SIGNALS AND SIGNAL
SPACE

n this chapter we discuss certain basic signal concepts. Signals are processed by systems.
We shall start with explaining the terms signals and systems.

Signals

A signal, as the term implies, is a set of information or data. Examples include a telephone or
a television signal, the monthly sales figures of a corporation, and closing stock prices (e.g., in
the United States, the Dow Jones averages). In all these examples, the signals are functions of
the independent variable time. This is not always the case, however. When an electrical charge
is distributed over a surface, for instance, the signal is the charge density, a function of space
rather than time. In this book we deal almost exclusively with signals that are functions of
time. The discussion, however, applies equally well to other independent variables.

Systems

Signals may be processed further by systems, which may modify them or extract additional
information from them. For example, an antiaircraft missile launcher may want to know the
future location of a hostile moving target, which is being tracked by radar. Since the radar
signal gives the past location and velocity of the target, by properly processing the radar signal
(the input), one can approximately estimate the future location of the target. Thus, a system
is an entity that processes a set of signals (inputs) to yield another set of signals (outputs).
A system may be made up of physical components, as in electrical, mechanical, or hydraulic
systems (hardware realization), or it may be an algorithm that computes an output from an
input signal (software realization).

2.1 SIZE OF A SIGNAL

Signal Energy

The size of any entity is a quantity that indicates its strength. Generally speaking, a signal
varies with time. To set a standard quantity that measures signal strength, we normally view
a signal g (¢) as a voltage across a one-ohm resistor. We define signal energy Eg of the signal
g (1) as the energy that the voltage g(r) dissipates on the resistor. More formally, we define £,
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Figure 2.1
Examples of
signals.

a) Signal with -

inite energy.
(b} Signal with
finite power.
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(for a real signal) as

Eg = foc g2 dr 2.1

—00

This definition can be generalized to a complex-valued signal g(¢) as
= 2
B=[ wora 22)
-

Signal Power

To be a meaningful meéasure of signal size, the signal energy must be finite. A necessary
condition for energy to be finite is that the signal amplitude goes to zero as |¢| approaches
infinity (Fig. 2.1a). Otherwise the integral in Eq. (2.1) will not converge.

If the amplitude of g (¢) does not go to zero as |¢| approaches infinity (Fig. 2.1b), the signal
energy is infinite. A more meaningful measure of the signal size in such a case would be the
time average of the energy (if it exists), which is the average power Py defined (for a real
signal) by

1 T2
P, = lim ~ f gt di (2.3)
T—o0 -T/2 ,

We can generalize this definition for a complex signal g(¢) as

1 T/2

P, = lim — / g ()% dt (2.4)
T—oo T ~T/2

Observe that the signal power P, is the time average (mean) of the signal amplitude square,

that 1s, the mean square value of g (7). Indeed, the square root of Py is the familiar rms (root

mean square) value of g(¥).

The mean of an entity averaged over a large time interval approaching infinity exists if
the entity either is periodic or has a statistical regularity. If such a condition is not satisfied, an
average may not exist. For instance, a ramp signal g(¢) = ¢ increases indefinitely as |#| — oo,
and neither the energy, nor the power exists for this signal.

Units of Signal Energy and Power
The standard units of signal energy and power are the joule and the watt. However, in practice,
it is often customary to use logarithmic scales to describe signal power. This notation saves



22  SIGNALS AND SIGNAL SPACE

the trouble of dealing with many decimal places when signal power is large or small. As a
convention, a signal with average power of P watts can be said to have power of

[10 - logyy PldBw or [30 + 10 -logg P1dBm

For example, —30 dBrm represents signal power of 10~% W in normal decimat scale.

Example 2.1  Determine the suitable measures of the signals in Fig. 2.2.

& Thesignalin Fig. 2.2a approaches 0 as 1| — oo. Therefore, the suitable measure for this
. signalis its energy Ey, given by ’

§i 00 Q - e

. Eg=[ gz(t)dt:[ (2)2dt+f deldt=4+4=38

?:% —00 -1 Jo

; The signal in Fig. 2.2b does not approach 0 as |t} — oo. However, it is periodic, and
‘% therefore its power exists. We can use Eq. (2.3) to determine its power. For periodic signals,

7

we can simplify the procedure by observing that a periodic signal repeats regularly each
period (2 seconds in this case). Therefore, averaging 22(1) over an infinitely large interval
is equivalent to averaging it over one period (2 seconds in this case). Thus

1! 1t 1
Pg:—/ gz(i)dl:—-j Pt = -
-1 2 Jq
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Recall that the signal power is the square of its rms value. Therefore, the rms value of this
signal is 1/+/3.

2.2 CLASSIFICATION OF SIGNALS

There are various classes of signals. Here we shall consider only the following pairs of classes,
which are suitable for the scope of this book.

1. Continuous time and discrete time signals
2. Analog and digital signals



Figure 2.3

{a) Continuous
time signol.

{b) Discrete time
signals.
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3. Periodic and aperiodic signals
4. Energy and power signals
5. Deterministic and probabilistic signals

2.2.1 Continuous Time and Discrete Time Signals

A signal that is specified for every value of time 7 (Fig. 2.3a) is a continuous time signal, and
a signal that is specified only at discrete points of 7 = nT (Fig. 2.3b) is a discrete time signal.
Audio and video recordings are continuous time signals, whereas the quarterly gross domestic
product (GDP), monthly sales of a corporation, and stock market daily averages are discrete
time signals.

2.2.2 Analog and Digital Signals

One should not confuse analog signals with continuous time signals. The two concepts are
not the same. This is also true of the concepts of discrete time and digital. A signal whose
amplitude can take on any value in a continuous range is an analog signal. This means that
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Figure 2.4
Exomples of
signals: (a)
analog and
continyous time,
{b) digital and
continuous time,
(¢} analog and
discrete time,
{d} digital and

discrete time.
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an analog signal amplitude can take on an (uncountably) infinite number of values. A digital
signal, on the other hand, is one whose amplitude can take on only a finite number of values.
Signals associated with a digital computer are digital because they take on only two values
(binary signals). For a signal to qualify as digital, the number of values need not be restricted
to two. It can be any finite number. A digital signal whose amplitudes can take on M values is
an M -ary signal of which binary (M = 2) is a special case. The terms “continuous time” and
“discrete time” qualify the nature of signal along the time (horizontal) axis. The terms “analog”
and “digital,” on the other hand, describe the nature of the signal amplitude (vertical) axis.
Figure 2.4 shows examples of signals of various types. It is clear that analog is not necessarily
continuous time, whereas digital need not be discrete time. Figure 2.4c shows an example
of an analog but discrete time signal. An analog signal can be converted into a digital signal
(via analog-to-digital, or A/D, conversion) through quantization (rounding off), as explained
in Chapter 6.

2.2.3 Periodic and Aperiodic Signals

A signal g(#) is said to be periodic if there exists a positive constant 7 such that

g(t) =gt +Ty) foralls 2.5)

The smallest value of T that satisfies the periodicity condition of Eq. (2.5) is the perioed of
g(1). The signal in Fig. 2.2b is a periodic signal with period of 2. Naturally, a signal is aperiodic
if it is not periodic. The signal in Fig. 2.2a is aperiodic.

By definition, a periodic signal g(f) remains unchanged when time-shifted by one period.
This means that a periodic signal must start at 7 == —oc because if it starts at some finite instant,
say, 1 = 0, the time-shifted signal g(r + Tp) will start at + = —Tg and g(¢ + Tp) would not
be the same as g(¢). Therefore, a periodic signal, by definition, must start from —oo and
continue forever, as shown in Fig. 2.5. Observe that a periodic signal shifted by an integral
multiple of Ty remains unchanged. Therefore, g(#) may be considered to be a periodic signal
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Figure 2.5 A 0,
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with period mTp, where m is any integer. However, by definition, the period is the smallest
interval that satisfies periodicity condition of Eq. (2.5). Therefore, Tp is the period.

2.2 .4 Energy and Power Signals

Asignal with finite energy is an energy signal, and a signal with finite power is a power signal.
In other words, a signal g(#) is an energy signal if

/oo lg®? dr < oo (2.6)

-0

Similarly, a signal with a finite and nonzero power (mean square value) is a power signal. In
other words, a signal is a power signal if

1 T2
0 < lim ~f lg(OP dr < 0o 2.7)
T J_rp

T—o0 ~T

The signals in Fig. 2.2a and 2.2b are examples of energy and power signals, respectively.
Observe that power is time average of the energy. Since the averaging is over an infinitely
large interval, a signal with finite energy has zero power, and a signal with finite power has
infinite energy. Therefore, a signal cannot be both an energy and a power signal. If it is one,
it cannot be the other. On the other hand, some signals with infinite power are neither energy

nor power signals. The ramp signal is one example. ‘

Comments
Every signal observed in real life is an energy signal. A power signal, on the other hand,
must have an infinite duration. Otherwise its power, which is its average energy (averaged
over infinitely large interval) will not approach a (nonzero) limit. Obviously it is impossible
to generate a true power signal in practice because such a signal would have infinite duration
and infinite energy.

