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A Note from the Author

This manual provides solutions to the end-of-chapter problems for the author’s Modern
Electrodynamics. The chance that all these solutions are correct is zero. Therefore, I will be
pleased to hear from readers who discover errors. I will also be pleased to hear from readers
who can provide a better solution to this or that problem than I was able to construct. I
urge readers to suggest that this or that problem should not appear in a future edition of
the book and (equally) to propose problems (and solutions) they believe should appear in a
future edition.

At a fairly advanced stage in the writing of this book, I decided that a source should be
cited for every end-of-chapter problem in the book. Unfortunately, I had by that time spent
a decade accumulating problems from various places without always carefully noting the
source. For that reason, I encourage readers to contact me if they recognize a problem of their
own invention or if they can identify the (original) source of any particular problem in the
manual. An interesting issue arises with problems I found on instructor or course websites
which were taken down after the course they serviced had concluded. My solution has been
to cite the source of these problems as a “public communication” between myself and the
course instructor. This contrasts with problems cited as a true “private communication”
between myself and an individual.
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Chapter 1 Mathematical Preliminaries

Chapter 1: Mathematical Preliminaries
1.1 Levi-Civita Practice I

(a) €123 = €1 - (62 x &3) = & - & = 1. The cyclic property of the triple scalar product
guarantees that esz) = €312 = 1 also. Similarly, €130 = €; - (é3 X &) = —&; - & = —1
with €321 = €213 = —1 also. Finally, €199 = &; - (€2 X €3) = 0 and similarly whenever
two indices are equal.

(b) Expand the determinant by minors to get
a X b = él(agbg — a3b2) — ég(alb;g — agbl) =+ ég(albg — G,le).

Using the Levi-Civita symbol to supply the signs, this is the same as the suggested
identity because

axb = ep3€arb3 +erz2€1a3by
+ €213€2a1 b3 + €231€2a3D;

+ €312€3a1 by + €321 €302,

(c) To get a non-zero contribution to the sum, the index ¢ must be different from the unequal
indices j and k, and also different from the unequal indices s and ¢. Therefore, the
pair (i,7) and the pair (s,t) are the same pair of different indices. There are only
two ways to do this. If i = s and j = ¢, the € terms are identical and their square
is 1. This is the first term in the proposed identity. The other possibility introduces
a transposition of two indices in one of the epsilon factors compared to the previous
case. This generates an overall minus sign and thus the second term in the identity.

d) The scalar of interest is S = ﬁm a,,Lﬁ, b, — Lyb ﬁsas. Using the given commutation
pYp qY g g
relation,

S = Qo bpf/m IA/p - apbm Lm, f/p

= amby Ly Ly — apbyLyLn,
= Gn bp [[A/m ) IA/p]
= ihempiiiam bp

= ZhLZ €impaAm bp

= ihL-(axb).
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1.2 Levi-Civita Practice 11

(a) 6i =1+1+1=3

(b) dij€ijr = €iixr =0

(c) €ijreejr = €jki€jre = Ok 0ir — el = 30ir — dip = 204
(

d) €ijreijk = 0j;0kk — 6k 0kj =9 — Ok = 6

1.3 Vector Identities
(a) (A X B) . (C X D) - GijkAjBk:GimpOmDp - e’iljkeimijBk:CmDp
= (8jmOkp = 0jpOkm ) A;j By Cin Dy

= AmCm,Bka - AJDJBkCA = (A : C)(B : D) - (A ' D)(B : C)

(b) V-(fxg) = Oiejfigr =€ijifiOige + €ijkgr0ifi = fi€riOigr + grerijO; f;
= grerijOif; — f[i€inOigr = g9- (V. x f) = f-(V x g)
(©) [(AxB)x(CxD); = €j{AxB},{CxD}, =ejicjmperstAnB,CsDy

= EjkiejmpekstAm BpCsDt = (6km (;ip - 5kp§im)6kstAm BpCsDt

= st ApBiCiDy — €44 AiBLC Dy = A€yt Co Dy By — Brep oy Cs Dy A;

A-(CxD)B; —B-(C x D)4,

(d) (o-a)(o-b) = gia;0;b; = g,05a;b; = (8ij-+i€ijror)aib; = a;bi+ier;jorab; = a-b+io-(axb)

1.4 Vector Derivative Identities
(a) V-(fg) =0i(fgi) = fOigi + g:0if = fV-g+(g-V)f

(b) {V x (fg)}; = €x0;(for) = feijrOjgr + €ijr(0; flgr = f[V x gl + [Vf x g,
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(c)

Vx(gxr)i = €jr0jeemgerm
= €ij€kem 9 (gemm)
= (6i¢0jm — 6im0;0)0;(germ)
= 0;(girj) — 9;(gjri)
= 199+ 9i(V 1) =1i(V - g) = di;g;
= (r-V)gi+3gi—ri(V-g)—gi

Therefore,

Vx(gxr):2g+rg—§fr(V~g).

1.5 Delta Function Identities

(a) Let f(z) be an arbitrary function. Then, if a > 0, a change of variable to y = ax gives

[ dzr@stan =3 [ duswjwsw) = L0,

However, if a < 0,

[ des@itan) = [ dusw/asn) = - [ dufto/ad) = 500

1
These two results are summarized by (ax) = —d(x).

|al

(b) If g(zo) = 0, 0[g(z)] is singular at © = x. Very near this point, g(z) = (x — z¢)g’(z0).
Therefore, using the identity in part (a),

/ da ()89 ()] ~ / dzf (2)gl(z — 70)g (z0)] = mmw»

A similar contribution comes from each distinct zero x,,. Adding these together gives
the advertised result.
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(c) We use the result of part (b). The zeroes of cosz occur at x = (2n + 1)7/2. At these

points, | — sinz| = 1; therefore,
exp(—m/2) 1
1= —(2 Ln /2| = 2) = .
5= - 1 = (o) St < SR L

1.6 Radial Delta Functions

(a) We need to show that §(r)/r and —§’(r) have the same effect when multiplied by an
arbitrary function and integrated over the radial part of a volume integral. If we
call the arbitrary function f(r), one of these integrals vanishes identically because

ro(r) =0

Oorr2 r@: Oorrr r) =
| art =R = [ seyse =0

This tells us we need to represent the arbitrary function in a smarter way. One
possibility is f(r)/r. This gives

/OO drr2m@ = /OO dr f(r)o(r) = f(0).
0 0

r r

An integration by parts shows that the proposed identity is correct:
—/ drr? —f(r)é'(r) = —/ drrf(r)d(r)= / dré(r) [rf(r)]/
0 r 0

/dr(S F) 4 ()] = F(0).

(b) By direct calculation,

V- [6(r—a)t] = %2% [r?6(r —a)] = %5(7" —a)+ 4 (r—a). (1)

Let us look at the effect of 6’(r — a) on an arbitrary test function:

drr’ f(r)—0(r —a) = dr— [6(r — a) 5(r —a) ﬂ
b/ dr ! dr O/
= /dr(5 r—a {27“f+r2 f]:—Qaf(a797¢)_ 2%

This shows that
2 a
dr—a)=—-=86(r— —d&(r —a).
(r—a) a(r a)Jrr (r—a)

Combining this with (1) shows that

V- [6(r —a)t] = (a*/r*)8' (r — a).
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Source: R. Donnelly, Journal of the Optical Society of America A 10, 680 (1993).

1.7 A Representation of the Delta Function

The calculation involves a change of variable,

= : > sinma , * dy . y . sinym
/ def(@)D(x) =l [ defle)="m= = lm [0
1 [  siny
= o5 [ =
T J-co Y

The assertion is proved if the integral on the far right side is equal to 7. You can look
up the integral or use this trick:

o . o . 0o oo 00 00
/ dysmy 2/ dysmy :/ dysiny/ dve="Y :2/ dy/ dye "V siny
oo Y 0 Y 0 0 0 0

< d
2/ v =T.
0 1+l/2

1.8 An Application of Stokes’ Theorem

(a) Let p =V X (¢ x F). Then, because ¢ is a constant vector,

pi = €ijr0jersics Fy = epijersicaOiFy = (64051 — 61054 )cs0i Fy = ¢;0;Fy — ¢; 0, F;.

This shows that V x (¢ XF) = ¢(V-F) —(c- V)F . Inserting this into Stokes’ Theorem
as suggested gives

/SdSﬁ-{c(V.F)—(c-V)F}:jgds.(ch)zjgc.(pxds)

c [/SdS{ﬁ(v-F)—mvE}} :c-}édes.

This establishes the equality because c is arbitrary.
(b) Let K = [dS(n x V) x F. Then
5

K, = /dSeiJ-k(ﬁx V); Fy Z/dSGijkEjstﬁsatFk

S S
= /dS((Sks(Sit — O110: )70, F = /dS(ﬁk&»Fk — 1O F).
S S

This proves that K = [dS{n;VF, —a(V-F)}, which was the second equality in
s

question.
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(c) This is a special case of the identity in part (a) with F = r. Therefore,

}{rxds:—/dS{ﬁiVn—fl(V-r)}.
c s

Now, V -r = 3. Also, Vr; = ¢;0;r; = €;0;; = ¢; so n;Vr; = 1;¢; = n. Hence,

j{rxds:—/dS(ﬁ—Z%ﬁ):Q/dS.

C S S

1.9 Three Derivative Identities

(a) Consider the z-component of the gradient. We have

%f(m_xl7y_y/az_zl):_% (J;—x’,y—y/,z—z’)

and similarly for the y and z components. This proves the assertion.

(b) Writing this out in detail,
VIA() xx] = O Ajre = €k [ Af(r)Opr + Aj(r)Oir]
= €ijkA;% + €k Ajdir
= F-A'(r) xr+e;4;(r)

= A'(r) rxr+0=0.

dA dA dA

(¢) By definition, dA = —dz + —dy + —. Therefore, since ds = xdx + ydy + zdz,
dx dy dz
dA dA dA d d d
A =do— — — = |z— — — A= -V)A.
d dxdx+dydy—|—dzdz xdx-i-dydy—i—dzdz (ds-V)

1.10 Derivatives of exp(ik - r)
As a preliminary, let ¥ (r) = exp(ik - r) and consider the derivative

o _ 9

o o [eikzeikyeiky] _ Z]{?T?/J
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The y and z derivatives are similar. We conclude from this that
Vi = ik.
Therefore, because c is a constant vector,
V-A=9y(V-c)+c-Vy=ik-A

VxA=¢y(Vxc)—cxVy=—ilcxk)yp=ikxA
Vx(VxA)=Vx(ikxA)=—ik-V)A+ik(V-A)=kA-k(k A)=-kx (kxA)
V(V-A)=iV(k-A) =ik x (Vx A)+ (k- V)A] =i [k x (k x A) +ik’A] = ~k(k- A)

VIA=V(V-A)-Vx (VxA)=-k(k-A)+kx (kxA)=—kA.

1.11 Some Integral Identities

(a) By direction substitution,
/d3rF-G:/d3rV<p-G:/d3r [V (¢G) — ¢V - G] :/dS-Ggo:O.
The last integral is zero with the stated conditions at infinity.
(b) Following the example of part (a),
/ d3rFxG:/d3rV<pr=/d3r [Vx(Ggp)—ngxG]:/deG@:O.
The last integral is zero with the stated conditions at infinity.

¢) The given vector is 0;(P;G) = (V-P)G + (P - V)G. Integrate the given identity over
( ) g i\ L5 g g Yy
a volume V to get

V/d‘a‘raj(PjG) :V/d3r(V~P)G+V/d3r(P.V)G.

Therefore,
/dS(ﬁ-P)G = /d3r(V-P)G+/d3r(P-V)G.
S v v

The choice G = r produces the desired identity because (P - V)r = P.
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1.12 Unit Vector Practice
From Chapter 1,

I =xsinfcos¢+ ysinfsing + zcosb X :fsin@cos¢+écos€cos¢—qlgsinqb
0 = X cosfcos ¢+ ycosfsin¢ — zsin f y = f‘sin@sinqb+écos@sinqb—&—qf)cosqﬁ
(ﬁz—fcsin¢>+ycos¢> 2 =1cosf — Osinb.

By direct calculation,

%:f(cosﬁcosd)—i—ymSQsingé—isine:é
or . . . a3
a—¢:—xs1n951n¢+ysm0cosgz$:—81n9¢.
00 e A )
%:—xs1n9005¢—ysm@smgb—zcos@:—r
00 . : . ;
a—(b:fxc08051n¢+ycost9cos¢:c059¢

0

%—O
%:—&cosqS—ysinqS:—sin9f‘—c089é.

1.13 Compute the Normal Vector
By definition,

VO (ofa)R+ /Y5 + (/M)
Vel = et + W6 + ()

When a = b = ¢, the foregoing reduces to

f]:

. X+ yy + 22 r
n=——————— =-=1.

/22 42 + 22 T

1.14 A Variant of the Helmholtz Theorem I

Following our proof of the Helmholtz theorem,

1 1 1 1

_ 3. / ey = 3./ N\ 72 _ il 3. N\
go(r)f/d " p(r)o(r—r') 47r/d r o)V Iy \Y i a’r o(r" )V T
v v v

Using an elementary vector identity gives



Chapter 1 Mathematical Preliminaries

_ /ﬁ, o o) Vel
Ar r—r/| |r—1| )"
On the other hand, for any scalar function v,

V/d%w = S/ds¢.

Using this to transform the first term above gives the desired result,

3., V'o(r') p(r')
_ 3. /
plr) ==V 471' dr [r —r’ \+V 471' v —r/|
\%4

Source: D.A. Woodside, Journal of Mathematical Physics 40, 4911 (1999).

1.15 A Variant of the Helmholtz Theorem II

From the textbook discussion of the Helmholtz theorem,

!, / ’ ,
2) = v [arr TE Lo [ YA
47 [r — A7
14

r’| |r — r/|
/ /
+iv/d3r’v’. Z(r') —ivX/d?’r’V'x Z() |
4 |r — 1’| 4w |r — 1’|
v 1%

The first two integrals are zero because V-Z =0 and V x Z = 0 in V. The divergence
theorem transforms the third term into an integral over S. Chapter 1 of the text states a
corollary of the divergence theorem that similarly transforms the fourth term into a surface
integral. The final result is

N f P, ’
_1v/ds,n(r) Z(r)_lvx/ds,n(r)xZ(r).
47 |r — r/| 4
S S

v — /|

Knowledge of Z at every point of the surface S permits us to compute the required factors
n(r’) - Z(x’) and n(r') x Z(xr').

1.16 Densities of States
This problem exploits the delta function identity

1 ’
=X e e vhere gl =0, ) 20
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(a) Here, g(k.)

= F — k? = 0 when k, = +VE. Moreover, ¢'(k,) =

E) :4 dk, # [5(

Mathematical Preliminaries

—2k,. Therefore,

ke = VE) +6(k + VE)| =

i

(b) It is simplest to switch to polar coordinates in two dimensions, so

/dk&E k%) /dgb/dk:kdE k2)_27r dk

\F(k VE) =m.

(c) It is simplest to switch to spherical coordinates in three dimensions and write

g3(E) :/d3k5(E—k2) :47r/dkk25(E—k2) =

1.17

(a) by =

Dot and Cross Products

(oo} oo

Ar 25 o
f/dkk 5(k—VE) =21VE.

bj’fl]‘fli + €z‘jkﬁj €x0m be T,
bj ﬁj M + €kij€ktm ﬁj b((ﬁm
binini + (0iedjm

- 6’im 6j€)ﬁ7 blﬁm

bjnjni + njbinj — leb]'nqj

(b) The given formula is b = b +b_ where b is a vector parallel to fi and b is a vector

perpendicular to n.

()

(BxC); = €jB;Cy/w’
= €ijk€jtm ekstcfamasbt/WQ
= (514:1572777, - 5km6i/f)€k:.etc/éamasbt/w2
= epst[crai — ciag]asby Jw?.
Therefore,
W BxC)=c-(axbla—a-(axc)c=c-(axb)a.
Hence,
Q:A-(BxC):a-(bXb)C.(aXb) _ la-(c xc)l? :ui:l.
w3 w3 W w

10
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1.18 Sij and T;'j

(a)
1 1
eiijij = ieiijij + géz'jksi]'.

Relabel the dummy indices in the second term to get

1 1 1 1 1
€ijkSij = §€zjk5ij + §6jzk5ji = §6ijk5ij €ijkSji = §€ijk(5ij - sz‘)~

2
This will be zero if S;; = Sj;.

(b) We have y; = by Ty; = €ipsbpws. Therefore, Ty; = €;psws. Notice that this representation
requires that Tj, = —T},;. Now, multiply by €;,, and sum over i:

6iqu‘k:i = €ipqg€iksWs

W (pk Ogs — OpsOgi)
= wqépk — w,,éqk.
This is true for all values of p, ¢, and k. Choose p = k and sum over k:

Eiquki == wqékk — wpéqk = 3wq — Wy = 2wq.

Therefore,
1
Wg = ieiquk’i-
This is not an unreasonable result because T;; = —T}; implies that T has only three
independent components, just like w:
O w1 w9
T = —Ww1 0 w3

1.19 Two Surface Integrals

(a) A corollary of the divergence theorem is [ dSy = [ d3r V. Put 1) = const. to get the
s v

desired result.

(b) By the divergence theorem,
/ds-rz/d3rv-r=3/d3r=3\/.
S 14 14

11
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1.20 Electrostatic Dot and Cross Products
Begin with

© = €ka;Tk€pt0pTe = (0jp0kt — 010p)a;Tebyr = (a- br? —(a-r)(b-r).
Therefore,

E; = =0;[rsrs(a-b) —anbyryr,] = —2ri(a-b) + am by (§imrp + rmdip),

or

E=—-2r(a-b)+a(b-r)+b(a-r).
Now, V-r =3 and

V-[a(b-r)] = 0 ([arbiri]) = arbidir =a-b.

Therefore,
p=¢6V- -E=¢[-6(a-b)+2(a-b)=—4e(a-b).

1.21 A Decomposition Identity

1 1
§6ijk(A X B)k - §6ijk€klmA€Bm

1
= iekijekim Ame

1
= 5(61/5Jm — 6im 5j/)A(Bm

1
= i(ALBJ —AJBZ)

Therefore,

1 1
§Eijk(A X B)k —+ §(A1.BJ + A]BZ) = AIBJ

12



Chapter 2 The Mazxwell Equations

Chapter 2: The Maxwell Equations

2.1 Measuring B

The Lorentz force on the particle moving with velocity v is
F1 = qu; X B.

Taking the cross product with v; gives

U1 XF1 = qu; X (’Ul XB):q[Ul(’Ul B)—BU%] .

Therefore,
v xF; (v By
B=-——"— . (1)
quy U1
Similarly,
B__U2 XF2 (’UQ-B)UQ

2 2
qu; )

The dot product of v; with the preceding equation is

v - (’Ug X FQ) n (’UQ . B)('UQ "U1)

D) .

v -B=-— 5
qu; b

The last term above vanishes if v; L v9 and the result can be substituted into (1) to get
an explicit formula for B:

_’U1 XF1 ’U1-(U2 XFQ)

— V1.
2 2.2
quy qui v

B =

Source: J.R. Reitz and F.J. Milford, Foundations of Electromagnetic Theory (Addison-
Wesley, Reading, MA, 1960).

2.2 The Coulomb and Biot-Savart Laws

1 .
(a) Use V(1/r) = —r/r® to write E(r) = ~1 /d“r’ p(r')V——. Then,
TEQ

v — /|

V x E(r) = — /d3r’ p(r' )V x V# 0.

d7eg |r —r/| -

Similarly, because V?(1/r) = —4nd(r),

/d3T'p(r’)V2 L1 /d?’r’ p(r'd(r —1') = p(r)/eo.

r—1'| €

13
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(b) Here we write

e/ s
B(r):—“—(’/d‘sr’j(r’)xv L :@/d3T/VX i #—OVx/dBT' i

47 [r—r'| 47 |r—r’|747r |r — r/|

This gives V - B(r) = 0 because V -V x f = 0 for any f. To compute the curl of B,

let
r—r R
L S
SO
VxB(r) = ZTOT /d3r’V x [ji(r') x g(r — )]
= 2 [avpe) e i [ariev e )

Focus on the first integral. We know that [j(r') - V]g(r — ) = — [j(r/) - V'] g(r — 1).
Therefore,

() - VNg:(R) =V [g:(R)j(x)] - 9. (R)V" - j(x'). (2)
The charge and current density are time-independent so the continuity equation reads

Ip
V.-j=——=0.
AT
Accordingly, the second term on the right-hand side of (2) vanishes. Therefore, using

the divergence theorem, the z-component of the first integral in (1) is

—2 [V (g (R = =2 [ dS' i), (R) = 0.

T 47

The integral is zero because j vanishes on the surface at infinity. The y- and z-
components are zero similarly. Therefore, (1) becomes

_@ 3, 0s0 .
VxBf4ﬂ_/d rj(r") [V -g].

But , ) )
v.g:v.izf /|: 2

[r — /3 . r—r

=4ni(r —1').

r—r/|
Therefore,

VB =g [ 45008 - 1) = (o).

14
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2.3 The Force between Current Loops

rn —ro 1 % 0 1 % 1
a) pdsy - ————— =—dds; - Vi————— = ¢ ds; — = ¢ =0.
()}{ ! lr| —ryf? % ! 1|I‘1—1E‘2| ' Ds, |y — 1o lr; — 1y
¢ ¢ ¢

1 /2 1 1

r—r r,—r r,—r
(b) We use the identity ds; x <d52 X 123) = ds <dS1 . 123)_(dsl'd52)123.
Ity — 1o 1 — 1o |r; — 1o

Substituting this equation into the given expression for F; generates two terms. One
of them is zero by part (a). What remains is

F, = @j{]ldsl X fIQdSQ X 1'1;1'2
47 [ry —rof3
Cl 2

This is the desired formula because the magnetic field at point r; produced by a
current loop which carries a current I is

Bg(rl) = %%[stz X ‘rrl%
1 — 12
Cy

2.4 Necessity of Displacement Current

The divergence of the suggested equation is
V-VxB=uwV-j+V-jp.
The left side is identically zero so, using the continuity equation and V- E = p/ey,

. . Op 0 B OE
V-jp = —poV-j = Hog, *NOGO&V'E*V' [Hoéoat} .

Since ppeg = ¢~ 2, this equation is satisfied by the standard form of the displacement current,

16w
']D_c2 ot

2.5 Prelude to Electromagnetic Angular Momentum

The time-changing magnetic field induces an electric field in accordance with the integral

form of Faraday’s law:
fds-E:—i/dS-B.
dt

c S

By symmetry, the electric field is azimuthal. Specifically, if we choose C' to be a circle of
radius r coaxial with the z-axis,

15
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1 do -
2 dt
The force gE on the particle produces a torque around the z-axis so the mechanical angular

momentum of the particle is

dL q do
E =rx F= _%EZ
Therefore, as suggested,
d q®
L+ 12 ) =
dt ( + 271') 0

2.6 Time-Dependent Charges at Rest

(a) The charge density is

op
We find the current density using the continuity equation, V- j+ a = 0. Specifically,
Z Gr(t)o(r —rp) = =V -j.
Since V- V|r — r/|7! = —476(r — '), a current density which does the job is
Z —
q — 1 |3
(b) We begin with Gauss’ law:

1 r—ry
V= e YV e SO0 g — - a0l =t

47ey r

The curl of the electric field is

=0.

VXE——iqu, VXV

— I'I|
0B

Faraday’s law is V x E = ~5 This will be satisfied if B(r,t) = B(r) is a time-

independent vector field. Using this and ¢? = 1/ugep, the Ampere-Maxwell law looks
like

1 8E o — I‘—I'k
VxB= —_— = 7 =0
Hol + 209t Ax Z \r —ry \3 47reoc2 Z e —r/?

16
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We satisfy the equation above and also V- B = 0 if B is a constant vector everywhere
in space. Given the initial conditions, we conclude that

B(r,t) =0.

(¢) The current density j(r,¢) in (b) shows that the changes in g (¢) at each point rj occur
because a radial stream of charge flows in and out of each point to and from infinity
as needed.

2.7 Rotation of Free Fields in Vacuum

(a) By assumption,
0B 1 0E
E = —— B = ——
VX ot VXB=5%
Therefore,
V-E =(V-E)cos+c(V-B)sinf =0

cV-B'=—(V-E)sinf +¢(V-B)cosf =0
0B 1 OE
VxE = (VXE)COSG+C(VxB)sinﬂz—Ec080+cc—2§sm0

0B’
ot

—g <Bcos€ — 1Esin0> = —
ot c

0B 1 0E
/ = — 1 = — g _——
cVxB' = —(VxE)sinf+c¢(V x B)cosf o sm&—i—cc2 5 cos @

10 . 1 OE/
= CC—QE(CB&nQ—i—ECOSH):cc—2 T

(b) If E L B, the stated transformation simply rotates the two vectors by an angle 6 while
retaining their perpendicularity. Therefore, E' and B’ also describe a plane wave in
vacuun.

2.8 A Current Density Which Varies Linearly in Time

Let z be the symmetry axis of the solenoid. The simplest guess for the exterior magnetic
field is that the magnetostatic field does not change; namely,

B(p > b,t) =0.
Now consider the integral form of the Ampere-Maxwell law:

17



Chapter 2 The Mazxwell Equations

/dS-E.
t
s

Symmetry suggests that B(r,t) = B(p,t) and E(r,t) = E(p,t)¢. Therefore, we choose a
rectangular Amperian circuit C' of the same kind used to solve the magnetostatic problem.
One leg of length ¢ points along —z and lies outside the solenoid. The other leg points along
+2, has length ¢, and lies at a radius p < b. The other two legs are aligned with p. In that
case, the foregoing gives

&‘g‘

1
[t B =L+

C
C

1d
S

If we guess that the electric field does not depend on time, a solution of this equation is
B(p < b, t) = uo Ky (t/T)i

This magnetic field satisfies V-B = 0 everywhere because the field lines end at infinity only.
We turn next to Faraday’s law and choose a circular loop C’ lying in the z-y plane with

radius p:
d
/dE~E=——/dS~B.
dt
S/

[eld

Evaluating this for p < b and p > b gives

1 .
;MoKoqu p <b,
-
E(p,t) = 1 B2
?MOKO*Cﬁ p>b.
T p

This electric field satisfies V - E = 0 everywhere because the electric field lines close on
themselves.

2.9 A Charge Density Which Varies Linearly in Time

There is no conflict because the origin of coordinates can be placed anywhere we please.

2.10 Coulomb Repulsion in One Dimension

Newton’s equation of motion for the released particle is

¢ 1

deg 2

ma

If we let A = ¢*/4megm, the equation of motion is
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To integrate this, we multiply by & to get

A d (1) d (A
l‘l‘—x2$ or dt 21) = dt - .

Therefore, as @ — oo the speed approaches v = 1/2A/d.

2.11 Ampere-Maxwell Matching Conditions

(a) The fields for this problem are
B(r,) = ©(2)Bi (1, 1) + O(—2)Bs (r.1)
E(r,t) = O(2)E; (r, 1) + O(—2)Ea(r, 1)
(1 1) = 0(2)ji(r, 1) + O(=2)ja (r,t) + K(rs, 1)(2).

Then,
VxB= @(Z)V X B1 — B1 X V@(Z) + @(—Z)V X BQ — B2 X V@(—Z)
and OE OE, (r, 1) OB (r, )
- oratr,t) 2
i O(z) 5t +0O(—2)———= ET

However, By, E;, and j; satisfy the Ampere-Maxwell law, as do By, Es, and js.
Therefore, the time derivative disappears when we write out this law using the previous
two equations to get

—B; xVO(z) — By x VO(—2) = uoKd(2).
This simplifies because VO(+z) = £2d(z). Using this information gives

[B2 — Bl]é(z) X Z = ugKé(z)

If we use the square brackets to enforce the delta function evaluation of By and B,
infinitesimally near to (but on opposite sides of) z = 0, we get the matching condition,

X [B1 — BQ} = ‘ugK

(b) We can apply this result to an arbitrary point r¢ on a non-flat interface because the
fields involved in the matching condition are evaluated infinitesimally close to rg. From
that distance, the interface looks flat and the result proved in part (a) is applicable.
Using our usual convention that ny is the outward normal from region 2, the matching
condition of part (a) generalizes to

flg X [Bl — BQ] = /L[)K(I‘S).
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2.12 A Variation of Gauss’ Law

(a) Because V x E = 0, we can still define a scalar potential E = —V . Substituting this
into the Podolsky-Gauss equation gives

(1 — a?V2)V2(x) = —gd(x).
Integrating this over a small spherical volume of radius R centered on the origin gives
—q=¢€ /d?’rV : {Vgp — aZVVQLp} =€ /dS . {V(p — aQVVng} .

By symmetry, we may assume that ¢(r) = ¢(r). Therefore, writing out the gradient
and Laplacian operators and doing the integral over r = R gives

de d |1 d dy
_ :4 2 o2 " - R27
q=dmeo Rt {dR “ 4R [RQdR ( dR)]}

¢ _ 2Lt d (pdy
iresR 7 “R%m(RdR‘

or

Using the suggested ansatz, ¢(r) = qu(r)/4mey R, simplifies this equation to

d*u
2
a'— =u—1.
dr?
Since u(r) cannot diverge at infinity, this integrates immediately to u(r) = 1 +

Bexp(—r/a). Therefore,

o(r) = 47TZ07" {1+ Bexp(—ar)}.

The entire point of this exercise was to eliminate the divergence of the field at the
origin. The corresponding divergence of the potential disappears only if B = —1.
Therefore, we conclude that

p(r) = —1— {1 — exp(—r/a)}

dmegr

o) .
U
or  dwey r2

E(r) = [1—(1+r/a)exp(=r/a)].

(b) The parameter a has dimensions of length so, by analogy with meson theory, we
may regard it as the de Broglie wavelength of a particle which mediates the modified
Coulomb interaction.

Source: B. Podolsky, Physical Review 62, 68 (1942).
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2.13 If the Photon Had Mass ...

(O]
(a) The equation to be solved is VZ¢ = ¢/L? because p = 0 between the shells. By

spherical symmetry,
Ld (ade)_ ¢
r2 dr dr ) L*

The substitution ¢ = u/r simplifies this equation to d’u/dr? = u/L?, which is solved
by real exponentials. Therefore,

1
o(r) = - ae’’t 4 be_r/L] .

This has the proposed form. The constants are determined by the boundary conditions
o(r1) = @(2) = ®. After a bit of algebra, we find

o(r) = (I){TQ sinh[(r — r1)/L] L sinh[(re — r)/L] }

r sinh[(ro —71)/L] = 7 sinh[(ry —r1)/L]

If A = (ro —r1)/L, the associated electric field E = =V is

E(r) - ﬁﬁl{m{mﬂwgmyu_fmmﬁimya]
TIFmMﬁg—ﬂﬂj+c%M&g—ﬂﬂﬂ}

r? rL

(b) The generalized Poisson equation can be written in the form

P ¥
V-E=+-_-Z.
€0 L2

Integration over a volume V bounded by a surface S and using the divergence theorem
gives the generalized Gauss’ law:

_ Qencl i 3
/dS E= o 72 /d ro(r).
S \4
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We will apply this to a Gaussian sphere of radius r;. Using the field from part (a),

1 th A
€0 — T—chchA

E =® | — r.
(m) {rl + L riL ]r

Moreover, the potential takes the constant value ® in and on the inner sphere. There-

fOre’
47 € P
0 3@

3021

1 coth A T
_ 2 _ 2
Q =4meyr] @ [7“1 + i7 rchschA] +

(¢) The limit L — oo corresponds to A — 0 so we use

1 A
hA~ — — — +---
csc A 6 +
1 A
This gives
— 2r +’l"2) 47T60 27T€() 7"1(13 T2 2 1
~ 4 Qq)(Tz 71)(2r1 3% — ( ) 1 _
@ dmeors 617 taph 3 12 \T o

2.14 A Variation of Coulomb’s Law
By symmetry, it is sufficient to find the potential at a point on the z-axis at a distance r

from the center of the sphere.

The distance between the observation point and a typical point on the surface of the sphere
is V2 + R2 — 2rRcosf. The charge contributed by a element of surface is dQ = o R*df.

Therefore, by superposition,

2m 1
0 5 . 1
wlr) = 47re()R /ddj/d(cob %) (r2 + R — 2rRcos§)1+m/2"
04

The integral we need to do is elementary:

1
dx 201 1 1
(a+bx) 02~ 1—nb [(a+b)—D/2  (a—b)n—1/2

—1
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Chapter 2 The Mazxwell Equations

Therefore, we find immediately that

(r) = Q 1 1
o ~ 4meg 1 —n2Rr

{|7° + R|1_” —|r— R|1_”} .

When 1 — 0, this reduces to Q/4meyr when r > R and Q/4meg R when r < R.
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Chapter 8 Electrostatics

Chapter 3: Electrostatics
3.1 Charged Particle Refraction

(a) Let p; and py be the linear momentum of the particle in the two regions. There is no
impulsive force on the particle in the direction parallel to the interface. Therefore, the
component of linear momentum along the interface is conserved:

p1 sinf; = p; sinbs. (1)

Otherwise, we have conservation of energy in the form

2 2
E:&+q%_p2

2m T om

+q¢Vs.

Combining these two equations identifies (1) as “Snell’s law” and the magnitude of
the particle momentum as the “index of refraction” where

e =\ 2m(E — qVy), k=1,2.
(b) The electrostatic potential is continuous through an interface endowed with a simple

charge distribution o. A dipole layer oriented perpendicular to the interface is needed
to produce a jump in potential like that envisioned for this problem.

3.2 Symmetric and Traceless

(a) The field in question must satisfy V-E = 0 and V x E = 0. The first condition gives
0= 8kEk = Djk-ak’r'j = Djk(gkj = Dy =0.
The second condition gives
0=€stVsEy = €k DjrVorj = €51 Djidsj = €ijs Dji = €ijxDjr+e€r; Dij = €ijk(Djr—Dyj).

(b) We must have Ey = —0;p. Therefore,

1
@Y = A - Cm Tm — §Dsm TsTm -

3.3 Practice Superposing Fields
(a) Let R be the radius of a shell centered at the origin with uniform charge/area o =
Q / 47 R? . Consider first E(x%X) when 2 > R so every ring is a perpendicular distance
x — Rcosf > 0 from the evaluation point and contributes a charge increment dq =

o2 R? sin 6d6 .
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R
0
X
Then, by symmetry, E(zx) = F(x)%X where
Blz) = o2 R? /lT (x — Rcosf)siné !
4me (R? 4+ 22 — 2Rz cos )3/2

0

B / 9 sin 0
d:co VR2 + 12 — 2Rz cosf

™

1
= —c;’l’i’?eoi [ \/R2 4+ 22 — 2Rx cos 9}

dr | Rx 0

—URZeoi {x—FR x—R}

dr | Rr Rz

Q

dregz?”

The z-direction is not special. Therefore, by symmetry, we conclude that

Q i

dmeg 12’

E(r)

Now consider points on the positive z-axis where 2 < R and let cos3 = z/R as
indicated in the figure below.

The contribution to the field from rings that lie to the left of z (8 < 6 < 7) is the
same as in the previous calculation. The contribution to the field from the rings that
lie to the right of z (0 < 6 < () point in the —# (rather than +z) direction. But the
distance from these rings to the evaluation point is R cos § —x (rather than . — R cos 6)
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so the two minus signs cancel one another. The calculation is thus identical to the one
above except that we now choose R —z = \/(z — R)? to get

E(x)=-—

O’R2i :CJrRiR—:E 770R2i z —0
2¢p dxr | Rz Rx | 2 dz |R|

By symmetry, The field is then zero everywhere within the shell.

(b) Let R be the radius of the spherical volume centered at the origin with uniform charge
per unit volume p = Q/(47R?/3). As above, the field is E(z)% if we choose an
evaluation point on the z-axis. If z > R, each disk with surface charge density
do = pRsinfdf lies a distance x — Rcosf > 0 from the observation point. By

superposition,
— 0
E(z) = pR/dGSlnG[ 2~ Reos }

2¢0 VR2 4+ 22 — 2zr cosf

= PR { d9s1n0\/R2+x272xrcost9
260
PR d 1 2 3/2 "
260[ dw{BRR + 2% — 27 cosb) .
pR d [(z+ R (x — R)?

= 2 _
2€q dx

_ Q
dmega?’

As before, symmetry guarantees that

Q i

E(r) = —.
(r 47eqy r?

When © < R, the contributions to the field from the disk to the left and right of
the evaluation point change sign as in part (a). The distance factor x — Rcos#f in
the first line of the calculation above changes sign too, so the second term in the
integral above stays the same save for writing (R — z)* = [(z — R)?] K However, the
first integral above (from the “1” in the original square brackets) must be performed
explicitly with a change of sign for contributions from angles less than or greater than
B = cos~!(z/R). Specifically,

B
3 _ _ 3
BE(x) = % /Wdﬁsinﬂ—/desinﬁ—ddx{(x'i_R)Sa:R(w R)}
& 0
_ PR|2x 4z
2 |R 3R
_ PR,
36
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R
By symmetry, we conclude that E(r) = % This is the familiar Gauss’ law result.

€0

3.4 Five Charges in a Line

P>
2\

_C
&

3.5 Gauss’ Law Practice

We use Gauss’ law in integral form.

(a) Write p(z) = poexp(—«|z|) in Cartesian coordinates. Like the charge density, the
electric field must be translationally invariant along y and z. This implies that E =

X E(x) where E(—x) = —E(z). Then, for a rectangular Gaussian box which extends
from s = —z to s = +x with an area A perpendicular to the z-axis:

2 v s A .

/ds.EzzE(x)A:ﬂA/ dse™ = P00 el (25 0)
S €0 0 KR€g

Therefore,

_ s Po —k|z|

E=x—sgn(z)|l—e¢ .
KR€Q

(b) Write p(s) = py exp(—£s) in cylindrical coordinates (s, ¢, z). By symmetry, E = pE(s),
so we use a Gaussian cylinder of length L and radius p. This gives
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L (* iy Ld ,
/ dS-E =2npLE = 27rp0— dsse ™" = 21 P dse_""*.
S € Jo €0 dli
Hence,
1d |1 1
E:ﬁp*o*f l:e K"—:| :ﬁpo - [1—6 Kp _er—fw}.
€ pdk K €0 K2p

(¢) Write p(r) = po exp(—«r) in spherical coordinates (1,6, ¢). By symmetry, E = +E(r),
so we use a Gaussian sphere of radius r. This gives

v &
/dS E = 4mr? E(r / dss® e "* — ds e
g 0 6[) dr
Hence
7APU 1d 1 1 —KT T _er _ 4 e fT 1,2 2
E(T)—rgﬁ% |:2K26 726 —I‘GO /@37“2 {1 [1+I€T+ }}

Source: P.C. Clemmow, An Introduction to Electromagnetic Theory (University Press, Cam-
bridge, 1973).

3.6 General Electrostatic Torque

Let E’ be the field produced by p’. Then, the torque on p is

N = /dderp( JE/(r) /d%rxm )V (1),

Therefore,
Ni = —€om /dgrrf pam</7/ = €kim /ds'r @/am (TNJ')~

Since szm(s/,m = Oa

1 /(!
Nip = €em /dsr(p/rl amp: €ktm /d37°/d37°/ P <r )/ Ty amp(r)

dmeg |r — 1|

Integrating by parts gives

Nk- = —€kim /d3 /dST‘/pp 8
471'60 \ ||’
6( m Ty (Tm - T/ )
N. = d 3 _ e ] m )
k 47'('6() —€kim / T/d T ,OP |: /| |I‘ — r,|3

But r xr =0, so
1 rer!
_ " d3 d3 / rl et m )
4 Eoekf / ’I’/  pp |:|r_r/|3:|

This is the advertised formula. Notice that the torque on p’ due to p is N’ = —N, as it
must be because their sum must be zero for an isolated system.

SO

Ny, =

Source: P.C. Clemmow, An Introduction to Electromagnetic Theory (University Press, Cam-
bridge, 1973).
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3.7 Field Lines for a Non-Uniformly Charged Disk

|l

2a 3a

)
~

«—— g ——»

The field lines above are drawn so that (1) the lines far from the disk resemble those of a
positive point charge; (2) field lines very near the disk (but away from the rim) resemble the
field lines near an infinite sheet of negative charge; and (3) the field lines very near the rim
resemble the field lines near an infinitely long positive charge line. When these things are
done, there are inevitably points in space where the field lines must cross. This is allowed
if E = 0 at those isolated points.

Source: C.L. Pekeris and K. Frankowski, Physical Review A 36, 5118 (1987).

3.8 The Electric Field of a Charged Slab and a Charged Sheet

(a) By symmetry, the electric field is along x. For the sheet of charge at x = 0, we use a
pillbox-shaped Gaussian surface centered at x = 0. This gives

g0 .
E;(z) = sgn(x)ﬁx.
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For the slab of charge between z = 0 and = = b, we use a pillbox-shaped Gaussian
surface centered at x = 1/2. This gives E;, = E,X where

7p0b/260 x < O,
Ey(x) =< po(z—0/2)/e 0<xz<b,
pob/2¢q x> b.

Therefore, the total field is E = E; + E, = Ex where

*(O’o +p0b)/260 z <0,
E(z) = (00 + 2pox — pob)/2¢o 0<x<h,
(o0 + pob)/2€o x >b.

(b) If we write ps(z) = opd(z) and py(x) = pef(x) — pef(x — b), the force per unit area
acting on p(z) is directed in the X-direction with magnitude

f= /Oodxpxx)Es(x) + 7dx,os<x>Eb<x> + 7dpr<x>Es<x> + fd:cprb.

Fo= /dxgog(x)sgn(x);—z+ /dxa()5(:£) <[2)Oe§>

— 00 — 00

b

b
o
+ /dxposgn(x)% +/dxp0p0(xfb/x)/eo.
0

0

The integrand of the first integral contains an electric field which is discontinuous at
the surface of integration. Our prescription for this situation is to use the average
value of the field, which is zero in this case. Therefore, the first integral is zero. The
three terms which remain are

_poO’Ob T poO’Ob T é <bz b2> —0.

2€ 2¢€p €

F= 2 2

Source: E.M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1965).

3.9 The Electric Flux Through a Plane

By superposition, it is sufficient to consider a single point charge g in the z < 0 half-space.
Pass a plane through ¢ which is parallel to the plane z = 0. By the radial symmetry of E
for a point charge, half the field lines pass through the plane z = 0. Therefore, half the total
electric flux ¢/€p passes through z = 0.
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3.10 Two Electrostatic Theorems

(a) Our task is to produce (0) from the volume integration part of Green’s identity.

This will happen if we choose f = ¢ and g = r~! because V?f = V2p = p/eg = 0
throughout the volume and V2(1/r) = —4xd(r). Specifically, one side of Green’s
identity becomes

/d3r (fV%g —gV?f) = —47T/d37“ o(r)d(r) = —4mp(0). (1)
v v

As for the other side of Green’s identity, let the sphere have radius R. Then,

11 Pl
/dS~(ng—gi)=/dS-(sDV—V<p>=—/dS-apr2+/dS-E.
roor T R
S

The last integral is zero by Gauss’ law because there is no charge enclosed by S. Hence,

/dS (fVg—gVf)=

S

(2)

Setting (1) equal to (2) gives the desired result,

00 = 1 [ 45 = (@)s.
S

(b) Shrink the sphere down to an arbitrarily small size. The average (¢)s cannot be greater
than the largest value of ¢ on the sphere, nor can it be less than the smallest value of

@ on the sphere. Therefore, the largest and smallest values of ¢ lie on the surface of
a sphere which encloses zero charge. This is Earnshaw’s theorem.

3.11 Potential, Field, and Energy of a Charged Disk

(a) Refer to the figure below. The contribution to the potential on the z-axis is the same

for every bit of charge dq = opdpdd on the annular ring at radius p. Therefore we
need to integrate over ¢ and sum over rings to get the total potential. This gives
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27 R
-9 P _ 2 R+ 2
@(2)—4W60/d¢/dp\/lm—260[ Rtz |Z|]
0

0

(b) Refer to the figure below. We will find the potential at the point on the rim labeled
O, which we choose as the origin of a polar coordinate system. From the geometry of
a circle, the maximum value of r is 2R cosf. By symmetry, the upper half-disk and
lower half-disk contribute equally. Therefore, at O,

N

5 w/2 2R cos @ J /2 R
0(0) = 2 /d0 / rr_ @ /dechosaz"—.
4eg T 27eq TEQ

0 0 0

(c¢) From part (a), the potential at the center of the disk (z = 0) is 0R/2¢y. This is
greater than ¢(O) when ¢ > 0. Electric field lines point in the direction of decreasing
potential everywhere. Therefore, by rotational symmetry, the field line pattern must
be as shown below.

(d) Ug is the energy of assembly. At an intermediate stage, the disk has radius r. At the
rim, where the potential is or/mey, we add an annulus of charge with radius r and
thickness dr. This costs a potential energy dqp(r) = (o2wrdr)(or/mey) = 20212 dr/¢.
Therefore, we get Ug by integrating over r from zero to R. Hence,

2 2 2 2R3
Up = iy g .
€0 360

0

Source: O.D. Jefimenko, Flectricity and Magnetism (Appleton-Century-Crofts, New
York, 1966).
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3.12 A Charged Spherical Shell with a Hole

(a) By symmetry, the field at P (black dot in diagram below) points in the r direction
indicated. From the geometry, s = 2Rsin(0/2) and o = 7/2 — 0/2. Therefore, the
contribution to the radial field from the charge dg in an annular ring of radius Rsin 6
whose points lie a distance s from P is

1 dqg 1 dq 1 dq

= s(m/2—60/2) = .
s = e il (072) "2 YD) = o TR (02)

dE,

47eq 82

But dq = 0dA = o(2nRsin 0)(Rdf). Therefore, if 0 is the angle where the hole ends,
the magnitude of the radial electric field at P is

g

1 — sin(6y/2)].

T

260

E(P) = / dE, = % ] cos(0/2)do =
0o

(b) The shell is essentially complete when 6y < 1. In that case, Gauss’ law gives the field
inside the shell as zero and the field outside the shell as E = #Q/4megR? = t0/ep.
The field exactly on the shell is the average of these two.

Source: E.M. Purcell, Electricity and Magnetism, 2nd edition (McGraw-Hill, New
York, 1985).

3.13 A Uniformly Charged Cube

Take one corner of the cube as the origin. The charge density p is a constant, so the potential
at the corner farthest from the origin is

S S s

(pl(s):/dx/dy/dz p .
/ dmegr/ 22 + y? + 22

0 0

Similarly, the potential at the corner of the cube with side length s/2 rather than s is
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s/2 s/2 s/2

P
s2=/dm/d /dz .
#1(s/2) R e

0

However, changing integration variables to 2’ = 2z, ¥’ = 2y, and 2’ = 2z transforms the
last integral to

1
v1(s/2) = /dx /dy /dz P = icpl(s).
47T€0 33,2 +y/2 —|—Z/2
1/—47

Therefore, using superposition as suggested,

po(s) = 8p1(s/2) = 201 (s)-
Source: E.M. Purcell, Electricity and Magnetism, 2nd edition (McGraw-Hill, New York,

1985).

3.14 A Variation on Coulomb’s Law

(a) If the potential of a point charge at the origin is , superposition gives the

47'('6() rlte
potential at point r as

V(r) =

/ do / db bln@
47T€()

BN

On the other hand, s> = > + R*> — 2rRcos b, so sds = rRsin 0df. Therefore,

R=+r
oR? 2% / sds cR 1
Vir)= =

" 4wey rR slte  2erl—e

R—r

[(R+7)' = (R—1)"].

Since o0 = Q/47R?, the Coulomb limit of € = 0 gives the usual result that the potential
is constant everywhere inside the sphere:
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(b) In the € < 1 limit, we use s' ¢ ~ s(1 — eln s) to get

V(r) 1 [2r+e(R—r) In(R—r)—e(R+7) ln(R—|—r)} .

V(R) ~ 2r 1—e€ln2R

Consistency to first order in € requires that we use (1—eIln2R)~! ~ 1+¢In2R. Hence,
as the statement of the problem suggests,

~1+-|—1 1
v S e T Ry TR

V(r) E{R R—r AR? }

3.15 Practice with Electrostatic Energy

(a) A straightforward application of Gauss’ law for this situation gives E = E(r)r where

0 r<a,
Q(r)
E(r) = Aegr? esr=k
Q
Aegr? r> &
and
g3
an=r""0

In terms of the variable © = a/R, the electrostatic total energy is

R 00

€0 3 9 Q* 1 1 / (r3 —a®)? /dr
Ug=— [ d°r|E] = - - - d —
P || dmen 2 | (R —a?)? T + r?
a R
1 1 —51° + 92° — 52°
 4meg 2R 5(1 — 3)2 ’
N L o3Q* oo .
The x = 0 limit gives Uy = —— —= which is the total energy of a uniform ball of
4dmey H5R
charge.
2
The x = 1 limit requires two applications of I’Hospital’s rule. We find —— ——, which

4mey 2R’
is the energy of a hollow shell.
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(b) Straightforward differentiation shows that dUg/dx = 0 at = 0. However, we have
just seen that Ug(z = 0) > Ug(xz < 1). Therefore, x = 0 must be the mazimum of
Ug. A quick sketch shows that the true minimum occurs outside the physical range
of x. We conclude that the lowest energy results when all the charge resides on the
sphere surface (x = 1). This is the situation for a perfect conductor.

Source: L. Brito and M. Fiolhais, European Journal of Physics 23, 427 (2002).

3.16 Interaction Energy of Spheres

(a) The total charge and potential have contributions from each sphere, so p = p1 + po
and ¢ = @1 + @9. Substituting into the integral given in the problem statement, the
interaction part of the energy is

Ve =5 [@rnwet) + 5 [ Erm@a)

By symmetry, the two contributions must be equal. Therefore, if Sy is the surface of

sphere 2,
JR? +d2 —2Rd cos
\ !
0
d
Q 27 1 Q 1 Q2
Ve = [ dS = — 2/d /d 0 - '
[ / 2(r)pr(r) = s B [ do [ dlcos0) 1 — VRZ+d —2Rcosf  4meod
S5 o -l

The last equality is a consequence of

1
2

/ dx _
VI 2ay y

(c) By Gauss’ law, a uniformly charged spherical shell of arbitrary radius R has the same
potential (outside of itself) as a point charge at the center of the shell. Together with
Vg = [d?r pi(r)ps(r), this implies that Vg between a uniformly charged spherical

36



Chapter 8 Electrostatics

shell (1) of radius Ry and another shell (2) of radius Ry equals the interaction energy
between the spherical shell (1) and a point charge equivalent to (2). This means that
Vg is independent of Ry;. By symmetry, Vi must be independent of R; also. Since
R; = Ry = R, we conclude that Vg is independent of R.

3.17 Electrostatic Interaction Energy

(a) The total charge and potential have contributions from each sphere, so p = p; + po and
© = @1 + 2. Substituting into the given integral generates the interaction energy as

Ve =3 / & pr(x)oa(r) + 4 / d*r pa(x)e (1),

By symmetry, the two contributions must be equal. Therefore, if Sy is the surface of
sphere 2, we use the definite integral

2

1
[«/I—Zm‘y—i—y Y

to get

R? +d? —2Rd cosb

\

2

1 Q?
E S/ g9 (I')<p1 (r) 47TR2 / ¢ [ (COS )47T6(] \/R2 + d2 _ 2R cos 9 47T6(]d

(b) By Gauss’ law, the field of each sphere outside itself is the same as the field of a
point charge. Therefore, we get the interaction energy between two point charges,
independent of the sphere radius R.

3.18 Ionization Energy of a Model Hydrogen Atom

The total charge density of the atom is p(r) = p; (r) + p—_(r) where p, (r) = |e|é(r) . The
ionization energy I is the negative of the total energy required to assemble the atom from
its constituent parts. If we ignore the self-energy of the nucleus, this is the negative of the
interaction energy of the nucleus with the electron and the self-energy of the electron:

T [ et

I =

In this expression, ¢_(r) is the potential produced by p_(r). The first term is
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Il - _ 1 /d3’f'/d3’l"l p*(r)er(r/)
4eg v —r'|

1 3 p=(r) e? /OO e’
= — R — = —2 =
|e|47T€0 /d r i dr exp(—2r/a)

|| Tega’ 2mepa

To find the second term, we begin with Gauss’ law. This gives
E(r) = E(r)t = #q(r) /4negr?,
where
(r) = 47T/OT dss*p_(s) = _ Al / dssexp(—2s/a) = |e|exp(—2r/a) [1 + 2r/a] — |e].

Then,

1 o d1 q(r) 1 / dsdg(s) _ q(r) /
ft — - = d
4me /7 dsq(s) dss  dmeyr + 47ey s ds 47reor €0 s5p—()

q(r) le| e
= — —2 =
dmegr  2mega exp(~2r/a) 0

Trer {exp(—2r/a) — 1}.

Therefore,

L o= -} / d'r o (x)p_(r)

= 3 a2 {/ drexp(—4r/a) — / dr exp( 2r/a)}
TEQ

e2

8mepa’

The final result is
3 e?

87reoa

I=L+1 =

as required.
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3.19 Two Spherical Charge Distributions

The force exerted by distribution 1 on the other is F = —V V. This force can be calculated
by integrating the electric stress tensor over any surface in vacuum which encloses one
distribution but not the other. According to Gauss’ law, E on such a surface is identical
to the electric field produced by two point charges at the centers of the distributions with
charges @1 and Q5. Therefore, the force and potential energy are the same as well.

3.20 Two Electric Field Formulae

(a)

(b) For a general p(r'),

E(r) = -V ! /d?’r’ p(x')

" dme |r — r/|
1 1
— d3 / / \V/
dmep / o) |r — 1’|

1 : 1
— d3 ! A\v4
dmey / rp(r) |r — /|
14

— 1 /d3’r‘/vl p(r’) _ 1 /d37’/ V’p(r’)
4rey [r — 1’| d7ey v — 1’|

_ / Vo)

—47T€() ‘I‘—I‘/|.

The first integral in the penultimate line above vanishes because the charge distribution
is localized and thus vanishes at infinity.

Source: O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York,
1966).
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3.21 The Potential of a Charged Line Segment

We need to evaluate the integral

Pl
= 2 / ds’
o= dmeg ) |r—1'|’
P

However, the point P corresponds to s’ = c-a/a and the point P’ corresponds to s’ = b-a/a.
Moreover,

r—r'|=d=Vs?+bsin’a = \/3’2 + |b x al?/a?.

Therefore,

b~a_'_\/(b-a>2+|b><a|2
b-a/a 2
ds’ A\ a a a

o) = | -
4e V2 +bxal2/a> AT c-a c-a\?2 |bxal?
cale a + ( a ) + a?

Source: H.A. Haus and J.R. Melcher, Electromagnetic Fields and Energy (Prentice Hall,
Englewood Cliffs, NJ, 1989)

3.22 A Variation on Coulomb’s Law

(a) By translational symmetry, ¢(r) = ¢(z) and we can choose any observation distance z
we wish. The calculation mimics the usual one done with an inverse-square potential;
namely, we superpose the contribution from concentric annular rings with charge dg =
2mpdpo:
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Every point on each annulus lies a distance s = /p? + 22 from the observation point
on the z-axis. Therefore,

o(z) = ! /dqf( p*+2%) = /d VPP +2%) = %/dSSf(S)-
0

4meq

(b) The electric field follows immediately because we are taking a derivative with respect
to the upper limit of integration:

z

E=-Vp(z) = ii% /dssf(s) = i%zf(z)

oo

3.23 A Non-Uniform Charge Distribution on a Surface

()

o} o} p 1 0o d

Q:/dSa(p) ZQW/dPPU(P) :_qd/dpﬁ =qd —F—| =-—q-.
/2

) / (p* + %) VP + st s

(b) We add up the contribution from annular rings with charge d@Q = 2no(p)pdp. All
points z = zz lie a distance y/22 + p? from points p = pp on an annulus of radius p.
Therefore,
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o) = o [ s 72

d7eg |z — p|

_ —qd /d 1 p
T dne ) PP 2P (21 )
0

qd 1 d p 1
Arey s ds p(p2 T $2)1/2 (22  p2)1/2
0

o0
o/ d ] 0
4dmeg ds ) \/p4 + p2(s? + 22) 4 s222

q(d/s) du
dmey 2 ds VU +u(s? + 22) + 5222

_ ald/s)1 d . — : N
= ine, 2ds {1n{2\/u +u(s? +2%) + %z LU+ stz HO

_ald/s)1d
dmey 2 ds
(d/s) 1d

= In 2
47reo 2ds (s+2)

{ 52+z2+s2—|—z2}

1 q(d/s)

_471'60 s+ 2z

The last line is indeed the electrostatic potential produced by a point charge @ =
—qd/s on the axis at z = —s.

Source: E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill,
New York, 1981).

3.24 The Energy outside a Charged Volume

Since p(r) = 0 outside V, we can write the total energy as
/d‘;rp /ddrp /ddrgp

An integration by parts gives
E0 3 3
= / d°rv - [E¢] + / d’rE-E.

We rewrite the first term above using the divergence theorem to get

:iO/ds-E¢>+i°/d3rE-E.
2 2
S %4
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Finally, using Gauss’ law and the constancy of ¢ on S,
Lo+ 9 [arE B
= — [ r . .
E=35 0 B
1%

The second term in this expression is the total energy contained inside S. Therefore, the
first term must be the total energy contained outside S.

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

3.25 Overcharging

(a) We want the total energy of a spherical shell of radius R with charge N¢ distributed uni-
formly over its surface. The electric field is zero inside the sphere and E = Nqt /4meqr?
outside the sphere. The total energy of this configuration is, as suggested,

2 N2

€0 3 2 €0 q N
=L [ @rER=2 = .
v 2/ r[E| 2 |:47T€:| _/ / 87r€0R

(b) U in part (a) overestimates the energy because it puts bits of charge arbitrarily close to
each other on the sphere’s surface. We must subtract from U the interaction energy of
each micro-ion with the smeared-out charge within its immediate area ma® = 47 R? /N.
The latter is the surface area of the macro-ion per micro-ion. There are N micro-ions,
so the correction term is

2 2

q 1 e Ly

AU ~ —N x - = —N°/=,
dmey a 4meg R 2

(¢) The electrostatic potential of the macro-ion at its own surface is —|Q|/4mwep R. Therefore
the interaction potential energy of the N micro-ions adsorbed on the macro-ion surface
is —q|Q|N/4mep R. Taking out a common pre-factor, we determine N minimizing

V= (N = N2 - |QIN.

This gives
o) e

)

which we rearrange to
NI Q
N? — N+ = =0.
q 16 q
The physical (N > 0) solution of this quadratic equation is

Q| 9 64 |Q
N=tdy = 7
q +32+32 t9y

Since N > |Q|/q, the micro-ions do not simply neutralize the charge of the macro-ion,
they overcharge the macro-ion.
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Chapter 4: Electric Multipoles

4.1 Dipole Moment Practice

In both cases, the total charge of the system is zero. Therefore, the dipole moment is unique
and independent of the choice of origin. We choose the natural center of each as the origin.

(a) For a linear charge density A = A(¢) around a ring, the volume charge density is

0(0 —m/2)6(r — R)

sin 0 r

p(r) = A(¢)

To check this, we let A = @/27R and confirm that

sin 0 r

27 ™ o
/dgrp(r) - /d¢/d9sine/drr2 [A‘m_”/z) =R _srrr—0.
0 0

0

Now, because I = zcos# + ysinfsin ¢ + xsinf cos ¢ , the electric dipole moment of

the ring is
p = [drrp

2T T o)
= / d¢ / df sin 6 / drr? [zr cos  + yrsin @ sin ¢ + %r sin 6 cos ¢
0 0 0

(0 —m/2)6(r — R)
sin @ r

X [/\0 cos (/56

Only the x integral is non-zero above. This result of the integration around the ring

18
p = s MRk,

(b) For a surface charge density o = () on a spherical shell, the volume charge density is
p(r) =c(0)d(r — R).

Hence,

p = [

2 m

/d¢ / de sin@/ drr? [zr cos @ + yrsin 0 sin ¢ + X7 sin 0 cos @] [0y cos 05 (r — R)].
0

0 0

Only the z integral is non-zero. Its value gives p = %ﬂ'RSCfoi for the spherical shell.
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4.2 Smolochowski’s Model of a Metal Surface

(a) The form of n (z) “smears out” the charge due to the positive nuclei but recognizes
that there is a well-defined “last layer” of nuclei at z = 0. The form of n_(x) models
the fact that the electron wave functions “spill out” into the vacuum beyond the last
row of nuclei.

\ z

(b) There is only a z-component to the dipole moment p by symmetry. So, the dipole
moment per unit area is

> d 0 ! o . 7
“:/1d““”‘”>:5%m{/ et Ma“}:‘#'
— —o00 0

(c) The total charge density is p(z) = n (z) —n_(z) = —sgn(z) 37 exp(—£|z|) . It must be

that E = E(z)z by symmetry. Therefore, because sgn(z) = d|z|/dz, Gauss’ law gives

aBG) _pz) _ o dlz
dz e  2¢ dz exp(—l2]).

This can be integrated by inspection to

A
E(z)= exp(—klz|).
(2) = g expl(—rl2])
The integration constant is zero because only a charged sheet produces an electric field
at infinity. The electric field is finite at z = 0 so the potential must be continuous
there. Hence, if we let ¢(0) =0,

sgn(z) {exp(—klz[) — 1}.

o(z) = /02 d2'E(Z) = — n /Z dz' exp(—klz|) =

2e0k Jo 2€0 K2

»(z)

(d) This potential gives (00) —p(—00) = —n/k%€y = p. /€r. The right side is the change in
potential which occurs across a double layer. Rather than a sudden jump, the change
is spread out over the entire length of the system.
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(e) The total energy per unit area is
. e’} ) ﬁz 0 ) o0 ) ﬁQ
Ug =5 dzFE = dz e*"* dze ™" b = ———.
£ = 5€0 /_OO 2 E*(2) Seor? {/_OO ze —&—/0 ze } Seord

4.3 The Charge Density of a Point Electric Dipole

(a) Begin with two point charges arranged as shown below.

+qls

The charge density of this system is

p(r) = 2 [§(r — 0 — sb) — 3(x — x0)].

For the point electric dipole, we are interested in the limit as s — 0. Therefore, we
expand the argument of the delta function of the positive charge to get

pp () =lim L[5(r —rg) — sb-Va(r —rg) + - — 6(r —19)].

s—0 8

All the higher terms in the expansion are proportional to s, s?, etc. and thus go to

zero in the limit. Therefore, with p = gb, we get the advertised result,

pp(r) =—p-Vi(r—rp).

(b) The suggested charged density is correct because the electrostatic potential it produces

1 1 PD (rl)
o(r) = /d3r

4me |r — 1’|
_ _L./de
4me |r — /|
p 3 ,5(1‘/—1‘0)
= oV [ @3 Y
dmeg O/ " |r —r/|
= p . 1
47T60 O|I‘—I‘0|
471'6() |I‘—I‘()‘.
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4.4 Stress Tensor Proof of No Self-Force

Let S be any surface in vacuum which completely encloses the distribution p(r) in question.
The net force on p(r) is

F:eo/ds[(ﬁ-E)E—;ﬁ(E~E) .

Nothing changes if we expand S all the way out to infinity. If p(r) has a net charge, the
asymptotic electric field varies as 1/r?. Therefore, dSE? o< 1/r? as r — oo and the surface
integral is zero. We get the same result if p(r) does not have a net charge because the field
goes to zero even faster as r — oo.

4.5 Point Charge Motion in an Electric Dipole Field

The electrostatic potential and electric field of the dipole are

_ pcost

E

p(r, 8) [2cos¢9f—|—sin99 .

T 4qegr? - 4deyrs
The initial conditionisv = 0 whenr = R = \/m and 6 = 7 /2. Therefore, conservation
of energy guarantees that

19, gqpcosf

Lo =
2 4d7reg R?

On the other hand, the motion will be circular if the radial force equals the centripetal
acceleration, that is, if

mu 2qp cos 6

- T am

This equation is identical to the energy conservation equation so the motion is indeed semi-
circular. A moment’s reflection shows that the particle moves periodically back and forth
along the arc shown below.

Source: R.S. Jones, American Journal of Physics 63, 1042 (1995).

4.6 The Energy to Assemble a Point Dipole

We know that dW = ¢(r)dq is the work required to move charge dg quasistatically from
infinity to the point r. Therefore, the work required to bring charge dq to r and charge —dg
tor+4 is

dW = p(r)dg — p(r + §)dg.
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We will take the limit § — 0 presently so it is appropriate to perform a Taylor expansion
to get

dW = ¢(r)dg — [p(r) + 8 - Vo(r)]dg = —6q - V().

From the figure, it is consistent to define dp = —ddq in the limit when dg — oo and § — 0
such that their product remains finite. Therefore, because E = —V, we get the desired
result,

dW = —E(r) - dp.

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

4.7 Dipoles at the Vertices of Platonic Solids
The electric field of a point dipole is
1 [3a(n-p)—p 4rn

E(r):4ﬂ'€0 |I‘—11‘0|3 _?pé(r_r()) ’

where n = (r —rg)/|r — rg|. The delta function has no effect since we are interested in the
field E(0) at the center of each polyhedron. Also, n = #; at this observation point.

(a) The positions ry of the dipoles for the octahedron on the far left can be taken to be
+aX, +ay, and +az. Therefore, 1y = a and n takes the values +aX, tay, and +az
when we sum over dipoles. Hence, the total field at the origin is

11

BO) = ;=5 [-0p+3%n, +3(-X)(=p,) + 399, +3(=3)(=p,) + 32p. +3(~2)(~p.)]

= 0.

(b) The positions ry of the dipoles for the tetrahedron in the middle are a(x +y + 2),
a(—%x —§ +2), a(—x +y — 2), and a(X —y — z). Therefore, 7y = v/3a and N takes
the values (X +y +2)/V3, (—x —y +2)/V3, (=X +¥y —2)/V/3, and (X —y — 2)V/3.
Hence, the total field at the origin is

B0) = g AP+ K43+ 20 0y +0) + (X + Db by +1.)
1 1
4mey 3a®

= 0.

[(_)A(“F}A’ _i)(_pw +py _pZ) + (X_y —Z)(pw — Dy _pz)]

(c) The eight dipoles at the corners of the cube are the superposition of two tetrahedra with
dipoles at their corners rotated by 90° with respect to one another. From part (b),
each tetrahedron contributes zero to the electric field at the center. Hence, E(0) =0
for this case also.
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Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

4.8 Two Coplanar Dipoles
Choose a polar coordinate system with p || z. The field produced by p in this system is

E

=1 3 (QCosﬂf'—i—sinﬂé) .
TEQT

p
)
At equilibrium, the potential energy V = —p’ - E is a minimum. In the pictured coordinate
system,
p' =p cosO't +p sind6.
Therefore,

V =—(2cosfcosb +sinfsinb’),
and the minimum energy occurs at

ov
o =

This gives the final result as

sinf cos#’ — 2cosfsinf’) = 0.

tanf = 2tan@’.

4.9 Potential of a Double Layer

(a) Begin with our fundamental formula for the potential due to a double layer:

1 1
p(r) = ——/dST(rS) -V
47eg |
S

r—rg|

Now dST = dStn = dS7. Therefore, working out the gradient,

1 1 1 r—rg
o(r) = _747%0 /dS . V7|r — r5|7'(r5) = e /dS . 7‘1‘ —E T(rg).
S

~

On the other hand, the solid angle is defined as

Q(r):/dﬁz/ds-ﬁ.
S S

Combining the preceding equations completes the demonstration.
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(b) Let rz (rr) be a point infinitesimally close to the surface point rg in region L(R). The
surface appears to have infinite extent when viewed at very close range, so

1 7(r
@R(TS)—QOL(PS)Z—TT(I‘S)[QR—QL]: ( 5).
TEQ €0
The square brackets contribute 47 because 2y = 27 and 0y = —27 are the solid

angles subtended at r; and rg by an infinite plane.

4.10 A Spherical Double Layer

The outward normal to the sphere is r. Therefore, using the divergence, the potential at
any point in space due to a surface dipole density 7 = 7r is

1 ) 1
p(r) = _747reo/dST'V7|r—r’\
S
— T fagr.v !
B 47r60/dsr v|r—r’|
s

_ T et
N 47reo/ds v|I‘—r’|

1

v —r'|

- T /d3r’V'-V
47e
i

T 1
d3 /v?
dmey / " |r —r/|
14

- 7 /d3r’6(r—r/).
47e
i

= 4+

Because r is the observation point and V' is the volume enclosed by the spherical shell, the
last integral above gives

—7/€ r <R,
s"(7"):{0/0 r>R.

Notice that the matching condition is satisfied:

o(r>R)—p(r<R)=1/e.

4.11 The Distant Potential of Two Charged Rings

In cylindrical coordinates (s, @, z), the charge density of the inner ring is

p(s,6,2) = —2-6(s — )b (2).

- 2ms
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Y
Y

-

¢

Since z = scos ¢, the z-component of the electric dipole moment vector is

27 00 27 00 oo
Dy = /d(b/dssxp: /d¢cos¢/dssé(s—a) / dz0(z) = 0.
0 0 0 0 —oo

The y-component vanishes similarly because y = ssin ¢. The z-component vanishes because
of the factor §(z). Hence, p = 0.

The components of the primitive Cartesian quadrupole tensor are

2w 0 oo
1
Qij = §/d¢/dss / dzririp(s).
0 0 —00

All the off-diagonal elements are zero because of the ¢-integration. The diagonal elements
are

_o,, -
Qur = Qyy = o

We conclude that the distant electric field of this ring is

sz =0.

i 3riri — 128 a? z? + y? — 222
pulr) = 2 Qu im0y Q@ v =2
4megr  4dmeg T dmegr  8mey o

The potential of the outer ring is similar except with opposite charge. The monopole
terms cancel and the quadrupole terms add. Therefore, the asymptotic potential is a pure
quadrupole:

Q(a® — V) 2% + y* — 222
8meg rd '

p(r) =

4.12 The Potential Far from Two Neutral Disks

Each disk has no charge and no dipole moment. The latter is true because the charge density
depends only on the radial distance from the disk center. Therefore, with respect to its own
symmetry axis, each disk produces a quadrupole potential

= L21’:’2 (cost) =

Q 2
—~(3cos” 0 —1
4dmeg 13 (3 cos ),

4dmeg 13

where Q is a quadrupole moment, 6 is the polar angle from its symmetry axis, and r =
V2?2 + y? + 22. We now restrict ourselves to the z-y plane, where r = s, and write 6 for the
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polar angle for the horizontal disk and 6’ for the polar angle of the tipped disk. This gives
the total potential,

1
47e

Prot (T,y) = S% [3(0052 0+ cos? ') — 2] )

This formula will have the desired form (independent of all angles) if cos? § + cos? 6’ = 1,
which will be true if 8’ = 6 + 7/2. Hence, o = /2.

Source: J.A. Greenwood, British Journal of Applied Physics 17, 1621 (1966).

4.13 Interaction Energy of Adsorbed Molecules

(a) The interaction energy between a point dipole p; at r1 and a point dipole py at ry is

Uiy 1 {Pl'P23(P1'ﬁ)(P2'ﬁ)}’

- 471'60 |I‘1 — I‘2|3
where 1 is a unit vector that points from r; to ro. The total energy per dipole is
1 1p? Unnn
- 53 UN N + 3
4meg 2 a 2v/2

where Uyy comes from the four nearest neighbors at a distance a, Uyyy comes
from the four next-nearest neighbors at a distance \/ia, and the factor % corrects for
double-counting in the total. By direct evaluation, we get

Ur

Uvy = 2{cos2a—3cos’a} + {cos(m —2a) — 3cos*(E +a)}
+ {cos(m — 2a) — 3cos® (5 — a)}
= -6
Uvvy = —4—06{cos(F —a)cos(3 + a) + cos(E + a)cos(3L — )} = 2,

SO

1 1p? 2 1 p? 1
Ur = = (-6+—]= —<J{——-6
7 drey 2. ( * 2\/5) 8mep a® | V2
as required. The energy is independent of the angle «!

Source: V.M. Rozenbaum and V.M. Ogenko, Soviet Physics Solid State 26, 877 (1984).

(b) A point charge representation of each Ny molecule is + — +. A qualitative argument to
find the preferred orientation focuses on maximizing the Coulomb attraction between
molecules on the four nearest-neighbor sites. This suggests that the most favorable
arrangement is the following.
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g |
slisals

Source: L. Mederos, E. Chacén, and P. Tarazona, Physical Review B 42, 8571 (1990).

4.14 Practice with Cartesian Multipole Moments

(a) The total charge @ = 0. There is no dipole moment because the charge is distributed

symmetrically about the origin. The components of the quadrupole moment tensor
are

Qij = %/dgrmij(r).

Since

plz,y) = ¢6(z){0(z —a)d(y —a) +d(z +a)d(y +a)}

— ¢0(2) {6(z —a)d(y + a) + 6(z —a)d(y + a)},

all four terms contribute equally to both @, and Q.. In detail,

Q= 2qa2

o = O
OO =
o O O

(b) The total charge is ¢ = 2\¢. The dipole moment is zero because the charge is symmet-
rical around the origin. All Q);; = 0 except

sz =

SIS

L
)\/dzz2 =1\
—
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(¢) The charge density is p(x,y,2) = Ad(2)d(r — R) in cylindrical coordinates. The total
charge is ¢ = 2w R trivially. The dipole moment is zero because the charge is symmet-
rically distributed. The charge lies entirely in the z-y plane so Q,. = Q,. = Q.. =0.
This leaves only

27 +oo
Quy :%)\/ d@sinGcosG/ dr7"35(7“—R):0
0 0

27 o]
Quz = Qyy = %)\/ df cos® 9/ drr*s(r — R) = LArR%.
0 0

4.15 The Many Faces of a Quadrupole

(a) The components of the primitive electric quadrupole moment tensor are

Qij = %/dBTT‘ﬂ’jp(I').

Since

ple,y) = ¢0(2){6(x —a)d(y —a) +6(x +a)i(y +a)}
— 46(2){0(z = a)d(y + a) + 6(x — a)d(y + a)},

all four terms contribute equally to both @, and Q.. Therefore,
01 0
Q=201 0 0
0 00
The potential produced by this quadrupole is

3rirj — 6;;m?
QO(I') = Qij . o s = 12qa

(b) The primitive quadrupole tensor is Q = 2qa® (29 + §%).

(c¢) Writing the Cartesian unit vectors in terms of the spherical polar unit vectors gives

T = sinfcos¢r + cosf cos qbé — sin qquS
y = sin#sin¢r + cosfsin ¢é + cos cMA)
2 = cosOf —sinbf.

Substituting these into part (b) and simplifying yields the nine matrix elements of Q
in spherical polar coordinates:

Q. = 4qa’ sin’ 0 cos P sin ¢
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Qoo = 4qa® cos® O cos ¢ sin ¢
Qss = —4qa’ sin ¢ cos ¢
Qro = Qg, = 4qa® sin 6 cos O sin ¢ cos ¢
Qs = Qur = 2qa’ sin (cos® ¢ — sin® ¢)

Qop = Qup = 2qa® cos O(cos® ¢ — sin’ ¢).

(d) Since r = 77 in spherical polar coordinates, all terms involving ry and r, will vanish.
Thus

3rir; — 5i]-7"2 0 2r2 0 72 0 72
——— =W — o= — Uyp—-
5 5 9 5

vq(r) = Qij

5
(e) Substituting the appropriate results from part (¢) into part (d) gives

2
0o (r) = 4ga’ r—r sin ¢ cos ¢(2sin® @ — cos? 6 + 1).
TtO

Since x = rsinf cos ¢ and y = rsin fsin ¢, the electric potential is

— 2 Ly

the same as in part (a).

(f) The definition of the components of the quadrupole tensor in part (a) is valid in Carte-
sian coordinates only.

Source: Prof. R. Grigoriev, Georgia Institute of Technology (private communication).

4.16 Properties of a Point Electric Quadrupole

1 ., p(r) 1 L, 1
= v’ =— [ d3 110/06(x —
#(r) 47reo/ " |r — r/| 47reo/ " |r—r’|Q'J v (" =)
1 . 1 1 1
- 5 —10)Qi;00 —— = ——Q,;0,0; | &8 —rg)——
471_60/ r (I‘ I‘())Q] i J|I‘—I"| 47T€0Q] ]/ T (I' r(])|r_r,|
1 1
4’/T60QJ ) ']‘I‘—I‘()|

This is a quadrupole potential so p(r) is correct as stated.

(b) F = [d®rp(r)E(r) = Qi; [ d*rE(r)0;0;0(r — 1) = Qi;0;0,E(ry).
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(¢) The torque is 7 = [d3rr x p(r)E(r) so

T = Eiijmé/dSTTjEkamal(s(r_rO)
= €jkQme /d37’5(1‘ —10)0 0¢(r; Ex)
= €k Qe /ddr 5(1' - I‘o) {5jlam Ly + 5771,78€Ek + Tjam a/Ek}

= €k QmjOm Er(ro) + €2 Q000 Ey (ro) + (r x F);,

where F is given by part (b). Finally, Q,,; = Q;m so the total torque can be written
as

N=2(Q -V)xE+rxF,

where (Q - V); =Qi; V.

(d) Vg = [dPro(r)p(r) = Qi [ d*rd(r —r0)0;0;0(r) = —Q;;0, E; (ry).

4.17 Interaction Energy of Nitrogen Molecules

The leading contribution to the interaction energy may be calculated by treating each
molecule as a point quadrupole. The potential produced by molecule A is

1 1
pa(r) = 3 %VZ-V

Tr—r4|
The charge density associated with molecule B is

PB (I‘) = QkBm ViV 6(1' - rB)~

Therefore, the interaction between the two is

Ve = / B rpp (0)pa (x)

= % ?ijBévz‘Vijveﬁ
- 2 f‘-@fm/d?’rvkvma(r—rB)vivj;
Smep v — 14
S R A A
8mey It — 14
_ L gagp vrvBvrvr 1
Smeg CHCkm TR Em T T ey ey
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This shows that the interaction energy varies as R=5 where R = |r4 —rp]|.

4.18 A Black Box of Charge

Place a point charge at the center of the box. This gives an ¢ = 0 multipole and no others.
Now take a point charge ¢ and surround it by a spherical shell of uniformly distributed
surface charge which integrates to —¢g. This point-plus-shell (PPS) object produces no
electric field outside of itself. Therefore, placing any number of these PPS objects in the
box away from the exact center produces a non-spherically symmetric charge distribution
(with respect to the center of the box) with the desired property.

Source: Prof. Scott Tremaine, Institute for Advanced Study (private communication).

4.19 Foldy’s Formula
(a) As indicated in the figure below, we choose an arbitrary origin O and locate the center

of the neutron charge distribution at r. In that case, the electrostatic interaction
energy is

Vi (r) = / 05 pyy (8)p(x + ).

PN

o

(b) When ¢(r) varies slowly over the size of py (s), a Taylor series expansion is appropriate:

Pl +5) = plx) + 55 hplr) + 5 spE) +

Substituting this above with py (s) = px (s) gives

Vi) = | [@sono)] e+ | [ @ssao)] s vew)

1
+ 5 |:/d35 SjSkpN(S):l ajak@(r) 4
The first bracketed integral is zero because the neutron has no charge. The second

bracketed integral is zero because py is spherically symmetric. For the same reason,
only the j = k terms survive in the third bracketed integral. Hence,

Vo) = 3 | [sston(s)| o =5 | d?’ss;m(s)} V().

The last equality follows because the spherical symmetry of py(s) implies that the
integrals with s2, s, and s? are all equal to 1/3 of the integral with s* = s2 457 + 2.
Finally, Poisson’s equation for the electrostatic potential of the electron is
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e0V?p = —ed(r —ro).

Therefore, integrating Vi (r) over all of space gives the desired formula.

Source: L.L. Foldy, Reviews of Modern Physics 30, 471 (1958).

4.20 Practice with Spherical Multipoles

(a) The volume charge density of the shell is

p=006(r — R)sinf cos = oy \/?5(7“ —R)[Y1,-1(0,0) = Y1.1(0,9)].

If B =+/27/3, the orthonormality of the spherical harmonics gives the exterior mul-
tipole moments as

Aﬂm

4m 3 Oy

sy [ e, 6.0)

4

ety / a6 = ) [ 9 (%11 (9) ~ Vi @}V, (@)
47T0'0

R‘;Bdf 1 {5”1 -1 — m,l} .

(b) The potential outside the sphere is

o0 l
1 }/lm (97 ¢)
p(r>R0,9) = dreq Z Z Azmw
{=0m=—/L
1 4mog R?

= Ire 3 2P MNa0.0)-Yi.(0,0)}

(c¢) The charge density is real so p(r) = p*(r) and we can compute the interior spherical
multipole moments from

B {m

4 *
i/dg plil)nrn(e ¢)

20+ 1

s [[arrt o - 1) [a0 {ve (@) - v @)} V5@
0

4mog

Baﬂ,l {5771,71 - 5771,1} .

58



Chapter 4 Electric Multipoles

(d) The potential inside the sphere is

o0

14
o(r < R,0,0) LSS BtV (6,0)

47e)
{=0m=—(

1 4rwoy

= fre 3 "BA(0.0) Y (0.9))

gy .
= —rsinfcos¢
360

g0
—X.
360

(e) The potential is continuous at » = R as it should be. The tangential components of the
electric field are similarly continuous at 7 = R. As for the normal component of the
electric field, direct calculation shows that this matching condition is also satisfied:

Opc _ Op> 20BN s
or or |._p 3eq 3eor? |, _p
- 2 sin 0 cos ¢
€0
_ o(6.9)
€
(f) A general electric dipole potential is
1 pr
wlr) = drey 13

Comparing this with results of (b) shows that the shell carries an electric dipole
moment p = %QR}E where Q = 47R?0y is the total charge of the shell.

4.21 Proof by Interior Multipole Expansion

Choose the origin at the center of a charge-free spherical sub-volume. All the source charge
must be outside the sphere so an interior multipole expansion for points inside the sphere is

1

47'('6()

90(7“,9,%0) = ZB["LT[}/[:U(G’QO)
Im

where

A 5 p(r)
T /d ro et Yom (0, 0)-

Using Yoo = 1/ = v4x and the orthonormality of the spherical harmonics, the desired
average is
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1 \/47? 1 Var 1
dQ (R, Q) QY — N "B, R'Y (0,0) = .
<<P>s in o( / 00 47r€0 % ‘m Z'm( 90) i 47T€0 00

Rewriting this slightly gives the desired result:

()

Viar 1 1
= 773003/00\/5 = ——By Yoo = ¢(0).
41 4dmeg 4meg

4.22 The Potential outside a Charged Disk

(a) The exterior moments are

47
Agyy =
¢ 20+ 1

[ oy, (0.0).

Since @ = [ d*rp(r) = 4wR?0, we must have p(r) = (o/r)5(cos)O(R — r) as the
volume charge density of the disk. This gives

1 2T oo
Apy = 270 / d(cos 6)5(cos 0) / oY, (60, 6) / 't O(R — 1),
0 0

-1

But

I 2041
o d¢1/}trb(97¢) = €4+ PZ(COSH)(Sm,O

21 0 7

SO

[ 4r oR'*?
A('m = meﬂP/(O)(Sm‘O

Substituting this into the exterior multipole expansion,

= S e,

(=0 m=—{(

20+ 1
and using Yy (0, ¢) = 4+ Py(cosf) gives the desired result,
T
Q oo R l 92
0) = — | ——=Pi(0)Py(cos b R. 1
dr =2 (T) pRomess v (1)
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(b) The potential on the z-axis of the disk is

27 R
o r o
- 2 | 4 7:7{#32 2 _
#l2) dmeg /0 S0/0 2422 26 i |Z|}

On the other hand,

t 00 t 00 €+2
s

V1i+tz—-1= ds———— = P, O/dss

0o V1+s? g «(0) 0 Z

(=0

and Py(1) = 1. Therefore, (2) is indeed the same as the multipole expansion (1)
evaluated at 0 = 0.

4.23 Exterior Multipoles for Specified Potential on a Sphere

(a) The general form of an exterior, spherical multipole expansion is given by

oo L }/[
Z Z tm ’Zﬂ r> R,

where
A(fm, = 7‘//)(1‘/)?”%}?%’ (Q/)dvl

On the surface of the sphere,

‘ Vi (2
3 Y i

(=0 m=—(

l

Ay, N
/ (R Ql)}/f’m’ Q/ dQ/ Z Z Reﬁrnl /}/[m (Q/)YZ,”L,(Q/)CZQ/_

{=0m=—/(

The orthonormality of the spherical harmonics gives the expansion coefficients as

Apm = R / P(R, Q)Y (@)Y

oo l (+1
=3 % (T) 1@ [etr, @) r>R
) y=—/{

(b) By examining figure (b), it is clear that we need the potential to change signs every time
¢ is an integer multiple of 7/2. Thus, m = £2, which in turn implies that ¢ > 2. For
the asymptotic form of the potential we need only keep the lowest value of ¢ necessary.
Examining figure (a), we can see that the potential must change signs every time 6 is
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an integer multiple of 7/2 as well. It is clear that Y3, o sin® @ does not satisfy this
requirement. However, Y35 o sin® @ cosf o cos® — cos36 does. Thus, the potential
must be a linear combination of Y349 and must equal =V at r = R. That is,

R\" 2m R\" . 9
pery=v|{=| 2 105 (Yo +Y5_9) =V - ) sin 6 cos 6 cos 2¢, T — 00.
r

4.24 A Hexagon of Point Charges

(a) Choose the origin of coordinates r = 0 at the center of the hexagon. The charges g,
(e =1,...,6) are positioned at r = r,,. Using the geometry of a hexagon, we label the
(z,y) position of each charge beginning with the topmost and proceeding clockwise:

q —q q —q q —q
(0,a) (z,a/2) (x,—a/2) (0, —a) (—x,—a/2) (—z,a/2)

Then, by direct computation,

Q=> ta=q¢—q+q—q+q—q=0.

«

The dipole component p, = 0 because z = 0 for all the charges. Otherwise,

Pe=) Go¥a=0-qr+qr+0—qz+qr=0

Py =Y daYa = qa—qa/2 —qa/2+qa —qa/2 — qa/2 = 0.

The quadrupole matrix is symmetric and Q.. = Q.. = Q. = 0 because z = 0 for all
the charges. Otherwise,

Quy X anmaya =0—gqza/2 —qra/2+ 0+ qra/2+ qra/2 =0

Qm&anfﬂi=0—q:c2+qx2+0+qx2—qx2:0
«

Qyy x anyg = qa® — qa® /4 + qa® /4 — qa® /4 — qa® + qa® /4 — qa® /4 = 0.
«
However, the next (octupole) moment has non-zero components. An example is

Oyyy anxi = qa® — qa® /8 — qa® /8 + qa® — qa® /8 — qa® /8 = 3qa® /2.
«
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2

(b) The potential of a monopole, dipole, and quadrupole vary as ¢ oc 771, ¢ o r~2, and

¢ o< 73, Therefore, the next term in the expansion must behave as

p(r) o« r

4.25 Analyze This Potential

(a) The charge distribution must have (i) zero net charge; (ii) no dipole moment; and
(iii) a quadrupole potential with only the single term Bz?/r°. Consider the traceless
multipole expansion,

1 |[Q p-r T
= — _— @ L J
#(r) dmey | 7 + 73 + 9 7P

“+ .. ,

and focus on the quadrupole term. The desired term is ©,,22/r®, so we must have
O,. # 0. However, the traceless condition is

G)TT + eyy + @ZZ = O.

Therefore, we must have ©,, # 0 or ©,, # 0 or both. In other words, quadrupole
terms like y2 /75 or 22 /r® or both must also be present if 22 /r® is present. We conclude
that no charge distribution can produce the stated potential.

(b) We can also use the primitive Cartesian multipole expansion,

1 [Q p-r 3rir; —r?8i;
ey |7 T Ty 7 * '

o(r)

We eliminate the terms with no factor of #? /r® by requiring that Quy = Qu> = Q> =
0. The desired factor 2% /7% appears in the remaining diagonal terms,

1 Qua(20® — 9 — 2%) + Qyy (20" — 2° — 2°) + Q.. (22° — 2° — ¢°)
4meg 75

Pquad =

Rearranging this gives

1 LL‘2 (2sz - ny - sz) + y2(2ny - sz - sz) + 22 (2Q2z - Qxx - ny)

47eg 75

Pquad =

We want to eliminate the y?/r% and 22 /r terms. This means that

2ny = Quz + Q=2 and 2Q.. — ny - Q.
The only solution to these equations in Q,; = @y, = Q... However, this makes the

coefficient of the x? /r° term zero also. Therefore, once again, we conclude that there
is no charge distribution with a quadrupole potential of the form Bx? /r°.

(¢) If we permit charge to extend to any point in space, a charge distribution which produces
the stated potential can always be found from the Poisson equation,

p(r) = @ Vep(r).
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Chapter 5: Conductoring Matter

5.1 A Conductor with a Cavity

Earnshaw’s theorem applies to the cavity because it is free of charge. The potential on the
conductor surface which defines the cavity is everywhere a constant ¢y because the potential
is a constant at all points of a conductor. But Earnshaw’s theorem says that the potential
has no local minimum or local maximum inside the cavity. The only possibility is that
©(r) = @y at every point in the cavity. Therefore, E = 0 everywhere in the cavity.

5.2 Two Spherical Capacitors

(@) (b)

(a) The electric field between the conductors is determined by Gauss’ law to be E =
Qt /4megr?. Therefore,

Therefore,

(b) We will assume (and then verify) that the presence of @ on the shell draws up a charge
—@Q’' onto the ball from ground. This induces a charge Q' on the inner surface of the
shell. This leaves a charge @ — Q' on the outer surfaces of the shell so the total charge
of the shell is ). Both shells contribute a constant to the potential at the surface of
the ball. Since the latter is grounded, we get

!
L9
a b

This shows that Q" # 0. Now, the potential infinitesimally outside the shell is

)= 2% _ L rc

T dmwey b Amey b2

Moreover ¢(a) = 0, so
b2

_Q _
C—E—47T€()b_a
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Source: J.H. Jeans, The Mathematical Theory of Electricity and Magnetism (University
Press, Cambridge, 1925).

5.3 Concentric Cylindrical Shells

e

¢

)

We ignore fringe effects and treat the cylinders as infinitely long. The inner and outer
cylinders share charge, but it is enough to focus on the charge per unit length A\, which
happens to reside on the inner cylinder. By Gauss’ law, the electric field between the inner
and middle cylinders is E = \, p/27wepp. Therefore,

b
A [dp  Aa b

b) — = - In —.
w(b) = ¢la) 2me p 2meq na
Similarly,
Ao + N c
ple) = plb) = =5 =g,

But ¢(a) = ¢(c) so adding the previous two equations gives

Aln &= —xm s
a b

Therefore,the capacitance per unit length of this structure is

o Ap _ b _ 27 In(c/a)
¢(b) —p(a) —21In(b/a) In(b/a)In(c/b)’

2Teg

Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

5.4 A Charged Sheet between Grounded Planes

Neutralizing charge of opposite sign to ¢ is brought up from ground but we don’t know how
it is distributed between the two grounded planes. Put —¢’ on the z = d plane and the
remainder on the z = —d plane. The figure below shows a representative field line for the
uniform field produced by each of these three sources. Note that the sum of the fields from
all three correctly gives zero when z < —d and when z > d.
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Er Er
—_— — -—
—— ———— O [

o-0

-  -— -

/
—d z d

(a) Let E; be the total field between z = —d and the charged sheet and let Ep be the
total field between the charged sheet and z = d. Clearly,

EL:1<UI_U_“_2‘TI>2:0/_UQ

€0 2 2 €0

1 /o o o—0o o’
Ep=— (242 _ s s
i 60(2 2 2 )Z o

By definition of the electrostatic potential,

z
/

o)~ ple) = [ da- B = T (e +d) = —(2)

—d

and

/dz Eq — —(d—z) — o(2).

Equating the two expressions for ¢(z) gives

(0 —0d')(z+d)=0'(d—2) - 0 zaZ;;d.

(b) The force per unit area on the sheet of charge is

1 o
f=_0(EL+Egp)=—(20"—0)z2=—12.
20( . +Eg) 60( o' —0)z L

Source: P.C. Clemmow, An Introduction to Electromagnetic Theory (University Press,

Cambridge, 1973).

5.5 The Charge Distribution Induced on a Neutral Sphere

(a) The total electrostatic energy is the sum of the self-energy of the sphere and the
interaction energy between the sphere and the point charge. If r points from the
sphere center to the position of ¢ and r’ points to the surface of the sphere,

Up = Uy + Us = — / 5o /dS/dsi).
47'('6(] |I‘—I'/| 87T€() |I'1 —I'2|
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We have o(r') = >, 0¢Py(cos0) with r' = (R, #). Therefore, since R < r,

1 1 R m
P = Z (7’) P, (cosB).

q 27TR2 R m /1
U Irey T [z"; ol ( . ) g d(cos 0)Py(cos 8)P,, (cos 0)

_ q 2mR? 2 R\"™
= ine ZU‘ e\ )

Therefore,

1 o qRZ+2
?Zzéﬂ Pl )

To compute the self-energy, we have 1y = ry = R so we use

1
Z Z ==Y (01, 01) Yo (02, ¢2)
|I'1—I'2| RL 0 M= 2L+1
and the self-energy is
U, i Z Anoior /1 d(cos 6 )/1 d(cos 02) Py (cos 01) Py (cos 6)
S = v 4 S
8meg o 2L+1 /), 1 . 2 1 2

L 2m 27
1
“R Z/o d¢1Y5M(917¢1)/0 dp2Yrar (62, P2).
M=

However,

I 2L + 1

? d(ﬁYL]\[ (9, (b) = PL (COS 9)(5}\1_]0

Y 0 /I
and

! 2
dzPy(z) Py (x) = 1)
[ deR@P@) = s

Therefore,

MR SN o
€0 204+ 1°

~to

Us =
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(b) To find o(h), we minimize Ug (o,) with respect to each oy. Adding (1) to (2) gives the
total energy so

W 1< 1 47 gqR+?
LN R+ | =0.
9oy GOZ;%H{ 701 T

This is solved by
(20 +1)g R
4upt+l 7

so the charge density induced on the sphere is

00 l+1
ol (R> Py(cosb).

F

Oy = —

Source: C. Donolato, American Journal of Physics 71, 1232 (2003).

5.6 Charge Transfer between Conducting Spheres

After connection, the balls have charges 1 and @ — Q7. Since R is large, we assume that
a point charge potential adequately describes the potential each contributes at the position
of the other. Therefore,

dmegipr = % + @ ;%Ql
ATegpr = % + @ }_%2621 .

The two balls are connected together, so 1 = ¢9. This gives

1 1 1 1 1
@lmtm-w-2m =
or
QR — Ry Ry
(Rl +R2)R_2R1R2'

This is correct, but does not yet take account of the fact that R > R;, Ry. For that purpose,
we write

Q=

(%)
0, QR R) QR [<1_RQ> (1+ 2R, Ry 1)}

_Rl+RQ( _ 2RiR, 1) TR+ Ry R Ri+Ry R

Ri+R R

This gives the desired formula if we ignore the term of order R; Ry/R?.

Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).
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5.7 Concentric Spherical Shells

Before grounding, the potentials of the innermost and outermost shells are

(©) 1 e, +e +e.
Cc) =
¥o 4dmeq c
1 € €, €
#ola) = dreg La b + cl’

vy

When it is grounded, charge Q' flows from ground to the inner shell so that its total potential
is zero, i.e.,
Q/

p(a) = po(a) + =0

dmega

The charge added to the inner shell contributes to the potential at the position of the outer
shell also. Therefore,

! a 1 aje, e e

= —2900(@) =

o(c) = wo(c)

e dmeg ¢ L a b c

Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1952).

5.8 Don’t Believe Everything You Read in Journals

The electrostatic torque on any charge distribution is

T= /d3r {r x p(r)E(r)}.

For the distribution o(rg) at the surface of a spherical surface S of a conductor we must
use the average of the interior and exterior electric fields. So, with respect to an origin at
the center of the sphere,

T = %/dS {rs x o(rg)Eou(rs)} = QL/CIS {I‘S X 02(r5)ﬁ(r3)} =0.

€0
s
We get zero because n = rg for a sphere.

Source: K. Hense, M. Tajmar, and K. Marhold, Journal of Physics A 37, 8747 (2004).
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5.9 A Dipole in a Cavity

(a) The surface density o must be chosen to cancel the electric field outside the cavity
produced by the point dipole outside the cavity. This will certainly be true if, outside
the cavity, the potential due to o is equal and opposite to the dipole potential produced
by the dipole. If we choose z || p, the latter is

1 p'r 1 p
0) = = = 0.
#p (1, 0) dmey 13 dmey 12 cos

Now, we learned in Application 4.3 that a charge density (6) = o cos 6 on the surface
of spherical shell of volume V = 47 R? /3 produces a potential

(X1 ¥4

Z0< <R
3€0 "=
Po =
Vo cosf
— r > R.
dmeg 12

This shows that we will get the desired field cancellation outside the cavity if

p-ftg
T

o(rg) = —

(b) The field produced by o inside the cavity is constant. This produces no force on a
point dipole because the general expression for the force on a dipole is F = (p - V)E.

5.10 Charge Induction by a Dipole

Consider a conductor with charge @ and a volume charge distribution p(r). Together,
they produce a potential p¢ on the conductor and a potential p(r) elsewhere in space. A
comparison system is the same conductor with charge ) and a volume charge distribution
p'(r) which together produce a potential ¢ on the conductor and ¢'(r) otherwise. Green’s
reciprocity states that

Qe + [ @r o) = Qe + [ drfwet).
For this problem, ¢ = 0 and we are told to choose p'(r) = 0. Therefore,

Qo + / dr p(r) ¢ (r) = 0. (1)

For our problem, p(r) = —p - Vé(r —ry) and ¢ = Q' /4dmeyR with ¢(r) = Q' /4meyr for
points outside the sphere. Substituting these into (1) gives

%f/dsrg'V(;(rfro) =0,
or, after integrating by parts,

70



Chapter 5 Conductoring Matter

1 . T
%:—/d?’r&(r—ro)p'v; :/dSr(S(r—I'o)pT2 .
Therefore,
R
Q=P ty)>5-
)

5.11 Charge Induction by a Potential Patch

Label the top plate as conductor 1, the bottom plate minus the finite square region as
conductor 2, and the square region itself as conductor 3. We have ¢; = s =0 and p3 = V.
Our task is to find @ = @2 + Q2. The reciprocity theorem reads

©1Q1 4+ Q5 + p3Q5 = P1Q1 + 5Qs + ¥5Qs3,

SO
VQi = ¢1Q1 + ¢5Q2 + ©5Qs3.

