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Abstract
We present insights obtained from conducting a year-long,
455 meter deployment of wireless plug-load electric meters
in a large commercial building. We develop a stratified sam-
pling methodology for surveying the energy use of Miscella-
neous Electric Loads (MELs) in commercial buildings, and
apply it to our study building. Over the deployment period,
we collected over nine hundred million individual readings.
Among our findings, we document the need for a dynamic,
scalable IPv6 routing protocol which supports point-to-point
routing and multiple points of egress. Although the meters
are static physically, we find that the set of links they use
is dynamic; not using such a dynamic set results in paths
that are twice as long. Finally, we conduct a detailed sur-
vey of the accuracy possible with inexpensive AC metering
hardware. Based on a 21-point automated calibration of
a population of 500 devices, we find that it is possible to
produce nearly utility-grade metering data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.7 [Computers in Other Systems]: Industrial Control

General Terms
Design, Measurement, Performance

Keywords
Energy, Audit, Building, Power, Wireless, Sensor Network

1. INTRODUCTION
More than a decade after wireless sensor networks emerged

as a topic of research, much progress has been made in un-
derstanding the contours of the field. There is now a large
body of work from which to draw inspiration and ideas.
From the early “let chaos reign” days to the current state-
of-the-art, the field has evolved to the point where it is pos-
sible to deploy large-scale applications over a long period
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with the expectation that they will work to produce use-
ful, scientifically-relevant data. Deploying these systems at
scale requires rigorous attention to both engineering and de-
ployment management. Recent studies have begun to show
successes and failures [4, 11, 17] as well as offering practical
guidance on deployments, continuing the sequence of papers
performing science in the real world [31, 35].

In this paper, we present results and insights from a mas-
sive application, developed and deployed over the past two
years. This application consists of 455 wireless energy plug-
load meters and 7 load-balancing routers deployed across
four floors of a commercial building for the past year. It
was motivated by a need for a better understanding of the
power consumption and usage patterns of electric plug-loads,
or “miscellaneous electric loads.” These are estimated to
make up nearly 30% of the electric load in commercial build-
ings [32], but are difficult to study because they are so nu-
merous and diverse. They are a good target for a wireless
sensor network because they require both high density and
a large number of metering elements.

When conducting our deployment, we took care to heed
the lessons of the past, and thus avoided many of the pitfalls
of previous deployments. By considering both the innovative
aspects of our system (the density and scale) while limiting
our innovation in other areas, we have been able to develop
a system which performed well and met our science goals,
while developing new insights in the types of applications
and practices which work well at scale.

One set of insights relates to the networking technology
used. Our networking stack uses 6loWPAN/IPv6 to form
all meters into a single subnet, the largest such deployment
we are aware of. This results in a variety of lessons about
the routing requirements needed for this scale, validating
the need for point-to-point routing and support for multi-
ple egress routers. We discuss data loss at both the rout-
ing layer and the application layer, and distinguish them
where possible, as well as issues which arise when a low-
power subnet is connected to other networks. Finally, even
though there is little node mobility in this deployment, the
usage model implies that nodes intermittently disappear, re-
sulting in interesting network dynamics that emerge. We
find that the set of intermittent links even in a static deploy-
ment is large, many times the size of the set of “good” links.
Ignoring links that disappear due to changing noise condi-
tions results in path lengths twice as long as using routes
that incorporate variable links.

We also take to a new level inexpensive energy metering
technology similar to that used in the past. The science



goals of the deployment require consideration of the accu-
racy required by the meters; we developed an extensive
automated calibration procedure that could be efficiently
applied to hundreds of meters to achieve better than 2%
accuracy. Furthermore, previous studies have not explic-
itly considered the importance of sampling methodology
in choosing which plug-loads to monitor; we propose that
staged stratified sampling is the proper methodology for ob-
serving usage patterns and power states across a broad range
of devices.

In the remainder of the paper we first present an overview
of the science goals and methodology of our study. We then
present our system design, noting where we have learned
from mistakes published in the past and pointing out how
simplicity is key to conducting large deployments with lim-
ited resources. In the body of the paper, we examine the
lessons learned by deploying our large system, and how being
driven by energy science (in addition to computer science)
goals led to new insights.

2. MISCELLANEOUS ELECTRIC LOADS
Auditors of commercial buildings and residences typically

attribute energy to end uses such as heating, cooling, hot wa-
ter, and lighting. All other energy use is attributed to the
“miscellaneous” category (MELs). As major categories of
electric usage are reduced through more stringent efficiency
requirements and better design practice, this category of
load becomes more of the overall energy spend and thus a
larger target for reduction. However, MELs are both diffi-
cult to study and difficult to reduce, because they comprise
a large number of relatively small loads, many of which are
infrequently used. Our goal was to conduct a representative
sampling of the energy used by this category of devices to
build usage models of many different types of devices, as
well as energy models for particular devices.

