
Reconfiguring the Software Radio to
Improve Power, Price, and Portability

Ye-Sheng Kuo†, Pat Pannuto†, Thomas Schmid‡, and Prabal Dutta†

†Electrical Engineering and Computer Science Department ‡Electrical and Computer Engineering Department

University of Michigan University of Utah

Ann Arbor, MI 48109 Salt Lake City, UT 84112

{samkuo,ppannuto,prabal}@eecs.umich.edu thomas.schmid@utah.edu

Abstract
Most modern software-defined radios are large, expen-

sive, and power-hungry, and this diminishes their utility in
low-power, size-constrained settings like sensor networks
and mobile computing. We explore the viability of scaling
down the software radio in size, cost, and power, and show
that an index card-sized, sub-$150, ‘AA’ battery-powered
system is possible using off-the-shelf components. Key
to our approach is that we leverage an integrated, recon-
figurable, flash-based FPGA with a hard ARM Cortex-M3
microprocessor which simultaneously enables lower power
and tighter hardware/software integration than prior designs.
This architecture allows us to implement timing-critical
MAC protocols and validate the speculated performance of
several recent MAC/PHY primitives and protocols includ-
ing Backcast, A-MAC, and Glossy using an IEEE 802.15.4-
compliant radio implementation that interoperates with com-
mercial radios. The work also identifies several enhance-
ments in the underlying hardware components that could im-
prove power, performance, and flexibility.

Categories and Subject Descriptors
B.4.1 [HARDWARE]: Input/Output and Data Commu-

nications—Input/Output Devices; C.3 [COMPUTER SYS-
TEMS ORGANIZATION]: Special-Purpose and Appli-
cation-Based Systems
General Terms

Design, Experimentation, Measurement, Performance
Keywords

Software-Defined Radio, IEEE 802.15.4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SenSys’12, November 6–9, 2012, Toronto, ON, Canada.
Copyright c© 2012 ACM 978-1-4503-1169-4 ...$10.00

1 Introduction
Partridge predicts that by 2020, every commercial and

military radio will be a software-defined radio (SDR) sys-
tem [25], with fixed functions replaced by programmable or
reconfigurable components, as Figure 1 shows. The mili-
tary is well on its way with the Joint Tactical Radio Sys-
tem (JTRS [1, 19]). JTRS is the next generation voice and
data communication system for the U.S. military and is based
on the Software Communications Architecture (SCA [13]),
an open-architecture describing how software and hardware
works together. Commercial radios have been slower to
adopt the advantages of SDR systems. GSM base stations are
some of the first commercially available SDR solutions [23].
The rapid innovation in mobile phone radio standards places
a major burden on the network providers, as hardware has
to be regularly upgraded. SDR base stations alleviate this
problem with firmware upgrades that support new protocols.

More general SDR architectures offer high performance
and are optimized for flexibility [3, 9, 10, 14, 18, 31]. This
has led to large, expensive, and power-hungry systems that
draw between a few and hundreds of Watts, and cost over
$1,000 per radio. But these developments run counter to the
growth in small, portable, and battery-powered wireless sys-
tems. If Partridge’s prediction should hold, SDR systems
must slim down and start to explore the mobile space.

Prior research has proposed one path for putting the SDR
on a “low-calorie” diet, identifying four key requirements to
improve power, price, and portability [7]:

Radio Duty-Cycling. The radio dominates the power
budget in low-power wireless deployments [29, 30] so radio
duty-cycling and accurate time keeping are key [5].

Low-Power FPGA. SDRs distribute their functionality
across many components, so both the radio frontend and the
processing backend (FPGA, GPP, or DSP) must be jointly
power-optimized.

System Integration. Built from modular components,
SDR systems are built to be flexible, but this modularity in-
herently increases cost and size.

Measurement. The main goal of a mobile, battery-
operated SDR system is low-power operation. Thus, such
a system should integrate energy metering tools, exposing
performance metrics for hardware and software.

LO

LNA

PA

VGA ADC

DAC

Digital

Demod

Digital

Mod

Control

Logic

Micro-

controller

LO

LNA

PA

VGA ADC

DAC

Micro-

controller

FPGA

GPP

or

DSP

RF Frontend Comm.

Processing

Bus Protocol

Control

L
e
g

a
c
y
 R

a
d

io
S

D
R

Figure 1: Architecture of standard and software-defined
radios. The main difference is the fixed communica-
tion processing in a standard radio vs. the reconfig-
urable/programmable processing possible in a software-
defined radio, which enables rich experimentation and flexi-
bility.

This work presents µSDR, the first realization of a re-
cently proposed SDR architecture [7]. The goal of this work
is to explore the veracity of the claims made in the literature,
to see how close we can get with current technologies, and to
identify the open problems and hardware improvements that
remain to realize the vision of ubiquitous software radios. An
obvious question is whether it is possible to refashion any of
the existing SDR platforms into one that is small, inexpen-
sive, and low-power. We show that none of the current SDRs
can achieve low-power operation due to their particular ar-
chitectural choices in processing, interconnect, and power
control and management.

The design of µSDR addresses the four requirements by
choosing a flash-based FPGA and highly integrated com-
ponents, thus reducing size, cost, and power. In particular,
flash-based FPGAs can be duty-cycled, whereas traditional
SRAM-based ones cannot. µSDR also relaxes some of the
flexibility that other SDR platforms provide, and integrates
the RF frontend, baseband processing, and application pro-
cessor all on one PCB board. Therefore, the RF frontend is
fixed for a single radio band. The advantage of this approach
is the smaller component count as no PCB interconnects are
necessary. Fine-grained power control and a temperature-
compensated crystal oscillator provide key elements for low-
power operation. In addition, the physical size reduces sig-
nificantly, as no space has to be allocated for potential future
expansion boards or a modular interconnect. The higher in-
tegration also reduces the manufacturing cost, resulting in a
final cost that is less than $150.
2 Related Work

While there are a diverse array of SDR platforms [3, 14,
18, 31], none of the current platforms are suitable for low-
power radio research and development. Table 1 shows a
number of prior SDR platforms. In contrast, µSDR is op-
timized for power, cost, and portability, without appreciably
sacrificing flexibility or usability.

2.1 Throughput and Latency
A strongly limiting factor for any SDR system is the

available throughput and latency of the interconnect between
the “hard” and “soft” portions of the SDR platform [28]. As
this latency defines the critical path for the control loop, pre-
vious work places significant focus on minimizing it.

SORA uses the PCI-Express bus for its bounded latency
(sub 1 µs) and high throughput (up to 16 Gb/s), at the cost of
high power and a PC form factor for the platform. This de-
sign affords SORA the support of a complete PC operating
system for multi-tasking and control, at the cost of run-time
adaptivity. USRP also relies on the PC operating system for
much of its command and control functionality, however it
eschews the fixed form-factor of the PCI-E bus, instead rely-
ing on more conventional peripheral buses: USB (480 Mb/s)
or Ethernet (1 Gb/s). While these buses do provide high
throughput, Nychis et al. find their latency to be highly vari-
able, as high as 9000 µs [22]. For precise protocol timing,
such high and variable latency is untenable.

µSDR, in contrast, follows in the footsteps of SODA,
tightly coupling the hardware compute engine with an ARM
Cortex-M3 core [14]. Both systems allow for low latency
(0.46 µs) and high throughput (172 MB/s). Neither SODA
nor µSDR use an operating system in the traditional sense,
however as a custom micro architecture SODA goes even
further. It defines a slightly customized VLIW+SIMD ISA
and sacrifices traditional memory consistency semantics for
performance. Users of SODA then must carefully hand-tune
their programs not only to optimize performance, but to even
run correctly. SODA is not a full-featured SDR platform,
rather an advanced DSP architecture. While this microar-
chitectural compromise allows for better performance per
watt, µSDR has been realized in existing commodity hard-
ware (as opposed to just simulation), with a measured full
system power draw only slightly higher than SODA’s theo-
retical optimized form, as Table 1 shows.
2.2 Power

Before the discussion of power and portability, we first
divide existing SDR platforms into two broad categories:
those built on a PC or PC-architecture and those that are
stand alone. Power and portability are not a design consid-
eration for these PC-platforms (SORA and USRP 2), thus it
is unsurprising that µSDR, along with the other embedded
platforms, are orders of magnitude better in these metrics.

Of the remaining platforms, KUAR, WARP, USRP E100,
and SODA, µSDR excels in power draw and is competitive in
size with all except the custom chip SODA. Both KUAR and
the USRP E100 can be considered “near-PC” platforms that
embed low-power PC-like components in a compact form
factor. KUAR does not explicitly report power numbers, but
builds a custom board driven by a Pentium M whose most
efficient model draws 5 W [12], which we use as a gener-
ously conservative approximation for its power draw. The
USRP E100 datasheet reports 15 W load with RF daughter-
card installed. In a our own power measurements, shown
in more detail in Section 5, we find an idle power draw of
5.5 W. The WARP base system draws about 10 W, but is ca-
pable of supplying up to 30 W to each of four daughter cards,
allowing for a peak power draw of 130 W.