We choose the primed, comparison system as a parallel-plate capacitor where ¢} = 0 and
vy = ph = ®'. In that case, the preceding equation reduces to

V@, =9'Q.

Now, if A is the area of the entire lower plate, and Q' = Q5 +QY, the definition of capacitance
tells us that

/ €0A 1
Q = 7@ .
Therefore,
Q. 2
0 Ve _ Va7 gyeq
P’ Q'd d
€0A

5.12 Charge Sharing among Three Metal Balls

There are many solutions; here is one. Move the ball on the far right to +o0c. Bring the
other two into contact and bring them (together) nearby to +@Q. By electrostatic induction,
the leftmost ball acquires a charge —q. By neutrality, the ball it touches acquires a charge
+q. Now move the —¢q ball to the right nearly to +0o0. Then move the ball at oo to the left
and touch it to the —g ball. These two are nearly isolated. Therefore, by symmetry, each
will have charge —q/2.
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5.13 A Conducting Disk

(a) The text gives the capacitance of a conducting disk is C' = 8¢gR. Using this and the
charge density computed in the text, we can write the latter in the form

o 260V 1

" VR

a(p)

Since every ring with area 2mpdp lies a distance /22 + p? from a point z on the axis,
and both sides of the disk contribute to the potential,

R
2 20V [ 2mpdp 1 2V _W. R

R2
7 77/ dx
dmey T ) \/RZ_pZ \/Zz +p? s 20 \/(32_3;)(22 + ) s |z|'

p(z

(b) We treat the point charge as a tiny sphere. When the disk has charge @) and potential
V, the sphere has charge ¢ = 0 and potential v = ¢(d) from part (a). The comparison
has the disk grounded (V' = 0) with a charge Q' we wish to determine. The tiny
sphere has charge ¢’ = ¢y and potential v’. The reciprocity theorem tells us that

QV' +qv =Q'V +q'v
or
Q-0+0-v =QV + qop(2).
Therefore,

Q=—"Ltan
™

2qo 1 E
7

Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

5.14 The Capacitance of Spheres

(a) The self-capacitance of a sphere is C' = 4meg R where R is the sphere radius. The radius
of the Earth is R = 6.4 x 10 m and ¢; = 8.85 x 10712 F/m. Therefore,

C~7x10"*F.

The self-energy of a sphere is Q?/2C. Therefore, the energy difference between a
neutral sphere and a sphere with charge e is

e (1.6 x 1071 C)?

= — = =1. 10_35 %1_16 V.
V=26~ "2x7x101F %~ IRl e

(b) For the nanometer-sized sphere,
C=4nx885x10712 F/mx10x 10" m~ 10" F

¢ (L6x 1071 Q)2
= __ = ~ 0.1 .
V=3¢ 2x10-8 F 0-1 eV
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(c) If the sphere separation is large compared to their radii, each sphere feels the other as
a point charge. Therefore,

__Qa n Qp
pa dmeg Ry 4megR
QB Q4
¥B

- dmegRp + dreg R’

SO

P 1 RZl R—l
dmey | BTV Ry

and

C =4reg

REl _R! RZRARB ~47T60 RR4 —R4Rp
-R™' R;' |R2—R4Rp~ R | —RaRp RpR

(d) The diagonal elements Cy 4 and Cpp approach the self-capacitances Cy and Cp in
this limit.

5.15 Practice with Green’s Reciprocity

(a) We have ¢; = Cjjp; and ¢ = C;;p; because the same set of conductors is involved.
Therefore,

N N N N N N
Z%‘@z‘ = ZZ Cijpjpi = ZZ Ciigip; = Z(jj%‘-
i=1 i=1j=1 i=1

i=1j=1
(b) This is a direct application of the theorem. We get

¢ 0+q-0+q-0=q-¢+q ¢ +aqd¢

SO
/

¢ =(q+ 2qo)%

(¢) By symmetry, the potentials are (¢, ¢g, ¢p) when the charges are (¢”,0,0). We apply
the reciprocity theorem twice, first using (¢, 0,0) with (g, go, o). This gives

" q+ 2¢0q0 = ¢q".

Now use the result of part (b) where we have (¢, @', ¢') with (¢/,¢’,¢’). This gives

(¢” +2¢0>q/ — qlld)/.

We now have two equations for the two unknowns, ¢” and ¢. Eliminating ¢” yields
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o= LN —0d/0) _ 20q"
" (/e (0 —a)g+2a)

Substituting back gives

(q0 + q)q"
(90 — q)(q + 2q0)

¢//:7

5.16 Maxwell Was Not Always Right

(a) Maxwell discusses four objects: (A) a non-conducting square; (B) a non-conducting
rectangle; (C) a conducting rectangle; and (D) a conducting square. It is meaningful
to discuss the electrostatic energy Up for each of them. Capacitance is a meaningful
concept for the two conductors, where Up = Q? / 2C . Maxwell argues that Ug(B) <
Ug (A) and also that Ug (C) < Ug(B). This shows hat Ug (C') < Ug(A). He doesn’t say
so explicitly, but his line of argument also implies that Ug (D) < Ug (A). Unfortunately,
all these facts do not allow you to conclude that Ug (C') < Ug (D). The latter is needed
to conclude that Ciect > Cyq.

(b) It costs an energy 6Ur = (Q/C)dQ to add charge to a conductor. This number is bigger
for a square than for a rectangle because, by the geometry, the added charge is closer
to all the other charge on the square than for the rectangle. Hence, §Ug (D) > éUg(C)
or Creet > Cyq-

5.17 Two-Dimensional Electron Gas Capacitor

The electric field in the upper gap is E1 = o /€y directed downward. The electric field
in the lower gap is Fy = 09/¢y directed upward. Since the electrostatic energy density is
up = %GoE - E, the total energy per unit area of the system is

u = %Eo(d — L)|E‘1|2 + %60L|E2‘2 + Uugp -

Since o9 is the independent variable, the minimum energy requirement is

" dos | 26 2me? + me? (1 + 02).

d {LO’% Wﬁ2(01+02)2} _ Loy mh?
€0

Ame®

C A
2 as required, with Cy = % and Cy = T The classical
0

This gives 09 = —01 ———
& 2 ! Cy + Cy

limit is A — 0, so

Cy — o0 and o9 — 0.

This is the answer when the two-dimensional sheet is replaced by a perfect conductor, an
example when the energy/area of the “sheet” uy — 0.

Source: S. Luryi, Applied Physics Letters 52, 501 (1988).
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5.18 Two Pyramidal Conductors

(a) For a general two-conductor system, the symmetry of the P;; implies that
L 2
Ug = 3 [Qi P11 +2Q1Q2 P12 + Q3 Pa) .
The charge transfer implies that ¢y = 0Q and Q3 = —0Q. Therefore,
1
0Ug = 3 [2Q16Q P11 +2Q26Q P12 — 2Q10Q Py — 2Q20Q Paa] .

But Q1 = Q2 s0 dUp = QO0Q (P11 — Py3). We conclude that U < 0 requires Pyy > Piy.

(b) The P matrix is the inverse of the symmetric capacitance matrix C. Therefore,

(Cu C12><P11 P12):<10)
012 022 P12 P22 0 1 '
This gives C11 Py +CiaPys =0

C12P11 4+ Cy Py = 0.

Eliminating Pjs from these two gives

Por O _
Pll Cll

Therefore, since P9 > P71 by assumption, we must have Cyy < Cyy.

(c) When the two pyramids are widely separated, C1; and Cyy are the self-capacitances
of the bodies, which scale with their linear size. Therefore, pyramid 1 is larger than
pyramid 2. This makes sense, since the charge can spread out when we transfer charge
from a smaller conductor to a larger conductor.

5.19 Capacitance Matrix Practice

Let A, B, and C denote the regions to the left, above, and below the grounded plate,
respectively. If up is positive, the electric fields in the three regions are

By=22"%1 Ep=-- and Eo=%2,
b b—vy y

The charge per unit area on any plate is 0 = ¢y E - n. Therefore, the charges on the upper
and lower plates are

Q1 = —€0dL — d(a—z) + € Pl rd

b b—y

xd.

N _ P2
Q2 = €od 7 d(a $>+60b—y

Therefore, the capacitance matrix is
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5.20 Bounds on Parallel-Plate Capacitance

(a) We write out the right-hand side of the proposed identity:

/d3r|5E|2+2/d3rEo-5E = /d3r\E—E0|2+2/d3rE0.(E_EO)
1% 14 Vv v

= /d3r\E|2+/d3r|E0|2 72/d3rE~E0

\%4 \% \%4
+2/d3rE0 (E—-E)
\%
= /df‘r\EP —/d3r|E0|2.
\% 14

(b) If A is the potential difference between the plates, the exact capacitance is defined in
terms of the total energy Ug:

QUE €0 3 9
C:7A2:§ d°r|E|°.
Since the integrand is positive definite we can restrict the integral to the volume V
between the finite plates to get

Y 3 2
v

On the other hand, by the definition of Ey,

€ .
O() = E/d3T|E0|2.
%

Therefore, we need only prove that the right-hand side of the identity in part (a) is
not negative. The first term is manifestly positive. The second term is zero. To see
this, we write it in the form

/d?’r Vo - Vop = /d3rV - (6¢pVq) — /d?’r V2.
v % 1%

The last term on the right is zero because V¢, = 0 in V. Gauss’ law transforms the
first term on the right side to

/dS~6g0~V<po.
S

This is also zero because d¢ = 0 on the plates and n - Vi, on the cylinder walls.
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5.21 A Two-Wire Capacitor

(a) With respect to an origin at its center, the electrostatic potential produced by an
infinitely long wire (we are advised to neglect end effects) with uniform charge per
unit length A = Q/L is

A
e(p) = S Inp.
Therefore, when the wires have equal and opposite charge per unit length, the total
electrostatic potential is the sum of the two curves drawn below.

| Q

Ap
4
3 d

|

<

(b) The potential difference between the wires is 2A¢p, so the capacitance per unit length
of this system is
c_ A A
L 2lAp| (M me)[In(d —a) —Ina]’

Therefore, since d > a, the capacitance of the two-wire system is approximately

meg L
In(d/a)’

C =~

5.22 An Off-Center Spherical Capacitor

(a) When A is small, we expect C' = C' + AA + BA? + ---. But the +A capacitor is just
the —A capacitor rotated by 180°. Therefore, we must have A = 0.

(b) Since the outer sphere does not move, the magnitude of the force on the inner sphere
is
U _1,,0C
COA 2 OAT
But, FF = 0 when A = 0, because the outer sphere produces zero field inside itself
when the spheres are concentric. In other words,

oc’
0= .
ZAN N

This is true only if A = 0.
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5.23 The Force between Conducting Hemispheres

(a) For a sphere charged to a potential V, Q = 4wey RV. Therefore,

g9 _aV
" 47R2 R

Moreover, the force per unit area which acts on any charged surface is f = no?/2¢.
Therefore, integrating over a hemispherical surface S and inserting a factor of cosf
because only the z-component survives the integration (see figure below), we find

Z

<X
%
2 w/2
A . a? 2 1 9 A
F=[dSf=% | dp | dIsinfcos§—R" = —meyV~"z.
260 2
5 0 0

(b) For a spherical capacitor, the charge resides on the outer surface of the inner sphere and
on the inner surface of the outer sphere. Therefore, the force density acts outward
radially on the inner sphere and inward radially on the outer sphere. Therefore,
because |Q| = 4wepaV, = 4megbV}, the result of part (a) gives a net force of repulsion
with magnitude

1 Q? [ 1 1 }

F== 2 _y2) =
QWGU(V"’ ) 327meg

a2 b2

5.24 Holding a Sphere Together

(a) Let 0 = Q/47R? be the uniform charge density of the shell. The shell charge produces
zero electric field just inside the shell boundary and Eqy; = (0/€)f just outside the
shell boundary. E’ is the continuous field produced by the point charge. The force
density which acts on any element of shell is

1
f=0 [ID/‘% QIEout}

1
For this to be zero, we need E' = *iEout or

Q' lo 1 Q
dregR2~  2¢  24megR2’

This gives Q' = —Q/2.

(b) There is no change. By Gauss’ law, the electric field produced by the shell is the same
in the two cases.
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Source: D. Budker, D.P. DeMille, and D.F. Kimball, Atomic Physics (2004).

5.25 Force Equivalence

We adopt the Einstein summation convention so the inverse relation between C and P
implies that
PIIkam = 5im~

This implies that
(P Crm) = 6P, Crm + P;,0Clm, = 0.

Hence,
5}Dikckm C;} = *Pik(SCk‘m Cy;]j

SO
6P;1.01; = =P 6Cy,, C Y

mj-*

Therefore, because P, = Py,
6P1] = —Pi1.6Crm C»,;; = —Fi6Crm P’mj-
This is the key result we need. Now, using ¢; = P;;Q); we see that
_QL6PLJ Qj = QiPkiéckm ij Q/ = Pk 6Ckm Pm -
Dividing by 20R,, gives the desired final result:

1 6Ckm

5P,
1 —_1n.22Y .
29 GR, T T2liGR Qi
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Chapter 6: Dielectric Matter

6.1 Polarization by Superposition

The Gauss’ law electric field produced by a sphere with uniform charge density p centered
at the origin is

3Lr r<R
€0
B(r) - 3

p R

gﬁr r> R.

An identical sphere, but with charge density —p displaced from the origin by 4, produces
the negative of this field except that r — r — §. Moreover, to lowest order in 9,

t—8 = [x-08) (x—09) "
1 or-8 621732
= st
N 1 3r.- o
o+

Hence, the total field produced by the superposition of the two spheres is

p _
3 r—(r—9)] = 3e r< R,
E(r) =
@ r r-—9 3r-6 7@ 6 —3(t-0)r
3eo {7"3 r3 {1 + r2 e 73 r> R

This may be compared with the field produced by a sphere with volume V' and polarization
P:

P
—37 r <R,
0
E(r) =
V [3(t-P)r P
—_— R
4reg { 73 7"3} re
The two are identical if we choose P = —pd.

6.2 How to Make a Uniformly Charged Sphere

The equation to be solved is

. _ —pPpP T<R7
VP_{ 0 r> R.
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We solve this by analogy with the problem

VE:{p/OGU r <R,

r> R.
The Gauss’ law solution for the latter problem is
3Lr r < R,
€0
B(r) = 3
p R
gﬁr r> R
Therefore, the desired polarization is
—%D r < R,
P(r) = i
R
p?PrT r> R.

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978)

6.3 The Energy of a Polarized Ball

Choose P = Pz so the surface polarization charge density is

op(f) =P -n1=Pz-r = Pcosf

The volume polarization density is zero for this system. Therefore, the total energy is

e =} [asopten = - fas |

S,rr ;,9|_8ﬂ_6 /dS/ S,cos 005(9').
s —r'y 0

s —1's]

Now, cosf =

437rY10(0, ¢) and, since rg = rg, we can use

IFS—FSI

RZ Z 2L+1 Y0 (0,0)Y0 (6, 9").
L=0 M=

Both integrals are now examples of the orthonormality relation for the spherical harmonics

/dQ Y}tn (Q)Y}’/m/(Q) - 5(’(6mm’
Hence,
2P’ R}
Urp = i
9eo
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Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

6.4 A Hole in Radially Polarized Matter

The polarization is uniform in magnitude but always points in the radial direction outside
an origin-centered sphere of radius R as shown below.

The surface density of polarization charge is 0 = —P-# = —P at » = R. The volume density
of polarization charge density is

pP:*V'P:7V~[Pf'].

Now, A
ome ()t (£)-2
Therefore,
pp(?"):—¥ r > R.

By Gauss’ law, both op and pp produce purely radial electric fields outside the hole. Specif-
ically,

Q(r) : 2 2 2
E,(r) = 47r607'21- with Q(r) = —47T/d88 pp(s) =4nP(R* —r°)
0
and PR? )
dn PR
EJ = — r= — A,
(r) dmeqr? r €or? ’

Therefore, the total electric field everywhere is

E(r) =E,(r) + E;(r) =

6.5 The Field at the Center of a Polarized Cube

The volume polarization charge density is zero for a uniformly polarized object. The surface
polarization op = P -1 is P on the right (R) face of the cube and —P on the left (L) face
of the cube.
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Since we only have surface charge,

At the origin,

P
[ 17 _ !/
E(0) dreo / s /dS 3

By symmetry, the z and y components of these integrals are zero. Therefore, if the origin
of the primed system is at the center of the cube,

P Z Z 2P 2z
E.(0 - as’ = — [ dS'" = | = — as’' =,
0) 4meg 7’3 / r’3 47T€0/ r’3

R

L R
2P / 2P
= — /dS’.L: /dQ'.
41eg 3 A4me
R R

The integral is the solid angle subtended by the right face at the center of the cube. By
symmetry, this number must be 47 /6. Therefore, the electric field at the center of the cube
is

P
E(0) = ——.
(0)=—3

This is exactly the same as the electric field at the center of a uniformly polarized sphere
found in Application 6.1!

Source: Prof. H.B. Biritz, Georgia Institute of Technology (private communication).

6.6 Practice with Poisson’s Formula

A body with volume V' and uniform charge density py produces an electric field Eg(r). If
we replace pp in the body by a uniform polarization Py, Poisson’s relation asserts that the
electrostatic potential produced by the polarized body is

P() . E() (T)
Po '

p(r) =

Let the plane z = 0 bisect the slab with uniform charge density p. From Gauss’ law in
integral form, the electric field everywhere due to the slab is
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sgn(z)(pt/€0)z 2] >,
E(z) =
(pz/en) 2 lz| < t.

As far as electrostatics is concerned, the slab with uniform polarization P is equivalent to
a plane at z = ¢t with uniform charge/area ¢ = P - z and a plane at z = —t with uniform
charge/area 0 = —P-z. The potential of a sheet of charge at z = 0 with uniform charge/area
0 is @y (2) = —(0/2¢€p)|z| . Therefore, the potential of the polarized sheet is

Pz
o 260

¢(2) {lz+t[ =z =t}

By checking the four intervals z < —t, —t < 2 < 0,0 < z < t, and t < z separately, it is
easy to confirm that ¢(z) and E(z) do indeed satisfy the Poisson relation.

6.7 Isotropic Polarization

1

v —r'|

11
r—r/|  4dme

o(r) = ! /d3r/P(r/)~V’ /d%'P(ﬂ)-v

47eg

R
ds’ 1
= — "P(r') - .
/dr () v{/éhreo |r—r’|}
0

The quantity in square brackets is the potential ¢/(r) of a sphere of radius r’ with uniform
surface charge density o = 1. This means that the charge of that sphere is Q' = 47’ and

r !

— r<r,
€0
/ _
@' (r) =
7,/2 ,
— r>nr.
€

(a) Substituting ¢’ (r) for r > r’ above gives the potential of the polarized sphere for r > R:

/d37”/P(’I“/) . V%.

R
1 1 1
- _ dr’ /2P AYR v
#(r) 47eg / rrTR(r) vr 47e)
0

This is exactly the potential of a point dipole at the origin,

1 1

—_ -— . vi
#(r) 4dme Py

with electric dipole moment
p= /d3r’ P(r).

(b) ¢'(r) is independent of r when r < 7’ so the potential of the polarized sphere is zero
when r < R.
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6.8 E and D for an Annular Dielectric

(a) We treat the geometry shown below as the superposition of a ball with radius b and
uniform polarization P and a concentric ball with radius ¢ and uniform polarization

N

From the text, the field produced by an origin-centered polarized ball with volume V'

is p
- R
3¢ r < R,
E(r) =
V (3(r-P)r P
4me { 0 B 7“3} r> R
Therefore, the field in question is
0 r<a,
E(I‘) = 360 36[) o r3 “ " ’
v —a® (3(r-P)r P b
3eg o 73 "

(b) By symmetry, we must have D(r) = D(r)f. Therefore, the choice of a spherical

Gaussian surface of radius r gives

/dS D= D(T)47TT2 = Qc,encl =0.
S

Therefore, D = 0 everywhere.
Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

6.9 The Correct Way to Define E

In the presence of a charge ¢, nearby conductors or dielectrics are polarized and create a
field Ej,q at the position of the charge. Therefore, if E is the field of interest, the force

measured when ¢ is placed at a point is

Fq = (I(E + Eind)-

85



Chapter 6 Dielectric Matter

The linearity of electrostatics guarantees that the induced field changes sign when the charge
that polarizes the conductor/dielectric changes sign.Therefore, the force measured when —q

sits at the point in question is
F—q = —Q(E - Eind)-

Therefore, the electric field we seek is

_F,-F_,

E
2q

Source: W.M. Saslow, Electricity, Magnetism, and Light (Academic, Amsterdam, 2002).

6.10 Charge and Polarizable Matter Coincident

(a) We will compute the polarization from

D k-1
P-D-qE=D-—="""p.

K KR

Gauss’ law in integral form applies to a volume V enclosed by a surface S:

/dS~D=/d3rpC.
5 v

This problem has spherical symmetry so D(r) = D(r)r. Choosing a Gaussian sphere

of radius r gives

47 .
D(r)dnr? = pcgr“.

Hence,
Pe k=1
D(r) == = P=p.—
(r) 3T pe—g =T

(b) The volume density of polarization charge is

k—1 1-—
V.r=p K.
K

pp ==V -P=—p.

The surface density of polarization charge is

. K —1
op =P -1t=p 35
Therefore, the total polarization charge is
1-— 47 R3 —1
Qp = ppV +opA = po—" x ”3 +p0”3 R x 47R? = 0.
K

This is the expected value because the dielectric is neutral. The free charge p. is
extraneous to the dielectric matter.
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6.11 Cavity Field

The matching conditions at a dielectric interface are the continuity of E and the continuity
of D; = [€E]L. When h < [, it is sufficient to enforce these conditions on the large flat
surface with n as its normal. All we need is the decomposition

E=E, +E = (E-n)n+[E— (E-n)n].
Applying the matching conditions gives

€ o o
Ecov = g(Eo -n)n + [Ey — (Ep - n)n].

6.12 Making External Fields Identical

Both spheres produce a dipole field outside of themselves. The dipole moment of the dielec-
tric sphere is

-1
P= dra’e r

E,.
K+ 2 0

The dipole moment of the conducting sphere is the £ — oo limit: p’ = 47b’eyEy. The
fields will be identical for r > a if p = p’ or

1/3
k—1

b= .
a[nw}

6.13 The Capacitance Matrix for a Spherical Sandwich

Let 9 and ¢ be the potentials of the shells. For r > Ry, the system acts like a point
charge, so

_ate

¥2 471'60 R2 ’
From Gauss’ law, the electric field between the spheres is E(r) = tE(r) = P
Aeg k12

Therefore,

R
2 q1 1 1

— (g = ds-E(r) = — - —].

Y1 — P2 /R1 s-E(r) Areok (Rl R2)

From the previous two equations, we deduce that

¢ = 4rek V1 — ¥2)

R Rs (
Ry — Ry
R Ry R
=4 4 Ry |1
qo 7T€(),‘€R1 i 1 + 4meg Lo ( + KRQ R1)
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By definition, the elements of the capacitance matrix satisfy

@1 = Cur + Ciapa

g2 = Ca101 + Caapo.

Therefore,
Ri Ry
Ci1 = —Cly = —Cy1 = dmegh—nr
11 12 21 71'€0f<3R2 _R,
Ry
Cyy =4megRy | 1 —_— .
2 = 2( +”RZ—Rl)

6.14 A Spherical Conductor Embedded in a Dielectric

$

K R2

(a) Gauss’ law in integral form is [dS D = Qfnq. For this problem with spherical

5
symmetry where D = keyE, we find immediately that

0 r < Ry,
Q r
E(r) =19 4rer? R <r< By,
Q r
— Rs.
4drey r? >t

There is no free charge anywhere except on the conductor surface so the bulk polar-
ization charge is zero everywhere:

pp=-V-P=—(k-1)V-E=0.

The surface density of polarization charge is

A R k=1 @

UP(R1) = —P'r|’r-:R1—_(H_l)E(Rl)'r__ K 47T6()R1
) B . k=1 Q

op(Ry) = P tf=p, = (k- 1)E(Ry) -t = Kk 4dmeoRy’
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The dielectric is neutral so the total polarization charge vanishes, as it must:

/dSJp(R1)+ / dSop(Rs) = 0

7':R1 T‘:Rz

(b) There is no bulk polarization charge as in part (a). Besides Eq, which imposes azimuthal
symmetry on the problem, the only electric fields in the problem are produced by sur-
face polarization charge densities at r = Ry and r = Ry. Therefore, the potential must
have the form of an exterior azimuthal multipole expansion for r > Ry (supplemented
by Ey) and the form of a sum of interior and exterior azimuthal multipole expansions
for Ry <r < Rs.

Ay
wout(r,ﬁ)——Eorcosﬁ—i—Z 1 Py(cosb) r> Ry,
=0
> Cy
i (r,0) = Z Bt + T Py(cos ) Ry <1 < R».
(=0

From the fact that ¢, (R1,0) = 0, we conclude that

2Z+1

(Pln T, 9 ZBZ

rt ——— | Pr(cosb) R; <7< Rs.

We also have the two matching conditions at r = Ry. One is @,y = ¢in, which tells
us that

B[R} — R} = —EyR3 + A,

and
Ay = B[R + R (£ 1. (1)

The other matching condition at r = Ry is

Haﬁpin _ a90011t
or or

This tells us that
kB[R + 2R} = —Ey RS — 24,

and

14
Ar=—rBy | 5= 132”1 + R (#1. (2)

Equations (1) and (2) are not compatible unless A, = B, = 0 for ¢ # 0. Therefore,
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3

oin(r,0) = By [r - ]f?l] cos

A
Yout (1,0) = {—Eor + 7“21] cosf,

where
A — —EyR}(R{ — R})
"7 2(R3 - RY) + w(R} + R)
B — —3E,
P20l = (Ry/Ry)*] + m[1 + 2(Ra [ Ry )?]
The charge density on the conductor surface is o(0) = —€y(Opin/0r)|r=r, o cosf. This

integrates to zero; no charge is drawn up from ground. The external field polarizes both
the neutral metal and the neutral dielectric, but there is no impetus to attract charge from
ground.

6.15 A Parallel-Plate Capacitor with an Air Gap

The figure below shows the capacitor with the dielectric slab inserted. The potential differ-
ence is maintained at V and a charge per unit area +o; develops on the inner surface of
the conducting plates. A polarization charge develops on the surfaces of the dielectric, but
we will not need this information to solve the problem.

(a) We use the dark dashed Gaussian surface to find the electric field Es in the air:

B =2 (1)

€0

We use the white dashed Gaussian surface to find the D-field in the dielectric:

D1 =0f = HEoEl.

Finally, since the potential difference is maintained at V,

t d
vz/&w+/&@:muﬂpﬁgzﬂh+ﬁu—w 2)
0
0 t

K€ €0
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The capacitance C is defined, so
Q=0;A=CV.
Therefore, using (2) to find o, we find

6():‘€A

C:Fad—(ﬁ—l)t'

(b) Electric breakdown occurs when the electric field exceeds a critical value. Therefore,
the criterion that V' be the breakdown voltage is

Vi
&:’i'

Using this and (1) with the results of (a) gives the desired result,

V=t n(d -t )]:%{1-2(1-/1)].

Source: O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York,
1966).

6.16 Helmholtz Theorem for D(r)

The Maxwell equations for dielectric matter are
V-D =py V xE=0.
To exploit the Helmholtz theorem, we use D = ¢y E + P to write these in the form
V-D =py VxD=VxP.

The Helmholtz theorem gives

’. / / /
—iV/dsr’ V' D) + iV X /d?’r’ V' x D)
47 Ir 47

—v -]

D(r)

= *iV/dS/p/‘( ) +Vx/d37n/V/XP(r/)
4 .

r— /| v —r’|
For simple dielectric matter, P = ¢yx.E. Therefore, VXP = ¢;x.V x E = 0. Consequently,
- ——V d3r’ pr(r) _ 1 d3r' p (r,)ir—r’
|r—r’\ T 4rn ! v — /3"
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6.17 Electrostatics of a Doped Semiconductor

(a) Gauss’ law is V - D = p;. Therefore, the electric field produced by the ions satisfies
(d/dz)eEy = eNp for 0 < z < d and (d/dz)eE; = 0 outside this region. The latter
means that the field is constant outside the doping region. Moreover, F (d/2) = 0 by
symmetry, so

N d
E+(z):€€D <2—2> 0<z<d.

E. (z) is continuous everywhere because the charge density is not singular. The re-
sulting field is plotted as the solid line in the left figure below.

(b) The free charge in the doping layer has volume density eNp. Each ion polarizes the
dielectric medium so the total charge in the doping layer has volume density eNp /k.
Therefore, by conservation of charge, the surface charge density (composed of ionized
electrons and positive surface polarization charge) must be 0 = —eNpd/k. This layer
of charge produces a field

o eNpd
Ey(2) = sgn(z)5— = —sgn(z) —"
A 2€

This is plotted as the dashed line in the left figure below.

(¢) The total field F = E, + E_ is plotted in the right figure below. The system of
semiconductor plus dopant atoms has net zero charge. Therefore, from Gauss’ law for

the total field,
T dE 1 [
/dz—z—/dzsz.
dz €0

On the other hand, the integral on the far left is E(o0) — E(—o00). This is consistent
with our graph where F(c0) = E(—o00) = 0.

6.18 Surface Polarization Charge

Let S be the dividing surface between the dielectrics. The dashed surfaces in the diagram
below are Syt and Sj,. Each lies entirely in the kot or ki, material, respectively.
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If Qf =" qi, Gauss’ law tells us that

€0 / ds - Eq = Qf + onl

.
Sout

and
€0 /dSEln - Qf
Sin
Therefore,
€0 / dS - Eout — /dS “Ein | = Qpor-
out Sin

But D = €¢E, so we can change the integration range in both cases to the surface S when
we write
€0 €0
/dS~D[ —]:onl.
% €out €in

The surface integral of D over S is Q. Therefore,

QPOIQ[ ! 1].

Rout Rin

Source: T.P. Doerr and Y.-K. Yu, American Journal of Physics 72, 190 (2004).

6.19 An Elastic Dielectric

(a) The energy is

1 7 1 ¢ d
U(g,d) = 5k(d = do)* + 20 Sh(d —do)* + 5 —

The equilibrium is reached when 9U/dd = 0, i.e., for

q2

do — 2keA’

d(q) =
(b) At equilibrium the potential difference is

¢ _qdd) _ q ¢ cA )
Vig) = —— = =— 11— Co=—, 3q; = 2kedyA.
(q) C(q) A C(J ( 3(]3 ’ 0 d() ) 0 €a

Therefore, the capacitance is

Co
Ca(q) = dgq/dV = T—@/@’

which diverges at ¢ = qq-
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6.20 A Dielectric Inclusion

Let Vi, be the volume with permittivity €, and V., be the complementary volume with
permittivity €,u:. The dipole moment of the entire system is

pP= /dgrPin + / d3TPout = €0 Xin /derin + €0 Xout / dSTEout-
Vin Vout Vin Vout
But, because E;, = =V, Equt = —Vipout, and dS points outward from the body,
P = —€0Xin /d3’l" V(;Oin — €0 Xout / dg'r VSpout = —€0Xin /ds Pin + €0 Xout /dsr s Pout -
Vin Vous S S
Finally, ¢in = @out on the boundary, and € = ¢;(1 4 x). Therefore,

P = 6()(Xout - Xm)/dS(P = (Eout - 6in)/ds ®.
S S

6.21 A Classical Meson

(a) If we orient p along the z-axis, the dipole makes a contribution (p/4mweyr?)cosf to
the interior potential, ¢y,. Our experience with matching conditions and interior and
exterior multipole expansions tells us that the potential produced by the medium must
vary as cos 6 also. Therefore, the most general potential for this problem is

Ar + p cos 0 r <R,
4megr?

<P(r’ 9) =

B
T—QCOSQ r> R.

There is no free charge at the cavity boundary, so the matching conditions are

a@in

— K a90011t
ar

r—R or

Pin (R, 9) = Pout (R’ 9)

r=R .
Solving these for A and B gives
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2p k-1 q B P 3
= — an = .
dmegad 2k + 1 dmeg 25 + 1
The corresponding electric field is
p 3cosbr —z .
drey 3 Az r<f
E(Tv 0) =
3cos Ot — 7
preesr— 2 31' z r > R.
r

Finally, Dy, = ¢gEiy and Doyt = kegEqus-

(b) We confirm immediately that Dy, = 0 when x = 0. Otherwise,

R
1 . 1
Uin - 5 / d3TE1n . Din - § /dQ/dTr2€0|Ein|2'

a<r<R
The various contributions to U;, behave like

1 1 R? InR Ina
B @ @ M

Only the first of these is independent of the cutoff and competes with the surface
energy (oc R?) to determine the size of the cavity.

6.22 An Application of the Dielectric Stress Tensor

()

There is a radial inward force per unit area f;, which acts on the inner surface of the shell
and a radial outward force per unit area f,,; which acts on the outer surface of the shell.
The hemispheres will stay together if fi, > fout-

The stress tensor formalism gives the force exerted on a sub-volume enclosed by a surface

S as

F= [dSf= [ dS[(d-D)E — la(E - D).
o= fste o
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To find fi,, we use the Gauss’ law fields in the dielectric just inside the inner surface of the
shell:

Q r
Din = Ein = T 5
con 4 72
If the shell has radius R, this gives
_ Dy @

fin

T 20k 32 Rim2’
To find f,ut, we use the Gauss’ law fields in the vacuum just outside the outer surface of

the shell: )
Q+Q ¢

A 2’

Dout = E(]]'?Jout =

This gives
D3y _ (Q+Q)
2¢ 32 Rim?’

fout =

Therefore, the shell will not separate if Q?/rk > (Q + Q')? or

0>Q(1-2)+ Q% +20Q"

Since k > 1, this shows that Q and @’ must have opposite sign. If we put Q@ — —Q’ and let
x = Q’'/Q, the no-separation condition reads

1
y:x2—2x+1—2§0. (1)

This function is positive at = 0 and has positive curvature. Therefore (1) is satisfied for
values of z that lie between the zeroes of y(x). From the quadratic equation, these occur at

_@ L
=g=lt

Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

T

6.23 Two Dielectric Interfaces

The dashed lines in each figure below show a surface S which snugly encloses an interface.
The force on the interface is

A(E- D)

N |

F:S/dS {(ﬁ-E)D—

Let the z-axis point upward so the electric field in each medium is E; = E 1z and E; = E»z.

Z
Ky 1__»
F----—-——-—-—-—--—-—-—--—------—-1 x K>
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Horizontal Interface: The force per unit area f = fz is

1 1
f = §(E2D2 — ElDl) = §€O(I§JQE§ — K‘,lElZ).
But D = Dz is continuous at the interface, so

D= 6()I€1E1 = GUKJQEQ.

Therefore,

If the thickness of each dielectric layer is d/2, we have Ey, = V/d and

111!
+ —— = D:2€0E0 |:+:| .
K1 K9

Vertical Interface: The force per unit area f = fX is

f=FEyDy — E\Dy.

But El = EQ :EO = ‘//d7 SO

f= )ACG()E(%(IQQ — I<;1).

6.24 The Force on an Isolated Dielectric

We set ps = 0 because this piece requires no comment. Otherwise, we use

(Ox Pr)E; = O (P E;) + (Ok Ei) P

to eliminate the V - P contribution to get

F, = —/d?’rak(PkE;) —s—/d?’r(P-V)Ei +%/dS [ -P(rs)] [Ein + Eoutli-

Transforming the first term on the right into a surface integral gives

Fi=— [dsa PIB)+ [ (P94 [ dS (- Plrs)) (B + Boul

or

P /d3r (P-V)E+ | /ds (B P(rs)] [Eour — Enl.

Now, the matching conditions at the surface of a polarized dielectric are

AP
n- (Eout - Ein) = ZTI: = ne() and n x (Eout - Ein) = 0.
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Therefore,
ap . fl . P N
Eout —Ejy = —n = n.
€0 €0

Using dS = dSnh and restoring the free charge gives the final result:

F = /di*r[p,-(r) +P(r)- VIE(r) + i/ds i(rs) - P(rs)].

260

6.25 Minimizing the Total Energy Functional

Using the hint, we seek a minimum of the functional
1 [ 3 [DP 3
F[D]:§ drT— d°ro(r)(V-D —py).
v v

The factor of % and the minus sign are inserted for convenience. Operationally, we compute
dF = F[D + 6D] — F [D] and look for the conditions that make 6 F = 0 to first order in
6D. This extremum is a minimum if § F* > 0 to second order in éD.

The first step is to integrate by parts to get

1 D :
F[D]:i/d%—‘ 6‘ +/d3r[D~V<p+ﬂf<P] */dS'D%

\4 Vv S

A direct calculation of §F to first order in dD gives
; [D
0F = [d’r |—+Vp|-6D— [dS-iDo.
€
\%4 S

Finally, since the variation dD is arbitrary, 6 F' vanishes if D (r) = —e Vp(r) and n-dD|g = 0.
The second of these is true if we specify the normal component of D on the boundary surface.
The first implies that V x D = 0. Together with the divergence constraint, this guarantees
that D and E = —V satisfy Maxwell’s electrostatic equations. The second-order term in
the variation of F[D] is 1 [d®r|éD|?/e. This is a positive quantity, so the extremum we
have found does indeed correspond to a minimum of the total electrostatic energy.
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Chapter 7: Laplace’s Equation

7.1 Two Electrostatic Theorems

We will use these facts about spherical harmonics:

1
YOO(Q) = \/Tiﬂ'
Y10(Q) = %cos@: if
u T
n
Vie () = 7F isiné)exp(ii@ o3ty
8m &t r
6£€/5mm/ = /dQYY(m (Q)YZW (Q)

[asetw) = B AR [ a0y, (@Yu(@)Vir

ellm

= VvV 47TR2A0
= 47R%p(0).
(b)
/dSZ(p(I‘) =R? Z A({RZJrQ /dﬂnm (Q2)Y10() 4?71— _ Al()R4 4?7(
ellm
9 3
But 875 Y = \/;Aw. Therefore,

_ AT 0y
/dSzgo(r)— 3R P
s

r=0

7.2 Green’s Formula

Orient the equipotential surface so that, at the point of interest P, the z-axis is normal and
the x- and y-axes point along the directions of the principal radii.
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l y

Method I: Then, if z = z(z,y) is the equation of the equipotential surface, we have
0z/0x|p = 8z/0y|lp = 0 and k = § [0°2/02% + 872 /0y?|, . Laplace’s equation is

Po  Pp Oy 8(89082) 8(8@82) Py

_\2,,_ 2T Y r v _
O=Ve=Gm T o o " \az0: ) Tay\azay) T o2

But 0/0z = 9/0n and 0z/0z|, = 0z/0y|p = 0 by construction, so this is

_ 9y (82 822) 0%p Op 0%

“on\022 T o2 +T_ %*W

by the definition of the curvature given above. This was Green’s method of proof.

Method II: The coordinate-free definition of mean curvature is 2k = V - n where n is
the unit normal to the surface. For our problem, the gradient ViA = ndy/0n because the
surface is an equipotential. Therefore,

Jp . Ao Op_ . D¢ Jp
V2 V. (V v. —(h-V V.h=—~—"4
0=Vie=V-(Vy) (8n ) (B )8n on " T on2 2 on’

7.3 Poisson’s Formula for a Sphere

The general solution of Laplace’s equation inside the sphere is

S !
( TQ:ZZAZTYZWL

The boundary values are (R, Q) = ¢(Q2) so, using the orthogonality of the spherical har-
monics, we get

%) 14
o) =3 3 (/R Vi (@) / 49 p(Q)Y7, ().
(=0m=—/

We do the sum on m using the addition theorem for spherical harmonics, so
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R oo
o(r, Q) = 4—/dﬂ’ Z (7 - 9s),
T
where ys = (ys, ). Now let
— ' 1 1
I == P[ yAS = =
;RIH (7 9s) r—ys|  [r24+ R — 2rRcos(7 - js)]"/*
SO
oI oI <~ R —¢?
"o PR X w (F95) = o
Therefore,

R(R* —1?) P()
= — Q/‘
90(7"9) An /d |r—y5|3

as required because dyg = R*dSY’.

7.4 The Potential inside an Ohmic Duct
The geometry is

-V

The corner values imply that the potential is invariant when x — —z or when y — —y.
This tells us that B = C = F = 0, so ¢(z,y) = A+ Dz? + Ey*. Moreover, the potential
inside the duct satisfies Laplace’s equation. Therefore,

Po Py
Vip=2r 422 -2D12E=0.
Y= a2 + Oy? *
This gives D = —FE and our trial solution becomes

p(z,y) = A+ D(a® —y?).
We get V. = A+ Da® from p(a,0) = V. We get —V = A — Da? from ¢(0,a) = —V.
Combining these two gives A = 0 and D = V/a?. Therefore, the potential inside the duct

is
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w@w%=§@3—f)

7.5 The Near-Origin Potential of Four Point Charges

(a) The charge distribution is invariant when # — —z or y — —y or z — —z. This means
that all the terms proportional to x, y, z, xy, xz, and yz are absent. Symmetry also
implies that H = I. Otherwise, A > 0 trivially and J < 0 because the potential
must decrease away from the origin on the +z-axes. Finally, 0 = V2¢ = 4H — 2|J]| so
H > 0. We conclude that

o(z,y,2) = A+ H@? + ) — [J|22 + - .
(b) We get a point charge field very near each charge and far away from all of them.

Otherwise, part (a) implies that E points radially inward near the origin in the z = 0
plane. Therefore,

Source: E. Durand, Electrostatique (Masson, Paris, 1964).

7.6 The Microchannel Plate

The general separated-variable solution in Cartesian coordinates has the form

o(z,y) = (Ao + Box)(Co + Doy) + Z(Aae” + Bae ") (Cpe™ + Dye™),
a,B

102



Chapter 7 Laplace’s Equation

where o + 3% = 0. On the other hand, the boundary conditions imply that ¢(z,y + b) =
o(x,y)+2. We can achieve this by writing ¢(x,y) = 2y/b+ f(z,y) where f(x,y) = f(z,y+b)
is periodic. In that case,

olx,y) = Q?erZ {4,, sinh(2mnz/b) + B, cosh(2mnx/b)} {C,, sin(27ny/b) + D,, cos(2mny/b)}

n=1

where y = 0 corresponds to the midpoint of the ¢ = 0 electrode. The coefficients are found
by imposing the Dirichlet boundary conditions on the plates. Thus, multiplying the z = 0
condition by sin(27rmy/b) and integrating gives

b2 - b/2
[ dylp(0,y) — 2y/b]sin(2mmy/b) = > B, {C’,L [ dysin(2rny/b) sin(2rmy /b)
—b/2 n=1 —b/2
(1)
b/2
+D,, [ dycos(2mny/b) sin(27rmy/b)} :
—b/2
b2
Making use of, e.g., [ dysin(27ny/b)sin(2rmy/b) = %b Omn , gives
—b)2

B,C, = (2/mn)cosmm = (=)™ (2/mn)

because the integrand of the second integral on the right side of (1) is odd. Similarly,
multiplying the z = 0 condition by cos(2wmy/b) and integrating similarly gives

b/2 s b/2
f<wwmw%JWHwﬂ%mW®=§J&{Gbfdwm@mwwwﬂ%mww
—b/2 n=1 —b/2

(2)

b/2
+D,, [ dycos(2mny/b) cos(27rmy/b)} .
—b/2

The integral on the left and the first integral on the right side of (2) are zero because their
integrands are odd. This gives B,, D,, = 0. Combining this with the above gives D, = 0.

We now impose the boundary condition at = d, multiply by sin(27wmy/b) and integrate.
This gives

b2
I dyleta.) ~2yjasingzmmy/) + [ dylo(dy) ~ 2/ snCmy
—b/2
o b/2
=> C, f/ dy sin(2mny/b) sin(2rmy/b) { A, sinh(27d/b) + B,, cosh(27d/b)}.
n=1 —b/2

The integrals are the same as before and we get

27 /n — Cy, By, cosh(2md/b) 27
A, C, = x = —
sinh(27d/b) nsinh(27wd/b)

{1 —(—)" cosh(27d/b)} .
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Putting all of this together gives the final result for the potential:

+ (—)" cosh

2 2 X sin(2mny/b) (1 — (=)" cosh(2w/b) . . 2wnx 2mnx
olz,y) = gy+;z ( y/){ ) C1/b) i }

n=1

n sinh(27/b) i b

Source: V.K. Zworykin, G.A. Morton, E.G. Ramberg, J. Hillier, and A.W. Vance, FElectron
Optics and the Electron Microscope (Wiley, New York, 1945).

7.7 A Potential Patch by Separation of Variables

(a) Separation of variables in Cartesian coordinates gives a general solution of the form

o(r,y,2) = Y Xal(@)Y5(y)Z,(2)

o,y
where
Ay + By a=0,
Xa (x) = { Aaemg —I—BZB_“”' a0

and similarly for Y3 (y) and Z,(z), subject to the constraint that o? + 82 ++? = 0.
The potential is an even function of  and y and must be bounded when either of
these variables goes to infinity. This suggests an expansion of the sort

o2y, 2) =V [ " e [ " 48 A(0) B(B) cos(ax) cos(By) Za 5 (2).

The choice
6\/02+ﬁ22 _ e\/a2+/32(2d7z)
1— 62(1\/()(2+/j2

guarantees that ¢(z,y,2 = d) = 0 and Z, g(z = 0) = 1. The boundary condition at
z = 0 is satisfied if we demand that

Za,p(2) =

)= 0 x| > a,
11 |z| < a,
_J o
o 1

[ do A() cos(ax

ly| > a,

)
fjooo ag B(a) COS(ﬁ?J) ly| < a.
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To extract, say, A(«), multiply both sides of the first equation just above by cos(Gz)

and integrate:

oo (oo} a

/daA(a) / dz cos(ax) cos(fx) = /dx cos(fz) =
The orthogonality integral we need,

/da: cos(ax) cos(fBr) = nd(a — f3),

is derived by taking the real and imaginary parts of the identity

1 oo
> / dk explik(a — B)] = 6(a — B).
The final result is A(p) = B(p) = 1 Spa Therefore,
™ p

2sin(fa)
—5

B

«

— 00

vV o[> sin ca oo sin Ba V2822 _ /P57 (2d—=2)
olx,y,2) = —2/ do cos ax/ ag cos By
m — 00

(b) The induced charge on the lower plate is

Qz/ da:/ dyo(x,y) = —eo/ dm/ dyg—(p
—o0 —o0 —o0 —o0 z

/ dz cos ax / dy cos By = 47> 8(a)d (),

SO

Q = —4Vega2/ da6(a)/ B3 8(B) SizzaSigfa\/auﬁ?

_ 4Veya?
—

-\

1 — e2d\/a?+5?

z=0

1+62d a?+3?

1— eQd\/a2+32

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).
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7.8 A Conducting Slot

The potential ¢(z,z) does not depend on y and ¢(x,z) — 0 as z — oco. Because the
potential must reflect the symmetry of the slot with respect to reflection through x = a/2,
we conclude that

p(r,2) = > [A, exp(iyz) + B, exp(—iyz)] exp(—y2).
v>0

The Dirichlet boundary conditions on the walls and base of the slot determine the expan-
sion coefficients and further restrict the allowed values of the separation constant v. Thus,
©(0,2) = 0 fixes B, = —A, and ¢(a, z) = 0 requires that v = nw/a where n is a positive
integer. The final boundary condition at z = 0 is

Yo = Z A, sin(nmz/a) 0<z<a.
n=1

We determine the coefficients of this Fourier series by multiplying both sides of the foregoing
by sin(mmz/a), integrating over the indicated interval, and using the orthogonality integral

a
nTr . MTT  a
/dx sin — sin = —bmn-
a a 2
0
The result is A, = (2¢9/mm)(1 — cosmm). Therefore, the electrostatic potential in the slot
is

o(z,2) = 4% Z %sin(mmc/a) exp(—mmnz/a).

m=1,3,5,...

The most significant feature of this potential is its behavior when z > a. The m =1
term dominates in that case and

ox, z) ~ 4% sin (rz/a) exp (—7z/a) .

This shows that the influence of the source charge at y = 0 penetrates up the slot no farther
than a distance of the order of a itself. The transverse variations of the potential vary on the
same spatial scale. It could hardly be otherwise—the slot width is the only characteristic
length in the problem.

7.9 A Two-Dimentional Potential Problem in Cartesian Coordinates

By symmetry, ¢(x,z) = ¢(x,—z). This tells us that the potential cannot contain a linear
term in z. There also cannot be a term linear in x because the solution domain extends to
400 in the z-direction. Hence, if we insist on a Fourier representation in the z-direction,
the general form of the potential between the plates must have the form

1 [ .
oz, z) = —/ dkA(k)e™® cosh kz.
27 J_ o
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To find the function A(k), we evaluate this expression at z = +d, use the Fourier inversion
theorem, and regularize the integrals using

+oo ) +oo ]
dre ™ = lim dze hw FoT
0 d—0 0

The result is

[e'S) 00 0
) . o 2
A(k) cosh kd = / dx p(z,d)e™ ™ = {/ dx e 7/ dx e”‘z} = —_SZU.
—0o0 0 —0o0 ?

Therefore,

nkx.

vy [ dk coshkz gike 209 [ dk cosh k:z ,
pla,z) = 2 o2
k cosh kd T Jo & coshkd

v

7.10 An Electrostatic Analog of the Helmholtz Coil

The general solution to Laplace’s equation inside the shell is

ZA/( ) Py(cosb) r < R.

We would get a uniform electric field E = —(A;/R)z everywhere inside the sphere if all the
Ay were zero except for k = 1. By symmetry, only odd ¢ contribute to the sum. Hence,
we should choose 6y so A3 = 0 because this term in the sum varies most rapidly near the
origin. The orthogonality integral for the Legendre polynomials is

™

/ df sin 6P, (cos 0) Py, (cos ) =
0

2
m+1

nm -

Therefore, if V(0) = ¢(R, §), the expansion coefficients above are

1
A= %T_'_ df sin 0Py (cosO)V (6).

0

In particular,

™

/ df sin O P3(cos 6)V (0)
0

N

= 7V / df sin 0 P3(cos 6)

0

= W / daPs(x).

cos 6y
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Now Ps(x) = gx?’ — %x so the condition A3 = 0 becomes

5cos® 0y — 6cos? Oy +1 = 0.

The solutions to this quadratic equation are cos? fy = 1 and cos? §y = 1/5. Only the second
of these makes physical sense so we conclude that

0o ~ 63°.

Source: C.E. Baum, IEEE Transaction on Electromegnetic Compatibility 30, 9 (1988).

7.11 Make a Field inside a Sphere

Integrating each component of E = —V gives us
. Vo
& v =Ty + f(y,2)

(®y — 39°) + g(z, 2)

N

<P:R3

N>

Therefore, when 2 + 3 + 22 < R?,
Vo Vo
o(z,y,2) = i (9621/ — %y?’) + ﬁz + const. (1)

This potential satisfies Laplace’s equation. Therefore, no volume charge is present inside
the sphere. On the other hand, in spherical coordinates, we know that solutions of Laplace’s
equation take the form

> e (i)ka,m(@,qﬁ) r<R,

QP(T’ 0) B e {41
Zc[ (f) Yo m (97¢) r> R.

The cubic terms in (1) can come only from a linear combination of £ = 3 terms. The linear
term is an £ = 1 term. Therefore, because x = rsinfcos¢ , y = rsinfsin ¢, and z = rcosf,
we get

3 .
Vo%cos@—i—%(%) sin39(cos2¢sin¢—§sin5¢) r <R,

o(r,0,0) = 2 N
Vo (T) cos + Vp (7’) sin® 6 (cos2 ¢sin¢g — %sin3 d)) r> R.
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The charge density follows at once from the matching condition

Dy

" or

0
o(0.0) = @5

r=R— r=R*

\% . .
= eoﬁo [SCOSO + 7sin® 0 (0052 ¢sin¢ — % sin® (;5)] .
Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

7.12 The Capacitance of an Off-Center Capacitor

_________ //f N
K R

(a) Let (19, 6) denote a point on the outer shell with respect to the origin of the inner shell.
By the law of cosines, R? = r3 + s> — 2ryscosf. Therefore, to first order in s, the
boundary of the outer shell is

ry = Ry + scosf. (1)
If the shells were exactly concentric, the potential between them would have the form
©(r) = a+b/r. Therefore, in light of (1) and the general solution of Laplace’s equation

in polar coordinates, we expect the potential in the space between the displaced shells
to take the form

b d
go(r,&):a—i——i—s(cr—i—z) cos 4+ O(s?). (2)
r r
To order s, the boundary conditions at the shell surfaces are

b d
VleO(Rhe):a‘FRl+S(CR1+R%>COSQ (3)
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b d
Vsl d) = g o (de seost + g ot
b d b
= a+R2+s(cR2+R2 R2)COSH (4)

V1 and V4 are constants so the coefficients of cos§ must vanish in (3) and (4). This
fixes d = —cR} and b = ¢(R3 — R}) . Moreover, subtracting (4) from (3) gives

b= (Vi —Vo)R1Ry/(Ry — Ry).
Therefore,

R Ry
(R} — R})(Ry — Ry)

R'R,
(R3 — R})(Ry — R1)’

c=(Vi - ) d=—(Vi - V)

Using (2), we conclude that the charge density on the surface of the inner shell is

o) = ey 2% R0V [ 1 3s

i R 0
or r=R; RQ - Rl R% R3 R3 o8

The angular term in o () integrates to zero. Therefore, the total charge on the inner
shell and the capacitance (to first order in s) are identical to the zero-order case of a

concentric capacitor:
Q e Ry Ry
Te) 55—

C: =
"Tv-V, Ry — R,

(b) By symmetry, there is only a z-component to the force on inner shell. Explicitly,

2 7 2 2 ;
o* . ) .o () Q SZ
= /dS %n = 227 Ry /d&smﬂﬁ cosf = e R3 R

0

(c) The force in part (b) can be computed from a variation of the capacitor energy. There-
fore, if we imagine the charge fixed,
_dUg dQ*  @QdC  Q? s

FZ = = —— — =
ds ds2C ~ 2C% ds  dre R3 R}’

Integrating this gives
1 1 s 1

C TmaR-R G
Therefore, to second order in s,

CO 82

€ =G 47Teg R3 R}
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7.13 The Plane-Cone Capacitor

(a) The geometry of the capacitor is invariant to rotations around the cone axis and to
rescaling the radial variable from r to Ar (where A is a constant). These facts imply
that the potential cannot depend on either variable.

(b) Since (r) = p(8), Laplace’s equation reads

Vip = ;2 <sm€a) 0.

r2 sinf 00 00
Hence,
0 dp\ L0
&Q(bmeag)_o = 5111989—1(—0071525.

This gives the potential as

K
w(0)=A+ / oy A+ Blntan(6/2).

The boundary conditions are

p(r/2) =0 = A+ Blntan(n/4)=A
w(r/4) = V = Blntan(w/8).
Therefore,
_ . Intan(0/2)
wl0) = Vlntan(w/8)'

7.14 A Conducting Sphere at a Dielectric Boundary

Let the polar z-axis pass through the center of the sphere perpendicular to the dielectric
interface.

(a) The general solution of Laplace’s equation outside the sphere is

IR

At the sphere boundary, we must have (R, ) = const. This tells us that A, = 0 for
all £ 0 so

A A
(,0(7‘,9)270 = E—T—ZOA

Therefore, wherever the dielectric constant is x; (p = 1,2),
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The constant A, follows from V - D = p.. Using a spherical Gaussian surface,

w/2 71'
/dS ‘D =€y A2 | k1 / df sin 0 + ko / dfsinf| =2megAg(k1 + K2) = Q.
S 0 /2
We conclude that
Q 1
p(r) =

" 2meg(ky + Ra) T

(b) The free charge on the surface of the sphere follows from Gauss’ law as

a i in region k
K1 + ko 2T R2 & b
o.=D(R) -t =
f2 i in region k
K1 + ko 2T R2 & >

There is polarization charge at the sphere boundary. Its value is op = (1 — K)o /k.
This charge is compensated by polarization charge at infinity. There is no polarization
charge at the k;/ky interface because E and hence P are everywhere radial. This
means that P -1 = 0 at the interface.

7.15 The Force on an Inserted Conductor

The grounded, inserted sphere draws up charge to its surface. The potential ¢, due to this
surface distribution must exactly cancel @qy; everywhere inside the sphere. Moreover, ¢,
satisfies Laplace’s equation and is continuous at » = R. Therefore,

o0 r n
_ — <
nzz:l ap (R) P, (cos8) r <R,
Po(r,0) = o R\"H1
- > a, (r) P, (cos®) r> R.
n=1

We get the force on the sphere by integrating the induced surface charge density over the

sphere surface S:
2
o
F= [ dS—n.
/ 5260 n

S

The unit normal is n = r = cos 6z + sin @ sin ¢y + sin 6 cos ¢x and the surface charge density
is

8(9% + ‘Pext)
€@——————

o) = - or

= —¢ 2(211 + 1)%Pn (cos ).
r=R* n=1 R

Only the z contribution survives the ¢ integration in dS = R?sinfdfd¢. Therefore, if
x = cosb,
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1

F, = ii (2n+1)(2k + Day ap /dek( Yz P, ().

—1

Using the hint,

1

o0 o0 1
F. = e Zl ;(m +1)(2k + 1)04,,,%2”7“ /dek (2) [(n + 1) Posi1(2) + nPy_1(2)] .
TRE -1

On the other hand,

2
/dZL‘RI Pk ) om+ 16nk
Therefore,
2n+1)(2n+3 n+1 — (2n+1)(2n -1 n
= 27eg Z 1 )Oanén+1m + 2meg Z ( 277/)—(‘r 1 )0471,0%—1 m

n=1 n=1

The n = 1 term in the second sum does not contribute because ag = 0. Therefore, we start
the sum at n = 2 and define m = n — 1. This makes the second sum identical to the first
sum, so

00
F, =4mey Z(’ﬂ + Danan -

n=1

7.16 A Segmented Cylinder

Inside the cylinder, the general solution to Laplace’s equation in polar coordinates that
satisfies ¢(p, @) = ¢(p, —¢) and is finite at the origin is

= i A (%)m cos me.

m=0

Therefore, using the boundary conditions and the integral

2m
/ d¢ cosme cosng = Ty, (m #0),
0

we find
27 @ 00 2
/ do (R, p) cosng = d¢ cosng = Z A / d¢ cos me cos ne.
0 —a m=0 0
94
We conclude that A,, = % when m > 0 and Ay = o/, so
T
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©(p, d)

>HQ

2 o 1
72—<—) sin ma cos ma.
T E=tm

7.17 An Incomplete Cylinder

The general solution of Laplace’s equation inside and outside a cylinder of radius R is

Pin(r,0) = Ay + 3 Ap(r/R)" G, (0)

Cout (1, 0) = Ao—%ln (r/R) +ZA (R/m)" G, (0),

n

where G,, () stands for a linear combination of exp(£inf) functions. The logarithmic term
is present because the cylinder looks like a line charge when viewed from a great distance.
The difference in induced surface charge density between the inner and outer surfaces of the
shell is

A

0
Oout — Oin = _605 [@out + SOin]T:R = ﬁ

Therefore, the difference in the total charge per unit length between the inside and outside
is

2w /p A
Qout - Qin = R/ da(aout - Uin) - .
0 p

But Qiot = Qout + Qin = A so we can solve for
1 1
Qout - |:1 + :|

This gives the fraction of charge on the inner surface of the shell as

p

Qtot an _ 1 |:1 1:|
Qtot 2 .

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

7.18 The Two-Cylinder Electron Lens

Our strategy is to find ¢(p,z) separately for z < 0 and z > 0 and match the solutions
together at z = 0. The boundary conditions are

Vi z2<0
w(R,z):{ Vé z>0.

Rotational symmetry demands that only the zero-order Bessel functions Jy(kp) and Ny (kp)
can be involved. The latter is not regular at the origin and the potential must be bounded at
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|z| — oo inside either tube. Therefore, if we write the zeroes of Jy(z) in the form x,, = k,, R,

Vi + Zzozl Ay J()(knp)ek” z z <0,

o(p,2) =
Vi +30% Budo(knp)e Fn? z > 0.

The cylinders possess a reflection symmetry through the plane z = 0, which implies that
E.(p,z) = E.(p,—z) where E, = —J¢/0z. This gives A, = —B,,. The same conclusion
follows from the fact that ¢(p, z) varies smoothly from Vi at z — —oo to $(V; + Vz) at
z =0 to Vi at z — +oo. Finally, the potential must be continuous at z = 0 for p < R. This

yields

Vi — Vg = 22 B’VLJO(k’VLp)'

n=1

Now multiply both sides of this equation by dp Jy(k, p)p and integrate from 0 to R. Using
the integrals given in the statement of the problem, we find

Vi — Vg
B, = —L_ VR _
knRJl(xn)

If sgn(z) = z/|z|, the potential inside the cylinders is

%(VL V) = (Vi -VR) Y Jo(kup)

—_— —ky, .
n=1 k”RJI (knR) eXp( |Z)]

Plpr2) = 5 (Vi +V2) +se(2)

This expression is discontinuous at z = 0 when p = R but is perfectly continuous everywhere
within the cylinder (where the particle trajectories are confined).

7.19 A Periodic Array of Charged Rings

ANAAANNN
VAVAVAVAVEVAV

-3b -2b -b 0 b 2b 3b

In cylindrical coordinates, the general solution for ¢(p, z) involves a multiplicative factor of

s exp(kz) + ti, exp(—kz) k #0,
Zk(z) =
s0 + 1oz k=0.

The potential must be bounded as |z| — oo, so we are obliged to set ¢, = 0 and choose
the separation constant k = ik to be purely imaginary. Combining this with the fact that
©(p, z) is independent of the azimuthal angle ¢ tells us that the radial solution is a linear
combination of In p and the modified Bessel functions Iy(kp) and Ky(kp). Ip(kp) is finite
at the origin and diverges exponentially as p — oo. Ky(kp) diverges as p — 0 but goes
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to zero exponentially as p — oo. This suggests we construct a matching surface at p = R
and retain only the I, functions when p > R and only the K, functions when p > R. We
retain the In p piece of the radial solution when p > R because the potential of the rings
approaches the potential of a charged line when p — oo. Finally, the potential is periodic
[p(z +b) = ¢(z)] and even [p(z) = ¢(—2z)| so cos kz with K = 27nz/b is the only possible
z-dependence. Combining all of this information together leads us to write

P P
Z A, cos ( ) Iy ( 7;%) Ko (ZnR) p<R,

ZA” coS ( ) Ky (27;”p) Iy (27;”R> + Apln(p/R) p> R.

<,0(p, Z) =

Notice that we have “built in” the continuity of the potential at p = R by inserting the
constants Ky (27mnR/b) and Iy(27rnR/b) into the p < R and p > R sums, respectively. To
determine the expansion coefficients, we use the matching condition

Qe Don] o) M

Jdp op

Exploiting Example 1.6, we write the surface charge density of the rings on the p = R
cylindrical surface in the form

i (27Tnz>]. 2

With y = 2rnR/b, the left side of the matching condition (1) is

> Ay cos (27;” ) () Ko () ~ o) K ()] — 72 (3)

n=1

Using the hint and the linear independence of the cosine functions, we impose the matching
condition by equating similar terms in (2) and (3). The final result which completes the

solution is
@ and A, = @

Ay = — .
0 2mwenb megb

The sums in ¢(p, z) converge (although A, does not depend on n) due to the exponential
behavior of the modified Bessel functions when their arguments get large.

Our solution has the property that

Q
2mepb

= —=—*In(p/R)

as p — oo. This is exactly the result we expect because the “apparent” line charge has
a charge/length A = @/b. Notice that this observation would have told us to retain the
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logarithm term (to match the Ay term) if we had not realized at the beginning it should be
there. Always check asymptotic and limiting cases!

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

7.20 Axially Symmetric Potentials

The proposed solution satisfies V' (0,z) = V(z). Uniqueness guarantees that the proposed
solution is the only solution if it satisfies Laplace’s equation. The latter is

Ld v eV
rdppdp dz2

Now,

1 d av i | 1]

77,07‘/ - d¢ cos¢ V' (z +ipcos() — f/dC cos® C V" (z +ipcos()

pdp dp mp s

0 0
and
d2V 1 [ " . 1 f 2 " . 1 [ 2 " ;
P d¢ V" (z+ipcos() = - d¢ sin® ¢ V" (z+ipcos() +; d¢ cos” (V" (z+ipcos().
0 0 0

This leaves us with

™

ViV = i/dg‘ cosC V'(z+ipcosC) + l/d( sin® ¢ V(2 +ipcos ().
TP ™
0 0

Finally, integrate the first term by parts to get

™

- l/d{ sin? ¢ V" (z +ipcos () + l/d{ sin? ¢ V" (z 4+ ipcos¢) = 0.
m T
0 0

ViV = Ly sin ¢
™

0

This proves the assertion.

7.21 Circular-Plate Capacitor

a) Laplace’s equation must be satisfied everywhere except on the plates. Since Jy(kp) is
P
part of the proposed solution, the most general solution for the z-dependence is

Z1(z) = s exp(kz) + t; exp(—kz).
To avoid divergences at z = +oc0, we divide the space into three regions and write
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a, exp(—kz) 2> L,
f(k,z) =< bypexp(kz) + ¢, exp(—kz) -L<z<L,
di, exp(kz) z < —L.

Using the given integral, inspection shows that the boundary conditions at the plate
are satisfied in all three regions if

ap = exp(kL) — exp(—kL)
b = exp(—kL) cr, = —exp(—kL)
dy, = exp(—kL) — exp(kL).

All of this can be combined to write the proposed solution as

o0

o(p2) = [ a2 D fexp(b]z — L)) — exp(—klz + L] o(kp).

0

(b) Using the results of (a), the discontinuity in the normal (z) component of the electric
field at z = L is

d¢
0z

_ 9
z=L~ 0z

= 2/dk EA(k)Jo (kp).
z=L*
0

When p < a, this quantity is the difference in the charge density induced on the top
and bottom of the z = L plate. But when p > a, we are out in the vacuum, and this
quantity should be zero, which it is not. Therefore, the proposed solution is fallacious.

Source: B.D. Hughes, Journal of Physics A 17, 1385 (1985).

7.22 A Dielectric Wedge in Polar Coordinates

(a) Put the junction at the origin of a two-dimensional polar coordinate system. The
potential cannot depend on the radial coordinate p because the geometry is invariant
to a change of scale where p — Ap.

(b) Since there is no p-dependence, the most general solution to Laplace’s equation in the
two regions between the plates is

©1(0) = a+ be a(p) =a' + V¢

Continuity of the potential at ¢ = 0 tells us that a = /. Continuity of the normal
component of D at ¢ — 0 tells us that x1b = kob’. Moreover,

P1(d1) =a+bp =Vi and @2(_¢2):a_%b¢2:v2.
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Therefore,
_ i Vo — m1ga Vi - Vi—V,

=gy———— .
Ko 1 — K192 Ko1 — K12

7.23 Contact Potential

(a) Imagine a radial expansion of the space z > 0 by a real scale factor, so p — Ap. This has
no physical effect whatsoever on the z = 0 boundary conditions because the potential
is constant for ¢ = 0 and also for ¢ = m. Therefore, the potential for z > 0 cannot be
affected either. But if ¢(p, ¢) depended in any way on p, factors of A would appear in
the solution, which contradicts the previous sentence. Hence, ¢(p, ¢) = ¢(o).

(b) The general solution of Laplace’s equation in plane polar coordinates is

¢(p,8) = (Ao + Bolnp)(ag +bod) + >_[Aap” + Bap ][aa sinag + by cos ag].
a#0

Since there is no p-dependence, the only possibility is
¢(¢) = A+ Bo.

The boundary conditions force A =0 and B = V/x, so

v
o(¢) = ;Qi
(c) The electric field is
10¢p - Vo
E=—-Vo=———"F"¢=———.
YT 009 ™ p

The field lines are half-circles as shown below. The field intensity (and hence the
density of field lines) increases as the origin is approached.
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7.24 A Complex Potential

The given function is analytic for |w| < R and |w| > R. This suggests that |w| = R is the
boundary of interest. Both the real and imaginary parts of this function satisfy Laplace’s
equation. We investigate the latter in light of the factor 4 in the first term. Therefore, our
trial potential is

i+ i-n R+iw
p(w) = 5 + 5 ImIn {R—iw]'

Now, since w = x + 1y,

In Bt = ln_
R —iw o

= In

= In

= In

[R? 4+ i2Rx — 2% — ¢?
| B2 + 2Ry + 22 + 92 |’

Only the numerator of the bracketed quantity has an imaginary part. Therefore,

R+ 1w
Iml
mm[R

} =Imln [R* — 2® — y* 4+ i2Rz] .
—w

We now recall that

Imw
Inw=1 3 =1 jtan™! | —— | .
nw = In|w| + iarg(w) = In|w| + i tan {Rew}

Therefore,

1 R+iw tan— 2Rx
mln = tan — .
R —iw R? — 12 — 92

Writing this in polar coordinates (p, ¢) gives

R+ 2R
ImIn [R+ ZZ} = tan ! [RQ _'Op2 cos (;5} ,

and we conclude that the potential in question is

— 2
_ VitV W V%an—l[ Rp

olp.0) = 17 Tt cosal. (1)

™

The argument of the inverse tangent diverges when p — R. Therefore, the inverse tangent
itself approaches ¢/2 when —7/2 < ¢ < 7/2 and approaches —7/2 when in the interval
m/2 < ¢ < 3n/2. Consequently, (1) is the electrostatic potential inside the circle p = R,
with ¢(R,¢) = Vi when —7/2 < ¢ < 7/2 and (R, ¢) = Vo when 7/2 < ¢ < 37/2. A
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physical realization is a metal cylinder of radius R cut in half lengthwise. The two halves
are separated by an infinitesimal distance, with one half held at potential V; and the other
half held at potential V5.

7.25 A Cylinder in a Uniform Field by Conformal Mapping

(a) The circle w = aexp(if) and the part of the x-axis outside the circle map onto the
u-axis as follows:

w=aexp(if), 0<f<m = g = a(exp(if) + (exp(—ih))
—2a < u < 2a,
= 2acosf =
v =0,
o2 —o00 < u < —2a,
w=z, —-—-ow<r<-a = g=w+— =
w
v =0,
9 2a < u < o0,

a
w=z, a<r<o0 = g=w+ — =
w

(b) If the potential of the cylinder is zero, symmetry demands that the potential must be
zero everyone on the x-axis outside the cylinder. In the g-plane, we define a complex
potential

f(9) = ¢(u,v) +itp(u, v) (1)

and insist that VZp = 0 with the boundary condition ¢(u,v = 0) = 0. We also need
—V¢ = EyVv. By inspection, the solution is ¢(u,v) = —Eyv. The Cauchy-Riemann
relations tell us that

dp OO

v du

Therefore, ¥ (u,v) = Eyu. Hence, using (1),

f(lg) = —Eyv +iEyu = iFEy(u+ iv) = iEyg.

(c¢) Returning to the w-plane, the complex potential is

@ @’ a*(z — iy)
CBe_iB @\ _ o . . d(z—iy)
floy) =iog = O(w+ g> ' O(xﬂwmﬂ'y) ! O{IHZH 22 1 12

Therefore, the physical potential is

a2
¢(w,y) = Ref = —Eyy [1 - M] .
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The corresponding electric field is

2E,a? Ty

Eya®(y? — 22
x+E0—|—O (y )

(22 + 12)?

BT ey 7

The corresponding field lines and equipotentials are shown below:

e
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Chapter 8: Poisson’s Equation

8.1 The Image Force and Its Limits

The diagram below shows the real system, called A, and the comparison system, B, which
replaces the point charge ¢ by no charge at all (¢ = ¢ = 0) and replaces the grounded
conductor by a conductor with charge go that produces a potential ¢¢ .

qc: pc=0 dc. pc
DI )
s s q=0,¢0(0)
4, p(0)
\. \
If the position of ¢ is the origin, the reciprocity theorem for this situation reads

qp(0) + qc¢c = Gp(0) + e e -

Because the conductor is far from the body, we may write $(0) ~ o /4meps. Moreover,
because ¢ = 0, the charge and potential of the conductor in B are related by the self-
capacitance of the conductor: o = Cpc. Therefore, the equation above simplifies to

qc

taell —o 1o

4 4meg s ¢ C
Hence,
__aC
e = 4dmeys’

The self-capacitance depends only on the size and shape of the conductor. Therefore, in the
limit of interest, the Coulomb force between the conductor and q varies as

qqc 1
8.2 Point Charge near a Corner
z
_Q ° ‘ ///1 Q
a - 20
-7 s | x
Q ° ‘ ° —Q
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The diagram above shows an image system for the potential in the volume z > 0 and z > 0
because it grounds both the z = 0 and = = 0 planes. Moreover, all the field lines which leave
@ end on one of the conducting surfaces because both are infinite in extent. This permits
us to focus on the charge Qi,q induced on the z = 0 plane for x > 0; the charge on the
x = 0 plane for z > 0 must be —Q — Qinq-

The text tells us that the image solution for a charge ¢ at the point (0,0, z2) above the
(grounded) z = 0 plane corresponds to a charge induced on that plane equal to

q20 1
2m (22 +y? + 28)3/2

o(z,y) =

For our problem, we have a charge @ at (s,0,z) and a charge —Q at (—s,0, 2p). Taking
account of their images, both contribute to the charge density induced on the z = 0 plane.
The total charge induced does not depend on the choice of origin for either charge. Therefore,
the charge induced on the horizontal plate is

Qz / / dy QR / / dy
Qin - = d : + d
d 27 v (Y2 +a2+22)3/2 2« v (y? + 22 + 23)3/2

B on/ 2dzx L on/ 2dx
N 2r ) 22+ 2w ) 22423

—S S

- -2 e (2] - (2)]])
- ()

2,

™

The charge induced on the vertical plate is Q(2a/m — 1).

8.3 Rod and Plane

The total electric field is produced by the rod and its oppositely charged image rod located
at the mirror position. Hence, the problem is to evaluate the force between two identical
rods with opposite charges at distance a = 2d from each other.
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conducting plane

X2 X1
L2 L2
dF dyy |L
0 — 0
_ A
dX2 /\0
a=2d _

L2 L/2

(a) If kK = 1/4mep, the force between two small segments of the rods is attractive and has
magnitude

)\d.’lﬁl )\d.’L‘Q

dF = p— 200
a? + (z1 — x9)

We only need the component of the force normal to the plane. This is

N dxd drid
dF) = dF-cosf = k———1"2 . 2 = kaX? R
a® + (21 — x2) a? + (z) — x9)° (a2+(x1 712)2)
Consequently, the net force is
L/2 L)2
Y L e —
L/2 L/2 . mﬂ
k)\Q L/2 L/2—IE2 —L/2—ZZ?2 da
= — - 2

@ J-L/2 \/(L/2—x2)2+a2 \/(—L/Q—m2)2+a2
- 2 (Vrra-a).

Since a = 2d, the final force is
A2 L\?
F= 1 — | =1
2meq + <2d>

(b) In the limit when d > L, we expand the square root above and use Q = AL to get

_ 1L @
T ey 4d2

This is the force between two point charges, as expected.
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(c) The induced charge density is o(x,y) = 2¢0FE ) (x,y), where E| (x,y) is the normal
component of the electric field created by the rod at the surface point (z,y). The
factor of 2 accounts for the fact that the image rod contributes equally to the total
electric field at (z,y). Using the angle 6 as defined in the figure below (note difference
from previous figure),

X

X

L/2

4 =M dx,

0 X ~ - 0
dE, /7 X z
dE y -L/2

)7

)\dl’ld

dE| =dEsinf =k

[(:cl —z) 2+ d2] i

Therefore,
L/2
EL = ]CAd/ dl‘l 3/2
L/2 4y +d2]
kM L/)2—x . L/2+x
= 2L
CAE Lot \J2a) g
Hence,

Ad L/2—x . L2+

R Y R R N e s

o(x,y) =2F ey = 3

(d) The plane has infinite capacity to draw charge up from ground. Therefore, the total
induced charge is equal, but opposite, to the total charge of the rod. In other words,

Qind = —AL.

Source: Dr. A. Scherbakov, Georgia Institute of Technology (private communication).

8.4 A Dielectric Slab Intervenes

From Section 8.3.2, we recall that

/dk‘Jg kp) exp(—k|z|).

VP? +22
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Then, in Region I (z < a), a general solution of Poisson’s equation that respects the cylin-
drical symmetry of the problem is the sum of the potential of the point charge,

Vip)=-L =4 1 / dk Jo (kp) exp(—k ).

drey  4dmep | /p? + 22 47T€()

plus a general solution of Laplace’s equation that does not diverge as z — —oo, namely,

oo oo

/dk Jo (kp) exp(—k|z|) —i—/dk A(k)Jo(kp) exp(kz)
0 0

q
4dmeq

Y1 =

In region IT (a < z < b), a general solution of Laplace’s equation is

P2 = 4;]60 0/ dk B(k)Jo (kp) exp(—kz) + 0/ dk C(k)Jo (kp) exp(kz)

In region IIT (z > b), a general solution of Laplace’s equation is

o5 = / dke D(k).J (kp) exp(—k=).

47T€()

The linear independence of the solutions indexed by different values of k£ implies that it is
sufficient to require the integrands to satisfy the matching conditions: the continuity of ¢
and kK0p/0z at z = a and z = b. The result is four equations in four unknowns:

e ke 4 Aeka = Be~Fe 4 Ceke
De™k? = Be ™" 4 Cek?
—ke ke 4 kAebe = g [—k:Be_k“ + kCek'“]
—kDe*? = kK [—kBe " +kCeM].
Solving for D gives
D(k) = 4k

(k+1)2— (k—1)%exp [2k(a — )]

Since ¢ = b —a and 1 — 8% = 4k /(k + 1)?, the potential in Region III is

oo

q(1 - 3% /dk Jo(kp) exp(—kz)

4reg 1 — 32 exp(—2ke)’
0

w3(p, 2)

127



Chapter 8 Poisson’s Equation

The infinite-sum form of the potential follows immediately from the integral quoted above

from the text and
o0

= Z (2" exp (—2knc).

n=0

1
1 — 2 exp(—2kc)

Source: W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939),
Section 5.304.

8.5 The Force Exerted by a Charge on a Dielectric Interface

e
Kr i | KR

3|

i

o

o
T

i |

oL a
[T

(a) The stress tensor formalism calls for a surface which encloses the volume upon which
the desired force acts. The “volume” here is the z = 0 plane and the dashed lines in
the diagram indicate the appropriate enclosing surface: a sandwich S composed of a
plane at z = € and a plane at z = —e, both in the limit when € — 0. The force on the
interface is

F = [ dS [(4-D)E — a(E- D).
/

By symmetry, the force is in the z-direction. Moreover, the outward normal is n = z
for the z = € surface and n = —2z for the z = —e surface. Therefore, using the notation
we use to evaluate an integrated quantity between its limits of integration,

1 1 S|
F. = /dS {DZEZ — 5D Ej - QDZEZ] =5 /dS [D.E. — Dy - Eyll; .
L

Now, D, and E| are continuous at z = 0. Therefore, we use D = €E to write

1 D? f
Fz:*/ S|:Z€E|~E|:| 5
2 € I
which evaluates to

1 11 1
F. =~ D ———) < E|-E|(er —er).
L 2/dS Z(ER q) 2/dS |- Ej(er —er)
2=0 z2=0

Using the image-theory discussion of this problem in the text and the factors d/r and
p/r to project out the normal and tangential components of the fields (see diagram
above), we find that
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qr d 2KR

47r? ¢

1
ar_p where qr, =

D;, = O = — - .
:(2=0) er dmr? r KL + HRq

and E”(Z = 0) =

The integrals we need are

D2 qr 9
/dS / (P2 +d2 (47r> T4

and
ds B} or [ d L —
/ (47TGR> 7T/ r (p? -l—d2 (47’1’6}?) 4d?
0
Therefore,
1 /qp\2 « 1 1 €R — €],
R IO (R
2 \4n/ 2d R €L €%
_ ¢ K% (kp —kr)(kp + K1) 1
16md? (kL + KR) H% €KL |

In other words,

1 ¢ kp kg,
T drwep 4d? Kp + kg

which is indeed the opposite of F; quoted in the statement of the problem.

(b) By symmetry, the force is in the z-direction. Then, from Example 6.2, we use

1 Kk —Kkpaqd

olp) = 2Tk KL + KR T

and
Er +E; . 1 qd

2 T dwkg r3)

€0Z

where r = /p? + d?. Therefore,

/d KL — KR qd 1 2d
€0 27TI€L K1, + KR ( 2+d2)3/2 4Ky, (p2 +d2)3/2
The integral is the same as the D? integral in part (a) and we find

F—F = 1 qst—an

drer Ad® Ky + KR K
This differs from the correct answer by a factor of 1/xy,.
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8.6 Image Energy and Real Energy

Let (r) be the potential produced at r by the conductor held at potential p¢. If go is the
charge on the conductor, the total electrostatic energy of the real system is

1 1 1

Us =5 [ drp)e(e) = Jacec + Gav(r,).

By construction, ¢(r,) is the same as the potential produced by the image point charges.
Therefore,

N
1 1 qq9c 1 1

Us == [ d? =-) = _—_ ~Up.

A 2/ rp(r)e(r) 2;:1 m, ] 200¥e +5Up

Specifically, Uy = Up /2 when the conductor is grounded.

8.7 Images in Spheres I

The sphere cannot be neutral because there is an attractive force between a point charge
and any isolated neutral object. According to image theory, a grounded sphere acquires a
charge ¢ = —qR/s where s is the distance between ¢ and the center of the sphere. The
image itself lies a distance d = R? / s from the center. Now, suppose we add a second image
charge ¢” = Q — ¢’ at the center of the sphere. By Gauss’ law, the total charge on the sphere
is now ) and the sphere boundary is still an equipotential. This is the situation we want.

We have s = 2R , s0 ¢’ = —q/2, s = R/2, and ¢" = Q + q/2. We need to choose @ so that
the force between ¢ and the two images is zero:

_q q @\« —q/2 Q+4q/2\ _
F= e {(s—d)2 +32} ~ ey {(2R—R/2)2 T eR)? }_0'

This gives @ = %q. When we move ¢ so that s = 3R, the force formula on the left is still
correct with ¢’ = —¢/3, d = R/3, and ¢"” = Q + ¢/3. Therefore, the force is

2 -1/3 7/184+1/3 2 3 13 1 173 ¢
S . | q

" 4mey \ BR— R/3)? BRY | dmeR? | 64 T 162)  drey5ISARD

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

8.8 Images in Spheres I1

Let the sphere center be the origin. The image of @ at 2R is Qy = —Q/2 at R/2. The image
of @ at —4R is Q[ = —Q’'/4 at —R/4.
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RI2
| 5 |
4R 2R
-0
[ ] [ ] [ )
Q ’ ’ / 4 Q

R/4

The force on Q' is the force due to the other three collinear charges. It is

F

[ o +
direy |(AR—R/4)? " (4R+2R)? ' (4R + R)2)?

:Q’{ZLQ’Q?Q

dregR2 | 15-15 ' 36 9.9

This is negative (Q’ repelled from sphere) if Q' < (25/144)Q.

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

8.9 Debye’s Model for the Work Function

(a) The text gives the potential outside an isolated conducting sphere with radius R and
charge @ in the presence of a point charge q at a distance r > R from the center of the
sphere. From this, we may immediately infer that the force which the sphere exerts
on q is

r.

q {Q qR QRr }

- drey |72 13 (r? — R?)?

The Debye model proposes that W = — [ ;i ,dr - F. The integrals are elementary and

we find
[ S
47eg T pid 2r° | iy 2r =R | h oy
Evaluating this expression with ¢ = —e and ) = e gives the proposed formula,
W e e eR B @ 1

"~ drmey |[R+d  2(R+d)? 2 R?—(R+4d)?

_ e? 2 _ R n R

87 |[R+d  (R+d)?  (R+d)? - R?
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(b) The limit R — oo naively gives W = 0. To do better, we let x = d/R and take the
limit as z — 0. The result is

e? 1 (14 2z) e?
= + =
8mepd | x + 2 (14 z)? 16megd

8.10 Force between a Line Charge and a Conducting Cylinder

(a) We need the potential to compute the charge density. The text shows that the cylinder is
an equipotential if the line charge A at distance b = 2R from the center is accompanied
by an image line charge with strength —\ placed at a distance R%/b = R/2 from the
center. We are interested in computing ¢(p, ¢) with p and ¢ defined in the diagram
below.

y
p Pi P2
¢
A 7 *
R
: |
2R |

Adding the contributions from the two line charges gives

A A 03 A 0>+ R?/4 — pRcos ¢
#(p:9) o, P2 * ey P17 dme ps  4meg " p? +4R* —4pRcos ¢
Consequently,
dp
o(¢) = —e 5
or )=R
A 2p — Rcos ¢ B 2p —4Rcos ¢
- d | p> + R2/4 — pRcos¢  p? +4R? — 4pRcos ¢ =R

) 3
N 2nR \5—4cos¢ )’

(b) If A is the outward normal to the conductor, the net force on the cylinder may be
computed from

F= L/dSo-Qﬁ.
260

For the cylinder, n = p = X cos ¢ + y sin ¢. By symmetry, the force per unit length f
is along x. Hence,
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cos ¢ .

- 47r260R/d¢(5—4cos¢)2X
0

Using Tables of Integrals, Series, and Products by Gradshteyn and Ryzhik (1980),

/dqﬁ cos ¢ 1 5sin ¢ ﬂ+/ﬂd¢ 4
5—4cos¢p)? 9 |5—4cosg|, 5 —4cos¢
0
The integrated term is zero and

4 [ 1 8 . d4n
| déb—— — = [tan 43¢ 2 = —.
9/ o5 —dcoso 27 [tan™" {3tan(¢/2)}], = o7
0
Hence, the force per unit length that acts on the cylinder is

9N 41 4 )2 <
_47T260R27 347reoR

(c) We can also compute the force on the cylinder as the negative of the force that acts on
the line charge A. The distance between this line and its image is 3R/2. Therefore,

X 4N

T e (BR/2)T 3imeR

8.11 Point Dipole in a Grounded Shell

We treat the point dipole as finite, with an electric moment with magnitude p = 2¢qb. We
keep the shell an equipotential using two image charges, each a distance s = R? /b from the
origin (but on opposite sides of the shell) and each with charge magnitude ¢’ = (R/b)q.

E;, is the field produced by ¢’ and —¢’ when ¢ — co and b — 0 but p = 2¢b remains finite.
In that limit, ¢’ and —¢' go off to infinity and E;, differs negligibly from the field at the
midpoint between ¢’ and —¢’. That field, in turn, is identical to the field at the p = 0 point
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of the surface of the grounded, conducting plane for which ¢’ and —¢’ are the image system.
This we compute using the stated charge density when s> = R%?/b — co. When b and q are
finite, the magnitude of Ej, is

1 q Rq/b qb

Ein =—0(0) = = = 3"
€ a(0) 2mepzd  2meg(R?/b)? 2me R®

The field due to ¢’ and —¢’ points in the direction of p, so

p

E,=——.
4meg R3

8.12 Inversion in a Cylinder

(a) The problem states that

Vi

2
_18{8@} Loe (v <R)

AT
Multiply this Laplace equation above by p?, let u = R?/p, and use the fact that

du = —(R*/p*)dp = —(u/p)dp.

This gives
L0000 1o [ 0wy 1o
ou | Ou o2 ou u? 09?2

u u
Therefore, U(p,¢) = P(u,p) satisfies Laplace’s equation when v < R, i.e., when
p> R.

(b) Center the cylinder on the origin. Choose ® as the potential of a line charge placed
at a distance s > R from the origin. This function satisfies Laplace’s equation inside
the cylinder. On the other hand, ¥(p, ) = ®(R?/p, ¢) satisfies Laplace’s equation
outside the cylinder. Finally,

V(p=R,¢0)=2(p=R,0).

Therefore, outside the cylinder, the potential

o(p, ) = @(p,¢) — ¥(p, p)

vanishes on the cylinder and satisfies Poisson’s equation outside the cylinder (with the
line charge as its source). Since p = R?/u, the same argument shows that ¢(p, ¢) =
U(p,p) — ®(p, p) satisfies the line charge Poisson equation inside the cylinder and
vanishes on the surface of the cylinder.

(¢) The geometry is
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K2

Again, choose ® as the potential of a line charge placed at a distance s > R from the
origin. As suggested, we try a linear combinations of ® and ¥ outside the cylinder.
Inside the cylinder, we can try only a multiple of ® because the potential must satisfy
Laplace’s equation there:

Pout(p > R, ¢) = ®(p,d) + SV (p, ) = (p, ) + SB(R*/p, $)
oin(p < R,¢) =TO(p, ).

The matching conditions at p = R are

84)0111
= Ky —
p=R 9p

690111
1

Pin (R7 ¢) = Pout (R> ¢) ap

p=R

The continuity of the potential (left equation above) gives 1+ = T. The continuity of
the normal component of D (right equation above) gives k1T = (1 — S)ks. Combining
these completes the solution:

Ko — K1 2/62

Ko + K1 Ko + K1

An entirely similar argument applies if the line charge lies inside the x; cylinder.

(d) U(p, ¢) is the potential of a line charge located at a distance R?/p from the origin on
the line which connects the origin to the line charge represented by ®(p, ¢). But if the
line source represented by ¥(p, ¢) lies inside the cylinder, we only used this function
in the space outside the sphere and vice versa. Therefore, U(p,¢) has exactly the
characteristics of an image potential.

Source: L.G. Chambers, An Introduction to the Mathematics of Electricity and Magnetism
(Chapman and Hall, London, 1973).

8.13 Symmetry of the Dirichlet Green Function

Green’s second identity is
/437" [fV2g— gV f] = /d5ﬁ~ (Vg =gVl
v S
We choose f(r = Gp(r/,r) and g(r = Gp (r”,r) where
e V>Gp(r',r) = —5(r — 1) Gp(r',rs) =0
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and
«V:Gp(r',r) = —6(r" —r) Gp(r',rs) =0.

Substituting these into the left side of Green’s identity gives

/dgr [GD(r’,r)VQGD(r",r) fGD(r”,r)VQGD(r’,r)]
1%

€0 €0
\4 \4

=-Gp((',v")+Gp (", 1.

S d*rGp(r',r)s(x” —r) + E /dBT Gp(r",r)é(r' —r)

With our choices for f and g, the right side of Green’s identity gives

/dSﬁ~ [Gp(r',vs)VGp (", r) — Gp(r",rs)VGp (r',r)] = 0,
s

because Gp (r',rs) = Gp(r”,rg) = 0. This proves the desired result.

8.14 Green Function Inequalities

(a) Let S be the surface of the closed volume V. Gp(r,r’) is the potential at r € V' due
to a unit positive point charge at ¥’ € V when the boundary S of V is grounded.
This means that A(r,r’) is the potential due to negative charge that is drawn up from
ground and resides on S. This potential must be negative so A < 0. Therefore,

1 1
47T6() |I‘ — T

Gp(r,r') < .

|

(b) Let © be the volume V minus an infinitesimally small sphere centered on the point r’
where the unit point charge resides. This means that V2Gp (r,r’) = 0 everywhere in
Q. Earnshaw’s theorem says that Gp cannot have either a local maximum or a local
minimum in Q. But Gp is zero on the surface of V' and large and positive on the

surface of the infinitesimal sphere. Hence, Gp cannot be negative anywhere in £ (or
V).

Source: G. Barton, Elements of Green’s Functions and Propagation (Clarendon, Oxford,
1989).
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8.15 The Potential of a Voltage Patch

By symmetry, ¢(x,y,2) = ¢(x,y,—2). Therefore, we restrict our attention to the z > 0
half-space where n = —z. There is no charge in this volume so the magic rule gives the
solution as

olz,y,z2>0) = —€ / ds’o(r ’)5?1 Gp (r,r’ —eocpo/dS —GD (r,r") (1)

So

z'=0

From the method of images, the Dirichlet Green function for the volume z > 0 is

Gp(r,v') = 1 [ ! — !
P T e [ e =P A =y P T 2P e a Pyt Gt )

Therefore,
0Gp (r,r")
0z

_ 1 2z . )

s—o Ameg [(x—a)+ (y—y')2 + 22]5/2

Substituting (2) into (1) gives

00z d?r
> 0) =2 [ _CT
So

The symmetry ¢(z,y, 2) = ¢(x,y, —z) produces the suggested result.

8.16 The Charge Induced by Induced Charge

The unit normal to the solution volume z > 0 is n = —2z. Moreover, the only free charge in
that volume is confined to Sy. Therefore, the magic rule gives the potential in the solution
volume as

/
plengz 200 = /dSIGD (r,x')o0(rs) + eoV/ ds’ %

SU z'=0

z'=0

The first term above is the potential induced by the added conductor. Therefore, the charge
induced on the z = 0 surface by that conductor is the z = 0 value of

o(z,y) = _G(Ji/dS/GD (r,v")oo(rY) ) (1)

z=0
From the method of images, the Dirichlet Green function for this geometry is

Gp(r,r') = 1 ! - !
P e [ a2 P+ =y P -7P e+ -y )
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Therefore,

OGp (r,r’) 1 27 1 2!

0z 42D a 4re [(x—a)2 + (y—y')? + 212]3/2 = e |rs — 1 3"

(2)

Substituting (2) into (1) gives the final result,

o(z,y) = _i/dgl M.

27 [rg — /|3
So

8.17 Free-Space Green Functions by Eigenfunction Expansion

In N dimensions, the normalized eigenfunctions of V2¢ = — A1) are plane waves,

1

P (r) = W exp(ik - r),

where k and r are N-dimensional vectors. The eigenvalue is A = k - k = k? so

(V) 1 dVk explik - (r —r')]
G mr) =3 / (2m)¥ 2 ’

In three dimensions,
8)(p L e ke[ cos 0
Gy (r,r") = 7/ dk/ d(cos @)etirricos
o ) (2m)%e0 Jo —1 ( )
1 /Ood sinx 1 1
= _— X = .
2m2eglr — /| J, x dmeg v — 1|

In two dimensions, we need a few tabulated integrals of Bessel functions:

2T o] o]
(2) N l d¢ / % ik|lr—r'|cos ¢ __ 1 / dj -
Gy ' (r,r') = - /0 en ik e T Jo(k|r —1'|).

The last integral does not exist so we use a limiting process with the Bessel functions Jy ()
and Ky (z):

= Jo(klr — 1))
— i dk k = lim K —r
omeo b o K2+ 2 omes o o(nlr —r'|)

G (r,1)

1 /
= ———In|r—r'|+ const.
2meq

The constant is proportional to Inn. We drop it because its divergence has no physical
consequences. In one dimension,
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This follows because d? G(()l) /dx® = —§(x — 1) /ey by inspection and

i

d r—T
%|x—x’| = sgn(r) = —1—|—2/ dyd(y).

8.18 Free-Space Green Function in Polar Coordinates
In polar coordinates, we want to solve
0 ( 8G) 10°G 1

2 _ el _ _ / _ /
VG_ap Pap )t o = 605(,0 p')o(¢— ")

because the source is a line charge with unit charge/length. The completeness relation

1 o0

5 > explim(¢— ¢ =d(6—¢)

m=—0o0
suggests the ansatz

oo

2 7m h—a'
G(() )(’F ’I" 271'6() Z m pa (6=9 )

Substituting this above yields

2 aGm
dp P op

2
m

) ——Gp =—-6(p— pl)'
p

The solution to the homogeneous equation is

G = Ap_mp + Bpmp m 7é 0
G, =Clnp+D m =

Continuity at p = p’ gives

m|
G (p,p) = Ap (1 =6, 0)p|<m| + By 6 o In ps..
P>
The jump condition
p=p’+e
agm _ _1
P lp=pr—e

determines the coefficients A and B to be A4,, = 1/2|m| and B,, = —1, so

1 1 & 1 pm
G(Q) / — _71 77<
o (") S P> + e m§:1 m o © m(¢ — ¢').
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8.19 Using a Cube to Simulate a Point Charge

(a) A completeness relation for the one-dimensional interval —a < x < a is formed from
solutions of Laplace’s equation with homogeneous boundary conditions, namely,

'(/)m (Z‘) = \/ZSin [m;rx:| and \/ZCOS |:(27’T742—al)77.’15} ;

where m = 1,2, 3, ... Both are needed because the sine functions are odd in z and the
cosine functions are even in z. We use these to make the delta function

5z —2")o(y — = % Z Z z) Y (y) Ur, (9)-

This motivates us to make an ansatz for the Green function:

ey = LSS o (), ()0 ) (g2, ).

6()(12

m=1n=1

Substituting this into ¢gV2G(x,2') = —§(z — 2')5(y — v')d(2 — 2’) gives the ordinary
differential equation

32 2 / /
(5~ ) o100 = =80 = ),

where ,

K2 = I?(rrﬂ +n?) and g(Fa, 2'|k) = 0.

The continuous solution that satisfies both boundary conditions is
g(z,z|k) = C'sinh k(a + z<)sinh k(a — z-.).

The jump condition,
z=2"+¢

dg(z,7'|k)

=-1
dz ’

z=z"—¢€

fixes
C = 1/ksinh(2ka).

Therefore, the final Green function is

G( Hr)= a2 Z Z w”’ m 7%( )Wk( )Sinh H(a + Z<)Sinh H(a — Z>)
n=1m=1

ksinh(2ka)

(b) Put a charge —Q at the center of the box. When the box is grounded, the charge
density induced on the inside walls of the box must exactly annul the field of —Q at
every point outside box. That is, it is the field outside the box that would be produced
by a point charge +@Q at the center of the box. We will compute the charge density
induced on the plane z = a. Since sinh 2ka = 2 sinh ka cosh ka,
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G(%@/a Z, 07 07 0)

0
O'(ﬁ,y) = _QEO 0z

mmy 1
21:3 . ; % "2a coshra’

z=a m

Notice that only the cosine terms survive the sum because the position of the point
charge is ' = 0. We conclude that

1 Q
~ 0.1233—.
o0, Z Z cosh [(/2)vVm? + n? a?

m=1,3,... n=1,3,...

