books and papers on C++ and object-oriented programming. We also

list many websites relating to C++ and object-oriented programming in our C++ Resource Center at
www.deitel.com/cplusplusy . We list several websites inSection 1.12, including links to free C++ compilers, resource

sites, some fun C++ games and game programming tutorials.

http://webstore.ansi.org/
http://www.deitel.com/cplusplus/

1.7. Test-Driving a C++ Application

In this section, you'll run and interact with your first C++ application. You'll begin by running an entertaining guess-the-number game,
which picks a number from 1 to 1000 and prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,
the application indicates whether your guess is higher or lower than the correct number. There is no limit on the number of guesses you
can make. [Note: This application uses the same correct answer every time the program executes (though this may vary by compiler),
S0 you can use the same guesses we use in this section and see the same results as we walk you through interacting with your first C++
application.]

We'll demonstrate running a C++ application in two ways—using the Windows XRCommand Prompt and using a shell on Linux (similar
to a Windows Command Prompt). The application runs similarly on both platforms. Many development environments are available in
which readers can compile, build and run C++ applications, such as Eclipse, GNU C++, Microsoft Visual C++, etc.

In the following steps, you'll run the application and enter various humbers to guess the correct number. Throughout the book, we use
fonts to distinguish between features you see on the screen (e.g., the Command Prompt) and elements that are not directly related to
the screen. Our convention is to emphasize screen features like titles and menus (e.g., the File menu) in a semibold sans-serif
Helvetica font and to emphasize filenames, text displayed by an application and values you should enter into an application (e.g.,
GuessNumber Or 500) in a sans-serif Lucida font. As you have noticed, thedefining occurrence of each key term is set in bold italic. For the
figures in this section, we highlight the user input required by each step and point out significant parts of the application. To make these
features more visible, we have modified the background color of the Command Prompt window (for the Windows test drive only). To
modify the Command Prompt colors on your system, open aCommand Prompt , then right click the title bar and selecProperties. In the
"Command Prompt" Properties dialog box that appears, click theColors tab, and select your preferred text and background colors.

Running a C++ Application from the Windows XP Command Prompt

1. Checking your setup. Read the Before You Begin section at the beginning of this book to ensure that you've copied the
book's examples to your hard drive.

2. Locating the completed application. Open aCommand Prompt window. For readers using Windows 95, 98 or 2000, select
Start > Programs > Accessories > Command Prompt. For Windows XP users, select Start > All Programs > Accessories >
Command Prompt. To change to your completedGuessNumber application directory, type cd
C:\examples\ch01\GuessNumber\Windowthen pressEnter (. The command cd is used to change directories.

Fig. 1.2. Opening a Command Promptwindow and changing the directory.

=+ Command Prompt

wied CisexanplesschBilsGuessHumbersWindows ﬂ
Swesanp lessehfl sGues sHumbersWindows >

3. Running the GuessNumber application. Now that you are in the directory that contains theGuessNumber application, type the
Flé. 1 ;

command GuessNumber (Ei
Windows assumes the .exe extension by default.]

.3) and pressEnter. [Note: GuessNumber.exe is the actual name of the application; however,

Fig. 1.3. Running the GuessNumber application.

=+ Command Prompt - GuessHumber

i
soestanp lesschfl s GuessHunbersWindows ¥CGue s s Hunbe » A
I have & nunber hetween 1 and 1888.
you guess ay nunber?
lease type your Fivst guess. _I

Entering your first guess. The application displays "Please type your first guess.", then displays a question mark ¢) as a prompt on

the next line (. At the prompt, enters00 (

Fig. 1.4. Entering your first guess.

Command Prompt - GuessHumber

Puedanplest. ensHumbersWin
1 have a nunber between 1 and

n you guess ny nunber?
1;&;1 type your First guess.

oo high. Try again.

5. Entering another guess. The application displays "Too high. Try again.", meaning that the value you entered is greater than the
number the application chose as the correct guess. So, you should enter a lower number for your next guess. At the prompt,

enter 250 (). The application again displays"Too high. Try again.", because the value you entered is still greater than the
number that the application chose as the correct guess.

Fig. 1.5. Entering a second guess and receiving feedback.

Command Prompt - GuessNumber

Pwexanplesuw essHunbersHindows 4 r -

I have a nunber between 1 and 1888, — |
n you guess my nunber?

lgaaq type your First guess.

Too high. Try again.
ﬂ'iﬂi’ 2
oo high. Try again.

6. Entering additional guesses. Continue to play the game by entering values until you guess the correct number. The
application will display "Excellent! You guessed the number!" (.

Fig. 1.6. Entering additional guesses and guessing the correct number.

Command Prompt - GuessNumber

i-m high. Try again.
Too high. Try again.
Too high. Try agai
L] 1 8 r SO AN -
:i? -ﬂii.:h T i i
oo . Try again.
oy E e
oo w. lry again.
T 138

Too low. Try again.
T o131

ellent?! You guessed the numbepd
uld gpou like to play again <y or nd?

=

Playing the game ai ain or exiting the application. After you guess correctly, the application asks if you would like to play

another game _. At the "Would you like to play again (y or n)?" prompt, entering the one charactery causes the application to

choose a new number and displays the message "Please type your first guess ." followed by a question mark prompt Eig. 1.7) so
you can make your first guess in the new game. Entering the character n ends the application and returns you to the
application's directory at the Command Prompt (Eig. 1.§). Each time you execute this application from the beginning (i.e. Step
3), it will choose the same numbers for you to guess.

Fig. 1.7. Playing the game again.

Command Prompt - GuessMumber

weellent? You guessed the numbert
uwld you like to play again €y or nd? y —

I have & nunber between 1 and 188A.
you guess ny nunber?
lease type your fFirst guess.

Fig. 1.8. Exiting the game.

Command Prompt

weellent? You guessed the numbert
uld ypou like to play again <y or n3¥ n

swestanp lesschBlsGuessHunbersWindows » J

8. Close the Command Prompt window.

Running a C++ Application Using GNU C++ with Linux

For the figures in this section, we use a bold highlight to point out the user input required by each step. The prompt in the shell on our
system uses the tilde (~) character to represent the home directory, and each prompt ends with the dollar signg) character. The prompt
will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed GuessNumber application directory
by typing

cd Examples/ch01/GuessNumber/GNU_Linux

then pressing Enter. The command cd is used to change directories.

Fig. 1.9. Changing to the GuessNumber application's directory after logging in to your account.

~$ cd examples/ch01/GuessNumber/GNU_Linux
~/examples/ch01/GuessNumber/GNU_Linux$

2. Compiling the GuessNumber application. To run an application on the GNU C++ compiler, you must first compile it by typing
g++ GuessNumber.cpp -0 GuessNumber

asin . This command compiles the application and produces an executable file calledsuessNumber.

Fig. 1.10. Compiling the GuessNumber application using theg++ command.

~/lexamples/ch01/GuessNumber/GNU_Linuxg++ GuessNumber.cpp -0 GuessNumber
~/examples/ch01/GuessNumber/GNU_Linux$

3. Running the GuessNumber application. To run the executable fileGuessNumber, type ./GuessNumber at the next prompt, then

press Enter (.

Fig. 1.11. Running the GuessNumber application.

~/examples/ch01/GuessNumber/GNU_LinuxfGuessNumber
| have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.
?

4. Entering your first guess. The application displays "Please type your first guess.”, then displays a question mark) as a prompt on

the next line (. At the prompt, enter500 . [Note: This is the same application that we modified and
test-drove for Windows, but the outputs could vary based on the compiler being used.]

Fig. 1.12. Entering an initial guess.

~/lexamples/ch01/GuessNumber/GNU_LinuxfGuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

?500

Too high. Try again.

5

Entering another guess. The application displays "Too high. Try again." , meaning that the value you entered is greater than the
number the application chose as the correct guess (). At the next prompt, enter250 (). This time the
application displays "Too low. Try again.", because the value you entered is less than the correct guess.

Fig. 1.13. Entering a second guess and receiving feedback.

~/lexamples/ch01/GuessNumber/GNU_LinuxfGuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?500

Too high. Try again.

?250

Too low. Try again.
?

6. Entering additional guesses. Continue to play the game) by entering values until you guess the correct number.

When you guess correctly, the application displays "Excellent! You guessed the number." (Eig. 1.14).

Fig. 1.14.

Too low. Try again.
?375

Too low. Try again.
?437

Too high. Try again.
? 406

Too high. Try again.
?391

Too high. Try again.
?383

Too low. Try again.
?387

Too high. Try again.
?385

Too high. Try again.
?384

Excellent! You guessed the number.

Entering additional guesses and guessing the correct number.

Would you like to play again (y or n)?

Playing the game again or exiting the application. After you guess the correct number, the application asks if you would like to
play another game. At the "would you like to play again (y or n)?" prompt, entering the one charactery causes the application to

choose a new number and displays the message "Please type your first guess." followed by a question mark prompt)

so you can make your first guess i

n the new game. Entering the character n ends the application and returns you to the

application's directory in the shell (). Each time you execute this application from the beginning (i.e. Step 3), it will

choose the same numbers for you

to guess.

Excellent! You guessed the number.

Would you like to play again (y or ny?

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Excellent! You guessed the number.

Would you like to play again (y or n)?

~/lexamples/ch01/GuessNumber/GNU_Linux$

Fig. 1.15. Playing the game again.

Fig. 1.16. Exiting the game.

1.8. Software Technologies

In this section, we discuss a number of software engineering buzzwords that you'll hear in the software
development community. We've created Resourcﬁﬁm@ﬂh&@uﬁﬁ many more on the way. You
can find our complete list of Resource Centers at .deitel.com/ResourceCenters.htmj.

Agile Software Development is a set of methodologies that try to get software implemented quickly with fewer resources

than previous methodologies. Check out the Agile Alliance (Nww.aqilealliance.ord) and the Agile Manifesto
(.agilemanifesto.ord).

Refactoring involves reworking code to make it clearer and easier to maintain while preserving its functionality. It's
widely employed with agile development methodologies. Many refactoring tools are available to do major portions of the
reworking automatically. Check out our Resource Center on refactoring.

Design patterns are proven architectures for constructing flexible and maintainable object-oriented software. The field of
design patterns tries to enumerate those recurring patterns, encouraging software designers to reuse them to develop
better quality software with less time, money and effort.

Game programming. The computer game business is larger than the first-run movie business. College courses and
even majors are now devoted to the sophisticated software techniques used in game programming. Check out our
Resource Centers on Game Programming, C++ Game Programming and Programming Projects.

Open source software is a style of developing software in contrast to proprietary development that dominated
software's early years. With open source development, individuals and companies contribute their efforts in developing,
maintaining and evolving software in exchange for the right to use that software for their own purposes, typically at no
charge. Open source code generally gets scrutinized by a much larger audience than proprietary software, so bugs get
removed faster. Open source also encourages more innovation. Sun recently announced that it is open sourcing Java.
Some organizations you'll hear a lot about in the open source community are the Eclipse Foundation (the Eclipse IDE is
popular for C++ and Java software development), the Mozilla Foundation (creators of the Firefox browser), the Apache
Software Foundation (creators of the Apache web server) and SourceForge (which provides the tools for managing
open source projects and currently has over 150,000 open source projects under development).

Linux is an open source operating system and one of the greatest successes of the open source movememtlySQL is an
open source database management system. PHP is the most popular open source server-side "scripting" language for
developing Internet-based applications. LAMP is an acronym for the set of open source technologies that many
developers used to build web applications—it stands for Linux, Apache, MySQL and PHP (or Perl or Python—two other
languages used for similar purposes).

Software has generally been viewed as a product; most software still is offered this way. If you want to run an
application, you buy a software package from a software vendor. You then install that software on your computer and
run it as needed. As new versions of the software appear, you upgrade your software, often at significant expense. This
process can become cumbersome for organizations with tens of thousands of systems that must be maintained on a
diverse array of computer equipment. With Software as a Service (SaaS) the software runs on servers elsewhere on
the Internet. When those servers are updated, all clients worldwide see the new capabilities; no local installation is
needed. You access the service through a browser—these are quite portable, so you can run the same
applications on different kinds of computers from anywhere in the world. , Google, and Microsoft's

Office Live and Windows Live all offer SaaS.

http://www.deitel.com/ResourceCenters.html
http://www.agilealliance.org/
http://www.agilemanifesto.org/
http://salesforce.com/

1.9. Future of C++: Open Source Boost Libraries, TR1 and C++0x

Bjarne Stroustrup, the creator of C++, has expressed his vision for the future of C++. The main goals for the new
standard are to make C++ easier to learn, improve library building capabilities, and increase compatibility with the C
programming language.

considers the future of C++—we introduce the Boost C++ Libraries, Technical Report 1 (TR1) and C++0x.
The Boost C++ Libraries are free, open source libraries created by members of the C++ community. Boost has grown to
over 70 libraries, with more being added regularly. Today there are thousands of programmers in the Boost open
source community. Boost provides C++ programmers with useful, well-designed libraries that work well with the existing
C++ Standard Library. The Boost libraries can be used by C++ programmers working on a wide variety of platforms with
many different compilers. We overview the libraries included in TR1 and provide code examples for the "regular
expression” and "smart pointer” libraries.

Regular expressions are used to match specific character patterns in text. They can be used to validate data to ensure
that it is in a particular format, to replace parts of one string with another, or to split a string.

Many common bugs in C and C++ code are related to pointers, which we present , Pointers and
Pointer-Based Strings. Smart pointers help you avoid errors by providing additional functionality to standard pointers.
This functionality typically strengthens the process of memory allocation and deallocation.

Technical Report 1 describes the proposed changes to the C++ Standard Library, many of which are based on current
Boost libraries. These libraries add useful functionality to C++. The C++ Standards Committee is currently revising the
C++ Standard. The last standard was published in 1998. Work on the new standard, currently referred to as C++0x,
began in 2003. The new standard is likely to be released in 2009. It will include changes to the core language and, most
likely, many of the libraries in TR1.

1.10. Software Engineering Case Study: Introduction to Object Technology and the UML

Now we begin our study of object orientationH,E andE all end with a brief Software Engineering Case
Study section in which we present a carefully paced introduction to object orientation. Our goal here is to help you
develop an object-oriented way of thinking and to introduce you to the Unified Modeling Language™ (UML®) —a
graphical language that allows people who design object-oriented software systems to use an industry-standard
notation to represent them.

In this required section, we introduce basic object-oriented concepts and terminology. The optional sections i
g and present an object-oriented design and implementation of the software for a simple automated teller

machine (ATM) system. The Software Engineering Case Study sections at the ends of [Chapters 2

. analyze a typical requirements specification that describes a software system (the ATM) to be built
e determine the objects required to implement that system
e determine the attributes the objects will have

e determine the behaviors these objects will exhibit

specify how the objects interact with one another to meet the system requirements

The Software Engineering Case Study sections at the ends and@ modify and enhance the design
presented in ﬁ contains a complete, working C++ implementation of the object-oriented ATM

system.

Although our case study is a scaled-down version of an industry-level problem, we nevertheless cover many common
industry practices. You'll experience a solid introduction to object-oriented design with the UML. Also, you'll sharpen
your code-reading skills by touring the complete, carefully written and well-documented C++ implementation of the
ATM.

Basic Object Technology Concepts

We begin our introduction to object orientation with some key terminology. Everywhere you look in the real world you see
objects —people, animals, plants, cars, planes, buildings, computers, monitors and so on. Humans think in terms of
objects. Telephones, houses, traffic lights, microwave ovens and water coolers are just a few more objects we see
around us every day.

We sometimes divide objects into two categories: animate and inanimate. Animate objects are "alive" in some
sense—they move around and do things. Inanimate objects do not move on their own. Objects of both types, however,
have some things in common. They all have attributes (e.g., size, shape, color and weight), and they all exhibit
behaviors (e.g., a ball rolls, bounces, inflates and deflates; a baby cries, sleeps, crawls, walks and blinks; a car
accelerates, brakes and turns; a towel absorbs water). We'll study the kinds of attributes and behaviors that software
objects have.

Humans learn about existing objects by studying their attributes and observing their behaviors. Different objects can
have similar attributes and can exhibit similar behaviors. Comparisons can be made, for example, between babies and
adults, and between humans and chimpanzees.

Object-oriented design (OOD) models software in terms similar to those that people use to describe real-world objects.
It takes advantage of class relationships, where objects of a certain class, such as a class of vehicles, have the same
characteristics—cars, trucks, little red wagons and roller skates have much in common. OOD takes advantage of
inheritance relationships, where new classes of objects are derived by absorbing characteristics of existing classes and
adding unique characteristics of their own. An object of class "convertible" certainly has the characteristics of the more
general class "automobile," but more specifically, the roof goes up and down.

Object-oriented design provides a natural and intuitive way to view the software design process—namely, modeling
objects by their attributes, behaviors and interrelationships just as we describe real-world objects. OOD also models
communication between objects. Just as people send messages to one another (e.g., a sergeant commands a soldier
to stand at attention), objects also communicate via messages. A bank account object may receive a
message to decrease its balance by a certain amount because the customer has withdrawn that amount of money.

OOD encapsulates (i.e., wraps) attributes andoperations (behaviors) into objects—an object's attributes and operations
are intimately tied together. Objects have the property of information hiding . This means that objects may know how to
communicate with one another across well-defined interfaces, but normally they are not allowed to know how other
objects are implemented—implementation details are hidden within the objects themselves. We can drive a car
effectively, for instance, without knowing the details of how engines, transmissions, brakes and exhaust systems work
internally—as long as we know how to use the accelerator pedal, the brake pedal, the steering wheel and so on.
Information hiding, as we'll see, is crucial to good software engineering.

Languages like C++ are object oriented . Programming in such a language is calledobject-oriented programming
(OOP), and it allows computer programmers to implement object-oriented designs as working software systems.
Languages like C, on the other hand, are procedural, so programming tends to beaction oriented. In C, the unit of
programming is the function. In C++, the unit of programming is theclass from which objects are eventuallyinstantiated
(an OOP term for “created"). C++ classes contain functions that implement operations and data that implements
attributes.

C programmers concentrate on writing functions. Programmers group actions that perform some common task into
functions, and group functions to form programs. Data is certainly important in C, but the view is that data exists
primarily in support of the actions that functions perform. The verbs in a system specification help the C programmer
determine the set of functions that will work together to implement the system.

Classes, Data Members and Member Functions

C++ programmers concentrate on creating their ownuser-defined types called classes . Each class contains data as well
as the set of functions that manipulate that data and provide services to clients (i.e., other classes or functions that use
the class). The data components of a class are called data members . For example, a bank account class might include
an account number and a balance. The function components of a class are called member functions (typically called
methods in other object-oriented programming languages such as Java). For example, a bank account class might
include member functions to make a deposit (increasing the balance), make a withdrawal (decreasing the balance) and
inquire what the current balance is. You use built-in types (and other user-defined types) as the "building blocks" for
constructing new user-defined types (classes). The nouns in a system specification help the C++ programmer
determine the set of classes from which objects are created that work together to implement the system.

Classes are to objects as blueprints are to houses—a class is a "plan” for building an object of the class. Just as we
can build many houses from one blueprint, we can instantiate (create) many objects from one class. You cannot cook
meals in the kitchen of a blueprint; you can cook meals in the kitchen of a house. You cannot sleep in the bedroom of a
blueprint; you can sleep in the bedroom of a house.

Classes can have relationships with other classes. For example, in an object-oriented design of a bank, the "bank teller"
class needs to relate to other classes, such as the “"customer" class, the "cash drawer" class, the "safe" class, and so
on. These relationships are called associations.

Packaging software as classes makes it possible for future software systems toeuse the classes. Groups of
related classes are often packaged as reusable components . Just as realtors often say that the three most important
factors affecting the price of real estate are "location, location and location," some people in the software development
community say that the three most important factors affecting the future of software development are "reuse, reuse and
reuse."

Software Engineering Observation 1.3

Reuse of existing classes when building new classes and programs saves time,
money and effort. Reuse also helps programmers build more reliable and
effective systems, because existing classes and components often have gone
through extensive testing, debugging and performance tuning.

Indeed, with object technology, you can build much of the new software you'll need by combining existing classes, just
as automobile manufacturers combine interchangeable parts. Each new class you create will have the potential to
become a valuable software asset that you and other programmers can reuse to speed and enhance the quality of
future software development efforts.

Introduction to Object-Oriented Analysis and Design (OOAD)

To create the best solutions, you should follow a detailed process foanalyzing your project's requirements (i.e.,
determining what the system is supposed to do) and developing design that satisfies them (i.e., decidinghow the system
should do it). Ideally, you would go through this process and carefully review the design (or have your design reviewed
by other software professionals) before writing any code. If this process involves analyzing and designing your system
from an object-oriented point of view, it is called an object-oriented analysis and design (OOAD) process . Experienced
programmers know that analysis and design can save many hours by helping them to avoid an ill-planned
system-development approach that has to be abandoned part of the way through its implementation, possibly wasting
considerable time, money and effort.

Ideally, members of a group should agree on a strictly defined process for solving their problem and a uniform way of
communicating the results of that process to one another. Although many different OOAD processes exist, a single
graphical language for communicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), was developed in the mid-1990s under the initial direction of three software
methodologists—Grady Booch, James Rumbaugh and Ivar Jacobson.

History of the UML

In the 1980s, increasing numbers of organizations began using OOP to build their applications, and a need developed
for a standard OOAD process. Many methodologists—including Booch, Rumbaugh and Jacobson—individually
produced and promoted separate processes to satisfy this need. Each process had its own notation, or "language” (in
the form of graphical diagrams), to convey the results of analysis and design.

By the early 1990s, different organizations, and even divisions within the same organization, were using their own
unique processes and notations. At the same time, these organizations also wanted to use software tools that would
support their particular processes. Software vendors found it difficult to provide tools for so many processes. A standard
notation and standard processes were needed.

In 1994, James Rumbaugh joined Grady Booch at Rational Software Corporation (now a division of IBM), and the
two began working to unify their popular processes. They soon were joined by Ivar Jacobson. In 1996, the group
released early versions of the UML to the software engineering community and requested feedback. Around the same
time, an organization known as the Object Management Group™ (OMG™) invited submissions for a common modeling
language. The OMG (| .omg.ord) is a nonprofit organization that promotes the standardization of object-oriented
technologies by issuing guidelines and specifications, such as the UML. Several corporations—among them HP, IBM,
Microsoft, Oracle and Rational Software—had already recognized the need for a common modeling language. In
response to the OMG's request for proposals, these companies formed UML Partners —the consortium that developed
the UML version 1.1 and submitted it to the OMG. The OMG accepted the proposal and, in 1997, assumed
responsibility for the continuing maintenance and revision of the UML. The UML version 2 now available marks the first
major revision of the UML since the 1997 version 1.1 standard. We present UML 2 terminology and notation throughout
this book.

http://www.omg.org/

What Is the UML?

The UML is now the most widely used graphical representation scheme for modeling object-oriented systems. It has
indeed unified the various popular notational schemes. Those who design systems use the language (in the form of
diagrams) to model their systems.

An attractive feature of the UML is its flexibility. The UML iextensible (i.e., capable of being enhanced with new
features) and is independent of any particular OOAD process. UML modelers are free to use various processes in
designing systems, but all developers can now express their designs with one standard set of graphical notations.

In our Software Engineering Case Study sections, we present a simple, concise subset of the UML. We then use this
subset to guide you through a complete object-oriented design experience with the UML.

UML Web Resources

For more information about the UML, refer to the websites listed below. For additional UML sites, refer to the web

resources listed at the end of [Section 2.2.

This UML resource page from the Object Management Group (OMG) provides specification documents for the UML
and other object-oriented technologies.

l/vww.ibm.com/software/rational/um

This is the UML resource page for IBM Rational—the successor to the Rational Software Corporation (the company
that created the UML).

Recommended Readings

The following books provide information about object-oriented design with the UML:

Ambler, S. The Object Primer: Agile Model-Driven Development with UML 2.0, Third Edition. New York: Cambridge
University Press, 2005.

Arlow, J., and I. Neustadt. UML and the Unified Process: Practical Object-Oriented Analysis and Design, Second
Edition. Boston: Addison-Wesley Professional, 2006.

Fowler, M. UML Distilled, Third Edition: A Brief Guide to the Standard Object Modeling Language Boston:
Addison-Wesley Professional, 2004.

Rumbaugh, J., I. Jacobson and G. Booch. The Unified Modeling Language User Guide, Second Edition. Boston:
Addison-Wesley Professional, 2006.

Self-Review Exercises

http://www.uml.org/
http://www.ibm.com/software/rational/uml

List three examples of real-world objects that we did not mention. For each object, list several
attributes and behaviors.

Pseudocode is
a. another term for OOAD
b. a programming language used to display UML diagrams
c. an informal means of expressing program logic

d. agraphical representation scheme for modeling object-oriented systems

The UML is used primarily to
a. test object-oriented systems
b. design object-oriented systems
c. implement object-oriented systems

d. Bothaandb

Answers to Self-Review Exercises

L

1 &

[Note: Answers may vary.] a) A television's attributes include the size of the screen, the
number of colors it can display, its current channel and its current volume. A television turns
on and off, changes channels, displays video and plays sounds. b) A coffee maker's attributes
include the maximum volume of water it can hold, the time required to brew a pot of coffee and
the temperature of the heating plate under the coffee pot. A coffee maker turns on and off,
brews coffee and heats coffee. c) A turtle's attributes include its age, the size of its shell and its
weight. A turtle walks, retreats into its shell, emerges from its shell and eats vegetation.

1.11. Wrap-Up

This chapter discussed the history of C++. We discussed the different types of programming languages, their history
and which programming languages are most widely used. We also discussed the C++ Standard Library which contains
reusable classes and functions that help C++ programmers create portable C++ programs.

We presented basic object technology concepts, including classes, objects, attributes, behaviors, encapsulation and
inheritance. You also learned about the history and purpose of the UML—the industry-standard graphical language for
modeling object-oriented software systems.

You learned the typical steps for creating and executing a C++ application. You "test-drove" a sample C++ application.

We discussed several key software technologies and concepts, including open source, and looked to the future of C++.
In later chapters, we'll present two open source libraries—Ogre for graphics and game programming, and Boost for
broadly enhancing the C++ Standard Library's capabilities.

In the next chapter, you'll create your first C++ applications. You'll see several examples that demonstrate how
programs display messages on the screen and obtain information from the user at the keyboard for processing.

1.12. Web Resources

This section provides many web resources that will be useful to you as you learn C++. The sites include C++
resources, C++ development tools and some links to fun games built with C++. This section also lists our own websites
where you can find downloads and resources associated with this book.

Deitel & Associates Websites

l/vww.deitel.com/books/cppfpl

The Deitel & Associates C++ for Programmers site. Here you'll find links to the book's examples and other resources,
such as our Dive Into™ guides that help you get started with several C++ integrated development environments (IDESs).

lw.deitel.com/cglusplus[l
m.deitel.com/cglusplusgamegrogramming]
m.deitel.com/cglusplusboostlibraries]
m.deitel.com/codesearchenginesg'
lw.deitel.com/grogrammingpro'ectsj

m.deitel.com/visualcplusglusj
Our C++ and related Resource Centers o .deitel.com|. Start your search here for resources, downloads, tutorials,

documentation, books, e-books, journals, articles, blogs, RSS feeds and more that will help you develop C++
applications.

Please check the Deitel & Associates site for updates, corrections and additional resources for all Deitel publications.

l/vww.deitel.com/newsletter/subscribe.htm

Please visit this site to subscribe for theDeiteI® Buzz Online e-mail newsletter to follow the Deitel & Associates
publishing program, including updates and errata to C++ for Programmers.

Compilers and Development Tools

l/vww.thefreecountrv.com/developercitv/ccompilers.shtml

This site lists free C and C++ compilers for a variety of operating systems.

Lnsdn.microsoft.com/vstudio/express/visualc/defauIt.aspJ

The Microsoft Visual C++ Express site provides a free download ofVisual C++ Express edition, product information,
overviews and supplemental materials for Visual C++.

lw.codegear.com/groducts/cggbuildeJ

This is a link to theCode Gear C++Builder site.

l/vww.compilers.neJ
ompilers.net is designed to help users locate compilers.

http://www.deitel.com/books/cppfp/
http://www.deitel.com/cplusplus/
http://www.deitel.com/cplusplusgameprogramming/
http://www.deitel.com/cplusplusboostlibraries/
http://www.deitel.com/codesearchengines/
http://www.deitel.com/programmingprojects/
http://www.deitel.com/visualcplusplus/
http://www.deitel.com/
http://www.deitel.com/
http://www.deitel.com/newsletter/subscribe.html
http://www.thefreecountry.com/developercity/ccompilers.shtml
http://msdn.microsoft.com/vstudio/express/visualc/default.aspx
http://www.codegear.com/products/cppbuilder
http://www.compilers.net/
http://compilers.net/

beveloger.inte|.com/software/groducts/comgilers/cwin/index.htr_rI

An evaluation download of thelntel C++ compiler is available at this site.

Resources

vaw.hal9k.com/curJ

The C/C++ Users Group (CUG) site contains C++ resources, journals, shareware and freeware.

.devx.co

DevX is a comprehensive resource for programmers that provides the latest news, tools and techniques for various

programming languages. The C++ Zone offers tips, discussion forums, technical help and online newsletters.

l/vww.acm.orq/crossroads/xrdsS-Z/ovaZ.html

The Association for Computing Machinery (ACM) site offers a comprehensive listing of C++ resources, including
recommended texts, journals and magazines, published standards, newsletters, FAQs and newsgroups.

.accu.informika.ru/resources/public/terse/cpp.ht

The Association of C & C++ Users (ACCUxite contains links to C++ tutorials, articles, developer information,
discussions and book reviews.

.cuj.co

The C/C++ User's Journal is an online magazine that contains articles, tutorials and downloads. The site features news
about C++, forums and links to information about development tools.

l/vww.research.att.com/~bs/h0mepaqe.htm

This is the site for Bjarne Stroustrup, designer of the C++ programming language. This site provides a list of C++
resources, FAQs and other useful C++ information.

Games and Game Programming

l/vww.codearchive.comllist.php?qo=070d

This site has several C++ games available for download.

l/vww.mathtools.net/C C /Gamesl

This site includes links to numerous games built with C++. The source code for most of the games is available for
download.

l/vww.qametutorials.com/qtstore/c-3-c-tutoria|s.asp>|

This site has tutorials on game programming in C++. Each tutorial includes a description of the game and a list of the
methods and functions used in the tutorial.

http://developer.intel.com/software/products/compilers/cwin/index.htm
http://www.hal9k.com/cug
http://www.devx.com/
http://www.acm.org/crossroads/xrds3-2/ovp32.html
http://www.accu.informika.ru/resources/public/terse/cpp.htm
http://www.cuj.com/
http://www.research.att.com/~bs/homepage.html
http://www.codearchive.com/list.php?go=0708
http://www.mathtools.net/C_C__/Games/
http://www.gametutorials.com/gtstore/c-3-c-tutorials.aspx

2. Introduction to C++ Programming

Objectives

In this chapter you'll learn:
® To write simple computer programs in C++.
® To write simple input and output statements.
® To use fundamental types.
® To use arithmetic operators.
® The precedence of arithmetic operators.

® To write simple decision-making statements.

What's in a name? that which we call a rose By any other name would smell as sweet.
—William Shakespeare
When faced with a decision, | always ask, "What would be the most fun?"

—Peggy Walker

"Take some more tea," the March Hare said to Alice, very earnestly. "I've had nothing yet," Alice
replied in an offended tone: "so | can't take more." "You mean you can't take less," said the Hatter:
"it's very easy to take more than nothing."

—Lewis Carroll
High thoughts must have high language.

—Aristophanes

Outline

Introduction

First Program in C++: Printing a Line of Text
Modifying Our First C++ Program

Another C++ Program: Adding Integers
Arithmetic

Decision Making: Equality and Relational Operators

BB B E]E]E]E]

(Optional) Software Engineering Case Study: Examining the ATM Requirements Specification

@ Wrap-Up

2.1. Introduction

In this chapter, we present five examples that demonstrate how your programs can display messages and obtain
information from the user for processing. The first three examples display messages on the screen. The next obtains
two numbers from a user, calculates their sum and displays the result. The accompanying discussion shows you how to
perform various arithmetic calculations and save their results for later use. The fifth example demonstrates
decision-making fundamentals by comparing two numbers, then displaying messages based on the comparison results.

2.2. First Program in C++: Printing a Line of Text

C++ uses notations that may appear strange to nonprogrammers. We now consider a simple program that prints a line

of text (.

Fig. 2.1. Text-printing program.

1 /I Fig. 2.1: fig02_01.cpp
2 [l Text-printing program.

3 #include<iostream>// allows program to output data to the screen

4
5 //function main begins program execution

6 intmain()

7 {

8 std::cout <<Welcome to C++!\n"; //display message
9

10 returnO;// indicate that program ended successfully
11

12}/l end function main

Welcome to C++!

Lines 1 and 2

/I Fig. 2.1: fig02_01.cpp
/I Text-printing program.

each begin with //, indicating that the remainder of each line is a comment. A comment beginning with is called a

single-line comment because it terminates at the end of the current lineNote: You also may use C's style in which a
comment—possibly containing many lines—begins with /* and ends with*/.]

Line 3

#include <iostream> // allows program to output data to the screen

is a preprocessor directive , which is a message to the C++ preprocessor (introduced i). Lines that begin with
are processed by the preprocessoibefore the program is compiled. This line notifies the preprocessor to include in the
program the contents of the input/output stream header file <iostream> . This file must be included for any program that
outputs data to the screen or inputs data from the keyboard using C++-style stream input/output. We discuss header
files in more detail in , Functions and an Introduction to Recursion, and explain the contents afostream> in

, Stream Input/Output.

Common Programming Error 2.1

o,

E Forgetting to include the <iostream> header file in a program that inputs data from
the keyboard or outputs data to the screen causes the compiler to issue an error
message, because it cannot recognize references to the stream components
(e.g., cout).

Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e., "tabs") to make programs
easier to read. Together, these characters are known as white space . Whitespace characters are normally ignored by
the compiler.

Line 5

/I function main begins program execution

is another single-line comment.
Line 6

int main()

is a part of every C++ program. The parentheses aftemain indicate thatmain is afunction . C++ programs typically
consist of one or more functions and classes (as you'll see in). Exactly one function in every program must be
main. contains only one function. C++ programs begin executing at functiomain, even ifmain is not the first

ord int to the left ofmain indicates thatmain returns an integer value. The complete list of
C++ keywords can be found in Fig. 4.2. You'll see how to create your own functions i . We discuss

The left brace, {, (line 7) must begin thebody of every function. A correspondingright brace, }, (line 12) must end each

function in the program. The ke

functions in greater depth in . For now, simply includent to the left ofmain in each of your programs.

function's body. Line 8

std::cout << "Welcome to C++\n" ; // display message

prints the string of characters contained between the double quotation marks. White-space characters in strings aneot
ignored by the compiler.

The entire line 8, includingstd::cout, the << operator, the string"welcome to C++\n" and thesemicolon (;), is called a

statement . Every C++ statement must end with a semicolon (also known as thestatement terminator).
Preprocessor directives (like #include) do not end with a semicolon. Output and input in C++ are accomplished with
streams of characters. Thus, when the preceding statement is executed, it sends the stream of charactemselcome to

C++\n to thestandard output stream object—std::cout—which is normally "connected" to the screen. We discusstd::cout's

many features in detail in .

Notice that we placed std:: beforecout . This is required when we use names that we've brought into the program by the
preprocessor directive #include <iostream>. The notationstd::cout specifies that we are using a name, in this caseout, that
belongs to "namespace" std. The namescin (the standard input stream) andcerr (the standard error stream)—introduced
in also belong to namespacestd . Namespaces are an advanced C++ feature that we discuss in depth in

, Other Topics. For now, you should simply remember to includstd:: before each mention ofcout, cin and cerr
in a program. This can be cumbersome—in , We introduce theusing declaration, which will enable us to omistd::

before each use of a name in the std namespace.

The << operator is referred to as thestream insertion operator. When this program executes, the value to the operator's

right, the right operand , is inserted in the output stream. Notice that the operator points in the direction of where the
data goes. The right operand's characters normally print exactly as they appear between the double quotes. However,
%I; il)

the characters \n are not printed on the screen [fig. 2.1). The backslash () is called an escape character . It indicates that

a "special" character is to be output. When a backslash is encountered in a string of characters, the next character is

combined with the backslash to form an escape sequence. The escape sequence\n means newline . It causes the

cursor to move to the beginning of the next line on the screen. Some common escape sequences are listed in .

Fig. 2.2. Escape sequences.

Escape sequence Description

\n

\t

\r

\a

\

Newline. Position the screen cursor to the beginning of the next line.
Horizontal tab. Move the screen cursor to the next tab stop.

Carriage return. Position the screen cursor to the beginning of the current line; do not
advance to the next line.

Alert. Sound the system bell.
Backslash. Used to print a backslash character.
Single quote. Use to print a single quote character.

Double quote. Used to print a double quote character.

Common Programming Error 2.2

_
g Omitting the semicolon at the end of a C++ statement is a syntax error. (Again,
' preprocessor directives do not end in a semicolon.)

Line 10

return O; // indicate that program ended successfully

is one of several means we'll use to exit a function. When thereturn statement is used at the end ofnain, as shown here,
the value 0 indicates that the program has terminated successfully. I we discuss functions in detail, and the

reasons for including this statement will become clear. For now, simply include this statement in each program, or the
compiler may produce a warning on some systems. The right brace, }, (line 12) indicates the end of functiomain.

Good Programming Practice 2.1

‘;{E Many programmers make the last character printed by a function a newliner().
This ensures that the function will leave the screen cursor positioned at the
beginning of a new line. Conventions of this nature encourage software
reusability—a key goal in software development.

Good Programming Practice 2.2

'ﬁ Indent the entire body of each function one level within the braces that delimit the
body of the function. This makes a program's functional structure stand out and
makes the program easier to read.

Good Programming Practice 2.3

ﬁ Set a convention for the size of indent you prefer, then apply it uniformly. The tab
key may be used to create indents, but tab stops may vary. We recommend using
either 1/4-inch tab stops or (preferably) three spaces to form a level of indent.

2.3. Modifying Our First C++ Program

This section continues our introduction to C++ programming with two examples, showing how to modify the program in

‘ to print text on one line by using multiple statements, and to print text on several lines by using a single
statement.

Printing a Single Line of Text with Multiple Statements

performs stream insertion in multiple statements
(lines 8-9), yet produces the same output as the program of . [Note: From this point forward, we use a white
background in the code table to highlight the key features each program introduces.] Each stream insertion resumes
printing where the previous one stopped. The first stream insertion (line 8) prints Welcome followed by a space, and the

Welcome to C++! can be printed several ways. For example

second stream insertion (line 9) begins printing on the same line immediately following the space.

Fig. 2.3. Printing a line of text with multiple statements.

1 /I Fig. 2.3: fig02_03.cpp

2 [/l Printing a line of text with multiple statements.

3 #include<iostream> // allows program to output data to the screen
4

5 [/ function main begins program execution

6 intmain()

7 {

8 std::cout <<Welcome";

9 std::cout <<to C++!\n";

10

11 returnO;// indicate that program ended successfully
12

13}/l end function main

Welcome to C++!

Printing Multiple Lines of Text with a Single Statement

A single statement can print multiple lines by using newline characters, as in line 8 . Each time the\n
(newline) escape sequence is encountered in the output stream, the screen cursor is positioned to the beginning of the
next line. To get a blank line in your output, place two newline characters back to back, as in line 8.

Fig. 2.4. Printing multiple lines of text with a single statement.

Welcome

to

CH+l

2.4. Another C++ Program: Adding Integers

Our next program uses the input stream objecttd::.cin and the stream extraction operator, >>, to obtain two integers typed
by a user at the keyboard, computes the sum of these values and outputs the result using std::cout. shows the
program and sample inputs and outputs. Note that we highlight the user's input in bold.

The comments in lines 1 and 2 state the name of the file and the purpose of the program. The C++ preprocessor directive

#include <iostream> // allows program to perform input and output

in line 3 includes the contents of the<iostream> header file in the program.

The program begins execution with functiormain (line 6). The left brace (line 7) marks the beginning ohain's body
and the corresponding right brace (line 25) marks the end of main.

Lines 9-11

int numberl; // first integer to add
int number2; // second integer to add

int sum; // sum of numberl and number2

are declarations. The identifiersnumberl, number2 and sum are the names ofvariables. These declarations specify that the
variables numberl, number2 and sum are data of typeint, meaning that these variables will holdnteger values, i.e., whole
numbers such as 7,—11, 0 and 31914. All variables must be declared with a name and a data type before they can be
used in a program. Several variables of the same type may be declared in one declaration or in multiple declarations.
We could have declared all three variables in one declaration as follows:

int numberl, number2, sum;

This makes the program less readable and prevents us from providing comments that describe each
variable's purpose.

We'll soon discuss the data typedouble for specifying real numbers, and the data typehar for specifying character data.
Real numbers are numbers with decimal points, such as 3.4, 0.0 and—11.19. A char variable may hold only a single
lowercase letter, a single uppercase letter, a single digit or a single special character (e.g., $ or *). Types such asint,
double and char are often calledfundamental types or built-in types . Fundamental-type names are keywords and

therefore must appear in all lowercase letters. contains the complete list of fundamental types.

A variable name (such asnumberl) is any valididentifier that is not a keyword. An identifier is a series of characters
consisting of letters, digits and underscores (_) that does not begin with a digit. C++ is case sensitive—uppercase and
lowercase letters are different, so a1 and A1 are different identifiers.

Portability Tip 2.1

@' C++ allows identifiers of any length, but your C++ implementation may impose
- some restrictions on the length of identifiers. Use identifiers of 31 characters or
fewer to ensure portability.

Good Programming Practice 2.4

-

E Avoid identifiers that begin with underscores and double underscores, because
C++ compilers may use names like that for their own purposes internally. This will
prevent names you choose from being confused with names the compilers
choose.

Error-Prevention Tip 2.1

@ Languages like C++ are "moving targets." As they evolve, more keywords could
be added to the language. Avoid using "loaded" words like "object" as identifiers.
Even though "object" is not currently a keyword in C++, it could become one;
therefore, future compiling with new compilers could break existing code.

Declarations of variables can be placed almost anywhere in a program, but they must ai pear before their

corresponding variables are used in the program. For example, in the program of Eig. 2.5, the declaration in line 9

Fig. 2.5. Addition program that displays the sum of two integers entered at the keyboard.

1 /I Fig. 2.5: fig02_05.cpp

2 /I Addition program that displays the sum of two integers.

3 #include <iostream> // allows program to perform input and output

4

5 /I function main begins program execution

6 int main()

7 {

8 [/ variable declarations

9 int numberl; // first integer to add

10 int number2; // second integer to add

11 int sum; // sum of numberl and number2

12

13 std::icout <<"Enter first integer: " ; // prompt user for data

14 std:cin >> numberl; // read first integer from user into numberl

15

16 std::cout <<"Enter second integer: " ; // prompt user for data

17 std::icin >> number2; // read second integer from user into number2
18

19 sum = numberl + number2; // add the numbers; store result in sum
20

21 std:cout<<"Sumis " << sum << std::endl; // display sum; end line
22

23 return O; // indicate that program ended successfully

24

25}/l end function main

Enter first integer: 45
Enter second integer: 72
Sumis 117

int numberl; // first integer to add

could have been placed immediately before line 14

std::cin >> numberl; // read first integer from user into numberl

Line 13

std::cout << "Enter first integer: " ; // prompt user for data

prints the stringEnter first integer: on the screen. We like to pronounce the preceding statement asstd::cout gets the
character string "Enter first integer: "." Line 14

std::cin >> number1,; // read first integer from user into numberl

uses the input stream object cin (of namespace std) and thestream extraction operator, >>, to obtain a value from the
keyboard. Using the stream extraction operator with std::cin takes character input from the standard input
stream, which is usually the keyboard. We like to pronounce the preceding statement as, "std::cin gives a value to

numberl" or simply "std::cin gives number1."

Error-Prevention Tip 2.2

@ Programs should validate the correctness of all input values to prevent erroneous
information from affecting a program's calculations.

When the computer executes the preceding statement, it waits for the user to enter a value for variableumber1 . The
user responds by typing an integer (as characters), then pressing the Enter key (sometimes called theReturn key) to
send the characters to the computer. The computer converts the character representation of the number to an integer
and assigns (i.e., copies) this number (or value) to the variablenumberl . Any subsequent references tonumberl in this
program will use this same value.

Line 16

std::cout << "Enter second integer: " ; // prompt user for data

prints Enter second integer: on the screen, prompting the user to take action. Line 17

std::cin >> number2; // read second integer from user into number2

obtains a value for variable number2 from the user.

The assignment statement in line 19

sum = numberl + number2; // add the numbers; store result in sum

calculates the sum of the variables number1 and number2 and assigns the result to variablesum using the assignment
operator =. The = operator and the+ operator are calledbinary operators because each has two operands. In the case of
the + operator, the operands arenumberl and number2. In the case of the preceding- operator, the operands aresum and
the value of the expression numberl + number2.

Line 21

std::cout <<"Sum is " << sum << std::endl; // display sum; end line

displays the character string Sum is followed by the numerical value of variablesum followed by std::endi—a so-called
stream manipulator. The nameendl is an abbreviation for "end line" and belongs to namespacstd. The std::endl stream
manipulator outputs a newline, then "flushes the output buffer." This simply means that, on some systems where outputs
accumulate in the machine until there are enough to "make it worthwhile" to display them on the screen, std::endl forces
any accumulated outputs to be displayed at that moment. This can be important when the outputs are prompting the
user for an action, such as entering data.

Note that the preceding statement outputs multiple values of different types. The stream insertion operator "knows" how
to output each type of data. Using multiple stream insertion operators (<<) in a single statement is referred to as
concatenating, chaining or cascading stream insertion operations . It is unnecessary to have multiple statements to
output multiple pieces of data.

Calculations can also be performed in output statements. We could have combined the statements in lines 19 and 21
into the statement

std::cout <<"Sum is" << numberl + number2 << std::endl;

thus eliminating the need for the variablesum.