Also, because of periodic repetition, periodic signals for which the area under |g (7) 1 over
one period is finite are power signals; however, not all power signals are periodic.

2.2.5 Deterministic and Random Signals

A signal whose physical description is known completely, either in 2 mathematical form or a
graphical form is a deterministic signal. A signal that is known only in terms of probabilistic
description, such as mean value, mean square value, and distributions, rather than its full math-
ematical or graphical description is a random signal. Most of the noise signals encountered in
practice are random signals. All message signals are random signals because, as will be shown
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Figure 2.6 A
unit impulse
and its
approximation.
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later, a signal, to convey information, must have some uncertainty (randomness) about it. The
treatment of random signals will be discussed in later chapters.

2.3 UNIT IMPULSE SIGNAL

The unit impulse function §(7) is one of the most important functions in the study of signals
and systems. Its definition and application provide much convenience that is not permissible
in pure mathematics.

The unit impulse function §(r) was first defined by P. A. M. Dirac (hence often known as
the “Dirac delta”) as

s =0, t#0 2.8)
/@Mﬂ&:l 2.9)

We can visualize an impulse as a tall, narrow rectangular pulse of unit area, as shown in Fig. 2.6.
The width of this rectangular pulse is a very small value ¢; its height is a very large value 1/¢
in the limit as € — 0. The unitimpulse therefore can be regarded as a rectangular pulse with a
width that has become infinitesimally small, a height that has become infinitely large, and an
overall area that remains constant at unity.* Thus, §(t) = 0 everywhere except at t = 0, where
it is, strictly speaking, undefined. For this reason, a unit impulse is graphically represented by
the spearlike symbol in Fig. 2.6a.

Multiplication of a Function by an Impulse
Let us now consider what happens when we multiply the unit impulse §(¢) by a function ¢ (1)
that is known to be continuous at ¢ = Q. Since the impulse exists only at ¢ = 0, and the value
of ¢(f) att = 0is ¢(0), we obtain

¢ O)5(1) = (03 (1) (2.10a)
Similarly, if ¢ () is multiplied by an impulse §(¢ — T") (an impulse located at t = 7'), then

et —T) =I5t —=T) ’ (2.10b)

provided ¢ () is defined atr = T.

* The impulse function can also be approximated by other pulses, such as a positive triangle, an exponential puise,
or a Gaussian pulse.



Figure 2.7
(o) Unit step
function u(r).
(b} Causal
exponential
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The Sampling Property of the Unit Impulse Function
From Eq. (2.10) it follows that

f qb(t)é(t—T)dt:qb(T)foc 8¢t — T)dt = ¢(T) (2.11aj

provided ¢ (¢) is continuous at t = 7. This result means that the area under the product of
a function with an impulsqfa(t) Js equal 10 the value of that function at the instant where the
unit impulse is located. Thfé&*regy important and useful property is known as the sampling (or
sifting) property of the unit impulse.

Depending on the value of 7 and the integration limit, the impulse function may or may
not be within the integration limit. Thus, it follows that

b b
B | e a<T<bh
fa¢(t)3(l‘*T)df—¢(T)/a ‘S(t_T)dt“{ 0 T<a<borT=b>a
2.11b)

The Unit Step Function u(¢)
Another familiar and useful function is the unit step function u(¢), often encountered in circuit
analysis and defined by Fig. 2.7a:

u(t):{(l) iig Q12

If we want a signal to start at ¢ = 0 (so that it has a value of zero for # < 0), we need only
multiply the signal by u(f). A signal that starts after = 0 is called a causal signal. In other
words, g(t) is a causal signal if

g)y=20 t<0
The signal e~ represents an exponential that starts at # = —oo. If we want this signal to start

at ¢ = O (the causal form), it can be described as e™#u(z) (Fig. 2.7b). From Fig. 2.6b, we
observe that the area from —oo to ¢ under the limiting form of 8(z) is zero if t < 0 and unity

if t = 0. Consequently,
t
0, t <0
/ (S(r)dt:i1 £ 0

= u(t) (2.13a)
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From this result it follows that

du
= 8(t) (2.13b)

2.4 SIGNALS VERSUS VECTORS

There is a strong connection between signals and vectors. Signals that are defined for only a
finite number of time instants (say N) can be written as vectors (of dimension N). Thus, consider
a signal g(¢) defined over a closed time interval [a, 5]. Let we pick N points uniformly on the
time interval [a, b] such that

t1=a, h=a+e =a-+t2e, tN:a+(N~l)e:b, € == e

Then we can write a signal vector g as an N-dimensional vector

g=[ gty gt - gltw) ]

As the number of time instants N increases, the sampled signal vector g will grow. Eventually,
as N — oo, the signal values will form a vector g of infinitely long dimension. Because ¢ — 0,
the signal vector g will transform into the continuous-time signal g (¢) defined over the interval
[a, bl. In other words,

lim g=g() t¢€la,b]
N-—>o0

This relationship clearly shows that continuous time signals are straightforward generalizations
of finite dimension vectors. Thus, basic definitions and operations in a vector space can be
applied to continuous time signals as well. We now highlight this connection between the finite
dimension vector space and the continuous time signal space.

We shall denote all vectors by boldface type. For example, x is a certain vector with
magnitude or length [[x]|. A vector has magnitude and direction. In a vector space, we can
define the inner (dot or scalar) product of two real-valued vectors g and x as

< g x>=|[g||-{[x]|cos 0 (2.14)

where @ is the angle between vectors g and x. By using this definition, we can express ||x|],
the length (norm) of a vector x as

(x> =< x, x > (2.15)

This defines a normed vector space.

2.4.1 Component of a Vector along Another Vector

Consider two vectors g and x, as shown in Fig. 2.8. Let the component of g along x be cx.
Geometrically the component of g along x is the projection of g on x, and is obtained by
drawing a perpendicular from the tip of g on the vector x, as shown in Fig, 2.8. What is the
mathematical significance of a component of a vector along another vector? As seen from
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Fig. 2.8, the vector g can be expressed in terms of vector x as
g=cx+e (2.16)

However, this does not describe a unique way to decompose g in terms of x and e. Figure 2.9
shows two of the infinite other possibilities. From Fig. 2.9a and b, we have

g=cCiX+e; =Xx-+e 2.17)

The question is: Which is the “best” decomposition? The concept of optimality depends on
what we wish to accomplish by decomposing g into two components.

In each of these three representations, g is given in terms of x plus another vector called
the error vector. If our goal is to approximate g by ¢x (Fig. 2.8),

g~ §=cx (2.18)

then the error in this approximation is the (difference) vector e = g — ¢x. Similarly, the errors
in approximations of Fig. 2.9a and b are e; and e, respectively. The approximation in Fig. 2.8
is unique because its error vector is the shortest (with the smallest magnitude or norm). We
can now define mathematically the component (or projection) of a vector g along vector X to
be cx, where ¢ is chosen to minimize the magnitude of the error vector e = g — ¢x.

Geometrically, the magnitude of the component of g along x is [[gl} cos 8, which is also
equal to ¢||x||. Therefore

c|lx]] = ligllcos &

Based on the definition of inner product between two vectors, multiplying both sides by |{x||
yields . :
clixi? = llgll x| cos 6 =< g, x >

and

, 1
=&X> <g x> (2.19)

c= =
<x, x> |x|?
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From Fig. 2.8, it is apparent that when g and x are perpendicular, or orthogonal, then g has
a zero component along x; consequently, ¢ = 0. Keeping an eye on Eq. (2.19), we therefore
define g and x to be orthogenal if the inner (scalar or dot) product of the two vectors is zero,
that is, if

<g x>=0 (2.20)
2.4.2 Decomposition of a Signal and
Signal Components
The concepts of vector component and orthogonality can be directly extended to continuous
time signals. Consider the problem of approximating a real signal g(¢) in terms of another real
signal x(t) over an interval [11, n1:
g =ex(t) n=<t=n (2.21)

The error e(z) in this approximation is

g(t) — cx() h<t<nh

0 otherwise (222)

e(t) = {

For “best approximation,” we need to minimize the error signal, that is, minimize its norm.
Minimum signal norm corresponds to minimum energy E, over the interval [#1, #;] given by

L}
E, = / e2(r) dt
%]
- / [5() — cx(Pdt
151

Note that the right-hand side is a definite integral with ¢ as the dummy variable. Hence E, is a
function of the parameter ¢ (not ), and E, is minimum for some choice of ¢. To minimize £,,
a necessary condition is

dE,
dc

d[ (2
- [ / lg(t) — cx(t)]zdz} =0
de | Jy

Expanding the squared term inside the integral, we obtain

r b4 I
4 [/2g2(t)dz} _4 [ZC/Zg(t)x(t)dt] + 4 ':czfzxz(t)dt} =0
de {Jy de 4 de o

from which we obtain

=0 (2.23)

or

) ]
-2 / gOx(t) dr + 2¢ f @) dt =0
51 n



2.4 Signals Versus Vectors 31

and

Sed 1 ope .
= ~ Eyx{t)adt .
Cxrnydr ExJy sl @29

To summarize our discussion, if a signal g(z) is approximated by another signal x(¢) as
g () = cx(1)

then the optimum value of ¢ that minimizes the energy of the error signal in this approximation
is given by Eq. (2.24).