(c) Example 8.3 gives the charge density on the z = a face of a box which occupies
0<z,9,2<aas

O'( SQ Z % n+L+m—3) m sin |:TL7TSU:| sin |:€7Ty:| )

2 2 2
n?+02+m a a
nfmodd

We evaluate the foregoing at the center of the face (x = y = a/2) and then let a — 2a
because the edge length of the box in the present problem is 2a. The final result for
the charge density at the center agrees with part (b):

— 2Q L(n+l+m—3) m . nmiy . I
= e 2 DR e C L
20Q? Lim— m
= 5 > U
a n,¢,m odd nt+ +m
= 012332
a

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

8.20 Green Function for a Sphere by Direct Integration

(a) Since

o(r —1")6(0 — 0')5(¢ — &)

2 AN ey —
eV G(r,r') = =6(r — r') oy

we use the given completeness relation to make the ansatz

[eS) l
EoG I‘ I' Z Z GZm (T» 7'/)Yv€m (f‘)Y;’;n (f‘l)

for the Green function. From, say, the wave mechanics of the hydrogen atom, we
know that the angular part of the Laplacian in spherical coordinates makes up the
total angular momentum operator. Specifically,

T2
VG = 19 (TQaG> _ %G,
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where

. 1 9 d 1 &
2y, — —_— —_— = —
Yo Lin@ 00 (sm039> * sin” 0 8¢2] Yo HE+ DY

Using the three preceding formulae in the differential equation for G isolates the dif-
ferential equation satisfied by Gy, (r,7'):

o () e | G = ot =),

Notice that we have changed notation to G¢(r,r’) because the equation above does
not depend on m. When r # ', our experience with Laplace’s equation in spherical
coordinates leads us to write

G n | Bt 0<r<r
o(r,r") = A=) 4 At " <r <R

because the Green function must be regular at the origin. The three coeflicients
are determined from (a) the boundary condition G¢(R,r’) = 0; (b) the continuity of
G(r,r") at r = 1'; and (c) the jump condition

r=r'+e
lim <T2£m> =-1.

e—0 or

r=r'—e

A few lines of algebra give

1 rt rt ot
no_ < < 4>
Ge(r,r') = 20+ 1 {rk+1 T R2+1 }
>

SO

o
ANVE (a]
60 Z Z 2g+1{ 1 R2£+1}Yém(r)yém(r ).

=0 m=

The stated formula,

a( g rt ré i+
(r.r') 471'60 Z% 1’+1 T Rl 0 (E - ),

is correct because

(b) Define a vector Q = (R?/r')i’ so t- Q = # - # . Now use

1 > r”'<
o]~ 2o )
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twice: once as it stands and once with r’ replaced by Q. This shows that the interior
Green function we derived above can be written in the form

1 1 R/r 1 1 R/r
N o _ _ _
Gle.r) = {|r—r’| |r—Q|} dreo {|r—r’| |r—R2r//r/2|}'

This is the image formula for the potential derived in the text.

8.21 The Charge Induced on a Conducting Tube

Begin with the exterior Green function for a tube of radius R derived in the text:
k/’>
Glr,r) = %260 Z / dk G I ()L (k) = IS (k) 1 (£}
x ™99 cosk(z — 2').

(a) To find the charge density induced on the tube surface, let 2/ = ¢/ = 0 and p’ = s be
the coordinates of ¢. Using the Wronskian for Bessel functions,

0G(p, ¢, z|s
(j‘((b7 Z) = —q60 %
P p=R
q = im T K, (ks) d
Ly e / dk cos(kz) ((kRidp[Km(kR)Im(kp)
m=—0Q 0 Y

_ Km(kp)-[m(kR)ip R

_ zmcﬁ T" (]CS)
= 7r2R ;OO /dkcos (k2) m(kR)

(b) The total induced charge is

Q:R/Owdqﬁ/o;dza((é,z):—i/ooo

because lim Ko(z) = —Inz and [J° dkd(k) =
xr—

1
5.
(¢) By symmetry, the angle-averaged linear charge density is an even function of z:

B 27 B q [e%s) K()(ks)
Az) = R/O dpo(p,z) = —;/0 dkcosszO(kR).

Therefore, it is sufficient to focus on z > 0. When z — oo, the integral is dominated
by wave vectors in the immediate vicinity of & = 0 because cos kz oscillates wildly
otherwise. Moreover, Ko(z) — exp(—z)/v27rz as © — oo and Ky(z) — —In(z/2)
as ¢ — 0. Therefore, when z — oo, A(z ) —(g/m)A(z), where (using a convergence
factor € > 0)

A(z) = /O dke™ " cos kz 1“;:% - /0 " dbe " cos iz [1+11r; (&;/]%)]-
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The factor exp(—ke) cuts off the integral for values of k£ > 1/e . Therefore, it has no
effect on an integral dominated by values of k near zero. Below, we put e — 0 (after
the integral is performed) unless a non-zero value is needed to guarantee a finite result.
With this understanding, the first term in the square brackets gives no contribution.
Hence,

A(z)

/OOo dk f (k) lﬁl((sk/}g)
In(s/R) /°° dk f (k)
In(z/R) J, 1—In(kz)/In(z/R)
In(s/R) [ Inkz
%90 1+ )

where f(k) = exp(—ke) coskz. Again, the first term gives zero so, for large z,

A(z) ~ ln(s/R)) /0 dy e " cosylny.

zIn?(z/R

The integral is finite so we get the desired result.

8.22 Green Function for a Dented Beer Can

(a) The ansatz is based on two completeness relations. One is for the particle-in-a-box
eigenfunctions for a grounded, one-dimensional “box” defined by 0 < z < h. The
other is the same except the box is defined by 0 < ¢ < 27 /p. The first of these is

2 — !
7 n; sin (%) sin (m;: ) =6(z—2").
The other is the same except that h — 27 /p:
P~ (Mo L (mpd ,
; Z Sin (2) Sin (2> = 6(¢ — ¢ )

Consequently, all the requested boundary conditions are satisfied by the ansatz

e / /
Gp(r,r') = % Z sin (%) sin (m}rbz ) sin <m2p¢> sin (mgqﬁ ) Gmn (P, p')-

n=1m=1

o0

Substituting this into
2 / ! 1 / / / !
VA G(r,tY) = ~5(x ~x') = = 5(p = )66 — )5(6 — )3(z ~ )
and defining k = nw/h and o = mp/2 gives the desired one-dimensional equation:

1d d ) a2>} , 1 ,
ey——\(p— ) — |+ w(p,p' k) =—=0(p—p').
o{pdp(pdp> ( 7 9o (ps p'|K) p(p )
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(b) The equation above defines the modified Bessel functions. We need a solution that is
regular at the origin, vanishes at p = R, and is continuous when p = p’. If p. denotes
the smaller of p and p’ and p- is the larger of p and p’, a linear combination of I, (kp)
and K, (kp) that satisfies these requirements is

9o (p; P'|K) = AL (kp< ) [Ka (kR) Lo (kps) — Lo (kR) Ko (kps)] -
The coefficient A is determined by the jump condition
d p=p'+06
€0 p’d—g =—1.
p=p'—6
Writing this out gives
Aeorp' Lo (kR) {1, (kp") Ko (kp") — Lo (kp") K, (1)} = —1.

The Wronskian in the brackets is given in the text as 1/kp’. Therefore, A = —1/¢yl,(kR)
and the final Green function is

1 (o (mpo\ . (mpd\ Lupsa(nmp/B)
Gp(r,r) a Wh;mz; ( ) ( ) sin| —— |sin 5 Ty 2(nr R /)

[Irnp/Q(n’/TR/h) mp/2 (nﬁp> /h) rnp/Z(n’/TR/h)Imp/Q (nﬁp> /h)] .

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

8.23 Weyl’s Formula

A two-dimensional delta function in the x and y directions is

dsz ik -(rp—r’
‘/(2 )26 1o(ry L)*—5(1‘ *I‘/).
“/Q use thlS to make the ansatz

A’k /
G(](I‘,I‘I) 7/ (27_[_;_ Lki‘(ri—ri)Go(z’zllkJ—).

Substituting this into V2Gy(r,r’ = —d(r — 1’) /€ gives

82 / 1 /
~ 52 + Kk |Gz, 2 |ky) = ;5(,2—2).
When z # 2/,
Ae~hvre z> 7
GQ(Z,Z/“CJ_) =
Betkiz z< 2

on account of the Dirichlet boundary condition Gy(z — 00, 2’|k, ) = 0 appropriate for free
space. We get the constants from continuity,

liH(l] Go(z,2'|k1)] = liH(l) Go(z,2'|k1)]

z=z'—¢€ z=2z"4+¢€
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and the jump condition

2=2"4¢

, 0
611_I)I(1)€0 &Go(z,z'ﬂﬁ) =-1.

z=z'—¢€

The result is 1
G "Nk)= ——
0(27 & | L) 260 kJ_

efkl\zfz'\ )

Therefore, as advertised,

1 k. iy 1 ,
G / - ZkL~(I‘L—I‘L)7 —ki|z—z |.
0 (I‘, r ) 260 / (271_)2 € kL €

8.24 Electrostatics of a Cosmic String

(a) Go(p, p') is the potential at p due to a unit line charge at p’. For a unit line source
at infinity, Gauss’ law gives the electric field as E = —p/2meyp. Therefore, the Green

function of interest is

1
G(p.p) = *%mv —'l.

(b) The periodicity condition is G} (p, ¢, p’) = Gh(p, ¢ + 27/p, p’) so we will need to have
0(p— ') =0(¢p + 2n/p — ¢'). This suggests a Fourier series in the interval (0,27 /p).
The basis functions are exp(imp¢) rather than the usual exp(im¢) so, by Fourier’s

integral theorem,

> > 2w [p
imp p —impe imp
5(g) = Z frne™P? = Z [%/0 dpd(p)e p»] eimPe —

m=—0o0 m=—0o0
(c) The result of part (b) suggests the ansatz

o0

Gg(ﬂa¢‘,0/a¢/) = % Z eimp(oqu')Gm (p,p/)

m=—00

Substituting this into ¢gV2G(p, p') = —8(¢ — ¢')d(p — p)/p gives

1o} 0G,, m2p?
< ) EG = —3(p— ).

ap \""op p
The general solution when p # p’ is
G, =Ap™™P + Bp™? m # 0
Gn,=Clnp+D m = 0.
Imposing continuity and the jump condition

146

o0
ﬂ Z eimpgs)
27

m=-—0oQ



Chapter 8 Poisson’s Equation

lim eop DG /Opl) 05 = —1

p=p’—e

gives

1-5 plm|

)= "m0 <Z<) — o nps.
>

Consequently,

mp

Gi(p,olp', ¢ 27T€0 z:: o s [mp(¢ — ¢')] <p>> ~ e In p- .

(d) To perform the sum, note first that G} is obtained from G| by the replacement p — p”
and ¢ — ¢p and similarly for the primed variables. Moreover, for p =1, Gfj must be
identical to the result of part (a):

1 1
Gl ! :_71 —p :—71 2 /2_2 / 3 — o).
0(pp) = g —Inlp—p| = —5 — n\/p? + p = 2pp’ cos(¢ — ¢')

Combining these facts gives

1
Go(p, p') = *% In \//72? + p'2r — 2pP o' cos p(¢ — ¢').

(e) The required force is
F= 7q2v [Gf;(p7p/) - G(l)(pa p/)}p:p/ )

where the second term is present to ensure that there is no force when p = 1. The

result is
_ q2 - ) pp—l B 1 ﬁ
dmeg p—p' | pP —p?  p—p
or, using I’Hospital’s rule,
2 r —1 EPYANEE D
oo T o [P0 lp) ppfp]A
dmeg p—p' | (P —p?)(p—p')
_ 4 [P e
= im |——————— | p
dmeg p—p' | pP — p?
2 r -1 —2
_ 4 [l zf?’ } 5
dmeg p—p' | pp?
. @*p
dregp’
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8.25 Practice with Complex Potentials
Write the potential in the form

T2 A Tz Tz
f(z)=— Intan — = — [lnsin——lncos— .
TE a 2Teg a a
Let z = na + azp/m where n = 0,£1,+2,... and |z | < 1, i.e., a complex number in the

immediate vicinity of © = na. This gives Insin(7wz/a) & In z; (plus a non-essential constant)
so the first term in the brackets approaches the potential of a positive line charge very near
z =na. Now let z = (n+ §)a+ az/m. This gives Incos(mz/a) ~ In z so the second term
in the brackets approaches the potential of a negative line charge very near z = (n + 1)a.

The physical potential is

A I cosh(27my/a) — cos(2wx/a)
dreg cosh(27y/a) 4 cos(2mz/a)

o(x,y) = Ref(z) =

The asymptotic behavior of this potential is

lim o(z,y) ~ e 2"/ cos(2m /a).

ly|—o0
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Chapter 9: Steady Current

9.1 A Power Theorem

The rate at which an electric field E does work on a current density j confined to V is

P:/d3rj-E.
\4

A static electric field satisfies E = —V¢. Therefore,

73:—/d37°j-ch:/d3r90V-.i—/d37“V'(j<P)-

|4 14 14

A steady current satisfies V - j = 0. Therefore, using Gauss’ theorem,
P = / dS-je=0.
s

This integral is zero because confinement of the particles implies that dS - j = 0.

9.2 A Salt-Water Tank

Let o be the conductivity of the water. The current density is j = 0E, where E = —V and
the electrostatic potential obeys Laplace’s equation. The boundary condition at z = h is

V. 0<z<L/2
p(z,y) =
0 L/2<z<L.

The boundary condition at x =0, x = L, and z =0 is

)
A-j=02f =0.

on

Solutions of Laplace’s equation pair sines and cosines with sinh and cosh functions. There-
fore, a moment’s reflection shows that

o(z,y,2) = Z A, cos (?) cosh (%) .

n=0
To get A,,, multiply by cos(mma/L) and integrate from 2 = 0 to x = L. This gives

L/2 -

v / dx cos(mmz/L) = Z A,, cosh(nm) /dx cos(nmx/L) cos(mmz/L).
0 0 0

The integral on the far right gives (L/2)d,,, so
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0 n even,

An = 2V sin(mm/2)

dd.
nm cosh(mm) "o

Source: Prof. T.M. O’Neil, University of California San Diego (public communication).

9.3 Radial Hall Effect

(a) From Ampere’s law in integral form, the azimuthal magnetic field at radius r is

B&)‘mﬂdwu

r

The Lorentz force on a charge ¢ is F = ¢(E 4+ v X B) , so B(r) must be opposed by a
radial electric field

Mm=““4dgm

r

(b) If p(r) = p+ + pc(r) is the source of E(r) , Gauss’ law in integral form says that

1 T
E(r)= e dsp(s)s.

But j = p.v, so equating the two expressions for E(r) gives

T 1 T
P [ dspes)s == [ dslpu(s) + ol
0 € Jo

This gives

dspe = d
/0 spe(s)s = 11)2/02/ s8,

which must be true for every value of r. Therefore,

pelr) = po = —— L2
: i 1—112/02

Remark: By conservation of charge, the wire must still be charge-neutral. Therefore,
a constant density of mobile charge that is slightly greater (in magnitude) than the
immobile positive charge density can only be achieved if all the mobile charge carriers
squeeze radially inward a tiny bit. This leaves a very thin layer adjacent to the surface
swept free of mobile charges.

(¢) The atomic weight of Cu is 63 and its density is 8.8 g/cms. Then, if each atom
contributes one valence electron, the positive ion density is
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g g B0 Imol 6-10%%atom  lelectron 1.6-107'7C  10°cm?®

= X X X X X
P cm?® 63 gm mole 1atom 1 electron m?

We suppose that p. =~ p, to estimate the mobile charge velocity from

j I 1A _
U . T Ap. T 10 m? x 1.3 x 1010 C/m? m/s

This gives v? / 2 ~ 1073 so p. = p, is an excellent approximation. The radial electric
field is

2 T

¥ 1

B(r) = m/ dss = 5vpoper
r 0

so the potential difference in question is

Ap = fOR drE(r) = tv?pop. R,

9.4 Acceleration EMF

(a) The total acceleration of the electrons is a + v and the Drude drag force depends on
the relative velocity v. Therefore, with no external electric field,

m(a+ 0) +mv/T = 0.

A steady solution has © = 0 so v = —ar. With the Drude conductivity o = ne?r / m,
this gives a current density

Jj = —nev = nera = oma/e.

Therefore, a current

I =Aomal/e

flows through a wire with cross section A.

5:/&12-13’,

where E’ is an effective field which produces a force F = ¢E’ so the electron motion
described by mv = F has the same effect as the true, non-electrodynamic current

(b) We have

flow. We have mv = —ma from part (a). Therefore, because ¢ = —e,
E = ma
o
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(c) The linear acceleration is a = 7§ and the ring area is S = 72 so

E 1 mrQ 2mS0
— == 2mr = .

== —
R R e eR

Let the angular motion of the ring be 6(t) = 6 cos wt with 6y = 27 /360 radians.

2mrriw?y Ao Q B mrw?6y Ao

ernr e

(9 x 10~3kg)(0.01 m) (500 sec~1)2 (27 /360) (10~ m?)(6 x 107 ohm ™ *m~—1)
1.6 x10-19C

15 nA.

9.5 Membrane Boundary Conditions
At an interface S where the conductivity changes abruptly from o; to o, the matching
condition is

0'1fl1 'El‘S = szl~E2|S.

The electrostatic condition V x E = 0 implies that E = —V . Therefore, V - j = 0 implies
that each region of our problem is characterized by

dy )
E, ——— —_—
dz dz?
Accordingly,
Az + By z <0,
o(z) = Az+ By 0<z<6é,

A3z + By z > 0.

From the continuity of ¢(z) and o¢’(z) at each interface we get the conditions

B, = By

Asd + By = A36 + Bs
O’A1 :U/AQ
UIAQ :0A3.

Using these identities, direct evaluation gives

dp
Y o(07) = A36+ By — By = Ay =2 A3 =5 &P .
@(67) —p(07) 30 + Bs 1 20 50, 3 o dz|
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Similarly,
d d
£ = A3 = Al = 80

dz|,_s+ dz|,_o-

Source: R.W.P. King and T.T. Wu, Physical Review E 58, 2363 (1998).

9.6 Current Flow to a Bump

Let S be the hemispherical surface. Ohm’s law is j = oE so

/2
I:/dA-j:o/dA~E:27raR2 /d&sin&Er(R).
S S 0

The radial electric field at the surface of the bump is related to its surface charge density by
E,(R) = 3/ey. When d > R, the field near the surface of the bump is nearly the same as
the field near a sphere in a uniform field Eq if the latter is perpendicular to the flat plate.
Therefore,

w/2
I = 6EymoR? / dfsinf cos§ = 3roR* Ey = 3roR*V; /d.
0

Ey ~ Vy/d is approximately true when d > R.

9.7 The Charge at a Bend in a Wire

The figure below indicates the physical origin of the surface charges that appear at the
bend. The leftmost panel is the situation when the lines of current density j = I/A = o E are
unaware of the bend and thus terminate over an area A of wire surface. The charges induced
on the wire surface produce the indicated electric field inside the wire (which “bends” the
field line pattern) and are the source of a normal electric field E,, = /e = Q/A¢y outside
the wire. Combining the two equations in this paragraph gives the desired estimate:

I
Q=0A=¢FA= EOA—UA: el /o.

+++ +++ +++

5

Source: A. Butoni and J.-M. Levy-Léblond, Electricité et Magnétisme (Librairie Vuibert,
Paris, 1999).
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9.8 Spherical Child-Langmuir Problem

(a) We generalize the text’s derivation of the Child-Langmuir law to a spherical geometry
and assume that p(a) = 0, p(b) = V. The current density at distance r from the
center of the system is

1

J= o = Pr)(r).

where p(r) is charge density and v(r) is the velocity of the electrons. Because we
assume v(a) = 0 the kinetic energy of any electron is $mv?(r) = ep(r). Hence

(r) 1 m 1

r) = ——.

p dmr? \ 2e /@
Poisson’s equation, V2p = —p/¢, for this situation reads

10 (200 _ 1 m_1 (1)
r2or \ or  Ameor? \ 2e /@

and we will require ¢(a) =0 and 9¢/0r|,—, = 0.

The change of variable

r—aexp(t)  and @Uﬁzzy@)<4;q{vzz>2m

simplifies (1) to

Py Oy 1
- 2
o " ot NG @

with the “initial” conditions
y(0)=0 and 0y/0t]i—o = 0.

The differential equation for y(¢) cannot be solved in closed form. Nevertheless, given
a solution which satisfies (2) and the initial conditions, the potential on the outer

sphere of radius b is
2/3
I m
=y(l — .
v =ytuiv/a)) (o5

Solving for I in the preceding gives the advertised result,

I:VE?mobﬁﬂwa z = In(b/a).
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(b) With ¢t = In(b/a), we search for an asymptotic (¢ > 1) solution to (2) of the form
y(t) = Ct". Substituting this guess into the differential equation gives

because we may disregard the term proportional to ¢t=*/% in the limit of interest.

Hence, when b > a, the maximum current takes the value
a2 8TV
“Vm 3n(b/a)’
Source: 1. Langmuir, Physical Review 2, 409 (1913).

9.9 A Honeycomb Resistor Network

Assume segment AB is not missing and let a thin wire carry a current I from infinity to
the point A. By symmetry, a current /3 flows through the segment AB. Now, remove the
first wire and use a second wire to carry a current I from point B to infinity. By symmetry,
a current I/3 again flows through the segment AB. Finally, connect the first wire back to
point A so a current I flows both from infinity to point A and from point B to infinity.
In that case, the total current which flows through AB is I/3 + I/3 = 2I/3. This means
that the total current which flows through the rest of the circuit is I — 2I/3 = I/3, which
is one-half the current which flows through the segment AB. Since the rest of the circuit is
connected in parallel to r at AB, the resistance of the infinite hexagonal network without
segment AB is R = 2r.

Source: Dr. A. Scherbakov, Georgia Institute of Technology (private communication).

9.10 Refraction of Current Density
The matching conditions for ohmic matter are
n-[j1 —j2] =0, hence ji1 = ja

n x [E; — Ey] =0, hence j /o1 = jo /02.

Combining these matching conditions we obtain
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Ji/ie = (or/o2) - (G /d1L)

or
tan 01 o1

tanfs o9

9.11 Resistance to Ground

Let a current I be expelled radially through the surface of a hemisphere S of radius r. By
the definition of current density,

I:/dS~j:27rr2j.
S

If this takes place in ohmic matter with conductivity o,

dp
| = E = —0—.
j=o o o
Therefore,
I
wlr) = 2mro’

and the voltage across the o9 layer next to the sphere is

o= o) =3 (1 -5).

The resistance of this layer is
1 1 1
Ry = -— .
> 270, <a b)

Similarly, the resistance through the Earth is

1 1 1
Ry = - — .
! 2mog (b oo)

The overall resistance of the earthing device is equivalent to the resistances R; and Ry in

series. Hence,
1 1 1 1 1
R = -—— =]+ —.
2mog \a b 2mog b

Source: V.V. Batygin and LN. Toptygin, Problems in Electrodynamics (Academic,
London, 1978).
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9.12 A Separation-Independent Resistance

The text shows that RC = €/o relates the desired resistance R to the capacitance of a
two-conductor capacitor with the same geometry. Moreover, when a;,as < d, each sphere
contributes a point charge potential at the position of the other. Therefore,

1 1 0
dmea;  4med ! | P Prio Q1 .
1 1 Py Py Q2

¥1

Q

#2 dred  4meas Q2

We know from our previous work with conductors that the P;; are the coefficients of potential
and that the capacitance of a two-conductor capacitor is

1
C = .
P+ Py — 2Py

Therefore, the resistance between the conductors for the problem at hand is

T dro |lay | ay  d|”

This expression becomes independent of d when d is large enough.

9.13 Inhomogeneous Conductivity

Inside the strip, the electric field is

E:j/azi(l—f—acoskx)f( ly| < L.
)

Outside the strip, the potential ¢(z,y) satisfies V2 = 0. The tangential component of the
electric field is continuous, so we impose the boundary condition

d .
i :—i(l—i—acoskx).
dx ) 0o

A convenient strategy is to write the potential as the sum of two functions,

<p(x7y) =¥1 (x,y) + cpg(x,y),

each being a particular solution of Laplace’s equation with the boundary conditions

dey __J
dr |, _yp o)
and )
dps ja
—_ = —*—coskux.
dx y==+L (o))
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By inspection,

J
o1z, y) = —=—.
00
To find @9 (z,y) we separate variables in the usual way to sine and cosine functions in
one direction and real exponentials in the other. A solution of this form that satisfies the
boundary condition above is

02 (,y) = — 2= sin ka exp [£k(y + L)],
O'ok

where the + sign is chosen for y < —L and y > L so py — 0 as y — £o0o. We conclude that

__d,dey
o(z,y) = p x ps sin kx exp [£k(y £ L)].

The corresopnding electric field outside the strip is

E=-Vp= Uio {1+ acoskxrexp|tk(y£L)]}x+ g sin kz exp [+k(y + L)]¥.

Source: V.B. Gil’denburg and M.A. Miller, Collection of Problems in FElectrodynamics, 2nd
edition (FizMatLit, Moscow, 2001).

9.14 A Variable Resistor

(@) j (b)

AN

© f () b
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If the current is I and copper has conductivity o, the resistance between a point 1 and a

point 2 is
1
R=— [dt-].
IU/ J

1

Any integration path between the two points can be used because V x E = 0 and j = oE.
Unfortunately, we cannot simply compare the shortest path lengths (or even the shortest
lines of j) in each case to determine the relative resistances because the magnitude of j is
not constant. On the other hand, it seems clear that R, < R, and Ry < R, because the
former is the latter taken in parallel. R, is surely a small resistance, but it is difficult to
compare it to R; quantitatively. Therefore, the best we can do is

Rd,RC <R, < Rp.

Source: A. Butoni and J.-M. Levy-Léblond, Electricité et Magnétisme (Librairie Vuibert,
Paris, 1999).

9.15 The Resistance of an Ohmic Sphere

The geometry of the problem is as follows.

The potential satisfies V2o = 0 inside the sphere. The general solution with azimuthal
symmetry which is regular everywhere is

o(r,0) = ZAN’[Pg(COSQ). (1)
(=0

The boundary conditions involve the radial component of the electric field. This is

E, = _9¢ =— ZAMré_ng(cos 0). (2)
=0

To find the A;, evaluate (2) at r = R, multiply the far left and far right terms by
sin 0P, (cos §) and integrate over x = cosf. Using the orthogonality of the Legendre poly-
nomials,

1

2
/dx Pi(z) Py, () = mémé,
21
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we find

2m+1 1
2m Rm-1

1
e / dz B, (R, z) Py ().
21

Because j = oE, E,(R) = 0 everywhere except on the electrodes. On the electrodes, the
boundary condition is

on(Ra)?’

where the plus (minus) sign applies to the electrode where the current leaves (enters) the
sphere. Consequently,

1 1 T—COoS &
/ dz E,(R,x)P,, (x) = (W(IW / dx P, (x) — / dx P, (x)
—1 20S (v —1

Using the hint given and the parity of Legendre polynomials, P, (—x) = (=)™ Py, (x), we
find

1 0 m even,
/dm ET(R, x)Pm (x) = I 2
1

WW [Pm,_l(COS O[) — Rn+1 (COS Oé)] m odd.

Using this to evaluate A,, and substituting back into (1) gives the potential at any point
inside the sphere as
I o0 1 g2kl

om(Ra)? g 2k +1 R?k

o(r,0) = [Pygy2(cos ) — Pog(cos a)] Paj11(cos ).

The potential difference between the electrodes is

V = @(R,0=m)—¢(R,0=0)

- Uﬂ(éa)z > lej_ 1 [Pajy2(cosa) — Py (cos )] [Pogy1(—1) — Pogy1(1)].
k=0

The last quantity in square brackets is equal to —2. Therefore, because V' = I R defines the
resistance,

oo

2 1
= TRa?o kz::o 2k + 1 [Pog (cos ) — Pags2(cos )] .

The k£ = 0 term causes R to diverge when a = 0 because we are trying to force a finite
amount of current through a point of infinitesimal size.

Source: E. Weber, FElectromagnetic Fields (Wiley, New York, 1950).
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9.16 Space-Charge-Limited Current in Matter

This is a one-dimensional problem where v = E and E = —d¢/0z. Therefore, Poisson’s
equation takes the form

) ) 1
Pe __p__J_J (%
dx? € ve  fie \ Ox ’
This is the same as
Ppdp _ j
de? do i€’

or
A (e _ 25
de \dz ) i€’

Integrating this using the conditions ¢ = 0 and dy/dx = 0 at = 0 gives

de) _ 2a
de ) jie’

Taking the square root and integrating again gives

2 [ 4,
o(z) = 3 ﬂex .
V:g ﬁ[ﬁ/?

3\ fie ’

oV
.7_8/’L6L3'

Now, ¢ =V at © = L. Therefore

or

This is often called the Mott-Gurney law.

Source: N.F. Mott and R.W. Gurney, Flectronic Processes in Ionic Crystals, 2nd edition
(Clarendon, Oxford, 1948).

9.17 van der Pauw’s Formula

(a) The potential of a line source has the form ¢(p) = Alnp. To find the constant A we

insist that
I:/dS~j:/dep,

S S

where S is the surface of a half-cylinder of radius a which encloses the contact at A and
Jp is the radial component of the current density in cylindrical coordinates. Because
Jp=0E, = —00¢/0p,
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I =—madoA 4 Inp = —mdo A.
dp p—a

Therefore, p(p) = —(I/wdo) In p. The radial distance from A to C is a + b, so

I
pac = In(a +b).
(b) With our definitions,
Vb =Ve = ¢ap —¥Bp —pac +¢Bc

= L m(a+b+e)—mb+e) —nla+b) +1Inb].

wdo
Hence,
R _Vvac_Lln(bJrc)(aer)
ABCD =TT T rdo o bla+b+c)
Similarly,
Va—Vp = ¢Ba—9ca—¢Bp+¢cp
= L a4 —mb+e) +ind
= — 5 [Ina—In(a n ¢)+Ind,
S0
Vi —V, 1 b b
RBchA:uziln%'

I wdo ca

Now, because b(a + b+ ¢) = (b+ ¢)(a + b) — ac, we have

a+b)(b+c)—ca
exp[—wdoRap cp| = ( ) )

(a+b)(b+¢)
and
ca
exp[—mdoRpc,pal = m-
Therefore,

exp(—mdoRap,cp) + exp(—mdoRpc.pa) = 1.

Source: L.J. van der Pauw, Phillips Research Reports 13, 1 (1958).

9.18 Rayleigh-Carson reciprocity

Following the discussion of current sources in the text, the Poisson equations satisfied in the
two situations are
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oV?pa(r) = —I4 [0(r —1r1) — 6(r — 13)]

and
oVipp(r) = —Ip [6(r —r3) — 0(r —1y)].

Moreover, j = cE = —oVp. Therefore
M = /d?’r (Voa-jp—0aV-jp —Vep -ja— eV -jal
= /dsr [ngoA(rVSOB —a0Vpp + Vpo - Vou +<PBUV2‘PA]
= /d3r (paclp [6(r —1r3) = 6(r —1r4)] — ppoly [0(r —r1) = d(r —1r2)])

= 0lplpalrs) — pa(rs)] = alalep(r1) — ¢p(ry)]

= U(IBVA — IAVB).

On the other hand, evaluating M using the divergence theorem gives zero because there is
no current density at infinity. Therefore, V4 = Vg if [4 = Ip.

Source: H.H. Sample et al., Journal of Applied Physics 61, 1079 (1987).

9.19 The Electric Field of an Ohmic Tube

(a) The general separated-variable solution to Laplace’s equation in two dimensions is

¢(p, ) = (Ao + Boln p)(wo + 900) + Y [Aap® + Bap™*|[za sinad + yq cos ag).
a#0

The foregoing must match continuously to ¢(a, ) = (Vi /27)¢. This motivates us to
write a Fourier series for a straight line on a finite interval:

o= 22 Smkq& —T<¢ <.

k=1

By inspection, the unique solution inside and outside the cylinder is

Yo Cpfa)tsinke
(it k

Vo & (—a/p)F sinkg
- Z —

p>a.
k=1
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(b) Using the hint, we find immediately that

W —1 psin @
7t [
T [a—i—pcosd) Ps
e(p,¢) = . (1)
L {mw} )
T p+acoso

From the diagram below, we see that tana = psin¢/(a + p cos ¢). Therefore,

Vo
gO(p < &,¢) =,
7
which shows that the equipotentials inside the cylinder are the suggested straight lines.

y

o
a,

(¢) Far from the origin of coordinates,

asinqﬁ} Vo asin ¢

Vi
o(p>a,¢) ~ — tan™! {
s p TP

: (2)

This is a dipole potential in two dimensions. To see this, recall that the potential of
a line with charge per unit length A\ at the origin is

A
p(p) = —5 —Inp.
TTEQ

Superposing this with a line with charge per unit length —\ located on the z-axis at
a small distance py from the origin gives

A __ App cos¢

Iy fp? 2 2
2meg np+2ﬂ_60 Ve PPO COS & + iy 2meg p

Ptot = —

We can now let A — oo and py — 0 in such a way that d = AppX is a finite dipole
moment per unit length. In that case,

d-p d coso
2regp 2men p

Prot =

Comparing this with (2) shows that the dipole moment of the ohmic cylinder is oriented
along ¥ rather than %, as we (arbitrarily) assumed for this calculation.
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(d) Using (1), it is straightforward to find the radial component of the electric field. Sur-
prisingly, perhaps,

_E asin ¢ <
9o T a? + 2apcos ¢ + p? p=a
P T T (3)
Ip ) asin ¢
p > a.

T a? + 2apcosd + p?
Using ooyt = €0p - Eg and oy, = —€gp - Eg gives

o g Vo sing &l tan
t = Oin = =
on " 2mal+4cosg  2ma

The equipotentials inside and outside the cylinder look like the following.

(d) The angular component of the electric field inside the cylinder is

By <a)__£8£__m p+acoso
o\P  pdp  ma?+2apcoso+p?

From the figure above, the denominator of the last term is s*. Using E, from (3),

Vi asi v K
E(p<a)= _Voasing, iw(p.
s s s s
Substituting A
p = cos ¢X + sin ¢y b = — sin g% + cos 6F W

into the preceding equation gives

1% singp,. a-+pcoso .
E(p<a)=—— P (bx—i- ps ¢y.

s S

On the other hand, mimicking (4),

& = —sinaX + cosay = 7psm¢)§(+ a-i—pcosqﬁy.
S s
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Therefore, as suggested,

v
E(p<a)= —W—Zd.

The electric field line pattern inside and outside the cylinder looks like the following.

Source: M.A. Heald, American Journal of Physics 52, 522 (1984).

9.20 Current Density in a Curved Segment of Wire

The potential difference Ay is a constant, independent of r, between any two cross sectional
cuts of the wire. Therefore, if § parameterizes a traversal through the bend,

Ap=E-dt= Erdo

must be independent of r. Hence, E < 1/r and j = 0 F « 1/r also. For a very narrow wire,
r & const. so j = const., which is the usual answer.

Source: F.B. Pidduck, Lectures on the Mathematical Theory of Electricity (Clarendon,
Oxford, 1937).

9.21 The Annulus and the Trapezoid

(a) In polar coordinates, the potential ¢(r, ¢) satisfies the Laplace equation:
10 [ 0y 1 9%
Vip=—-——(r—= ——=0.
T i or (T(?T) + r2 Og?

Because the edges C'D and F'A are maintained at a constant potential difference, we
see that ¢(r, @) = ¢(¢) and

2
9o _y,
D¢?
If ¢(0) = 0 and (7) = V, the unique solution is
_y?
pl)=V_.
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The associated current density is

19y - -
oV = Oy 14

J _0;8725 :—0;?(}57

so the total current through any line ¢ = const. is

b
Vv [dr \% (b)
I=—to— | — =—to .
T a

ZIn( =
T T
Hence, the resistance of the annulus is

v__ =T
I toln(b/a)’

(b) Using the result of part (a), the resistance to an azimuthal flow of current through an
annulus with radius r, width dr, and length L = 7r is

dR(r) = to In[(r + dr)/r] " todr

The resistances from different sub-annuli are in parallel with one another. Therefore,

b
1 1 todr to
- = = [ —— = —1In(b/a).
R / dR(r) Tor 7r n(b/a)
a
This reproduces our previous result because the lines of current density in each annulus

with infinitesimal thickness are the same as the lines of current density obtained for
the complete annulus by solving Laplace’s equation.

(c) Because the edges ABC and DEF are maintained at a constant potential we see that
©(r,¢) = p(r). Therefore, Laplace’s equation reads

10 Op
2 = - — _— =
Vcﬁir@r <T6r> 0

If p(a) =0 and ¢(b) = V, the unique solution is

The associated current density is

de oV 1
i = — v = — Ty = — -7
J Ve Tor" In(b/a) P
so the total current through any line r = const. is
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The resistance in this case is

R=|V/I| = ln(b/a)-

Tto

Using the result just above, the resistance to a radially flowing current through an
annulus of radius r and width dr is

AR(r) = In[(r + dr)/r] _ dr

mto wtor

The resistance from different annuli are in series for this geometry. Therefore,

b
R:/dR(mzi d’”:lln(b>.
Tto r ot a

a

This reproduces our previous result because, in both cases, the radial lines of current
density are everywhere parallel to edges where no current exits perpendicular to the
edges where the current enters and exits.

(d) The diagram below shows the lines of current density that would result from the
Laplace’s equation solution. Note that they are perpendicular to the edges where
current enters and exits. If this solution were used for the tiny trapezoid indicated, the
lines would be perpendicular to the horizontal edges of the tiny trapezoid also, which is
not what the true lines of current density do at these points in space. Summing these
tiny trapezoids overestimates the amount of current flowing normal to any horizontal
line (because the real current density has a horizontal component almost everywhere)
and thus underestimates the resistance, compared to the exact solution.

//I/// /) \\‘\\\\
Source: L.G. Chambers, An Introduction to the Mathematics of Electricity and Magnetism
(Chapman and Hall, London, 1973).
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9.22 Joule Heating of a Shell

In spherical coordinates, Laplace’s equation on the shell is

19 o 1 o
Z (sinoZ ) 4y — 2
Sind 00 (Sm ae) T aZoo "

The imposed potential suggests we seek a solution of the form ¢ = U(6) cosng. This guess
reduces the equation above to

.ood (. dU 9
81119@ <sm€d€) —n°U =0,

subject to the condition U =V at § = a, U = —V at § = m — . The suggested substitution
further simplifies the equation to

@eu
@ "U=

The general solution is
U = Aexp(ny) + Bexp(—ny) = Atan"(0/2) + Bcot" (6/2),
where A and B are determined from

V = Atan" (a/2) + B cot” (a/2)

and
-V = Atan" ((m — «)/2) + Beot" ((r — «)/2) = Acot" (a/2) + Btan" («/2).
Specifically,
14 Vv
A= tan™ (a/2) — cot™ (a/2) and - B=-A= cot" (a/2) — tan" (/2)

Finally, the electric field

E=-Vp= —% [(%g cosmj)) 6 — <SiZ€nSiIln¢> (ﬁ]

has components

N COS N n B n
By = — Rsin 0 (Atan"(0/2) — Bcot" (0/2))
and inne
nsinn n n

The associated surface current density is

K =0E =0(Ey0 + E, ).
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Therefore, the rate of Joule heating generated between the two rings is

R = /dSK-E

m—a 27
= R0 / sinede/(Eg+E§)d¢
@ 0
™= 1
= 2n%om / —— [A*tan®" (6/2) + B” cot*" (0/2)] df

sin 0
«

2 [cot?™ (ov/2) — tan®" (ar/2)]

= 2nlorA?
n-om 2n

5 cot™ (a/2) + tan™ (a/2)
cot™(a/2) — tan" (a/2)

= 2nmoV

2nmwoV?

COS &

Source: L.G. Chambers, An Introduction to the Mathematics of Electricity and Magnetism
(Chapman and Hall, London, 1973).
9.23 The Resistance of a Shell

(a) The potential is confined to a spherical surface and has azimuthal symmetery. There-
fore, ¢ is a function of # only and Laplace’s equation simplifies to

o (. 0o\
89<sm989>—0.

The boundary conditions are ¢ = 0 at § = a; and ¢ =V at § = 1 —ay. The suggested
substitution further simplifies Laplace’s equation to

The general solution is
p=A+ By= A+ Bln[tan(0/2)],
where A and B are determined from
0=A+Blnftan(a;/2)] and V = A+Bln[tan((r — as)/2)] = A—Bln [tan(ay /2)] .
Solving these gives
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\%
b= In [cot(ey /2) - cot(az/2)]’

and we will have no need for the constant A. The electric field is

E(9) = Vo(0) = fé <5“’> o———B g

asin 6

and the associated surface current density is

Bo -
0.
asinf

K(0) =ocE=—

The total current which flows past the sphere’s equator, say, is
I =|K(r/2)|-2ma =2n0B = 2noV/ {In[cot(a1/2) - cot(aa/2)]}.

Therefore, the resistance between the terminals is

1
R= T =90 In [cot(aq /2) - cot(an /2)].

(b) Consider a thin ring on the surface of the sphere defined by an angle 6. The radius of
the ring is r = asin 6 and its width is adf. Therefore, the resistance of the ring to the
current flow is

gp_ Lodo 1 o

o2rr  2r1osng

Integrating this over the ohmic portion of the sphere gives the total resistance between
the poles as

1 [ de
2mo sin 6
ay

— % [In (tan(mw — az)/2) — In(tan(aq /2))]

= % In [cot (o /2) - cot(az/2)].

Source: L.G. Chambers, An Introduction to the Mathematics of Electricity and Magnetism
(Chapman and Hall, London, 1973).

9.24 The Resistance of the Atmosphere

The resistance of the atmosphere is R = V/I where [ is the total current that flows through
the atmosphere and V' is the potential difference between the Earth’s surface and the upper
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atmosphere. The first of these is straightforward because the current density near the surface
of the Earth is

jo = 00Ey = —3 x 10712 A/m’.
Therefore, the net steady current which flows from the atmosphere to the Earth is
I = |jo| 47 ~ 1500 A.
To find V, we need E(r) and hence j(r). The latter obeys the steady-current condition,

1o

V= ?j) =0.
1= 2% ()
Integrating this differential equation gives
2
r
J(r) = Jo 772

Hence, the electric field at a distance r from the Earth’s center is

Br Jjr) Jorg .
) o(r) 42 [00 +A(r— T())Q}

The potential difference follows immediately as

ro+H ro+H

dr
V=- / E(r)dr = —jors / .
’ £S 72 [00 +A(r— 7’())2}

o

The integral can be done, with the result that

vV o= _— ]DT% \/Z(Arg 700)tan71 (\/Z(rro)>

Vau(oo + Arg)? Vo

00 +A7’% ~ ArgIn (00 + A(r — rO)Q)]TOJFH'

2
r r o

Substituting the given numerical values yields
V ~ 370 kV.

Therefore, our estimate for the resistance of the Earth’s atmosphere is

R:Km%()ﬂ.

Source: A.N. Matveev, Electricity and Magnetism (Mir, Moscow, 1986).
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9.25 Ohmic Loss in an Infinite Circuit

Let R be the equivalent resistance between terminals A and B. Because the three-resistor
motif is repeated indefinitely, nothing changes by the addition of one additinal motif. Hence,
the circuit shown in the diagram below is equivalent to the original circuit.

As a result, the equivalent resistance of the circuit is

R

R=2R _—.
2+R1—|—R

The foregoing rearranges into the quadratic equation
R?> —2RyR — 2RyR; = 0,

which has the positive solution

Now, assume that the voltage between the terminals is V. The current flow between the
terminals is T = Vj /R, so the voltage drop across the first resistor Ry is

Vi =Wy —2R,I =V, (1-2Ry/R).
Similarly, the voltage drop across the second resistor Ry is
Vo =Vi (1 -2Ry/R)
and the voltage across the nth resistor R; is
V, =Vo (1-2Ry/R)".
Using this information, the rate at which heat is produced by the nth resistor R; is
Ru(1) = Vi /Ry = Vi (1 - 2Ry /R)™ /Ry,

and the rate of Joule heating by all the R, resistors together is

2 2
R(1) = 2—01 ; (1-2Ry/R)*" = ;—(’1 <1 ~a 12R2/R)2 - 1)

Ve (Bi+ Ry = VI + 21 1)
2R, \/R2 + 2Ry R, '

173




Chapter 9 Steady Current

On the other hand, the rate at which heat is produced by the entire circuit is

2

Ry + /R34 2Ry Ry .

R=V¢/R=

Finally, by the definition of «,

RO (R1+R2—\/R§+2R2R1> (R2+\/R§+2R2R1) i, R |
R 2R1\/R% + 2Ry Ry 2 \/R% + 2Ro Ry

This expression shows that

<1
a< —.
2

To complete the problem, we set © = R;/R», write

1 1
a=-(1-—n_),
(- s)

and solve for x. The result is
Ry 2a(l—a)

TRy (1-2a)%"

Source: Dr. A. Scherbakov, Georgia Institute of Technology (private communication).
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Chapter 10: Magnetostatics

10.1 In-Plane Field of a Current Strip

This problem amounts to superposing the fields from a collection of long, straight wires.
The surface current density is K = (I/b)z. Therefore, an infinitely long filament at y with
width dy carries a current dI = Kdy. Treating this as a wire gives a contribution to the
magnetic field of
K

gB—__ MKdy o
2n(a+b—y)
Therefore, the total field at the observation point is

b

,u()I dy ~ MOI a+b ~
B=——"—[ ——x=—"—"-In X.
27b ) a+b—y 27h b

0

dl
1]
y
—»dy<— °
0 b a+b

10.2 Current Flow in a Disk

The field has only a tangential component in the immediate vicinity of the top and bottom
of the disk. That field changes direction when the observation point passes through the disk
itself. From the direction of the field, we must have a circulating distribution of current in
the body of the disk as shown below. However, the field far away looks like that produced
by a loop with current circulating in the opposite direction. We get a consistent picture if
we assign that current to the perimeter of the disk. Thus,

Source: C.L. Pekeris and K. Frankowski, Physical Review A 36, 5118 (1987).
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10.3 Finite-Length Solenoid I

(a) Place two identical, semi-infinite solenoids end-to-end so their windings turn in the
same direction. The magnetic field through their common plane is longitudinal and
the magnetic flux through this plane is the same as the flux through any cross-sectional
plane far from their common plane. Now separate the two slightly. By symmetry, the
field line pattern is symmetric with respect to the midplane between the two open
ends. The longitudinal component of every field line which exits one solenoid (and
thus contributes to the magnetic flux of interest) has a counterpart field line which
enters the other solenoid with the same longitudinal component of the field. The radial
components have opposite signs for the two solenoids. Therefore, adding the two fields
together reproduces the field inside an infinite solenoid. This proves the assertion.

(b) All the field lines form closed loops. Moreover, from part (a), only half the field lines
exit the solenoid at each end. The other half must pass through the walls and form
closed loops as shown below. Indeed, the field lines which exit through the open ends
meet up to form closed loops also. We emphasize that there is no reason for field
lines not to pass through the current sheet. The requirement is that the matching
conditions be satisfied:

/3 . (Bin - Bout) =0 and ﬁ X (Bin - Bout) = NUK
The field lines very near the wall but very far from the ends are very nearly parallel

to the walls. In that case, the matching rules force these lines to execute a sharp
“hairpin” turn when they pass through the walls.

NE=——>//
S e——\\

Source: LE. Irodov, Basic Laws of Electromagnetism (Mir, Moscow, 1986).

10.4 Helmholtz and Gradient Coils

(a) The field on the z-axis of a current ring is B(z) = B(z)z where

2 2
B(z) = *‘;I(RZ fZQ)S/Z _ uoéR f(2) = Kf(z).
For two coils that carry current in the same direction at a distance z from one of them,
B(z) = K[f(z)+f(2b—2)] B(b) = 2Kf(b)
B'(z) = K[f'(z) - f'(2b- 2)] B'(b) =0
B"(z) = KI[f"(z)+ f"(2b— 2)] B"(b) = 2K f"(b)
B'(:) = K[f"(z)-f"2b-2)]  B"()=0,
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where
3z 1222 — 3R?

') =~ ayn "6 = Gaaye

Thus, f”(b) = 0 when 2b = R, which is the condition for a Helmholtz coil.

(b) For the gradient coil,

B(x) = K[f(z)—f2b=2]  B(t)=0

B(:) = KIf()+fb-2]  B(b)=2K7(0)
B'(z) = K[f"(z)-f"(2b-2)]  B'(5)=0

B'(:) = Kf"(:)+f"(2b=2)]  B"(b)=2K["(b)

Therefore, near the midpoint, z = b,

B(z) = B(b) + B'(b)(z — b) = 2K f'(b)(z — b) = po I R?

10.5 A Step off the Symmetry Axis

By symmetry, the magnetic field of a current ring has no ¢ component. Therefore, V-B = 0
reads

19 oB.

Substituting into this B, = f(z)p gives

foy—_LoB. 3 Rz
T, Tl (R? + 22)5/2°

To find B.(p, z), use the fact that V x B = 0 near the symmetry axis. Therefore,

R? — 422

0B. 0B, 3
P(RQ + Z2)7/2'

=7 IR?
ap 0z 4”0R

Integration with respect to p gives

3 2 o R?—427
B.(p,z) = B:(0,2) + guol Rop (B 1 222

10.6 Two Approaches to the Field of a Current Sheet

(a)

_ Kx(r—1) oK/ / —(y—y)x
B(r)—4ﬁ s r—rf dz’ [22 + (y — y) F (= 22
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There is no x contribution because the integrand is an odd function of y—1%’. Therefore,

oK / / xy
B = — d d -
(r) i / Y / z 22+ (y—y)2 + (z — 2/ )2]3/2
MUK / .Ty
— —_— d _—
27 / Ve ry—y)y
— 00
_ oK
2

(b) The magnetic field at a distance R from a wire with current I is

_ ol

B = .
2TR

The right-hand rule tells us that the contributions to the X-component of B(z,y) from
wires located at y' = y & s cancel for all values of s. The remaining component of
B points in the sgn(z)y-direction. Then, because I = Kdy and R = 2% + y?, the
substitution y = x tan 0 gives

) dv K K w/2
Bl = X0 Y Sl 9 = Lo K.

21 J oo 22+ y? 22 + 2 2 ) np2 ?

Source: W. Hauser, Introduction to the Principles of FElectromagnetism (Addison-
Westey, Reading, MA, 1971).

10.7 The Geometry of Biot and Savart
Adding some angles and labels to the figure gives

If R =r —r’, the Bio-Savart law for this wire is

wol [ds xR
B(I‘) = E R3 .
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From the geometry, we collect three bits information:

ds x R = dsRsin(m — 0) = dsRsin0
dssinf = Rdf

sinf sina

d R

Since both legs of the wire contribute equally to a field which points into the paper at the
indicated observation point (black dot), we get the field magnitude as

o2 " 2mdsina " 27d sina  2wd 2
0

B| = MLI dj_uol 1 /adesina_&fl—cosa_uol )
0

10.8 The Magnetic Field of Planar Circuits

(a) The Biot-Savart law is

wo [dex (x—y) ol [dexrt
B(x)=FC 222\ 2= J)  HO02
(x) 471'?{ Ix —y|? 4 r2

where df is a differential element of the circuit at the point y and r = x —y. When
the observation point is in the plane of a planar current loop, the field direction is
given by the right-hand rule. The figure below shows that the angle between d€ and
r is m — (o — ¢) whether this angle is acute or obtuse. Therefore,

|de x | = dlsin[r — (a — ¢)] = dlsin(a — ¢).

On the other hand, the diagram also shows that r¢ = d¢sin(a — ¢). Therefore,

iy = ! [

47 r
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(b) If P is at the center of an ellipse, we use the result of part (a) where r(¢) is the equation
of an ellipse in polar coordinates:

ab
r(6) = ——— .
Va2 sin? ¢ + b2 cos? ¢
This gives
I
B= &E(k),

Ta

vvherekz,/l—aQ/b2 and
/2
E(k):/ dpy/1 — k2 sin® ¢
0

is the complete elliptic integral of the second kind. When a = b, this simplifies to

:MLI 27 dd) :MLI 27
dr Jo  r(@)  4dwa Jy

pol
dp = —
=5

which is the familiar result for the field at the center of a circular current loop. When
a — oo with b fixed we get

:M 2ﬂd¢_&f 27

. pol
= d = —
ar Jo  r(9)  4wdb ), ¢lsing| b’

which is the field at the midpoint between two wires separated by a distance 2b which
carry equal and opposite currents.

(¢) The Biot-Savart law reads

Mo VK x (22 — r'#)

B(z) = (22 1 r2)3/2

By symmetry, B = B(z)z. Therefore,

1 , 1l
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Now, sinf = r'/v/r? + 22, cos@ = z/vr"? + 22, and ' = ztanf. Therefore, dr’ =
(2/ cos? 0)df and

« 1
B(a) = %MOK/ do {009 + cos 9} = Ly K {In(seca + tan o) — sina} .
0 S
Source: J.A. Miranda, American Journal of Physics 68, 254 (2000).

10.9 Invert the Biot-Savart Law

Lo Kx(r—r)
B(r) = in s’ r—r/?

7 & (2 — 2)% — (2 — )2

_ Mo Ji K (5
) 4”461 e (& —20)* + (y —y')* + (z = 2/)°]/*

Performing the 3’ integration gives
Ho / / (Z — Z/)
By(z,2) = M [ 42K
=(2,2) 2 i (Z)(nc—ﬂr:o)Q-1—(2—,2’)2
By(z,z) = 0
B.(x,z) = el dz'K(2") (z = z0) .
’ 27 (x —x0)? + (2 — 2/)?
These are indeed convolution integrals of the form
(oo}
A(z) = / dz'B(z — 2')C(2").
(b) Define the Fourier transform pairs,
1 0o A A oo
B, (xz,2) = . / dk B, (z,k)exp(ikz) and B,(z,k) = / dz B, (z, z) exp(—ikz),
™
and similarly for K (z) and
Az, z) = To— &

(2o — )2 + 227
In that case, the convolution theorem tells us that
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Solving this for K and Fourier transforming back to configuration space gives

—i i 2—7TBZ(]€) exp(ikz
K(z) = 5 /dk w0 AGK) p(ikz). (1)

It remains to compute the Fourier transform,

oo

Az, k) = / dzA(z, z) exp(—ikz)
Lo —T .
= / dZm eXp(—ZkZ)
1 1 1 .
T2 dz [z —i(zg—x) z+i(xg—x) exp(—ikz)

= mexp[—|kl(ao — 2)).

The last line comes from using the residue theorem for x < xy and closing the contour
in the lower (upper) half-plane when k is positive (negative). Collecting our results
and substituting in (1) gives the advertised result:

oo

K(z) = 77%40 / dk exp[|k|(zo — z)] / dz' B, (z,2") explik(z — 2')] x < T

— 00

(c) Since B, = 0 and z < x( excludes the source current, the two components of the
magnetic field are constrained by

0B, 0B,
.B = I
v 0 = ox 0z
and 0B, OB
VxB=0 = 5, = — I

In other words, B, (z,z) adds no new information. Furthermore, our result says that
K (z) is determined entirely by, say, B,(0,z). This implies that the translationally
invariant magnetic field B(z, z) is determined entirely by B, (0, z) also. This is anal-
ogous to the result proved in the text that an azimuthally invariant magnetic field
B(p, z) is determined entirely by B, (0, z).

Source: D. Jette, Medical Physics 30, 264 (2003).
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10.10 Symmetry and Ampeére’s Law

(a) We work in cylindrical coordinates where z = pcos¢ and y = psin¢. Then, because
X = cospp — sin ¢p¢ and y = sin pp + cos ¢,

B = B,x+Byy+B.z=(B,cos¢+ Bysing)p+ (B, cos¢ — B, sing)¢p + B,z
— B,p+ B, + B.2.
The magnetic field is a pseudovector so, under reflection through = = 0,
B — B =B;x+ B,y + B.z2 = B,x — B,y — B.z.

Moreover, this reflection sends ¢ — 7 — ¢, so sin¢ — sin¢ and cos¢ — — cos .
Combining these two bits of information tells us that B/’, = —-B,, B(’/) = By, and
B! = —B,, as required.

(b) A 7 rotation around the z-axis sends B to B where
B = B,x+ B,y + B.2 = —B,x — B,y + B.#.

On the other hand, this rotation sends ¢ — ¢ + 7, so sin¢ — —sin¢ and cos¢p —
— cos ¢. Consequently, Ep =B, B¢ = By, and B, = B.. This result is consistent
with the results of part (a) only if B, = 0 and B, = 0. Finally, rotational invariance
around the z-axis ensures that B(p,®,z) = B(p,z). Therefore, we conclude that

B= B@([),Z)d)

(c) Since B(r) = B(p, z)$, we use Ampere’s law and circular circuits parallel to the z = 0
plane centered on the z-axis. This gives immediately

pol +

—T z > 0,
™
B(p, z) = p
0 z2<0
(d) The magnetic field matching conditions are
flg . [Bl — BQ] =0 flg X [Bl — BQ] = /J,()K(rs).
We choose ny = —2z so the normal component equation is automatically satisfied at

the z = 0 surface. The other matching equation reads

This is correct because the total current I flows radially outward through every circle
with perimeter 2mp.

10.11 Current Flow over a Sphere
The geometry of the problem is the following.
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_
N

14

(a) The amount of current which flows past a curve C on a surface is

I:/ds~K><ﬁ.
c

This must be true for every circle which is the intersection of the sphere with a hor-
izontal plane. For such circles, ds = Rsind¢¢. Moreover, K = —K(0)0 and 1 = 1.
Hence,

I o

(b) The source current is invariant to rotations around the z-axis. Therefore, in cylindrical
coordinates,

The magnetic field satisfies V x B = pgj and B cannot depend on ¢. Therefore, the
only components of the curl that may be non-zero are

OB, . 10

(pBs )2.

This tells us that B = By (p, z)qAb and that we should use Amperian circuits which are
horizontal circles coaxial with the z-axis. When |z| > R, this gives the infinite-wire
result that B = (uol/27p). When |z| < R, we get zero when p < Rsinf (inside the
sphere). When p > Rsin 6 (outside the sphere),

%ds ‘B =27mpBg = pol.

c
Therefore,
0 inside the sphere,
B= 7.
&d). outside the sphere.
2mp

184



Chapter 10 Magnetostatics

(¢) The magnetic field matching conditions are
le . [B1 — BQ] =0 ﬁg X [Bl — BQ] = ‘U,OK(I'S).

We choose ny =t so the normal-component equation is automatically satisfied at the
surface of the sphere. The other matching equation reads

T X (Bout - Bin)|S = /u'()K
Since p = Rsin# at the surface of the sphere, the left side is

N pol 4 pol 5
= — 0.
rx 2w Rsin @ 2w R sin @

This agrees with the current density found in part (a).

Source: P.C. Clemmow, An Introduction to Electromagnetic Theory (University Press,
Cambridge, 1973).
10.12 Finite-Length Solenoid II

(a) The Biot-Savart law for a current ring is

ol r—r
B(r) = E/dsl X m

Moreover, ds x (r—r') = Rd¢p x (22— Rp) = Rzdgp+ R2dpz. Only the z-component
survives the ¢ integration so

IR
B(z) = 2(R? 1 22)32 %

\Bout

=
=
—
E—
1
1
:4— ~
1
1

Since n = N/L, we get the field at the midpoint of the solenoid by symmetrically
superposing the field from rings:

L/2
B(z)—'uOIRQ / ndz 5 wolInL 5
=3 B+ 20 iR i

—L/2
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(b) The magnetic field inside a finite solenoid very near the wall and far from the ends is
very nearly parallel to the wall, with only a tiny component normal to the wall. The
field just outside will be nearly parallel to the wall also, because the normal component
of B is continuous passing through the wall. Indeed, the outside field near the wall is
nearly anti-parallel to the inside field near the wall because V - B implies that field
lines form closed loops. This motivates us to use Ampere’s law in integral form and
the square-loop path shown dashed in the figure above. There is no contribution from
the paths normal to the wall so

%ds -B = Bipl + Boutl = poInd.

Since L > R, we conclude that

L R 2u0nIR2A
Bou = — Il — |2~ ——>——7.
out HoT { I 2+L2}z 7 Z

10.13 How the Biot-Savart Law Differs from Ampere’s Law

(a) The Biot-Savart law for a line source is

B(r) = uoIO/dﬁx (rfr’)'

4 v — /3

For observation points in the z = 0 plane, r — v’ = pp — 2’2, so
Iydzz x (pp — 2'2) = IypdZ' ¢,

and the magnitude of the field at any point on C is

29 .

tolop dz’' 1ol o solo
o N = 0, — cosh} .
47 /(ZIQ T )3 4rp \/m 1mp {cos @y — cos b}

21

(b) The streamlines of j; are radially in from infinity to the point r; and the streamlines
of jo are radially out from the point ry to infinity. A closed circuit results if these two,
respectively, deliver/extract total current Iy from/to the original segment; in other

words, if
/ds-jlz—lo and /de1 :Io,
Sl SQ

where S} (S2) is an infinitesimal sphere which surrounds ry (r1). We confirm this using
the divergence theorem and the fact (gleaned by direct analogy with the electric field
of a point charge) that V- j; = —Ipd(r —r;) and V - jo = Id(r — ra).

(¢) The net current through the circle C in the z = 0 plane due to j; (r) is

. I, [*" " cos I, " . Iy
: / = /0 ¢/0 dppp2 2 2 J, dfsin 0 5 (1 —cosfy)
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1
Similarly, the net current through this circle due to jo(r) is I, = Eo(cos 0y — 1).

Therefore, applying Ampeére’s law to this circle gives
Iy
ds-B =2mpB = /LOE(COSHQ —cosfy).

Therefore, in agreement with part (a),

#0 0

{cos 0y —cosO,} .

(d) Neither j; nor j, produces a Biot-Savart field because both have zero curl and both fall
off fast enough to make the surface term vanish in this Biot-Savart equivalent formula
derived in the text:

pol [ 5, V' xj()) /
B(ry=—" [ d ds
(x) 4 " |r—r’|

h—ﬂ
Source: N. Fukushima, Report of Ionosphere and Space Research 30, 113 (1976).

10.14 Find Surface Current from the Field inside a Sphere

We will use the magnetic scalar potential. Since the desired magnetic field is a polynomial
of degree one, the fact that B. = —V . inside the sphere tells us that ¢ . is a polynomial
of degree two. Moreover, V9. = 0. Therefore, we may conclude that

B
— 222 4in? § cos 2¢.

B
e,y 2) = =5 (0 = yP) = = sin® fcos ¢ — sin® §) = —

2a

Outside the sphere, we have B = —V1. and V23 = 0. One matching condition is that
the normal (radial) component of the magnetic field is continuous. Therefore, the angular
dependence of 15 must be the same as 1~ . Accordingly,

U< (r,0,0) = ésm 0 cos 2¢.

We find the coefficient A by imposing this matching condition explicitly at » = a. This
gives

4
By = % = P (r,0,0) = 0% 5in2 § cos 2¢.
a

3r3

The current density we want follows from the other condition at the matching surface S:
rx (B —B.)|s = noK.
Writing this out in detail gives
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ﬂoK = —I X V(’l/J> - w<)|7’:a
1[0 ~ 1 0
_ _a[ %_esmm} (s — o)

Therefore,

5B N R
K=-"" [sin29c082¢d)+ 25inﬂsin2¢0} .
6110

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

10.15 A Spinning Spherical Shell of Charge

If o0 = Q/4nR? is the surface charge density, the magnetic field is produced by the surface
current density

K = ow X r = woRsin 0.

The magnetic scalar potential satisfies Laplace’s equation inside and outside the sphere.
The text showed that the [ = 0 term is absent from the expansion

oo A({TZ r <R,
0) = Pi(cosf) x B, (1)
(=1 Iy r > R.

One matching condition is continuity of the normal component of B at » = R. This gives

Pi(
ZAMR’Z 1Py (cos ) ZBé ¢4 1) Pleosh)

e RI+2
Hence,
B, = gf_ 1R24+1A 2)
The other matching condition is
t X [Bout — Bin],_p = oK,
or
1 [again - &g(;ut] . = powoRsin 6.

Therefore, using (1) and (2),

188



Chapter 10 Magnetostatics

1 & , (20 + 1\ dP;(cosf .
RZAgRé ( £+1> ZE% ) = powo Rsin 6.
=1

From Appendix C.1.1., dP;/df = P} and sin = —P}]. Therefore,

3
§A1 = —powoR and A1 =0.
We conclude that
2
_gﬂowoRz r<R,
1/J(7’a 0) = R
’uo% cos r> R.
r

Inside the sphere, the magnetic field B = (2/3)upo Rw is uniform. Outside the sphere, the
field is purely dipolar with magnetic moment m = (47/3)ocR'w.

Source: W. Hauser, Introduction to the Principles of Electromagnetism (Addison-Wesley,
Reading, MA, 1971).

10.16 The Distant Field of a Helical Coil

The magnetic scalar potential outside the coil is a linear combination of solutions to Laplace’s
equation in cylindrical coordinates:

« k

The source current has a fundamental periodicity ¢ in the z-direction. This suggests that
Zy(2) is a Fourier series of terms like sin(kz) and cos(kz), where k = 2rmz/¢ and m is an
integer greater than zero (the k = 0 term is the solution for a straight wire along the z-axis
whereas the current is almost entirely along ¢3 for this problem). The radial partners for
this set of functions are the modified Bessel functions K, (kp) and I, (kp). The second of
these diverges as z — oo, while

K, (kp) — 27];—[) exp(—kp) as p— oc.

The most slowly decaying term has m = 1. Therefore, far from the coil,

Y(p> R) ~ exp(—2mp/l).
The magnetic field B = —V1 decays exponentially in the same way. Moreover, the expo-
nential function goes to zero when ¢ — 0. This makes sense because an ideal solenoid (no

pitch) has no magnetic field outside of itself.
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10.17 The Distant Field of Helmholtz Coils

(a) The two coils of a Helmholtz pair of radius R lie on a spherical surface of radius
a = 4/5/4R. If we orient the rings parallel to the z-y plane, the surface current
density may be written

K:K$:£[5(0—90)+6(9+90fw)]é,

where cos 0y = 1/v/5. We will find the magnetic field from B = —V1, where V¢ = 0.
Using separation of variables in spherical coordinates and the absence of monopole
magnetic fields (no £ = 0 term below), the magnetic scalar potential must have the

form
[ r\¢
A (=) P 0
z; y (a) % (cos 0) r<a,
w(n 9) - (+1)
) aN —(+
1’; By (;) Py(cosb) > a.

The matching conditions at r = a are B, (in) = B, (out) and By(out) — By(in) = po K.
The first matching condition gives

0 r\¢
Ar(—) P 0
[2 /<a) % (cos 6) r<a,
U(r,0) = , .
o an 0+
_K; Ag€+ T (;) Py(cosb) r>a.

The second matching condition gives

= 2+14d
S A2 2y (cos 0) = oI [5(0 — 0) + 8(60 + 0y — )]
2T db

We now use three facts about the associated Legendre polynomials,

d
@Pg (cos@) = —P}(cos )

P}(cos @) = (—1)""1 P} (—cosh)

/ dfsin O P;" (cos 0) P} (cos0) = 77)'5/%
0 m)!

to get
1
A = —“2% sinfy [1 4 (=1)*1] P} (cos by).

This gives Ay = 0 when £ is even. Otherwise, because sinfy = 2 / V5 and cosfy =

1/V/5,
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A1 = 7‘[140[Si1190P(’1 (COS@O) = 7,LLQISiH2 90 = 7%#0[
Ay = —LpoIsin Py (cosby) = —LpoIsin® 6y [5cos? 0y — 1] =0
Ay = f%,uol sin 6y PY (cos ) = %,ugfsin2 B cos? By = %pg],

where we have used the recurrence formula

nPl,, (@) - (2n+ 2Pl (2) + (n+ )P, (&) = 0.

We conclude that, far from the origin,
C1 Co
¥(r,0) = —5 Pi(cos) + 5 Ps(cosf) +--- .

This gives the advertised form for every component of the magnetic field because

oY, 10y,
B(r,0) = -Vy¢ = —a—qfr - ;8—2}0

(b) The leading (dipole) term of the scalar potential at long distance is

4 2 1 R?
P1(r,0) = l—o,ugli—? cosf = inIT—Q cos 6.

This term can be canceled by a second, coaxial set of Helmholtz coils with radius
R’ > R and current I’ as long as I'R"? = —IR?.

Source: E.M. Purcell, American Journal of Physics 57, 18 (1988).

10.18 Solid Angles for Magnetic Fields

Put the origin at the observation point so the current flows parallel to the z-axis as shown
below. The dashed line is an edge view of a semi-infinite plane that begins at the wire and
extends to infinity. This plane can serve as the “cut”. It is also the boundary of a giant
square loop that closes the circuit. The magnetic scalar potential is

1 I
_Hole Mol

Vi) = -7 0=-5"

because 2 = / do sin9/ d¢ = 2. The magnetic field is
0 0

because « is the polar angle in cylindrical coordinates.
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10.19 A Matching Condition for A

The text pointed out that the analytic connection between the k" Cartesian component

of Coulomb gauge vector potential A(r) and the current density j(r) is the same as the
analytic connection between the electrostatic scalar potential ¢(r) and the charge density
p(r). Therefore, because

R o N o
111'(E2—E1)|S=g = n1'(V<P1—V<P2)|S:gy

we conclude that

. OA, OA
Ay - (VA; — VAy)|s = K~ = < ! 2)

10.20 Magnetic Potentials

In cylindrical coordinates,

wzglan =Clnp.

This scalar potential produces the magnetic field

p.

B--vyp=--C
p

This is the magnetic field of a wire carrying current in the z-direction. The vector potential
for such a situation points in the z-direction also. Thus, we want
B=VxA=Vx(A4z)=-z2xVA

to produce the magnetic field above. This tells us that A = Clnpz. To get a vector
potential which lies in the z-y plane, we need a change of gauge: we choose a gauge function
x so Vx cancels the vector potential we have and replaces it with a vector potential which

lies in the z-y plane. A simple choice which does the trick is x = —CzIn p because
C C
A =A+Vy=Clupz—V[Czlnp| = —72,3 - _f(cos@z + sin ¢y).

‘We also check that
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Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

10.21 Consequences of GGauge Choices

(a)

Ho . 1
V . A(I‘) = E dST’/J(r/) . VW
— 7& EIYSVANE v/) 1
= 47T/dr3(r) v|r—r’\
Ho 3./ j(rl) /~L0/ 3 ,V/'j(l'/)
= K g : B[ g3y X 92
m )Ty Lr_rq RS B ra—y

The second term vanishes for steady currents because V-j = 0. The divergence theorem
converts the first term to a surface integral at infinity where we presume that j(r) — 0.

(b) From the Helmholtz theorem, the conventional Biot-Savart formula

R R

CAr¢ [r —r'|3

is valid when V- B = 0 and V x B = pj. Therefore, the proposed formula is valid
when V- A =0 and V x A = B. This is the Coulomb gauge.

10.22 The Magnetic Field of Charge in Uniform Motion

(a) The relevant current density is j(r) = vp(r) so

Ho 5., 3(r) Mo 5., P(T') v
A = = |d =" 14 -
(x) 4 v —r/| 47 v —r/| 2 (r)
1 1 1
B = VXA:C—QVX(U@):fC—QUXV@:c—QUXE.

(b) From Gauss’ law, the electric field of a line charge (charge/length A ) coincident with
the z-axis is
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We get a flowing current I = pv if v = vz , so, from (a), the magnetic field is

wodv ., . ol 4
B(p) = 27rpz><p:27rp .

This agrees with Ampere’s law. Similarly, Gauss’ law gives the electric field of a sheet
with uniform charge per area o coincident with = 0 as

E(z) = f{%sgn(x).

If the surface current density is K = ov where v = vz, part (a) gives the Ampere’s
law result

. K
B(x) = y2—sgn(x).
€0
10.23 A Geometry of Aharonov and Bohm
(a) By symmetry, A = A ¢. We evaluate the flux integral in the statement of the problem
for a circle of radius p. Since ® = [ dS - B, this gives 7Bp® = 2mpA(p) for p < R and
7R?B = 27pA(p) for p > R. So,

Bp -

<R
5 p< R,
A= 2
BR? .
p>R
2p

We are in the Coulomb gauge because V- A = 0.

BR? .
o.

P o .
A=A ——¢)|=A-—¢d=A-
+V< 27r¢) 27rp¢ 2p

Using A from part (a) shows that

Bp BR?\ .
=P <R
e (2 2p)¢ p <R,

0 p > R.

This vector potlential is zero outside the solenoid, as advertised.

(¢)

B’:VxA’:B—vaX(f):B—q;vX<¢>. (1)

V x <¢> 2a<p>< 1)0.
p pOop p
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Moreover, if S is a surface that cuts perpendicularly through the solenoid

/ds.vX (f) fds-i’jdqszw.

S

Consequently,

Using (1), we conclude finally that

% dlo)
2 p

B =B -

10.24 Lamb’s Formula
(a) If B is a constant vector,

(VXA)i = Ei]‘kraj%GkstBsTt =

- %Bsq’ijekst(sjt = %Bs(aisé‘jt*é‘it(;js)éjt = %(B 5]] -B; 67]) = B
(b) The source current is j(r) = (e/2m)p(r)B X r so
eBB 5, 'p(r)
Ain( 0 ds ! .
1(r) = dr2m " |r — /|
Let r point along z and r’ = 7't/ where ' = zcosf’ + ysinf’ sin ¢’ + xsin#’ cos¢’. In
that case,
[zt
v —r'|
0 2T 7r r N 00 '
_ / /il Nt 1 / no3 [T ’ no2 (T
= Z d¢" [ dO'sin@' Py(cos0' )t § = [ dr'p(r')r"™ | — ) + [ d'p(r')r"" (-
r T r
(=079 0 0 v
(10.1)

The ¢ integration eliminates the X and y components. Moreover, P, (z) = x and

/1dP( )P ( )_ 26lm
71$[$ mx—2€+1~

Hence, only the £ =1 term in the sum survives the integration in (1) and

/ /
/d37"l;p_(rr/)| = 27T><*Z /drp r’ —|—r/d7‘p

/
i d37“/ p(T’)T’Q + / d37,/ p(T) .

r/

w3
<
o
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We conclude that

1 /
Anal) = 20 / d*r’ p(r')r" + / 3 P (Z)

T 41 6m

(c) When r is very small,

o eB xr [ 4m p(r")
Aing(r) = I om {5P(O)T2 +/d3’“/ (-

where the integral that remains is over all of space. In that case, the latter is equal to
4megp(0), where ¢(0) is the electrostatic potential of the atom evaluated at the origin.
Moreover, the first term inside the curly brackets is higher order in r. Therefore,

eBxr

Ajg(r) = ©(0).

6mc?

Because B is a constant vector, V x (B x r) = 2B, and we confirm that

ep(0
Bind (0) =V x Aind (I') = 3%02)8

Source: W. Lamb, Physical Review 60, 817 (1941).

10.25 Toroidal and Poloidal Magnetic Fields

(a) Use the fact that V-V x Q = 0 for any vector Q. This gives V- P =V -V xLy=0
immediately. Similarly, T = Ly = —ir x V¢ =iV X (¢r) so V- T =0 as well.

(b) Suppose B is toroidal so B = Ltp. This implies that j is poloidal because poj = VxB =

1oV x LE. Conversely, suppose B is poloidal so B = V x L. In that case, j is toroidal
because

wj=VxB=Vx(VxLy)=V(V-Ly) - V'L = —V?Lyp = —LV%y.
(¢) The magnetic field of a toroidal solenoid was found in the text to be

NI -
N; 0} for points inside the torus,
™
B(p,2) = p

0 for points not outside the torus.

Therefore, if C' is a constant, we need to show that a function ¥ (r) exists such that
C - )
B=—¢p=Ly=iVy xr.
p
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Now, # x 8 = ¢. Comparing this with the equation above and switching from cylin-
drical to polar coordinates tells us that

G _c_ ¢

09  p rsind’

i 0
Integration gives 1 (r,0) = — Intan > which proves the assertion.
r

(d) We have V-B =0 and V x B =0 in V. The Helmholtz theorem would give B = 0 if
V were all of space. When V is finite, the double-curl identity tells us that

0=Vx(VxB)-V(V-B)=-V’B.
Therefore, V2B =01in V.
(d) We have
B = VxA
= VxLy+Vx(VxLy)
= VxLy+V(V-Ly) - V’Ly
— VxLi— VL.
Now take the Laplacian of both sides. We get V2B = 0 if ¢)(x) and v(z) both satisfy

Laplace’s equation, i.e., V2% = 0 and V?v = 0. In that case, V’Ly = LV?y = 0 so
we are left with B = V x L, which implies that the vector potential A = L in V.
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Chapter 11: Magnetic Multipoles

11.1 Magnetic Dipole Moment Practice
We will find the current using V x (V x A) = pgj. First,

B=VxA= exp(—Ar).

1o Ag [fQCOSQ _'_é)\sme}
r

A7 72

Therefore,

2
—V x B = ¢4arA, sm6‘{ A }exp(—/\r).
Ho r

The associated magnetic moment is

A 5 4 2 N
zé/d%rxj:—&?/d‘grersinﬁ{rg—);}exp(—)\r).

But 6 = % cos 6 cos ¢+ cosfsin ¢ — zsin . This shows that only the z-component survives
the integration. Hence,

2
m = /d@sm 9/ drr3 exp( )\’I“){Q /\}
2

7TAO Qd o0
= Z— S {2—)\ d)\Q}/ dr exp(—Ar)

11.2 Origin Independence of Magnetic Multipole Moments

(a) If we shift the origin by a vector d, the new magnetic moment is

m’:/d3r(r—d)xj:m—dx/d?’rj:m

The last equality above is true by conservation of charge. In the language of current

loops,
/d%j:ffds:o.

1
(b) Similarly, m/? = g/dg'r [(r—d) xjli(r —d);. Writing out the four terms gives

ij

o N 1 :
mii? = 3/dST(FXJ)ﬁjfg/dgr(rxl)idjfg/ds (dxj)ir;+ /d3 r(dxj)id;.
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The last integral above is zero because [ d37r j,, = 0 as in part (a). What remains is

3 1
m® = B, — e, [ariin, Ly

But our derivation of the dipole vector potential exploited the identity

. 1 . )
/d37°Jle = 56kt /dST(I‘ X j)i = —€peim;.

Comparison with (1) shows that m;gg) =m?

;; only when m = 0.

11.3 The Field outside a Finite Solenoid

The volume V' is bounded by a surface S composed of a hemisphere and a disk as shown
below. Therefore,

0:/d3rv.B:/ds.B:/dS~B+ / ds - B.

%4 S disk hemisphere

The flux integral over the hemisphere is zero because dS ~ r?. The general multipole

expansion guarantees that the field strength falls off as B ~ 1/7% in the limit when a — oc.
This means that the total flux through the disk must also be zero. The contribution to
the flux integral from the part of the disk which lies inside the solenoid is (Diﬁsk = uonlA.
Therefore, the contribution from the part of the disk which lies outside the solenoid must
be equal and opposite. This tells us that the field outside points oppositely to the field
inside. Moreover, only the portion of the disk near the solenoid contributes because the
field becomes dipolar far away on the disk and fails to contribute (like the hemisphere
contribution). By “near”, we mean out to a distance of the order of L (there in no other
length in the problem). Therefore, apart from the sign,

out 2 _ Hdin
Plisk = Bout L™ = @i = ponl A.

This gives our estimate for the magnitude of the outside field as

/L()nIA
Lz -

Bout ~

Source: J. Farley and R.H. Price, American Journal of Physics 69, 751 (2001).
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11.4 The Magnetic Moment of a Rotating Charged Disk

Orient the disk to lie in the z-y plane with its center at the origin and let p be the radial
vector (in polar coordinates) in that plane. If each element of surface charge dg = odS
moves with velocity v = w x p, the magnetic dipole moment of the disk is

m:%/pxdqv:%a/dpr(wxp). (11.2)

(a) The rotation axis is normal to the plane. In other words, w = wz is perpendicular to
p. Therefore,

R

27
1
m = ia/dS [pr —p(w- p)} = %J/dqb/dpp?’w = %0R4w.
0

0

(b) We can choose w = wx since the rotation axis lies along a diameter. Then, because
p = pcos¢x + psin ¢y, (11.2) becomes

1
m= §aw/d5 [p2 sin? ¢x — p? sin ¢ cos ¢y] = %0R4w.

11.5 The Field inside a Semi-Infinite Solenoid

The field inside an infinite solenoid is B = pgnlz. If we apply this to the semi-infinite

situation,

O(R—p)
A

Bin(p,2) = uonlO(—2)0(R — p)z = pym O(—z2) Z.
If the delta function identity suggested in the hint is correct,
fllimo Bin = pomO(—2)d(z)d(y).

In this case,

}firhv -Biy = %ugm@(—z)é(x)é(y) = —pomd(x)d(y)dd(z) = —pomd(r).

To prove the identity, we note first that Aimo O(R — p)/A = oo. Moreover,

2m o]
. O(R —p)
1 — =1
lim ; d(b/o dpp
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11.6 A Spinning Spherical Shell of Charge

(a) The surface current density is K = ov where o = @ /4w R? is the surface charge density
and v = w xr is the velocity of a point on the surface at the point r. The corresponding
volume current density requires a delta function to define the surface:

__Q
47 R?

j (wxr)d(r— R).

On the other hand,

j:Vx[M@(R—r)]:MxV@(r—R):foé(r—R):Mx%6(7“—]%).

Comparing these two formula shows that M = (Q/47R)w.

(b) Using one of the expressions for j just above and the definition of magnetic moment,

m = %/d%rxj:%/d%rx(fo")d(rfR)
_ %/d% IM(r- ) — #(M - 1)] 6(r — R).

To do the second part of the last integral, choose M = Mz and note that only the
cos 0z part of r survives the integration over ¢. Hence,

® 2T !
m = %/derré(r—R) — %ZM-/drr?/ dd)/d(cosﬁ) cos> OMré(r — R)
0
0 2

1 , . 2
= 3 [47rR5M — 2T M R? x 3} Z

4 . 1
gwRSM = gQR%;.
(¢) To get the vector potential, we integrate by parts:

B0 s @) g ko [ VO —R) 1 g, T
A(r)74ﬂ_/d r 1 7M><47r d’r 1] —/LOM><47r d’r Pyl

r’'<R

The integral is the electric field of a ball of radius R with uniform charge density
p(r") = €y. This we compute straightforwardly using Gauss’ law. Therefore,

Mo M X T

dr 3 r> R
A(r) = y

fo M XT

— - R.

47 R3 r<
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(d) Outside the sphere, we get a pure dipole field with magnetic dipole moment m. Inside
the sphere, we get a uniform field:

Ho _ Mo Q

Mo m— w
21 R3 6mR

47 R3

B(r < R) = Vx(mxr)=

11.7 Magnetic Moment of a Planar Spiral
One turn of the wire at radius r produces a magnetic moment m(r) = I7r* in the direction

dictated by the right-hand rule. For the spiral, the number of turns in the interval between
r and r +dr is

dr.

N
N =
d b

—a
Therefore, the magnetic moment of the complete spiral is

b
TiN 9 wIN b — o?

b
m:/m(’l“)dN:b_a drr :b_a 3

a

Source: LE. Irodov, Basic Laws of Electromagnetism (Mir, Moscow, 1986).

11.8 A Hidden Delta Function

Let V be an infinitesimally small spherical volume centered on the origin. The problem will
be solved if we can show that

1
[ Vi) = g,
\%4

Using a special case of the divergence theorem (Section 0.14) and the fact that dS = dSt
for a spherical surface,

V/dSN% = S/dsw = ﬁjd(;s_/jd(cosa)f(m-f).

Now choose m = mz and recall that = sin 6 cos ¢x + sin 0 sin ¢y + cos 0z. These give

2 1

/dsrw;o = % dgb/d(cos&)mcos@{sin@cosgbfc—ksinGsingby+cos€2}
v o =
or 1
= %m/dqﬁ/d(cos@)cos?()
(-
1
= gHom.
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11.9 Magnetic Dipole and Quadrupole Moments for (r)

(a) We get a Cartesian expansion using

1 1 , 1 1 1
SN VA (N vA P
r g r+2(r )

r

v — /|

Inserting this above gives

= Z—; E/dsr/r'~vl xj(r’)f/dsr'rﬂvl ><j(r')r'-V1

r
3.0 .0 ! s (! 1 ! 2 1
+ [dr' V' xjE)=(" V) =
2 T
The first integral in the square brackets vanishes because the identity
Vilrxj)=j-(VXr)—r-Vxj=-r-Vxj (11.3)

and Gauss’ law produce a surface integral at infinity which is zero for a localized
current distribution. The two terms which remain are exactly

1 1
I=—-"2m -V-+ mﬁ)vivr.
r ; r

Now, V;(1/r) = f(0,¢)/r* and V;V;(1/r) = g(0,¢)/r*. Therefore, since I =
—rdy/0r, we get the advertised expansion for ¢ (r) immediately.

(b) Using (11.3) and integrating by parts,

m = %/d?’r(erj)r
1 3 .
= —3 d°rv .- (rxjr
= /d3 (r xj)
- 2/d3 (r x j).

(¢) Again using (11.3) and integrating by parts,
/d‘; -V X j)rr;
= /d3rV (r x j)rr;
/d3 r X J (7"2'7“]‘). (114)

(d) Because r x j is perpendicular to r,

NE

Trm® =

1 . .
m!? :i/dﬂr(rxj).wr?):/dﬂr(rxj).r:o.

i=1
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(e) Using the result of part (c),
1 .
mg.) = §/d3r(r><3)kvk(7“irj)

1

= 5/d?’ (r x )i (Ogirj + 1i0k;5)

1 : . .
3 /ddr[(r X §)irj +ri(r x j);l.
f) The key point is that m? =1 M< ) 4 M( . Therefore,

1] 2

1
m(-Q-)VNj - =

1
ij Iy 2 z

Source: C.G. Gray, American Journal of Physics 46, 582 (1978); ibid. 48, 984 (1980).

11.10 Biot-Savart at the Origin

When the observation point r lies close to the center of a current-free, origin-centered sphere,
we get an interior multiple expansion of the vector potential simply by exchanging r and r’
in our basic exterior Cartesian expansion. The first two terms are

ey = g2 [ a5 e a0

The first term is a constant which does not contribute to the magnetic field B = V x A.
We rewrite the second term using

(r'xj) xr=(r-r)j—(r-jr
This gives

Ho 50 1 xj(r")] Ho 3,03 /L/
A(r) = 4ﬂ_/d 3 X+ e d’r J(r)rlg.

We rewrite the second term using an identity proved in the text, namely,

1
/dgT'ljkT‘Z = _§6k€i /dSTI (I‘/ Xj)z

The result is

This has the desired form,
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if
G = l/di’)r’w.

2 3

The corresponding magnetic field is the constant vector

fo po [ 3t xj(r')
B=Hg=H0 [ gy T2
2m 477/ " 7’3

This is exactly the usual Biot-Savart formula evaluated at the origin.

11.11 Purcell’s Loop

(a) The figure below shows that Purcell’s loop is equivalent to the sum of three square
loops of current. This is so because no magnetic field is produced by the two pairs of
oppositely directed and spatially coincident lines of current. Each square loop carries
a magnetic dipole moment with magnitude 7(2b)%2. The moments contributed by the
top and bottom loops are oppositely directed and thus cancel. Therefore, using the
right-hand rule, the magnetic dipole moment of Purcell’s loop is m = 4I1b?y.

y analogy wi e electric case, the top and bottom square loops cancel for the

b) B 1 ith the electri the t d bott 1 1 for th
dipole moment but add for the quadrupole moment. Thus, we expect a non-negligible
magnetic quadrupole moment for the Purcell loop.

Source: E.M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1985).

11.12 Dipole Field from Monopole Field

In the text, we computed the magnetic field of a dipole from its vector potential as

B =V {2 i (v 5 - e W) 5]

The first term in square brackets is proportional to 6(r) and thus does not contribute away
from the origin. The term that remains is exactly the desired result:

Bmono _ Ho 3(m : I')I' m
g Ar rd r3 |’

B=-(m-V)
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11.13 The Spherical Magnetic Dipole Moment

We need to compute
¢

3 3 e 1 1 Y—Zm (Q)
== dPrvVx A== -~ My, /d3v L )
o / VA= 42125 20+ 1l TV e

sphere = - sphere

This is not difficult if we exploit an identity quoted in Section 11.4.4, namely,

}/lm (Q)

=0.
)

(itV +V x L)

Therefore,

3 « , n Q)
=3 X g [ VIR
{=1m=—t sphere

We convert the volume integral to a surface integral using a corollary of the divergence
theorem to get

l\D\CX)

0o 14 Y,
Z Z Mém / ds :Z+1

sphere

If we let the integration sphere have radius R,

o RIS

,R”f/ﬁgfnman

Now,
I = Xxsinfcos ¢ + ysinfsin ¢ + zcos 6.

11.14 No Magnetic Dipole Moment
Method I: Use the identity proved in Example 11.1:
m = 3 / d*rB(r).
240

sphere

Then, using a corollary of the divergence theorem,

m = jiﬂ/d%VxA
210
sphere
- 2 / dS x A
240
sphere
_ ji,t/ dS# x (fr)
240
sphere
= 0.
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Method II: From V x B = pj and the definition of the magnetic moment,

1 . 1
mzé/d‘%rrxj:%/dgrrx[VX(VXA)].

Also,
VXA=Vx(fr)=f(Vxr)—rxVf=—-rxVf,

S0
VX (VxA)=-Vx(rxVf).

But Section 11.6.3 of the text defines L = —ir x V and quotes the identity
VxL=—irV?+iV(l+r-V).

Therefore,

—Vx(rfo):—rVQf—i-Vf—i—V%,

and we see that
B 1
210

/d3rr>< [V x (V x A)] :i/d%rx {—rv2f+Vf+Vaf}.
0

m

or

The first term in the curly brackets does not contribute because r x r = 0. The other two
pieces of the integrand are

rxVf=f(Vxr)=Vx(rf)=-Vx(rf)
and a similar term with f replaced by df/0r. However, using a corollary of the divergence

theorem, the integral over all space can be done using a sphere. Therefore, because dS =
dSr,

/d3rV><(rf):/dS><(rf):0

and similarly for the 0 f/0r term. Thus all three contributions to the curly brackets produce
zero and there is no magnetic dipole moment.
11.15 A Spherical Superconductor

(a) The net magnetic field is

o (3(m-r) m

The matching condition is that the normal component of B is continuous. Since B =0
inside the superconductor, the requirement is

i B|_,=0. (11.5)

A moment’s reflection shows that this is possible only if m = mz is anti-parallel to B
as shown.
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Accordingly, (1) reads

Ho 3mcos mcosb
47 R3 R3

— Bycosf =0,

SO
2

Ho

R3B,.

m =

(b) The other matching condition we need is ¥ X [Boyt — Bin] = oK. Hence,

Ho m
47 R3

Mo ™M

K = —F x By, = [ +Bo} (b x2) = — {Eﬁ +Bg} sin 6 = —%Bo sin 6.

(¢) We compute the magnetic moment by summing the magnetic moments from a collection
of current rings. The current in the ring at angle 6 is

dl = RAOK (0) = S—RB() sin 6d6.
Ho

R sinf

The radius of such a ring is Rsin 6 so its magnetic dipole moment is

3TR?
Ho

dm = area x dI = w(Rsinf)> ;—RBO sin 0df = By sin® 0d6.
Ho

Therefore, in agreement with part (a), the net dipole moment of the sphere is

m 1
3 3
m = /dm:?mR Bo/dﬂsinBHZB;TR Bo/(l—tz)dt
0

2p0 ) .

3rR® 4 2rR®
= 7T B(]* = T B().
20 3 o
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11.16 Azimuthal Moments for Concentric Current Rings

Consider an origin-centered ring parallel to the z-y plane with radius R and current I flowing
counter-clockwise as viewed from the positive z-axis. The text computed the azimuthal
multipoles for this system when the plane of the ring is z = a and tanf = R/a:

onIR? [/ R \'!
M= (2 P!(cos ).
C T T <sm9> ¢ (cos )

The Helmholtz coil has a = R/2 and a second identical current-carrying ring located at
z = —R/2. The azimuthal moments associated with the second ring are

__ 27IR? R\ o
Mo =" <sin(7r—(9)> Py(cos(m —0)) = (=1)""" M,".

The second equality above is true because sin(m — ) = sinf and P;(—z) = (—1)P;(z). The
derivative of the Legendre function introduces one more minus sign. This shows that the
total moment M, = MZr + M, is zero when { is even and

2
Mk:47rIR ( R

-1
o /
1 ) Py (cosb)

sin 0
when / is odd.
For our Helmholtz geometry, cosf = 1/4/5 and sinf = 2//5, so

(-1
Al (+1
M, = AR (“5) P(1/V5), ¢ odd.

+1 2
Moreover,
P(z)==
Ps(z) = 3(52% — 3x)

P;(z) = £(632° — 702% + 152)

Pr(z) = {(42927 — 6932° + 3152% — 35z),
which implies that

Pl(z)=1

Pi(z) = $(152* — 3)

Pi(z) = £(3152" — 2102* + 15)

Pl(z) = (300325 — 34652" + 94527 — 35).
Therefore, there are only three non-zero moments between £ =1 and £ = 8:
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1 ‘
M, =27R*I M; = fgerGI M; = %WRBI.

Source: D.G. Smith, American Journal of Physics 48, 739 (1980).

11.17 Dipole Field from Biot-Savart
The Biot-Savart law is

B(r) = Ko /d3r’ 3) x (e 1) =B(r) = Ho /dgr'j(r’) x V' !

 4m v — /|3 iy v —r/|

Into this, we insert the r > r’ expansion,

1 1 11 1
V——=V [+r"V+(r’~V)2+~}.
|r — 1’| r ro 2 r

The first term is clearly zero. The second term is zero also because

Therefore, dropping all higher-order terms,

B(r) = X0 /d3r’j(r’) x V'(r - V)Ql,
8 r

or
Ho : : 1
B; (I‘) = g /ddrl ei(m.%a;n (T[/)TD@PaP;'
However,
-/ /Wi 1 Sy 1
eié’mjfam (Tprs)a[)ap ; = 2€ieP-7[r58p85 ;’

and we proved in the text that
/d37“/ Je(x")ry = esm,
where my, is the kth Cartesian component of the magnetic dipole moment vector m. Therefore,

Mo 1 1o 1 1
Bv’, = Ee(?piekksmkapas; = E |:mkak:aiT - miapap; .

The last term is proportional to a delta function at the origin, which we drop. Consequently,
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which is indeed the dipole field,

11.18 Octupoles from Dipoles

(a) Ignoring the pre-factor pg /47w, the magnetic scalar potential for this system is

wir) = Y e =),

At large distance,

()~ 3 e (‘;_ o) (1 +3r'r“) :

r r2

or

w(r)zg.zma"'ﬁ [3(f-ra)(ma-f‘)—ma-ra]—i—O(l/?A).

« «

The 1/7* term is the octupole, so we must eliminate the dipole and quadrupole terms.
Therefore, the conditions needed are

Zma =0 and Z B(f ry)(m, -T) —m, -1,] =0. (1)

«

The condition on the left is straightforward: the total dipole moment must be zero.
Writing out the scalar products, the condition on the right becomes

Z?A’Z [3raimaj —m, - raéij] 7A’j =0.
«
This a quadratic form. Using the hint, the conditions are that A;; + A;; = 0, where

Ai]' = Z [STQima]' —m, - I‘Q(Sij] .

«

We begin with A,, = A,y = A.. = 0. These constraints give

Z [Qmazxa — MayYa — mazza] =0

«

Z [Qmayyu — Maz2a — maa:xa] =0

[e%

Z [Qmazz(y — Mozl — ma'yya} = 0.

«
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In other words,
Z MagTo = Z MayYa = Z Moz 2a- (2)
« (e} o

We also must impose A,, = —Ay,, Ay, = —A.,, and A,, = —A,,. These give,
respectively,

Z(maa:ya + mayxa) =0

%

z:(mmz,l +Ma:Tq) =0 (3)

«

Z(mayza + mazya) =0.

«

(b) There is no loss of generality if we put ms at the origin of coordinates and point m; in
the z-direction. Similarly, we are free to point my in the z-y plane. Therefore, using
the left side of (1), ms points in the z-y plane also:

m = (my,,0,0)
my = (Mmoy,May,0)
mg = (—my,; — Moy, —Myy,0)
(4)
ri = (21,41,21)
r; = (72,12,22)
r3 = (0,0,0).

At this point, we have nine parameters and five conditions represented by (2) and (3)
constrained by (4), namely,

MoyY2 =

M1, T1 + Moy T2

I
o o o o o
—
o
S~—

M1z Y1 + Moz Y2 + Moy T
Miz21 + Moy2e =

Mmayzo =

We can satisfy the first equation in (5) using ms, = 0 or y» = 0. Suppose we choose
ma, = 0. In that case,

m; = mi,X, My = M, X, M3 = —(m; +my),

and

M1sT1 + Moo = 0.

In other words, all three moments lie on a common line and all three moments are
parallel or anti-parallel to one another. The ratio m;/ms = r9/r1. An example is
shown below.
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my —
r e

4—,-/_ m3
)
—_—

my
(c) The second choice is yo = 0. In that case,
21 =20=0 and mi,r1 +moxs = 0.

In other words, the moments are located at the corners of a triangle in the xz-y plane
with ms anti-parallel to r{. Moreover, because ry is opposite m; and r; is opposite
mpy,

myimgimg =797 |rp + o,

or
mp 1My Mg = 81 1S9 © 83.

The choice z3 = 0 in the last equation of (5) reproduces this solution. An example is
shown below.

m;
—
SN
’ So
2/ 53
/ ~
/ ~
/ ~
’ ~
A Y
m; 1 '/mz

Source: H.J. Butterweck, Archiv fir Electrotechnik 74, 203 (1991).