A powerful feature of C++ is that you can create your own data types called classes (we introduce this
capability in and explore it in depth ir{ and[Ld). You can then "teach” C++ how to input and output
values of these new data types using the >> and << operators (this is calledoperator overloading—a topic we explore in

Enapter 1)

2.5. Arithmetic

summarizes the C++arithmetic operators. The asterisk (*) indicates multiplication and thepercent sign (%) is

the modulus operator that will be discussed shortly. The arithmetic operators in Eig. 2.4 are all binary operators

Fig. 2.6. Arithmetic operators.

C++ operation C++ arithmetic operator Algebraic expression C++ expression
Addition + f+7 f+7
Subtraction - p-c p-c
Multiplication * bmorb-m b*m
Division / E xly

xlyor orx=+y
Modulus % rmods r%s

Integer division (i.e., where both the numerator and the denominator are integers) yields an integer quotient; for
example, the expression 7 /4 evaluates to1 and the expression17 /5 evaluates to3 . Note that any fractional part in
integer division is discarded (i.e., truncated)—no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder after integer division. The modulus operator can be
used only with integer operands. The expression x % y yields the remainder afterx is divided byy. Thus, 7 % 4 yields 3 and
17 % 5 yields 2 . In later chapters, we discuss many interesting applications of the modulus operator, such as determining
whether one number is a multiple of another (a special case of this is determining whether a number is odd or even).

Common Programming Error 2.3

.
@ Attempting to use the modulus operator (%) with noninteger operands is a
compilation error.

Parentheses for Grouping Subexpressions

Parentheses are used in C++ expressions in the same manner as in algebraic expressions. For example, to multiply
times the quantity b + c we writea* (b +c).

Rules of Operator Precedence

C++ applies the operators in arithmetic expressions in a precise sequence determined by the followingules of operator
precedence, which are generally the same as those followed in algebra:
1.
Operators in expressions contained within pairs of parentheses are evaluated first. Parentheses are
said to be at the "highest level of precedence." In cases of nested, orembedded, parentheses, such as

((a+b)+c)

the operators in the innermost pair of parentheses are applied first.Note: As in algebra, it is acceptable to
place unnecessary parentheses in an expression to make the expression clearer. These are called redundant

parentheses.]

2. Multiplication, division and modulus operations are applied next. If an expression contains several
multiplication, division and modulus operations, operators are applied from left to right. Multiplication, division
and modulus are said to be on the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains several addition and
subtraction operations, operators are applied from left to right. Addition and subtraction also have the same

level of precedence.

The set of rules of operator precedence defines the order in which C++ applies operators. When we say that certain
operators are applied from left to right, we are referring to the associativity of the operators. For example, in the

expression

a+b+c

the addition operators (+) associate from left to right, sca + b is calculated first, thenc is added to that sum to determine

the value of the whole expression. We'll see that some operators associate from right to Ieft. summarizes
these rules of operator precedence. This table will be expanded as additional C++ operators are introduced. A complete

precedence chart is included in .

Fig. 2.7. Precedence of arithmetic operators.

Operator(s) Operation(s) Order of evaluation (precedence)

0 Parentheses Evaluated first. If the parentheses are nested, the expression in
the innermost pair is evaluated first. If there are several pairs of
parentheses "on the same level" (i.e., not nested), they are
evaluated left to right.

* Multiplication, Evaluated second. If there are several, they are evaluated left to

/ Division, Modulus right.

%

+ Addition Subtraction Evaluated last. If there are several, they are evaluated left to

right.

Good Programming Practice 2.5

4
E Using redundant parentheses in complex arithmetic expressions can make the

expressions clearer.

2.6. Decision Making: Equality and Relational Operators

This section introduces a simple version of C++'sf statement that allows a program to take alternative
action based on the truth or falsity of some condition . If the condition is met, i.e., the condition is true, the statement in
the body of the if statement is executed. If the condition is not met, i.e., the condition is false, the body statement is not
executed. We'll see an example shortly.

Conditions inif statements can be formed by using theequality operators and relational operators summarized inE{l
. The relational operators all have the same level of precedence and associate left to right. The equality operators
both have the same level of precedence, which is lower than that of the relational operators, and associate left to right.

Fig. 2.8. Equality and relational operators.

Standard algebraic equality C++ equality or Sample C++
or relational operator relational operator condition Meaning of C++ condition

Relational operators

> > X>y x is greater thany

N
A
<
A
<

x is less thany

\

1
x
Vv
1
<

x is greater than or equal toy
< <= x<=y x is less than or equal toy

Equality operators

= == X == x is equal toy
i I= xl=y x is not equal toy
Common Programming Error 2.4
% Confusing the equality operator == with the assignment operator= results in logic

errors. The equality operator should be read "is equal to," and the assignment
operator should be read "gets" or "gets the value of" or "is assigned the value of."

Some people prefer to read the equality operator as "double equals." As we
discuss in , confusing these operators may not necessarily cause an

easy-to-recognize syntax error, but may cause extremely subtle logic errors.

The following example uses six if statements to compare two numbers input by the user. If the condition in any of thesi¢
statements is satisfied, the output statement associated with that if statement is executed. shows the program
and the input/ output dialogs of three sample executions.

Lines 6-8

using std::cout; // program uses cout

using std::cin; // program uses cin

using std::endl; // program uses end|

are using declarations that eliminate the need to repeat thestd:: prefix as we did in earlier programs. Once we insert these
using declarations, we can writecout instead of std::cout, cin instead of std::cin and endl instead of std::endl , respectively,
in the remainder of the program. [Note: From this point forward in the book, each example contains one or moresing
declarations.]

Good Programming Practice 2.6

4 Place using declarations immediately after the#include to which they refer.

Lines 13-14

int number1; // first integer to compare

int number2; // second integer to compare

declare the variables used in the program. Remember that variables may be declared in one declaration or in separate
declarations.

The program uses cascaded stream extraction operations (line 17) to input two integers. Remember that we are
allowed to write cin (instead of std::cin) because of line 7. First a value is read into variableumber1, then a value is read
into variable number2.

The if statement in lines 19-20

if (numberl == number2)

cout << numberl << " ==" << number2 << end|;

compares the values of variables numberl and number2 to test for equality. If the values are equal, the statement in line
20 displays a line of text indicating that the numbers are equal. If the conditions are true in one or more of theif
statements starting in lines 22, 25, 28, 31 and 34, the corresponding body statement displays an appropriate line of text.

Notice that each if statement in has a single statement in its body and that each body statement is indented. In
we show how to specifyif statements with multiple-statement bodies (by enclosing the body statements in a
pair of braces, {}, creating what is called acompound statement or a block).

© 00 N O g B~ W N P

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Fig. 2.9. Comparing integers using if statements, relational operators and equality operators.

/I Fig. 2.9: fig02_09.cpp
/I Comparing integers using if statements, relational operators
/I and equality operators.

#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin

using std::endl; // program uses end|

/I function main begins program execution
int main()
{

int numberl; // first integer to compare

int number2; // second integer to compare

cout << "Enter two integers to compare: " ; // prompt user for data

cin >> numberl >> number2; // read two integers from user

if (numberl == number2)

cout << numberl << " ==" << number2 << endl;

if (numberl != number2)

cout << numberl << " I=" << number2 << endl;

if (numberl < number2)

cout << numberl << " <" << number2 << endl;

if (numberl > number2)

cout << numberl << " > " << number2 << endl;

if (numberl <= number2)

cout << numberl << " <=" << number2 << endl;

if (numberl >= number2)

cout << numberl << " >=" << number2 << endl;

return O; // indicate that program ended successfully

} // end function main

Enter two integers to compare: 3 7
31=7

3<7

3<=7

Enter two integers to compare: 22 12

221=12
22>12
22>=12

Enter two integers to compare: 7 7
7==7
7<=7
7>=7

Common Programming Error 2.5

ﬁ Placing a semicolon immediately after the right parenthesis after the condition in
' an if statement is often a logic error (although not a syntax error). The semicolon
causes the body of the if statement to be empty, so theif statement performs no
action, regardless of whether or not its condition is true. Worse yet, the original
body statement of the if statement now becomes a statement in sequence with
the if statement and always executes, often causing the program to produce
incorrect results.

shows the precedence and associativity of the operators introduced in this chapter. The operators are
shown top to bottom in decreasing order of precedence. Notice that all these operators, with the exception of
the assignment operator =, associate from left to right. Addition is left-associative, so an expression like +y + z is
evaluated as if it had been written (x + y) + z. The assignment operator= associates from right to left, so an expression
such as x =y =0 is evaluated as if it had been writter = (y = 0), which, as we'll soon see, first assign® toy, then assigns

the result of that assignment—o—to x.

Fig. 2.10. Precedence and associativity of the operators discussed so far.

Operators Associativity Type

0 left to right parentheses

* / % left to right multiplicative

+ - left to right additive

<< >> left to right stream insertion/extraction
< <= > >= left to right relational

== I= left to right equality

= right to left assignment

2.7. (Optional) Software Engineering Case Study: Examining the ATM Requirements Specification

Now we begin our optional object-oriented design and implementation case study. The Software Engineering Case Study sections at
the ends of this and the next several chapters will ease you into object orientation. We'll develop software for a simple auto ler
machine (ATM) system, providing you with a concise, carefully paced, complete design and implementation experience. In[Chapter.

,g and[Ly, we'll perform the various steps of an object-oriented design (OOD) process using the UML, while relating these steps to
the object-oriented concepts discussed in the chapters. App E implements the ATM using the techniques of object-oriented
programming (OOP) in C++. We present the complete case study solution. This is not an exercise; rather, it is an end-to-end learning
experience that concludes with a detailed walkthrough of the C++ code that implements our design. It will acquaint you with the kinds of
substantial problems encountered in industry and their potential solutions.

We begin our design process by presenting aequirements specification that specifies the overall purpose of the ATM system andvhat
it must do. Throughout the case study, we refer to the requirements specification to determine precisely what functionality the system
must include.

Requirements Specification

A local bank intends to install a new automated teller machine (ATM) to allow users (i.e., bank customers) to perform basic financial
transactions (Eig. 2.11)). Each user can have only one account at the bank. ATM users should be able to view their account balance,
withdraw cash (i.e., take money out of an account) and deposit funds (i.e., place money into an account).

Fig. 2.11. Automated teller machine user interface.

Welcome!

Please enter your account number: 12345

Insert deposit anvelops hers =l Deposit Slot

.
'_-‘J'.'
—
.
=

Screen =
Enter your PIN: 54321
ﬂ = Take cash hers - Cash Dispenser
——
A
Kevpad .
2

The user interface of the automated teller machine contains the following hardware components:
® a screen that displays messages to the user
® a keypad that receives numeric input from the user
® a cash dispenser that dispenses cash to the user and

® adeposit slot that receives deposit envelopes from the user.

The cash dispenser begins each day loaded with 500 $20 bills.Note: Owing to the limited scope of this case study, certain elements of
the ATM described here do not accurately mimic those of a real ATM. For example, a real ATM typically contains a device that reads a
user's account number from an ATM card, whereas this ATM asks the user to type an account number using the keypad. A real ATM
also usually prints a receipt at the end of a session, but all output from this ATM appears on the screen.]

The bank wants you to develop software to perform the financial transactions initiated by bank customers through the ATM. The bank
will integrate the software with the ATM's hardware at a later time. The software should encapsulate the functionality of the hardware
devices (e.g., cash dispenser, deposit slot) within software components, but it need not concern itself with how these devices perform
their duties. The ATM hardware has not been developed yet, so instead of writing your software to run on the ATM, you should develop
a first version of the software to run on a personal computer. This version should use the computer's monitor to simulate the ATM's
screen, and the computer's keyboard to simulate the ATM's keypad.

An ATM session consists of authenticating a user (i.e., proving the user's identity) based on an account nhumber and personal
identification number (PIN), followed by creating and executing financial transactions. To authenticate a user and perform transactions,
the ATM must interact with the bank's account information database. [Note: A database is an organized collection of data stored on a
computer.] For each bank account, the database stores an account number, a PIN and a balance indicating the amount of money in the
account. [Note: For simplicity, we assume that the bank plans to build only one ATM, so we do not need to worry about multiple ATMs
accessing this database at the same time. Furthermore, we assume that the bank does not make any changes to the information in the
database while a user is accessing the ATM. Also, any business system like an ATM faces reasonably complicated security issues that
go well beyond the scope of a first- or second-semester computer science course. We make the simplifying assumption, however, that
the bank trusts the ATM to access and manipulate the information in the database without significant security measures.]

Upon first approaching the ATM, the user should experience the following sequence of events (shown i):
1. The screen displays a welcome message and prompts the user to enter an account number.
2. The user enters a five-digit account number, using the keypad.
3. The screen prompts the user to enter the PIN (personal identification number) associated with the specified account number.

4. The user enters a five-digit PIN, using the keypad.

5. If the user enters a valid account number and the correct PIN for that account, the screen displays the main men).
If the user enters an invalid account number or an incorrect PIN, the screen displays an appropriate message, then the ATM
returns to Step 1 to restart the authentication process.

Fig. 2.12. ATM main menu.

Main menu:
1 View my balance
Withdraw cash

2

3 - Deposit funds
4 Exit

Enter a choice:

Take cash here

I —
2806
P08
N ST

——

Inzart daposit anvelope hara

| ST || e—

After the ATM authenticates the user, the main menu) displays a numbered option for each of the three types of transactions:
balance inquiry (option 1), withdrawal (option 2) and deposit (option 3). The main menu also displays an option that allows the user to
exit the system (option 4). The user then chooses either to perform a transaction (by entering 1, 2 or 3) or to exit the system (by
entering 4). If the user enters an invalid option, the screen displays an error message, then redisplays to the main menu.

If the user enters 1 to make a balance inquiry, the screen displays the user's account balance. To do so, the ATM must retrieve the

balance from the bank's database.
The following actions occur when the user enters 2 to make a withdrawal:

1. The screen displays a menu (shown in) containing standard withdrawal amounts: $20 (option 1), $40 (option 2),
$60 (option 3), $100 (option 4) and $200 (option 5). The menu also contains an option to allow the user to cancel the

transaction (option 6).

Fig. 2.13. ATM withdrawal menu.

Withdrawal options:
1 - %20 4 - 3100
2 - %40 5 - 5200

3 - %60 6 - Cancel transaction
Choose a withdrawal option (1-6):

Take cash here

— 1

OO
JO00DO

llll -
IE:’ .
‘::’ ;

2. The user enters a menu selection (1-6) using the keypad.

Insart deposit envelops here

3. If the withdrawal amount chosen is greater than the user's account balance, the screen displays a message stating this and
telling the user to choose a smaller amount. The ATM then returns to Step 1. If the withdrawal amount chosen is less than or

equal to the user's account balance (i.e., an acceptable withdrawal amount), the ATM proceeds to Step 4. If the user
chooses to cancel the transaction (option 6), the ATM displays the main menu lu and waits for user input.

If the cash dispenser contains enough cash to satisfy the request, the ATM proceeds to Step 5. Otherwise, the screen
displays a message indicating the problem and telling the user to choose a smaller withdrawal amount. The ATM then

returns to Step 1.
5. The ATM debits (i.e., subtracts) the withdrawal amount from the user's account balance in the bank's database.
6. The cash dispenser dispenses the desired amount of money to the user.
7. The screen displays a message reminding the user to take the money.
The following actions occur when the user enters 3 (while the main menu is displayed) to make a deposit:
1. The screen prompts the user to enter a deposit amount or to type 0 (zero) to cancel the transaction.

2. The user enters a deposit amount or 0, using the keypad. Note: The keypad does not contain a decimal point or a dollar
sign, so the user cannot type a real dollar amount (e.g., $1.25). Instead, the user must enter a deposit amount as a number

of cents (e.g., 125). The ATM then divides this number by 100 to obtain a nhumber representing a dollar amount (e.g., 125 +
100 = 1.25).]

3. If the user specifies a deposit amount, the ATM proceeds taStep 4 . If the user chooses to cancel the transaction (by
‘) and waits for user input.

entering 0), the ATM displays the main menu (
4. The screen displays a message telling the user to insert a deposit envelope into the deposit slot.

5. If the deposit slot receives a deposit envelope within two minutes, the ATM credits (i.e., adds) the deposit amount to the
user's account balance in the bank's database. [Note: This money is not immediately available for withdrawal. The bank first
must physically verify the amount of cash in the deposit envelope, and any checks in the envelope must clear (i.e., money
must be transferred from the check writer's account to the check recipient's account). When either of these events occurs,
the bank appropriately updates the user's balance stored in its database. This occurs independently of the ATM system.] If
the deposit slot does not receive a deposit envelope within this time period, the screen displays a message that the system
has canceled the transaction due to inactivity. The ATM then displays the main menu and waits for user input.

After the system successfully executes a transaction, the system should redisplay the main men) so that the user can
perform additional transactions. If the user chooses to exit the system (option 4), the screen should display a thank you message, then
display the welcome message for the next user.

Analyzing the ATM System

The preceding statement is a simplified example of a requirements specification. Typically, such a document is the result of a detailed
process of requirements gathering that might include interviews with potential users of the system and specialists in fields related to
the system. For example, a systems analyst who is hired to prepare a requirements specification for banking software (e.g., the ATM
system described here) might interview financial experts to gain a better understanding of what the software must do. The analyst
would use the information gained to compile a list of system requirements to guide systems designers.

The process of requirements gathering is a key task of the first stage of the software life cycle. Thesoftware life cycle specifies the
stages through which software evolves from the time it is first conceived to the time it is retired from use. These stages typically
include: analysis, design, implementation, testing and debugging, deployment, maintenance and retirement. Several software life-cycle
models exist, each with its own preferences and specifications for when and how often software engineers should perform each of
these stages. Waterfall models perform each stage once in succession, whereasterative models may repeat one or more stages
several times throughout a product's life cycle.

The analysis stage of the software life cycle focuses on defining the problem to be solved. When designing any system, one must
certainly solve the problem right, but of equal importance, one mustsolve the right problem . Systems analysts collect the requirements
that indicate the specific problem to solve. Our requirements specification describes our ATM system in sufficient detail that you do not
need to go through an extensive analysis stage—it has been done for you.

To capture what a proposed system should do, developers often employ a technique known asise case modeling . This process
identifies the use cases of the system, each of which represents a different capability that the system provides to its clients. For
example, ATMs typically have several use cases, such as "View Account Balance," "Withdraw Cash," "Deposit Funds," "Transfer Funds
Between Accounts" and "Buy Postage Stamps." The simplified ATM system we build in this case study allows only the first three of

these use cases (Fig. 2.14).

Fig. 2.14. Use case diagram for the ATM system from the User's perspective.

. View Account Balance

e

-

Withdraw Cash

User T

= Deposit Funds

Each use case describes a typical scenario in which the user uses the system. You have already read descriptions of the ATM
system's use cases in the requirements specification; the lists of steps required to perform each type of transaction (i.e., balance
inquiry, withdrawal and deposit) actually described the three use cases of our ATM—"View Account Balance," "Withdraw Cash" and
"Deposit Funds."

Use Case Diagrams

We now introduce the first of several UML diagrams in our ATM case study. We create aise case diagram to model the interactions
between a system's clients (in this case study, bank customers) and the system. The goal is to show the kinds of interactions users
have with a system without providing the details—these are provided in other UML diagrams (which we present throughout the case
study). Use case diagrams are often accompanied by informal text that describes the use cases in more detail—like the text that
appears in the requirements specification. Use case diagrams are produced during the analysis stage of the software life cycle. In larger
systems, use case diagrams are simple but indispensable tools that help system designers remain focused on satisfying the users'
needs.

shows the use case diagram for our ATM system. The stick figure represents aractor , which defines the roles that an
external entity—such as a person or another system—plays when interacting with the system. For our automated teller machine, the
actor is a User who can view an account balance, withdraw cash and deposit funds from the ATM. The User is not an actual person,
but instead comprises the roles that a real person—when playing the part of a User—can play while interacting with the ATM. Note that
a use case diagram can include multiple actors. For example, the use case diagram for a real bank's ATM system might also include an
actor named Administrator who refills the cash dispenser each day.

We identify the actor in our system by examining the requirements specification, which states, "ATM users should be able to view their
account balance, withdraw cash and deposit funds." The actor in each of the three use cases is the User who interacts with the ATM.

An external entity—a real person—plays the part of the User to perform financial transactionsEigure 2.14 shows one actor,

whose name, User, appears below the actor in the diagram. The UML models each use case as an oval connected to an actor with a
solid line.

Software engineers (more precisely, systems analysts) must analyze the requirements specification or a set of use cases and design
the system before programmers implement it. During the analysis stage, systems analysts focus on understanding the requirements
specification to produce a high-level specification that describes what the system is supposed to do. The output of the design stage—a
design specification—should specify clearlyhow the system should be constructed to satisfy these requirements. In the next several
Software Engineering Case Study sections, we perform the steps of a simple object-oriented design (OOD) process on the ATM

system to produce a design specification containing a collection of UML diagrams and supporting text. Recall that the UML is designed
for use with any OOD process. Many such processes exist, the best known of which is the Rational Unified Process™ (RUP) developed
by Rational Software Corporation (now a division of IBM). RUP is a rich process intended for designing "industrial strength"
applications. For this case study, we present our own simplified design process.

Designing the ATM System

We now begin the design stage of our ATM system. Aystem is a set of components that interact to solve a problem. For example, to
perform the ATM system's designated tasks, our ATM system has a user interface 1), contains software that executes financial
transactions and interacts with a database of bank account information. System structure describes the system's objects and their
interrelationships. System behavior describes how the system changes as its objects interact with one another. Every system has both
structure and behavior—designers must specify both. There are several distinct types of system structures and behaviors. For
example, the interactions among objects in the system differ from those between the user and the system, yet both constitute a portion
of the system behavior.

The UML 2 specifies 13 diagram types for documenting the models of systems. Each models a distinct characteristic of a system's
structure or behavior—six diagrams relate to system structure; the remaining seven relate to system behavior. We list here only the six

types of diagrams used in our case study—one of these (class diagrams) models system structure—the remaining five model system
behavior. We overview the remaining seven UML diagram types in , UML 2: Additional Diagram Types.

1 Use case diagrams, such as the one in , model the interactions between a system and its external entities
(actors) in terms of use cases (system capabilities, such as "View Account Balance," "Withdraw Cash" and "Deposit Funds").

2. Class diagrams, which you'll study in, model the classes, or "building blocks," used in a system. Each noun or
"thing" described in the requirements specification is a candidate to be a class in the system (e.g., "account," "keypad").
Class diagrams help us specify the structural relationships between parts of the system. For example, the ATM system class
diagram will specify that the ATM is physically composed of a screen, a keypad, a cash dispenser and a deposit slot.

3. State machine diagrams, which you'll study in , model the ways in which an object changes state. An object's
state is indicated by the values of all the object's attributes at a given time. When an object changes state, that object may
behave differently in the system. For example, after validating a user's PIN, the ATM transitions from the "user not
authenticated" state to the "user authenticated" state, at which point the ATM allows the user to perform financial
transactions (e.g., view account balance, withdraw cash, deposit funds).

4. Activity diagrams, which you'll also study in, model an object's activity —the object's workflow (sequence of
events) during program execution. An activity diagram models the actions the object performs and specifies the order in
which it performs these actions. For example, an activity diagram shows that the ATM must obtain the balance of the user's
account (from the bank's account information database) before the screen can display the balance to the user.

5. Communication diagrams (called collaboration diagrams in earlier versions of the UML) model the interactions among

objects in a system, with an emphasis on what interactions occur. You'll see infSection 7.14 that these diagrams show which

objects must interact to perform an ATM transaction. For example, the ATM must communicate with the bank's account
information database to retrieve an account balance.

6. Sequence diagrams also model the interactions among the objects in a system, but unlike communication diagrams, they
emphasize when interactions occur. You'll see in. that these diagrams help show the order in which interactions

occur in executing a financial transaction. For example, the screen prompts the user to enter a withdrawal amount before
cash is dispensed.

In , we continue designing our ATM system by identifying the classes from the requirements specification. We accomplish
this by extracting key nouns and noun phrases from the requirements specification. Using these classes, we develop our first draft of
the class diagram that models the structure of our ATM system.

Web Resources

The following URLs provide information on object-oriented design with the UML.

l/vww.obiectsbydesiqn.com/books/booklist.htm

Lists books on the UML and object-oriented design.

I/vww-306.ibm.com/software/rational/offerinqs/desiqn.htm

Provides information about IBM Rational software available for designing systems. Provides downloads of 30-day trial versions of
several products, such as IBM Rational Application Developer.

http://www.objectsbydesign.com/books/booklist.html
http://www-306.ibm.com/software/rational/offerings/design.html

lfvww.borland.com/us/products/toqether/index.html

Provides a free 30-day license to download a trial version of Borlan(? Together® ControlCenter™—a software-development tool that
supports the UML.

prgouml.tigris.org

Contains information and downloads for ArgoUML, a free open-source UML tool written in Java.

I/vww.obiectsbvdesiqn.com/tools/umltools byCompany.htm

Lists software tools that use the UML, such as IBM Rational Rose, Embarcadero Describe, Sparx Systems Enterprise Architect,
I-Logix Rhapsody and Gentleware Poseidon for UML.

l/vww.ootips.orq/ood—principles.html

Provides answers to the question, "What Makes a Good Object-Oriented Design?"

ljarlezuml.com/tutorials/umlforiava.htnl

Provides a UML tutorial for Java developers that presents UML diagrams side by side with the Java code that implements them.

l/vww.cetus—links.orq/oo uml.htm|

Introduces the UML and provides links to numerous UML resources.

l/vww.aqilemodelinq.com/essavs/umIDiaqrams.htnl

Provides in-depth descriptions and tutorials on each of the 13 UML-2 diagram types.

Recommended Readings

The following books provide information on object-oriented design with the UML.

Booch, G. Object-Oriented Analysis and Design with Applications. 3rd ed. Boston: Addison-Wesley, 2004.

Eriksson, H., et al. UML 2 Toolkit. Hoboken, NJ: John Wiley & Sons, 2003.

Fowler, M. UML Distilled. 3rd ed. Boston: Addison-Wesley Professional, 2004.

Kruchten, P. The Rational Unified Process: An Introduction. Boston: Addison-Wesley, 2004.

Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design. 2nd ed. Upper Saddle River, NJ:
Prentice Hall, 2002.

Roques, P. UML in Practice: The Art of Modeling Software Systems Demonstrated Through Worked Examples and Solutions.
Hoboken, NJ: John Wiley & Sons, 2004.

Rosenberg, D., and K. Scott. Applying Use Case Driven Object Modeling with UML: An Annotated e-Commerce Example. Reading,
MA: Addison-Wesley, 2001.

http://www.borland.com/us/products/together/index.html
http://argouml.tigris.org/
http://www.objectsbydesign.com/tools/umltools_byCompany.html
http://www.ootips.org/ood-principles.html
http://parlezuml.com/tutorials/umlforjava.htm
http://www.cetus-links.org/oo_uml.html
http://www.agilemodeling.com/essays/umlDiagrams.htm

Rumbaugh, J., |. Jacobson and G. Booch. The Complete UML Training Course. Upper Saddle River, NJ: Prentice Hall, 2000.

Rumbaugh, J., I. Jacobson and G. Booch. The Unified Modeling Language Reference Manual. Reading, MA: Addison-Wesley, 1999.

Rumbaugh, J., I. Jacobson and G. Booch. The Unified Software Development Process. Reading, MA: Addison-Wesley, 1999.

Schneider, G. and J. Winters. Applying Use Cases: A Practical Guide. 2nd ed. Boston: Addison-Wesley Professional, 2002.
Software Engineering Case Study Self-Review Exercises

a Suppose we enabled a user of our ATM system to transfer money between two bank accounts. Modify the

use case diagram of to reflect this change.

E model the interactions among objects in a system with an emphasis onvhen these interactions
occur.

a. Class diagrams
b. Sequence diagrams
c. Communication diagrams

d. Activity diagrams

E Which of the following choices lists stages of a typical software life cycle in sequential order?
a. design, analysis, implementation, testing
b. design, analysis, testing, implementation
c. analysis, design, testing, implementation

d. analysis, design, implementation, testing

Answers to Software Engineering Case Study Self-Review Exercises

EI shows a use case diagram for a modified version of our ATM system that also allows users to
transfer money between accounts.

Fig. 2.15. Use case diagram for a modified version of our ATM system that also allows users to
transfer money between accounts.

View Account Balance

f f_{———*__—___—r— Withdraw Cash

Deposit Funds

[lser

Transfer Funds
Between Accounts

1 &1

2.8. Wrap-Up

You learned many important basic features of C++ in this chapter, including displaying data on the screen, inputting
data from the keyboard and declaring variables of fundamental types. In particular, you learned to use the output stream
object cout and the input stream objectcin to build simple interactive programs. We explained how variables are stored in
and retrieved from memory. You also learned how to use arithmetic operators to perform calculations. We discussed the
order in which C++ applies operators (i.e., the rules of operator precedence), as well as the associativity of the
operators. You also learned how C++'s if statement allows a program to make decisions. Finally, we introduced the
equality and relational operators, which you use to form conditions in if statements.

The non-object-oriented applications presented here introduced you to basic programming concepts. As you'll see in
, C++ applications typically contain just a few lines of code in functiomain —these statements normally create

the objects that perform the work of the application, then the objects "take over from there." In , you'll see how
to implement your own classes and use objects of those classes in applications.

3. Introduction to Classes and Objects

Objectives

In this chapter you'll learn:
e What classes, objects, member functions and data members are.
e How to define a class and use it to create an object.
e How to define member functions in a class to implement the class's behaviors.
e How to declare data members in a class to implement the class's attributes.
e How to call a member function of an object to make that member function perform its task.
® The differences between data members of a class and local variables of a function.
e How to use a constructor to ensure that an object's data is initialized when the object is created.

e How to engineer a class to separate its interface from its implementation and encourage reuse.

Nothing can have value without being an object of utility.

—Karl Marx

Your public servants serve you right.

—Adlai E. Stevenson

Knowing how to answer one who speaks, To reply to one who sends a message.
—Amenemope

You'll see something new. Two things. And | call them Thing One and Thing Two.

—Dr. Theodor Seuss Geisel

Qutline

Introduction

Classes, Objects, Member Functions and Data Members
Overview of the Chapter Examples

Defining a Class with a Member Function

Defining a Member Function with a Parameter

Bl B BBl] El

Data Members, set Functions andget Functions

Initializing Objects with Constructors
Placing a Class in a Separate File for Reusability

Separating Interface from Implementation

(Optional) Software Engineering Case Study: Identifying the Classes in the ATM Requirements
Specification

b
b
b
Validating Data withset Functions

Wrap-Up

3.1. Introduction

In , you created simple programs that displayed messages to the user, obtained information from the user,
performed calculations and made decisions. In this chapter, you'll begin writing programs that employ the basic
concepts of object-oriented programming that we introduced in . One common feature of every program in
was that all the statements that performed tasks were located in functiomain . Typically, the programs you
develop in this book will consist of function main and one or more classes, each containing data members and member
functions. If you become part of a development team in industry, you might work on software systems that contain
hundreds, or even thousands, of classes. In this chapter, we develop a simple, well-engineered framework for
organizing object-oriented programs in C++.

First, we motivate the notion of classes with a real-world example. Then we present a carefully paced sequence of
seven complete working programs to demonstrate creating and using your own classes. These examples begin our
integrated case study on developing a grade-book class that instructors can use to maintain student test scores. This
case study is enhanced over the next several chapters, culminating with the version presented in , Arrays and
Vectors. We also introduce the C++ standard library class string in this chapter.

3.2. Classes, Objects, Member Functions and Data Members

Let's begin with a simple analogy to help you reinforce your understanding fro of classes and their
contents. Suppose you want to drive a car and make it go faster by pressing down on its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it and build it. A car typically
begins as engineering drawings, similar to the blueprints used to design a house. These drawings include the design for
an accelerator pedal that the driver will use to make the cargo faster. In a sense, the pedal "hides" the complex
mechanisms that actually make the car go faster, just as the brake pedal "hides" the mechanisms that slow the car, the
steering wheel "hides" the mechanisms that turn the car and so on. This enables people with little or no knowledge of
how cars are engineered to drive a car easily, simply by using the accelerator pedal, the brake pedal, the steering
wheel, the transmission shifting mechanism and other such simple and user-friendly "interfaces" to the car's complex
internal mechanisms.

Unfortunately, you cannot drive the engineering drawings of a car—before you can drive a car, it must be built from the
engineering drawings that describe it. A completed car will have an actual accelerator pedal to make the car go faster.
But even that's not enough—the car will not accelerate on its own, so the driver must press the accelerator pedal to tell
the car to go faster.

Classes and Member Functions

Now let's use our car example to introduce the key object-oriented programming concepts of this section. Performing a
Eha;ter 2

task in a program requires a function (such as main, as described in| 1). The function describes the mechanisms
that actually perform its tasks. The function hides from its user the complex tasks that it performs, just as the accelerator
pedal of a car hides from the driver the complex mechanisms of making the car go faster. In C++, we begin by creating

a program unit called a class to_house a function, just as a car's engineering drawings house the design of an

accelerator pedal. Recall from Eection 1.19 that a function belonging to a class is called a member function. In a class,
you provide one or more member functions that are designed to perform the class's tasks. For example, a class that
represents a bank account might contain one member function to deposit money into the account, another to withdraw
money from the account and a third to inquire what the current account balance is.

Objects

Just as you cannot drive an engineering drawing of a car, you cannot "drive" a class. Just as someone has to build a
car from its engineering drawings before you can actually drive the car, you must create an object of a class before you
can get a program to perform the tasks the class describes. That is one reason C++ is known as an object-oriented
programming language. Note also that just as many cars can be built from the same engineering drawingmany objects
can be built from the same class.

Requesting an Object's Services via Member-Function Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—that is, make the car go
faster. Similarly, you send messages to an object—each message is known as anember-function call and tells a
member function of the object to perform its task. This is often called requesting a service from an object

Attributes and Data Members

Thus far, we have used the car analogy to introduce classes, objects and member functions. In addition to the
capabilities a car provides, it also has many attributes, such as its color, the number of doors, the amount of gas in its
tank, its current speed and its total miles driven (i.e., its odometer reading). Like the car's capabilities, these attributes
are represented as part of a car's design in its engineering diagrams. As you drive a car, these attributes are always
associated with the car. Every car maintains its own attributes. For example, each car knows how much gas is in its
own gas tank, but not how much is in the tanks of other cars. Similarly, an object has attributes that are carried with the

object as it is used in a program. These attributes are specified as part of the object's class. For example, a bank
account object has a balance attribute that represents the amount of money in the account. Each bank account object
knows the balance in the account it represents, but not the balances of the other accounts in the bank. Attributes are
specified by the class's data members.

3.3. Overview of the Chapter Examples

The remainder of this chapter presents seven simple examples that demonstrate the concepts we introduced in the
context of the car analogy. These examples, summarized below, incrementally build a GradeBook class to demonstrate

these concepts:

1.

The first example presents aGradeBook class with one member function that simply displays a welcome
message when it is called. We show how to create an object of that class and call the member function so
that it displays the welcome message.

The second example modifies the first by allowing the member function to receive a course name as a
so-called argument. Then, the member function displays the course name as part of the welcome message.

The third example shows how to store the course name in aGradeBook object. For this version of the class, we
also show how to use member functions to set the course name in the object and get the course name from
the object.

The fourth example demonstrates how the data in aGradeBook object can be initialized when the object is
created—the initialization is performed by a special member function called the class's constructor. This
example also demonstrates that each GradeBook Object maintains its own course name data member.

The fifth example modifies the fourth by demonstrating how to place classsradeBook into a separate file to
enable software reusability.

The sixth example modifies the fifth by demonstrating the good software-engineering principle of separating
the interface of the class from its implementation. This makes the class easier to modify without affecting any
clients of the class's objects —that is, any classes or functions that call the member functions of the class's
objects from outside the objects.

The last example enhances class GradeBook by introducing data validation, which ensures that data in an
object adheres to a particular format or is in a proper value range. For example, a Date object would require a
month value in the range 1-12. In this GradeBook example, the member function that sets the course name for
a GradeBook object ensures that the course name is 25 characters or fewer. If not, the member function uses
only the first 25 characters of the course name and displays a warning message.

Note that theGradeBook examples in this chapter do not actually process or store grades. We begin processing grades
with class GradeBook in and we store grades in aGradeBook object in , Arrays and Vectors.

3.4. Defining a Class with a Member Function

We begin with an example) that consists of classGradeBook (lines 9-17), which represents a grade book
that an instructor can use to maintain student test scores, and a main function (lines 20-25) that creates aGradeBook
object. Function main uses this object and its member function to display a message on the screen welcoming the
instructor to the grade-book program.

Fig. 3.1. Define class GradeBook with a member functiondisplayMessage, create aGradeBook object, and call its
displayMessage function.

/I Fig. 3.1: fig03_01.cpp

/I Define class GradeBook with a member function displayMessage,
/I create a GradeBook object, and call its displayMessage function.
#include <iostream>

using std::cout;

using std::endl;

/I GradeBook class definition

© 00 N O g B W N P

class GradeBook

{
public:

B R
N B O

[l function that displays a welcome message to the GradeBook user

[
w

void displayMessage()
{

cout << "Welcome to the Grade Book!" << endl;

=R e
o o N

} /I end function displayMessage

17 }; /I end class GradeBook

18

19 /I function main begins program execution

20 int main()

21 {

22 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
23 myGradeBook.displayMessage(); // call object's displayMessage function

24 return 0; // indicate successful termination

N
(&)]

} /1 end main

Welcome to the Grade Book!

First we describe how to define a class and a member function. Then we explain how an object is created and how to
call a member function of an object. The first few examples contain function main and the GradeBook class it uses in the
same file. Later in the chapter, we introduce more sophisticated ways to structure your programs to achieve better
software engineering.

Class GradeBook

Before function main (lines 20—25) can create an object of classGradeBook , we must tell the compiler what member
functions and data members belong to the class. The GradeBook class definition (lines 9-17) contains a member
function called displayMessage (lines 13—16) that displays a message on the screen (line 15). Recall that a class is like a
blueprint—so we need to make an object of class GradeBook (line 22) and call itsdisplayMessage member
function (line 23) to get line 15 to execute and display the welcome message. We'll soon explain lines 22-23 in detail.

The class definition begins in line 9 with the keyword class followed by the class nameGradeBook . By convention, the
name of a user-defined class begins with a capital letter, and for readability, each subsequent word in the class nhame
begins with a capital letter. This capitalization style is often referred to ascamel case , because the pattern of uppercase
and lowercase letters resembles the silhouette of a camel.

Every class's body is enclosed in a pair of left and right braces{@nd}), as in lines 10 and 17. The class definition
terminates with a semicolon (line 17).

Common Programming Error 3.1

E Forgetting the semicolon at the end of a class definition is a syntax error.

Recall that main is called automatically when you execute a program. As you'll soon see, you must call member function
displayMessage explicitly to tell it to perform its task.

Line 11 contains the access-specifier label public:. The keywordpublic is an access specifier . Lines 13-16 define member
function displayMessage. This member function appears after access specifiepublic: to indicate that the function is
"available to the public"—it can be called by other functions in the program (such as main), and by member functions of
other classes. Access specifiers are always followed by a colon (:). For the remainder of the text, when we refer to the
access specifier public, we'll omit the colon as we did in this sentenc introduces a second access specifier,

private.

Each function in a program performs a task and may return a value when it completes its task—for example, a function
might perform a calculation, then return the result of that calculation. When you define a function, you must specify a
return type to indicate the type of the value returned by the function when it completes its task. In line 13, keyword void
to the left of the function name displayMessage is the function's return type. Return typevoid indicates thatdisplayMessage
will not return any data to its calling function (in this example, main , as we'll see in a moment) when it completes its task.

In , you'll see an example of a function that returns a value.

The name of the member function, displayMessage , follows the return type. By convention, function names begin with a
lowercase first letter and all subsequent words in the name begin with a capital letter. The parentheses after the member
function name indicate that this is a function. An empty set of parentheses, as shown in line 13, indicates that this
member function does not require additional data to perform its task. You'll see an example of a member function that

does require additional data in Section 3.5. Line 13 is commonly referred to as théunction header . Every function's body
is delimited by left and right braces ({ and}), as in lines 14 and 16.

The body of a function contains statements that perform the function's task. In this case, member functiafisplayMessage
contains one statement (line 15) that displays the message "Welcome to the Grade Book!". After this statement executes, the
function has completed its task.

Common Programming Error 3.2

o,
E Returning a value from a function whose return type has been declaredoid is a
compilation error.

Common Programming Error 3.3

e
H Defining a function inside another function is a syntax error.

Testing Class GradeBook

Next, we'd like to use classGradeBook in a program. As you learned in, functionmain (lines 20-25) begins the

execution of every program.

In this program, we'd like to call class GradeBook's displayMessage member function to display the welcome message.
pically, you cannot call a member function of a class until you create an object of that class. (As you'll see in
[10.7], static member functions are an exception.) Line 22 creates an object of clasSradeBook called myGradeBook . Note

that the variable's type is GradeBook —the class we defined in lines 9-17. When we declare variables of typent , as we did
in , the compiler knows whatint is—it's a fundamental type. In line 22, however, the compiler does not
automatically know what type GradeBook is—it's auser-defined type . We tell the compiler whatGradeBook is by including
the class definition (lines 9-17). If we omitted these lines, the compiler would issue an error message (such as
""GradeBook': undeclared identifier" in Microsoft Visual C++ or “GradeBook': undeclared " in GNU C++). Each class you create
becomes a new type that can be used to create objects. You can define new class types as needed; this is one reason
why C++ is known as an extensible language.

Line 23 calls the member function displayMessage (defined in lines 13-16) using variablemyGradeBook followed by thedot
operator (.), the function namedisplayMessage and an empty set of parentheses. This call causes theisplayMessage
function to perform its task. At the beginning of line 23, "myGradeBook." indicates thatmain should use theGradeBook object
that was created in line 22. The empty parentheses in line 13 indicate that member function displayMessage does not
require additional data to perform its task. (In , you'll see how to pass data to a function.) WhenlisplayMessage
completes its task, function main continues executing in line 24, which indicates thamain performed its tasks
successfully. This is the end of main, so the program terminates.

UML Class Diagram for Class GradeBook

In the UML, each class is modeled in aUML class diagram as a rectangle with three compartments presents
a class diagram for class GradeBook ‘). The top compartment contains the class's name centered horizontally and

in boldface type. The middle compartment contains the class's attributes, which correspond to data members in C++.
This compartment is currently empty, because class GradeBook does not have any attributes. presents a
version of class GradeBook with an attribute.) The bottom compartment contains the class's operations, which
correspond to member functions in C++. The UML models operations by listing the operation name followed by a set of
parentheses. Class GradeBook has only one member function,displayMessage , SO the bottom compartment 0 lists
one operation with this name. Member function displayMessage does not require additional information to perform its
tasks, so the parentheses following displayMessage in the class diagram are empty, just as they are in the member
function's header in line 13 of . The plus sign @) in front of the operation name indicates thatlisplayMessage is a

public operation in the UML (i.e., a public member function in C++).

Fig. 3.2. UML class diagram indicating that classGradeBook has a publicdisplayMessage operation.

GradeBook

+ displayMessage()

3.5. Defining a Member Function with a Parameter

In our car analogy fro , we mentioned that pressing a car's gas pedal sends a message to the car to
perform a task—make the car go faster. But how fast should the car accelerate? As you know, the farther down you
press the pedal, the faster the car accelerates. So the message to the car includes both the task to perform and
additional information that helps the car perform the task. This additional information is known as a parameter —the
value of the parameter helps the car determine how fast to accelerate. Similarly, a member function can require one or
more parameters that represent additional data it needs to perform its task. A function call supplies values—called
arguments —for each of the function's parameters. For example, to make a deposit into a bank account, suppose a
deposit member function of anAccount class specifies a parameter that represents the deposit amount. When theleposit
member function is called, an argument value representing the deposit amount is copied to the member function's
parameter. The member function then adds that amount to the account balance.

Defining and Testing Class GradeBook

Our next example (redefines class GradeBook (lines 14—23) with adisplayMessage member function (lines 18-22)
that displays the course name as part of the welcome message. The new version of displayMessage requires a parameter
(courseName in line 18) that represents the course name to output.

Fig. 3.3. Define class GradeBook with a member function that takes a parameter, create aradeBook object and call
its displayMessage function.

/I Fig. 3.3: fig03_03.cpp

/I Define class GradeBook with a member function that takes a parameter;
Il Create a GradeBook object and call its displayMessage function.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

© 00 N O g B W N P

#include <string> // program uses C++ standard string class

=
o

using std::string;

=
=

using std::getline;

PR
w N

/I GradeBook class definition

[N
~

class GradeBook

{
public:

B e
N o ua

/I function that displays a welcome message to the GradeBook user

=
oo

void displayMessage(string courseName)

{

cout << "Welcome to the grade book for\n" << courseName << "I"

N N B
=, O ©

<< endl;

N
N

} /I end function displayMessage

N
w

}; Il end class GradeBook

NN
[S2 N

// function main begins program execution

N
(o]

int main()

{

string nameOfCourse; // string of characters to store the course name

N NN
© 0 =~

GradeBook myGradeBook; // create a GradeBook object named myGradeBook

W W
= O

/I prompt for and input course name

w
N

cout << "Please enter the course name:" << end|;

w
w

getline(cin, nameOfCourse); // read a course name with blanks

w
N

cout << endl; // output a blank line

W W
o O

/I call myGradeBook's displayMessage function

w
~

/I and pass nameOfCourse as an argument

w
(e¢]

myGradeBook.displayMessage(nameOfCourse);

w
©

return O; // indicate successful termination

ey
o

} /I end main

Please enter the course name:

CS101 Introduction to C++ Programming

Welcome to the grade book for

CS101 Introduction to C++ Programming!

Before discussing the new features of classGradeBook, let's see how the new class is used imain (lines 26—40). Line
28 creates a variable of type string called nameOfCourse that will be used to store the course name entered by the user. A
variable of type string represents a string of characters such asCs101 Introduction to C++ Programming" . A string is actually
an object of the C++ Standard Library class string . This class is defined inheader file <string>, and the namestring, like
cout, belongs to namespacestd . To enable line 28 to compile, line 9 includes thestring> header file. Note that theusing
declaration in line 10 allows us to simply write string in line 28 rather thanstd::string. For now, you can think oftring
variables like variables of other types such as int. You'll see additionalstring capabilities in .