To do so, we conducted a large-scale sensor network de-
ployment in a typical commercial office. The study build-
ing is a 1960s-era facility largely used as a traditional office
space. It has a total floor area of 89,500 square feet, with
approximately 450 occupants in six working groups located
among four floors and a basement. Certain aspects of the
study presented challenges which are not immediately ap-
parent; for instance, although the study building was located
only a few miles from our campus, due to human subjects
regulations we were not supposed to enter the building to di-
agnose particular devices. Physical contact with individual
meters was restricted to our on-site partners. This limited
our opportunities for diagnosing or fixing problems with the
deployment.

2.1 MELs Device Inventory
The first phase of the study consisted of a full inven-

tory of the MELs devices in the office to serve as ground
truth when comparing various sampling approaches. Due
to the diversity of devices, a standardized system of iden-
tifying and recording MELs is essential for inventory and
energy data analysis. We updated an extensive taxonomy
developed in [23] to include new device types found today,
such as tablet computers. The taxonomy consists of three
levels: End Use, Category, and Product Type. MELs are
divided into three major end uses – Electronics, Miscella-
neous, and Traditional. Each end use is in turn composed of
categories, and each category contains many product types.

For example, an “LCD computer display” is a product type
in the “Display” category, which is part of the end use “Elec-
tronics.” The inventory categorized every plug-load in the
building according to this taxonomy, resulting in the identi-
fication of almost 5,000 devices. The inventory was collected
by two-person teams and recorded in a relational database.

2.2 Device Sampling Methodology
With such a large number of MELs in our study building,

metering all devices would be time- and cost-prohibitive, and
not all data generated would provide useful insights. The
sampling must be driven by science criteria, not network-
ing expedience. The selection of an appropriate sampling
method is driven by the multi-fold purpose of our energy
data collection and analysis:

• Provide a statistically-relevant survey of power and en-
ergy measurements of the population of MELs devices
in a typical commercial setting; and

• Capture traces and derive usage patterns of MELs to
build an appliance energy signature database and con-
struct models for future analysis; and

• Study usage correlations between devices, e.g., com-
puter, display, and lighting within the same occupant’s
office.

We developed a multi-stage, stratified random sampling
approach to select devices for metering. Devices were first
divided into stages by physical location or organization own-
ing the devices. For each stage, a subset of devices were then
selected from a stratified sample by Device Category to meet
our data collection objectives. A stratified sample is critical
because a simple random sample would result in metering a
large number of uninteresting devices (e.g., computer speak-
ers, external disk drives) instead of devices with significant
energy use such as computers or LCD displays.

In the second phase of the study, we deployed a total of
455 meters on the selected devices. The deployment took ap-
proximately 120 person-hours. No effort was made to deploy
meters to ensure network connectivity, but load-balancing
routers (LBRs) were placed with connectivity and hop count
in mind. Once the meters were in place, we had only lim-
ited opportunities to perform on-site troubleshooting. This
made our remote debugging setup more important.

Figure 2.2 shows meter locations from the third floor of
the deployment; a couple features are evident. First, the
deployment was physically dense, with several meters often
placed within a single office. Second, the meters are well
distributed spatially. This was intentional, since the strati-
fied sampling procedure was performed within each physical
area and administrative unit.

3. SYSTEM DESIGN
We developed the metering system for this deployment

using a mix of existing and custom software, combined with
a custom hardware platform. Figure 2 shows a schematic of
the overall metering system design, with particular emphasis
on the networking. Overall, the system can be decomposed
into three tiers: the metering tier, the backhaul tier, and the
database.

The metering tier is made up of a large number of low-
cost electric meters, each designed around a custom hard-
ware platform similar to the ACme [14]. They contain an
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Figure 1: The third floor of the deployment. Small boxes are meters, while the two stars are LBRs.

msp430 microcontroller integrated with an 802.15.4 radio
and Analog Devices ADE7753 energy metering chip. Each
device runs the TinyOS operating system and uses blip, an
IPv6/6loWPAN stack to provide IPv6 network connectiv-
ity [7].
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Figure 2: System design. The metering tier, left,
forms an IPv6 mesh network of 802.15.4 links and
transmits metering data through the backhaul tier
comprised of load-balancing routers, center; these
routers communicate with each other using the
building’s Ethernet. The UDP data packets travel
over an IPv6 tunnel from the building to the In-
ternet where they reach the database, located in a
datacenter.