11.19 Magnetic Multipoles from Electric Multipoles

Let z be the symmetry axis of the charge distribution p(r,6). The exterior electrostatic
potential produced by such a distribution is

1 > AL
= 7P S
o(r,0) Tneg ; e lr (cosf),

where

A = /dsrrLPL(cosﬂ)p(r,H).

Therefore, a distribution which produces a pure multipole field of order £ must have the
form

p(r,0) = f(r)Pi(cos9).
The current density produced when this distribution is rotated rigidly about w = wz is

j(r,0) =@ xrp(r,0) =wr(z x t)p(r,0) = wrf(r)sin 0P (cos b)ep.
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Now, the text showed that the exterior magnetic scalar potential produced by an az-
imuthally symmetric current density j(r, 0) is

where
M, = gi : /d%r‘P/(cose)L -j
Because L = —ir x V is Hermitian, we can also write
M, = 76—1 - /di‘rﬂ [LP;(cos )] - j.

Finally, LP, o LYyy o Xy9 and the vector spherical harmonics Xy, are orthogonal to a
solid angle integration. Therefore, it is sufficient to show that our j is proportional to a
linear combination of LPy,; and LP,_;.

Using the representation of the gradient in spherical coordinates, we find that

72,813&1 (cos 9)

LP41(0) = —ir x VP11 (cost) = 56

¢ = —isinOP/,,(cos ).

This establishes the desired result because the Legendre polynomials satisfy the recurrence
relation

Pl (x) = Py (2) = (20 + 1) Py(z).

Source: S. Datta, American Journal of Physics 60, 47 (1992).

11.20 A Seven-Wire Circuit

The two square loops are identical except that they carry current I in opposite directions.
The loop centered at @ = a/2 produces a magnetic moment m, = Ia*2. The loop centered
at ¥ = —a/s produces a magnetic moment m_ = —Ia?%. These cancel in the far field
and we expect a magnetic quadrupole field. We get the asymptotic vector potential by
superposing the vector potentials from these two slightly displaced magnetic dipoles:
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A(z,y,z2)

Magnetic Multipoles

n {m+ X (r—(a/2)%) m_x(r+ (a/Q)X)}

dr | r—(@/2%P e+ (a/2)%P
Ho oo { (x—a/2)y—yx  (z+a/2)y—yx }
4 [(x —a/2)? +y2 +223/2  [(z+a/2)2 +y2 + 22]3/2
Ho oo [ (x—a/2)y—yx  (z+a/2)y —yx }
4 12 —za+ (a/2)2]3/2  [r2 4 za+ (a/2)?]3/2
‘ZJWI; {[(x—a/Z)y—yfc] [1+‘;":§+~--}
- Mooy -l |1 55 o]}
pola?

A ra , . 1
473 [—ay + 37“72(xy B yx)} +0 ( )

Y
pola® (302 N o By
Ar 13 r2 Y= ay
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Chapter 12: Magnetic Force and Energy

12.1 Bleakney’s Theorem

The equation of motion for m is

2
T e+ T B (1)

mae = 1B+

The equation of motion for M in a field kB(r) is

& d
Y yE+ Z < kB).

Mg =B+ g

To avoid changing E, we need only define a new time variable 7 using

M _m

2 T2 :

This transforms the M equation of motion into

d*r m dr

The choice k = /M /m reduces this to

d?r dr
— =q(E+ — x B).
M 9(E+ dr xB)

This equation predicts the same trajectory as (1). They differ only by the speed at which
the particle traverses the trajectory.

Source: W. Bleakney, American Journal of Physics 4, 12 (1936).

12.2 A Hall Thruster

(a) We get uniform electron drift in the z-direction if the electric force density —en.E
exactly cancels the Lorentz magnetic force density —en, v xB. Imposing this condition,
E = —v x B, implies that

ExB=Bx (vxB)=vB>-B(B:v).
This, in turn, implies the suggested result,

ExB
MNP

(b) Using the equality of the forces in part (a) and n; = n,, the electric force on the ions is

FT; = eniE = eneE = —€n,Vv X B :jHall x B.

By Newton’s third law, the reaction thrust on the shells is T = —F; = B X jgan if the
ions are ejected from V before the magnetic Lorentz force on the ions begins to act.
This will be the case because a xenon ion is much more massive than an electron.
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Source: D.M. Goebel and 1. Katz, Fundamentals of Electric Propulsion (Wiley, Hoboken,
NJ, 2008).

12.3 Charged Particle Motion near a Straight, Current-Carrying Wire

(a) The magnetic field points in the z-direction at the initial position of the particle.
Since the initial velocity is in the y-direction, the initial force is in the z-direction.
Subsequent forces are confined to the z-y plane, so the particle trajectory is in this
plane also.

(b) The relevant magnetic field is

_ Kol
2rx

Therefore, with F = gv x B and = ugIq/27m, Newton’s equation of motion is

— Ve o Vy o dv, d& A
F—mﬂxy mﬁxx_ dtx+ dt
or
dv, Uy dvy v
= [= d -3 1
dt p x o dt p x (1)
The leftmost of these integrates immediately to
vy — vy = Bln(z/x). (2)

The speed of the particle is vy and the magnetic field cannot change this because it
does no work. Therefore, we can use (2) to make a table:

vy = when z = x
v, =0 when = =1 = x¢exp(—vy/5)

v, = —vy when x =z = zgexp(—2uv/0).
This shows that the particle never leaves the proposed interval.

(c) To conserve the speed, we must have v, = 0 at z = x9 as well as at © — . Using this
information, and the fact that v, oc v, and v, oc —v,, we can sketch the trajectory:
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(d) Combining the right side of (1) with dv, /dt = (dv, /dx)v, gives

vpdv, = _B [vo + BIn(z/x0)] dx.
x
This integrates to

v2 = —Bln(x/x0) [2v0 + BIn(z/x0)] .

Therefore,
dy _ vy _ v + Sn(z/x0)
dr v, \/=BIn(z/x)[2v0 + Bln(z/x0)]

Source: J. Neuberger and J. Gruenbaum, European Journal of Physics 3, 22 (1982).

12.4 Anti-Parallel Currents Do Not Always Repel

The fact that R is very large means that the entire voltage drop occurs over the resis-
tor. Therefore, the wires are equipotentials with net charges +@ to maintain the potential
difference V' between them. In other words, they form a two-wire capacitor with capac-
itance C' = Q/V. The potential produced by one wire with charge per unit length A is
o(p) = —(A\/2mep) In p. Therefore,

AL AL N meg L
" 2|Ap|  (Mmeo)[n(d —a) —Ina] ~ In(d/a)’

C

Because V' = IR, the net force between the wires is

Mo I’L 1 QL
T o d 2mey  d

F:Fmag_Fel :Fmag

Source: LE. Irodov, Basic Laws of Electromagnetism (Mir, Moscow, 1986).
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12.5 The Mechanical Stability of Concentric Solenoids

The dashed lines in the diagram indicate the surface current density K = K 0 of each
solenoid. The solid line is a representative field line of the outer solenoid. The latter
is continuous near the walls of the inner solenoid and takes the value B on those walls.
Therefore, the force density on the inner solenoid is

f=KxB=K0x (B.2+B,p) = KB.p— KB,

When the two solenoids are concentric, the radial component of the force cancels when
integrated around the inner solenoid. The z-component cancels also if the mid-planes of
the two solenoids are coincident because B, > 0 above the mid-plane and B, < 0 below
the mid-plane. However, the radial component increases in magnitude as we approach the
open ends of the solenoid. Therefore, the z-components fail to cancel if the inner solenoid
is displaced either up or down from the mid-plane. However, the force tends to return the
inner solenoid to the mid-plane in both cases. In other words, the system is stable with
respect to this perturbation.

The currents in the two solenoids are parallel and thus attract. This is the radial force
which integrated to zero above when the two solenoids are concentric. However, any radial
motion will bring one pair of parallel currents closer together than any other pair of parallel
currents. This produces an unstable situation because the force increases as the distance
between two parallel currents decreases.

Source: Y. Iwasa, Case Studies in Superconducting Magnets (Springer, New York, 1994).

12.6 The Torque between Nested Current Rings

We locate the ring I, in the x-y plane and the ring I, in the 2-z plane as shown below. The
magnetic field on the axis of I, points in the z-direction. The magnetic field of I; points in
the y-direction.
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The vector torque which acts on I, is
N:Ib%rx(déxB),

where r = bcos 0z + bsin 0z, d€ = bd0f = bdf(cos 6% — sinhz), and B = B,p + B.z is the
magnetic field due to I, in cylindrical coordinates. Since parallel currents attract and anti-
parallel currents repel, the only component of the torque which survives is N,. Focusing on
this component, substituting r, d¢, and B into the torque formula gives

27
N, = I,b? /dﬁ cos (B. cos 0 + B, sin0).
0

Our task now is to write the components of B(p, z) near the origin, where p = bsinf
and z = bcosf. In the text, we used the technique of “going off the axis” to find the exact
magnetic scalar potential of a current loop. In polar coordinates, the first two terms of this
expansion for r < a were

P(r,0) = —%Mofa {;PO(O)Pl (cos®) + (2)3 P,(0)P3(cos 9)} .

Using Py = 1, P, = cosf, P» = (1/2)(3cos? 0 — 1), and P3 = (1/2)(5cos® @ — 3cos?),
together with z = rcosf and p = rsinf, we get

1 z 125 3zp?
Wp:2) = =gl [a “3a m} :

Therefore,

2a2  4a?

B, = —— 1——
2a

81/)_;@[0 1 322 3p? ol 3 b2 cos? 0 §b25in29
9z  2a o 2  a? 4 a?

and

1, 1, v?
fg—w: 3”2 %: 3‘2 '—3sin00050.
0 a a

B, =

Substituting these fields into the torque formula and collecting terms gives the advertised
result:
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2
32 150> ™ b2 36\’
2 o0 .9 _r T 90
N, M()I Iy — / |:COS 0 <1 2a2) =+ 16a2 sin 29} QMUIGI;, . [1 (4@) .
0

Source: J. Jeans, The Mathematical Theory of Electricity and Magnetism (University Press,
Cambridge, 1908).

12.7 Force and Torque

The text shows that the force between two current elements I;ds; and I»ds, is proportional
to I Irdsy - so. Therefore, the vertical legs of the vertical loop feel no force at all from
the horizontal loop. Moreover, only the two z-legs of the horizontal loop contribute to the
force on the (a-legs of the) vertical loop. The figure below shows only these z-legs (oriented
perpendicular to the paper for both loops) at three different relative distances. Parallel
currents attract, anti-parallel currents, and the force decreases as the distance between
parallel wires decreases. With this information, the solid arrows below indicate the net
force on the two z-legs of the vertical loop.

Qualitatively, the forces on the two z-legs of the vertical loop produce the net force and the
net torque on the vertical loop sketched below.

Fy

__— N

Nx

12.8 A General Formula for Magnetostatic Torque

Using the Biot-Savart law and expanding the triple product gives the torque on j(r) produced
by the magnetic field B’(r) produced by j'(r') as
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N = @/d%rx[()xB’( )

TP

-1 rxr

SOy

/ /
_ 3 3, 033 (@)][i(r) - (r —r')] = [r x (r = 2)][j(r) - j’(=")]
- /d r/d "

/ / v —r/| +|

Integrating the first term in curly brackets by parts and using V - j = 0 gives the desired
result.

Source: P.C. Clemmow, An Introduction to Electromagnetic Theory (University Press,
Cambridge, 1973).

12.9 Force-Free Magnetic Fields

(a) Let V.x By = a1(r)B; and V x By = as(r)Bs. Their sum is force-free only if
aq(r) = as(r) = a(r), so

V x (B1 + BQ) = (I')Bl + oo (I‘)BQ = O((I')(Bl + BQ)

(b) Inserting the assumed form into V x B = aB gives the two equations

dB, dB,
— dzJ = aB, and P aBy.

Taking the z-derivative of the right equation and using the left equation gives

&£B,  dB, ,
L — _a’B,.
dz? @ dz it

This is solved by B(z) = X By sinaz + y By cos az if we impose the condition B(0) =
Byy. As shown on the left side of the diagram below, the field is constant in each
plane z = const. and the direction of the field rotates as z increases.
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s
iaia,

(c) Inserting the assumed form into V x B = aB gives the two equations

1d dB
—— (pBy) = aB, and - =
o (pBs) a0

Combining these two as in part (b) gives Bessel’s equation for B, :

1d(dBZ

-——|p +a’B. =0.
pdp \" dp )

We get By by differentiation. Therefore, since Ji(z) = Jj(z), the solution which is
regular at the origin is

B(p) = AJi(ap)¢ + AJy(ap)z.

The right side of the diagram above shows that the field lines “spiral” up the z-axis.

(d) One matching condition is the continuity of n - B on the p = R cylinder. This will
be true if B has no p component. We want no current generated at p = R so the
tangential matching condition is

p x [B°*(R) — B™(R)] = 0.

If we impose B,(R) = 0 as an additional condition, a non-trivial (A # 0) solution
requires that aR be one of the zeroes of Jy(z). In that case,

BY"(R) = B}'(R) = AJi(aR).

Finally, we want no current for p > R. This implies that B°"* can be derived from a
magnetic scalar potential (which must satisfy Laplace’s equation) as

out __

¢ pdé
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The simplest possible choice is the linear function ¢(¢) = —RAJ; (aR)¢. This gives
the desired field as
_ RAJ (aR) s

Bout <p) 5

Source: G.E. Marsh, Force-Free Magnetic Fields (World Scientific, Singapore, 1996).

12.10 Nwuclear Magnetic Resonance

The total magnetic field is B = (B coswt, —Bj sinwt, By). Therefore, the components of
the torque equation m = ym x B are

dmy, .
dt” = y(my By + m. By sinwt)
d
My _ ~(m By coswt —my, By)
dt
dm,

a —vB; (mg sinwt + m,, cos wt).

The transverse components of m in a coordinate system that rotates with B; are
M, (t) = m, coswt — my sinwt and M, (t) = m, sinwt + m, cos wt.
The time derivatives of these components are
Mz = 1y coswt — 1y sinwt —wM, and My = 1y sinwt + 1y coswt +wM,.
Therefore, substituting from the first set of equations into the last set of equations gives
M, = (Qr —w)M,

My =—(Qp —w)M, +yBim.

m, = —yB1M,.
When w = Qj,, these simplify to
M, =0
My =vBim,
m, = —yBiM,.

In the rotating frame, we observe a moment that precesses around B; at the Larmor fre-
quency, vB1. In the lab frame, this motion is superimposed on a rotation around the By
axis at Q.
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Source: G. Scharf, From FElectrostatics to Optics (Springer, Berlin, 1994).

12.11 Two Dipoles in a Uniform Field

If R points from the center of one dipole to the other, the potential energy for this situation
is

VB:7m1~B7m2'B+@

{fm ‘my  3(m; - R)(my 'R)} .

47 R3 R5
Since cos(m — 6) = — cos 6, this is
o Ho | MMy N 3mimes
Vi = (my cosa + mg cos ) B + y [ e cos(ff — a) R3 cosacos ﬁ} .

The angles are supposed to be small. Therefore, expanding to second order gives

Vi = Aa® + BS? + 2Caf + const.

where

Lo MMy 1 Lo M1 me 1 Lo M1 Mo
- 2y, B B="————_—myB C=_——7=
ir R 2™ in RS 2™ 8t RS

We can shift the zero to eliminate the constant. Therefore, if « = 3 =0 is to be a point of
stable mechanical equilibrium, we must have Vg > 0. The latter is a quadratic form, which
is positive if and only if

A>0 B>0 AB > C*.
If we let p = 47 R3 B/, these conditions imply that
my > p/2 my > p/2 (2m1 — p)(2ma — p) > mimy. (1)
The last of these we may rewrite as the condition
F(p) = p* — 2(my + my)p + 3mimy > 0.

Now, the zeroes of F(p) are

p+:m1+m2+\/m%—m1m2+m§ p,:ml—ﬁ—mz—i—\/m%—mlmz—«—m%.
Since p; > p_, we get F'(p) > 0 if either

p<p- or pP>Dps.

However, we know from the left side of (1) that p < m; + mg. In addition, m; + ms < p; .
Therefore, p < py. This means that the criterion for stability is p < p_ or
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Ho
4T R3

B< {ml—l—mg—\/mf—mlmg—i—m%

Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

12.12 Three Point Dipoles

—

Let C' A be the vector that points from m¢ to my. The magnetic field at my is

o mp 3(11’1[; BA) BA mc 3(mc C'—A) 5)4
By =— + +
4T a? a? a’ a’

Therefore, the potential energy of my is

VA = —Inp ~BA

Mo | ma -mp n my -mc  3(mg- a)(mA- B—;4) 3(mg- a)(mA- CTA)

47 a’ a3 ad a3
= Z(;?Z; [cos (9 — g) + cos (9 + g) — 3 cos (%) cos (9 — %) — 3 cos (%) cos (9 + %

Trom? cos 6
8mad

The potential energy is smallest at § = 0, when my points straight up. For small oscillations,
we write cosf ~ 1 — %02 and write the torque equation,

_8VA B _7,uom29
00 8mad

16 =

Therefore the period of small oscillations is
8ma*l _ 4ma [27la
Tmluy omo\| Tpe

Source: B.H. Chirgwin, C. Plumpton, and C.W. Kilmister, Elementary Electromagnetic
Theory, Volume 2 (Pergamon, Oxford, 1972).

12.13 A Dipole in the Field of Two Dipoles

The orientation is determined by minimizing the potential energy Vs = —M- B where B is
the magnetic field produced by the two fixed dipoles at the position of M. In other words,
M is parallel to B in stable equilibrium. To proceed, define vectors ry = aX + yy + 2z and
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ro = —aX + yy + 2z which point from the two fixed dipoles to the point (0,y,z). Both
vectors have magnitude r = y/a2 + y? + 22. Then, by direct computation,

o [3(m-ri)r; m  3(m-ry)rs, m
A
o [6mz, | . 2m,

- ey -5
= Ho 2m [3yzy+ (222 —a? - yQ) 2] .
4 7o

We conclude that, in stable equilibrium, the direction of M is

NI — 3yzy + (22° —a® —y?)z
V@ + @ @ P

Source: V.C.A. Ferraro, FElectromagnetic Theory (Athlone Press, London, 1954).

12.14 Superconductor Meets Solenoid

The dipole moment of the sphere is induced, so the only valid expression for the force on it
(treated as a point dipole on the z-axis) is

2m . 27 . dB
F=mVB, = — L RB,VB, = — ~R*BYZ 3.
Ho o dz
The last equality follows because B = Bz on the symmetry axis of the solenoid. The work
done on the sphere as it moves from infinity to deep inside the solenoid is

0 0 Bg
2 dB 2 B?
W:/dSF: /dZFZ:——Tng/Bid,z:_lR?’/BdB:_ﬂ- SR3.
Ho dz Mo ) 140
0o N

Note: an answer different from this by a factor of 2 results if one incorrectly uses the
potential energy function Vz = —m - B appropriate for a permanent moment. We get the
minimum speed by equating W to the initial kinetic energy %M v3. Therefore,

[27 R3
Umin = BS .
M po

Source: S.M. Kozel, E.I. Rashba, and S.A. Slavatinsky, Collection of Problems in Physics
(Nauka, Moscow, 1987).
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12.15 The Levitron
(a) Above the base and near the z-axis, we write
b(p,2) = a(2) + b(z)p + c(2)p® + d(2)p* + -

The magnetic scalar potential satisfies

2y 10 (00N O _
Vw—pap pap +822_0'

Substituting the first equation into the second equation gives
b 1 // "2
;+4c+9dp+a +b'p+cp +---=0.

The coefficient of each power of p must be zero. Therefore, b = d = 0 and ¢ =
—a’' /4. Moreover, a(z) = (0, z) = 1y(z), using the notation defined by the problem
statement. Hence, to second order in p,

96, 2) = Yo(2) — a2+ = Yo(2) = a(2)@ 497 4+

(b) We need |B| to construct the potential energy E. The magnetic field is

B =~V =~y (o + (Us(2)(& + )+ ()% + S ()

Therefore,

1 7 1 1 ?
B> = <4¢302 - ¢1> + 11/1302 ~ i [1 - §%P2 31 (:ﬁ?) PQ] ;

and we conclude that

2 2 . 9 2
Blp.2) = Bl ) = lor| |14 5 (52 =222 )] = sl |14 5 (222

The equilibrium condition is VE = 0. The z derivative gives

Mg =mp=.
g mBaz

Since Mg > 0 and p is small, this amounts to the condition

mppesgn(yy) > 0 (equilibrium).

The z and y pieces of the gradient say that equilibrium requires p = 0. The vertical
stability condition is
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0< O’FE 0’B
A
022 B a2
or
mpgsgn(yr) <0 (vertical stability).

Finally, the horizontal stability condition amounts to

0’FE 2
0 < G = —mpsmonun (5 -212).
or
mp sgn (i) (2% — f) >0 (horizontal stability).
1

Assuming first that ¢»; > 0 and then that ¢; < 0, it is straightforward to check that
all three conditions cannot be satisfied simultaneously unless mp < 0.

(c) We now assume that mp < 0 and, once again, study ¢1 > 0 and ¢; < 0 separately. The
equilibrium condition tells us that 17, and 1 must have opposite signs. The vertical
stability condition tells us that v¢; and 3 must have the same signs. The horizontal
stability condition tells us that

U3 > 231

Source: M.V. Berry, Proceedings of the Royal Society of London A 452, 1207 (1996).

12.16 Magnetic Trap I

The magnetic field from a wire at the origin is

_ tolg ol

B = =
27p 2mp?

(_yf( + J)S’),
so, if o = pol /2w, the total magnetic field of the system is

—yx+(x—-1)y —yx+(x+1)y
VR O VAR

BZB(]Z—FO(

For an anti-parallel dipole with magnetic moment mg, the potential energy is Up =
—my - B = myg|B|. Near the origin, we can use the approximation

B = Byz + 2a(xy — yX).

|B| = /B3 + 4a%p* ~ By +20zp2/Bo~

The small oscillation frequency w arises from a potential energy function U = %M w?p?.
Therefore,

Therefore,
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 [4e?my el [y
“=\\"mMB, = 7 \MB,

12.17 Magnetic Trap II

(a) If A = pol/2m, the total magnetic field in Cartesian coordinates is

Ay Az
B=|B,— X y + B'z.
< 0 x2+y2>x+$2+yQY+ Z

By inspection, the smallest field magnitude occurs when the z and y components of
B are zero. Thus, we get |B| = B’ along the line parallel to the wire defined by

_ A el
BO 27TBO.

zyg =0 and Yo

(b) The potential energy of interaction between m and B when they are anti-parallel is
V = —m - B = m|B|. Therefore, to find the frequency of small (radial) oscillations
away from the minimum of energy, we must expand |B| to quadratic order in the
radial distance r from the line.

y

v
Using p? = 2 + y? and, from the diagram, z = rsin¢, y = yy + rcos$, and p> =
72 4+ y2 + 2ryy cos ¢, we find

r

p

Ay )2 Nz
N N R
P p
Bg 2 2 2
= ?[p +y — 2y0y] + B
= B—§r2+B’2.
0

We are interested in very small values of r, where p ~ yy. Therefore,

R B4 7,2
V = m|B| ~ mB"” {14— B,OQ/\Q} ~

Setting this equal to Vo + %M w?r? gives the frequency of small radial oscillations as
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271'33
MB' ul -~

w =

(c) If B" =0, we get |B| =~ (By/yo)r and there is no harmonic motion at all.

Source: J. Fordgh and C. Zimmerman, Reviews of Modern Physics 79, 235 (2007).

12.18 Roget’s Spiral

ouU.
B 5. The magnetic

(a) At constant current, an increase in L generates a force F = —

field inside the solenoid has magnitude B = ugIN/L. There is no field outside the
solenoid if we neglect stray fields. Therefore, the magnetic potential energy is

- /d“ pr = MmN
2#0 2L '

In equilibrium, the magnetic force

Fe TR2uyN2I? |
B 212
balances the weight mg. Therefore,
2mg L
g NR’

(b) The attractive force between parallel currents in adjacent rings causes the coil to
contract without any motion of its center of mass.

Source: O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York,
1966).

12.19 Equivalence of Force Formulae

Up must be expressed as a function of the flux variables. Up must be expressed as a function
of the current variables. To do this, we use

O, = M I, and I = M,' ®,. (1)

Therefore,
1 1
=3 > Loy = 52@1\@1@(
k=1 k=1
. 1 1
Up = =5 D> Dx®r=—5 > LMyl
k=1 k=1
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Substituting these expressions into the force formulae in the statement of the problem shows
that the proposition will be proved if we can show that

O, VM, '@ = —I; VM, I (2)
We begin with MM ™! = I written in component form:
MMy, = 61y

Using this,
(VM) M," + My (VM) = 0.

Multiplying on the right by M,; and summing over p gives

(VM) M) Myy = =My (VM) M.

Using the definition of the inverse,

(VMpe)ors = = Mo (VM ) M.
The left side of this equation is VMy. Therefore, using (1) and the fact that My, = My,

CLVM I, = —I, [—MM(VMZ?)MPS 1,
= LM VM,'®,
= MuLkVM,'®,
= VM, 'P,.

This is (2), as required.

12.20 The Force between a Current Loop and a Wire

(a) Let ®; be the flux through the loop produced by the wire. The force on the loop is

Vg
F=—-——-72
od
where Vj is the interaction potential energy Vi = —I;®;. The black square in the

diagram below is an area element dS = pdpd¢ at a distance d + pcos ¢ from the wire.
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The magnetic field at that element points out of the paper in the plane of the loop
with magnitude
By — o Lo 1 .
2m d+ pcos¢
By the right-hand rule, dS points into the paper. Therefore,
I I dpdd 7 d

Kotz pap pap
/dS-BQ:— // :_,JOIQ/i

2 d + pcos 2 _ 2

. pCcos ¢ J VA2 —p

= ol [\/dQ "R - d} .

This gives the force on the loop as

5

Py

) . d )
F=plilss {\/dQ "R d] 2= poli I [m - 1} 2.

(b) In the limit d > R, we use (1 — R?/d?>)~/? ~ 1+ R?/2d? to get the repulsive force on
the loop as
poli I, R?
F = g 2

The magnetic moment of the loop is m; = I; 7R? and points into the paper. Therefore,
since By points out of the paper, the force on the loop should be

F = V(m, - By) = —(I,7R?)

9d \d 242

uola 0 (1 i:ﬂOI112R22
2r  Od ’

Source: M.H. Nayfeh and M.K. Brussel, Electricity and Magnetism (Wiley, New York, 1985).

12.21 Toroidal Inductance

(a) The inductance Loy of the coil with respect to the wire is N times the inductance of
the rectangular loop (shown below) with respect to the wire. The latter is the ratio
of the flux through the loop, ®91, to the current through the wire, I;. The right-hand
rule connects the direction of I to the direction of dS in the flux integral. Therefore,
since the field of the wire, By = q[;u()ll/27rp, is normal to the plane S enclosed by the
loop,

R+a
o N N Nb [ d Nb. R
LglzNiz—/dS-Blz—/dSBlzm ap _ by Kta
L L I 27 p 27 a
S Ss R
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4
LY Sy i’

(b) The text computed the field produced by a toroidal solenoid. The field lies entirely
within the solenoid with magnitude By = ugNIy/2mp. The direction of By is normal
to every element dS of the surface S; enclosed by the infinitely large rectangular loop
shown in the figure which has I; as one of its legs. With this choice,

R+a
Dy 1 1 o INb dp wNb., R+a
Lis=—"=— [dS -By=— [ dSBy = — = 1 )
A / 2 12/ 27 Ton o or 4
R

Source: O.D. Jefimenko, Flectricity and Magnetism (Appleton-Century-Crofts, New
York, 1966).

12.22 Force between Square Current Loops

(a) By symmetry, the force is along the symmetry axis. The loop currents are fixed, so if
M is the mutual inductance between the loops, the force between them is F = -vU, B.
More precisely, let I; lie in the z = 0 plane so I5 lies in the z = ¢ plane. Then, because
an increases of c¢ is in the +z-direction, the force on I is

Uy oM
8’3z_1112 5 (1)

We calculate M from Neumann’s formula:

7{ 7{ dsy - dss

1 — 1|
Fach of the four sides of loop I; gives a non-zero contribution to this integral from
the two sides of loop I which are parallel to it. However, by symmetry, there are
only two distinct terms among these eight contributions. Specifically, if the variables

—a/2 <z <a/2 and —a/2 < x5 < a/2 label distances measured from the midpoint
of a segment as shown in the diagram,

F=-—

a/2 a/2
1 1
M = @ / dIl / dl‘z 5 5 — > 5 >
™ V(v —x9)2 + ¢ V(@ —x2)?+ a2 +c

—a/2 —a/2

We do the zs integral using

sinh

/ s/AxQ +Bz+C \F 4AC — B
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Since sinh ™! (—z) = —sinh ™' (z), we find
a/2
a/2 a/2
2@9 — 2 2x9 — 2
M = Ho / dzy | sinh™* e — sinh™! i B
. B 2c —a)2 2ver +a*|_y )
—a
a/2

Mo .12z +a .12z —a .1 211 —a
— ? / d.’L'l |:Slnh T — Slnh T + Slnh W

—a/2

2r1 +a

2V + a?

— sinh™!
We do the z; integral using

/dat:sinh71 % = zsinh™! % — V2 +pl.

The final result is

2
M = % [asinh_1 (%) — asinh™! (\/ﬁ) —2Va2+ 2+ 22+ +¢l.
(2)

(b) Using (1) and (2), the force exerted on I, is

Fe 2uol1 Iy | ev2a? + 2 +1 a? 4 2¢2
oo a? + ¢ eva? + ¢

(c) If 6 = a®/c?, the force in part (b) is

2p0 11 Iy
F = 2F0712 [(
T

1420)2(148)7 +1— 2+ 0)(1+8)7/?] 2.

Expanding and keeping all terms to second order in § < 1 gives the attractive force

3/10[1]2 a4 8 (Mo Ila212a2> R
— — | Z

F = -
o2r  c3

21 cjz:%

(3)

To interpret this formula, we use the fact that the interaction between the loops
should be of dipole-dipole type when when ¢ > a. Using the right-hand rule, the
moments in question are m; = Ia’2 and my = I,a?Z, each located at the center of
the corresponding loop. If n is a unit vector which points from the center of one loop
to the center of the other loop, the interaction potential energy is

N :@ml-mg—?)(ﬁ-ml)(ﬁ-mg):_@mlmg
BT 4r c3 2 ¢
Using this, the force F = —VVj (calculated as described at the beginning of the

solution) agrees with (3).
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Source: V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

12.23 The History of Mutual Inductance

The total mutual inductance between circuit 1 and circuit 2 is

o (1+k‘>%%dsl d82 (1—k>7£%dsl~(r1—r2)(r1—r2)-ds2
Mg = — 3
47 |I‘1 — I‘2| 2 ‘I‘l — I'2|
C1 Cy

Focus on the second integral. Use Stokes’ theorem, a bit of vector calculus, and Stokes’
theorem again to write

]{dsl (- —1) dsy /dSl Y, x {(rl _mm

2 vy — 1o E rp — o3
1 1
rhr —r
= /d51 dsy X ———
E [ty — 1
1
ds
= /d51 VQ X 2 3
E |r1 — 1o
1
o d81 -ng
Ity — o3

Substituting this above recovers Neumann’s formula:

_Ho %%d& dss
Ity —ra|

1 Cy

Source: E.T. Whittaker, A History of the Theories of Aether and FElectricity (Philosophical
Library, New York, 1951).

12.24 An Inductance Inequality
Let f = I /I, and write the total magnetic energy as
1
Up = 513 (Lif* +2Mf+Ly) .

We will find the minimum value of Up and insist that it be positive. The minimum is
determined by

dUg 1 ,

— =I5 (2L 2M) =20

i 512 2L f +2M) =0,
or f = —M/L;. Therefore,
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1., (M* _M? 1 M?
Up (min) = 513 < -2— 4 L2> = 513 ( +L2> > 0.

We conclude that M? < L, L, as advertised.

12.25 The Self-Inductance of a Spherical Coil

The diagram shows the geometry of the winding.

1 2N\ y
A N
£ XS ‘L-r dz
AII ’\I\
A A
L 1
L 1
L 1
L 1
{ ]
[ ]
I ]
X ¥
Al ¥y
\'l 1’4
{ V
A 174

ke

It will be simplest to compute the flux of the winding through itself. The density of the
winding is N/2R. Therefore, the number of turns in a linear distance dz is (N/2R). Because
dz = —sinORdf, the number of turns along the arc length Rdf is (N/2R)sin6 and the
surface current density is

NI N
K = ﬁ sin 0¢
Inside and outside the coil, we can write B = —V1 where 1 satisfies Laplace’s equation.

The matching conditions for the magnetic field,
- B =¢.B™" and # x (B — B™) = 0K,

imply the matching conditions for the potential,

06 00

and

|:awin B awout

0 awin awout
or o |._p

1
} = —pgNIsin.
r=R 2

The second of these tells us that we need only the solutions of Laplace’s equation which are
proportional to cos 6, namely

2
P (r,0) = C’% cos @ and P (r,0) = A (1:) cos f.

We find immediately that

1
A:E,uONI and C:fg,ugNI.
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In particular, the magnetic field inside the sphere is uniform:

1
B = —uyNlIz.
(r<R) sptoV Iz
The magnetic flux through through an arc length Rd# is

fl t N
dd = tulfr(l X - ilerrrllgth x arc length = 7(Rsin )’ B x 3R sinf x Rdf.

Therefore, the self-inductance of the winding is

s

1 2
L= f/dq> = K0 RN? /d0 sin® 0 = =yt RN?.
i 6 9
0
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Chapter 13: Magnetic Matter

13.1 The Magnetic Field of an Ideal Solenoid

Fill the solenoid with a uniform distribution of magnetization M = Mz. The surface
normal n is everywhere perpendicular to M. Therefore, there is no effective magnetic charge
anywhere and H = 0 everywhere. Then, because B = uo(H+ M), we get B = Mz inside
the solenoid and B = 0 outside the solenoid. On the other hand, the effective surface current
associated with the magnetization is K = M X n, which reproduces the imposed azimuthal
current. Hence, M = K and we reproduce the Biot-Savart result.

13.2 Equal and Opposite Magnetization

(a) There is no free current. The magnetization in each region is uniform so the bulk
magnetization current density jur = V X M = 0. The magnetization is normal to the
z = 0 interface so the surface magnetization current density K = M x n = 0. There
is no source current of any kind, so B = 0 everywhere.

(b) There is no bulk magnetic charge p* = —V - M but there is a surface charge density
0* = M - n. There is a contribution o = M at z = 0 due to the z > 0 region. An
identical contribution comes from the z < 0 region. Therefore, since an outward-
pointing electric field E = 0/2¢ is created by a planar surface density of electric
charge o, we get an outward-pointing field H = M in this case. Since M points
inward to the same interface, we conclude that B = po(H + M) = 0 everywhere.

13.3 Equivalent Currents

(a) The statement will be true if the two spheres produce exactly the same distributions
of current. Schematically, the two spheres are as follows.

© C) R sinf
0% i 6
0 R Q R

The magnetized sphere produces no volume current density because jyy = V x M.
However, it does produce an azimuthal surface current density

Z

=

K=Mxn=Mxt=Msinlp.

If w is the angular velocity, the velocity of a point on the surface of the rotating sphere
is v = w x r. Therefore, the rotating sphere produces a surface current density

K=ov= wR sin 9(}3.

4w R?
The two are the same with the choice M = w@/4wR.
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(b) The magnetic moment of any object with magnetization M is
m = / d3r M(r).
v

For our sphere,
. wQ 4R 1 5.
= = — = — .
m=MVz yym 3 SwQR Z

13.4 The Helmholtz Theorem for M

(a) The Helmholtz theorem says that

3./ 7/ . / 3. 7/ /
M(r):—V/d—rv M(r)Jer/dTVXM(r).

47 |r—1'| 4 |r—r'|

But p*(r) = —V - M(r) is the fictitious magnetic charge density which enters the
magnetic scalar potential

1/)M(r) _ %/dBT/ p*(r’)

v —r'|

and jy (r) = V xM(r) is the effective current density of magnetized matter that enters
the magnetic vector potential

W 3, dm(r’
AM(I‘) = éhor/ddﬂh‘—(r’)|'

Hence, because Hy; = —V and By = V x Ay, the Helmholtz representation of B
has the anticipated form,

M = —Hy + Bu/1o.

(b) The magnetization of the stripes satisfies V x Hy = 0 = V - Hy because V- M = 0.
Therefore, by the Helmholtz theorem, Hy; = 0 everywhere and B = pyM everywhere.
The magnetization current density has a surface piece Ky; = M x 1 which is solenoidal
around each uniform block of magnetization.

13.5 The Virtues of Magnetic Charge

(a) The text establishes that m = [d*rM. On the other hand, using the proposed
formula, the k" component of the magnetic dipole moment of the sample is

my, :—/d?’rmV-M:—/d?’rV-(Mrk)—i—/d?’r(M-V)rk :/d?’er.
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(b) By definition, the interaction energy between two current distributions is

Ty PR LB

™ [r — 1|

Using the definition of the vector potential in the Coulomb gauge, this is
Vg = —/d3rj1~A2 = —/dgrAg-Vle = /dgrV~(A2XM1)—/d37“M1-V><A2.

Finally, using the divergence theorem and the fact that M; is zero on the integration
surface at infinity, we conclude that

VB :—/dBTMl -BQ.

Precisely the same steps beginning with Vg = — f d?rjs - Ay establish the reciprocity
relation.

(c) It is simplest to begin with the proposed formula and show that it is equivalent to the
expression derived in part (b). Then, because By = ugH, in the part of space where
Ml 7é Oa

VB = @/d3r/d3r/ V'Ml(r)v/'Mg(I’/)
dm [r — /|

- = d3r'V’-M2(r')/d3r {v. [Ml(‘")} —Ml(r)-Vrl}

_ 3 v Mo 5., P3(r')
= /d 7 M (r) V47r d°r 1]

- —/d3rM1(r)'ﬂ0H2(r)

= —/d3rM1(r)-B2(r).

13.6 Atom Optics with Magnetic Recording Tape

(a) For an infinitely wide tape, the magnetic field due to M(z) is equivalent to the field
produced by the surface magnetization current densities

Ki(z)=Mxny =+ M coskzz,
where the upper (lower) sign refers the upper (lower) surface of the tape. Let B be
the field produced by the upper surface (y = 0) and let B_ be the field produced by

the lower surface (y = —t).
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Away from y = 0, the field B, produced by the upper surface current at y = 0
is derivable from a magnetic scalar potential. That is, B, (x,y) = =V, (z,y) is
the magnetic field produced by K (). 1 (z,y) is periodic in « (because the source
current is periodic in x) and satisfies Laplace’s equation away from y = 0. Moreover,
¥y (x,y) — 0 as y — oo. Separation of variables in Cartesian coordinates then gives
Yy (z,y > 0) = Asin(kx + ¢)e ¥ . Hence,

B. (z,y > 0) = V¢ = Ake ™" [y sin(kx + ¢) — % cos(kz + ¢)] .

From our discussion of the symmetry of a current sheet, we know that B, (z, —y) =
By (z,y) because the normal component of B must be continuous when we cross
through the surface of the source current. Therefore,

B, (z,y) = Ake "I [y sin(kz + ¢) — xsgn(y) cos(kz + ¢)] .

To evaluate the constants A and ¢, we use the Amperian loop sketched below.

R B EEEE e aREEEEEE
T y= 0
I m e e —— e —————— —————
X=X X=X
Using the definition of surface current density, this gives
To o)
j{BJr ~ds = 2kA/d:z: cos(kx 4+ @) = polenciosed = Ho /dzM cos kx.
Ty 1
We conclude that
ky )

B, (z,y >0) = 1py M [ysinkx — Xcoska]e™

The magnetic field B_(z,y) due to the current K_(z) on the lower surface of the tape
is identical except that it has the opposite sign and the origin is shifted to y = —t.
The total magnetic field is therefore

B(z,y >0) =B, + B_ = 1pg M(1 — e ") [ysinka — kcoska]e .

(b) The field line pattern is as follows.

AHIATIATITA

Me—><—e—<—M

— <
=
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(c) The interaction potential energy is Vs = —m - B. For permanent anti-alignment
between the moment and the field, this gives

VB = m|B| = %M,U/O M(l — 6_]“)6_]%’.

This potential is purely repulsive as the atom approaches from above. Moreover,
Vi = Vi (y). Therefore, the magnetic tape acts like a flat mirror and reflects the atom
as sketched below.

Source: E.A. Hinds and 1.G. Hughes, Journal of Physics D: Applied Physics 32, R119
(1999).

13.7 Bitter’s Iron Magnet

(a) By symmetry, it is sufficient to let ¥, m, and z be coplanar. The z-component of the
dipole field is

#o 3(F-2)(f-m) —m-2
47 3

B, (0) =

tom 3cos  cos a — cos( + )
47 73

tom 2 cosf cos o + sinfsin «
v rs '

The minimum corresponds to 9B, (0)/da = 0 or 2tan o = tan § as required.

(b) From the geometry, it is easy to see that tana = rdf/dr so 1 tan6 = rdf/dr. This can
be written in the form

@ = 2C,o—sed0 = 2d(b:m9) = Inr = Insin® 0 + const.
r sin 0 sin 0

Hence, the spin directions which yield the maximal field obey r = K sin? 0. This is
exactly the equation of the field lines for a z-oriented point dipole at the origin.
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(c) We want to substitute 2 tan o = tan 6 into

tom 2 cos O cosa + sin f sin o

B.(0
-(0) 4T 73
Using
1 . 1
COS QU = ——— sina = ———
V1 +tan® a V1 +cot? a
we get

B.(0) = tom 4 cosf + sin @ tan 0 _ Hom 3cos? 6+ 1 LM g
4mr3 V4 + tan® 6 47r3 cos0v/4 + tan? @ 4mrd

as the magnetic field per spin. So, if there are N spins/volume, the total magnetic
field at the origin is

B.(0) = pomN e V1 +3cos?
0) = 4m "

3

For a spherical shell, d3r = 2712 sin 6d6 so
N (" dr [!
B.(0) = M/ —r/ don/T 4322 ~ 2 pymNIn 2.
2 oo T J 3 T
Source: F. Bitter, Review of Scientific Instruments 7, 479 (1936).

13.8 Einstein Errs!

(a) We showed in Chapter 9 that the currents which flow on the surfaces of the can have

densities
I I
K.=+—5p d Ky = ———z.
= 27Tpp an v 27TRZ
The force of levitation is
27 R
I o
F= / dS K, ><BM:/dd)/dppTﬁx,qu(ﬁ:IR,qui.
T
top cap 0 0

(b) The volume magnetization current density is

- M
j=VxM=Vx (M¢) =—z.
p
The surface magnetization current density is K = M x n. There are three surfaces to
this finite-thickness end cap._ On the top and bottom of the coin, K = M¢ x £z =
+Mp. On the edge, K = M ¢ x p = —M2z. All three are sketched below in side view.
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(¢) For a finite thickness end-cap, the magnetic field of the can-of-current must fall to zero
smoothly from B;, at the bottom surface of the end-cap to zero at the top surface of
the end-cap. This shows that the magnetization current density on the top surface
never feels a force from Bj,. Moreover, the force density is purely radial, both on
the volume magnetization current and on the surface magnetization current on the
side wall of the end-cap. Both integrate to zero. This leaves only the magnetization
current density K; on the bottom surface of the top end-cap. As anticipated, the force
exerted on this current density cancels the force computed in part (a):

R
JN
F = / dSK, x By, = QW/dpp[fMﬁ] x ;‘L — —IRuyMz.
™
0

top cap

Source: A. Einstein, Archives des Sciences Physiques et Naturelles 30, 323 (1910).

13.9 A Hole Drilled through a Permanent Magnet

We treat the drilled-out magnetic slab as a pristine magnetic slab superposed with a narrow
cylinder with opposite magnetization:

The magnetic charge picture gives the H field of the pristine slab as isomorphic to the E
field of a capacitor: H,,; = 0 and H;, = —M2z. Therefore, the pristine slab produces
B = ug(H+ M) = 0 everywhere. The H field produced by the narrow rod is equivalent to
the E field produced by a charge ¢* = M7R? at its bottom and a second charge —¢* at is
top, i.e., the field of a finite dipole. Therefore, with respect to an origin at the center of the
rod, the H field at every point in space is

MR [ r+(t/2)2  r—(t/2)
4 |lr+@/2)2P  [r—(t/2)2/°

H(r) =
The corresponding magnetic field is
woH(r) — po M2z inside the cylindrical hole
B(r) =
poH(r) outside the cylindrical hole and outside the slab.

Source: E.B. Moullin, The Principles of Electromagnetism (Clarendon, Oxford, 1950).
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13.10 The Demagnetization Factor for an Ellipsoid

To find N,., we begin with the equation for the surface of such an ellipsoid,
G (1)

Next, since M points along z, we can think about a disk of area A and thickness dz with
magnetic moment per unit volume (magnetization) M = dm/dV. Ampere’s theorem per-
mits us to parameterize the magnetic moment as dm = dI A, where dI is an effective current
that circulates around the perimeter of the disk. Hence,

_dm dm

We conclude that the vector potential—and thus the magnetic field—produced by the shaded
slice in the figure is identical to the vector potential produced by a ring with radius p that
carries a current dI = Mdz. Since By is uniform, it is sufficient to use the Biot-Savart
result for a current ring to evaluate B, at the center of the ellipsoid. Summing this field

over all slices gives
MUM
/ IR )

The integral (2) takes a standard form if we use (1) to eliminate p, and the definition
€2 =1—1?/a? of the eccentricity of an ellipsoid. The result is

BZ(O) = /’LOM(I - sz)7

where

szzl;g[iln(ii)—q (e<1). (3)

A Taylor series expansion of the logarithm confirms that N,, — 1/3 in the spherical limit
(¢ — 0). The demagnetization factors for needle-shaped samples and disk-shaped sam-
ples can be derived from (3) and compared with more direct calculations of Hy; for these
geometries.

Source: C. Birch, Furopean Journal of Physics 6, 180 (1985).

13.11 Lunar Magnetism
We have B = pg(H + M), where H = —V4 and v satisfies the Poisson-like equation

Vi) =V - M.

In addition, at the boundary between regions, it is necessary to satisfy the matching condi-
tions

Y1(rs) = a(rs)
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and - -
1 2 o B LA
|:an1 — 78’[7,1 :| . = [Ml Mg}s nj.

We call the core, crust, and exterior of the Moon regions I, II, and III, respectively, as shown

below.
9 I III

The impressed magnetization M of the core is stated to be proportional to a dipole field By
centered at the origin. If we align the magnetic moment m with the z-axis,

pom 3cos Ot —z  pgm 2 cos OF + sin 06
4 r3  An 73 '

Bd (T, 9) =

Since V - B = 0, we know that V- M = 0 and the magnetic scalar potential above satisfies
Laplace’s equation everywhere. Specifically,

Yr = D (%) cos 6
Y = [B (%)2 +C (;)] cos
Y = A (9)2 cos 6.

Applying the matching conditions, noting that n =  and that the only non-zero magneti-
zation is

2 cos 0f + sin 66
My = M =TI
r
gives
A = B+C
a? b
D = B— +C-
b2+ a
2M 2B O 24
ad a a a
2M D a> C
“7 _ Zaop2t ¥
b3 b + b3

2M
A=0 C=-B=:2 D=B|% -
3a?
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which confirms that H = B = 0 in region III outside the Moon. We can sketch B inside
the Moon using the fact that By = H; = —V4; is constant, the lines of B must form
closed loops, and B must be tangent to the sphere at r = b because its radial component is
continuous there.

Source: S.K. Runcorn, Physics of the Farth and Planetary Interiors 10, 327 (1975).

13.12 A Dipole in a Magnetizable Sphere

We will use the magnetic scalar potential and write H = —V1)(r). The potential satisfies
Laplace’s equation V21 = 0 everywhere except at the origin where, due to the presence of
the dipole with moment m = mz,

. Lo mcos 6
1 0)=— . 1
lim p(r,0) = -5 (1)

There is no free current, so the matching conditions at the r = R boundary are

6¢in
or

3% ut

PYin(rs) = Your (rs) and . =~

r=R

Given (1), the matching conditions will be satisfied only if the potential varies everywhere
as cos 6. Therefore, since the contributions to the potential other than (1) satisfy Laplace’s
equation:

@{Ar+ﬂ} cos r < R,
47 72
Vo) = M cos 0
o M cos
— R.
dr 2 "
Direct application of the matching conditions gives
3 2 —
R and Azi(ﬂ MO)%.
1+ 240 w2 R
Therefore, with M = Mz,
fo3(m-T)F —m  pyM
47 r3 4w r<&
H(r) =
(M - #)F —
@—( r[)r = r > R.
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13.13 Magnetic Shielding

We use a magnetic scalar potential where H = —V1). There is no free current, and the
problem is two-dimensional, so

ng_la<a¢> Lo

“op\'0p) T P07

By standard separation of variables, the general solution is a superposition of terms of the
form

¥(p,0) = (A, cosng + B, sinng)(C,p" + Dpp™").

Inside the shell, the solution must be finite and reflect the symmetry of the external field.
Since Bext = pigHext and eyt = —Hext@ = —Hexy p COS ¢,

i = Apcos @.

Within the shell, we have the slightly more general potential
Ynel = (Cp + Dp~1) cos ¢.
Outside the shell, the field must reduce to Beyt as p — oco. Therefore,
Yout = —Hexepcos ¢ + Ep ™' cos ¢.

The matching conditions are continuity for the normal component of B and continuity
for the tangential component of H. The latter is equivalent to the continuity of 1 itself.
Applying these at p = a gives

i _ OVshent B
( 8/) )pa o H( 8[0 )pa and ’(/}m‘p:a - wshell|p:a

or

awout > <a¢shcll )
= and wOUt‘ —a ¢shell| —b
ap o 8p . p=a p=
p=a p=
or
D E D
- ext—b2=“<c—b2) and Hoxe + 5 = Cb+ 5
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From the matching conditions at p = a, we deduce that

2K
k+1

C k+11 A Kk 2

A
_——_— = _—= — —_—=
D k—-1a? D k+1a? C

Eliminating F from the matching conditions at p = b gives

_ 2Hey + (k+1)C
o k—1

D b,

Substituting this into the expression for C'//D in (1) gives

¥ (k+1) ¥ k1
cl1— = (252) Y =oH — —
{ a? (ﬁ—l) ‘a2 (k—1)2
Using this to eliminate C' from the expression for A/C in (1) gives

4kb?
A= Heoxt.
(k—1)2a% — (k+ 1)202

This gives the advertised result because

4kb?

Bin = —ppAz =
HORE = 0 1202 — (k- 1)2a2

cht .

13.14 The Force on a Current-Carrying Magnetizable Wire

(a) B=po(H+M) =pHsoM = (u/pn+o—1)H. We find H from V x H = jj,. Ampere’s
law gives the particular solution

Jop
H// —
in ) ¢
"o G/Qjoqz‘)
out 2P

inside and outside the wire. The total field H = H’ + H” where H’ solves the
homogeneous equation VX H’' = 0. Now V-B =0s0o V-H = V-H' = 0 except at the
wire surface. With H' = —V1 we solve V24 = 0 subject to the boundary condition
H' = Hyx when p — oo and the matching conditions

i I azrZ)in 6wout
-H =¢ -H = =
(»b in ¢ out 5¢ p—a a(b —a
S R R T
or p—a or p—a
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The solution is

20 Hy
M+ o

/
in

Il
>

H,, =xH)+ ﬁZ _T_ ZO Hy cos ¢ + CBZ _T_ ZO Hj cos ¢.
0 0

Therefore,

2uoHy ., 1 . -
M= -1 —x+ = .
(/1o )(N‘Hm 20]0¢>

This gives a volume magnetization current density
v =V xM = (u/po —1)joz
and (using X = pcosd — qg sin ¢) a surface magnetization current density

. . 2o Hy
Ky=Mxn=Mx p= -1
M p = (1/po )<,u+ﬂ0

sin ¢ — %pj0> Z.

(b) The total current density is j = jo +jm = (1/p0)jo 2. The volume force density is

’ 2410 H, 2\ 202 Hyj 2
fvzjqumzuu‘]OZX< tofo g 1 .¢>: W Hojo o p0p

o p+ o B+ fo 210
because
p = cos ¢x + sin ¢y
¢ = — sin ¢x + cos ¢y.

The volume integral of the second term is zero so the total volume force is

27 a 2
22 Hy I
Fv=/ d¢/ dppty = 2ol
0 0 =+ po

The surface contribution to the force is Fg = a foh d¢ Ky x B, where B = 1[B, (a) +
Bout(a)]. Using the results above, this is

13 . 2poHy
B = L[y, (a) + toHouws (a)] = (1 + o) [;mo -

~ 2upg H
sing| ¢ + MCOS(b[).
K+ fo B fo

Many of the terms which could contribute to Fg integrate to zero. Those that do not
give
(1 —po)(2p + Mo)y

Fg = —IyH,
0o ® =+ po

Because By = pgHy, the total force on the wire is

2 — (u— po)(2p + po)

2
F=Fy +Fg = I Hy-"
M+ o

y=1LByy.
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Source: F.N.H. Robinson, Macroscopic Electromagnetism (Pergamon, Oxford, 1973).

13.15 Active Magnetic Shielding

(a) The text shows that the boundary condition B, (x = 0) = 0 is satisfied at the conductor
surface by placing an image line current flowing in the —z-direction at x = d.

Therefore, in the z < 0 half-space, the magnetic field is

ool o pol é.

- 2mp 2mpy

Because B = 0 inside the conductor, the surface current density obeys the matching

condition

_ _ . Cma ol d

(b) If we remove the conductor, but want to shield z > 0 from the effect of the wire in
the 2 < 0 space, we need only synthesize the surface current density K in part (a)
because this guaranteed that B(x > 0) = 0. If N = 7, an arrangement like the one
shown below will do, where the current in each wire is chosen equal to value j(y) at
the y-position of the wire. The larger N is, the better the shielding will be.

® 7—‘ i»

Source: P. Mansfield and B. Chapman, Journal of Physics E 19, 540 (1986).
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13.16 The Role of Interface Magnetization Current

The direct solution exploits the cylindrical symmetry of the problem and Ampere’s law in

integral form:
fds -H=1I;.

This gives H = (I; /27p)¢. Therefore, since B = uH in linear matter,

paly
<R
9p é p )
B(p) = , (1)
pidy 2
R.
9mp ¢ p>

For linear matter, the magnetization current is proportional to the free current: ju = xmjs-
This gives a total current density

i=Jr v =04 xm)ir = (/p0)iy

This means that the field produced by a wire embedded in a medium with permeability 1
at every point in space is

ly
B; = 2
1= S . (2)
This is not inconsistent with (1) because the total field is the sum of B; and the field By
produced by all the (induced) magnetization current density in the system. The bulk piece
of this current density, ju, is zero for all linear matter. Using the continuity of the normal
(radial) component of H, the surface piece is

K = M xfi; + M, x iy = (M; —=M3) x p = [\1H1 (R) = xoHa (R)] x & = (x2 —x1)H(R) .

The field By = BM(;AS due to this current is calculable by Ampere’s law in the form

0 p<a,

27TPBM = fds : BM = ,Uf()IenClosed -
to2mrRK p> R.

This shows that (2) is the correct total field when p < R. This agrees with (1). Otherwise,

B(p>R> = B;+ By

v R o

= 27rf¢+uo;(><2 ><1)2 ¢
1y

= e (o) - (G -0)]} 8
p

ey

N 27rp¢

This agrees with (1) also.
Source: L. Egyes, The Classical Electromagnetic Field (Dover, New York, 1972).
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13.17 Magnetic Film and Magnetic Disk
(a) By symmetry, the field inside the film must be in the same direction as By. But B - i1
is continuous everywhere. Therefore, By, = By.

(b) To sum the dipole fields produced by the matter for r > R, we let dm = MydV, where
dV = 2mrdrh is the annular volume shown below.

The field due to the annulus at the center of the disk (where dm - & = 0 because
h < R) is

T A4rx r3 T 4w 3

dB(r) = Ho 3(dm - £)f — dm o dm

Therefore, the field at the center of the disk is

poMoh [ dr B oMo h

2 2z 0 2 R
R

B(O):Bo—/deB—i-
Now we need My. For linear matter, M = x,, H and B = po(H + M). Therefore,

M, H— o B,
Ko

and

ZA B

The stated conditions permit us to ignore the south pole of the bar magnet and treat the
north pole as a point magnetic charge that produces a radial field (emanating from the pole)
with magnitude B = jog/4nr?. The pole strength g = mr?> M where M is the magnetization.
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The weight of the loop is W = mg = 2mwapg. This must be balanced against the magnetic
force. The latter is the sum of the forces dF = Id€ x B on the line elements d€ of the ring.
The contributions from B, cancel when integrated around the ring. The other component
of the magnetic field contributes an upward force of equal strength from every element with
magnitude

o o . o Hog ra
dF = Id{B = Id{Bsinf = Id£47rd2 (d) .
Therefore,
2
pworr M a
(27a) o g = ™9 = 2mapg

and

o 4d3pg B 4(h2 +CL2)3/2PQ
Tpgar? Tpgar? '

13.19 A Real Electromagnet

(a) The magnetic field on the z-axis of a coaxial ring at z = 0 with radius R and current
Iis
1 R?

Bring(2) = 10l ™

Summing the field from a uniform distribution of such rings in the interval —L/2 <
z < L/2 gives

L/2

NI dz’ NI
By(2) = g g / e L O
_L)2
where
f(z)—l z+L/2 B z—L/2
2| EHL2P+ R JE-L2? + R

The ratio

By(*L/2)  f(L/2) IR L2 1

By(0) — f(0)  VIZ+R L 2

when L > R.

(b) Because M = xH, the field of interest is
B(2) = po[H(z) + M(2)] = 4o (1 + xom )H(2). (1)

In this expression, H(z) = Hy(z) + H*(2), where Hf(2) = Bg(z)/po is the field
produced by the free current of the solenoid coils and H*(z) is the field produced by
the magnetization of the rod. If we ignore the volume magnetic charge, the latter is
the field from two disks of radius R at z = +L/2 with surface magnetic charge density
+0* = +M|g - z. A sensible approximation to compute the latter is
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in which case

0" = XmH(L/2). (2)

To find H*(z), we recall that the electrostatic field on the symmetry axis of a disk
with radius R and uniform surface charge density o located at z = 0 is

R
1 2mpo o
— d -2 [1 /R? 4+ .2 _ } .
YO = e | YT 2 +22 = |7

0

The associated electric field is

oz |z .
E() = -Vp=-2" 11— |5
()= Vo= g |1~ V)

Hence, for a magnetic disk at z = 0,

Our problem has a disk with charge o* at z = L/2 and a disk with charge —c* at
z = —L/2. A brief calculation shows that the superposition of the fields produced by
these disks gives

o*f(2)z outside,
H*(z) =
o*[f(z) — 1)z inside.

We conclude that the total auxiliary field inside the solenoid is

Hi(2) = By (2) + H,(2) = (2 o[ () = 1 = - Bo(=) +0°[f(2) = 1] (3

To find o*, we substitute (2) into (3) and evaluate the latter at z = L/2 to get

Hin(L/2) = S0 F(L/2) 4 xon Hin(L/2)[F(L/2) 1],
Because f(L/2) ~ 1/2 when L > R,

NI xnf(L/2) NI xm
L 1_Xm[f(L/2)_1] L X7n+2.

o = Xm Hin (L/Q) =

Using (3) to evaluate (1), our approximate expression for the magnetic field inside the
solenoid is

B(z) = (1+xm) {Bo(2) + poo™[f(z) = 1]} 2.
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(c) A bit of algebra shows that

B(z) ~ Xm T 1 _ Xm
B = [P 2 g

Because f(0) ~ 1 when L > R,

B(0)
~ Xn 1 m -+
BO(O) X1+ - Xn

Similarly, because f(L/2) = 1/2,

B(L/2) _ ,Xxm+1
Bo(L/2) X +2

Thus, the “freshman physics” amplification of the magnetic field occurs only far away
from the ends of the solenoid. Near the ends, the effect of the demagnetization field
is to limit the amplification to a factor of 2, even when y,, — oo.

Source: Prof. B.P. Tonner, University of Central Florida (private communication).

13.20 Vector Potential Approach to Image Currents

(a) The vector potential A is continuous at a boundary and the tangential component
of H is continuous at a boundary. Mimicking electrostatics, we treat the field in
medium 1 as produced by the current I plus a parallel image current Iy in medium 2
at a perpendicular distance a from the interface. We treat the field in medium 2 as
produced by an image current I; at the position of I.

y

12%) 131

P2
P1

\

[2 - (] - g [,11

The magnetic field produced by I at a point where the permeability is p* is B =
*T .
s ¢. Because B = V x A, the curl information given says that the corresponding

2mpy
vector potential is

*

A=—32"mp.
2

Accordingly, with A = Az,

———1Inp x <0,
2w
A:
I I
—ﬁlnpl—Mlnpg x> 0.
21 21
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On the boundary, p1 = p2, so the matching condition for A is

poly = —pd 4+ i Is.

Since B = pH and the tangential components involve the same trigonometric factors
for every current, the matching condition for H gives

- =1+1.

Combining these two gives the image currents as

- 2
L=M"Mr  and ]

L=
Ho + p M2 +

(b) The force per unit length exerted on I may be computed from the magnetic field due
to I,. This has magnitude

The force is attractive if I > 0 and repulsive if I, < 0.

13.21 The London Equations for a Superconductor

(a) The curl of the London constitutive law is

1
= — A=——B 1
V xj M052VX Y Ehs (1)
and the curl of the Ampere-Maxwell law is
.1 OE
VXVXB:MUVXJ‘F?VXE. (2)

Because V - B = 0, we have

VxVxB=V(V-B)-V’B=-V’B.
Therefore, inserting (1) into (2) and using Faraday’s law, V x E = —9B/0t, gives
16°B B

2
B- -~ =_.
VB-Gor =9
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(b) From translational invariance and the boundary condition B(z = +d) = Byx, we
deduce that B = B(z)%x. The external field is static, so the equation to be solved is

¢B _B
d=2 82’
The solution is the linear combination
B(z) = aexp(z/d) + bexp(—z/9),
subject the boundary conditions
B(d) = aexp(d/d) + bexp(—d/d) = By (3)

and
B(—d) = aexp(—d/d) + bexp(d/d) = By. (4)

It follows from (3) and (4) that a = b. Hence,

cosh(z/0)
B=—"<B.
cosh(d/d) 0
(c¢) The current density is
= iV < B — By sinh(z/9) .

o 1100 cos(d/s) >

13.22 Supercurrent on a Sphere

B = 0 inside the sphere because the material is a superconductor. Therefore, the surface
current density at the sphere surface is

,LLOK =1rx [Bout - Bin]S =1 x Bout|S-

We let By = Byz and use a magnetic scalar potential approach. The latter satisfies V1) =
0 away from the sphere surface. Now, the external field contributes eyt = —Byrcosf
everywhere and the current induced on the sphere surface contributes a general solution of
Laplace’s equation valid for R > r. Therefore, outside the sphere,

> n+1
Your(r,0) = > A, - P, (cosf) — Byrcos 0.
=3 () °

The normal component of the magnetic field is always continuous. Therefore,

o0

= Z A, L;lpn (cos ) + By cos .

o awout

0= or

S n=1
This shows that A1 = —RBj/2 and all other A,, = 0. We conclude that
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RS
¢0ut = 7BO - t7|cos 9,
2r2

SO
3 N
IU()K = —F X v¢ext|r:R - 7§B0 Sin0¢'

This agrees with the stated answer because r X z = —sin QdA).

13.23 A Cylindrical Refrigerator Magnet

The first term is the capacitor-like attractive force between the end of the cylinder and its
infinitesimally close image derived in the text. The far end of the cylinder behaves like a
point magnetic charge @* = M A at a distance L from the permeable surface and induces
an image magnetic charge —Q* at a distance L into the permeable matter. Therefore, there
are three Coulomb correction terms: attraction between the far end of the cylinder and its
image, repulsion between the far end of the cylinder and the image of the near end, and
repulsion between the near end of the cylinder and the image of the far end. The sum of
these forces is

Cw@)P[ 111 T LA

S SV
ir (202 12 12 1670 T2

13.24 Magnetic Total Energy

By definition, the total energy is the work required to assemble the configuration. Opposite
poles repel, so more work is required to assemble configuration 2 than configuration 1.
Hence, its total energy is larger.

Source: J.R. Pierce, Journal of Applied Physics 24, 1247 (1953).

13.25 Inductance in a Magnetic Medium

In vacuum, the defining equations are
VXH():jf and VHU

The magnetic flux through the loop is

(I)() :/dSBO :,uo/dSH()
Therefore, the self-inductance of the loop is
Ly =y/1;.

There is no change to any of the defining equations if all we do is let ug — p. Therefore,
H = H,. On the other hand, the flux through the loop is
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<I>:/dS~B:u/dS-H[):/<am<I>0.

Therefore,

L= ‘I)/If = K?rz,(I’O/If = kmLy.

Source: R.K. Wangsness, Flectromagnetic Fields (Wiley, New York, 1986).
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Chapter 14: Dynamic and Quasistatic Fields

14.1 A Polarized Slab in Motion
The field of the polarized medium is equivalent to the field produced by two uniformly

charged sheets. One at z = d has o, = P; the other at z = 0 has o_ = —P. Both
move with velocity vx. This is equivalent to a surface current at z = d with density
K, = o0,v = Pux, and a surface current at z = 0 with density K_ = oc_v = —Pvx. On

the other hand, if there were a magnetization M = P x v = Pvy, we would expect a surface
magnetization current density K = M x n. In agreement with the first calculation, this
gives K= Pvx on z =d and K = —PvXx on z = 0.

14.2 Broken Wire?

The field in the gap is capacitor-like if b < a and points along the wire, as does the current

density j. Moreover,
o . I
Egop = - where o = /dt] = /dt@.

By definition, the displacement current density is

0By _do _ . _1()
ot dt 7 ma?

Jd = €o

Therefore, the displacement current flowing in the gap is

1; = /ded = 7ra2jd = I(t).

14.3 Charge Accumulation at a Line

(a) By charge conservation, the charge per unit length \(¢) at x = 0 satisfies

d\
— =K.
dt
In the quasi-electrostatic approximation, the electric field is given by the usual static
formula,
A1) p
E(p,t) = ) p p =X+ 2Z.
2mey p

Taking account of the displacement current, the magnetic field satisfies

. . . OE
V-B=0 VXB=M0J2M0J+Mon=MoJ+M0€0§7
where, as illustrated in the figure below,
J=—-K0(x)i(z)x + 72
Tp
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N / j

S

Now, it follows from the symmetry of the problem that

B = B(x, 2)y and B(z,z) = —B(z,—2).

Remembering both contributions to J, we now apply Ampere’s law in integral form
using the circuits shown below.

Beginning with the « > 0 circuit for the observation point (x, z) shown as a black dot,

= puKL(1—¢/m).

KL [ d
fds-B:QBL:MOKLJL“ / i ‘T

2m \/372 + 22 \/xZ + 22
Therefore, for 0 < ¢ < 7/2,

B(z > 0,z) = sgn(z) oK <1 - ¢) v,

2 T

where tan ¢ = z/x as shown in the figure. Note that this reproduces the infinite sheet
result when z — oo so ¢ — 0.

We use the circuit to the left for x < 0. Here, only the displacement current contributes
to the magnetic field. The integral is the same as above except the overall minus sign
is absent and the angle ¢ — ¢*. This gives

2BL = NOKL¢— = uOKLH =puoKL(1—a/m).
o ™

Therefore, if 0 < ¢ < 7, we get a single formula for the magnetic field everywhere:

B(z,z) = sgn(z) “°2K (1 - ¢> y.

™

(b) Since J is time-independent, we found a time-independent B. This means that 9B /ot =
0 and the solution we have found satisfies the full Maxwell equations and not merely
their quasi-static approximation to them.
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14.4 Charge Accumulation in a Plane

(a) The displacement current is

(b) By symmetry, the magnetic field can only have the form B = B(r,0)e,. The field lines
of B are circles centered on the z-axis as shown in the figure. Ampere’s law in integral
form shows that K does not produce any magnetic field at all. The total B comes
from the displacement current. Then, using a spherical capping surface to evaluate
the surface integral of j; - dS = j3dS in spherical coordinates,

0
I I

27rsin B = 27TT2/L()jd/ df’ sin0' = 27TML(1 —cosf) = B(r,0)= HoZ tan(6/2).
0 4T 4dmr

14.5 Rogowski Coil

For an Amperian loop that lies inside the torus and is everywhere perpendicular to the cross
section,

j{ds -B = /L()I(t)7

if I(t) flows through the hole of the torus. On the other hand, the magnetic flux through

one turn of the torus is
@B:/dS-B:A/dé-B,

where dS is a unit vector perpendicular to the cross section. Therefore, if one turn advances
us along the torus by distance ds, the total flux through the entire torus is

Op = nA%ds ‘B =nApgl(t).

The induced EMF is
ddp .
E=—==nAuylt).
ar Al
No EMF arises if I(t) does not flow through the hole of the torus because the Ampere’s law
calculation above then gives zero for the magnetic flux.
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14.6 Magnetic Field of an AC Capacitor

The electric field directed from one plate to the other follows immediately from the static
formula:

By symmetry, the magnetic field lines form closed circles concentric with the symmetry axis
of the plates. Using circuits like this of radius p to evaluate the Ampére-Maxwell law in
integral form gives

1 OF Vi
?{ds~B:2ﬂ'pB(p):/dS ol + —=—| = UL {uoasinwt—i—icoswt .
2 ot d c?
Hence,
Vo . w 5
B(p) = 2 [ansmwt + ) coswt} ®.

14.7 A Resistive Ring Comes to Rest

When a <z, the magnetic field is nearly constant over the area of the ring. In that case,
Faraday’s law gives the magnitude of the EMF generated in the ring by its motion as

&

2 2
d/dS‘B:WaZ@—Wa Bydr _ ma” By Bov

- a dt B Zo dt B o

Ohm’s law says that £ = IR, so we can equate the rate at which energy is dissipated in the

ring with the rate at which the ring loses kinetic energy:

&2 d1
=&l =1 = ——-Mv?> = Mvo.
P=¢£ 7 72 v VO

This gives the equation of motion

wa’ By ) 2

. Y .
=_L with v =
v MU ! v < Zo

The solution is immediate: v(t) = vy exp(—~yt/M). Therefore, the total distance traveled
from the origin is

x = /dtv(t) = M,
Y

0

Source: MIT Physics General Exam I, Spring 2001.
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14.8 A Discharging Capacitor

(a) By symmetry, K1 (p,t) = —Kg(p,t) = K(p,t)p. To find K(p,t), we integrate the
continuity equation over the rod-shaped volume with radius p shown below.

From Chapter 5, the surface charge density is o(p) = @Q/4mR+/R? — p? on each side
of a circular conducting plate. Therefore,

Qp,t) = 2Q(1) O/ o O/ U e = A 1= VTR

The surface current brings charge into the rod-shaped volume and the wire carries
charge out of the rod-shaped volume. Therefore,

. s Op d
3 ] 3 —_— = = . f— ] J—
/d rv ,]Jr/drat 0 ?{dﬂ K /dS _]ert/dScr
S

v v oi S
d
- K2mp—1I+ (7? {1 V1 —p2/R2} .
Since d@/dt = I, we conclude that

t) = ](t)i\/l_pQ/Rz_ (1)

K
(p, 2mp

(b) The Ampere-Maxwell law in integral form is

. 10E
de-B:/dS-[MoJ—i-Czat]
C S

We will always choose C' as a circle of radius p concentric with the wire. We are
treating the wire as filamentary (rather than ohmic), so the only source term outside
the plates is the wire current. In that case,

ol (t) -

Bout (P7 t) = 271_[)

©

(2)

Between the plates, the only source term is the displacement current. When d < R,
the field between the plates is F(p) = 20(p)/ep Therefore, since dS = dSz,

1d 1 d :
By (p,t)2mp = (j*/dS-E: /dSU(P) = o Q(p;1),

oc? dt
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(c) The general matching condition is [By — B1] = ugK x ny. For the right plate, this
reads

~

Bout — Bin = oKpg % z= _MOK(pat)ﬁ Xz = MOK(pa t)¢ (4)

On the other hand, from (2) and (3),

I(t N
Bout - Bin == Ho (p) V 1-— PQ/R2¢

2

This reproduces (4) when we use (1). The calculation for the left plate is identical.

14.9 What Do the Voltmeters Read?

The magnetic field is increasing into the paper. Therefore, a counter-clockwise current is
induced in the inner circuit that includes Ry and Ry. By Faraday’s law and Ohm’s law, the
magnitude of that current is

I(Rl + RQ) = B?TTQ.

Again by Faraday’s law, the small current that flows through the outer circuit that includes
both voltmeters is also counterclockwise. This is the direction where V) reads a positive
voltage and the voltage drop across this meter is the same as the voltage drop across R;.
Therefore,
Rl . 2
= —Bmr®.
Ri + Ry

The current flows through V5 in the opposite direction, and the voltage drop across this
meter is the same as the voltage drop across Ry. Therefore,

Vi

R

—— = Bm’.
Ri + Ry o

‘/72:

Source: R.H. Romer, American Journal of Physics 50, 1089 (1982).

14.10 A Sliding Circuit

There is both a “flux” and a “motional” contribution to the EMF so we use

Ez—%/dS~B+7§ds-(vde),

S C

and pick C as the stationary circuit PP’Q’QP indicated in the figure. This choice makes
the wire coincident with three of the four legs of C. The solid arrows in the right panel
indicate the presumed direction of current flow. The drift velocity of the electrons in the
wire is along the wire and vq = v for electrons in the magnet. This assumes that the latter
are simply dragged along by the ions of the magnet. The motional EMF associated with
C comes entirely from the segment PP’ where vq, B, and ds are mutually orthogonal. We
find

Emotional = —Bhv.
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As the surface S that bounds C, we choose the union of the two rectangular and two
triangular flat surfaces outlined by dashed lines in the figure. The flux of B is non-zero
through the large rectangular surface only. Therefore, if x stands for the distance PE, the
fact that B and dS are anti-parallel gives

dz
Eux = Bh% = Bhv.

The total EMF is £ = Enotional + Eaux = 0. Once the segment QQ’ enters the field of the
magnet, the flux contribution disappears and only the motional EMF remains.

Source: G.C. Scorgie, European Journal of Physics 16, 36 (1995).

14.11 Townsend-Donaldson Effect

The magnetic field inside an ideal solenoid is B = pugIN/L. Its self-inductance is L =
®p/I = NBA/I where A = wR? is the cross sectional area. The voltage drop across the
solenoid is V' = E.¢ = LdI/dt = NBA(I/I). Faraday’s law applied to one loop of the
solenoid gives Ey - 2r R = BA. Therefore,

Ey (/NBI (/N

E., 2rRBJ] 2R’

Source: J.S. Townsend and R.H. Donaldson, Philosophical Magazine 5, 178 (1928).

14.12 A Magnetic Monopole Detector

The charge is the time integral of the Faraday current induced in the ring:

0= /dtl_—/dtff—/dtd(pB :7/d¢B p(final) — (I)B(lnltlal).

R

The monopole creates a magnetic field which satisfies the flux integral

/dS~B:uog,
S

where S is any surface that completely encloses the monopole. Let the ring lie in the z =0
plane and choose this plane as half the surface S. The other half of S is a hemisphere of
infinite radius. When the monopole reaches z = +A, half the flux integral above comes
from the z = 0 plane and half passes through the hemisphere at z > 0. When the monopole
reaches z = —A, half the flux integral above comes from the z = 0 plane and half passes
through the hemisphere at z < 0. The two z = 0 contributions have opposite signs. There-
fore, since the monopole actually passes through the ring, the change in flux through the
ring is the sum of these two contributions. Hence,
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14.13 Corbino Disk

(a) The radial current density associated with the radial current I is j(r) = Iy/27rt. The
corresponding carrier speed is v = j/ne = Iy /2nrtne. This motion is perpendicular to
the external magnetic field so the “motional” EMF at radius r is

&= %dﬂ(v x B) = 2nr x Iy/2nrtne x B = Iy B/tne.

The resistance of a volume composed of an area tdr that sweeps around in a circle of
length 27r is 2mr /otdr. Therefore, the circular current is

Ry
E e[l OB B

I P—
R 2mr 2mne Ry

(b) Consider a circle of radius Ry < r < Ry in the plane of the disk. The potential
difference between any two points on the circle is

B
o(A) — o(B) = /A it -E,

because the Ohm’s law electric field E = j/o is radial and therefore perpendicular to
a path that follows a circular arc between A and B.

Remark: There is no azimuthal electric field. The circular current is driven by the
magnetic part of the Lorentz force, which does no work. Since IR 5 = w4 —pp+FEap,
we get Eoap—IR,p = 0 for this situation. That is, each bit of circular arc is a “battery”
that produces a current through its own resistance.

14.14 A Falling Ring and the Lorentz Force

(a) The changing magnetic field produces a changing magnetic flux through the ring as
it falls. The induced electric field produces a torque on the distributed charge which
induces rotation.

(b) The flux rule is

i/dS-B:—j{dﬂE.
dt
5 c

The ring is horizontal and the induced electric field is azimuthal. Therefore, an ele-
mentary calculation gives the instantaneous electric field at the position of the ring as

1 _dB. »
E=—- .
27 at

The Coulomb force gE exerts a net torque on the ring equal to

QR dB.
Z.
2 dt
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On the other hand the torque is also equal to N = Idw/dt, where I = MR? is the
moment of inertia of the ring. Therefore,
_QR2 aB,

dw
27
2 dt = MR dt

or

where 2 is the angular velocity of the ring when it hits the ground. Integrating gives

Q
Q= B.(h) — B.(0)].
S B (h) = B.(0)]
By conservation of energy the change in potential energy is equal to the sum of the

translational and rotational kinetic energies, i.e.,
Ly o Lo
Mgh = -Muvey + =197,
2 2
Inserting 2 and I from just above gives the required center-of-mass speed.

(¢) At a moment when the ring has angular velocity w, its rotational motion produces a
current ¢ = Qw/(27). Therefore, the ring possesses a magnetic dipole moment with
magnitude

1
m=7R? x Qw = —QR%w.
21 2
The magnetic force on this dipole, F = mV B, , opposes gravity as the ring falls. The

work done by this force over the course of the fall is

BZ (0)
W = /dr-F - f/mdedz ~_Llop / w(B.)dB..
dz 2
B.(h)
Using the result from part (b) that
w(2) = =2 [B.(2) - B.(0)
2M ’
we find that
22 2:0) 2 p2
_ QR / _ Q°R 2
B.(h)

This is indeed equal to the change in the rotational energy of the ring:

QQ RQ
8M

%MR2QQ = [B:(0) — B:(h)]*.

Source: Dr. A. Scherbakov, Georgia Institute of Technology (private communication).
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14.15 Ohmic Dissipation by a Moving Charge

(a) The conducting plane is an equipotential with V' = 0. By the method of images,
the electric field to the right of the plane may be represented as a superposition of
the field produced by ¢ at (0,0,z) and its “image” —q located at (0,0,—z). The
field components parallel to the surface cancel from these two sources and the field
components normal to the surface add.

Therefore, the electric field on the surface of the plane at distance r from the origin is

E— 5 1 2qz
-4 2 | ,2)3/2°
€ (22 4 12)

The corresponding induced surface charge density is

o(r)=ez-E(r)= . :

2m (22 4 2)7%

(b) The amount of induced charge located within distance a from the origin is

a

Q(a) = /27rr0(r)d7’ = —qz/a
0

0

rdr 1
_— = Z ——
(22 + 7"2)3/2 1 V22 +r?

“ z
=g —— —1).
0 q(\/zz+a2 )

Referring to the diagram below, the rate of increase of Q(a) is the current flowing into
the disk of radius a:

dQ(a) 0Q . 0z qa’v

dt — 9z Ot (22 +a2)3/2'

I =
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Therefore, the power dissipated within a ring of radius a and thickness da is dP(a) =
I?dR where dR is defined in the problem statement. Hence,

¢?a*v? da

dP(a) = L2 Rp, 2
(a) (22 +a2)3 52ﬂ_a7

and the instantaneous power dissipated in the plane is

¢*v®Rg /°° a*da B 1’ Rg /°° % (t — 22) dt
0 ( z

2 22 +a?) 27 > 3
_ ¢°V’Rg 1+£ < ¢*v’Rg
- Ar t 22 )|, 8mz?

Source: Dr. A. Scherbakov, Georgia Institute of Technology (private communication).

14.16 An Unusual Attractive Force

(a) The wire produces a magnetic field By = pI/27r which points out of the paper near
the sphere. The Lorentz force acts like an effective electric field Eg = v x B which
polarizes the sphere (positive charge ) closest to the wire; negative charge —@ farthest
from the wire). The moving positive charge at distance d—a from the wire behaves like
a current I’ flowing parallel to I. The moving negative charge at a distance d+ a from
the wire behaves like an identical current I’ flowing anti-parallel to I. The parallel
current is closer to the wire, so the net force is attractive.

A_Q Ir
d+a > Cj v I
d—a @
= 1
!
(b) The force exerted on a length ¢ of wire is F' = I[¢B, where
Sl [ 1 1] _ml'2
21 |d—a d+a] 27 &

An estimate of the effective current produced by a moving charge Q is I' = Qu/t.
Therefore,

/L()I 2a

FP~"——

2 d?

(1)

and it remains only to estimate Q. We do this by equating the estimate p ~ Qa for
the dipole moment with the estimate (based on the hint)
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. ol
p c0a’Fy ~ epa®vBy ~ eoa?’vﬁ

1 a?vl

Since egug = 1/c?, the result is Q = T Inserting this into (1) gives the suggested
¢ 2w
result,

2 3
v a 9
Foc g ghl”

14.17 Quasi-Electrostatic Fields
Since E= —-Vyp and B=V x A, we get V X E =V - B = 0 immediately. In addition,

V-E=— /d3r’p(r’,t)v2 1 _ 1 /d3r’ p(r' )d(r—1') = p(r,t).

4meg Ir —r/| - €0

Finally, making use of the continuity equation, V - j + dp/dt, to get the penultimate line,

VXVX d3IJ( )

47T |r — 1’|

Ho 3,/ i(r',t) /‘0/ 3.0t s 1
- &7 Mg ¢
V / |r—r’| 4 ri v |r — 1’|

- v fer s

Ho 3. 050t ;1 .
= -V— [ d t) -V — t
o e

V x B(r,t)

(.0 + (1) -V }wmmﬂ

1
v — |

W"‘NOJ( t)

10 1 p(r',t)
_ _77v d3 /! ) .
ot 4rweg / " |r — r/| +Hol

1 0E

= 20 + toJ-

Ho 3 7
= V— | d
47 "

14.18 Casimir’s Circuit

When a < b < L, we may approximate the magnetic field produced by each wire using
the infinite-wire formula B(p) = ¢uol/2mp. The magnetic flux & through the rectangular
area bounded by I; and I is

o L

b
(pB = 27({(]1 Ig)lnajglIIQ}.
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Since each I (t) varies as exp(—iwt) and r = 1/oma® is the wire resistance per unit length,
the flux rule & = —d®p /dt applied to this rectangle gives

d , L b
€= (L~ L)L = -2 = Zu}% {(I1 — L)l = — Iy 1n2} .
We have neglected the voltage drop across the horizontal busses that connect the wires
because L > b. By symmetry, I; = I3. Therefore, since 277 /wpuy = 6% /a®, we get the final
result,

IQ 12 In2

L L mwa e o

The figure below is a plot of Im(l3 /1) versus Re(Iy/I;) according to (1). Two points
stand out. First, although the current in each wire is the same when w = 0, > steadily
decreases compared to its neighbors as w increases. Second, the ratio Iy/I; always has
a positive imaginary part, so I»(t) always lags in time behind I (¢) and I3(t). Both are a
consequence of transient, Faraday-induced currents that circulate in the three closed circuits
defined by the three resistive wires.

Im(’_z) T,
Il / \\‘
i Re 1—2
‘ /‘ 1 I
- In2
In(b/a)

These results may be compared with the time-harmonic current density in a thin, rectangular
metal slab in the small-skin-depth regime. The results of the text imply that the electric
field near the z = 0 edge of such a slab is

B)(z) = By(0) exp {(i — 1)2/5(w)}.

A

z=2b

A similar formula applies near the z = 2b edge. The symmetric minimum in the current
density sketched in the figure above is a continuous version of the fact that Iy < I} = I3
in the three-wire problem. The prediction of (2) that the current flow away from the edges
lags behind the current flow at the edges is a continuous version of the lag of I5(t) compared
to I; (t) and I5(t).

Source: H.B.G. Casimir and J. Ubbink, Philips Technical Review 28, 271 (1967).
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14.19 Inductive Impulse

Let B(x) be the magnitude of the field produced by the straight wire at a perpendicular
distance x from itself. By Ampere’s law,

pol
B(z) 2mx
I Il;d
A
d
- -
F, (IX?) F,
I
I x Il+a ¥

The flux of B through the frame is

+
) r _ polb a
&= [ 1+ade B (z)bde = 1022 [ 2F m(1+2).
/ﬂm( v 2/3; 27rn<+l>
!

l

Using Faraday’s law, the magnitude of the induced EMF in the frame is
_d® b a\ dI
=% = o n<1+ l) dt’

Therefore, the current induced in the frame is

et = = 5 (1) G

The direction of the current is clockwise, as dictated by Lenz’ law. Hence, the net force on
the frame is toward the straight wire, with magnitude

MObI “Lina MObI “Lina //"Obal “Iina /’L%bga (
1o 2l or(i+a)  2nl(ita) al(i+aR 7T

s

The impulse imparted by the force during the switch-off is

pib*a a /O pib*alg a
= | Fi)dt=———F——=In(1+ - I dl=———F——=In(1+-).
7 / ®) 4772[(l+a)Rn< +l) 7 87r2l(l+a)Rn( Jrl)

0

Hence, the velocity imparted to the frame is

J udb*al? a
=—=——————In(1+-).
YT 87T2ml(l+a)Rn( +l)

The frame moves toward the wire.
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14.20 AC Resistance of an Ohmic Wire

The DC resistance of a wire with cross sectional area A is R = L/o A. The high-frequency
limit of quasi-magnetostatics is the limit of small skin depth when

5(@:%.

Since all the current flows within a distance § of the surface of the wire, the effective area
of the wire is reduced from wa? to 2wad. Therefore,

R(w) L L wowo L [pow
w) = = 1/ o —y [ —.
o2rad  2mac 2 a o

14.21 A Rotating Magnet

The neglect of electromagnetic waves means we may neglect the displacement current. This
is a problem with zero charge density so the relevant Maxwell equations are the formulae of
quasi-magnetostatics:

V-E=0 V-B=0
0B .
VXE:_E VXB:/,L()J.
The magnetic field is
BoVxA—yx|tom®xr]
AT r?

We get the electric field from Faraday’s law, namely,

0 0A
VXE—*EVXA—fVXE.

Therefore,

OA  pomxt o (2 xm)xf
ot 4w r? A r? '

E =
Source: A. Kovetz, Electromagnetic Theory (University Press, Oxford, 2000).

14.22 Magnetic Metal Slab
(a) In the quasi-magnetostatic limit, the magnetic field satisfies the diffusion equation

0B(r, 1)

V?B(r.t) = Ho—pr

The driving field is time-harmonic, so the steady-state field in the medium will be
time-harmonic also. This means we need to solve

V?B(r) = —iwpoB(r) = K*B(r).
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The boundary conditions and symmetry tell us that B(r) = zB(y) with B(y) =
B(—y). From these facts, we conclude that

B(y) = Acoshky.
Ohmic material cannot support a singular surface current density K. Therefore, the

tangential component of H is continuous and By/uy = (A/p) cosh kd. Therefore, if
Kk = /1o, the field inside the slab is

. kB cosh ky

_ —iwt
Bly,1) =2 coshkd ¢
(b) From the definition in (a),
k:liZ where 0= i
1) How
Therefore,
Re B.(y,0)
_ <BR cosh(y/d) cos(y/d) — isinh(y/d) sin(y/H)
= FPORE Cosh(d/8) cos(d/8) — isinh(d/d) sin(d/d)

B cosh(y/0) cosh(d/d) cos(y/d) cos(d/d) + sinh(y/d) sinh(d/§) sin(y/d) sin(d/d)
0 cosh? (d/8) cos? (d/§) + sinh? (d/8) sin’ (d/§)

The graph of this function is as follows.

Re[B(y)]

Source: T.P. Orlando and K.A. Delin, Foundations of Applied Superconductivity (Addison-
Westey, Reading, MA, 1991).

14.23 Azimuthal Eddy Currents in a Wire

(a) The first approximation to the eddy-current density inside the tube is j = oE where
E is the electric field induced by Faraday’s law. By symmetry, this field is in the ¢
direction. Therefore, using the integral form and closed circles of radius p,

d

§ds B = 2mpEy () = - 502(p) =~ Bt).

The result is

0By pw sin wt.

j(p) =€i>%
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(b) The eddy-current density calculated in (a) produces a magnetic field which supplements
the external magnetic field. Repeating the calculation in part (a) using this additional
magnetic field produces a correction to the current density calculated in part (a). This
is precisely a self-inductive effect. Now, the total azimuthal j(p) may be regarded as
a superposition of nested solenoids. The “solenoid” at radius p produces a magnetic
field

toj(p)dpz — p" < p,
dB'(p') =
0 p > p.

Therefore, the Faraday-induced supplement to the external magnetic field is

R

2 _ 2
/dp dB’' = *MUO'B[)W sin wt (RQp> Z
P

The associated correction to the magnetic flux through the tube is

p
1 R2 —
(I)/<P) = 27T/dp/p/§MOO'BOW sin wt (2p> .
0

Repeating the calculation in part (a) gives the correction to the eddy-current density:

1 RQ 2 .
i'(p) = —iMoBopOQw2 cos wt (2 _ 04) b.

(c) The self-inductance can be neglected when j'/j ~ ppowR? ~ wry < 1.

14.24 Eddy-Current Levitation

(a) Because a < b, the magnetic field of the loop is nearly constant over the volume of the
sphere and may be approximated by the on-axis field of a current loop at a height z
above the plane of the loop. This was calculated in Chapter 10 as

110 Lo b

1
TR

exp(—iwt)z = uoHy.

Because 0 < a, the ohmic sphere behaves no differently than a perfectly conducting
sphere in a uniform magnetic field. Therefore, we can use the results of Chapter 13
and conclude that the eddy currents are characterized by a magnetic moment m =
—2ma®H,. By symmetry, the instantaneous force on the dipole is in the z-direction:

3 Bo(t) 0By (t)
Ho oz

F(t) = my (t)VBy(t) = —2ma
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The time-averaged force is

3 34 o 25
<F> = iﬂ'a b m/jol—oz.

Setting this upward force equal to the downward force mg gives the value of I required
for levitation.

(b) Using a® as the characteristic volume of the sample and b as the characteristic size of
the source, the text suggests that, when § < a,

1/b

0,3

B ~ a’b*
pob

(F)

This does not quite agree with the foregoing until we put z = b. This is reasonable
because only one length scale was used in the text to characterize the source.

Source: G. Wouch, American Journal of Physics 46, 464 (1978).

14.25 Dipole down the Tube
(a) When the dipole is at zp, the vector potential at a point r = ap + 2’z on the ring is

_pomX (r—z2) o ma -~ foma -

A(r) = 2P = ®.

dr o fr— 22 AT (g2 4 (2 — 2)2] 4

The associated magnetic flux through the ring is

2w 9 9
Homa poma

@B :/dSB:%dSA:a/quA(? - 2[a2+(2’o—2’)2]3/2 - 2T8

0

(b) Using the convective derivative and the quasi-static approximation, Faraday’s law reads

dd 0P 0P
E=——F=—-F7—-(v-V)o=0v—.
T TG A
(c) The resistance of a wire with conductivity o, length L, and cross sectional area A is
R = L/oA. Here, the current is circumferential so L = 27a and A = dz’t. Therefore,
setting G = 1/R so Ohm’s law reads I = £G, we have

ovt 0P .,  3Bugmavot (zy — z’)d ,
= 2.

ot
dl = EdG =E—dz' = — =
ora’  2ma 92 4 )
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(d) The total power dissipated by Joule heating is

/SdI = ]Odz’ 3uoma*v (20 — 2')] [3pomavot (zg — 2')
- 2 e g -

(oo}
uim?adviot (20 — 2)?
= e [ ¥
8T T

— 00

B 9ﬂ%m2a3v2at/dz, (20 — 2')?
[a

8 + (20 — 2')2P
2,2 3,2 /2
9 t1
— M @Ot o / df sin® 6 cos® 0
8T a’
—7/2

9uim?a®viot 1 57

8T a’ 138
45 pim?vot
1024 at

Hence, the drag force is
45 pgmPuot
1024 at

(e) We get the terminal velocity by setting the drag force equal to the weight w of the
magnet. This gives

1024 wa’
vp = —— ———.
P75 2mlot
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Chapter 15: General Electromagnetic Fields

15.1 Continuous Creation

(a) Operate with (1/¢?)d/0t on the modified Gauss’ law and add this to the divergence of
the modified Ampere-Maxwell law. The result is

L0 G (%o ) e L0 o 100

The modified continuity equation will be satisfied if we choose the potentials so
1 dp o

VAt 5o =R

The theory is mot gauge invariant because the equation above chooses a gauge.

(b) The unaltered Maxwell equations, V-B = 0 and V x E = —0B/0t, guarantee that
B=VxA and E = —Vp—9JA/0t are still true. Then, because  is a constant and
f(r,t) is a function of the radial variable only,

0A

E- 22 _ _,§
ot ~ ¢/

B=VXA=fVxr—rxVf=0.

From the modified Maxwell equations, the charge and current densities associated
with these fields are

p=6V - -E+4+elp= —36(]f—6(]7"f/+60)\§00 (151)
) OE .
_]:VXB/MO+A)\/M0fegazr(eoerf)\/uO). (15.2)

Substituting these into the modified continuity equation gives

. a/)_i nNo_
V.J—’—E—MU Bf+rf)=R. (15.3)

(c) A particular solution of (3) is fo = Ruo/3A. The solution to the homogeneous equation

3f+rf ' =0is
const.

f= FERE

This is singular at the origin and so must be discarded.

(d) In light of part (c), we choose f = fj so (1) and (2) give
J R

= r.
P 3eApo

This means that matter moves out radially from every point in space. This is consistent
with the modified continuity equation which says that matter is created at every point
in space.
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Source: R.A. Lyttleton and H. Bondi, Proceedings of the Royal Society of London A 252,
313 (1959).

15.2 Lorenz Gauge Forever

(a) The Lorenz gauge constraint is

1 dpr
2 ot

If we insist that A’ and ¢’ do the same, we must have

V- -A; +— =0.

1 9o | &*A 1 92A
Z o0 +W__VA+7W'

In other words, A must satisfy the homogeneous wave equation.

0=V-A, -V -VA+ =

(b) The Lorenz gauge potentials satisfy

1 0%¢r p
2 L __r
Vier cz ot? €
1 9*Ap
2 _ .
VAL — 2 o —HoJ-
The change
OA
‘pL—>§0L+at A; - A — VA

transforms the equations of motion to

or
1 82<,0L 0 1 0°A P
s Oloep_LoAl_ p
VLG T [v g atZ} <
, 1 0°A, .. 1A
VAL= G —V VAT Gga | =

We conclude that the Lorenz equations of motion for the potentials are invariant to
gauge transformations where the gauge function A(r, ¢) satisfies the homogeneous wave

equation.

15.3 Gauge Invariant Vector Potential
Let us apply the Helmholtz theorem to A and A separately. This gives

Al I‘ t 7V/dg /V AL I‘ t) vx/diirl VIXAL(r/at) :Vx/d:%r' VIXAL(r/at)

4 | -1/ 4r|r — 1’| 4r|r — 1’|
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and

A” ——V/d3/v A”I‘t) Vx/d:&’mi”rt _v/d3/v AHI‘t)

4r|r — v/| 4r|r — v/| 4r|r — 1|

A general change of gauge for the vector potential is A — A + VA. This has no effect on
A because V x VA = 0. By contrast, A changes because there is no reason to suppose
that VZA = 0.

15.4 Transverse Current Density in the Coulomb Gauge

The definition of the transverse current density given in the text is

% 'j(r/a t)

1 .
ji(r,t)=j(r,t)+V— [ d*
JL(I', ) J(I‘, ) A r ‘I‘ — r/l

On the other hand, the text discussion of the Helmholtz theorem proves that

YA v [0 v @)

v r— v —v[

Insert (2) into (1) and note that the total divergence term vanishes for a localized current
distribution. Therefore,

1
]lk(rt)—]k(rt)ﬁ’Vki/dT][ )ng
or
i (rt):j(rt)+i/d3r' VeV — | ) 3)
1,k\L, kL, A k E‘I‘—I'/| ¢ .
On the other hand,
1
2
F— = —4mi(r —1').

Using this, (3) can be written in the form

Jir(r,t) = /d%’ [_417 (6k0V* = V1 Vy) Fqu Go(r).
This completes the proof because the quantity in square brackets is the transverse delta
function defined in the problem statement.
15.5 Poincaré Gauge
(a) When E is a constant vector,
—Vo=-V[-r-E|=V(r,E;) =E.
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Similarly, when B is a constant vector,

VxA:—%Vx(pr):—%[(B-V)r—(r-V)B—H‘(V-B)—B(V-r)].

But V-r=3,V-B =0, and (B-V)r = B. Therefore,
1
VxA=—;[B-3B] =B

(b) By the chain rule,

iG  d(\ry) dG 1dG 1
D dh doe - " xdm - an VG

We will use this identity below with both G =B and G = E.

V x A(r,t) /d/\,\v x {B(Ar,t) x r}

/d)\)\{BV~rfrV~B+(r.V)Bf(B~V)r}.
0

As above, V-r =3, V-B =0, and (B - V)r = B. Therefore,
Vx A= /d)\/\ (2B, 1) + (r- V)B(Ar, 1)} .

