

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

Geometric Spanner Networks

March 2010

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) O-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) O-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Geometric Network

Weighted undirected graph G(V, E) s.t. • $V \subset \mathbb{R}^d$.

•
$$\forall e = (u, v) \in E, wt(e) = |uv|.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Network Quality

Driving distance: 256 km. Actual distance: 198 km.
 Driving distance =1.27.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Network Quality

Driving distance: 180 km. Actual distance: 136 km.
 Driving distance =1.32.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Network Quality

Driving distance: 143 km. Actual distance: 100 km.
 Driving distance =1.43.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

• between a pair of vertices=

Distance in the graph Euclidean distance

of a network= maximum dilation between all pairs.

-spanner

A network with dilation at most t, or $\forall u, v \in V$, there is a path between u and v of length $\leq t \times |uv|$. (t-pa

・ロット (雪) (日) (日)

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

• between a pair of vertices=

Distance in the graph Euclidean distance

 of a network= maximum dilation between all pairs.

-spanner

A network with dilation at most t, or $\forall u, v \in V$, there is a path between u and v of length $\leq t \times |uv|$. (t-pa

・ロット (雪) (日) (日)

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

• between a pair of vertices=

Distance in the graph Euclidean distance

 of a network= maximum dilation between all pairs.

t-spanner

A network with dilation at most t, or $\forall u, v \in V$, there is a path between u and v of length $\leq t \times |uv|$. (t-pat

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

• between a pair of vertices=

Distance in the graph Euclidean distance

• of a network= maximum dilation between all pairs.

:-spannei

A network with dilation at most t, or $\forall u, v \in V$, there is a path between u and v of length $\leq t \times |uv|$. (t-pa

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

• between a pair of vertices=

Distance in the graph Euclidean distance

• of a network= maximum dilation between all pairs.

t-spanner

A network with dilation at most t, or $\forall u, v \in V$, there is a path between u and v of length $\leq t \times |uv|$. (t-path)

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

$(1+\varepsilon)\text{-}\mathsf{Spanners}$ approximate the complete graphs with error $\varepsilon.$

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

Example

10-spanner for 532 US-cities

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) ⊖ Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

5-spanner for 532 US-cities

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

3-spanner for 532 US-cities

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

Example

2-spanner for 532 US-cities

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

<□▶ <圖▶ < ≧▶ < ≧▶ Ξ のQ(

1.5-spanner for 532 US-cities

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

<□▶ <圖▶ < ≧▶ < ≧▶ Ξ のQ(

How to compute a good spanner?

Given a set V and t > 1

Quality measurement:

- Number of edges (size)
- Weight (compared with MST)
- Maximum degree
- Diameter

Sparse *t*-Spanner

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

How to compute a good spanner?

Given a set V and t > 1

Quality measurement:

- Number of edges (size)
- Weight (compared with MST)
- Maximum degree
- Diameter

Sparse *t*-Spanner

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

How to compute a good spanner?

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Constructing sparse t-spanners:

- Greedy (Bern (1989) and Althöfer et al. (1993)).
- Θ -graph (Clarkson (1987) and Keil (1988)).
- Ordered ⊖-graph (Bose et. al. (2004)).
- Well-Separated Pair Decomposition (Arya et. al. (1995)).

رایش کاریز د

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and

Imp.) Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

باز بازیکرارز

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

الن المريد دارين المريد

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

دانشكاه يزد

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

مراسف الشريع المريني الم

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

مان من المنظم المريد المنظم المريد المناطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة الم

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

دانشكاه يزد

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

مراسف مارزد

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

مراسف مارزد

Geometric Spanner Networks

Introduction

Algorithms Review

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and

Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

ORG. GREEDY

```
Input: V and t > 1
Output: t-spanner G(V, E)
Sort pairs of points by non-decreasing order of distance:
E := \emptyset:
G := (V, E);
for each pair (u, v) of points (in sorted order) do
    if SHORTESTPATH(G, u, v) > t \cdot |uv| then
         Add (u, v) to E;
    end
end
return G(V, E);
```

Time Complexity: $\mathcal{O}(n^3 \log n)$. Storage Complexity: $\mathcal{O}(n^2)$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙
ORG. GREEDY

```
Input: V and t > 1
Output: t-spanner G(V, E)
Sort pairs of points by non-decreasing order of distance:
E := \emptyset:
G := (V, E);
for each pair (u, v) of points (in sorted order) do
    if SHORTESTPATH(G, u, v) > t \cdot |uv| then
         Add (u, v) to E;
    end
end
return G(V, E);
```

Time Complexity: $\mathcal{O}(n^3 \log n)$. Storage Complexity: $\mathcal{O}(n^2)$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

ORG. GREEDY

Number of shortest path queries: $\Theta(n^2)$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

ORG. GREEDY

Number of shortest path queries: $\Theta(n^2)$.