To provide scalability to hundreds of nodes, the back haul
tier consists of a number of LBRs that provide connectiv-
ity to and from the metering elements. Unlike a deploy-
ment with multiple gateways, these LBRs are transparent
to the other tiers. Additional units can be deployed with-
out any extra configuration. This is a key result of our use
of the IP architecture. Along with the meters, these de-
vices make up a single IPv6 subnet where all devices partic-
ipate in the routing protocol called HYDRO [8], designed to
provide efficient any-to-any IPv6 routing over constrained
links. Each LBR communicates with neighboring meters
using an 802.15.4 interface, and distributes the topology it
learns from them to the other routers using the building’s
Ethernet. We ultimately deployed seven LBRs over the four
floors of the building. Each LBR advertises a minimum-cost
path to neighboring meters. Each meter then chooses the
closest LBR as its default router, and sends all traffic to the
selected LBR. This allowed us to increase both network and

backhaul capacity by deploying new meters and routers at
will.

Data generated by the meters are sent in UDP packets,
destined to a machine in our datacenter. This datacenter
tier makes up the final part of the system, which runs as a
hosted web application. Data packets from the meters tra-
verse several network segments en route to the data center,
moving from the 6loWPAN network out over a local subnet
before traveling through an IPv6 tunnel to the open IPv6
Internet. By extending our deployment to the Internet, we
are able to share backend infrastructure between this and
other meter deployments.

3.1 Embedded Application
Due to the large scale and long duration of the planned

deployment, key goals were simplicity and reliability while
maintaining enough flexibility to accommodate shifting de-
ployment conditions and science requirements. Although
there are sophisticated techniques available for over-the-air
reprogramming, time synchronization, and distributed de-
bugging, the reality is that each of these components add
code size and testing complexity. Therefore, we either sim-
plified or eliminated many complicated services. An in-
valuable simplification was to extract the most commonly
changed configuration parameters like sampling rate and
calibration parameters, and make them settable without re-
programming. Although we also included a simple over-
the-air image update utility, in practice it was rarely used
since we could update parameters without reflashing the
entire image. Since we used an IPv6 routing protocol to
support point-to-point and multicast traffic, implementing
this functionality in the application was much simplified,
yet extremely valuable to debugging. For instance, over-
the-air reprogramming is implemented using TFTP instead
of a complicated epidemic protocol [12].

3.2 Data Generation
The metering devices sample average power and total en-

ergy every 10 seconds, and send a packet every 20 seconds
with the previous two readings. This period was chosen to
be the highest we could reasonably support in high-density
deployments. We pack two readings into a single packet.
One of the most important aspects of sensing is the no-
tion of time. It allows correlation of readings across meters.
Even though approaches to time synchronization of vari-
ous sophistication have been used successfully [4, 19, 25],
problems with it are well documented [35]. Given our re-
quirements, our approach was very simple. Therefore, we



included redundant clocks and counters to distinguish the
various events we expected in such a large deployment; these
counters are presented in Table 1.

Clock Rate Purpose

LocalTime 32kHz Time since reset or rollover
GlobalTime 1Hz Unix timestamp
SequenceNumber 1/pkt Monotonic value for the life

of the meter
InsertTime 1/pkt Timestamp at database

Table 1: Counters stored with each data packet.

In normal operation and for energy analysis, only Glob-
alTime is needed, since data are timestamped at the meter
with the number of seconds since January 1, 1970. Other
timestamps become useful for post facto analysis. For in-
stance, packet delivery ratio (PDR) is a commonly-reported
metric of network performance: it consists of the ratio be-
tween packets delivered and packets originated. In a large
system where there is uncertainty about device state (e.g.,
some devices may be broken or off), it is not possible to
compute a “true” PDR. However, using SequenceNumbers
which are stored in non-volatile flash memory, we approx-
imated the number of packet originations even when the
device is frequently rebooted. In another example, device
reboots in our study change the set of motes available over
time, and may indicate end-user attempts to save energy.
The LocalTime clock quickly indicates reboot events, which
would otherwise need to be inferred from data loss and could
not be distinguished from network outages.

3.3 Design Takeaways
In reviewing recent deployment literature, we found nu-

merous instances of malfunctioning networking stacks. By
using a well-tested existing stack rather than starting from
scratch, we avoided many of the networking bugs that plague
deployments. By constraining the system to a single use
and a set of protocols that have been tested together, we
avoid the need for more complicated resource-sharing ar-
rangements [13].