Hence, using the identity proved above,

1 1
V x A(r, 1) = /d)\)\ {2B()\r,t) —|—)\j>\B()\r,t)} _ /d)\% NB(Ar, 1)} = B(r, ).
0 0
Similarly,
1
Vo) = - / AV {r - B(wr, 1)}
0

= —/d)\{(r-V)E+(E-V)r+r><(VxE)+E><(V><r)}.

But Vxr=0and VX E = —-90B/dt so

0B 0B
—V(r /d/\{ {AE(Ar,?)} — rxat}—E(r,t)—/d/\rxat.
0
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A
This proves that E = -V — 887 because

0A 0

— = —B .

5 /d)\)\rx pr (Ar,t)
0

Source: W.E. Brittin, W.R. Smythe, and W.Wyss, American Journal of Physics 50, 693

(1982).

15.6 First-Order Equations for Numerical Electrodynamics

(a) B =V x A guarantees that V- B = 0. Similarly, E = —V¢ — 0A/Jt guarantees that
V x E = —9B/0t. Hence, if Gauss’ law is maintained, it is sufficient to satisfy the

Ampere-Maxwell law,
1 OE

ot
The two equations given do this because the final one fixes the Lorenz gauge.

VXB:/,L()_]—F

(b) Using the given equations and the (implied) continuity equation,

) OE 10p . 1dp

EZE[V.E_p/EO]:V.E_anzcuov.']_ga

(c) Since V x (Vx A) = V(V-A) — V2A, we see that I' = V- A and that the first
two equations given reproduce the two equations in (a). All that remains is the time
evolution of I'. Using A from the statement of the problem, this is

or 0A

— =V.-—-=-V-E- V.

ot ot v
This equation and the others form a closed set. The crucial step is to assume Gauss’
law and then check that it is maintained. This gives the final evolution equation as

or

- = _— i 2
o p/en — V.
(d)
pC oo B 13
o2 ot Ot ¢ O
0 180%p
e 27 . — 2 J— 3 —_— —
= ¢ atV [ VA + VT /,LoJ] o O
0A or 10 op
P _2 . 27_ — —_——— .. —_—
= v [V ot va} € Ot [V J+8t}

= V- [VX(E+ V) = V(p/e + V)]
= AVH(V-E—p/ey)
= V2C.
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Source: A.M. Knapp, E.J. Walker, and T.W. Baumgarte, Physical Review D 65, 064031
(2002).

15.7 Elementary Energy Conservation

As the bar moves, Faraday induction drives a current I(¢) through the expanding rectangular
circuit formed by the bar and the U-shaped portion of the rails to its left. Our task is to
prove that

We determine I(¢) from the flux law,

d dA
I = — -B=B— =8B
()R = / is = Ba),

where v(t) is the speed of the moving bar. The magnitude of the drag force on the bar is
F(t) = I(t)¢B. Therefore,

0’ B?
mo = —IKB = —TU7

from which we deduce that
v(t) = vy exp(—2B’t/mR).

Therefore, it remains only to check that

1 B\* [ 232 1
,mvg =R g— /dth( ¢ /dt exp( 25232/mR) fmvo.
2 R 2

0

Source: E.M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1985).

15.8 The Poynting Vector Field

(a) Let E; and E_ be the electric fields produced by ¢ and —g. The Poynting vector will
have the suggested properties if it has zero divergence. By direct computation,

1
0

This is zero because (E; + E_) is a static field with zero curl and B is uniform with
zero curl.

(b)
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15.9 Poynting Vector Matching Condition

Write E = E|+E_ to partition the electric field into components parallel and perpendicular
to the interface. If we do the same for H and the Poynting vector in matter, S = E x H,

SZ(EH-FEJ_)X(HH-FHJ_).

We have E; x H; =0, but

SL:EHXHH and S”:EHXHL-FELXHH.

The tangential component of E is always continuous. In the absence of free surface current,
the tangential component of H is also continuous. Therefore, S, is continuous. This is a
physical necessity if we regard this vector as an energy current density. By contrast, S
is generally discontinuous because E| is generally discontinuous (if either free charge or
polarization charge is present at the interface) and, because B is always continuous, H |
will be discontinuous at the boundary between magnetically dissimilar materials.

Source; F.N.H. Robinson, SIAM Review 36, 633 (1994).

15.10 A Poynting Theorem Check

The Poynting theorem is
Qupm .
V-8 =—-j-E.
M7 !

The magnetic field produced by the moving sheet has magnitude pyov/2 and points parallel
to the sheet (but in opposite directions on opposite sides of the sheet). Both E and B are
constant in space and time so the left side of the theorem is zero. The right side of the
theorem is zero because j = 0 at points away from the sheet.

15.11 A Charged Particle in a Static Electromagnetic Field

Let j,, E;, and B, be the current density, electric field, and magnetic field produced by the
moving particle. The total fields are Ey + E, and By + B, but only the cross terms make
physically relevant contributions to Poynting’s theorem. Moreover, the flux of the Poynting
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vector S through a surface at infinity is zero if there is no radiation. Therefore, the relevant
statement of the theorem is

d

1
/d r |:€UEU Eq + 7Bo . Bq:| + /dsrjq . EU =0. (1)
dt Ho

Now, Eg = =V and p(r) = ¢d(r — r,) is the charge density of the charge. Therefore the
electric energy is

60/d37'E0 ‘E, = —eo/d3rV<p0 ‘E, = /d3r<p0V-Eq = /d3rcp0pq = qpo(ry).

On the other hand,
/d37"jq Ey = /d?’rqvé(r —r,) - Eg=q¢Ey-v

is equal to the change in the particle’s kinetic energy computed using Newton’s second law
and the fact that the Lorentz magnetic force does no work on a charged particle:

d

1
dt( mvz) =mv-a=qE)-v.

We conclude from these calculations that

d[1
dt[ muv —l—quo(rq)} =0

is equivalent to Poynting’s theorem (1) if we ignore the magnetic energy. The hint from the
problem statement is that the magnetic energy is related to the work done by E, and B,
on the sources of Eq and By. To check, we write

1
d*rBy-B, = /d3rj0-Aq,
ﬂo Mo

where jo is the source of By and E, = -V, — 0A,/0t. Hence,

d 1 1 HA 1
d*rBy-B, = — [ d®rjy- —2L = — /d Vo,).
dtﬂo/ it Ho/ Y Ho rdo - (By +Ve0)

Integrating by parts and using V - jo = 0 gives

1
/ddrBo B, :——/d T jo - By +f/ddr<p =—— [ d3rjo - E,.
dtuo o

In other words the time rate of change of the magnetic energy is the negative of the work
done by the moving particle on the sources of Ey and By. This work is non-zero because
the moving particle induces an EMF on the source charge and current. Collecting results,
the Poynting theorem (1) says
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41 1 [,
7 [QmU2 + Wo(rq)] = /d37~30 B,

and we get proper conservation of energy by canceling the right-hand side with dW,y /dt,
which is the power supplied by an external source to maintain Eq and By.

Source: J. Paton, Furopean Journal of Physics 13, 280 (1992).

15.12 Energy Flow in a Coaxial Cable

(a) Using Gauss’ law and Ampere’s law in integral form, it is straightforward to find the
electric field and magnetic field at every point space. If z is the direction of the current
flow in the outer cylinder,

0 p <a,
A
E=¢ - a<p<b,
2Tegp
0 p>b,
and
0 p<a,
I -
B={ K~ a<p<b,
2mp
0 p>b.

The Poynting vector, which is non-zero only between the cylinders, is

s— ‘pxp=_ M
Ho Ao p?

N>

Therefore, the power through a cross section is

b

'P:/dAi~S:27r/dp M = AL lné.
dmegp  2mey  a

a

(b) The potential difference between the cylinders is

b

b
Vz/dl-E: A @: A lné:IR.
27eq p 2mey @
a a

Comparing this to the answer in part (a) shows that we get the expected result,
P =1I’R.
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15.13 Energy Conservation for Quasi-Magnetostatic Fields

(a) The applied magnetic field is along y. This implies that the magnetic field everywhere
has only a y-component because the normal component of B and the tangential com-
ponents of H are continuous at z = 0. In the quasi-magnetostatic limit, we solve the
diffusion equation with an assumed time dependence exp(—iwt):

d’B, 0B, )
V’B, = WZJ = uoaa—; = —iwpgoB, = —k*B,.

Here, k = /ippow = (1 +4)/0 where § = /2/ppow is the skin depth. The general
solution of this equation is a linear combination of exp(ikz) and exp(—ikz). The

boundary condition is satisfied and the magnetic field decays exponentially into the
conductor as

Bin(za t) — yBoei(szwt) _ yBOefz/éeiz/(?efiwt.

We get the associated electric field from Ampere’s law neglecting the displacement

current:
VxB= ffcaa% = pooE.
This gives '
Ei(z,t) = &MO;;By (2,1).

(b) We take the real part of the fields calculated in (a) to evaluate the Poynting theorem.
Moreover, if A(r,t) = a(r)e=“! and B(r,t) = b(r)e~"“!, we have shown that the time
average over one period of a quantity that is quadratic in the field is

(A(r, £)B(r, 1)) = %Re la* (£)b(r)] .

On the other hand, every term in the time average of the time derivative of a quantity
which is quadratic in the fields. Therefore, the time-average is zero because

27 fw 27w 27 /w
0 0 0

/ dt = cos® wt = / dt = sin® wt = / dt— sin wt cos wt = 0.
ot ot ot

0 0 0

Consequently, the Jugyr /Ot term does not contribute to the theorem. Otherwise,

1 o . Bt
and
B? B?
j-EY) = 52 —22/8) = —"—.
0 0

For this problem, the unit normal —n = z and the Poynting theorem is confirmed for
every z-y unit area.
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15.14 Energy to Spin Up a Charged Cylinder

(a) We treat the cylinder as infinitely long because L > R. An elementary application of
Gauss’ law gives

0 p <R,
E(r) = -
A
p p> R.
2menp

Similarly, the rotating charged cylinder is a solenoid with surface current density
K = 0 Rwy. Therefore,

oo Ruwyz p <R,
B(r) =
0 p> R.

(b) If we ignore the displacement current, the magnetic field is the same as in part (a) with
wp replaced by w(t). That is,

poo Rw(t)z p <R,
B(r,t) =
0 p> R.

By symmetry, the Faraday’s law electric field is in the ¢ direction. Therefore, we
choose C' as a circle of radius p concentric with the z-axis to get

by OB B
S C

The magnetic flux is ®p = 7p?B if p < R and &5 = 7R?B if p > R. Therefore, the
Faraday electric field is

1 dw »
—§MOURP%¢ p<R,
EF(r7t) = 1 R3 d
W o~
—— g0 — — R.
3107 7 ? p>

The total electric field is the sum of Ep(r,¢) and E(r) found in part (a).
(c) If S = (ExB)/p and ugy = 1€9(E-E+¢’B-B), the Poynting theorem for an infinite

volume is
d
—/d3rj-E:/dAﬁ-S—i—%/d?’ruEM. (1)

~

The current density j = cwR0(p— R)¢ is localized on the cylinder surface. The power
supplied by the external agent is the work done against the back EMF:

dw

P = —/dgrj -E = —QWUwRL/dppd(p ~R)E, = Ty’ R Lw o (2)
0
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This work goes to establish the magnetic field, because

dUs d 1 f df1 ) dw
Y —-—__ [&B-B=—|— R R’L| = R\ Lw—. 3
dt — dt 2 " dt [QNO (oo o)™ mHoo" B Lw . (3)

The equality of (2) and (3) implies that the surface term and dUg /dt do not contribute
to the Poynting theorem in (1). The surface term is zero because S = 0 at infinity, in
our approximation which neglects the displacement current. The time rate of change
of the electric energy, Up « w(t), is also negligible because the spin-up occurs very
slowly.

(d) The rate at which energy flows into the interior of the cylinder is given by the Poynting
vector surface integral evaluated on a surface slightly smaller than the shell radius.
This is

1 1 dw 4 d d
—/dAﬁ-S = —27rRL%/3~ (2“00R2dj¢> X (noo Rwz) = Wu002R4Lwd—C: = %.

As anticipated, the rate of inward energy flow is equal to the rate of magnetic energy
increase.

15.15 A Momentum Flux Theorem

If S is the boundary of V', we are interested in the integral

I:eo/dS~(EoxBU):eU/d3rV~(ExB).
S S

Using a vector identity familiar from the Poynting theorem,

]:eo/d3r(VxE)-B—60/(V><B)-E.
\%4 \%4

The electric field is static, so V x E = 0, and the source of B is steady, so V x B = pj.
Therefore,
1 3 .
I= 2 / d’rj-E.
v
We make further progress using the fact that E = —V . Therefore,
1 3 . 1 3 .1 3 .
I=— [drj-Vo=—— [dreV-j+ =5 [ d°rV - (jp).
c c c
v v v
A steady current satisfies V - j = 0. Therefore, using Gauss’ theorem,
1 .
c
5
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This integral is zero because confinement of the particles implies that dS - j = 0.

15.16 An Electromagnetic Inequality

Usui = 3eo [ d*r [B-E+B-B] = 4 [ d’r [(|E| - [B|)” +2¢[E| B .

Therefore,

Ugm > eoc/d3r|EHB|.

On the other hand,
/d3r|E||B| > /d3r|E x B,

while
/d3r|E x Bl > ’/d?’rE X B‘ = [Penl/€o-

This proves the assertion. Equality holds when each of the three inequalities above is
separately an equality. The first is an equality when |E| = ¢|B|. The second is an equality
when E - B = 0. The third is an equality when E x B has a constant direction at every
point in space. These are the conditions that define a propagating plane wave.

15.17 Potential Momentum

(a) Faraday’s law in integral form is

j{dﬂ-E:—i/dS-B.
dt

C S

The magnetic field is zero outside the solenoid. Inside, the field is B = pgnlz. If we
choose the circuit C' coincident with the wire, a direct application of Faraday’s law
gives the electric field as

_ponR* dI o

B(r) = 2r dt

Since the particle velocity is v = v¢A>, Newton’s second law gives

wongR? dI
Lo =qE, = — )
a"t T I o dt

Therefore, after integrating from ¢ = 0 to t = oo,

_ pongR?

mlv(oc) - v(0)] = 28

[I(00) = 1(0)] .
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But v(0) =0, I(0) = I, and I(c0) = 0. Hence

pnongR2T
v(o0) = ———.

2rm

(b) For a single charged particle in the presence of an external field, a statement of con-
servation of linear momentum is

mv + Py = const. (1)

For our situation, v(0) = 0 and Pgy (00) = 0 because B(co) = 0. Initially, the charge
is at rest and the field it produces satisfies V x E = 0. In that case, the text proved
that

Peym = A, (2)

where A is evaluated at the position of the charge. To find A, we note that the
magnetic flux through any surface S bounded by a curve C is

@B:/dS~B:j{d£~A.
C

S
By symmetry, A = A, so we choose C' as the wire loop and find

_ pwonIR?

A=RTg 3)

Substituting (3) into (2) and using (1) gives

_ pognlR? é

v(00)

)

2mr

which is the same answer as found in (a).

(¢) The moving particle cannot exert a force on itself. Therefore there can be no transfer of
momentum between its kinetic momentum and any field momentum associated with

its self-fields.

Source: E.J. Konopinski, American Journal of Physics 46, 499 (1978).

15.18 Ppgy\ for an Electric Dipole in a Uniform Magnetic Field
The electric field of a point dipole at the origin is

1 [3i(-p)—p drm

E(r) =
(r) 47eg 73 3

294



Chapter 15 General Electromagnetic Fields

The magnetic field of the rotating shell is produced by a surface current density K = cw xr.
However, K = M X r is the effective surface current produced by a sphere with uniform
magnetization M = Mz. The text found the field of the latter to be

2
§’UOM r <R,

B(r) =
r> R.

1o R? [Bf(f-M) —M]

3 73

Therefore, if By is the uniform field inside the sphere, Pgy = PEII\,I + P%‘f\,tl, where

in : 1 1
PEI\'I = € / d37" |:—360p:| X BO = —g(p X BO)

r<R

and

by = o [ e {1 [HER ] o [0 )

471'60 73 r3
r>R
R’ Oodr
= M1027T dQ/F [TZPXM—S(I'XM)(I‘p)—3(pxr)(rM)] .
R

The first integral above is straightforward because M and p are constant vectors. Apart
from constants, the second and third integrals above both involve the integral

[eS)
rir;
Zij:/dQ/dr 7‘6].
R

By symmetry, Z;; o &;; and the integrals with 22, y*, and 2? in the numerator must all be

equal. Therefore, because z2 + 3% + 2% = r2,

47 Oodr 47
Zi,-zi 7:757
773 /7"4 oR* "
R

Using this information and By = (2/3)p0M,

3
out __ /L()R 47 - 1
Ppy = — 197 3R° (pxM)= _E(P x By).

Therefore, in agreement with the result found in the text,

) 1 1 1
Ppy = Py + PRy = *g(P x Bg) — g(p x By) = *5(13 x Bp).
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Source: Prof. K.T. McDonald, Princeton University, http://cosmology.princeton.edu/~

mcdonald/examples/

15.19 Ppgy for Electric and Magnetic Dipoles

(a) For a static electric field, E(r) = —Vy. Therefore,

Peum ZGO/dSTEXBZ—Go/dSTVsDXB=—60/d3r[V>< (By) — o(V x B)].

Using V x B = pj and a corollary of Stokes’ theorem,
1 3 .
PEM:—2 d?“gOJ—(:‘o dSXBgO.
c
s

The surface integral vanishes because the integrand goes to zero faster than 1/r? for

a static field. Therefore,
1 : .
Ppuv = c—z/dsr ®J-

(b) The current density of a point magnetic dipole is j = —m x V§(r). Therefore, using

the formula derived in part (a),
1 [, 1, 1
Ppy = 2 d’rem x Vi(r) = = d’ro(r)Ve x m = C—QE(O) X m.

(c) The static potential for a point electric dipole at r = ry is

1 1
47T60p lr —ro|’

p(r) =

Therefore, using the formula derived in part (a) and the definition of the vector po-

tential in the Coulomb gauge,

1 .. 1 ; 1,
Ppy = 7/d37"§0J=— Q/ddrp'v J
c 4drege |r — 1|

- @pvo/d?’r 30 o Vo)A

4 |r — o] ro=0

Source: D.J. Griffiths, American Journal of Physics 60, 979 (1992).

15.20 Pgy in the Coulomb Gauge

The electromagnetic momentum is

PEM = € /dBTE x B.

296



Chapter 15 General Electromagnetic Fields

Using the suggested splitting for E gives
Pey = € /d?’rE” x B+ ¢ /d%]«:l x B.
The second term already has the desired form so we focus on the first term and write it as
P = eo/d37~EH x VXA
A standard vector identity applied to the integrand gives
E/xVxA, =V(E|-AL)- A x(VXE)) - (E|-V)AL - (AL -V)E|.

Now, Vx E| =0so
P* = € /dST [V(E” . AL) - (EH . V)AL - (Al . V)EH]

The first term can be written as a surface integral (see below). For the second and third
terms we use the supplied identity and the fact that V- A} = 0 to write

—/d3r(AL~V)E” = /d?’rE”v-AL —/(dS-Al)EH = —/(dS-Al)EH

and

f/d“’r(En V)AL :/dBTALV'EH */(dS‘EH)AL-

Gauss’ law is V- E| = p/¢y so we can collect our results and write
P Z/dS’I‘pAL—FGo/dS{(EH AL)fl—EH(AL fl) _AL(EH fl)}

The surface integral (at infinity) vanishes. To see this, adopt the Coulomb gauge where
V- A = 0 together with V- A, = 0 imply that V- A = 0. Therefore, by Helmholtz’
theorem, A = 0. Hence,

0A |
ot

E =-Vgp and E, =—-

The scalar potential is the Coulomb potential so E| falls off no slower than 1/ r? as r — 0o0.
The slowest A can fall off is 1/r as r — co. Therefore, every term in the surface integrals
decreases no more slowly than 1/r® and the integral vanishes. Consequently, the total linear
momentum has the suggested form,

Py = /d3’l"pAl + € /dS’/‘EL x B.
Finally, the charge density for a collection of point charges g at positions ry is
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p(r,t) = qué(r —7r)).

k

Therefore,

/d37”PA¢ = Z%Al(rki),

k

and we conclude that

Pry = quAL(rk,t) + € /d%El x B.
k

Source: M.G.Calkin, American Journal of Physics 34, 921 (1966).

15.21 Hidden Momentum in a Bar Magnet?

(a) For a permanent magnet, B = po(M + H) and H = —V4, where 9 is the magnetic
scalar potential. Therefore,

I
PEM:eo/d?’rExB:C—?/dSrEx(M—Vz/)).

The V4 term is zero because integration by parts produces a factor of V x E in the
integrand. This is zero because the point charge is at rest. Therefore,

1 .
PEM = ﬁ/dSTE x M.
C

(b) The center-of-energy theorem surely demands P = 0 for this situation. If so, some
hidden momentum to cancel Pgy; is required. However, there are no “moving parts”.
The magnetic moment due to spin is a relativistic effect, but its origin is quantum-
mechanical, rather than classical.

15.22 Lgy for a Charge in a Two-Dimensional Magnetic Field

Lem :€o/d37“r>< (ExB):eo/d3r [E(r-B) —B(r-E)].

We have B = B(z,y)z and

qg xX+yy+z2z
E= .
4d1eg 73

Therefore,
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oo oo (oo} .
q z ., Z
Ly = E/da:/dy/dzB(x,y) [ﬁr_r}
o) o0 ) R . 9 o\ 4
= i/d:z:/dy/dzB(x,y) Rt yy - (@ Y2
4 r2
_ q 2 2 Z .
= fﬂ/dx/dyB(x,y)(x +y)/r—32.
. * dz 2
The integral /_DO el m Therefore,
_ 9. _ 9%,
Ly = 27Tz/d:ndyB(x,y) = Z.

Source: H.J. Lipkin and M. Peshkin, Physics Letters B 118, 385 (1982).

15.23 Transformation of Angular Momentum

(a) Using Gauss’ law in integral form, and the fact that the cylinder has zero net charge,

we find without trouble that

;—pf) 0<p<a,
E={ 9
0 p > a.

The electromagnetic linear momentum density is zero outside the cylinder and

&M@<@=@ExB:—7mw.

Consequently, the total electromagnetic angular momentum per unit length of cylinder
a

is
Lev = /dQTp X BEM = fﬂpB/drr?’Z = ffﬂﬁa‘LBi.
0

The torque per umit length which acts on the cylinder is N' = [d?rp x p(r)€,
where £ is the electric field induced by the time rate of change of B(t) and p(r) =

pO(a — 1)+ od(r —a). To find o, we impose neutrality:
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2T

0= /d2rp(r) = /dgf)/drr[ﬁ@(a—r) +08(r —a)] = 27(a*p/2 + ca).
0

0

Therefore, 0 = —pa/2, and we are ready to exploit the integral form of Faraday’s law:
d
ae-&=—— [ dS-B.
dt
The result is
1 dB ,
E==3"ur

Therefore,

N = /dQTpXﬁ(I')S

—/d¢/drr2|5|[ﬁ@(a—r)+a5(r—a)]i

1dB 1
/d¢/drr32 7 [pO9(a—1) — fpa(?(rfa)]z

1 dB
= 47
Par %

d
(c) The torque is related to the angular momentum by —ﬁ = N. Therefore, the difference

dt

between the initial and final angular momentum is

ty
Ly—L;= /dt./\/ 17 ‘5(By — B))z.

ti

But B; = B and £L; = By = 0 for our problem. Therefore, when the magnetic field
has disappeared, the total mechanical angular momentum of the cylinder is

1

This agrees with Lgy calculated in part (a).

15.24 Lg\ for Static Fields

(a)
Ley :eo/d3rrx(E><B)=eo/d3rr>< [E x (V x A)].
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A vector identity transforms this to
Lru :eg/d3rrx [VE-A)—(A-V)E— (E-V)A - A x (V xE)].
V x E = 0 for a static electric field. Therefore,
Ly = e(a—b —c), (1)
where

a:/d3rrxv(E.A) b:/d3rrx(A~V)E c:/dSrrx(E.V)A.

The external fields are static so the integrals of total derivatives below will always
vanish after integration by parts. First, because €;;,0;x = 0,

a; = €jk /d3rrjak(E771Am) = €ijk /d3r [0k (rj By Am ) — B A 6] = 0.
Next, because the Coulomb gauge specifies V- A =0,

bi = €k / dr ] A’m 87n Ek = €ijk / dgr [am (Tj Aln Ek) - 5rnjAln Ek —Ty Ek am Am]

= —€imk /dTArrz Ey.
In vector form, b = [d3rE x A.

Finally,
C; = €k /d37”l“jEmamAk = €ijk /d37" [8m (TjEmAk) - 6ijmAk - ’I’jAkamEm] .

Therefore,

c:—/d3rExA—/d3r(V~E)(rxA).

Since a = 0, substituting b and c in (1) and using Gauss’ law gives the advertised
result,

Lev = € /d3r (V-E)(rxA)= /d3rp(r)r x A(r).
(b) The charge density of a point electric dipole at the origin is p = —V-[pd(r)]. Therefore,
Lk =  —€iim /dBT 8/ [pj(s(r)]rfAm
= o [ @1 {0 yrd ()] A~ 1385140 0(0))

= ekimpﬁ/dSTAmé(r)
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because the charge density of the point dipole is zero away from the origin. Therefore,
LEM =pX A(O)

(¢) The current density of the rotating object is j = pv = pw X r. Therefore, the magnetic
energy can be written

1 1 . 1 . 1
Up :f/d37"A~j:f/dsrpA~(w><r):7w~/d3rpr><A:fw~LEM.
2 2 2 2
Source: N. Gauthier, American Journal of Physics 74, 232 (2006).

15.25 The Dipole Force on Atoms and Molecules
As a first step, we note that

(mxV)xB=m;,VB, —m(V-B)=V(m-B) - B,Vm;, —m(V - B).

But m is not a function of position and V - B = 0 always. Therefore, we get the last term
in the proposed force formula:

(mxV)xB=V(m-B).
Otherwise, the motion of the atom implies that we must use the convective derivative

dB 0B

Therefore, using Faraday’s law,

%(pr):prerx {??+(V~VB)] =pxB-px(VXE)+px(v-V)B.

Expanding the triple cross product gives

%(PXB):PXBf[V(p~E)f(p-V)E]+p><(V~V)B.

On the other hand, because p and v are constant vectors,
Vip- (vxB)=px{Vx(vxB)}+(p-V)(vxB)=-px(v:-V)B+(p-V)(vxB).

Adding V(p - E) to the last two equations reproduces the remaining terms in the original
force law. This proves the result.
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Chapter 16: Waves in Vacuum

16.1 Wave Equation vs. Maxwell Equations

We want the magnetic field to satisfy V-B =0 and V x B = ¢ 20E/dt. By the Helmholtz
theorem, this will be true if we define B using

B 1 3 ,O0E(r,t) 1
B(r,t) =V x e /d T T

Since V - E = 0 by assumption, it remains only to prove that V x E = —9B/0t. Using the
fact that E satisfies the wave equation, a direction computation gives

0B(r,t) 1 3 1 O*E(r,t)
Y~ vx— [d ’
ot X e / " [r—r'| Ot
= Vx i/d‘r‘r’#V’QE(r' t)
A7 Ir — 1’| ’
= VX i/dgT/E(I‘I t)v/Q 1
47 ’ v — 1’|

= —-Vx /d3r'E(r’,t)5(r—r’)

= -V x E(r,t).

16.2 No Electromagnetic Bullets

We are told that
{82 ? ? 1 62

W+8y2+az2_c2at2} Yy, z —ct) = 0.

On the other hand, holding = and y constant,

0? 1 82

Therefore, 1) satisfies Laplace’s equation in two dimensions:

0? 0
{W + ayZ} Y(x,y,z —ct) = 0.

Now, if ¢(z,y, z — ct) is localized in the z and y directions simultaneously, the origin must
be part of a closed area A in the z-y plane such that ¢(z,y, z — ct) is zero everywhere on
and outside the boundary curve of A. However, the unique solution of Laplace’s equation
which satisfies this boundary condition is ¥ (x,y, z — ct) = 0 everywhere in A. Therefore,
our assumption that ¥ (x,y, z — ct) is localized in all three dimensions cannot be correct.

Source: J.N. Brittingham, Journal of Applied Physics 54, 1179 (1983).
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16.3 An Evanescent Wave in Vacuum

(a) The electric field must satisfy the wave equation

1 O’°E
2 —
VE- e =0
Substituting the trial solution shows that
2
2 92 W
h* —k* = 672

(b) For time-harmonic fields, Faraday’s law gives

B=-—VxE="2§x (Vexpli(hz — wt) — rz]) = —2 (ihxk + rz)e’ =t =%,
w w w

(c) Given the result in (a), the magnetic field will be very nearly circularly polarized if
h = k, that is, h,k > w/ec.

(d) When E = Ej exp(—iwt) and B = By exp(—iwt), the time-averaged Poynting vector is
E§
2/10(4)

1 * —2KT g
(S) = %Re [E; x Bg] = g

e

16.4 Plane Waves from Potentials

(a) A Coulomb gauge vector potential, A, must satisfy V- A¢ = 0 and the homogeneous
wave equation. The latter is automatically true of A(k - r — ckt). To satisfy the
Coulomb gauge constraint, it is sufficient that k - A = 0. Since o = 0, we set
¢ =k -r — wt and compute

0Ac
ot

0 _

E = —
ot Y

=—A'(9) (¢)
B=VxAc=kxA'(¢).

Both fields are transverse to k because A(¢)—and hence A’(¢p)—are transverse to k.

(b) We impose the Coulomb gauge constraint to get
0=V -A¢c=V-(va)=a-Vu.

Therefore, a 1 Vu is necessary. Otherwise, we require

1 0? 1 0%*u
2 _ 2 _
[V _815} Ac—a[v “‘at} =0
In words, u(r,t) must be a solution of the homogeneous wave equation. By direct
computation,
0A 0
=- atcz—ai:a B=VxAc=-axVu
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(c) The special case u = u(¢), where ¢ = k - r — ckt, simplifies the fields in part (b) to

E = cku/(¢)a B=-axu(¢p)k = cB=kxE.

(d) The vector potential satisfies

1 92 1 9%u
[VQ - 615] Ar=s [VQ“‘ 875] =0

Therefore, u must be a solution of the homogeneous wave equation and there is no
restriction on the constant vector s. The Lorenz gauge constraint reads

L, 9
5 = €S Vu. (1)

The electromagnetic fields in this case are

¢
E=-Vp; — 5 ZCQ(S~V)V/dt/u(I‘,t/)—%S B=VxA; =—-sxVu.

(e) With A = u(¢)s and ¢ = k-r—ckt, we can write down the solution to (1) immediately:

pL(9) = c(s - Ku(4).

In that case,

A L .

E=-Vo, — a@tL = ck[s — (s - K)K]u/ B = ck(k x s)u'. (2)

The vector in square brackets is perpendicular to k. This makes the electric field the
same as in part (c), because a L k also. The magnetic fields are the same also because

the fields in (2) satisfy ¢B =k x E.

16.5 Two Counter-Propagating Plane Waves

Ey[cos(kz — wt) + cos(kz + wt)] X
Ey[cos kzcoswt + sin kz sinwt + cos kz coswt — sin kz sinwt] X

(a) E

= 2K coskzcoswt X.

The electric field is a standing wave, so we cannot use cB = k x E. However, if

E(z) = 2Ej cos kz X, we have E = Re € and B = Re B, where
E(z,t) = E(2) exp(—iwt) and B(z,t) = Bexp(—iwt).
The latter two satisfy Faraday’s law, V x & = —9B/0t, which gives

V x E(z) = iwB(z2)
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or
—2kEj sinkzy = iwB(z).

The magnetic field is 90° out of phase with the electric field in both space and time:

0
¢B = Re % sinkzexp(—iwt)| y = 2Eysinkzsinwt y.

1 1 - ~ 1
up(2)) = =Re[=eE* - E] = —¢4F? cos® kz
(up(2)) = 3Re(; LB
1 1 - = 1 9 . 9
(up(z)) = §Re [§eocB -cB] = 1604E0 sin” kz.

As for the Poynting vector, E is real and B is pure imaginary, so (S(2)) < Re [E* XB] =
0.
(¢) The given electric field is
E(z,t) = Re[Epe’* e "% 4 Re [iEye ** e !y = Re [E(z)e "]
2ikz

E(z) — (eikz)z_’_ ie—ikzy)EO _ (X—’_Ze\/iy) \/EEUGHCZ _ e(Z)\/iEoeikZ.

In this form, we can easily read off the normalized, position-dependent polarization

vector e(z):

X +iy . :
e(z=0) = (right-hand circular)
V2
G4 ie—iT/28 %O
e(z=M\/8) = X+ Zfﬁ Y = X\—% (linear)
X+ie "y x—iy .
e(z=M\/4) = 7 = 7 (left-hand circular)
oL io—i3T/28 % _ O
e(z=3)\/8) = X+ Ze\/i Y = X\/iy (linear)
G L ie—i2TS %%
e(z=\/2) = X+t z\e@ Y x:;izy (right-hand circular).
ikz i —ikz A )A(:tly
X+ ie ¥]Ey. On the other hand, é1 = 75 SO

(d) In part (c) we have E = Eye

éy +é_ . e, —é_
and y=—+7+—+—.

=5 2
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Therefore,
o () e ()
_ [eikr 4 omikz [k _ k=
= V2Ey(é, coskz +ié_sinkz).
Therefore,

E = Re [V2E;(é, coskz +ié_ sin kz)e*’:“’t} = V2E) [é, coskzcoswt 4+ é_ sinkz coswt] .

() The part (c) electric field is & = Ege!("*~“Nx 4 iEye~ k2wt y — Ee~!. This is the
sum of two propagating waves so the magnetic field is

cB = (2X§<)Eoei(k’z—wt)_iEU (ixy)e—i(kz+wt) = F, [eik:zy + ie—ikzi(] e—iwt _ CBe—iwt.

The time-averaged Poynting vector is

1 - = E? : , * : ; E?
(S(2)) = 5Re[B*xB] = S Re {(e””fﬂ— ie" k2 5)" x (e*y + z‘e*l’“ﬁ)} = SlRe[z-2] = 0.
Source: Prof. C. Caves, University of New Mexico (public communication).

16.6 Transverse Plane Waves with E | B

Since E = E(z,t) and V - E = 0, we know that dF. /0z = 0. Therefore, E. = const. = 0.
By the same argument, B, = 0.

(a) If S x E x B = 0, our task is to show that

Oupm 0 . . . .
AL - S AB B+ ¢ (B4 B})} = 2[BB 4 BBy + (BB + B,B,)] = 0
(1)
and
aUEM 0 2 2 2 2 2 ’ / 2 ’ 1
0z - @ {El +E;¢/ +c (Ba: +By)} =2 [EJ?Ew +E!/Ey tc (B«LBL +BZ‘IBZ/)] =0.
)

(2
We begin with the Maxwell equations. These tell us that

B : .

VxE:—aa—t = E,=-B, and E, =B,
1 9E :

VxB= 5o B, =FE, and B)=-E,
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The Poynting vector has only a z-component so, from above, S, = E, B, — E, B, = 0.
Therefore, using the Maxwell equation information,

L 9S. 0

5 = o0 (E.B, - E,B,) = E,B,+E,B,—E,B,—FE,B,

0

= —B)B, - E,E, —¢’B,B, — E,E,.
This confirms (2). Similarly,

)

0 0z 0z

(E,B, - E,B,) = E.B,+E,B,~E,B, —E,B,

1

) 1 ) . )
= —B,B, ~ 5E.E, - B,B, - 5 E,E,.

This confirms (1).
(b) The results of part (a) imply that E? + B? = const. The suggested parameterization

gives the special case E? 4+ B? = cos? a+sin” o = 1. This gives the Poynting condition
as

0=FE,B, — E,B, =sinacosasin(y — 3).

The solutions with sina = 0 or cos & = 0 are trivial so v(z,t) = ((z,t) + mm where m
is a non-negative integer. Substituting this back into the parameterization gives

E, = cosacosf ¢B, = (=)™ sinacos 8
E, = cosasin g c¢B, = (—)" sinasin 5.
The Maxwell equations, e.g., E! = fo, demand that
c =(=)"3 and ¢f =(—)"a (3)
Combining these two shows that a(z,t) satisfies the wave equation

da 1 %«

= Teae =0

The general solution is a sum of left-going and right-going plane waves. Therefore,
using (3),

az,t) = F(z+ct) + G(z — ct)
Bz, t) = (=)" {F(z+ct) —G(z — ct)}.
This has the required form. The corresponding fields are
E, = 1 {cos2F + cos 2G} ¢B, = (—)™ 1 {sin2F + sin 2G}
E, = (=)™ i {sin2F —sin2G} cB, = {—cos2F + cos 2G}.

The factor of (—)™ affects only the sense of rotation in the examples below so we drop
it.
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(c) When F = 1k(z + ct) and G = £1k(z — ct) with w = ck,

FE, = cos kzcoswt

sin kz cos wt
cB, = .
cos kz sinwt

cos kz sinwt . .
E, = { cBy = sinkzsinwt,

sin kz cos wt

where the upper/lower portion of the brackets corresponds to the plus/minus sign
choice for G. For the plus sign, E,/E, = B, /B, =tanwt so E(z,t) and B(z,t) lie in
the same plane, independent of z. The plane rotates with angular frequency w. The
field vectors are parallel but their magnitudes are 90° out of phase along the z-axis as
shown below.

N\ E

O
bl

B

For the minus sign, E,/E, = B,/B, =tankz at all times. This is a standing wave
where the fields vary helically with z as shown below. An alternate description is a
superposition of two circularly polarized waves that propagate in opposite directions.
That is,

E(z,t) x Re {(f{ + iy)ei(kz—wt) (k- iy)ei(kz+wt)} _

(d) When F = 1k(z + ct) and G = 0 we get
E, = 3 {1+cos(kz +wt)} ¢B, = 3sin(kz + wt)

E

y = & sin(kz + wt) cBy = 1 {1 —cos(kz + wt)} .

This is a superposition of a static field £, = B, = % with a wave that propagates in
the —z-direction. The Poynting vector for the propagating wave part is not zero but
the total field has zero Poynting vector! In particular, in a plane of fixed z, the tips
of the E and B vectors trace out identical circles oriented at 90° from one another as

shown below.
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Source: K. Shimoda, T. Kawai, and K. Uehara, American Journal of Physics 58, 394 (1990).

16.7 Photon Spin for Plane Waves
(a) The angular momentum is L = ¢y [drr x (Ex B) = ¢ [drr x [E x (V x A)] so
Li = ¢ /dT {€ijk€kmn€npgTi EmOpAq }
= €ociji /dr(5kp5mq = OkgOmp) {0 (1) Em Ag) — Ag B bpj — AgriOp En } -
The total derivative term vanishes if F,, A, — 0 faster than 1 / % so
[ /dr{AkEj — AwrOuEy + AV -E}
The last term is zero because V - E = 0 in vacuum so

Li = € /dT’ (E X A), — €ijk€0 /dT {6k(A7nTjEm) — TjEmakAm — AmEméjk}.

The total derivative integrates to zero again and the last term in brackets is zero
because €;;16;; = 0 . We conclude that

Lev =€ /dSTE x A+ e /dgrEm (I‘ X V)Am = Lspin + Lorbital-
(b) The decomposition is not gauge invariant because, if A — A’ = A+ Vf,

L;pin = Lspin + €0 /der X Vf # Lspin-
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(¢) In the Coulomb gauge, we have V - A = 0. When there are no sources, we can also
choose ¢ = 0 so E = —0A/0t. In that case, the given electric field can be derived
from

iBy % + iy
w V2

The time-averaged spin angular momentum is

Al = expli(kz — wt)].
< Lgin > = “Re [ d*rEx A* = +2-" [ d%r E2.
2 2w
On the other hand, the time-averaged total energy is
1 3 * 1 3 2
< Ugm > = 560 d°rE-E 1560 dT‘EO.

Therefore, 1
7 < Lspin >= +— < Uy >.
w

If < Ugm > = hw, we correctly get z- < Lgpin > = =£h for the “spin” of the photon.

16.8 When Interference Behaves Like Reflection

(a) The H and V beams are both propagating, monochromatic plane waves with electric
field amplitude Ey. The time-averaged electromagnetic energy density for both is

1 1
(upM)m,v = §Re {%(E -E* + 02B~B*)} = 5eOE'g,

For the superposed beams, we note that By - By, = 0, so
1 € * * * *
(upy) = gRe{T[(Ex +Bv)- (B} +Ey) + By +Ba) - (Bj +B7)|
1 * 2 *
= (upm)m + (upnm)v + §6ORe {Ev -E; + ¢ By -BV}
= F? - 1e EQRe{eikIe*iky}
050 9 049
9 1
= ¢kFE;|1— B coslk(z — y)]

This quantity is minimum when x — y = mA where m is an integer. The only solution
in the overlap region is m = 0, so x = y. On that plane, the physical fields are

E(x=y)=0z and cB(x =y) = Eycos(kzx —wt)(X +7).

311



Chapter 16 Waves in Vacuum

(b) The time-averaged Poynting vector for a plane wave propagating in the k direction is

(S) = <“ECM> k.

Therefore, for the horizontal and vertical beams,

0 _ g
(S)y = 2CEoy and (S)m 2CEOX.

For the superposed beams,

(S) = ﬁRe{(EH'FEV)X(EH‘FEH)*}

1
= (Sy)+ <Sv>+2—MURe{EH x B}, + Ey x B3}

€0 20 | & E§ ik - ik )%
= —Ejx+y) Re{eI ) L x}

2¢ 0 B 2cpg
€0 2 ~ N
= DB - cosk(z - y)] (x+3).

The sketch below uses line thickness to indicate the intensity of (S). The dashed line
indicates that (S(x = y)) = 0.

(c) At the surface of a conductor, we must have Ej = 0 and B, = 0. For this problem,
part (a) shows that E points along z and goes to zero at x = y. Part (a) showed also
that B is parallel to the x = y plane everywhere in the overlap region. Hence, the
boundary conditions for a perfect conductor are met at x = y.

Source: J.P. Dowling and J. Gea-Banacloche, American Journal of Physics 60, 28 (1992).
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16.9 Zeroes of the Transverse Field
(a) If ¥ = k(gx + k2 sin§ + iy cos § + iz sin §)e’F2=<1)  direct calculation gives
Ypp = 2k%sin g e'kz—wt)

Yy =0

)., = —2k%sin de!(F2—wt) — k2q)

Yy = —w2¢.
2 1 *y :
Consequently, V- — Tz = 0 if w=ck.
c

(b) We find E. by integrating (over z) the requirement that 0 = V-E = 0,¥+10,¥+ 0, E..
This gives
B, = k{ga + ka®sind + iy} e/ h=—t)

E, = iE,
E. =i(g — cos 6 + 2kxsin §)e’ 2= 4 f(x,y,t).
A brief calculation shows that F, satisfies the wave equation if the arbitrary function

f(z,y,t) does so. We will choose f = 0. Given the foregoing, we know that both the
V - B and V x B Maxwell equations will be satisfied if B = —(i/w)V x E. In detail,

B, = —i{k(gz + k2? sind +iy') + sin 8 } ' (h==+1)
By = {k(gz + ka? sin§ + iy’) — sind } e'(F==«1)
cB, = (g + 2kzsin§ — cos §)e!(F2=1),
(c) If g > 1, we can drop the terms quadratic in z so that
E, = k{gx +iy'} k=D cB, = —i{k(gx +iy’) + sin 6} ¢'(Fz—=1)
E, = ik{gz +iy'} 'k =0) eB, = {k(gx +iy') — sind} e/ Fz =),

Clearly, the zeroes of E| occur when © = 0 = ¢ = ycosd + zsind. This is the line
y = —ztand in the = 0 plane.

(d) For the magnetic field just above, it is simplest to let Q@ = kz — wt and set Re B, =
Re By = 0. These give

(kgx + sin ) sin Q + ky' cos 2 = 0
(kgz — sin§) cos Q — ky' sinQ = 0.
Substituting gz = rcos6 and 3’ = rsin 6 into these two yields

krsin(Q +0) = —sindsin Q2 (1)
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kr cos(2 4 0) = sin 6 cos Q2. (2)
Squaring and adding (1) and (2) gives

r =k~ 'sind = const.

Therefore,

g*a? +y'* = r? = const.

This defines an ellipse centered on the 2’ axis.
Finally, multiply (1) by cosQ and add this to (2) multiplied by sin 2. This gives
krsin(2Q2+60) =0 — 0 = 2wt — 2kz.

This shows that the polar angle which traces out the ellipse increases steadily as time
goes on.

Source: J.F. Nye, Proceedings of the Royal Society of London A 387, 105 (1983).

16.10 Superposition and Wave Intensity

The fields of a monochromatic plane wave propagating in the z-direction satisfy ¢cB = z x E
and the definition of the wave intensity is

1T

I1=|= .
T/dtS
0

For our problem, the Poynting vector is

1 1
S = — [ReE x ReB] = — [|ReE; |* + |[ReE;|* + 2ReE; - ReE,] .
Ho Ho

The first two terms produce I; + I, so we focus on the last term. If ¢ = wy(z/c —t),
ReE; = Ay cos(ép + 6,)X + By cos(dp + 61,)y.
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Therefore,
ReE; - ReEy = A1 Ay COS(¢1 + (51) COS(¢2 + 52) + B1 By COS(¢1 + 51) COS(d)Q + 52)

Both terms have the same structure in time, so we focus on the first one. If Ay = & +wiz/c,

dt cos(¢py + 1) cos(da + 02)

Nl =

dt [cos[(w1 + wa)t + Ay + Ag] + cos[(w1 — wa)t + Ay — Ay]].

Nl

T T

Carrying out the integrals gives

1
X = m [sin[(wl + u)g)T + Al + AQ} — sin(A1 + Ag)]

! m [sinf(w1 —w2)T + A1 = Ag] = sin(Ay = Ay)].

The numerators in both terms are bounded by 2. Therefore, these integrals will be negligible
(as we desire) if the averaging time satisfies

T(w; +wy) > 1 and T(w; —w2) > 1.

Source: G.S. Smith, An Introduction to Classical Electromagnetic Radiation (University
Press, Cambridge, 1997).

16.11 Antipodes of the Poincaré Sphere
Let E= &€ + &6 and E' = £'1é; + £'9é5. The condition for orthogonality is

E-E" =&§&7+ &€&, =0. (1)

Our task is to check that (1) is satisfied if the tips of E and E’ are antipodes on the Poincaré
sphere. For this purpose, we recall that the Cartesian coordinates of points on this sphere
are (1,83, S3), where the Stokes parameters are

S1 = |(€1 |2 — |(€2|2 SS9 = 2Re [81*52} S3 = 2Im [5?52]

If E/ is an antipode point, we must have

.\,\
|
VA
BN
|
|
@
B

s =—s Sh = —89

This will be true if
&1 = |&)° = —[E"1)? +|€2
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and

Er& = —E1E.

The first of these is satisfied if

I =1&]  and  [E] =&

Therefore, we write

& = ae™ & = be'
£ = be' &'y = ae': .
Substituting these into (2) gives

i(62-01) i(65—61)

abe = —abe

But this is the same as

abe! (91791 4 qpei(92—02) — 0,

which is the orthogonality condition (1).

16.12 Kepler’s Law for Plane Wave Polarization
Let ¢ be the angle between £(¢) and the & axis. Then,

_ag cos(wt — dy)
tany = aj cos(wt — 1)’

Taking the time derivative gives

Waves in Vacuum

dyp  wayag sin(wt — d1) cos(wt — dy) — wagay sin(wt — 0y ) cos(wt — 01)

2 —_— =
sec” ¥ dt a? cos? (wt — 47)
or
d’lﬁ waias sin(52 — 52) - waias sin(52 — 52)

At a?cos? (wt — &) + ad cos(wt — by)

E(t + AP
Y(t+ Ar)
J/ E(r)

[

Y(@)

€
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Ignoring the change in the magnitude of £(t) over a time interval At, the area of the
triangular sector swept out by € in this much time is dA = (1/2)|€|*dy. Therefore,

dA 1 d 1 .
E = §|£|2d71é} = iwalag sm(52 - (51)

Source: H. Mott, Polarization and Antennas in Radar (Wiley, New York, 1986).

16.13 Elliptical Polarization
The text demonstrates that the locus of |E| is the ellipse

EN\? (E\? _E,E
(A) +<é> -2 ABU COS((Sl—(Sg):Sin?((Sl—(Sg).

Let the principal axis system Z-y be rotated from the z-y system by an angle a as shown
below. In that case

=FE,cosa— Eysina

B,
E, = E,sina+ E’y cos .

Substituting these into the ellipse equation above gives

=0 cos?a  sina  2sinacosa
EZ +

Ve 7 1B cos(d; — (52)}

-2 2 .
—o [sin”a  cos®a  2sinacosa
+EU { 12 + B3 + AB COb(51 —(52)}
_ sincvcosa sinacosa cos? o — sin? a
+2E,E, {— yE + 5 — 1B cos(d; — 62)}

= SiHQ(CSl — 52)

Since this is the principal axis system, the coefficient of EIEy must be zero. This gives

1. A2 - B? 1,
251n2a{AB} = 1p 08 2a.cos(dy — d2)

or
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2AB
tan 2a =

m COS(62 — 61)
as required.

16.14 A Vector Potential Wave Packet

(a) The electric and magnetic fields are

_ 0A QAN DA
E=—r=%ca =%

The chain rule gives the exact electric field as

E = —(a% + iby) [45 () + iAo (C)] exp(iC)c.

The slow-variation assumption means that A{(¢) < A¢(¢). Therefore,

ac B=VxA=V({x

Waves in Vacuum

Z

- _ZXE.

C

E = Re {—ick(ax + iby)Ao({) exp(i()} = ckAy(Xasin ¢ + ybcos ()

B = Re {k(bx +iay)A(¢) exp(i€)} = kAo (Xbcos( — yasin ().

(b) The linear momentum density of the field is

gem = 6E X B = —e()ck2Ag (a2 sin? ¢ + b? cos? C) Z.

The sign of ggy is negative because the factor exp(i¢) = exp[ik(z + ct)] implies that
the wave propagates in the —z-direction.

16.15 Fourier Uncertainty

(a) We get h(k) = ikf (k) because

_df_ OodkA 1 ik OOdkA ika
h(z) = gr = / 271_f(k)zk‘e = / 27Th(k)e .
—00 —o0
(b) Using the definitions above,

;def*(m (k) = 17dkf [

g 3 [ dkFr b [ deglo)e
= 7dxg<:c> 7;’jf*<k>
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(c)

T dkf*(k)kf(k)  —i Ofo dkf*(k)h(k) — —i }O da:f*(z)% .
<k >p= = = =< i >y
S dklf(R) S dklf (k)P [ dalf(z)?
Similarly,
T def*RR2fk) [ ki (k)h(k) fdx‘flf;%
<K > = o — -2 -
| dRlF(R)P JdimP [ del ()P
o] 2
~ J aep @)

22 d\?
= ) R =< (_Zda;‘> >
T dxlfp

(d) Note first that [A, B] = [A, B]if O = O— < O >,. Now define (f,Of) = [_dz f*(2)O f(z)
and let ||f||2 = (f, f) . Then, for any real number c,

[{a+ s}

o
vV

e ol e (an00) - (5740}

= {@(AB? +c<i[AB] >, +(A47} /]

= RO
Now write R(c) = (¢ — ¢1)(c — ¢2) where R(¢1) = R(ca) = 0. R(¢) > 0 for consistency
with the inequality above so the roots cannot be real and distinct. This means that
the discriminant of R(c) is non-positive, i.e., < i[A, B] >2 —4(AA)?(AB)? <0 . We
conclude that

AAAB > | <ilA, B>, |

as desired.

Ak = \/< k2>, — <k>2= \/< (—id/dz)* >, — < (—id/dx) >,
SO

d 1 d
Ax Ak = Az A(—i—) > = i, —i—] >, | = =.
x Ak T (zdx)_2|<z[x, i—] >

dzx
This proves that Az Ak > % as required.
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16.16 Plane Wave Packet from the Helmholtz Equation
(a) Separation of variables in the form
u(r,t) = u(r)T(t)
transforms the scalar wave equation to

2 2
<2, LdT
W T T

Setting these independent ratios equal to the same constant (—w?) gives

d*T 9
ﬁ +wT =0 (].)
and the Helmholtz equation
2
w
Viu + U= 0. (2)

The general solution to (1) is
T(tlw) = a(w)e™! 4 b(w)e™ ™.

Therefore, if u(r|w) is the general solution of (2), the general solution to the original
wave equation is

u(r,t) = /dwu(r|w)T(t|w). (3)
0

(b) In Cartesian coordinates, (2) reads

Pu  Pu  Pu WP

A separated-variable trial solution to (4) has the product form
u(@,y, z|w) = X (2)Y (y) Z(2). (5)

Proceeding as in part (a) generates three separation constants, —k?2, —k;, and —k?,
and three ordinary differential equations,

d?Y &>z
a3+@xzo &F+%Y:0 E;+@Z:& (6)
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It is natural to define a variable k* using the constraint imposed by (2) on the sepa-
ration constants:

2

k§+k§+k§:%:k2. (7)

The three equations in (6) are solved by similar complex exponentials. Therefore, the
wave vector k = (k;, &y, k.) appears when we form the product (5) to get a typical
solution of the form

exp(ik, x) exp(ik,y) exp(ik.z) = exp(ik - r). (8)

A general solution to (2) sums terms like (8) with amplitudes c(k,w) and a delta
function 6(w — c|k|) to enforce (7):

u(rjw) = /dgk c(k,w)d(w — c|k|) exp(ik - r). 9)

Substituting (9) into (3) and using the delta function to perform the w integral gives
the final result in the form

u(r,t) = /d?’k {A(k)expli(k - r + ckt)] + B(k) exp[i(k - r — ckt)]}. (10)

(c) Equation (10) is a superposition of monochromatic plane waves propagating in the +k
and —k directions. The text used only the +k set. However, if we change the dummy
variable k to —k in the A(k) sum, (10) becomes

u(r,t) = /d3k {A(=k) exp[—i(k - r — ckt)] + B(k) exp[i(k - r — ckt)]}.
With A = A" +4A” and B = B’ +iB”, the real part of the foregoing is
Re[u(r,t)] = /dsk {(A"+ B')cos(k -t — ckt) + (A" — B")sin(k - v — ckt)}.
This is identical to

Re [u(r,t)] = Re/dgk C(k)expli(k - r — ckt)].

16.17 Pgy for a Wave Packet

(a) Let k = |k|, ¥ = [K/|, ¢ = k-r—ckt, ¢/ =k -r—ck't, and ¢B (k) = k x E| (k). Then,
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Peuy = eo/d?’rReExReB

_ %/d3r(E+E*)x(B+B*)

= &k [ &K | &Pr[EL(k)e” +ET (ke ]
x [BL(K)e” + B (K)e ]
_ &k [ @) [ @ {[BL(k) < B0

+ [EL (k) x B® (K)]el®¢") 4 c.c.} .

There are four terms inside the curly brackets. Let us show that the first term (and
its complex conjugate ) vanish.

I = k/d3k’/d3 [E. (k) x By (K)]expli(¢ + ¢')]

60

Ak | d*k

a*r {EL(k) x [ x BL (K]}
X exp[ (k + k/) ] exp[fict(k + k/)]

= i—i/d3k/d3k/5(k+k/) {El(k) X [IEI X EL(kI)}}eXp[fiCt(kJr k/)]
_ —%/diﬂk{El(k) x [l x B (k)] } exp[~2icth]

= —Z—O /d?’klA{El(k) -E, (—k) exp[—2ictk].

c

We get I = 0 because the last integral above is an odd function of k,, k,, and k..
This leaves the third term in curly brackets in our expression for Pgy; and its complex
conjugate. The third term is

d3K

T = d3k

d*r {EL() x [k x B (K)]}
x expli(k — k') - r] exp|—ict(k — k)]
— i—(; /d3k/d3k/5(k— k/) {EJ_(k) X [IE/ x Ej_(k/)]}exp[—ict(k . k/)]

- % d*k {m(k) x [k x Ej(k)]}

- 6—0/d3kl§EL(k)~E’i(k).
4c
Adding T to its complex conjugate gives the desired linear momentum:
€
Ppu = 20 d*Ek [EL (k).
This formula is valid at any time. We have done no time-averaging.
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(b) The text reports that the total electromagnetic energy is

€
Upym = % &’k |EL (K)|%.

The suggested inequality is true because the momentum adds unit vectors that gen-
erally point in different directions with the same weighting factor as the energy.

(¢) cPgm = Ugym when all the waves in the packet propagate in the same direction.

Source: E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill,
New York, 1981).

16.18 A Transverse Magnetic Beam

The Lorenz gauge satisfies the vector wave equation. With the assumed form for A, this
implies that u(p, z) satisfies the Helmholtz equation:

2 2
9 w “u 10 ou
- Cau=22 2 (), 1
0 Vu+62u 822+p8,0<p8p (1)
The magnetic field is
0A, - ou 4+
B= A=—""p=——e"e.
V x p o} ape 0}

To get the electric field, we need the scalar potential, which satisfies

1 0y
V-A+—-—=0.
2 ot
Hence,
. C 87"’ —iwt
w(pz,t) = e

Therefore, using the right side of (1), we find

0A i [ d%u 10 ou ’
E:— _ A_ - et N —zwt.
AT {azap" o9 (’)ap) } ‘

E and B at any fixed point in space do not change direction as a function of time. Therefore,
both are linearly polarized. However, E has a z-component, which means it is not transverse.

Source: J. Lekner, Journal of Optics A 5, 6 (2003).

16.19 Paraxial Fields of the Gaussian Beam

Choose a Lorenz gauge potential A; = (u/iw)%. The Lorenz gauge condition reads
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1 0p
Therefore,
OA & _ou
E=— = —— —V— X
\Y 5 vaa + ux

In the paraxial approximation, w = ck and the fields in the transverse (z and y) directions
change much faster than in the longitudinal (z) direction. Therefore, the gradient may be
approximated by 9/9z. Consequently,

E= Ezkguz+ux = é%erux

The magnetic field equation is Faraday’s law written for time-harmonic fields.
The divergence of the electric field is

i O%u ou

VOE:%amaer%'

This is zero because du/dz = ik in the paraxial approximation. V -B = 0 is an identity
because the divergence of any curl is zero.

16.20 Physical Origin of the Gouy Phase

For the Gaussian beam, the transverse wave vector distribution function is

1 21 [ e .
Flbe by = o[22 [ e [y o [0 42 07] eolitha + )

By completing the square in the exponential, we easily get

F(ky k) = —w’(k + k) /4] .

w_ [
——ex
V2 P
Then,

(k2) = / dk/ dly K2|F (ks k)|

’lU
- dk/ dhey k2 exp [—w? (K2 + K2) /2] = 1/u?

and (k2) = (k) by symmetry. Therefore,

z _ 4 2 z
dzk, = dz{k — —————t =kz—tan" ! — =kz + .
[t = [ e hm gy f et kel

No localization in the transverse direction means (k) = (k) = 0. Therefore, Jy dzk. =
kz and a(z) = 0.

Source: S. Feng and H.G. Winful, Optics Letters 26, 486 (2001).
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16.21 D’Alembert Solutions in Two and Three Dimensions

(a) Let G(r,t) = F(r,t)/r. There is no angular dependence so

10 oG 10 "
6= 2 ()= LR )=
VG r28r<r (‘37“) 7“2(‘37“(T ) r
Therefore,
2y LG _1[&F 1 0F]
VG 2 o2 r | dr? 2o |

The quantity in square brackets is the wave operator in the one-dimensional variable
r. This solves our problem because the latter is solved by F(r 4 ¢t) where F is an
arbitrary function.

(b) Let G(p,t) = F(p,t)//p- There is no angular dependence so

10 oG 10 1 F F” F
o- L (48)- 18 (1 5) - i
pop \' p p Op 2p N
The term on the far right can be dropped when p is sufficiently large (see below). In
that case,
1 9*°G 1 [d®F 10°F
ViG-S =—|——=—|=0.
2 ot? NAWa 2 Ot?

The quantity in square brackets is the wave operator in the one-dimensional variable
p. This solves our problem because the latter is solved by F(p + ct) where F is an
arbitrary function.

Among the solutions we find, the term we dropped will be negligible when
L > a = >4/ ul
\/ﬁ 4p5/2 P e

16.22 Wave Interference

(a) The waves interfere constructively when their phases differ by a multiple of 27. If we
subsume this multiple into the definition of §, the interference condition is

kr—6=k-r=Fkya?+y>+ 22

Squaring both sides eliminates k%2> from both sides and we get

LI ST N
x**%(y +Z)*%-

This equation defines a family of paraboloids parameterized by the phase shift .
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(b) Suppressing a factor of exp(—iwt), the electric field for the two waves can be written
E; = yAexplik(zcosf + zsin§)]

and
E; = yAexplik(z cosf — xsin§)].

The associated magnetic fields satisfy ¢B = k x E. Therefore,

¢B1 = A(sin 0z — cos 6%) explik(z cos § + x sin )]

and
By = —A(sin 0z + cos 0%X) exp|ik(z cos § — x sin 6)].

The superposed waves are

E=E; + E; = y2Acos(kxsin§) exp(ikz cos )
and

¢B =By + By = 2A [—% cos 0 cos(kx sin 0) + iz sin 0 sin(kx sin 0)] exp(ikz cos 9).
For an arbitrary angle 6, this is not a plane wave and it is not transverse.
(¢) At 8 =0, we have
E(0) = y2Aexp(ikz) and c¢B(0) = —2A% exp(ikz),

and a time-averaged Poynting vector that is uniform throughout space:

1 247
S(0)) = —Re(E x B*) = —2z.
(8(0)) = 5-Re(B x BY) = =
At 0 = 7/2, we have a pure standing wave with
E(n/2) = 2Acos(kx)y and cB(7/2) = i2Asin(kx)z,

and a time-averaged Poynting vector (S(7/2)) = 0. Finally, at = 7 /4, the fields are

E(n/4) = y2A cos(kz/V/2) exp(ikz/V/2)

and
X

V2

The time-averaged Poynting vector is

cos(kx/V/2) + zi

B(r/4) =24 | - 7

sin(kx/\/i)] exp(ikz/V?2).

2 x
(S(r/4)) = %Re(E x B*) = 24 cos’ <i€@> Z
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kA

b

Source: G. Toraldo di Francia, Electromagnetic Waves (Interscience, New York, 1953).

16.23 Phase Velocity of Spherical Waves

The waves in question are based on the Hankel functions, hél) (kr). If w = ck, solutions of
the wave equation are

ug(r,t) = hgl)(kr)exp(—iwt) = w
and
un (1) = BV (k) expl i) = (1 — i) SR =00

A general, complex phase function is ¢(r,t) = ¢'(r,t) +i¢" (r,t). Therefore,

_expliolrt)] _esplie)
u(r,t) = o = exp(—¢"),

and the phase velocity (which is in the radial direction) is

de'/dt
T g jdr @)

For the ¢ = 0 wave, ¢/(r,t) = kr — wt and v, = w/k = c. For the £ = 1 wave,

exp(ig)
ikr

up (ryt) = % exp[ln(1 — ikr) +i(kr — wt)] =

where
¢ =kr —wt —iln(1 —ikr) = kr — wt — tan" ' (kr) —iln|1 — ikr|.

Therefore, using (1),

w w1+k2r2_ 1+ k2r2

Up:k_ & T % k22 T2
1+ k272
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This phase velocity diverges as r — 0 and goes to ¢ as 7 — oco. The same general behavior
may be expected for the £ > 1 spherical waves.

Source: W. Gough, European Journal of Physics 23, 17 (2002).

16.24 Bessel Waves

(a) Let ¥(p, ¢, z,t) = f(p, d, z) exp(—iwt). For this function to satisfy the wave equation,
it is necessary that f(r) satisfy the Helmholtz equation,

(V2 +k%)f =0,
where w = ck. In cylindrical coordinates, this is
2f 1 0°f 82f
Z Ly 24y 2
dp? + p2 02 + TR =
With f(p, ¢, z) = R(p)G(¢p)Z(z), separation of variables yields

1d [ dR s 9o
p— | +(* —m?/p*)R =
pdp(fh)) ( /)

A <G

ﬁ—i—/ﬁZ—O and W—l—mG:Q
where 42 = k% — k2. The radial equation is Bessel’s equation, which is solved by J,,, (7p)
and Ny, (7p). The latter diverges at p = 0 so the general solution that propagates in
the +z-direction is

U(p, b, 2,t) Z Z A n (7p) [sinme + By, cosmae] expi(kz — wt).

m=0 x>0

The sum on k is restricted to positive real numbers so we get a propagating wave in
the +z-direction.

(b) The cylindrically symmetric solution has m = 0 so TE Bessel waves,

87rm

BTE:VX(VXﬂ'm) and ETE——VX ot

derive from 7y, = 2Jy(yp) expli(kz — wt)]. We get

BTE - V(V . Trm) - V271-1{11
1 0%my,
= V(V . 7Tm) — g at?

= [ Jo(vp)z + ikV Jy(vp)] expli(kz — wt)]

= [V Jo(vp)z — iryJi (vp)p) expli(rz — wt)]
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Erg = -Vx %iJO (vp) explirkz — wt)]

.0 ‘
= —zwa—pJo(’yp) explikz — wt)]

= iwvJi(yp) explikz — wt)].

The corresponding TM solutions can be obtained from the foregoing using duality:
1
Erg — ¢Bru Brg — *EETM-
c) Since k? = v% + k2, write K = kcosa and 7 = sin a so
(c) gl : v
Yo (p, 2,t) = Jo(vp) expli(kz — wt)] = Jo(kpsin a) expli(k cos az — wt)].

Moreover, a change of variable confirms that

ks 2T

Jo(z) = % /d@exp(ix cosf) = %/d@ expliz cos(6 — ¢)].

T
0
Finally, let x = pcos ¢ and y = psin ¢ so x cosf + ysinf = pcos(d — ¢). In that case,

27

Po(r,t) = 2i /d@ explik sin a(x cos 0 + y sin 0)] exp[i(k cos az — wt)]
71'
0

Ky
1
= — [ dfexpli(q-r—wt
5 [ 40 eplita-x - wt),
0
where q = k(sina cos 6, sin asin 6, cos ). This is indeed a set of plane wave vectors,
all with the same magnitude |q| = k, which are uniformly distributed on the surface
of a cone which makes an angle o with the z-axis.
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16.25 Charged Particle Motion in a Circularly Polarized Plane Wave

(a) The physical electric field is
E(Z,t) = ()A( + iy)E(]e+i(kz—wt) + ()A( _ iy)Eoe_i<k'Z—wt>,

The corresponding magnetic field is

c
Therefore,
d
di‘t, = % [E+v>< (sz)}
Uz AV E
=1 [(1 - ZE+ ]
m C c
= %(1 — %)EO {(f( + iy)Eoe”(kZ_“t) +(x— iy)EOe—i(kz—wt)}
E A A
i 2% {(Um + ivy)eJrZ(kZiwt) + ('Ua: - ivy)eidkz*wt)} .

From this we get, as required,

dv 1 , ,
= _2Q {U+e+z(kz—wt) i ,U_e—z(kz—wt,)}
dt 2
(1)
dvii = Q(c —v )e:Fi(k'z—wt)
dt ? )

where vy = v, £ iv, and Q = 2¢E,/mec.

(b) Now define /4 = vie® (2=t +icQ/w so

dv 1
= _Q 0_). 2
= 0+ ) ©)
On the other hand,
dl d (ke i i .
+ _ V4 ej:z(kz—wt) == iwvieit(kz—wt) _ Q(C _ Uz) F iwvieit(kz—ut)'
dt dt
Therefore, using (1),
d , , 2iw dv
el _ — i(kz—wt) —z(k’z—wt)} _ Ao
dt(f, 0L) iw |:1}+6 +ov_e o @

‘We conclude that J 0
% {'UZ — ’L%(l+ 5_)} = 0
Hence, a constant of the motion is
Q
K=2v,00)—i— [l —l_ .
v:(0) —ig - [+ (0) (0)]
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(c) Differentiating (2) gives

d*v,  Q[dl de_ ; , itk
v |:+ :| _ QQ(C _ Uz) o %sz {U+et(kz—wt) _ ’l},e_t(k'z_w”} )

e 2 | dt | dt
But £, — (. = v e'Fz=wt) g _emi(k2=w) 4 9i0c/w so
v,

priai Q*(c—v.) — HiwQ{l, — (- —2iQc/w} = — (Q* +w*) v. + K.

Now, v(0) = 0 and £ (0) = +icQ/w, in which case, w’ K = cQ?. Hence, if we define

P =c0? and 02 =02 + %,
the equation of motion for v, is

d*v,
%-FQ%UZ:P

This is solved by writing

i (emag) o (o)
— (v, — = |+ (v:— =] =0,
dt> 02 0 02

so v, (t) = AsinQot + BcosQyt + P/Q2. The initial conditions v,(0) = ©,(0) = 0
determine the constants and we finally get

P (1 —cos Qi)

v, (t) = (T%

P
a,(t) = @ sin Qot.
0

No steady acceleration occurs; the particle cyclically accelerates and decelerates as it
propagates along the z-axis.
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Chapter 17: Waves in Simple Matter
17.1 Waves in Matter in the ¢ = 0 Gauge

(a) A gauge transformation of the potentials is

= X A=A+ Vy.
e T +Vx

To get ¢’ =0, we need
t

o= 8@% = x(r,t) = / dt' o(r,t') + const.

— 00

(b) For simple matter, B = uyH and D = €E. Therefore,

oD OE
VXH:E = VXB:’UGE

Substituting B =V x A and E = —9A /0t gives

0’A
VXVXA:_MEW7

or, using the supplied vector identity,

2

DA
VA — pe i ~-V(V-A)=0.

(c) The vector potential of a plane wave is A = A exp(ik - r —iwt). Substituting this into
the equation just above gives

[—k* + w’pe] A+ k(k-A) =0.

When k L A, we get waves with the vacuum dispersion relation w = ck. When k || A,
we get
WVeA=0 = A=0.

17.2 Faraday Rotation During Propagation

Let k;, = wny /c and kg = wnpg/c. Left and right circularly polarized plane waves with the
same amplitude and frequency propagating along the z-axis in the medium of interest are

Er(z,t) = E(x +1y) expli(kr z — wi] Er(z,t) = E(x — iy) expli(kpz — wt].

In this basis, the given electric field is
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Therefore, at other points in space,

E(z1) = ~[Ep(zt)+En(z 1)

[\V]

- ZE [eikLz + eikRz] efiwtf( + %E [eikLz o eikR z:l €7iwt$’.

DO | —

The field will be linearly polarized along y when
eikLz — _eikRZ :eikgzeiimﬂ m = 173’57.“
This occurs when z takes the values

mm mmc/w
z

::l: = :1,3,57...
k‘L—kR ny, —Ngr mn

17.3 Optically Active Matter

(a) For plane wave fields, the Maxwell equations in matter are

ik -E=ppa(k,w) k-B=0 kxE=wB iVxB=uj,(kw) —isE,

2
where
pind(r,t) ==-V-P = pulkw)=—ik-P=—i(c—¢)k-E
. oP . . .
.]ind (I‘,t) = E + v X M = .]ind (k7 LU) = _Z("‘)P + Zk X M

= —iw(e—e)E+i(uy' —p Hk x B.

For pin(k,w), we need a scalar that is linear in the fields. Using E, B, and k, the
only possibilities are k - E and k - B. The latter is zero from the Maxwell equations.
Hence, the form given is as general as it can be. For j;, 4(k,w), we need a vector that
is linear in the fields. The possibilities are E, B, k x E, and k x B. The form given
for ji q(k,w) includes only the first and last of these, and so is not as general as it
could be.

(b) From part (a), the induced current density could include terms proportional to B and
k x E. But the Maxwell equations show that these are proportional. Hence, only
one is needed, and the problem statement chooses B. Including that term, we now
substitute pi, (k,w) and j;,q(k,w) into the Maxwell equations. The first gives

ik -E=—i(e—e)k-E = k-E=0.

The second gives

. . . _ — LW
ik x B = —iwpg (e — €)E + ipo (1 Y4k x B + ppéwB —ZC—QE,

or
ewB + 'k x B +i¢wB = 0. (1)
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(c) To study propagating waves, start with Faraday’s law, k x E=wB, and use k- E =0
from part (b) to write

wkxB=kx (kxE)=k(k-E) - k’E = —k’E

Substituting this and Faraday’s law into the identity proved at the end of part (b)

gives
k2 iEwk ~
G@—)E+%wkxE:O
L€ €

Operating on this equation with kx gives
iwlk k2N «
—“fE+<M—)kxE
€ L€

These two equations have the suggested form with

a:wQ—E b:w—gk
L€ €’

(d) We solve the linear system by insisting that the determinant vanish:

a —ib
b a

-0
This gives a = £b, so the dispersion relations we seek are

k? k
wr="+ gL
e €
Substituting a = +b back into the original 2 x 2 system shows that the associated
electric fields satisfy

k x E = +iE. (2)

These are left and right circularly polarized waves because, if € is any vector perpen-
dicular to k, (2) is satisfied by E = & F ik x é.

(e) For a plane wave, the usual form of the Maxwell equations in matter without free charge
or current is

k-D=0 k-B=0 kxE=wB k xH=—-wD.
Using the suggested constitutive relations, we get

k-(eE+(B)=0 = k-E=0
and

1
pkx (B —9E) = —w(eE + B) = ewE + 'k x B+ w(B—~/u)B =0.

The last of these expressions is identical to (1) with i€ = 3 — «/u. Therefore, all the
results found in parts (c) and (d) remain valid.
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Source: J.F. Nieves and P.B. Pal, American Journal of Physics 62, 207 (1994).

17.4 Matching Conditions

(a) The matching conditions in question derive from the Maxwell equations V-D = 0 and
V - B = 0. However, the first is a consequence of V x H = dD/d¢ and the second is
a consequence of V x E = —9B/0t. Since the divergence equations provide no new
information not already contained in the curl equations, the former are not needed to
derive the Fresnel equations.

(b) Let L and || refer to components perpendicular and parallel to the interface, so

S=ExH= (EH+EL)X (HH‘{’HL) = (E” XHl‘)+(E|‘ XHL)+(EL XHH)JF(EL XHL).
The last term vanishes, so
SL:E”XH” SH:(EHXHL)+(ELXHH)~

Since E| and H| are continuous at an interface, we conclude that S is continuous at
an interface.

17.5 Escape from a Dielectric

The rays that escape have propagation vectors that make an angle  with the vertical that
does not exceed the critical angle for total internal reflection. Snell’s law for this situation
is nsin @ = sin 6. The critical angle §- makes sinfy = 1, or

0o = sin™* <1) .
n

The waves are emitted isotropically, so the fraction of light that escape is the relative solid
angle

27 sin ¢ 1
1 1 1 1
f:—/ / dfsing = - / d:z::f(lfcosﬂc):7(17«/171/712).
in 2 2 2
0 0 cos ¢

17.6 Almost Total External Reflection

In the variable o = 7/2 — 6, Snell’s law (sinf; = nsinfs) reads cosa; = ncosay. Since

n=1-4¢and § < 1, we see that as < 1 if a; < 1. Therefore, using cosa =~ 1 — %az on

both sides of Snell’s law gives

2 2
o) — o5 & 20.
Using the same approximations, the “s” reflection coefficient for non-magnetic matter is
)
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2

2 . . 2 2 2 2 2
_|cost —ncosby sina; —nsinaz |© o —ae|T _|aj—az|T 9
= = |z . ~ | N
cos 01 + ncos by sin a; + nsin o a1 + s das daf
The “p” reflection coefficient gives the same answer,
2 . . 2 2 2
R ncosfy — cos b nsina; — sin ay a1 — Qo al — a3 52
P ncosf, + cos by nsinag + sin as e 40 dat’

Now, the vector q is normal to the surface with ¢ = (47/A)sinay = (47/A)a;. Therefore,
R(q) ocq™".

Source: J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, New
York, 2001).

17.7 Alternate Derivation of the Fresnel Equations

With the given geometry, the Maxwell matching conditions read
alBl + Ef] = B! pi[H + H] = po H (1)

and
El + ER = BT H!' + HE = HT
74 r T 1 T T (2)
Ey+Ey:Et Hy+Hy:Hy.

The four equations in (2) collapse to two when we use k- E; = 0 =k - Ey and similarly for
H. Indeed, because k; = (k1,,0,k1.) and kg = (k1,,0,—k;.), we get

k1. (Bl — ER) = ko ET ki.(H — HF) = ko HT . (3)
The left sides of (1) and (3) are two equations in two unknowns. Hence,

ER o klz€2 — kgzel ET 2]€1Z€1

z z

EI " ky.eo + koo6r EI - ki.eo + koser

z

The right sides of (1) and (3) are identical in structure except that E — H and € — pu.
Therefore,

HE _ kizpo — Koz HT _ 2k

HI  kiapo + ko HI kyopug + koopin

Source: S.-Y. Shieh, Physical Review 173, 1310 (1968).

17.8 Fresnel Transmission Amplitudes

The text gives the Fresnel transmission amplitudes as
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. 275 cos 0 q . 275 cos 0
) — al $
F 771 cos By + Zy cos by

s Zycosl, + Zy cosby
For non-magnetic matter, we use Z; /Zy = ng/ny to write these as

2n1 cos 0y 2n1 cos 61
t, = and ts = .
ng cos By + ny cos Oy ny cos B, + ng cos By

Using nq sin 01 = ny sin 6y, we get

. 2 cos 07 sin 0, B 2 cos 61 sin 0y _y
P cosf sinf cosfysinfy  sin(fy + 0a) cos(; — cosby) ™M
and
o 2 cos 0y sin 0 _ 2cosfsinfy .
~ cosfsinfycosfysing,  sin(fy +62) TE:

17.9 Guidance by Total Internal Reflection

ng n.
/| ) "
0, 6,

From Snell’s law, n, sinf = nysinf;. We get the maximum angle § when 6. is the critical
angle for total internal reflection. The latter is defined by ny sin 6. = n.. Also, 85 = 90°—0..
Combining these facts,

sinf = n—fcos@,Z = n—fmz #
Ng Ng un
17.10 Reflection from a Metal-Coated Dielectric Slab

(a) The diagram below defines the amplitudes of the four electric fields that appear in this
problem.

G XA
— I —
G’ A,Z
—> —>
z=0 z=d

337



Chapter 17 Waves in Simple Matter

The left-going fields in the vacuum have non-zero components
B, = Aei(thrkz) CBlu — _Aei(thrkz).
The right-going fields in the vacuum have non-zero components
E{x _ A/ei(wt—kz) CB{y — Alei(wt—k‘z)'
The left-going fields in the medium have non-zero components
By, = Gei(thrnkz) CBQy _ 777,G6i(Wt+nkz).
The right-going fields in the medium have non-zero components
Eédb _ G/ei(wt—kz) CBéU _ nGlei(wt—nkz).

The boundary condition at the metal surface is that E; = 0. This gives
Ey(z=0)+E) (2=0=0 = G =-G

At the front face of the slab, we must have continuity of E| and continuity of Bj. The
first of these gives

Eyy(z =d) + By, (2 = d) = By, (2 = d) + B3, (z = d),

or

Aet*tt 4 Alem R — j2G sin(nkd). (1)

Since B = poH everywhere, we also get
Biy(z = d) + By, (2 = d) = By (2 = d) + By, (2 = d),

or
— At 4 Al = _9nG cos(nkd). (2)

Let 8 = nkd. Adding (1) to (2) gives
2A’e™ ™ = 2@ (ncosf — isin6).
Subtracting (2) from (1) gives
24e™* = 2G(n cos O + isin 0).
Therefore,

Ale—ikd _ ncosf —isinf 3)
Aethd T pcosf+isingd’

This shows that |A| = |A’|. Let § be the amount by which the phase of the right-going
wave exceeds the phase of the left-going wave in the vacuum at z = d. In other words,

A/e—ikd _ eiﬁAeikd
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Using (3), i 1 —itan(0)/n _ _Me—iA e
1+ itan(d)/n Mer ’

from which we conclude that tan A = tan(6)/n. Finally, exp(+ir) = —1, so
§=+m —2tan”! {mn(@] .
n

We choose the positive sign so § > 0 in the limit when d — 0.

(b) The radiation pressure P (time-averaged force per unit area) acting on a conductor
due to the surface current density K induced in it by a time-harmonic magnetic field
B is the surface value of
1 1 1
P=-KxB*= —(axB)xB*=-—|B]*a.
4 4po 4110

For our problem,

Therefore, using (3), eon?|AJ?

P=- )
n2 cos? f + sin® 0

Source: B.H. Chirgwin, C. Plumpton, and C.W. Kilmister, Elementary Electromagnetic
Theory, Volume 3 (Pergamon, Oxford, 1973).

17.11 Fresnel’s Problem for a Topological Insulator
(a) For a plane wave varying as expli(k - r — wt)], the Maxwell equations in matter read
k-B=0 kxE=wB k-D=0 k xH=-wD.
Inserting the constitutive relations, the third of these gives
0=k-D=¢«k-E—ak-B — k-E=0.
The fourth gives

B
kxH=kx —+ ok xE=—-w(eE — oyB).
w

Substituting k x E from Faraday’s law into the middle term of the preceding equation
produces aguwB. Canceling this with an identical term in the rightmost term leaves

k x B = —weuE.

Collecting results, we get conventional plane waves of E and B with wave speed

v=1//j€.
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(b) The matching conditions that E| and H) are continuous do not depend on the con-
stitutive relations. Let E;, Er, and Er be the amplitudes of the incident, reflected,
and transmitted electric fields. At normal incidence, all of these are parallel to the
interface. Therefore, the continuity of E| reads

E; +Er =E;.

We let k = w/c and k' = w,/ue. The reflected magnetic field points opposite to the
incident magnetic field. Using the constitutive equations, the continuity of H reads

1 1
—k x (E[ — ER) = —k' x Er + agEr.
How Hw

Welet k =k’ = z, E; = Erx, and allow for the possibility that Er and Ei may differ
in direction from E;. In that case, the components of the matching conditions are

EIJ: + ER.’I) = ETﬂc
Er, = Erp,
1 1
7(EIJE - ER:C) = —FEpr, + QOETy
o€ LU
1 1
—FEry, = ——FEr, +aEr,.
Ho€ I

Substituting Eg, from the second equation into the last equation gives the Faraday
angle of rotation of the plane of polarization as

Er,

Ere e/ +/e/p

= tanﬂp.

(¢) Divide the third and fourth matching conditions by Fg, and use the first to eliminate
FEr,. This gives

< 1 1 ) ET;,; 2 ETy

PR — _— = — = (O, -

we  w) Epe  poc Ep,
i ERy _ _i ETy +a ETI

0 .
HoC Egy pHu Erq: ERs

Now use the second matching condition to replace Er,/Egry by Ery/Ery:
( 11 ) Ep, 2 Eg,
- _ —_— - — = g
HoC Ho ER;t HoC ERJ:
1 1\ Eg, Er,
< + > Ry = o Tx '
HoC pv Egy Er:

340




Chapter 17 Waves in Simple Matter

These are two equations in two unknowns, one of which is the tangent of the Kerr
angle of rotation:

Egr,

200/ poc

= =tanfg.
Eg, ( €0 € ) 2 K
= —) -2
Ho H

Source: X.-L. Qi, T.L. Hughes, and S.-C. Zhang, Physical Review 78, 195424 (2008).

17.12 Polarization Rotation by Reflection and Refraction

(a) Let § and p be unit vectors aligned with the incident electric field when the latter is

purely s-polarized or p-polarized (as they are defined in the text). Then, for a general
polarization, the incident electric field has the decomposition

E; = siny;8 + cosyp.
By the definition of ry and r,, the reflected and transmitted electric fields are

Er = r,siny;8 + 1, cosy;p and E7r = t,siny78 4 t, cosyrP.

On the other hand, Er = sin g8 + cosygp and Ep = siny78 + cosyrp. Therefore,

E,

T E
- — tanfyR = — tan’y[ and -
Ey 1 T T

t s t
= tanyr = — tany;.
p EP i

P

Now, the Fresnel formula use #; and 6, for the angles of incidence and refraction,
respectively, and the textbook shows that

Sin(91 — 92)
~ sin(6; + 65) and

rs =

o tan(@l — 92)
"= tan(91 + 92)
Therefore, as advertised,

fan g = ~cos(6r —6s)

—t .
cos(6y + 65) an

Using Snell’s law, ny sinf; = nysinfy, and a trigonometric identity, the ratio of the
transmission amplitudes is

ts N9 cos By + ng cosy  sinbq cos Oy + sin s cos Oy
tp ny cos By + no cos Oy

sin 6 cos 69 + sin 6 cos 61
sin 20; + sin 26,
2 sin(91 + 92)

_ 2sin(6; + 02) cos(0; — 0)
B 2 sin(91 + 92)

Therefore,

tanyr = cos(f; — 602) tan~y;.
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(b) The reflected wave is more TE (s-polarized) if tanyp > tan~yr. This true because
cos(f; — 6) > cos(f; + 6;). Similarly, the refracted is more TM (p-polarized ) when
tanyr < tan-;. This is true because cos(6; — 2) < 1.

Source: L.D. Landau and E.M. Lifshitz, The Electrodynamics of Continuous Media
(Pergamon, Oxford, 1960).

17.13 The Fresnel Rhomb

(a) The sketch below shows that the angle of incidence at each internal interface is «:

(b) The angle of incidence is #; = «. Then, if 6, denotes the (complex) angle of the
transmitted wave, Snell’s law reads sin f3 = n sin . Since nsina > 1 for total internal

reflection, we get cos @y = i\/n2 sin® o — 1. From Fresnel’s equations,

Er sin(6; — 65) _sin 0, cos 0y — cos 6 sin 0

Erl|, L7 Tsin(6r +65)  sinf) cos B + cos 6, sin 0,

isinayv/n2sin® a — 1 — nsina cos

isinayv/n2sin® a — 1+ nsinacos

cosa—i\/sin2a— 1/n2
cosa—&—i\/sinQa— 1/n2

This complex number has the form (a — ib)/(a + ib), which has magnitude one.

(¢) Similarly,

@ - _tan(91 — 92)
Er I o tan(91 + 92)

cos 01 cos 05 — sin 0y sin 6,

1 - -
cos 01 cos 0y + sin 0 sin O,

— i Jein? o — 2 . ; .
cosa — iy /sin” a—1/n cosa iv/n?sin? o — 1 — nsin? a
cosa—i—i«/singa—l/nQ cosa iv/n?sin? a — 1+ nsin’ a
cosa — in?4/sin® a — 1/n?
cos a +in24/sin® o — 1/n?
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This is also a complex number of the form (a — ib)/(a + ib) with magnitude one.

(¢) Orient the coordinate axes so x is parallel to the scattering plane and y is perpendicular
to the scattering plane. In that case, the electric field incident on the first interface
where total internal reflection occurs is

E; = E[()A( + y)

With the notation given, the reflected electric field is

Ep = B{(Rjx + R1y) = Eje” "’ (6i(5L_6")5‘ + Y) '

This shows that the quantity 0, —d) determines the polarization of the reflected wave.
The same argument applies to the second internally reflected wave. Now, both ¢, and
0| have the form

a—ib_aQ—b2—2iab
a+ib a? + b2

= exp(—id) = cosd — isind.

Therefore,

2ab 2b/a
tan6 = a2 _b2 = 1_b2/a2 :tan2(6/2) ==

2tand/2
1—tan?§/2°

We infer that tan 36 = b/a, so

\/sin? o — 1/712

COS «x

21/sm o 1/n .

1
and tan -4 =n
2 CcOos «

1
tan =0, =
an 5o,

Hence,

.92 2
1 tan 1§, — tan L8 cos oy /sin” o — 1/n
tani((ﬁ_—én)— P 270 _ .

o 1—|—tan%5Ltan %5H N sin® o

(d) The light is reflected twice by the rhomb. So, if 2|0, — d| = 7/2, linearly polarized
light will be converted into circularly polarized light. This implies that

cos ay /sin? o — l/n2

T
— = tan —.
sin” «v 8

This may be solved for sin a:

1+ 1/n2 + \/(1 —1/n2) — (4/n2) tan 7 /8
2(1 + tanm/8) )

sin? a =

So, if n = 1.5, we get @ = 53.26° and o = 50.23°.
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Source: M. Born and E. Wolf, Principles of Optics (University Press, Cambridge, 1980).

17.14 Energy Transfer to an Ohmic Medium

The time-averaged rate at which power flows through a unit area of an ohmic surface is

(8) = (ExH)

This the total rate of Joule heating computed in the text.

17.15 Refraction into a Good Conductor

(a) We must have k = ixz with k > 0 to avoid exponential runaway of the wave as z — oo
and as * — £oo. The phases of the incident, reflected, and transmitted waves must
agree at the z = 0 plane where they coincide. This implies that

kl,x = kR,x = Re kQ,w-

The left equation is the law of specular reflection. With k; = kr = k; = w,/j€, the
right equation is the generalization of Snell’s law:

gsinfy = kq sin 6. (1)

(b) The dispersion relation for the conductor is kg - ko = é(w)uw?.

imaginary parts of the dispersion relation gives

Equating real and

¢ =i = pes? = I (2)

and
2gk cos By = pow. (3)

Equation (2) gives ¢ > ki. Therefore, (1) guarantees that 6, < 6;.
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(c) Eliminate 6, by adding the square of (1) to the square of (3) and use (2) to eliminate
¢*. The result is

1
K+ k2 cos® 0y k% — Z(MUW)Q =0.

This is a quadratic equation in the variable x> whose solution can be written using
the variable sinh A = (we/a) cos? §;. The k? > 0 solution is

1 2 1
K = ~pow {\/1 + (g cos? 91> ~ & cos? 01} = —pow [cosh A — sinh A].
2 o o 2
The skin depth is § = \/2/pow, so
1 1
= _— —=A :
o |34
(d) Equations (2) and (1) give the two remaining unknowns as

S
— K2 4 k2 d ng, = — oot
q i+ K an sin 6y T (n/l)?

A good conductor satisfies o/ew > 1, so sinhA =® A < 1 and ¢ = k = 1/§ > ky. This
gives 0y < 1 because

. k)2 . 2ew .
sinfy ~ | — | sinf; ~ —ssinf; <K 1.
K o

17.16 Phase Change for Waves Reflected from a Good Conductor
The TE reflection coefficient is

Er Zg cos by — Z; cos by Ny cos b — Ny cos by
£y Zg cost + Zl cosfy Ty cosfy + g cos by '

The second equality above follows when p; = pe = po because Z = uc/n. The text shows
that the transmitted wave propagates normal to the interface for all angles of incidence.
Therefore, cosfy = 1 and, with 7y = ny and ny = nf) + inf,

Er  mnycosf —nh —iny n3 cos? 0 — |Ag|* — i2n1nf cos b,

Er  mnypcosO +nh+inY  n?cos? b + |Az]? + 2nink cosb;

For a good conductor, |fz]? > n? cos? §; where

wo(w)

and ny > 1. In that case,
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Ny + iny cos 6
Er~-FE x ————.
N9 — Ny cos b

Waves in Simple Matter

The minus sign infront of E; contributes a phase of m and the final factor contributes a

factor of tan™!(n; cos 01 /na). Therefore, the net phase change is

7+ tan" ! [(w/c)ny 6 (w) cos b ].

17.17 Airy’s Problem Revisited

(a) The geometry in question is

€0, 10 &u €0, 1o
z=0 z=d

The five electric field waves are

exp(ikoz) + rexp(—ikoz)
E = Eyexp(—iwt) x { texp(ikz) + r’ exp(—ikz)

T expliko(z — d)]

The five magnetic field waves consistent with ZogH = Ro x E in the vacuum and

ZH = k x E in the film are

Zy Hexp(ikoz) — rexp(—ikgz)]

H = Eyexp(—iwt) x ¢ Z7[texp(ikz) — r' exp(—ikz)]

ZyT expliko(z — d)]

All the fields are tangential to the interfaces and therefore continuous passing through

them. Continuity of E at z =0 and z = d gives

1+r=t+7r tettd 4 plemthd — T (1)

Continuity of H at z = 0 and z = d gives

1—7r t—1' tetkd _ pleg—ikd
Zo  Z Z

Eliminating r’ from the right sides of (1) and (2) gives

346



Chapter 17 Waves in Simple Matter

, 11
oe =7+ — ) T.
te (Z+ZO> (3)

To get another relation between t and 7, we first eliminate r from the left sides of (1)
and (2) to get

(Z — Zo)r' =27 — (Z + Zy)t. (4)
Now use (3) to eliminate r’ from the right side of (1). The result is
(Z = Zy)e'*™ —(Z + Zy)e ™ ] t + 2Ze™* = (Z — Z,)T. (5)
Finally, eliminating ¢ between (3) and (5) gives the desired result:

477

T =" .
€ (Z + Zy)* — (Z — Z0)2621kd

The input vacuum amplitude is unity and the output volume is also vacuum. There-
fore, the fraction of power transmitted is

4727,
(Z+ 20)% = (Z — Zy)2e2ikd

i - |

(b) The text studies a film (medium 2) in vacuum (medium 1) with index of refraction n

and shows that

tt! 2
2 _
71 = ’1 — rrletdo

)

where, at normal incidence, A¢ = 2n(w/c)d,

-7 275

e N N .
"z 1z, ™ 71 + 2

are the Fresnel reflection and transmission amplitudes for refraction into medium 2
from medium 1 and 7’ and ' are the same with the two media interchanged. Therefore,
since k = nw/c, the textbook formula with Z; — Zy and Zy — Z is

2

i | AAE 1 _ 477,
(ZO + Z)2 1_ EZ — ZO;z ei?n(w/c)d (Z + Z0)2 - (Z - ZO)QeQM,d
Zy+ Z

17.18 Radiation Pressure on a Perfect Conductor
(a) The reflected electric field must be

E,ef(x,2) = —yEj explik(zsin @ + x cos ) — iwt].
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This ensures that the total tangential electric field (the total field in this case) vanishes
at x = 0. In other words, Ei.(0,z) = 0 because

Eiot = Eine + Eror = —2iFEj expli(kzsin 6 — wt)] sin(kz cos §)y.
The curl of this field is
V X Etor = —2ikEy expli(kz sin @ — wt)] [cos 0 cos(kx cos §)z — i sin 6 sin(kx cos 0)X] .
From Faraday’s law, V x E = iwB, the total magnetic field at the z = 0 surface is
cBout(x = 0,2) = —2F) expli(kz sin § — wt)] cos 0z. (1)

Now, since oK = n x B, is the surface current density at a conductor surface, and
B;, = 0 is characteristic of a perfect conductor, the time-averaged force per unit area
of surface is

1 1 . 1 . .
<f> = <§K X (Bin + Bout)> = ZK X Bout = i(l’l X Bout) X Bout
5 5

1
= ———|Bou/*n.
410

The last equality is true because By (z = 0, 2) is perpendicular to the surface nor-
mal. This force/area is already a pressure. Therefore substitution from (1) gives the
pressure exerted by the field on the surface as

P = ¢ cos® 6.

(b) From Newton’s law, the we can compute the time-averaged force from the change in
electromagnetic momentum suffered by the incident wave. That is, in a time At,

<Prcf> - <Pinc> = <F>At
On the other hand, if normal incidence exposes an area A of surface,
<P> = <gEM >AV = <gEM >CAtA cos 6.
Therefore,

(F) = [(8ret) — (8inc)] cAcosf.

For both the incident and reflected plane waves,

1 ey

|E|’k.
2c

(g)

Moreover,
l%mc = —cos0x + sin 0z and Rinc = cos 0% + sin 0z.
Therefore, Rref — Rinc = 2cos 0x. Finally, the force exerted on the conductor by the

field is the negative of the force exerted by the conductor on the field. Hence, in
agreement with part (a), the pressure on the conductor is

P =2cosf x ;—OES cos fccos ) = g B2 cos® 6.
c
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17.19 Phase Velocity of Evanescent Waves
2
2 2 _ W oo

2 2 2 2 .2
y W w ¢ -k cC

P ﬁ:q2+,€2*q2+52ﬁ'

This is always less than ¢/n because ¢> — k* > 0.

17.20 A Corner Reflector

Our discussion of polarization defines (&1, €9,k) as a right-handed orthogonal triad. More-
over, back-scattering by a perfectly conducting corner reflector occurs by two reflections at
0; = /4. Hence, the appropriate diagram is

€
k; R
€
é
Kp 2

LCP (upper sign) and RCP (lower sign) waves have the electric vectors
E = Ej [é cos(wt) £ &, sin(wt)] .

The é; component is p-polarized and the €, component is s-polarized. In the perfect-
conductor limit, the reflection amplitudes for these polarizations are r, = 1 and ry = —1.
But there are two reflections, so the amplitudes of both components are exactly the same for
the outgoing wave as for the incoming wave. Hence RCP remains RCP and LCP remains

LCP.

Source: H. Mott, Polarization in Antennas and Radar (Wiley, New York, 1986).

17.21 Bumpy Reflection

(a) If the surface were z = 0, a specularly reflected wave Eg(r,t) = —%X Ej expli(k,y —
k.z — wt)] added to the incident wave would give a total field

E =E( + Eg = x2iEj expli(k,y — wt)]sin k. z. (1)

This field satisfies the boundary condition at the conducting surface because it is
entirely tangential to, and vanishes at, the z = 0 surface.
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(b) Now, evaluate (1) at z = asin(27z/d) and use wa/c < 1 to expand the result to first
order in a. This gives

Es = =x2iEjexpli(kyy — wt)]sin{k.asin(2rz/d)}
~  X2iEy expli(k,y — wt)]k.asin(2rz/d). (2)

Our task is to identify a solution of the Maxwell equations in vacuum, call it E/, with
the property that E’ reduces to —Eg at the corrugated surface. If we do this, E + E’
is the solution we seek. The form of E emerges if we rewrite (2) as

Eg = &k, aByelhvy—wt) [gi2ma/d _ o=i2ma/d],
This shows that we should choose E’ as the sum of two plane waves,
E' = —xk.aE, {expli(q; - T — wt)] — expli(q_ - r — wt)]},
where qu = (£27/d, ky, q).