Taking our cue from vectors, we say that a signal g(¢) contains a component cx(r), where
¢ is given by Eq. (2.24). As in vector space, cx(t) is the projection of g(r) on x(1). Consistent
with the vector space terminolog, we say that if the component of a signal g(z) of the form
x(¢) is zero (i.e., ¢ = 0), the signals g(¢) and x(r) are orthogonal over the interval [#1, f2]. In
other words, with respect to real-valued signals, two signals x(t) and g(¢) are orthogonal when
there is zero contribution from one signal to the other (i.e., ¢ = 0). Thus, x(¢) and g(r) are
orthogonal if and only if

t .
f 2 gx(t)dr =0 (2.25)
3}

Based on the illustrations of vectors in Fig. 2.9, we can say that two signals are orthogonal if
and only if their inner product is zero. This relationship indicates that the integral of Eq. (2.25)
is closely related to the concept of an inner product between vectors.

Indeed, the standard definition of the inner product of two N -dimensional vectors g and X

N
<gX>= ) gk
i=1

is almost identical in form to the integration of Eq. (2.25). We therefore define the inner product
of two (real-valued) signals g(z) and x(z), both defined over a time interval [f1, 12], as

b5
< g(®), x(1) >= / C e (Ox() dt (2.26)

f

Recall from algebraic geometry that the square of a vector length ||x| |2 is equal to < X, X >.
Keeping this concept in mind and continuing our analogy with vector analysis, we define the
the norm of a signal g(¢) as

eIl = /< g, g(t) > (2.27)

which is the square root of the signal energy in the time interval. It is therefore clear that the
norm of a signal is analogous to the length of a finite dimensional vector. More generally,
signals may not be merely defined over a continuous segment [11, 12].*

* Indeed, the signal space under consideration may be over a set of time segments represented simply by ©. For
such a more general space of signals, the inner product is defined as an integral over the time domain ©. For
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Example 2.2 Forthe square signal g(¢) shown in Fig. 2.10 find the component in g(#) of the form of sin 7.
In other words, approximate g(#) in terms of sin 7:

g(t) ~csin ¢t O0<r<2m

so that the energy of the error signal is minimum:.

Figure 2.10 g®

Approximation I
ot square signal
in terms of a
single sinusoid.
0
14
In this case

2m
x(t)=sint and Ey= / sin®(8)dt = 7
0

From Eq. (2.24), we find

1 2 1 i1 2 4
c = —/ g(t)ysin tdt = — f sin tdr -l—/ (—sin Hdt | = — (2.29)
T Jo w 0 P w

Therefore
4 .
gt) >~ —sint (2.30)
b4
represents the best approximation of’g(t) by the function sin ¢, which will minimize the
error signal energy. This sinusoidal component of g(z) is shown shaded in Fig. 2.10. As

in vector space, we say that the square function g(¢) shown in Fig. 2.10 has a component
of signal sin ¢ with magnitude of 4/7.

2.4.3 Complex Signal Space and Orthogonality

So far we have restricted our discussions to real functions of 7. To generalize the results to
complex functions of 7, consider again the problem of approximating a function g () by a

complex valued signals, the inner product is modified into
<5050 = [ g 228)
]

Given the inner product definition, the signal norm {|g(1)|| = /< g(1), g(r) > and the signal space can be defined
for any time domain signal.
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function x(r) over an interval (f; <1 < t3)
g(t) = cx(z) 230
where g (1) and x(¢) are complex functions of ¢. In general, both the coefficient ¢ and the error
e(t) = g(®) —ex(t) (2.32)

are complex. Recall that the energy E, of the complex signal x(¢) over an interval [#;, 2] is

5]
Ex=/ x(6)|* dt
I

For the best approximation, we need to choose ¢ that minimizes E,, the energy of the error
signal e(r) given by

1]
E, = f g (1) — cx(n)| dt (2.33)
i

Recall also that
lu+v]> = @+ +v5) = u? + v? +u'v +w* (2.34)

Using this result, we can, after some manipulation, express the integral £, in Eq. (2.33) as

E § 0O d I Lf® ()d2 VEx !
e = ni~dr — nx* () de) + e
]lllg ) m/ﬂ g(fix c N

Since the first two terms on the right-hand side are independent of c, it is clear that E, is
minimized by choosing ¢ such that the third term is zero. This yields the optimum coefficient

2

[#)
gOx* () dr

n

¢ = El“; (X" (1) dt (2.35)

In Iight of the foregoing result, we need to redefine orthogonality for the complex case as
follows: complex functions (signals) x; (f) and x5 (¢) are orthogonal over an interval (f <1 <
t2) as long as

t I
/ 2x1 (Hx3(B)dt =0 or ] 2x’f(t)xz(t) dr =0 (2.36)
i1 1

In fact, either equality suffices. This is a general definition of orthogonahty, which reduces to
Eq. (2.25) when the functions are real.

Similarly, the definition of inner product for complex signals over a time domain © can
be modified:

< g®), x(t) >= / gOx*(6)dr (2.37)

{t:1e®}

Consequently, the norm of a signal g(¢) is simply

1/2
gl = [ f tg(t)lzdt} (2.38)
{tre®}
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2.4.4 Energy of the Sum of Orthogonal Signals

We know that the geometric length (or magnitude) of the sum of two orthogonal vectors is
equal to the sum of the magnitude squares of the two vectors. Thus, if vectors x and y are
orthogonal, and if z=x+y, then

zl1? = 1x1* + |ly]]?

We have a similar result for signals. The energy of the sum of two orthogonal signals is equal
to the sum of the energies of the two signals. Thus, if signals x(r) and y(¢) are orthogonal over
an interval [#q, ], and if z(¢) = x(¢) + y(¥), then

E,=E;+E, (2.39)

We now prove this result for complex signals of which real signals are a special case. From
Eq. (2.34) it follows that

B

f 1 b4 5
/ C @ + 0P dt = / COPd+ / O+ f X0y (@) di + f X (1)y(6) di
i

I 5] 5] I

I 13
= f x()Pdt + / y(]* dr (2.40)
51 3]

The last equality follows because, as a result of orthogonality, the two integrals of the cross
products x(¢)y* (r) and x*(#)y(z) are zero. This result can be extended to sum of any number of
mutually orthogonal signals.

2.5 CORRELATION OF SIGNALS

By defining the inner product and the norm of signals, we paved the foundation for signal
comparison. Here again, we can benefit by drawing parallels to the familiar vector space. Two
vectors g and x are similar if g has a large component along x. In other words, if ¢ in Eq. (2.19)
is large, the vectors g and x are similar. We could consider ¢ to be a quantitative measure of
similarity between g and x. Such a measure, however, would be defective because it varies
with the norms (or lengths) of g and x. To be fair, the amount of similarity between g and x
should be independent of the lengths of g and x. If we double the length of g, for example,
the amount of similarity between g and x should not change. From Eq. (2.19), however, we
see that doubling g doubles the value of ¢ (whereas doubling x halves the value of ¢). The
similarity measure based on signal correlation is clearly faulty. Similarity between two vectors
is indicated by the angle 8 between the vectors. The smaller the &, the larger the similarity, and
vice versa. The amount of similarity can therefore be conveniently measured by cos 8. The
larger the cos 8, the larger the similarity between the two vectors. Thus, a suitable measure
would be p = cos 8, which is given by

< g X>

gt 1|

We can readily verify that this measure is independent of the lengths of g and x. This
similarity measure p is known as the correlation coefficient. Observe that

p=cosf = (241

—1<p=<l ‘ (2.42)
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Thus, the magnitude of p is never greater than unity. If the two vectors are aligned, the similarity
is maximum (p = 1). Two vectors aligned in opposite directions have maximum dissimilarity
(p = —1). If the two vectors are orthogonal, the similarity is zero.