Our key insight was the value of configuration, not repro-
gramming. In the two or so years since our mote software
was “released to manufacturing,” we have not developed a
new image; instead we have been able to work around the
few, minor, and well-understood bugs in the existing soft-
ware. Because of the ability to change parameters, we have
been able to deploy meters in other systems not discussed
here with differing needs but the same software. This results
in a significantly smaller testing surface. Reprogramming
hundreds of meters by unscrewing the case and using a wired
programmer only needs to be experienced once to motivate
a better solution. Second, although only a global clock is
needed for data analysis, you can never have enough clocks.
Since there are several notions of ordering, it is difficult or
impossible to compute metrics like data yield independent
of power failure, or node uptime without multiple counters.

Finally, IPv6 allowed us to develop compact implementa-
tions of many services wished for in previous deployments,
like a configuration manager and a software updater. Al-
though some of these were less efficient than the state-of-
the-art, they worked when required at a very large scale.

4. NETWORKING INSIGHTS
An important component of our network is the routing

protocol that provisions routes from the individual meters
towards the edge of the access network. The protocol needed
to be reliable and perform at a scale of hundreds of individ-
ual meters. We used HYDRO [8], a conceptual predeces-
sor to the RPL protocol currently being advanced in the
IETF [36]. HYDRO builds a directed acyclic graph (DAG)
towards a set of load-balancing routers (LBRs). Traffic orig-
inating from inside the network is routed down this DAG to
one of the LBRs, where further routing decisions are made.
Traffic originating from an LBR or another network is first
routed to the “nearest” LBR, and then source-routed to its
final destination.

HYDRO contains numerous mechanisms to improve reli-
ability and scalability in the face of shifting link conditions
and deployment sizes. Each router maintains a list of po-
tential next-hop default routes and will attempt delivery to
several of them, using link-layer acknowledgements to de-
termine whether a particular packet was delivered. Each
embedded router also maintains only a subset of its neigh-
bor set to limit the amount of state and periodically attaches
this information to outgoing data packets. The LBRs use
this information to build a view of the link state of the net-
work and construct source routes back into the network.

At its peak, our network consisted of 455 nodes spread
across four floors, routing through 7 LBRs. The average
node density was at least 16; we estimate this by counting
the number of distinct links reported over the life of the
deployment.

4.1 Routing Requirements
When in production, our application collects data using

a typical multipoint-to-point (MP2P) traffic pattern, which
is well-known to be a key traffic pattern for embedded net-
works [20]. This traffic pattern is optimized in HYDRO
by maintaining a DAG towards egress routers with a large
amount of redundancy. Point-to-point routing in this type
of network is less common. We made use of unicast rout-
ing primarily for management. For example, during meter
calibration, we sent calibration parameters to be written to
non-volatile flash, and during deployment, commands were
sent to change the destination of data.

The ability to communicate with each meter in situ to
troubleshoot was valuable, but infrequently used. This leads
us to the main insight: point-to-point routing should be avail-
able, but may be expensive. In the case of HYDRO, all
unicast traffic is source-routed from an LBR. Since most
traffic flows out of the network to an LBR, adding a small
amount of extra data to maintain the topology is inexpen-
sive, and eliminates the need for a flood of discovery mes-
sages as would be required in an on-demand protocol. This
is somewhat in opposition to the networking structure that
has emerged in recent years in TinyOS, positing that collec-
tion (MP2P) and dissemination (P2MP) are the dominant
traffic patterns. Although these are invaluable and common
traffic patterns, at times it is simply convenient to contact
a single node individually.

A second requirement was the ability to scale using mul-
tiple LBRs. HYDRO supports this by extending the rout-
ing topology over a backhaul link; in our case, this was the
building Ethernet. This allowed us to have multiple, redun-
dant LBRs; indeed, it was common for one or two of them



to be offline for various reasons. Until protocols and im-
plementations support this functionality, they should not be
considered for large-scale deployments.

4.2 Data Loss
Since our network was situated in a real environment for

upwards of a year with a large number of devices, we ex-
perienced practically every form of data loss at one time or
another. Table 4.2 summarizes the causes of missing data
which we diagnosed at various points in time. Although pro-
tocol loss is the most well-studied form of loss, we found that
the amount of data missing from other causes dwarfed the
amount dropped due to routing errors or forwarding path
errors. The high-level insight is that if perfect reliability is
required, buffering must be present between every link which
may fail. This is a notable consequence of our use of IPv6,
the data path spanning multiple links, and the end-to-end
principle. Given that there are devices of varying capabili-
ties and links with varying reliabilities on the path from a
meter to the database, it may be worthwhile in the future
to use an application protocol with support for intermediate
caching proxies.