(c) E' must satisfy the wave equation. Therefore, since part (a) tells us that the angle of
incidence 0 satisfies k, = (w/c)siné,

w? o\ 2 9 9 2\ ? w\ 2 9 9
02_<d) +ky+q —(d> +(E) COS 0+q.

2 2 2
q\/i‘;(;> f—sm 0\/cos29 ;) .

This quantity will be pure imaginary near grazing incidence (fy =~ 90°) and E’ will
decay exponentially from the surface into the vacuum.

Hence,

17.22 Photonic Band Gap Material

(a) When € is not constant, 0 =V -D =V - (¢E) = eV -E+ E - Ve. Also,

0 0 0D O*E
. _ V2R — - __ - = = z -
V(V-E)—V'E=VxVXE thB JHO Ho€ g

Therefore,
0’E Ve
2 —
V°E — Ho€ +V<E~) =0.
The last term does not contribute if € = ¢(z) and E = E(z,¢)%. Therefore,

0’E 0*E

gz M) g =0
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(b) If E(z,t) = E(z) exp(—iwt), the wave equation in (a) reduces to

d2

Liz? + uoe(Z)wz] E(z) = 0.

Substituting €(z) = €[l + acos(2koz)] and E(z) = [ dkE(k) cos kz into the wave
equation gives -

(oo}

aw2

2
~ 9 w o
/ dk E(k) [k: + = + 2 cos(2koz)} coskz = 0.

But cos(k + 2kg) + cos(k — 2ky) = 2 cos kz cos(2kyz). Therefore,

[ ak (12— B(k)coskz = wa [ dk B (k) cos|(k + 2k)z]
c? 22 0
w2a 7 ~
+ @ dkE(k') COS[(,Z{} — 2k0)2]

Changing variables in the two integrals on the right and then re-naming the new vari-
ables k in both cases gives a common factor of cos kz in all three integrals. Therefore,
it must be true that

(k2 - ”2) E(k) = wha {E(k — 2k) +E(k+2ko)} :
2c2

(c) Let k = ¢+ ko so the equation just above reads

2 2
i = 5| B+ i) = 22 {Ba— k) + B3k} ()

If « =0, w=c(q+ ko) where |g| < ko. If & < 1, the right side of (1) is very small.
Hence, the left side must be very small. There are two ways this can happen. Either
the Fourier component is very small or the quantity in the square brackets is very
small. The second possibility is true for (1) as written because w = ¢(q + ky). Now
change ko to —ko in (1) to get

2 2
(- - 5| B ) = 22 (B4 k) + B -3k} @

The quantity in square brackets on the left side of (2) is very small for the same reason
it was small in (1). Therefore, E(q — ko) need not be small. Now change k¢ to 3kg in
(1). This gives

2

[(q +3ko)? — ‘;’j] E(g+3k) = o {E<q — 3ko) + Bk + 9k0)} . (3)

2c
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It is still true that w ~ ¢(q + ko). This means the quantity in square brackets in (3)
is not small. Hence, F(q + 3ko) must be small and we can drop it from (1) and (2).
The 2 x 2 problem that remains is

2 2

y W w o ~
(a+ko)* = ~52 BE(q+ ko)
=0.
wia ko )2 w’ EAI(q*kO)
T 92 (g — ko) T2

(d) Setting the determinant of the matrix in part (c¢) equal to zero gives the quadratic
equation

(1-20) (5) ~l— k0 + 0 k]S + R =

The solutions are

wi_ P+ V@ +R)? - (k)1 —a?/4)

? 1—a?/4

The key observation is apparent already from ¢ = 0, i.e., when k = k. In that case,
the original frequency cky is replaced by two frequencies,

(1+a/2)

m ~ cko(1 + «/2).

w4t = cky

Studying the dispersion relation for very small ¢ leads to the graph of w(k) shown
below. The function w(k) = ck except in the immediate vicinity of ko, where there is
a jump from w_ to wy. Thus, there is range of frequencies (a gap) where no waves
occur. A vacuum wave with a frequency in this gap, incident on a sample with this
€(z), would be totally reflected from its surface.

wh

1
No waves here:

17.23 Plane Wave Amplifier

(a) The momentum of the wave field changes due to (1) reflection from the mirror and (2)
the motion of the mirror. We begin with the v = 0 contribution and note that S/c?
is the field linear momentum per unit volume, so SA/c? is the momentum per unit
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length perpendicular to the mirror. The fields move at speed ¢ so S;A/c? x ¢ = S;A/c
is the momentum per unit time incident on the mirror and S A/c is the momentum
per unit time reflected from the mirror. Therefore,

dPem
dt

A LA
= Z(SR — S[) = ZZ(SR + S[)

is the rate of change of field momentum due to reflection. Now focus on the volume
between the mirror and a parallel reference plane a distance L away. The total momen-
tum stored there is AL(Sg + S;)/c?. The mirror moves with velocity v = —2dL/dt
so the rate of change of field momentum in the volume is

dPEM A dL(
dt

Sk —S1) = (Sr — Sr).

L Av
T
This is general because the position of the reference plane is arbitrary. By momentum
conservation, the total rate of change of field momentum is the negative of the total
rate of change of mirror momentum, i.e., the force on the mirror. Therefore,

F— fzé{(sf +Sg)+ %(s, - SR)}.

(b) A(Sgp +S1)-z = A(Sg — Sr) is the rate of change of field energy in the volume between
the mirror and the reference plane due to energy flow through the plane. On the other
hand, the energy stored in the volume between this plane and the mirror is

U= AL{160E2 1‘1BQ}AL|S|
C

because ' = cB for an plane electromagnetic wave and S = 7'E x B . Therefore,
the energy in the volume changes at a rate —Av(Sg + S;)/c due to the motion of
the mirror. By energy conservation, the change in field energy plus the change in
mechanical energy as the mirror moves against the force exerted on it must be zero.
Therefore,

F-v=A(S; — Sg) +A%(SI + Sg).

(c) From (a) and (b), we have

‘i” {(51 + Sp) + (51 - SR)} = (Sp — S) — %(s[ + Sp).

Sk _ (1+v/c)2
Sr T (I—v/c)?

Collecting terms, we get . This is the desired result because the

power P = SA.

(d) Let the position of the mirror be z = vt. Since w = ck, the phase of the incident wave
at the mirror surface is k;z + writ = wi(z/c+t) = wit(v/c+ 1). The phase of the
reflected wave at the mirror surface is kgz — wrt = wr(z/c—t) = wrt(v/c—1). These
two phases must be equal because the sum of incident and reflected waves satisfies
a boundary condition on the mirror surface that is independent of time and space.
Therefore, using the results of part (c),
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wrp  v/e+1 Pr WR 2
_— = é —_— = —_
wr  wv/e—1 Pr wr

Source: J.R. Pierce, Journal of Applied Physics 30, 1341 (1959).

17.24 Laser Beam Bent by a Magnetic Field

(a) A typical laboratory electromagnet produces a field of about 1 tesla (T). A typical
argon-ion laser produces a continuous beam with ~ 3 watts (W) of output power
distributed over a beam diameter of 1 mm. Therefore, the magnitude of the beam’s
time-averaged Poynting vector is

3W
(1 mm)

(S) ~ >~ 10° W/m?.

Moreover, for a monochromatic wave, (ugy ) = %60‘5|2 = (S)/c, and ¢B = . There-

fore,
47 x 10-7 N/A? x 106 2
B:\/MO<S>% mx 1077 NJA” x 100 W/m™ oo 1075 T,
c 3 x 10% m/s

Thus, the magnetic field of the laser beam is four orders of magnitude smaller than
the magnetic field produced by the electromagnet.

(b) From VX E = —9B/dt and B = uH, we get H = (k/uw) x E. Therefore, the Poynting
vector for the electromagnetic wave is

A~ 2 A~ A.
S:E><H:iE><(k><E):MEI kE(|1];|2E)

Hw Hw

To find k - E, we note that (i) V- D = 0; (ii) the external magnetic field is very
much larger than the optical magnetic field; and (iii) e E differs from D by a factor
proportional to By. Therefore, since we are working to lowest order in By,

0=k -D=¢ck-E—iyk-(BXE)~¢ck-E—ivk-(By xE) ~ ek-E—iyk-(By x D/e).
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The diagram shows that By x D is anti-aligned with k. This permits us to conclude

that .
k-E = —iyByDsin /.

Therefore, using D ~ ¢E again,

K|E]? [ iyByDsiny KE]? [~ v (Bo)\ .
S = k El= k+i-|— D). 1
LW * e2|E|? Hw +Ze D )™ ()

Finally, the diagram shows that D lies in the plane defined by B and k x By. Hence,

D Bo)p, . DB, gy

D= 2

By +
and D - (lA( x By) = k- (Bg x D) = —ByDsin . Therefore,
D ) -
D= B—[cos ©By —sinp(k x By)]. (2)
0

Substituting (2) into (1) gives

 kEP
~ =

S [l; +i2sin plcos By — sin p(k x BO)]} .
€

With E = Eexpli(k - r — wt)], the time average of the Poynting vector is

2
(S) ~ E|E| {k— Im

7 sin plcos pBg — sin p(k x BO)]} .
2uw €

(¢) The maximum deflection of the beam from the k direction occurs when the last term
in the square brackets on the far right side of (1) is largest, i.e., when ¢ = /2.

Source: D. Budker, D.F. Kimball, and D.P. DeMille, Atomic Physics (University Press,
Oxford, 2004).

17.25 An Anisotropic Magnetic Crystal
(a) Let H= Hyexpi(k-r —wt) . Then, because H= p~! - B and D = ¢E,

VXHZ%—? = kx(u ! B)=-—wqE

VxE:faa—]? = kxE=wB.

These imply that
ok x [+ (K X E)] = —w?¢,E. (1)
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On the other hand, the data given tell us that k x E = (k,y — k,2)E. Therefore,
pop " (k x E) = [(k,m — k,m/)y + (k.m' — k,m)2]E,
and, since k? = k; + k2,
pok x {p~ " (k x E)} = 2m'kyk. — mk*)EX = —k*(m —m'sin20)E.  (2)
Comparing (2) with (1) gives the desired result:
w(k,0) = ckv/m — m’ sin 26.
(b) The incident wave is normal (§ = 0) so w = ck+/m inside the medium and w = ck in the

vacuum. There is no distinction between s- and p-polarization at normal incidence.
The Fresnel formula for the latter gives

Ex|  Zi—2» Er 22,

— | == and — ==,

bearing in mind that, with our conventions, the formula on the left contributes with a
negative sign to the component of the electric field parallel to the interface. Moreover,

Zy = poc and Zy = pge//m.

Therefore,

ﬂ

£t <0 = fow i ()] {1 e [ ()]

E(z>0) = )A(E()ﬁexp [z’w (C\% —tﬂ .

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).

17.26 A Complex Dielectric Matrix

(a) We begin by looking for plane wave solutions inside the dielectric medium. With
E = Ej exp[i(k - r — wt)], the Maxwell curl equations imply that

k x E=wB and k x B = —pywD.

Therefore,

k x (k x E) = wk x B,

or

k(k-E) - k’E = —pyw’e - E. (1)
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We are used to setting k - E = 0 in isotropic media because

V- D=V-cE=0—¢k-E=0.
Now, however,

V.-D=V-(¢-E)=0—>V-E#0—k-E#0.

On the other hand, we are told that k = ky. Therefore, with k = nw/c, (1) becomes

1
E-yE-y) = -E
Y(E-§) = 5 e
Writing this out in detail gives
E, oFE, +i8E,
1
0 =— —ifE, + aF,
n
E, vE,

This equation has two (normalized) solutions:

o —
E4=FE 2z with ng=~ and EB:EB% with n,gzw/g.
ot + @

There is no distinction between s- and p-polarization at normal incidence. The Fresnel
formula for the latter gives

ng — N1 2%1

Er
= d
I ng + Ny o E;

Er
E;

b
I ng + 1y

bearing in mind that, with our conventions, the formula on the left contributes with
a megative sign to the component of the electric field parallel to the interface. Conse-
quently, in the vacuum, the sum of the incident and reflected waves is

E(y <0)=E {exp [iw (y/c—t)] + 1__’_Z§ exp [—iw (y/c+ t)]} X.

In the medium, we must choose Ep so Ey = aEp/+/a? + 2. In that case,

E(y >0)=E T +2nB (X—i—iiy) {exp [iw (npy/c —t)].

The “appearance” of a y-component in the medium does not violate any matching con-
dition. Note also that np could be pure imaginary, in which case we get an evanescent
wave in the medium.
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(b) Superpose the x solution from part (a) to a solution with a z-incident wave solved in
exactly the same way. The result is

E(y<0) = %{exp[iw(y/c—t)]—l—i_}_ﬁi exp[—iw(y/c—i—t)]}fc

+% {exp [iw (y/c — )] + 1;22 exp [—iw (y/c—|—t)]}i

E(y > 0) — E% : +2nB exp [iw (nBy/C* t)] ()A(+Z§$’>+\E/%

T exp [iw (nay/c —t)] Z.
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Chapter 18: Waves in Dispersive Matter

18.1 Electric Susceptibilities in Time and Frequency

The response function of interest is x(w f dt x(t) exp(iwt).

— 00

(a)
X(w) = / dt x00(t) exp(iwt) = xo-

(b)
X(w) = / dt x00(t) exp(iwt) = lir% X0 /dt expli(w + i€)t]
o 0
.. Xo w—ie w . € X0
0w tiew—ie X [wQJre? Zw2+62} Yo + x0m3(w)
()
X(w) = / dt x00(t) exp(—t/T) exp(iwt) = /dt Xo exp(—t/7) exp(iwt)
o 0
_ X0 _ X0
wti/t  1/T—iw’
(d)
X(w) = / dt x00(t) sin(wpt) exp(iwt)

= hm— /dtexp i(w 4wy + i€)t] /dtexp i(w — wo + i€)t]

Xo{ 1 w + wy — 1€ 1 wwoze}

im — - — — -
e—0 2 |wHwyt+iew+wy — i€ W —wy +lew —wy —

= X“[ 1 —imd(w + wy) — —|—i7r5(w—wo)}

2 |w+wy w — wy

T T wo
= Yo [225(w —wy) — 255(w+w0) . 2} .

W

18.2 Magnetization and Conductivity

(a) We know that M = x,H = p'x,B, 1 = po(l + xm), and V x E = —9B/0t.
Therefore,
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t

Xm / /
M(r,t :—7/dtV><Er,t .
( ) ﬂ0(1+Xm) ( )
—00
This gives
¢
J = VXM:7¢/dt/VxVXE(r,t')
M0(1+X7n)7
¢
Xm / 2
= ——F dt' {V(V-E)—-V°E
uo(1+><m)/ v ) J
—o0
or

t

Ji(r t) = —Xm /dt’ 8ij v E;(r,t')
S (T xm) YOz 0z,  OwiOx; f TV
(b) Make the Taylor expansion
OE;(r, 10%E;(r,t/

Ox; 2 Ox;0x;

and substitute it into

t
Jilr,t) = / dt’/dr' oij(r—r't—t"E;(r',t).

The result is

t ‘ ,
Ji (7‘7 t) = / at’ {Uij (t — tl)Ej (7", tl) + Fijk(t — t/)%m
— 00 T

PE;(r,t'
+ Ti‘jké(t _t’)w + .- }7

0x, 0y

where
oij(t—t') = [dr'oy(r—1",t—1t)
Dijp(t—t) = [dr'o;(r—r',t —t')(x), —x)
Yijre(t—t) =3 [dr'oy(r—r' t —t)(z}, — ap)(x) — ).

The magnetization current is a particular case of the third term where

Xm
Yiine = ————1[0;i0p — i 0i¢] .
ijkl M()(1+Xm>[ jOke k j(’}
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The first term o;;(t — t’) leads to the usual Ohm’s law with a frequency-dependent
conductivity. The second term I';j; (¢t — t') is present in general but vanishes if the
medium has inversion symmetry.

Source: Yu.A. I'inskii and L.V. Keldysh, FElectromagnetic Response of Material Media
(Plenum, New York, 1994).

18.3 The Radio Operator’s Friend

The index of refraction for a non-magnetic medium is defined by n®> = €(w)/€y. Therefore,
when w > ), we have ny < n; where ny is the index of the lower atmosphere and ns is
the index of the ionosphere. Therefore, from Snell’s law, there will be total refection of a
wave which approaches the ionosphere from the lower atmosphere if the angle of incidence
exceeds 0 = sin~!(ny/n;). Such waves return to Earth quite far from the source (solid line
below). By contrast, the Fresnel equations show that the reflection coefficient is quite small,
in this case, until the angle of incidence approaches the critical angle. Thus, waves which
approach the ionosphere with small angles of incidence mostly continue into the atmosphere
(dotted line below).

Ionosphere
(1))

€0

Earth

18.4 Plane Waves of Vector Potential
In the Lorenz gauge, the inhomogeneous wave equation for the vector potential is

1 0%A

2 _ .
VA= G g = Hl

With the given constitutive relation, we get
1 9’A
2 _ 12
VA — 2 = kjA.

For a plane wave _
A(r,t) = Age'kmeh),

substitution into the above equation yields

2
2 W 2
—k +C—2:k0.

The wave vector is real (and true propagation occurs) only when w > wy = cky.
18.5 Plasma Sheath
(a) The field and potential are related by ¢(1) — ¢(2) = ff ds - E in a quasistatic approxi-

mation. We also require the continuity of D = ¢E across the plasma/sheath interface.
These two conditions produce two equations:

20Es +2LEp =V
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E[)ES = GEP.
Solving for the two unknowns gives
% (e/e)V
Ep=——"-—— d Eg=——7"——.
P = 0(e/ey) + 2L an ST 2le/eo) + 2L

(b) Using e(w) as given, both fields diverge when 1 — w? /w? + L/¢ = 0, that is, when

*

w
w=w"= 2

VI+L/E
For the sheath, Eg(w = 0) = V/2¢, Eg(w = wp) =0, and Eg(w — o0) = V/2L. As

for the plasma, Fp(w =0) =0 and Ep(w — o0) = V/2L. A plot of these functions is
shown below.

When w < wy,, all the voltage drops across the vacuum since the plasma acts as a
perfect conductor. The voltage drops uniformly when w > wp because the plasma
particle motion cannot follow the field. All the voltage drops across the plasma when
w = wp, because the plasma can support the electric field V/2L needed to do this.

(¢) Both fields diverge at w = w*. This indicates some sort of resonant behavior. In
circuit theory, amplitude divergences occur at the resonant frequency of an LC circuit
(without damping), where the energy sloshes back and forth between magnetic (L)
and electric (C). The same must happen here, where the electric energy is stored in
the sheath and the magnetic energy is stored in the moving charged particles of the
plasma.

18.6 Propagation in an Undamped Medium

The curl of Faraday’s law is

0 0 . 1 0E

We have V- E = 0 because p =0, and V x V x E =V(V-E) — V2E = —V2E. Hence,

oy LOE_ 0
VB G om =gt M)
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Newton’s law for an electron is F = mv = —eE. Therefore, the current density associated
with the entire collection of electrons is

dj . ne?

Substituting (2) into (1) and defining w? = ne*/me gives

Finally, substituting E = Eq exp[i(k - r — wt) into (3) gives

2 2
w w,
Sy ' S
c? c2’
or
w2 = WZ + 2K

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

18.7 Surface Plasmon Polariton

(a) The wave equation for z > 0 is
V2E + W ppé(w)E = 0.

The wave equation for z < 0 is the same with the dielectric function replaced by €.
Therefore, substituting the trial electric field functions gives

K2 = ¢ —wWié(w) z >0,
(1)

2 _ 2 2,2
Fowt = ¢ —w/c z < 0.

(b) The dielectric functions do not depend on position. Therefore, in each medium V-D = 0
implies that

OE, OF,
V-E= =0.
ox + 0z
In other words,
igEY™ — ki BM =0 and iqE™ + Kou B

The electric field matching condition at z =0 from V-D =0 is
B = é(w)E™.

The electric field matching condition at z = 0 from Faraday’s law is E°"* = E'.
Combining all this information gives the desired expression:

Rin

éw) =—¢

<0. (2)

Rout

The inequality follows because, by assumption, £ > 0 in both media.
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(¢) Squaring (2) and using (1) to eliminate ki, and Kout gives

# [1- E] — i) 1 - )/l

or ,
o _ W éw/e

A e oy ?

The inequality in (2) and ¢* > 0 imply that 14+€é(w)/eg < 0. Using é(w) /ey = 1—w? /w?,
we conclude that

w< (4)

V2
Substituting é(w) into (3) and rationalizing gives
4

wl — W? (wg + 202q2) +w}2)02q2 = 0.

The solutions of this equation are

2 _ W a1 4 4
wi:7+cq :|:§ wy, +4ctgt.
It is easy to check that only the lower solution satisfies (4). Moreover,

w_(qg—0)=cq and w_(qg— o) =

SfF

The entire mode dispersion is plotted below.

'

wp/\ﬁ ______________

_y

18.8 Inverse Faraday Effect

(a) The time average of the current density has two terms. One term is zero because it
is the time average of —endvexp(—iwt). The other term is the time average of the
product of —edn exp(—iwt) and dv exp(—iwt), which is a familiar calculation. Hence,

J) = f%Re(eénév).
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I . .0
(b) The continuity equation is —

n + V -j=0. Dropping the term proportional to dndv
this reads

—iwdn+ V- (Adv) =0 = ~ —(i/w)V - (1ov).

On the other, the problem statement tells us that v = —(o/efi)dE. Therefore, using
part (a),

() =

1 * _ 1 * *
2ﬁewRe [ic*0E*V - (00E)] = 72ﬁewhn [0"0E*V - (0E)]

It is convenient to write this in the form

) = —

*SE*V - (00E) — 0dEV - (c*0E*)
2new 24
Now use the vector identity
VXx(AxA")=AV-A")—A* (V- A)+ (A" - V)A-(A-V)A
to write
) ilo
() = ol

1mos AV % (0E x 0E") + (0B - V)JE" — (SE” - V)3E} .

The first term has the required form of V x M where

ilo|? ine’ iecowy
M= E EY) = E E*) = E x E”
dnew (OB x OE") dm?w3 (OB x OE") = dmw (6 OF").

(¢) M = 0 for linear polarization because 0E is real. For a circularly polarized wave
propagating along the z-axis, 0E = A(x +iy) so

OE x 0E* = A(X +iy) x A(X Fiy) = F2iA’%.
ecow?
Therefore, M = + 0% 42,
2mw?

Source: R. Hertel, Journal of Magnetism and Magnetic Materials 303, L1 (2006)

18.9 The Anomalous Skin Effect

(a) If we set 0j/0t = dj/dt from above and neglect the displacement current, Ampere’s law
V x B = pj gives

' 1
0GB =y g to;_ g lg g
ot 0 dt T T T T

Taking the curl of both sides and using V x E = —9B/dt and V - B = 0 gives
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OB 0B
2 —
Y {B—%Tat] = Loy T (1)

Substituting B = Bye!(F*=“") into (1) gives

Lo Oiw
1—dwr’

k2

This is consistent with our previous treatment of ohmic matter, where we found

. oo
k= ? d =
€oftow” + iwo(w) g an o(w) T ion
because, here, we neglect the displacement current term e puow?.
(b) In this case, Ampere’s law gives an extra term:
0 000 Mo . _0Jj
—VxB= E—-— .
ot T T I+ v 0z
Without trouble, this leads to
0B 0B 0B
VPIB—l—+7—|= —. 2
9. " Tor| M @)

Substituting B = Bge!(**=“") into (2) gives the cubic equation
E*(1 — ikl — iwT) = ipgoow.

In the extreme anomalous limit, the space derivative dominates so k¢ > 1 and k¢ >
w7. Therefore,

k(w) = (_MOZow)l/B _ (—ﬁ)w _ ﬁe){p(iiﬂ'/i’)) = 5*?w) l; iz\f] .

Exponential growth of the field into the medium is unphysical, so we get the anticipated
behavior

B(z,t) = By exp [i(kz — wt)] = By exp[i(z/8* — wt)] exp[—v/32/57].
(c) When the gradient is present, the steady-state current is found from

9j

_dj oo j -9 . dj
0z’

0=—=—E—-—~-4+v—~ = j=cE+/
dt T T 0z J
To a first approximation, we assume the first term is large compared to the second to
get
OE

j~ ooE + oy —.
J = oo JrCTan
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Finally, the order-of-magnitude estimate 0E/0z ~ E/¢§ gives
. 14
j=oE+ oy EE

This shows that the gradient correction is negligible if ¢ < 4.

Source: P.W. Gilberd, Journal of Physics F 12, 1845 (1982).

18.10 Energy Storage and Energy Loss

(a) The energy density is
1 2

1
UM = §€0|E|2 + N §mw§x2 + §m3'c ,

where the complex oscillator displacement is

x(t) = _wgq/nZﬂEo exp(—iwt).

The time average of the energy density is

1 Ng? 2w?
1) = =|Eg|? —_—
{upanr) = 7[Eol” |e(w) + — W=7
where
N¢? 1
ew)=-¢€ + w? —w?
The time average of the energy density is
10
(upm ) = 100 [we' (w)] [Eo|
(b) The dielectric function is
R N
€E=¢€ +1—,
w
where
N 0o
6= —.
1 —iwr

The time average of the rate of work done on the particles is

1 . 1 1 of}
_ 2 Ef(w)] = - Eo|* = - ———|Eo|%
(P) = gReli(w) - E"(w)] = 5 Reo] [Bof” = 53— 55 B
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On the other hand,

6,,(w):Im[i 0 }:w( o

wl—iwr 1+ w?r2)’
Therefore,
1 1 o9
) = = [we"(DIEP] = Z—2% 1R, 2.
Q) = 5 [ @IBP] = 57 Bl

18.11 The Lorenz-Lorentz and Drude Formulae

(a) The relevant boundary value problem is a dielectric sphere in a uniform, static electric
field Eg = Eyz. If D = kegE we have V - E = 0 both inside and outside the sphere. If
E=-Vop, V2 = 0 everywhere. Then, since Yout — —Fyrcosb,

Y = Arcost

((A + Eg)a3
Pout = B}
T

— Em") cosf

satisfies Laplace’s equation everywhere and is continuous at r = a. The normal (radial)
component of D is continuous (no free surface charge) so

8300ut a@in 3eg Ey
= K = — .
or |,_, or |,_, K+ 2
The polarization inside the sphere is
3e0XE k—1 n?—1
COXE PSR €On+2 0 60n2+2 0

In the quasistatic approximation, Fy — Fy(¢t) and n — n(w).

(b) Since the polarization is uniform inside the sphere, the effective volume charge density
p =V -P = 0. Therefore, an electron in a tiny vacuum sphere feels only the effective
surface charge densities ¢ = P - i from two spherical surfaces. Consider the outer

surface first. Since P = Pz and n = 1, we get 0,,t = P cosf in otherwise empty space
(where Laplace’s equation holds). Therefore,

Yin = Arcosf and Pout = A(a3/r2) cos 6.

The matching condition now is
[_8900ut /87" + 830111/87‘]7,:(1 = (P/EO) cos 0.

This gives A = P/2¢p and E;,;, = —2P/3¢y. The charge on the surface of the inner
sphere produces exactly the same electric field except that h = —t in this case so the
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sum of the two electric fields is exactly zero. There is no force on the electron due to
the sphere polarization. The only force comes from a “spring” that binds the electron
to its parent atom. This gives

¥+ wir = —(e/m)Eg coswt

as the equation of motion, where r is measured from the origin of the vacuum sphere.
This has the steady-state solution (w? — w?)r = —(e/m)Ejcoswt. Each of the N
electrons leads to the same solution so the total sphere polarization (approximated by
the total dipole moment per volume of the sphere) is

62 no

P(t) = —enpr(t) = E(t).

m(wi — w?)
Equating this to the polarization computed earlier gives the Lorenz-Lorentz formula,
2 2
nfw)—1_ wp
n2(w)+2  wl-—-w?

(c) The total positive charge is Ne so, from Gauss’ law, the electric field inside the sphere
due to the uniform positive charge of the sphere is

E— Ner

= m = ner/360.

The equation of motion for the k*" electron is

2

. 2 a ]. N €
miy = —ne“r/3¢g — — E — eEq coswt.
8I'k> 47‘[’60 7k |I‘;€ — I‘i|
K3

Therefore, the equation of motion for the polarization is
: N
.. 1 el (rp —r;)
P=——uwP+——— s w2 E cos wt,
3" + dregVm ZZ vy — ;)3 oy
where V = %mﬁ. The double sum cancels out so

. 1
P= —gwgP + EongO cos wt.

This equation has a steady solution,
2

w
P(t) = Pcoswt = TPQEOEO(t).
—w

3%

Equating this to the polarization computed in part (a) gives the stated formula,
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18.12 Loss and Gain Media

(a) A monochromatic plane wave propagating in the z-direction through a medium with
complex index of refraction 7(w) = n' + in” has fields of the form

expliw(fz/c —t)] = exp[—n"wz/c| explin’wz/c] exp|—iwt].

The wave amplitude decreases if n” > 0 and increases if n”/ < 0. This can only occur
if the medium absorbs energy from the wave in the first case and supplies energy to
the wave in the second case. Now, because |f| < 1, the stated index of refraction is

fw? lfw2

l 7 p 2 p

n 4+’ =4/1+ - ~1+ -
\/ wi —w? —wl wi —w? —iwl
1

gfwg (wg — w?) ) fwgwI‘

(@2 —w?)? + w22 (W2 —w?)? + w2

>
I

= 1+

This shows that f > 0 corresponds to an absorbing medium and f < 0 corresponds
to a gain medium.

(b) A general wave packet for one component of the electric field is

E(z,t) = /dwfi(w) exp [m(w)z%} exp[—iwt].
0

The packet will emerge undistorted if the total accumulated phase ¢ = (ng Lo +
n'y La)w/c is the same as the phase ¢y = (L4 + Lp)w/c that would be accumulated
if the packet passed through vacuum. The real parts have the form n/y = 14 f4 A and
ng = 1+ feA. Therefore,

¢=[1+ fcA)Lc + (1 + fal)Lalw/c= ¢y + (faLc + fALA)A%-

Since fe < 0, the condition for no distortion is f4 L4 = |f¢|La.

Source: E.L. Bolda, J.C. Garrison, and R.Y. Chiao, Physical Review A 49, 2938 (1994).

18.13 A Magnetic Lorentz Model

(a) By symmetry, the magnetic field (due to its neighbors) is zero at the equilibrium
position of each wire. This symmetry is broken when u # 0, but the net field will be
small as long as u is small.

(b) A uniform field By exerts a force per unit length —I'Bx on an infinite straight wire
that carries a current I in the +2z-direction. Therefore, Newton’s equation of motion
for the displacement u, for a single wire is

mil, = —ku, — myi — I Bexp(—iwt).
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Substituting a trial solution of the form u, () = u, exp(—iwt) gives
[—mw? 4+ k — imyw]u, exp(—iwt) = —I B exp(—iwt).

Therefore,
IB

mw? — k + imyw

U, (t) = exp(—iwt).

(¢) The figure to the left below shows that there is one line of current (either positive
or negative) per area A = a?/2 of sample cross section. The figure to the right
below shows the displacements of the wires in the z-direction when B points in the
+y-direction.

— 5 °
Uy
O)
Q RS [ ] [ ]
a0
A2 AN
Z N
a
N N
. AN
N ,
N ’ N » [ ]
NP N
C K- [e
N P
N //
N ,
N
NP
» o
Q Q
Uy ° °

The internal wires pair up in the shaded regions. What remains is a sheet at the top
of the sample (where I < 0) with current density

I 21
Ke=wg =0
and a sheet at the bottom of the sample with current density —K,. From elementary
magnetostatics, the magnetic field produced by these two sheets is zero outside the

sample. Inside the sample, the field is

Ug

Bind = *NJOKZ}A’-

The total field is the sum of the external field and the induced field just computed.
This sum is the field responsible for the displacements of the wires. Therefore, if
wh = k/m and Q2 = 2puI* /ma®,

21 IB 02

ext = P

B:BCX — — - =
6T R et —k +imyw w

—wi +iyw

(d) The tangential (y-component) of H must be continuous at the top and bottom of the

sample. This tells us that
Bext _ B

o p(w)
The two preceding equations above both give expressions for B/Bex¢. Setting these
equal gives the desired formula for the magnetic permeability:

o

QZ
T
w” —w) +yw

pw) =
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Source: J.B. Pendry and S. O’Brien, Journal of Physics: Condensed Matter 4, 7409 (2002).

18.14 Energy Flow in the Lorentz Model

(a) We have previously derived the Poynting energy conservation statement:

Ougpm .
V-S+ ——— -E=0.
+ ot +1J

Here, j = OP /0t = —Nedr/dt and

d? 1d
Em{ T4 r+w§r}.

e \dt? " Tdt
Hence,
d (1 1 N
j-E:Nmf-{f+T_1f+w(2)r}:th{zm|i‘|2+2mw(2)|r|2}+Tm|1'“|2.

The quantity in brackets is the total mechanical energy w,, .., of a harmonic oscillator,

SO
aUEJ\/[ aumech Nm, . 9
V-S =0.
o T T

The last term represents the energy lost due to damping.

(b) We have B = w™'k x E and k(w) = ki(w)w/c, so

1
2cp

1 . ~ LA -
(S) = %Re {E xB*} = Re {E x (k x E")n } = e |E’k.

(c¢) Everything is time-harmonic so we must compute

1 1 . .
(u) = (ugn ) + (Umeen) = ZGO(E-E*+CQB~B*)+1Nm(r~r +w(2]r~r ).

From above, ¢?B - B* = (¢ /w?)k - k*[E* = [?|E[?, S0 uep =
Moreover, the Lorentz model corresponds to

co(1 + [A]*)[E[.

2

e’ /m
=—er=odE=——F———
P Wi —w? —iw/T

so er = iwaE. Therefore,
1 Lk 2 * 1 2N/ 2 2 212
<umech> :ZNm(r'r +wr-r ):ZN(m/e )(w +w0)\0¢| |E| )

where

2 iNeQ/m B ieowg
lal” = = )
(w% — w?)? +w2/7'2 (wg — w?)? +w2/7'2

372



Chapter 18 Waves in Dispersive Matter

This gives

1 wp (w? + )
u) = Ze|EPL1+ a2+ P .
< > 4 0| | { | | (wg —w2)2 —|—w2/7'2

On the other hand,

w? (Wi — w? wiw/T
A2 = A2 — A + 2inyny = 1 + p(h — ) s +i o/ S
(Wg —w?)? +w? /7 (W —w?)? +w? /7
Hence,
(W) = LeEpdono @l =@ L @@ +w)
4 1 (wg _ wQ)Q + w2/7_2 (w% _ w2)2 + w2/72

1 2w w?
= —¢|E*{2A] + P
4 olE| { (W - w?)? w? /72
1
— §€0|E|2 {n] + 2wriy i }
as required.

(d) We have

2
w
I PR B R P PP b
- = (g +ihe)” =Ny —ny + 2Ny =1+ —F—.
wi —w? —iw/T

Therefore,

2NNy = it .
=T Y (/)

By definition,

(o)

N3+ dwTh iy + 4w T3R5

= 7 — 0+ dwTiyng + (4w T2 4+ 1)1

w2 (Wi — w?) wgw/r

IR () ey vy = PRl o ey ey oy

+ (4?7 4+ )7}

w? (w? + w?
= 1+ p( 0 )

2 2 £
@ =) + (/7] + (4w 1% 4+ 1)75.

The second and third terms are positive so vg < ¢ as required.
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Source: R. Loudon, Journal of Physics A 3, 233 (1970).

18.15 A Paramagnetic Microwave Amplifier

(a) When v = 0 we have

M, M, M, M, M, M, - M

dt T dt T dt T

The first two are solved by M, (t) = M, (0)e™"/7 and M, (t) = M, (0)e~"/". The third
is solved by M, (t) = M — [M — M. (0)]e~"/7. Therefore, as t — co, M,, M, — 0 and
M, — M. This is the equilibrium state.

(b) When « # 0, the fact that B, = 0 tells us that

dM: g, - M

dt T
dM, M,
dtJ = W(Msz - Msz) - 7-J

dM M, - M
a = VMyB — .

Differentiate the M, equation with respect to time and substitute in from the My
equation to get

d?M, 1dM, M,
dt2 +; dt _’YBZ V(Msz_Msz)_T

Eliminate M, in this equation using the original M, equation to get

EM,  2dM, M, ., ,
@ ra T T BMe BB

Finally, use B = (M + H) to eliminate B, and B, in last two terms, respectively,
and define w% =72y B. H, to get

EM,  2dM, |, M.

The fields in the z-direction are constant in time. Therefore, because p = o (1+ xar)
and

we get
Wi M,
wi+1/72 —w(w+2i/7) H,

filw) = po {1 +
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Hence,

wp(wg +1/7 = w?) MZ]

= 1 R —
H1 = Ho [ + (Wi +1/72 —w?)? +4w? /72 H,

. R (2w/7) M
2 0 (Wi +1/72 —w?)? +4w?/72 H, |’

(¢) The Maxwell equations V x E = —0B/0t and V x H = 0D/t in the magnet yield
V*H = e0*H/0t* = —ji(w)w’H

for time-harmonic solutions as assumed above. Indeed, H = XH, expi(ky — wt) so
k= eﬂw2. With k = k; + tko, this implies that

k? — k3 = efiyw?

2k‘1 k‘Q = eﬂng.
For propagation in the +y-direction, k& > 0. Since € > 0, the second equation just
above shows that k, has the same sign as fi2. The definition of u(w) given in part (b)

shows that fio has the same sign as M, /H,. Therefore, the H-wave decays (amplifies)
exponentially as it propagates if M, /H, is positive (negative).

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).

18.16 Limits on the Photon Mass

Let the wave packet have central frequency wy and width Awy. After a propagation distance
z = v4t, the time difference of interest is

dt
At =~ — Aw().
dw|,
Now,
v, ldw 1 ~1_1<m02>2
c cdk  \/1+ (Mc/hk)? 2\ hw )
Therefore,
R P NN
T, e 2\ hw ’
S0

dt N M2z
do~ B2

9N 2
At ~ 2 Awp (Mc ) )
c wy hwy

We conclude that
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or, because it is surely true that Awg/wy =~ 1,

At

M =~ (hwy)?—.
(Reoo) z/c

This shows that the smallest bound is obtained if the relevant data are collected at the

lowest frequency, i.e., radio waves rather than X-rays.

18.17 Negative and Infinite Group Velocity

(a) Inside the medium, the wave propagates with phase speed ¢/n. When the wave emerges
from the medium, it has phase speed c¢ again, but it has accumulated a phase of
(w/c)(n — 1)a. Therefore,

Ey expliw(z/c — t)] z <0,
E(z,t) = ¢ Epexpliw(nz/c—1t)] 0<z<a,
Ey expliwna/c] exp[—iw(t — (z — a)/c)] z > a.

The slab field transforms to the post-slab field if z » a and t -t — (z — a)/c.

(b) Let ng = n(wp) and insert the given group velocity approximation for wn(w) into part

(a) to get
Ey expliwz/c] exp[—iwt] 2 <0,
E(z,t) = { Eyexpliwgz(ng/c — 1/v,)] expliwz /v, exp|—iwt] 0<z<a,
By expliwga(ng /e — 1/vy)] expliw(z/c — a/c — a/vy)] exp|—iwt] 2> a.

(¢) We choose E(z,w) = A(w)exp(iwz/c) so

(oo}

E(z<0,t)= f(z/c—1t) = / dw A(w) exp(iwz/c) exp(—iwt).

— 00

The values of A(w) are determined by f(s). Therefore, for the two downstream regions,
we simply replace the vacuum plane wave factor in (2) by the corresponding factors
in (1). Only the w-dependent factors remain inside the integral, so

f(z/c—1) 2z <0,
E(z,t) = ¢ expliwpz(ng/c—1/vg)|f(z/vg — t) 0<z<a,
expliwpa(ng/c — 1/vy)] f(z/c — a/c+ ajvy —1)] z > a.
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(d) The field at z = a is 6(a/vy — t) just inside the back surface of the slab and 6(a/c —
t —a/c+a/vy) just outside the back surface of the slab. These agree that the delta
function emerges from the slab at t = a/v,. Since v, < 0, the pulse emerges before it

enters the slab at ¢ = 0!

(e) Choose f(s) = Eyexp(—s?/272)exp(iwps) and substitute into (3).
cancellation, and

Eq exp|—(z/c —t)?/272] expliwy (2/c — t)] z <0,

There is some

Ey exp[—(z/vg — t)?/27?] expliwy (noz/c — t)] 0<z<a,

E(z,t) =
Ey expliwga(ng — 1)/c]exp[—(z/c — ajc+ a/vy — t)? /27%| expliwg (z/c — t)]

z > a.

(f) Let Ey = 1 and, as suggested, take out a common factor of expliwy(z/c —t)] and write

wp(ng — 1) = —ie. In that case,
exp|—(z/c — t)?/277] z <0,
E(z,t) = { explez/c]exp|—(z/vy —t)*/27%] 0<z<a,
explea/clexp[—(z/c — a/c+ ajvy — t)* /27 z > a.

The diagram below shows Gaussian wave packet propagation with a negative group
velocity. Note that the “packet” does appear to move backward inside the medium,

even as transmission proceeds.

t=50

-200 0 50 -250
b4
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(g) The diagram below shows Gaussian wave packet propagation when v, = 0o in the region
between the vertical dashed lines. The meaning is simply that the field amplitude rises
and falls uniformly throughout the slab “as if” it propagated through the slab infinitely

quickly.
T T T T T T T T T T T T T T T T T T T T
1k | r=—d04 1} Dar=-304  1F Car=—204  1f D ar=-104 1F =0 i/
i i i P
1 1 1 1 1 1 1 1 I
0.8 F . 4 08} . 4 08} . 4 08f . 4 08F |
1 1 1 1 1 1 I 1 U
1 1 1 1 1 1 I 1 1
06} P14 osf P11 oeb P osf R Y |
1 1 1 1 1 1 1 1 1|
1 1 1 1 1 1 1 1 1|
1 1 1 1 1 1 1 1
041 i 4 o4t i 4 o4t b 4 04t 4 o04f Vo
1 1 1 1 Il 1 1 1
1 1 1 1 I 1 1 1
1 1 1 1 1 1 1
02 o 4 o2} o 4 o02f ! 4 02fF 4 02} o
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 1 I ! 1 0 1 ! 1 () 1 1 O 1 0 1 I ! 1
200100 0 100 200 —-200-100 O 100 200 -200-100 O 100 200 —-200—100 200 -200-100 0 100
T T T T T T T T T T T T T T T T T T T T
1 1 1 1 1 1 1 1 1 1
1F =10 1 - 1F t=20 1 1 - 1F =30 1 1 B 1F t=40 1 1 B 1F =50 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1] 1 1 1 1 1 1 1 1
0.8 - Vo 4 08F Vo 4 08F Vo 4 08} Vo 4 08 Vo
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0.6 | i 4 o6} o 4 o6} o 4 06F o 4 06} o
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
04t i 1 04r o 1 04r o 1 o4t o 1 o4t o
1 1 1 1 1 1 1 1 1
1 1 1] 1 1 1 1 1 1
1 1 1| 1 1 1 1 1 1
02 ! 4 o2} ! 4 02} o 4 02fF o 4 02t o
1 1 1 1 1 1 1 1 1
1 1 |'_1 L‘ 1 J L 1 1 1 1
0 1 I ! 1 0 1 () 1 I ! O 1 I ! 1 0 1 I ! 1
—200-100 0 100 200 —200-100 0 100 200 -200-100 0 100 200 -200-100 0 100 200 -200-100 0 100

Source: K.T. McDonald, American Journal of Physics 69, 607 (2001).

18.18 Parseval’s Relation

(a) The first condition is satisfied because

[dy _[d
A= [ H-2[Z
Y Y
—00
As for the second, we are told that
1 x 1" ! 1 - /! !/
X' (z)=—= / da' X (= 2 and X'(z) == / o' X2 (@ ),
7r T—x 0 T—x
— 00 — 00
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Substituting one into the other gives

1 1 X' (z")
! / "
X' (z) = - dx / dx P a—l

—

Therefore,
oo o0 dx/
!/ 1 !/ 1
VO = [ [ ),

This is the delta function filtering property if

(oo}

1 dz’
ﬁ / x’(x’ — x//) = 5(x//)'

— 00

(b) By direct computation,

1 < 1 1
/dw|x == / dw /dw’x / dw" X (w 3.
7 w—w

However, from part (a),

1]y 1 ds
6(:8_2)_%2_4 yly —x+2) WQ_Z (s—z)(s—x)

Therefore, as required,

/ dW|X/((.U)|2 — / dw’ /dw//a(w/ —UJ”)X”(W’)X”(L«JH) — / dw’|x"(w’) 2

18.19 A Dispersive Dielectric

(a) Begin with D = ¢gE + P = ¢¢E + vV x E. Inserting this into

oD
H —
V x v
gives
1 OE OE
B=—
V x 2o + oYV X — T

The time derivative of this equation, and Faraday’s law, V x E = —0B/0t, permit us
to eliminate the magnetic field and get
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Lo'B om

We also know that
OZV~DZGQV~E+V"}/VXE=€0V'E.
Therefore, because V x (V x E) = V(V - E) — V?E, the propagation equation is

1 O’°E O*E
2

(b) Assume a plane wave E = Eq expli(k - r — wt)], where k- Eqg = 0. It that case, direct
substitution gives

2
CI2E) = W Ey + ik x Ey.
€0

Choose k = kz and write Ey = ax + by. In that case, the foregoing becomes
(w? = k)a — (ikw’y/eg)b =0
(ikw?y/e0)a + (wW?* — *k*)b = 0.
These linear equations have a solution if the determinant
2 _ 272

w® —c¢ —ikw?y /ey

=0.
ikw?y/eg  w? — k2

The eigenfrequencies are
w2 _ CZkQ
1t ky/e’

Substituting back into the linear equation shows that the wave with frequency wi has
polarization Ey = a(X £4y). These are RHC and LHC.

18.20 Lorentz-Model Sum Rule

The imaginary part of the Lorentz-model dielectric function is

egwgwf
(W —w?)? +w?l?’

Imé(w) =

When TI' is small, the integral is dominated by contributions from w ~ wy and each of these
can be substituted for the other (except when their difference is involved). Therefore,
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w?

d
v (wo + w)?(wy — w)? + W22

2
ngpr

0\8 0\8

1

2

' fdw————
€ow; w oy —w) 412
1, T de
e e

0

1
§eowgf tan™! %‘0
T
5600}12).
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Chapter 19: Guided and Confined Waves

19.1 Two-Wire Transmission Line

The figure below shows the geometry of the line.

A1 i i
2 C -~ O —4
T
e u d
1C — O i b4
AT

The capacitance per unit length is C = A/(¢ — ¢2) where ¢ — 9 is the potential difference
between the wires. From Gauss’ law, the electric field between the wires in the plane of the

wires is
A 1 1
E=— |- X.
4me [x + d— x} x
Therefore,
d—a A\ d—a d d A\ d
o oo Tarffes ] i)
4me T d—x e a
and e
C= .
In[(d — a)/a]

We suppose that the two wires are part of an infinite loop with wire length ¢. The
inductance per unit length is £ = ®/I¢ where ® is the total flux which passes between the
wires in the plane of the wires. [ is the current circulating in the loop. From Ampere’s law,
the magnetic field between the wires is

I 1
@—“[Jr ]y

S|z d—=x
Therefore,
' 1t
_ B KMt 2 Y et _
<I>_/dS B=" [ [x+d_x} S ul(d -~ a)/al,
and

L= %m[(d —a)/a).

These results confirm that
LC = ue.
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19.2 TM Wave Guided by a Flat Conductor

(a) The geometry defined by the statement of the problem is

Perfect conductor

We will assume that the magnitudes of By and By are equal and check that the
boundary condition n x E|g = 0 is satisfied. Hence, because the angle of incidence is
equal to the angle of refraction and w = cky, the incident and reflected magnetic field
vectors are

B; = By exp[—iko(z cosf + zsinf + wt)]y

and
Br = By exp[—iko(—x cosf + zsin 6 + wt)]y.

The total magnetic field is the sum of the two:
B = 2By cos(koz cos 0) exp[—i(kozsin 8 + wt)]y.

To get the corresponding electric field, we use

LOE _ _iw, 0B, 9B,

VAB=G T et Tt

The result,
E = 2icBy i sin 0 cos(kox cos 8)%x — cos 0 sin(kox cos 0)z] exp[—i(koz sin 6 + wt)],

satisfies the boundary condition i x E|g = E,(x = 0) = 0. Our solution is a TM
wave.

(b) The time-averaged Poynting vector is
(S) L Re(E x B¥)
= —_— e s
2410
or
2icB?

(SY = Re o

cos(kox cos @) [cos 0 sin(kox cos 0)x + i sin 0 cos(kox cos 0)z|

2cB}
= =% cos® (ko cos 0) sin z.
Ho
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(¢) The induced surface charge density is

o=¢n-E|s =¢E,(xr=0) =—2¢cBysinf exp[—i(kozsin 6 + wt)].
The induced surface current density is

1 1 2B
K=—nxB|s=—B,(z=0)= 220 expl—i(koz sin 6 + wt)].
Ho Ho Ho

For our geometry, the surface divergence has only one component,

K 2B
Vs K= oK = —ik sin 0==2 exp[—i(kozsin 6 + wt))].
0z Ho
Moreover,
oo . . 9 . .
i ko sin 0c” €92 By exp[—i(koz sin 0 + wt)].

Therefore, because ppepc? = 1,

do
VS.K—FE_O'

19.3 TEM Waves Guided by a Cone and a Plane

(a) For time-harmonic sources, the Maxwell curl equations are V x E = iwB and V x B =

—i(w/c?)E. Using the information given, the components of these vector equations in
a spherical coordinate system are

1 g . 1 o .
rsing [aa <81“9E¢>] =0 rsing [ae “1“934’)} =0
10 . 10 w
,;a(rE(ﬁ):szg 7;E(TB¢):72072E€
10 . 10 W
;E(TE()):ZCL}B@ ;E(TBQ):fchZEdp

From the bottom two lines, we see that there are two independent classes of solutions
where the non-zero components of the fields are either (Ey4, By) or (Ey, By).

(b) The Maxwell divergence equations read

1 0 1 0
— (sinfFEy)| =0 — (sinfBy)| = 0.
rsin 6 [89 (sin 9)} rsind {89 (sin 9)]
These two equations have the same structure as the two equations in the first line of
the curl equations in part (a). By direct integration, they show that

Ey(r) Ey(r) By(r)

By (r)
E@ (T, 9) = W E@ (7"7 e) = W Be (7", 9) = W B¢)(T, 9) = ¢
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Substituting these back into the remaining curl equations gives

2 w? 2 w2
W(TE{-})"‘CT(TE()):O ﬁ(T‘B@)"‘CT(TBQ):O
Therefore,
Eeiw’r‘/c +Ele—iw/(: Be’iwr/c =+ B/e—’iw/(z
Eo(r,0) = rsinf ¢By(r,6) = 7 sin 0 '
The partner fields follow by integrating one curl equation:
Eeiwr/c _ Elefz'w/c Beiwr/c _ Blefiw/c
B, = E, =— .
¢By (r,9) rsin 6 5(r,6) rsinf

(¢) To provide wave guiding, the electric field must be entirely normal to both metal
surfaces. This is the case with the set (Ey, By) but not with the set (Ey, By).

Source: S.A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).

19.4 The Lowest Propagating Mode of a Waveguide

(a) For a quantum particle-in-a-box, the integrated curvature of ¢ is the total (kinetic)
energy of the particle. A simple sketch shows that this quantity is unavoidably greater
for the ground state of a particle whose wave function must go to zero at the box
boundary than for the ground state of particle whose wave function need only approach
the wall with zero slope. We infer from this that the lowest propagating mode of a
hollow-tube waveguide will be TE.

(b) Consider a variational solution of the Helmholtz equation for the drumhead. The
greater the constraints on the solution, the higher the energy will be. An elastic
membrane sitting on top of a hollow cylindrical support with the same shape is less
constrained than a membrane whose edges are tacked down onto the support. We infer
from this that the TE mode of the waveguide will have the lowest cutoff frequency.

Source: E.T. Kornhauser and I. Stakgold, Journal of Mathematics and Physics 32, 45-57
(1952).

19.5 Semi-Circular Waveguide

(a) Let us start with the modes of a waveguide with a circular cross section. The modes
of the semi-circular waveguide are a subset of these modes. Our task is to solve the
Helmholtz equation in plane polar coordinates,

9 01 10 ( oy %1
[VE+r ]y =0= r@r(8r>++ 2V
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with the boundary condition ¢|s = E.|s = 0 for TM and 0v¢/0n|s = 0B, /dn|s =0
for TE. Separation of variables with 1 (r, #) = R(r)©(#) and a separation constant m?
produces two ordinary differential equations:

2o,
Wer O=0
d’R dR
2 2,2 2\ _
TW—FT%—’_(’}IT —m)—O

The first has linearly independent solutions sin(m#) and cos(mf). The second is
Bessel’s equation. The solution must be regular at » = 0, so the only possible solution
is Jy, (yr). We conclude that

sin(m#)
U(r,0) = Ady (yr) % (19.1)
cos(mb).

For TM modes of the circular waveguide, we need Jy,, (yR) = 0, which will be the case
if we choose Y, = Tmn /R where x,,, is the n'!' zero of J,, (z). For the semi-circular
waveguide, we must ensure that ¢» = 0 when # = 0 and when 6 = 7. This will be
true if we choose the sine functions in (19.1) with m > 0. Hence, the TM longitudinal
electric fields that can exist in a semi-circular waveguide are

E.(r,0) = EgJy (Ymar)sin(mf) m=1,2,... n=12 ...

For a waveguide where the fields vary as exp[i(hz — wt)], the mode frequencies satisfy

2
) 2

The cutoff frequency corresponds to h = 0. Therefore, the cutoff frequencies of the
semi-circular waveguide are
xmn

Wmn = CYmn = C .

R

For TE modes of the circular waveguide, we choose v/,,, = «/,, /R where a/, . is the
n't zero of J!, (). For the semi-circular waveguide, we note that the normal to the flat
wall points in the 6 direction. Therefore, the new boundary condition is v /00 =0
when 6 = 0 and when 0 = 7. This will be true if we choose the cos(mé) functions in
(19.1). Hence, the TE longitudinal magnetic fields that can exist in a semi-circular

waveguide are
B.(r,0) = ByJy, (),,7) cos(mf) — m =0,1,... n=12,...

The cutoff frequencies for these modes are

/
mmn

R

/ _ / _
Wmn = Chmn =€
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(b) If we look up the zeroes of J,, (z) and J;, (z), we find that the smallest is z7; = 1.841.
Therefore, we need to evaluate the transverse fields of the TE;; mode. These are

ih ihR? N4 6 ,
B =—-V,B, = 7[33/ E By (péljl’('ynr/R) cos ) — ;Jl(’y{lr/R) sm9>
11

, A
Ly (058 10w Ry st + Lo /) o))

19.6 Whispering Gallery Modes
(a) Our general discussion of waveguide modes began with

E(r,t) = [EL(ry) +2E,(r )] exp[i(hz — wt)]

and
H(r,t) = [Hi(r )+ 2H.(ry)]exp[i(hz — wit)].

Substituting these into the Maxwell equations produced

H, ﬂle T ”zvaE
2 2

and -
E, = V.E. - MﬂileHz,
2
where
V= pew? —
and

[Vi—i—vQ]{ ffz }:O.

For the present problem, we set h = 0 to eliminate the z-dependence. Therefore, TE
solutions are characterized by

Wi,

E.=0 Vi ++°]H.=0 E, =——2xV,H.
Y
and TM solutions are characterized by
H. =0 [V2 +42] E. =0 HL:Z;’—szvLE

This obliges us to study the Helmholtz equation in two-dimensional polar coordinates:
E % 10 0% E
v? 2 z _ |2 - Y - z —0.
v+ 5 b=l im e o 7
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The text shows that the solutions which satisfy perfect-conductor boundary conditions
and which are regular at the center of the tube are

E.(p,$) = EoJum (Y p) expli(me — wt)]

and
H.(p,¢) = HoJu (Y, p) expli(me — wt)],
where 72T R is the n'® zero of J,, (z) and 4IM R is the n'!' zero of J!, (x). These are

circumferentially propagating modes because the phase is constant when ¢ increases
linearly with ¢.

(b) The sketch below shows J,, (x) for the first few values of m. The trend is clear: the
weight of the function moves to larger values of x as m increases. Hence, we choose
m > 1 and then vR so the first zero of the Bessel function coincides with the tube
boundary. Every solution of this type has |E(p, ¢)| > 0 everywhere and has almost all
its weight concentrated in the immediate vicinity of p = R.

| 4
0.8
0.6
0.4

0.2 1

—0.2

~0.4 -

19.7 Waveguide Discontinuity

The waveguide geometry described is as follows.

S
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For a TE,, mode in waveguide 1, we have H, o cos(mmz/a1). The continuity of the
tangential component of E shows that only TE,,; modes will propagate in waveguide 2
because the absence of y-dependence in guide 1 cannot generate y-dependence in guide 2.
Our task, then, is to find the expansion coefficients H,, so

Hcos(rx/a;) 0<z<ay,

> mmx
E H,, cos =
a2
m=1

0 a <z < as.

This is a job for the orthogonality of the cosine functions and we find

ay
2H
H, = — [ dx cos(rz/ay)cos(mmz/as)
a
0

2Ha2 QHCLQ

= T —ma) sin[r(1 — may /az)] — wlas £ mar)

2Hmajas . ( al)
= 7)sm mr— | .

m(a3 —m2a? as

sin[r(1 4+ may /az)].

When a; = a9, Hy, = 0 for m # 1. When m = 1, I'Hospital’s rule gives the expected
answer,

H, - lim d 2H sin(mm) ~ lim 27 H cos(mm) _u
m—1dm w (1—m2) m-1 —2m

Source: C.G. Someda, FElectromagnetic Waves (CRC Press, Boca Raton, FL, 2006).

19.8 A Vector-Potential Method

(a) We use V = V| +20/0z and first compute the magnetic field:

B=VxA=-%x (VJ_ + if) [A(I.L)ei(hz—wt)} - _ [i % VJ_A(I‘)] eilhz—wt)
z

The text defines 4> = pew? — h? and reports
Hry = ’L(%E [2 X VLEZ] ei(hZ7Wt>.
v

This agrees with our calculation if

TWELL
A=—7FF,.
k~?

If so, it is necessary that [V2 + ~%]4 = 0. We confirm this by writing out the wave
equation for A(r,t) explicitly:
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0 = _v2—uea—2 A(r,t)
I o2 ’

[ 0 0 ,
= 7 — . 5 5 i(hz—wt) 2
_VJ_—i—zaZl |:VJ_+Z62:| zA(r) )e + pew” A

= |V, + zg} VLA +ihAz] &Y 4 pew? A
z

— [Vi _ h? + /1,6(,{)2] Aei(hz—wt)i

= [Vi+7’]A

We calculate the electric field from V x B = eudE/0t. Specifically,

E = —VxB
JEW
= riw (2 V)V Aeteet) — 59 . v Al
_ i . i(hz—wt) 572 i(hz—wt)
= [thLAe —zV7iAe ]
€

_ #6% [ZhVLA‘i‘i'YZA] ev’,(hz—wz‘,)

. |
- [ZQVLEZ + zEZ] eilhz—wt),
v

This agrees exactly with Ery; reported in the text.

(b) The fact that Erg = V x A is not a problem because V - E = 0 for the fields inside a
waveguide.

19.9 Waveguide Filters

A mode transmits if its electric field is normal to every conducting surface, including the
wire screen. This boundary condition is satisfied automatically by a longitudinal electric
field. Otherwise, the transmitted electric field lines must be purely radial for guide (a)
and purely circumferential for guide (b). The former satisfies V x E; = 0 (because it is
like the field of a point charge except that the field vanishes at the origin) and the latter
satisfies V x E| # 0 (because §d€ - E # 0 around a closed field line). Therefore, since
V x E| = iwB,z, guide (a) can only transmit a mode where B, = 0, i.e., a TM mode.
Conversely, guide (b) can only transmit a mode where B, # 0, i.e., a TE mode. In fact, the
modes in question are TEy; and TMj;.

Source: C.G. Montgomery, R.H. Dicke, and E.M. Purcell, Principles of Microwave Circuits
(Boston Technical Lithographers, Lexington, MA, 1963).
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19.10 Waveguide Mode Orthogonality
(a) We are given
vi%) = Ay

viwq = Ag¥q-

Multiply the top line by v, , multiply the bottom line by 1, , subtract, and integrate
over A. The result is

(Ag — )‘p)/dzr@/’pwq = /d2r {quiwp - ¢pviwq} :
A A
Applying Green’s second identity to the right-hand side gives

(A, — Ap)/d2r¢p¢q = j{df{wqﬁ Vb, — P, Vip, } = 0.

A

The zero on the far right-hand side follows from the assumed boundary conditions for

¥y and ;.

(b) For TE modes,
B, = ih, V11, + 279,

E, = —(w/hy)z x B,
where

(V2 4+ %)y = (VI + 0’/ =B ), =0 and A V|, =0.

Therefore, if C' is the perimeter curve of A, Green’s first identity and the boundary
condition on the wall give

A[d%B,,.Bq = fh,,hq/d%vm,,.vmﬁygﬁ/d?wp%
A A

= hphq/d%/;,,v%q 7hphq%d£wpﬁ'vl’l/)q +7§7§/d2r¢p¢q

A C A

= ’Y(?('Yz *hphq)/d%’?/}pwq

A

The last line follows from part (a) if 45 # ~;. Similarly,
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2
[d*rE,-E, = h“’h /d%{szp}-{szq}
A P qA
UJ2 2 ~ A
= o [ B - @ B)a-B)
A

= 7w2/d2rva~vmq

A
- w%;/d?mp%
A
= 0.

The last line follows from part (a) if 72 # ~3.

(c) For TM modes, the boundary condition for the Helmholtz equation is ¢, |c = 0, and
E, = h, V1, + 271,

W
y = =2 X E,.
i Ah, D

Exactly the same string of arguments shows that the TM electric and TM magnetic

fields will be orthogonal if the conditions of part (a) are met. We need not repeat
everything because duality guarantees that the algebra will be the same.

(d) For the TM-TE case, we have

/d27“EZM EEE —iwh,, /d27" VHAITM (2 x VleE)
“ A

—iwh,% - /d%vm;E x VM. (19.2)
A
Using V x (fg) =Vf xg+ fV x g, we write the equation just above in the form

/d%EgM ENE = why2- /d2r [ MV L X (Vi) ®) = Vi x (] MV Ly )],
A A
On the other hand,

Vi x (Vi ") =2(0,0, — 9,0, )1, " = 0.

P
Therefore,

JPrEMEME = —whyz- [dPr VL x (pIMVLglE)
4 A

= —whyz- f dén x [quM Vlng}

= 0.
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The last line follows because w; M vanishes on the boundary. There is no requirement
that v, and v, be unequal. Finally,

' w R '
{erBgE BIM = Zh /erB;fE (2 xE;M)
w 2 . TE | 4.2, TE s ™
= —Cth d°r {zh},vﬂpp + Z'ypd)p } . {thz X VL'L/)(I }

= —};pi . /dzr VﬂﬁEE X VﬂﬁqTM
c
A

= 0.

We get zero because the final integral is the same as appeared in (1).

19.11 A Waveguide with a Bend

(a) We check each free-space Maxwell equation in turn, making repeated use of the fact
that @ = ®(y, 2):

CV-B=-V X xVD)=%-VXxVEP—-VP-Vxx=0

B
UxE+ B - 90« (50) + %% x VO = 0
ot c c
10E . L w? ey Ww?
VXCB—cat:—VX<XXV¢)—XCQ¢:—X|:V +CQ:|(I):O

On the top and bottom walls, n X E o« X x X = 0 so the boundary condition is
satisfied. On the side walls, 1 X Ex £(y xX)® =0if &(y =0) = ®(y =a) =0 is
imposed as a boundary condition on the Helmholtz equation for ®(y, z).

(b) Separating variables in the Helmholtz equation gives ®(y, z) = sin(mny/a)y(z), where
n=1,2,... and

d*y w2 oomn? KA(2)

dz? c? a? 2

Y =0.

The curvature k(z) = 0 in the straight portion of the guide so, choosing n = 1, we get
a propagating (sinusoidal) solution if w > 7¢/a.
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(¢) In the curved portion of the guide, the Helmholtz equation is a one-dimensional
Schrédinger-like equation,

d*y

2 2,2
ith V(2) = —Lx? dp=2 -0
wi (2) sk (z) an = "

2

The potential is attractive so there is guaranteed to be at least one bound state with
E < 0, that is, with w < 7c¢/a. The corresponding spatial mode is localized near the
bend. Like a particle-in-a-finite-well wave function, its amplitude is large in the bend
and falls exponentially to zero when the bend straightens out.

Source: J. Goldstone and R.L. Jaffe, Physical Review B 45, 14100 (1992).

19.12 TE and TM Modes of a Coaxial Waveguide
Let v2 = w?/c? — h?. The Helmholtz equation is

[V +7°]v=0. (1)

For TE modes, we solve (1) with the boundary condition 94, /On|s = 0 and construct

o |
Brr = |:Z2VJ_ + i:| wmel(hz—wt)
Y
Erg = —vp2 X Brg.
For TM modes, we solve (1) with the boundary condition . |s = 0 and construct
" ‘
Ern = |:’Zy2vj_ + 2:| weez(hz—wt)

,
_ Py
BTM = 2 Z X ETM-

(a) For a coaxial guide with cylindrical symmetry, (1) becomes

305) e

This is Bessel’s differential equation of order zero with linear independent solutions
Jo(yp) and Ny (yp). The origin and infinity are excluded from b < p < a so

Y(p) = Ado(vp) + BNy (vp).

TM modes: The boundary conditions are | 0 or

p=a,b =
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AJdy(ya) + BNy(va) = 0= AJy(vb) + BNy (7b).
These linear equations will be zero if the determinant of the coefficients is zero:

Jo ('Yna)NO ('Ym b) =Jy (’Ym b)N() (’Ym a)~

The index m accounts for multiple solutions to the transcendental equation. The fields
Ery and Bryy are given by (3).

TE modes: The boundary conditions are 61/)/8p|p:ayb = 0. By the same logic,
b(p) = Jg (va) Ny (vb) = Jo(vb)Ni (va)

is the transcendental equation for the TE eigenvalues VTE The fields Etg and Brg
are given by (2).

(b) When a — b < p = £(a + b) we approximate (4) with the differential equation

10 (_0 0?
5s (3s) + 72 v=0= |5+ 7w

This gives the solutions

bar = sin L0 g gy = cos TP

a—>b a—>b
. 9 9 m? nr \’
Wlth’YE:'YMZﬁT—F —)

19.13 A Baffling Waveguide

For a circular cross section, we must solve the two-dimensional Helmholtz equation

10 oY 0%
305 (P3) + g+ =0 @
where )
w
’72 = 2 k. (2)

Separating variables in (1) with ¥(p, ¢) = F(p)G(¢) and separation constant o’ gives

d*F 1dF s o

e 2 _% V=

i T odp T (7 p2> ! )
W'FQ G=0.
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Equation (3) is Bessel’s equation. Since v # 0, the general solution that does not diverge
at the origin is

Ya(p; @) = Ada(p)(sin g + B cos ag).

The first two Bessel functions are shown below.

1.0
Jo(x)
0.5
7,00
0.0 1 1 1 L L //
0 1 2\3 5/ 6 *

TM modes:

The boundary condition is

Yrm(YR) = Jo (7R) = 0.
™

This shows that the TM modes are indexed by an integer m such that +,," = x,, /R where
{z1,x9,...} are the zeroes of the J,(x) beginning with the smallest. From the diagram
above, we see that the lowest TM cutoff frequency is associated with the first zero of Jy(z):

wryn = ey = cx1 /R = 2.4¢/R.
TE modes:

The boundary condition is

OYry
or

_ 9Ja(yp)

=0.
r=R 8p

p=R

This shows that the TE modes are indexed by an integer n such that ¥ = y,, /R where
{1, 92, ...} are the maxima and minima of the J, (z) beginning with the smallest. From the
diagram, we see that the lowest TE cutoff frequency is associated with the first maximum
of Jy(x):

wrg ~ 1.8¢/R.

(a) When the baffle is present at ¢ = 0, we get the extra TM boundary conditions (¢ =
0) = ¢(¢ = 2m) = 0. This leads to

UM (p, ¢) = A, (vp) sin ag,
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with @« = m/2 and m = 1,2,... From a table of zeroes of Bessel functions of half-
integer order, the smallest comes from .J; 5(7) = 0. Therefore the new TM cutoff
frequency is &y = en/R > wrnm -

(b) The extra TE boundary condition is ¢'(¢ = 0) = ¢'(¢ = 27) = 0 where the prime here

denotes a derivative with respect to ¢ (the direction normal to the baffle). This leads
us to choose

vo " = AJa(vp) cosag
and again we get « = m/2 and m = 1,2,... From a table of zeroes of the derivative

of Bessel functions with half-integer order, the smallest comes from Jj ,(1.17) = 0.
Therefore, the new TE cutoff frequency is &org = (1.17)¢/R < wrE.

19.14 Waveguide Charge and Current

(a) For a TM waveguide mode,

ih
Ery = [;VLEZ + Ezi] expli(hz — wt)]
HTM = %Z x E.

The surface charge density is

~ iﬁoh 8EZ
OTM = 60H'E‘S:T .
v On g
The corresponding surface current density is
K =i xH| = w—;“n x (7 x e)|g = %n . E‘S 5= %UTMQ = vyornE.
(b) For a TE waveguide mode,
ETE = 7%2 x H
h
ih . .
Hrg = {2VLH2 + sz} expli(hz — wt)].
Y
The surface charge density is
R QWO /A EQWHO . /.
org = en-Elg=— A n-(sz)‘S: - z-(an)S
w Up 1,
= —z-K :—Z-K‘ = —z-K| .
ch s S v s
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(c)

(d) For TM modes, the results from part (a) tell us that

# Krp = +-

Moreover,

V- -Kry =

This shows that

For TE modes, we have

Guided and Confined Waves

(8 x H)lg = H- (7 x &) = 2- H|g #0.

@ = —lwo
5 T™ -
w dou
h 0z h
Oorm
V- Kty =
™ *+ ot
JoTg )
= —i{woTE.
5 TE

w . .
= *ZhO’TM = WwWoTM -

Otherwise, we can rewrite one of the results from part (b) as

€W o

h

OTE :€0ﬁ~ E‘S = —
Using part (c¢) and then (1),

V- Krg

This shows that

n-(zxH)| =

S

0 0
= — (7 - K

0z (2 Kre) +
_ hom
T w09z or

2 h?
= 9 oTRE +

2h? 0%
= 9

w
ic

ot
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19.15 Cavity Modes as Harmonic Oscillators

The total electromagnetic energy for is
1 3 2, 212
UEM:§€Q d?‘[E +CB]

We work in the Coulomb gauge, V - A = 0, where

0A

E=—%

B=VxA.
The vector potential satisfies the wave equation. Therefore, if

Ar,t) =D g (t)As(r),
A

we have )
2 W
VEAL AL =0, (1)
When g # A, the text proved that
/d3r(V><A,\)~(V><A,l):0:/d3rAA~A#. (2)

We also assume normalized mode functions, so
/d3TA)\ . A)\ =1. (3)

Using (2), we see that the electric energy corresponds to the kinetic energy of a set of
oscillators:

1 . . .
Uem = Z €0 /ddT (VAN - duA, + (Y x Ay - (q,V x AY)]
A

1
2560 |:(ﬁ\+C2/d3Tq§(VXA)\)'(VXA)\) .
A

To simplify the magnetic energy, we use the identity quoted in the text,

/dS'[ax(be)+(V~b)a]:/d3r [(Vxa) (Vxb)+(V-a)(V-b)+a-V’b].
s v

With a = b = A, the surface integral vanishes because V - A, = 0 and the boundary
condition on the modes is n x A|g = 0. Therefore, using (1) and (2),

2
P w
/dJT(VXA)\)-(VXA/\)ZCfé\.
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Substituting this into our formula for Ugy identifies the magnetic energy as the potential
energy of the oscillators and gives the desired result:

Upm = *60 Z G5 + wids]

19.16 An Electromagnetic Oscillator

(a) When one sphere has charge @, the other will have charge —Q. The potential of a
conducting sphere with radius R and charge @ is V = Q/4megR. Therefore the self-
capacitance of a single sphere is Cy = 4mwey R. For the two-sphere system, we neglect
the mutual capacitance so that

Q= GV

—Q ~ CyVs.

Q Co
Theref C= = — =2meyR.
erefore, AT 5 e
(b) We estimate the inductance from the magnetic energy Up = LI?/2 of the rod when a
current I flows through it. As long as a < p < [, the magnetic field is circumferential

with magnitude
tol

B(p) = 2p

Therefore,

1 1
Up = dVB* ~ o — 27l / pdpB?(p) = n(l/a)
0

210

a

and L = 2271n(i/a).
2
(c) Treating our system as an LC circuit, the resonant frequency is

1 1 c
©o VIC V@regR)(pol In(l/a)/2m) B VRIn(l/a)

19.17 A Variational Principle

(a) For any mode of the cavity, V x E = —0B/0t = iwB . This gives

[d3r |V x E? [d3r |BJ? )

v _ 2. Y
TdrEE Y TdrER - &
14 v

because the time-averaged electric energy and magnetic energy are equal for a cavity

/d3r|E|2 =c2/d3r|B|2.
v v
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Similarly, because V x B = ¢ 20E/0t = —iw/c27

[d3r|V x B|? ) [ d3r|E|? )
v woy

[d3r B2 cjfd37‘\B|2 e
% %

(b) By the quotient rule for derivatives,
[d3r |V x E]?
v

CUQ
I
\%4

5{fd3r|v X E|2} [d3r|E|? —5{fd3r|E|2} [ d3r|V x EJ?
v v v v

[ d3r|E]? [ d*r |EJ]?

v v

§ [dPr|V x E? , 0 [d*r Bl
v whv

[d3r|E & [d3r|EP
v Vv

Now,

5 [d3r|V xE2 = [d* [V x (E+0E)] [V x (E+6E)]— [d*|V x E|?
|4 \%4 \%4

and

2
(VXE)~(V><5E):V~(6E><V><E)—5E~V><V><E:V~(5EXVXE)+W—26E-E.
c

Therefore, if E = E| +E, decomposes E into a component parallel and perpendicular
to the surface, the fact that JE| = 0 at the surface of a perfect conductor gives

/d3r V~(5E><V><E):iw/dS~(6E><B):iw/dS~(6E|| x B)) =0.
%4 S S
We conclude that
2
6/d3r|V x B> = /d% {|v x OE|? +2°"2E.5E}.
C
14 |4
Much more simply,
5/d3r|E|2 :2/d3r E-§E+/d3r |OE|%.
%4 14 14

This gives the final result
Jd’r {|IV x 6B — (w?/c*)|dE[* }

§ v
2 [ d3r |E|?
v

because the terms that are linear in JE cancel. A similar proof applies to éB.

401



Chapter 19 Guided and Confined Waves
(c) If B=(p+ap®)p, V x B=(2+ 3ap)z in cylindrical coordinates. Therefore,

R
d*r |V xB|?>  2xL [ dpp(2 + 3ap)?
Aivf T | o J dpp(2+3ap) 158 + 16aR + 9aR?)
[ d3r|BJ? —QL}%d o+ 2)2*R2(15+24aR+10a2R2)'
v mL [ dpp(p + ap
0

We want to minimize this:
oA 1
— =0 —+—aR+ —d’R*=0.
da = 5t 24“ + 30“

Therefore,

=55 4+/337
a 56R ’

The root with the plus (minus) sign gives d’>A / da® positive (negative). We want a
minimum so we choose the plus sign. Therefore, a ~ —0.654/R and

w 2.409
— = A ~ ———
R

is our estimate. The solution we guessed corresponds to a TM mode, and the lowest
such mode frequency for a cylindrical cavity may be inferred from the lowest cutoff
frequency for TM waves in a cylindrical waveguide. This is

w To1 2.405

c R R’

where x¢; is the first zero of the Bessel function Jy(z). Our estimate is excellent!

19.18 An Asymmetric Two-Dimensional Resonant Cavity

TM modes in a cavity have the property that ¢» = 0 on the walls of the cavity. This tells us
to look for the zeroes of ¥. The waves in the sum are +kg, +k;, and +ky. Since w = ck,

P(x,y,t) = Im {20 [sin(ko - r) — sin(k; - r) +sin(ks - )] e 7"}

Moreover,
ko -r=kx
k; .r:cos{g} kx+sm[ }ky, 7kx+§ky
2 2 1 3
ky - r = cos [ 3 ] kx—l—sm[;} ky=—§kx+ %ky
Therefore,

Y(x,y,t) = 2cos(wt) {sin kx — sin

V3ky . | kz  V3ky
2+]$%2:3”
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Zeroes come from multiplicative factors. To find one, let a = kx/2 and b = \/3ky/2 so the
quantity in curly brackets is
sin(a + a) —sin(a +b) —sin(a —b) = [sinacosa + cosasina] — [sinacosb + cos a sin b]
— [sina cosb — cos a sin b]
= 2sina[cosa — cosb].

This function is zero when sina = 0. Thus, ¥» = 0 on the lines defined by a« = kz/2 = m=x
where m is an integer. We also get b = 0 on the lines defined by cosa = cosb. The simplest
of these are x = ++/3y. Therefore, if A\ = 27/k, the heavy solid lines in the figure below
outline a 2D conducting cavity which will support a TM resonant mode built from ¢ (x, y, t).

-—l— 22

Source: http://gregegan.customer.netspace.net.au/SCIENCE/Cavity /Simple.html

19.19 The Ark of the Covenant

The frequency wy depends only on the dimensions of the Ark. Most scholars agree that the
cubit used in the Hebrew bible was about 45 cm. Therefore, we take the Ark’s volume as
V = abL where L = 1.125 m and a = b = 0.675 m. The half-width I" depends on the skin
depth and hence on the conductivity of gold. This is ¢ = 4.5 x 10" Q" 'm~'. Omitting a
factor of exp(—iwt), we have TE cavity modes:

Brp =~ sin (X75) 2 x Vg p=012,...
c L

o = (s (72)

Ve = —t—— sin (m) cos <@> % — o2~ cos (LMW) sin (mry) §
a a a a a

a
2
'y2:—2(m2+n2) m,n=20,1,2,...
a
2, pr?
AR 7
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We are interested in the lowest-frequency mode. The choice p = 0 gives no fields at all.
Therefore, we must have p = 1. Then, the choices m =0, n =1orm =1, n = 0 are

degenerate with frequency
/1 1
Wy = Ccm a7 ﬁ ~ 1.6 GHZ

The lowest TM-mode frequency cannot be lower than this. We can set 1y = 1 without loss
of generality. Therefore, the fields associated with this mode are

WT . (TZ\ . [(TY\ .
E=——sin (—) sin (—) b'e
ac L a

2 2

B=—-""cos (E) sin (E) v+ — sin (E) cos (@) Z
~ al L a /YT @ L al

If (U) is the time-averaged energy stored in the cavity and (P) is the time-averaged power
dissipated in the ohmic walls, the half-width of the resonance is I' = wy /Q, where

(5&)0
—_— dAB - B}
wo (P) dpo Ja =

Q  Us)+Us) %O/Vd%[E.E*ﬂ?B.B*T

Straightforward integration, and the fact that w?/c? = 72 /a® + 72 /L? for this mode, gives

mieo L a?
= = 1+—1.
<UE> <UB> 16&2 ( + LQ)

Similarly, the fields do not depend on z, |B,(z = 0)|* = |B,(z = L)|?, and |B.(y = 0)|* =
|B. (y = a)|?. Therefore, suppressing the field argument,

a a L L
/dA\BHF = 2a/dy|By 2, +2/dy /dz (1B, 1> +1B:1*),_, +2a/dz\Bz|3:0.
0 0 0 0

Therefore,
Swy w [a? a 3L
Py=2— | 5=
(P) 4 c*a? [L2+2L+2a
and
dwg m fa*  a 3L > a 3L
e |17 Tar e dwo T2 T35 T2,
r_ w0 _ dmca a] _,0w0 2 "2L " 24
Q ey L a? L a?
1+ — 1+ —=
8a? L2 L?

At the resonance frequency, the skin depth is

2
§=4/ ~ 16 x 1075 m.
Howo O
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For the Ark of the Covenant, a/L = 0.6. These numbers give the estimate

'~ 6.6 x 10wy ~ 0.1 MHz.

Source: J. Franklin, Classical Electromagnetism (Pearson, San Francisco, 2005).

19.20 Perturbation of a Cavity Resonator
The theorem states that (Ugy )T = constant. Therefore, if T = 27 /w,

6<UEM> - (5(4)

(Uem) w '

In our chapter on dielectrics, we learned that the energy change when a field E( polarizes a
dielectric is

1
§Up = —§/d3rP-E0.
Similarly, the energy change when the field By magnetizes an object is
L 3
oUp = —3 d’rM - Ey.

The adiabatic theorem makes sense when the object is small and the (barely perturbed) field
is almost constant over the volume of the object. Therefore, if an asterix denotes complex
conjugation, we take the field out of the integrals and use the time-averaging theorem to
write

ow _Re [p* - Eop + m* - By]

w a 4<UEM>

This is called the Miiller-Slater formula.

Source: C.H. Papas, Journal of Applied Physics 25, 1552 (1954).

19.21 Resonant-Frequency Differences for a Cavity

For a box with volume abe, the (un-normalized) resonant frequencies are w;, , . = n’ Ja® +
m?/b2 + k:Q/c?. This equation defines an ellipsoid in (n,m, k) space rather than a cube.
Therefore, to capture all the frequencies less than a fixed value wp, .y it is necessary to use
different maximum values for n, m, and k. The following (normalized) results were obtained
from 85, 532 mode frequencies for a cavity with dimensions a = e, b = 7, and ¢ = v/17. The
white line is a fit to a Poisson distribution.
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P(s) = exp[-0.35 s]

19.22 The Panofsky-Wenzel Theorem

(a) The fields inside the cavity can be described by E = —9A /0t and B = Vx A. Moreover,
the particle velocity is not a function of position. Hence,

vxB=vx(VxA)=V(v-A)—(v-V)A

Now, using the hint for a velocity v = vz,

Apl———/d [—+ v-V)A - V(v- A)} :—Q/Ldz [dAL —UVJ_A:|

n (%

Because dz = vdt and the cavity electric field is E = iwA,

A, (L) L . E (L) .
Api = —q / dA | +q/szJ_Az - % / dE | — g/szlEz.
AL(0) 0 E.(0) 0

In this problem, the transverse direction is parallel to the z = 0 and z = L walls. If
the holes in the cavity are negligibly small, the component of the electric field parallel
to these walls vanishes and we get the advertised result.

(b) E. =0 for a TE mode so Ap; = 0. This can be true only if the transverse force from
the TE mode electric field exactly cancels the transverse Lorentz force from the TE
mode magnetic field.

Source: T.P. Wangler, Principles of RF Linear Accelerators (Wiley, New York, 1998).

19.23 Forces on Resonant-Cavity Walls

Every component of E satisfies the wave equation. Therefore
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1 OF, WP
V’E, +3 =0 = 25 =—.
2 Ot? a?
We calculate the remaining non-zero components of B from V x E = —%—]? = iwB. The
result is
LT . X Y . By | mx Yy )
B, = —i— Ej sin — cos — exp(—iwt) = —i— sin — cos — exp(—iwt)
aw a a 2¢c a a
s T . TY . Ey T . Y .
B, = —i— Ej cos — sin — exp(—iwt) = —i—= cos — sin — exp(—iwt).
ac a a 2¢c a a

The Poynting vector contribution to the force density vanishes upon time-averaging because

27 Jw
<?;> % / dt% [ReE(r,t) x ReB(r,t)] = E(r) cos(wt) x B(r) sin(wt)|, 2w .
0

Otherwise, we treat each interior wall of the cavity separately and choose the volume V in
the force integral as the space between two parallel walls. One wall lies inside the “meat” of
the conducting wall, where the fields are zero. The other wall (call it S) lies in the vacuum
interior of the cavity adjacent to the wall of interest. Therefore, the divergence theorem
gives the force on the wall parallel to S in term of the normal fi to S (which points into the
cavity):

a (E® + ¢ B?)

N |

/dSn T—eo/ds{ E)E + (- B)B —

The cavity cannot exert a net force on itself. Therefore, the force on the x = 0 wall is equal
and opposite to the force on the x = a wall. The same argument applies to the y = 0 and
y = a walls and to the z = 0 and z = h walls.

The time-averaged force on the z = 0 wall is

h
(Pl =% [ aS PIBP - BP - 21B,F) = %5 [ = [dye |, =0)P
0 0

z=0

This gives an outward force

Ceh B[
(Foo = %0 [y siv? (y/a) = -

0

An exactly similar calculation gives

(F),—0 =3 f/ds (1B, = |E.|* - &[B,[?) =—y—/dz/dxc|B 0)f.

y=
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Hence,
eoh E 1
(F)y—0 = —yo——o/daz sin? (rz/a) = —y16€gahE0 =—(F)y=q-
Finally,
L€

(F)es = 25 [ (BP =B - 1B, P)

2=0

E} 1 1

= 0/ /dy{ 2 ™ _ siHQMCOSQM—COSQMSiHQW}
a 2 a a 2 a a

0
= 0.
By the previous argument, (F),._, = 0 as well.

Source: Prof. K.T. McDonald, Princeton University, http://cosmology.princeton.edu/~
mcdonald/examples/

19.24 Graded Index Fiber

(a) There is no free charge, so
0=V -D=V][(r)E|]=eV-E+E- Ve

Also,
0 O’E
. — 2 = = — — = — _—
V(V-E)—V'E=VxVXE athB e -

Therefore, if the medium is non-magnetic so u = pg and n?(r) = €(r) /e,

n?(r) 0°E

¢z ot =0

V’E —

+V{E-vj

This reduces to the stated equation if the last term can be neglected.

(b) We need to suppose that LVe < 1 where L is a typical scale for the variation of E.
This, in turn, requires « to be “small”, so a good approximation is

2 2 2 212 2 2 2
n(r) =n5(1 —a“p°) = ng(l — 2a°p°).
Using this, we write out the wave equation in cylindrical coordinates to get

OE N 10E N 1 PE N O’E N n3 (1 —2a2p?) O*°E
op2  pdp  p*oP: 022 c? ot?

=0.

The proposed solution satisfies V - E = 0. With ky = now/c, substituting it into the
wave equation above gives
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d*’E 1dE
L S R4 K1 =202 02 E = 0.

Now we try an exponential, E(p) = exp(—/fp). This gives

62757h2+k3(172a2p2) E #0.

Now try a Gaussian, E(p) = exp(—3%p?*), where

dE &2E
— =—203’E and —— = —26°E+43'p*FE.
dp dp?

This gives
[—28° +48'p* — 28% — h* + kj(1 — 2a°p*)| E = 0,

which is a solution if 3> = ako/\@ and

w? 4
= =48>+ n? = Eakg + 2.

2 _ .2
ki = ng

19.25 Interfacial Guided Waves

(a) The field is time-harmonic so Faraday’s law and the fact that the fields have no z-
dependence gives

1 1
H=—VxE=— [%0,E, — y0,E. + 2(0,E, — 0,E,)).
iwp fwp
Accordingly,
1
H, = o [E1.(a% — iky) +iEy, (k — o®)] e expli(kz — wt)).
1

On the other hand, the field satisfies the wave equation

2 92
9 n° O°E
VE- 5om =0
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where n? = c?eu. Therefore,

2 2 2 2

—k2+0¢2—|—n1;d =0 and —k2+62+n2;} =0.

c c
Hence,

Elz N . “ €1w .

H, = |——(iax + ky) + 2B, — | e* exp|i(kx — wt)]

Wiy k

and

Es, . . N . — .
H, = |:2(’L/8X + ky) + 2E,, W} e P expli(kz — wt))].
w2 k

(b) We have not yet enforced the Maxwell equation V- D = 0. A brief calculation using
the given forms of the electric field yields

O By 1)

By, =iv By, and By, = —i

k

Using these, the y = 0 electric field matching conditions Fy, = Fy, and E;, = E»,

imply that
OéEly = —ﬁEgy and Elz = E2z~ (2)
Similarly, the y = 0 magnetic field matching conditions Hy, = H,, and Hy, = Hs,
imply that
€1E1y = €2E21/ and gElz = _EEQF (3)
' ' M1 H2

Since o and (3 are positive, (2) and (3) cannot be satisfied simultaneously except in
two special cases:

a__a and Ey,=FE, =0
B €2
or o ’
1
BT and By, = By, = By = By, = 0.
B 42 ! Y

In the case when E, = 0, (1) shows that the fields are elliptically polarized.

(¢) The results for E; and E, are identical; we will display the details for E; only. The
first case has E;, = 0 and H; = H;,Z. The time-averaged Poynting vector is

1
<Sl> iRe(El X HT)

1 ,
- e s ) <, )
lew

= §7Re{—yE1foU +)A(|E1y|2}€20éy.
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A glance at (1) shows that the first term in curly brackets above is pure imaginary
and thus does not contribute when the real part is taken. Hence, (S;) points along x.
The second case has E; = F1.z and Hy, = 0. We find (S;) & % here too because

1
<Sl> = iRe(El X HT)

1 E:
= Rﬂ{Euix Zzgakkm}ehy
2 Wty

1 1 .
= - —Re{y|Ew[Yia+ +xk| B2} €Y.
2wy

Source: A.M. Portis, Electromagnetic Fields (Wiley, New York, 1978).
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Chapter 20: Retardation and Radiation

20.1 Poynting Flux above a Thunderstorm

The frequency band given corresponds to wavelengths between 10° and 107 meters. A
thunderhead rises to about 10* meters. Therefore, we are in the long-wavelength limit and
can regard the lightning antenna as a vertically oriented dipole oscillator. The measurements
are performed in the near zone of the dipole. The observation point lies above the dipole,
which means that the electric field is approximately

1 2p(t

BE— p(t) .

dmey 23

where z is measured from the position of the dipole. The magnetic near-field comes from
the displacement current on the right side of

1 OE
VxB=—-—.
2 ot
Using the integral form of this equation, we calculate the line integral of B around a circle
of radius p with z as its symmetry axis. This gives

1 .
2rpBy = C—QEZW,/)2 = —ic%EZﬂ'pQ,

or L p(t)
Lwp p(t) -

B=—-i— .

v 4dmey 23 ¢

The Poynting vector is S = ¢gE x B. From the foregoing, this will be radial and increase
linearly with frequency.

Source: W.M. Farrell et al., Radio Science 41, RS3008 (2006).

20.2 Fields from an Alternating Current in an Ohmic Wire

(a) We have E = Ezs0o V-E =0 = E(p,t) = Re{E(p)e"“'}. With j = ¢E for cach
Fourier component, the Maxwell equations yield the Helmholtz equation V2E+k*E =

0 with
k= w’ /P +iogwpg. (1)

In cylindrical coordinates, the general solution that is regular at the origin is

Ein(p) = AJO(kp)iv (2)

where Jy(x) is the zero-order Bessel function. The value of the coefficient A is fixed
by the fact that the total current in the wire is Iy. Therefore,

Iy = 277/ dppj(p) :27TO'A/ dppJy(kp) = A=kly/2nacyJi(ka)
0 0
because fol drx Jy(yr) =y LI (7).
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(b) Outside the wire, we have V?FE + k3 E = 0 where w = cky. This means that E(p) is a
linear combination of Jy (kop) and Ny(kop) or, more conveniently, a linear combination

of the Hankel functions Hy) =J,+iN, and H,52> =J, —iN,:

Eout(p) = [CHS" (kop) + DH (ko p))2- (3)

The coefficients C' and D follow from the matching conditions at the surface of the
wire, p = a. First, the tangential component of E (F itself in this case) is continuous.
Second, the tangential component of B (only a perfect conductor supports a surface
current) is continuous. The latter reduces to the continuity of 0E/0p because E is a
function of p only and

0B i1 OF -

In any event, because J|(z) = —Ji(x) and Nj(x) = —N;(x), the two matching condi-
tions yield

e B hna) — 1 () )
and
D:% [-ffﬁ:ii ' (koa)+:)H( (koa)].

Explicit formulae for E and B follow from (3) and (4).

(c) Poynting’s theorem for any surface A concentric with the wire is

—/dA.s:%Jr/d%j.E.

A Vv

The total energy is time-harmonic if the fields are time-harmonic. Therefore, the time-
derivative term integrates to zero when we time-average. Otherwise, since j = oy E,

we conclude from
1
f/dA~<S> :500/d3r|E|2 >0

A Vv

that the normal component of the time-averaged Poynting vector (S) always points
toward the z-axis.

(d) To get the rate of energy loss due to resistive heating, P,.s, we use a cylindrical surface
whose radius is infinitesimally less than a. Per unit length of wire, the rate of energy
loss to ohmic processes is

Pres = 27TCL<S> - %Re {Ein( )B;;( )}7
0

where Ey, is given by (2) and Bj, is computed from (4) as

B (a) = Ak 9Jo (kp)

i
- 5 = ——AkJy (ka).

p=a
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Remembering from (1) that the wave vector k is complex, the final result is
Pres = malkl* L\’ Im K Jo(ka) .
tow \ 2wac Ji (ka)

(e) To get the rate of energy loss per unit length due to radiation, P,.q, we begin with a
cylindrical surface whose radius p will go to infinity and compute

(S) = %Re (o () Brut (0)}

The calculation requires (3), (4), and the following asymptotic forms for the Hankel
functions:

2 . - 2 o
li H(l) k _ —im /4 jikop li H(2) k — +im/4 —zkop.
/’E{)lo 0 ( Op) Wk()pe ¢ ﬂgrolo 0 ( Op) Wk()pe €

Only the outgoing wave can contribute to energy loss by radiation. Comparison with
(3) then tells us that

_2ICP
How ’

where C' is given by (5). This is consistent with part (c) because the incoming wave
supplies the net flow of energy into the wire.

Paq = lim 27p(S)
p—00

20.3 Free-Space Green Function in Two Dimensions

In plane polar coordinates, the Green function for the Helmholtz equation is
(V2 + k%] Go(p,p") = —6(p — p).

We put p’ = 0 and note that Gy(p, ®) = Gy (p) for the infinite plane. Therefore, the defining
equation for the free-space Green function is

VAGo() + K Galp) =~ 52 1)

The homogeneous equation is a form of Bessel’s equation of order zero, for which the text
establishes that Hél)(kp) is an outgoing-wave solutions. Otherwise, integrate (1) over the
volume V' of a cylinder with radius p = € and unit length in the z-direction. The integral
over the delta function gives —1. Because Gy (p) does not depend on z, the integral over the
Laplacian term gives

/d?’erGU = /dS~VG0 = j{cw% = 27Tpd—G0 .
v 5 % @ 1o

The small-argument behavior of the Hankel function is
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9
lim H(()l)(m) = log z..
T

z—0

Therefore, using the proposed Green function,

d ;291
27r,0ﬂ = 2me X [zz] =—1.

dp 47 e

p=¢

This proves the assertion because the integral of the remaining term in (1) over a disk of
radius € is

) 1
k-me? - %Hé”(ke) = —kﬂegg log ke,

which goes to zero as € — 0 (by 'Hospital’s rule).

20.4 The Method of Descent

(a) Begin with the three-dimensional equation

o? H? H? 1 02
gt a | G0 = 5@

Using this, we see that

LY
ox?  0y? 2 ot?

} / iz Gz, y, 2.1)

- / dz%G(x,y,z,t) _ / dz 5(2)5(1)5(2)5(1)

zZ=00

_ 96
0z

—0(x)d(y)o(t)

Z2=—00

= —0(2)d(y)é(?).

The last line follows because the z-derivative of G(r,t) = §(t — r/c)/4nwr vanishes at
z = oo for any finite time. This proves the assertion because, by definition,

Ga(z,y,t) = =6(2)d(y)a(t)-

LY
ox?  Oy2 2 ot?

(b) G(r,t) is an even function of z. Therefore, using the delta function rule,

b
/a dxg(x)o[f(x)] = zk: |J€/((i]1))| where  f(zx) =0 and a<uax, <b,
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we find

G(a,y,1) =‘/wam%aw

1 [ (5(t—\/22+p2/0)
~ 2 ), 4 V22 +p?

c

= -0 pl)

z=r/c2t2 —p?

S TTyr —

2m /2 — p2/62.
The theta function is required to keep the Green function real.

Source: G. Barton, Elements of Green’s Functions and Propagation (Clarendon, Oxford,
1989).

20.5 Retarded Fields from Non-Retarded Potentials

(a) The key observation is that j, (r,t) # 0 at every point in space, even if j(r,t) is
localized and vanishes outside a finite volume of space. On the other hand, j, (r,t)
gets contributions from every part of the physical current density, and all of these
occur at the instantaneous time ¢. Focus now on the integral for A (r,t) at a point
r which lies far outside the physical source current. One contribution to this integral
comes from r' = r where t,, = t and j, (s,t) # 0. However, the latter depends
on values of the physical current which are far from the observation point but which
occur at the instantaneous time. These contributions are not retarded, so A¢ is not
retarded.

(b) Inserting the retardation with a delta function, the magnetic field is

< ! _ —
B(I‘,t) _ %/d37,/ / dt/VX |:5(t t+‘r r |/C):|jj_(r/,t/)

r— v

v — /|

oo /_ B ,
= _Zio /d?),r,/ / dtl v/ X |:6(t t+ ‘r r |/C):| jj_(r/,t/)
7

oo r -
- g e [ [P e

47 |r — r/|

The last line above follows by partial integration because j, /|r — r’| goes to zero at
infinity. However, V x j =V x ji +V x j; =V x ji. Therefore,
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o0

/ H /oyl
B(r,t) = %/d?’r’ / dt'&(t’—t+|r—r’|/c)w

r—r|

which is manifestly causal.

(c) The Amprére-Maxwell equation is

1 OE

B=wj+——.

V x HoJ + = o
This can be integrated to

t

E(r,t) = E(r,t)) + ¢ /dt’ [V x B(r) — uoj(r)],

to

where t; < t. This expression involves functions evaluated only at the observation
point r (for which ¢, = ¢) and sums only over times which are earlier than ¢. Hence,
the electric field is properly retarded.