Platform Sleep Power Size Interconnect Throughput Cost Realization
SORA [31] - >100 Wc 36000 cm3c PCI-Express 16.7 Gb/s $2000c Research
KUAR [18] - >5 W 240 cm3f PCI-Express 2 Gb/s - Research
SODA (180 nm) [14] - ∼3 W 26.6 mm3e DMAa 24 Mb/sb -d Simulated
SODA (90 nm) [14] - ∼0.5 W 6.7 mm3e DMAa 24 Mb/sb -d Theoretical
WARP [3] - 10∼130 W 800 cm3f Parallel MGTsg 24 Gb/s $9750 Research
USRP 2c [10] - 7.9∼13.8 Wc 1760 cm3c Ethernet 1 Gb/s $1700ci Commercial
USRP E100 [9] 5.5 W 9∼15 W 1760 cm3 OMAP 3 GPMC 1.3 Gb/s $1300j Commercial
µSDR (this work) 0.32 W 1.4 W 203 cm3 AMBA 1.4 Gb/s $150h Research
a Memory bus architecture not specified [14].
b Inferred minimum, may be faster.
c Requires a companion PC. Not factored in power, portability, or cost for the USRP 1/2.
d SODA is a custom chip that would likely have an extremely high die cost, but low per-unit cost.
e Assumes 1 mm thick.
f Assumes 2 cm thick.
g “Multi-Gigabit Transceiver”, an interconnect technology built into Xilinx FPGAs. Uses up to 8 parallel 3 Gb/s transceivers
h Assumes 1,000 unit production run. See Table 2 for detailed breakdown.
i Estimated material cost approximates $400.
j Estimated material cost approximates $360.

Table 1: A comparison of SDR platforms. The range in power comes from boards whose power usage varies depending
on the presence and type of daughter card installed in the system. Where possible a measured idle / sleep power is also
shown. For platforms that only list area we make reasonable assumptions on height. µSDR is 10% the cost of the next most
expensive SDR platform, yet provides parable speeds in the smallest non-IC package. It uses less power than any realized
hardware and nearly ties the previous best theoretical hardware.

All of these previous systems have one thing in common:
their power usage is reported in Watts. With µSDR, we de-
liver the first realized sub-Watt SDR platform – a significant
milestone. µSDR is the first SDR platform capable of run-
ning for a full day on a pack of AA batteries 1

2.3 Portability
As we enter the era of sub-Watt SDR platforms, we find

that the size, and in turn portability, of the SDR platform be-
comes a critical design consideration. The current µSDR de-
sign is approximately four times the size of popular research
motes such as the Mica, TelosB, or Tmote Sky, shown in Fig-
ure 3. We note that with the removal of the external memory
controller, µSDR’s extra interfaces (such as Ethernet), and a
slightly more compact layout, the µSDR platform could eas-
ily be made half its current size.

2.4 Cost
Perhaps the greatest advantage of the µSDR system com-

pared to previous work is its extremely low cost – an or-
der of magnitude less expensive than other SDR platforms.
The first large cost reduction comes from building a stan-
dalone platform, rather than relying on a costly support PC
(SORA, USRP 2) or the slightly less costly embedded PC-
like environment (KUAR, USRP E100). The next biggest
saving comes from eschewing the more traditional daughter-
card based SDR approach, instead opting to design a dedi-
cated 2.4 MHz RF frontend.

1Extrapolating from [26], we consider four AA batteries with average
of 2500 mAh and a fully charged nominal voltage of 1.6 V . The minimum
supply voltage to µSDR is 4 V, yielding 9.75 Wh of usable power. This
is enough energy for µSDR to run 7.5 hours at full power or 30.5 hours in
maximum sleep.

While the µSDR system lacks physical daughtercards, it
does not completely sacrifice modularity. Separate RF fron-
tends can be “dropped in” to the schematic and used inter-
changeably. Third parties are already designing a new board
with a 5 GHz frontend. We also find considerable cost-
savings by using fewer and less-powerful FPGAs than the
WARP platform. Despite the significantly lower processing
power of the µSDR platform, it offers sufficient performance
to support an IEEE 802.15.4 standards-compliant radio on a
significantly smaller budget than other SDR platforms.

2.5 Deployability
Ultimately, µSDR contributes what we argue to be the

first truly deployable SDR platform. Previous platforms
were tied to PCs (SORA, USRP 2), tied to large power sup-
plies (KUAR, WARP, USRP E100), or existed only as sim-
ulations (SODA). Even resolving these issues, all prior plat-
forms were prohibitively expensive for any large scale de-
ployment. We estimate the cost per node of a 1,000 node
µSDR deployment to be only $150, a full order of magni-
tude better than the previous state of the art.

3 Design and Implementation
This section presents the key architectural and design de-

cisions that underpin the µSDR platform. Three main de-
signs goals guide the system architecture: low-power, small
size, and low cost. We relax the modular design of existing
SDR systems to reduce size and cost, while promoting the
FPGA to a first class citizen.

A fast interconnect is necessary for meeting the tight tim-
ing and low radio latencies that modern radio standards re-
quire. Hence, we must use a fast, but low-power interconnect
between the FPGA and the processing core to achieve this.

Cortex-M3

DAC
MAX5819

Radio Frontend MAX2831
TX I/Q

S
m

a
rt

F
u
s
io

n

F
P
G

A
 F

a
b
ri

c
Analog

RX I/Q RSSI

ADC
ADC081S101

ADC
AD9288

Memory

AHB

RX Path

Digital

Demod

ADC

Control

Radio

Control

Gain

Control
TX Path

Digital

Mod

DAC

Control

Figure 2: µSDR system architecture. The FPGA fabric
hosts the transmit, receive, and radio control, and is directly
connected to the AMBA High-performance Bus (AHB), to-
gether with the memory, analog compute engine (ACE), and
the ARM Cortex-M3 core. This interconnect allows direct
memory-mapped access from the core to the SDR blocks.

One possibility is to use an external memory interface exist-
ing on many low-power microcontrollers (MCUs) to connect
to the FPGA. While this allows for a flexible choice of MCU
and FPGA, it has the disadvantage of a larger footprint, con-
strained I/O bandwidth, and potentially increased costs.

ARM provides several options both on the low-power
computing core and bus architecture front. All major FPGA
vendors sell SoC packages that contain high-speed ARM
cores integrated with leading-edge FPGAs. The cores and
the FPGA are most often connected through the AMBA
High-performance Bus (AHB). The AHB is a pipelined, sin-
gle clock-edge on-chip bus to connect peripherals, memo-
ries, and cores on a SoC and provides a bandwidth of up
to 16 GBit/s. An even faster version of the AHB is the
Advanced eXtensible Interface (AXI) which is used in Xil-
inx’s Zynq reconfigurable SoC that marries a dual-core ARM
Cortex-A9 with a Xilinx FPGA in one package [33]. Al-
tera has a similar SoC combining a dual-core ARM Cortex-
A9 with their Arria V or Cyclone V FPGA series. Altera’s
bus interface has a peak bandwidth of up to 100 GBit/s [2].
While these systems offer impressive performance, their
power draw is measured in Watts, making them unsuitable
for a low-power, battery-operated solution.

Microsemi, an FPGA vendor with a low-power, flash-
based product line offers a third alternative: the SmartFu-
sion customizable System-on-Chip (cSoC) [17]. SmartFu-
sion contains an ARM Cortex-M3 with a flash-based FPGA,
connected through an AHB bus interface. The SmartFusion
offers instant-on at power up, as configuration is stored in the
flash-based FPGA. The AHB interconnect allows developers
to write custom peripherals on the FPGA, and access them
via memory-mapped I/O, as if they were a regular periph-
eral. This architecture allows for fast and simple interaction
between the software and hardware elements of SDR plat-
form, and a very flexible software-hardware boundary.

Figure 3: The µSDR platform. It measures 14.5 × 7 cm and
runs for 7.5 hours without duty cycling from 4 AA batter-
ies, allowing for the first time true mobile SDR experiments.
Shown for scaling is the Tmote Sky. The current µSDR is ap-
proximately four times the size of the Sky. Removing extra-
neous inputs (Ethernet, etc.) and debugging headers, µSDR
is approximately twice as large as the Sky.

The SmartFusion also offers a rich set of standard MCU
peripherals (timers, serial interfaces, memories, etc.) and an
analog compute engine (ACE) with an ADC, DAC, and am-
plification/filtering options. Adding a radio frontend would
turn the SmartFusion into an SDR platform. However, the
ADC and DAC are limited to ∼700 KS/s, which would only
support low-rate, non-standard protocols.

We add an external ADC and DAC to overcome the sam-
pling rate limitations of the ACE. Figure 2 shows the ma-
jor components on the SmartFusion, as well as the external
ADC, DAC, and radio. Figure 3 shows the µSDR platform.
The SmartFusion (U1) is the large chip in the center of the
PCB. The ADC (U5) and DAC (U7) are to the right of the
SmartFusion. The RF section occupies the right-hand side of
the board, with the radio (U10) in the middle.