One of the most unexpected sources of missing data was
that of device unpluggings. During the deployment, occu-
pants were instructed that meters were attached to devices,
not receptacles. Therefore, they frequently unplugged the
meter along with the device. Figure 3 shows the frequency
of these “on” and “off” events in time. An on event is when
a meter begins reporting after having been turned off, while
an off event is when it stops sending data because it is un-
plugged. After interviewing several study participants, we
discovered that it was common for a meter to be plugged
into a power strip, which was turned off at the end of each
workday. This behavior was intended to reduce the leakage
power consumed by devices plugged into the strip, but also
caused network churn and gaps in the data!
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Figure 3: Not all network dynamics are caused by
link and node failure or mobility; some devices were
turned off or unplugged during nights. These events
correlate strongly with working hours.

Once data loss due to LBR connectivity problems and
meter unpluggings is filtered out, we can observe the overall
data yield in the month of April, shown in Figure 4. The 5th

percentile yield across all devices was over 99% nearly every
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Figure 4: Observed data yield distribution in April,
with losses due to mote shutdowns removed. Losses
due to database maintenance are clearly visible as
days with lower yield but little variation. For many
days, the 5th percentile yield was above 99%. Boxes
show 25th and 75th percentiles, whiskers show 5th and
95th percentiles. Data were delivered using UDP
datagrams with no end-to-end mechanisms.

day, and the best value was 99.91%; the median was 98.7%.
Because we did not deploy meters with an eye towards con-
nectivity, certain meters had consistently poor connectiv-
ity; however the deployment was dense enough that the size
of this set was only 12 meters, or less than 3% of meters
deployed. These numbers refer to drop rates of the best-
effort UDP datagrams sent from meters to the database and
compare favorably with published estimates of Internet-wide
packet loss [5, 33].

4.3 Network Dynamics
Running a routing protocol in a large network over a year

gives us a rich set of data with which to observe link dy-
namics. First, we have application-layer data reported by
the motes to the data repository. These UDP packets are
sent every 20 seconds, traversing several network segments.
These contain the local time, global time, sequence number,
current default next hop and link estimate, and the current
path cost estimate. These data provide the ultimate metric
of application-layer performance. Second, HYDRO routers
apprise the LBRs of their link-state at regular intervals so
that they can build source routes back into the network. We
stored a snapshot of this state every five minutes, which con-
sists of the top four entries in each router’s neighbor table,
along with corresponding link estimates (ETX). These esti-
mates are kept fresh by a periodic exploration process each
router conducts to sample neighboring links.

Using these data, we are able to confirm several previously
proposed hypotheses about link dynamics: intermittent links
are prevalent, their uses reduced routing stretch by a factor
of 2, and networks experience significant diurnal and weekly
variations.

4.3.1 Daily Variations
Figure 5(a) shows a basic look at the collected topology

for March. In most of these analyses we focus on March and
April when the set of meters was stable and there were in-
frequent database or connectivity outages. The dashed line
shows the mean shortest path between all pairs of nodes in



Loss cause Description

Network loss Packets dropped by the link layer or routing protocol due to exceeding the number of retransmissions or hop
limit.

Device shutdowns Devices attached to power strips were frequently turned off overnight.
Building shutdowns The facilities organization disconnected power for maintenance, resulting in a 14-hour outage and subsequent

network reinitialization.
LBR connectivity The LBRs were networked through an Ethernet VPN, and connected to the IPv6 Internet with a tunnel. Both

of these network components were subject to failure.
Software faults We observed a software failure rate of approximately 10 nodes per month, or one every 3.5 mote-years. This

could be improved through better software engineering.
Database failures Months of data were lost when MySQL tables were corrupted during a software upgrade.
Meter attrition Over a period of time, some devices were removed from the system by maintenance workers or occupants.

Approximately 100/455 of our meters disappeared over the course of the study.

Table 2: Missing data in real deployments are caused by many factors beyond the control of the deployment
staff.
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the network, while the solid line shows the mean reported
router degree. Since HYDRO reports only a partial sub-
set of neighbors it is using for routing, this degree is not
the “true” degree of the network. The weekend to weekday
distinction is clearly visible, with path lengths remaining
stable on weekends but increasing by 5-10% on weekdays.
Figure 5(b) shows this effect more clearly, contrasting node
routing depth in terms of ETX at midnight with depth at
noon; the shift to deeper ranks is clearly visible.

4.3.2 Routing Churn
There are numerous possible explanations for these daily

variations. Many studies suggest that there are links with
bimodal behavior [29], alternating between“good”and“bad”
states with various frequencies. One difference with these
studies is that we do not have ground truth data about these
links. Rather, we have link data filtered through the actions
of a routing protocol. However, it is interesting to consider
the actions of the protocol by examining the links it selected
in a real-world setting. Figure 5(c) shows the result of an
analysis designed to uncover how much churn there is in the
nodes’ next hop choices. At the start of the analysis (chosen
arbitrarily after the network had been initialized for several
weeks), we form a set containing all links reported by the
network. At each subsequent time step, we find the size of
the intersection of the set of reported links at that time with
the original link set.