Line 29 creates an object of class GradeBook named myGradeBook . Line 32 prompts the user to enter a course name. Line
33 reads the name from the user and assigns it to the nameOfCourse variable, using the library functiongetiine to perform
the input. Before we explain this line of code, let's explain why we cannot simply write

cin >> nameOfCourse;

to obtain the course name. In our sample program execution, we use the course namec5101 Introduction to C++
Programming,” which contains multiple words. (Recall that we highlight user-supplied input in bold.) Whenin is used with
the stream extraction operator, it reads characters until the first white-space character is reached. Thus, only ts101"

would be read by the preceding statement. The rest of the course nhame would have to be read by subsequent input
operations.

In this example, we'd like the user to type the complete course name and presEnter to submit it to the program, and
we'd like to store the entire course name in the string variable nameOfCourse . The function callgetline(cin, nameOfCourse) in
line 33 reads characters (including the space characters that separate the words in the input) from the standard input
stream object cin (i.e., the keyboard) until the newline character is encountered, places the characters in thering variable
nameOfCourse and discards the newline character. Note that when you presEnter while typing program input, a newline
is inserted in the input stream. Also note that the <string> header file must be included in the program to use function
getline and that the namegetline belongs to namespacestd.

Line 38 calls myGradeBook's displayMessage member function. The nameOfCourse variable in parentheses is the argument
that is passed to member function displayMessage so that it can perform its task. The value of variableameOfCourse in

main becomes the value of member functiondisplayMessage's parameter courseName in line 18. When you execute this
program, notice that member function displayMessage outputs as part of the welcome message the course name you type
(in our sample execution, CS101 Introduction to C++ Programming).

More on Arguments and Parameters

To specify that a function requires data to perform its task, you place additional information in the functionjsarameter
list, which is located in the parentheses following the function name. The parameter list may contain any number of

parameters, including none at all (represented by empty parentheses as infig. 3.1, line 13) to indicate that a function

does not require any parameters. Member function displayMessage 's parameter list M line 18) declares that the
function requires one parameter. Each parameter must specify a type and an identifier. In this case, the typestring and
the identifier courseName indicate that member functiondisplayMessage requires astring to perform its task. The member
function body uses the parameter courseName to access the value that is passed to the function in the function call (line
38 in main). Lines 20-21 display parametercourseName 's value as part of the welcome message. Note that the parameter
variable's name (line 18) can be the same as or different from the argument variable's name (line 38)—you'll see why in
, Functions and an Introduction to Recursion.

A function can specify multiple parameters by separating each parameter from the next with a comma (we'll see an
example in). The number and order of arguments in a function call must match the number and order of
parameters in the parameter list of the called member function's header. Also, the argument types in the function call

must be consistent with the types of the corresponding parameters in the function header. (As you'll see in subsequent
chapters, an argument's type and its corresponding parameter's type need not always be identical, but they must be
"consistent.") In our example, the one string argument in the function call (i.e.,nameOfCourse) exactly matches the one
string parameter in the member-function definition (i.e.,courseName).

Common Programming Error 3.4

s
ﬁ Placing a semicolon after the right parenthesis enclosing the parameter
' list of a function definition is a syntax error.

Common Programming Error 3.5

.
@ Defining a function parameter again as a local variable in the function is a
' compilation error.

Updated UML Class Diagram for ClassGradeBook

The UML class diagram o models class GradeBook of . Like the classGradeBook defined in, this

GradeBook class contains public member function displayMessage. However, this version ofdisplayMessage has a parameter.
The UML models a parameter by listing the parameter name, followed by a colon and the parameter type in the
parentheses following the operation name. The UML has its own data types similar to those of C++. The UML is
language independent—it is used with many different programming languages—so its terminology does not exactly
match that of C++. For example, the UML type String corresponds to the C++ typestring. Member functiondisplayMessage
of class GradeBook lines 18-22) has astring parameter namedcourseName, SO lists courseName : String
between the parentheses following the operation name displayMessage. Note that this version of thesradeBook class still
does not have any data members.

Fig. 3.4. UML class diagram indicating that class GradeBook has adisplayMessage operation with acourseName
parameter of UML type String.

GradeBook

+ displayMessagel courseMame : String)

3.6. Data Members, set Functions andget Functions

In , we declared all of a program'’s variables in itanain function. Variables declared in a function definition's
body are known as local variables and can be used only from the line of their declaration in the function to the
immediately following closing right brace (}). A local variable must be declared before it can be used in a function. A
local variable cannot be accessed outside the function in which it is declared. When a function terminates, the values of

its local variables are lost. (You'll see an exception to this in [Chapter § when we discussstatic local variables.) Recall

from that an object has attributes that are carried with it as it is used in a program. Such attributes exist
throughout the life of the object.

A class normally consists of one or more member functions that manipulate the attributes that belong to a particular
object of the class. Attributes are represented as variables in a class definition. Such variables are called data members
and are declared inside a class definition but outside the bodies of the class's member-function definitions. Each object
of a class maintains its own copy of its attributes in memory. The example in this section demonstrates a GradeBook
class that contains a courseName data member to represent a particularGradeBook object's course name.

GradeBook Class with a Data Member, aset Function and aget Function

In our next example, class GradeBook) maintains the course name as a data member so that it can be used or
modified at any time during a program's execution. The class contains member functions setCourseName, getCourseName
and displayMessage. Member functionsetCourseName stores a course name in aGradeBook data member. Member function
getCourseName obtains the course name from that data member. Member functionlisplayMessage —which now specifies
no parameters—still displays a welcome message that includes the course name. However, as you'll see, the function
now obtains the course name by calling another function in the same class—getCourseName.

© 00 N O g B~ W N P

W W NN DN DNDNDNNDNDNDNDDNDDNDN PR P P B P PP PR
P O © © N o o & W N P O © 00 N O o M W N+ O

32

Fig. 3.5. Defining and testing classGradeBook with a data member andset and get functions.

/I Fig. 3.5: fig03_05.cpp

/I Define class GradeBook that contains a courseName data member
/l and member functions to set and get its value;

/I Create and manipulate a GradeBook object with these functions.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

#include <string> // program uses C++ standard string class
using std::string;

using std::getline;

/I GradeBook class definition
class GradeBook
{
public:

/I function that sets the course name

void setCourseName(string name)

{

courseName = name; // store the course name in the object

} /I end function setCourseName

/I function that gets the course name
string getCourseName()
{
return courseName; // return the object's courseName

} /I end function getCourseName

/I function that displays a welcome message
void displayMessage()
{
/l'this statement calls getCourseName to get the
/I name of the course this GradeBook represents
cout << "Welcome to the grade book for\n" << getCourseName() << "I"
<< endl;
} // end function displayMessage
private:
string courseName; // course name for this GradeBook

}; Il end class GradeBook

/I function main begins program execution
int main()

{

string nameOfCourse; // string of characters to store the course name

GradeBook myGradeBook; // create a GradeBook object named myGradeBook

/I display initial value of courseName
cout << "Initial course name is: * << myGradeBook.getCourseName()

<< endl;

/I prompt for, input and set course name

cout << "\nPlease enter the course name:" <<endl;

54 getline(cin, nameOfCourse); // read a course name with blanks

55 myGradeBook.setCourseName(nameOfCourse); // set the course name
56

57 cout << endl; // outputs a blank line

58 myGradeBook.displayMessage(); // display message with new course name
59 return O; // indicate successful termination

60 }// end main

Initial course name is:

Please enter the course name:

CS101 Introduction to C++ Programming

Welcome to the grade book for

CS101 Introduction to C++ Programming!

Good Programming Practice 3.1

L Place a blank line between member-function definitions to enhance program
readability.

A typical instructor teaches multiple courses, each with its own course name. Line 39 declares thatourseName is a
variable of type string . Because the variable is declared in the class definition (lines 15-40) but outside the bodies of the
class's member-function definitions (lines 19-22, 25-28 and 31-37), the variable is a data member. Every instance (i.e.,
object) of class GradeBook contains one copy of each of the class's data members—if there are twGradeBook objects,
each has its own copy of courseName (one per object), as you'll see in the example . A benefit of making
courseName a data member is that all the member functions of the class (in this case, classradeBook) can manipulate
any data members that appear in the class definition (in this case, courseName).

Access Specifiers public and private

Most data-member declarations appear after the access-specifier labeprivate: (line 38). Likepublic, keyword private is an
access specifier. Variables or functions declared after access specifier private (and before the next access specifier)
are accessible only to member functions of the class for which they are declared. Thus, data member courseName can
be used only in member functions setCourseName, getCourseName and displayMessage Of (every object of) classGradeBook.
Data member courseName, because it isprivate, cannot be accessed by functions outside the class (such asmain) or by
member functions of other classes in the program. Attempting to access data member courseName in one of these
program locations with an expression such as myGradeBook.courseName would result in a compilation error containing a
message similar to

cannot access private member declared in class 'GradeBook’

Software Engineering Observation 3.1

As a rule of thumb, data members should be declared private and member

functions should be declared public. (We'll see that it is appropriate to declare
certain member functions private , if they are to be accessed only by other
member functions of the class.)

Common Programming Error 3.6

.
E An attempt by a function, which is not a member of a particular class (or a friend
) of that class, as we'll see in Chapter 14, Classes: A Deeper Look, Part 2), to
access a private member of that class is a compilation error.

The default access for class members isprivate so all members after the class header and before the first access
specifier are private. The access specifierspublic and private may be repeated, but this is unnecessary and can be

confusing.

Good Programming Practice 3.2

E Despite the fact that thepublic and private access specifiers may be repeated and
intermixed, list all the public members of a class first in one group and then list all
the private members in another group. This focuses the client's attention on the
class's public interface, rather than on the class's implementation.

Good Programming Practice 3.3

E If you choose to list theprivate members first in a class definition, explicitly use the
private access specifier despite the fact thatprivate is assumed by default. This

improves program clarity.

Declaring data members with access specifier private is known asdata hiding. When a program creates (instantiates) a
GradeBook object, data membercourseName is encapsulated (hidden) in the object and can be accessed only by member
functions of the object's class. In class GradeBook, member functions setCourseName and getCourseName manipulate the
data member courseName directly (anddisplayMessage could do so if necessary).

Software Engineering Observation 3.2

You'll see in that functions and classes declared by a class to be

friends can access the private members of the class.

Error-Prevention Tip 3.1

@ Making the data members of a classprivate and the member functions of the class
public facilitates debugging because problems with data manipulations are
localized to either the class's member functions or the friends of the class.

Member Functions setCourseName and getCourseName

Member function setCourseName (defined in lines 19—-22) does not return any data when it completes its task, so its
return type is void . The member function receives one parameter—name —which represents the course name that will be
passed to it as an argument (as we'll see in line 55 of main). Line 21 assignsname to data member courseName. In this
example, setCourseName does not attempt to validate the course name—i.e., the function does not check that the course
name adheres to any particular format or follows any other rules regarding what a "valid" course name looks like.
Suppose, for instance, that a university can print student transcripts containing course names of only 25 characters or
fewer. In this case, we might want class GradeBook to ensure that its data membercourseName never contains more than

25 characters. We discuss basic validation techniques in .

Member function getCourseName (defined in lines 25—-28) returns a particularGradeBook object's courseName . The member
function has an empty parameter list, so it does not require additional data to perform its task. The function specifies that
it returns a string . When a function that specifies a return type other thanvoid is called and completes its task, the function
returns a result to its calling function. For example, when you go to an automated teller machine (ATM) and request your
account balance, you expect the ATM to give you back a value that represents your balance. Similarly, when a
statement calls member function getCourseName on a GradeBook object, the statement expects to receive theGradeBook's
course name (in this case, a string, as specified by the function's return type). If you have a functiosquare that returns the
square of its argument, the statement

result = square(2);

returns 4 from functionsquare and assings to variableresult the value 4. If you have a functionmaximum that returns the
largest of three integer arguments, the statement

biggest = maximum(27, 114, 51);
returns 114 from functionmaximum and assigns to variablebiggest the value 114.

Common Programming Error 3.7

o,
E Forgetting to return a value from a function that is supposed to return a value is a
compilation error.

Note that the statements in lines 21 and 27 each use variableourseName (line 39) even though it was not declared in
any of the member functions. We can use courseName in the member functions of classGradeBook because courseName is
a data member of the class. Also note that the order in which member functions are defined does not determine when
they are called at execution time. So member function getCourseName could be defined before member function

setCourseName.

Member Function displayMessage

Member function displayMessage (lines 31-37) does not return any data when it completes its task, so its return type is
void . The function does not receive parameters, so its parameter list is empty. Lines 35-36 output a welcome message
that includes the value of data member courseName. Line 35 calls member functiongetCourseName to obtain the value of
courseName. Note that member functiondisplayMessage could also access data member courseName directly, just as
member functions setCourseName and getCourseName do. We explain shortly why we choose to call member function
getCourseName to obtain the value ofcourseName.

Testing Class GradeBook

The main function (lines 43-60) creates one object of classsradeBook and uses each of its member functions. Line 46
creates a GradeBook object namedmyGradeBook. Lines 49-50 display the initial course name by calling the object's
getCourseName member function. Note that the first line of the output does not show a course name, because the object's
courseName data member (i.e., astring) is initially empty—by default, the initial value of atring is the so-calledempty
string, i.e., a string that does not contain any characters. Nothing appears on the screen when an empty string is
displayed.

Line 53 prompts the user to enter a course name. Locastring variable nameOfCourse (declared in line 45) is set to the
course name entered by the user, which is obtained by the call to the getline function (line 54). Line 55 calls object
myGradeBook's setCourseName member function and suppliesnameOfCourse as the function's argument. When the function
is called, the argument's value is copied to parameter name (line 19) of member functionsetCourseName (lines 19-22).
Then the parameter's value is assigned to data member courseName (line 21). Line 57 skips a line in the output; then line
58 calls object myGradeBook's displayMessage member function to display the welcome message containing the course
name.

Software Engineering with Set and Get Functions

A class's private data members can be manipulated only by member functions of that class (and by "friends" of the class,
as we'll see in). So a client of an object—that is, any class or function that calls the object's member
functions from outside the object—calls the class's public member functions to request the class's services for particular
objects of the class. This is why the statements in function main 1 , lines 43-60) call member functions
setCourseName, getCourseName and displayMessage on a GradeBook object. Classes often providepublic member functions to
allow clients of the class to set (i.e., assign values to) orget (i.e., obtain the values of)private data members. The names
of these member functions need not begin with set or get, but this naming convention is common. In this example, the
member function that sets the courseName data member is calledsetCourseName , and the member function thagets the
value of the courseName data member is called getCourseName. Note thatset functions are also sometimes calledmutators
(because they mutate, or change, values), and get functions are also sometimes calledaccessors (because they access
values).

Recall that declaring data members with access specifier private enforces data hiding. Providingpublic set and get
functions allows clients of a class to access the hidden data, but only indirectly . The client knows that it is attempting to
modify or obtain an object's data, but the client does not know how the object performs these operations. In some
cases, a class may internally represent a piece of data one way, but expose that data to clients in a different way. For
example, suppose a Clock class represents the time of day as grivate int data membertime that stores the number of
seconds since midnight. However, when a client calls a Clock object's getTime member function, the object could return
the time with hours, minutes and seconds in a string in the format"HH:MM:SS". Similarly, suppose theClock class provides
a set function namedsetTime that takes a string parameter in the"HH:MM:SS" format. Usingstring capabilities presented in
, thesetTime function could convert thisstring to a number of seconds, which the function stores in itrivate
data member. The set function could also check that the value it receives represents a valid time (e.g:}12:30:45" is valid
but "42:85:70" is not). Theset andget functions allow a client to interact with an object, but the object'srivate data remains
safely encapsulated (i.e., hidden) in the object itself.

The setandget functions of a class also should be used by other member functions within the class to manipulate the
class's private data, although these member functionscan access the private data directly. Infig. 3.5, member functions
setCourseName and getCourseName are public member functions, so they are accessible to clients of the class, as well as to
the class itself. Member function displayMessage calls member functiongetCourseName to obtain the value of data member
courseName for display purposes, even thoughdisplayMessage can access courseName directly—accessing a data member
via its get function creates a better, more robust class (i.e., a class that is easier to maintain and less likely to stop
working). If we decide to change the data member courseName in some way, thedisplayMessage definition will not require
modification—only the bodies of the get and set functions that directly manipulate the data member will need to change.
For example, suppose we decide that we want to represent the course name as two separate data
members—courseNumber (e.g., "CS101") and courseTitle (€.g., "Introduction to C++ Programming"). Member function
displayMessage can still issue a single call to member functiorgetCourseName to obtain the full course name to display as
part of the welcome message. In this case, getCourseName would need to build and return astring containing the
courseNumber followed by the courseTitle. Member functiondisplayMessage would continue to display the complete course
title "CS101 Introduction to C++ Programming,” because it is unaffected by the change to the class's data members. The
benefits of calling a set function from another member function of a class will become clear when we discuss validation

in Bection 3.1d,

Good Programming Practice 3.4

L Always try to localize the effects of changes to a class's data members by
accessing and manipulating the data members through their get and set
functions. Changes to the name of a data member or the data type used to store

a data member then affect only the corresponding get and setfunctions, but not
the callers of those functions.

Software Engineering Observation 3.3

-

! The class designer need not provide setor get functions for each private data
item; these capabilities should be provided only when appropriate. If a service is
useful to the client code, that service should typically be provided in the class's
public interface.

GradeBook's UML Class Diagram with a Data Member andet andget Functions

contains an updated UML class diagram for the version of classradeBook in . This diagram models
GradeBook's data member courseName as an attribute in the middle compartment. The UML represents data members as
attributes by listing the attribute name, followed by a colon and the attribute type. The UML type of attribute courseName
is string, which corresponds tostring in C++. Data membercourseName is private in C++, so the class diagram lists a minus
sign (-) in front of the corresponding attribute's name. The minus sign in the UML is equivalent to theivate access
specifier in C++. Class GradeBook contains three public member functions, so the class diagram lists three operations
in the third compartment. Recall that the plus (+) sign before each operation name indicates that the operation is public in
C++. Operation setCourseName has a String parameter calledname . The UML indicates the return type of an operation by
placing a colon and the return type after the parentheses following the operation name. Member function getCourseName
of class GradeBook 1» has astring return type in C++, so the class diagram shows &string return type in the UML.
Note that operations setCourseName and displayMessage do not return values (i.e., they returnvoid), so the UML class
diagram does not specify a return type after the parentheses of these operations. The UML does not use void as C++
does when a function does not return a value.

Fig. 3.6. UML class diagram for classGradeBook with a privatecourseName attribute and public operations

setCourseName, getCourseName and displayMessage.

GradeBook

= courseMame : String

+ setCourseMame(name ; String)
+ getCourseMame() : String
+ displayMessage(|

3.7. Initializing Objects with Constructors

As mentioned in , when an object of classGradeBook) is created, its data membercourseName is

initialized to the empty string by default. What if you want to provide a course name when you create a GradeBook
object? Each class you declare can provide a constructor that can be used to initialize an object of the class when the
object is created. A constructor is a special member function that must be defined with the same name as the class, so
that the compiler can distinguish it from the class's other member functions. An important difference between
constructors and other functions is that constructors cannot return values, so they cannot specify a return type (not even
void). Normally, constructors are declarecpublic . The term "constructor” is often abbreviated as "ctor" in the literature—we

generally avoid abbreviations.

C++ requires a constructor call for each object that is created, which helps ensure that each object is initialized before it
is used in a program. The constructor call occurs implicitly when the object is created. If a class does not explicitly
include a constructor, the compiler provides a default constructor—that is, a constructor with no parameters. For
example, when line 46 of creates aGradeBook object, the default constructor is called. The default constructor
provided by the compiler creates a GradeBook object without giving any initial values to the object's fundamental type
data members. [Note: For data members that are objects of other classes, the default constructor implicitly calls each
data member's default constructor to ensure that the data member is initialized properly. This is why the string data

member courseName (in) was initialized to the empty string—the default constructor for classstring sets the string 's

alue to the empty string. You'll learn more about initializing data members that are objects of other classes in[Section

10.4)

In the example of, we specify a course name for aGradeBook object when the object is created (line 49). In this
case, the argument "CS101 Introduction to C++ Programming” iS passed to theGradeBook object's constructor (lines 17-20) and
used to initialize the courseName. defines a modified GradeBook class containing a constructor with astring
parameter that receives the initial course name.

Fig. 3.7. Instantiating multiple objects of the GradeBook class and using theGradeBook constructor to specify the
course name when each GradeBook object is created.

1 /I'Fig. 3.7: fig03_07.cpp

2 Il Instantiating multiple objects of the GradeBook class and using
3 /I the GradeBook constructor to specify the course name

4 [[when each GradeBook object is created.

5 #include <iostream>

6 using std::cout;

7 using std::endl;

8

9 #include <string> // program uses C++ standard string class

10 using std::string;

11

12 // GradeBook class definition

13 class GradeBook

14 {

15 public:

16 /I constructor initializes courseName with string supplied as argument
17 GradeBook(string name)

18

19 setCourseName(name); // call set function to initialize courseName
20 }// end GradeBook constructor

21

22 [/l function to set the course name

23 void setCourseName(string name)

24 {

25 courseName = name; // store the course name in the object
26}/l end function setCourseName

27

28 [/ function to get the course name

29 string getCourseName()

30 {

31 return courseName; // return object's courseName

32}/l end function getCourseName

88

34 [/ display a welcome message to the GradeBook user

35 void displayMessage()

36 {

37 /I call getCourseName to get the courseName

38 cout << "Welcome to the grade book for\n" << getCourseName()
39 << "I"<< endl;

40 }// end function displayMessage

41 private:

42 string courseName; // course name for this GradeBook
43 }; /1 end class GradeBook

45 /[function main begins program execution

46 int main()

47 {

48 [/l create two GradeBook objects

49 GradeBook gradeBook1("CS101 Introduction to C++ Programming”);
50 GradeBook gradeBook2("CS102 Data Structures in C++");

52 /I display initial value of courseName for each GradeBook

53 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()

54 << "\ngradeBook?2 created for course: " << gradeBook2.getCourseName()
55 << endl;

56 return 0; // indicate successful termination

57 }/I end main

gradeBook1 created for course: CS101 Introduction to C++ Programming

gradeBook2 created for course: CS102 Data Structures in C++

Defining a Constructor

Lines 17-20 of define a constructor for classGradeBook. Notice that the constructor has the same name as its
class, GradeBook . A constructor specifies in its parameter list the data it requires to perform its task. When you create a
new object, you place this data in the parentheses that follow the object name (as we did in lines 49-50). Line 17
indicates that class GradeBook's constructor has astring parameter calledname . Note that line 17 does not specify a return
type, because constructors cannot return values (or even void).

Line 19 in the constructor's body passes the constructor's parametename to member functionsetCourseName, which
assigns a value to data member courseName. The setCourseName member function (lines 23-26) simply assigns its
parameter name to the data membercourseName, so you might be wondering why we bother making the call to
setCourseName in line 19—the constructor certainly could perform the assignmentourseName = name. In, we
modify setCourseName to perform validation (ensuring that, in this case, thecourseName is 25 or fewer characters in
length). At that point the benefits of calling setCourseName from the constructor will become clear. Note that both the
constructor (line 17) and the setCourseName function (line 23) use a parameter callechame . You can use the same
parameter names in different functions because the parameters are local to each function; they do not interfere with one
another.

Testing Class GradeBook

Lines 46-57 of define the main function that tests classGradeBook and demonstrates initializingGradeBook objects
using a constructor. Line 49 in function main creates and initializes aGradeBook object called gradeBook1. When this line
executes, the GradeBook constructor (lines 17-20) is called (implicitly by C++) with the argumentCs101 Introduction to C++
Programming" to initialize gradeBook1's course nhame. Line 50 repeats this process for th&radeBook object called gradeBook2,
this time passing the argument "CS102 Data Structures in C++" t0 initialize gradeBook2's course name. Lines 53-54 use each
object's getCourseName member function to obtain the course names and show that they were indeed initialized when
the objects were created. The output confirms that each GradeBook object maintains its own copy of data member

courseName.

Two Ways to Provide a Default Constructor for a Class

Any constructor that takes no arguments is called a default constructor. A class gets a default constructor in one of two
ways:
1.
The compiler implicitly creates a default constructor in a class that does not define a constructor. Such a
default constructor does not initialize the class's data members, but does call the default constructor for each

data member that is an object of another class. [Note: An uninitialized variable typically contains a "garbage"
value (e.g., an uninitialized int variable might contain-858993460 , which is likely to be an incorrect value for that

variable in most programs).]

2. You explicitly define a constructor that takes no arguments. Such a default constructor will perform the
initialization specified by you and will call the default constructor for each data member that is an object of
another class.

If you define a constructor with arguments, C++ will not implicitly create a default constructor for that class. Note that for

each version of class GradeBook in i:iq. 3.]], i:iq. 3.:4 andFig. 3.EI the compiler implicitly defined a default constructor.

Error-Prevention Tip 3.2

@ Unless no initialization of your class's data members is necessary (almost never),
provide a constructor to ensure that your class's data members are initialized with
meaningful values when each new object of your class is created.

Software Engineering Observation 3.4

Data members can be initialized in a constructor of the class, or their values may
be set later after the object is created. However, it is a good software engineering
practice to ensure that an object is fully initialized before the client code invokes
the object's member functions. In general, you should not rely on the client code
to ensure that an object gets initialized properly.

Adding the Constructor to Class GradeBook's UML Class Diagram

The UML class diagram of models class GradeBook Of , which has a constructor with aname parameter of
type string (represented by typestring in the UML). Like operations, the UML models constructors in the third
compartment of a class in a class diagram. To distinguish a constructor from a class's operations, the UML places the

word "constructor” between guillemets (« and ») before the constructor's name. It is customary to list the class's
constructor before other operations in the third compartment.

Fig. 3.8. UML class diagram indicating that classGradeBook has a constructor with aname parameter of UML
type String.

GradeBook

— courseMName @ String

sconstructors + GradeBook{ name : String)
+ setCourseMName| name ; String)

+ petCourseMame() : Stnng

+ displayMessage()

3.8. Placing a Class in a Separate File for Reusability

We have developed class GradeBook as far as we need to for now from a programming perspective, so let's consider
some software engineering issues. One of the benefits of creating class definitions is that, when packaged properly, our
classes can be reused by programmers—potentially worldwide. For example, we can reuse C++ Standard Library type
string in any C++ program by including the header filesstring> in the program (and, as we'll see, by being able to link to
the library's object code).

Unfortunately, programmers who wish to use ouiGradeBook class cannot simply include the file fro in another
program. As you learned in , functionmain begins the execution of every program, and every program must
have exactly one main function. If other programmers include the code fro , they get extra baggage—ourmain
function—and their programs will then have two main functions. When they attempt to compile their programs, the
compiler will indicate an error. For example, attempting to compile a program with two main functions in Microsoft Visual
C++ 2008 produces the error

error C2084: function 'int main(void)' already has a body

when the compiler tries to compile the second main function it encounters. Similarly, the GNU C++ compiler produces
the error

redefinition of 'int main()'

These errors indicate that a program already has a main function. So, placingmain in the same file with a class definition
prevents that class from being reused by other programs. In this section, we demonstrate how to make class GradeBook
reusable by separating it into another file from the main function.

Header Files

Each of the previous examples in the chapter consists of a singlecpp file, also known as asource-code file , that
contains a GradeBook class definition and amain function. When building an object-oriented C++ program, it is customary
to define reusable source code (such as a class) in a file that by convention has a .h flename extension—known as a
header file. Programs uset#include preprocessor directives to include header files and take advantage of reusable
software components, such as type string provided in the C++ Standard Library and user-defined types like class
GradeBook.

In our next example, we separate the code from into two files—GradeBook.h 1# and fig03_10.cpp .

As you look at the header file in , notice that it contains only thesradeBook class definition (lines 11-41) and lines
3-8, which allow class GradeBook to use cout, endl and typestring. The main function that uses classGradeBook is defined in
the source-code file figd3_10.cpp) in lines 10-21. To help you prepare for the larger programs you'll encounter
later in this book and in industry, we often use a separate source-code file containing function main to test our classes
(this is called a driver program). You'll soon see how a source-code file withmain can use the class definition found in a
header file to create objects of a class.

© 00 N O g B~ W N P

W W W W N DN DNDNNDNDDNDDNDNDNDNDEPERPB RPR PR P P P PP
W N P O © 0 N O O B W N PFPF O © 0N O 0o & W N - O

34

41

Fig. 3.9. GradeBook class definition.

/I Fig. 3.9: GradeBook.h

/I GradeBook class definition in a separate file from main.
#include <iostream>

using std::cout;

using std::endl;

#include <string> // class GradeBook uses C++ standard string class

using std::string;

/I GradeBook class definition
class GradeBook
{
public:
/I constructor initializes courseName with string supplied as argument
GradeBook(string name)
{
setCourseName(name); // call set function to initialize courseName

} /I end GradeBook constructor

[function to set the course name
void setCourseName(string name)
{
courseName = name; // store the course name in the object

} /I end function setCourseName

/I function to get the course name
string getCourseName()
{
return courseName; // return object's courseName

} /I end function getCourseName

/I display a welcome message to the GradeBook user
void displayMessage()
{
/[call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<<"I"<< endl;
} /Il end function displayMessage
private:
string courseName; // course name for this GradeBook

}; Il end class GradeBook

Fig. 3.10. Including class GradeBook from fileGradeBook.h for use inmain.

1 /I Fig. 3.10: fig03_10.cpp

2 /' Including class GradeBook from file GradeBook.h for use in main.

3 #include <iostream>

4 using std::cout;

5 using std::endl;

6

7 #include "GradeBook.h" //include definition of class GradeBook

8

9 /I function main begins program execution

10 int main()

11 {

12/l create two GradeBook objects

13 GradeBook gradeBook1("CS101 Introduction to C++ Programming”);

14 GradeBook gradeBook2("CS102 Data Structures in C++");

15

16/l display initial value of courseName for each GradeBook

17 cout << "gradeBookl created for course: " << gradeBook1.getCourseName()
18 << "\ngradeBook?2 created for course: " << gradeBook2.getCourseName()
19 <<endl;

20 return 0; // indicate successful termination
21 }// end main

gradeBook1 created for course: CS101 Introduction to C++ Programming

gradeBook2 created for course: CS102 Data Structures in C++

Including a Header File That Contains a User-Defined Class

A header file such asGradeBook.h) cannot be used to begin program execution, because it does not contain a
main function. If you try to compile and linkGradeBook.h by itself to create an executable application, Microsoft Visual C++
2005 produces the linker error message:

error LNK2019: unresolved external symbol _main referenced in

function _mainCRTStartup

To compile and link with GNU C++ on Linux, you must first include the header file in .app source-code file, then GNU
C++ produces a linker error message containing:

undefined reference to 'main’

This error indicates that the linker could not locate the program's main function. To test class GradeBook (defined inEL'
), you must write a separate source-code file containing amain function (such as) that instantiates and uses
objects of the class.

Recall from that, while the compiler knows what fundamental data types likent are, the compiler does not

know what a GradeBook is because it is a user-defined type. In fact, the compiler does not even know the classes in the
C++ Standard Library. To help it understand how to use a class, we must explicitly provide the compiler with the class's
definition—that's why, for example, to use type string , a program must include the<string> header file. This enables the
compiler to determine the amount of memory that it must reserve for each object of the class and ensure that a program
calls the class's member functions correctly.

To create GradeBook 0Objects gradeBookl and gradeBook2 in lines 13-14 of, the compiler must know the size of a
GradeBook object. While objects conceptually contain data members and member functions, C++ objects contain only
data. The compiler creates only one copy of the class's member functions and shares that copy among all the class's
objects. Each object, of course, needs its own copy of the class's data members, because their contents can vary
among objects (such as two different BankAccount objects having two differenbalance data members). The
member-function code, however, is not modifiable, so it can be shared among all objects of the class. Therefore, the
size of an object depends on the amount of memory required to store the class's data members. By including

GradeBook.h in line 7, we give the compiler access to the information it need‘, line 40) to determine the size of a
GradeBook object and to determine whether objects of the class are used correctly (in lines 13-14 and 17-18).

Line 7 instructs the C++ preprocessor to replace the directive with a copy of the contents GfadeBook.h (i.e., the GradeBook
class definition) before the program is compiled. When the source-code filefigo3_10.cpp is compiled, it now contains the
GradeBook class definition (because of the#include), and the compiler is able to determine how to createradeBook objects
and see that their member functions are called correctly. Now that the class definition is in a header file (without amain
function), we can include that header in any program that needs to reuse ourGradeBook class.

How Header Files Are Located

Notice that the name of the GradeBook.h header file in line 7 o is enclosed in quotes (") rather than angle
brackets (<>). Normally, a program's source-code files and user-defined header files are placed in the same directory.
When the preprocessor encounters a header file name in quotes (e.g., "GradeBook.h"), the preprocessor attempts to
locate the header file in the same directory as the file in which the #include directive appears. If the preprocessor cannot
find the header file in that directory, it searches for it in the same location(s) as the C++ Standard Library header files.
When the preprocessor encounters a header file name in angle brackets (e.g., <iostream>), it assumes that the header is
part of the C++ Standard Library and does not look in the directory of the program that is being preprocessed.

Error-Prevention Tip 3.3

@ To ensure that the preprocessor can locate header files correctlyinclude
preprocessor directives should place the names of user-defined header files in
guotes (e.g., "GradeBook.h") and place the names of C++ Standard Library header
files in angle brackets (e.g., <iostream>).

Additional Software Engineering Issues

Now that class GradeBook is defined in a header file, the class is reusable. Unfortunately, placing a class definition in a
header file as in still reveals the entire implementation of the class to the class's clients—6radeBook.h is simply a
text file that anyone can open and read. Conventional software engineering wisdom says that to use an object of a
class, the client code needs to know only what member functions to call, what arguments to provide to each member
function and what return type to expect from each member function. The client code does not need to know how those
functions are implemented.

If client code does know how a class is implemented, the client-code programmer might write client code based on the

class's implementation details. Ideally, if that implementation changes, the class's clients should not have to change.
Hiding the class's implementation details makes it easier to change the class's implementation while minimizing, and
hopefully eliminating, changes to client code.

In , we show how to break up theGradeBook class into two files so that
1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to call them and what return
types to expect, and

3. the clients do not know how the class's member functions are implemented.

3.9. Separating Interface from Implementation

In the preceding section, we showed how to promote software reusability by separating a class definition from the client code
(e.g., function main) that uses the class. We now introduce another fundamental principle of good software

engineering—separating interface from implementation

Interface of a Class

Interfaces define and standardize the ways in which things such as people and systems interact with one another. For
example, a radio's controls serve as an interface between the radio's users and its internal components. The controls allow
users to perform a limited set of operations (such as changing the station, adjusting the volume, and choosing between AM
and FM stations). Various radios may implement these operations differently—some provide push buttons, some provide
dials and some support voice commands. The interface specifies what operations a radio permits users to perform but does
not specify how the operations are implemented inside the radio.

Similarly, the interface of a class describes what services a class's clients can use and how taequest those services, but not
how the class carries out the services. A class's interface consists of the class'sublic member functions (also known as the

class's public services). For example, classGradeBook's interface contains a constructor and member functions
setCourseName, getCourseName and displayMessage. GradeBook's clients (e.g.,main in) use these functions to request the

class's services. As you'll soon see, you can specify a class's interface by writing a class definition that lists only the
member-function names, return types and parameter types.

Separating the Interface from the Implementation

In our prior examples, each class definition contained the complete definitions of the class’sublic member functions and the
declarations of its private data members. However, it is better software engineering to define member functions outside the
class definition, so that their implementation details can be hidden from the client code. This practice ensures that
programmers do not write client code that depends on the class's implementation details. If they were to do so, the client
code would be more likely to "break" if the class's implementation changed.

The program ofFiqs. 3.15]—5 :3 separates class GradeBook 's interface from its implementation by splitting the class definition
of M into two files—the header fileGradeBook.h) in which class GradeBook is defined, and the source-code file
GradeBook.cpp in which GradeBook 's member functions are defined. By convention, member-function definitions are
placed in a source-code file of the same base name (e.g., GradeBook) as the class's header file but with acpp filename
extension. The source-code file figo3_13.cpp (Eig. 3.13) defines functionmain (the client code). The code and output o
are identical to that ofEig. 3.1g“figure 3.14 shows how this three-file program is compiled from the perspectives of the
GradeBook class programmer and the client-code programmer—we'll explain this figure in detail.

© 0 N O O B~ W N P

e S e S = S Y
o N o U A W N B O

Fig. 3.11. GradeBook class definition containing function prototypes that specify the interface of the class.

/I Fig. 3.11: GradeBook.h
/I GradeBook class definition. This file presents GradeBook's public

Il interface without revealing the implementations of GradeBook's member

/ functions, which are defined in GradeBook.cpp.
#include <string> // class GradeBook uses C++ standard string class

using std::string;

/I GradeBook class definition
class GradeBook
{
public:
GradeBook(string); // constructor that initializes courseName
void setCourseName(string); // function that sets the course name
string getCourseName(); // function that gets the course name
void displayMessage(); // function that displays a welcome message
private:
string courseName; // course name for this GradeBook

}; Il end class GradeBook

© 0 N O O B~ W N P

W oW oWwwWwWNNDNDNDNNNRNRNDRNDNDIEREER R B B B B P
A W N P O © © N o 0o & W NP O © © N O U A W N P O

Fig. 3.12. GradeBook member-function definitions represent the implementation of classGradeBook.

/I Fig. 3.12: GradeBook.cpp

/I GradeBook member-function definitions. This file contains

/I implementations of the member functions prototyped in GradeBook.h.
#include <iostream>

using std::cout;

using std::endl;

#include "GradeBook.h" //include definition of class GradeBook

/I constructor initializes courseName with string supplied as argument
GradeBook::GradeBook(string name)
{

setCourseName(name); // call set function to initialize courseName

} /I end GradeBook constructor

/I function to set the course name
void GradeBook::setCourseName(string name)
{
courseName = name; // store the course name in the object

} /I end function setCourseName

[/l function to get the course name
string GradeBook::getCourseName()
{
return courseName; // return object's courseName

} /I end function getCourseName

/I display a welcome message to the GradeBook user
void GradeBook::displayMessage()
{
/I call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<<"I"<< endl;

} /I end function displayMessage

© 0 N O O B~ W N P

=
o

11
12
13
14
15
16
17
18
19
20
21
22

Fig. 3.13. GradeBook class demonstration after separating its interface from its implementation.

/l Fig. 3.13: fig03_13.cpp

/I GradeBook class demonstration after separating
[l its interface from its implementation.

#include <iostream>

using std::cout;

using std::endl;

#include "GradeBook.h" //include definition of class GradeBook

/l function main begins program execution

int main()
{
/I create two GradeBook objects
GradeBook gradeBook1("CS101 Introduction to C++ Programming");
GradeBook gradeBook2("CS102 Data Structures in C++");
/I display initial value of courseName for each GradeBook
cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
<< "\ngradeBook?2 created for course: " << gradeBook2.getCourseName()
<< endl;
return O; // indicate successful termination
} /I end main

gradeBook1 created for course: CS101 Introduction to C++ Programming

gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.14. Compilation and linking process that produces an executable application.

Class Implementation
Frogrammer

GradeBook.h
class defimtionfinterlace

gt g

GradeBook.cpp
implementation file

- RS N

o i By i o i - B S i i " i

Client Code
Programimer

madin function
(client source code)

' ' ' '

compiler compiler

main function's
obpect code %

GradeBook class's C++ Standard Library
. object code . object code

' GradeBook 1
i executable application i

y GradeBook F
" Apphcation Use

|
~ &

&

GradeBook.h: Defining a Class's Interface with Function Prototypes

Header file GradeBook.h (Fig. 3.11]) contains another version ofGradeBook's class definition (lines 9—18). This version is
similar to the one in Eig. 3.9, but the function definitions i are replaced here withfunction prototypes (lines 12-15) that
describe the class's public interface without revealing the class's member-function implementations. A function prototype is a

declaration of a function that tells the compiler the function's name, its return type and the types of its parameters. Note that
the header file still specifies the class's private data member (line 17) as well. Again, the compiler must know the data
members of the class to determine how_much memory to reserve for each object of the class. Including the header file
GradeBook.h in the client code (line 8 o) provides the compiler with the information it needs to ensure that the client
code calls the member functions of class GradeBook correctly.

The function prototype in line 12) indicates that the constructor requires onestring parameter. Recall that
constructors do not have return types, so no return type appears in the function prototype. Member function setCourseName 's
function prototype (line 13) indicates that setCourseName requires astring parameter and does not return a value (i.e., its return
type is void). Member functiongetCourseName 's function prototype (line 14) indicates that the function does not require
parameters and returns a string. Finally, member functiondisplayMessage's function prototype (line 15) specifies that
displayMessage does not require parameters and does not return a value. These function prototypes are the same as the

corresponding function headers in , except that the parameter names (which are optional in prototypes) are not
included and each function prototype must end with a semicolon.

Common Programming Error 3.8

=
% Forgetting the semicolon at the end of a function prototype is a syntax error.

Good Programming Practice 3.5

-ﬁ Although parameter names in function prototypes are optional (they are ignored by
the compiler), many programmers use these names for documentation purposes.

Error-Prevention Tip 3.4

@ Parameter names in a function prototype (which, again, are ignored by the compiler)
can be misleading if wrong or confusing names are used. For this reason, many
programmers create function prototypes by copying the first line of the corresponding
function definitions (when the source code for the functions is available), then
appending a semicolon to the end of each prototype.

GradeBook.cpp: Defining Member Functions in a Separate Source-Code File

GradeBook.cpp 1| defines class GradeBook 's member functions, which were declared in lines 12-15 o. The

member-function definitions appear in lines 11-34 and are nearly identical to the member-function definitions in lines 15-38
of ,.

Notice that each member-function name in the function headers (lines 11, 17, 23 and 29) is preceded by the class name and
::, which is known as thebinary scope resolution operator. This "ties" each member function to the (now separate)sradeBook
class definition (), which declares the class's member functions and data members. WithoutGradeBook:: " preceding
each function name, these functions would not be recognized by the compiler as member functions of class GradeBook—the
compiler would consider them "free" or "loose" functions, like main. Such functions cannot accessGradeBook's private data or

call the class's member functions, without specifying an object. So, the compiler would not be able to compile these
functions. For example, lines 19 and 25 that access variable courseName would cause compilation errors because courseName

is not declared as a local variable in each function—the compiler would not know that courseName is already declared as a
data member of class GradeBook.

Common Programming Error 3.9

.
ﬁ When defining a class's member functions outside that class, omitting the class name
' and binary scope resolution operator (::) preceding the function names causes
compilation errors.

To indicate that the member functions in GradeBook.cpp are part of classGradeBook, we must first include theGradeBook.h header
file (line 8 of). This allows us to access the class nameGradeBook in the GradeBook.cpp file. When compiling

GradeBook.cpp, the compiler uses the information inGradeBook.h to ensure that

1. the first line of each member function (lines 11, 17, 23 and 29) matches its prototype in theradeBook.h file—for

example, the compiler ensures that getCourseName accepts no parameters and returns astring, and that

2. each member function knows about the class's data members and other member functions—for example, lines 19
and 25 can access variable courseName because it is declared inGradeBook.h as a data member of classGradeBook,
and lines 13 and 32 can call functions setCourseName and getCourseName , respectively, because each is declared as
a member function of the class in GradeBook.h (and because these calls conform with the corresponding prototypes).

Testing Class GradeBook

performs the sameGradeBook object manipulations as. Separating GradeBook 's interface from the

implementation of its member functions does not affect the way that this client code uses the class. It affects only how the
program is compiled and linked, which we discuss in detail shortly.

Asin , line 8 o includes the GradeBook.h header file so that the compiler can ensure thatradeBook

objects are created and manipulated correctly in the client code. Before executing this program, the source-code files in

and‘ must both be compiled, then linked together—that is, the member-function calls in the client code need to
be tied to the implementations of the class's member functions—a job performed by the linker.

The Compilation and Linking Process

The diagram in shows the compilation and linking process that results in an executableradeBook application that
can be used by instructors. Often a class's interface and implementation will be created and compiled by one programmer
and used by a separate programmer who implements the client code that uses the class. So, the diagram shows what is
required by both the class-implementation programmer and the client-code programmer. The dashed lines in the diagram
show the pieces required by the class-implementation programmer, the client-code programmer and the GradeBook

application user, respectively. [Note: is not a UML diagram.]

A class-implementation programmer responsible for creating a reusableGradeBook class creates the header fileGradeBook.h
and the source-code file GradeBook.cpp that#includes the header file, then compiles the source-code file to createsradeBook's
object code. To hide class GradeBook 's member-function implementation details, the class-implementation programmer
would provide the client-code programmer with the header file GradeBook.h (which specifies the class's interface and data
members) and the object code for class GradeBook (which contains the machine-language instructions that represent
GradeBook 's member functions). The client-code programmer is not givenGradeBook.cpp , SO the client remains unaware of how
GradeBook's member functions are implemented.

The client code needs to know onlyGradeBook 's interface to use the class and must be able to link its object code. Since the
interface of the class is part of the class definition in the GradeBook.h header file, the client-code programmer must have
access to this file and #include it in the client's source-code file. When the client code is compiled, the compiler uses the class
definition in GradeBook.h to ensure that themain function creates and manipulates objects of classGradeBook correctly.

To create the executable GradeBook application to be used by instructors, the last step is to link

1. the object code for themain function (i.e., the client code)
2. the object code for classGradeBook's member-function implementations
3. the C++ Standard Library object code for the C++ classes (e.g., string) used by the class-implementation

programmer and the client-code programmer.

The linker's output is the executable GradeBook application that instructors can use to manage their students' grades.

For further information on compiling multiple-source-fil
various C++ compilers in our C++ Resource Center at

e programs, see your com

lwww.deitel.com/cplusplusi.

iler's documentation. We provide links to

http://www.deitel.com/cplusplus/

3.10. Validating Data with set Functions

, we introducedset functions for allowing clients of a class to modify the value of arivate data member. In

, class GradeBook defines member functionsetCourseName to simply assign a value received in its parametemname
to data member courseName . This member function does not ensure that the course name adheres to any particular
format or follows any other rules regarding what a "valid" course name looks like. As we stated earlier, suppose that a
university can print student transcripts containing course names of only 25 characters or less. If the university uses a
system containing GradeBook objects to generate the transcripts, we might want classradeBook to ensure that its data
member courseName never contains more than 25 characters. The program o enhances class GradeBook's
member function setCourseName to perform this validation.