We use the same argument in defining a similarity index (the correlation coefficient) for
signals. For convenience, we shall consider the signals over the entire time interval from —oo
to co. To establish a similarity index independent of energies (sizes) of g(¢) and x(7), we
must normalize ¢ by normalizing the two signals to have unit energies. Thus, the appropriate
similarity index p analogous to Eq. (2.41) is given by

1

P~ JEE,

Observe that multiplying either g(r) or x(¢) by any constant has no effect on this index. Thus,
it is independent of the size (energies) of g(r) and x(¢). Using the Cauchy-Schwarz inequality
(proved in Appendix B)," one can show that the magnitude of p is never greater than 1:

/ g@O)x(t) dr (2.43)

—l=<p=l (2.44)

2.5.1 Correlation Functions

We should revisit the application of correlation to signal detection in a radar unit, where a
signal pulse is transmitted to detect a suspected target. By detecting the presence or absence
of the reflected pulse, we confirm the presence or absence of the target. By measuring the time
delay between the transmitted and received (reflected) pulse, we determine the distance of the
target. Let the transmitted and the reflected pulses be denoted by g(¢) and z(t), respectively. If
we were to use Eq. (2.43) directly to measure the correlation coefficient p, we would obtain

20g (D) dt =0 (2.45)

l >0
o=z

Thus, the correlation is zero because the pulses are disjoint (nonoverlapping in time). The
integral in Eq. (2.45) will yield zero even when the pulses are identical but with relative time
shift. To avoid this difficulty, we compare the received pulse z(z) with the transmitted pulse
g(?) shifted by t. If for some value of 7, there is a strong correlation, we not only detect the
presence of the pulse but we -also detect the relative time shift of z(¢) with respect to g(#). For
this reason, instead of using the integral on the right-hand side, we use the modified integral
¥g,(1), the cross-correlation function of two complex signals g(7) and z(z), defined by

o]

Ve () = f (g (=7 di = f 2+ D)g* () dt (2.46)

-00 —

Therefore, Vg, (7) is an indication of similarity (correlation) of g(r) with z(¢) advanced (left-
shifted) by t seconds.

. 2
T The Cauchy-Schwarz inequality states that for two real energy signals g(¢) and x(1), ( fom g(Dx(t) dt) < EgEy

with equality if and only if x(¢) = Kg(z), where K is an arbitrary constant. There is.similar inequality for complex
signals.
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Figure 2.11
Physical
explanation

of the
autocorrelation
function.

Figure 2.12
Representation of
a vector in three-
dimensional
space.
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2.5.2 Autocorrelation Function

As shown in Fig. 2.11, correlation of a signal with itself is called the autocorrelation. The
autocorrelation function Y () of a real signal g(#) is defined as

o0

Yelr) = f gg+1)dr (2.47)
—00

It measures the similarity of the signal g(z) with its own displaced version. In Chapter 3, we

shall show that the autocorrelation function provides valuable spectral information about the

signal.

2.6 ORTHOGONAL SIGNAL SET

In this section we show a way of representing a signal as a sum of orthogonal set of signals. In
effect, the signals in this orthogonal set form a basis for the specific signal space. Here again
we can benefit from the insight gained from a similar problem in vectors. We know that a
vector can be represented as a sum of orthogonal vectors, which form the coordinate system
of a vector space. The problem in signals is analogous, and the results for signals are parallel
to those for vectors. For this reason, let us review the case of vector representation.

2.6.1 Orthogonal Vector Space

Consider a multidimensional Cartesian vector space described by three mutually orthogo-
nal vectors x1, Xp, and x3, as shown in Fig. 2.12 for the special case of three-dimensional
vector space. First, we shall seek to approximate a three-dimensional vector g in terms of two
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orthogonal vectors x; and X3!
g > c1X] + Xy

.The error e in this approximation is
=g — (c1X] + 2%2)

or equivalently,
g=cC1X1 + X+

In accordance with our earlier geometrical argument, it is clear from Fig. 2.12 that the length
of error vector e is minimum when it is perpendicular to the (X1, x2) plane, and when ¢;x; and
2%, are the projections (components) of g on X1 and X, respectively. Therefore, the constants
c¢1 and ¢y are given by formula in Eq. (2.19).

Now let us determine the best approximation to g in terms of all the three mutually
orthogonal vectors X1, X2, and X3:

g = 1X1 + 02Xy + €3X3 (2.48)

Figure 2.12 shows that a unique choice of ¢}, ¢2, and ¢3 exists, for which (2.48) is no longer
an approximation but an equality:

g = C1X] + 2% + €3X3

In this case, c1X1,c2Xa, and c3X3. are the projections (components) of g on x;,x2, and x3,
respectively. Note that the approximation error e is now zero when g is approximated in terms
of three mutually orthogonal vectors: x1, X2, and X3. This is because g is a three-dimensional
vector, and the vectors X1, Xy, and x3 represent a complete set of orthogonal vectors in three-
dimensional space. Completeness here means that it is impossible in this space to find any other
vector X4, which is orthogonal to all the three vectors X, Xp, and X3. Any vector in this space
can therefore be represented (with zero error) in terms of these three vectors. Such vectors are
known as basis vectors, and the set of vector is known as a complete orthogonal basis of
this vector space. If a set of vectors {x;} is not complete, then the approximation error will
generally not be zero. For example, in the three-dimensional case just discussed earlier, it is
generally not possible to represent a vector g in terms of only two basis vectors without an
error.

The choice of basis vectors is not unique. In fact, each set of basis vectors corresponds to a
particular choice of coordinate system. Thus, a three-dimensional vector g may be represented
in many different ways depending on the coordinate system used.

To summarize, if a set of vectors {x;} is mutually orthogonal, that is, if

0 Com#n

< X Xy >=
s A1 [ IXm[2 m=n

and if this basis set is complete, a vector g in this space can be expressed as

g = 1X) + 2% + c3%3 (2.49)
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where the constants ¢; are given by

¢ = =8 X " (2.50a)
< X;, X; >

1

T

”2 < g X > i=1,23 (2.50a)

2.6.2 Orthogonal Signal Space

We continue with our signal approximation problem, using clues and insights developed for
vector approximation. As before, we define orthogonality of a signal setx; (#), x2(f), ... xy{2)
over a time domain & (may be an interval [;, f;]) as

* 0 m#n
m ()X, () dt = - 2.51
/,e@x (0 0) dt {E mrn s

If all signal energies are equal £, = 1, then the set is normalized and is called an orthonormal
set. An orthogonal set can always be normalized by dividing x,(¢) by +/E,, for all n. Now, con-
sider the problem of approximating a signal g(r) over the ® by a set of N mutually orthogonal

signals x1 (1), x2(2), . . ., xn(0):

() ~ ex1 (1) + eaxa(t) + -+ enan () (2.52a)
N

- Z CnXnll) re® (2.52b)
n=1

It can be shown that E,, the energy of the error signal e(z) in this approximation, is minimized
if we choose

/ g(t)x;(2) dr
te®

Cp =
f b ()17 dr
te®

1
= ~f g% (r) dr n=12,.. N (2.53)
) En Jo
Moreover, if the orthogonal set is complete, then the error energy E, — 0, and the represen-
tation in (2.52) is no longer an approximation, but an equality. More precisely, let the N-term
approximation error be defined by

: N
en(D) = g(t) ~ cx1 (1) + cona () + -+ vy () =g () — Y ewin(t)  1€O (254)

n=]

If the orthogonal basis is complete, then the error signal energy converges to zero; that is,

lim / len (O12dt =0 (2.55)
te®

N—>oo
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In a strictly mathematical sense, however, a signal may not converge to zero even though
its energy does. This is because a signal may be nonzero at some isolated points.” Still, for
all practical purposes, signals are continuous for all 7, and the equality (2.55) states that the
error signal has zero energy as N — oo. Thus, for N — oo, the equality (2.52) can be
loosely written as

gt = cixi(t) + o2 () + -+ enxn(O) + -+ -

=Y o) (€0 (2.56)

n=1

where the coefficients ¢, are given by Eq. (2.53). Because the error signal energy approaches
zero, it follows that the energy of g(7) is now equal to the sum of the energies of its orthogonal
components,

The series on the right-hand side of Eq. (2.56) is called the generalized Fourier series of
g(2) with respect to the set {x,(f)}. When the set {x,(¢)} is such that the error energy Ey — 0
as N — oo for every member of some particular signal class we say that the set {x,(¢)} is
complete on {7 : ©} for that class of g(¢), and the set {x,(¢)} is called a set of basis functions
or basis signals. In particular, the class of (finite) energy signals over ® is denoted as L2{®).
Unless otheiwise mentioned, in the future we shall consider only the class of energy signals.

2.6.3 Parseval's Theorem

Recall that the energy of the sum of orthogonal signals is equal to the sum of their energies.
Therefore, the energy of the right-hand side of Eq. (2.56) is the sum of the energies of the
individual orthogonal components. The energy of a component ¢,x, () is C%En. Equating the
energies of the two sides of Eq. (2.56) yields

Eg = C%El + C%Ez + C%E_q 4+
- Y, @57
n

This important result goes by the name of Parseval’s theorem. Recall that the signal energy
(area under the squared value of a signal) is analogous to the square of the length of a vector in
the vector-signal analogy. In vector space we know that the square of the length of a vector is
equal to the sum of the squares of the lenigths of its orthogonal components. Parseval’s theorem
[Eq. (2.57)] is the statement of this fact as applied to signals.