We find that the protocol consistently reports a set of
about 500 links, which we call the static links. The re-
mainder of the original set of links disappear after about a
week. Since HYDRO removes links which are not useful for
routing as well as poorly-performing links, there is a subset
of links that are both consistently both useful and reliable.
However, HYDRO also discovers and reports a constantly
changing set of other links, which we call the churn links.
The total number of links reported by the network (from
all nodes) is consistently around 1200; each router was con-
figured to report a maximum of 4. This indicates that the
density of this deployment provided each router with am-
ple choice of next-hop, although not all were consistently
available.

Figure 5(d) addresses whether the churning set of links
is of a fixed size or is dynamic. At the beginning of our
analysis we remove all static links and at each time step add
all new links which are not part of the static set. HYDRO
consistently tries new links; the number of links it tries does
not stabilize in the time frame of the experiment. Over 20
days it tries almost 3000 discrete links; we infer that this
churn is caused by changes in noise floor and interference
conditions, since the exploration process comes to a virtual
halt on weekends.

The final question was whether the effort to discover and
track these variable links was “worth it.” That is, does the
set of churn links improve routes to the LBRs? The answer
is a resounding “yes.” If we were to consider only the links in
the static set, i.e., those continuing to appear after a week,
the network diameter increases by a factor of 2.1: from an
ETX of 4.6 to 9.9.

4.4 Networking Takeaways
We chose not to use TCP, opting instead for UDP, to

use only the best-tested code and because the reliable de-
livery by the raw network was sufficient. The introduction

of so many parallel TCP flows in a large deployment was
an untested proposition. Furthermore, even TCP’s end-
to-end acknowledgements are not a panacea for data reli-
ablity problems unless much care is taken managing send
buffers on the mote to guarantee all data is delivered in
the face of connection resets and timeouts. Transport- and
application-layer protocol designs currently in development
(for instance, CoAP [26]) should be evaluated to ensure that
they provide appropriate mechanisms for caching between
network segments, especially if they are designed to work
over UDP. It is an open question of how to merge the buffer-
ing and end-to-end demands of TCP with the constrained
resources of embedded systems.

Furthermore, we have largely validated earlier studies about
the importance of grey links to routing, We infer that the
churn links which are coming and going from the routing
table must have varying quality. Even in a very dense de-
ployment, failing to take advantage of links that are not
consistently high-quality would have resulted in paths twice
as long as we experienced. Even in a deployment with no
mobility, we must maintain a continuous process of rout-
ing table maintenance and discovery to achieve good perfor-
mance.

5. ENERGY SCIENCE
A mark of good system design and construction in a sensor

networking deployment is the collection of scientific data
that enable better visibility into a phenomenon that could
not previously be observed. In this section, we document the
domain-specific lessons derived from the preparations taken
to collect the data, including the calibration of meters for
accurate collection of data, stratified appliance sampling for
guiding the deployment strategy, and share insights gained
from the data.

5.1 Accuracy Analysis
For energy meters, calibration transforms measurements

taken by the device into engineering units usable for sci-
entific comparison. This process presents a number of chal-
lenges. First are accuracy requirements: in the MELs regime,
loads seldom consume more than 300W , with a large pro-
portion below 60W . We are not aware of a documented
testing regimen that covers low load levels. For example,
the California Public Utilities Commission requires expen-
sive, utility-grade electric meters to be accurate to within 2%
of load from 60W to 3.6kW , ignoring the lowest range. [30]
A second requirement is simple, yet individualized calibra-
tion: there are differences among metering devices caused
by variations in the manufacturing process, but the calibra-
tion equations need to be simple enough to be computed
on the devices themselves. Thus, each device needs to be
tested, calibrated, and programmed separately. Last, to en-
sure that the process of calibrating all 455 meters is not cost-
or time-prohibitive, it should be quick and automated.

We used these goals to guide the design and development
of an automated calibration process. It uses eight different
resistive loads from 2W to 100W , actuated by a computer-
controlled relay to create 21 calibration points between 0W
and 300W . A reference power meter [10] is used for ground
truth. Additionally, the process is designed to handle five
meters plugged in concurrently, accelerating the calibration
process. Each calibration run takes 5 minutes, reducing the
time per meter to 1 minute.