GradeBook Class Definition

Notice that GradeBook's class definition —and hence, its interface—is identical to that o. Since the
interface remains unchanged, clients of this class need not be changed when the definition of member function
setCourseName is modified. This enables clients to take advantage of the improveGradeBook class simply by linking the
client code to the updated GradeBook's object code.

Fig. 3.15. GradeBook class definition.

/I Fig. 3.15: GradeBook.h

/I GradeBook class definition presents the public interface of

I/l the class. Member-function definitions appear in GradeBook.cpp.
#include <string> // program uses C++ standard string class

using std::string;

/I GradeBook class definition
class GradeBook

{
public:

© 00 N O g B~ W N P

=
= O

GradeBook(string); // constructor that initializes a GradeBook object

=
N

void setCourseName(string); / function that sets the course name

=
w

string getCourseName(); // function that gets the course name

[N
~

void displayMessage(); // function that displays a welcome message

[y
(&)]

private:

=
()]

string courseName; // course name for this GradeBook

[uny
~

}; Il end class GradeBook

Validating the Course Name with GradeBook Member FunctionsetCourseName

The enhancement to classGradeBook is in the definition ofsetCourseName lines 18-31). Theif statement in
lines 20-21 determines whether parameter name contains a valid course name (i.e., astring of 25 or fewer characters). If
the course name is valid, line 21 stores the course name in data member courseName . Note the expressionname.length()
in line 20. This is a member-function call just like myGradeBook.displayMessage(). The C++ Standard Library'sstring class

defines a member function length that returns the number of characters in atring object. Parametername is astring object,
so the callname.length() returns the number of characters imame. If this value is less than or equal t@5, name is valid
and line 21 executes.

Fig. 3.16. Member-function definitions for class GradeBook with aset function that validates the length of data

member courseName.

/I Fig. 3.16: GradeBook.cpp

/I Implementations of the GradeBook member-function definitions.
/I The setCourseName function performs validation.

#include <iostream>

using std::cout;

using std::endl;

#include "GradeBook.h" /I include definition of class GradeBook

© 00 N O g B W N P

10 // constructor initializes courseName with string supplied as argument
11 GradeBook::GradeBook(string name)

12 {

13 setCourseName(name); // validate and store courseName

14 } /I end GradeBook constructor

15

16 // function that sets the course name;

17 Il ensures that the course hame has at most 25 characters

18 void GradeBook::setCourseName(string name)

19 {

20 if (name.length() <=25) // if name has 25 or fewer characters

21 courseName = name; // store the course name in the object
22

23 if (name.length() > 25) // if name has more than 25 characters
24 {

25 /I set courseName to first 25 characters of parameter name

26 courseName = name.substr(0, 25); // start at 0, length of 25

27

28 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
29 << "Limiting courseName to first 25 characters.\n" <<endl;

30 }/endif

31 }// end function setCourseName

32

33 /[function to get the course name

34 string GradeBook::getCourseName()

35 {

36 return courseName; // return object's courseName
37 }/I end function getCourseName

38

39 // display a welcome message to the GradeBook user
40 void GradeBook::displayMessage()

41 {

42 /I call getCourseName to get the courseName

43 cout << "Welcome to the grade book for\n" << getCourseName()
44 << "I"<< endl;

45 }// end function displayMessage

The if statement in lines 23—-30 handles the case in whichsetCourseName receives an invalid course name (i.e., a name
that is more than 25 characters long). Even if parameter name is too long, we still want to leave thesradeBook object in a
consistent state —that is, a state in which the object's data membercourseName contains a valid value (i.e., astring of 25
characters or less). Thus, we truncate (i.e., shorten) the specified course name and assign the first 25 characters of
name to thecourseName data member (unfortunately, this could truncate the course name awkwardly). Standard class
string provides member functionsubstr (short for "substring") that returns a newstring object created by copying part of an
existing string object. The call in line 26 (i.e. name.substr(0, 25)) passes two integers (and 25) to name's member function
substr. These arguments indicate the portion of the stringname thatsubstr should return. The first argument specifies the
starting position in the original string from which characters are copied—the first character in every string is considered
to be at position 0. The second argument specifies the number of characters to copy. Therefore, the call in line 26
returns a 25-character substring of name starting at position O (i.e., the first 25 characters imame). For example, ifname
holds the value "CS101 Introduction to Programming in C++", substr returns "CS101 Introduction to Pro". After the call tosubstr, line
26 assigns the substring returned by substr to data member courseName. In this way, member functionsetCourseName
ensures that courseName is always assigned a string containing 25 or fewer characters. If the member function has to

truncate the course name to make it valid, lines 28-29 display a warning message.

Note that theif statement in lines 23-30 contains two body statements—one to set theourseName to the first 25
characters of parameter name and one to print an accompanying message to the user. We want both of these

that this
Chapter 4,

Note that the statement in lines 28-29 could also appear without a stream insertion operator at the start of the second

statements to execute when name is too long, so we place them in a pair of braceg,}. Recall from
creates a block. You'll learn more about placing multiple statements in the body of a control statement in

line of the statement, as in:

cout <<"Name \"" << name << "\" exceeds maximum length (25).\n"

"Limiting courseName to first 25 characters.\n" << endl;

The C++ compiler combines adjacent string literals, even if they appear on separate lines of a program. Thus, in the
statement above, the C++ compiler would combine the string literals "\" exceeds maximum length (25).\n" and "Limiting
courseName to first 25 characters.\n" into a single string literal that produces output identical to that of lines 28-29 i

ﬂ . This behavior allows you to print lengthy strings by breaking them across lines in your program without including
additional stream insertion operations.

Testing Class GradeBook

demonstrates the modified version of classGradeBook 1) featuring validation. Line 14 creates

a GradeBook object namedgradeBookl . Recall that theGradeBook constructor calls setCourseName to initialize data member
courseName. In previous versions of the class, the benefit of callingetCourseName in the constructor was not evident. Now,
however, the constructor takes advantage of the validation provided by setCourseName. The constructor simply calls
setCourseName , rather than duplicating its validation code. When line 14 0 passes an initial course name of
"CS101 Introduction to Programming in C++" t0 the GradeBook constructor, the constructor passes this value tesetCourseName ,
where the actual initialization occurs. Because this course name contains more than 25 characters, the body of the
second if statement executes, causingcourseName to be initialized to the truncated 25-character course name'CS101
Introduction to Pro" (the truncated part is highlighted in bold black in line 14). Notice that the output contains the
warning message output by lines 28-29 of in member functionsetCourseName. Line 15 creates another

GradeBook object called gradeBook2 —the valid course name passed to the constructor is exactly 25 characters.

Fig. 3.17. Creating and manipulating a GradeBook object in which the course name is limited to 25 characters in
length.

1 /I Fig. 3.17: fig03_17.cpp

2 Il Create and manipulate a GradeBook object; illustrate validation.
3 #include <iostream>

4 using std::cout;

5 using std::endl;

6

7 #include "GradeBook.h" //include definition of class GradeBook
8

9 /I function main begins program execution

10 int main()

11 {

12 [/ create two GradeBook objects;

13 //initial course name of gradeBook1 is too long

14 GradeBook gradeBook1("CS101 Introduction to Programming in C++");
15 GradeBook gradeBook2("CS102 C++ Data Structures”);

16

17 [/l display each GradeBook's courseName

18 cout << "gradeBook1's initial course name is: "

19 << gradeBook1.getCourseName()

20 << "\ngradeBook2's initial course name is: "

21 << gradeBook2.getCourseName() << endl;

22

23 /I modify myGradeBook's courseName (with a valid-length string)
24 gradeBookl.setCourseName("CS101 C++ Programming”);
25

26 [/ display each GradeBook's courseName

27 cout << "\ngradeBook1's course name is: "
28 << gradeBook1.getCourseName()

29 << "\ngradeBook2's course name is: "

30 << gradeBook2.getCourseName() << endl;
31 return O; // indicate successful termination
32 }/I end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).

Limiting courseName to first 25 characters.

gradeBook1's initial course name is: CS101 Introduction to Pro

gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming

gradeBook2's course name is: CS102 C++ Data Structures

Lines 18-21 of display the truncated course name forgradeBookl (we highlight this in bold black in the program
output) and the course name for gradeBook2. Line 24 callsgradeBook1's setCourseName member function directly, to change
the course name in the GradeBook object to a shorter name that does not need to be truncated. Then, lines 27-30 output

the course names for the GradeBook Objects again.

Additional Notes on Set Functions

A public set function such assetCourseName should carefully scrutinize any attempt to modify the value of a data member
(e.g., courseName) to ensure that the new value is appropriate for that data item. For example, an attempt teet the day of
the month to 37 should be rejected, an attempt to set a person's weight to zero or a negative value should be rejected,
an attempt to set a grade on an exam to 185 (when the proper range is zero to 100) should be rejected, and so on

Software Engineering Observation 3.5

Making data members private and controlling access, especially write access, to

those data members through public member functions helps ensure data integrity.

Error-Prevention Tip 3.5

@ The benefits of data integrity are not automatic simply because data members
are made private —you must provide appropriate validity checking and report the

errors.

Software Engineering Observation 3.6

Member functions that setthe values of private data should verify that the

intended new values are proper; if they are not, the set functions should place the
private data members into an appropriate state.

A class's set functions can return values to the class's clients indicating that attempts were made to assign invalid data
to objects of the class. A client of the class can test the return value of a set function to determine whether the client's

attempt to modify the object was successful and to take appropriate action. In Chapter 1§, we demonstrate how clients
of a class can be notified via the exception-handling mechanism when an attempt is made to modify an object with an
inappropriate value. To keep the program of . simple at this early point in the book setCourseName in
gpjust prints an appropriate message on the screen.

3.11. (Optional) Software Engineering Case Study: Identifying the Classes in the ATM Requirements Specification

Now we begin designing the ATM system that we introduced i . In this section, we identify the classes that are needed to
build the ATM system by analyzing the nouns and noun phrases that appear in the requirements specification. We introduce UML class
diagrams to model the relationships between these classes. This is an important first step in defining the structure of our system.

Identifying the Classes in a System

We begin our OOD process by identifying the classes required to build the ATM system. We'll eventually describe these classes using
UML class diagrams and implement these classes in C++. First, we review the requirements specification of and find key
nouns and noun phrases to help us identify classes that comprise the ATM system. We may decide that some of these nouns and noun
phrases are attributes of other classes in the system. We may also conclude that some of the nouns do not correspond to parts of the
system and thus should not be modeled at all. Additional classes may become apparent to us as we proceed through the design
process.

lists the nouns and noun phrases in the requirements specification. We list them from left to right in the order in which they
appear in the requirements specification. We list only the singular form of each noun or noun phrase.

Fig. 3.18. Nouns and noun phrases in the requirements specification.

Nouns and noun phrases in the requirements specification

bank money / fund account number
ATM screen PIN

user keypad bank database
customer cash dispenser balance inquiry
transaction $20 bill / cash withdrawal
account deposit slot deposit

balance deposit envelope

We create classes only for the nouns and noun phrases that have significance in the ATM system. We do not need to model "bank" as a
class, because the bank is not a part of the ATM system—the bank simply wants us to build the ATM. "Customer" and "user" also
represent entities outside of the system—they are important because they interact with our ATM system, but we do not need to model
them as classes in the ATM software. Recall that we modeled an ATM user (i.e., a bank customer) as the actor in the use case diagram
of Fig. 2.14.

We do not model "$20 bill* or "deposit envelope" as classes. These are physical objects in the real world, but they are not part of what
is being automated. We can adequately represent the presence of bills in the system using an attribute of the class that models the cash
dispenser. (We assign attributes to classes in .) For example, the cash dispenser maintains a count of the number of bills it

contains. The requirements specification doesn't say anything about what the system should do with deposit envelopes after it receives
them. We can assume that acknowledging the receipt of an envelope—an operation performed by the class that models the deposit

slot—is sufficient to represent the presence of an envelope in the system. (We assign operations to classes in[Section 6.24.)

In our simplified ATM system, representing various amounts of "money," including the "balance" of an account, as attributes of other
classes seems most appropriate. Likewise, the nouns "account number" and "PIN" represent significant pieces of information in the ATM
system. They are important attributes of a bank account. They do not, however, exhibit behaviors. Thus, we can most appropriately
model them as attributes of an account class.

Though the requirements specification frequently describes a "transaction" in a general sense, we do not model the broad notion of a
financial transaction at this time. Instead, we model the three types of transactions (i.e., "balance inquiry," "withdrawal" and "deposit") as
individual classes. These classes possess specific attributes needed for executing the transactions they represent. For example, a
withdrawal needs to know the amount of money the user wants to withdraw. A balance inquiry, however, does not require any additional
data. Furthermore, the three transaction classes exhibit unique behaviors. A withdrawal includes dispensing cash to the user, whereas a

deposit involves receiving deposit envelopes from the user. [Note: In [Section 13.10 , we "factor out" common features of all transactions
into a general "transaction” class using the object-oriented concepts of abstract classes and inheritance.]

We determine the classes for our system based on the remaining nouns and noun phrases fro . Each of these refers to one or
more of the following:

o ATM
® screen
® keypad
® cash dispenser
® deposit slot
® account
® bank database
® balance inquiry
® withdrawal
® deposit
The elements of this list are likely to be classes we'll need to implement our system.

We can now model the classes in our system based on the list we have created. We capitalize class names in the design
process—a UML convention—as we'll do when we write the actual C++ code that implements our design. If the name of a class
contains more than one word, we run the words together and capitalize the first letter of each word (e.g., MultiplewordName). Using this
convention, we create classes ATM, Screen, Keypad, CashDispenser, DepositSlot, Account, BankDatabase, Balancelnquiry, Withdrawal and Deposit . We
construct our system using all of these classes as building blocks. Before we begin building the system, however, we must gain a better
understanding of how the classes relate to one another.

Modeling Classes

The UML enables us to model, viaclass diagrams, the classes in the ATM system and their interrelationships represents

class aTm . In the UML, each class is modeled as a rectangle with three compartments. The top compartment contains the name of th
class, centered horizontally and in boldface. The middle compartment contains the class's attributes. (We discuss attributes i
and Section 5.1(.) The bottom compartment contains the class's operations (discussed inSection 6.29). In Fig. 3.19 the middle
and bottom compartments are empty, because we have not yet determined this class's attributes and operations.

D

Fig. 3.19. Representing a class in the UML using a class diagram.

ATH

Class diagrams also show the relationships among the classes of the system. shows how our classes ATM and withdrawal
relate to one another. For the moment, we choose to model only this subset of classes for simplicity; we present a more complete class
diagram later in this section. Notice that the rectangles representing classes in this diagram are not subdivided into compartments. The
UML allows the suppression of class attributes and operations in this manner, when appropriate, to create more readable diagrams.
Such a diagram is said to be an elided diagram —one in which some information, such as the contents of the second and third

compartments, is not modeled. We'll place information in these compartments in and Bection 6.24.

Fig. 3.20. Class diagram showing an association among classes.

Executes W 3.l 7
ATM _ Withdrawal
current Transaction

In , the solid line that connects the two classes represents arassociation —a relationship between classes. The numbers near
each end of the line are multiplicity values, which indicate how many objects of each class participate in the association. In this case,
following the line from one end to the other reveals that, at any given moment, one ATM object participates in an association with either
Zero or one Wwithdrawal objects—zero if the current user is not currently performing a transaction or has requested a different type
of transaction, and one if the user has requested a withdrawal. The UML can model many types of multiplicity. lists and
explains the multiplicity types.

Fig. 3.21. Multiplicity types.

Symbol Meaning

0 None

1 One

m An integer value

0.1 Zero or one

m, n m orn

m..n At leastm , but not more thann

* Any nonnegative integer (zero or more)
0.* Zero or more (identical to *)

1. One or more

An association can be named. For example, the word Executes above the line connecting classes ATm and withdrawal in indicates
the name of that association. This part of the diagram reads "one object of class ATM executes zero or one objects of classwithdrawal ."
Note that association names are directional, as indicated by the filled arrowhead—so it would be improper, for example, to read the
preceding association from right to left as "zero or one objects of class withdrawal execute one object of classatm."

The word currentTransaction at the withdrawal end of the association line in is arole name, which identifies the role thewithdrawal object
plays in its relationship with the AT™ . A role name adds meaning to an association between classes by identifying the role a class plays
in the context of an association. A class can play several roles in the same system. For example, in a school personnel system, a person
may play the role of "professor" when relating to students. The same person may take on the role of "colleague" when participating in a

relationship with another professor, and "coach" when coaching student athletes. In Fig. 3.2d, the role namecurrentTransaction indicates
that the withdrawal Object participating in theEexecutes association with an object of classaTvm represents the transaction currently being
processed by the ATM. In other contexts, a withdrawal Object may take on other roles (e.g., the previous transaction). Notice that we do
not specify a role name for the ATm end of the Executes association. Role names in class diagrams are often omitted when the meaning of
an association is clear without them.

In addition to indicating simple relationships, associations can specify more complex relationships, such as objects of one class being
composed of objects of other classes. Consider a real-world automated teller machine. What "pieces" does a manufacturer put together
to build a working ATM? Our requirements specification tells us that the ATM is composed of a screen, a keypad, a cash dispenser and
a deposit slot.

In , the solid diamonds attached to the association lines of classatm indicate that classatm has a composition relationship with
classes Screen, Keypad, CashDispenser and DepositSlot. Composition implies a whole/part relationship. The class that has the composition
symbol (the solid diamond) on its end of the association line is the whole (in this case, ATm), and the classes on the other end of the
association lines are the parts—in this case, classes screen, Keypad, CashDispenser and DepositSiot. The compositions in indicate that
an object of class AT is formed from one object of classscreen , one object of classcashbispenser , one object of classkeypad and one object
of class Depositsiot. The ATM "has a" screen, a keypad, a cash dispenser and a deposit slot. Thehas-a relationship defines composition.

(We'll see in the Software Engineering Case Study section in that theis-a relationship defines inheritance.)

Fig. 3.22. Class diagram showing composition relationships.

Screen

DepositSlot : ’ ATM . | CashDispenser

Keypad

According to the UML specification, composition relationships have the following properties:

1. Only one class in the relationship can represent the whole (i.e., the diamond can be placed on only one end of the association
line). For example, either the screen is part of the ATM or the ATM is part of the screen, but the screen and the ATM cannot
both represent the whole in the relationship.

2. The parts in the composition relationship exist only as long as the whole, and the whole is responsible for the creation and
destruction of its parts. For example, the act of constructing an ATM includes manufacturing its parts. Furthermore, if the ATM
is destroyed, its screen, keypad, cash dispenser and deposit slot are also destroyed.

3. A part may belong to only one whole at a time, although the part may be removed and attached to another whole, which then
assumes responsibility for the part.

The solid diamonds in our class diagrams indicate composition relationships that fulfill these three properties. If has-a relationship does
not satisfy one or more of these criteria, the UML specifies that hollow diamonds be attached to the ends of association lines to indicate
aggregation —a weaker form of composition. For example, a personal computer and a computer monitor participate in an aggregation
relationship—the computer has a monitor, but the two parts can exist independently, and the same monitor can be attached to multiple
computers at once, thus violating the second and third properties of composition.

shows a class diagram for the ATM system. This diagram models most of the classes that we identified earlier in this

section, as well as the associations between them that we can infer from the requirements specification. [Note: Classes Balanceinquiry and

Deposit_participate in associations similar to those of classwithdrawal , SO we have chosen to omit them from this diagram to keep it simple.
ﬂ

In , we expand our class diagram to include all the classes in the ATM system.]

Fig. 3.23. Class diagram for the ATM system model.

' |
Keypad CashDispenser

DepositSlot Screen

(O (R TR 0

®* oo 0.1 0.1 [0
Executes e
ATM | sl Withdrawal
| .1

Authenticates user against

Y

BankDatabase - -
| - Bccessesimodifies an
account balance thraugh
Contains
T 0.*
Account

presents a graphical model of the structure of the ATM

and several associations that were not present in either fig. 3.2(
relationship with class BankDatabase—o0ne ATM Object authenticates users against onesankDatabase Object. In , we also model the

s:ystem. This class diagram includes classe®ankDatabase and Account

orfig. 3.24. The class diagram shows that classatm has aone-to-one

fact that the bank's database contains information about many accounts—one object of class BankDatabase participates in a composition
relationship with zero or more objects of class Account. Recall from that the multiplicity value 0..* at theAccount end of the
association between class BankDatabase and class Account indicates that zero or more objects of classccount take part in the association.
Class BankDatabase has a one-to-many relationship with class Account—the BankDatabase contains many Accounts. Similarly, classAccount has a
many-to-one relationship with class Bankpatabase—there can be many Accounts contained in the Bankpatabase. [Note: Recall from
that the multiplicity value * is identical to 0..*. We include 0..* in our class diagrams for clarity.]

also indicates that if the user is performing a withdrawal, "one object of classvithdrawal accesses/modifies an account
balance through one object of class BankDatabase." We could have created an association directly between classwithdrawal and class

Account . The requirements specification, however, states that the "ATM must interact with the bank's account information database" to
perform transactions. A bank account contains sensitive information, and systems engineers must always consider the security of
personal data when designing a system. Thus, only the BankDatabase can access and manipulate an account directly. All other parts of the
system must interact with the database to retrieve or update account information (e.g., an account balance).

The class diagram in also models associations between classwithdrawal and classes Screen, CashDispenser and Keypad . A
withdrawal transaction includes prompting the user to choose a withdrawal amount and receiving numeric input. These actions require
the use of the screen and the keypad, respectively. Furthermore, dispensing cash to the user requires access to the cash dispenser.

Classes Balancelnquiry and Deposit , though not shown in , take part in several associations with the other classes of the ATM
system. Like class withdrawal, each of these classes associates with classesaTm and BankDatabase. An object of class Balancelnquiry also
associates with an object of class screen to display the balance of an account to the user. Classbeposit associates with classes screen,
Keypad and Depositsiot . Like withdrawals, deposit transactions require use of the screen and the keypad to display prompts and receive
input, respectively. To receive deposit envelopes, an object of class peposit accesses the deposit slot.

fied the clas
Section 4.1

We have now ident ses in our ATM system (although we may discover others as

we proceed with the design and
, we determine the attributes for each of these classes, and i , we use these attributes to

examine how the system changes over time. In , we determine the operations of the classes in our system.

implementation). In

Software Engineering Case Study Self-Review Exercises

¥

Suppose we have a classcar that represents a car. Think of some of the diffe
would put together to produce a whole car. Create a class diagram (similar to
composition relationships of class car.

ent pieces that a manufacturer

) that models some of the

Q Suppose we have a class File that represents an electronic document in a standalone, non-networked computer
represented by class computer. What sort of association exists between classcomputer and classFile?

a. Class computer has a one-to-one relationship with classrile.
b. Class computer has a many-to-one relationship with classFile.
c. Class computer has a one-to-many relationship with classrile.

d. Class computer has a many-to-many relationship with classrile.

E State whether the following statement is true or false, and iffalse , explain why: A UML diagram in which a
class's second and third compartments are not modeled is said to be an elided diagram.

Q Modify the class diagram of to include class beposit instead of class withdrawal.

Answers to Software Engineering Case Study Self-Review Exercises

@ [Note: Answers may vary.] presents a class diagram that shows some of the composition relationships of a
class car.

Fig. 3.24. Class diagram showing composition relationships of a clas<ar.

Wheel

3
SteeringWheel —4p Car $ SeatBelt

=
Fa

Windshield

@ c. [Note: In a computer network, this relationship could be many-to-many.]

E True.
Q presents a class diagram for the ATM including claseposit instead of class withdrawal (as in). Note

that peposit does not access Cashbispenser, but does access DepositSiot.

Fig. 3.25. Class diagram for the ATM system model including clas®eposit.

|
K evnad 5 r CacshDisnencer

Ty -

Depositslot

XX
ATM
|

Authenticates user against

Y
BankDatabase

|
Contains

Yo

Account

S R
Screen
|
|
0.1 0.l 0.1
Executes e 5
0 Depuosit
0.1

- Accesses/modifies an
account balance through

3.12. Wrap-Up

In this chapter, you learned how to create user-defined classes, and how to create and use objects of those classes.
We declared data members of a class to maintain data for each object of the class. We also defined member functions
that operate on that data. You learned how to call an object's member functions to request the services the object
provides and how to pass data to those member functions as arguments. We discussed the difference between a local
variable of a member function and a data member of a class. We also showed how to use a constructor to specify initial
values for an object's data members. You learned how to separate the interface of a class from its implementation to
promote good software engineering. We presented a diagram that shows the files that class-implementation
programmers and client-code programmers need to compile the code they write. We demonstrated how set functions
can be used to validate an object's data and ensure that objects are maintained in a consistent state. In addition, UML
class diagrams were used to model classes and their constructors, member functions and data members. In the next
chapter, we begin our introduction to control statements, which specify the order in which a function's actions are
performed.

4. Control Statements: Part 1

Objectives

In this chapter you'll learn:
® To use theif andif...else selection statements to choose among alternative actions.
® To use thewnhile repetition statement to execute statements in a program repeatedly.
e Counter-controlled repetition and sentinel-controlled repetition.

® To use the increment, decrement and assignment operators.

Let's all move one place on.

—Lewis Carroll

The wheel is come full circle.

—William Shakespeare

How many apples fell on Newton's head before he took the hint!
—Robert Frost

All the evolution we know of proceeds from the vague to the definite.

—Charles Sanders Peirce

Outline

Introduction

Control Structures

if Selection Statement

if...else Double-Selection Statement

while Repetition Statement

Sentinel-Controlled Repetition
Nested Control Statements
Assignment Operators

b
b4
bd
»
g
ld counter-controlied Repetition
=
g
b

Increment and Decrement Operators

(Optional) Software Engineering Case Study: Identifying Class Attributes in the ATM System

4.1 Wrap-Up

4.1. Introduction

the logic required for member functions to perform their tasks. We devote a portion of this chapter (and[Chapters § and
) to further developing theGradeBook class introduced in. In particular, we add a member function to the
GradeBook class that uses control statements to calculate the average of a set of student grades. Another example

In this chapter, we introduce C++'s if, if...else and while statements, three of the building blocks that allow iou to siecify

demonstrates additional ways to combine control statements to solve a similar problem. We introduce C++'s assignment
operators and explore C++'s increment and decrement operators. These additional operators abbreviate and simplify
many program statements.

4.2. Control Structures

Bohm and Jacopini's researc demonstrated that all programs could be written in terms of only threecontrol
structures, namely, thesequence structure, the selection structure and therepetition structure . The term "control
structures" comes from the field of computer science. When we intruce C++'s implementations of control structures,

we'll refer to them in the terminology of the C++ standard documen 2 as "control statements."

(1 Bohm, C., and G. Jacopini, "Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 366-371.

2l This document is more specifically known adNCITS/ISO/IEC 14882-2003 Programming

languages—C++ and is available for download (for a fee) at‘.

Sequence Structure in C++

The sequence structure is built into C++. Unless directed otherwise, C++ statements execute one after the other in the
order in which they are written—that is, in sequence. The Unified Modeling Language (UML) activity diagram of
illustrates a typical sequence structure in which two calculations are performed in order. C++ allows us to have as many
actions as we want in a sequence structure. As we'll soon see, anywhere a single action may be placed, we may place
several actions in sequence.

Fig. 4.1. Sequence-structure activity diagram.

Corresponding C++ statement:

add grade to total - - - - - -----
: total = total + grade;

V

add | to counter Corresponding C++ statement
AR I S — — — e

counter = counter + 1;

In this figure, the two statements involve adding a grade to atal variable and adding 1 to acounter
variable. Such statements might appear in a program that averages several student grades. To calculate an average,
the total of the grades is divided by the number of grades. A counter variable would be used to keep track of the number
of values being averaged. You'll see similar statements in the program of .

Activity diagrams are part of the UML. An activity diagram models thevorkflow (also called the activity) of a portion of a
F; 4 ﬂ

software system. Such workflows may include a portion of an algorithm, such as the sequence structure in Fi
Activity diagrams are composed of special-purpose symbols, such as action state symbols (a rectangle with its left and

right sides replaced with arcs curving outward), diamonds and small circles ; these symbols are connected bytransition
arrows , which represent the flow of the activity. Activity diagrams help you develop and represent algorithms. As you'll

http://webstore.ansi.org/

see, activity diagrams clearly show how control structures operate.

Consider the sequence-structure activity diagram of . It contains twoaction states that represent actions to
perform. Each action state contains an action expression —e.g., "add grade to total" or "add 1 to counter"—that
specifies a particular action to perform. Other actions might include calculations or input/output operations. The arrows
in the activity diagram are called transition arrows. These arrows represent transitions , which indicate the order in which
the actions represented by the action states occur—the program that implements the activities illustrated by the activity
diagram in first adds grade tototal, then adds 1 to counter.

The solid circle located at the top of the activity diagram represents the activity'mitial state —the beginning of the
workflow before the program performs the modeled activities. The solid circle surrounded by a hollow circle that appears
at the bottom of the activity diagram represents the final state —the end of the workflow after the program performs its
activities.

also includes rectangles with the upper-right corners folded over. These are calledotes in the UML. Notes
are explanatory remarks that describe the purpose of symbols in the diagram. Notes can be used in any UML
diagram—not just activity diagrams. uses UML notes to show the C++ code associated with each action
state in the activity diagram. A dotted line connects each note with the element that the note describes. Activity
diagrams normally do not show the C++ code that implements the activity. We use notes for this purpose here to

illustrate how the diagram relates to C++ code. For more information on the UML, see our optional case study,
hich appears in the Software Engineering Case Study sections at the ends of H andE, or visit
jvww.uml.org.

Selection Statements in C++

C++ provides three types of selection statements (discussed in this chapter an). Theif selection statement
either performs (selects) an action if a condition (predicate) is true or skips the action if the condition is false. Theif...else
selection statement performs an action if a condition is true or performs a different action if the condition is false. The

switch selection statement Chapter §) performs one of many different actions, depending on the value of an integer
expression.

The if selection statement is asingle-selection statement because it selects or ignores a single action (or, as we'll soon
see, a single group of actions). The if...else statement is called adouble-selection statement because it selects between
two different actions (or groups of actions). The switch selection statement is called amultiple-selection statement
because it selects among many different actions (or groups of actions).

Repetition Statements in C++

C++ provides three types of repetition statements that enable programs to perform statements rei eatedly as long as a

condition remains true. The repetition statements are the while, do...while and for statements. 1 presents the
do...while and for statements.) The while andfor statements perform the action (or group of actions) in their bodies zero or

more times—if the loop-continuation condition is initially false, the action (or group of actions) will not execute. The
do...while statement performs the action (or group of actions) in its body at least once.

Each of the wordsif, else, switch, while, do andfor is a C++ keyword. These words are reserved by the C++ programming
language to implement various features, such as C++'s control statements. Keywords must not be used as identifiers,
such as variable names. provides a complete list of C++ keywords.

http://www.uml.org/

Fig. 4.2. C++ keywords.

C++ Keywords

Keywords common to the C and C++ programming languages

auto
continue

enum

short
switch
volatile
C++-only keywords
and

bool
delete
friend
not
private
template
typeid

Xor

break

default

extern

int

signed

typedef

while

and_eq

catch

dynamic_cast

inline

not_eq

protected

this

typename

Xor_eq

case

do

float

long

sizeof

union

asm

class

explicit

mutable

operator

public

throw

using

char

double

for

register

static

unsigned

bitand

compl

export

namespace

or

reinterpret_cast

true

virtual

const

else

goto

return

struct

void

bitor

const_cast

false

new

or_eq

static_cast

try

wchar_t

Common Programming Error 4.1

74

Common Programming Error 4.2

o4

Summary of Control Statements in C++

Using a keyword as an identifier is a syntax error.

Spelling a keyword with any uppercase letters is a syntax error. All of
C++'s keywords contain only lowercase letters.

C++ has only three kinds of control structures, which from this point forward we refer to as control statements: the
sequence statement, selection statements (three types—if, if...else and switch) and repetition statements (three
types—uwhile, for and do...while). As with the sequence statement 0 , we can model each control statement as an
activity diagram. Each diagram contains an initial state and a final state, which represent a control statement's entry
point and exit point, respectively. These single-entry/single-exit control statements are attached to one another by
connecting the exit point of one to the entry point of the next. We call this control-statement stacking . There is only one

other way to connect control statements—called control-statement nesting , in which one control statement is contained
inside another.

Software Engineering Observation 4.1

-
! Any C++ program we'll ever build can be constructed from only seven different
types of control statements (sequence, if, if...else, switch, while, do...while and for)
combined in only two ways (control-statement stacking and control-statement
nesting). This is the essence of simplicity.

4.3. if Selection Statement

Programs use selection statements to choose among alternative courses of action. For example, suppose the passing
grade on an exam is 60. The statement

if (grade >=60)
cout << "Passed" ;

determines whether the condition grade >= 60 istrue or false. If it istrue, "Passed" is printed and the next statement in order
is performed. If the condition is false , the printing is ignored and the next statement in order is performed. Note that the
second line of this selection statement is indented. Such indentation is optional, but recommended.

iIIustrates the single-selectionif statement. It contains what is perhaps the most important symbol
in an activity diagram—the diamond or decision symbol , which indicates that a decision is to be made. A decision
symbol indicates that the workflow will continue along a path determined by the symbol's associated guard conditions,,
which can be true or false. Each transition arrow emerging from a decision symbol has a guard condition (specified in
square brackets above or next to the transition arrow). If a particular guard condition is true, the workflow enters the

action state to which that transition arrow points. In Fig. 4.3, if the grade is greater than or equal to 60, the program
prints "Passed" to the screen, then transitions to the final state of this activity. If the grade is less than 60, the program
immediately transitions to the final state without displaying a message.

Fig. 4.3. if single-selection statement activity diagram.

[prade »= 60]

= print ~Passed”

[grade < &0

O

In C++, a decision can be based on any expression—if the expression evaluates to zero, it is treated as false; if the
expression evaluates to nonzero, it is treated as true. C++ provides the data type bool for variables that can hold only
the values true andfalse —each of these is a C++ keyword.

Portability Tip 4.1

@' For compatibility with earlier versions of C, which used integers for Boolean

== values, the bool value true also can be represented by any nonzero value

(compilers typically use 1) and the bool value false also can be represented as the

value zero.

4.4, if...else Double-Selection Statement

Theif single-selection statement performs an indicated action only when the condition igrue ; otherwise the action is
skipped. The if...else double-selection statement allows you to specify an action to perform when the condition is true and a
different action to perform when the condition is false. For example, the statement

if (grade >=60)
cout << "Passed" ;
else

cout << "Failed" ;

prints "Passed" if the conditiongrade >= 60 istrue, but prints"Failed" if the condition isfalse (i.e., the grade is less thané0). In either
case, after printing occurs, the next statement in sequence is performed.

Good Programming Practice 4.1

=}
'ﬁ Indent both body statements of anif...else statement.

illustrates the flow of control in theif...else statement. Once again, note that (besides the initial state, transition
arrows and final state) the only other symbols in the activity diagram represent action states and decisions.

Fig. 4.4. if...else double-selection statement activity diagram.

At [grade < 60] [grade >= 60] :)
print “Failed - S o print ~Passed

~®~

Conditional Operator (?:)

C++ provides the conditional operator (?:), which is closely related to thef...else statement. The conditional operator is C++'s

only ternary operator —it takes three operands. The operands, together with the conditional operator, form aonditional
expression . The first operand is a condition, the second operand is the value for the entire conditional expression if the
condition is true and the third operand is the value for the entire conditional expression if the condition iise . For example,
the statement

cout << (grade >=60 ? "Passed" :"Failed");

contains a conditional expression, grade >= 60 ? "Passed" : "Failed", that evaluates to"Passed" if the conditiongrade >= 60 is true, but
evaluates to "Failed" if the condition isfalse . Thus, the statement with the conditional operator performs essentially the same
as the precedingif...else statement. As we'll see, the precedence of the conditional operator is low, so the parentheses in the
preceding expression are required.

Error-Prevention Tip 4.1

@ To avoid precedence problems (and for clarity), place conditional expressions (that
appear in larger expressions) in parentheses.

The values in a conditional expression also can be actions to execute. For example, the following conditional expression
also prints "Passed" or "Failed":

grade >=60 ? cout << "Passed" : cout << "Failed" ;

The preceding conditional expression is read, "If grade is greater than or equal to60, then cout << "Passed"; otherwise, cout <<
"Failed"." This, t00, is comparable to the precedingf...else statement. Conditional expressions can appear in some contexts
where if...else statements cannot.

Nested if...else Statements

Nested if...else statements test for multiple cases by placingif...else selection statements inside otherit...else selection
statements. For example, the following if...else statement printsA for exam grades greater than or equal to 908 for grades in
the range 80 to 89, C for grades in the range 70 to 79D for grades in the range 60 to 69 and- for all other grades:

if (studentGrade >=90)// 90 and above gets "A"
cout << "A";
else
if (studentGrade >=80) // 80-89 gets "B"
cout << "B";
else
if (studentGrade >=70)// 70-79 gets "C"
cout << "C";
else
if (studentGrade >=60) // 60-69 gets "D"
cout << "D";
else // less than 60 gets "F"

cout << "F";

If studentGrade is greater than or equal to 90, the first four conditions will beue , but only the output statement after the first test
will execute. After that statement executes, the program skips the else-part of the "outermost"if...else statement. Most C++
programmers prefer to write the preceding if...else statement as

if (studentGrade >=90)// 90 and above gets "A"
cout << "A";
else if (studentGrade >=80) // 80-89 gets "B"

cout << "B";

else if (studentGrade >=70)// 70-79 gets "C"
cout << "C";

else if (studentGrade >=60) // 60-69 gets "D"
cout << "D";

else // less than 60 gets "F"

cout << "F";

The two forms are identical except for the spacing and indentation, which the compiler ignores. The latter form is popular
because it avoids deep indentation of the code to the right, which can leave little room on a line, forcing it to be split and
decreasing program readability.

Performance Tip 4.1

A nested if...else statement can perform much faster than a series of single-selectiorif
statements because of the possibility of early exit after one of the conditions is
satisfied.

Performance Tip 4.2
ﬁ In a nested if...else statement, test the conditions that are more likely to be&ue at the

beginning of the nested if...else statement. This will enable the nestedt...else statement
to run faster by exiting earlier than if infrequently occurring cases were tested first.

Dangling-else Problem

The C++ compiler always associates anelse with the immediately precedingif unless told to do otherwise by the placement

of braces ({and}). This behavior can lead to what is referred to as thdangling-else problem. For example,

if (x>5)

if (y>5)

cout<<"xandy are>5";
else

cout << "x is <=5";

appears to indicate that if x is greater thans, the nestedif statement determines whethery is also greater thans. If so,"x and y
are > 5" is output. Otherwise, it appears that if is not greater thans, the else part of theif...else outputs"x is <= 5".

Beware! This nested if...else statement does not execute as it appears. The compiler actually interprets the statement as

if (x>5)
if (y>5)
cout<<"xandy are>5";

else

cout << "xis <=5";

in which the body of the firstif is a nestedif...else. The outerif statement tests whetherx is greater thans . If so, execution
continues by testing whether y is also greater thans . If the second condition is true, the proper string—x and y are > 5"—is
displayed. However, if the second condition is false, the string "x is <= 5" is displayed, even though we know thak is greater
than 5.

To force the nested if...else statement to execute as originally intended, we can write it as follows:

if (x>5)
{
if (y>5)
cout<< "xandy are >5" ;

}

else

cout << "x is <=5";

The braces ({}) indicate to the compiler that the secondf statement is in the body of the firsif and that theelse is associated
with the first if.

Blocks

The if selection statement expects only one statement in its body. Similarly, theéf and else parts of anif...else statement each
expect only one body statement. To include several statements in the body of an if or in either part of anif...else, enclose the
statements in braces ({and}). A set of statements contained within a pair of braces is called @mpound statement or a block .
We use the term "block" from this point forward.

Software Engineering Observation 4.2

A block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in theelse part of anif...else statement.

if (studentGrade >=60)
cout << "Passed.\n" ;

else

{

cout << "Failed.\n" ;

cout << "You must take this course again.\n"

}

In this case, if studentGrade is less than 60, the program executes both statements in the body of thelse and prints

Failed.

You must take this course again.

Notice the braces surrounding the two statements in theslse clause. These braces are important. Without the braces, the
statement

cout <<"You must take this course again.\n"
would be outside the body of theelse part of theif and would execute regardless of whether the grade was less than 60.

Common Programming Error 4.3

=
ﬁ. Forgetting one or both of the braces that delimit a block can lead to syntax errors or
) logic errors in a program.

Just as a block can be placed anywhere a single statement can be placed, it is also possible to have no statement at
all—called a null statement (or anempty statement). The null statement is represented by placing a semicolon;(where a
statement would normally be.

Common Programming Error 4.4

=
% Placing a semicolon after the condition in an if statement leads to a logic error in
' single-selection if statements and a syntax error in double-selectiorif...else statements
(when the if part contains an actual body statement).

4.5. while Repetition Statement

A repetition statement (also called alooping statement or a loop) allows you to specify that a program should repeat an
action while some condition remains true.

As an example of C++'swhile repetition statement, consider a program segment designed to find the first power of 3 larger
than 100. Suppose the integer variable product has been initialized to3. When the followingwhile repetition statement finishes
executing, product contains the result:

int product = 3;

while (product <= 100)
product = 3 * product;

When the while statement begins execution, the value obroduct is 3. Each repetition of thewhile multiplies product by 3, so product
takes on the values 9, 27, 81 and 243 successively. When product becomes 243, the condition—product <=
100—becomes false. This terminates the repetition, so the final value ofroduct is 243. At this point, program execution
continues with the next statement after the while statement.

Common Programming Error 4.5

e
% Not providing, in the body of a while statement, an action that eventually causes the
' condition in the while to become false normally results in an infinite loop, in which the
repetition statement never terminates.

The UML activity diagram of illustrates the flow of control that corresponds to the precedingvhile statement. Once
again, the symbols in the diagram (besides the initial state, transition arrows, a final state and three notes) represent an
action state and a decision. This diagram also introduces the UML's merge symbol, which joins two flows of activity into one
flow of activity. The UML represents both the merge symbol and the decision symbol as diamonds. In this diagram, the merge
symbol joins the transitions from the initial state and from the action state, so they both flow into the decision that determines
whether the loop should begin (or continue) executing. The decision and merge symbols can be distinguished by the number
of "incoming" and "outgoing" transition arrows. A decision symbol has one transition arrow pointing to the diamond and two or
more transition arrows pointing out from the diamond to indicate possible transitions from that point. In addition, each
transition arrow pointing out of a decision symbol has a guard condition next to it. A merge symbol has two or more transition
arrows pointing to the diamond and only one transition arrow pointing from the diamond, to indicate multiple activity flows
merging to continue the activity. Note that, unlike the decision symbol, the merge symbol does not have a counterpart in C++
code. None of the transition arrows associated with a merge symbol have guard conditions.

Fig. 4.5. while repetition statement UML activity diagram.

merge -

e
decisio o [product <= 100]
= triple product value

[product > | 00]
Corresponding C++ statement:
product = 3 * product;

The diagram of clearly shows the repetition of thewhile statement discussed earlier in this section. The transition
arrow emerging from the action state points to the merge, which transitions back to the decision that is tested each time
through the loop until the guard condition product > 100 becomes true. Then thewnhile Statement exits (reaches its final state)

and control passes to the next statement in sequence in the program.

4.6. Counter-Controlled Repetition

This section and solve two variations of a class average problem. Consider the following problem
statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this quiz are
available to you. Calculate and display the total of all student grades and the class average on the
quiz.

The class average is equal to the sum of the grades divided by the number of students. The program for solving this

problem must input each of the grades, calculate the average and print the result. We use counter-controlled repetition
to input the grades one at a time.

This section presents a version of class GradeBook 1) that implements the class average algorithm in a
C++ member function, and an application that demonstrates the algorithm in action.

Fig. 4.6. Class average problem using counter-controlled repetition: GradeBook header file.

1 /I Fig. 4.6: GradeBook.h

2 /I Definition of class GradeBook that determines a class average.
3 /I Member functions are defined in GradeBook.cpp

4 #include <string>// program uses C++ standard string class

5 using std::string;

6

7 Il GradeBook class definition

8 class GradeBook

9 {

10 public:

11 GradeBook(string); // constructor initializes course name

12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message

15 void determineClassAverage(); // averages grades entered by the user
16 private:

17 string courseName; // course name for this GradeBook

18 }; /I end class GradeBook

© 00 N O g B~ W N P

g o1 o oA B B A DN AN DN D DN D WOWWW W W W WWWNNNDRNDNRNDNRNNRNDNDERRRRR B B B B
W N P O © 0 N O 00 B W N R O © ®@ N O O 8 ®NP O O© ® N0 00 WNRP O © 0 ~N O 00 & W N R O

Fig. 4.7. Class average problem using counter-controlled repetition: GradeBook source code file.

/I Fig. 4.7: GradeBook.cpp

/I Member-function definitions for class GradeBook that solves the
/I class average program with counter-controlled repetition.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

#include "GradeBook.h" /I include definition of class GradeBook

/I constructor initializes courseName with string supplied as argument
GradeBook::GradeBook(string name)
{

setCourseName(name); // validate and store courseName

} /I end GradeBook constructor

/I function to set the course name;
/I ensures that the course name has at most 25 characters
void GradeBook::setCourseName(string hame)
{
if (name.length() <=25)// if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ /I set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;
} /Il end if...else

} /1 end function setCourseName

/I function to retrieve the course name
string GradeBook::getCourseName()
{

return courseName;

} /1 'end function getCourseName

/I display a welcome message to the GradeBook user
void GradeBook::displayMessage()
{
cout << "Welcome to the grade book for\n" << getCourseName() << "\n"
<< endl;

} /1 end function displayMessage

/I determine class average based on 10 grades entered by user
void GradeBook::determineClassAverage()
{
int total; // sum of grades entered by user
int gradeCounter; // number of the grade to be entered next
int grade; // grade value entered by user

int average; // average of grades

/[initialization phase

total = 0; // initialize total

gradeCounter = 1; // initialize loop counte!

gradeCounter = gradeCounter + 1; // increment counter by 1

gradeCounter >=10)// loop 10 times

average = total / 10; // integer division yields integer result

Fig. 4.8. Class average problem using counter-controlled repetition: Creating an object of clasradeBook (El
D and invoking itsdetermineClassAverage function.