2.7 THE EXPONENTIAL FOURIER SERIES

We noted earlier that orthogonal signal representation is NOT unique. While the tradi-
tional trigonometric Fourier series allows a good representation of all periodic signals, here
we provide an orthogonal representation of periodic signals that is equivalent but has a
simpler form.

* Known as a measure-zero set.
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First of all, it is clear that the set of exponentials &’ (n = 0, +1,+£2,...) is orthogonal
over any interval of duration Ty = 27 /wy, that is,

0 m#*n

Ty = n (2.58)

f ejmwgr(ejnwgt)* dr = e]'(m—n)wot di z {
Ty

To

Moreover, this set is a complete set.!2 From Egs. (2.53) and (2.56), it follows that
a signal g(r) can be expressed over an interval of duration 7y second(s) as an
exponential Fourier series

g(t) = i D, "ot

A=—00
i N
= Y Dyt (2.59)
=00
where [see Eq. (2.53)]
Dy =— | gt)e "2mht gt (2.60)
T To

The exponential Fourier series in Eq. (2.59) consists of components of the form &2’ with
n varying from —oo to oo. It is periodic with period 7.

Example 2.3

Figure 2.13
A periodic
signal.

Find the exponential Fourier series for the signal in Fig. 2.13b:

&)

(@)
~21 -1 2n t —e
®)
L i i
-2T 1T 2 [ —

In this case, Ty = 7, 2nfy = 2m /Ty = 2, and

gy = Y Dpe™

n=—0
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where

1 .
Dp=— | o@®e 7 d
TO To

- A
_ __f i1 it g,

T Jo
s

_ 1 f o~ Gti2nt gy
T Jo

gTE
— -1 e~(%+j2n)t§
Hevn |
0.504 i
1 + j4n (261)
and
oo ) :
(1) = 0504 " —E ’ (2.622)
w— 14 j4n
=0.504 1+ Ly 1w L
144 1+/8 1412
+ ﬁ._l_.._eﬂ'?f + _1_3-1'41 + ____%___e—jﬁl 4. (2.62b)
1 —ja 1-j8 1—j12

Observe that the coefficients D, are complex. Moreover, D, and D_, are conjugates, as
expected.

Exponential Fourier Spectra

In exponential spectra, we plot coefficients D, as a function of w. But since D, is complex in
general, we need two plots: the real and the imaginary parts of D, or the amplitude (magnitude)
and the angle of D,,. We prefer the latter because of its close connection to the amplitudes and
phases of corresponding components of the trigonometric Fourier series. We therefore plot
(D, versus @ and £D, versus w. This requires that the coefficients I, be expressed in polar
form as | Dy|e/“Pn.

For a real periodic signal, the twin coefficients D, and D_, are conjugates,

|Dp| = |D—n} (2.63a)
4D, =0, and ZD_,= -8, (2.63b)

Thus,
Dy, = Dyl  and  D_, = |D,le ™ C(2.64)

Note that |D,| are the amplitudes (magnitudes) and £D,, are the angles of various expo-
nential components. From Eq. (2.63) it follows that the amplitade spectrum {|D,] vs. f) is an
even function of @ and the angle spectrum (£D,, vs. f) is an odd function of f when g(#) is a
real signal.
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Figure 2.14
Exponential
Fourier spectra
for the signal in
Fig. 2.13a.

For the series in Example 2.3, for instance,

Do = 0.504

0.504 e oo
=TT 0.122¢779° — |Dy| = 0.122, £Dy = ~75.96°
j

504 15 060
D_i= 19“7; =0.1226/P%" = |D_{| = 0.122, /D_; = 75.96°
~J

—

and

0504
2T 08
0504

Doy= o= 0.06256/%287° = |D_5| = 0.0625, £ZD_, = 82.87°
—J

= 0.0625¢ /8287 == |Dy| = 0.0625, £D; = —82.87°

and so on. Note that D, and D_, are conjugates, as expected [see Eq. (2.63b)].

Figure 2.14 shows the frequency spectra (amplitude and angle) of the exponential Fourier
series for the periodic signal ¢(¢) in Fig. 2.13b.

We notice some interesting features of these spectra. First, the spectra exist for positive
as well as negative values of f (the frequency). Second, the amplitude spectrum is an even
function of f and the angle spectrum is an odd function of f. Equations (2.63) show the
symmetric characteristics of the amplitude and phase of I,.

What Does Negative Frequency Mean? ,

The existence of the spectrum at negative frequencies is somewhat disturbing to some people
because by definition, the frequency (number of repetitions per second) is a positive quantity.
How do we interpret a negative frequency fy? We can use a trigonometric identity to express
a sinusolid of a negative frequency —fy by borrowing wg = 27/, as

cos (—wot + 6) = cos (wpt — 6)

1D |
0.504 ¢

0.122
] I 0.0625 @
2 k4 T I I T £ &
10 -8 -6 -4 -2 2 4 6 8 10 .
Z D,
b
................................................ 5
(®)
~10 -8 —6 4 7. : 3 4 6 8 10 W->
- l ..... } l l l
3 ERER I SRS N B




Figure 2.15
Unit length
complex variable
with positive
frequency
(rotating counter-
clockwise} versus
unit length
complex variable
with negative
frequency
{rotating
clockwise).
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This clearly shows that the angular frequency of a sinusoid cos (—wgt + 8) is |wgl, whichis a
positive quantity. The commonsense statement that a frequency must be positive comes from
the traditional notion that frequency is associated with a real-valued sinusoid (such as a sine or
a cosine). In reality, the concept of frequency for a real-valued sinusoid describes only the rate
of the sinusoidal variation without addressing the direction of the variation. This is because
real-valued sinusoidal signals do NOT contain information on the direction of its variation.
The concept of negative frequency is meaningful enly when we are considering complex
sinusoids for which the rate and the direction of variation are meaningful. Observe that

e = cos wyt =+ j sin wyt

This relationship clearly shows that either positive or negative w leads to periodic variation of
the same rate. However, the resulting complex signals are NOT the same. Because || = [,
both ¢ and e/ are unit length complex variables that can be shown on the complex
plane. We illustrate the two exponential sinusoids as unit length complex variables that vary
with time ¢ in Fig. 2.15. Thus, the rotation rate for both exponentials e™/“0' is |wg . It is clear that
for positive frequency, the exponential sinusoid rotates counterclockwise while for negative
frequency, the exponential sinusoid rotates clockwise. This illustrates the actual meaning of
negative frequency.

There exists a good analogy between positive/negative frequency and positive/negative
velocity. Just as people are reluctant to use negative velocity in describing a moving object,
they are equally unwilling to accept the notion of “negative” frequency. However, once we
understand that negative velocity simply refers to both the negative direction and the actual
speed of a moving object, negative velocity makes perfect sense. Likewise, negative frequency
does NOT describe the rate of periodic variation of a sine or a cosine. It describe the direction
of rotation of a unit length exponential sinusoid and its rate of revolution.

Another way of looking at the situation is to say that exponential spectra are a graphical
representation of coefficients Dy as a function of . Existence of the spectrum at {f = —nfy
merely indicates that an exponential component ¢ "™/ gxists in the series. We know from
Euler’s identity

0 =it
cos {(wt +8) = BN exp (jot) +

exp (—jowt)

that a sinusoid of frequency nwg can be expressed in terms of a pair of exponentials &/"“0!
and e~/ That both sine and cosine consist of positive and negative frequency exponential
sinusoidal components clearly indicates that we are NOT at all able to describe the direction of
their periodic variations. Indeed, both sine and cosine functions of frequency wg consist of two
equal-size exponential sinusoids of frequency wq. Thus, the frequency of sine or cosine is
the absolute value of its two component frequencies and denotes only the rate of the sinusoidal
variations.

Im Im

’ Jwgt . .
Noe . ‘e—/wor

Re : - Re

(a) ®)
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Excmpfe 2.4  Find the exponential Fourier series for the periodic square wave w(t) shown in Fig. 2.16.

Figure 2.16
A square pulse
periadic signal.

w(r)

3=
[Tk

(a)

joe]
wit) =y Dy

=00

where

1 1
Dy = — w(tydr = —

Ty Jry 2
1 .
Dp=— | w(t)e "t g, n#0
1o Jr,
Ta/4
L
To J-15/4
1

— [effnZWfoTo/“ _ ejnZTEfoTo/4]
—m2xfoTo

2 sin n2wfoly 1 ¢in (mr)
=~ 8] [
n2nfoTo 4 nrw 2

In this case D, is real. Consequently, we can do without the phase or angle plot if we plot
D, vs. f instead of the amplitude spectrum ({D,| vs. f) as shown in Fig. 2.17.