Source: C.W. Gardiner and P.D. Drummond, Physical Review A 38, 4897 (1988).

20.6 Radiation from a Magnetized Electron Gas

The Larmor power emitted by a single electron in a uniform magnetic field is P, =
e*v% BE /6megm®c!, where v, is the component of the electron velocity perpendicular to
By. Under the conditions stated, we can treat the electrons independently and simply sum
the Larmor power from each electron, weighted by the Maxwell distribution

3/2
n(v) =no (27TZ;T> exp(—mv? /2kpT).

Since v = v + v, we can use cylindrical coordinates (v, ¢,v)) to perform the sum:

2T 00 00

dP m 3/2 e’ B} 3 9 9

i — 2kgT

a " (27rkBT> 67reom204/ d(b/ dv”/ Avsvi explom(uy o) 2keT]
0 —o00 0

m \*? B2 oy [2RET 2KET
= n ™
O\ 21k T 6megm?2ct m m2

7106238 kiBT
3megmict m

Source: Prof. M. Gedalin, Ben-Gurion University (public communication).
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20.7 Energy Flow from a Point Electric Dipole

The magnetic and electric fields of a point electric dipole are

B — 7&f‘ X prct + pl'ct
4m r2 cr

and

. 1 Sf(f‘ : prct) — Pret 3f(f' : prct) - prct f'(f‘ : prct) - I'jrct
o 3 + 2 + 2 :
47eq T cr c’r

We are interested in the radial component of the Poynting vector cross product because

au 1
—_—= A = — 2 QE B'A .
- /d S= R /d (ExB) | _,

Therefore, it is convenient to write

3¢(f-p)—p=3tx(rxp)+2p and FE-p)—Pp=1tXx(rxp)

and use the “BAC-CAB” rule to write

(txp)x [38(-p)—p] = (ExP) X [3T X (rxp)+2p] = 3(txp)- (¢ xp)t+2p(p-t)—-2(p-p)t (1)
and
Exp)x[E(E-P)—B=Exp)x[Ex(ExP)=(Exp) (FxP)- I (2)

Four of the terms that appear in the Poynting vector have the structure of (1). The remaining
two terms have the structure of (2). Therefore, with p x & =sinf and p - & = cos 0,

™
)

U 11 T S R I I
— = — =27 [dOsin® 0 | o+ s+ st s+ s s
dt dmep Am 7T‘/ S {R‘* TR ter T T 2R SR Lot

2 1 d 2 . .2 ..2
. a )P 4 bp + b + Dret .
34mey |dt | 2R*  cR* R, c3

Source: L. Mandel, Journal of the Optical Society of America 62, 1011 (1972).

20.8 A Point Charge Blinks On

(a) By symmetry, the electric field must be spherically symmetric and radial. Therefore,
from the integral form of Gauss’ law,

1 q@),
E(r, t) = 4_71'60 rTr'

The magnetic field satisfies
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1 OE

VxB=pj+ 5 2o

The last term is radial and, by symmetry, the current density which makes ¢(t) change
must be radial also. However, if the curl of B is to have a radial part, B itself must
be a function of the angular variables. This cannot be true by symmetry. Therefore,

B(r,t) = 0.

(b) With p(r,t) = ¢(t)d(r), the Coulomb gauge scalar potential is

1 /dST/ p(r,t) _ Q(t)

t) = = —.
wo(r.?) 4dmeg |r —r'| dmeer

The Coulomb gauge vector potential is

_ -
Ac(r,t):&/cﬁ /.]J_(r 3 |I‘ I‘|/C)’

4 |r — /|

where the transverse current density is defined by

!/
, T
ji(r,t) = Vx—/di’vx‘]r )
v — /|

The current density for this problem must satisfy the continuity equation,

dp
V-j+—=—==0.
I i
By inspection, we must have
. C] r
t
J(r’ ) 47T TQ

The curl of this current density is zero, so A¢ = 0 and we reproduce the magnetic
field from part (a), B =V x A¢ = 0. Because the vector potential is zero, we also
reproduce the electric field from part (a):

E(r,t) = —Vye(r,t) = Tres 12

(c) With p(r,t) = ¢(t)d(r), the Lorenz gauge scalar potential is

pLlrt) = — /dgr’ pl'st—|r—r'lje) _ qlt—r/c) (1)

47rey |r — 1’|  dmer

With the current density computed in part (b), we use the hint and write the Lorenz
gauge vector potential:
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,t—|r—r'|/c)
A — 3 /.] r’
e e L e
__Ho 3.1 ! _ qt') ' 1
= —47T/d r /dt&( —t+|r r|/c) PP
_ Mo , 4@) / 5.1 _ _
= (4n)? /dt =7 d°r 7 =0t —t+|r—r'|/e)| . (2)

Focus on the space integral in brackets, integrate by parts, and let s = r — r’. This
gives

/ 1
/d3r’:73(5(t’—t+|r—r’\/c) = —/d3r’v’ (W)é(t’—tﬁtlr—r’l/c)

_ /d3r’%v’5(t’ft+|rfr’|/c)

1
—V/dST’Pé(t' —t+|r—1'|/c)

v/d3 St —s/c) (3)

v —s|

We do the space integral in (3) using

\rfs| Z WS Py(cosb),

ZO>

where r_ (rs) is the lesser (greater) of r and s. The integral does not depend on the
angle 0 between r and s, so (by orthogonality of the Legendre polynomials) only the
£ =0 term in the sum survives the integration. Therefore, with 7 =t — ¢,

/d?’sM 47rc/0Oo dsié(s —c7)

v — s| s

. 82 e8]
47Tc/ds—(5(s —cr)+ 4770/ dssé(s — cT)
r ,
0

03 7_2

= 47T[T®(7“ —¢1)O(1) + 10 (cr — 7). (4)

Inserting (4) into (3) and (3) into (2) gives
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L [ i) 15t - crje) + eler - 1)

47T€0

1 o1 -
= Ime Y / dt'q(t') {TG(T —¢7)O(r) + —O(r —c7)d(r)

— 00

- %5(7"—@') +0(er —r)}.

The last two terms in the brackets cancel and the second term is zero. Otherwise, the
product of the theta functions requires that ¢t — r/c < ¢’ < ¢. Therefore,

OAL(rY) 1 /t O _ 1 V{q(t)_q(t—r/c)]

ot - 4meq T dre T r

t—r/c
Combining this with the scalar potential in (1) shows that

OA q(t —r/c) 1 - [q(t) B q(t—r/c)} _ 1 vq(t)

T r

E= —V(pL - =-V - .
4meq T

ot dmegr B 47eg

Source: P.R. Berman, American Journal of Physics 76, 48 (2008).

20.9 The Birth of Radiation

(a) The electric field lines pinch off at points where E = 0 and two electric fields cross.
The necessary conditions are
dR dR
— =0 — =0
dz dp

We get dR/dz = 0 when z = 0 so it is sufficient to study

R(p,t) = R(p,z=0,t) = p(t—p/c) I p(t—p/c)
P c

In particular, we demand

4 _d [pt—ple)  plt—p/c)\ R dp(t—p/e)
A Tl e et S B -

This gives the required formula,

Rlp.t)  Blt=p/) _,
p c? '

(b) With p(t) = po coswt the expressions above for R(p,t) and dR/dp are

w .
Ry zp—OCOSQ—pO—st
c
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and )
Ry pow

p c
where Q = wt — pw/c. These two must be solved simultaneously for the unknown
detachment radius p. Eliminating the sinusoids gives

cos ) =0,

(R§ —1)p" — Rgp” + Ry =0,

in terms of the dimensionless lengths Ry = Ry ¢/pow and p = we/p. This is a quadratic
equation in the variaibleiﬁQ. We get real solutions only if the discriminant is non-
negative, i.e., Rt —4R2(R2 —1) >0 or

2 pow

Ry| < —_—.
Rl < =

When this is true, one of the two roots

L 1 —1+./4/R3-3

TR - 2

is always positive.

Source: G. Scharf, From Electrostatics to Optics (Springer, Berlin, 1994).

20.10 An Electrically Short Antenna

(a) The angular distribution of interest is

ar _ pocl? [cos(kdcos @) — cos kd ?
aQ/  8n? sin 0 )

When kd < 1, we use cosz ~ 1 — %mQ to get

apP\ _ focly 4 2
<dQ> = o2 (kd)" sin” 6.

(b) A time-harmonic polarization current obeys

. OP .
j= o = —iwP.

The associated electric dipole moment is

p:/d3rP:£/d3rj.

For our dipole antenna aligned with the z-axis with current I(z) = I sin(kd — k|z|),
we get p = pz and the foregoing simplifies to

d 0 d
' 1 ot
p= é/dzl(z) = ZCTS /dz sinfk(d + 2)] + /dz sink(d — 2)]| = %(1 — cos kd).
—d —d 0
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In the long-wavelength limit, p &~ ilyd* /c. Inserting this into the time-averaged angu-
lar distribution of power radiated by a point electric dipole gives

dP Ck4 ) , o CI(Q
- — . 9 _ ) kd 4 .. 92 9 )
< Q2 >dip010 3272 €0 |p‘ sin 392772 ( ) sin ( )

This the same answer as part (a).

(¢) We have I(z) = Iy sin(kd — k|z|), so I(0) = Iy sinkd ~ Iykd when kd < 1. In that case,

<EZUS;> = %ﬂgw(kdf sin 6. (2)

By assumption, I(z) = I(0) = const. for a point dipole modeled using two point

charges. In that case, the formula derived in part (b) gives the dipole moment as

21(0)d

d
?
D w/dz(z) i
Zd

Substituting this into the point dipole expression for (dP/d?) in (1) gives

ar kb AR(0) ., pocl?
<dQ >dipole 2n2e, w2 o ) (kd)” sin

This agrees with (2) except for a factor of 4.

20.11 The Time-Domain Electric Field of a Dipole Antenna

The left panel of the figure below redraws from the text the four linear end-fed antennas
used to model a dipole antenna. The right panel indicates the position of the feed point
(open circle) and the orientation of each antenna with respect to antenna 1. Specifically,
the origins of antennas 2 and 4 are shifted up the z-axis by a distance d and the angle g = 7
applies to antenna 4. The angle v = 7 applies to antennas 2 and 3. Plus charge is carried
by antennas 1 and 2. Negative charge is carried by antennas 3 and 4. Finally, the launch
time is delayed by d/c for antennas 2 and 4.

| e

Taking account of the above factors when evaluating the vector potential integral for each
antenna gives the total electric field as the sum of four terms:
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poc sin®  [Ig(t—r/c) Is(t—d/c— (r—dcosh)/c)] A
E ﬁl—cos@ { r a r 0
poc _sin(f — ) [Ig(t—d/c—(r—dcose)/c)
4dr 1 —cos(6 — ) r
_ Is(t—d/c—(r—dcost)/c—d[l —cos(@—w)]/c)} 6
_ pocsin(f — ) [Ig(t—r/c) _ Is(t—r/c—d[l —cos(f —w)/c]] P
47 1 —cos(6 — ) r T
_ poc_ sinf {Ig(t—d/c—[r—dcos(ﬁ—w)]/c)
4m 1 —cosf T
It —dfc— [rdcos(@w)]/cd[lcosﬁ]/c)} 6.
Now, cos(f — ) = — cos b, so

E - Z;;f{15“;19[Is(t_r/c)—Is(t—r/c—du—cose]/c)}
f%[lg(t—r/c—d[l—cosﬂ/c)fls(t*T/C*Qd/C)]
%[Is(t—r/c)—IS(t—r/c—d[l—i-cos@}/c)]
N frzfse[jg(tr/cd[l+cos0]/c)IS(tT/CZd/C)]}é.

Combining like terms,

c . 1 1
E = Zﬁjsm@{[g(lﬁ—?/d( + )

1—cosf 1+ cosl

1 1
st —r/e—2d/c) <1+c059 * 1—cos€)

+I5(t—r/c—d[1—cosﬁ]/c)( = ! )

1—cosf 1+cosd

1+cosf 1—cosf

+I5(tr/cd[1+cost9}/c)( -1 ! )]é.

Finally, we recover the expression quoted in the text,
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o€ Is(t—r/c) Is(t—r/c—2d/c)
B = 27rsoin9{s r += r
_ Is[t —d/c—(r —dcosb)/c]
B Is[t—d/c—(r—&—dcosH)/c]}é.

Source: G.S. Smith, An Introduction to Classical Electromagnetic Radiation (University
Press, Cambridge, 1997).

20.12 Radiation Recoil

(a) A quantity independent of distance from the source is 7> multiplied by the density of
electromagnetic linear momentum in the radiation zone:

2 2
T &rad =TI X (EOErad X Brad)-
But ¢Byug =1 X E;.q and 1 - E;,q. Therefore,

€0 .
rzgrad = ;0r|Erad|2 X —=T.

In other words, the angular dependence of 72g,.q is determined by the angular dis-
tribution of radiated power. Hence, any source which radiates the same amount of

power in the r direction as in the —r direction cannot experience recoil. This is the
case for dipole radiation.

(b) Tt is sufficient to break the symmetry indicated in part (a). For example, place a perfect
mirror in the vicinity of a dipole radiator.

20.13 Non-Radiating Sources

The Fourier transforms of f(r) and j(r|w) are

1

1
fr) = (2m)3

/d%f(k)expuk.r) and  j(rjw) = @y /dgkj(k\w)exp(ik.r).

Substituting these into the given equation shows that

1. . . w? 3
o [zk x (tk x ) — ch] = j(k|w).

Using the BAC-CAB rule, this equation reads

(k2 - ‘;’j) f—k(f k) = iwj(klw).

Finally, take the cross product of this equation with k. This gives

2
(kz - c;) k x f = iwk x j(klw) = iwj (k|w).
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Therefore, if w = ck, the transverse component of the Fourier transform of the current den-
sity vanishes. The text showed that this condition guarantees that no radiation is produced.
Combining the two Maxwell equations,

1 OE . W

B
VxE:—a—:in and VXB=uj+ 5o =mi=-5E,
2 Ot c?

ot

for time-harmonic fields gives

w

2
i) = = {9 %[V x B) - B0}

Comparing this with the given equation shows that f(r) exp(—iwt) is the electric field pro-
duced by this non-radiating current density.

Source: A.J. Devaney and E. Wolf, Physical Review D 8, 1044 (1973).

20.14 Lorentz Reciprocity
(a) The Maxwell curl equations for a time-harmonic sources are
w
V x E1 = inl and V x B1 = HOjl — ifQEl.
c

Take the dot product of the rightmost equation with Es, subtract from this the same
expression with 1 and 2 exchanged, and integrate over a volume V. The result is

/d3T(E2'VXB1—E1~VXB2):M0/d3T<j1-Eg—jQ-El).
|4 v

Now, form the dot product of Faraday’s law above with Bs, subtract from this the
same expression with 1 and 2 exchanged, and integrate over the volume V. The result
is

/dgr(Bg-VxEl — B, -VxEp)=0.

v
Adding the preceding two equations gives

/dST’V'(El XBQ—EQ XBl):ﬂo/d3T(j1 'EQ—jQ'El).
v v

An application of the divergence equation produces the desired expression:
Ho /dST(EQ 'jl —E1 jg) = /dS . (E1 X BQ —Eg X Bl).
v S

(b) Under the stated conditions, dS = #dS and all radiation fields satisfy & x E = ¢B. This
relation and a x (b x ¢) = b(a-c¢) — c(a- b) imply that the surface integral in part

(a) vanishes. Therefore,
/d3rE2 J1 :/d3rE1 - Ja.

\4 14
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(c) The polarization of a point dipole at ry is Py (t) = pi(t)d(r — ry). The associated
current density is

0Py,

jr = 5 = —iwP), = —iwprd(r —rp).

Substituting this into the formula in part (b) gives

p1-Eo(r1) = p2 - Ei(rs).

Source: L.D. Landau and E.M. Lifshitz, The FElectrodynamics of Continuous Media
(Pergamon, Oxford, 1960).

20.15 Radiation from a Phased Array

(a) For a single time-harmonic source, the radiation vector is
d ‘
(8 T e % / d3r/j0 (I", t— T/C+f’ B r//c) = —w eXp[i(k‘r _ wt)] / ds’l“/jo (I‘/) eXp(—ik . I‘I).

For the case at hand, the total current density is j(r) = chv:ljo (r — Ry ) exp(—idy).
Therefore,

N
a = —iwexpli(kr — wt)] Z exp(—idy)j(r’ — Ry ) exp(—ik - ')
k=1

WE

= —iwexpli(kr —wt)] Y expli(k- Ry + ;)] /dgr'jo (r' — Ry) exp[—ik - (r' — Ry)]

B
Il
—

Q.

N
lz expli(k - Ry, + 6;)]

k=1

This result implies that the angular distribution of power has the form

N

2

dp
> expli(k - Ry + 1))
k=1

dQ

ap
dQ

0

(b) For observation points in the z-z plane, k = k(X sin 6 + z cos ) where w = ck. Let the
current loop lie in the z = 0 plane. In that case,

/d3r’j0(r’) exp(ik -r') = I%ds exp(ik - s)

1 1
= Iay [exp(—Qz'ka sin ) — exp(gika sin 0)

1
—2ila sin(§ka sin 0)y,
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because k - s = 0 for the two legs parallel to the z-axis and their contributions cancel.
The two loops are really at z = +a/2 and §; = §; = 0 so the coherence factor is

1 1 1
| exp(iika cos ) + exp(iika cos6)|? = 4 cos? (ika cosf).

Hence, the time-averaged angular distribution of power is

dP 1 I’a?w? 1
<dQ> = 40082(516'(10089) X ;ﬂ‘: Z—fr xsin2(§kasin0)
2 2[2 1
= B ST G2 (=kasin @) cos’(=kacosh).
2m2c 2 2

When ka < 1, dP/d o sin” @ . The long-wavelength radiation is magnetic dipole.

ka=2n ka < 1

(¢) The only change here is that §; = 0 and d; = 7 so the coherence factor changes to

1 1 1
exp(=ikacosf) — exp(=ikacos)|> = 4sin’(=ka cos ).
2 2 2

This gives

dP N u0w2a212 .92 1 . .92 1
<dQ> =—5m3, sin (ikasm@ sin (ikacosﬁ).

When ka < 1,dP/dQ) « sin? 20. The long-wavelength radiation is magnetic quadrupole,
i.e., two magnetic dipoles that (almost) cancel.

Z z
A

ka=2m ka < 1
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20.16 Radiation from a Square Loop

(a) The factor ' -+ = 2’ sin  is the same for the two current legs parallel to the z-axis. But
the current runs in opposite directions so their contributions to the integral cancel.
The contribution from the remaining two legs is

a(r,t) = y% /dyI[t —r/c+ (a/c)sinb) —1—37% /dy][t —r/c—(a/c)sinb,

a=y2a {I[t —7r/c+ (afc)sin @] — I[t —r/c — (a/c) sin@]} .

(b) The current is
I(t) = (Ipt/7)[O(t) — O(t — 7)] + [,O(t — 7).

Therefore,
i(t) = 2[(1) ~ 0t — 1) + “2L5(1) — “L5(t — 1) + Tod(t — 7) = L [O(1) ~ Ot~ 7)].

We thus get two terms for the scalar «(r, 0, t):

(1) 2aly/7 in the interval r/c — (a/c)sind <t <7+ 1r/c— (a/c)sind
(2) —2aly/7 in the interval r/c+ (a/c)sinf <t < 7+ r/c+ (a/c)sinb.

But 7 > 2a/¢, sor/c+(a/c)sinf < r/c—(a/c)sin@+7. Hence, the graph is as follows.

o)

2alylt 4

roa.
T+E—Esm9

—2alylt

r a
t+E+Esm0

Source: Prof. M.J. Cohen, University of Pennsylvania (private communication).
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20.17 Linear Antenna Radiation

(a) Because z = #cosf — Osinf and « || 2,

~ 110 sin 0
Evaa (1) = 4%0741‘ XExa(r,t) = 9%@(% t),

where

d [ . hod
a(r,t) = %/dsr’I(r/,tfr/chf-.r’/c) :/hdz’ %I(z’7 t—r/c+ 2 cos/c).

When I(z,t) = Ad(t), this gives

~Apgesing [ d ,
Epq(r,t) = @2H0CSMY s — 1
a(r,t) 0 - /41 dz dté(t r/c+ 2 cosf/c)

<A .
_ gAmctand / a2’ L5t — /e + o cosb)e)
—h

4r dz'

~ Apgctan @

= 0 [0(t —r/c+ hcosb/c)—6(t —r/c—hcosB/c)].

4dmr
The field is non-zero when r = +hcos@ + ct. From the derivation above, we suspect
that these arise from point sources located at each end of the antenna. In the y =0
plane, this would correspond to circular wave fronts defined by z% + (2 F h)? = 2t2.
To check this, expand the square and use 72 = 22 + 2% and z = rcos @ to get

r2 F 2hcosOr 4+ h? — 12 = 0.

This is solved by r = +hcosf + /2t — h? sin® §. This gives the desired formula in
the limit ¢t > h which is appropriate for radiation fields. The time delay between the
signals is

At=(t—r/c+hcos@/c)— (t —r/c— hcosf/c) = 2hcosb/c,

which is sensible on geometrical grounds (see figure below at left). The figure below
at right shows the antenna, the two circular wave fronts, the signal time delay, and
the effect of the tan # pre-factor on the amplitude of the electric field.

b ~
7
’ \
é e »
/ - ~ \
;o AN
L °o®
|/ 0 \
N )
| @
/2;1/ 0 e *
cos \ \.\ /‘ /
» S~_-" v
\ /
N -
~ e
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(b) When I(z,t) = AS(t — z/c), we get

~Apgsing M, d , ,
E,. = S —5(t — —
rad (T, 1) 0 o /_h dz dté(t Z'fe—r/c+ 2 cosb/c)

A flugcsinﬁ h , d ) /
N em/_hd'z E‘S(t Z'je—r/c+ 2z cosb/c)

A Apgesin
N 047r7“(1—c059) {0t —r/e+h(1 —cos)/d]

— Ot —r/c—h(1l —cosb)/c]}.

Now the field is non-zero when ry = +h(1—cos ) + ct. Again, in the radiation zone, a
circular wave front is centered at each end of the antenna. But now, r, =r_ = ct at
6 = 0 so the radii of the circles differ by 2h. The amplitude factor is sin6/(1 — cos ) so
the electric field pulses appear as shown below. The time delay is At = 2h(1 — cos8)/c
which is 2h/c larger than the previous case. This is reasonable because the travelling
wave of current propagates in the +z-direction (up the antenna) so the signal from
the top end is delayed (see figure below).

o

> LS
7y \ \\
|

(c) When I(z,t) = Aexp(—iwt), define k = w/c so

e P Actan O{exp|—iw(t — r/c + hcos0/c)] — exp[—iw(t — r/c — hcosf/c)]}

= @2Acsin(kh cos 0) tan 0 expli(kr — wt)].
apr
dQ
so, with z = kh cos @, the radiated power is

~ |t x af* ~ tan? O sin® (kh cos 6),

kh 9 kh

™ . 1
P~/dasinetan29sin2(khcos9)Nk;h / Pt - / dzsin® z.
0

22
—kh —kh
The second term dominates when kh < 1 and we get

sin 2kh
2kh

P~ 1~ k2R ~ W72,
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The first term dominates when kh > 1 and we get

) .9
Pwkh/dfmfﬂwmwwr
T

(d) When I(z,t) = Aexpli(kz — wt)],

ixa = ¢ _¥ {exp[—iw(t —r/c+ h(cos§ — 1)/c)]
— exp|—iw(t —r/c — h(cosf — 1)/c)]}
"~ in®
- wmf%éfmmufmwm@umfmn
2
Z—g ~E X al? ~ (1?2030)5111 [kh(1 — cos8)],

so with z = kh(1 — cos @), the radiated power is

P 2kh 2kh
P~ /d L sin [kh(l—cosQ ~2/d sin’ c_ /dZSlH z.
—cosf)?

The second term dominates when kh < 1 and we get

B sin 4kh

~ *lNk2h2N 22'
4kh wr

The first term dominates when kh > 1 and we get

2kh . 2

P~ / e ~ [Inz — Ci(22)3F" ~ Inkh ~ Inwr,
x

0

because Ci(z — 0) — Inz and Ci(z — o0) — 0.

Source:  G.S. Smith, An Introduction to Classical FElectromagnetic Radiation
(University Press, Cambridge, 1997).

20.18 Radiation from a Filamentary Current

(a) The wire is neutral so there is no scalar potential. The vector potential in the filamen-
tary limit is
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Since R? = 2% + p® and I(t) = 0 when t < 0, the only portions of the wire that
contribute to the field at (p, 0) at time ¢ satisfy 22 < c¢?t>—p?. Therefore, A(p > ct) =0
and

. Ho dz
A(p,t) =2— / —_— p < ct.
2m /2 2
J 24+ p
Performing the integral, we conclude that
Iy, |VEe2—p2 +ct
A(p,t):iﬂg Oln[ < pre O(ct — p).
T P

Apart from a d(ct — p) “burst” contribution that comes from taking the derivative of
the theta function in A(p,t), the electromagnetic fields are zero for p > ct, with

E(p<ct):f%i:f—uolo ¢ 7

—_—— 7
ot 2T A /82t2 — p2

and
0A - ,U()I() ct 1

S op o ;\/02t2—p2

(b) The ¢ — oo limit of these formulae gives zero electric field and the usual magnetostatic
formula for the magnetic field:

B(p < ct) = @

Iy -
B(t — o0) = Moo g,
2mp
20.19 Crossed and Oscillating Electric Dipoles

(a) Choose p(t) = p(X coswt + ¥ sinwt) so a(t) = p(tp) = —w?p(X coswty + ¥ sinwtr)
where tg =t — r/c. The angular distribution of power in the x-y plane is

dP

2a "~ It x al? ~ |(Xcosg 4 ysing) x (Xcoswtp + ysinwtr)|? ~ sin’ (wtr — ).

This is an emission pattern that rotates in the plane as shown below.

0N
=

A &

“

t=0 t=m/2w t=3m/4w
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(b) For an observation point along the +z-axis,
Biaq X F2 X o x £(y coswtp — X sinwip)

End X FZ X Byaq X Xcoswip + ysinwiy.

This is left circular polarization for emission along +z and right circular polarization
for emission along —z.

B

(¢) Now,
a = —w?p[kcos(wt — wlz|/c) + ¥ cos(wt — w|z + N/4|/c)],

so, along the +z-axis in the radiation zone,
B X FzXa
x  E{ycos[w(t —|z|/c)] — X cos[w(t — |z|/c) £ 7/2]}

x  *+{ycos[w(t — |z|/c)] F xsinfw(t — |z|/c)]} .

E;.q ¢ Fz X B,,q. This is left circular polarization for emission along both +z and
—z.
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20.20 An Uncharged Rotor
(a) The time-dependent dipole moment of the rotating rod is
Re{p(t)} = Re{po(x + iy) exp(—iwt)} = py coswtX + po sinwty.

Therefore, the (complex) electric field in the radiation zone is

d2 k2 i(kr—wt)
. uo{A } __ poei[fx{f"x(fﬁrif’)}}

E; g =1 X X —p(t —
rad =¥ 47y r dtQp( ) 47eg r

Using

% = sin 6 cos ¢F + cos 0 cos p@ — sin G and  § = sin @ sin ¢+ cos 0 sin $0 + cos ¢

shows that
P x {fx (X4iy)} = —€'?(cos 00 + ih).
Therefore,
k2 R R i(kr—wt+¢)
Erad (Ta 07 (ba t) = ﬂ (COS 00 + Z(b) €
4eg

The observer’s azimuthal coordinate ¢ occurs in the phase because the dipole is ro-
tating in the ¢ direction. Hence, observers at different ¢ see the dipole at different
points in its oscillation cycle.

(b) On the z-axis, § = 7/2, ¢ =0,and y = 2 = 0,50t = X, § = —z, and ¢ = y. Therefore,
the real electric field is

k2 i(kx—wt) k2 : t—k
E(r,t) = Po Re {iye } P sin(w x)y.

47e 47e T

This is linear polarization along ¥y, which makes sense because an observer on the
z-axis sees only a projection of the rotating dipole along the y-axis. On the y-axis,

0=n/2, ¢=n/2,and z=2=0,s0F =¥, 0 = —2, and ¢ = —%. The real electric
field is

E(r,t) =

k? i(ky—wt) k%py cos(wt — k

Popod izt _ Kpo cos(wt —ky)

4meg Y 4meg y

As in the previous case, this is linear polarization because only the projection of the
rotation along the x-axis is visible to an observer on the y-axis. On the z-axis, § = 0,
¢o=0,andx=y=0,s0r =2, 0 =%, and ¢ =y. The real electric field is

47e z

k2 A A i(kz—wt) k2 t— k2% -+ si ¢ k)
E(r,t) = 471_]:2 Re {(X +iy) € } po cos(w 2)X + sin(w z)y.

This is right circular polarization, as might be expected because the observer sees the
rotator in full.
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(¢) The time-averaged angular distribution of power is

dP r? Eipd 1 1o wipd
N E.-E*= 220 1 29y = 2210 (q 29) .
< dQ > 2¢pu 2cpg (4meg)? ( T+ cos ) 47 8mc ( T+ cos )

2m 71'

Then, since [ d¢ [ df sin(1+cos? §) = 167/3, the time-averaged total power radiated
00

is

dpP po w'pp 167 o 2w pj
(P) / d <dQ> 4m 8mc 3 4 3c

Source. Prof. C. Caves, University of New Mexico (public communication).

20.21 Pulsar Radiation
The time-averaged power radiated by a magnetic dipole pulsar is
dU o miz 4

ps-2 _H
<UZ = T s

where w = 27 /T If this energy is derived from a decrease in rotational kinetic energy,
du d (1 2
= oS (Z1w?) = SMRMw|
at dt (2 “ ) s MR W]
if we take I = 2MR?. We conclude that
3
m? — 6c
T Ho

because |w| = 271'\T|/T2. The “near field” is

MR2T|T)|

_ po 3(m - T)F —m
CAnm r3 ’

so at the pulsar surface (r = R) we get a maximum field of B = uom/Qﬂ'R?’. Hence,

6 po 3 . 6 o (3-108)3 _
B? = 2 _MT|T| = — 1077 - ~=—7-(2.8-10%)(7.5)(8 - 10~
P T T = (101! ( )(7.5)( )
= 5.5-10** T?

or B~2.3-10" G.

20.22 Neutron Radiation

The magnetic moment of a neutron is m = S where 7 is its gyromagnetic ratio and S is its
spin angular momentum. The precession of the angular momentum is driven by the torque
N = m x B. Therefore,
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ds
a:N:mxB:'nyB.

We have solved this equation in the past. If w = vB and © is the angle of precession
measured from the polar B-axis,

m, = mcos©
m, = msinO cos(wt)
m, = msinOsin(wt).

The initial conditions for our problem are satisfied by the choice ©(t = 0) = n/2. On the
other hand, the precessing dipole radiates and the (time-averaged) rate at which power is
lost is

Py — di Mo 1 « 9
{ >_/dQ<dQ>_4ﬁ4ﬂc3/dﬂ<|rxa|>
where

1. | — (£ - m)?
2 _ 2 _
= i i) = LR
If we neglect dO/dt compared to w, m = —mw?sinO(&sinwt + Jcoswt). Also, t =
% sin ¥ cos p+y sin ¥ sin p+2 cos 9. Then, because (sin® wt) = (cos? wt) = 1/2 and (sinwt cos wt) =
0, we find

2, .4 1
(|F x a|2> = chwSmQ ) [1 — §sin2 19] .

Consequently, integrating over the emission angles ¥ and ¢,

m2w? sin®> ©
(P)=—"—F—

6megcd

Finally, by conservation of energy, the magnetic potential energy U = —m - B is connected
to the radiated power by dU/dt = —(P). Therefore, since w = yB and m = vS = vh/2, we
get

d®  sin© 1 mw? 8m® B3

@ _ ith 2= - .
dt T W T 6mec®B  3rmegciht

It remains only to integrate the © equation. This is most easily done by writing

_dt _ d® _ d(cos©)
T  sin®  1—cos2@®’

so t/7 = tanh™ ' [cos ©] + const. With the initial condition ©(0) = 7/2, we get
O(t) = cos™ ! [tanh(t/7)]

as suggested. Our solution says that dO/dt ~ 1/7 so the assumption made above will be
valid if wr > 1. That is, the precession is very fast compared to the decay of the tilt angle.

Source: D.R. Stump and G.L. Pollack, Furopean Journal of Physics 19, 591 (1998).
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20.23 Radiation Interference
(a) Since the two sources emit in phase,

Eoc|f‘xp+f'><(m><f')|2.

The cross (interference) term is

Exp)-EXxX(mxt))=>Fxp) - m—rF m)=>Fxp)- m=r-(pxm).

This is non-zero unless p and m are collinear.

(b)

2T s

1
P:/dQ%o</d¢/d051119f‘~(p><m)oc(pxm)/d(cosﬂ)cosﬁzo.
0 21

0

20.24 Wire Radiation

(a) Choose a cylindrical surface concentric with the wire. For radiation, the flux of S =
(1/p0)ExB through the surface area element dS = pdfdz must be constant. Moreover,
|E| = ¢|B|. Therefore, both E and B must vary as 1/,/p.

(b) p(r,t) = —p(t) - Vi(r) is the dipole charge density. From the continuity equation,
j(r,t) = p(t)d(r) is its current density. Therefore, using superposition, the current
density of the entire wire is equivalent to the current density obtained when a a point
electric dipole p(t) = z(I/A) exp(—iwt) sits at every point on the z-axis.

(c) Let the observation point be (p,0,0). For a point dipole at the point z on the z-axis,
the variable r = pp + 22 so

< pd . o
B, aa Oc/dePQ-FZQ exp{z(w/o)\/p +z }

Now assume that z < p (even though the limit on the integration goes to infinity) so
we can ignore z* compared to p? in the denominator and put \/p? + 22 =~ p+ 2% /2p
in the exponential. This gives

~ oo ~
. . DT
B, X ?ezpw/c /dZ e ? w/2icp ?ezpw/c ZCp.
p p w

Therefore, By.q ~ 1/,/p as obtained in part (a). The Gaussian integral is dominated
by values of z where z < p. This justifies the approximation used.
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20.25 A Charged Rotor

(a) The electric dipole moment is

p(t) = /d3r rp(r,t) =0

because the charge density is an even function of . There is no electric dipole radiation.

(b) The current density is j(r,t) = vp(r,t) where v points (locally) in the direction of the
particle motion. This gives a magnetic dipole moment

/ddrr x j(r,t) /ddrr x vp(r 762 /ddrp wqé2

This quantity is time-independent so there is no magnetic dipole radiation.

(¢) The electric quadrupole moment is

2wy w2

1
Q=§/d37"p(r)' yr y? yz |,

2 zy 22

where the charge density (in cylindrical coordinates) is

—_ [5((;5 - %wt) +0(p—m— %wt)

We have z = 0 so, because x = rcos ¢ and y = rsin ¢, the integration above gives

cos? gwt cos %wt sin th 0 14 coswt sin wt 0
Q(t) = gf* | cosiwt sinwt sin® Lwt 0| = §q€2 sinwt  1—coswt O
0 0 0 0 0 0

(d) For quadrupole radiation, we need the components of Q-t. It is simplest to begin with

Qr = %)A( [Qvux + wa] + %S’ [an:x + nyy]

1 1
= 5(]625( {z(1+ coswt) + ysinwt} + 5(]6237 {zsinwt + y(1 — coswt)}.

Therefore,

1 d3 362
wa(t) =% [(xsinwt — y coswt)x — (z coswt + ysinwt)y] .
c

ra(r,t) = )
c

From this we compute

rxra = (xzcoswt—+ yzsinwt)+ (rzsinwt — yz coswt)y

+ [(¥* — 2%) coswt — 2zy sinwt] 2,
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SO

(e xra?) = (2% +y*)2%*(cos® wt + sin® wt) + (y* — 2%)? (cos® wt) 4 4a?y? (sin® wt)

—2zy(y* — 2?)(sinwt cos wt).

The time average of the last term is zero so

2 2,2 1 2 22 1 1
(J# x a)?) = (@ J;4y )2 +§(x ;y) :sin2c0529+§sin40:5(1700549).

We conclude that

2,6 p4
<dp> M2 xal?y =2 TET (1 costn).

dQ) 47 4e 47 327c3

20.26 Rotating-Triangle Radiation

Let the distance from the axis of rotation to the charges be R. The electric dipole moment
is
p= /d3rrp(r,t).

The positions of the charges are x; = Rcos(wt + ¢;) and y; = Rsin(wt + ¢;) where ¢ = 0,
¢ = 2m/3, and ¢y = 47 /3. We therefore have

Dy = qZ:@ Rq (cos(wt) + cos(wt + 27/3) + cos(wt — 27w/3)) =
and, similarly, p, = 0. Therefore, there is no electric dipole radiation.

The current density is j(r,t) = vp(r,t) where the velocity v points (locally) in the direction
of the particle motion with magnitude v = Rw. The magnetic dipole moment is

3wqR?
/djrrx.]— /ddrrxvprt wz/dsrprt w2q Z.
c

The magnetic dipole moment is time-independent. Therefore, there is no magnetic dipole
radiation.

The components of the electric quadrupole tensor are

1
Qij = §/d3rp(r,t)rirj.

The symmetry of p with respect to the z-axis dictates that @},, = 0. Since the charges all
lie in the plane 2 =0, Q.. = Qy. = Q.. = 0. Furthermore,

3
Qv = Z = —q (cos® (wt) 4 cos® (wt + 27/3) + cos® (wt — 2m/3))

2

I\U\Q

)

= 4 (cos(2wt) + 1 + cos(2wt + 47w /3) + 1 + cos(2wt — 47/3) + 1)

’J; ‘

3 R? 3
= szq + Tq (cos(2wt) + cos(2wt — 27 /3) + cos(2wt + 27/3)) = ZRQq (20.1)
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and, similarly, Qyy = Quz = %RQq. Since @ is time-independent, there is no electric
quadrupole radiation either.

20.27 Collision Radiation

The dipole moment for this situation is given by
P = qiT1 + g3Ta.
There will be no dipole radiation if p = 0, i.e., if
¥ + goty = 0.
On the other hand, conservation of momentum tells us that
miT] + maly = constant = mir; + maotrs = 0.

Consequently, there will be no dipole radiation if

o _ e

my ma ’

20.28 Radiation of Linear Momentum

(a) If S = py 'E x B, the law for for conservation of energy for a spherical volume with

radius r is
AUtot :_/dA~S:—/er2f~-S.
dt

The angular distribution of the rate of radiated energy is defined as

dP . 9.
d—Q—Tlggor r-S.

If T = ¢[EE + BB — LI(E? + ¢?B?)], the corresponding law for conservation of

linear momentum is
%:/dA.T:/er?f-T.

Therefore, it makes sense to define the angular distribution of the rate of radiated
linear momentum as

dPEM _ . 92 A
aaq ~ Awmrre T

(b) Because ¢Byaq =T X Eppq and #- E;pq = 1+ Brag =0,
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Similarly,
dPgwm . . 1
o0 = 6 [EraBra + ¢ BraaBra — 51(ELq + ¢ Bla)l

= lim 7”2%0[ 2 L EB R

ra rad
r—00

The last equality follows because I;; = d;; are the components of I so 7;d;; = 7; means
that © - I = &. Moreover, Erad - Erad = ¢?Brad - Brad, 50

dPgm
dtdS)

. 9 ~
= lim 7°€[Erad - Eraq T
T—00

(c) Since P = dUgy /dt, we see from part (b) that

dPgy _ T dUpm
dtdQ) ¢ dtdQ)’

This is consistent with the plane wave result that the linear momentum density ggn =

UEM IA{
76 .

20.29 Angular Momentum of Electric Dipole Radiation

(a) By direct computation,

dL ; OE OB al al
dt—eo/dr{rx<8th>+rx(Ex8t>}+§1lepl+§1r,xF“
14 i= i=

where v; = dr;/dt and F; = dp;/dt. The next-to-last term is zero because v; || p;
and, in what follows, we will write the last term in the form

N
Zri x F; :/d?’r/rx{pE—l—ij}.
i=1 i

Substituting the Maxwell equations

1 OE . 0B
CTE:VXB_MOJ and E:—VXE
gives
dL

:eo/d3r {rx[(VxcB)xcB]—rx (ujxB)}.
v

dt
The current terms cancel so, using a vector identity,
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dL o 3 1 2
- = eo/d T X {(cB-V)cB— 2V(CB) }
v

+€()/d3TI‘X {(E~V)E—;VE2}+/d3rr><pE.
v v

Now use the vector identity r x (a-V)a=a- V(r x a) to write

e [d*rr x (E-V)E+ [d3r(rxE)p
v v

= ¢ [d*r{E-V@xE)+ (rxE)V-E}
v

= ¢ [d*rV-{E(rxE)}
v

€0 deE (I‘ X E)
s
Because V - B = 0, the magnetic term can be written similarly:
eo/d3rr>< (cB-V)cB:EO/ds.cB(rch). (2)
v s

Finally, because V xr =0,

%/d?’rV(EQ—chB?) Xr = /d3rVX {r(E* + B} = L /der(E2+c232).

v 14 5
(3)

[N
o |

Combining (1), (2), and (3) gives the desired result,

L 1
%:60/dS-{cB(rXCB)+E(FXE)}+56()/dSXT{E2+CQB2}, (4)
S S

This is a continuity equation which relates the time rate of change of angular mo-
mentum in a volume to an “angular momentum current” through the surface of the
volume.

(b) For a spherical volume, dS = £R?d() and the last term in (4) always vanishes. But
in the radiation zone, E;,q(r,t) and Byaq(r,t) for a time-dependent dipole are both
transverse to . This means that the first term in (4) vanishes also. The hard-to-
believe conclusion is that the radiation fields carry no angular momentum out of the
volume V.

(¢) The foregoing suggests that we must keep terms other than just the radiation fields in
the first integral in (4). The structure of the integrand is

r (field) (field) r*ds,

so only terms where (field) (field) ~ 1/r* will survive in the limit where the sphere
radius goes to infinity. We have seen that the exact E(r, t) and B(r,t) for an oscillating
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electric dipole contain terms that vary as 1/r (radiation zone), 1 / r? (intermediate
zone), and 1/r® (near zone). Hence, the surviving terms will be

dL
T / dS - {cByaq (r X cBint) + ¢Bint (r X ¢Bhag)
S
+ Erad (I’ X Eint) + Eint (I’ X Erad)} .

But dS - E;.q = dS - Byaq = 0 as explained above so we need only

dL
E = € / ds - {CBint (I‘ X CBmd) + Eint (I‘ X Emd)} .
S
On the other hand,
Ho . N
Bint = gy p(t—r/c) x 1,
so dS - Biyt = 0 as well. This leaves us with
dL . 3
E = € ds - Eint (I‘ X Erad) = €0 (ds : Eint)CTBrad = €0 dQr - Eintcrl Brad~
S S S

Inserting the appropriate fields for a point electric dipole gives

dL €0 1 o ~ . ~ . .. ~
&= _ Q ) — .
dt c 47T€() 47T d {3(1’ [p]ret) r [p]ret} [p]ret Xr
S
= 80 L 40 ([l % 8) - [Bheo)
47 27 ¢ e
S

(d) If we write out

r = sinfcos¢px + sinfsingpy + cosfz, we find that the only
contributions to (p x

) (f - p) that survive the angular integration are
X(Pyp. cos? 0 — p.py, sin? @ sin” ¢)
+ 3 (p. Do sin’ 0 cos® ¢ — P, p. cos® 0)
+&(p, py sin” Osin® ¢ — i, p, sin” 0 cos? ¢).
Every one of the non-zero angular integrals gives a factor of 47 /3. Consequently,

dL o . :
E = % [p]rct X [p]rct-

20.30 Dipole Moment of the Slotted Sphere

The text gives the transverse electric field of the slotted sphere as

o~ ld d
Ey _C;Azrdr {rhé (kr)} deP[(COS@)7
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where
V 20+1 sin6yP}(cosby)

?2€(€+1)d% [rh§1>(kr)}

L= =

In the numerator, we get the radiation field by using the kr > 1 limit,

_1 : 1
k17lr>£11 h (kr) = exp{ilkr — 3 (£ + 1)7]}.

In the denominator, we use the kR < 1 long-wavelength limit,

o (2e=1)N
klvlgll h (k )= —i (kr)t+1 -
The result is
&) 26 + 1 kR)i-‘rl . 1 d exp(ikr)
By ~ P d, explikr)
9 VZ 2+ 1) (20— 1)1 sin 0y P, (cos@o)ch9 7 (cos 6) .

Since kR < 1, only the £ = 1 term survives. Moreover, P! (cosf) = sin . Therefore,

ik
Ey ~ 72(kR)2VSin2 o sin 9 PR

This may be compared to the general time-harmonic electric dipole field with p = pz:

2 » 2
E=- K [fx (F x p)]exp(zkr) __kw sin 0

4meq r 4eg

exp(ikr) 6

Therefore,
p = 3o RV sin® 6, z.

Source: J. Van Bladel, Electromagnetic Fields (McGraw-Hill, New York, 1964).
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Chapter 21: Scattering and Diffraction

21.1 Scattering from a Bound Electron

The total scattering cross section is

(r)

Oscatt = 9
5€0cky

where (P) is the total power radiated by the electron and the electric field of the incident
circularly polarized wave propagating in the z-direction is

E(r,t) = Ey(coswx + sinwty) exp(ikoz).
The latter sets the electron into small-amplitude motion around z = 0 according to
mi + kr = —eE(z = 0,t) = —eE(t).

The steady-state solution of this differential equation is

For the radiated power, we use the cycle-average of Larmor’s formula:

1 2€? 1 €2
(P) = 3 (laf’) = 3 lal”
4dmey 3¢ 4dmey 3¢
If wy = k/m, the acceleration we need is
(0) = (1) =~ B(1) © E()
a(t) =+¥(t) = — =
mw? — k m (1 — w}/w?)
Therefore,
1 e e*E} 1 8T 4 1
Oscatt — 5 2 = T -
U Ame 3 e (1 - wf /) Fe0cE] 3 (- wffwr)

Here, r, = €2 / 4meyme? is the classical radius of the electron which appears in the Thomson
scattering cross section.

21.2 Scattering from a Hydrogen Atom

According to Example 1.2, the cross section for scattering from an ensemble of electrons
with number density n(r) is

do _ dUT hom

2
= T n(q)

ensemble
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where
n(q) = /d37’ n(r) exp(—iq-r).
The electron number density associated with the 1s orbital of hydrogen is

2

1
= — -2 .
—3 exp(—2r/ap)

n(r) = ‘ \/iT%eXp(—r/aB)

B
Therefore,
27 9 . .
n(q) = —5 [ drr exp(—2r/ag) [ dfsin6exp(igrcost)
Ta
Bo
2 T 2si
= T/d?ﬂr2 exp(—2r/agp) SInar
aj, qr
0
41 7 .
= —-Im drrexp[—r(2/ap — iq)]
aj q )

Integration by parts gives

41 1 1
n(q) = %glm {(2/QB —iq)? } " 1+ (qap /27

The cross section is proportional to the absolute square of this quantity, which is the desired
result.

Source: J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, New
York, 2001).

21.3 Double Scattering

This is elastic scattering, so kg = k1 = ko = k. Three orthogonal triads of unit vectors
are (€1, €q,k), (&],65,ky), and (&, €&}, ky). The out-of-plane vectors satisfy &] = &, = é{.

Consider the first scattering event shown below.

If the incident wave is &y Ey exp[i(kg - r — wt)], the radiated electric field is

k*aE . . R .
E= 471'7“10 expli(kry — wt)] [(kl X €y) X kl} .
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For left circular polarization, our convention is & = (&; + iéy)/v/2. Therefore,

[1;1 X (é1 + Zég)] X 1;1 éé X 1;1 ,7é1 (o)) 01 X lA{1 o éll + ZéIQ COS 01

vz vz T T v

and the electric field after the first scattering event is

k*aE, &) + 1é] 0
E -~ 270 expli(kry — wt)]iel 1€ Cosh

47mry V2

The second scattering event is exactly like the first. Therefore, iteration of the preceding
calculation with a distance r and a scattering angle 6, gives the observed electric field as

k4042E0 )
E= 677 re expli(kr) + kry — wt)]

&/ + i€ cos by cos by

V2

Source: Prof. C. Baird, University of Massachusetts, Lowell (public communication).

21.4 Rayleigh Scattering a la Rayleigh

Let A = |Egatt|/|Einc| be the amplitude ratio. The speed of light has dimensions of
length/time and none of the other listed quantities has time as a dimension to cancel it
out. Therefore, A cannot depend on c¢. Otherwise, we must have A4 o« 1/r so the flux of
energy is the same for all distant observers. It also stands to reason that the scattering
increases as V increases. The simplest guess is A o« V. Therefore, if N is an integer, the
combination

v
Ao =AY
r
must be dimensionless. This implies that N = —2. Therefore, the scattered intensity
I= AP oc A7

This is Rayleigh’s law.

Source: Lord Rayleigh, Philosophical Magazine 41, 107 (1871).

21.5 Rayleigh Scattering from a Conducting Sphere

(a) Let Ei,q be the field produced by the dipole p at the center of the sphere. The boundary
condition is that the tangential electric field vanishes. In other words,

X X 1 [3t(r-p)—p . p
OZPX{E0+Eind}5:rX{E(]+ T { s - EU_W '

r3

Therefore,
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(b) Similarly, let Bi,q be the field produced by the dipole m at the center of the sphere.
The boundary condition is that the normal component of the magnetic field vanishes
at the conductor’s surface. In other words,

~ . o 2
Of,{BO+Bind}S_f.{B()+w [i’w@"nﬂm] }_f.{BM /j;;“}
S

47 73 4ma’d
Therefore,
2 3
m = — e B().
Ho
(¢) The scattering cross section is
2
do—scmtt k% " ~ ~ 2
- = k k x (k 1
< 0 > (47760Egc xm ko (koxep)| (1)
where p = 4mega’ Eyéy and
27a’ 2ra® E,
mzf’/T(Z ():—ﬂ—a O(k[))(éo).
Ho Clo
Substituting these into (1) gives
do, . . 1~ A 2
<C;§;“>=a2(koa)4 ’kx(ko xéo)—ikx(kxéo) . (2)

There is no loss of generality if we choose ko = 2z and write

k = cos 0z + sin 6%

for the scattered wave vector and
€9 = cos ¢X + sin ¢y

for the incident wave polarization vector. We find straightforwardly that

k x (IA< X &) = — cos® 0 cos X — sin ¢y + sin @ cos  cos Hz

and
k x (l;o X €p) = — cos 0 cos X — cos 0 sin ¢y + sin 0 cos Pz.

Using these to evaluate (2) gives

<d"tht> = a’(koa)" |cos B cos ¢(2cos 6 — 1)X + sin ¢(2 — cos )y

+ sinfcos ¢(1 — 2cos 0)z|” . (3)
Ultimately, we are interested in the average over the direction of polarization:
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2T
dOscatt 1 doscatt
QOseart — = [ dp (Lt
< dQ) >unp01 2 ¢< dQ) >
0

Therefore, after performing the absolute square in (3), we may replace factors of sin? ¢
and cos? ¢ by 1/2. The final result is as advertised:

doscatt 9 4 5 2
= —(1 — .
< 10 >unp01 a’ (koa) 8( + cos” 0) — cos 0

(d) We return to (2) and the use the circular polarization unit vectors

o — X tiy
NG
Now,
eoc? O% T i 4 . 0%
K x (k x &) = cos” 0X F iy + sin 0 cos 0z
V2
and
i (f{o X &) = — cos X F icos Oy + sin 0z
V2
Using these to evaluate (2) gives
doge; 1 1 ., (1 .
< Z;;tt >i = §a2(k0a)4 cos 6 <2 cosf — 1) x+i (2 - cos@) y

1 2
+ sinf (1 - 2cos€> Z

Being careful to use the complex conjugate when evaluating the absolute square gives

doscatt 2 4 ) 9 doscatt
—scatt = g S — — ( ZZscatt )
< ) >ﬂE a’(koa) 8( + cos” ) — cos 6 Q)

Source: D.S. Jones, The Theory of Electromagnetism (Macmillan, New York, 1964).

21.6 Scattering from a Molecular Rotor

Let the incident field be E = Eq exp[i(k - r — wt)]. The dipole torque N = p x E sets the
molecule into rotation and we assume that r = 0 is the position of the center of mass. The
angular distribution of electric dipole radiation is

dP o

a0 Tonzolt X Bl (1)

To calculate p, we note that the torque equation of motion for the moment is
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dQ
I— = E. 2
o P (2)
In addition, we are told that
dp
— =0 .
7 X p (3)

Using (2) and (3),

. E
I'j:ﬂxp+ﬂxp:(r)>;>xp+ﬂx(QXp).

We are advised to drop the term quadratic in Q. Therefore,

p’E— (E-p)p

pr PR (@)

Retardation plays no significant role here. Therefore, if 6 is the angle between r and p, the
differential cross section is

dO’scan - ]. dP ]. ‘LLO

2 /1212
- 70 p|* 'QQZM-’Z@_
s ‘<Sinc>‘<dQ> %eocEg 167TZC<|p| ) sin sin (5)

8r2E?

Integrating (5) over all observation directions gives a factor of 87/3 and it remains only to
average over all orientations of p to get the total scattering cross section:

2
Oscatt — A X i/dQ <‘p‘2> (6)
37rE(2] 4 P

If © is the angle between E and p, (4) gives

2,4

. 1 , E'p
b2 = Vil [IEPp" +[(E-p)[p* - 2|(E - p)Pp’] = 2

(1 —cos? ©).

The average of cos? © over a sphere is 1/3. Therefore, taking account of a factor of 1/2 from
the time-averaged (|p|), (6) becomes

o Biptl et
Oscatt = o

3nEZ I 3 9ml?’

Source: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford,
1962).

21.7 Preservation of Polarization I

From the data given in Problem 21.5, the electric and magnetic moments induced in the
sphere are p = aEy and m = B, where b = —a/2. Therefore, if k is the scattered wave
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vector, the sum of the electric and magnetic dipole radiation fields produced by the sphere
has the form

Eng <k x (k xp)+kxm/c=k x (k x aEy) +k x 7By /c.
On the other hand, Ro X Eq = ¢By defines the incident wave. Therefore,
B o¢ o (o x ko) x Ba] = Brag oc ke [(1; - L) x EO} ,
or, because k- lA<0 = cos ¥,
Eiaq x (k — %1;0)1; "By — Eq [1;- (k — ;1;0)} = (k— %1;0)1; "By —Eo(1— %cos@).

This shows that the scattered electric field vector is parallel to Eg if

Hence, the deflection angle from the incident direction is

- 1
0 = cos (ko - k) = cos™! 3= g

Source: D.S. Jones, The Theory of Electromagnetism (Macmillan, New York, 1964).

21.8 Scattering and Absorption by an Ohmic Sphere

(a) From Section 17.6, the dielectric constant of a simply conducting (ohmic) sphere is
N
w)=¢€y+1—.
e(w) =€ 5

The skin depth is large, so the (static) dipole moment calculation we need is very much
like the one done in Example 6.3 of Section 6.5.5. Assume a static field E = Fyz. The
potentials inside and outside the sphere are

Yin = Arcosf and Yout = |[—Eor + (B/r*)] cos .

The matching conditions are

8 ou 8 in
@in(a) = @out(a) and €0 gr . ) (w) ;; .
These conditions are satisfied if
A:—3LEO and B = E(W)ieo a3 0-
e(w) + 2¢9 e(w) + 2¢
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Now, the potential outside an electric dipole aligned with the polar axis is

Therefore, the electric moment of the ohmic sphere is

e(w) — €

e(w) + 2¢ @’ Eo. (1)

p = 47meg
(b) From the text, the absorption cross section for an ohmic (j = ¢E) volume V is

1 / 3,0 1 o 3 2
Tabs = T dT<_]'E=7*/d’I“E|.
Ry ' Taemz )

From part (a), the electric field inside the sphere is

3
E=-As= ——V __F,.
e(w) + 2¢
Substituting this into the foregoing, we get
o/ec

= 12ma® ————.
Oabs Ta 9+ (o’/eow)2

(¢) The radiated electric field due to dipole scattering is

k* expli(kr — wt)]
4eg T

expli(kr — wt)]

Eiqa =~ [f‘ X (IA‘ X p)] = Ey

£(r).
Therefore, using (1), the scattering amplitude is

k2 €—e€y -
f(r)=— rx (r =—k—ad I X €&).
(1) 47T€()E()r x (f x p) 6+260a rx (Fxé)

The forward direction is = RO where 1A<U - €9 = 0. Therefore,

~ €—€ 3
f(ko) = kQﬁa“eo.

Moreover, since € = ¢y + i€” for our problem,

ew)—e  3ee”
e(w)+26 9k + €72

Im

Collecting results, the optical theorem asks us to compute

4m PN At 4 4 3eyojw ; o/epc
—I [fk . *} = —kd T = 1210 — .
P (ko) - & g 9e2 + 02 /w? YT (0/eow)?

This is indeed 0,15 computed in part (b) above.
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(d) Our dipole scattering approximation is most correct when ka — 0. In that case,
Taps X (ka)? completely dominates the Rayleigh scattering result that ogea o (ka).
The latter plays a role in the optical theorem at higher frequency when it is necessary
to go beyond the dipole approximation.

Source: J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

21.9 Scattering from a Dielectric Cylinder

By symmetry, the scattered electric field has a z-component only. Moreover, none of the
fields can depend on z. This is the same situation as was studied in the text for the
conducting cylinder. Therefore, E, is a linear combination of Bessel functions in the radial
variable and a complex exponential in the angular variable. There are no sources, so the
Ampere-Maxwell law gives the associated magnetic field components as

i OF, d i OF,
=—— an py = ———.
’ wp 0o T w 9p
Inside the cylinder, we let k = w?epuy and write
E,in = Z cm JIm (kp) exp(ime)  p < a. (1)

Outside the cylinder, we let w = cky and write the electric field as the sum of the incident
wave with amplitude

o0

Ez,inc = EO eXp(ikO . P) = EO Z " Jm (kop) eXp[Zm(¢ - (b(])]

m=—00

and an outgoing scattered wave with amplitude

E, out = Z by HV (Ko p) exp(ima) p > a. (2)

m=—0oQ

The matching conditions are continuity of the tangential field components E. and By at
p = a. Using all the foregoing, these conditions read

o0 oo

Z cmJIm (ka)exp(img) = Ey Z i" I (koa) explim(éd — ¢o)]

m=—0oQo m=—0o0o

+ Y b HY (koa) exp(imo)

and
k Z e d), (ka)exp(img) = Eoko Z i" J} (koa) explim(p — ¢o)]

+ ko Z b H'Y (kga) exp(ime).

m=—0o0
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Each of the Fourier components (in the variable ¢) are linearly independent. Therefore, the
two conditions above reduce to

T (ka)en — HWY (kga)by, = i™ Jy, (koa) exp(—imey ) Ey

and
k
k—J,’n(ka)cm — H'Y(kya)b,, =i"J!, (koa) exp(—imeo)Ep.
0

These are two linear equations in two unknowns. Hence, we find without difficulty that

b _ Jm (ka)JTIn (koa) - (k/ko)‘]rln (ka)‘]"” (k’()a) Z'm exp(—im(bo)E()
(k/ko) H3 (koa) I}, (ka) — H\") (Koa).J, (ka)

m

and
¢, = ! (koa) Sy, (koa) — " (ko) Jm (koa) 1™ exp(—imeg ) Ey
(ko) HY (koa) !, (ka) — HSY (kea) T, (ka)

The numerator in the ¢, expression is a Wronskian relation with the value —2/7kya. Oth-
erwise, substituting these formulas for b,, and ¢,, into (2) and (1) completes the solution.

21.10 Preservation of Polarization I1

Physical optics assumes that the current density on the illuminated surface of a perfectly
conducting object is K = 2n x B, where By is the incident magnetic field. The current
density is assumed to be zero on the non-illuminated portion of the surface. Now, the
electric field radiated by a time-harmonic plane wave is

ik

expli(kr — wt)]
Ameyc '

Erad = -

k x {f{ X /d3r’j(r’|w) exp(—ik - 1) .

Therefore, in the physical optics approximation, the integrand contains the factor

k x [k x (i x By)] =k x [(k - By) — By (- k)].
In the backward direction, k= —kg. Also, all radiation fields are transverse. Therefore,
k-By=—-ky By =0,

because the incident plane wave is also transverse. Using these two facts again, we see that
the integrand contains the factor

—(k x By)(n- k) = (kg x By)(i- k) = ~Eo(h-k).
This proves the assertion because all contributions to the integral are proportional to Ey.
Source: E.F. Knott and T.B.A. Senior, Electronics Letters 7, 184 (1971).
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21.11 Scattering from a Conducting Strip
(a) The diagram shows that
ko = ko cos(m — ¢g)%x — ko sin(m — ¢o)y = —ko cos goX — ko sin oy
Therefore the incident electric field is
E¢ = zEj exp(iky - r) = 2E) exp[—iko(x cos ¢y + ysin ¢y )]
and the incident magnetic field is
By = ko x Ey = (—sin ¢ox + cos oy ) Eo exp[—iko (x cos ¢y + ysin ¢p)].

With Zy = v/ /€0, the physical optics current density on the top surface of the strip
is

. L2Ey .
Kpo = 2y x Bo/,u0|y:0 = zZ—OO sin ¢y exp(—ikox cos ¢p).

(b) The exact vector potential produced by a time-harmonic surface current density is

/ ; )
A(I‘) — @ dS/K(r )exp(Zk‘r r |) .

4 |r — 1’|

If we write r = p + 2z and similarly for r’, substituting the physical optics current
density from part (a) gives

w 2E [e’e] /GXp (’Lk\/lp _ p/|2 + (Z _ Z/)?)

~ Ho el . .
A(r) = z—/daz —— sin ¢g exp(—tkz’ cos / dz

From the given integral, a change of variable shows that

oo

(1) B exp(iay/x? + y?)
irHy ' (az) = | dy —
VIt +y

— 00

Therefore, with x = |p — p/| and y = z — 2/, we get

) E w
A(r) = 22070 Gin /dm’HéU(ldp — p'|) exp(—ika’ cos ¢y).
0

(¢) The asymptotic behavior of the Hankel function is

ng{)lo Hél)(x) = \/Zexp[i(x —7/4)].
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When p > o/,
/
lp—p'I = p* +p? —2pp cos§ ~ p? (1 —2% cos¢> :
p

Therefore, k|p — p'| = p — 2’ cos ¢. The x’ dependence can be dropped in the square-
root pre-factor of the Hankel function, so

Jim Hy (ko = p') = | [ 7 exolik(p — o' cos 0))

Substituting this into the vector potential expression of part (b) gives

w

L o B ik
Aa(p, o) = ”iqugo sin ¢ exp(ikp) /dx’ exp[—ikz’(cos ¢ + cos ¢p)].
0

Vkp

With o = cos ¢ + cos ¢y, the integral is

wesp (Lrwe ) S2F0).
2 %k‘wa

Finally, E;.q = —itwA,.q and the two-dimensional cross section is

d E.a? 2
AN L0 | e Y

sin® [2kw(cos ¢ + cos ¢y)]
o T EZ T 7k

(cos ¢ + cos ¢y )?

Source: C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

21.12 Physical Optics Backscattering

(a) We begin with the expression derived in the text for the differential cross section,
specialized to the case of a conductor where all the current flows on the surface:

dascatt o k() ?
dQ  \dregE,c

Substituting into this formula the physical optics approximation for the surface current
density,

2

k x /dS’ K(r'|w) exp(—ik - ')

2n x By at illuminated surface points
oK =
0 at shadowed surface points,

calls for k x (0 x Bjye) = ﬁ(f( Bine) — Bipe (i R) However, the backscattering wave
vector k is simply the negative of the incident wave vector. Therefore, k - By, = 0,
where By, = Bp exp(—ik - r) and ¢|Bg| = Ey. Hence,
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2
/dS’ k - i exp(—2ik - ')
s

2
_ k()

TR = g2

(b) The backscattered wave propagates along the direction k = sin 6 cos ¢X + sin 0 sin ¢y +
cos 0z. Because n’ = z,

a/2 b/2
kz
oR = 402 cos® 0 / dx / dy exp[—i(2kpx sin 6 cos ¢ + 2kyy sin 0 sin )]
™
ba/2 —b/2
K o 0 sin(koasinfcos @)  sin(kobsin@sin ¢) |
T 42 ko sin 0 cos ¢ ko sin 6 sin ¢

The plate area is A = ab and ko = 27 /. Therefore

2
= —_— S 9
IR T 8 koa sin 6 cos ¢ kobsin 0 sin ¢

A? sin(kgasin @ cos ¢)  sin(kqbsin @ sin ¢) ‘2

Source: A.Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-
Hall, Upper Saddle River, NJ, 1991).

21.13 Born Scattering from a Dielectric Cube

(a) If ¢ = k — k¢ is the difference between the incoming and outgoing scattering wave
vectors (w = ck = cky), we learned in Example 21.3 that the Born approximation to
the differential cross section is

2

doBorn . k(Q]Xe ? ~ 52 3 . /
o) (47T |k x Eq| /drexp(zq~r)

The integral of interest is

/dgr’ exp(iq-1’) = /dw' exp(iq, o) X /dy’ exp(igqyy’) x /dz’ exp(iq.z’).
v 0 0 0
Moreover,
, in(0.a/2
/dx' exp(iq. ') = aexp(iqma/Q)S%.
0
Therefore,

doBorn _ lc%VX(i 2 \f{ < B |2 sin(gya/2) sin(gya/2) sin(g.a/2) 2
dQ 0 gz a/2 qya/2 q.a/2 '
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(b) Let ky = z and E; = x. When ka > 1, near-forward scattering dominates and
|k x Eg| =~ |ko x Eq| = 1. The diagram below shows that, in the same limit, the area
element k2dS) is essentially the area dg.dg, of a circular disk perpendicular to ko:

dSx = k*dQy =~ dq,dq,.

i
\/

Therefore, in the ka > 1 limit when ¢, — 0, the fact that kg = k means that

. . dosorn _ . (kVxe\’ / sin® (g.a/2) / sin’ (g, a/2)
1 =1 dQ ~ 1 dg, dg, b8 2)
ka1 OB T S | PR a0, k’alr>£1( A b (a/22 | " (g,a/2)

The integrals are dominated by contributions when ¢, g, ~ 1/a so the limits can be
extended to +oo with little loss of accuracy. Therefore,

2
oo
k? a4xg sin? u _ k? a4xz
u? 4

lim OBorn —
ka1 o™ 47?

(c) From the definition of the cross section and the result of part (a),
Erad - 1 /di - kQaSXe
E() - T dQ) - drr

The absolute-value term gets no larger than one. Therefore, with r = a, the weak
scattering criterion is indeed

sin(g,a/2) sin(gya/2) sin(q.a/2)
qza/2 qya/2 q.a/2 |’

1> kZClzxe = O'Born/a'QXE'

Source: Prof. K. Likharev, SUNY Stony Brook (public communication).

21.14 Scattering from a Short Conducting Wire

(a) We need the time-harmonic scattered field, Eg.aty = —V¢ + iwA, in the immediate
vicinity of the wire. In that case, klr — r'| = kR < 1, so

1 exp(ikR) 1 / 5, p(r) , 1 g 0 3
= ds’ / ~ d’r' —~2 |1 kR — —(k — —(k
o(r) 47r60/ 5" o(r') 22 o [ @ P |1 iR = SR - (kR
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and

Ar) =22 / as' K (r') SPUH 1o / PRI [1 vikR— Ly - é(kR)ﬂ |

Therefore,

Z- Esca‘tt ~

/dS’ r') [+ Skl k:3R+ ]R-z
4meg

Wy , Nl 1, 1.5 9
K — ]
+ /dS (r)[R—i—zk‘ 2k:R 6k3R +

Moreover, from the continuity equation,

do d Iy 2

we deduce that ]
(2) ilyz
g =
Tah?w

The perfect-conductor condition requlres Eqcatt at the r = 0 center of the wire. From
that particular point, R = /a2 + R-2=—2 / R and the integrand is an even
function of z’. Therefore, with s = z’/h and Ry = + (a/h)?,

1

X ily kh)2 i

2 Buan(0) &~ " megwh? /dss [ R} 2Ry +§(kh)
0

1
1 1
- 5(lm)?/ds [Ro +z‘k~h} (1—s?)
0
Performing the various integrals, the perfect conductor condition sets z - Eqy equal to

ily ln \/7 +1 1
Tegwh? 2 \/W -1 + (a/h)?

x {1 _ %(k:h)Q[l + (a/h)Q]} _ iz(kh)3> .

Using a < h, we finally find that

—imegwh? 2 By
{[In(2h/a) =11 - 3(kh)?] —ig (kh)*} '

Iy =

(b) Dropping the indicated terms, the surface charge density on the wire is

o(z) = ifoz :60E L z-Eq.
rah?w a [In(2h/a) — 1]
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The corresponding electric dipole moment is

h

R 22 1 R 4degh? . R
p= z/dSa(z) = 27ra/dz ZW(%EU) = WL)_H(WEO)Z.

N>

For a unit-amplitude electric field, the total cross section for electric dipole scattering

is
8T (o 9\2
Oscatt = 3 (sz> |P|2’

where the factor of 87/3 comes from integrating over all directions of the outgoing
wave vector. Inserting p from above gives

8m(hk)*h? sin® 6,

et = T n(2h/a) — 12

(c) A perfectly conducting rod does not absorb energy. Therefore, the optical theorem says
that

4 -
Oscatt — ?Im[ES ! f(kO)]a

where - .
Erug = Byf(0, ) 2L —wO)

r
For our problem,

f= —Z—;;WQIA( x (k X p),

where p = —psinfyz. The forward direction corresponds to a scattering angle of
0 = m — 0y. Therefore,

kx (kxp)= —Eypsin b, sin(m — 6y) = —Egpsin® 6.

Using the complete value of Iy computed in part (a), the optical theorem reads

o = 4luow2 416 h3 sin? 6yIm !
scatt — k 4m7 3 0 0 {[ln(Qh/a) — ]_H]_ — %(kh)Q] - Z%(kh)3} ,

or

47

3
Oscatt = 3 (kh)h2 Sil’l2 00 (2/9)(kh)

(In(2h/a) = 121 = 5(kh)*> + [(2/9)(kh)*)*

Since kh < 1, this is the same as the result of part (b):

8w (hk)*h? sin® 0,
st = orn(2h/a) — 12

Source: G.S. Smith, An Introduction to Classical Electromagnetic Radiation (University
Press, Cambridge, 1997).
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21.15 Absorption Cross Section for a Microscopic Object

From the text, the absorption cross section can be written in terms of the time-averaged
work done by the field on the current density:

Iy L [
Oabs = 77— | d°7{(j - E) = ———-Re [ d°rj-E".
R TERRTE B A A T WD

The time-averaged incident flux in the denominator is %eo cE and we can replace the macro-
scopic field E by Ey when the “target” is a microscopic object. The current density of
interest is the polarization current density,

opP
jp = — = —wP.

ot

Therefore,

1 ) : *
Cabs = P Re {—zw/ddr P} -E.

The external macroscopic field amplitude Eg is constant over the volume of a microscopic
object and the volume integral of the polarization P is the electric dipole moment p of the
object. Therefore,

w

€0 CE(%

Oabs = — Re [ip - Ej].

In terms of the polarizability « of the object, the dipole moment is
p = agEg.

Substituting into the foregoing gives the desired result,

Oabs = Re [ia|Eo|*] = %Ima.

w
)
cEy

21.16 Absorption Sum Rule for a Lorentz Oscillator

Because |(Sinc)| = $€9cE3, the absorption cross section is

1 ; 1 f
=—— [ d®r{j-EY= ——Re [ d°rj E*. 1
Oabs |<Smc>|v/ T‘<_] > EoCEg ev/ ) ( )

The current density is

j=—ev = —ei = iewr, (2)

where r is the displacement of the electron. This is small, so we let r = 0 in E = Ej expl[i(k-
r — wt)] and write the equation of motion of the electron in the presence of the field as

i+ F + wir = —%Eo exp(—iwt). (3)
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Substituting the guess r(t) = (w) exp(—iwt) into (3) gives

eEo 1
m w? —wi +iwy’

r(w) =

Substituting (4) into (2) and the latter into (1) gives the cross section as
e? W - e? yw?

(w) = Re = :
Oabs () eome w?—wl+iwvy  eme (W —wd)? +w?y?

The damping is small, so the resonance is narrow and we can set w?> = w3 in the numerator,
and w? —w} = 2wy (w—wp) and y?w? = 72w in the denominator. Therefore, with y = w—wy,

/dw Uabq = % / Y ~ Ry / Y .
egme (2woy)? + wiv? egme (2woy)? + wiv?
0 —wo —o0

The integral is 7/2w2~ so

2r2 TeC,

—
ISH
&
Q
o,
€
®
Do
3
Il

as advertised.

Source: W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edition
(Addison-Wesley, Reading, MA, 1962).

21.17 The Optical Theorem in Two Dimensions

(a) Let us write H,, for an1 ) in this problem. The differential cross section for E parallel
to the cylinder axis is
2

2> 2l epima)

dp — nk H,, (ka)

m=-—0oo

which we write out in the form

d m k m k . /
ﬂ k Z Z Wexpmm—mw

m=—oom’'=—o00

The ¢ integration generates a factor of 27y, ,,+. Therefore, because H,, = J,, +iNy,,

dUn 4 < I (ka)
71 = / W =k ZOOJ ka) + N2 (ka)’
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The differential cross section for E perpendicular to the cylinder axis is

2
doy 2| & Ji(ka)

m

o~ wk| 4~ ) (ka) exp(img)

The calculation proceeds exactly as the previous case. Therefore,

4 & J?(ka)
Tk Z  T2(ka) + N2 (ka)’

(b) From the text, the radiation electric field for this polarization is

o=y, I (ka) ,
E..q=-F E m H,, (kp).
d 0€0 [} 4 exp(imae) ( P)

m=—0Q0

Into this we substitute the asymptotic form of the Hankel function,

H,, (kp) — wlkp exp(ikp) exp(—imm/2) exp(—im/4).

Then, because " exp(—imn/2) = 1 and exp(—in/4) = \/1/4,

. 2 . = I (ka .
E.oqa — —Eoéoy/ mikp exp(ikp) Z = ((].m)) exp(ima).

m=—0o0

Comparing this to the formula in the statement of the problem shows that

m ) ~
£(k,0) =
0) Z\f Z Jm (ka) + iN, m(ka)eo

m=—0o0

Therefore,

J2 (ka) s
tm £(k, 0) \[ 2 T2 (ka) + N2, (k)

m= m

Comparing this to the scattering cross section computed in part (a) (there is no ab-
sorption) confirms the proposed statement of the optical theorem in two dimensions.

Source: S.K. Adhikari, American Journal of Physics 54, 362 (1986).

21.18 The Optical Theorem for Pedestrians
When 6 < 1, we may assume that x,y < 2z and approximate r = \/2% + y2 + 22 by

132 +y2 N p2

1
+ 22 2z
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where p? = 22 + 3?. Therefore,

W(r) ~ exp(ikz) + %exp(ikz) exp [zk;;] £(0)+0 (212) .

We can drop the last term in the asymptotic limit and conclude that

2
[V ~ 1+ %Re {f(O) exp [zk;;} } .

Integrating this quantity over a flat disk of radius R in a z > R plane gives

R

4
/ dS =7R* + ;Re /dppexp [z]

screen 0

Changing variables to u = p?> and using a convergence factor to perform the exponential
integral when R? > z/k gives the advertised result,

4
/ dS =7TR* — ?Imf(o).
screen
The area mR? is the cross section of the beam in the absence of the scatterer. Therefore,
any energy removed from the beam is the result of either scattering or absorption. In other

words,

4
Otot = Oscatt T Tabs = 7Imf(0)

k

Source: H.C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

21.19 Total Cross Section Sum Rule

The real part on the left-hand side suggests that we exploit the Kramers-Kronig relation,

77 / dw’X

For our problem, we use w = ck = cky and write this in the form

Re [f(k, ko) - &F] 7> dk’ f(K' ko) - &f]
ke k; k;’ k2 '
The limit £k — 0 is

Re[f(k, ko) - &) 773 7 k' T [£(K, ko) - &]
k2 '
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The imaginary part of any causal response function is an odd function of its argument.
Therefore, Im([f - &}]/k'> — 0 as ¥’ — 0 and the integrand above (which is simultaneously
established to be an even function of k') is not singular at &’ = 0. Therefore, we can remove
the principal value and write

oo

Re[f(k ko) -€&;] 2 /%Im[f(k’, ko) &)

k' k./?

lim — V% X0) "€l _ 2
] k2 ™
0
Therefore, using the optical theorem, oo = (47/k)Im [f(k) - 7],

Re[f(k, ko) - &; 1 dk’'
[ ( 0) O] /ﬁatotaﬁl)-

k—0 k2 272
0

Changing to wavelength variable A\ = 27 /k, we have dk/k? = —d\/2m. The advertised
result follows:

. A* 1 >
)\11_}1{.10 Re [f()\, ko) . eO] = W /() dA/ Otot (A,)
Source: H.M. Nussenzveig, Causality and Dispersion Relations (Academic, New York, 1972).

21.20 The Index of Refraction

(a) The geometry and R? = p? + 22 tell us that pdp = RdR and cos = z/R. Therefore,

27 0o

E..qa = ONE6t / do / dRexp(ikR)f(cos_l 717¢> )

0

Changing variables to 7 = R/z transforms the integral to
27
Erad = (5NE05t / d¢J(Z, (],5),
0

where
oo

J(z,0) = z/dn exp(ikzn) f<(3051 717,¢> . (1)

1

Integrating by parts gives

oo

J(z,0) = %exp(ikzn) f(cos1 117> — %/dnexp(ikzn)% f<(3081 717,¢> . (2)
1

1
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The ratio of the integral in (2) to the original integral (1) goes like 1/kz, which vanishes
as kz — oo. Therefore, (1) is equal to the fully integrated term in (2). For the latter,
we use the convergence factor limg_o exp(iGR) to eliminate the contribution at co.
The result is

J= exp(ikz)% fcos™'1,¢) = exp(ikz)%dz £(0, ¢).
The scattering amplitude does not depend on ¢ when 6§ = 0. Therefore,

211

E..a(2) = Tc?NEO(St exp(ikz) £(0) kz > 1.

(b) Using the results of part (a), the total field in the far zone is

E(z) = Ey exp(ikz) [éo + i27r6N§t

f(O)] .

This is just a plane wave in the inhomogeneous medium, with a z-independent change
in its phase, amplitude, and polarization due to the density inhomogeneity. Therefore,
a perfectly acceptable solution of the Maxwell equations at z = dt is

&; - E(5t) = B, exp(ikot) [1 + i@ég : f(())} ~ E expli(k + 0k)ot],
where
2moON
5k = %ég - £(0).

Multiply both sides by k and integrate the right side from 0 to N and the left side
from kg to k. The result is

1
§(k2 — k%) =2nNe&; - £(0).

Because k = nky, we get the desired result,

4T N
n? =1+ —&r-£(0).
k()

Source: R. Serber, Serber Says: About Nuclear Physics (Singapore, World Scientific, 1987).

21.21 Radiation Pressure from Scattering

The general expression for the electromagnetic force on the contents of a spherical volume
Vis
108
F=[dr |-+ +V-T|.
/ " { ot * ]
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The Poynting vector term disappears after averaging over one period. Therefore, if S is the
surface of a sphere of radius r,

2
(F) :rQ/de'- (T) = %Re/dﬂf [EE +*BB* — %I(|E|2 +2BP)|. ()

In the radiation zone, E = Ej,. + E;,q and B = By, + Byaq, where (dropping the time
dependence)

exp(tkr
Brua = B "2 ), )
and we know from (21.59) that
. . [ exp(—ikor) ... - exp(ikor) .. =« .
lim Eqexp(ikg - 1) =211 | ————=(F + ko) — ——=0(F — k¢) | Epép. (3)
r—00 k[)?" k()T

Of course, k-f=0and ky-& = 0. Also, ¢B,aq = k X E;aq and cBiye = ko X Ejpe.
Substituting (2) and (3) into (1) and using the fact that the delta functions make t = +kg,
we see that the transverse nature of the fields implies that only the term with the unit
dyadic I is not zero. Indeed, because - I =,

1
(F) = —160’"21"6/6’% (1Binel* + [Braa* + Bine - Efyq + Efye - Braa)
1
= *i€0r2Re\/de‘ (|Binc|2 + |Bmd‘2 + Binc . B:ad + Bi*nc : Brad) .

The integrals with the factors |Eiy.|* and |Bj,.|? are zero because these field magnitudes are
constants. Otherwise substituting the fields into the preceding equation and using |E| = ¢|B|
gives

27eg Eg

(F) =7

R 2
koTm [f(ko) - €7] — €°2E° /dmm?.

The intensity of the incident beam is [, = %eocEg. Therefore, using the optical theorem
and the definition of the differential scattering cross section, we get the advertised formula,

Iinc dJscatt

(F) = — [omtfq)—/dmdﬂ].

Source: M.I. Mishchenko, L.D. Travis, and A.A. Lacis, Scattering, Absorption, and Emission
of Light by Small Particles (University Press, Cambridge, 2002).

21.22 A Backscatter Theorem
(a) For monochromatic fields, the Maxwell equations in matter are
0B
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and

VXH:a—D:—iweE.
ot

Hence,
. . . Vi
V x(VXE)=1iwV x (uH) = iwH x Vg —iwuV x H=(V x E) x — + wucE.
L
Similarly,
. . . Ve
V x(VxH)=—iwV x (€E) = —iwE x Ve +iweV x E=(V x H) x — 4+ wucH.
€

These equations are the same if e¢(r) = p(r). In fact, only the weaker condition
(V) /1w = (Ve)/e is necessary.

(b) The body produces the scattered wave

Escatt (a:,y, Z) — E;;catt (,113, Y, Z))A( + Ev;catt (a:,y, Z)S’ + Ezcatt (a:,y, Z)i

The scattering body and the vacuum are both invariant to space rotations around the
z-axis by 90°. Moreover, ES¢2tt and H*¢?'! satisfy the same generalized wave equation.
Therefore, the latter can be obtained from the former by a 90° rotation around the
z-axis, which takes + — y and y — —x. The unit vectors rotate in the same way.
Hence, as suggested,

Hscatt (937 Y, Z) = 7Ezcatt (yv -, Z)& + E';Catt (y7 -, Z)y + Ezcatt (y7 —Z, Z)Z
(¢) The backward direction is x = y = 0. For this special case, the foregoing can be written

Hscatt (07 0’ Z) =7 % Escatt (0, 07 z) + iEicatt (0, 07 Z)

The last term is limited to the near field because it is not transverse. Therefore, the
time-averaged, far-field Poynting vector is

1 L cate 2,
(S) = SRe(E x H') = S[E*""[’.

But this carries energy toward 4z rather than toward —z, which is required for
backscattering. Hence, we must have E***'*(0,0,z) = 0 in the backward direction.
This proves the theorem.

Source: V.H. Weston, IEEE Transactions on Antennas and Propagation 11, 578 (1963).

21.23 The Angular Spectrum of Plane Waves in Two Dimensions

(a) The proposed form for Etg(z,z,w) is general for a field polarized in the y-direction
because it is a superposition of plane wave solutions for all possible values of the wave
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vector k = k,X + k,z. The sum is on k, only because k, is fixed by w = cky =
e/ k2 4+ k2:
N ke < ko,

N ky > ko.

The positive imaginary sign is chosen so the real exponential wave remains bounded as
it propagates in the half-space z > 0. Notice that these exponentially decaying waves
are required to obtain a complete solution.

k, =

Using the initial data,

_ < dk, ,
Ey(x) :/ or Arp (k) exp(ik, ),

— 00

so the Fourier inversion theorem gives the scalar function Arg (k) as

Arp (k) = [ " da By (2) exp(—ikya).

Faraday’s law istE:—E SO
i T dky [ky . K. _
Brp = —— Ern = 72— —=%x|A - k-r).
TE wVX TE /27TC |:k0Z k()x:| TE(]{;L)eXp(Z I‘)
From this we read off
1 [k k
Trp(k,) == | 22— Zx| Arg(k,).
rE (kz) - {koz kox} 75 (kz)

(b) The proposed form for Bty is appropriate as in part (a). The Ampeére-Maxwell law is
VxB= —(iw/cz)E. Therefore,

ic? [k, [ ke |
Ery(z,2,0) = UV X Bry = / o {X - kz} Az (k. ) exp(ik - r).

From this we read off

Trar (k) = [x - ’Zz} Agar (k).

z

Now use the initial data:

oo

% Bra (2,2 = 0,t = 0) = By (z) = / Cék Arar (ky) exp(iky ).
Y8
Hence,
Ary (k) = /deT(x) exp(—ik,x).
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(c¢) The time-averaged Poynting vector is
1 *
<S>= ﬂRe{(ETE +ETM) X (BTE +BT]\1) }
0

But the cross terms do not point in the z-direction. Therefore,

P, = /dm<i~S>
—o0

1 7 [ dk, [ dk. K . ko .
ZILLOC / d‘T / o o Re { <kOATE (kz)ATE (kz) + EATR[ (kﬁ)ATK'T (kz)> }
— 00 — 00 — 00

xexpli(k, — K} )z] expli(k. — k.")2]

Then a-integration gives 2wd(k, — k. ). Therefore,

1 e k¥ ko
P, = + 3 Z|ATe]? + —|ATE|? i(k, — k7)z.
: QMOCRe/—oo dk, {k()' tel” + k;‘l TE| }expz(kz k)=

Split the integral into two parts. The portion where k, > k¢ is pure imaginary and
so does not contribute. This is physically correct because the exponentially damped
evanescent waves do not carry energy down the z-axis. Otherwise, k. is real so

1 Fo dk, (k ko
PZ = 4 _z A 2 v A 2
QW#OC/_kO 2m {ko e| +kz‘ e }7

as required.

Source: G.S. Smith, An Introduction to Classical Electromagnetic Radiation (University
Press, Cambridge, 1997).

21.24 Weyl!’s Identity
(a) Let

1
(2m)?

Go(r) = / d*k Go (k) exp(ik - r).

Substituting this into (V2 4 k§)Go(r) = —d(r) and using

o(r) = (2717)3 /dgk exp(ik - r)

shows that Go(k) = (k* — k2)~!. Substituting this back into the original Fourier
integral gives

1 5, exp(ik - r)
GU(I‘) = (271')3 /d k ]{;2 —k% .
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(b) Let k| =k, X+ k,y and r; = 2%+ yy. Then,

eXp (ik, z)
dk,
YT =

The poles of the integrand occur at k. = £K = ++/kj — k% . If ko has a small positive
imaginary part, +K is in the first quadrant and —K is in the third quadrant. The
factor exp(ik,z) converges for z > 0 if we close the contour in the upper half-plane.
It converges for z < 0 if we close the contour in the lower half-plane. Therefore, the
residue theorem picks up the first (third)-quadrant pole only when z > 0 (z < 0). The
result in both cases is

-
(iky -T1) % —— exp(iK]2|).

1
GO(r) = (2 2K

With k. defined as in the statement of the problem, we recover the Weyl identity
because K = k, guarantees convergence of the integral.

21.25 Radiation from an Open Waveguide

With respect to an origin at the center of the aperture, the electric field of a TE;; mode in
the plane of the aperture is

Eycos(mx/a)y |z| <a/2, |yl <a/2,
E(z,y,2=0) =
0 z] = a/2, |y| = a/2.

The Fraunhofer limit of the Smythe integral is

ik
Eraq(ry,z > 0) = z‘k()%zror)f x / A%, [z x E(r,)] exp(—ikot - ', ).
7r
z'=0
For our problem, this reduces to
a/2 b/2
ik
E(r) = Z_koe)q;(%r) [t x (2 xy) / dx’ / dy' Ey cos(mz’ /a) exp(—ikot - 1').
m
—a/2 —b/2
Using
% = sin 6 cos ¢F + cos 0 cos O — sin ¢
and

y = sin @ sin ¢t + cos @ sin d)é + cos ¢q§,
we find without difficulty that
i X (z X y) = —(sin p6 + cos 0 cos pp)
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and
-t =a2'%+1y'y =2 sinfcos ¢ + v sin O sin ¢.

The double integral we must do is

a/2 b/2
I=1I,x1I,= / dx’ cos(mz’/a) exp(—ikoz’ sin @ cos ¢)dz’ / dy’ exp(—ikoy’ sin 0 sin @).
—a/2 —b/2

These are straightforward (if tedious) exponential integrals and we find

I, sin[ko (b/2) sin 0 sin @]

= Jo sinfsin ¢
and

cos[ko(a/2)sinfcos @]  coslko(a/2)sinfcos¢]  2m coslko(a/2)sinf cos ¢]

I, = _ .
’ kosinfcoso + 7/a kosinfcosé —7/a a (kosindcos ¢)? — (7/a)?

Therefore, using the notation sincz = sin x/x, the radiated electric field is

E(r) = Z_exp(ikor) Eykoab cos[kq(a/2) cos 0 cos g|sinc[kq (b/2) sin 0 sin @)

. é . Ny
(sin ¢pB+-cos 6 cos pp) (koasindcos ¢)2 — 2

Source: Prof. G.S. Smith, Georgia Institute of Technology (private communication).

21.26 Diffraction from a Slit

The Huygens representation of the exact field diffracted by an aperture in a plane is
E(r,,z>0)= —2/d2rj_ A X E] x VGy(r,ry).

Our two-dimensional geometry is

Therefore, using the Kirchoff approximation and the two-dimensional Green function from
part (a),
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a/2
E(p.¢) = —5(xx Bo)x [ df VH (/575 (= o)
—a/2

Let s = /22 + (y — y')?. The asymptotic behavior of the Hankel function is

i HO (ks) = 1/ -2 expli(ks —
kllinooHO (ks) = 7Tksexp[z(ks 7 /4)].

In the same limit,

oH"

2
VHY = 220 Vs ~ ik HY (ks)p ~ ikH" (ks) ~ ik, | expli(ks —m/4)].
s wkp

Moreover,

s= (2" +y> =20y + )2 mp(l—2yy' /") mp—wy /p~ p—y sing.

Therefore,
a/2
1 2
E(p,6) =~k x (5 x Bo)| |~ explilhp ~ w/4)] [ dy’ expl-iky'sin,
iy
P —a/2
or

sin(Lka sin @)

a . 2 .
B ) = ~le x (% % Bu)y | exlithy — m/4) T L

21.27 Diffraction of a Beam by a Large Aperture

(a) The calculation proceeds exactly as in the text except that Ey — FEyexp(—p? /w?) in
the integrand of (21.101). Using (21.102) and (21.103) to evaluate the ¢’ integral in
(21.101) gives

a

(sin #O + cos ¢ cos Op) / dp'p’ exp(—p? Jw?)Jy (kop' sin6).
0

E— _ikyE exp(ikor)

Because w < a, we can safely extend the upper limit of the integral to infinity. This
gives a tabulated integral [see 6.631 and 9.215 of I.S. Gradshteyn and I.M. Ryzhik,
Tables of Integrals, Series, and Products (1980)], namely,

r 1
/dp’p/ exp(—p"? Jw?)Jy (kop sin ) = in exp(—kjw? sin® 0/4).
0

Because sin f = p/r, the diffracted electric field still has a Gaussian profile:

exp(—kZw?p? /41*) (sin ¢ O + cos ¢ cos 0gp).

ik
E = —ikyw?E, Lp(; o)
.
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(b) Start this time with (21.98):

ik
Ead(ry1,2>0) = ikOWf X d*r'| [z x E(r'))] exp(—ikot - 1/)).
T
z'=0

The vector part of & x [z X Einc].—o = —Eg exp(—p'2 /w?) sin $@ + cos ¢ cos §¢p) is the
same as in (21.100). But for this geometry we use Cartesian variables and write

oz +yy
Por) =—]—.
Therefore, because p? = 22 + 32,
” R R
E = —ikoEow(Sin @0 + cos ¢ cos 0¢)
27r
a/2
X / dx’ exp(—ikozz' /) exp(—z* Jw?)
—a/2
a/2
x /dy’ exp(—ikoyy' /1) exp(—y”? /w?).
—a/?2

The two integrals have the same structure and, when w < a, we may extend the
limits of integration to oo without concern. In that case, completing the square in
the argument gives a Gaussian integral:

/ dz exp(—ax? + bx) = exp(b? /4a) / duexp(—au®) = \/jexp(bQ/éla).

Using @ = 1/w? and first b = —ikoxz/r and then b = —ikgy/r, the result is exactly the
same as found in part (a),

exp(ikor)
T

E = —ikyw? Ey exp(—kiw?p? /41 (sin ¢ @ + cos ¢ cos O).

Source: S. Ramo, J.R. Whinnery, and T. Van Duzer, Fields and Waves in Communication
FElectronics (Wiley, New York, 1994).

21.28 Effective Aperture Dipoles I

For reference, we record the radiated electric fields for dipole sources with exp(—iwt) time
dependence:

2 ik
By, = _@&M(f % m) and By, —

fo B! —%WLP(:’”) £ x (& x p)]. (1)
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The far-field limit of Smythe’s formula derived in the text is

271“ X / d?r'| 2 x E(r')) exp[—ikot - ' ].
wr
2'=0

The integrand involves only the tangential component of the electric field, E|, so there is
no loss of generality if we replace the foregoing with

ik
Eaa(r) = ikowf X d*r' z x E(r' ) exp[—ikot - r'].
T
z'=0

Expanding the exponential to two terms gives

K K
Emd%ik()%;?ﬂr)fx / dQTiiXEH(I‘l)‘FkS%fX / dZT'iiXE”(I‘,l)f“I‘,L. (2)

2'=0 2'=0

The first term in (2) has the form of Ey; in (1) if m is

2 N
m = - dQTJ_ZXEH.
iwho
aperture

The direction of m is consistent with Figure 21.23.

To make further progress, we recall a vector identity we have used in previous multipole
expansions to separate the magnetic dipole from the electric quadrupole:

S0 ) = )+ g [0y )]
Here, replace j with z x E;| and use
) x (2 x E)) =z(r), - E)) —E(r) -2) =2 - E))
to get
(2 x Ey)(F 1) = —1 x %[i(rl -By)) + % {ri[f-@xEp]+2[r) - (2 xE)]}. (3)

The left side of (3) is the integrand of the second term in (2). The second term on the
right-hand side of (3) contributes to an effective quadrupole moment. Substituting the first
term on the right-hand side of (3) into the second term of (2) has the form of Eg; in (1) if

p:€()i / dZ’I“J_I'-EH.

aperture

The direction of p is consistent with Figure 21.21.
Source: H. Bethe, Physical Review 66, 163 (1944).
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21.29 Effective Aperture Dipoles II

E;, B,
Kk, K, E: =—cB
E, = CBO
B, a /T B =E,
Disk cB,=-E \

Complementary aperture

According to Babinet’s principle, the fields diffracted by the aperture, Ef and B? , are
related to the fields scattered by the disk, Eg and Bg, by

1
ES = —cBj and BY = —Ej.
C

The disk-scattered fields are dipolar. Therefore, from the electric moment for the disk,

; 2 . (kr — wt)
ES =l (f x ) SRR wt)
& “ir c( X Pa) r
and
Luo ~ o (ke —
B = — L0 gy SRR Z )

& cdr r

Comparing these to the fields produced by a magnetic dipole shows that the effective aper-
ture magnetic dipole moment is

16 16
m, = cpq = _Ea%mﬁ x (A x Eg) = S—agﬁ x (A x B,).

Similarly, from the magnetic moment of the disk,

Ho . . expi(kr — wt)
ES = ) SRUT Z @)
5 = B[ (my xRy 2
and ,
. 1 . i _
BS = _LH0WT gy SRR Z )
cdm ¢ r

Comparing these to the fields produced by an electric dipole shows that the effective electric
dipole moment is

1 8
Pa = ——Img =
c 3epo

8
CL3 (fl . Bg)fl = §€0a3 (fl . Ea)fl.
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Source: G.S. Smith, An Introduction to Classical Electromagnetic Radiation (University
Press, Cambridge, 1997).

21.30 Kirchhoff’s Approximation for Complementary Scatterers

(a) We start with the form (21.94) of Smythe’s formula,

E(r;,z>0)=— /dQH[sz( '] x VGy(r,r').

z'=0
With R =r —r’/, (21.96) gives the exact gradient of the free-space Green function as

VG = (ikoR — 1)G°](%R> R.

For our problem , R =r = 22 — p'p is a vector with magnitude r = /p’2 + 22 which
points from the screen to the observation point on the z-axis. Therefore,

E(0,0, 2 —2zk/dq§ /dpprx [z x E(p,¢',0)] <1+Z> M.
kr 4mr

The incident electric field is Ei,. = Ej exp(ikz)y. For a conducting disk of radius a,
the Kirchoff approximation for the tangential component of E(p, ¢,0) is (i) zero for
p < a and (ii) Ey for p > a. Therefore,

E(O,o,z):_/;fﬂ/dqb/ P (p'sing'z + 23) <1+];)exp7f2ﬂﬂ’)
0 a
or
£(0,0,2) = _ikZEU/dp'p’ gy L) ORlikr) o
kr 7‘2

a

Now change integration variables from p’ to r so p'dp’ = rdr, let ry = va? + 22, and
integrate the second integral by parts. Using a convergence factor to make the upper
limit of the integrated term vanish, we find

oo

E(0,0,2) — —ikzE, /drexp(zkr) N [—2 exp(zkr)] B /drexp(zkr) PO
r kr o T
70 T0o

or

Eaisk (0,0,2) = Ep (r )exp(zkro)
0
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(b) The calculation for the circular aperture is exactly the same except that the Kirchoff
approximation puts the tangential component of E(p, ¢,0) equal to (i) zero for p > a
and (ii) Eg for p < a. This changes the lower limit of integration in (1) to z and the
upper limit of integration to ry. Therefore,

Eoperture (0,0,2) = Ey |exp(ikz) — %exp(ikm) y.

(¢) The formula immediately above is indeed
Eaperture (07 07 Z) = Edisk (07 07 Z) - Einc'

However, Babinet’s principle is not at work here, because that principle relates the
electric field of one problem to the magnetic field of the complementary problem.