3.1 Hardware Design Details
This section describes the specific chips used in the

µSDR platform, their features, and the role they play.
We chose the largest SmartFusion currently available,

the A2F500, which offers 512 kbyte of Flash and 64 kbyte
of SRAM. The Cortex-M3 can run at up-to 100 MHz, and
the FPGA provides 500,000 system gates and 24 dedicated
RAM blocks (at 4608 bits each), which is sufficient for many
communications processing tasks or complex custom logic.

The RF frontend is based on a Maxim MAX2831 RF
transceiver chip operating in the 2.4 GHz ISM band. This RF
transceiver combines all necessary RF blocks reducing nec-
essary external components and thus size and cost. This in-
cludes a power amplifier (PA), RF-baseband converters, volt-
age controlled oscillator (VCO), frequency synthesizer, and
baseband control interface. The frequency synthesizer sup-
ports step increments of 20 Hz, and the digitally tuned oscil-
lator allows the MAX2831 to use a low-cost external crystal
oscillator. The MAX2831 also has a rich control interface
using a serial peripheral interface (SPI) as well as some ded-
icated I/O and analog lines for time-critical operations, such
as gain control and received signal strength indicator (RSSI).

Desc Part number Size (mm) Cost (1k)

FPGA Microsemi A2F500M3G 17 x 17 $45
Radio Maxim MAX2831 7 x 7 $4
ADC ADI AD9288 9 x 9 $4
DAC Maxim MAX5189 6 x 10 $5

Discretes $34
PCB 6 layers 145 x 70 $25

Assembly $20

Total $137

Table 2: Cost breakdown of the µSDR platform.

The external high-speed ADC and DAC are the Analog
Devices AD9288 [4] and the Maxim MAX5189 [15]. The
AD9288 is a high performance dual-channel analog to digi-
tal converter supporting up to 100 MS/s and draws less than
90 mW per channel. The requirement for only a single power
supply simplifies the hardware design, and a power-down
mode feature is necessary for its low-power operation in
duty-cycled applications. The MAX5189 is a low cost dual
8-bit digital to analog converter, operating at up to 40 MS/s.
In shutdown, the MAX5189 draws only 5 µW.

In addition to the high performance parallel ADCs and
DACs, a second serial ADC, an ADC081S101 [32], reads
the analog RSSI output of the RF transceiver chip at rates
up to 1 MS/s. This data is available on the FPGA to support
automatic gain control algorithms for the LNA and VGA of
the RF transceiver.

3.2 Cost Breakdown
Cost is a critical design aspect of the µSDR platform, nec-

essary to build larger testbeds and deployments of an SDR
system. Table 2 shows a cost breakdown of the major µSDR
components. Even at low volumes (1k) the µSDR platform
should cost less than $150, including assembly and PCB.

4 Applications
This section presents the viability of using the µSDR plat-

form to communicate with standards-compliant, low-power
radios. We implemented IEEE 802.15.4, a non-trivial phys-
ical and link layer standard used in many short-range, low-
power radios.

The short-range, low-power wireless standard IEEE
802.15.4 describes the physical layer and frame structure,
leaving higher layers up to the developer to design. IEEE
802.15.4 uses spread spectrum technology to increase its re-
silience towards channel noise. Every 4-bit data sequence is
mapped to a 32-bit long chip sequence. This chip sequence
is then modulated as an offset quadrature phase-shift keying
(O-QPSK) signal with half-sine pulses. The sixteen 32-bit
chip sequences are chosen so their cross-correlation is mini-
mized. This scheme allows a receiver to compare incoming
chip sequences to one of the sixteen existing sequences, al-
lowing for errors within the received sequence, but resulting
in a successful sequence detection with high probability.

Figure 2 shows the general µSDR architecture. For our
IEEE 802.15.4 implementation, we implemented a transmit-
ter with O-QPSK modulator representing the transmit path.
For the receiver we exploit the fact that O-QPSK with half-

Component Area Max Freq.
TX 20% 100 MHz
RX 72% 80 MHz

Area optimized for minimum required frequency of 16 MHz.
Speed optimized increases area to 78%.

Table 3: FPGA size and corresponding maximum frequency.
The area with respect to the 500K gate SmartFusion A2F500.
The transmitter is limited by 80 MHz DAC, while the re-
ceiver is FPGA limited.

DAC
Access

Control
LUTs

Digital

Mod

ACK

FIFO

FWD

FIFO

TX

FIFO

HW

Gen

HW

Gen

MCU

Gen

Figure 4: IEEE 802.15.4 transmitter. Three input FIFOs
feed the modulator implemented as lookup tables for byte
to chip, and chip to half-sine pulse mapping. This provides a
compact O-QPSK implementation with support of automatic
ACK generation and fast packet forwarding mechanisms.

sine pulse shapes is equivalent to minimum shift keying
(MSK), and thus we use an FM demodulator. The following
sections go into details of the specific implementations. To
exemplify the potential of the µSDR platform, we describe
in Section 4.6 enhancements we performed that usually are
not found on commercial radios, but support recent advances
in wireless protocol designs.

4.1 Transmitter
We implemented the full transceiver chain as a memory-

mapped peripheral on the FPGA. This reduces the burden
and complexity of the software. To send out a message,
the core transfers the packet from memory into a transmit
FIFO (see Figure 4). The processor can start the transmis-
sion before the full packet is uploaded by sending a trans-
mit command to the peripheral. The peripheral starts encod-
ing the packet, starting with the preamble, SFD, and FCF,
before adding the bytes from the transmit FIFO. The bytes
go through several encoding steps, translating from half-
bytes (4-bit) to chip sequence (32-bit), and finally they are
mapped to an O-QPSK signal with half-sine pulse shapes on
the in-phase and quadrature band. All these translations are
done by using lookup tables, simplifying the implementation
while providing high-speed processing.

The transmit FIFO shares the transmit chain with two
other FIFOs for automatic acknowledgment generation and
rapid message forwarding. An access control logic grants
permission to a FIFO if the FIFO has data to transmit, and
the transmit chain is currently empty. Section 4.4 and 4.6.2
will go into more details on these two FIFOs.

4.2 Receiver
The implemented receiver chain (see Figure 5) resembles

the GNU Radio IEEE 802.15.4 receiver implementation de-
scribed by Schmid [27]. It exploits the fact that an O-QPSK
modulated signal with half-sine pulse shapes is equivalent
to a minimum-shift keying (MSK) signal, and thus a sim-
pler frequency shift keying (FSK) demodulator can be used
to extract the chip sequence from the data stream [21].

The FSK-demodulator uses the in-phase and quadrature
components coming from the RF chip at 16 MS/s to pro-
duce an amplitude modulated (AM) signal, where the am-
plitude corresponds to the frequency of the incoming signal.
A matched filter then integrates the AM signal. The filter is
sampled at the chip-frequency of 2 MS/s, indicating a logic
1 or 0. Next, a preamble detection mechanism searches for
a 0x00 (a chip sequence of 64-bits) to identify any incoming
packets. It also performs clock synchronization by occasion-
ally adjusting the matched filter.

The receiver then calculates the Hamming distance D
between detected symbols and the known chip sequences.
The decoded symbol is the index of the sequence that has
the minimum distance D from the sampled sequence. The
smaller the distance D from a known chip sequence, the
higher the probability for a correct decoding. Once the sym-
bol is decoded, the receiver stores the decoded symbol in
an RX FIFO and performs the frame filtering. Various inter-
rupts (detection of the start of frame delimiter (SFD), Length,
Packet completed, etc.) are generated during the frame filter-
ing, informing the processor of the different events happen-
ing in the decoder. These interrupts are crucial for timely
processing inside the software implementation of a MAC
protocol.

Once a packet is fully received (e.g., when the proces-
sor receives the Packet Completed interrupt), the processor
copies the packet from the RX FIFO using a DMA transfer
into RAM for further processing.

4.3 Radio and Automatic Gain Control
A flexible SDR system needs fast and extensive control

over the radio frontend in order to be agile and adapt to a
changing RF environment. The MAX2831 provides a 3-wire
SPI interface for configuration, a 7-bit parallel bus for only
gain control, and an analog output providing the received sig-
nal strength. An additional I/O line switches the frontend
from receive to transmit (the chip cannot be used for full-
duplex radio communication).

We offload as much of the radio control into the FPGA
as possible. This simplifies the software to memory-mapped
operations instead of dealing with a stand alone SPI inter-
face and incurring potential software interrupt latencies. In
addition, it speeds up the control loop and allows us to send
commands to the radio within 2.94 µs. For example, the
MAX2831 does not provide an integrated automatic gain
controller (AGC). Thus, the FPGA has to measure the RSSI,
and adjust the radio gain through the SPI interface. The AGC
loop tunes the gain setting within 5 µs without having to in-
volve the processor. This high speed AGC keeps tuning the
gain setting to prevent abrupt changes in signal strength and
maintains a constant signal amplitude.

ADC
FM

Demux

Symbol

Sync.

Chip

Decode

Freq.

Comp.