Figure 2.17
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Example 2.5

Figure 2.18
Impulse train and
its exponential
Fourier spectra.

Find the exponential Fourier series and sketch the corresponding spectra for the impulse train
87, (ty shown in Fig. 2.18a.

The exponeutial Fourier series is given by

e}
: 1
bro = D Dae™™ fo= o (2.65)
=00

where

1 .
Dp=— | &y (t)e ¥ gt
To J1y
Choosing the interval of integration (:%, —Ti‘l) and recognizing that over this interval
31, () = 6(¢), were have

1 To/2

Dn (r)eIm2mht gy

T To Jomp

In this integral, the impulse is located at # = 0. From the sampling property of the impulse
function, the integral on the right-hand side is the value of eIt gt ¢ = O (where the
impulse is located). Therefore

1
D= 2.66
= (2.66)
and
[N 1
0 b p—t Ty

Ecjuation (2.67) shows that the exponential spectrum is uniform (D, = 1/Tp) for all the
frequencies, as shown in Fig. 2.18b. The spectrum, being real, requires only the amplitude
plot. All phases are zero.-

gy = 8,09
L 2 1} e8e
1 (@)
g —2T, -T, 0 1 2% 3% o>
i“ﬁ%
- .1_
TQ 58D
268
% ()
% —4me ~3wo 200 -~ 0 Wy 20, 3w 4oo Soy 6o © —>=
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Parseval’s Theorem in the Fourier Series
A periodic signal g(z) is a power signal, and every term in its Fourier series is also a power
signal. The power P, of g(r) is equal to the power of its Fourier series. Because the Fourier
series consists of terms that are mutually orthogonal over one period, the power of the Fourier
series is equal to the sum of the powers of its Fourier components. This follows from Parseval’s
theorem.

Thus, for the exponential Fourier series

[ee)
e(t) = Do + Z Dl
=00, n#{
the power is given by (see Prob. 2.1-7)
[e¢]
Po= " D, (2.68a)
n=—00
Forareal g(1), [D_,| = |D,|. Therefore
oo
Py =Dy* +2% D, (2.68b)
n=]

Comment: Parseval’s theorem occurs in many different forms, such as in Egs. (2.57) and
Eq. (2.68a). Yet another form is found in the next chapter for nonperiodic signals. Although
these forms appear to be different, they all state the same principle; that is, the square of the
length of a vector equals the sum of the squares of its orthogonal components. The first form
[Eq. (2.57)] applies to energy signals, and the second [Eq. (2.68a)] applies to periodic signals
represented by the exponential Fourier series.

Some Other Examples of Orthogonal Signal Sets

The signal representation by Fourier series shows that signals are vectors in every sense. Just
as a vector can be represented as a sum of its components in a variety of ways, depending upon
the choice of a coordinate system, a signal can be represented as a sum of its components in
a variety of ways. Just as we have vector coordinate systems formed by mutually orthogonal
vectors (rectangular, cylindrical, spherical, etc.), we also have signal coordinate systems, basis
signals, formed by a variety of sets of mutually orthogonal signals. There exist a large number
of orthogonal signal sets that can be used as basis signals for generalized Fourier series. Some
well-known signal sets are trigonometric (sinusoid) functions, exponential functions, Walsh
functions, Bessel functions, Legendre polynomials, Laguerre functions, Jacobi polynomials,
Hermite polynomials, and Chebyshev polynomials. The functions that concern us most in this
book are the exponential sets discussed next in the chapter.

2.8 MATLAB EXERCISES

In this section, we provide some basic MATLAB exercises to illustrate the process of signal
generation, signal operations, and Fourier series analysis.
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Basic Signals and Signal Graphing
Basic functions can be defined by using MATLAB’s m-files. We gave three MATLAB programs
that implement three basic functions when a time vector t is provided:

- ustep .mimplements the unit step fanction ()
- rect.mimplements the standard rectangular function rect(7)

- triangl .mimplements standard triangle function Al

of

(file name: ustep.m)

% The unit step function is a function of time ’'t’.
% Usage vy = ustep(t)
%
% ustep(t) =0 if £ <« 0
% ustep(t) = 1, if &t >= 1
%
% t - must be real-valued and can be a vector or a matrix
%
function y=ustep(t)
y = (£>=0);
end

% (file name: rect.m)

% The rectangular function is a function of time 't’.

%

% Usage y = rect(t)

% t - must be real-valued and can be a vector or a matrix
. .

% rect(t) = 1, if ] < 0.5

% rect(t) = 0, if |t] » 0.5

%

function y=rect(t)
v =(sign(t+0.5)-sign(t-0.5) >0);

end

% (file name: triangl.m)

% The triangle function is a function of time 't’.
%

% triangl(t) = 1-|t}, if e} <1

% triangl(t) = 0, if lt] > 1

%

o

Usage vy = triangl(t)
t - must be real-valued and can be a vector or a matrix

o6 d@
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Figurg 2.19 Yrm time dorain
Graphing o 3 : . . T T " T
signal.

b

function y=tr4angl(t)
y = (l-abs(t)).*(t>=~1) . *(t<l};
end

We now show how to use MATLAB to generate a simple signal plot through an example.
siggraf.mis provided. In this example, we construct and plot a signal

y({t) = exp (—8)sin (6xHult + 1)

The resulting graph shown in Fig. 2.19.

% {(file name: siggraf.m)

% To graph a signal, the first step is to determine
% the x-axis and the y-axis to plot

% We can first decide the length of x-axis to plot

E=[-2:0.01:37; % "t* is from -2 to 3 in 0.01 increment
% Then evaluate the signal over the range of “t" to plot
y:exp(—t).*sin(lo*pi*t).*ustep(t+l){

figure(l); figl=plot(t,vy); % plot t vs v in figure 1
set (figl, 'Linewidth’,2) % choose a wider line-width
xlabel {("\it t’); % use italic "t’ to label x-axis
viabel (“\{\bf y\} (\{\it t})); % use boldface 'y’

to label y-axis
title ("N{\bf v\}\_\{\rm time domain\}’}); % can use subscript

Periodic Signals and Signal Power -
Periodic signals can be generated by first determining the signal values in one period before
repeating the same signal vector multiple times.

In the following MATLAB program PfuncEx.m, we generate a periodic signal and
observe its behavior over 2M periods. The period of this example is T = 6. ThL. program also
evaluates the average signal power which is stored as a variable v _Ppower and signal energy
in one period which is stored in variable y_energyT.
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(file name: PfuncEx.m)
This example generates a periodic signal, plots the signal

90 o0 o

and evaluates the average signal power in yv_power and signal
energy in 1 period T: v_energyT

o

echo off;clear;clf;

o0

To generate a periodic signal g_T(t),

% we can first decide the signal within the period of T’ for g(t)
Dt=0.002; % Time interval (to sample the signal)
T=6; % period=T
M=3; % To generate 2M periods of the signal
t=[{0:Dt:T-Dt]; %"t" goes for one period [0, T] in Dt increment

Then evaluate the signal over the range of "T"
y=exp(-abs(t)/2) . *sin(2*pi*t).* (ustep(t)-ustep(t-4));

% Multiple periods can now be generated.

o¢

time=[];
y_periodic=[1;
for i=-M:M-1,
time=[time 1*T+t];
y_periodic=[y periocdic vl;
end
figure(l); fy=plot(time,y periodic):
set (fy, 'Linewidth’,2) ;xlabel (' {\it t}'};
echo on
% Compute average power
v_power=sum(y_periodic*y_periodic’)*Dt/ (max(time) -min(time))
% Compute signal energy in 1 period T
y_enexrgyT=sum(y. *conj (y)) *Dt

" The program generates a periodic signal as shown in Fig. 2.20 and numerical answers: .

y_power =
0.0813

y_energyT =
0.4878

Signal Correlation

The MATLAB program can implement directly the concept of signal correlation introduced
in Section 2.5. In the next computer example, we provide a program, sign_cor.m, that
evaluates the signal correlation coefficients between x(r) and signals g1(r), g2(0), ... gs(t).
The program first generates Fig. 2.21, which iltustrates the six signals in the time domain.