Observations:

• We only want to know if there is a *t*-path between *u* and *v*.

・ロット 予定 マイロット

э

• The graph is only updated $\mathcal{O}(n)$ times.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

IMP. GREEDY

```
Input: V and t > 1
Output: t-spanner G(V, E)
for each pair (u, v) \in V^2 do Set Weight(u, v) := \infty;
Sort pairs of points by non-decreasing order of distance;
E := \emptyset; G := (V, E);
for each pair (u, v) of points (in sorted order) do
     if Weight(u, v) \leq t \cdot |uv| then
          Skip (u, v);
     else
          Compute single source shortest path with source u;
          for each w do update Weight(u, w) and Weight(w, u);
          if Weight(u, v) \le t \cdot |uv| then Skip (u, v);
          else Add (u, v) to E;
     end
end
return G(V, E);
```


Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Conjecture:

The running time of IMP. GREEDY is $O(n^2 \log n)$.

Bose, Carmi, Farshi, Maheshvari and Smid (2008)

- The conjecture is wrong!
- They presented an algorithm which computes the greedy spanner in $\mathcal{O}(n^2 \log n)$ time (even for points from some metric spaces).

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

دانت کارزد

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Time Complexity: $O(n \log^2 n)$ Storage Complexity: O(n).

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

دار شکاه زر

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

 $\begin{array}{l} (\text{Ordered}) \ \Theta \text{-} \text{Graph} \\ \text{Algorithm} \ (\text{Sink and} \\ \text{Skip-list spanner}) \end{array}$

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

⊖-Graph Algorithm

Θ -Graph

```
Input: V and t > 1
Output: t-spanner G(V, E)
Set k:= the smallest integer such that t = \frac{1}{\cos \theta - \sin \theta} for
\theta = 2\pi/k;
E := \emptyset;
for each point u \in V do
     C_1, \ldots, C_k := non-overlapping cones with angle \theta
     and with apex at u;
     for each cone C_i do
          Connect u to the closest point in C_i;
     end
end
return G(V, E);
```

Time Complexity: $\mathcal{O}(n \log n)$. Storage Complexity: $\mathcal{O}(n)$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

⊖-Graph Algorithm

Θ -Graph

```
Input: V and t > 1
Output: t-spanner G(V, E)
Set k:= the smallest integer such that t = \frac{1}{\cos \theta - \sin \theta} for
\theta = 2\pi/k;
E := \emptyset;
for each point u \in V do
     C_1, \ldots, C_k := non-overlapping cones with angle \theta
     and with apex at u;
     for each cone C_i do
          Connect u to the closest point in C_i;
     end
end
return G(V, E);
```

Time Complexity: $\mathcal{O}(n \log n)$. Storage Complexity: $\mathcal{O}(n)$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Ordered $\Theta\text{-}\mathsf{Graph}\text{-}\mathcal{O}(\log n)$ maximum degree

Same as the Θ -graph algorithm, except we add points one by one in a special order.

Random Ordered Θ -Graph– $\mathcal{O}(\log n)$ spanner diameter

We add points one by one in a random order.

Sink Spanner-bounded degree

Decrease the degree of nodes by replacing some edges by paths within other nodes.

Skip-List Spanner– $O(\log n)$ spanner diameter Decrease the diameter of Θ -graph by adding some extra edges.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Ordered $\Theta\text{-}\mathsf{Graph}\text{-}\mathcal{O}(\log n)$ maximum degree

Same as the Θ -graph algorithm, except we add points one by one in a special order.

Sink Spanner- bounded degree

Decrease the degree of nodes by replacing some edges by paths within other nodes.

Skip-List Spanner– $\mathcal{O}(\log n)$ spanner diameter

Decrease the diameter of Θ -graph by adding some extra edges.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Ordered $\Theta\text{-}\mathsf{Graph}\text{-}\mathcal{O}(\log n)$ maximum degree

Same as the Θ -graph algorithm, except we add points one by one in a special order.

Sink Spanner- bounded degree

Decrease the degree of nodes by replacing some edges by paths within other nodes.