Data

CRC Error

Figure 5: IEEE 802.15.4 receiver implementation. Our im-
plementation exploits the fact that O-QPSK modulation can
be decoded as MSK with adaptation of the chip sequences.
This simplifies the decoder implementation.

4.4 Hardware ACK Generation
Many wireless protocols rely on acknowledgment (ACK)

messages to ensure reliable communications. According to
IEEE 802.15.4, if a receiver receives a packet requesting an
ACK, it has to generate an ACK frame and respond to the
transmitter with a precise 192 µs latency. Meeting this timing
constraint is difficult for an SDR platform if it relies on the
processor to software decode the signal. Pure software de-
coding is favorable from a software engineering perspective,
as more resources and code libraries are available. In addi-
tion, the code can be written in a higher level language, such
as C/C++ or Python. However, software decoding platforms
must have enough computing resources and low-latency in-
terfaces between the processor and radio to meet the strin-
gent timing constraints. In most SDR systems, the interface
between the processor and the radio frontend is considered
the data bottleneck.

Meeting those strict timing constraints has become a
challenge for SDR platforms. Nychis et al. characterize var-
ious latencies from the Linux kernel to the Universal Soft-
ware Radio Peripheral’s FPGA [22]. Their results showed
that it can take up to 9,000 µs with a mean latency of 612 µs
to get data from the Linux kernel to the USRP. Because of
this nondeterministic latency, the USRP is ill-suited for any
timing-constraint communication protocol. Nychis proposed
several basic RF blocks that if implemented close to the ra-
dio, can alleviate this problem. However, it makes the system
architecture significantly more complex to use as this parti-
tion must be carefully planned.

MSR’s SORA solves the interface issue by using a high
bandwidth and low-latency PCI-E interface, which achieves
360 ns one-way delay, but at the expense of high power. Ad-
ditionally, a powerful multi-core processor with dedicated
processing cores allows real-time decoding and fast replies.

In contrast, the µSDR design uses hardware decoding,
i.e., demodulation and frame filtering are all performed in the
FPGA. This drastically reduces decoding latency and allows
µSDR to quickly respond to incoming packets. In µSDR,
the ACK frame generation is also implemented in hardware.
The ACK generation block pre-stores preambles and SFD in
a small 11-byte ACK FIFO. The only missing parts of the
ACK are the data sequence number (DSN) and correspond-
ing FCS. If the incoming packet passes the CRC check, the
hardware copies the packet’s DSN into the ACK FIFO. At
the same time, the ACK generator block calculates the cor-
responding FCS and initiates a countdown for precise timing.
In our IEEE 802.15.4 implementation, the receiver calculates
the CRC and FCS within 12 µs, leaving 180 µs of slack to
meet the timing requirements.

4.5 Operating System
In our µSDR implementation, the transmission and re-

ceiving chain are synthesised in the FPGA to reduce the
workload of the MCU. However, given the high speed inter-
connect between the MCU and the FPGA, the computation
boundary could be flexible depending on the radio’s archi-
tecture. We measured the latency of software-implemented
symbol decoding. Each symbol consists of 32 chip se-
quences and occupies 16 µs in time. Symbol decoding com-
putes the Hamming Weight of a given 32-bit sequence and
XORs it to 16 known 32-bit sequences. Each symbol can
be decoded in 1,679 cycles, which is 16.8 µs at 100 MHz.
16.8 µs is on the edge of real-time decoding. We believe it
may be possible to implement most of the receiving chain
in software and maintain the timing constraint with more
optimized code. The transmission chain consists of several
LUTs and requires less computation than the receiving chain.
In µSDR implementation, the data rate from the FPGA fab-
ric to DAC is set to 48 MBps, much less than the AHB band-
width between the MCU and FPGA. Therefore, transmission
can be implemented entirely in software with ease.

4.6 Radio Enhancements
The receiver, transmitter, and hardware acknowledgment

implementations are everything needed to fully interact with
commercially available IEEE 802.15.4 radios. The following
sections describe enhancements to support more advanced
MAC features that are not always found in currently avail-
able radios. This highlights the strength of µSDR to test and
validate new radio architectures that jointly optimize low-
power MAC protocols.

4.6.1 Multiple Address Recognition
The most important decision a low-power MAC protocol

makes is to stay awake or go back to sleep if channel activ-
ity has been detected. Recent advances in low-power MAC
protocols showed that receiver initiated protocols have an ad-
vantage over low-power listening types of protocols as they
are more robust against interfering noise [6]. In a receiver
initiated MAC protocol, nodes that want to receive packets
transmit a short probe. Nodes that have packets to trans-
mit buffer them locally until they hear a beacon from the
intended receiver. Once they decoded a beacon, the nodes
acknowledge it and start transmitting the data in the next
packet. A-MAC demonstrated that this could be done in a
very efficient way, even if multiple nodes try to send data
to the same receiver [6]. A-MAC exploits the fact that ac-
knowledgment messages will interfere constructively at the
receiver. This allows the receiver to make the crucial deci-
sion to stay awake, even if the first data packet of the multiple
transmitters collides, at which point a back-off mechanism
must resolve the conflict.

Prior work identified one critical factor limiting the per-
formance of A-MAC is the radio address recognition mecha-
nism [6]. Hardware acknowledgments can only be generated
for ones own address. Thus, A-MAC reprogrammed it’s own
address to the intended receiver’s beacon address (receiver’s
address with the MSB bit set) waiting for the beacon. This
introduced several problems which limit the protocol, chief
among them the ability to listen for only one node at a time.

Receiving Packet

Frame Filtering

Frames Stored

in RX/FWD FIFOs

Packet

Completed?

NO

Request

Forwarding?

Forward

Packet

YES

YES

NO

YES

Software Multiple

Address Recognition

Address

Match?

Interrupt

Flush

FWD FIFO

NO/YES

Request

ACK?

Hardware Software

Prepare

ACK

To Radio

From Radio

Flush/ACK

Figure 6: Packet reception and response in µSDR. This dia-
gram shows the partitioning of responsibilities between the
hardware and software portions of µSDR. The decision to
support multiple address recognition requires software sup-
port of the reception/response loop to keep hardware area
costs reasonable. In this tightly-coupled model, the software
controller takes advantage of the hardware accelerated ac-
knowledgments to meet the stringent latency requirements
of the 802.15.4 acknowledgment frame.

We implemented a multiple address recognition mech-
anism in µSDR. According to the IEEE 802.15.4 standard,
the address field can be as long as 8 bytes. This leads to a
design trade-off between implementing this functionality in
software or hardware by trading latency for FPGA area. We
decided to have a slight latency increase, and implemented a
multiple address recognition algorithm on the processor that
can detect up to 8 addresses. However, this latency increase
does not impact the performance of the protocol, as µSDR
can read out the address faster from the receive FIFO than
the time it has to wait to reply with an ACK. In addition,
the multiple address recognition algorithm takes advantage
of the hardware acknowledgment mechanism preparing an
ACK while receiving the incoming packet. All the algorithm
has to do is send a signal to the peripheral letting it know
to acknowledge this message. Figure 6 shows the state dia-
gram of the algorithm and how hardware and software inter-
act. This demonstrates the flexibility of the platform, allow-
ing certain protocol functionalities that are time critical to
be done in hardware only (e.g., hardware acknowledgments
generation) while others are implemented in software.

Receiving Packet

Frame Filtering

Frames Stored

in RX/FWD FIFOs

Packet

Completed?

NO

CRC

Correct?

Forward

Packet

YES

YES

Relay Cnt

Field?

Increment

Relay Cnt
NO

YES

Request

Forwarding?

YES

Flush

FWD FIFO

Calculate

New CRC

Relay Cnt <

Threshold?

YES

NO

NO

NO

To Radio

From Radio

Figure 7: Detailed packet forwarding state diagram. This
is a more detailed version of the packet forwarding mecha-
nism shown on Figure 6. Packets are stored in an incoming
FIFO, automatically incrementing the Relay Count field and
CRC as necessary. When a packet completes, it is automati-
cally forwarded if requested and its count is below the relay
threshold.

4.6.2 Packet Forwarding
Two basic services in wireless sensor networks are time

synchronization and flooding. The broadcast storm is a com-
mon problem flooding algorithms have to take care of [20],
as retransmission of regular broadcasts can amplify itself,
and thus overload the network. Ferrari et al. proposed
Glossy [11], a fast flooding and time synchronization mech-
anism. Glossy exploits the fact that in IEEE 802.15.4, if
multiple identical packets arrive within 0.5 µs at a receiver,
they collide constructively, and the receiver can successfully
decode the message with high probability. To achieve this,
Glossy nodes forward a received packet during a precise time
slot and increment a relay counter in the packet. Packets with
identical relay counts will be transmitted at the same time, at
all nodes. Therefore, the packets will constructively inter-
fere at the receivers. The relay counter limits the maximum
hop count of the packet, making sure that packets do not live
forever within the network. Glossy uses a fragile software
technique to guaranty software latencies. They have to dis-
able all interrupts and add no-operation (NOP) commands
to adjust the latencies during a Glossy transfer. Although
the wireless links are lossy, Glossy demonstrates 99.9999%
flooding reliability in a 10 hop deep network.