% (file name: sign_cor.m)
clear
% To generate 6 signals x{t), g_1(t), ... g 5(t);:

e

of this Example
we can first decide the signal within the period of 'T' o

oe
[
Q
cr
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Figure 2.20 11— : ; : . : ; \
Generating a :
periodic signal. 08k
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t { t
De=0.01; % time increment Dt
T=6.0; % time duration = T
t=[-1:Dt:T]; $"t* goes between [-1, T] in Dt increment

% Then evaluate the signal over the range of "t to plot
x=ustep(t)-ustep(t-5);
gl=0.5*(ustep(t)-ustep(t-5));
g2=-{ustep(t)-ustep(t-5});
g3=exp(-t/5).*{ustep(t)-ustep(t-5));
gd=exp(-t).* (ustep(t)-ustepl{t-5));
gS=sin{2*%pi*t) .* (ustep(t) -ustep(t-5));
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subplot (231); sigl=plot{t,x,‘k’);

xlabel (’\it t7); ylabel (' {\it x} ({\it t})'); % Label axis
set(sigl, 'Linewidth’,2); % change linewidth
axis{[-.5 6 ~-1.2 1.21); grid % set plot range

subplot (232); sig2=plot(t,gl, 'k’);

xlabel ("\it t’); ylabel (' {\it g}_1({\it t})’):
set (gig2, 'Linewidth’,2);

axig([~-.5 6 -1.2 1.21); grid

subplot (233); sig3=plot(t,g2,’'k");

xlabel (“\it t’); yiabel ({\it g}_2({\it t})");
set (sig3, 'Linewidth’ ,2);

axis([-.5 6 -1.2 1.21); grid

subplot (234); sigd=plot(t,g3,’k’});

xlabel ('\it t’); ylabel (’{\it g}_3({\it t})’);
set{sig4, 'Linewidth’,2);

axis([-.5 6 -1.2 1.21); grid

subplot(235); sig5=plot(t, g4, 'k’);

xlabel (“\it t’); vylabel (' {\it g}_4({\it t})");
set(sig5, 'Linewidth’,2) ;grid ’
axis([-.5 6 -1.2 1.2]1);

subplot(236); sigé=plot(t,yg5, 'k'});

xlabel (“\it t’); wvlabel (’{\it g}_5({\it t})"):
get (sigb, 'Linewidth’,2);grid

axis([-.5 6 -1.2 1.21);

% Computing signal energies
EO0=sum (x.*conj (x))*Dt;
El=sum(gl.*conj(gl))*Dt;
E2=sum(g2. *conj (g2))*Dt;
E3=sum(g3.*conj (g3))*Dt;
Ed=sum{g4. *conj (g4)) *Dt;
ES5=sum(g5. *conj (g5) ) *Dt;
cO=sum (x.*conj *Dt/ (sgqrt (EO¥EQ))
*Dt/ {sgrt (E0*El)
*De/ (sgrt (E0*E2)

c1=sum(x.*con3 ) )
) )
) *Dt/ {sqrt (E0*E3) )
) )
)

(

(

c2=gum(x.* 3(

c3=sum(x.*conj(

cd=sum(x.*coni ( *Dt/ (sqgrt (E0*E4)
(

)
)
)
)
)
))*Dt/ (sgrt (EO*ES) )

x)
gl
g2
g3
g4
ab

cS5=gum(x.*conj

The six correlation coefficients are obtained from the program as

cl =

1
cl =

1
c2 =
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c3 =

0.9614
cd =

0.6282
ch =

8.6748e-17

Numerical Computation of Coefficients D,
There are several ways to numerically compute the Fourier series coefficients D,,. We will use
MATLAB to show how to use numerical integration in the evaluation of Fourier series.

To carry out a direct numerical integration of Eq. (2.60), the first step is to define the
symbolic expression of the signal g(r) under analysis. We use the triangle function A(r) in the
following example.

(23

(funct_tri.m)
A standard triangle function of base -1 to 1
function y = funct_tri(t)

e

o¢

Usage v = func_tri(t)
t = input variable i
y={{t>-1)-({t>1)) .*{1l-abs(t));

a0

Once the file funct_tri.m defines the function y = g(t), we can directly carry
out the necessary integration of Eq. (2.60) for a finite number of Fourier series coefficients
{(Dpon=—N,...,—1,0,1, ..., N}. We provide the following MATLAB program called
FSexample.m to evaluate the Fourier series of A(#/2) with period [a, bl (@ = —2, b = 2).
In this example, N = 11 is selected. Executing this short program in MATLAB will generate
Fig. 2.22 with both amplitude and angle of Dy,

% (file name: FSexp_a.m)

% This example shows how to numerically evaluate
% the exponential Fourier series coefficients Dn
% directly.

% The user needs to define a symbolic function

% g(t). In this example, g(t)=funct_tril(t).

echo off; clear; clf;
j=sgrt(~1); % Define j for complex algebra
b=2; a=-2; % Determine one gignal pericd
tol=1l.e-5; %
T=b~a;
N=11;

Set integration error tolerance

o0

length of the period
Number of FS coefficients

% on each side of zero frequency
Pi={-N:N]1*2*pi/T; % Set frequency range

o0
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% now calculate D_0 and store it in D(N+1);
Func= @(t) funct_tri{t/2);

D(N+1)=1/T*quad(Func,a,b,tol); % Using guad.m integration
for i=1:N
% Calculate Dn for n=1,...,N (stored in D(N+2) ... D(2N+1)

Func= @(t) exp(-j*2¥*pi*t*i/T).*funct_tri(t/2);
D(i+N+1)=quad(Func,a,b, tol);

% Calculate Dn for n=-N,...,-1 (stored in D(1) ... D(N)
Func= @(t) exp(j*2*pi*t*(N+1-1i)/T).*func_tri(t/2);
D(i)= guad(Func,a,b,tol);

end

figure(l);

subplot (211); sl=stem([-N:N],abs (D)}

set(sl, 'Linewidth’,2); ylabel(’|{\it D}_{\it n}|’');

15
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title(’Amplitude of {\it D}_{\it n}’)

subplot {212) ;s2=stem{[-N:N],angle(D));

set (g2, ‘Linewidth’,2); ylabel ('<{\it D}_{\it n}’');
title(’Angle of {\it D}_{\it n}'};
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PROBLEMS

Figure P.2.1-1

2.1-1 Find the energies of the signals shown in Fig. P2.1-1. Comment on the effect on energy of sign
change, time shift, or doubling of the signal. What is the effect on the energy if the signal is
multiplied by k?

sin ¢ (a)

‘2sint

2 2
Ol > & 0!\/,»—) r @
) >
ll’ sin ¢ /'\ ()

2.1-2 (a) Find Ey and Ey, the energies of the signals x(z) and y(z) shown in Fig. P2.1-2a. Sketch the
signals x(#) + y{(¢) and x(z) — y(¢) and show that the energy of either of these two signals is
equal to Ey + E. Repeat the procedure for signal pair in Fig. P2.1-2b.

(b) Now repeat the procedure for signal pair in Fig. P2.1-2c. Are the energies of the signals
x{(t) + v(¢) and x(t) — y(¢) identical in this case?

2.1-3 Find the power of a sinusoid C cos (wgt -+ 8).

2.1-4 Show that if w; = wy, the power of g(t) = C; cos(wyt + 81) + Cz cos(wat + 6) is (1% +
€22 +2C1C; cos(@ — 62)1/2, which is not equal to (€1 + €2%)/2.

2.1-5 Find the power of the periodic signal g (¢) shown in Fig. P2.1-5. Find also the powers and the rms
values of (a) —g(¢) (b) 2g(1) (¢) cg(#). Comment.

2.1-6 Find the power and the rms value for the signals in (a) Fig. P2-1-6a; (b) Fig. 2.16; (¢) Fig. P2-1-6b;
(d) Fig. P2.7-4a; (e) Fig. P2.7-4c.
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Figure P.2.1-2 x(5) U
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¥
! 1
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Figure P.2.1-5

S

ool v T

Figure P.2.1-6

wlD)

1+

2.1-7 Show that the power of a signal g(z) given by

n
gy = Z Dy el w; # wy forall i £k

k=m

s (Parseval’s theorem)
n

Pe= > 1Dy

k=m

55
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2.1-8

2.2-1

231

Figure P.2.3-1

Determine the power and the rms value for each of the following signals:

(a) 10 cos (100: + %) (@) 10 cos 5¢ cos 10t
() 10 cos (10(» + %) + 16 sin (150: ¥ —755) © 19 sin 5¢ cos 10z
(e) (10 + 2 sin37) cos 10¢ ) &% cos wpt

—at

Show that an exponential e ™% starting at —oo is neither an energy nor a power signal for any
real value of a. However, if a is imaginary, it is a power signal with power Py = | regardless of
the value of a.

In Fig. P2.3-1, the signal g;(¢) = g(—1). Express signals g(1}, g3(t), 84(t), and gs(r) in terms
of signals g(#), g1 (2), and their time-shifted, time-scaled, or time-inverted versions. For instance,
g2(2) = gt — T) -+ g1 (& — T) for some suitable value of 7. Similarly, both g3(¢) and g4(¢) canbe
expressed as g(r — ')+ g(zr — T') for some suitable value of T. In addition, g5(¢) can be expressed
as g(f) time-shifted, time-scaled, and then multiplied by a constani.

g(n ) (0 &l

-1

&(n §4() &s(t)

2.3-2

Figure P.2.3-2
0.5

vl
[T

For the signal g(z) shown in Fig. P2.3-2, sketch the following signals: (a) g(—1); (b) gt + 6);
© g3ty g6-1).

