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Abstract
In this paper we propose an agent-based system for Service-Oriented Architecture self-
adaptation. Services are supervised by autonomous agents which are responsible for decid-
ing which service should be chosen for interoperation. Agents learn the choice strategy au-
tonomously using supervised learning. In experiments we show that supervised learning (Näıve
Bayes, C4.5 and Ripper) allows to achieve much better efficiency than simple strategies such
as random choice or round robin. What is also important, supervised learning generates a
knowledge in a readable form, which may be analyzed by experts.

Keywords:

1 Introduction

Service-Oriented Architecture (SOA) is one of the common techniques used to build large scale
systems, which gives very good results [35]. However, there are problems with huge number of
parameters that should be configured to achieve assumed Quality of Service (QoS). Therefore,
there are many works on automatic adaptation of SOA [6, 29].

Large scale systems are usually distributed, which makes of them a natural environment for
agent-based solutions. Such environment is complex and changing. As a consequence, it is very
difficult to design to design all system details a priori. To overcome this problem one can apply
a learning algorithm which allows to adapt agents to the environment.

There are many machine learning algorithms developed so far. However, in multi-agent
systems most applications use reinforcement learning [19, 22, 32]. The problem is that in a
complex environment (where state-space is large) reinforcement learning needs time to reach
satisfactory performance and the knowledge learned is very difficult to analyze. These problems
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suggest to search for other solutions, like supervised learning. It appears that it can be also
applied in multi-agent systems and gives results faster and in a human-readable form [25, 26].

Goal of this research is to develop agent-based system for SOA self-adaptation with the
following two main assumptions: services are supervised by autonomous agents which are re-
sponsible for deciding which service should be chosen for interoperation; agents learn the choice
strategy autonomously using supervised learning.

As a result, we make the following contributions to the state of the art: we propose agent-
based system for SOA adaptation; we show that methods other than reinforcement learning can
be used by agents to generate its strategy; we show that knowledge learned using this technique
has readable form.

In the following section we overview related research. Next, the agent architecture and
learning mechanism is described. It is followed by the presentation of experimental results.
Finally, conclusions and the further work are outlined.

2 Related Research

Let us start with Adaptation in SOA. According to McKinley et al. [18], software adaptation
is an adjustment of the system structure or parameters in response to changes in the execution
environment. Berry et al. [4] define Dynamic Adaptive System (DAS), which recognizes changes
in the environment and is capable of changing its behavior to adapt to these changes. System is
self-adaptive if adaptation is based on the feedback from the system or the context (surrounding
environment) [21].

Moving to practical solutions, IBM proposed the Architectural Blueprint [8]. Sensors gather
data about the managed resource. These data are monitored and analyzed. Next plan is pre-
pared and executed using effectors. All the phases are based on a common knowledge. Therfore
this loop is called MAPE-K (Monitore, Analyse, Plan, Execute - Knowledge). Similar approach
is presented by Salehie and Tahvildari [21]. Another practical example is StarMX. It is a frame-
work for Java enterprise environments [2]. It provides support for dynamic adaptation and
development of self-managing applications. StarMX can be integrated with various policy/rule
engines to enable self-management capabilities.

Vuković investigates context aware applications, which are able to adapt to changes in the
environment [33]. Planning technologies are used to prepare the sequence of services execution
for given parameters (resources available, time constraints, and user location). The system
developed is able to handle composition failures.

In [36] concept of an Adaptive SOA Solution Stack (AS3) is presented. The pattern provides
components constituting an adaptation loop. In continuation of this research machine learning
algorithms are added. Results are presented in [24], where clustering algorithms are used
to group similar system states into clusters and reinforcement learning is used to learn the
adaptation strategy: what action should be executed in a given state to achieve better Quality
of Service (QoS).

Agent-based technologies are considered as a tool that can be very useful in SOA applications
[12]. Good example is work done by Piunti et al. [20]. General-purpose programming model
based on BDI agent technologies [] is proposed and applied for developing SOA/WS applications.

In agent domain adaptation and learning are common research topics [19, 22, 32]. The
most common learning strategy applied in agent-based systems is reinforcement learning [28].
This learning strategy allows to generate a strategy for an agent in a domain, in which the
environment provides some feedback after the agent has acted. Feedback takes the form of a
real number representing reward, which depends on the quality of the action executed by the
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agent in a given situation. What is important, the reward can be delayed. The goal of the
learning is to maximize estimated reward. A typical example of domain used in such works is
a Predator-Prey environment [30], where predator agents use reinforcement learning to learn a
strategy minimizing time to catch a prey.

There is only a small number of works known to the author on supervised learning in
multi-agent systems. Typical examples are discussed below.

