Ackermann's function

Definition. Ackermann's function is recursively defined as follows:

$$\alpha(m,0) = m+1 \tag{i}$$

$$\alpha(0, n+1) = \alpha(1, n) \tag{ii}$$

$$\alpha(0, n+1) = \alpha(1, n)$$

$$\alpha(m+1, n+1) = \alpha(\alpha(m, n+1), n)$$
(ii)
(iii)

The Ackermann function is well defined, i.e. we can prove the following lemma:

Lemma 0. For all $y, x \in N$, there exists a $z \in N$ such that $\alpha(x, y) = z$.

Proof. By a main induction on *y* and a secondary induction on *x*:

Base Case [Main Induction]:

$$\alpha(x,0) = x + 1$$
 Def. of α

Inductive Step [Main Induction]:

$$\forall x \in N$$

$$\alpha(x,k) = z_{x,k} \to \exists z_{x,k+1} : \alpha(x,k+1) = z_{x,k+1}$$

Base Case [2nd Induction]:

$$lpha(0,k+1)=lpha(1,k)=$$
 Def. of $lpha$ Main Ind. Hypo.

$$\begin{split} \alpha(t,k+1) &= z_{t,k+1} \to \exists z_{t+1,k+1} \colon \alpha(t+1,k+1) = z_{t+1,k+1} \\ \alpha(t+1,k+1) &= \alpha(\alpha(t,k+1),k) = \\ \alpha(z_{t,k+1},k) &= \\ z_{z_{t,k+1},k} \end{split} \qquad \qquad \begin{array}{c} \text{Def. of } \alpha \\ \text{2nd Ind. Hypo.} \\ \text{Main Ind. Hypo.} \end{split}$$

Lemma 1. For all $m, n \in N$, $\alpha(m, n) > m$.

Proof. By a main induction on *n* and a secondary induction on *m*:

• Base Case [Main Induction]:

$$\alpha(m, 0) = m + 1 > m$$

Def. of α

• Inductive Step [Main Induction]:

$$\forall m \in \mathbb{N}$$

$$\alpha(m,k) > m \to \alpha(m,k+1) > m$$

o Base Case [2nd Induction]:

$$\alpha(0, k + 1) = \alpha(1, k)$$

> 1
> 0

Def. of α Main Ind. Hyp.

$$\alpha(t, k + 1) > t \rightarrow \alpha(t + 1, k + 1) > t + 1$$

$$\alpha(t+1,k+1) = \alpha(\alpha(t,k+1),k), \qquad \text{Def. of } \alpha$$

$$p = \alpha(t,k+1) > t \qquad \text{2nd Ind. Hyp.}$$

$$\Rightarrow \alpha(p,k) > p, \quad p \ge t+1 \qquad \text{Main Ind. Hyp.}$$

$$\Rightarrow \alpha(p,k) > t+1$$

Lemma 2.1. For all $y, z, x \in N$, if x < z then $\alpha(x, y) < \alpha(z, y)$.

Proof. By a main induction on *y* and a secondary induction on *z*:

• Base Case [Main Induction]:

$$\alpha(x,0) = x+1,$$
 Def. of α
 $\alpha(z,0) = z+1$ Def. of α
 $x < z \Rightarrow \alpha(x,0) < \alpha(z,0)$

• Inductive Step [Main Induction]:

$$\forall x, z \in N: x < z$$

$$\alpha(x, k) < \alpha(z, k) \to \alpha(x, k+1) < \alpha(z, k+1)$$

Base Case [2nd Induction]:

$$\alpha(0, k+1) = \alpha(1, k),$$
 Def. of α
$$\alpha(1, k+1) = \alpha(\alpha(0, k+1), k)$$
 Def. of α Def. of α Def. of α > $\alpha(1, k)$ Def. of α Lemma 1 $\alpha(0, k+1) < \alpha(1, k+1)$

$$\forall x < t,$$

$$\alpha(x, k+1) < \alpha(t, k+1) \rightarrow \alpha(x, k+1) < \alpha(t+1, k+1)$$

$$\alpha(t+1, k+1) = \alpha(\alpha(t, k+1), k),$$

$$> \alpha(t, k+1)$$

$$> \alpha(x, k+1)$$

$$> \alpha(x, k+1)$$

$$\Rightarrow \alpha(x, k+1) < \alpha(t+1, k+1)$$
Def. of α
Lemma 1
2nd Ind. Hyp.