1 /I Fig. 4.8: fig04_08.cpp

2 /I Create GradeBook object and invoke its determineClassAverage function.
3 #include "GradeBook.h" // include definition of class GradeBook

4

5 int main()

6 {

~

/I create GradeBook object myGradeBook and

8 // pass course name to constructor

9 GradeBook myGradeBook("CS101 C++ Programming”);

10

11 myGradeBook.displayMessage(); // display welcome message

12 myGradeBook.determineClassAverage(); // find average of 10 grades
13 return 0; // indicate successful termination

14}/l end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846

Class average is 84

Enhancing GradeBook Validation

Before we discuss the class average algorithm's implementation, let's consider an enhancement we made to our
GradeBook class. Infig. 3.1, oursetCourseName member function would validate the course name by first testing whether
the course name's length was less than or equal to 25 characters, using an if statement. If this was true, the course
name would be set. This code was then followed by another if statement that tested whether the course name's length
was larger than 25 characters (in which case the course name would be shortened). Notice that the second if
statement's condition is the exact opposite of the firstif statement's condition. If one condition evaluates tarue , the
other must evaluate to false. Such a situation is ideal for ant...else statement, so we've modified our code, replacing the
two if statements with oneif...else statement (lines 21-28 of).

Implementing Counter-Controlled Repetition in Class GradeBook

Class GradeBook contains a constructor (declared in line 11 o and defined in lines 12—-15 o@

) that assigns a value to the class's instance variableourseName (declared in line 17 o). Lines 19-29, 32-35

and 38-42 of define member functions setCourseName, getCourseName and displayMessage, respectively. Lines

45-71 define member function determineClassAverage.

Lines 47-50 declare local variables total, gradeCounter, grade and average to be of typeint. Variable grade stores the user
input. Notice that the preceding declarations appear in the body of member function determineClassAverage.

In this chapter's versions of class GradeBook , we simply read and process a set of grades. The averaging calculation is
performed in member function determineClassAverage using local variables—we do not preserve any information about
student grades in the class's instance variables. In , Arrays and Vectors, we modify classGradeBook to
maintain the grades in memory using an instance variable that refers to an array. This allows a GradeBook object to

perform various calculations on the same set of grades without requiring the user to enter the grades multiple times.

Lines 53-54 initialize total to 0 andgradeCounter to 1. Variablesgrade and average (for the user input and calculated
average, respectively) need not be initialized here—their values will be assigned as they are input or calculated later in
the function.

Line 57 indicates that thewhile statement should continue looping as long agradeCounter 's value is less than or equal to
10. While this condition remains true, thewhile statement repeatedly executes the statements between the braces that
delimit its body (lines 58-63).

Line 59 displays the prompt "Enter grade: " . Line 60 reads the grade entered by the user and assigns it to variablgade .
Line 61 adds the new grade entered by the user to the total and assigns the result taotal, which replaces its previous
value.

Line 62 adds 1 to gradeCounter to indicate that the program has processed a grade and is ready to input the next grade
from the user. Incrementing gradeCounter eventually causesgradeCounter to exceed 10 . At that point thewhile loop
terminates because its condition (line 57) becomes false.

When the loop terminates, line 66 performs the averaging calculation and assigns its result to the variabkeerage . Line
69 displays the text "Total of all 10 grades is " followed by variabletotal's value. Line 70 then displays the text'Class average is "

followed by variable average's value. Member functiondetermineClassAverage then returns control to the calling function (i.e.,
main in

g).

Demonstrating Class GradeBook

contains this application'smain function, which creates an object of classGradeBook and demonstrates its
capabilities. Line 9 ofFiq. 4.a creates a newGradeBook object called myGradeBook. The string in line 9 is passed to the
GradeBook constructor (lines 12-15 oflfig. 4. Zl)- Line 11 o

display a welcome message to the user. Line 12 then calls myGradeBook's determineClassAverage member function to allow

g calls myGradeBook's displayMessage member function to

the user to enter 10 grades, for which the member function then calculates and prints the average.

Notes on Integer Division and Truncation

The averaging calculation performed by member functiondetermineClassAverage in response to the function call in line
12in m produces an integer result. The program's output indicates that the sum of the grade values in the sample
execution is 846, which, when divided by 10, should yield 84.6—a number with a decimal point. However, the result of

the calculation total / 10 (line 66 offgig. 4.7) is the integer 84, becausetotal and 10 are both integers. Dividing two

integers results in integer division—any fractional part of the calculation is lost (i.e., truncated). We'll see how to obtain a

result that includes a decimal point from the averaging calculation in the next section.

Common Programming Error 4.6

.
g‘ Assuming that integer division rounds (rather than truncates) can lead to
) incorrect results. For example, 7 + 4, which yields 1.75 in conventional arithmetic,
truncates to 1 in integer arithmetic, rather than rounding to 2.

In , if line 66 usedgradeCounter rather than 10 for the calculation, the output for this program would display an
incorrect value, 76. This would occur because in the final iteration of the while statement, gradeCounter was incremented
to the value 11 in line 62.

4.7. Sentinel-Controlled Repetition
Let us generalize the class average problem. Consider the following problem:

Develop a class average program that processes grades for an arbitrary number of students each
time it is run.

In the previous class average example, the problem statement specified the number of students, so the number of
grades (10) was known in advance. In this example, no indication is given of how many grades the user will enter during
the program's execution. The program must process an arbitrary number of grades. How can the program determine
when to stop the input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called aentinel value (also called a signal value, adummy value
or a flag value) to indicate "end of data entry." The user types grades in until all legitimate grades have been entered.
The user then types the sentinel value to indicate that the last grade has been entered.

Clearly, the sentinel value must be chosen so that it cannot be confused with an acceptable input value. Grades on a
quiz are normally nonnegative integers, so -1 is an acceptable sentinel value for this problem. Thus, a run of the
class average program might process a stream of inputs such as 95, 96, 75, 74, 89 and —1. The program would then
compute and print the class average for the grades 95, 96, 75, 74 and 89. Since -1 is the sentinel value, it should not
enter into the averaging calculation.

Implementing Sentinel-Controlled Repetition in Class GradeBook

and show the C++ classGradeBook containing member functiondetermineClassAverage that implements the
class average algorithm with sentinel-controlled repetition. Although each grade entered is an integer, the averaging
calculation is likely to produce a number with a decimal point. The type int cannot represent such a number, so this
class must use another type to do so. C++ provides several data types for storing floating-point numbers, includingfloat
and double . The primary difference between these types is that, compared tdloat variables, double variables can typically
store numbers with larger magnitude and finer detail (i.e., more digits to the right of the decimal point—also known as
the number's precision). This program introduces a special operator called acast operator to force the averaging
calculation to produce a floating-point numeric result. These features are explained in detail as we discuss the program.

© 00 N O g B~ W N P

e e N =
® N o 0~ W N O

Fig. 4.9. Class average problem using sentinel-controlled repetition: GradeBook header file.

/I Fig. 4.9: GradeBook.h

/I Definition of class GradeBook that determines a class average.
/I Member functions are defined in GradeBook.cpp

#include <string>// program uses C++ standard string class

using std::string;

/I GradeBook class definition
class GradeBook
{
public:
GradeBook(string); // constructor initializes course name
void setCourseName(string); / function to set the course name
string getCourseName(); // function to retrieve the course name
void displayMessage(); / display a welcome message
void determineClassAverage(); // averages grades entered by the user
private:
string courseName; // course name for this GradeBook

}; // end class GradeBook

© 00 N O g B~ W N P

g B B A D A D DN DN DD W W W W W W WWWWNNRNDNDNDNNRNDNDNRNERERRRR B B B
O © ® N o 00 B W N P O © ® N 0 O & ®N P O © © N O 005 NP O © @ N O O S WN PP O

5ill

Fig. 4.10. Class average problem using sentinel-controlled repetition: GradeBook source code file.

/I Fig. 4.10: GradeBook.cpp

/I Member-function definitions for class GradeBook that solves the
/I class average program with sentinel-controlled repetition.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

using std::fixed; // ensures that decimal point is displayed

#include <iomanip> // parameterized stream manipulators

using std::setprecision; // sets numeric output precision

/I include definition of class GradeBook from GradeBook.h
#include "GradeBook.h"

/I constructor initializes courseName with string supplied as argument
GradeBook::GradeBook(string name)
{

setCourseName(name); // validate and store courseName

} // end GradeBook constructor

/I function to set the course name;
/' ensures that the course name has at most 25 characters
void GradeBook::setCourseName(string name)
{
if (name.length() <= 25)// if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ /I set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;
} /I end if...else

} // end function setCourseName

/I function to retrieve the course name
string GradeBook::getCourseName()
{

return courseName;

} // end function getCourseName

/I display a welcome message to the GradeBook user
void GradeBook::displayMessage()
{
cout << "Welcome to the grade book for\n" << getCourseName() <<"\n"
<< endl;

} /1 end function displayMessage

/I determine class average based on 10 grades entered by user
void GradeBook::determineClassAverage()
{

int total; // sum of grades entered by user

int gradeCounter; // number of grades entered

54 int grade; // grade value

55 double average; // number with decimal point for average

57 [linitialization phase
58 total = 0; // initialize total

59 gradeCounter = 0; // initialize loop counter

61 // processing phase
62 // prompt for input and read grade from user
63 cout <<"Enter grade or -1 to quit: " ;

64 cin >> grade; // input grade or sentinel value

66 //loop until sentinel value read from user
67 while (grade !=-1)// while grade is not -1
68 {

69 total = total + grade; // add grade to total

70 gradeCounter = gradeCounter + 1; // increment counter
71

72 /I prompt for input and read next grade from user

73 cout << "Enter grade or -1 to quit: " ;

74 cin >> grade; // input grade or sentinel value

75 } I/l end while

76

77 [/ termination phase

78 if (gradeCounter !=0)// if user entered at least one grade...

79 {

80 /I calculate average of all grades entered

81 average = static_cast< double >(total) / gradeCounter;

82

83 /I display total and average (with two digits of precision)

84 cout << "\nTotal of all" << gradeCounter <<" grades entered is "
85 << total << endl;

86 cout << "Class average is " << setprecision(2) << fixed << average
87 << endl;

88 }/lendif

89 else// no grades were entered, so output appropriate message
90 cout << "No grades were entered" << endl;

91 }// end function determineClassAverage

In this example, we see that control statements can be stacked. Thehile statement (lines 67-75 o) is
immediately followed by anif...else statement (lines 78-90) in sequence. Much of the code in this program is identical to
the code in , SO we concentrate on the new features and issues.

Line 55 (declares the double variable average . Recall that we used anint variable in the preceding example to
store the class average. Using type double in the current example allows us to store the class average calculation's
result as a floating-point number. Line 59 initializes the variable gradeCounter to 0, because no grades have been entered
yet. Remember that this program uses sentinel-controlled repetition. To keep an accurate record of the number of
grades entered, the program increments variable gradeCounter only when the user enters a valid grade value (i.e., not

the sentinel value) and the program completes the processing of the grade. Finally, notice that both input statements
(lines 64 and 74) are preceded by an output statement that prompts the user for input.

Good Programming Practice 4.2

@ Prompt the user for each keyboard input. The prompt should indicate the form of
the input and any special input values. For example, in a sentinel-controlled loop,
the prompts requesting data entry should explicitly remind the user what the
sentinel value is.

Floating-Point Number Precision and Memory Requirements

Variables of type float represent single-precision floating-point numbers and have seven significant digits on most 32-bit
systems. Variables of type double represent double-precision floating-point numbers. These require twice as much
memory as float s and provide 15 significant digits on most 32-bit systems—approximately double the precision dfoat s.
For the range of values required by most programs, float variables should suffice, but you can usedouble to "play it safe."
In some programs, even variables of type double will be inadequate—such programs are beyond the scope of this book.
Most programmers represent floating-point numbers with type double . In fact, C++ treats all floating-point numbers you
type in a program's source code (such as 7.33 and 0.0975) as double values by default. Such values in the

source code are known as floating-point constants. See , Fundamental Types, for the ranges of values for
floats anddoubles.

Converting Between Fundamental Types Explicitly and Implicitly

The variable average is declared to be of typedouble (line 55 of) to capture the fractional result of our calculation.
However, total and gradeCounter are both integer variables. Recall that dividing two integers results in integer division, in
which any fractional part of the calculation is lost (i.e., truncated). In the following statement:

average = total / gradeCounter;

the division calculation is performed first, so the fractional part of the result is lost before it is assigneddeerage . To
perform a floating-point calculation with integer values, we must create temporary values that are floating-point numbers
for the calculation. C++ provides the unary cast operator to accomplish this task. Line 81 uses the cast operator
static_cast< double >(total) to create atemporary floating-point copy of its operand in parentheses—total. Using a cast

operator in this manner is called explicit conversion. The value stored intotal is still an integer.

The calculation now consists of a floating-point value (the temporary double version oftotal) divided by the integer
gradeCounter . The C++ compiler knows how to evaluate only expressions in which the data types of the operands are
identical. To ensure that the operands are of the same type, the compiler performs an operation called promotion (also
called implicit conversion) on selected operands. For example, in an expression containing values of data typest and
double, C++promotes int operands todouble values. In our example, we are treatingotal as adouble (by using the unary
cast operator), so the compiler promotes gradeCounter to double , allowing the calculation to be performed—the result of
the floating-point division is assigned to average. In , Functions and an Introduction to Recursion, we discuss all
the fundamental data types and their order of promotion.

Common Programming Error 4.7

-
g‘ The cast operator can be used to convert between fundamental numeric_type
' such as int and double , and between related class types (as we discuss i
, Object-Oriented Programming: Polymorphism). Casting to the wrong type
may cause compilation errors or runtime errors.

Common Programming Error 4.8

h
ﬁ An attempt to divide by zero normally causes a fatal runtime error.

Error-Prevention Tip 4.2

@ When performing division by an expression whose value could be zero, explicitly
test for this possibility and handle it appropriately in your program (such as by
printing an error message) rather than allowing the fatal error to occur.

Cast operators are available for use with every data type and with class types as well. Theatic_cast operator is formed
by following keyword static_cast with angle brackets &« and>) around a data-type name. The cast operator is aunary
operator—an operator that takes only one operand. I , we studied the binary arithmetic operators. C++ also
supports unary versions of the plus (+) and minus ¢) operators, so that you can write such expressions as-7
or +5. Cast operators have higher precedence than other unary operators, such as unary and unary-. This precedence
is higher than that of the multiplicative operators *,/ and %, and lower than that of parentheses. We indicate the cast

operator with the notation static_cast< type >() in our precedence charts (see, for example).

Formatting for Floating-Point Numbers

The formatting capabilities in are discussed here briefly and explained in depth i , Stream

Input/Output. The call to setprecision in line 86 (with an argument of2) indicates thatdouble variable average should be
printed with two digits of precision to the right of the decimal point (e.g., 92.37). This call is referred to as parameterized
stream manipulator (because of the2 in parentheses). Programs that use these calls must contain the preprocessor
directive (line 10)

#include <iomanip>

Line 11 specifies the name from the<iomanip> header file that is used in this program. Note thaéndl is a
nonparameterized stream manipulator (because it is not followed by a value or expression in parentheses) and does
not require the <iomanip> header file. If the precision is not specified, floating-point values are normally output with six
digits of precision (i.e., the default precision on most 32-bit systems today), although we'll see an exception to this in a
moment.

The stream manipulator fixed (line 86) indicates that floating-point values should be output in so-calledixed-point format,

as opposed to scientific notation . Scientific notation is a way of displaying a number as a floating-point number between
the values of 1.0 and 10.0, multiplied by a power of 10. For instance, the value 3,100.0 would be displayed in scientific

notation as 3.1 x 103. Scientific notation is useful when displaying values that are very large or very small. Formatting

using scientific notation is discussed further in Chapter 15 . Fixed-point formatting, on the other hand, is used to force a
floating-point number to display a specific number of digits. Specifying fixed-point formatting also forces the decimal
point and trailing zeros to print, even if the value is a whole number amount, such as 88.00. Without the fixed-point
formatting option, such a value prints in C++ as 88 without the trailing zeros and without the decimal point. When the
stream manipulators fixed and setprecision are used in a program, the printed value igounded to the number of decimal

positions indicated by the value passed to setprecision (e.g., the value2 in line 86), although the value in memory
remains unaltered. For example, the values 87.946 and 67.543 are output as 87.95 and 67.54, respectively. Note that it
also is possible to force a decimal point to appear by using stream manipulator showpoint. If showpoint is specified without
fixed , then trailing zeros will not print. Likeendl, stream manipulatorsfixed and showpoint are honparameterized and do not
require the <iomanip> header file. Both can be found in header<iostream>.

Lines 86 and 87 of output the class average. In this example, we display the class average rounded to the
nearest hundredth and output it with exactly two digits to the right of the decimal point. The parameterized stream
manipulator (line 86) indicates that variable average 's value should be displayed with two digits of precision to the right of
the decimal point—indicated by setprecision(2) . The three grades entered during the sample execution of the program in
total 257, which yields the average 85.666666.... The parameterized stream manipulatafetprecision causes the
value to be rounded to the specified number of digits. In this program, the average is rounded to the hundredths
position and displayed as 85.67.

Fig. 4.11. Class average

© O N O g A~ W N P

e L o =
o U A W N B O

and invoking itsdetermineClassAverage member function.

I Fig. 4.11: fig04_14.cpp

/I Create GradeBook object and invoke its determineClassAverage function.

/I include definition of class GradeBook from GradeBook.h
#include "GradeBook.h"

int main()
{
/I create GradeBook object myGradeBook and
/I pass course hame to constructor
GradeBook myGradeBook("CS101 C++ Programming");

myGradeBook.displayMessage(); // display welcome message
myGradeBook.determineClassAverage(); // find average of 10 grades
return O; // indicate successful termination

} // end main

Welcome to the grade book for

CS101 C++ Programming

Enter grade or -1 to quit: 97

Enter grade or -1 to quit: 88

Enter grade or -1 to quit: 72

Enter grade or -1 to quit: -1

Total of all 3 grades entered is 257

Class average is 85.67

problem using sentinel-controlled repetition: Creating an object of classradeBook (@

4.8. Nested Control Statements

In this case study, we examine the only other structured way control statements can be connected, namely, mesting

one control statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, ten of the students who completed this course took the exam. The college
wants to know how well its students did on the exam. You have been asked to write a program to
summarize the results. You have been given a list of these 10 students. Next to each name is

written a 1 if the student passed the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

Input each test result (i.e., a 1 or a 2). Display the prompting message "Enter result"
each time the program requests another test result.

1.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and

the number who failed.

4. If more than eight students passed the exam, print the message "Raise tuition."

After reading the problem statement carefully, we make the following observations:

The program must process test results for 10 students. A counter-controlled loop can be used because the

1.
number of test results is known in advance.

2. Each testresult is a number—either a 1 or a 2. Each time the program reads a test result, the program must
determine whether the numberisa 1 or a 2.

3. Two counters are used to keep track of the exam results—one to count the nhumber of students who passed
the exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide whether more than eight students passed the

exam.

Conversion to Class Analysis

The C++ class, Analysis, inl:iq. 4.12H:iq. 4.14, solves the examination results problem—two sample executions appear

infig. 414

Fig. 4.12. Examination-results problem: Analysis header file.

oid processExamResults(); // process 10 students' examination results

© 00 N O O B~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4

Fig. 4.13. Examination-results problem: Nested control statements inAnalysis source code file.

/I Fig. 4.13: Analysis.cpp

/I Member-function definitions for class Analysis that
/I analyzes examination results.

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

/I include definition of class Analysis from Analysis.h

#include "Analysis.h"

/I process the examination results of 10 students
void Analysis::processExamResults()
{

/I initializing variables in declarations

int passes = 0; // number of passes

int failures = 0; // number of failures

int studentCounter = 1; // student counter

int result; // one exam result (1 = pass, 2 = fail)

/I process 10 students using counter-controlled loop
while (studentCounter <= 10)
{
/I prompt user for input and obtain value from user
cout << "Enter result (1 = pass, 2 =fail): " ;

cin >> result; // input result

/l'if...else nested in while
if (result==1) Il'if resultis 1,

passes = passes + 1; /[increment passes;
else /I else result is not 1, so

failures = failures + 1; // increment failures

/I increment studentCounter so loop eventually terminates
studentCounter = studentCounter + 1;
} /1 end while

/I termination phase; display number of passes and failures

cout << "Passed " << passes << "\nFailed " << failures << endl;

/I determine whether more than eight students passed
if (passes >8)
cout << "Raise tuition " << endl;

} // end function processExamResults

Fig. 4.14. Test program for class Analysis.

1 /I Fig. 4.14: fig04_14.cpp

2 [l Test program for class Analysis.

3 #include "Analysis.h" // include definition of class Analysis

4

5 int main()

6 {

7 Analysis application; // create Analysis object

8 application.processExamResults(); // call function to process results
9 return O; // indicate successful termination

10 }// end main

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed 9

Failed 1

Raise tuition

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Passed 6

Failed 4

Lines 16-18 of declare the variables that member functionprocessExamResults of class Analysis uses to process
the examination results. Note that we have taken advantage of a feature of C++ that allows variable initialization to be
incorporated into declarations (passes is initialized to0, failures is initialized to0 and studentCounter is initialized to1).

Looping programs may require initialization at the beginning of each repetition; such reinitialization normally would be
performed by assignment statements rather than in declarations or by moving the declarations inside the loop bodies.

The while statement (lines 22—36) loops 10 times. During each iteration, the loop inputs and processes one exam result.
Notice that the if...else statement (lines 29-32) for processing each result is nested in thewvhile statement. If theresult is 1,
the if...else statement incrementspasses; otherwise, it assumes theresult is2 and incrementsfailures. Line 35 increments
studentCounter before the loop condition is tested again in line 22. After 10 values have been input, the loop terminates
and line 39 displays the number of passes and the number offailures. Theif statement in lines 42—43 determines whether

more than eight students passed the exam and, if so, outputs the message "Raise Tuition".

Demonstrating Class Analysis

creates anAnalysis object (line 7) and invokes the object'grocessExamResults member function (line 8) to

process a set of exam results entered by the user. shows the input and output from two sample executions
of the program. At the end of the first sample execution, the condition in line 42 of member function processExamResults in

is true—more than eight students passed the exam, so the program outputs a message indicating that the
tuition should be raised.

4.9. Assignment Operators

C++ provides severalassignment operators for abbreviating assignment expressions. For example, the
statement

c=c+3;

can be abbreviated with theaddition assignment operator+= as

c+=3;

The += operator adds the value of the expression on the right of the operator to the value of the variable on the left of
the operator and stores the result in the variable on the left of the operator. Any statement of the form

variable = variable operator expression

in which the samevariable appears on both sides of the assignment operator an@perator is one of the binary operators
+ -, *,1, 0r% (or others we'll discuss later in the text), can be written in the form

variable operator= expression;

Thus the assignment ¢ += 3 adds 3 toc. shows the arithmetic assignment operators, sample expressions
using these operators and explanations.

Fig. 4.15. Arithmetic assignment operators.

Assignment operator Sample expression Explanation Assigns

Assume:intc=3,d=5,e=4,f=6,9g=12;

+= c+=7 c=c+7 10toc
= d-=4 d=d-4 1tod
— e=5 eze*h 20toe
I= f1=3 f=1/3 2tof

%= g%=9 g=9g %9 3tog

4.10. Increment and Decrement Operators

In addition to the arithmetic assignment operators, C++ also provides two unary operators for adding 1 to
or subtracting 1 from the value of a numeric variable. These are the unary increment operator, ++, and the unary
decrement operator, -- , which are summarized i . A program can increment by 1 the value of a variable called
using the increment operator, ++, rather than the expressionc=c+1 or c+=1. An increment or decrement operator that is
prefixed to (placed before) a variable is referred to as the prefix increment or prefix decrement operator , respectively.
An increment or decrement operator that is postfixed to (placed after) a variable is referred to as the postfix increment or
postfix decrement operator, respectively.

Fig. 4.16. Increment and decrement operators.

Operator Called Sample expression Explanation

++ preincrement ++a Increment a by 1, then use the new value of in the
expression in which a resides.

++ postincrement a++ Use the current value of a in the expression in whicha
resides, then incrementa by 1.

- predecrement --b Decrement b by 1, then use the new value ob in the
expression in which b resides.

- postdecrement b-- Use the current value of b in the expression in whichb
resides, then decrement b by 1.

Using the prefix increment (or decrement) operator to add (or subtract) 1 from a variable is known g@seincrementing (or
predecrementing) the variable. Preincrementing (or predecrementing) causes the variable to be incremented
(decremented) by 1, then the new value of the variable is used in the expression in which it appears. Using the postfix
increment (or decrement) operator to add (or subtract) 1 from a variable is known as postincrementing (or
postdecrementing) the variable. Postincrementing (or postdecrementing) causes the current value of the variable to be
used in the expression in which it appears, then the variable's value is incremented (decremented) by 1.

demonstrates the difference between the prefix increment and postfix increment versions of the+ increment
operator. The decrement operator (--) works similarly. Note that this example does not contain a class, but just a source
code file with function main performing all the application's work. In this chapter and i , you have seen
examples consisting of one class (including the header and source code files for this class), as well as another source
code file testing the class. This source code file contained function main , which created an object of the class and called
its member functions. In this example, we simply want to show the mechanics of the ++ operator, so we use only one
source code file with function main . Occasionally, when it does not make sense to try to create a reusable class to
demonstrate a simple concept, we'll use a mechanical example contained entirely within the main function of a single
source code file.

Fig. 4.17. Preincrementing and postincrementing.

1 /I Fig. 4.17: fig04_17.cpp

2 /I Preincrementing and postincrementing.
3 #include <iostream>

4 using std::cout;

5 using std::endl;

6

7 int main()

8 {

9 int c;

10

11 /I demonstrate postincrement

12 c=5;/lassign5toc

13 cout<<c <<endl; // print 5

14 cout << c++ << endl; // print 5 then postincrement
15 cout<<c <<endl; // print 6

16

17 cout << endl; // skip a line

18

19 /I demonstrate preincrement

20 c=5;/lassign5toc

21 cout<<c<<endl;// print5

22 cout << ++c << endl; // preincrement then print 6
23 cout << ¢ << endl; // print 6

24 return O; // indicate successful termination
25 }// end main

5

5

6

5

6

6

Line 12 initializes the variablec to 5, and line 13 outputsc 's initial value. Line 14 outputs the value of the expressiorc++.
This expression postincrements the variable c, soc's original value (5) is output, thenc 's value is incremented. Thus, line

14 outputs c's initial value (5) again. Line 15 outputsc's new value (6) to prove that the variable's value was indeed
incremented in line 14.

Line 20 resets c's value to5, and line 21 outputs that value. Line 22 outputs the value of the expressioftc. This
expression preincrements c, so its value is incremented, then the new value §) is output. Line 23 outputsc 's value again
to show that the value of c is still6 after line 22 executes.

The arithmetic assignment operators and the increment and decrement operators can be used to simplify program
statements. The three assignment statements in :

passes = passes + 1;
failures = failures + 1;

studentCounter = studentCounter + 1;

can be written more concisely with assignment operators as

passes += 1;
failures +=1;

studentCounter += 1;

with prefix increment operators as

++passes;
++failures;

++studentCounter;

or with postfix increment operators as

passes++;
failures++;

studentCounter++;

Note that, when incrementing (++) or decrementing (-) of a variable occurs in a statement by itself, the preincrement and
postincrement forms have the same effect, and the predecrement and postdecrement forms have the same effect. It is
only when a variable appears in the context of a larger expression that preincrementing the variable and
postincrementing the variable have different effects (and similarly for predecrementing and postdecrementing).

Common Programming Error 4.9

.
H Attempting to use the increment or decrement operator on an expression other
than a modifiable variable name or reference, e.g., writing ++(x + 1), is a syntax
error.

shows the precedence and associativity of the operators introduced to this point. The operators are shown
top-to-bottom in decreasing order of precedence. The second column indicates the associativity of the operators at each

level of precedence. Notice that the conditional operator ¢:), the unary operators preincrement (+),
predecrement (--), plus (+) and minus (), and the assignment operators=, +=, -=, *=, /= and %= associate from right to left.

All other operators in the operator precedence chart of associate from left to right. The third column names the
various groups of operators.

Fig. 4.18. Operator precedence for the operators encountered so far in the text.

Operators Associativity Type
left to right scope resolution
0 left to right parentheses
++ - static_cast< type >() left to right unary (postfix)
++ - + - right to left unary (prefix)
* / % left to right multiplicative
+ - left to right additive
<< >> left to right insertion/extraction
< <= > >= left to right relational
== 1= left to right equality
? right to left conditional

- = = *= I= %= right to left assignment

4.11. (Optional) Software Engineering Case Study: Identifying Class Attributes in the ATM System

In , We began the first stage of an object-oriented design (OOD) for our ATM system—analyzing the

requirements specification and identifying the classes needed to implement the system. We listed the nouns and noun

phrases in the requirements specification and identified a separate class for each one that plays a significant role in the
& é 3.23

ATM system. We then modeled the classes and their relationships in a UML class diagram (Ei). Classes have
attributes (data) and operations (behaviors). Class attributes are implemented in C++ programs as data members, and
class operations are im?leme nted as member functions. In this section, we determine many of the attributes needed in

the ATM system. In [Chapter §, we examine how these attributes represent an object's state. | , we determine
class operations.

Identifying Attributes

Consider the attributes of some real-world objects: A person's attributes include height, weight and whether the person
is left-handed, right-handed or ambidextrous. A radio's attributes include its station setting, its volume setting and its AM
or FM setting. A car's attributes include its speedometer and odometer readings, the amount of gas in its tank and what
gear it is in. A personal computer's attributes include its manufacturer (e.g., Dell, Sun, Apple or IBM), type of screen
(e.g., LCD or CRT), main memory size and hard disk size.

We can identify many attributes of the classes in our system by looking for descriptive words and phrases in the
requirements specification. For each one we find that plays a significant role in the ATM system, we create an attribute
and assign it to one or more of the classes identified in ‘ . We also create attributes to represent any

additional data that a class may need, as such needs become apparent throughout the design process.

lists the words or phrases from the requirements specification that describe each class. We formed this list
by reading the requirements specification and identifying any words or phrases that refer to characteristics of the
classes in the system. For example, the requirements specification describes the steps taken to obtain a "withdrawal
amount,” so we list "amount" next to class withdrawal.

Fig. 4.19. Descriptive words and phrases from the ATM requirements.

Class Descriptive words and phrases
ATM user is authenticated
Balancelnquiry account number
Withdrawal account number amount
Deposit account number amount
BankDatabase [no descriptive words or phrases]
Account account number

PIN

balance
Screen [no descriptive words or phrases]
Keypad [no descriptive words or phrases]
CashDispenser begins each day loaded with 500 $20 bills

DepositSlot [no descriptive words or phrases]

Ieads us to create one attribute of classATM. Class ATM maintains information about the state of the
ATM. The phrase "user is authenticated" describes a state of the ATM (we introduce states in), so we
include userAuthenticated as aBoolean attribute (i.e., an attribute that has a value of eithertrue or false). The UMLBoolean
type is equivalent to the bool type in C++. This attribute indicates whether the ATM has successfully authenticated the
current user—userAuthenticated must be true for the system to allow the user to perform transactions and access account
information. This attribute helps ensure the security of the data in the system.

Classes Balancelnquiry, Withdrawal and Deposit share one attribute. Each transaction involves an "account number" that
corresponds to the account of the user making the transaction. We assign an integer attribute accountNumber to each
transaction class to identify the account to which an object of the class applies.

Descriptive words and phrases in the requirements specification also suggest some differences in the attributes
required by each transaction class. The requirements specification indicates that to withdraw cash or deposit funds,
users must enter a specific "amount" of money to be withdrawn or deposited, respectively. Thus, we assign to classes
Withdrawal and Deposit an attribute amount to store the value supplied by the user. The amounts of money related to a
withdrawal and a deposit are defining characteristics of these transactions that the system requires for them to take
place. Class Balancelnquiry , however, needs no additional data to perform its task—it requires only an account number to

indicate the account whose balance should be retrieved.

Class Account has several attributes. The requirements specification states that each bank account has an "account
number" and "PIN," which the system uses for identifying accounts and authenticating users. We assign to class Account
two integer attributes: accountNumber and pin . The requirements specification also specifies that an account maintains a
"balance" of the amount of money in the account and that money the user deposits does not become available for a
withdrawal until the bank verifies the amount of cash in the deposit envelope, and any checks in the envelope clear. An
account must still record the amount of money that a user deposits, however. Therefore, we decide that an
account should represent a balance using two attributes of UML type Double: availableBalance and totalBalance. Attribute
availableBalance tracks the amount of money that a user can withdraw from the account. AttributetalBalance refers to the
total amount of money that the user has "on deposit" (i.e., the amount of money available, plus the amount waiting to be
verified or cleared). For example, suppose an ATM user deposits $50.00 into an empty account. The totalBalance
attribute would increase to $50.00 to record the deposit, but the availableBalance would remain at $0. Note: We assume
that the bank updates the availableBalance attribute of anAccount soon after the ATM transaction occurs, in response to
confirming that $50 worth of cash or checks was found in the deposit envelope. We assume that this update occurs
through a transaction that a bank employee performs using some piece of bank software other than the ATM. Thus, we
do not discuss this transaction in our case study.]

Class cashDispenser has one attribute. The requirements specification states that the cash dispenser "begins each day
loaded with 500 $20 bills." The cash dispenser must keep track of the number of bills it contains to determine whether
enough cash is on hand to satisfy withdrawal requests. We assign to class CashDispenser an integer attributecount , which
is initially set to 500.

For real problems in industry, there is no guarantee that requirements specifications will be rich enough and precise
enough for the object-oriented systems designer to determine all the attributes or even all the classes. The need for
additional (or fewer) classes, attributes and behaviors may become clear as the design process proceeds. As we
progress through this case study, we too will continue to add, modify and delete information about the classes in our
system.

Modeling Attributes

The class diagram in lists some of the attributes for the classes in our system—the descriptive words and
phrases in helped us identify these attributes. For simplicity does not show the associations among
]. This is a common practice of systems designers when designs are being

classes—we showed these in Fig.

class's rectangle. We list each attribute's name and type separated by a colon (:), followed in some cases by an equal

developed. Recall from that in the UML, a class's attributes are placed in the middle compartment of the

sign (=) and an initial value.

Fig. 4.20. Classes with attributes.

ATM Account

userButhenticated : Boolean = false accountNumber : Integer
pin : Integer
avallableBalance : Double

totalBalance : Double
Balancelnguiry

accountMNumber : Integer

Screen
Withdrawal
accountMumber : Integer
amount : Double
Keypad
Deposit
tNumber : Int
4dCCOUN LUTmoEr M EEEF Eashl]ispenser

amount : Double
count : Integer = 500

BankDatabase
DepositSlot

Consider the userAuthenticated attribute of classATM:

userAuthenticated : Boolean = false

This attribute declaration contains three pieces of information about the attribute. Thattribute name is userAuthenticated.

The attribute type isBoolean . In C++, an attribute can be represented by a fundamental type, such asool, int or double , Or

a class type—as discussed in . We have chosen to model only primitive-type attributes iwe

discuss the reasoning behind this decision shortly. [Note: lists UML data types for the attributes. When we
implement the system, we'll associate the UML types Boolean, Integer and Double with the C++ fundamental typesbool, int

and double, respectively.]

We can also indicate an initial value for an attribute. TheuserAuthenticated attribute in classATM has an initial value of
false. This indicates that the system initially does not consider the user to be authenticated. If an attribute has no initial
value specified, only its name and type (separated by a colon) are shown. For example, the accountNumber attribute of
class Balancelnquiry is an Integer . Here we show no initial value, because the value of this attribute is a number that we do
not yet know—it will be determined at execution time based on the account number entered by the current ATM user.

does not include any attributes for classesScreen, Keypad and DepositSlot . These are important components of
our system, for which our design process simply has not yet revealed any attributes. We may still discover some,
however, in the remaining design phases or when we implement these classes in C++. This is perfectly normal for the
iterative process of software engineering.

Software Engineering Observation 4.3

-
! At the early stages in the design process, classes often lack attributes (and
operations). Such classes should not be eliminated, however, because attributes
(and operations) may become evident in the later phases of design and
implementation.

Note that also does not include attributes for classBankDatabase. Recall from that in C++, attributes

can be represented by either fundamental types or class types. We have chosen to include only fundamental-type
attributes in the class diagram in (and in similar class diagrams throughout the case study). A class-type

attribute is modeled more clearly as an association (in particular, a composition) between the class with the attribute
and the class of the object of which the attribute is an instance. For example, the class diagram in indicates
that class BankDatabase participates in a composition relationship with zero or moreaccount objects. From this
composition, we can determine that when we implement the ATM system in C++, we'll be required to create an attribute
of class BankDatabase to hold zero or moreAccount objects. Similarly, we'll assign attributes to classaT™m that correspond
to its composition relationships with classes Screen, Keypad, CashDispenser and DepositSlot . These composition-based
attributes would be redundant if modeled in , because the compositions modeled i already convey
the fact that the database contains information about zero or more accounts and that an ATM is composed of a screen,
keypad, cash dispenser and deposit slot. Software developers typically model these whole/part relationships as
compositions rather than as attributes required to implement the relationships.

The class diagram in provides a solid basis for the structure of our model, but the diagram is not complete. In
, , we identify the states and activities of the objects in the model, and Eection 6.22 we identify the
operations that the objects perform. As we present more of the UML and object-oriented design, we'll continue to
strengthen the structure of our model.

Software Engineering Case Study Self-Review Exercises

EI We typically identify the attributes of the classes in our system by analyzing the
in the requirements specification.

a. nouns and noun phrases

b. descriptive words and phrases
c. verbs and verb phrases

d. All of the above.

@ Which of the following is not an attribute of an airplane?
a. length
b. wingspan
c. fly

d. number of seats

@ Describe the meaning of the following attribute declaration of clas€ashDispenser in the class

diagram in :

count : Integer = 500

Answers to Software Engineering Case Study Self-Review Exercises

k1 s

@ c. Fly is an operation or behavior of an airplane, not an attribute.

B This indicates that count is an Integer with an initial value of500 . This attribute keeps track of the
number of bills available in the CashDispenser at any given time.

4.12. Wrap-Up

You learned that only three types of control structures—sequence, selection and repetition—are needed to develop any
algorithm. We demonstrated two of C++'s selection statements—the if single-selection statement and theif...else
double-selection statement. The if statement is used to execute a set of statements based on a condition—if the
condition is true, the statements execute; if it is not, the statements are skipped. Theif...else double-selection statement
is used to execute one set of statements if a condition is true, and another set of statements if the condition is false. We
then discussed the while repetition statement, where a set of statements are executed repeatedly as long as a condition
is true. We used control-statement stacking to total and compute the average of a set of student grades with counter-
and sentinel-controlled repetition, and we used control-statement nesting to analyze and make decisions based on a set
of exam results. We introduced assignment operators, which can be used for abbreviating statements. We presented
the increment and decrement operators, which can be used to add or subtract the value 1 from a variable. In ,
Control Statements: Part 2, we continue our discussion of control statements, introducing the for, do...while and switch
statements.

5. Control Statements: Part 2

Objectives

In this chapter you'll learn:
® To use thefor anddo...while repetition statements to execute statements in a program repeatedly.
e To implement multiple selection using theswitch selection statement.
® To use thebreak and continue program control statements to alter the flow of control.
® To use the logical operators to form complex conditional expressions in control statements.

e To avoid the consequences of confusing the equality and assignment operators.

Not everything that can be counted counts, and not every thing that counts can be counted.
—Albert Einstein

Who can control his fate?

—William Shakespeare

The used key is always bright.

—Benjamin Franklin

Intelligence ... is the faculty of making artificial objects, especially tools to make tools.

— Henri Bergson

Every advantage in the past is judged in the light of the final issue.

—Demosthenes

Outline

Introduction

Essentials of Counter-Controlled Repetition
for Repetition Statement

Examples Using the for Statement

do...while Repetition Statement

switch Multiple-Selection Statement

N A A e

break and continue Statements

El B 7

Logical Operators
Confusing the Equality (==) and Assighment &) Operators

(Optional) Software Engineering Case Study: Identifying Objects' States and Activities in the ATM
System

Wrap-Up

5.1. Introduction

In this chapter, we introduce C++'s remaining control statements. The control statements we study here and
will help us build and manipulate objects. We continue our early emphasis on object-oriented programming that began

with a discussion of basic concepts in and the extensive object-oriented code examples inChapters 3

In this chapter, we demonstrate the for, do...while and switch statements. Through a series of short examples usingwhile and
for, we explore the essentials of counter-controlled repetition. We expand theradeBook class presented in—EI.
In particular, we create a version of class GradeBook that uses aswitch statement to count the number of A, B, C, D and F
grades in a set of letter grades entered by the user. We introduce the break and continue program control statements. We
discuss the logical operators, which enable you to use more powerful conditional expressions in control statements. We
also examine the common error of confusing the equality (==) and assignment €) operators, and how to avoid it.

5.2. Essentials of Counter-Controlled Repetition

This section uses thewhile repetition statement introduced in to formalize the elements required to perform
counter-controlled repetition. Counter-controlled repetition requires

1. the name of a control variable (or loop counter)
2. theinitial value of the control variable

3. the loop-continuation condition that tests for thefinal value of the control variable (i.e., whether looping should
continue)

4. the increment (ordecrement) by which the control variable is modified each time through the loop.

Consider the simple program in , which prints the numbers from 1 to 10. The declaration in line ames the
control variable (counter), declares it to be an integer, reserves space for it in memory and sets it to anitial value of 1.
Declarations that require initialization are, in effect, executable statements. In C++, it is more precise to call a

declaration that also reserves memory—as the preceding declaration does—a definition . Because definitions are
declarations, too, we'll use the term "declaration” except when the distinction is important.

Fig. 5.1. Counter-controlled repetition.

/I Fig. 5.1: fig05_01.cpp

/I Counter-controlled repetition.
#include<iostream>
usingstd::cout;

1
2
8
4
5 usingstd::endl;
6
7
8
9

intmain()
{
intcounter =1; //declare and initialize control variable

10
11 while(counter <=10) // loop-continuation condition
12 {
13 cout << counter <<" ";
14 counter++; /increment control variable by 1
15 }//end while
16

17 cout << endl; /butput a newline
18 returnO; // successful termination
19 }//end main

12345678910

The declaration and initialization ofcounter (line 9) also could have been accomplished with the statements

int counter; // declare control variable

counter = 1; // initialize control variable to 1

We use both methods of initializing variables.

Line 14 increments the loop counter by 1 each time the loop's body is performed. The loop-continuation condition (line
11) in the while statement determines whether the value of the control variable is less than or equal too (the final value

for which the condition is true). Note that the body of thisvhile executes even when the control variable is10. The loop
terminates when the control variable is greater than 10 (i.e., when counter becomes 11).

can be made more concise by initializingcounter to 0 and by replacing thewnile statement with

while (++counter <= 10)// loop-continuation condition

cout << counter<<"";

This code saves a statement, because the incrementing is done directly in thevhile condition before the condition is
tested. Also, the code eliminates the braces around the body of the while, because thewhile now contains only one

statement. Coding in such a condensed fashion takes some practice and can lead to programs that are more
difficult to read, debug, modify and maintain.

Common Programming Error 5.1

.
@ Floating-point values are approximate, so controlling counting loops with
' floating-point variables can result in imprecise counter values and inaccurate

tests for termination.

Error-Prevention Tip 5.1

@ Control counting loops with integer values.

5.3. for Repetition Statement

presented the essentials of counter-controlled repetition. Thevhile statement can be used to implement any
counter-controlled loop. C++ also provides the for repetition statement, which specifies the counter-controlled repetition

details in a single line of code. To illustrate the power of for, let us rewrite the program ofig. 5.1 . The result is shown i

Fig. 5.2. Counter-controlled repetition with the for statement.

/I Fig. 5.2: fig05_02.cpp
/I Counter-controlled repetition with the for statement.
#include<iostream>

usingstd::cout;

intmain()

{

1
2
3
4
5 wusingstd::endl;
6
7
8
9 //for statement header includes initialization,

10 //loop-continuation condition and increment.

11 for(intcounter =1; counter <=10; counter++)

12 cout << counter <<" ";

14 cout << endl;/ output a newline
15 returnO; // indicate successful termination
16 }// end main

12345678910

When the for statement (lines 11-12) begins executing, the control variableounter is declared and initialized to 1. Then, the
loop-continuation condition (line 11 between the semicolons) counter <= 10 is checked. The initial value ofcounter is 1, so the
condition is satisfied and the body statement (line 12) prints the value of counter, namely 1. Then, the expressioncounter++
increments control variable counter and the loop begins again with the loop-continuation test. The control variable is now
equal to 2, so the final value is not exceeded and the program performs the body statement again. This process continues
until the loop body has executed 10 times and the control variable counter is incremented to 11—this causes the
loop-continuation test to fail and repetition to terminate. The program continues by performing the first statement after the for
statement (in this case, the output statement in line 14).

for Statement Header Components

takes a closer look at thefor statement header (line 11) o . Notice that thefor statement header "does it
all"—it specifies each of the items needed for counter-controlled repetition with a control variable. If there is more than one
statement in the body of the for, braces are required to enclose the body of the loop.

Fig. 5.3. for statement header components.

Control Required Final value of control Reguired

for variable semicolon vanable tor which semicolon
keyword name separator the condition is true separator
for (int counter = |; counter <= Tocounter++)
/ . -
Initial value of _ _ Increment of
control variable Loop-continuation control variable
condition

Notice that uses the loop-continuation conditioncounter <= 10 . If you incorrectly wrotecounter < 10, then the loop would
execute only 9 times. This is a common off-by-one error.

Common Programming Error 5.2

ﬁ Using an incorrect relational operator or using an incorrect final value of a loop counter
) in the condition of a while or for statement can cause off-by-one errors.

The general form of the for statement is

for (initialization; loopContinuationCondition; increment)

statement

where the initialization expression initializes the loop's control variable loopContinuationCondition determines whether the
loop should continue executing (this condition typically contains the final value of the control variable for which the condition
is true) and increment increments the control variable. In most cases, thefor statement can be represented by an equivalent
while statement, as follows:

initialization;

while (loopContinuationCondition)

{

statement

increment;

}

There is an exception to this rule, which we'll discuss i.