Rule induction is used in a multi-agent solutions for vehicle routing problems [10]. However,
in this work learning is done off-line. First, rules are generated by the AQ algorithm (the same
as used in this work) from traffic data. Next, agents use these rules to predict traffic. Extension
of this work is [27]. Agents use hybrid learning algorithm. Rule induction is used to decrease
the size of the search space for reinforcement learning.

Airiau et al. [1, 23] adds learning capabilities to the BDI model. Decision tree learning
is used to support plan applicability testing. Each plan has its own decision tree to test if it
may be used in a given context. As a result, plans may be modified by providing additional
conditions limiting its applicability. Knowledge learned has an indirect impact on the agent
strategy because it has influence on probability of choosing plans for execution.

There are several works in which Inductive Logic Programming (ILP) is applied. A good
background paper considering machine learning and especially ILP for multi-agent systems is
[15]. Supervised learning (the subject of this paper) can be considered as a special case of ILP,
where simple logic program defining one predicate only is learned. ILP shows its advantage
over classical rule induction in complex domains, whereas most multi-agent applications are
relatively simple (see conclusions of [15]). Therefore, supervised learning seems to be enough
in most cases.

Comparison of various learning strategies in the same domain can be found in [26]. The paper
presents a Farmer-Pest domain, which is especially designed for learning agent benchmarking.
Every agent controls a farmer that supervises multiple fields. Several types of pests can appear
on each field, and the farmer should execute an action which is appropriate for the pest type.
Each pest is described by a set of attributes (e.g. number of legs, color) which are visible to the
agent, while the pest type is hidden. Therefore, agents have to learn how to assign an action to
the observed conditions represented by the attributes. In the paper agents using reinforcement
learning (SARSA) are compared with ones using supervised learning algorithms (Näıve Bayes,
C4.5 and RIPPER).

In [25] rule induction is used to generate agent strategy in the Predator-Prey domain and in
Fish-Banks game. This type of learning is compared with reinforcement learning. Some aspects
of learned knowledge exchange are also investigated. Similar approach may be applied for SOA
adaptation. It is described below.

3 Agent-based SOA Adaptation System

The general idea of the system is that service may be accompanied by an agent, which is
responsible for choosing other services to process given request. The agent is learning how to
chose services using supervised learning. Below agent model for SOA adaptation is described
and learning agent architecture is presented.

3.1 Agent Model for SOA adaptation

We assume that the system consists of services S1, , Sn. Every service Si may interoperate with
other services by executing actions provided by them. In a case when some type of action is
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implemented by several services Si1 , Si2 , . . . , Sik , it is possible to use some learning method to
build a choice strategy based on the current conditions. It allows for adaptation to specific
situation.

In agent-based solution we assume that every service Si is or cooperates with the SOA Adap-
tation Agent agi, which observes state of Si and its neighborhood (e.g. states of cooperating
services) and gathers historical data (experience, training data) about interoperation appearing
so far. This experience has a form of the sequence of examples. Every example consists of
the chosen service identifier and call results (was the action successful, how much time did the
calculations take, what was the quality of the result). It can also consists of other parameters
describing e.g.:

• call arguments (e.g. input data size, values of key parameters) ;

• service Si state (e.g. amount of the free memory, CPU usage, queue length, number of
logged users);

• states of the other services, which may interoperate with Si or are on the same machines
(Si1 , Si2 , . . . , Sik);

• date, hour, day of the week, is it a holiday, etc.

All these parameters can represent current values, average from last dt seconds, several moving
averages, etc. Agent actions correspond to service choice. Using experience and machine
learning algorithm, agent is able to generate strategy of choosing the service for a given task.

3.2 Agent Architecture

In this section we present the learning agent architecture, which is applied in this research. It
is presented in Fig. 1. The agent consists of four main modules:

Processing Module is responsible for basic agent activities, storing training data, executing
learning process, and using learned knowledge;

Learning Module is responsible for execution of learning algorithm and giving answers for
problems with use of learned knowledge;

Training Data is a storage for examples (experience) used for learning;

Generated Knowledge is a storage for learned knowledge.

Figure 1: Learning agent architecture
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begin
Generated Knowledge:= ∅;
Training Data:= ∅;
while agent is alive do

if Generated Knowledge = ∅ then
a:= random action

end
else

Problem := description of the current (observed) state;
a:= action determined for Problem by the classifier stored in Generated
Knowledge

end
execute a;
if results of the action are interesting (e.g. response was quick enough) then

store example in the Training Data
end
if it is learning time (e.g. every 100 steps) then

learn from Training Data;
store knowledge in Generated Knowledge;

end

end

end

Figure 2: Algorithm of the learning agent

These components interact in the following way. Processing Module receives Percepts from
the environment (parameters listed in subsection 3.1). It may process them and execute Actions.
If during processing learned knowledge is needed, it formulates a Problem and sends it to the
Learning Module, which generates an Answer for the Problem using Generated Knowledge.
Processing Module decides also what data should be stored in the Training Data storage. When
necessary (e.g. periodically, or when Training Data contains many new examples) it calls the
Learning Module to execute the learning algorithm to generate new knowledge from Training
Data. The learned knowledge is stored in the Generated Knowledge base. Algorithm of the
agent is presented in Fig. 2.

