Ackermann’s function

Definition. Ackermann’s function is recursively defined as follows:

a(m0) = m+1 ()
a(0,n+1) = a(l,n) (ii)
am+1,n+1) = ala(m,n+1),n) (iii)

The Ackermann function is well defined, i.e. we can prove the following lemma:
Lemma 0. For all y, x € N, there exists a z € N such that a(x, y) = z.
Proof. By a main induction on y and a secondary induction on x:

e Base Case [Main Induction]:
a(x,0) =x+1 Def. of
¢ Inductive Step [Main Induction]:

Vx €N
a(x, k) = zyp > Azgprrr a0k + 1) = Zyjyq

o Base Case [2nd Induction]:

a(0,k+1)=a(l,k) = Def. of
Zy Main Ind. Hypo.

o Inductive Step [2nd Induction]:
a(t,k+1) =271 2 AzZeppri @+ Lk +1) = ze4q 4049

at+1L,k+1) =ala(t,k+1),k) = Def. of
a(zt,kﬂ,k) = 2nd Ind. Hypo.
Main Ind. Hypo.

Zzeke1k



Lemma 1. Forallm,n € N, a(m,n) > m.
Proof. By a main induction on n and a secondary induction on m:

e Base Case [Main Induction]:
a(m0)=m+1>m Def. of @
¢ Inductive Step [Main Induction]:

VmeN
amk)>m->a(mk+1)>m

o Base Case [2nd Induction]:

a(0,k+1) =a(l,k) Def. of
>1 Main Ind. Hyp.
>0

o Inductive Step [2nd Induction]:

at,k+1)>t-alt+1L,k+1)>t+1

a(t+1,k+1) =alalt,k+1),k), Def. of
p=altk+1)>t 2nd Ind. Hyp.
>alpk)>p, p=2t+1 Main Ind. Hyp.

>alpk)>t+1



Lemma 2.1. Forall y,z,x € N, ifx < zthen a(x,y) < a(z,y).
Proof. By a main induction on y and a secondary induction on z:

e Base Case [Main Induction]:

a(x,0) =x+1, Def. of «
a(z,0)=z+1 Def. of
x<z=a(x0)<a(z0)

¢ Inductive Step [Main Induction]:

Vx,z€EN:x <z
a(x, k) <a(z, k) » alx,k+1) <a(z,k+1)

o Base Case [2nd Induction]:

a(0,k+1) =a(l,k), Def. of
a(l,k+1) =a(a(0,k+1),k) Def. of @
=a(a(1,k), k) Def. of
> a(l,k) Lemma 1

> a(0,k+1) <a(lk+1)

o Inductive Step [2nd Induction]:

Vx <t,
ax,k+1D)<a(t,k+1) - alxk+1)<alt+1,k+1)

a(t+1L,k+1) =ala(t,k+1),k), Def. of
>a(t,k+1) Lemma 1
>a(x, k+1) 2nd Ind. Hyp.

salxk+1)<alt+1,k+1)



Lemma 2.2. Forall y,z,x € N, ify < z then a(x,y) < a(x, z).
Proof. By a main induction on z and secondary induction on x:
e Base Case [Main Induction]:
Vx €N a(x,0) < a(x,1)
o Base Case [2nd Induction]:

a(0,0) =1, Def. of @
a(0,1) = a(1,0) =2 Def. of «
= a(0,0) < a(0,1)

o Inductive Step [2nd Induction]:

a(k,0) < a(k,1) » a(k+1,0) <a(k+1,1)

alk+1,0) =k + 2, Def. of «
alk+1,1) =a(a(k,1),0) = a(k,1) + 1, Def. of @
k+1<a(k1) 2nd Ind. Hyp.

>ak,1))+1>k+2=a(k+10)
e Inductive Step [Main Induction]:
Vx,y E N:y <k
alx,y) <alx, k) =»alx,y) <alx,k+1)

o Base Case [2nd Induction]:

a(0,k+1) =a(l,k) Def. of
> a(0,k) Lemma 2.1
> a(0,y) Main Ind. Hyp.

o Inductive Step [2nd Induction]:

alt,y)<at,k+1) -alt+Ly)<a(t+1Lk+1)

a(t+1,k+1)=a(alt,k+1),k) Def. of a
> a(a(t,y), k) Lemma 1, 2nd Ind. Hyp.
>a(a(t,y),y—1) Main Ind. Hyp.