2.3-3

2.3-4

For the signal g(¢) shown in Fig. P2.3-3, sketch (a) g(r — 4); (b) g(z/1.5); (©) g(2r — 4); (d)
g2 —1). v

Hint: Recall that replacing ¢ with r — T delays the signal by T. Thus, g(2t — 4) 1s g(2f) with ¢
replaced by r — 2. Similarly, g(2 — 1) is g{(—7) with ¢ replaced by r — 2.

For an energy signal g(r) with energy Eg, show that the energy of any one of the signals
—g(1), g(—1), and g(t — T) is E;. Show also that the energy of g(ar) as well as glar — b)
is Eg /a. This shows that time inversion and time shifting do not affect signal energy. On the other



Prqblems 57

Figure P.2.3-3

R

hand, time compression of a signal by a factor a reduces the energy by the factor ¢. What is the
effect on signal energy if the signal is (a) time-expanded by a factor a (¢ > 1) and (b) multiplied
by a constant a?

2.3-5 Simplify the following expressions:

tan ¢ sin 7 (t + 2)
(a) (2t2 T 1) 3(t) )] (”?“:4—) -1
jo—3 cos (nt)
(b) (w2+9)5(w) (e) ( .t+2 )5(2I+3)
© [e™ cos (3t — w/3)] 80 + 1) ) (S‘“wk “’) 5(w)

Hint: Use Eq. (2.10b). For part (f) use L' Hospital’s rule.
2.3-6 Evaluate the following integrals:

@ [T gmit—nydr (&) [B8G+near
B [Z8mgt-ndr  ® [l +50 -ndr

(© [J25, 3@e ™/ dr @® [22e2-n83—ndt
@ [losu—sinmtdr ) [ %D cos Tx - 5)8(2x — 3) dx

Hint: 8(x) is located at x = 0. For example, §(1 — 1) islocated at I — ¢ = 0; that is, at 7 = 1, and
SO on.

2.3-7 Prove that .
8(at) = —8(1)
lal
Hence show that :
§w) = —8(f) where @ = 2nf
2
Hint: Show that
o0 1
/ p@Ds(atydt = —¢(0)
—00 lal
2.4-1 Derive Eq. (2.19) in an alternate way by observing that e = (g—c x), and
lel” = (g—cx) - (@—cx) =g + x> —2cg - x
To minimize |e|2, equate its derivative with respect to ¢ to zero.
2.4-2 Tor the signals g(¢) and x(¢) shown in Fig. P2.4-2, find the component of the form x(r) contained

in g(#). In other words, find the optimum value of ¢ in the approximation g(z) = cx(t) so that the
error signal energy is minimum. What is the resulting error signal energy?
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Figure P.2.4-2 x(1)

(b)

2.4-3 For the signals g(r) and x(¢) shown i Fig. P2.4-2, find the component of the form g(f) contained
in x(r}. In other words, find the optimum value of ¢ in the approximation x(f} & ¢g(f) so that the
error signal energy is minimum. What is the resulting error signal energy?

2.4-4 Repeat Prob. 2.4-2 if x(z) is a sinusoid pulse shown in Fig. P2.4-4.

Figure P.2.4-4 X0

sin 27t

\/I e

2.4-5 The Energies of the two energy signals x(¢) and y(r) are Ey and Ey, respectively.

{a) If x(r) and y(¢) are orthogonal, then show that the energy of the signal x(r) +y(z) is identical
to the energy of the signal x(¢) — y(¢), and is given by Ex + £E;.

(b) ifx(r) and y(¢) are orthogonal, find the energies of signals cyx(¢) +c2y(t) and c1x(£) — cpy(1).
(c) We define Eyy, the cross-energy of the two energy signals x(¢) and y(z), as

Exyy = /00 x(Oy™ () dt

If z(t) = x(r) & ¥(r), then show that
E; = Ey + Ey & (Exy + Eyy)
2.4-6 Let x;(1) and x(f) be two unit energy signals orthogonal over an interval from 7 = 1 to ;.

Signals x1(r) and x(¢) are unit energy, orthogonal signals; we can represent them by two unit
length, orthogonal vectors (x1,xp). Consider a signal g(f) where

g(t) = cyx1{t) + cpxa(t) H<t<t

This signal can be represented as a vector g by a point (¢j, ¢») in the x; — x; plane.

(a) Determine the vector representation of the following six signals in this two-dimensional
vector space:

B 1) = 2 (1) —x2(0) (i) g4(f) = x1(t) + 2x2(1)
() g2(t) = —x1 () + 2x2(1) (v) g5(t) = 21 (1) +x2(0)
() g3(1) = —x2(1) (vi) g6(t) = 3x1(1)

(b) Point out pairs of mutually orthogonal vectors among these six vectors. Verify that the pairs
of signals corresponding to these orthogonal vectors are also orthogonal.
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2.5-1 Find the correlation coefficient ¢, of signal x(¢) and each of the four pulses g; (1), g2(#), g3(2), and
g4 (1) shown in Fig. P2.5-1. To provide maximum margin against the noise along the transmission
path, which pair of pulses would you select for a binary communication?

Figure P.2.5-1 X0) (a) g0 (b) 80 ©

LN sin 21t ! sin 41t Ly —sin 27
. 1 l
TS - TV Ve R e

&0 p 84(2)
0.707 (d) 0.707 ©
1
a 1 t 0 0.5 t—>
o707 | ]

2.7-1 (a) Sketch the signal g(r) = 1% and find the exponential Fourier series to represent g (1) over the
interval (—1, 1). Sketch the Fourier series (1) for all values cf z.

(by Verify Parseval’s theorem [Eq. (2.68a)] for this case, given that

©0 4

1 T
2= 5

=

2.7-2 (a) Sketch the signal g(r) = ¢ and find the exponential Fourier series to represent g(1) over the
interval (—u, ). Sketch the Fourier series ¢(z) for all values of 1.

(b) Verify Parseval’s theorem [Eq. (2.68a)] for this case, given that

1 2

n2:6

18

i

n

i

2.7-3 If a periodic signal satisfies certain symmetry conditions, the evaluation of the Fourier series
coefficients is somewhat simplified.

(a) Show that if g(t) = g(—1) (even symmetry), then the coefficients of the exponential Fourier
series are real.

{(b) Show that if g(r) = —g(~1) (odd symmetry), the coefficients of the exponential Fourier
series are imaginary.

(¢) Show that in each case, the Fourier coefficients can be evaluated by integrating the periodic

signal over the half-cycle only. This is because the entire information of one cycle is implicit
in a half-cycle owing to symmetry.

Hint: If g0 (¢) and g,(¢) are even and odd functions, respectively, of , then (assuming no impulse
or its derivative at the origin),

a 2a a
f ge(t)dtzf ge(t)dt and / go{)dt =0
0

—a —a
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Also, the product of an even and an odd function is an odd function, the product of two odd
functions is an even function, and the product of two even functions is an even function.

2.7-4 For each of the periodic signals shown in Fig. P2.7-4, find the exponential Fourier series and
sketch the amplitude and phase spectra. Note any symmetric property.

Figure P.2.7-4

1T
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-5 3 2 1 3 4 6 t—
1
-6 2 T 4 6 8, ®

2.7-5 (a) Show that an arbitrary function g{(r) can be expressed as a sum of an even function g, () and
an odd function g,(r):

§(1) = ge(t) + go(1)

Hint: g(t) = -;—[g(t) + g(-—t)] + %[g(t) - g(-t)]

ge(t) go()
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(b) Determine the odd and even components of the following functions: (1) u(r); (i) ey,
(i) &".

2.7-6 (a) Ifthe twohalves of one period of a periodic signal are of identical shape except that one is the

negative of the other, the periodic signal is said to have a half-wave symmetry. If a periodic
signal g (¢) with a period Ty satisfies the half-wave symmetry condition, then

8 (t - ZZQ) = —g()

In this case, show that all the even-numbered harmonics (coefficients) vanish.

(b) Use this result to find the Fourier series for the periodic signals in Fig. P2.7-6.

Figure P.2.7-6 N

D »
= -

2.8-1 A periodic signal g(¢) is expressed by the following Fourier series:

. 2m b4
g(f) = 3sin 1+ cos (SI - ~3—) + 2 cos (8 + —3—)

(a) By applying Euler’s identities on the signal g () directly, write the exponential Fourier series
for g (£).

(b) By applying Euler’s identities on the signal g (r) directly, sketch the exponential Fourier series
spectra.