If the initialization expression in thefor statement header declares the control variable (i.e., the control variable's type is
specified before the variable name), the control variable can be used only in the body of the for statement—the control

variable will be unknown outside the for statement. This restricted use of the control variable name is known as the

ariable's scope . The scope of a variable specifies where it can be used in a program. Scope is discussed in detail
E, Functions and an Introduction to Recursion.

Common Programming Error 5.3

o
@ When the control variable of afor statement is declared in the initialization section of
the for statement header, using the control variable after the body of the statement is a
compilation error.

Portability Tip 5.1

@l In the C++ standard, the scope of the control variable declared in the initialization

= section of a for statement differs from the scope in older C++ compilers. In prestandard
compilers, the scope of the control variable does not terminate at the end of the block
defining the body of the for statement; rather, the scope terminates at the end of the
block that encloses the for statement. C++ code created with prestandard C++
compilers can break when compiled on standard-compliant compilers. If you are
working with prestandard compilers and you want to be sure your code will work with
standard-compliant compilers, there are two defensive programming strategies you
can use: either declare control variables with different names in every for statement, or,
if you prefer to use the same name for the control variable in severalfor statements,
declare the control variable before the first for statement.

As we'll see, the initialization andincrement expressions can be comma-separated lists of expressions. The commas, as
used in these expressions, are comma operators , which guarantee that lists of expressions evaluate from left to right. The
comma operator has the lowest precedence of all C++ operators. The value and type of a comma-separated list of
expressions is the value and type of the rightmost expression in the list. The comma operator is most often used infor
statements. Its primary application is to enable you to use multiple initialization expressions and/or multiple increment
expressions. For example, there may be several control variables in a single for statement that must be initialized and
incremented.

Good Programming Practice 5.1

@ Place only expressions involving the control variables in the initialization and
increment sections of a for statement. Manipulations of other variables should appear
either before the loop (if they should execute only once, like initialization statements) or
in the loop body (if they should execute once per repetition, like incrementing or
decrementing statements).

The three expressions in thefor statement header are optional (but the two semicolon separators are required). If the
loopContinuationCondition is omitted, C++ assumes that the condition is true, thus creating an infinite loop. One might omit
the initialization expression if the control variable is initialized earlier in the program. One might omit thimcrement expression

if the increment is calculated by statements in the body of the for or if no increment is needed. The increment expression in
the for statement acts as a standalone statement at the end of the body of ther. Therefore, the expressions

counter = counter + 1
counter +=1
++counter

counter++

are all equivalent in the incrementing portion of thdor statement (when no other code appears there). Many programmers
prefer the form counter++, because for loops evaluate the increment expressionafter the loop body executes. The
postincrementing form therefore seems more natural. The variable being incremented here does not appear in a larger
expression, so both preincrementing and postincrementing actually have the same effect.

Common Programming Error 5.4

"
@ Using commas instead of the two required semicolons in gor header is a syntax error.

Common Programming Error 5.5

o
@ Placing a semicolon immediately to the right of the right parenthesis of gr header
makes the body of that for statement an empty statement. This is usually a logic error.

The initialization, loop-continuation condition and increment expressions of a for statement can contain arithmetic
expressions. For example, if x =2 andy = 10, andx andy are not modified in the loop body, theor header

for(intj=x;j<=4*x*y;j+=y/x)

is equivalent to

for(intj=2;j<=80;j+=5)

The "increment" of a for statement can be negative, in which case it is really a decrement and the loop actually counts

downward (as shown in).

If the loop-continuation condition is initially false, the body of thegor statement is not performed. Instead, execution proceeds
with the statement following the for.

Frequently, the control variable is printed or used in calculations in the body of @&r statement, but this is not required. It is
common to use the control variable for controlling repetition while never mentioning it in the body of the for statement.

Error-Prevention Tip 5.2

@ Although the value of the control variable can be changed in the body of #r statement,
avoid doing so, because this practice can lead to subtle logic errors.

for Statement UML Activity Diagram

The for statement's UML activity diagram is similar to that of thevhile statement (i:iq. 4.EI). l:iqure 5.4 shows the activity diagram

of the for statement in . The diagram makes it clear that initialization occurs once before the loop-continuation test is
evaluated the first time, and that incrementing occurs each time through the loop after the body statement executes. Note
that (besides an initial state, transition arrows, a merge, a final state and several notes) the diagram contains only action
states and a decision.

Fig. 5.4. UML activity diagram for thefor statement in .

Imitialize

B = = = = nt counter =
control vanable

[counter <= 10] :
o Display the : rncremtnt_ the
. counter value control vanable
[counter > 10] 45 ! |
4 i 1
L]
bt cout << counter << ; counter++
]
Determine whether
looping should

continue

5.4. Examples Using the for Statement

The following examples show methods of varying the control variable in dor statement. In each case, we write the
appropriate for statement header. Note the change in the relational operator for loops that decrement the control variable.

a. Vary the control variable from1 to 100 in increments of1.
for(inti=1;i<=100; i++)

b. Vary the control variable from100 down to 1 in increments of-1 (that is, decrements of1).
for(inti=100;i>=1;i-)

c. Vary the control variable from 7 to 77 in steps of7.
for(inti=7,i<=77;i+=7)

d. Vary the control variable from 20 down to 2 in steps of-2.
for(inti=20;i>=2;i-=2)

e. Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17, 20.
for(inti=2;i<=20;i+=3)

f. Vary the control variable over the following sequence of values: 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

for(inti=99;i>=0;i-=11)

Common Programming Error 5.6

e
E Not using the proper relational operator in the loop-continuation condition of a
) loop that counts downward (such as incorrectly usingi <=1 instead ofi>=1 ina
loop counting down to 1) is usually a logic error that yields incorrect results when
the program runs.

Application: Summing the Even Integers from 2 to 20

The next two examples provide simple applications of thdor statement. The program 0 uses afor statement to

sum the even integers from 2 to 20. Each iteration of the loop (lines 12—-13) adds the current value of the control variable
number to variabletotal.

Fig. 5.5. Summing integers with thefor statement.

/I Fig. 5.5: fig05_05.cpp

/I Summing integers with the for statement.
#include<iostream>

usingstd::cout;

usingstd::endl;

intmain()

{

inttotal =0; // initialize total

© 00 N O g B~ W N P

=
= O

/I total even integers from 2 through 20

[y
N

for(intnumber =2; number <=20; number +=2)

=
w

total += number;

= e
[S2 B

cout <<"Sum is " << total << endly/ display results

=
()]

returnO; // successful termination

[uny
~

} // end main

Sum is 110

Note that the body of thefor statement in actually could be merged into the increment portion of théor header by
using the comma operator as follows:

for (int number = 2; // initialization
number <= 20; // loop continuation condition
total += number, number += 2) // total and increment

; Il empty body

Good Programming Practice 5.2

4 Although statements preceding a for and statements in the body of &or often can
be merged into the for header, doing so can make the program more difficult to
read, maintain, modify and debug.

Good Programming Practice 5.3

b Limit the size of control statement headers to a single line, if possible.

Application: Compound Interest Calculations
The next example computes compound interest using gor statement. Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming that all
interest is left on deposit in the account, calculate and print the amount of money in the account at
the end of each year for 10 years. Use the following formula for determining these amounts:

a=p(1+n"
where
p is the original amount invested (i.e., the principal),
r is the annual interest rate,
n is the number of years and
a is the amount on deposit at the end of thenth year.

This problem involves a loop that performs the indicated calculation for each of the 10 years the money remains on
deposit. The solution is shown in

© 00 N O g B~ W N P

W W NN DN DNDNDNNDNDNDNDDNDDNDN PR P P B P PP PR
P O © © N o o & W N P O © 00 N O o M W N+ O

32

Fig. 5.6. Compound interest calculations with for.

/I Fig. 5.6: fig05_06.cpp

/I Compound interest calculations with for.
#include <iostream>

using std::cout;

using std::endl;

using std::fixed;

#include <iomanip>
using std::setw; // enables program to set a field width

using std::setprecision;

#include <cmath> // standard C++ math library

using std::pow; // enables program to use function pow

int main()

{
double amount; // amount on deposit at end of each year
double principal = 1000.0; // initial amount before interest

double rate = .05; // interest rate

/I display headers

cout << "Year" << setw(21)<<"Amount on deposit" << endl;

/I set floating-point number format

cout << fixed << setprecision(2);

/Il calculate amount on deposit for each of ten years
for (int year = 1; year <= 10; year++)
{

/I calculate new amount for specified year

amount = principal * pow(1.0 + rate, year);

/I display the year and the amount
cout << setw(4) << year << setw(21) << amount << end|;
} /1 end for

return O; // indicate successful termination

} // end main

Year Amount on deposit

1

© 0 N o oA~ W N

1050.00
1102.50
1157.63
1215.51
1276.28
1340.10
1407.10
1477.46
1551.33

10 1628.89

The for statement (lines 28-35) executes its body 10 times, varying a control variable from 1 to 10 in increments of

1. C++ does not include an exponentiation operator, so we use the standard library function pow (line 31) for this
purpose. The function pow(x, y) calculates the value ofx raised to theyth power. In this example, the algebraic expression

n.
(1+r) is written aspow(1.0 + rate, year), where variablerate represents r and variableyear represents n. Function pow
takes two arguments of type double and returns a double value.

This program will not compile without including header file <cmath> (line 12). Functionpow requires twodouble arguments.
Note that year is an integer. Header<cmath> includes information that tells the compiler to convert the value ofear to a
temporary double representation before calling the function. This information is contained ipow's function prototype.
summarizes other math library functions.

Common Programming Error 5.7

h
E In general, forgetting to include the appropriate header file when using standard
library functions (e.g., <cmath> in a program that uses math library functions) is a

compilation error.

A Caution about Using Type float ordouble for Monetary Amounts

Notice that lines 17—19 declare the double variables amount, principal andrate . We did this for simplicity because we're
dealing with fractional parts of dollars, and we need a type that allows decimal points in its values. Unfortunately, this
can cause trouble. Here is a simple explanation of what can go wrong when using float or double to represent dollar
amounts (assuming setprecision(2) is used to specify two digits of precision when printing): Two dollar amounts stored in
the machine could be 14.234 (which prints as 14.23) and 18.673 (which prints as 18.67). When these amounts are
added, they produce the internal sum 32.907, which prints as 32.91. Thus your printout could appear as

14.23
+18.67

but a person adding the individual numbers as printed would expect the sum 32.90! You have been warned!

Good Programming Practice 5.4

4
@ Do not use variables of typefloat or double to perform monetary
calculations. The imprecision of floating-point numbers can cause errors that

result in incorrect monetary values. [Note: Some third-party vendors sell C++
class libraries that perform precise monetary calculations.]

Using Stream Manipulators to Format Numeric Output

The output statement in line 25 before thefor loop and the output statement in line 34 in theor loop combine to print the
values of the variables year and amount with the formatting specified by the parameterized stream manipulatorsetprecision
and setw and the nonparameterized stream manipulatoffixed. The stream manipulatorsetw(4) specifies that the next value
output should appear in a field width of 4—i.e.,cout prints the value with at least 4 character positions. If the value to be
output is less than 4 character positions wide, the value is right justified in the field by default. If the value to be output is
more than 4 character positions wide, the field width is extended to accommodate the entire value. To indicate that
values should be output left justified , simply output nonparameterized stream manipulatoteft (found in header
<iostream>). Right justification can be restored by outputting nonparameterized stream manipulatoright.

The other formatting in the output statements indicates that variable amount is printed as a fixed-point value with a
decimal point (specified in line 25 with the stream manipulator fixed) right justified in a field of 21 character positions
(specified in line 34 with setw(21)) and two digits of precision to the right of the decimal point (specified in line 25 with
manipulator setprecision(2)) . We applied the stream manipulatorsfixed and setprecision to the output stream (i.e. cout)
before the for loop because these format settings remain in effect until they are changed—such settings are callesticky
settings and they do not need to be applied during each iteration of the loop. However, the field width specified witletw
applies only to the next value output. We discuss C++'s powerful input/output formatting capabilities in ,
Stream Input/Output.

Note that the calculation 1.0 + rate , which appears as an argument to thepow function, is contained in the body of theor
statement. In fact, this calculation produces the same result during each iteration of the loop, so repeating it is
wasteful—it should be performed once before the loop.

Performance Tip 5.1

Avoid placing expressions whose values do not change inside loops—but, even if
you do, many of today's sophisticated optimizing compilers will automatically
place such expressions outside the loops in the generated machine-language
code.

Performance Tip 5.2

Many compilers contain optimization features that improve the performance of
the code you write, but it is still better to write good code from the start.

5.5. do...while Repetition Statement

The do...while repetition statement is similar to thewhile statement. In thewhile statement, the loop-continuation condition
test occurs at the beginning of the loop before the body of the loop executes. The do...while statement tests the
loop-continuation condition after the loop body executes; therefore, the loop body always executes at least once. When a
do...while terminates, execution continues with the statement after thewvhile clause. Note that it is not necessary to use
braces in the do...while statement if there is only one statement in the body; however, most programmers include the
braces to avoid confusion between the while and do...while statements. For example,

while (condition)

normally is regarded as the header of awhile statement. Ado...while with no braces around the single statement body
appears as

do
statement

while (condition);

which can be confusing. You might misinterpret the last line—while(condition):—as a while statement containing as its
body an empty statement. Thus, the do...while with one statement often is written as follows to avoid confusion:

do
{

statement

}while (condition);

Good Programming Practice 5.5

.
'E Always including braces in a do...while statement helps eliminate ambiguity
between the while statement and thedo...while statement containing one statement.

uses ado...while statement to print the numbers 1-10. Upon entering thedo...while statement, line 13 outputs
counter's value and line 14 incrementscounter . Then the program evaluates the loop-continuation test at the bottom of the
loop (line 15). If the condition is true, the loop continues from the first body statement in the do...while (line 13). If the
condition is false, the loop terminates and the program continues with the next statement after the loop (line 17).

Fig. 5.7. do...while repetition statement.

/I Fig. 5.7: fig05_07.cpp

/I do...while repetition statement.
#include<iostream>
usingstd::cout;

usingstd::endl;

intmain()

{

intcounter =1; // initialize counter

© 00 N O g B~ W N P

=
= O

do
{

cout << counter << "; // display counter

B R R
A W N

counter++; /fncrement counter

[y
(&)]

}while(counter <=10); // end do...while

=
~N o

cout << endl;/ output a newline

=
(oo}

return0; // indicate successful termination

=
©

} // end main

12345678910

do...while Statement UML Activity Diagram

contains the UML activity diagram for thelo...while statement. This diagram makes it clear that the
loop-continuation condition is not evaluated until after the loop performs the loop-body action states at least once.
Compare this activity diagram with that of the while statement). Again, note that (besides an initial state,
transition arrows, a merge, a final state and several notes) the diagram contains only action states and a decision.
Imagine, again, that you have access to a bin of empty do...while statement UML activity diagrams—as many as you
might need to stack and nest with the activity diagrams of other control statements to form a structured implementation
of an algorithm. You fill in the action states and decision symbols with action expressions and guard conditions
appropriate to the algorithm.

Fig. 5.8. UML activity diagram for the do...while repetition statement of.

T e | e

LISy L
Cout << counter << s - === pldy

counter value
counter++ ----- '”’:"E"'*E“llthf
control variable
Determine whether _ _ _ _ _ _ _ _ _ _ [counter <= 10]
looping should

continue [counter = 10]

5.6. switch Multiple-Selection Statement

We discussed theif single-selection statement and theif...else double-selection statement in. C++ provides theswitch
multiple-selection statement to perform many different actions based on the possible values of a variable or expression.
Each action is associated with the value of a constant integral expression (i.e., any combination of character constants and
integer constants that evaluates to a constant integer value) to which the variable or expression may evaluate.

GradeBook Class withswitchStatement to Count A, B, C, D and F Grades

We now present an enhanced version of theGrade Book class introduced in and further developed in .

The new version of the class asks the user to enter a set of letter grades, then displays a summary of the number of students
who received each grade. The class uses a switch to determine whether each grade entered is an A, B, C, D or F and to

increment the appropriate grade counter. Class GradeBook is defined in, and its member-function definitions appear in

I:iq. 5.1d. l:iqure 5.1]] shows sample inputs and outputs of thenain program that uses classGradeBook to process a set of

grades.

Fig. 5.9. GradeBook class definition.

/I Fig. 5.9: GradeBook.h
/I Definition of class GradeBook that counts A, B, C, D and F grades.

/I Member functions are defined in GradeBook.cpp

#include <string>// program uses C++ standard string class

using std::string;

0w N o g B W N P

/I GradeBook class definition

©

class GradeBook

10 {

11 public:

12 GradeBook(string); // constructor initializes course hame

13 void setCourseName(string); // function to set the course name
14 string getCourseName(); // function to retrieve the course name
15 void displayMessage(); // display a welcome message

16 void inputGrades(); // input arbitrary number of grades from user
17 void displayGradeReport(); // display a report based on the grades
18 private:

19 string courseName; // course name for this GradeBook

20 int aCount; // count of A grades

21 int bCount; // count of B grades

22 int cCount; // count of C grades

23 int dCount; // count of D grades

24 int fCount; // count of F grades

25 }; Il end class GradeBook

© 0 N O O B~ W N P

o o o ua A b b B B B B DB P DB W W W W W W W W W WNDNDDNDDDNDNDDNDDNDNDDNDNDDNEPRREPR P FRP P P P P PP
W N P O © 0 N O O b W N PFP O © 0N O O B W NP O O 0 N O OO0 W NP O O 0 N O O M W N PP O

Fig. 5.10. GradeBook class uses aswitch statement to count letter grades A, B, C, D and F.

/I Fig. 5.10: GradeBook.cpp

/I Member-function definitions for class GradeBook that

/I uses a switch statement to count A, B, C, D and F grades.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

#include "GradeBook.h" // include definition of class GradeBook

/I constructor initializes courseName with string supplied as argument;
/I initializes counter data members to 0
GradeBook::GradeBook(string name)
{
setCourseName(name); // validate and store courseName
aCount = 0; // initialize count of A grades to 0
bCount = 0; // initialize count of B grades to 0
cCount =0; // initialize count of C grades to O
dCount = 0; // initialize count of D grades to 0
fCount = 0; // initialize count of F grades to O

} /I end GradeBook constructor

// function to set the course name; limits name to 25 or fewer characters
void GradeBook::setCourseName(string name)
{
if (name.length() <= 25)// if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ /I set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;
} I/ end if...else

} // end function setCourseName

/I function to retrieve the course name
string GradeBook::getCourseName()
{

return courseName;

} // end function getCourseName

/I display a welcome message to the GradeBook user
void GradeBook::displayMessage()
{
/I this statement calls getCourseName to get the
/I name of the course this GradeBook represents
cout << "Welcome to the grade book for\n" << getCourseName() <<"\n"
<< endl;

} /1 end function displayMessage

/I input arbitrary number of grades from user; update grade counter
void GradeBook::inputGrades()
{

54 int grade; // grade entered by user

55

56 cout << "Enter the letter grades." <<endl

57 << "Enter the EOF character to end input.” << endl;
58

59 //loop until user types end-of-file key sequence
60 while ((grade = cin.get()) I= EOF)

61 {

62 /I determine which grade was entered
63 switch (grade) // switch statement nested in while
64 {

65 case 'A': // grade was uppercase A

66 case 'a": // or lowercase a

67 aCount++; // increment aCount

68 break; // necessary to exit switch

69

70 case 'B': /] grade was uppercase B

71 case'b': // or lowercase b

72 bCount++; // increment bCount

73 break; // exit switch

74

75 case 'C': // grade was uppercase C

76 case 'c': // or lowercase ¢

77 cCount++; // increment cCount

78 break; // exit switch

79

80 case 'D': // grade was uppercase D

81 case 'd": // or lowercase d

82 dCount++; // increment dCount

83 break; // exit switch

84

85 case 'F': // grade was uppercase F

86 case 'f': // or lowercase f

87 fCount++; // increment fCount

88 break; // exit switch

89

90 case '\n': // ignore newlines,

91 case \t': // tabs,

92 case'": // and spaces in input

93 break; // exit switch

94

95 default: // catch all other characters

96 cout << "Incorrect letter grade entered."
97 << " Enter a new grade." <<endl;
98 break; // optional; will exit switch anyway

99 }// end switch

100 }// end while

101 }// end function inputGrades

102

103 // display a report based on the grades entered by user
104 void GradeBook::displayGradeReport()

105 {

106 // output summary of results

107 cout << "\n\nNumber of students who received each letter grade:"
108 << "\nA:" << aCount// display number of A grades
109 << "\nB: " << bCount// display number of B grades

Fig. 5.11. Creating a GradeBook object and calling its member functions.

1 //Fig.5.11: fig05_11.cpp

2 /I Create GradeBook object, input grades and display grade report.
3

4 #include'GradeBook.h" // include definition of class GradeBook

5

6 intmain()

7 {

8 // create GradeBook object

9 GradeBook myGradeBook{(CS101 C++ Programming");

10

11 myGradeBook.displayMessage(Jf display welcome message

12 myGradeBook.inputGrades()/ read grades from user

13 myGradeBook.displayGradeReport();display report based on grades
14 returnO; // indicate successful termination

15 }// end main

Welcome to the grade book for
CS101 C++ Programming!

Enter the letter grades.
Enter the EOF character to end input.

a

os)

O ™ a >» 0 ©°

E

Incorrect letter grade entered. Enter a new grade.
D

A

b

nZ

Number of students who received each letter grade:
A:3
B: 2
C:3
D: 2
F:1

Like earlier versions of the class definition, the GradeBook class definition contains function prototypes for member
functions setCourseName (line 13), getCourseName (line 14) anddisplayMessage (line 15), as well as the class's constructor (line
12). The class definition also declares private data member courseName (line 19).

Class GradeBook now contains five additionalprivate data members (lines 20—24)—counter variables for each grade
category (i.e., A, B, C, D and F). The class also contains two additional public member functions—inputGrades and
displayGradeReport. Member functioninputGrades (declared in line 16) reads an arbitrary number of letter grades from the user
using sentinel-controlled repetition and updates the appropriate grade counter for each grade entered. Member function
displayGradeReport (declared in line 17) outputs a report containing the number of students who received each letter grade.

Source-code file GradeBook.cpp) contains the member-function definitions for classGradeBook . Notice that lines
16-20 in the constructor initialize the five grade counters to 0—when a GradeBook object is first created, no grades have been
entered yet. As you'll soon see, these counters are incremented in member function inputGrades as the user enters grades.
The definitions of member functions setCourseName, getCourseName and displayMessage are identical to those found in the earlier
versions of class GradeBook. Let's consider the newGradeBook member functions in detail.

Reading Character Input

The user enters letter grades for a course in member functionnputGrades (lines 52—-101). Inside thewhile header, in line
60, the parenthesized assignment (grade = cin.get()) executes first. Thecin.get() function reads one character from the
keyboard and stores that character in integer variable grade (declared in line 54). Characters normally are stored in variables
of type char ; however, characters can be stored in any integer data type, because typeshort, int andlong are guaranteed to be
at least as big as type char. Thus, we can treat a character either as an integer or as a character, depending on its use. For
example, the statement

cout <<"The character (" <<'a' << ") has the value "

<< static_cast<int > ('a') << endl;

prints the character a and its integer value as follows:

The character (a) has the value 97

The integer 97 is the character's numerical representation in the computer. Most computers today use th&SCII (American
Standard Code for Information Interchange) character set, in which 97 represents the lowercase lettera' . A table of the ASCII
characters and their decimal equivalents is presented in , ASCII Character Set.

Assignment statements as a whole have the value that is assigned to the variable on the left side of the. Thus, the value of
the assignment expression grade = cin.get() is the same as the value returned byin.get() and assigned to the variablegrade.

The fact that assignment expressions have values can be useful for assigning the same value to several variables. For
example,

a=b=c=0;

first evaluates the assignment c = 0 (because the = operator associates from right to left). The variableb is then assigned the
value of the assignment ¢ = 0 (which is 0). Then, the variablea is assigned the value of the assignment = (c = 0) (which is also
0). In the program, the value of the assignment grade = cin.get() is compared with the value oEOF (a symbol whose acronym
stands for "end-of-file"). We use EOF (which normally has the value —1) as the sentinel value.However, you do not type the

value —1, nor do you type the letters EOF as the sentinel value. Rather, you type a system-dependent keystroke
combination that means "end-of-file" to indicate that you have no more data to enter. EOF is a symbolic integer constant

defined in the <iostream> header file. If the value assigned tograde is equal toEOF, thewhile loop (lines 60—100) terminates.

We have chosen to represent the characters entered into this program as ints, because EOF has typeint.

On UNIX/Linux systems and many others, end-of-file is entered by typing
<Ctrl>d

on a line by itself. This notation means to press and hold down th€trl key, then press thed key. On other systems such as
Microsoft Windows, end-of-file can be entered by typing

<Ctrl>z

[Note: In some cases, you must pressEnter after the preceding key sequence. Also, the charactersz sometimes appear on
the screen to represent end-of-file, as shown in .]

Portability Tip 5.2

w' The keystroke combinations for entering end-of-file are system dependent.
EF

Portability Tip 5.3

?gg' Testing for the symbolic constant EOF rather than -1 makes programs more portable.
o The ANSI/ISO C standard, from which C++ adopts the definition of EOF , states that
EOF is a negative integral value (but not necessarily-1), SOEOF could have different
values on different systems.

In this program, the user enters grades at the keyboard. When the user presses thEnter (or Return) key, the characters are
read by the cin.get() function, one character at a time. If the character entered is not end-of-file, the flow of control enters the

switch statement (lines 63—99), which increments the appropriate letter-grade counter based on the grade entered.

switch Statement Details

The switch statement consists of a series okase labels and an optionaldefault case . These are used in this example to
determine which counter to increment, based on a grade. When the flow of control reaches theswitch, the program evaluates
the expression in the parentheses (i.e., grade) following keyword switch (line 63). This is called thecontrolling expression. The
switch statement compares the value of the controlling expression with eaclase label. Assume the user enters the letterc as
a grade. The program compares C to each case in the switch. If a match occurs ¢ase 'C': in line 75), the program executes the
statements for that case. For the letterC, line 77 incrementscCount by 1. Thebreak statement (line 78) causes program
control to proceed with the first statement after the switch —in this program, control transfers to line 100. This line marks the
end of the body of the while loop that inputs grades (lines 60-100), so control flows to thenhile's condition (line 60) to
determine whether the loop should continue executing.

The cases in ourswitch explicitly test for the lowercase and uppercase versions of the letters A, B, C, D and F. Note thases in
lines 65-66 that test for the values 'A' and'a’ (both of which represent the grade A). Listingcases consecutively in this manner
with no statements between them enables the case s to perform the same set of statements—when the controlling expression
evaluates to either 'A' or 'a', the statements in lines 67—68 will execute. Note that eaclase can have multiple statements. The

switch selection statement differs from other control statements in that it does not require braces around multiple statements

in each case.

Without break statements, each time a match occurs in theswitch, the statements for thatcase and subsequentcases execute
until a break statement or the end of theswitch is encountered. This is often referred to as "falling through" to the statements in

subsequent cases.

Common Programming Error 5.8

"
ﬁ. Forgetting a break statement when one is needed in aswitch statement is a logic error.

Common Programming Error 5.9

..
ﬁ. Omitting the space between the word case and the integral value being tested in aswitch
. statement can cause a logic error. For example, writing case3: instead of case 3: simply
creates an unused label. In this situation, the switch statement will not perform the
appropriate actions when the switch's controlling expression has a value of 3.

Providing a default Case

If no match occurs between the controlling expression's value and a case label, the default case (lines 95-98) executes. We
use the default case in this example to process all controlling-expression values that are neither valid grades nor newline, tab
or space characters (we discuss how the program handles these whitespace characters shortly). If no match occurs, the
default case executes, and lines 96-97 print an error message indicating that an incorrect letter grade was entered. If no
match occurs in a switch statement that does not contain adefault case, program control simply continues with the first

statement after the switch.

Good Programming Practice 5.6

ﬁ Provide a default case inswitch statements. Cases not explicitly tested in aswitch
statement without a default case are ignored. Including adefault case focuses you on the
need to process exceptional conditions. There are situations in which no default
processing is needed. Although the case clauses and thedefault case clause in aswitch
statement can occur in any order, it is common practice to place the default clause last.

Good Programming Practice 5.7

'ﬁ The last case in a switch statement does not require abreak statement. Some
programmers include this break for clarity and for symmetry with other cases.

Ignoring Newline, Tab and Blank Characters in Input

Note that lines 90-93 in theswitch statement of cause the program to skip newline, tab and blank characters.
Reading characters one at a time can cause some problems. To have the program read the characters, we must send them
to the computer by pressing the Enter key on the keyboard. This places a newline character in the input after the character
we wish to process. Often, this newline character must be specially processed to make the program work correctly. By
including the preceding cases in ourswitch Statement, we prevent the error message in thelefault case from being printed each
time a newline, tab or space is encountered in the input.

Common Programming Error 5.10

o
@ Not processing newline and other whitespace characters in the input when reading
) characters one at a time can cause logic errors.

Testing Class GradeBook

creates aGradeBook object (line 9). Line 11 invokes the itslisplayMessage member function to output a welcome
message to the user. Line 12 invokes member function object's inputGrades to read a set of grades from the user and keep

track of how many students received each grade. Note that the output window in shows an error message
displayed in response to entering an invalid grade (i.e., E). Line 13 invokesGradeBook member function displayGradeReport
ﬁ

(defined in lines 104-114 of Fig. 5.1d), which outputs a report based on the grades entered (as in the output i).

switch Statement UML Activity Diagram

shows the UML activity diagram for the generaswitch multiple-selection statement. Mostswitch statements use a

break in each case to terminate theswitch statement after processing thecase. emphasizes this by includingbreak
statements in the activity diagram. Without the break statement, control would not transfer to the first statement after thewitch
statement after a case is processed. Instead, control would transfer to the nextase's actions.

Fig. 5.12. switch multiple-selection statement UML activity diagram withbreak statements.

[true] ,
case a ———- >ﬁ case aactions(s) ——= break

[false]

]I+Ir Meesem 1

(LI
case b Lo case bactions(s] —= break %‘<>

[false]
[true]
case I __--< ——== (Case 7actions(s)] —= break
[false]

default actions(s)

The diagram makes it clear that the break statement at the end of acase causes control to exit theswitch statement immediately.
Again, note that (besides an initial state, transition arrows, a final state and several notes) the diagram contains action states
and decisions. Also, note that the diagram uses merge symbols to merge the transitions from the break statements to the final
state.

Imagine, again, that you have a bin of empty switch statement UML activity diagrams—as many as you might need to stack
and nest with the activity diagrams of other control statements to form a structured implementation of an algorithm. You fill in
the action states and decision symbols with action expressions and guard conditions appropriate to the algorithm. Note that,
although nested control statements are common, it is rare to find nested switch statements in a program.

When using the switch statement, remember that eachcase can be used to test only aconstant integral expression—any
combination of character constants and integer constants that evaluates to a constant integer value. A character constant is
represented as the specific character in single quotes, such as 'A' . An integer constant is simply an integer value. Also, each
case label can specify only one constant integral expression.

Common Programming Error 5.11

% Specifying a nonconstant integral expression in aswitch statement's case label is a
syntax error.

Common Programming Error 5.12

% Providing identical case labels in aswitch statement is a compilation error.
' Providing case labels containing different expressions that evaluate to the same value

also is a compilation error. For example, placing case 4 + 1: and case 3 + 2: in the same
switch statement is a compilation error, because these are both equivalent tease 5.

In , We present a more elegant way to implemenswitch logic. We'll use a technique called polymorphism to create
programs that are often clearer, more concise, easier to maintain and easier to extend than programs that use switch logic.

Notes on Data Types

C++ has flexible data type sizes (se , Fundamental Types). Different applications, for example, might need
integers of different sizes. C++ provides several data types to represent integers. The range of integer values for each type
depends on the particular computer's hardware. In addition to the types int and char, C++ provides the typesshort (an

abbreviation of short int) and long (an abbreviation oflong int). The minimum range of values forhort integers is —32,768 to
32,767. For the vast majority of integer calculations, long integers are sufficient. The minimum range of values fofong integers
is —2,147,483,648 to 2,147,483,647. On most computers, ints are equivalent either toshort or tolong. The range of values for
an int is at least the same as that foshort integers and no larger than that fonong integers. The data typechar can be used
to represent any of the characters in the computer's character set. It also can be used to represent small integers.

Portability Tip 5.4

W' Because ints can vary in size between systems, usdong integers if you expect to
Sl
process integers outside the range —32,768 to 32,767 and you would like to run the
program on several different computer systems.

Performance Tip 5.3

—ﬁ If memory is at a premium, it might be desirable to use smaller integer sizes.

Performance Tip 5.4

Using smaller integer sizes can result in a slower program if the machine's instructions
for manipulating them are not as efficient as those for the natural-size integers—i.e.,
integers whose size equals the machine's word size (e.g., 32 bits on a 32-bit machine,
64 bits on a 64-bit machine). Always test proposed efficiency "upgrades" to be sure

they really improve performance.

5.7. break and continue Statements

In addition to the selection and repetition statements, C++ provides statementsreak and continue to alter the flow of
control. The preceding section showed how break can be used to terminate aswitch statement's execution. This section
discusses how to use break in a repetition statement.

break Statement

The break statement, when executed in awhile, for, do...while or switch statement, causes immediate exit from that
statement. Program execution continues with the next statement. Common uses of the break statement are to escape

early from a loop or to skip the remainder of a switch statement (as inI:iq. 5.1d). i:iqure 5.13| demonstrates thebreak

statement (line 14) exiting a for repetition statement.

Fig. 5.13. break statement exiting afor statement.

1 /I Fig. 5.13: fig05_13.cpp

2 [/l break statement exiting a for statement.

3 #include<iostream>

4 usingstd::cout;

5 usingstd::endl;

6

7 intmain()

8 {

9 intcount;// control variable also used after loop terminates
10

11 for(count =1; count <=10; count++)// loop 10 times
12 {

13 if (count ==5)

14 break // break loop only if x is 5

15

16 cout << count << ";

17}/l end for

18

19 cout <<"\nBroke out of loop at count =" << count << endl;
20 returnO; // indicate successful termination

21 }// end main

1234

Broke out of loop at count =5

When the if statement detects thatcount is 5, the break statement executes. This terminates thefor statement, and the
program proceeds to line 19 (immediately after the for statement), which displays a message indicating the control
variable value that terminated the loop. The for statement fully executes its body only four times instead of 10. Note that
the control variable count is defined outside thefor statement header, so that we can use the control variable both in the
loop's body and after the loop completes its execution.

continue Statement

The continue statement, when executed in awhile, for or do...while statement, skips the remaining statements in the body
of that statement and proceeds with the next iteration of the loop. In while and do...while statements, the loop-continuation
test evaluates immediately after the continue statement executes. In thefor statement, the increment expression
executes, then the loop-continuation test evaluates.

uses thecontinue statement (line 12) in afor statement to skip the output statement (line 14) when the nested
(lines 11-12) determines that the value of count is5. When the continue statement executes, program control continues
with the increment of the control variable in the for header (line 9) and loops five more times.

Fig. 5.14. continue statement terminating a single iteration of afor statement.

/I Fig. 5.14: fig05_14.cpp

/I continue statement terminating an iteration of a for statement.
#include<iostream>

usingstd::cout;

1
2
8
4
5 usingstd::endl;
6
7
8
9

intmain()
{
for(intcount =1; count <=10; count++)/ loop 10 times

10 {
11 if (count ==5)//if countis 5
12 continue // skip remaining code in loop
13
14 cout << count<<"";
15 }//end for
16

17 cout <<"\nUsed continue to skip printing 5" << endl;
18 returnO; // indicate successful termination
19 }// end main

1234678910

Used continue to skip printing 5

In , we stated that thewhile statement could be used in most cases to represent thefor statement.
The one exception occurs when the increment expression in the while statement follows thecontinue statement. In this
case, the increment does not execute before the program tests the loop-continuation condition, and the while does not
execute in the same manner as the for.

Good Programming Practice 5.8

k Some programmers feel thatbreak and continue Vviolate structured programming.

The effects of these statements can be achieved by structured programming
technigues we soon will see, so these programmers do not use break and continue .
Most programmers consider the use of break in switch statements acceptable.

Performance Tip 5.5

:ﬁ‘ The break and continue statements, when used properly, perform faster than do the
corresponding structured techniques.

Software Engineering Observation 5.1

There is a tension between achieving quality software engineering and achieving
the best-performing software. Often, one of these goals is achieved at the
expense of the other. For all but the most performance-intensive situations, apply
the following rule of thumb: First, make your code simple and correct; then make
it fast and small, but only if necessary.

5.8. Logical Operators

So far we have studied onlysimple conditions, such as counter <= 10, total > 1000 and number != sentinelValue. We expressed
these conditions in terms of the relational operators >, <, >= and <=, and the equality operators==and!=. Each decision
tested precisely one condition. To test multiple conditions while making a decision, we performed these tests in separate
statements or in nested if or if...else statements.

C++ provides logical operators that are used to form more complex conditions by combining simple conditions. The
logical operators are && (logical AND),|| (logical OR) and! (logical NOT, also called logical negation).

Logical AND (&&) Operator

Suppose that we wish to ensure that two conditions arboth true before we choose a certain path of execution. In this

case, we can use the && (logical AND) operator, as follows:

if (gender == 1 && age >= 65)

seniorFemales++;

This if statement contains two simple conditions. The conditiorgender == 1 is used here to determine whether a person is
a female. The condition age >= 65 determines whether a person is a senior citizen. The simple condition to the left of the
&& operator evaluates first. If necessary, the simple condition to the right of thes& operator evaluates next. As we'll
discuss shortly, the right side of a logical AND expression is evaluated only if the left side is true. Theif statement then
considers the combined condition

gender == 1 && age >= 65

This condition is true if and only if both of the simple conditions ar@ue. Finally, if this combined condition is indeed true,
the statement in the if statement's body increments the count okeniorFemales. If either of the simple conditions idalse (or
both are), then the program skips the incrementing and proceeds to the statement following theif . The preceding
combined condition can be made more readable by adding redundant parentheses:

(gender==1) && (age >=65)

Common Programming Error 5.13

e
E Although 3 <x <7 is a mathematically correct condition, it does not evaluate as
you might expect in C++. Use (3 <x && x < 7) to get the proper evaluation in C++.

summarizes the && operator. The table shows all four possible combinations ofalse and true values for
expressionl and expression2. Such tables are often calledtruth tables. C++ evaluates tofalse or true all expressions that
include relational operators, equality operators and/or logical operators.

Fig. 5.15. && (logical AND) operator truth table.

expressionl expression?2 expression| && expression2
false false false
false true false
true false false
true true true

Logical OR (||) Operator

Now let us consider the || (logical OR) operator. Suppose we wish to ensure at some point in a program that eithesr
both of two conditions are true before we choose a certain path of execution. In this case, we use thg operator, as in the

following program segment:

if ((semesterAverage >=90) || (finalExam >=90))

cout << "Student grade is A" << endl;

This preceding condition also contains two simple conditions. The simple conditiosemesterAverage >= 90 evaluates to
determine whether the student deserves an "A" in the course because of a solid performance throughout the semester.
The simple condition finalExam >= 90 evaluates to determine whether the student deserves an "A" in the course because
of an outstanding performance on the final exam. The if statement then considers the combined condition

(semesterAverage >=90) || (finalExam >=90)

and awards the student an "A" if either or both of the simple conditions areue. Note that the message Student grade is A"
prints unless both of the simple conditions are false. is a truth table for the logical OR operatorf|).

Fig. 5.16. || (logical OR) operator truth table.

expressionl expression2 expressionl|| expression2
false false false
false true true
true false true
true true true

The && operator has a higher precedence than thej| operator. Both operators associate from left to right. An expression
containing && or || operators evaluates only until the truth or falsehood of the expression is known. Thus, evaluation of
the expression

(gender==1) && (age >=65)

stops immediately ifgender is not equal to1 (i.e., the entire expression isfalse) and continues ifgender is equal to1 (i.e.,
the entire expression could still be true if the conditionage >= 65 is true). This performance feature for the evaluation of

logical AND and logical OR expressions is called short-circuit evaluation.

Performance Tip 5.6

In expressions using operator &&, if the separate conditions are independent of
one another, make the condition most likely to be false the leftmost condition. In
expressions using operator ||, make the condition most likely to betrue the leftmost
condition. This use of short-circuit evaluation can reduce a program's execution
time.

Logical Negation (!) Operator

C++ provides the ! (logical NOT, also called logical negation) operator to enable a programmer to "reverse" the meaning
of a condition. Unlike the && and|| binary operators, which combine two conditions, the unary logical negation operator

has only a single condition as an operand. The unary logical negation operator is placed before a condition when we are
interested in choosing a path of execution if the original condition (without the logical negation operator) is false, such as
in the following program segment:

if (!(grade == sentinelValue))

cout << "The next grade is" << grade << endl;

The parentheses around the condition grade == sentinelvalue are needed because the logical negation operator has a
higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition with an appropriate relational or
equality operator. For example, the preceding if statement also can be written as follows:

if (grade != sentinelValue)
cout << "The next grade is " << grade << endl;

This flexibility often can help a programmer express a condition in a more "natural” or convenient manne is
a truth table for the logical negation operator (!).

Fig. 5.17.! (logical negation) operator truth table.

expression lexpression
false true
true false

Logical Operators Example

demonstrates the logical operators by producing their truth tables. The output shows each expression that
is evaluated and its bool result. By default,bool values true andfalse are displayed bycout and the stream insertion

operator as 1 and o0, respectively. We usestream manipulator boolalpha (a sticky manipulator) in line 11 to specify that the
value of each bool expression should be displayed as either the word "true" or the word "false." For example, the result
of the expression false && false in line 12 isfalse, so the second line of output includes the word “false.” Lines 11-15
produce the truth table for &&. Lines 18—-22 produce the truth table foi|. Lines 25-27 produce the truth table for.

Fig. 5.18. Logical operators.

Q

1 /I Fig. 5.18: fig05_18.cpp

2 /I Logical operators.

3 #include <iostream>

4 using std::cout;

5 using std::endl;

6 using std::boolalpha; // causes bool values to print as "true" or "false"
7

8 int main()

9 {

10 /I create truth table for && (logical AND) operator
11 cout << boolalpha << "Logical AND (&&)"

12 << "\nfalse && false: " << (false && false)

13 << "\nfalse && true: " << (false && true)

14 << "\ntrue && false: " << (true && false)

15 << "\ntrue && true: " << (true && true) << "\n\n" ;
16

17 /I create truth table for || (logical OR) operator

18 cout << "Logical OR ([])"

19 << "\nfalse || false: " << (false || false)

20 << "\nfalse || true: " << (false || true)

21 << "\ntrue || false: " << (true || false)

22 << "\ntrue || true: " << (true || true) << "\n\n" ;
23

24 |/ create truth table for ! (logical negation) operator
25 cout << "Logical NOT (1"

26 << "\nlfalse: " << (!false)

27 << "\nltrue: " << (!true) << endl;

28 return O; // indicate successful termination
29 }// end main

Logical AND (&&)
false && false: false
false && true: false
true && false: false

true && true: true

Logical OR (][)
false || false: false
false || true: true
true || false: true

true || true: true

Logical NOT (1)
lfalse: true

ltrue: false

Summary of Operator Precedence and Associativity

adds the logical operators to the operator precedence and associativity chart. The operators are shown
from top to bottom, in decreasing order of precedence.

Fig. 5.19. Operator precedence and associativity.

Operators Associativity Type
left to right scope resolution
0 left to right parentheses
++ - static_cast< type >() left to right unary (postfix)
++ - + - ! right to left unary (prefix)
* / % left to right multiplicative
+ - left to right additive
<< >> left to right insertion/extraction
< <= > >= left to right relational
== 1= left to right equality
&& left to right logical AND
Il left to right logical OR
2 right to left conditional
= += -= *= I= %= right to left assignment

left to right comma

5.9. Confusing the Equality (==) and Assignment €) Operators

There is one type of error that C++ programmers, no matter how experienced, tend to make so frequently that we
feel it requires a separate section. That error is accidentally swapping the operators == (equality) and= (assignment).
What makes these swaps so damaging is the fact that they ordinarily do not cause syntax errors. Rather, statements
with these errors tend to compile correctly and the programs run to completion, often generating incorrect results
through runtime logic errors. [Note: Some compilers issue a warning when= is used in a context where==normally is
expected.]

Two aspects of C++ contribute to these problems. One is that any expression that produces a value can be used in the
decision portion of any control statement. If the value of the expression is zero, it is treated as false, and if the value is

nonzero, it is treated as true . The second is that assignments produce a value—namely, the value assigned to the
variable on the left side of the assignment operator. For example, suppose we intend to write

if (payCode ==4)

cout << "You get a bonus!" << endl;

but we accidentally write

if (payCode =4)

cout << "You get a bonus!" << endl;

The first if statement properly awards a bonus to the person whoseayCode is equal to 4. The secondf statement—the
one with the error—evaluates the assignment expression in the if condition to the constant 4. Any nonzero value is
interpreted as true, so the condition in thisif statement is alwaystrue and the person always receives a bonus regardless
of what the actual paycode is! Even worse, the paycode has been modified when it was only supposed to be examined!

Common Programming Error 5.14

e,
@ Using operator== for assignment and using operator= for equality are logic errors.

Error-Prevention Tip 5.3

@ Programmers normally write conditions such asx ==7 with the variable name on
the left and the constant on the right. By reversing these so that the constant is
on the left and the variable name is on the right, as in7 == x, you'll be protected by
the compiler if you accidentally replace the == operator with=. The compiler treats
this as a compilation error, because you can't change the value of a constant.
This will prevent the potential devastation of a runtime logic error.

Variable names are said to be Ivalues (for "left values") because they can be used on the left side of an assignment
operator. Constants are said to be rvalues (for "right values") because they can be used on only the right side of an

assignment operator. Note that Ivalues can also be used asrvalues, but not vice versa.