Skip-List Spanner– $\mathcal{O}(\log n)$ spanner diameter

Decrease the diameter of Θ -graph by adding some extra edges.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Ordered $\Theta\text{-}\mathsf{Graph}\text{-}\mathcal{O}(\log n)$ maximum degree

Same as the Θ -graph algorithm, except we add points one by one in a special order.

Random Ordered Θ -Graph– $\mathcal{O}(\log n)$ spanner diameter We add points one by one in a random order.

Sink Spanner-bounded degree

Decrease the degree of nodes by replacing some edges by paths within other nodes.

Skip-List Spanner– $\mathcal{O}(\log n)$ spanner diameter

Decrease the diameter of $\Theta\mbox{-}graph$ by adding some extra edges.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.)

Apx. Greedy Algorithm

(Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner)

WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Well Separated Pair:

 $A, B \subset \mathbb{R}^d$ are *s*-well separated (s > 0), if \exists disjoint balls, D_A and D_B such that

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

・ロト・日本・山田・山田・山口・

Well Separated Pair:

 $A, B \subset \mathbb{R}^d$ are *s*-well separated (s > 0), if \exists disjoint balls, D_A and D_B such that

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Well Separated Pair:

 $A, B \subset \mathbb{R}^d$ are *s*-well separated (s > 0), if \exists disjoint balls, D_A and D_B such that

• $A \subseteq D_A$ and $B \subseteq D_B$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) O-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

٠

Well Separated Pair:

 $A, B \subset \mathbb{R}^d$ are *s*-well separated (s > 0), if \exists disjoint balls, D_A and D_B such that

- $A \subseteq D_A$ and $B \subseteq D_B$.
- $\mathbf{d}(D_A, D_B) \ge s \times \max(\operatorname{radius}(D_A), \operatorname{radius}(D_B)).$

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Well Separated Pair Decomposition:

Let $V \subset \mathbb{R}^d$ and s > 0. A WSPD for V with respect to s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V such that

∀i, A_i and B_i are s-well separated,
∀p, q ∈ V, there is exactly one index i s. t.
p ∈ A_i and q ∈ B_i or
q ∈ A_i and p ∈ B_i.

m : Size of WSPD.

Callahan & Kosaraju (1995)

For each set of *n* points, we can construct a WSPD of size $O(s^d \cdot n)$ in $O(n \log n)$ time using $O(s^d \cdot n)$ space.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Well Separated Pair Decomposition:

Let $V \subset \mathbb{R}^d$ and s > 0. A WSPD for V with respect to s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V such that

• $\forall i, A_i \text{ and } B_i \text{ are } s \text{-well separated},$

∀p, q ∈ V, there is exactly one index i s. t.
p ∈ A_i and q ∈ B_i or
q ∈ A_i and p ∈ B_i.

m : Size of WSPD.

Callahan & Kosaraju (1995)

For each set of *n* points, we can construct a WSPD of size $O(s^d \cdot n)$ in $O(n \log n)$ time using $O(s^d \cdot n)$ space.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Well Separated Pair Decomposition:

Let $V \subset \mathbb{R}^d$ and s > 0. A WSPD for V with respect to s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V such that

- $\forall i, A_i \text{ and } B_i \text{ are } s \text{-well separated},$
- $\forall p, q \in V$, there is exactly one index *i* s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

m : Size of WSPD.

Callahan & Kosaraju (1995)

For each set of *n* points, we can construct a WSPD of size $O(s^d \cdot n)$ in $O(n \log n)$ time using $O(s^d \cdot n)$ space.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Well Separated Pair Decomposition:

Let $V \subset \mathbb{R}^d$ and s > 0. A WSPD for V with respect to s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V such that

- $\forall i, A_i \text{ and } B_i \text{ are } s \text{-well separated},$
- $\forall p, q \in V$, there is exactly one index *i* s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

m: Size of WSPD.

Callahan & Kosaraju (1995)

For each set of n points, we can construct a WSPD of size $\mathcal{O}(s^d \cdot n)$ in $\mathcal{O}(n \log n)$ time using $\mathcal{O}(s^d \cdot n)$ space.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Well Separated Pair Decomposition:

Let $V \subset \mathbb{R}^d$ and s > 0. A WSPD for V with respect to s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V such that

- $\forall i, A_i \text{ and } B_i \text{ are } s \text{-well separated},$
- $\forall p, q \in V$, there is exactly one index *i* s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

m: Size of WSPD.