Österlind et al. proposed a zero-copy mechanism [24]
to improve the throughput of multi-hop wireless sensor net-
works. He observes that the critical path of zero-copy is the
interface between radio and processor. The packet forward-

SmartFusion Spartan
Voltage Rail Static Current Static Current
3.3 V (I/Os) 26.9 mA 79 mA
2.5 V (Aux) n/a 88 mA
1.5 V (Core) 8.0 mA n/a
1.2 V (Core) n/a 80 mA
Total Power 101 mW 578 mW

Table 4: Static current at each supply rail for the Smart-
Fusion and Spartan 3-2000. The Spartan is a more tradi-
tional SRAM-based FPGA whereas the SmartFusion is a
flash-based design. Measurements are taken after both de-
vices have been configured and allowed to settle. We ob-
serve less static current at the I/O buffers, and significant
differences at the core supply. The SmartFusion current is
10× less than the Spartan. As a consequence, the Smart-
Fusion requires approximately 18% as much static power as
the Spartan, making flash-based FPGAs a much better design
decision for low-power platforms.

ing is done by downloading the packet from the radio to the
processor, and uploading it back into the radio. Instead of
downloading and then uploading the same packet, it would
be advantageous if the radio stored the received packet and
were able to immediately retransmit it out. This method im-
proves the total throughput to 97% of the theoretical upper
bound.

We decided to implement a fast packet forwarding mech-
anism in the FPGA of the µSDR platform. We use the data
sequence number (DSN) as a relay counter. Figure 7 shows
the state diagram. During reception of a packet, the receiver
stores the data in two different FIFOs, the receiver and for-
warding FIFOs. However, the two FIFOs store slightly dif-
ferent information in the DSN and frame control sequence
(FCS). The DSN gets automatically incremented by 1, and
the FCS is updated accordingly.

Using this mechanism, µSDR forwards a packet without
interacting with the software at all. This removes the crit-
ical path identified by Österlind and allows the retransmit
to happen in less than 20 µs. This forwarding also solves
the fragile Glossy software implementation as no interrupts
have to be disabled on the software side, nor do we have to
add any NOPs. In addition, the forwarding can be precisely
controlled, changing the latency to any arbitrary, but fixed,
delay (e.g., to 192 µs which would correspond to the ACK
turn around time). This would allow backward compatibility
with some existing commercial radios that have forwarding
capabilities (e.g., the TI CC2520), but have a transmit to re-
ceive turn around time of 192 µs as specified by the IEEE
802.15.4 standard.

5 Evaluation
We evaluate µSDR on its merits as a low-power SDR

platform. Specifically, we focus on its power draw, la-
tency, and flexibility. We further examine the ability and
performance of the µSDR system in supporting low-power
IEEE 802.15.4 physical and link layer protocols.

Frequency Wake-up System System
Scaling Latency Current Power

off 34 µs 108 mA 518 mW
on 3.01 ms 67 mA 322 mW

Table 5: Sleep power and latency trade-off. Without fre-
quency scaling, µSDR draws 108 mA while Waiting For an
Interrupt (WFI). It wakes-up from this state in only 34 µs.
With frequency scaling, µSDR saves 38% in power while
taking 89× longer to wake up.

5.1 Platform Micro-Benchmarks
Designing a low-power system requires building from the

ground up with low-power components. In traditional soft-
ware radio designs, one of the largest power sinks is the
FPGA. The relatively recent emergence of flash-based FP-
GAs augmented with a low-power microcontroller opens the
door to low-power design. In Table 4 we compare the static
power draw of the flash-based SmartFusion to the SRAM-
based Xilinx Spartan 3-2000 used in the USRP 2. The supe-
rior FPGA core power efficiency of the flash-based FPGA is
a direct consequence of the technology. Freed from the com-
paratively high leakage currents of SRAM logic cells, the
flash-based FPGA draws very little static power. As a young
technology, we expect these innovations in static power for
flash-based FPGAs to improve rapidly, as evidenced by the
Microsemi IGLOO series, whose Flash*Freeze technology
lowers the FPGA static power draw down to just 2 µW [16].

In addition to the impact on static power draw, flash-
based FPGAs also improve cold-boot performance. For an
FPGA to be useful, it must at some point be configured. In
the case of SRAM-based FPGAs, this configuration must oc-
cur at every boot, as the configuration of the FPGA is lost
when power is no longer supplied. This configuration period
introduces a non-trivial delay for the FPGA wake-up process
as well as consuming a relatively large amount of energy.
Most importantly, the latency imposed by the configuration
window inhibits effective duty-cycling of the FPGA. In Fig-
ure 9, we compare the cold-boot times of the SRAM-based
USRP 2 (9(a)) to the µSDR (9(b)). After a system in-rush
current spike of 1.8 A, the USRP 2 averages a 700 mA cur-
rent draw for 1.964 s while it configures its FPGA. This long
configuration process and high current draw consume 9.56 J
of energy, a cost that must be paid every time the FPGA is
power cycled.

In contrast, µSDR has no current spike on bootup and of-
fers an average current draw of under 120 mA. To measure
time to first useful instruction, we wrote a test program that
simply toggles an I/O line, indicating the processor is ready
to start executing. We measured the time from power ap-
plication until the I/O asserts. The µSDR requires 54 ms to
boot the system, consuming only 0.028 J. Even the latency
of µSDR is not ideal for a rapidly duty-cycled system, which
should be measured in microseconds rather than in millisec-
onds. µSDR is still significantly faster than the USRP 2’s
seconds to boot: µSDR offers 36× lower cold-boot latency
and 341× lower energy usage.

V
o
lt
a
g
e
 (

V
)

C
u
rr

e
n
t
(A

)

Time (s)

Idle Loading
Firmware

Creating Control Object Transmitting Data

firmware loaded system current

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

-5 -4 -3 -2 -1 0 1 2 3 4 5
 0

 0.5

 1

 1.5

 2

 2.5

Figure 8: USRP E100 power profile. The E100 runs a full
embedded Linux platform, making cold-boot an untenable
comparison. Rather we show the timing from an idle, booted
system to load a firmware image (configure the FPGA) and
send the data. The firmware loaded signal is recorded from
a firmware loaded pin exported by the E100. After configu-
ration, the system idle power drops to just under 1 A at 6 V.

Given that the 54 ms boot time is still too slow to sup-
port fine-grained duty-cycling, µSDR also presents a sleep
mode as a median option between system full on and full
off. Unfortunately, the SmartFusion chip is only capable of
sleeping the M3 core (via WFI2). Fully sleeping the FPGA
would require technology similar to the Flash*Freeze mode
from the Microsemi IGLOO line of low-power FPGAs. Un-
fortunately these FPGAs do not yet support the tight inte-
gration with a hard CPU and are currently unsuitable for the
µSDR platform. Until technology similar to Flash*Freeze
comes to the SmartFusion, µSDR is still capable of lower-
ing the FPGA power via frequency scaling. In µSDR’s fre-
quency scaling mode we turn off the external crystal oscilla-
tor and used the FPGA’s internal RC network instead. The
frequency of the RC network is reduced to 6.5% of the orig-
inal frequency (to 3.125 MHz). We additionally turn off the
PLL and bypass two other clock sources for FPGA logic to
further reduce the system current. Table 5 details the results
of these power optimizations. Placing the processor in WFI
state and power gating all external components reduces sys-
tem current draw to 108 mA with only 34 µs of wakeup la-
tency. Introducing FPGA frequency scaling reduces system
power further to 67 mA, but imposes a 3.01 ms latency to
start the crystal oscillator and stabilize the PLL before the
processor can begin execution.

Finally, we compare µSDR to the USRP E100, USRP’s
“embedded” series. The E100 is built on the GumStix
platform, a small ARM-based PC-like device. The advan-
tage of the E100 is it requires no controlling computer;
rather the controller is built in to the system. As a conse-
quence, the E100 actually has greater power draw than its
PC-encumbered counterpart, as Figure 8 shows.

2WFI: Wait For Interrupt, an ARM instruction that places the core in
a lower power sleep state until interrupted. The contents of registers are
preserved but the rest of the core is power gated

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2
 0

 0.5

 1

 1.5

 2
V

o
lt
a
g
e
 (

V
)

C
u
rr

e
n
t
(A

)

Time (s)

6V Input Current FW Loaded

(a) USRP 2 Cold-Boot

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

V
o
lt
a
g
e
 (

V
)

C
u
rr

e
n
t
(A

)

Time (ms)

4.8V Input Current Ready

(b) µSDR Cold-Boot

Figure 9: USRP 2 and µSDR cold-boot comparison. Both systems power on at 0 s. As expected, the USRP 2 (a) has a current
spike of 1.8 A, and exhibits an average current draw of 700 mA at 6 V. It takes 1.96 s to load the firmware from an external
SD card, resulting in 9.56 Joules of energy consumption during cold-boot. In contrast, the flash-based µSDR does not have
an in-rush current and the average current is less than 120 mA at 4.8 V. Moreover, µSDR requires 54 ms to boot the system,
resulting in only 0.028 Joules of energy consumption. µSDR is 36× faster and uses 341× less energy than the USRP 2 to
start-up.