There is another equally unpleasant situation. Suppose you want to assign a value to a variable with a simple
statement like

x=1,

but instead write

X==1;

Here, too, this is not a syntax error. Rather, the compiler simply evaluates the conditional expression.®fis equal to1, the
condition is true and the expression evaluates to the valuerue. Ifx is not equal to1, the condition isfalse and the
expression evaluates to the value false . Regardless of the expression's value, there is no assignment operator, so the
value simply is lost. The value of x remains unaltered, probably causing an execution-time logic error. Unfortunately, we
do not have a handy trick available to help you with this problem!

Error-Prevention Tip 5.4

@ Use your text editor to search for all occurrences o in your program and check
that you have the correct assignment operator or logical operator in each place.

5.10. (Optional) Software Engineering Case Study: Identifying Objects' States and Activities in the ATM System

, we identified many of the class attributes needed to implement the ATM system and added them to the class diagram in
. In this section, we show how these attributes represent an object's state. We identify some key states that our objects may
occupy and discuss how objects change state in response to various events occurring in the system. We also discuss the workflow, or
activities , that objects perform in the ATM system. We present the activities oBalancelnquiry and withdrawal transaction objects in this
section, as they represent two of the key activities in the ATM system.

State Machine Diagrams

Each object in a system goes through a series of discrete states. An object's current state is indicated by the values of the object's
attributes at a given time. State machine diagrams (commonly called state diagrams) model key states of an object and show under
what circumstances the object changes state. Unlike the class diagrams presented in earlier case study sections, which focused
primarily on the structure of the system, state diagrams model some of the behavior of the system.

is a simple state diagram that models some of the states of an object of clasaT™ . The UML represents each state in a state
diagram as a rounded rectangle with the name of the state placed inside it. Asolid circle with an attached stick arrowhead designates
Eé 4.2Q. This

the initial state . Recall that we modeled this state information as theoolean attribute userAuthenticated in the class diagram offi
attribute is initialized to faise, or the "User not authenticated" state, according to the state diagram.

Fig. 5.20. State diagram for the ATm object.

bank database authenticates user

@ = User not authenticated ~ User authenticated

User exits system

The arrows with stick arrowheads indicatetransitions between states. An object can transition from one state to another in response
to various events that occur in the system. The name or description of the event that causes a transition is written near the line that
corresponds to the transition. For example, the ATm object changes from the "User not authenticated" state to the "User authenticated"
state after the database authenticates the user. Recall from the requirements specification that the database authenticates a user by
comparing the account number and PIN entered by the user with those of the corresponding account in the database. If the database
indicates that the user has entered a valid account number and the correct PIN, the ATm object transitions to the "User authenticated"
state and changes its userAuthenticated attribute to a value oftrue . When the user exits the system by choosing the "exit" option from the
main menu, the ATM object returns to the "User not authenticated" state in preparation for the next ATM user.

Software Engineering Observation 5.2

[T

| Software designers do not generally create state diagrams showing every possible state and state
transition for all attributes—there are simply too many of them. State diagrams typically show only
the most important or complex states and state transitions.

Activity Diagrams

Like a state diagram, an activity diagram models aspects of system behavior. Unlike a state diagram, an activity diagram models an
object's workflow (sequence of events) during program execution. An activity diagram models the actions the object will perform and in
what order. Recall that we used UML activity diagrams to illustrate the flow of control for the control statements presented in ‘
and this chapter.

The activity diagram in models the actions involved in executing agalanceinquiry transaction. We assume that asalanceinquiry
object has already been initialized and assigned a valid account number (that of the current user), so the object knows which balance to

retrieve. The diagram includes the actions that occur after the user selects a balance inquiry from the main menu and before the ATM
returns the user to the main menu—a Balanceinquiry Object does not perform or initiate these actions, so we do not model them
here. The diagram begins with retrieving the available balance of the user's account from the database. Next, the Balancelnquiry retrieves
the total balance of the account. Finally, the transaction displays the balances on the screen. This action completes the execution of the
transaction.

Fig. 5.21. Activity diagram for aBalancelnquiry transaction.

get available balance of user's account from database

v

get total balance of user's account from database

v

display balances on screen

The UML represents an action in an activity diagram as an action state modeled by a rectangle with its left and right sides replaced by
arcs curving outward. Each action state contains an action expression—for example, "get available balance of user's account from
database"—that specifies an action to be performed. An arrow with a stick arrowhead connects two action states, indicating the order in
which the actions represented by the action states occur. The solid circle (at the top of) represents the activity's initial
state—the beginning of the workflow before the object performs the modeled actions. In this case, the transaction first executes the "get
available balance of user's account from database" action expression. Second, the transaction retrieves the total balance. Finally, the

transaction displays both balances on the screen. The solid circle enclosed in an open circle (at the bottom of Fig. 5.21]) represents the
final state—the end of the workflow after the object performs the modeled actions.

shows an activity diagram for awithdrawal transaction. We assume that awithdrawal 0object has been assigned a valid account
number. We do not model the user selecting a withdrawal from the main menu or the ATM returning the user to the main menu because

these are not actions performed by a withdrawal 0Object. The transaction first displays a menu of standard withdrawal amounts fEig. 2.13)
and an option to cancel the transaction. The transaction then inputs a menu selection from the user. The activity flow now arrives at a
decision symbol. This point determines the next action based on the associated guard conditions. If the user cancels the transaction, the
system displays an appropriate message. Next, the cancellation flow reaches a merge symbol, where this activity flow joins the
transaction's other possible activity flows (which we discuss shortly). Note that a merge can have any number of incoming transition
arrows, but only one outgoing transition arrow. The decision at the bottom of the diagram determines whether the transaction should
repeat from the beginning. When the user has canceled the transaction, the guard condition "cash dispensed or user canceled
transaction" is true, so control transitions to the activity's final state.

Fig. 5.22. Activity diagram for a withdrawal transaction.

"% display menu of withdrawal amounts and opton to cancel

V

input the menu selection

[user canceled transaction]

== display cancel message
[user selected an amount] |,

Sel amount arnbute

V

get available balance of user's account from database

[amount = available balance)
= display emor message —

[amount <= available balance)

test whether sufficient cash is available in cash dispenser

[insufficient cash available]

== display emor message
[sulficient cash available]

interact with databaze to debit amount from user's account

v

dispense cash

V

instruck user to take cash

|zash not dispensed
and user did not cancel)

[cash dispensed or
user canceled transaction)

user selects a withdrawal amount from the menu, the transaction sets amount (an attribute of classwithdrawal originally modeled inE‘
) to the value chosen by the user. The transaction next gets the available balance of the user's account (i.e., thavailableBalance
attribute of the user's Account object) from the database. The activity flow then arrives at another decision. If the requested withdrawal
amount exceeds the user's available balance, the system displays an appropriate error message informing the user of the problem.
Control then merges with the other activity flows before reaching the decision at the bottom of the diagram. The guard decision "cash

not dispensed and user did not cancel" is true, so the activity flow returns to the top of the diagram, and the transaction prompts the user
to input a new amount.

If the requested withdrawal amount is less than or equal to the user's available balance, the transaction tests whether the cash

dispenser has enough cash to satisfy the withdrawal request. If it does not, the transaction displays an appropriate error message and
passes through the merge before reaching the final decision. Cash was not dispensed, so the activity flow returns to the beginning of
the activity diagram, and the transaction prompts the user to choose a new amount. If sufficient cash is available, the transaction
interacts with the database to debit the withdrawal amount from the user's account (i.e., subtract the amount from both the availableBalance
and totalBalance attributes of the user's Account object). The transaction then dispenses the desired amount of cash and instructs the user to
take the cash that is dispensed. The main flow of activity next merges with the two error flows and the cancellation flow. In this case,
cash was dispensed, so the activity flow reaches the final state.

We've taken the first steps in modeling the behavior of the ATM system and have shown how an object's attributes participate in the
object's activities. In , We investigate the operations of our classes to create a more complete model of the system's
behavior.

Software Engineering Case Study Self-Review Exercises

a State whether the following statement istrue or false, and iffalse, explain why: State diagrams model structural
aspects of a system.

5 An activity diagram models the that an object performs and the order in which it performs them.
a. actions
b. attributes
c. states

d. state transitions

E Based on the requirements specification, create an activity diagram for a deposit transaction.

Answers to Software Engineering Case Study Self-Review Exercises

Q False. State diagrams model some of the behavior of a system.

Ed -

E presents an activity diagram for a deposit transaction. The diagram models the actions that occur after the
user chooses the deposit option from the main menu and before the ATM returns the user to the main menu. Recall that
part of receiving a deposit amount from the user involves converting an integer number of cents to a dollar amount. Also
recall that crediting a deposit amount to an account involves increasing only the totaiBalance attribute of the user's Account
object. The bank updates the availableBalance attribute of the user's Account object only after confirming the amount of cash
in the deposit envelope and after the enclosed checks clear—this occurs independently of the ATM system.

Fig. 5.23. Activity diagram for a peposit transaction.

prompt user to enter a deposit amount or cancel

V

receive input from user

h||

[user canceled transaction|

1, [user entered an amount]

display cancel message set amount attribute

!

instruct user to insert deposit envelope

v

attempt to receive deposit envelope

[deposit envelope not received) X [deposit envelope received|
l "4 d(
interact with database

display error message to credit amount
to user's account

5.11. Wrap-Up

In this chapter, we completed our introduction to C++'s control statements, which enable you to control the flow of
execution in functions. discussed theif, if...else andwhile statements. The current chapter demonstrated C++'s

remaining control statements—for, do...while and switch . We have shown that any algorithm can be developed using
combinations of the sequence structure (i.e., statements listed in the order in which they should execute), the three
types of selection statements—if, if...else and switch—and the three types of repetition statements—while, do...while and for .
In this chapter and , we have discussed how you can combine these building blocks to utilize proven program
construction and problem-solving techniques. This chapter also introduced C++'s logical operators, which enable you to
use more complex conditional expressions in control statements. Finally, we examined the common errors of confusing
the equality and assignment operators and provided suggestions for avoiding these errors.

In , we introduced C++ programming with the basic concepts of classes, objects and member functions.
Ehapter 4 and this chapter provided a thorough introduction to the control statements that you typically use to specify
program logic in functions. In , we examine functions in greater depth.

6. Functions and an Introduction to Recursion

Objectives

In this chapter you'll learn:
® To construct programs modularly from functions.
® To use common math functions available in the C++ Standard Library.
® To create functions with multiple parameters.
® The mechanisms for passing information between functions and returning results.
e How the function call/return mechanism is supported by the function call stack and activation records.
e To use random number generation to implement game-playing applications.
e How the visibility of identifiers is limited to specific regions of programs.

e To write and use recursive functions, i.e., functions that call themselves.

Form ever follows function.

—Louis Henri Sullivan

E pluribus unum. (One composed of many.)

—Virgil

O! call back yesterday, bid time return.

—William Shakespeare

Call me Ishmael.

—Herman Melville

When you call me that, smile!

—Owen Wister

Answer me in one word.

—William Shakespeare

There is a point at which methods devour themselves.
—Frantz Fanon

Life can only be understood backwards; but it must be lived forwards.

—Soren Kierkegaard

Outline

ARG AR alalalalalalalala

O
H
0

O (@) (@) O O
A N) ®)

Introduction

Program Components in C++

Math Library Functions

Function Definitions with Multiple Parameters
Function Prototypes and Argument Coercion
C++ Standard Library Header Files

Case Study: Random Number Generation
Case Study: Game of Chance; Introducingenum
Storage Classes

Scope Rules

Function Call Stack and Activation Records
Functions with Empty Parameter Lists

Inline Functions

References and Reference Parameters
Default Arguments

Unary Scope Resolution Operator

Function Overloading

Function Templates

Recursion

Example Using Recursion: Fibonacci Series
Recursion vs. Iteration

(Optional) Software Engineering Case Study: Identifying Class Operations in the ATM System

Wrap-Up

6.1. Introduction

In this chapter, we study functions in more depth. We emphasize how to declare and use functions to facilitate the
design, implementation, operation and maintenance of large programs.

We'll overview a portion of the C++ Standard Library's math functions, showing several that require more than one
parameter. Next, you'll see how to declare a function with more than one parameter. We'll also present additional
information about function prototypes and how the compiler uses them to convert the type of an argument in a function
call to the type specified in a function's parameter list, if necessary.

Next, we'll take a brief diversion into simulation techniques with random number generation and develop a version of
the casino dice game called craps that uses most of the C++ capabilities you have learned to this point in the book.

We then present C++'s storage classes and scope rules. These determine the period during which an object exists in
memory and where its identifier can be referenced in a program. You'll also see how C++ is able to keep track of which
function is currently executing, how parameters and other local variables of functions are maintained in memory

and how a function knows where to return after it completes execution. We discuss two topics that help improve
program performance—inline functions that can eliminate the overhead of a function call and reference parameters that
can be used to pass large data items to functions efficiently.

Many of the applications you develop will have more than one function of the same name. This technique, called
function overloading, is used by programmers to implement functions that perform similar tasks for arguments of
different types or possibly for different numbers of arguments. We consider function templates—a mechanism for
defining a family of overloaded functions. The chapter concludes with a discussion of functions that call themselves,
either directly, or indirectly (through another function)—a topic called recursion.

6.2. Program Components in C++

C++ programs are typically written by combining new functions and classes you write with "prepackaged" functions and
classes available in the C++ Standard Library. In this chapter, we concentrate on functions.

The C++ Standard Library provides a rich collection of functions for performing common mathematical calculations,
string manipulations, character manipulations, input/output, error checking and many other useful operations. This
makes your job easier, because these functions provide many of the capabilities programmers need. The C++ Standard
Library functions are provided as part of the C++ programming environment.

Software Engineering Observation 6.1

Read the documentation for your compiler to familiarize yourself with the
functions and classes in the C++ Standard Library.

6.3. Math Library Functions

As you know, a class can provide member functions that perform the services of the class. For example, i
Ey, you have called the member functions of various versions of aGradeBook object to display theGradeBook 's welcome
message, to set its course name, to obtain a set of grades and to calculate the average of those grades.

Sometimes functions are not members of a class. Such functions are calledjlobal functions . Like a class's member
functions, the function prototypes for global functions are placed in header files, so that the global functions can be
reused in any program that includes the header file and that can link to the function's object code. For example, recall

that we used function pow of the<cmath> header file to raise a value to a power in . We introduce various
functions from the <cmath> header file here to present the concept of global functions that do not belong to a particular
class. In this chapter and in subsequent chapters, we use a combination of global functions (such asmain) and classes
with member functions to implement our example programs.

The <cmath> header file provides a collection of functions that enable you to perform common mathematical
calculations. For example, you can calculate the square root of 900.0 with the function call

sqrt(900.0)

The preceding expression evaluates t030.0. Functionsgrt takes an argument of typedouble and
returns a double result. Note that there is no need to create any objects before calling functiosyrt. Also note thatall
functions in the <cmath> header file are global functions—therefore, each is called simply by specifying the name of the

function followed by parentheses containing the function's arguments.

Function arguments may be constants, variables or more complex expressions. It = 13.0,d = 3.0 andf = 4.0, then the
statement

cout << sgrt(c +d*f)<<endl

calculates and prints the square root 0f3.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Some math library functions are summarized in
(variablesx andy are of typedouble).

Fig. 6.1. Math library functions.

Function Description Example

ceil(x) rounds x to the smallest ceil(9.2)is10.0
integer not less thanx ceil(-9.8)is-9.0

cos(x) trigonometric cosine ofx (x in radians) cos(0.0)is1.0

exp(x) exp(1.0)is2.71828

. . X
exponential functione

exp(2.0) is 7.38906

fabs(x) absolute value of x fabs(5.1)is5.1
fabs(0.0)is0.0

fabs(-8.76)i58.76

Function

floor(x)

fmod(x, y)

log(x)

log10(x)

pow(X,y)

sin(x)

sqrt(x)

tan(x)

Description

rounds x to the largest integer not greater

than x

remainder of x/y as a floating-point number

natural logarithm ofx (base e)

logarithm of x (base 10)

X raised to powery (x

trigonometric sine ofx (x in radians)

square root of x (wherex is a nonnegative

value)

trigonometric tangent ofx (X in radians)

)

Example

floor(9.2)is9.0

floor(-9.8)is-10.0

fmod(2.6, 1.2)is0.2

log(2.718282) is 1.0

log(7.389056)is2.0

log10(10.0)is1.0

log10(100.0)is 2.0

pow(2,7)is128

pow(9,.5)is3

sin(0.0)is0

sqrt(9.0)is 3.0

tan(0.0)is0

6.4. Function Definitions with Multiple Parameters

The program in@ modifies ourGradeBook class by including a user-defined function calledmaximum that
determines and returns the largest of three int values. When the application begins execution, themain function (lines
5-14 of) creates one object of classGradeBook (line 8) and calls the object'snputGrades member function (line 11)
to read three integer grades from the user. In class GradeBook's implementation file , lines 54-55 of member
function inputGrades prompt the user to enter three integer values and read them from the user. Line 58 calls member
function maximum (defined in lines 62—75). Functionmaximum determines the largest value, then thereturn statement (line
74) returns that value to the point at which function inputGrades invoked maximum (line 58). Member functioninputGrades
then stores maximum's return value in data member maximumGrade. This value is then output by calling function
displayGradeReport (line 12 of. [Note: We named this functiondisplayGradeReport because subsequent versions of
class GradeBook will use this function to display a complete grade report, including the maximum and minimum grades.] In

, Arrays and Vectors, we'll enhance thesradeBook to process an arbitrary number of grades.

Fig. 6.2. GradeBook header file.

/I Fig. 6.2: GradeBook.h

/I Definition of class GradeBook that finds the maximum of three grades.
/l Member functions are defined in GradeBook.cpp

#include <string>// program uses C++ standard string class

using std::string;

/I GradeBook class definition
class GradeBook

{
public:

© O N o g A~ W N P

PR
= O

GradeBook(string); // constructor initializes course name

[
N

void setCourseName(string); // function to set the course name

[any
w

string getCourseName(); // function to retrieve the course name

[
~

void displayMessage(); // display a welcome message

=
(&3]

void inputGrades(); // input three grades from user

=
(o2}

void displayGradeReport(); / display a report based on the grades
17 int maximum(int, int, int); / determine max of 3 values

18 private:

19 string courseName; // course name for this GradeBook

20 int maximumGrade; // maximum of three grades

21 }; /l end class GradeBook

© 00 N O g B~ W N P

A D A D D B D DN DWW W W W W W WWWNNDNDNDNDNNNNRNDNERIERRIERRR 2 B B B
® N o 0B W N P O © ©® N O O & ®N P O © © N O U0~ NP O © 0 N O O S WN P O

49

Fig. 6.3. GradeBook class defines functionmaximum.

/I Fig. 6.3: GradeBook.cpp
/I Member-function definitions for class GradeBook that

/l determines the maximum of three grades.

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

#include "GradeBook.h"

/I include definition of class GradeBook

/I constructor initializes courseName with string supplied as argument;

/l'initializes maximumGrade to 0

GradeBook::GradeBook(string name)

{

setCourseName(name); // validate and store courseName

maximumGrade = 0; // this value will be replaced by the maximum grade

} /I end GradeBook constructor

/l function to set the course name; limits name to 25 or fewer characters

void GradeBook::setCourseName(string name)

{

if (name.length() <=25)// if name has 25 or fewer characters

courseName = name; // store the course name in the object

else // if name is longer than 25 characters

{ /I set courseName to first 25 characters of parameter name

courseName = name.substr(0, 25); // select first 25 characters

cout << "Name \"" << name << "\" exceeds maximum length (25).\n"

<< "Limiting courseName to first 25 characters.\n" << endl;

}// end if...else

} /I end function setCourseName

/I function to retrieve the course name

string GradeBook::getCourseName()

{

return courseName;

} /I end function getCourseName

/I display a welcome message to the GradeBook user

void GradeBook::displayMessage()

{

/I this statement calls getCourseName to get the

/I name of the course this GradeBook represents

cout << "Welcome to the grade book for\n"

<< endl;

} /I end function displayMessage

<< getCourseName() << "I\n"

/l'input three grades from user; determine maximum

void GradeBook::inputGrades()

{

int gradel; // first grade entered by user
int grade?2; // second grade entered by user

int grade3; // third grade entered by user

54 cout << "Enter three integer grades: "

55 cin >> gradel >> grade2 >> grade3;

57 [/ store maximum in member maximumGrade
58 maximumGrade = maximum(gradel, grade2, grade3);

59 }// end function inputGrades

61 /I returns the maximum of its three integer parameters
62 int GradeBook::maximum(int x, inty, int z)
63 {

64 int maximumValue = x; // assume X is the largest to start

66 // determine whether y is greater than maximumValue
67 if (y > maximumValue)

68 maximumValue =y; // make y the new maximumValue

70 I/l determine whether z is greater than maximumValue
71 if (z>maximumValue)

72 maximumValue = z; // make z the new maximumValue

74 return maximumValue;

75 '}/ end function maximum

77 Il display a report based on the grades entered by user

78 void GradeBook::displayGradeReport()

79 {

80 // output maximum of grades entered

81 cout << "Maximum of grades entered: " << maximumGrade << end|;

82 }/I end function displayGradeReport

Fig. 6.4. Demonstrating function maximum.

/I Fig. 6.4: fig06_04.cpp
/I Create GradeBook object, input grades and display grade report.

#include'GradeBook.h" //include definition of class GradeBook

intmain()
{
/I create GradeBook object
GradeBook myGradeBook(CS101 C++ Programming");

© 0 N O g B~ W N P

=
o

myGradeBook.displayMessage(); display welcome message

[un
[N

myGradeBook.inputGrades(); réad grades from user

[any
N

myGradeBook.displayGradeReport();display report based on grades
13 returnO; //indicate successful termination
14 } /I end main

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades36 67 75

Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 86 75

Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 75 86

Maximum of grades entered: 86

Software Engineering Observation 6.2

The commas used in line 58 0 to sep

arate the a

maximum are not comma operators as discussed i

Section 5.

guments to function
. The comma

operator guarantees that its operands are evaluated left to right. The order of
evaluation of a function's arguments, however, is not specified by the C++
standard. Thus, different compilers can evaluate function arguments in different
orders. The C++ standard does require that all arguments in a function call be

evaluated before the called function executes.

Portability Tip 6.1

! Sometimes when a function's arguments are more involved expressions, such as

e JN

those with calls to other functions, the order in which the compiler evaluates the

arguments could affect the values of one or more of the arguments. If the
evaluation order changes between compilers, the argument values passed to the

function could vary, causing subtle logic errors.

Error-Prevention Tip 6.1

@ If you have doubts about the order of evaluation of a function's arguments and
whether the order would affect the values passed to the function, evaluate the
arguments in separate assignment statements before the function call, assign the
result of each expression to a local variable, then pass those variables as
arguments to the function.

The prototype of member function maximum 1m line 17) indicates that the function returns an integer value, that the
function's name is maximum and that the function requires three integer parameters to accomplish its task. Function

maximum's header lm

When maximum is called

, line 62) matches the function prototype and indicates that the parameter names asgy andz.
m line 58), the parameterx is initialized with the value of the argumenigrade1, the
parameter y is initialized with the value of the argumenirade2 and the parameterz is initialized with the value of the
argument grade3 . There must be one argument in the function call for each parameter (also called &rmal parameter) in
the function definition.

Notice that multiple parameters are specified in both the function prototype and the function header as a
comma-separated list. The compiler refers to the function prototype to check that calls to maximum contain the correct
number and types of arguments and that the types of the arguments are in the correct order. In addition, the compiler
uses the prototype to ensure that the value returned by the function can be used correctly in the expression that called
the function (e.g., a function call that returns void cannot be used as the right side of an assignment statement). Each
argument must be consistent with the type of the corresponding parameter. For example, a parameter of typedouble can
receive values like 7.35, 22 or —0.03456, but not a string like "hello" . If the arguments passed to a function do not match

types specified in the function's prototype, the compiler attempts to convert the arguments to those types.[Sectio
discusses this conversion.

Common Programming Error 6.1

S
ﬁ Declaring method parameters of the same type asdouble x, y instead of
double x, doubley is a syntax error—an explicit type is required for each

parameter in the parameter list.

Common Programming Error 6.2

o,
g‘ Compilation errors occur if the function prototype, function header and function
' calls do not all agree in the number, type and order of arguments and
parameters, and in the return type.

Software Engineering Observation 6.3

A function that has many parameters may be performing too many tasks.
Consider dividing the function into smaller functions that perform the separate
tasks. Limit the function header to one line if possible.

To determine the maximum value (lines 62—75 of , we begin with the assumption that parametex contains the
largest value, so line 64 of function maximum declares local variable maximumvalue and initializes it with the value of
parameter x . Of course, it is possible that parametey or z contains the actual largest value, so we must compare each
of these values with maximumVvalue . Theif statement in lines 67—68 determines whethery is greater thanmaximumvalue
and, if so, assigns y to maximumvalue. Theif statement in lines 71-72 determines whetherz is greater thanmaximumvalue
and, if so, assigns z to maximumvalue . At this point the largest of the three values is imaximumvalue, so line 74 returns that
value to the call in line 58. When program control returns to the point in the program where maximum was called,
maximum's parameters x,y andz are no longer accessible to the program. We'll see why in the next section.

There are three ways to return control to the point at which a function was invoked. If the function does not return a
result (i.e., the function has a void return type), control returns when the program reaches the function-ending right
brace, or by execution of the statement

return;

If the function does return a result, the statement

return expression;

evaluates expression and returns the value ofexpression to the caller.

6.5. Function Prototypes and Argument Coercion

A function prototype (also called afunction declaration) tells the compiler the name of a function, the type of data
returned by the function, the number of parameters the function expects to receive, the types of those parameters and
the order in which the parameters of those types are expected.

Software Engineering Observation 6.4

Function prototypes are required in C++. Usetinclude preprocessor directives to

obtain function prototypes for the C++ Standard Library functions from the header
files for the appropriate libraries (e.g., the prototype for math function sqrt is in
header file <cmath>; a partial list of C++ Standard Library header files appears in
). Also use#include to obtain header files containing function
prototypes written by you or your group members.

Common Programming Error 6.3

.
g‘ If a function is defined before it is invoked, then the function's definition also
' serves as the function's prototype, so a separate prototype is unnecessary. If a
function is invoked before it is defined, and that function does not have a function
prototype, a compilation error occurs.

Software Engineering Observation 6.5

Always provide function prototypes, even though it is possible to omit them when
functions are defined before they are used (in which case the function header
acts as the function prototype as well). Providing the prototypes avoids tying the
code to the order in which functions are defined (which can easily change as a
program evolves).

Function Signatures

The portion of a function prototype that includes the name of the function and the types of its arguments is called the
function signature or simply thesignature . The function signature does not specify the function's return type. Functions

in the same scope must have unique signatures. The scope of a function is the region of a program in which the function
is known and accessible. We'll say more about scope in .

Common Programming Error 6.4

E It is a compilation error if two functions in the same scope have the same
signature but different return types.

In , if the function prototype in line 17 had been written

void maximum(int, int, int);

the compiler would report an error, because thevoid return type in the function prototype would differ from thent return
type in the function header. Similarly, such a prototype would cause the statement

cout << maximum(6, 7, 0);

to generate a compilation error, because that statement depends onmaximum to return a value to be displayed.

Argument Coercion

An important feature of function prototypes is argument coercion —i.e., forcing arguments to the appropriate types
specified by the parameter declarations. For example, a program can call a function with an integer argument, even
though the function prototype specifies a double argument—the function will still work correctly.

Argument Promotion Rules

Sometimes, argument values that do not correspond precisely to the parameter types in the function prototype can be
converted by the compiler to the proper type before the function is called. These conversions occur as specified by
C++'s promotion rules . The promotion rules indicate how to convert between types without losing data. Amt can be
converted to a double without changing its value. However, adouble converted to anint truncates the fractional part of the
double value. Keep in mind thatdouble variables can hold numbers of much greater magnitude tharnnt variables, so the
loss of data may be considerable. Values may also be modified when converting large integer types to
small integer types (e.g., long to short), signed to unsigned or unsigned to signed.

The promotion rules apply to expressions containing values of two or more data types; such expressions are also
referred to as mixed-type expressions . The type of each value in a mixed-type expression is promoted to the "highest"
type in the expression (actually a temporary version of each value is created and used for the expression—the original
values remain unchanged). Promotion also occurs when the type of a function argument does not match the parameter
type specified in the function definition or prototype. lists the fundamental data types in order from "highest
type" to "lowest type."

Fig. 6.5. Promotion hierarchy for fundamental data types.

Data types

long double

double

float

unsigned long int (synonymous withunsigned long)
long int (synonymous withlong)

unsigned int (synonymous withunsigned)

int

unsigned short int (synonymous withunsigned short)
short int (synonymous withshort)

unsigned char

char

bool

Converting values to lower fundamental types can result in incorrect values. Therefore, a value can be converted to a
lower fundamental type only by explicitly assigning the value to a variable of lower type (some compilers will issue a
warning in this case) or by using a cast operator (see). Function argument values are converted to the
parameter types in a function prototype as if they were being assigned directly to variables of those types. If asquare
function that uses an integer parameter is called with a floating-point argument, the argument is converted to int (a lower
type), and square could return an incorrect value. For example,square(4.5) returns 16, not20.25.

Common Programming Error 6.5

ﬁ Converting from a higher data type in the promotion hierarchy to a lower type, or
' between signed and unsigned, can corrupt the data value, causing a loss of
information.

Common Programming Error 6.6

E It is a compilation error if the arguments in a function call do not match the
' number and types of the parameters declared in the corresponding function
prototype. It is also an error if the number of arguments in the call matches, but
the arguments cannot be implicitly converted to the expected types.

6.6. C++ Standard Library Header Files

The C++ Standard Library is divided into many portions, each with its own header file. The header files
contain the function prototypes for the related functions that form each portion of the library. The header files also
contain definitions of various class types and functions, as well as constants needed by those functions. A header file
"instructs" the compiler on how to interface with library and user-written components.

lists some common C++ Standard Library header files, most of which are discussed later in the book. The
term "macro” that is used several times in , is discussed in detail inAppendix Df, Preprocessor. Header file

names ending in.h are "old-style" header files that have been superseded by the C++ Standard Library header files. We
use only the C++ Standard Library versions of each header file in this book to ensure that our examples will work on
most standard C++ compilers.

Fig. 6.6. C++ Standard Library header files.

C++ Standard Library header

file Explanation
<jostream> Contains function prototypes for the C++ standard input and standard output
functions, introduced in [Chapter 3, and is covered in more detail irlChaéter 15,

Stream Input/Output. This header file replaces header file <iostream.h>.

<iomanip> Contains function prototypes for stream manipulators that format streams of
data. This header file is first used in and is discussed in more detail
in Chapter 15, Stream Input/Output. This header file replaces header file
<iomanip.h>.

<cmath> Contains function prototypes for math library functions (discussed in).

This header file replaces header file <math.h>.

<cstdlib> Contains function prototypes for conversions of numbers to text, text to numbers,
memory allocation, random numbers and various other utility functions. Portions
of the header file are covered in [Section 6.;I; , Operator Overloading;
String and Array Objects; [Chapter 16, Exception Handling; andChapter 19, Bits,
Characters, C Strings and struct S. This header file replaces header file<stdlib.h>.

<ctime> Contains function prototypes and types for manipulating the time and date. This
header file replaces header file <time.h>. This header file is used i.

<vector> These header files contain classes that implement the C++ Standard Library
<list> containers. Containers store data during a program's execution. The <vector>
<deque> header is first introduced in Chapter 7, Arrays and Vectors. We discuss all these
<queue> header files in Chapter 20, Standard Template Library (STL).
<stack>
<map>
<set>
<bitset>

<cctype> Contains function prototypes for functions that test characters for certain

properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase letters to
uppercase letters and vice versa. This header file replaces header file <ctype.h>.

These toiics are discussed in , Pointers and Pointer-Based Strings,

and Chapter 19, Bits, Characters, C Strings andstructs.

C++ Standard Library header
file

<cstring>

<typeinfo>

<exception>

<stdexcept>

<memory>

<fstream>

<string>

<sstream>

<functional>

<iterator>

<algorithm>

<cassert>

<cfloat>

<climits>

<cstdio>

<locale>

<limits>

Explanation

Contains function prototypes for C-style string-processing functions. This header

file replaces header file <string.h> . This header file is used inChapter 11|, Operator
Overloading; String and Array Objects.

Contains classes for runtime type identification (determining data types at
execution time). This header file is discussed in ‘.

These header files contain classes that are used for exception handling

(discussed in Chapter 16, Exception Handling).

Contains classes and functions used by the C++ Standard Library to al
mory to the C++ Standard Library containers. This header is used in
ﬁ Exception Handling.

Contains function prototypes for functions that perform input from files on disk
and output to files on disk (discussed in , File Processing). This

header file replaces header file <fstream.h>.

Contains the definition of classstring from the C++ Standard Library (discussed in
, Class string and String Stream Processing).

Contains function prototypes for functions that perform_ input from strings in
memory and output to strings in memory (discussed in , Class string
and String Stream Processing).

Contains classes and functions used by C++ Standard Library algorithms. This

header file is used in , Standard Template Library (STL).
Contains classes for accessing data in the C++ Standard Library containers. This
header file is used in .

Contains functions for manipulating data in C++ Standard Library containers.
This header file is used in ‘.

Contains macros for adding diagnostics that aid program debugging. This
replaces header file <assert.h> from pre-standard C++. This header file is used in

, Preprocessor.

Contains the floating-point size limits of the system. This header file replaces
header file <float.h>.

Contains the integral size limits of the system. This header file replaces header
file <limits.h>.

Contains function prototypes for the C-style standard input/output library
functions and information used by them. This header file replaces header file
<stdio.h>.

Contains classes and functions normally used by stream processing to process
data in the natural form for different languages (e.g., monetary formats, sorting
strings, character presentation, etc.).

Contains classes for defining the numerical data type limits on each computer
platform.

C++ Standard Library header
file

<utility>

Explanation

Contains classes and functions that are used by many C++ Standard Library
header files.

6.7. Case Study: Random Number Generation

We now take a brief and hopefully entertaining diversion into a popular programming application, namely
simulation and game playing. In this and the next section, we develop a game-playing program that includes multiple
functions. The program uses many of the control statements and concepts discussed to this point.

The element of chance can be introduced into computer applications by using the C++ Standard Library functiorand.

Consider the following statement:

i =rand();

The function rand generates an unsigned integer between 0 andRAND_MAX (a symbolic constant defined in the<cstdlib>
header file). The value of RAND_MAX must be at least 32767—the maximum positive value for a two-byte (16-bit)
integer. For GNU C++, the value of RAND_MAX is 2147483647; for Visual Studio, the value o0RAND_MAX is 32767. Ifrand
truly produces integers at random, every number between 0 and RAND_MAX has an equalchance (or probability) of
being chosen each time rand is called.

The range of values produced directly by the function rand often is different than what a specific application requires.
For example, a program that simulates coin tossing might require only O for "heads" and 1 for "tails." A program that
simulates rolling a six-sided die would require random integers in the range 1 to 6. A program that randomly predicts the
next type of spaceship (out of four possibilities) that will fly across the horizon in a video game might require random
integers in the range 1 through 4.

Rolling a Six-Sided Die

To demonstraterand , let us develop a program) to simulate 20 rolls of a six-sided die and print the value of
each roll. The function prototype for the rand function is in<cstdlib>. To produce integers in the range 0 to 5, we use the
modulus operator (%) withrand as follows:

rand() % 6

This is calledscaling. The number 6 is called thescaling factor. We thenshift the range of numbers produced by
adding 1 to our previous result. confirms that the results are in the range 1 to 6.

Fig. 6.7. Shifted, scaled integers produced by 1 +rand() % 6.

1 /I Fig. 6.7: fig06_07.cpp
2 /I Shifted and scaled random integers.
3 #include <iostream>
4 using std::cout;
5 using std::endl;
6
7 #include <iomanip>
8 using std::setw;
9
10 #include <cstdlib> // contains function prototype for rand
11 using std::rand;
12
13 int main()
14 {
15 //'loop 20 times
16 for (int counter = 1; counter <= 20 ; counter++)
17 {
18 /I pick random number from 1 to 6 and output it
19 cout << setw(10) << (1 +rand() %6);
20
21 /I if counter is divisible by 5, start a new line of output
22 if (counter %5==0)
23 cout << endl;
24}/l end for
25
26 return 0; // indicates successful termination
27 '}/l end main
6 6 5 5 6
5 1 1 5 3
6 6 2 4 2
6 2 3 4 1

Rolling a Six-Sided Die 6,000,000 Times

To show that the numbers produced by function rand occur with approximately equal Iikelihood simulates
6,000,000 rolls of a die. Each integer in the range 1 to 6 should appear approximately 1,000,000 times. This is
F; 6 Q

confirmed by the output window at the end of Fi

Fig. 6.8. Rolling a six-sided die 6,000,000 times.

1 /I Fig. 6.8: fig06_08.cpp

2 /I Roll a six-sided die 6,000,000 times.
3 #include <iostream>

4 using std::cout;

5 using std::endl;

6

7 #include <iomanip>

8 using std::setw;

9

10 #include <cstdlib>// contains function prototype for rand
11 using std::rand;

12

13 int main()

14 {

15 int frequencyl = 0; // count of 1s rolled

16 int frequency2 = 0; // count of 2s rolled

17 int frequency3 = 0; // count of 3s rolled

18 int frequency4 = 0; // count of 4s rolled

19 int frequency5 = 0; // count of 5s rolled

20 int frequency6 = 0; // count of 6s rolled

21

22 int face; // stores most recently rolled value
23

24 [/ summarize results of 6,000,000 rolls of a die
25 for(int roll = 1; roll <= 6000000; roll++)

26 {

27 face = 1 + rand() % 6; // random number from 1 to 6
28

29 /I determine roll value 1-6 and increment appropriate counter
30 switch (face)

31 {

32 case 1:

33 ++frequencyl; // increment the 1s counter

34 break;

35 case 2:

36 ++frequency2; // increment the 2s counter

37 break;

38 case 3:

39 ++frequency3; // increment the 3s counter

40 break;

41 case 4:

42 ++frequency4; // increment the 4s counter

43 break;

44 case 5:

45 ++frequency5; // increment the 5s counter

46 break;

a7 case 6:

48 ++frequency6; // increment the 6s counter

49 break;

50 default: // invalid value

51 cout << "Program should never get here!" ;

52 } /1 end switch

53 }//end for

54

55 cout << "Face" << setw(13) << "Frequency" << endl;// output headers

56 cout<<" 1" <<setw(13) << frequencyl

57 <<"\n 2" <<setw(13) << frequency2

58 <<"\n 3" << setw(13) << frequency3
59 <<"\n 4" <<setw(13) << frequency4
60 <<"\n 5" << setw(13) << frequency5
61 <<"\n 6" <<setw(13) << frequency6 << endl;

62 return O; // indicates successful termination
63 }// end main

Face Frequency
1 999702
1000823
999378
998898
1000777
1000422

o g~ W N

As the program output shows, we can simulate the rolling of a six-sided die by scaling and shifting the values produced by
rand . Note that the program should never get to theefault case (lines 50-51) provided in theswitch structure, because the
switch's controlling expression face) always has values in the range 1-6; however, we provide theefault case as a matter

of good practice. After we study arrays in , we show how to replace the entireswitch structure in
elegantly with a single-line statement.

Error-Prevention Tip 6.2

@ Provide adefault case in aswitch to catch errors even if you are absolutely,
positively certain that you have no bugs!

Randomizing the Random Number Generator

Executing the program of again produces the following output:

o o g o
N Ok O
A A 00O
P, N W o

W N PO

Notice that the program prints exactly the same sequence of values shown m . How can these be random

numbers? Ironically, this repeatability is an important characteristic of functionrand . When debugging a simulation
program, this repeatability is essential for proving that corrections to the program work properly.

Function rand actually generatespseudorandom numbers. Repeatedly callingrand produces a sequence of numbers that
appears to be random. However, the sequence repeats itself each time the program executes. Once a program has
been thoroughly debugged, it can be conditioned to produce a different sequence of random numbers for each
execution. This is called randomizing and is accomplished with the C++ Standard Library functiogrand. Functionsrand
takes an unsigned integer argument andseeds the rand function to produce a different sequence of random numbers for
each execution of the program.

demonstrates functionsrand . The program uses the data typeunsigned , which is short forunsigned int. Anint
is stored in at least two bytes of memory (typically four bytes of memory on today's popular 32-bit systems) and can
have positive and negative values. A variable of type unsigned int is also stored in at least two bytes of memory. A

two-byte unsigned int can have only nonnegative values in the range 0-65535. A four-bytainsigned int can have only
nonnegative values in the range 0-4294967295. Function srand takes an unsigned int value as an argument. The function
prototype for the srand function is in header file<cstdlib>.

Fig. 6.9. Randomizing the die-rolling program.

#include <cstdlib> // contains prototypes for functions srand and rand
using std::rand;
using std::srand;

srand(seed); // seed random number generato

cout << setw(10) << (1 +rand() %6)

Enter seed: 67
6 1
1 6

Enter seed: 432
4 6
3 1

Enter seed: 67
6 1 4
1 6 1 6 4

Let's run the program several times and observe the results. Notice that the program produces different sequence of
random numbers each time it executes, provided that the user enters a different seed. We used the same seed in
the first and third sample outputs, so the same series of 10 numbers is displayed in each of those outputs.

To randomize without having to enter a seed each time, we may use a statement like

srand(time(0));

This causes the computer to read its clock to obtain the value for the seed. Functiotme (with the argumento as written
in the preceding statement) returns the current time as the number of seconds since January 1, 1970, at midnight
Greenwich Mean Time (GMT). This value is converted to an unsigned integer and used as the seed to the random
number generator. The function prototype for time is in <ctime>.

Common Programming Error 6.7

o,
E Calling function srand more than once in a program restarts the pseudorandom
number sequence and can affect the randomness of the numbers produced by

rand.

Generalized Scaling and Shifting of Random Numbers
Previously, we demonstrated how to write a single statement to simulate the rolling of a six-sided die with the statement

face = 1 + rand() % 6;

which always assigns an integer (at random) to variable face in the range 1 ==iface ==6. Note that the width of this
range (i.e., the number of consecutive integers in the range) is 6 and the starting number in the range is 1. Referring to
the preceding statement, we see that the width of the range is determined by the number used to scalerand with the
modulus operator (i.e., 6), and the starting number of the range is equal to the number (i.e., 1) that is added to the
expression rand % 6. We can generalize this result as

number = shiftingValue + rand() % scalingFactor;

where shiftingValue is equal to the first number in the desired range of consecutive integers ansicalingFactor is equal to
the width of the desired range of consecutive integers.

Common Programming Error 6.8

E Using srand in place ofrand to attempt to generate random numbers is a

compilation error—function srand does not return a value.

6.8. Case Study: Game of Chance; Introducing enum

One of the most popular games of chance is a dice game known as "craps," which is played in casinos and back
alleys worldwide. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6 spots. After
the dice have come to rest, the sum of the spots on the two upward faces is calculated. If the sum is
7 or 11 on the first roll, the player wins. If the sum is 2, 3 or 12 on the first roll (called "craps"), the
player loses (i.e., the "house" wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first roll, then that sum
becomes the player's "point." To win, you must continue rolling the dice until you "make your point."
The player loses by rolling a 7 before making the point.

The program in simulates the game of craps.

© 0 N O g B~ W N P

W W NN DN DNDNNDNDNDDNDDNDN PR P P B PP PP R
P O © © N o o & W N P O ©W 00 N O o M W N P O

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52

Fig. 6.10. Craps simulation.

Q

/I Fig. 6.10: fig06_10.cpp
/I Craps simulation.
#include <iostream>
using std::cout;

using std::endl;

#include <cstdlib> // contains prototypes for functions srand and rand
using std::rand;

using std::srand;

#include <ctime> // contains prototype for function time

using std::time;

int rollDice(); // rolls dice, calculates amd displays sum

int main()

{
/I enumeration with constants that represent the game status
enum Status { CONTINUE, WON, LOST }; // all caps in constants

int myPoint; // point if no win or loss on first roll
Status gameStatus; // can contain CONTINUE, WON or LOST

/I randomize random number generator using current time

srand(time(0));

int sumOfDice = rolIDice(); // first roll of the dice

/I determine game status and point (if needed) based on first roll
switch (sumOfDice)
{
case 7: // win with 7 on first roll
case 11: // win with 11 on first roll
gameStatus = WON;
break;
case 2: // lose with 2 on first roll
case 3: // lose with 3 on first roll
case 12: // lose with 12 on first roll
gameStatus = LOST;
break;
default: // did not win or lose, so remember point
gameStatus = CONTINUE; // game is not over
myPoint = sumOfDice; // remember the point
cout << "Pointis " << myPoint << endl;
break; // optional at end of switch
} /1 end switch

/I while game is not complete
while (gameStatus == CONTINUE) // not WON or LOST
{

sumOfDice = rollDice(); // roll dice again

/I determine game status

54 if (sumOfDice == myPaint) / win by making point

55 gamesStatus = WON;

56 else

57 if (sumOfDice ==7)// lose by rolling 7 before point
58 gameStatus = LOST;

59 }// end while

60

61 // display won or lost message
62 if (gameStatus == WON)

63 cout << "Player wins" << endl;
64 else

65 cout << "Player loses" << endl;
66

67 return 0; // indicates successful termination
68 }// end main

70 /I roll dice, calculate sum and display results
71 int rollDice()

72 {

73 Il pick random die values

74 intdiel =1 + rand() % 6; // first die roll

75 intdie2 =1 + rand() % 6; // second die roll

77 int sum =diel + die2; // compute sum of die values

79 Il display results of this roll

80 cout << "Player rolled " << diel <<" +" << die2
81 <<"="<< sum << endl;

82 return sum; // end function rollDice

83 }// end function rollDice

Player rolled2 +5=7

Player wins

Player rolled 6 + 6 = 12

Player loses

Player rolled 3+3 =6
Point is 6

Player rolled 5+ 3 =8
Player rolled 4 + 5=9
Playerrolled2+1=3
Playerrolled1+5=6

Player wins

Player rolled 1 +3=4
Point is 4

Player rolled 4 + 6 = 10
Playerrolled2+4=6
Player rolled 6 + 4 = 10
Player rolled 2 +3=5
Player rolled 2 + 4 =6
Player rolled 1 + 1 =2
Player rolled 4 +4 =8
Player rolled 4 +3=7

Player loses

In the rules of the game, notice that the player must roll two dice on the first roll and on all subsequent rolls. We define
function roliDice (lines 71-83) to roll the dice and compute and print their sum. FunctioroliDice is defined once, but it is
called from two places (lines 27 and 51) in the program. Interestingly, roliDice takes no arguments, so we have indicated
an empty parameter list in the prototype (line 14) and in the function header (line 71). Function roliDice does return the
sum of the two dice, so return type int is indicated in the function prototype and function header.