The process of developing a calibration function revealed
a couple of key insights. First after analyzing raw data from
several hundred meters, the raw values exhibited highly lin-
ear behavior but only over limited domains. In fact, a single
linear function over the entire range of loads cannot meet our
accuracy target. Therefore, single-point calibration is insuf-
ficient. Instead, a piecewise linear function using multi-point
calibration as shown in Figure 6 may be used, consisting of
three portions, where the first only ensures that the meter
returns a zero reading at zero load, and the boundary be-
tween the second and third segment is chosen to minimize
the overall error in the calibration. Although more segments
in the function would decrease error, there is risk of over-
fitting as well as unnecessary complexity. The calibration
coefficients are stored on each meter so that future readings
are provided in engineering units (mW ) for easier analysis.

The second insight is that despite larger percentage error
at lower load levels, absolute error remains quite low when
examined across all meters. The error of this calibration pro-
cedure for the entire population of 455 meters is shown in
Figure 7. The plot shows cumulative distribution functions
at four load levels. At low loads, we achieve absolute errors
of less than 1W for virtually all of the meters calibrated.
Additionally, more than 75% of meters are within 2% of the
measured load at 60W , the standard for “utility-grade” me-
tering, with improved accuracy as the load increases. These
results demonstrate that inexpensive metering hardware can
be calibrated both quickly as well as reasonably accurately.
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Figure 6: Selection of piecewise linear calibration
coefficients.

5.2 Energy Results
The detailed metering of MELs enabled by this work pro-

vides an opportunity to understand MELs energy use in a
way previously not possible. In a sub-metered building,
which is still rare, MELs energy use is typically a single
number for the entire building because only the primary
end-uses (i.e., heating, cooling, ventilation, lighting and wa-
ter heating) are metered, and MELs consumption is found
by subtraction from the building total. On the other hand,
in this study, the fine resolution in device type and time
resolution allows energy to be divided by device type, oper-
ational mode, or a variety of other parameters.

Section 2.2 described the methodology for selecting a strat-
ified sample of devices for metering. Here we provide the
quantitative justification for that experimental design deci-
sion. Figure 8 presents the count as well as annual energy
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Figure 7: Error of calibrated meters at four load
levels.

consumption of devices in the top seven energy-consuming
categories and all other devices for the commercial study
building.

Energy estimates for the entire population are projected
from the metered sample of devices using sample probability
weights, and energy is projected from the metering period to
the entire year. Computers clearly use both the most energy
overall and the most per unit, whereas the Other category of
devices shows the opposite behavior. Because the building
is primarily office space, displays, imaging, networking and
miscellaneous (i.e., task) lighting are the next largest energy
users. Space heating and fans make up most of miscellaneous
HVAC, and the appliances are primarily refrigerators found
in break rooms and a few offices. The energy breakdown
shows that information technology equipment consumes over
75% of annual MELs energy but comprises less than half
of total devices, emphasizing that IT devices should be dis-
proportionately metered more when studying MELs energy
use in offices. This finding corresponds well with surveyed
sources of these data [32].
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Figure 8: Comparison of the device inventory to
annual energy use by device category.

Another dimension in which to view the data is tempo-
rally. The average weekday load shape divided by category
is shown in Figure 9, providing insight into typical energy us-
age patterns. The largest energy-consuming category, com-



puters, uses about 60% of its energy outside working hours
at this facility. Considering that only 10% of the computers
in this facility must remain on at all times, this presents an
enormous opportunity for energy efficiency via power man-
agement on computers. In fact, this facility could save over
100,000kWh (≈ $15,000) annually without loss of access or
productivity by reconfiguring operating systems [1] or in-
stalling widely-available software [2, 15, 22] for this purpose.

Additionally, it is clear that significant energy is used
in most other device categories outside of working hours.
Timer-controlled plug strips could shut off power to office
devices except appliances and network equipment during
non-working hours. If used, they provide a relatively inex-
pensive solution that would save 30% of non-computer en-
ergy use. Even though these changes have a negligible cost
and despite the popularity of energy efficiency in commer-
cial settings, there is still huge potential for saving money
and energy in the MELs end-use category.

Networking         6%
Misc.  Lighting    5%
Misc.  HVAC         5%
Other     11%Computers  

50%  of  energy

Imaging
11%  of  energy

Displays
12%  of  energy

Figure 9: Device category average load shapes.

A cost effective way to save energy is to ensure that only
energy-efficient products are used in a building. For IT
equipment, price and efficiency are not tightly correlated.
Consider computer displays. A comparison of the on-mode
power of the metered devices shows that the average power
is 33W for displays smaller than 24”. However, the 10th
percentile on-mode power of 24” displays is only 20W . If
all of the smaller monitors were replaced with 20W 24” dis-
plays during the next upgrade cycle, users would not only
have greater screen area, but total display energy use would
decrease by 40%.