5.2 Application Micro-Benchmarks
We evaluate how well A-MAC and Glossy, two recently

proposed low-power protocols, are supported by µSDR.
5.2.1 Validating A-MAC Acknowledgments

Prior work proposed using ACK frames to support a
receiver-initiated MAC protocol [6]. Unfortunately that
work was built upon the fixed function CC2420 radio, which
does not allow sufficient flexibility to fully realize the pro-
tocol. We investigate the A-MAC protocol’s colliding ACK
primitive on the µSDR platform, both to validate the original
A-MAC protocol and to demonstrate the capabilities of the
µSDR platform.

In A-MAC we can assume two nodes transmit the same
packet d(t) with carrier frequencies f1 and f1 + ∆ f at the
same time. The transmitted RF-signal s(t) then is achieved
by summing the d(t) modulated with each carrier frequency
f1 and f1 +∆ f :

s(t) = d(t)× [cos(2π× f1× t)+ cos(2π× (f1 +∆ f)× t)]

This equation can be simplified using the sum-to-product
identity:

s(t) = d(t)×
[
2 · cos(2π× 2 f1+∆ f

2 × t)× cos(2π× ∆ f
2 × t)

]
Assuming that the receiver has the same carrier frequency
f1, the received RF-signal r(t) can be simplified as:

r(t) = s(t)× cos(2π× f1× t)

By down conversion, the received baseband signal rB(t) is
equivalent to r(t) without high frequency component, which
can be expressed as:

rB(t) = d(t)× cos2(2π× ∆ f
2 × t)

The takeaway here is the existence of an envelope frequency
of ∆ f/2 that encompasses the received ACKs.

Figure 10 shows an example of a packet collision and the
resulting envelope. The envelope introduces local minima to
the received signal. These are important as the signal ampli-
tude is attenuated during a local minimum, which may cause
the receiver to incorrectly decode the signal. Local minima
in the received signal occur whenever the following condi-
tion holds:

2π× ∆ f
2 × t = π

2 ×n n ∈ N

Prior work measured the acknowledgment reception rate
(ARR) for varying numbers of concurrently transmitting
neighbors, and found that in one experiment, the worst case
ARR was 97% [8].

As an example of a radio optimization enabled by µSDR
but unavailable to high-latency SDRs or fixed-function ra-
dios, we explore the effect of automatic gain control (AGC)
methods on packet reception rate from two concurrent trans-
mitters. The AGC algorithm detects and compensates for
varying strength signals by dynamically adapting the ampli-
tude of the raw RF signal for further processing. The avail-
able AGC resolution and responsiveness depend on the la-
tency of the AGC controller. Highly latent devices such as
the USRP platform can only do AGC on a per-packet basis
whereas µSDR is capable of doing AGC on a fixed-latency
basis. In addition to latency issues, many SDR platforms do
not provide sufficient introspection into the RF frontend to
allow for fine-grained AGC, relying instead on metrics such
as RSSI.

Traditional AGC in commodity radios latch a gain value
upon receiving the Start of Frame Delimiter (SFD). This
AGC loop is sufficient if the amplitude of a signal is constant
over the entire packet. However, if multiple nodes transmit
concurrently, a radio with an SFD-latched AGC may expe-
rience a changing signal amplitude over time from the en-
velope modulation as seen in Figure 10. We implemented
both an SFD-latched AGC and a continuous AGC in µSDR.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

A
m

p
lit

u
d

e
 (

V
)

Time (ms)

CH1: RX baseband CH2: RX RSSI

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

A
m

p
lit

u
d

e
 (

V
)

Time (ms)

CH3: TX1 baseband

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

A
m

p
lit

u
d

e
 (

V
)

Time (ms)

CH4: TX2 baseband

Figure 10: A constructive ACK collision is observed. CH1
is the RX baseband signal. CH2 is the RSSI. CH3 and CH4
are the TX baseband signals of the two colliding ACKs. The
slightly offset carrier frequencies of CH3 and CH4 interact to
form the envelope modulation on the received baseband sig-
nal. Without automatic gain control, varying signal strength
resulting from the envelope severely hinders the receiver’s
ability to successfully decode the signal.

Table 6 summarizes the results of a basic comparison. The
results show that continuous AGC offers a small improve-
ment in the ARR over SFD-latched AGC.

Further experimentation with AGC revealed that the
properties of each AGC method rely heavily on the degree
of separation between the two carrier waves. Figure 11 plots
the reception rate of concurrently transmitted packets against
varying differences in the two transmitting carrier wave fre-
quencies. Recall that the period of the beat frequency of the
modulating envelope is given by T = 1

∆ f . For lower values of
∆ f , this means the period of envelope beats will be relatively
long and the continuous AGC is able to adapt and correct
for the variation in signal strength. As ∆ f increases, how-
ever, the local minima from the envelope wave increase in
frequency (while decreasing in length). Eventually the con-
tinuous AGC cannot adapt fast enough to the varying signal
strength imposed by the envelop.

AGC mode Average ARR Std
SFD-latch 97.27% 0.211%

Continuous 98.20% 0.065%

Table 6: Acknowledgment reception rate (ARR) for two con-
structively interfering transmitters with respect to different
AGC modes. We transmitted 10,000 ACKs per transmitter
per experiment and repeated each experiment 5 times. A
continuous AGC performs slightly better due to the small
carrier frequency separation of the transmitting nodes.

 80

 82

 84

 86

 88

 90

 92

 94

 0 5 10 15 20 25

R
e
c
e
p
ti
o
n
 R

a
te

 %

∆f KHz

SFD-Latched AGC Continuous AGC

Figure 11: Reception rate versus carrier frequency separa-
tion of two concurrent transmitters with a fixed packet length
(60 bytes). The period of the beat frequency of the envelop-
ing modulation is T = 1

∆ f . For small ∆ f , this period is suf-
ficiently long that continuous AGC is able to correct for the
varying signal strength (compare Figure 10 CH3). As ∆ f
grows, the beat period shortens until it is too fast for con-
tinuous AGC to keep up. At this point, however, the min-
ima are sufficiently narrow to only obscure a few chips and
the spreading built into 802.15.4 recovers the missing infor-
mation. The continuous AGC’s attempt to follow the high-
frequency minima account for for the slightly worse perfor-
mance of continuous AGC at higher ∆ f s. This illustrates
how low-level control can improve protocol performance.

Once the AGC loop latency is greater than the beat pe-
riod, the minima are so short that only a few chips are lost.
The 802.15.4 protocol employs a spreading technique such
that 4-bit of data are composed into 1 symbol made up of 32
chips. The redundancy supplied by the spreading means that
once the beat frequency of the envelope is too high to correct
via AGC, only a few chips of the symbol are dropped, al-
lowing the symbol as a whole to be correctly decoded. This
phenomena explains the observed upward trend of the SFD-
Latch AGC as ∆ f increases.

As ∆ f grows sufficiently large, the frequency of the min-
ima begins to approach and ultimately surpass the speed of
the continuous AGC control loop. The loop delay of the con-
tinuous AGC calculation then causes the actual gain to be
applied to the incoming signal too late. The extra strength
oscillation imposed by the late gain adaptation accounts for
the 1∼2% worse performance of continuous AGC versus the
latched AGC for high ∆ f s.
5.2.2 Validating Glossy Broadcast Collisions

Thus far we have focused exclusively on ACK collisions,
which are relatively short packets (11 bytes). In Glossy, the
authors observed that the same constructive ACK-collision
optimization could be applied to broadcast packets. We im-
plemented a naı̈ve broadcast, each node flooding the net-
work. In this broadcast scheme, the packet forwarding
time is controlled precisely which allows multiple forwarded
packets to (ideally) interfere constructively. Unlike the short,
fixed-length ACK packets, the forwarded broadcast packets
may be arbitrarily long.

 80

 82

 84

 86

 88

 90

 92

 94

 20 30 40 50 60 70 80 90 100 110

R
e
c
e
p
ti
o
n
 R

a
te

 %

Packet Length (Payload) Bytes

Latch AGC Cont. AGC

(a) RF frequencies separate by 16.5 KHz

 80

 82

 84

 86

 88

 90

 92

 94

 20 30 40 50 60 70 80 90 100 110

R
e
c
e
p
ti
o
n
 R

a
te

 %

Packet Length (Payload) Bytes

Latch AGC Cont. AGC

(b) RF frequencies separate <1 KHz

Figure 12: Reception rate of constructively interfering packet collisions with the transmitter at two slightly different carrier
frequencies. Both transmitters send the exact same message, at the same time. Figure (a) shows the result when the transmitters
are separated by 16.5 KHz, while Figure (b) depicts the case of the transmitters separated by <1 KHz. In both cases, the longer
the packets, the lower the reception rate as we get more beats in a single packet. This leads to a lower signal amplitude, and
thus potential for decoding errors. To mitigate this, the AGC can be held constant after latching it at the SFD detection, or it
can continuously updated over the whole packet length. For small carrier frequency offsets (Figure (b)) continuously updating
the AGC improves the reception rate by 2∼6%.