The game is reasonably involved. The player may win or lose on the first roll or on any subsequent roll. The program
uses variable gameStatus to keep track of this. VariablegameStatus is declared to be of new typestatus . Line 19 declares a

user-defined type called an enumeration . An enumeration, introduced by the keywor@num and followed by atype name
(in this case, Status), is a set of integer constants represented by identifiers. The values of thesenumeration constants
start at 0, unless specified otherwise, and increment by.. In the preceding enumeration, the constaniCONTINUE has the
value 0, WON has the value 1 andLOST has the value 2. The identifiers in anenum must be unique, but separate
enumeration constants can have the same integer value (we show how to accomplish this momentarily).

Good Programming Practice 6.1

k Capitalize the first letter of an identifier used as a user-defined type name.

Good Programming Practice 6.2

i Use only uppercase letters in the names of enumeration constants. This makes
these constants stand out in a program and reminds you that enumeration
constants are not variables.

Variables of user-defined typestatus can be assigned only one of the three values declared in the enumeration.
When the game is won, the program sets variable gameStatus to WON (lines 34 and 55). When the game is lost, the
program sets variable gameStatus to LOST (lines 39 and 58). Otherwise, the program sets variablejameStatus to CONTINUE
(line 42) to indicate that the dice must be rolled again.

Another popular enumeration is

enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC},

which creates user-defined type Months with enumeration constants representing the months of the year. The first value
in the preceding enumeration is explicitly set to 1, so the remaining values increment from, resulting in the values1
through 12 . Any enumeration constant can be assigned an integer value in the enumeration definition, and subsequent
enumeration constants each have a value 1 higher than the preceding constant in the list until the next explicit setting.

After the first roll, if the game is won or lost, the program skips the body of thehile statement (lines 49-59) because
gamesStatus is not equal toCONTINUE. The program proceeds to theit...else statement in lines 62—65, which prints'Player
wins" if gameStatus is equal towON and"Player loses" if gameStatus is equal tOLOST.

After the first roll, if the game is not over, the program saves the sum imyPoint (line 43). Execution proceeds with the
while statement, because gamesStatus is equal toCONTINUE . During each iteration of thewhile, the program callsrollDice to
produce a new sum. If sum matches myPoint, the program setsgameStatus to WON (line 55), thewnile-test fails, theiif...else
statement prints "Player wins" and execution terminates. Ifsum is equal to7, the program setsgameStatus to LOST (line 58),
the while-test fails, theif...else statement prints"Player loses’ and execution terminates.

Note the interesting use of the various program control mechanisms we have discussed. The craps program uses two
functions—main and rollDice—and the switch, while, if...else, nestedif...else and nestedif statements.

Good Programming Practice 6.3

i Using enumerations rather than integer constants can make programs clearer
and more maintainable. You can set the value of an enumeration constant once
in the enumeration declaration.

Common Programming Error 6.9

o,
g‘ Assigning the integer equivalent of an enumeration constant (rather than the
' enumeration constant, itself) to a variable of the enumeration type is a
compilation error.

Common Programming Error 6.10

.
E After an enumeration constant has been defined, attempting to assign another

value to the enumeration constant is a compilation error.

6.9. Storage Classes

The programs you have seen so far use identifiers for variable names. The attributes of variables include name, type,
size and value. This chapter also uses identifiers as names for user-defined functions. Actually, each identifier in a
program has other attributes, including storage class, scope andlinkage.

C++ provides fivestorage-class specifiers: auto, register, extern, mutable and static . This section discusses
storage-class specifiers auto, register, extern and static. Storage-class specifiermutable (discussed in detail inChapter 29,
Other Topics) is used exclusively with classes.

Storage Class, Scope and Linkage

An identifier's storage class determines the period during which that identifier exists in memory. Some identifiers exist
briefly, some are repeatedly created and destroyed and others exist for the entire execution of a program. First we
discuss the storage classes static and automatic.

An identifier's scope is where the identifier can be referenced in a program. Some identifiers can be referenced

throughout a program; others can be referenced from only limited portions of a program. [Section 6.1(discusses the
scope of identifiers.

An identifier's linkage determines whether it is known only in the source file where it is declared or across multiple files
that are compiled, then linked together. An identifier's storage-class specifier helps determine its storage class and
linkage.

Storage Class Categories

The storage-class specifiers can be split into two storage classes: automatic storage class and static storage class.
Keywords auto andregister are used to declare variables of the automatic storage class. Such variables are created when
program execution enters the block in which they are defined, they exist while the block is active and they are destroyed
when the program exits the block.

Local Variables

Only local variables of a function can be of automatic storage class. A function's local variables and parameters
normally are of automatic storage class. The storage class specifier auto explicitly declares variables of automatic

storage class. For example, the following declaration indicates that double variable x is a local variable of automatic
storage class—it exists only in the nearest enclosing pair of curly braces within the body of the function in which the
definition appears:

auto double x;

Local variables are of automatic storage class by default, so keyworduto rarely is used. For the remainder of the text,
we refer to variables of automatic storage class simply as automatic variables.

Performance Tip 6.1

:ﬁ‘ Automatic storage is a means of conserving memory, because automatic
storage class variables exist in memory only when the block in which they are
defined is executing.

Software Engineering Observation 6.6

Automatic storage is an example of the principle of least privilege , which is
fundamental to good software engineering. In the context of an application, the
principle states that code should be granted only the amount of privilege and
access that it needs to accomplish its designated task, but no more. Why should
we have variables stored in memory and accessible when they are not needed?

Register Variables

Data in the machine-language version of a program is normally loaded into registers for calculations and other
processing.

Performance Tip 6.2

:ﬁ‘ The storage-class specifier register can be placed before an automatic variable
declaration to suggest that the compiler maintain the variable in one of the
computer's high-speed hardware registers rather than in memory. If intensely
used variables such as counters or totals are maintained in hardware registers,
the overhead of repeatedly loading the variables from memory into the registers
and storing the results back into memory is eliminated.

Common Programming Error 6.11

.
@ Using multiple storage-class specifiers for an identifier is a syntax error. Only one
' storage class specifier can be applied to an identifier. For example, if you include
register , do not also includeauto.

The compiler might ignoreregister declarations. For example, there might not be a sufficient number of registers
available for the compiler to use. The following definition suggests that the integer variablecounter be placed in one of
the computer's registers; regardless of whether the compiler does this, counter is initialized to 1:

register int counter = 1;

The register keyword can be used only with local variables and function parameters.

Performance Tip 6.3

Often, register is unnecessary. Optimizing compilers can recognize frequently
used variables and may place them in registers without needing aregister
declaration.

Static Storage Class

Keywords extern and static declare identifiers for variables of the static storage class and for functions.
Static-storage-class variables exist from the point at which the program begins execution and last for the duration of the
program. A static-storage-class variable's storage is allocated when the program begins execution. Such a variable is
initialized once when its declaration is encountered. For functions, the name of the function exists when the program
begins execution, just as for all other functions. However, even though the variables and the function names exist from

the start of program execution, this does not mean that these identifiers can be used throughout the program. Storage
class and scope (where a name can be used) are separate issues, as we'll see in ‘.

Identifiers with Static Storage Class

There are two types of identifiers with static storage class—external identifiers (such aglobal variables and global
function names) and local variables declared with the storage-class specifier static . Global variables are created by
placing variable declarations outside any class or function definition. Global variables retain their values throughout the
execution of the program. Global variables and global functions can be referenced by any function that follows their
declarations or definitions in the source file.

Software Engineering Observation 6.7

Declaring a variable as global rather than local allows unintended
side effects to occur when a function that does not need access to the variable
accidentally or maliciously modifies it. This is another example of the principle of
least privilege. In general, except for truly global resources such ascin and cout ,

the use of global variables should be avoided except in certain situations with
unique performance requirements.

Software Engineering Observation 6.8

Variables used only in a particular function should be declared as local variables
in that function rather than as global variables.

Local variables declared with the keyword static are still known only in the function in which they are declared, but,

unlike automatic variables, static local variables retain their values when the function returns to its caller. The next time
the function is called, the static local variables contain the values they had when the function last completed execution.
The following statement declares local variable count to be static and to be initialized to 1:

static int count = 1;

All numeric variables of the static storage class are initialized to zero if you do not explicitly initialized them, but it is
nevertheless a good practice to explicitly initialize all variables.

Storage-class specifiers extern and static have special meaning when they are applied explicitly to external identifiers
such as global variables and global function names.

6.10. Scope Rules

The portion of the program where an identifier can be used is known as its scope. For example, when we declare a
local variable in a block, it can be referenced only in that block and in blocks nested within that block. This section
discusses four scopes for an identifier—function scope, file scope, block scope and function-prototype scope . Later we'll
see two other scopes—class scope) and namespace scope (Ehagter 22).

An identifier declared outside any function or class has file scope. Such an identifier is "known" in all functions from the
point at which it is declared until the end of the file. Global variables, function definitions and function prototypes placed
outside a function all have file scope.

Labels (identifiers followed by a colon such asstart:) are the only identifiers with function scope. Labels can be used
anywhere in the function in which they appear, but cannot be referenced outside the function body. Labels are used in
goto statements, which we do not cover in this book. Labels are implementation details that functions hide from one

another.

Identifiers declared inside a block have block scope. Block scope begins at the identifier's declaration and ends at the
terminating right brace (3) of the block in which the identifier is declared. Local variables have block scope, as do
function parameters, which are also local variables of the function. Any block can contain variable declarations. When
blocks are nested and an identifier in an outer block has the same name as an identifier in an inner block, the identifier
in the outer block is "hidden" until the inner block terminates. While executing in the inner block, the inner block sees the
value of its own local identifier and not the value of the identically named identifier in the enclosing block. Local
variables declared static still have block scope, even though they exist from the time the program begins execution.
Storage duration does not affect the scope of an identifier.

The only identifiers with function prototype scope are those used in the parameter list of a function prototype. As
mentioned previously, function prototypes do not require names in the parameter list—only types are required. Names
appearing in the parameter list of a function prototype are ignored by the compiler. Identifiers used in a function
prototype can be reused elsewhere in the program without ambiguity. In a single prototype, a particular identifier can be
used only once.

Common Programming Error 6.12

h
E Accidentally using the same name for an identifier in an inner block that is used
for an identifier in an outer block, when in fact you want the identifier in the outer
block to be active for the duration of the inner block, is normally a logic error.

Good Programming Practice 6.4

@ Avoid variable names that hide names in outer scopes. This can be
accomplished by avoiding the use of duplicate identifiers in a program.

The program of demonstrates scoping issues with global variables, automatic local variables anétatic local
variables.

© 0 N O g B~ W N P

e =
N B O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53

Fig. 6.11. Scoping example.

/I Fig. 6.11: fig06_11.cpp
/I A scoping example.
#include <iostream>
using std::cout;

using std::endl;

void useLocal(); // function prototype
void useStaticLocal(); // function prototype

void useGlobal(); // function prototype

int x = 1; // global variable

int main()

{

cout << "global x in mainis " << x << endl;

int x = 5; // local variable to main

cout << "local x in main's outer scope is" << x << endl;

{/I start new scope

int x = 7; /] hides both x in outer scope and global x

cout << "local x in main's inner scope is " << x << endl;

}// end new scope

cout << "local x in main's outer scope is " << x << endl;

useLocal(); // useLocal has local x

useStaticLocal(); / useStaticLocal has static local x
useGlobal(); // useGlobal uses global x

useLocal(); // useLocal reinitializes its local x
useStaticLocal(); // static local x retains its prior value

useGlobal(); // global x also retains its prior value

cout << "\nlocal x inmainis " << x << endl;
return O; // indicates successful termination

} // end main

/I useLocal reinitializes local variable x during each call

void useLocal()

{
int x = 25; // initialized each time useLocal is called
cout << "\nlocal x is " << x << " on entering useLocal" << endl;
X++;
cout << "local x is" << x<<"on exiting useLocal" <<endl;
} /1 end function uselLocal

/I useStaticLocal initializes static local variable x only the
/I first time the function is called; value of x is saved
/I between calls to this function

void useStaticLocal()

55 static int x = 50; // initialized first time useStaticLocal is called

56

57 cout << "\nlocal static x is" << x <<" on entering useStaticLocal"
58 << endl;

59 X++;

60 cout << "local static xis" << x << " on exiting useStaticLocal"
61 << endl;

62 }// end function useStaticLocal

64 // useGlobal modifies global variable x during each call
65 void useGlobal()

66 {
67 cout << "\nglobal xis" << x << " on entering useGlobal" << endl;
68 x*=10;

69 cout << 'global xis" <<x<<"on exiting useGlobal" <<endl;

70 } /I end function useGlobal

global x in main is 1
local x in main's outer scope is 5
local x in main's inner scope is 7

local x in main's outer scope is 5

local x is 25 on entering useLocal

local x is 26 on exiting useLocal

local static x is 50 on entering useStaticLocal

local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal

global x is 10 on exiting useGlobal

local x is 25 on entering useLocal

local x is 26 on exiting useLocal

local static x is 51 on entering useStaticLocal

local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal

global x is 100 on exiting useGlobal

local x in main is 5

Line 11 declares and initializes global variable x to 1. This global variable is hidden in any block (or function) that
declares a variable named x. Inmain, line 15 displays the value of global variable. Line 17 declares a local variablex and
initializes it to 5. Line 19 outputs this variable to show that the global x is hidden inmain . Next, lines 21-25 define a new
block in main in which another local variablex is initialized to 7 (line 22). Line 24 outputs this variable to show that it hides
x in the outer block ofmain . When the block exits, the variablex with value 7 is destroyed automatically. Next, line 27

outputs the local variable x in the outer block ofmain to show that it is no longer hidden.

To demonstrate other scopes, the program defines three functions, each of which takes no arguments and returns
nothing. Function useLocal (lines 41-48) declares automatic variablex (line 43) and initializes it to 25. When the program
calls uselLocal , the function prints the variable, increments it and prints it again before the function returns program
control to its caller. Each time the program calls this function, the function recreates automatic variable x and
reinitializes it to 25.

Function usestaticLocal (lines 53—62) declares static variable x and initializes it to 50. Local variables declared astatic
retain their values even when they are out of scope (i.e., the function in which they are declared is not executing). When
the program calls useStaticLocal , the function printsx , increments it and prints it again before the function returns
program control to its caller. In the next call to this function, static local variablex contains the value 51. The initialization
in line 55 occurs only once—the first time useStaticLocal is called.

Function useGlobal (lines 65—70) does not declare any variables. Therefore, when it refers to variable, the globalx (line
11, preceding main) is used. When the program callsuseGlobal, the function prints the global variablec , multiplies it by 10
and prints it again before the function returns program control to its caller. The next time the program callsuseGlobal , the
global variable has its modified value, 10. After executing functions useLocal, useStaticLocal and useGlobal twice each, the
program prints the local variable x in main again to show that none of the function calls modified the value &f in main ,
because the functions all referred to variables in other scopes.

6.11. Function Call Stack and Activation Records

To understand how C++ performs function calls, consider a data structure (i.e., collection of related data items) known as a
stack. Stacks arelast-in, first-out (LIFO) data structures —the last item pushed (inserted) on the stack is the first item popped
(removed) from it.

The function call stack (sometimes referred to as theprogram execution stack)—working "behind the scenes"—supports
the function call/return mechanism. It also supports the creation, maintenance and destruction of each called function's
automatic variables. As we'll see in , this LIFO behavior is exactly what a function does when returning to the

function that called it.

As each function is called, it may, in turn, call other functions, which may, in turn, call other functions—all before any of the
functions returns. Each function eventually must return control to the one that called it. So, somehow, we must keep track of
the return addresses that each function needs to return control to its caller. The function call stack is the perfect data
structure for handling this information. Each time a function is called, an entry is pushed onto the stack. This entry, called a
stack frame or an activation record, contains the return address that the called function needs to return to the calling
function. When the called function returns, the stack frame for the function call is popped, and control transfers to the return
address in the popped stack frame.

The beauty of the call stack is that each called function always finds the information it needs to return to its caller at the top
of the call stack. And, if a function makes a call to another function, a stack frame for the new function call is simply pushed
onto the call stack. Thus, the return address required by the newly called function to return to its caller is now located at the
top of the stack.

The stack frames have another important responsibility. Most functions have automatic variables—parameters and any local
variables the function declares. Automatic variables need to exist while a function is executing. They need to remain active if
the function makes calls to other functions. But when a called function returns to its caller, the called function's automatic
variables need to "go away." The called function's stack frame is a perfect place to store the function's automatic variables.
That stack frame exists as long as the called function is active. When that function returns—and no longer needs its local
automatic variables—its stack frame is popped from the stack, and those local automatic variables are no longer known to
the program.

Of course, the amount of memory in a computer is finite, so only a certain amount of memory can be used to store activation
records on the function call stack. If more function calls occur than can have their activation records stored on the function

call stack, an error known as stack overflow occurs.

Function Call Stack in Action

So, as we've seen, the call stack and activation records support the function call/return mechanism and the creation and
destruction of automatic variables. Now let's consider how the call stack supports the operation of a square function called by

main (lines 11-17 offig. 6.12). First the operating system callsmain —this pushes an activation record onto the stack (shown

in Eig. 6.13). The activation record tellsmain how to return to the operating system (i.e., transfer to return addres&1) and
contains the space for main's automatic variable (i.e.,a, which is initialized to 10).

Fig. 6.12. square function used to demonstrate the function call stack and activation records.

1 /I Fig. 6.12: fig06_12.cpp

2 /I square function used to demonstrate the function
3 // call stack and activation records.

4 #include <iostream>

5 using std::cin;

6 using std::cout;

7 using std::endl;

8

9 int square(int); // prototype for function square

10

11 int main()

12 {

13 inta =10;// value to square (local automatic variable in main)
14

15 cout<<a<<"squared:" << square(a)<< endl;// display a squared
16 return O; // indicate successful termination

17 }// end main

18

19 /I returns the square of an integer

20 int square(int x) // x is a local variable

21 {

22 return x * x; // calculate square and return result
23 } /I end function square

10 squared: 100

Fig. 6.13. Function call stack after the operating system invokesain.

Step | Operating system invokes = int main()
main to execute apphcation, t

Crperabing system ,
int a = -

COUL << 3 <<
<< square(a) << endl;
return §

Return location R —

Function call stack after Step |

Top af stack ——==
Return location: RI

Activation record Automatic vanables:
for function main

a 10 Key

Lines that represent the operating

system executing instructions

Function main—before returning to the operating system—now calls functiorsquare in line 15 of. This causes a stack
frame for square (lines 20-23) to be pushed onto the function call stack. This stack frame contains the return
address that square needs to return tomain (i.e., R2) and the memory forsquare's automatic variable (i.e.,x).

Fig. 6.14. Function call stack after main invokes functionsquare to perform the calculation.

Step 2 madnonvokes funclion square to perform calculation,

int maing) : ;
——= int square{ int x J

{

int a = : {

COUt << A << return x v x;

Return location R2 << squarel a J == endl; }

return ;|

}

Function call stack after Step 2

Top of stack ==

Return location: R2
Activatron record for Automatic vanables:
function square
X 10

Return location: R

Bctivation record Automatic vanables:
for function main
a 10

After square calculates the square of its argument, the function needs to return tenain —and no longer needs the memory for

its automatic variable x . So the stack is popped—givingsquare the return location inmain (i.e., R2) and losing square's automatic
variable. shows the function call stack aftesquare 's activation record has been popped.

Fig. 6.15. Function call stack after function square returns to main.

Step 30 square retums its result to main.

int main)
int squaref int x)
{
int a = . {
COUL << A << return x * x;
Hetum location R2 << square{ a)} << endl; }

} return H T

Funcuon call stack after Step 3

Top of stack ———=

Retum location: R

Betvation record Automatic vanables:
for function main
a 10

Function main now displays the result of callingsquare (line 15), then executes thereturn statement (line 16). This causes the
activation record for main to be popped from the stack. This givesnain the address it needs to return to the operating system
(i.e.,R1in) and causes the memory fomain's automatic variable (i.e.,a) to become unavailable.

6.12. Functions with Empty Parameter Lists
In C++, an empty parameter list is specified by writing eitheroid or nothing at all in parentheses. The prototype

void print();

specifies that function print does not take arguments and does not return a value demonstrates both ways to
declare and use functions with empty parameter lists.

Fig. 6.16. Functions that take no arguments.

/I Fig. 6.16: fig06_16.cpp

/I Functions that take no arguments.
#include <iostream>

using std::cout;

using std::endl;

void function1(); // function that takes no arguments

void function2(void); // function that takes no arguments

© 00 N O O B~ W N P

10 int main()

11 {

12 functionl(); // call function1 with no arguments

13 function2(); // call function2 with no arguments

14 return O; // indicates successful termination

15 }// end main

16

17 [/l functionl uses an empty parameter list to specify that
18 /I the function receives no arguments

19 void function1()

20 {

21 cout << "functionl takes no arguments” << endl;
22}/l end functionl

23

24 |/ function2 uses a void parameter list to specify that

25 /I the function receives no arguments

26 void function2(void)

27 {

28 cout << "function2 also takes no arguments" << endl;
29 }// end function2

functionl takes no arguments

function2 also takes no arguments

Portability Tip 6.2

@' The meaning of an empty function parameter list in C++ is dramatically
B different than in C. In C, it means all argument checking is disabled (i.e., the
function call can pass any arguments it wants). In C++, it means that the function
explicitly takes no arguments. Thus, C programs using this feature might cause
compilation errors when compiled in C++.

Common Programming Error 6.13

E C++ programs do not compile unless function prototypes are provided for every
) function or each function is defined before it is called.

6.13. Inline Functions

Implementing a program as a set of functions is good from a software engineering standpoint, but function calls involve
execution-time overhead. C++ provides inline functions to help reduce function call overhead—especially for small
functions. Placing the qualifier inline before a function's return type in the function definition "advises" the compiler to
generate a copy of the function's code in place (when appropriate) to avoid a function call. The trade-off is that multiple
copies of the function code are inserted in the program (often making the program larger) rather than there being a
single copy of the function to which control is passed each time the function is called. The compiler can ignore theinline
qualifier and typically does so for all but the smallest functions.

Software Engineering Observation 6.9

Any change to aninline function requires all clients of the function to be

recompiled. This can be significant in some program development and
maintenance situations.

Good Programming Practice 6.5

@ The inline qualifier should be used only with small, frequently used functions.

Performance Tip 6.4

-ﬁ‘ Using inline functions can reduce execution time but may increase program size.

usesinline function cube (lines 11-14) to calculate the volume of a cube of sideide. Keyword const in the
parameter list of function cube (line 11) tells the compiler that the function does not modify variablgide. This ensures that
the value of side is not changed by the function when the calculation is performed. (Keywordonst is discussed in detail in
, E and@.) Notice that the complete definition of functioreube appears before it is used in the program. This is
required so that the compiler knows how to expand a cube function call into its inlined code. For this reason, reusable

inline functions are typically placed in header files, so that their definitions can be included in each source file that uses
them.

© 00 N O g B~ W N P

10

Fig. 6.17.inline function that calculates the volume of a cube.

/I Fig. 6.17: fig06_17.cpp

/I Using an inline function to calculate the volume of a cube.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

/I Definition of inline function cube. Definition of function appears
/I before function is called, so a function prototype is not required.
/I First line of function definition acts as the prototype.
inline double cube(const double side)
{

return side * side * side; // calculate cube

}/1 end function cube

int main()

{
double sideValue; // stores value entered by user
cout << "Enter the side length of your cube: " ;

cin >> sideValue; // read value from user

/I calculate cube of sideValue and display result
cout << "Volume of cube with side "

<< sideValue << "is " << cube(sideValue) << endl;
return 0; // indicates successful termination

} // end main

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 is 42.875

Software Engineering Observation 6.10

The const qualifier should be used to enforce the principle of least privilege. Using
the principle of least privilege to properly design software can greatly reduce
debugging time and improper side effects and can make a program easier to
modify and maintain.

6.14. References and Reference Parameters

Two ways to pass arguments to functions in many programming languages arg@ass-by-value and
pass-by-reference . When an argument is passed by value, acopy of the argument's value is made and passed (on the
function call stack) to the called function. Changes to the copy do not affect the original variable's value in the caller.
This prevents the accidental side effects that so greatly hinder the development of correct and reliable software
systems. Each argument that has been passed in the programs in this chapter so far has been passed by value.

Performance Tip 6.5

-ﬁ‘ One disadvantage of pass-by-value is that, if a large data item is being passed,
copying that data can take a considerable amount of execution time and memory
space.

Reference Parameters

This section introduces reference parameters —the first of the two means C++ provides for performing
pass-by-reference. With pass-by-reference, the caller gives the called function the ability to access the caller's data
directly, and to modify that data if the called function chooses to do so.

Performance Tip 6.6

-ﬁ‘ Pass-by-reference is good for performance reasons, because it can eliminate the
pass-by-value overhead of copying large amounts of data.

Software Engineering Observation 6.11

| i
| Pass-by-reference can weaken security, because the called function can corrupt
the caller's data.

Later, we'll show how to achieve the performance advantage of pass-by-reference while simultaneously achieving the
software engineering advantage of protecting the caller's data from corruption.

A reference parameter is an alias for its corresponding argument in a function call. To indicate that a function parameter
is passed by reference, simply follow the parameter's type in the function prototype by an ampersand (&); use the same
convention when listing the parameter's type in the function header. For example, the following declaration in a function

header

int &count

when read from right to left is pronounced ¢ount is a reference to anint ." In the function call, simply mention the
variable by name to pass it by reference. Then, mentioning the variable by its parameter name in the body of the called
function actually refers to the original variable in the calling function, and the original variable can be modified directly by
the called function. As always, the function prototype and header must agree.

Passing Arguments by Value and by Reference

compares pass-by-value and pass-by-reference with reference parameters. The "styles" of the arguments
in the calls to function squareByVvalue and functionsquareByReference are identical—both variables are simply mentioned by
name in the function calls. Without checking the function prototypes or function definitions, it is not possible to tell from
the calls alone whether either function can modify its arguments. Because function prototypes are mandatory, the
compiler has no trouble resolving the ambiguity.

Fig. 6.18. Passing arguments by value and by reference.

/I Fig. 6.18: fig06_18.cpp

/I Comparing pass-by-value and pass-by-reference with references.
#include <iostream>

using std::cout;

using std::endl;

int squareByValue(int); // function prototype (value pass)

void squareByReference(int &); // function prototype (reference pass)

© 0 N O g B~ W N P

=
o

int main()

11 {

12 int x = 2; // value to square using squareByValue

13 int z = 4; // value to square using squareByReference
14

15 /I demonstrate squareByValue

16 cout<<'"x =" << x << "before squareByValue\n" ;
17 cout << "Value returned by squareByValue: "

18 << squareByValue(x) << endl;

19 cout<<'"x="
20

21 /I demonstrate squareByReference

<< x << " after squareByValue\n" << endl;

22 cout<<'"z =" <<z <<"before squareByReference" <<endl;
23 squareByReference(z);

24 cout<<'"z =" <<z <<"after squareByReference" <<endl;
25 return 0; // indicates successful termination

26 }// end main

27

28 /I squareByValue multiplies number by itself, stores the

29 /I result in number and returns the new value of number

30 int squareByValue(int number)

31 {

32 return number *= number; // caller's argument not modified

33 }// end function squareByValue

34

35 /I squareByReference multiplies numberRef by itself and stores the result
36 //in the variable to which numberRef refers in function main

37 void squareByReference(int &humberRef)

38 {

39 numberRef *= numberRef; // caller's argument modified

40 }// end function squareByReference

x = 2 before squareByValue
Value returned by squareByValue: 4

x = 2 after squareByValue

z = 4 before squareByReference

z = 16 after squareByReference

Common Programming Error 6.14

.
@ Because reference parameters are mentioned only by name in the body of
' the called function, you might inadvertently treat reference parameters as
pass-by-value parameters. This can cause unexpected side effects if the original
copies of the variables are changed by the function.

discusses pointers; pointers enable an alternate form of pass-by-reference in which the style of the call
clearly indicates pass-by-reference (and the potential for modifying the caller's arguments).

Performance Tip 6.7

-

For passing large objects, use a constant reference parameter to simulate the
appearance and security of pass-by-value and avoid the overhead of passing a
copy of the large object.

Software Engineering Observation 6.12

Many programmers do not bother to declare parameters passed by value asonst,

even though the called function should not be modifying the passed argument.
Keyword const in this context would protect only a copy of the original argument,
not the original argument itself, which when passed by value is safe from
modification by the called function.

To specify a reference to a constant, place theconst qualifier before the type specifier in the parameter declaration.

Note the placement of & in function squareByReference's parameter list (line 37. Some C++ programmers prefer
to write the equivalent form int& numberRef.

Software Engineering Observation 6.13

For the combined reasons of clarity and performance, many C++ programmers
prefer that modifiable arguments be passed to functions by using pointers (which

we study in), small nonmodifiable arguments be passed by value and
large nonmodifiable arguments be passed to functions by using references to
constants.

References as Aliases within a Function

References can also be used as aliases for other variables within a function (although they typically are used with
functions as shown in). For example, the code

int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count

cRef++; // increment count (using its alias cRef)

increments variable count by using its alias cRef. Reference variables must be initialized in their declarations (see&l

and) and cannot be reassigned as aliases to other variables. Once a reference is declared as an alias for
another variable, all operations supposedly performed on the alias (i.e., the reference) are actually performed on the
original variable. The alias is simply another name for the original variable. Taking the address of a reference and
comparing references do not cause syntax errors; rather, each operation actually occurs on the variable for which the
reference is an alias. Unless it is a reference to a constant, a reference argument must be an Ivalue _(e.qg., a variable

name), not a constant or expression that returns an rvalue (e.g., the result of a calculation). SeJ for

definitions of the terms Ivalue andrvalue.

Fig. 6.19. Initializing and using a reference.

Il Fig. 6.19: fig06_19.cpp

/I References must be initialized.
#include<iostream>
usingstd::cout;

usingstd::endl;

intmain()

{

intx =3;

© O N O g A~ W N P

=
o

int&y = x; /'y refers to (is an alias for) x

= e
N

cout<<"x ="<<x<<endl <<"y =" <<y <<endl;

[any
w

y = 7;// actually modifies x

=
S

cout <<"x =" <<x << endl <<"y =" <<y << endl;

=
()]

return0; // indicates successful termination

=
(o2}

} // end main

< X < X
1 1 1l
N N wow

Fig. 6.20. Uninitialized reference causes a syntax error.

1 /I Fig. 6.20: fig06_20.cpp

2 /I References must be initialized.

3 #include<iostream>

4 usingstd::cout;

5 usingstd::endl;

6

7 intmain()

8 {

9 intx=3;

10 int &y; // Error: y must be initialized

11

12 cout <<"x =" <<x <<end| <<"y =" <<y <<endl;
13 y=7,

14 cout<<"x="<<x<<endl <<"y =" <<y <<endl;
15 returnO; // indicates successful termination

16 }// end main

Borland C++ command-line compiler error message:

Error E2304 C:\cppfp_examples\ch06\Fig06_20\fig06_20.cpp 10:

Reference variable 'y' must be initialized in function main()

Microsoft Visual C++ compiler error message:

C:\cppfp_examples\ch06\Fig06_20\fig06_20.cpp(10) : error C2530: 'y" :

references must be initialized

GNU C++ compiler error message:

fig06_20.cpp:10: error: 'y' declared as a reference but not initialized

Returning a Reference from a Function

Functions can return references, but this can be dangerous. When returning a reference to a variable declared in the
called function, the variable should be declared static within that function. Otherwise, the reference refers to an
automatic variable that is discarded when the function terminates; such a variable is said to be "undefined," and the
program'’s behavior is unpredictable. References to undefined variables are called dangling references.

Common Programming Error 6.15

@ Not initializing a reference variable when it is declared is a compilation error,

unless the declaration is part of a function's parameter list. Reference parameters
are initialized when the function in which they are declared is called.

Common Programming Error 6.16

.
E Attempting to reassign a previously declared reference to be an alias to another
' variable is a logic error. The value of the other variable is simply assigned to the
variable for which the reference is already an alias.

Common Programming Error 6.17

.
g‘ Returning a reference to an automatic variable in a called function is a logic
' error. Some compilers issue a warning when this occurs.

Error Messages for Uninitialized References

The C++ standard does not specify the error messages that compilers use to indicate particular errors. For this reason,

shows the error messages produced by the Borland C++ command-line compiler, Microsoft Visual C++
compiler and GNU C++ compiler when a reference is not initialized.

	Cover
	Copyright
	Deitel® Series Page
	Deitel Resource Centers
	Preface
	Before You Begin
	1. Introduction
	1.1. Introduction
	1.2. History of C and C++
	1.3. C++ Standard Library
	1.4. Key Software Trend: Object Technology
	1.5. Typical C++ Development Environment
	1.6. Notes About C++ and C++ for Programmers
	1.7. Test-Driving a C++ Application
	1.8. Software Technologies
	1.9. Future of C++: Open Source Boost Libraries, TR1 and C++0x
	1.10. Software Engineering Case Study: Introduction to Object Technology and the UML
	1.11. Wrap-Up
	1.12. Web Resources

	2. Introduction to C++ Programming
	2.1. Introduction
	2.2. First Program in C++: Printing a Line of Text
	2.3. Modifying Our First C++ Program
	2.4. Another C++ Program: Adding Integers
	2.5. Arithmetic
	2.6. Decision Making: Equality and Relational Operators
	2.7. (Optional) Software Engineering Case Study: Examining the ATM Requirements Specification
	2.8. Wrap-Up

	3. Introduction to Classes and Objects
	3.1. Introduction
	3.2. Classes, Objects, Member Functions and Data Members
	3.3. Overview of the Chapter Examples
	3.4. Defining a Class with a Member Function
	3.5. Defining a Member Function with a Parameter
	3.6. Data Members, set Functions and get Functions
	3.7. Initializing Objects with Constructors
	3.8. Placing a Class in a Separate File for Reusability
	3.9. Separating Interface from Implementation
	3.10. Validating Data with set Functions
	3.11. (Optional) Software Engineering Case Study: Identifying the Classes in the ATM Requirements Specification
	3.12. Wrap-Up

	4. Control Statements: Part 1
	4.1. Introduction
	4.2. Control Structures
	4.3. if Selection Statement
	4.4. if...else Double-Selection Statement
	4.5. while Repetition Statement
	4.6. Counter-Controlled Repetition
	4.7. Sentinel-Controlled Repetition
	4.8. Nested Control Statements
	4.9. Assignment Operators
	4.10. Increment and Decrement Operators
	4.11. (Optional) Software Engineering Case Study: Identifying Class Attributes in the ATM System
	4.12. Wrap-Up

	5. Control Statements: Part 2
	5.1. Introduction
	5.2. Essentials of Counter-Controlled Repetition
	5.3. for Repetition Statement
	5.4. Examples Using the for Statement
	5.5. do...while Repetition Statement
	5.6. switch Multiple-Selection Statement
	5.7. break and continue Statements
	5.8. Logical Operators
	5.9. Confusing the Equality (==) and Assignment (=) Operators
	5.10. (Optional) Software Engineering Case Study: Identifying Objects' States and Activities in the ATM System
	5.11. Wrap-Up

	6. Functions and an Introduction to Recursion
	6.1. Introduction
	6.2. Program Components in C++
	6.3. Math Library Functions
	6.4. Function Definitions with Multiple Parameters
	6.5. Function Prototypes and Argument Coercion
	6.6. C++ Standard Library Header Files
	6.7. Case Study: Random Number Generation
	6.8. Case Study: Game of Chance; Introducing enum
	6.9. Storage Classes
	6.10. Scope Rules
	6.11. Function Call Stack and Activation Records
	6.12. Functions with Empty Parameter Lists
	6.13. Inline Functions
	6.14. References and Reference Parameters
	6.15. Default Arguments
	6.16. Unary Scope Resolution Operator
	6.17. Function Overloading
	6.18. Function Templates
	6.19. Recursion
	6.20. Example Using Recursion: Fibonacci Series
	6.21. Recursion vs. Iteration
	6.22. (Optional) Software Engineering Case Study: Identifying Class Operations in the ATM System
	6.23. Wrap-Up

	7. Arrays and Vectors
	7.1. Introduction
	7.2. Arrays
	7.3. Declaring Arrays
	7.4. Examples Using Arrays
	7.5. Passing Arrays to Functions
	7.6. Case Study: Class GradeBook Using an Array to Store Grades
	7.7. Searching Arrays with Linear Search
	7.8. Sorting Arrays with Insertion Sort
	7.9. Multidimensional Arrays
	7.10. Case Study: Class GradeBook Using a Two-Dimensional Array
	7.11. Introduction to C++ Standard Library Class Template vector
	7.12. (Optional) Software Engineering Case Study: Collaboration Among Objects in the ATM System
	7.13. Wrap-Up

	8. Pointers and Pointer-Based Strings
	8.1. Introduction
	8.2. Pointer Variable Declarations and Initialization
	8.3. Pointer Operators
	8.4. Passing Arguments to Functions by Reference with Pointers
	8.5. Using const with Pointers
	8.6. Selection Sort Using Pass-by-Reference
	8.7. sizeof Operator
	8.8. Pointer Expressions and Pointer Arithmetic
	8.9. Relationship Between Pointers and Arrays
	8.10. Arrays of Pointers
	8.11. Case Study: Card Shuffling and Dealing Simulation
	8.12. Function Pointers
	8.13. Introduction to Pointer-Based String Processing
	8.14. Wrap-Up

	9. Classes: A Deeper Look, Part 1
	9.1. Introduction
	9.2. Time Class Case Study
	9.3. Class Scope and Accessing Class Members
	9.4. Separating Interface from Implementation
	9.5. Access Functions and Utility Functions
	9.6. Time Class Case Study: Constructors with Default Arguments
	9.7. Destructors
	9.8. When Constructors and Destructors Are Called
	9.9. Time Class Case Study: A Subtle Trap - Returning a Reference to a private Data Member
	9.10. Default Memberwise Assignment
	9.11. (Optional) Software Engineering Case Study: Starting to Program the Classes of the ATM System
	9.12. Wrap-Up

	10. Classes: A Deeper Look, Part 2
	10.1. Introduction
	10.2. const (Constant) Objects and const Member Functions
	10.3. Composition: Objects as Members of Classes
	10.4. friend Functions and friend Classes
	10.5. Using the this Pointer
	10.6. Dynamic Memory Management with Operators new and delete
	10.7. static Class Members
	10.8. Data Abstraction and Information Hiding
	10.9. Container Classes and Iterators
	10.10. Proxy Classes
	10.11. Wrap-Up

	11. Operator Overloading; String and Array Objects
	11.1. Introduction
	11.2. Fundamentals of Operator Overloading
	11.3. Restrictions on Operator Overloading
	11.4. Operator Functions as Class Members vs. Global Functions
	11.5. Overloading Stream Insertion and Stream Extraction Operators
	11.6. Overloading Unary Operators
	11.7. Overloading Binary Operators
	11.8. Case Study: Array Class
	11.9. Converting between Types
	11.10. Case Study: String Class
	11.11. Overloading ++ and --
	11.12. Case Study: A Date Class
	11.13. Standard Library Class string
	11.14. explicit Constructors
	11.15. Wrap-Up

	12. Object-Oriented Programming: Inheritance
	12.1. Introduction
	12.2. Base Classes and Derived Classes
	12.3. protected Members
	12.4. Relationship between Base Classes and Derived Classes
	12.5. Constructors and Destructors in Derived Classes
	12.6. public, protected and private Inheritance
	12.7. Software Engineering with Inheritance
	12.8. Wrap-Up

	13. Object-Oriented Programming: Polymorphism
	13.1. Introduction
	13.2. Polymorphism Examples
	13.3. Relationships Among Objects in an Inheritance Hierarchy
	13.4. Type Fields and switch Statements
	13.5. Abstract Classes and Pure virtual Functions
	13.6. Case Study: Payroll System Using Polymorphism
	13.7. (Optional) Polymorphism, Virtual Functions and Dynamic Binding "Under the Hood"
	13.8. Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info
	13.9. Virtual Destructors
	13.10. (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System
	13.11. Wrap-Up

	14. Templates
	14.1. Introduction
	14.2. Function Templates
	14.3. Overloading Function Templates
	14.4. Class Templates
	14.5. Nontype Parameters and Default Types for Class Templates
	14.6. Notes on Templates and Inheritance
	14.7. Notes on Templates and Friends
	14.8. Notes on Templates and static Members
	14.9. Wrap-Up

	15. Stream Input/Output
	15.1. Introduction
	15.2. Streams
	15.3. Stream Output
	15.4. Stream Input
	15.5. Unformatted I/O Using read, write and gcount
	15.6. Introduction to Stream Manipulators
	15.7. Stream Format States and Stream Manipulators
	15.8. Stream Error States
	15.9. Tying an Output Stream to an Input Stream
	15.10. Wrap-Up

	16. Exception Handling
	16.1. Introduction
	16.2. Exception-Handling Overview
	16.3. Example: Handling an Attempt to Divide by Zero
	16.4. When to Use Exception Handling
	16.5. Rethrowing an Exception
	16.6. Exception Specifications
	16.7. Processing Unexpected Exceptions
	16.8. Stack Unwinding
	16.9. Constructors, Destructors and Exception Handling
	16.10. Exceptions and Inheritance
	16.11. Processing new Failures
	16.12. Class auto_ptr and Dynamic Memory Allocation
	16.13. Standard Library Exception Hierarchy
	16.14. Other Error-Handling Techniques
	16.15. Wrap-Up

	17. File Processing
	17.1. Introduction
	17.2. Data Hierarchy
	17.3. Files and Streams
	17.4. Creating a Sequential File
	17.5. Reading Data from a Sequential File
	17.6. Updating Sequential Files
	17.7. Random-Access Files
	17.8. Creating a Random-Access File
	17.9. Writing Data Randomly to a Random-Access File
	17.10. Reading from a Random-Access File Sequentially
	17.11. Case Study: A Transaction-Processing Program
	17.12. Overview of Object Serialization
	17.13. Wrap-Up

	18. Class string and String Stream Processing
	18.1. Introduction
	18.2. string Assignment and Concatenation
	18.3. Comparing strings
	18.4. Substrings
	18.5. Swapping strings
	18.6. string Characteristics
	18.7. Finding Substrings and Characters in a string
	18.8. Replacing Characters in a string
	18.9. Inserting Characters into a string
	18.10. Conversion to C-Style Pointer-Based char * Strings
	18.11. Iterators
	18.12. String Stream Processing
	18.13. Wrap-Up

	19. Bits, Characters, C Strings and structs
	19.1. Introduction
	19.2. Structure Definitions
	19.3. Initializing Structures
	19.4. Using Structures with Functions
	19.5. typedef
	19.6. Example: High-Performance Card Shuffling and Dealing Simulation
	19.7. Bitwise Operators
	19.8. Bit Fields
	19.9. Character-Handling Library
	19.10. Pointer-Based String-Conversion Functions
	19.11. Search Functions of the Pointer-Based String-Handling Library
	19.12. Memory Functions of the Pointer-Based String-Handling Library
	19.13. Wrap-Up

	20. Standard Template Library (STL)
	20.1. Introduction to the Standard Template Library (STL)
	20.2. Sequence Containers
	20.3. Associative Containers
	20.4. Container Adapters
	20.5. Algorithms
	20.6. Class bitset
	20.7. Function Objects
	20.8. Wrap-Up
	20.9. STL Web Resources

	21. Boost Libraries, Technical Report 1 and C++0x
	21.1. Introduction
	21.2. Deitel Online C++ and Related Resource Centers
	21.3. Boost Libraries
	21.4. Adding a New Library to Boost
	21.5. Installing the Boost Libraries
	21.6. Boost Libraries in Technical Report 1 (TR1)
	21.7. Regular Expressions with the Boost.Regex Library
	21.8. Smart Pointers with Boost.Smart_ptr
	21.9. Technical Report 1
	21.10. C++0x
	21.11. Core Language Changes
	21.12. Wrap-Up

	22. Other Topics
	22.1. Introduction
	22.2. const_cast Operator
	22.3. namespaces
	22.4. Operator Keywords
	22.5. mutable Class Members
	22.6. Pointers to Class Members (.* and ->*)
	22.7. Multiple Inheritance
	22.8. Multiple Inheritance and virtual Base Classes
	22.9. Wrap-Up

	A. Operator Precedence and Associativity Chart
	A.1. Operator Precedence

	B. ASCII Character Set
	C. Fundamental Types
	D. Preprocessor
	D.1. Introduction
	D.2. The #include Preprocessor Directive
	D.3. The #define Preprocessor Directive: Symbolic Constants
	D.4. The #define Preprocessor Directive: Macros
	D.5. Conditional Compilation
	D.6. The #error and #pragma Preprocessor Directives
	D.7. Operators # and ##
	D.8. Predefined Symbolic Constants
	D.9. Assertions
	D.10. Wrap-Up

	E. ATM Case Study Code
	E.1. ATM Case Study Implementation
	E.2. Class ATM
	E.3. Class Screen
	E.4. Class Keypad
	E.5. Class CashDispenser
	E.6. Class DepositSlot
	E.7. Class Account
	E.8. Class BankDatabase
	E.9. Class Transaction
	E.10. Class BalanceInquiry
	E.11. Class Withdrawal
	E.12. Class Deposit
	E.13. Test Program ATMCaseStudy.cpp
	E.14. Wrap-Up

	F. UML 2: Additional Diagram Types
	F.1. Introduction
	F.2. Additional Diagram Types

	G. Using the Visual Studio Debugger
	G.1. Introduction
	G.2. Breakpoints and the Continue Command
	G.3. Locals and Watch Windows
	G.4. Controlling Execution Using the Step Into, Step Over, Step Out and Continue Commands
	G.5. Autos Window
	G.6. Wrap-Up

	H. Using the GNU C++ Debugger
	H.1. Introduction
	H.2. Breakpoints and the run, stop, continue and print Commands
	H.3. print and set Commands
	H.4. Controlling Execution Using the step, finish and next Commands
	H.5. watch Command
	H.6. Wrap-Up

	Bibliography
	Index

