
Games and adversarial search

Chapter 6

1



Games vs. Search problems

• there are one or some opponents in a game vs. search problems.

• An opponent is a person or a computer that increases his/its 

utility by decreasing ours.

• “Unpredictable” opponent ⇒ solution is a strategy specifying a 

move for every possible opponent reply.

• Time limits ⇒ unlikely to find goal, must approximate plan of 

attack.

2



Type of games environment

deterministic chance

Perfect information Chess, othello backgammon

Imperfect information battleships Bridge , poker

3



Zero-sum games

• Suppose we have two players:

– Players take turns Players take turns

– Each game outcome or terminal state has a utility for each 

player (e.g.,1 for win,0 for loss)

– The sum of both players’ utilities is a constant 0.

– Like chess, tic-tac-toe, etc.





4



Game tree

A game of tic-tac-toe between two players, “max” , “min”

5



Minmax 

• Perfect play for deterministic, perfect-information games.

• Idea: choose move to position with highest minmax value

• E.g., 2-ply games:

6



Minmax algorithm

7



Example: non-zero-sum 

8



Example 

9



Example 

10



Example 

11



What about more than two players??

• More than two players, non-zero-sum  

• Each player maximizes their own utility at each node

12



Properties of minmax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• But do we need to explore every path??

• for chess, b≈35, m≈100 for“reasonable”games ⇒exact solution 

completely infeasible

13



Alpha-beta pruning

• It is possible to compute the exact minimax decision without 

expanding every node in the game tree

14



Alpha-beta pruning

15



Alpha-beta pruning

16



Alpha-beta pruning

17



Example: Alpha-beta pruning

18



Example: Alpha-beta pruning

19



Example: Alpha-beta pruning

20



Example: Alpha-beta pruning

21



Example: Alpha-beta pruning

22



Example: Alpha-beta pruning

23



Example: Alpha-beta pruning

24



• α is the value of the best choice 

for the MAX player found so far at any

choice point above n

• We want to compute the MAXMIN-value

at n

• As we loop over n’s children, the MIN

value decreases

• If it drops below α, MAX will never take 

this  branch, so we can ignore n’s remaining children

Alpha-beta pruning

25



• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With “perfect ordering”, time complexity = 

⇒doubles solvable depth

Alpha-beta pruning

26



Evaluation function

• Cut off search at a certain depth and compute the value of an 

evaluation function for a state instead of its minimax value.

– Use Cutoff-Test instead of Terminal-Test

• e.g.,depth limit 

– Use Eval instead of Utility

• i.e., evaluation function that estimates desirability of 

position

27



• the evaluation function may be thought of as the probability of 

winning from a given state or the expected value of that state.

• A common evaluation function is a linear weighted sum of 

features:

– For chess, 

• wk may be the value of a piece 

pawn = 1, knight = 3, rook = 5, queen = 9 

• fk(s) may be the number of each kind of piece

f1(S)= (number of white queens)-(number of black queens)

• Evaluation functions may be designed by a designer or by 

having the program play many games against itself.

Evaluation function

28



Games of chance

• Deterministic games in practice:

– Chess: deep blue

– Othello 

– Checkers: chinook

– Go

• Nondeterministic game: backgammon

• How to incorporate dice throwing into 

the game tree?

29



Nondeterministic games

• simplified example with coin-flipping:

• Chance:  0.5*2+0.5*4=3

0.5*0+0.5*(-2)= -1

30



Exact values don’t/do matter???

31



Games of imperfect information

• What about this type of games???

– Like: card games, where opponent’s initial cards are 

unknown.

32



End of chapter 6

33