Source: G.S. Smith, European Journal of Physics 27, L21 (2006).
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Chapter 22: Special Relativity

22.1 Low-Velocity Limit

For a boost along z, the intervals Az and At transform according to
Az =y(Az — vAt) At =~ (At - %Az) :
c
When v < ¢, the factor v = (1 —v?/c?)™1/? ~ 1 and

A~ Az — oAt At = (At— 5Az).
C

The left equation is the Galilean limit. The right equation is not, because, no matter how
small we make v/c, it is always possible to choose Az large enough so the second term is
not small compared to the first. Indeed, we must have Az > cAt, which means that the
events are very space-like.

Source: R. Baierlein, American Journal of Physics 74, 193 (2006).

22.2 Linearity of the Lorentz Transformation

Let 4 = ¢t and vy = ¢. Rectilinear motion in frame S means that x; = ;0 + v; (t — t9)
where i = 1,2, 3,4. Therefore, under the proposed transformation,
o _ Aijlzjo + vt —to)] + b

z) = i=1,2,3, 1
© glwjo vt —to)] +d @)

and
_ A4j [LE]'() + Vj (t — tg)] + by

ct’ .
cjlwjo + vt —to) +d

(2)

Our task is to check whether these formulae imply that =} = 2, + v/(t' — t{,), which is the

equation for rectilinear motion in S’. This is straightforward because inverting (2) shows

that

Agjxjo + by — ct'(cjxjo + d)
Ct/CjUj — A4J"Uj

t—1ty =

: (3)

Substituting (3) into (1) gives

Aij | o +U~A4jxj°+b470t/(cjxjo +d) +bi
/ Ly J J Ct/Cj’Uj — A4J/Uj 0 . L 3 (4)
xi i = g Ly Do
ci |Tio + v; Ayjxio + by — ct'(cjzjo + d) a
3| L J ct'c;v; — Agv;

Rationalizing the numerator of (4) produces a quotient of two linear functions of ¢'. Ra-
tionalizing the denominator of (4) produces a similar quotient. The two quotients have the
same denominator (by construction) so the latter cancels out. The numerator of the numer-
ator quotient is a linear function of ¢'. We will have accomplished our task if the numerator
of the denominator quotient is independent of ¢'. Carrying out the rationalization of the
denominator of (4) produces a quotient whose numerator is a linear function of ¢':
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Cj {$j[)(ct/6j1)j — A4j’()j) + v, [A4j{L‘j() + by — Ct/(Cj{Ej() + d)}} + d(Ct/Cj’Uj — A4jvj).

However, the coefficients of ¢ sum to zero in this expression, as required. Finally, the original
transformation maps (x,y, z,t) to infinity if ¢;z; + d = 0. Physically, any transformation
between two inertial frames must map finite points to finite points and infinity to infinity.
Therefore, we must have ¢; = 0.

Source: V. Fock, The Theory of Spacetime and Gravitation (Pergamon, London, 1959),
Section 8 and Appendix A.

22.3 Velocity Addition

(a) The text writes the Lorentz transformation for the four-vector (r,ict) where r = rj4r, .
By linearity, these apply equally well to the differential elements dt and dr. Here, we

need only
dr| = ~y(dr'| 4 Bcdt')
dr| =dr’|
cdt = y(cdt’ + B - dr)).
Consequently,
u; ldr y(dr| + Bedt’) u; ldrg dr’,
TR e B c T o d et By

This gives the advertised relativistic law of velocity addition:

ul +v /
u = I ; and u; = bt R
1+V'uH ~v(v) 1+v-u”
c? 2

(b) If the direction of v defines a polar axis, u = ucosf and u; = usin® and similarly
for the primed variables. Therefore,

0 u' cos§ +v d - u’ sin 6/
ucos = ————— an usinf = .
1+ w'vcosb/c? ~(1 + wvcosb/c?)

Using v = 1/4/1 —v?/c?, we divide one of these equations by the other, and also
square and add the equations to get

o sin 0/ [ 4 v? + 2u'v cos @' — (u'vsin 0’/0)2]1/2
tanf = —— and u=
~v(u cos 0’ + v) 1+ wvcosb/c?
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(c) Evaluating the previous formula in the limit when v — ¢ gives

_ Vu? + ¢ + 2u/ccosf — u? sin’ 0/ V@ /e)cos 02
B 1+ (w'/c)cos b - 1+ (u/c)cos®

This confirms that ¢ is the limiting speed for any particle.

22.4 Invariance of the Scalar Product

The transformation law for a four-vector is
A=A,
A=A +iBA)
Ay =(Ag—iB-Ay).
By direct substitution,
a'-b' +ajby = a' b +a)-bj—aib)
= ay-by +~(a)+iBas) - y(by +iBbs) +v(as —iB-a))y(bs —iB - b))

= aj-b; + ’)/2 [a” b“ — 52a4b4 + ib4a‘| -B+ ia4b“ . ,6]

+7° [asbs = Ba) - by —iasby - B —ibiay - B]
= a; by +9°(1— F)asbs +9°(1 - F)ay - by

a-b+ asby.

22.5 The Quotient Theorem for a Four-Vector

Assume that A, B, = A} B),. Substituting A, (from the Lorentz transformation rule for
four-vectors) into the right member of this equation gives

AuBy

A\B] + AyB; + AyBy + A B)
—  AyB| + Ay By + (A +iBAL) By + (A — i34s) B},
Rearranging terms on the right side of this equation produces
AuBy = A By + A By + Ayy(By — iBBy) + asy(By +iBB3).
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The coefficients of A, must be the same on both sides if the preceding equation is to be
true for an arbitrary choice of A. In other words,

By = Bj By = By By = ~(Bj — ifB) By =v(Bj +ifBy).
This is the inverse of the Lorentz transformation rule for four-vectors, which proves that

the ordered set (By, Bg, B3, By) is indeed a four-vector B.

22.6 Transformation Law for E |

By direct computation,

B, = -v,-22
= —Vw(ea—V-A)—v(iJrV'V)AL
- w[(—vl —3‘;‘;)+wv-A>—<v-v>A4
= N[EL+Vi(v-A)—(v-V)A,]. (1)

Because v is constant, we observe that
Viv-A)=Viv-A)=vx(VLixA)+ V- VLA =vx (VL xA)).
On the other hand,
Viv-AL) =vx (VyxAL)+(v-V)AL.
But the left-hand side of the preceding equation is zero because v - A = 0. Therefore,
—(v- VAL =vx (V| xAL).
Combining these side calculations, we conclude that
Vi(v-A) = (v-A)=vx[VI XA +V xA]=vx(VxA), =vxBy=(vxB),.

Inserting this result into (1) completes the proof.

22.7 Transformation of Force

(a) From Gauss’ law, the electric field inside the electron column is

E= Mf‘ r<a.
260
Therefore the force on a electron at r < a is
epor .
F = —e¢E(r)=— Ty
260
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(b) In the laboratory frame of the observer,
EJ_:'Y(E/—VXB/)J_ E“:EHV
BJ_:’}/(B/-F(V/CQ)XE/)J_ T‘ :BH

There is no magnetic field in the rest frame of the electrons and the rest-frame electric
field [computed in part (a)] is entirely transverse. Therefore, the force of interest is

E/
F=—cB=—cE+vxB|=-eyE| —evxl(v/) x Bl = -+,

22.8 A Charged, Current-Carrying Wire
(a) The transformation laws for charge density and current density are
=G +0'v) jL=i\ p="(p +v-i/S).

For this geometry, I and A are related to j and p by the same invariant transverse
area. Therefore, we can immediately write

T
I=~T+Xv) /\:"y<)\'+vc2 )

(b) To eliminate the magnetic field, we need I = 0. This happens if v = —I'/X. In that
case,

, I N v? Y Y ) 172
_ — — — /
A (A )\’c2> 11—/ (1 cz) NV =i fe A 2’

To eliminate the electric field, we need A = 0. This happens if v = —(\¢? /I’)i. In
that case,

;AP I v? 1 2/ .2 2 2 2
Izy([— T ):m<1—62>21\/1—v/c =I? = N2

Only one of these is possible because either I’ < ¢\ or I’ > ¢)\'. This means that only
one of the two velocities computed above is less than c. Equivalently, if I is real, X is
imaginary and vice versa.

Source: E.M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1985).
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22.9 Poynting in the Wrong Direction?
(a) Let K’ be the rest frame of the charge distribution so E’ # 0 and B’ = 0. Then,
B”:B'H =0 B, =7(cB'"+BxE') =+06xxE
E| =E| E, =~vE -8xcB), =+E/.

In the lab frame,

1 1 -
u = e {[BP + B} = seo {IB + 72 [EL +126% % x B, [* |
1 72 1+ 52 /2
geo { B + TR
This quantity does not depend on t', so dugy /0t' = 0. Therefore, using the transfor-
mation law for the time derivative and the fact that Sg = ugmv,

_ Ougm 0 0 ~_[ougm | O(vupm)|  [Ouem
0= a0 ”(aﬁ”w)“w—”{ o o | e TV S

(b) Let S = E x B/ug. Poynting’s theorem says that, at all points outside the moving
charge distribution (where j # 0),

OupM

-S
V-S+ ot

=0.

Given the final result in part (b), it must be the case that V-S = V-S,. Now, B = 0,
so S = (Ej xBL+E; xB)/u cannot be entirely in the X-direction. On the other
hand, Sy || X, so we must conclude that S # S;.

Source: W. Gough, European Journal of Physics 3, 83 (1982).

22.10 Boost the Electromagnetic Field
(a) Observer A evaluates the two electromagnetic field invariants and finds the values
E-B=0d’/c and E?> —B? =o? — A/ + 4a” /) = —4a?.
Observer B evaluates the same invariants and finds
E'-B' =E,a/c+Bja and E”-B? = E]+d —c(20°/¢ +B))
= Ef — cQB;f — .

Setting these invariants equal in the two frames gives

E, +¢cB, = «
E? —¢B} = —3a’.
Solving these equations, we find £, = —a and B, = 2a/c. Therefore,
E = (—a,a,0) and B’ = (a/c,2a/c,a/c).
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(b) The fields transform according to

Ei‘:E” E/J_:’V(E—i-,@XCB)J_
and
Bh :BH CBILZ’)/(CB—,BXE)L.
Therefore,
E" = —ax+9[E| +vxx (B,y + B.2)]
= —ax+~[E| +vB,z—vBy]
= —ax+vy(a—va/e)y + 2yva/cz
= —ax+ya(l - B)y + 2yapz.
Similarly,

B’ = afex+1[B) — (o/e})5 x (B} + E/2)
= a/cx+~[B| - (v/cQ)E;i + (v/*)ELY]
= ajcx+2ya/cy +vy(a/c —va/c)z

= afcx+2va/cy +va(l — §)/cz.
Source: Prof. J. Mickelsson, KTH, Stockholm (public communication).

22.11 Covariance of the Maxwell Equations

The transformation law for the derivatives and for the charge and current density are

9 _ (2  BO 0 90 9 _ (p. 9.2
oy~ \ory T cot) ol orr or \T o T a

and
3 =20y —»v) L= o =vp—v-j/).

The transformation laws for the fields are
Bh:B” B =v(cB-BxE),

Ei‘ :E” E/J_:’Y(E-I-IBXCB)J_.
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No-Monopole Law:

Special Relativity

Because V-B =0 and 0B/9t+ V x E =0,

v/.B/

| -By+ViL-B)
YV +c¢2v0) B+ VL -v(BL —c?vxE))

B,
ot

0
7V-B+70_2v-[ +VJ_XEJ_:|

0B
AWV -B+yc v [+VXE:|
ot i

0.

Faraday’s Law: Parallel component first:

|

OB’
ot’

+V' x E’}

8B1|

= +V'| xE|

ot’

= 7(8¢+V~V)B‘|+VLX’)/[El+(VXB)L]

= y[m+VLXEL} +7[(V~V)B|\+VLX(VXB)L]

ot

ot

_ ,Y|:8B_~_V><E:||+7[(V~V)B|+{VX(VXB)}|}

= 7[(v-V)B| +v(V B) - (v V)B]

= O’

because V- B = 0 and 0B/t + V x E = 0. Now the transverse component:

|

OB’
ot

+V xE’]

4

YO +v-V)y(BL —c?vxEL)+ V)| xE| +V/| x|

0B | v O0E, v
2

+ "}/(VH + CiQV(?f,) X ’y[EL + (V X B)l] + V. x EH

OB v 0B
% (v ) O TR S v B

A"
+VHXELf(V~V”)Cf2XEL:|+VLXE”. (1)
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However, (v x B) =0 and V- B = 0. Therefore, we add zero to get
VH X(VXB)LZVH ><(VXB)L#’VL><(VXB)”:[VX(VXB)]lif(V~V)BL.

This shows that the third and fourth terms cancel in the brackets in (1). Also,

B B
vx(vxaatL):—UZaatJ' and ’UQVHXEJ_:(V'V)VXEJ_.
Therefore,
0B’ 0B 0B
{(%’ +v/ xElilJ_ :72(1—52) |:8t—|—vl XEL:| +VL XEH = |:at+VXE:|L =0.

Gauss’ Law: We note first that
VL~(VXB)LZVL-(VXB)l+VH~(V><B)H=v~(VXB)=—V-(VXB).
Therefore, because V - E = p/¢y and V x B — ¢ 29E/0t = poj,
V’-E’—p’/eg = V/J_EIJ_‘FV“EI‘—[),/GO

= Vi-v(E+vxB)L+7(V —|—c’2v6t)-EH —y(p—c2v-j)/e

1 OE )
YV -E—pfe) —qv- |VxB =5 - — oj

= 0.
Ampeéere-Maxwell Law: We begin with the parallel component and add zero as above
to get the identity
VLX(VXEL) :VLX(VXE)L :VLX(VXE)L = [V X (V X E)hl :V(VE)f(VV)EH
Therefore, because V x B — poj — (1/c?)0E/0t =0 and V - E = p/¢,

1 aEh

V' x B — poj — -
HoJ 2 ot

1 OE/ .
2 8t’]| = Vi x B~ o] -
= VixyBr—c?*vxEL) -y —vp)
¥
— g(at +v- V)EH

1 OE

Z H—v[VLxc_Q(vxEl)

= 'Yl:VXB_MOj_

— povp+c (v V)E)]
= ve*(V-E—p/e)
= 0.
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Finally, using the previous identities, the transverse component is

1 OE/

VIXB/_MOJI_C*QW ) = VLXBfl—i—Vh x B — pojo

— (/)@ +v - V)(E+vxB),

= VixB+¥(V|+c?vd) x (B-—c>vxE),

2
i = @+ v V)(E+vxB)L

1 0E )
= VixBj+7(1-5) [VMBL—CZ&L — pojs
1 OE
— |VxB— i -2
X S 8t]l
= 0.
22.12 Transformations of E and B
(a)
E-B = E/H-B/H—|—E/J_-B/J_=EH-BH—‘r’y(EJ_—‘rVXBJ_)-’}/(BJ_—C_ZVXEJ_)

= Ej .BH+72 {EL'BL_C_Q(VXBL)'(VXEL)}
= EH~B|\+72EL'BL(1*U2/CQ):EH BH+ELBL —E - B.
(b) Let E = Fy, B = Bz, and v = vX s0
E, =vE,+vxB,)=vF-vB)y
B =B, —c2vxE))=vB—c*E)z.

To eliminate E, we let v = vy = E/B. To eliminate B, we let v = vp = ¢ B/E. Since
E # ¢B, one of these must be less than ¢ because vgvp = ¢ and vy 4+ vg > 2c.

(¢) We must have v = vx because the parallel components of the field are invariant. Then,
E | =~[Eyy+vxB,]=7F[(1—vsinf/c)y + (v/c) cos 6Z]
B’ =7 [BL —c?vxE]| =~(Ey/c)[cos by + (sinf — v/c) cos 0]

SO

Ef’L: 1—(v/c)sind § (v/c) cos B 5
B\ /(1 —wvsind/c)? + (v/c)? cos? 0 V(1 —wsind/c)? + (v/c)? cos? 0
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B cos 6 R sinf — vy /c 5

-1l _ +
B \/cos20 + (sinf — vo/c)Qy V/cos? 0 + (sinf — vy /c)?

Now, the denominators above are the same,
V(1 —wvsinf/c)2 + (v/c)?cos2 = /14 (v/c)? —2(v/csinb)
= Jcos? 0+ (sinf —v/c)?.

Therefore, to make E', || B’ we need either

(i) 1 = (v/c)sin® = cos b and (v/c)cos® =sinf —v/c
or
(ii)) 1 — (v/csinf = — cos and (v/c)cos = (v/c)cos @ — sin 6.

From (i), we get the parallel case:

v sin 0 1—cosf 0 T T

5:1—1—00597 sin 6 2

From (ii), we get the anti-parallel case:

C sin 0 _1+cost9_ tg Z<0<37T
¢ 1l—cosf  sinf —co2 2= = '

For the parallel case:

E| =+vEy(1 — (v/c)sinf)y + vEy(v/c) cos 0z = vE, cos 0§ + vE cos § tan(0/2)z
CB/J_ = E/J_,

with

E| = 7Eq cosfy/1+ tan*(0/2) = vEj COS@SGCQ = E()M = EyVcosh.
2 1 —tan®(6/2)

For the anti-parallel case:
E'| = —vE; cos 8y + vEy cos 6 cot(6/2)z

cB'| = ~vE; cos 0y — vE, cos 6 cot(6/2)z,

S 2
E'| = yEycosfy/1+ cot?(0/2) = EOM = FEyV—cos¥.
V1 —cot?(6/2)
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22.13 Covariant Charge and Current Density

The delta function relation we are asked to prove follows from the transformation

r| = (r] + vot) r, =1 t=~(t +vo-r'/c?),
which permits us to regard R = r —rj(¢) as a function of ' and ¢. We will need two facts.
First, r = ry(¢) is the same event in space-time as r’ = v’ (¢'). Second, the volume element

d*R is related to the volume element d3r’ by

dR

d3/:
"TERY)

where the Jacobian determinant is
OR,/0x’ OR,/0y OR,/07
[J(R,r')|=| 0R,/0x" OR,/0y OR,/07

OR./0x" OR./0y OR,/07

Using this information, we choose an arbitrary function F(r’) and evaluate the delta
function integral

3
I = / 4P F(r')o[r — 14 (8)] = / d*r' F(r')6(R) = / J&{P;/)F(r’)é(R)

ol | I L |

d3r/ / / / !
/ |J(R, I‘/)| F(I‘ )(S[I‘ _rk(t )}

Comparing the first integral to the last shows that

o[ —rj, ()]

b= TR )

To evaluate the Jacobian, we use the transformation law above to write
R=r—r(t)=r +rL —rp(t) = ’y(rﬁ +vot') + 1/ —rp(t =4t +yvo - I‘/H/CQ).
Carrying out the derivatives (choosing one axis as the boost direction) shows that
I =~(1 = vi - vo/c?).

Therefore, we get the advertised result,

S[r" — ) (t')]
v = wvg -vo/c?)

Ofr —rp(t)] =
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The transformation laws for the charge/current density are

/

3y =Gy —»v) =i pr=n(p—v-j/é&).

To prove the covariance of the charge density formula, we substitute p and j from the
statement of the problem, and use the invariance of charge (gr = ¢;,) and the just-proved
delta function identity. The result is

p(I‘/, tl) = V(p(r7 t) — Vo -j(I‘, t)/CQ)

y o (1= a0
k

= gl — (@)
k

Turning to the current density, we make essential use of the transformation law for velocities.
First, for the component of j parallel to the boost,

jh(r/?t/) = V[j”(r,t)—vop(r,t)]

VY @k (Ve = vo)dlr — vy (1))
k

— Vi, — Vo )
- 7;%7(1_%.%/02)6& ne ()

= Y gy 0 = ().
k
Then, for the component of j perpendicular to the boost,
JLrt) = ju(rt)

— Z quk,L(S[r — Ty (t)]
k

= quv( . 3" — ' (t')]
k

1—vy-vy/c?)

= D akvi 1O — ().

k

Source: B. Podolsky and K.S. Kunz, Fundamentals of Electrodynamics (Marcel Dekker, New
York, 1969).

22.14 A Relativistic Particle in a Constant Electric Field
The equation of motion is
dp _

_ ¢E.
a1
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Therefore, if pg = ymuy is the initial momentum,
p(t) =poy + qEtz.

The initial (total) energy of the particle is & = \/c2p3 + m2c*. Therefore, the instantaneous
velocity of the particle is

u=

N VEPRTmid &+ CPE

“p p __mwytebtas
k .

The particle speed u — ¢ as t — 0o and one time integration of u(t) gives

.cpo . .1 [ cqEt 1
r(t):yq—Esmh 1( & )+qu\/53+02q2E2t2.

We have chosen the origin of coordinates so the integration constants are zero. Eliminating
t and using the properties of sinh x and cosh y shows that the particle trajectory is

The non-relativistic limit is v < ¢ or cgEt < &. We recover the expected parabolic
trajectory in this limit because coshx ~ 1 + %:ﬁ when z < 1.

Source: R.D. Sard, Relativistic Mechanics (W.A. Benjamin, New York, 1970).

22.15 A Charged Particle in Uniform Motion Revisited

(a) In the rest frame, the electromagnetic potentials are ¢’ = and A’ = 0. There-

megr’
fore, since the Lorentz transformation is
v, =ry and ' = y(r) —vt),
the potentials in the laboratory frame are
/ 74 g 1

— (S A = - -
p=a(+v )=7¢ dmeor’  Ameo [r? + 72 () — vt)?2]1/2

WV oqg v/c

2 Ameor’  dmeg [r2 +2(r) — vt)2]1/2

A%
Ay =~(A') + 6790/) =

!
AL: 1 — U
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(b)

0A
E = —-Vp— 2=
Ve o

T Ve VIe T

vq ri -+ () = vt) = B (r) — vit)
4reg [ 4+ 2 () — vt)?]3/?

Yq r; +r;—vt Yq r—vt

dmeg [r2 +2(ry — vt)23/2  dmey [r2 4+ 42 (r) — vt)2]3/2

Yqv X 1T
B=VxA=(VLi+V))x(AL+A)=VLxA = 47r[r +92(ry — )22

(c) Ej — 0 trivially when r|| = vt for any v. When r| # vt, E|| — 0 anyway when v — ¢,
i.e., when v — oo. Similarly, E; — 0 when v — c if r| # vt. However, E; — o0
when v — ¢ if r = vt . On the other hand,

00 o0
/d(?“” —Ct f}/qu/ — _ary Yy = AE .
2neo [ +7 VPR 2me o3\ r 72| 2mer]
Therefore,
. r|
z%IE}’E - 2mep 13 a0(ry = ct).

v
Since B = — x E| for any v, it must be the case that
c

lim B = 20 Y X TL

v—C

qo(r) — ct).

(d) The fields computed in part (c) satisfy |E| = ¢|B|. In addition, E, B, and v form a
right-handed, orthogonal triad. Radiation fields have the same characteristics (with #
playing the role of v). The only difference is that radiation fields decay as 1/r whereas
the relativistic particle fields decay as 1/r) .

Source: J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

22.16 The Four-Potential

(a) If K’ is the rest frame, we know that
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Ei:’Y(EJ_ + vy XB) EileH

B/J_ = ’y(BL — 672V0 X B) Bi‘ = BH

Given this, and the fact that Visa four-vector, we see that
1‘: ILXA, :leAl:BH:vLXAL-
This allows us to conclude that A’, = A . On the other hand,

/ Y 19\ , 9 /
EH = *V”SD*W:*’Y V\|+C*2Voa Y =7 &+V0'VH AH'

Therefore, it must be the case that A = 'y(AII + ¢ 2vpy') and ¢ = (¢’ + vo - A).
This proves that (A,ip/c) is a four-vector. The same conclusion can be reached by
using the perpendicular components E; and B .

(b) In the particle’s rest frame, we have

r_ 4 1 /
= A'=0
® Ameg (72 4+ 42 + 2,2)1/2
Lorentz transforming to the lab frame gives
V4 1

=7 +vo-A') =y = :
Ameo (v2(z — vot)? + 42 + Zz)l/2

Now put ¢ = ¢g to get

(x — vot)? > 22

7 T 7 T P
q V4 74
4meg o dmeg o dmegpo

This is an ellipsoid centered at (vgt,0,0) with major axes vq/4meypy and minor axis
v/4megpg. For the indicated values, v varies from 1.05 to 2.3. The equipotentials are
plotted below.

TN Y
\\ o.sc/&h/
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22.17 A Moving Current Loop

(a) In the rest frame, ¢’ = 0 and

Therefore,

/ / / /
@mLer—&—m” X

L= 4 r'3
On the other hand,

A=A/

A=A+ vy’ /) =

o m' xr
A 3
and

Special Relativity

A !
r_ Homy X1

TA|

e="(¢ +vo-A)=yvy- A

3

Y B0 (mxR),

4 { 2R2+Ri}3/2

_qm_ (mxR)

Hence,

g my X y(r — vot) +ymy XL _

=2 7 =

AT {2y~ vot)? 12}
A, = JHo m', xr'
= "4 (s 2 213/2
{2 (x) = vot)? +1% }
SO
_ Yo m x R

Similarly,

p=vo A=

(b) In the non-relativistic limit, v — 1, so

47

7 Ko

vy - (m x R)

{ 2R2 —|—R2 }3/2.

A - @mx‘R
4 R3
v (mxR) 1 (voxm)-R/E
Y = R3 T d7e R3 '

3/2°
in {vR} +RZ}

These are the vector and scalar potentials for a system moving at a velocity vy with

a magnetic dipole moment m and an electric dipole moment p =
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Source: J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

22.18 Transformation of Dipole Moments

Let inertial frame K’ move with velocity v with respect to the laboratory frame K. The
text gives the transformation laws for the polarization and magnetization as

PH:P/” PLZ’}/(P/—I—%XM/)
C 1
M“:M/H MJ_Z’}/(M/—VXP/)l.

Let K’ be the rest frame of the body. Then, because the volume element suffers length
contraction,

d37“/
= / 5 (’)IM/J_ + MIH — YV X P/)

M
- /d%’ (M’L +— v x P’)
5

;o ,
m, +——VXPp.
Y

Similarly,

k)
I
—
=
=
0
F
+
v

Source: V.V. Batygin and I.N. Toptygin, Problems in Electrodynamics (Academic, London,
1978).

22.19 TE and TM Modes of a Waveguide

A TE mode has zero longitudinal electric field, a TM mode has zero longitudinal magnetic
field, and a Lorentz transformation leaves E| and By invariant. Therefore, a Lorentz boost
of a TE mode does not generate a longitudinal electric field and a Lorentz boost of a TM
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mode does not generate a longitudinal magnetic field. The TE/TM classification is a Lorentz
invariant concept.

Source: M. Aalund and G. Johannsen, Journal of Applied Physics 42, 2669 (1971).

22.20 Stellar Aberration
The geometry is

The transformation law for the four-vector k is
k, =k
k= (k| + Bkg)
ko =K, + B K)).

Therefore,

ky=~(k| +ow'/c?)  and k, =K.

It is most convenient to compute the inverse. Using w’ = ck/,

ky vk + yuck! /c? ~uk! cost’ ¢
o i | t o’ = .
0 ki K\ yeott + ck’ sin ¢’ sin® = sin@’

Therefore,
sin 6’

tanf = ——— .
an v(cos 0" + 3)

22.21 Reflection from a Rotating Mirror

The frequency w and wave vector k of a monochromatic plane wave form a four-vector.
Therefore, if the inertial frame S’ moves with velocity v with respect to the (lab) frame S,

W =y(w—-v-k)
k| =(k —vw/c?)
K, =k, .

Our strategy is to (i) transform to the mirror frame; (ii) apply Snell’s law of reflection; (iii)
transform back to the lab frame. However, v lies in the plane of the mirror so k, is the
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normal component of the incident wave vector. Thus, the law of reflection changes the sign
of k. But the latter is otherwise unaltered by the above Lorentz transformation so step
(3) merely reverses the effect of step (1). We conclude that v # 0 has absolutely no effect
on either the frequency or the wave vector of the reflected ray.

Source: P. Hickson, R Bhatia, and A. Iovino, Astronomy and Astrophysics 303, L37 (1995).

22.22 Reflection from a Moving Mirror Revisited

Let the reflected wave be E = XE exp[—i(kz + wt)]. The electric field is entirely tangential
to the mirror surface. The key observation is that the usual matching condition that the
total electric field amplitude vanish at the mirror surface must be replaced by the moving
interface matching condition from (2.50),

le X [El — EQ] = (flg . V)[Bl — BQ]

Medium 1 is the vacuum space z < 0 where cBy = z X Ey and ¢cB = —z x E. Medium 2 is
the mirror, so Ny = —z and E; = By = 0. Substituting this information into the matching
condition with z = vt gives all terms proportional to the factor z x x. What remains is

—{Ey expli(kov — wo)t] + E exp[—i(kv + w)t]}
- f% {Ey expli(kov — wo)t] — Eexp[—i(kv +w)t]}. (1)
This expression must be true at all times. Therefore, because wy = ckg and w = ck,

wo w
— UV —Wy)y=—""7V—W
C C

or
1-0
w = wp .
1+387°

The amplitudes must be equal on both sides of (1) also. Therefore,

—Ey - FE=—-pEy + E

or
8—1

E=2"_
B+1

Ep.

These are the results derived in the text using special relativity.

22.23 Transformation of Phase and Group Velocity

(a) The notation is simplified if we treat vectors transverse to the boost velocity v as
scalars. Thus, we write

dw:u-(sk:uﬂék”—l—uLcSkL (1)
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instead of
6w=u-(5k:u“5k‘“ +u, -0k;.

Our task, then, is to compute

ow’ ow’
Uy = —- and u, = —| .
I / e !
5K |, .

The transformation law for the (w, ck) four-vector is

!/

w' = y(w —vky)
ky =~k —vw/c?)
K =ki.

This shows that
ow' = (0w — voky) = k) (u) — v)

(5]6” = 7((516” - v&u/cz) = ’Y(SkH(l - ’UUH/C2).

Dividing one of these by the other gives

!
, 0w

UH — v
u = —
I 5;@{' o

1oy /e

Turning to the perpendicular components, we use (1) to write

!/
, ow

Y(0w —voky)  y[(uy — v)dk) + uLdk,]
R

g ok B Sk 1 ' )

This shows that we need to express 5kH in term of k. We do this using the fact that
k|| is held constant during the differentiation in (3). Therefore,
0 = 0k} = 7(6k) — véw/c?),

SO
v v
5/€|| = 675(4} = g [UH(SkH + 'LLJ_(;ICJ_:I .

Hence,
(v/c)uy

) = 1 g -

Substituting (4) into (3) and rationalizing the result gives

A
Y1 = (1L —vuy/c?) (5)

The transformation laws (2) and (5) are the same as the transformation laws for a
particle velocity.
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(b) When w = ck, the group velocity and phase velocity are the same. Hence the latter
transforms exactly like the former.

Source: G. Barton, Introduction to the Relativity Principle (Wiley, New York, 1999).

22.24 The Invariance of Ugy /w Revisited

The left panel of the figure below shows the physical situation in the lab frame K. In a
time At, the volume of wave field which enters the detector is ¢AtA because the velocity
difference vyaye — Vdetector = ¢. Therefore, the total energy absorbed is Ugpy = upmcAtA,
where the energy density is ugy = € E2.

K K’
n
C C -V
«— cAt —= -~ (c+ V) At —

The right panel of the figure shows the physical situation in a frame K’ which moves in
the direction of the wave with speed v. Using the electric field transformation, E/| =
v(E + 8 x ¢B) |, the electric field and energy density in this frame are

E'=A(E - BB) = ~(1- B)E

and

upy = @B = 7 (1 = B)*E* = 7*(1 — B8)upw.
The volume of wave field which enters the detector in K is (¢ + v)AtA because vyave —
Vdetector = € — (—v). Compared to the rest frame, the transverse dimensions are invariant

(A = A’). The detector is moving in K’, so the time interval is dilated (At' = vyAt).
Therefore, the energy absorbed by the detector in K’ is

Upn = (¢ + 0) AU A" = 5 (1 = §)*upnie(1 + B)yAtA = (1 — B)Upn-
Combining this with the frequency transformation formula,
W =y(w-v-k)=7(1-pBw,
produces the advertised result:

w W'

Source: G. Margaritondo, Furopean Journal of Physics 16, 169 (1995).
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22.25 Conservation of Energy-Momentum

The covariant equation of motion in question is is

dpy.

=qU,F,,.
dr q s

Multiply the equation of motion by p, and sum over the repeated index to get

dp,,
Py dr

= qpuUuFuy-

But p, =mU,, so
dp
Pu d: = (Q/m)p,uquuw

The right side of this equation vanishes because F),, = —F),, is anti-symmetric. This proves
the result because p'- p = p,p, and

dp, 1d

0= 0 = 5 7_PuPu-
Pu dr 2d7_p/,p/,

This shows that p,p, is a constant, independent of the proper time .

22.26 Gauge Freedom and Lorentz Invariance

(a) If A is a gauge function, A), = A, + 9, A produces the same electric and magnetic field
as A,. To prove this, we recall that F),, = 0, A, — J, A, is the field tensor and check
that

FLV =0,(A, +0,A) — 0, (A, + OuN) = F,, +0,0,A — 0,0,A = F,,.

(b) The Lorenz gauge constraint is 9, A, = 0. Imposing this constraint on A; also means
that
A, = 0u(Ay + 0, A) = 0, A, + 0,0,A = 9,0,A = 0.

In other words, A must satisfy the wave equation. Now, the space part of the change-
of-gauge expression is

A=A+ VA=A +ikA,
and its dot product with the wave vector is
k-A'=k-A+ik*A.

Therefore, if a Lorentz boost causes k-e # 0 (so k- A # 0), we can restore k- A’ =0
simply by choosing the gauge function as

A= 12

This choice of gauge function satisfies the Lorenz gauge constraint because, being
proportional to A, it is a plane wave.

Source: R.P. Feynman, Quantum Electrodynamics (W.A. Benjamin, New York, 1962).
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22.27 Covariant Properties of a Plane Wave
The four-vector k, = (k,iw/c) and

0 B, -B, —iE,/c]
-B, 0 B, —iE,/c
Ezu =
B, —B, 0 —iE./c
iEy/c iE,/c iE./c 0 |
[0 —E./c E,Jc —iB, |
E./c 0 —E,/c —iB,
G =
—-E,/c E,/c 0 —iB,
| iB. iBy iB, 0 |
By direct calculation, G, F,, = —4E - B/c. This is zero in one frame, and therefore zero
in every frame. Similarly,
k,F,i = (B xk);, — (w/*E; and k,F, = —(i/c)k - E.

Because w = c|k|, all of these are zero also. Therefore, G, F),, =0 and k,F),, =0 in every
inertial frame.

It remains only to prove that k- B = 0 in every frame. To do this, square the leftmost
equation above to get

E-E = (B xk)-(Bxk)=cB?-*B- k)

Therefore, the assertion will be proved if E?> = ¢?B? is a Lorentz invariant statement. This
is true because the text shows that F),, F,, = 2(B? — E*/c?) is a Lorentz scalar and this
combination vanishes in one frame.

Source: Y.-K. Lim, Problems and Solutions on Electromagnetism (World Scientific, River
Edge, NJ, 1993).

22.28 A Stress-Energy Invariant

The stress-energy tensor for the electromagnetic field is

—Ta _Ta:y =T, 1CGy
Ty —Tyy —Ty. icgy

_Tzw _Tyz _Tzz ’ngZ

icgy  icgy  icg.  —URM |
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where
0ij = —T;j = —¢y [EBiEj + ¢ BiBj — 30, (E* + ¢ B?)| = —e)(E; Ej + ¢ BiBj) + ijupy.-
Therefore,
0,0, = TiyTy; — 229> + uby
= e (EiEj + ¢*BiBj — &ijupm)| [eo (EiEj + ¢ B;Bj — §ijup)]
— 226 |E x B|? + uby
= qE’E?> + & (E-B)? — qFE’upy + € (E-B)? + 2! B> B
— e B*upy — €0 E*upy — €0 B2 upy + 57;j5,;]-u123M - 26302E2B2
—2¢2A(E-B)? +udy
= &(BE'"+*'BY) — 2cqupy (B* + & B?) + uly + 0iuby — 2€2¢° E* B?
= &(E'+c'BY) — 4uly +udy +3uby — 262 EPB?
= e(E*+c'BY) 247 EB?
= (B =B

This invariant is zero for, say, a transverse electromagnetic wave where |E| = ¢|B|.

22.29 Diagonalize the Stress-Energy Tensor

(a) To simplify writing, we temporarily let €9 = py = ¢ = 1 and restore these variables at
the end. Under the stated conditions, the elements of the symmetric matrix ©,,, are

1
011 = —0xp= —§(E% — E5 + B} — B3)
| Qp— 2 " 2 2 2
O33 = —@4425(]3 +B ):§(E1+E2 + By + B;)
©1, = —(E1Ey+ B1By)
O13 = O3 =014 =09,=0
O3 = —i(E:B; — E\By).
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To find the eigenvalues A of ©,,,, we solve the determinant equation

O11 — A O19 0 0
CIP) B9 — A 0 0 —0
0 0 O33 — A O3y ’
0 0 043 Ou4 — A

The determinant is block diagonal, so it is sufficient to require

(©11 = A1) (B2 — A1) — O, = 0= (011 — M )(O11 + A1) + O,

and
(O33 — X2)(O4s — Ag) — ©%, = 0= (O33 — X9)(O33 + o) + OF,.
Therefore,
1
A =0} +6], = 1 [(E% — E5 + B — B})? +4(E\Ey + BQBQ)Q}
and
1
\N=0% +0% = 1 [(E* 4+ B*)> —4(E\B, — ExBy)?].

However, direct calculation confirms that A? = A\3 = A\?, where

N =—[(E* = B*)’ +4(E\B, + E; B,)*] .

=

We now recall the two Lorentz invariants associated with the stress tensor and its
dual:

F,, F,, =2(B*—-E*/c) and F,,G,, = —4E -B/c= —4(E1 By + E»y By)/c.

Hence, putting back the dimensional factors so A has the correct dimensions,

1
A= i%\/(FM,,F,“,)? + (B Gy )’
On the other hand,
(FF)? + (FG)? = 4(B*+ E*—2E*B?)+ 16E2B? cos® 0

= 4(B*+ E') —8E*B? +8E”B*(1 + cos 20)
= 4[B'+ E* + 2E*B? cos(20)).

Therefore, putting in the dimensional factors again,

1
A= i§60 VE* + A BY + 2E2 B2¢2 cos(26).
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b) Because cos(260) < 1, an immediate inequality is
(b) ; quality
1 2 2 12
|/\| < iéo(E +c°B ) = UEM -

Therefore, either ugy = 0 (if the fields vanish) or ugy is bounded from below by A.
This is true in every inertial frame because A is a Lorentz scalar.

Source: J.L. Synge, Relativity: The Special Theory (North-Holland, Amsterdam, 1956).

22.30 Stress-Energy Tensor for Matter

(a) Using the relativistic identity ¢?pj = & (dF)./dt), the given stress-energy tensor takes
the manifestly symmetric form

G)nnt (s,t) = 2 Z pk,z‘pkﬁ 8s — i (£)].
& k

(b) Following the hint, we compute the space divergence:

0OmAt (s, t) _ dri; O

R il ]
o d?“k i
= _Zpka 7 8rk76[s_rk(t)]

= =D Pha ad[s — 1 (8)]
k

o) Adpr.a
= |2 g onedls xel@) =30l — g

k

B a@mdt dpk,a
= 8(th)+; i 0ls = rk(0):

Therefore, moving the derivative with respect to s4 = ict to the left-hand side,

a@m at ( )

dpk,a .
8&3 7; o 0ls = (1)

Now, the equation of motion of a particle with charge ¢; in an electromagnetic field
is
dpk d?‘k
dT,a = quk,l/FaV qq dr VFaI/-
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Therefore,

dpk,oz _ drk,l/
a g

F,,.
Substituting this into the four-divergence just above gives

ma drk‘u
aﬂ@aﬁt(sat) = qu dt
k

6[5 — Iy (t)]F(Y,l/ = jl/Fm/~

The last equality is true because the four-current density is (see Example 22.2)

Hs0) = 3 0 hesls —re(n)]
k

Source: S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
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Chapter 23: Fields from Moving Charges

23.1 Smith-Purcell and Undulator Radiation

(a) The electric field of the passing electron induces electrons at the surface of each metal
strip to accelerate and hence radiate. The bursts of radiation from successive strips
are identical except they are separated by the time interval L/v. Therefore, to get
constructive interference, we need the path difference between waves received from
successive periods to be an integer multiple of the wavelength:

A= (d+cL/v)— (d+ Lcosf) = L(c/v — cos ) = nA.

g

d

Lcos% /
I

(b) Each magnet induces a force which causes the passing electron to accelerate (in the
transverse direction) and hence radiate. The bursts of radiation produced as the

charge passes by successive magnets are identical except they are separated by the
time interval L/v. The argument for the wavelengths emitted is then the same as part

(a).

Source: S.J. Smith and E.M. Purcell, Physical Review 92, 1069 (1953).

23.2 Gauss’ Law for a Moving Charge

Let the charge move up the z-axis with speed v = Bc¢. Then, if 0 is the usual polar angle,

q (1-p%)

E(r)=r .
(x) r47T60’I"2 (1 — B%sin? §)3/2

Choosing as a Gaussian surface S a sphere centered at ¢, the azimuthal part of the electric
flux integral can be done immediately:

q(l—ﬁz)] sin 6 q(1—52>/” in 6

by = [ dS'E = do = de )

" / 26 (1— 32 sin §)3/2 26 (=3 + P cos? 0
S 0 0

Changing variables to z = 3 cos 8 gives the desired result,

_q1-p) _a1=p)1 z

1/6 dx
2¢q ,6_8 (1— 32 +a2)3/2 - 2 [ (1 _ﬁ2>\/m

_q
€0

dp

-8
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23.3 The Retarded Time

Let the observation point be P in the diagram below and suppose there are two solutions,
[t1] and [t2]. The diagram shows the corresponding vectors R([t1]) = r — ro([t1]) and
R([t2]) = r =10 ([t2]).

R([1]D) - R([%2]D)
R([#;])

R([£2])

By assumption, [t1] =t — R([t1])/c and [t2] = ¢t — R([t2])/c. Therefore,
c|ltz] =[]l = [R([t1]) = R([t2])]-
On the other hand, it is a consequence of the triangle inequality that

[R([t2]) = R([])] < [R([t2]) = R([t:])]-

Therefore,
clftz] = [t1]] < [R([t2]) = R([t])] < S, (1)

where S is the distance traveled by the particle between the two points labeled 1 and 2

in the diagram. But (1) is impossible to satisfy if the particle speed is strictly less that c.
Therefore, the original assumption that [t] = ¢ — R([t]) has two solutions cannot be correct.

23.4 The Direction of the Velocity Field
The velocity field is
_ 9 [n-B
dmey | v2g3 R2 rot '
The direction of this field is the same as the direction of the vector
[R - /BR]rot =Tr—TI (trct) - ﬁ|1‘ — T (trct)‘~

Let the observer sit at the origin (r = 0). Then, because the retarded time is defined by the
relation

tret + 70 (tret)/c —-t=0,

the velocity electric field,

E x —Ty (tret) -

To (tret) = I (tret) - V(tret)(t - tret)

= —[I'(] (tret) + V(tret)(t — tret)] = -ry.

The diagram below shows that this proves the assertion.
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V(tre)

rO(tret) + V(tret)(l - tret)
rO([rel)

Source: W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edition
(Addison-Wesley, Reading, MA, 1962).

23.5 Inverting the Retarded Field
(a) We drop the subscript “ret” for convenience. The equation given implies that

caxB=nxnhxE)=n(n-E)-E.

Therefore,
cE-(h xB) = (h-E)’> - E%

On the other hand, ¢cB - (E x i) = —cB?. Therefore, (fi- E)? = E? — 2 B%. This gives
n-E=+vFE? - 2B2. To get the sign, we recall the Liénard-Wiechert electric field,

_ 0 [(-B)(1-p5) dx[(h-p)xal
 4mey | R2(1—-n-B)3 c2R(1 -3 -1n)3

ret

By direction computation,

q 1-p3

nE = R —n B

This shows that the dot product has same sign as the charge itself. Hence,

Ao - E= ++\/E2 — B2,

q
[
(b) Using the formula given in part (a),
cExB=Ex (i xE)=nE’> -E(E-n).
Therefore,

_ ExB+E(q/|d)VE - B 0
E2 '

(=33
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(c¢) The Heaviside-Feynman electric field is

q n Rret d n 1 dgflret
E=—1|= — | = —
4me { {RQLM + c dt [RQLM + 2 dt?

or
E = q £+Egi+i@+id2j
T dweg |R2 0 ¢ dtR?2 O cRdt 2 di?
Therefore,
) ¢ [A dh 1 d%h
B=nxE= na, oan
¢ X 47rey [CR a7 * c? dt?

The dot product of this with B is

632 —

q 1 A 1
= B
4meg [

R o(nxn)+cB~(ﬁxﬁ)},

so we can solve for R to get

_ aB-(axi)
dmegc? B2 — (q¢/¢)B - (- 1)

Restoring the “ret” subscript to R and n, we conclude from (1) and (2) that

qﬁretB ' (ﬁ X ﬁ)TEt
47T€0€2B2 — ((]/C)B . (ﬁ ' 1.ﬁ'l)ret '

Rret = Rret Nyet =

(d) The retarded time and present time are connected by

t = tret + Rret /C~ (3)

But (2) gives Ry in terms of present-time quantities. Therefore, (3) is an explicit
formula for t,.; in terms of present-time quantities.

Source: V.Ya. Epp and T.G. Mitrofanova, Physics Letters A 330, 7 (2004).

23.6 The Covariant Liénard-Wiechert Field
(a) Begin with the hint and recall from (23.17) that
R, = (z — 0,y — Yo, 2 — 20, ic(t — tret)) and R,R, =0, (1)

where ro = (2o, Y0, 20) is the position of the charge ¢ at the retarded time t,o¢. By
direct computation,

0 OR, 0
_ = 2 _— _—
(RyRy) R, o "

ory
or
2RU’ ((50—# - Ua—alru) .
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The foregoing is zero from the right side of (1). Therefore, as advertised,

or or R
R, = R,U, - o _ e
" ar,  or,  R.U,

The Liénard-Wiechert potential is

qg U

A, =— .
4meg cR, U,

This formula, and the hint result (2), establish that

0A, 0A, 0A, or 0A, or

F,, = - — 97 o7
K ory, or, or Ory or or,
g g U, R, E U, R, 3)
 dmweoe |01 \R,U, ) R\Uy, 01 \R,U, ) R\Uy |’
Consider the first term in the square brackets in (3). Because 0,R), = —U, and
U,U, = —c?, this is
0 U, R, B 1 ou, 0 R,
or (RUUU) R\U,  (R,U,)? { or Uy = Uz (RAUA)} RoU,
o 1 (’9U,, aU)\ R/l,
= (RUUU)Q { o7 R)\U, +U,,(U)\U)\) U,R) 7 :| R.U.

B R, 9U, cJUR, R, » Uy
~ (R,U,)? or  (R,U,)? (R,U,p ™ or’

The second term in square brackets in (3) is the same as the foregoing with p and v
exchanged. Therefore, we conclude that

q 1 ou, ou,
Fll/ = - 4 — 1w
! dmegc [(RUUU)2 <R/ or R or
1 ou
- (R7U)3(R,“'U”7R”UN) <C2+R)\a7_)\):| . (4)

(b) Each term in (4) is a second-rank tensor. Therefore, the sum of the terms which do
not depend on 9U, /O are the covariant velocity field. The sum of the terms which
do depend on this four-acceleration are the covariant acceleration field.

(c) The component of the electric field are Ej, = —icFyy,. If (kfm) is a cyclic permutation,
the components of the magnetic field are B,, = Fy;. Now, from (22.57) the four-
acceleration A = dU /dr has space and time components

A a u(u-a)/c

1w/ (1 -u?fe?)? A= e

In the rest frame of ¢, this reduces to A = (a,0). Similarly, U = (0,ic) and B = (R, iR)
so R-U = —cR and R- A = a-R. Therefore, because A, = U, = 0, we find
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. q aji q Ry 2
E, = —icky, = — - - -R).
g ek 4dmey 2R + 4meg (C2R3> (¢ +a-R)
Therefore, as expected when 8 = 0,
¢ R 4 5o
E= — R x (R .
4mey 3 47reoR[ x (R xa)]
Similarly,
q Rpay— Ra
ke 4dmege c2R?
Therefore,
fogax R
B=— )
4r  cR

Source: W. Pauli, Theory of Relativity (Dover, New York, 1958).

23.7 N Charges Moving in a Circle I
For a single charged particle, the Liénard-Wiechert electric field is
g | w-p  ax{@-pxB}
0= e |- 8P T ol —n BPR ’

ret

where R(t) = R(t)h =1 —r((t), B =1¢(t)/c, and 4* = 1/(1 — 3?). On the symmetry axis,
the position vector of the k™" particle is

Ry (t) = —acos(wt + ¢ )X — asin(wt + ¢ )y + 2 2,

where v = aw and ¢ = 2wk/N. From the definitions above, R, = va? + 22 = R is the
same for all the particles and

ny = —% [cos(wt + & )X + sin(wt + ¢)y] + = 2

z
R
B, = —Ry/c = B[—sin(wt + ¢)%X + cos(wt + ¢;)¥]
By, = —wp [cos(wt + ¢r)X + sin(wt + ¢ )F).

We have fiy, - 3, = 0 50 i, X {(ﬂk —B) x B} = (i, — B)(fy - B) — B and fy, - B, = B2 /R.
Since =2 + 3% = 1, this reduces the electric field to

(B —B) [ 1 By
e R

q N
- 47T60 Z

ret k=1

N

q
E(z,t) = T Z

k=1

(a, —By) By
R? cR

ret

(1)
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The x- and y-components of this electric field vanish because, when N > 1,

N N
Z cos(wt + @) = Z sin(wt + ¢r) = 0. (2)

k=1 k=1

The proof that both sums in (2) vanish is straightforward:

i(k=1)2m/N _  i(wtt2m/N) 1—e?n -0

i(wt+o¢r) _ ji(wt+27/N)
Ze t=e 1 — ei2n/N

k=1 k

N N
e
=1
The only term in (1) which survives is the z-component of n;. Hence, the electric field on
the symmetry axis is

23.8 Energy Loss from Gyro-Radiation

The relativistic Larmor formula is

2 . .
L 20 6 (32— (8 x )

_ 2
4mey 3¢ ret

Using the Lorentz force, the relativistic equation of motion for the charge is

d

208 = TBxB=38+8. (1)

Taking the dot product of 3 with the rightmost equation in (1) gives

382 +78-B= "B (BxB)=0. 2)
On the other hand, because v = (1 — 3 - 8)~/2, the time derivative is

¥=7'8-B (3)
Comparing (3) to (2) shows that 4 = 0 and we conclude from (1) that
B=-LpxB.
my

This is the information we need to evaluate the Larmor formula because

s (%)2 (8% B)-(8xB) = (%)2 [#B — (8-B)] = <q>25232
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and q
[B(B-B) - °B] = ——"B.

BxfB=-"LpBx(BxB)=-"—
my my mry

Using these, the power radiated is

1 2¢>
" drwey 3c

B 1 2q462 ,YQ B2
" dwey 3m2c

- (T,;ﬁB)Q (1-5)

23.9 The Path of Minimum Radiation

Larmor’s formula for non-relativistic power radiated is

dt ~ 34mey o3

dU 2 ¢ a(t)?

(a) Since the particle begins at rest, its displacement under constant acceleration a is s(t) =
%atg. Therefore, because the particle must return to rest by uniform deceleration —a,

Therefore, a = 4d/T?, and the total amount of energy radiated is

T T
2 2 2
po [l a2 8t
dt 34mwegc® T4 3 meged T3
0 0

(b) The problem is to minimize the functional

T
o) = [ ari o
0

subject to the constraints that #(0) = (7)) = 0 and 2(0) = 0 with z(T) = d. In
classical mechanics, we get Lagrange’s equation when we minimize a functional like
(1) when the integrand is L(x,%). When the integrand is G(z, &, %), a straightforward
generalization gives

oG d oG d&* 0G

Or dt 0x  dt? 0%
For our problem, G = i?, so (2) gives

dis
dt*

Consequently, the equation of motion can contain terms no higher than cubic in time:

z(t) = A+ Bt + Ct* + Dt?.
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We get A = B = 0 from the boundary conditions x(0) = %(0) = 0. Imposing #(7) =0
and z(T) = d leads to

6d 12d 6d 2t

Source: Prof. K.T. McDonald, http://cosmology.princeton.edu/~medonald /examples/

23.10 Radiation Energy Loss from Coulomb Repulsion
The problem is one-dimensional (in the radial coordinate) and the non-relativistic equation
of motion is

v Ze?

mo = = —.
dr r2

From Larmor’s formula, the power radiated is

1 2e% 1 2e522
- = —
47ey 3c3 4mey 3c3m2rd

Hence, the total energy radiated is
e 1 2522 [ dt
AE = dtP=——— —.
/_oo 4mey 3c3m? /_oo rd
In classical mechanics, we do integrals of this kind using v = dr/dt and knowledge of the
velocity function v(r). The latter we get from conservation of energy:

1

1 Ze?
§mv(2) = §mv(r)2 ¢

+ =
T

/ 2Z¢?
v(r) =wvp4/1 — s where s = 62
r mu}

and the particle travels from r = +o00 to 7 = s and then back to » = +o00. Accordingly,

Therefore,

oo

1 46822 /dr 1 4522 T dr

vrt  dmeg 3c3mivug ) 4 /1 — s/r
S

AE =

4meg 3c3m?2
S

1 4e522 dx
47eg 3c3m2v033 x4\ /1 — 1/;3
1
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The integral is

(r=y+1)

1/;&\/1—1/3: O/ﬂy—H?/?

_ _ .2
-2 [ w=
0

do .
= / s (z = sinh 0)

e 16

1 5 2 3 _
= {5tanh 0 gtanh 0 + tanh 6 =15

— 00
Therefore, because s=3 = m3v§ /8Z3%€5,

.
2muy

AE = ——"_.
45 Zmegc?

Source: J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

23.11 Frequency of Dipole Radiation

Since p(r,t) = ¢d[r — ro(t)], the dipole moment of the moving charge is
p(t) = /d3r rp(r,t) = gR[X cos(w; t) cos(wat)]X + gR sin(wyt)y.

But cos(w; t) cos(wat) = & cos[(w1 + w2 )t] + 5 cos[(wy — ws)t]. Therefore, the dipole moment
is the sum of three time-harmonic dipoles, each of which emits at its natural frequency.
Hence, the moving particle emits dipole radiation at frequencies wy 4+ ws, |w; — ws|, and ws.

23.12 Larmor’s Formula with Fields Displayed

The covariant form of the Larmor’s formula derived in the text is

1 2¢* dp, dp,,
47r60 3m2ed dr dr

To express this in terms of the fields, we use the covariant form of Newton’s law for a particle
with charge ¢ moving in an arbitrary electromagnetic field. This was given in Example 22.5
as

dpy

= UVFLV'
dr d F
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Therefore, the desired expression is

1 2q¢*

= Tre gz U Fur U Fiuo Us. (1)

The evaluation of (1) in an arbitrary inertial frame reduces to matrix multiplication. Thus,

F 0 B, -B, —iE,/c 17 v, | [ (vxB+E),
—B, 0 B, —iE,/c YUy (vxB+E),
Fya U, = =7
B, —B, 0 —iE, /c YU, (vxB+E),
| iE./c iE,/c iE./c 0 | [ ive | i iB-E
Therefore,
U,FU,FUy, =V {[E+v x B> — |8 E|*},
and
1 2¢%y 2 2
E B|I° - |3 -E|*}.
A BtV x B -8B

Source: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford,
1962).

23.13 Emission Rates by Lorentz Transformation

In the (momentary) rest frame of the electron, the particle acceleration is a’ = eE’/m and
Larmor’s formula gives the exact rate at which the particle radiates energy:

au’ 1 262a’2_ 1 2¢2 ¢2F"?

P/ = — = = P
dt’ 4mey 3c3 4meg 3¢3 m2

Therefore, the total energy lost to radiation is

1 2e*E?¢
dmeg 3m2e3

AU =Pt =

There is no preferred direction in the rest frame, so AP’ = 0. Transforming to the laboratory

frame,
AU = A(AU 4+ vAP') = AAD — o 267
= v = = _—
K K 4dmey 3m2c?

The electric field is parallel to the boost, so E = E’. The electron transit time through the
capacitor is t = d/v and t = 4¢' by time dilation. Therefore,

1 264E’2t’_ 1 2e*E?%d
747reo 3m2¢3  dmey 3m2c3v’

AU =
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The associated total momentum radiated is

_ WwAU wAU 1 2e*E?d

AP = v(AP +vAU' ) = .
7 Tt /) c? c? 4dmey 3m2cP

Source: Prof. L. Levitov, MIT (public communication).

23.14 Emission Rates by Explicit Integration

(a) Since the Poynting vector is S = (1/uoc)t |Eraq|?, and the Liénard-Wiechert radiation
field is

o [ax{@-pxa}

Eyua (1, ) =
) = e | e —a- By R

9

ret

the rate of energy emission as measured by the particle itself is

dUsm _ ¢ / Q0 {A x [(A - B) x a]}’ (1)
dt 16723 ¢ (1—n-B)° :
Writing out the numerator gives
dUgm ¢ / o5, N 2\ (4 )2
= 2 . . _— 1 —_— .
0 Tortae | G 19+ 20(8 ) -a) — (1 - ) (n-a)")
2
q
- m{a21+2(5a)a7J7 7(17&2)0,7;(1]'}{7;]‘},

with I, J;, K;; defined as above. Now we evaluate

f=/<1_dﬁ%=%/_ﬂ @ f’Z@s :g{a—lﬁ)? ) (1+1ﬁ)2} - —422)2

and
n; 10 ds? 101
/ (1—neBr)* 3006 / (1—nxBr)* 3086
19 4r 167p;
396, (1—Befr)?  3(1—p2)%
Similarly,
Y (I—nB)>  408; )] (1—nifBe)*  40p;

1 0 167Tﬁl‘ 47 (51‘]‘ 87752‘ ﬁj

406;3(1—Bufr)® 3 (1—p32)° + 1- 2
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Substituting all of this into (1) gives the desired result:

AUy 29" ¢° [a2 (a-ﬁ)w _ 29 ¢

v _2r 2 2]
dt 3¢ dreg 1-—p32 33 4meg [a \ax,@|]

(b) We need to compute

dPgey i
4rEMG —/ d[A - gT]; =—/ dAgn;T;
dt A A

1
= —€ A dAgﬁl {EIE] + CzBiBj - iéij(EZ + CQBQ)} .

But i-E;q =0=1"-B;,q and E;aq - Eraq = ¢?Braq - Braq. Therefore,

d;? = g /dAgni|Erad|2
= o [ B 28 0w~ (- )0
- 1675&60 [a®A; +2(8 - a)a; Bij — (1 — *)ajarLiji] , (2)
where
4 = [y =35 - oo

- _miny 104, 4w &y 16w i
Bij = /dQ(l_ﬁ'ﬁ)4_36ﬁj_ 3(1—52)2+ 5 (1— )
L. — /dQ ningng laBi]— B 4£5q:j5k + 0B + 0,15 n 876, 55 B
e -0 ppF 406 3 (10 - gy

ds) 4
M:/u—ﬁﬂﬁzl—@'

Substituting all of this into the momentum-loss formula (2) gives

dPem _ 27" ¢ [ag (a~,3)2] 5= B dUsn

dt 3¢t dne 1—p2 c dt

Source: R. Napolitano and S. Ragusa, American Journal of Physics 67, 997 (1999).

23.15 The Radiated Power Spectrum of a Linear Oscillator

The power spectrum formula (23.91) from the text is

27 [wo
de _ ﬂ0q2m2wé

dQ  327tc

T x / dr v (1) exp{—imwy[t - vo(7)/c — 7]}
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By symmetry, we can take the observation point in the z-z plane so ¢ = (sin6, 0, cos ).
The velocity function is v = —awy sinwgtz. Therefore, with 5y = awy/c, we find without
difficulty that

27 Jwo 2

an PJOquQwé 2 2 2 / ;
- = a’w; sin® 6 dt sinwyT exp{imwy (T — By cos O cos wyT
70 391s 0 o7 exp{imwy (1T — By 07)}

0

Changing variables to ¢ = wy7 and x = mf cos 0,
2

2

P 2,2 4

P _ pod mwy a? sin® 0 /d¢ sin g exp{im(¢ — x cos P)}| . (1)
0

dQ — 327ic

Now, using the Bessel function information in the statement of the problem,

2T

/dcb sin ¢ exp{im(¢ — x cos ¢)}

0

27
= 2%/@5 [exp(i¢) — exp(—i¢)] exp{im(¢ — x cos ¢)}
0
1 2T o
=5 | [ 46 explil(m + 1)¢ —zcosg]} — [ dg exp{il(m —1)¢ — x cos 9]}
2 0/ O/

— _% [Jerl(l') + J7n,1($)]

2
= _lﬂJrrL (.13)

mox
Inserting this result into (1) gives the power spectrum as

dP,  pocqg®*m?*w? 9 09
0 = o2 tan” 6.7 (mBy cos0).

The non-relativistic limit is ) < 1 or x < 150 Jy, (z) = 2™ /2" n!. This shows that emission
at wy (m = 1) dominates.

Source: G.A. Schott, Electromagnetic Radiation (University Press, Cambridge, 1912).

23.16 The Radiation Spectrum of Beta Decay

(a) One of our expressions for the angular spectrum of radiated energy is

2

dl (w 202, T .
% = M106q7r3c r X / dtv(t) exp[—i(k - ro(t) — wt)]
—o0
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For the present problem, the integral is non-zero between ¢t = 0 and ¢ = oo using the

velocity function v(¢) = v and the trajectory function r¢(t) = vt. Therefore, because
k = (w/o)r,

2

2. 2 i
dI) _ o /dt expl—iw(E - B — 1)1]
0

dQ  16m3¢

The integral does not converge at its upper limit. To make sense of the integral, we
insert a convergence factor exp(—et) and let ¢ — 0 at the end. Writing 6 for the angle
between t and 3, we find that the distribution does not depend on frequency:

dl(w)  pog’c B*sin’0
dQ 1673 (1 — Bcosh)?’

(b) The integral we need to do is

—

1

B sin® 0 B dx x? CAm (1 1+
1= oS = | [ [ | F B

—1 —1

I(w) = ,u:l)gzc {;ln (1—1—?) —2] .

(¢) Our spectrum does not depend on frequency because we assumed that the electron was
created with velocity v. In reality, the electron created by beta decay is accelerated
up to this velocity in some very short time interval At¢. In that case, general Fourier

considerations tell us that the spectrum function will be negligibly small when w >
1/At.

Therefore,

Source: J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

23.17 Energy Loss and Electric Field Spectrum

For non-relativistic and small-amplitude excursions of the bound electron it is sufficient to
write the one-dimensional equation of motion,

P4 T8+ wlr = ——E(t),
m

where E(t) = E(r = 0,t). The frequency-domain solution of this equation is

e/m -

Bw) = 5l B(w),

w? — w} 4wl
and the corresponding transform of the velocity is
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V(w) = —iwr(w).

Using Parseval’s theorem, the energy transferred to the bound electron is

AE = — /th() :—i/dwE* v (w).
2m
Substituting from above,
AE = & /Oodw Bl)f——
 2mm w? —w? 4wl
_ /d |Qz w(w? — w} —iwl)
2 ™m — w3)? + w?I?

(oo}
e? - W’
= — [ dw|E(w)] :
mw/ wlE(W) (w? — w})? + w2l?
0
To study the I' — 0 limit, we note that

. W’ T
thb (W — W)+ w2 2 [0(w = wo) + 0w +wo)].

Therefore,

AE = £ (B
T 9m 01 -

Source: W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edition
(Addison-Wesley, Reading, MA, 1962).

23.18 Angular Distribution of Radiated Frequency Harmonics

We follow the discussion in the text which Fourier analyzes the time-periodic electric field
as

oo 27 Jwo
B()= 3 By (r) exp(—imwt) B, (r) = 2 / A E(t) explimant), (1)
m=—0o0 0

and defines dFP,, /dQ2 from

T
dpP 1 dP X dP,
<dQ>: Jate =3 G @

0 m=1

el
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where
dP

— = 2 E,aal?.
- eocr” | Eraq| (3)

Substituting (1) into (3) and performing the integral in (2) gives

JP 27 Jw . o
w - - .
<dQ> = eocrzﬁ / dt Z Z E,, (r)E; (r) exp[—i(m — n)wyt].
0 m=—00n=—0oo

The time integral is (27/w)dpm, and E(r,t) = E*(r,t) implies that E,, (r) = —E* (r).
Therefore,

E _ 2 N 2 _ 2 I 2

1 ) = cr > B @) =260 Y By (1) (4)

m=—o00 m=1

We omit m = 0 because w = 0 is not germane to radiation. To evaluate E,, (rin (1), we
use the Liénard-Wiechert radiation field,

q n X {(ﬁfﬁ) Xﬁ}
4776() cg3R ’

ret

Erad =

where gt = [1 — 11 - Bset. Following the text, we change the integration variable from ¢ to
tret = T, use t = 7+ R(7)/c, and use the long-distance approximation R = r —t-ry(7). The
result is

27 [wo

B = st [ ar PO e i i) )
0

Using

A X [(ﬁ—ﬁ)x,@] _d [Aax(Axp)
(1—B-n)? _d7'|:1_ﬁ,6:|

to integrate by parts (the integrated part vanishes exactly) gives

2
27 Jwo

/ dr i x (5 — B) explimu[r — £ -1o(r)/d}| . (5)

0

wo ¢ —1muwy

Em 2=
| @)l 2w dmwey  cr

In our approximation n ~ ¢. Therefore, substituting (5) into (4) shows that

27 Jwo

rXT X dr v(7) exp{—imwy[t - ro(7)/c — 7]}
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But |f x (£ x s)|? = | x s|? for any vector s. Therefore, as required,

2
27 Jwo

/ dr v(7) exp{—imuwg [t - ro(7)/c — 7]}

0

de . MOqzmQWé N
dQ 32wt

Source: G.A. Schott, Electromagnetic Radiation (University Press, Cambridge, 1912).

23.19 N Charges Moving in a Circle II

(a) The generalization of the text expression (23.91) for the power spectrum due to N
identical charges with trajectories r;(t) and velocities v;(t) is

2
tog?mPw N
— Mod e s / drt x v, () expl—imwolf -1, (F) e =7 . (1)
0

P,
a0

N j=1

Because all the charges move at the same speed, the key observation is that
0, —0 0. — 0
r; (t) =r <t + ]1) and V; (t) =V (t + ]1> .
wo wo

Substituting these into (1) and changing the integration variable to 7’ = 74(6; —6:) /wo

gives
21 Jwo+ (0 —01)/wo
N J
de Ho q2m2w3 N
4 — d / X /
a0 |~ 32rc 2 T xvi(r)

=1 (0;—01)/wo

x exp{imwy[1' 4+ (0; — 01)/wy +F - 11 (7")/c]}

The integrand is periodic, so the limits of integration can be shifted back to the interval
[0, 27 /wy]. Hence,

27 Jwo

N
Zexp[im(@l —6,)] / dr' v x vy (")

0

dP, |  pwg*m’u;
|y 327t

x exp{imwo [T’ + 1 -1r1(7")/c|}

Because | exp(imf;)|? = 1, we get the advertised formula,
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(b) The case of equally spaced charges means that §; = 27j/N. In that case, we get a
geometric series:

N ? N ?
Zexp(fimej) = Zexp(fim%rj/N)
j=1 j=1
N 2
= [exp(—i2rm/N)}!
j=1

2

= |exp(—i2wm/N) Z exp(—i2rm/N)J

1—exp(—i2rm |?
= |exp(—i2mm/N)

1 —exp(—i27m/N)

2

= [estrzmmm) exo(imm) LS
__sintmm
sin®(mm/N)’

This “array” factor is zero because m is an integer and the numerator is zero unless
the denominator is zero also. The latter happens when m is an integer multiple of N.
This proves the assertion.

(c) When the 6; are random,

2

N N
Zexp(fimQ ZZexp —im(; — 0y)] = N + Zexp[fim(é)j —6r)].

j=1k=1 j#k

Hence, the radiation intensity is always of order N.

Source: G.A. Schott, Electromagnetic Radiation (University Press, Cambridge, 1912).

23.20 Covariant Radiation of Energy-Momentum

The four-acceleration is A, = dU, /dr and a formula derived in the text is

dUrad o 1 2(]2
dt  4mey 33

JA,. (1)

Another result from the text is
dPrad o \4 dUrad
dt 2 dt
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With the definition of P given in the problem statement, dimensional analysis suggests that
a fully covariant statement of the rate of change of energy-momentum is

ar, 1 2¢>
dr  4wey 3¢

A, AU, (3)

To check this, we use dr = dt/~ and Uy = i7yc to write out the time component as (3) as

P, 1 2 1
Tat T 4dmey 3¢3 AvAy c2 (ive).

But Py = (i/c)Uraq and, using (1), the foregoing becomes an identity:

EdUrad _ szrad
c dt ¢ dt

Similarly, the space components of P, are P,,q and U= ~v(v,ic). Therefore, the space
components of (3) are

dPrad _ 1 % l

dt N 47'('6() 303 v c?

(vv).

This gives
dPrad o 1 dUrad
dt ¢ dt’

which is exactly (2).

23.21 Lorentz Transformation of dP/dS}

Consider the energy dU/, ; emitted into a solid angle d©2" = d(cos #")d¢’ in the instantaneous
rest frame K’ of the particle. Our interest is the transformation law for

dplidQ /

rad

ay — dr'dy”

If the charge moves with velocity v = vz, the radiated energy transforms like

dUrad = ’y(dUr/ad +v- Prﬁd) = V(dUr/ad + UdPrlad COS 0/)
However, dU;,q = cPy;aq for plane wave radiation. Therefore,
dUyaqa = (1 + Beos0')dU,, 4. (1)

The transformation law for the solid angle follows from w = ck and the fact (k,iw/c) is a
four-vector. Therefore,

kj =kcos = y(k cos +vw/c) =y(cos b + Bk

and
w =W +vk'cosd) =v(1+ Bcost ) .
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Combining these gives one form of the law of aberration:

_cosf' + 3
cosf = m (2)
Then, because 1 — 3% = 1/42,
_d(cos?®’) B(cos 0 4 B)d(cos ') d(cos ")
d(cosf) = 1+ Bcost (14 Bcosh)? ~ 42(1+ Bcost)?’ 3)

Now, d¢ = d¢’ because the azimuthal direction involves directions transverse to the boost.
Therefore, using (1) and (3),

dUrad

. dU’
_ 3 N3 rad
a =7 (1+ Bcosh')’ —22,

asy
Finally, time dilation says that dt = vdt’. This gives the advertised result:

dP g dP’
20 =7 (1+ Bcost) ok

To derive the alternative formula give in the problem statement, we need the reverse of the
transformation (2), namely,

0—p
g — VTP 9
€08 1—Bcosb )
Using this, we find
1— 32 1

1+ Bcost =

1— Bcosh - v2(1 — Bcosh)’
This produces the desired formula because

1

2 L0\
v (1+ Bcosb) = 0T Geos)

Source: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford,
1962).

23.22 Cyclotron Motion with Radiation Reaction

The equation of motion including radiation reaction is

mv = qv X B4+ mryVv. (1)
The motion is circular (not helical) so v =v,%X + v,y and (1) becomes

Uy — ToUy = quyB/m

528



Chapter 23 Fields from Moving Charges

Uy — Toly = —qu, B/m.

We may assume v = vqexp(—iwt) if the motion remains nearly circular. The cyclotron
frequency is w. = ¢B/m, so the equations of motion take the form

—iw(1 + iwT)v, = weuy
—iw(1 +iwTy)vy = —WeUsy.
Eliminating v, produces an equation with v, on both sides. Canceling this gives
W1 +iwn)? = W? = itow? +w —w. = 0.
Because we must get w = w, as 19 — 0, the solution of this quadratic equation is

1 [-1+ V1 + diwer |-

20
Weak damping means w.7y < 1. This justifies the expansion
VI +diwery = 14 L (diwery) — £ (diwero)? + -+ .
Hence, the velocity damps according to
v(t) = vg exp(—iw.t) exp(—w?Tgt),

and the damping time constant is 1/w?7.

23.23 Radiation Pressure Due to Radiation Reaction

Let the electron site at r = 0. The equation of motion,

d
md—: = —eEg exp(—iwt),

implies that the electron acquires a velocity
e
v = ——Eyexp(—iwt). 1
0 p( ) (1)

If we include the effect of radiation reaction, the equation of motion is

d
md—: = —eEq exp(—iwt) + m7yVv. (2)

We guess a solution for (2) of the form

e )
v = f%EU exp(—iwt) + v, (3)
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and substitute this back into (2). Because radiation reaction is small, we neglect the con-
tribution from v to conclude that

v = =70 Ej exp(—iwt).
m

Hence,

T .
§v = ——LEj exp(—iwt),
m
and the cycle-averaged Lorentz force on the electron is

2
(F) = —e}Re[(v* x By] = —efRe[(dv" x Bo] = - Eik.

Note that there is no self Lorentz force on the electron without radiation reaction because
the pre-factor of exp(—iwt) in (1) is pure imaginary. The Thomson cross section is op =
(87/3)r? = 6m(c7y)?. Therefore,

(F) = %GodTEglA(.

This force is sensibly interpreted as a pressure because it pushes the electron in the direction

of wave propagation.

Source: G. Stupakov, Lecture Notes on Classical Mechanics and Electromagnetism in Ac-
celerator Physics, US Particle Accelerator School, Albuquerque, NM, June 2009.

23.24 Angular Momentum Decay by Radiation Reaction

If @ = v? /r is the centripetal acceleration of the orbiting particle, and 7o = poq?/6wme, the
Larmor rate at which the atom loses energy by radiation is

(1)

dE 1 2q2a27 poq® [ v* 27 mryv?
dt dmey 3c3 6mc B ’

N r 72
The rate of change of the angular momentum is

dL

E:ﬁ(rxmv)zvxmv—i—rxm\?:rxm\". (2)

To compute this quantity, we appeal to the equation of motion of the orbiting charge in-
cluding the effect of radiation reaction:

Zq>

————T. 3
4’/T607"2r (3)

mv —mtov = Fooul = —

Taking the cross product of this expression with r gives
mr X v—mmr X v =0.
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Comparing this with (1) shows that

dL .. . .
—p = MTr x ¥ =m7 E(rxv)—vxv . (4)

Now, use the hint and employ (3) to eliminate m¥ on the far right side of (4) in favor of
Fcoul- This gives

dL
E = T%(I‘ X FCoul) — 1V X Fooul.-
In other words,

dL. B Zq*vr

dt - 47’('6()7’2.

Combining (5) with (1) gives

dL. _dL./dt _Z¢vny r* _  Z¢® (6)

dE — dE/dt — 4mer? mmvt  dmegmud  w

where the last equality follows from the centripetal force equation,

mv? Zq*

r Amegr?’

Now, the virial theorem tells us that the total energy is

Zq*
E = — 8
8megr’ ®)
and, using (7), the angular momentum is
Zq?
L, = = . 9
mor 47T€()U ( )
Combining (8) and (9) gives
L, 2r
Bl v

Comparing this to (6) produces the advertised result,

dL,
dE

L.
Bl

1
)

Source: E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill,
New York, 1981).
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23.25 Covariant Landau-Lifshitz Equation

The equation of motion for a point charge in an electromagnetic field without radiation
damping is

mU, = eUy Fyq. (1)
The corresponding Lorentz-Abraham-Dirac equation is

. .. my ..
mU, = eUy Fyo +mmU, + C—QOUHUVUV. (2)
The first iterate of this equation uses the original equation of motion to compute
U, = SUsF,5 + <UsF (3)
L, BLuB m B up

and substitutes this back into (2). A moment’s reflection shows that the covariant version
of the convective derivative is

d
— =U,0,.
dr
Substituting this and (1) into (3) gives
.. (;*2 e
Uﬂ = ﬁUaFﬁaFﬂg-‘r%UgUaaaF#@. (4)
Substituting (4) into (2) gives
. e’ e
mU, = eUaFNQ + mmy WUQF/MFM; + EUﬁUa&yFw
2
mTy e e
+ CTU/LUV |:mUaE3aFI/3 + mUﬂUaaaFu;3:| . (5)

The last term in (5) is zero because F,3 = —Fp, implies that U,UgF, 3 = 0. Otherwise, we
use the asymmetry of F),, twice to conclude that

62’7'0 627'0

mU, = eUy Fo — 7Uazﬂwlﬂ,ﬂ + enoUsUy 00 Fup — C—Q(Fﬁa U,)?U,.

Source: L. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford,
1962).
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Chapter 24: Lagrangian and Hamiltonian Methods

24.1 Working Backward

(a) Use the first Helmholtz relation three times to get

O OF, 0 OF, D OF, D OF _ 9 0F 0 0F
ory Or; — Ory, OFy

ori iy OF Oy Or; O OF; OFy

This implies that 6 F; /0r; 07, = 0. Integrating the latter equation once gives

OF;

o, =€ Qr (r,1),

where @y (r,t) is an arbitrary function of the particle coordinates and time. The Levi-
Civita symbol is necessary to guarantee anti-symmetry with respect i < j interchange,

which is a property of the first Helmholtz relation. Integrating again gives
E = P1 (I‘,t) + eijk”.’ij (rat) )
where P; (r,t) is another arbitrary function of the particle coordinates and time.

(b) Write the second Helmholtz relation out for one case:

oF, OF, 1d (an - 8Fy>

dy Oz  2dt \ 9y 0%
This is
oP, 0 . oP, 0 1dJo, . o
oy +6—y(r xQ),— oz *%(1‘ xQ), = St [ay (9Q: — 2Qy) — %(ZQ;E —2Q:)
or
0Q,  .0Q, .0Q,  .0Q. dQ.
_(VXP)Z+y3y "oy T e T A

Using the convective derivative, dQ, /dt = 0Q. /0t + (v - V)Q.,

.0Q. . 0Q. oQ

— P
(V x )Z+y8y +:caw +

V@)= | g 6T Qs

282

Rearranging terms, we finally get

(VxP+aa?‘>z+z'(V-Q):0,

and similarly for the other two components. This must be true for arbitrary values of

r, so we get the two homogeneous equations

V><P+8a—?:0 and vV-Q=0.
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(c) To check the Helmholtz relations, write F in the form

Fi = €jprjwr + 2617wk + €j5Wj €kom TIWm
€ijkTjWr + 265wk + (0i10jm — Oim 07 ) WiT1Wh,

= ez-jkr]-u')k + 2€ijk7:jwk + eriwj' — wjrjwl-.

The foregoing implies that
8Fl/8r] = Zeijkwk,.

This expression satisfies the Helmholtz relation. Otherwise, 0F;/0r; = €;jrwi — wjw;.

Therefore,
OF; — aFj = €irWE — €ikWE = 2€;i1W
or;  Or TR TR R
Similarly,
OF — OF; = 4€;i )W -
or;  0ry "

This shows that the second Helmholtz relation is satisfied. We can read off the “fields”
from the equation of motion, namely,

P=rxw+wx(rxw) and Q = 2w.

The frequency w does not depend on position. Therefore, V- Q = 0. Using the
expression above,

-Pi = Ez'jkT'ju.}k —|—wjrl-w]- — wjrjwi.

Therefore,

(VxP), = P
= €pq/,;€jkid)k8q’l"j + wzepqiaqn — ijiepqi(’)qrj
= (0pjldqk — Opkqj) WiOqj + U’erqiéiq — WjWi€pqiOg;
= W, — 3w, = 2w, = —0Q,/0t.

This proves the claim because the last line is the p*" component of —9Q/dt.

24.2 An Effective Nuclear Force

(a) With the given Hamiltonian, one of Hamilton’s equations gives the velocity as

OH

o2 _p
v = o - + 2pf(r).

Solving this for the canonical momentum gives
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muv

= Tramf(r) @)

p

By definition, the Lagrangian is

mu? P

L:PU—HZW—%_Q(T)_P%%T)- (2)

The Lagrangian L = L(r,v) is not a function of p, so we use (1) to eliminate p from
(2) in favor of v = 7. The result is

L(r,7) = TS 2 ;rjf(r) —g(r).

IS

(b) The Lagrange equation is
dp _ oL
dt — or’

For our problem, this reads

d mr o [ tmi? ,
dt<1+2mf>:8r(1i—2mf>_g(r)' ®)

Using A(r) = vA’(r) for any function A(r) of the radial distance,

d mr mi 4 i d 1

— = e — .

dt \1+2mf 1+2mf dr \1+2mf
In addition,

i (1 2mf
1+2mfmr< 1+2mf>'

Therefore, (3) can be rearranged into the Newton’s-law form

mr

2m2f . md( 1

I B - 22/ :F - ).
1+ 2mf  2dr 1+2mf>r g(r) = F(r,7,7)

Source: E. Boridy and J.M. Pearson, Physical Review Letters 27, 203 (1971).

24.3 Relativistic Lagrangian
The Lagrangian is

L=-mc*\/1—1-1/c2+er- A(r,t) — ep(r,t).

Therefore, the conjugate momentum is
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oL mv L eA
= =—— +eA.
P or V1—v?/c?

The Lagrange equation is

!
I
9]
<
<
>
|
9]
<
®

dﬁ_i mv + A 87[1
dt — dt 1=/ © T or

Using the convective derivative,

the foregoing becomes

d mv 0A
dt(W) :e(—Vgo—at)+e(v-VA—(v~V)A).

Since B =V x A, an elementary vector identity gives

d (mv> =e(E+vx(VxA)=e(E+vxB).

dt V1—0v2/c?

This is the correct relativistic equation of motion.

24.4 A Relativistic Particle Coupled to a Scalar Field

The first term must be the action of a point particle in isolation. The Lagrangian of the
latter is L, = —mc? /7. Therefore, in terms of the proper time differential dr = dt/~,

Sy = —ch/% = —mc? /dT = —mc/d(CT).

We conclude that ds = cdm and we can write the total Lagrangian as a function of time:

L=————Zp((t
ol (r(t))
Lagrange’s equation is
dor_or
dtov — Or’
and
01 0 v/c?
_— = ]_ — . 2 = ——— = — 2'
vy oy v-v/e —yE yv/e
Therefore,
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o = ymv + g~ e
v
and the equation of motion is

d d

- mv) = —— (gv w) - %WD-

The last term on the right is electric field-like. The first term on the right has an entirely
different character.
24.5 The Clausius and Darwin Lagrangians
(a) The Lagrangian which describes the non-relativistic motion of the o™ particle is
L, :%mav§+%va'A(ra)_Qa@(ra)~ (1)

We substitute into (1) the static forms for the scalar and vector potentials created by
the remaining particles,

t =
o (rt) 47reo Z |rf
/575
Mo QSVﬂ
A(r,t) =
(I‘7 ) Z |I'—I'3
to get
al a9
L. =Ly i q; adp
o =M 4 ; ot rﬁ| 47T6(] ﬁ; v, —rg|

The last two terms are symmetrical in o and § and thus account for the interaction
between particle o and particle 3 in total. For this reason, these terms must be
multiplied by 1/2 to avoid double-counting when we sum over « to form the total
Clausius Lagrangian,

N N
Z qaqs ( Vo Vﬂ)
To c? '

a=1f#a

1 N
T2 D; mav 871'60

We can see by inspection that the static scalar and vector potentials above satisfy the
Lorenz gauge condition

(b) From Section 15.3.2, the transverse current density is

Jr 1) =30 0) + Vo /d3’m.
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The hint suggests we should pull the gradient outside the integral. To do this, we use

the identity
VA . [ 4

T r—v

s 1
:|+-](r) v|I__r/|

and note that the integral of the total divergence vanishes for a localized current
distribution. Therefore,

1
jl(r,t):j(r7t)+vvmﬂ/d3 /M

v —r'|

Inserting into this the current density,
)= qsvsd(r —rp),
B

gives

. v m
ju(r quvdé (r—rg)+VV, Z 958, . (2)

|I‘—I“5|

The Clausius Lagrangian shows that the vector potentlal contribution is already of
O(v?/c?) compared to the scalar potential term. If we adopt the Coulomb gauge, this
means that retardation of the vector potential can be safely neglected. Hence, the
vector potential we need to substitute into (1) is

A(r,,t) = 47r/d3 dufr,t) (3)

re —r|

Specifically, substituting (2) into (3) and using the hint shows that

daVa * A(I'a, = MO Z Qa%

T p7a — |

+**ZQQ [va ro —rg)vg - (ry —1rg) Vo - V3
B#a

The relativistic particle Lagrangian is

L, = —m®\/1 -2/ = —mc? (1—v2/2¢% — v} /8" +--)

and the scalar potential contribution to the Lagrangian is the same as in the Clausius
expression. Combining all the above and dropping the inessential constant —mc? gives

N ~ a
L, = lma 2 (1 I 2) 1 3 ety (1 _ Va v+ (Va - Fap) (Vs 'raﬂ)> .

2 4¢? 41eg $ Tas 2¢2

Adding the Lagrangian for each particle and dividing the interaction term by two to
avoid double-counting finally gives the desired Darwin Lagrangian:

,Zma (1+4)

Z Z dadp 1— Vo © Vg + (Va 'f‘uﬁ) (V[J‘ . f'aﬂ)
87reo 2¢2 ’

r
a=1p#a of
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24.6 Equivalent Lagrangians

(a) The Lagrange equations are
da(oLy_or
dt \9q. ) Oqi

If L - L+ dA/dt and A = A(gg, gk, t), the change in the left side of this equation is

dok _ do (on on. oA

dt aqk - dt aqk 8qm qm 8qm qm a n
B 7 S ) 0 S
~dt 9400, " i 94,04 0G0t
_ oA df A o PN L O
"~ g dt (0490, ™" T 9305 T Dg0t]

The terms in the square brackets in the last line above must be absent to make this
equal to the change in the right side of the original Lagrange equations. Therefore,
the Lagrange equations are not preserved when A is velocity-dependent.

(b) The Lagrange equation for L = &y — zy is

d(oL\ oL _ .. _,
dat\dg) aq 1747

for ¢ = x and ¢ = y. This is the harmonic oscillator equation of motion. Therefore,
the TV Lagrangian

1
Lo @) =5 ()

N —

will produce the same equations of motion. This Lagrangian and the original La-
grangian do not differ by a total time derivative.

(¢) The change in the Lagrangian is

AL:/dgrAE:/d3rV~C[w(r,t)] :/c.ds.

The Lagrangian, and hence the equations of motion, will be unchanged if ¢ is such
that the surface integral vanishes.

24.7 Practice with Lagrangian Densities

(a) The Lagrange equation is
oL oL

% 508) T oo ~ "

539



Chapter 24 Lagrangian and Hamiltonian Methods

Using
8(225) —o agfw -
we find the equation of motion is the wave equation,
Vip—d=0.
(b) The Lagrange equation is
Using
g =00 m ge=o
we find the equation of motion is
0,0, +0¢=0.

Source: Prof. N. Buttimore, Trinity College, Dublin (private communication).

24.8 One-Dimensional Massive Scalar Field

The Lagrangian density is

71 1 5902 5902 2 2
E2l<8t><8m> e

The Lagrange equation of motion for ¢ (z,t) is

doL oL 0 oL

"= Hog oy T os o000
- ngtgo—i—mgo Oz Ox
19’0 P 2
= =2 _—* . 1
2o op2 Y (1)

The generalized momentum is 7 = L/9p = ¢/c*. Therefore, the Hamiltonian density is

H = mo—-L

dp L1 (0p\" (00" _ .,
"ot 2| o oz mee
_ 1 2,2 2 2. 2
= 5{077 + (0p/0x) —i—m(p}.
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Hamilton’s equations are

T = _aﬂ + QaiH f— _m2 + azi
T T e T 0x00p/or) YT Ba2

. OH 0 oM )

o = +—=— s = CT.

or 9z 9(0r/dx)

Combining the two Hamilton equations gives

1. 0?
S¢=-mlp+
C

0z?’

This is the same as (1).

24.9 Proca Electrodynamics

(a) The Lagrangian density

1
L=3i A— Z -
j o+ 56 e

(vw + %‘?) — & (Vx A)Q] 1 [A% — (p/c)’]

does not introduce any additional dependence on the generalized velocities A and ¢.
Therefore, the canonical momenta are the same as in Maxwell theory, namely,

™= % = —¢kE and 0] oL =0

OA S0
The generalized Lagrange equation is

aoc_oc , or "
dtog,  Oq.  0(0iqr)

The text evaluated (1) for 7w and found

dﬂ'k 1
Gt = e O, ©)

The Proca term makes a contribution of —(1/ugf?)A; to the right side of (2). There-
fore, the Ampere-Maxwell law changes to

A 1 OE
B+ — = upj+ ——. 3
V x t 2 M0J+028t (3)
The text also evaluated (1) For 7y and found
dﬂ'o
— =0=- -E. 4
o p+eV (4)
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Chapter 24 Lagrangian and Hamiltonian Methods

The Proca term makes a contribution of ey /f? to the right side of (4). Therefore

Gauss’ law changes to
V-E+Z=2 (5)

The homogeneous Maxwell equations do not change because we represent the fields in

the terms of the potentials:

E:—Vw—aa—? and B=VxA.

(b) Conservation of charge will be respected if we require that the continuity equation be
satisfied. Using (3) and (5), this condition reads

ap 1 1 OE 0 € Op 1 € Op
— A — Ry 0% gy
0=Vt =may A nay o gV E ey eV A e

In other words, charge is conserved only if the potentials satisfy the Lorenz gauge

constraint,
1 0p

VoAt 5o =0,

(c) For a static point charge, p(r) = ¢d(r) and E = —V¢. Therefore, (5) takes the form

Vi — %; = —qd(r).

This is exactly (5.88) from Section 5.7, which has the solution (5.91), namely,

o(r) = Tmcor exp(—r/{).
24.10 Podolsky Electrodynamics
(a) The text derived the Lagrange equations,
oL oL
i _ 9~ 1
o~ s ) =" 0

with no dependence of £ on 9,0, A, . If this dependence exists, there is an additional
contribution to the variation of the action equal to

3
A
08 = /dt/d 8/,3 i )6(8#8,, o)

58 = /dt/d3 { [ 8766/1 )5(6VAQ)} - {a 3(@53’96/1)] 50, AQ)}.
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We assume that the total derivative term vanishes by virtue of the vanishing of the
variation 0(9, A, ) at infinity. The term which remains is the same as

f oL oL
_ 3 _
5Sf/dt/d r { d, Ka"a(a,layAa)) 5Aa] + [8“8”8(8#6,,140)] 5Aa.}.

The total derivative term vanishes again and we are left with the final term alone.
Therefore, the Lagrange equation (1) generalizes to

oL oL oL
oA, O { (0, An) } + 0,0, {8(8;L8,,Aa) } =0

(b) The Lagrangian is
a2

, 1
Lp = juty = potostos = 5

o (OrFp\)(0,F3p)-

We already know the Lagrange equation when a = 0:
) 1
0=jo+ —0.Fua. (2)
Ho

Therefore, we focus on the Podolsky term and compute

0

m[—&Fm@pE%] = —20\Fp)

B
9(8,0,Aa) O Fsp

= —20,Fpy 9,034, — 0,0,Ap)

__9
0(0,0, Ax)
= —28/\FV/\(SW(SCW + 28)\Fa,\(5up(5,,p
= *28)\1;‘1/)\50/1, + 28/\F(y/\5/w-
In the Lagrange equation, we apply the operation d, 0, to both terms. This causes the
first term to vanish because F,y, = —F), causes 0,0\ F,, to vanish. Taking account

of the second term generalizes (2) to

1 2
0= jo+ —0,Fua + —0,0,01 Fax
Ho Ho

or

[(1 - G'Qa/La/l,)] a)\FAa = 7N0ja~ (3)

(¢) We know that the a = 0 version of (3) produces the inhomogeneous Maxwell equations.
Therefore, we can write down the generalized Gauss and Ampere-Maxwell laws by

inspection:
1 62 p
1— 2 2_ -~ . E= L
1o (-] v
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1 0° 1 OE
1-a* (V- == B— ——| = wj.
- (g [7 - ]
Source: B. Podolsky, Physical Review 62, 68 (1942).

24.11 Chern-Simons Electrodynamics

(a) A change of gauge where ¢ — ¢ + A and A — A — VA leaves the Maxwell fields
unchanged, but changes the Lagrangian density by

AL = pA +] -VA+% [d-(E/cxVA)_dOVA-B—A(d-B/c)}. (1)

The text (Section 24.4.1) writes the first two terms as

. 0 . Op
VEA) + 5, (pA) = A [VH m} :

The first two terms vanish in the action integral from end-point restrictions on a
variation. The last two terms vanish from charge conservation. In (1), we proceed
similarly and write the remaining terms using two divergences and one time derivative.
We assume these vanish also from end-point restrictions. The terms which remain are

[V (doB) + 0, (d : B) — €k Ok (dzEj)]

o> o>

[do(V-B)+(B-V)do+B-d—E.(vxd)+d-(B+V><E)]

The first and last terms in the square brackets are zero by the definition of the fields
in terms of the potentials. Otherwise, if the change in the action is to be zero for
arbitrary A, we must have

Vdy=0 Vxd=0 d=0.

(b) The conditions above are surely satisfied if we choose (d, idy) as a constant four-vector.
The canonical momenta are

oL
T = % =0
mTm™ = %:—GOE—%dXA.
0A
The Lagrange equation,
d oL oc oL

dt ¢~ 9q. 9(Biar)’
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Chapter 24 Lagrangian and Hamiltonian Methods

for the scalar potential is
0=—p+eV-E-—3d B+1V. (dxA);
or, because B =V x A and d is a constant vector, the Chern-Simons Gauss’ law is
eV-E=p+p-B. (2)

The Lagrange equation for the vector potential is

~E-1dxA = lExd+1ldB+j—e¢dVxB

0

—&-m {%(doA—wd) -(V x A)}

= %Exd—F%doB—Fj—GoCQVXB

+%d()B —+ %d X V(p

Combining terms gives the Chern-Simons Ampere-Maxwell law,

B = —=— i B - E .
V X C2 n +/Jg (J+(10 d x )

These modified Maxwell equations are gauge invariant because only the Maxwell fields
E and B appear in them. They cannot be Lorentz covariant when p, and p are
constants. This is most clear from (2) because a Lorentz transformation mixes E and
B.

Source: S.M. Carroll, G.B. Field, and R. Jackiw, Physical Review D 41, 1231 (1990).

24.12 First-Order Lagrangian

(a) For the given Lagrangian density, evaluate the Lagrange equations

doL oL , OL
dtdg,  Oq.  0(0iqr)

For E:

0=-E—Vp—A,
for B:

0=B-VxA,
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for ¢:
0= —p+ eV - E,
for A:
d . oL .
_%Ej = Jiaia(TA]_)CQkaum NAn = ji + O Byery; = —c ok By
The first two equations above are equivalent to the two homogeneous Maxwell equa-
tions
B
V-B=0 and %:—VXE.

The second two are the inhomogeneous Maxwell equations

1 OE
v.E-" g
€0

d B=uj+—-—.
an V x /LoJ—‘y—CQ 5

(b) The ten canonical momenta each produce a primary constraint because no time deriva-
tive appears anywhere:

T, = 0L/0p=0

wa = OL/OA = —¢E

TE

OL/IE =0

mg = OL/OB=0.

24.13 Primary Hamiltonian

The Lagrange equation is

dp _ dOL _ 0L
dt dtdq Oq

The Hamiltonian is H = pg — L so

oL oL
dH = pdq+qdp— ——dq— —-dq
dq a4
oL OH OH
qap g q g q+ ap D,

using the definition of p. Using the Lagrange equation gives
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Chapter 24 Lagrangian and Hamiltonian Methods

oH . oH .
<aq+p) dq+<8pq)dp0.

But ¥ (p, q) = 0 implies

ov ov
a—qdq + a—pdp =0,

which can be multiplied by an arbitrary function —u (p, ¢) to get

ov ov

—u——dq — ua—p

dp = 0.
dq P

Equating the coefficients of dgq and dp in the equations above gives

or | ov _ ot
dp op  Op
oOH oV 0Hp

T

where Hp = H + uW.

24.14 Gauge Fixing a la Fermi

(a) The canonical momenta are

dA ot
and oL A 00
=—=——0-—"=—¢AL
0 a(p 10 P 60/\
The Lagrange equations are
)
dt 04 T0(0; A))
dny 0L, O
dt — Op "0(0;0)
Writing this out for my gives
. 04;
—eg A\ = —p — €00; <VI<*0 + ot ) . (1)

Adding and subtracting (1/¢?)9?¢/0t? puts this in the form of a modified inhomoge-
neous wave equation:
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1 0% o0 )
2, - ¥ ¥ 1—)\ —
V ()0 02 atQ +( )

i (2)

Writing out the 7 equation of motion similarly gives

0 0A; 1 A o0
ar i Z:.i i | A)perom Ap 7'977
51 (V o ) St [Mo (Vo Awewon 5,1y )} T { a@Ai)}
3
which can also be manipulated into an inhomogeneous wave equation:
1 9*A
2 .

(b) Using E = =V — 0A /0t and B = V x A in (1) and (3), we find without difficulty
that

108
ot
(c) Apply the operator (1/¢?)9?/0t* to (2) and add this to the divergence of (4). The

result is
1 9’Q adp
2Q) .
_)\{V _c28t2}_ 0<8t+v"])'

V- -E+ X2 =p/e and V x B = AVQ = uoj +

The right side of this equation is zero by conservation of charge. Therefore, 2 satisfies
a homogeneous wave equation. The latter is second order in time. Therefore, if we

impose the initial conditions Q2 = Q = 0, we may conclude that the Lorenz gauge
condition

19p

Qr,t)=V-A+ =0

c? Ot

at all times. This means that Q = VQ = 0 also and the field equations in (b) reduce
to the usual Maxwell equations.
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