The form of the knowledge stored in the Generated Knowledge depends on the utilized
learning algorithm used. It may have an explicit form, like rules or decision tree in the case of
supervised learning, which is the case in this research. It can be also stored in a low-level form,
like parameters representing action value function or neural network approximator of such a
function if reinforcement learning is applied.

Learning module may be defined as a four-tuple: (Learning Algorithm, Training Data,
Problem, Answer). Characteristics of the training data, the problem and the answer depend
on the learning strategy used in the learning module.

3.3 Supervised Strategy Learning

Supervised learning allows to generate a hypothesis h : X → C which is an approximation
of a function f : X → C which assigns labels from the set C to objects from set X. To
generate knowledge a supervised learning algorithm needs training data in a form of labeled
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examples which consist of pairs of f arguments and values. Let us assume that elements of X
are described by set of attributes A = (a1, a2, . . . , an), where ai : X → Di. Hence, instead of
example x its description xA = (a1(x), a2(x), . . . , an(x)) is used. If size of C is small, like in
this research, the learning is called classification, C is set of classes, and h is called classifier.

In our case, supervised learning module gets a Training data, which is a set of examples
describing history of service invocations. Examples consist of attributes describing current
time, state of the service invoked and action representing identifier of the service (k). Example
label represents quality of the interoperation. In our case it represents response time, but may
also aggregate precision of the result, its cost or QoS in general. As a consequence, Generated
Knowledge, which is obtained from this data, is a classifier which can be used to assign class
representing predicted quality to the considered service. The Problem is a set of attributes
describing current time and service candidate, and the Answer is prediction of quality of this
service. Therefore, Processing Module should classify all Si1 , Si2 , . . . , Sik services and choose a
service which gets highest certainty of good quality.

In experiments we used the following supervised learning algorithms: Näıve Bayes classifier,
decision tree learning C4.5, and decision rule induction Ripper.

3.4 Environment Exploration Strategy

In reinforcement learning various techniques are used to prevent from getting into a local
optimum [14]. The idea is to explore the solution space better by choosing not optimal actions
from time to time (e.g. random or not performed in a given state yet). We decided to use
similar technique for supervised learning. 10% actions are random which corresponds to the
ε-greedy strategy.

3.5 Implementation

To perform experiments, specialized software with service-oriented architecture was imple-
mented [5]. It is written in Java and uses Apache Camel integration platform [13] to apply
Enterprise Integration Patterns (EIP) [11]. Apache CXF platform is used to build services [3].
Serwer Module is the core part of the system. It provides services, which call external services to
perform their tasks. Performance of external services is controlled by External Services Module
to simulate changing characteristics: average response time, CPU and memory usage. Time is
divided into periods with fixed length and these characterisctics are changed periodically. Load
Generator Module simulates users requesting the Serwer Module and allow to test the system
performance. Learning algorithms are provided by Weka package [34].

4 Experiments

Using software developed, experiments testing adaptation were performed. System effectiveness
is defined as the system average response time to user request, which corresponds to assumed
QoS.

4.1 Setup

There are three services considered in experiments: S0, S1, S2. SOA Adaptation Agent is
responsible for S0 and observes results of its interoperation with external services S1, S2. These
services provide information about CPU and memory usage of their hosts, which are described
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by cpu and mem attributes, respectively. These values represent context of the call and are
returned together with the response to the service call. As mentioned, characteristics of external
services change periodically. Period length is dt. Examples stored in the Training Data are
described by four attributes: (t, cpuk,memk, ak), where t is a time from the beginning of the
current period, memk and cpuk are Sk parameters, ak is an action of calling the service Sk (one
which was invoked in the given context). Category c of the given example is good if Sk was a
good choice because execution time was below the average (calculated from four last periods)
or bad in the other case.

Learning algorithm is executed after finishing every period. Training Data cover last four
periods to eliminate outdated records. When learning agent chooses the action using knowledge
learned, its Processing module asks the Learning module for the categories of all the possible
actions. Problem consists of the current context description using the same attributes and
service identifier: (t, cpuk,memk, ak). Action a getting highest certainty of good category is
chosen. To achieve mentioned exploration, chosen action may be replaced by the other action
with ε = 10% probability.