We can infer from the previous work that reception rate
should drop if more envelopes exist during a given packet.
Given two nodes with a fixed but slightly different carrier
frequencies, we measured the reception rate across different
packet lengths. Figure 12 shows the expected result: as the
packet length increases, the reception rate decreases. The re-
ception rate is derived from the number of packets with a suc-
cessfully decoded CRC value over 30,000 transmissions. If
any symbol in the packet is incorrectly decoded, that packet
will fail the CRC check.

5.3 Frequency Compensation
Assuming the transmitter T and receiver R has corre-

sponding carrier frequency fc1, fc2 respectively, and fc1 6=
fc2. The frequency mismatch affects the received in-phase
(I) and quadrature-phase (Q) signal. Assuming the transmit-
ted in-phase and quadrature-phase baseband signal are SI(t),
SQ(t), the actual signal which is being transmitted through
the air S(t) can be written as follows:

S(t) = SI(t) · cos(2π · fc1 · t)+SQ(t) · sin(2π · fc1 · t)

Ignoring the channel characteristics and assuming no noise
or interference, the received signal R(t) = S(t). The received
in-phase signal can be expressed as follows.

rI(t) =R(t) · cos(2π · fc2 · t)
=[SI(t) · cos(ωc1t)+SQ(t) · sin(ωc1t)] · cos(ωc2t)
=SI(t) · cos(ωc1t) · cos(ωc2t)+SQ(t) · sin(ωc1t) · cos(ωc2t)

Where ωc1,2 = 2π · fc1,2. Simplifying the equation by the
product-to-sum identities.

rI(t) = 1
2 SI(t) [cos((ωc1−ωc2)t)+ cos((ωc1 +ωc2)t)]+
1
2 SQ(t) [sin((ωc1−ωc2)t)+ sin((ωc1 +ωc2)t)]

By removing high frequency components (ωc1 + ωc2),
the received in-phase/quadrature-phase baseband signal
rIB(t), rQB(t) can be expressed as following.

rIB(t) = 1
2 SI(t) · cos(∆ωt)− 1

2 SQ(t) · sin(∆ωt)

rQB(t) = 1
2 SI(t) · sin(∆ωt)+ 1

2 SQ(t) · cos(∆ωt)

where ∆ω = ωc2−ωc1. By rearranging these equations,
we can express the following.[

rIB(t)
rQB(t)

]
=

[
cos(∆ωt) −sin(∆ωt)
sin(∆ωt) cos(∆ωt)

]
×
[1/2 ·SI(t)

1/2 ·SQ(t)

]
Thus the frequency mismatch is equivalent to the rota-

tion of the complex coordinate with angular velocity ∆ω.
Hence, by measuring the rotation speed and direction, we
can back calculate the frequency offset between receiver and
transmitter. In the O-QPSK modulation, the I/Q signal at any
given time map to a unit circle on a constellation. Measur-
ing both clockwise and counter-clockwise rotation angle at
fixed intervals allows the system to determine whether the
receiver’s carrier frequency is leading or lagging. With this
information, µSDR is able to compensate for the frequency
mismatch in a subsequent transmission, so we call it auto-
matic frequency compensation (AFC).

Figure 13 shows the simulated result of running AFC on
the µSDR platform. In this simulation, fc1 and fc2 are set
50 KHz apart and the step size of fc2 is 300 Hz. After receiv-
ing a packet, the AFC adapts the receiver carrier frequency
fc2 to reduce the frequency mismatch. Two factors are im-
portant for AFC effectiveness: packets with higher SNR af-
ford more accurate angle estimation and packets with longer
payloads provide more opportunities to adapt the carrier fre-
quency. Figure 13 shows how variations in these properties
affect reception with AFC.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40 45 50

R
M

S
 F

re
q
u
e
n
c
y
 e

rr
o
r

(K
H

z
)

SNR (dB)

127 Bytes 64 Bytes

Figure 13: AFC simulation. Frequency separation of TX
and RX is 50 KHz initially (fc1− fc2 = 50 KHz). The fig-
ure shows the RMS frequency separation after receiving a
packet with AFC enabled. As expected, AFC performance
improves with higher SNR and greater packet length.

In Table 7, we explore the combination of AFC with the
previously explored AGC. Combining the continuous AGC
with AFC yields the best result, a 95.5% ARR. Applying
AFC to the simpler SFD-latched gain control results in a
1.2% reduction in ARR, however. Recall from the AGC
discussion and Figure 11 that SFD-latched gain control per-
forms poorly for small ∆ f as the local minima from the en-
velope beat are long. As the AFC attempts to compensate for
the frequency difference between TX and RX, these minima
become longer which improves the performance of the adap-
tive AGC, but results in more below-threshold signal win-
dows for the fixed-gain, SFD-latched method.

6 Discussion
We built µSDR with the intention to see how close we

can get to the claims presented by Dutta et al. [7]. This sec-
tion will look at the four different requirements radio duty-
cycling, low-power FPGA, system integration, and measure-
ment and compare the current µSDR platform to the perfor-
mance it is supposed to achieve to compete with current com-
mercially available low-power wireless radios.

AGC mode AFC mode ARR
SFD-latch Enable 93.3%

Continuous Enable 95.5%
SFD-latch Disable 94.5%

Continuous Disable 95.1%

Table 7: Acknowledgment reception rate (ARR) for two con-
structively interfering transmitters with respect to AFC and
different AGC modes. We transmitted 10,000 ACKs per
transmitter per experiment. With AFC disabled, carrier fre-
quencies of TX and RX were off by 16.4 KHz. In both cases,
continuous AGC worked better. Enabling AFC worsened the
reception rate for SFD-Latch AGC because the baseband sig-
nal is attenuated by the low-frequency envelope.

6.1 Radio Duty-Cycling
Typical radio duty-cycling platforms achieve <1 mW

sleep power, wake up in µs, and draw tens to hundreds of
mW while actively using the radio. µSDR draws in its low-
est sleep state 322 mW (wakeup in 3.01 ms) or 518 mW
(wakeup in 34 µs). During transmit, µSDR draws 1.4 W, and
1 W while receiving. While the sleep current is still three
orders of magnitude greater than typical duty-cycled sys-
tems, it offers a starting point to explore the space of battery-
powered SDR platforms. Comparing this to an iPhone 4S
with a battery capacity of 5.3 Wh, we can power µSDR for
3.8 hours while constantly transmitting, or 16.4 hours in deep
sleep. Thus, using a moderate amount of duty-cycling, a
12 hour deployment time could be achieved easily.
6.2 Low-Power FPGA

So where does all the power go during sleep? All radio
frontend components, ADC, DAC, and the baseband con-
verter support sleep modes in the µW range. Still, µSDR
draws hundreds of mW. Unfortunately, the SmartFusion does
not include the latest Flash*Freeze technology which would
allow it to clock-gate the FPGA itself. Thus, even in deep
sleep, the FPGA draws considerable dynamic power. We
expect that future versions of the SmartFusion will include
such technology, as it already exists in the IGLOO flash-
based FPGA family offered by the same vendor.
6.3 System Integration

µSDR significantly departed from the common platform
reconfigurability of typical SDR systems, integrating every-
thing onto a 102 cm2 sized PCB. This reduced cost to <$150.
While we did not achieve the expected $100 suggested by
Dutta et al. [7], we are within striking distance. With larger
quantities and the commoditization of these mixed-signal
FPGAs with hard-silicon cores, the total price will and drop
below the target $100 mark.
6.4 Measurement

The current iteration of the µSDR platform does not in-
clude any energy metering capabilities that are exposed to
the application processor. While we can measure the external
power draw on the different power rails, there are no compo-
nents of the SmartFusion connected to meter those rails inter-
nally. However, the SmartFusion has a full Analog Compute
Engine with up to 12 direct ADC inputs. The current µSDR
platform does not take advantage of any of them, and we plan
to add this support in the next iteration of the platform.
7 Conclusions

Software-defined radios are reconfigurable communica-
tion systems that transcend historical boundaries between
hardware and software subsystems, physical and logical lay-
ers, and analog and digital domains. In so doing, they en-
able radical new architectures, novel radio designs, and high-
performance protocols that are not easy to design, imple-
ment, or evaluate using traditionally-layered approaches. Al-
though modern SDR platforms have been used to explore
many facets of the wireless design space, their current archi-
tectures make it very difficult to explore the low-power de-
sign space. Their use of SRAM-based FPGAs result in high
static and dynamic power draws, their slow startup times
are not amenable to rapid duty cycling, their radio frontends

do not support power controls, and their processing require-
ments place a heavy load on the system. As a result, fer-
tile application areas like mobile phones and sensor networks
that could benefit from radical approaches, but which require
low-power operation, remain relatively unexplored.