Lemma 2.2. For all $y, z, x \in N$, if y < z then $\alpha(x, y) < \alpha(x, z)$.

Proof. By a main induction on z and secondary induction on x:

• Base Case [Main Induction]:

$$\forall x \in N \ \alpha(x,0) < \alpha(x,1)$$

Base Case [2nd Induction]:

$$\alpha(0,0) = 1,$$
 Def. of α
 $\alpha(0,1) = \alpha(1,0) = 2$ Def. of α
 $\Rightarrow \alpha(0,0) < \alpha(0,1)$

o Inductive Step [2nd Induction]:

$$\alpha(k,0) < \alpha(k,1) \rightarrow \alpha(k+1,0) < \alpha(k+1,1)$$

$$\alpha(k+1,0) = k+2,$$
 Def. of α

$$\alpha(k+1,1) = \alpha(\alpha(k,1),0) = \alpha(k,1)+1,$$
 Def. of α

$$k+1 < \alpha(k,1)$$
 2nd Ind. Hyp.

$$\Rightarrow \alpha(k,1)+1 > k+2 = \alpha(k+1,0)$$

• Inductive Step [Main Induction]:

$$\forall x, y \in N : y < k$$

$$\alpha(x, y) < \alpha(x, k) \to \alpha(x, y) < \alpha(x, k+1)$$

o Base Case [2nd Induction]:

$$\alpha(0, k+1) = \alpha(1, k)$$
 Def. of α
> $\alpha(0, k)$ Lemma 2.1
> $\alpha(0, y)$ Main Ind. Hyp.

$$\alpha(t, y) < \alpha(t, k+1) \rightarrow \alpha(t+1, y) < \alpha(t+1, k+1)$$

$$\alpha(t+1,k+1) = \alpha(\alpha(t,k+1),k)$$
 Def. of α
> $\alpha(\alpha(t,y),k)$ Lemma 1, 2nd Ind. Hyp.
> $\alpha(\alpha(t,y),y-1)$ Main Ind. Hyp.
= $\alpha(t+1,y)$ Def. of α

Lemma 3. For all $m, n \in \mathbb{N}$, $\alpha(m, n + 1) \ge \alpha(m + 1, n)$.

Proof. By a man induction on *n* and a secondary induction on *m*:

• Base Case [Main Induction]:

$$\forall m \in N \ \alpha(m,1) \ge \alpha(m+1,0)$$

Base Case [2nd Induction]:

$$\alpha(0,1) = \alpha(1,0)$$
 Def. of α

o Inductive Step [2nd Induction]:

$$\alpha(m,1) \ge \alpha(m+1,0) \to \alpha(m+1,1) \ge \alpha(m+2,0)$$

• Inductive Step [Main Induction]:

$$\forall m \in \mathbb{N}$$

$$\alpha(m, k+1) \ge \alpha(m+1, k) \to \alpha(m, k+2) \ge \alpha(m+1, k+1)$$

o Base Case [2nd Induction]:

$$\alpha(0, k+2) = \alpha(1, k+1)$$
 Def. of α

$$\alpha(t, k+2) \ge \alpha(t+1, k+1) \to \alpha(t+1, k+2) \ge \alpha(t+2, k+1)$$

$$\alpha(t+1,k+2) = \alpha(\alpha(t,k+2),k+1)$$
 Def. of α $\geq \alpha(\alpha(t+1,k+1),k+1)$, Lemma 2.1, 2nd Ind. Hyp. $\alpha(t+1,k+1) > t+1$ Lemma 1 $\Rightarrow \alpha(t+1,k+2) \geq \alpha(t+2,k+1)$

Majorization Lemma. For every primitive recursive function $f(x_1, ..., x_k)$ there exists an $c \in N$ such that

$$f(x_1, \dots, x_k) < \alpha(\max(x_1, \dots, x_k), c)$$

for all values of $x_1, ..., x_k$.