In experiments three supervised learning algorithms (implemented in Weka) were applied:
C4.5 (J48), Ripper (JRip) and Näıve Bayes. Results achieved by the learning agents are com-
pared with two simple strategies: random algorithm and Round Robin.

Experiment 1 It is assumed that S1 and S2 services work quickly and next slowly, alternately.
The performance changes in the middle of the period in even periods, and every 1

3dt in odd
periods. CPU and memory usage changes together with the speed. Its percentage value is
randomized using normal distribution with σ2 = 0.1 and μmem =10% and μcpu =5% when the
service is fast, and μmem =35% and μcpu =25% when the service is slow. Fig. 3-(1) shows how
system efficiency changes in the course of time.

Experiment 2 In this setting it is assumed that during three initial periods both services
S1 and S2 services work quickly and slowly alternately and service performance changes always
in the middle of the period. After fourth period environment characteristics is changed. S1

service is always slow and S2 is always fast since then. As above, CPU and memory usage of
the machine hosting each service is correlated with its response time. Fig. 3-(2) shows how
system efficiency changes in the course of time.

Experiment 3 This experiment assumes that the response time is low only, when both CPU
and memory usage are high. In other cases services are fast. Parameters mem and cpu change
periodically but changes have moved phase and different period for S1 and S2, which make the
time-related pattern more complicated. Change of efficiency is presented in Fig. 3-(3).

4.2 Discussion of the Results

All learning algorithms allowed agents to achieve better results than simple service choice
algorithms. One period is enough to collect the experience reach enough to generate efficient
knowledge. Statistical tests (t-Student) confirm that the differences are significant at p < 0.05.

In the second experiment one may observe small decrease of efficiency for C4.5 and Näıve
Bayesafter the characteristics change. These algorithms need to collect training examples in
the new conditions. After one or two periods efficiency returns to the previous value.

In the third experiment application of simple service choice algorithms leads to efficiency
fluctuations. The reason is that every second period for most of the time both services are

Agent-based Adaptation System for SOA Using Supervised Learning B. Śnieżyński
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Figure 3: System efficiency changes in the course of time for experiments 1–3 (vertical axis
represents mean user waiting time, horisontal axis represents subsequent periods)

quick, and every second period they are slow. In this configuration one can observe more
serious decrease of efficiency after the characteristics change. It is especially large when Näıve
Bayeslearning algorithm is applied. The reason is that attributes mem cpu are not conditionally
independent, which makes this case hard for this classifier. What is more, during learning after
the fifth period, there are no examples from the first period (with many negative examples) in
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(a) (b)

(cpu >= 0.33) and (mem >= 0.4) => class=bad cpu <= 0.07 : class=good

=> class=good cpu > 0.07

| mem <= 0.12 : class=good

| mem > 0.12 : class=bad

Figure 4: Examples of knolwedge learned by agents in the third experiment in a form of decision
rules generated using Ripper algorithm (a) and decision tree generated by C4.5 algorithm (b)

the training data. This makes the data is of lower quality. When training data are filled with
more examples, in the last period, Näıve Bayesachieves good results again. However, it shows
that in the case of such dependency between attributes Näıve Bayesshould not be applied for
learning.

Examples of knowledge learned by agents in the third experiment are presented in Fig. 4.
Ripper algorithm built two rules. Premise of the firs one is a conjunction of tests checking if
usage level of both resources is high. If so, such a service should not be chosen. The second
rule is used if premise of the first one is not fulfiled, which means that if usage of the one of the
resources is low then such a service is good.

Decision tree built by C4.5 algorithm checks in the root CPU usage. If it is low, the service
is good. In the other case memory usage is analyzed. If it is low, than service is good, in the
other case it is bad.

5 Conclusion and Further Research

Results show that supervised learning may be used by agents to generate strategy for service
oriented architecture adaptation in the changing conditions. Agents learn autonomously. The
learning process allows to achieve better QoS than simple strategies such as random choice
or round robin. Because of symbolic representation, knowledge learned may be analyzed and
edited by human experts. It also allows to discover patterns not known a priori which can be
used by experts to understand distributed system behavior and improve its configuration.

Supervised learning do not suffer from exponential explosion of the state space [9] which is
a problem in reinforcement learning [16]. Therefore it can be applied without modifications in
environments, where decision about the service choice is based on many parameters [26].

Additional advantage of supervised learning is that the learning process does not need a
tuning of several parameters (in the contrast to reinforcement learning). It allows to configure
the system easily.

In the future research more complex distributed system configurations will be examined.
Testing of communication between agents is also planned. Similar agent-based architecture
using supervised learning will be also used in other applications like resource allocation [7],
transport systems [17] and Focused Web Crawling [31]. Good application will be also a system
for intelligence data analysis that is being developed for the Polish Government Protection
Bureau, because of assumed number of heterogeneous services.
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