Callahan & Kosaraju (1995)

For each set of n points, we can construct a WSPD of size $\mathcal{O}(s^d \cdot n)$ in $\mathcal{O}(n \log n)$ time using $\mathcal{O}(s^d \cdot n)$ space.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

WSPD Algorithm

Input: *V* and t > 1**Output**: *t*-spanner G(V, E)Set $\mathcal{W} := \mathsf{WSPD}$ of V w.r.t. $s := \frac{4(t+1)}{t}$; Set $E = \emptyset$: for each $(A_i, B_i) \in \mathcal{W}$ do Select an arbitrary node $u \in A_i$ and an arbitrary node $v \in B_i$; Add edge (u, v) to E. end return G(V, E).

Time Complexity: $\mathcal{O}(n \log n)$. Storage Complexity: $\mathcal{O}(n)$.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

WSPD Algorithm

```
Input: V and t > 1
Output: t-spanner G(V, E)
Set \mathcal{W} := \mathsf{WSPD} of V w.r.t. s := \frac{4(t+1)}{t};
Set E = \emptyset:
for each (A_i, B_i) \in \mathcal{W} do
     Select an arbitrary node u \in A_i and an arbitrary node
     v \in B_i;
     Add edge (u, v) to E.
end
return G(V, E).
```

Time Complexity: $O(n \log n)$. Storage Complexity: O(n).

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで
-	Size	Weight	Degree	Time
Greedy spanner	$\mathcal{O}(n)$	$\mathcal{O}(wt(\mathrm{MST}))$	$\mathcal{O}(1)$	$\mathcal{O}(n^2 \log n)$
Apx. greedy spanner	$\mathcal{O}(n)$	$\mathcal{O}(wt(\text{MST}))$	$\mathcal{O}(1)$	$\mathcal{O}(n\log n)$
⊖-graph	$\mathcal{O}(n)$	$\Theta(n \cdot wt(MST))$	$\Theta(n)$	$\mathcal{O}(n\log n)$
O. ⊖-graph	$\mathcal{O}(n)$	$\mathcal{O}(n \cdot wt(\text{MST}))$	$\mathcal{O}(\log n)$	$\mathcal{O}(n\log n)$
WSPD spanner	$\mathcal{O}(n)$	$\mathcal{O}(\log n \cdot wt(MST))$	$\Theta(n)$	$\mathcal{O}(n\log n)$
Sink-spanner	$\mathcal{O}(n)$	$\mathcal{O}(n \cdot wt(\text{MST}))$	$\mathcal{O}(1)$	$\mathcal{O}(n\log n)$
Skip-list spanner	$\mathcal{O}(n)^*$	$\Theta(n \cdot wt(\text{MST}))^*$	$\Theta(n)$	$\mathcal{O}(n\log n)^*$

(*): Expected with high probability

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Applications

Designing approximation algorithms with spanners

Traveling Salesperson Problem (TSP)

Find the shortest tour that visits each point exactly once and return to the starting point.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners

Metric space searching Protein Visualization

Research Topics

Known results:

Applications

Designing approximation algorithms with spanners

Traveling Salesperson Problem (TSP)

Find the shortest tour that visits each point exactly once and return to the starting point.

Known results:

- The problem is NP-hard even in \mathbb{R}^d .
- A 2-approximation algorithm for metric spaces by Rosenkrantz *et al.* (1977).
- A 1.5-approximation algorithm by Christofides *et al.* (1976).
- A PTAS ($(1 + \varepsilon)$ -approx. Alg.) for geometric case by Arora (1998) and Mitchell (1999).
- A PTAS for geometric case using spanners by Rao and Smith (1998).

Geometric Spanner Networks

Introductior

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners

Protein Visualization

Designing approximation algorithms with spanners

Definition:

If G is a graph with vertex set P, then a tour of P in G is a (possibly non-simple) cycle in G that visits each point of P at least once.

Observation:

For any *t*-spanner *G* for *P*, there is a tour of *P* in *G*, whose weight is at most $t \cdot wt(TSP(P))$.

Theorem (Rao and Smith, 1998)

Given a $(1 + \varepsilon)$ -spanner of a set of n points with $\mathcal{O}(n)$ size and $\mathcal{O}(wt(\text{MST}))$ weight, we can compute a $(1 + \varepsilon)$ -approximation of TSP(P) in $\mathcal{O}(n \log n)$ time.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners

Protein Visualization

Designing approximation algorithms with spanners

Definition:

If G is a graph with vertex set P, then a tour of P in G is a (possibly non-simple) cycle in G that visits each point of P at least once.