6. RELATED WORK
Our study of a large-scale, long-lived energy metering

wireless sensor network benefits from previous efforts in two
key areas: WSN deployment science and studies of routing
and link behavior in low-power, lossy networks.

Though a range of studies document the design, develop-
ment, and evaluation of large-scale and occasionally long-
lived WSNs [3, 6, 9, 18, 21, 34], there are a notable few
that provide systematic guidance based on difficulties expe-
rienced in deploying large-scale, long-lived WSNs. We de-
signed our system and methodology considering these valu-
able insights. For example, Langendoen, et al. “advocate

the manifold use of statistics” to have frequent state reports
available for potential debugging efforts [17]. In our study,
node and LBR state are continuously logged. Each data
packet provides a number of different time counters for post
hoc assessments; further, routing state and periodic snap-
shots of LBR link-state allows reconstruction of network
dynamics. These data have been invaluable for diagnosing
protocol behavior and connectivity issues. Barrenetxea, et
al. draw from years of experience deploying networks in the
Swiss Alps to provide guidance through the entire develop-
ment, testing, and deployment process [4]. They thoroughly
summarize issues described in previous deployments aug-
mented with their own experiences to provide a“hitchhiker’s
guide” to outdoor WSN deployments. In the development
phase, they advocate “keeping it simple” and avoiding com-
plexity wherever possible, particularly to circumvent unex-
pected interactions between software components especially
in the communications stack. Many of our design decisions
reflect this parable, including our selection of a well-tested
routing protocol. Hnat, et al. provide a similar guide aimed
towards indoor deployments [11]. A particular insight is that
despite common belief, deployment in buildings still presents
significant connectivity and access challenges. In our case,
the ability to cope with a consistently varying noise floor by
using an adaptive routing protocol as well as our range of
remote debugging and reconfiguration services enabled us to
address these challenges.

Adherence to the lessons in the literature coupled with
thorough planning and understanding of the deployment en-
vironment allowed us to avoid many of the issues that plague
WSN deployments, resulting in a successful long-lived and
large-scale deployment. It is this combination of long life,
large scale, and good planning that sets us apart from pre-
vious work in plug-load energy metering. The PowerNet
project deployed 85 wireless electricity meters for 3 months
to examine IT-related electricity consumption [16]. Also,
Jiang, et al. deploy 39 plug-load meters in an office space
for several months and look at disaggregation of appliances
as well as decomposition on different parameters [15]. How-
ever, both of these studies lack the rigor in sample design and
long time-scale needed to understand overall MELs usage in
their respective settings. Additionally, neither describe cal-
ibration processes to ensure the accuracy of the collected
data.

There is also a body of work related to the understanding
of link dynamics. Zhao and Govindan characterize the size
and behavior of “grey zones” of intermittent performance in
low-power links, while Son, et al. extend this understanding
to multiple contending senders [27, 37]. Srinivasan, et al.
synthesize these results into a more detailed understanding
of these link dynamics, and finally propose a metric called
β which is used to characterize the temporal variation in
links [28, 29]. Finally, Ortiz attempts to quantify the value
of variable links and multiple channels for reliability when
routing is also an option [24]. These studies informed our
understanding of the HYDRO protocol, and also allowed
us to infer what was happening inside of our network from
the external signals it presented to us, like routing state.
They also confirm the importance of using a protocol which
expects significant temporal variation from the links in use.



7. CONCLUSION
Our results present several new findings and insights. For

instance, the design decision to explore and use links that
become unstable at certain parts of the day was essential to
achieving low path costs. Using these links results in path
costs half of what would be achieved using exclusively very
stable links. In general, we found that although there was
almost no mote mobility, there were still dynamics caused
by a changing noise floor and a shifting set of devices which
are on the network: the interior of a commercial building is
indeed a dynamic environment. We also confirm the value of
point-to-point routing in a real sensor network deployment.

There are also several takeaways which should inform fu-
ture protocol design. It is still somewhat unusual to connect
large subnetworks of devices directly to the broader Inter-
net but gave us host of advantages in terms of debugging
and visibility; this may cause researchers in the embedded
space to examine transport protocols which can provide bet-
ter end-to-end guarantees than either UDP or TCP while
continuing to impose a very low burden on the low-power
and lossy network segments. Incorporating reliability at ev-
ery layer of design is common practice in other domains; we
expect it to become common here as well.

The result of this work is to allow deployments at larger
scales. We have presented results from @scale; one of the
largest deployment in terms of mote-years yet published. We
were successful in achieving our science goals while testing
several hypotheses about network dynamics, and reinforced
emerging design practice on the construction of this type of
network.
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