We developed µSDR to address this inequity. This pa-
per demonstrates that a software radio with a footprint of
100 cm2 and cost of $150 is able to operate from a pack
of ’AA’ batteries, and that we can expect a lifetime similar
to today’s smart phones. This work enables new research
areas that were completely out-of-reach or existed only in
severely limited forms in low-power nodes. Hence, µSDR is
an enabling technology for many high-impact, large scale ap-
plications of low-power, ad-hoc wireless networking where
high performance or precise timing are required, includ-
ing full-duplex wireless communication, synchronous con-
current communication, high-frequency power metering, in-
frastructure less audio/video streaming, and structural health
monitoring.

8 Acknowledgments
We thank Vijay Raghunathan, our shepherd, and the

anonymous reviewers for their valuable feedback. This ma-
terial is based upon work supported by gifts from Microsemi
Corporation and by the National Science Foundation under
Grant #0964120 (“CNS-NeTS”), #1059372 (“CI-ADDO-
NEW”), and #1111541 (“CNS-CSR”). Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation.

9 References
[1] Joint Tactical Radio System. http://jpeojtrs.mil.
[2] Altera. Cyclone V SoC FPGA Hard Processor System.

http://www.altera.com/devices/fpga/cyclone-v-fpgas/
hard-processor-system/cyv-soc-hps.html.

[3] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. Cavallaro, and
A. Sabharwal. Warp, a unified wireless network testbed for education
and research. In International Conference on Microelectronic
Systems Education 2007. (MSE ’07).

[4] Analog Device. AD9288: 8-Bit, 40/80/100 MSPS Dual A/D
Converter. http://www.analog.com/static/imported-files/
data_sheets/AD9288.pdf.

[5] P. Dutta, D. Culler, and S. Shenker. Procrastination might lead to a
longer and more useful life. In Proceedings of the 6th ACM
SIGCOMM Workshop on Hot Topics in Networks 2007, (Hotnets
’07).

[6] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and
A. Terzis. Design and evaluation of a versatile and efficient
receiver-initiated link layer for low power wireless. In Proceedings of
the 8th ACM Conference on Embedded Networked Sensor Systems
2010, (SenSys ’10).

[7] P. Dutta, Y.-S. Kuo, A. Ledeczi, T. Schmid, and P. Volgyesi. Putting
the software radio on a low-calorie diet. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks 2010,
(Hotnets ’10).

[8] P. Dutta, R. Musăloiu-E, I. Stoica, and A. Terzis. Wireless ack
collisions not considered harmful. In Proceedings of the 7th ACM
SIGCOMM Workshop on Hot Topics in Networks 2008, (Hotnets
’08).

[9] Ettus Research. USRP E100.
https://www.ettus.com/product/details/UE100-KIT.

[10] Ettus Research. USRP N200.
https://www.ettus.com/product/details/UN200-KIT.

[11] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
network flooding and time synchronization with glossy. In

Proceedings of the 10th International Conference on Information
Processing in Sensor Networks 2011, (IPSN ’11).

[12] Intel. Intel pentium mobile processor, Apr. 2012.
[13] JTRS Standards. Software Communications Architecture

Specification. http://jpeojtrs.mil/sca/Documents/SCAv4_0/
SCA_4.0_20120228_ScaSpecification.pdf.

[14] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. Soda: A low-power architecture for
software radio. In Proceedings of the 33rd International Symposium
on Computer Architecture 2006, (ISCA ’06).

[15] Maxim. MAX5189: Dual, 8-Bit, 40MHz, Current/Voltage,
Simultaneous-Output DACs. http:
//datasheets.maxim-ic.com/en/ds/MAX5186-MAX5189.pdf.

[16] Microsemi. IGLOO Series.
http://www.actel.com/products/iglooseries/default.aspx.

[17] Microsemi. SmartFusion: Customizable System-on-Chip (cSoC).
http://www.actel.com/documents/SmartFusion_DS.pdf.

[18] G. Minden, J. Evans, L. Searl, D. DePardo, V. Petty, R. Rajbanshi,
T. Newman, Q. Chen, F. Weidling, J. Guffey, D. Datla, B. Barker,
M. Peck, B. Cordill, A. Wyglinski, and A. Agah. Kuar: A flexible
software-defined radio development platform. In 2nd IEEE
International Symposium on New Frontiers in Dynamic Spectrum
Access Networks 2007, (DySPAN ’07).

[19] J. Mitola III. SDR architecture refinement for JTRS. In Proceedings
of 21st Century Military Communications Conference 2000,
(MILCOM ’00).

[20] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast
storm problem in a mobile ad hoc network. In Proceedings of the 5th
ACM/IEEE Annual International Conference on Mobile Computing
and Networking 1999, (MobiCom ’99).

[21] J. Notor, A. Caviglia, and G. Levy. Cmos rfic architectures for ieee
802.15.4 networks. Cadence Design Systems, Inc.

[22] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste.
Enabling mac protocol implementations on software-defined radios.
In Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation 2009, (NSDI ’09).

[23] Octasic Inc. Vocallo BTS.
[24] F. Österlind and A. Dunkels. Approaching the maximum 802.15.4

multi-hop throughput. In Proceedings of the 5th ACM Workship on
Embedded Networked Sensors 2008, (HotEmNets ’08).

[25] C. Patridge. Realizing the future of wireless data communications.
COMMUNICATIONS OF THE ACM, 54(9):62–68, September 2011.

[26] K. Piotrowski, P. Langendoerfer, and S. Peter. How public key
cryptography influences wireless sensor node lifetime. In
Proceedings of the 4th ACM Workshop on Security of Ad Hoc and
Sensor Networks 2006, (SASN ’06).

[27] T. Schmid. GNU Radio 802.15.4 En- and Decoding. http:
//nesl.ee.ucla.edu/fw/thomas/thomas_project_report.pdf.

[28] T. Schmid, O. Sekkat, and M. B. Srivastava. An experimental study
of network performance impact of increased latency in
software-defined radios. In Proceedings of the 2nd ACM Workshop
on Wireless Network Testbeds, Experimental Evaluation and
Characterization 2007, (WinTECH ’07).

[29] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis
of a large scale habitat monitoring application. In Proceedings of the
2nd ACM Conference on Embedded Networked Sensor Systems 2004,
(SenSys ’04).

[30] K. Szlavecz, A. Terzis, S. Ozer, R. Musaloiu, J. Cogan, S. Small,
R. Burns, J. Gray, and A. Szalay. Life under your feet: An end-to-end
soil ecology sensor network, database, web server, and analysis
service. Technical Report Microsoft Technical Report MSR TR 2006
90, Microsoft Research.

[31] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,
W. Wang, and G. Voelker. Sora: high-performance software radio
using general-purpose multi-core processors. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and
Implementation 2009, (NSDI ’09).

[32] Texas Instruments. ADC081S101: Single Channel, 8-Bit ADC.
http://www.ti.com/lit/ds/symlink/adc081s101.pdf.

[33] Xilinx. ZYNQ-7000: All Programmable SoC.
http://www.xilinx.com/publications/prod_mktg/zynq7000/
Product-Brief.pdf.

http://jpeojtrs.mil
http://www.altera.com/devices/fpga/cyclone-v-fpgas/hard-processor-system/cyv-soc-hps.html
http://www.altera.com/devices/fpga/cyclone-v-fpgas/hard-processor-system/cyv-soc-hps.html
http://www.analog.com/static/imported-files/data_sheets/AD9288.pdf
http://www.analog.com/static/imported-files/data_sheets/AD9288.pdf
https://www.ettus.com/product/details/UE100-KIT
https://www.ettus.com/product/details/UN200-KIT
http://jpeojtrs.mil/sca/Documents/SCAv4_0/SCA_4.0_20120228_ScaSpecification.pdf
http://jpeojtrs.mil/sca/Documents/SCAv4_0/SCA_4.0_20120228_ScaSpecification.pdf
http://datasheets.maxim-ic.com/en/ds/MAX5186-MAX5189.pdf
http://datasheets.maxim-ic.com/en/ds/MAX5186-MAX5189.pdf
http://www.actel.com/products/iglooseries/default.aspx
http://www.actel.com/documents/SmartFusion_DS.pdf
http://nesl.ee.ucla.edu/fw/thomas/thomas_project_report.pdf
http://nesl.ee.ucla.edu/fw/thomas/thomas_project_report.pdf
http://www.ti.com/lit/ds/symlink/adc081s101.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Product-Brief.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Product-Brief.pdf

	Introduction
	Related Work
	Throughput and Latency
	Power
	Portability
	Cost
	Deployability

	Design and Implementation
	Hardware Design Details
	Cost Breakdown

	Applications
	Transmitter
	Receiver
	Radio and Automatic Gain Control
	Hardware ACK Generation
	Operating System
	Radio Enhancements
	Multiple Address Recognition
	Packet Forwarding

	Evaluation
	Platform Micro-Benchmarks
	Application Micro-Benchmarks
	Validating A-MAC Acknowledgments
	Validating Glossy Broadcast Collisions

	Frequency Compensation

	Discussion
	Radio Duty-Cycling
	Low-Power FPGA
	System Integration
	Measurement

	Conclusions
	Acknowledgments
	References