=a(t+1,y) Def. of



Lemma 3. Forallm,n € N,a(m,n + 1) = a(m + 1,n).
Proof. By a man induction on n and a secondary induction on m:

e Base Case [Main Induction]:
vmeN a(m,1) = a(m + 1,0)
o Base Case [2nd Induction]:
a(0,1) = a(1,0) Def. of «
o Inductive Step [2nd Induction]:

a(m,1) =2 a(m+10) - a(m+1,1) = a(m+ 2,0)

aim+1,1) = a(a(m,1),0) = a(m,1) + 1 Def. of
>a(m+10)+1 2nd Ind. Hyp.
=m+3=a(m+ 2,0) Def. of

¢ Inductive Step [Main Induction]:
vm €N
amk+1)=a(m+1,k) »amk+2)=aim+1,k+1)
o Base Case [2nd Induction]:
a(0,k+2)=a(l,k+1) Def. of

o Inductive Step [2nd Induction]:

alt,k+2)zat+1Lk+1) - a(t+1L,k+2)=a(t+2,k+1)

at+1Lk+2)=a(a(t, k+2),k+1) Def. of
>ala(t+1,k+1),k+1), Lemma 2.1, 2nd Ind. Hyp.
at+1L,k+1)>t+1 Lemma 1

Salt+L,k+2)>a(t+2,k+1)



Majorization Lemma. For every primitive recursive function f(xy, ..., x;) there exists an c €
N such that

f(x1, o, x) < a(max(xy, ..., xx),C)
for all values of x4, ..., x.

Proof. By induction on definition of primitive recursive functions. There are five cases:

1. Null Function

nx)=0<x+1=alx,0)=>c=0

2. Successor Function

s =x+1<x+2=a(x+10)<alx,1)=>c=1

3. Projection Function

ul (g, o, x) = x; < x; + 1 < a(max(xy, ..., x,),0) = ¢ =0

4. Composition

Let g(y1, ..., ¥x) and f;(xq, ..., %) for i =1, ...,k be primitive recursive functions and let
h(x1, oo, Xm) = g(fi (X1, ooy X)), ooy fr (X4, oo, X)) Assume that there are d and c; such that

I, Vi) < a(max(yq, .., yi),d),
fi(xq, o, ) < a(max(xy, ..., Xm) , C;) i=1,..,k

g(fll ""fk) < a(max(fl, "'lfk)ld) Hyp

Assume that max(fy, ..., fi) = f;

9(fr, - fid < a(fj, d)

< a(a(max(xy, .., Xm) cj), d) Lemma 2.1
Put ¢4, = max(cy, ..., Cx, d)

a(a(max(xl, vy Xm) ) cj), d)

< a(a(max(xl, vy Xm) ) cj), cmax) Lemma 2.2
< a(a(max(xlr e xm) » Cmax T 1), Cmax) Lemma 2.1
= a(max(xb "-rxm) + 1, Cax + 1) Def. of «
< a(max(xy, ..., Xm) , Cmax + 2) Lemma 3

= h(xy, ..., xx) < a(max(xq, ..., Xx) ) Cmax + 2)
> C=Cpax T2



5. Primitive Recursion

Let f be a primitive recursive function and h is defined by recursion:
h(0) =0, h(t +1) = f(¢t, h(D))

Suppose there exists a ¢y such that f(a, b) < a(max(a, b),cs) forall a, b. Let ¢, = cf + 1. We
prove by induction that h(x) < a(x, c;,) for all x.

e Base Case

h(0) =0<1=a(0,0) < a(0,cp) Def. of @, Lemma 2.2

e Inductive Step
h(t) < a(t,cp) > h(t+1) <a(t+1,cp)

h(t+1) = g(t, h(t)) < a(max(t, h(t)), c,)

If max(t, h(t)) =t

a(max(t,h(t)),cg) = a(t, cg)

<a(t+1,c) <alt+1,.cp) Lemma 2.1, 2.2
If max(t, h(t)) = h(t)
a(max(t, h(t)) , cg) = a(h(t), cg)
< a(a(t, cp), cg) Lemma 2.1, Hyp.
=a(t+1,cp) Def. of

Theorem. The Ackerman function is not primitive recursive.

Proof. Define f(x) = a(x,x) + 1 and suppose a (Ackerman function) is primitive recursive,
then also f is primitive recursive. So, by the lemma 3, there exists a k such that f(x) <
a(x, k) for all x.

Bk) = alk, k) +1
< a(k k)

[s a contradiction. Therefore « is not a primitive recursive function.