Proof. By induction on definition of primitive recursive functions. There are five cases:

1. Null Function

$$n(x) = 0 < x + 1 = \alpha(x, 0) \Rightarrow c = 0$$

2. Successor Function

$$s(x) = x + 1 < x + 2 = \alpha(x + 1,0) \le \alpha(x,1) \Rightarrow c = 1$$

3. Projection Function

$$u_i^k(x_1, ..., x_k) = x_i < x_i + 1 \le \alpha(\max(x_1, ..., x_k), 0) \Rightarrow c = 0$$

4. Composition

Let $g(y_1, ..., y_k)$ and $f_i(x_1, ..., x_m)$ for i = 1, ..., k be primitive recursive functions and let $h(x_1, ..., x_m) = g(f_1(x_1, ..., x_m), ..., f_k(x_1, ..., x_m))$. Assume that there are d and c_i such that

$$g(y_1, \dots, y_k) < \alpha(\max(y_1, \dots, y_k), d),$$

$$f_i(x_1, \dots, x_m) < \alpha(\max(x_1, \dots, x_m), c_i) \qquad i = 1, \dots, k$$

$$g(f_1, \dots, f_k) < \alpha(\max(f_1, \dots, f_k), d) \qquad \qquad \text{Hyp.}$$

Assume that $\max(f_1, ..., f_k) = f_j$

$$g(f_1, ..., f_k) < \alpha(f_j, d)$$

$$< \alpha(\alpha(\max(x_1, ..., x_m), c_j), d)$$
Lemma 2.1

 $Put c_{max} = \max(c_1, ..., c_k, d)$

$$\alpha(\alpha(\max(x_1, ..., x_m), c_j), d)$$

$$\leq \alpha(\alpha(\max(x_1, ..., x_m), c_j), c_{max})$$

$$< \alpha(\alpha(\max(x_1, ..., x_m), c_{max} + 1), c_{max})$$
Lemma 2.2
$$= \alpha(\max(x_1, ..., x_m) + 1, c_{max} + 1)$$

$$\leq \alpha(\max(x_1, ..., x_m), c_{max} + 2)$$

$$\Rightarrow h(x_1, ..., x_k) < \alpha(\max(x_1, ..., x_k), c_{max} + 2)$$

$$\Rightarrow c = c_{max} + 2$$
Lemma 3

5. Primitive Recursion

Let *f* be a primitive recursive function and *h* is defined by recursion:

$$h(0) = 0,$$
 $h(t+1) = f(t, h(t))$

Suppose there exists a c_f such that $f(a,b) < \alpha(\max(a,b),c_f)$ for all a,b. Let $c_h = c_f + 1$. We prove by induction that $h(x) < \alpha(x,c_h)$ for all x.

Base Case

$$h(0) = 0 < 1 = \alpha(0,0) < \alpha(0,c_h)$$
 Def. of α , Lemma 2.2

Inductive Step

$$h(t) < \alpha(t, c_h) \Rightarrow h(t+1) < \alpha(t+1, c_h)$$

$$h(t+1) = g(t,h(t)) < \alpha(\max(t,h(t)),c_g)$$

If $\max(t, h(t)) = t$

$$\alpha(\max(t,h(t)),c_g) = \alpha(t,c_g)$$

$$< \alpha(t+1,c_g) < \alpha(t+1,c_h)$$
Lemma 2.1, 2.2

If $\max(t, h(t)) = h(t)$

$$\begin{split} &\alpha\big(\text{max}\big(t,h(t)\big),c_g\big) = \alpha\big(h(t),c_g\big) \\ &< \alpha\big(\alpha(t,c_h),c_g\big) \\ &= \alpha(t+1,c_h) \end{split} \qquad \text{Lemma 2.1, Hyp.}$$

Theorem. The Ackerman function is not primitive recursive.

Proof. Define $\beta(x) = \alpha(x,x) + 1$ and suppose α (Ackerman function) is primitive recursive, then also β is primitive recursive. So, by the lemma 3, there exists a k such that $\beta(x) < \alpha(x,k)$ for all x.

$$\beta(k) = \alpha(k, k) + 1$$

< $\alpha(k, k)$

Is a contradiction. Therefore α is not a primitive recursive function.