Observation:

For any *t*-spanner *G* for *P*, there is a tour of *P* in *G*, whose weight is at most $t \cdot wt(TSP(P))$.

Theorem (Rao and Smith, 1998)

Given a $(1 + \varepsilon)$ -spanner of a set of n points with O(n) size and O(wt(MST)) weight, we can compute a $(1 + \varepsilon)$ -approximation of TSP(P) in $O(n \log n)$ time.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners

Protein Visualization

Designing approximation algorithms with spanners

Definition:

If G is a graph with vertex set P, then a tour of P in G is a (possibly non-simple) cycle in G that visits each point of P at least once.

Observation:

For any *t*-spanner *G* for *P*, there is a tour of *P* in *G*, whose weight is at most $t \cdot wt(TSP(P))$.

Theorem (Rao and Smith, 1998)

Given a $(1 + \varepsilon)$ -spanner of a set of n points with $\mathcal{O}(n)$ size and $\mathcal{O}(wt(\text{MST}))$ weight, we can compute a $(1 + \varepsilon)$ -approximation of TSP(P) in $\mathcal{O}(n \log n)$ time.

S. B. Rao and W. D. Smith, Approximating Geometrical Graphs via "Spanners" and "Banyans", STOC'98, pp. 540–550, 1998.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching

Protein Visualization

Research Topics

・ロト・西ト・山田・山田・山下

Applications

Metric space searching

Approximate proximity searching

- Multimedia information retrieval
- Data mining,
- Pattern recognition,
- Machine learning,
- Computer vision and
- Biomedical databases.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Applications

Metric space searching

image database

Approximate proximity searching:

- Multimedia information retrieval,
- Data mining,
- Pattern recognition,
- Machine learning,
- Computer vision and
- Biomedical databases.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- A meter show the similarity between any two objects.
- But evaluating the distances are expensive.
- One way to speedup is computing the distance between any two objects and save them, but it need O(n²) space (AESA).
- A t-spanner can be used as a sparse data structure to reduce the space.

・ コ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications Designing approximation algorithms with spanners Metric space searching Protein Visualization

- A meter show the similarity between any two objects.
- But evaluating the distances are expensive.
- One way to speedup is computing the distance between any two objects and save them, but it need O(n²) space (AESA).
- A t-spanner can be used as a sparse data structure to reduce the space.

・ コ ト ・ 厚 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications Designing approximation algorithms with spanners

Metric space searching Protein Visualization

- A meter show the similarity between any two objects.
- But evaluating the distances are expensive.
- One way to speedup is computing the distance between any two objects and save them, but it need O(n²) space (AESA).

• A *t*-spanner can be used as a sparse data structure to reduce the space.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- A meter show the similarity between any two objects.
- But evaluating the distances are expensive.
- One way to speedup is computing the distance between any two objects and save them, but it need O(n²) space (AESA).
- A t-spanner can be used as a sparse data structure to reduce the space.

G. Navarro, R. Paredes, and E. Chávez, **t-Spanners for metric space searching**, Data & Knowledge Engineering, pp. 820-854, 2007.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Applications Protein Visualization

D. Russel and L. Guibas, **Exploring Protein Folding Trajectories Using Geometric Spanners**, Pacific Symposium on Biocomputing, pp. 40-51, 2005.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) O-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.
- Experimental works on spanner algorithms.

Geometric Spanner Networks

Introductior

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).

- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.
- Experimental works on spanner algorithms.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).

・ コ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.
- Experimental works on spanner algorithms.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).

・ コ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.
- Experimental works on spanner algorithms.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).

・ コ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.
- Experimental works on spanner algorithms.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).
- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.

Experimental works on spanner algorithms.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- Dynamic spanners (insert and remove nodes).
- Kinetic spanners (when points move and we want to maintain an spanner all the time).
- Fault-tolerant spanners (vertex/edge fault tolerant or region fault tolerant).
- Spanners among obstacles.
- Optimization problems.
- External memory (I/O efficient) algorithms for generating spanners.
- Experimental works on spanner algorithms.

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) \ominus -Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Geometric Spanner Networks

Introduction

Algorithms Review Greedy Algorithm (Org. and Imp.) Apx. Greedy Algorithm (Ordered) ⊖-Graph Algorithm (Sink and Skip-list spanner) WSPD-based Algorithm

Theoretical bounds

Applications

Designing approximation algorithms with spanners Metric space searching Protein Visualization

Research Topics

####